
 Perturbing Practices: A Case Study of the Effects of Virtual Manipulatives  

as Novel Didactic Objects on Rational Function Instruction  

by 

Krysten Pampel 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved November 2017 by the 
Graduate Supervisory Committee:  

 
Carla Currin van de Sande, Chair 

Patrick Thompson  
Marilyn Carlson  

Fabio Milner 
April Strom 

 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

December 2017  



  i 

ABSTRACT  
   

The advancement of technology has substantively changed the practices of 

numerous professions, including teaching. When an instructor first adopts a new 

technology, established classroom practices are perturbed. These perturbations can have 

positive and negative, large or small, and long- or short-term effects on instructors’ 

abilities to teach mathematical concepts with the new technology. Therefore, in order to 

better understand teaching with technology, we need to take a closer look at the adoption 

of new technology in a mathematics classroom. Using interviews and classroom 

observations, I explored perturbations in mathematical classroom practices as an 

instructor implemented virtual manipulatives as novel didactic objects in rational function 

instruction. In particular, the instructor used didactic objects that were designed to lay the 

foundation for developing a conceptual understanding of rational functions through the 

coordination of relative size of the value of the numerator in terms of the value of the 

denominator. The results are organized according to a taxonomy that captures leader 

actions, communication, expectations of technology, roles, timing, student engagement, 

and mathematical conceptions. 
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CHAPTER 1 

PROBLEM STATEMENT 

The addition of anything new or different in a classroom setting inevitably causes 

perturbations of existing practices. The term perturbation describes a disruption that 

causes a system to attempt to regain equilibrium. For example, a pebble dropped into a 

glass of water causes a perturbation since it disrupts the surface of the water but laws of 

physics dictate that the water will attempt to revert back to its original state prior to the 

pebble being introduced. This dissertation describes an investigation of the perturbations 

that occur in a mathematics classroom when novel virtual manipulatives functioning as 

didactic objects are implemented as part of instruction. These particular virtual 

manipulatives were designed to help students build a conceptual understanding of 

rational functions.   

Technological advancements significantly change the practices and routines found 

in numerous professions. When a company adopts a new technology, employees 

experience perturbations in the existing practices. The perturbations in practice can have 

positive or negative, large or small, and short- or long-term effects on employees’ 

abilities to accomplish their work. Examples of the perturbations in practice caused by 

the adoption of new technology are found in emergency rooms where new medical 

equipment has been implemented (Edmondson, Bohmer, & Pisano, 2001) and on labor 

floors that have introduced new machines (Pickering, 1995). 

Mathematics education is another profession in which new technology is being 

regularly adopted (Pope, 2013). This new technology comes in many forms such as 

hardware (e.g. iPads, laptops, interactive whiteboards, document cameras, projectors), 
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software (e. g. Graphing Calculator, Maplesoft, Geometer's Sketchpad), and educational 

website licenses (e.g. Nearpod, MyBigCampus, Khan Academy, GeoGebra). The goal 

associated with the implementation of new technology in instruction is to facilitate 

instruction and improve student achievement and understanding. However, in order to 

achieve this goal, we need to better understand the process of adopting new technology in 

instruction.  In particular, we need to account for instructors’ current mathematical 

meanings of concepts, the perturbations experienced by instructors when implementing a 

new technology, and the effect these perturbations have on the instruction of 

mathematical concepts. 

Virtual manipulatives are one type of technology that can be used to restructure 

student understanding of mathematical concepts, provided they function as didactic 

objects, i.e., are accompanied by reflective mathematical discourse (Thompson, 

2002).  In particular, a virtual manipulative that encourages students to conceptualize a 

rational function by comparing the behavior of the numerator in terms of the denominator 

can draw on schemes of relative size, along with covariational reasoning, to build an 

understanding that connects with previous understandings of fractions and division. A 

meaningful understanding of rational functions, in turn, can be a stepping stone to a deep 

understanding of quotient of functions and limits (Yerushalmy, 1997). 

This dissertation study was designed to provide insight into the perturbations that 

occur in established mathematical classroom practices when novel didactic objects that 

use technology are integrated in instruction by a novice instructor. The study was 

designed to collect information on an instructor’s current understandings of rational 

functions, mathematical classroom practices, and support the instructor in developing 
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meanings for rational functions that are useful for implementing the novel virtual 

manipulative in instruction as a didactic object. The study then identified perturbations in 

mathematical classroom practices that occurred when the didactic object was used by a 

novice instructor for the first time in rational function instruction.  

Statement of the Problem 

           The integration of technology in multiple professions has been problematic 

(Ertmer, 1999; Iansiti, 1995), and mathematics education is a profession in which new 

technological devices are being regularly introduced with the goals of improving student 

engagement, achievement, and understanding.  Virtual manipulatives that function as 

didactic objects are one type of technology that has the potential to promote deeper and 

more coherent understandings of mathematical concepts.  However, in order to harness 

this potential, we need to explore the relationship between instructors’ technological 

pedagogical content knowledge and their mathematical classroom practices when a novel 

virtual manipulative is introduced into instruction as a didactic object. 

Research Questions 

This study identified the perturbations that occur in a novice instructor’s 

mathematical meanings and classroom practices when he attempted to use a new 

approach to teaching rational functions for which he had already established activity 

structures (Leinhardt, Weidman, & Hammond, 1987), and the new approach employed 

technology in a central way. The study answered the following questions: 

• In what ways do novel virtual manipulatives that are used as didactic objects 

perturb a novice instructor's existing mathematical classroom practices? 

More specifically, 
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• What characteristics, other than amount of teaching experience, classify an 

instructor as a novice? Are there aspects of planning a lesson, teaching a lesson, 

and reflecting on a lesson that differentiate novice from experienced instructors?  

• How does a novice instructor perceive a novel virtual manipulative that functions 

as a didactic object for teaching rational functions, both mathematically and as an 

instructional tool? 

• What are the differences between a novice instructor’s image of the meanings for 

rational functions that students might develop from the novel didactic object and 

how the instruction fosters these meanings?  

Outline of the Study 
In this study I uncovered perturbations in mathematical classroom practices when 

a novice instructor introduced virtual manipulatives as didactic objects in rational 

function instruction. The identification of perturbations in mathematical classroom 

practices assisted me in generating a framework that I hope to develop further in the 

future. This framework could aid professional development leaders at all levels of 

education to support mathematics instructors when blending technology with established 

practices.  

In order to identify perturbations in practice, I developed a two-phase study that 

analyzed mathematical classroom practices both prior to and subsequent to the 

introduction of virtual manipulatives as novel didactic objects. (For the sake of 

parsimony, I refer to “virtual manipulatives used as novel didactic objects” as simply 

“novel didactic objects.”)  The didactic objects I choose to explore promote a conceptual 

way of understanding rational functions in pre-calculus instruction. By conducting semi-
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structured, task-based interviews, observing classroom instruction, and capturing the 

perspective of the instructors based on journal entries and stimulated recall of their 

instruction, I identified these instructors’ mathematical meanings for rational functions 

and classroom practices associated with their rational function instruction. I then tracked 

perturbations in mathematical classroom practices that resulted from the use of the novel 

didactic objects by the novice instructor when he taught rational functions.  

Chapter 2 provides a review of the literature including perturbations of practices 

found in industry, technological pedagogical content knowledge, as well as technology 

and mathematical classroom practices. Chapter 3 describes the theoretical perspective I 

used throughout the study. This chapter contains a conceptual analysis of rational 

functions built on two major schemes, namely relative size and covariational reasoning. 

Chapter 4 outlines the phases of the study and details the methods of data collection and 

data analysis I employed.  Chapter 5 characterizes a novice instructor through the 

presentation of the findings from the first phase of data collection. Chapter 6 presents the 

perturbations in practice experienced by the novice instructor when implementing the 

novel virtual manipulatives as didactic objects into his rational function instruction. 

Chapter 7 provides a discussion of the findings from the data and the implications that 

these findings have for the mathematics education research community.  
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter I provide a review of the literature that explores disruptions of 

practice found in industry, technology in mathematics education, mathematical classroom 

practices, potential perturbations in mathematics classrooms, and the Technological 

Pedagogical Content Knowledge (TPACK) framework.  

Perturbations of Practice in Industry 

Every profession has practices or agreed upon ways of conducting business, such 

as achieving goals, communicating, and roles when working together. The introduction of 

novel technology has the potential to disrupt these practices in big and small ways, for a 

short term or long term period, and in predictable or unpredictable ways. In industry, 

disruptions of new technology have been studied in the context of medical procedures in 

a hospital and production lines on a labor floor.  

Edmondson, Bohmer, and Pisano (2001) studied the disruptions in routines that 

occurred when minimally invasive cardiac surgery (MICS) equipment was introduced 

into cardiac surgery. The authors identified three activity structures that suffered 

disruptions, namely authority structure, psychological safety, and team stability.  The 

authority structure delineates the chain of command so that responsibility and 

accountability are established. Because the authority structure is the underlying frame for 

activity, disrupting the authority structure has residual effects on other activity structures. 

Psychological safety refers to the belief that well-intentioned interpersonal risks will not 

be punished. When technology implementation occurs there is a trial and error period 

where individuals need to feel comfortable asking questions. Team stability is reflected in 
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the ways in which individual actions and abilities are coordinated so that routines emerge. 

This stability can be disrupted when new technology is implemented since new individual 

actions have to be coordinated so that “teamwork” can run as smoothly as previously.    

When MICS equipment was introduced into surgery, the authority structure was 

radically changed; the role of the surgeon changed from order giver to team member and 

the role of the nurses changed from order takers to information providers as the once 

quiet operating room now required a constant stream of communication between all team 

members. In effect, the surgical team went through the process of learning a new kind of 

teamwork that was significantly different from their established practices for traditional 

surgery. 

Another example of technology-induced disruptions in practice was found on the 

labor floors at General Electric when numerically controlled machines were introduced.	

Pickering (1995) described the adoption of numerically controlled (N/C) machine tools 

by General Electric’s (GE) Aero Engine Group in the early 1960’s, which caused 

multiple disruptions in established practices on the labor floor and within management. 

“Instead of requiring detailed human control, N/C equipment was controlled by digital 

computers executing instructions compiled by programmers; and as corollary, shop-floor 

labor was reduced to human button pushers. Or so, at least, it worked out in the 

Servomechanisms Lab at MIT” (Pickering, 1995, p.159). When implementing N/C 

equipment on the labor floor at GE the disruptions to existing practices were emergent 

(Pickering, 1995). In other words, none of the disruptions were considered before they 

occurred. During the original pilot program of N/C equipment, GE management did not 

take the time to assess the responsibilities of the workers who were manning the 
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equipment. There was no thought to whether the workers were button pushers or 

responsible for the success of the equipment. Management’s lack of forethought on 

responsibilities of operators led to disruptions within the working arrangements and 

functions of management.   

GE’s implementation of N/C equipment on the labor floor changed the roles of 

management and the roles of N/C operators. GE management’s role began as a boss 

dictating changes and forcing implementation with no consideration to opinions of the 

shop-floor workers. After the accommodation of job enrichment, management’s role 

changed to a monitor or partner in production practices, valuing the opinions of the N/C 

operators. Functions of management changed to accommodate N/C operators’ opinions 

on how the N/C equipment was functioning and what changes needed to be made for the 

equipment to be more effective. This is a stark contrast to the mindless button pushers 

they originally wanted. GE management did not know all the answers when 

implementing technology on the labor floor, but they were willing to correct the emergent 

disruptions that occurred.  

In both of these cases, when a novel innovative technology was introduced into 

established practices, disruptions followed. Table 1 summarizes, describes and provides 

examples of the aspects of practice that were disrupted when novel technology was 

introduced in professions outside of mathematics education. 

 

 

 

 



  9 

Table 1. Aspects of Practice Perturbed in Professions outside of Mathematics Education 
 

Aspects of 
practice Description Example 

Leader Actions Leader’s interpretation of 
the technology and how 
the leader implements the 
technology 

Edmondson et al. (2001) demonstrated 
how the surgeon's beliefs in the 
technology were correlated with how 
the ER team adapted to the 
technology.  

Communication The discourse and 
environment 

In Edmondson et al. (2001), the 
discourse in the ER changed from the 
surgeon being the only speaker to 
every member of the team needing to 
communicate.  

Expectations of 
Technology 

Predicted outcomes for the 
implementation process 

In Pickering (1995), prior to 
implementation GE management 
expected the technology to increase 
production. 

Roles and 
Responsibilities 

The individual’s original 
responsibilities are altered 
during the implementation 
process 

In Pickering (1995), the role of 
workers evolved from button pushers 
to integral members in the success of 
the machines.  

 

These cases can be used as a lens for viewing the current technology integration 

in mathematics classrooms. School districts purchase technology for use in mathematics 

classrooms without considering the perturbations in established mathematical practices 

that the mathematics instructors might face when implementing the novel technology.  

Technology in Education 

The type of technology available and applicable in mathematics instruction has 

grown significantly in the past two decades (Ozel, Yetkiner, & Capraro, 2008). These 

new technologies include calculators (graphing calculators especially), interactive 

whiteboards (SMART, Star boards, etc.), immediate response devices, computers, 

software, and web-based applications (Kaput, 1992; Pope 2013; Ozel et al., 2008). As 
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such technologies have become more common in classrooms, the role that technology 

plays in instructor knowledge has also developed.  

Technological Pedagogical Content Knowledge 

Technology is now part of the framework describing what it takes to teach. The 

Technological Pedagogical Content Knowledge (TPACK) framework is an extension of a 

previous framework, that is, as shown in Figure 1, depicted by some researchers as a 

Venn diagram (Koehler & Mishra, 2009). The previous framework included only content 

knowledge and pedagogical knowledge (Shulman, 1986; 1987) since technology was not 

as prevalent three decades ago, and these were thought to be the two major types of 

knowledge required to support effective teaching. 

 
Figure 1. Technological pedagogical content knowledge framework 

Content knowledge, exactly as it sounds, is the knowledge of a content area. 

Instructors are considered content specialists and use their knowledge of a particular 
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subject to educate students. Content knowledge includes knowledge of concepts, theories, 

ideas, organizational frameworks, knowledge of evidence and proof, as well as 

established practices and approaches toward developing such knowledge (Koehler & 

Mishra, 2009; Shulman, 1986). For example, a mathematics instructor must have a 

repertoire of mathematical understandings, as well as the ability to see the 

interconnectedness of mathematical concepts. Instructors who do not have a 

comprehensive base of content knowledge can confuse students, cause students to learn 

content incorrectly, and perhaps even deter students from pursuing a certain content area 

(Hill, Rowan, & Ball, 2005).		 

However, although necessary, mathematical content knowledge is not a sufficient 

condition for being an effective instructor; pedagogical knowledge is also required. 

Pedagogical knowledge refers to understanding how students learn, lesson planning, 

assessment, and classroom management skills. These aspects of teaching might seem 

routine, but without pedagogical knowledge instructors cannot impart their content 

knowledge. An instructor needs to have firm grasp on their students’ abilities, on how 

best to present the content, on the sequencing of the content, and on the current state of 

their students’ understanding. At the same time, an instructor must know how to maintain 

a safe and productive learning environment so that all students feel comfortable 

participating. 

In addition to content knowledge and pedagogical knowledge, there are aspects of 

teaching that fall within the intersection of these types of knowledge, known as 

pedagogical content knowledge. Shulman (1986; 1987) describes pedagogical content 

knowledge as the transformation that occurs when the instructor interprets the subject 
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matter, finds ways to represent the subject matter, and adapts the instructional materials 

to alternative conceptions and students’ prior knowledge. Instructors of mathematics 

must combine their knowledge of mathematics with their pedagogical knowledge in order 

to attempt to build mathematical understandings within their students. Mathematical 

knowledge for teaching is one of the major attempts to expand Shulman’s (1986; 1987) 

types of knowledge for teaching that is tailored to mathematics education.  

In order to understand how an instructor envisions presenting a mathematical 

concept, it is important to look at the knowledge a mathematics instructor employs to 

build those presentations, namely the blend of mathematical knowledge and pedagogical 

knowledge.  This mathematical knowledge for teaching is an essential part of an 

instructor’s ability to teach effectively and is a source for decisions instructors make in 

their classroom instruction (Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; Hill, 

Ball, & Schilling, 2008). On a deeper level, instructors are creating classroom practices 

through their understandings of the mathematics and pedagogical knowledge. These 

classroom practices are further developed when the instructor begins to form an image of 

what the lesson will look like when implemented.  

“Instructors’ mathematical meanings constitute their images of the mathematics 

they teach and intend that students have” (Thompson, 2016, p.437).  An instructor’s 

image of the mathematics has a powerful impact on lesson preparation and instruction of 

a mathematical concept. Instructors’ ways of thinking affects what instructors wish 

students to learn, what actions instructors take, what instructors teach, and how 

instructors influence student understandings (Thompson & Thompson, 1996).  
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Were it not for technology, it would be sufficient for an instructor to have strong content 

knowledge, pedagogical knowledge, and pedagogical content knowledge. However, the 

increasing presence of technology in classrooms has changed the responsibilities of 

instructors. Thus, the TPACK framework includes technological knowledge, along with 

content knowledge and pedagogical knowledge, in order to describe how instructor 

understanding of educational technologies interacts with these other types of knowledge 

to support effective teaching (Mishra & Koehler, 2006; Koehler & Mishra, 2008; Koehler 

& Mishra, 2009). 

What is technological knowledge? Defining technological knowledge is difficult 

since any definition would become outdated with the addition of new technologies. Thus, 

Koehler & Mishra (2009) define technological knowledge as ways of thinking about and 

working with technology that can be applied to all technology tools and resources. 

However, technological knowledge is not independent of the content and pedagogical 

knowledge necessary for effective teaching.  

Instructors must navigate the intersection of technological and content knowledge 

known as technological content knowledge. Technological content knowledge is an 

understanding of the manner in which technology and content influence and constrain 

one another. This definition suggests that instructors must have a deep understanding of 

the manner in which the subject matter, in this case mathematics, can be changed by the 

application of particular technologies. For instance, Dr. Thompson created the virtual 

manipulatives used in this study to illustrate the conceptual meanings behind rational 

functions. 
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An additional intersection of knowledge exists between technological and 

pedagogical knowledge known as technological pedagogical knowledge. Technological 

pedagogical knowledge is an understanding of how teaching and learning can change 

when specific technologies are used in particular ways. Instructors need a deeper 

understanding of the constraints and affordances of technologies and the pedagogical 

contexts within which they function. For example, instructors may choose to frequently 

use overhead projectors based on their belief that it is their job as the teacher to hold 

students’ attention so that they can learn (Stigler & Hiebert, 1999). 

The critical intersection of technological knowledge with content knowledge and 

pedagogical knowledge is technological pedagogical content knowledge (TPACK). 

“TPACK is the basis of effective teaching with technology, requiring an understanding of 

the representation of concepts using technologies; pedagogical techniques that use 

technologies in constructive ways to teach content; knowledge of what makes concepts 

difficult or easy to learn and how technology can help redress some of the problems that 

students face; knowledge of students’ prior knowledge and theories of epistemology; and 

knowledge of how technologies can be used to build on existing knowledge to develop 

new epistemologies or strengthen old ones” (Koehler & Mishra, 2009, p.66). In this way, 

TPACK reflects all aspects of the expertise need to teach content with technology, 

something that is relevant for instructors today. 

The TPACK framework has encouraged further research in instructor education, 

instructor professional development, and instructor use of technology (Archambault & 

Crippen, 2009; Cox & Graham, 2009; Schmidt et al., 2009). This framework allows 

“instructors, researchers, and instructor educators to move beyond oversimplified 
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approaches that treat technology as an “add-on,” instead to focus again, and in a more 

ecological way, upon the connections among technology, content, and pedagogy as they 

play out in classroom contexts” (Koehler & Mishra, 2009, p.67). In sum, TPACK 

illustrates how technology is intended to be an integral, rather than supplemental, part of 

mathematical classroom practices. 

This framework begins a discussion on characterizing teaching expertise. Many 

studies define an instructor expertise in terms of the years of service in the classroom or 

student achievement (Borko & Livingston, 1989; Leinhardt & Greeno, 1986). However, 

years of teaching experience does not capture the characteristics of an expert instructor 

since time is not the only variable when looking at a classroom environment and student 

learning (Hogan, Rabinowitz, & Craven, 2003). A more robust measure of expertise for 

an instructor captures the extent of content and pedagogical  knowledge, deep 

pedagogical content knowledge, and sophisticated technological pedagogical content 

knowledge.  

Mathematical Classroom Practices 

Every discipline and profession has practices which are established, maintained, 

and changed over time. Some researchers use the term community of practice to describe 

a group of people in which practices evolve naturally over time since the members in the 

community share a common interest (Lave & Wenger, 1991). Communities of practice 

rely on a process of sharing with the group to personally and professionally develop the 

members of the community.  There are many different types of communities of practice, 

both informal and formal, and one type that is of interest to educational researchers exists 

with the purpose of gaining knowledge related to a specific field, such as mathematics 
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(Dube, Bourhis, & Jacob, 2005; Kietzmann et al., 2013). Mathematics classrooms can 

therefore be considered as communities of practice, with influences from both 

mathematical and classroom practices. In this way, as seen in Figure 2, mathematical 

classroom practices can be thought of as a blend of mathematical practices (stemming 

from mathematics as a discipline) and classroom practices (associated with the learning 

environment).  

 
Figure 2. Diagram of mathematical classroom practice 

Mathematical practices. In the field of mathematics, there exists a strong 

community of practice that mathematicians through the centuries have built. This 

community of practice has shared methods for solving problems and ways of articulating 

ideas and results to others in their field. The mathematical practices that have evolved in 

this community of practice have been applied in varying degrees in elementary, 

secondary, and post-secondary education. For instance, disciplinary engagement refers to 

the ways in which students in a classroom enact the practices held by the discipline that 

they are studying (Engle & Conant, 2002). 

More formally, mathematical standards of educational policy can stem from 

practices that characterize accepted mathematical disciplinary practices. Thus, the current 

Common Core Standards for Mathematical Practice (Table 2) are based on problem 

solving, reasoning, proof, communication, representation, and connections as a basis for 



  17 

describing how students should engage in mathematical activity (National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2010). 

These eight core practices represent “varieties of expertise that mathematics educators at 

all levels should seek to develop in their students” (National Governors Association 

Center for Best Practices, Council of Chief State School Officers, 2010). Although these 

practices are intended for guiding mathematics classroom activity, it is important to note 

that mathematical practices do not exist solely in mathematics classrooms. For example, 

during a science lab students might graph the results of an experiment using a Cartesian 

plane. This would require decisions about how to construct the representation in a way 

that communicates relevant information to others (e.g., deciding on units and scale). In 

this example, the science lab is an opportunity for students to utilize mathematical 

practices outside of a mathematics classroom. 

Table 2. Common core standards of mathematical practices 

 

These eight core practices are broad and describe how the authors of the Common 

Core Standards want students to engage in mathematical activity. Researchers have also 

studied the specific practices that mathematicians adopt while solving problems. For 

example, Carlson and Bloom (2005) investigated mathematicians solving problems and 
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identified a multidimensional framework that describes the interplay between four 

problem-solving phases (orienting, planning, executing, and checking) and four problem-

solving attributes (resources, heuristics, affect, and monitoring). This research suggests 

that students need a large number of reasoning patterns, knowledge, and behaviors at 

their disposal to be effective problem solvers. These practices include management of 

both resources and emotional responses that crop up during the problem-solving process. 

Classroom practices. In addition to disciplinary practices, mathematical 

classroom practices are also shaped by the nature of the activity and the environment in 

which they take place. Classroom practices consist of the activity structures (Leinhardt, 

Weidman, & Hammond, 1987), rules of discourse, and management of the classroom. 

Activity structures are goal-directed segments of instructor and student behavior than 

involve certain actions. Classroom practices are the configuration of activity structures 

that are played out by routines that exist in a particular classroom. An example of an 

activity structure would be an instructor of a course starting every class session with a 

problem that is designed to review past material or to introduce the day’s lesson.  

One arena that is of particular interest to educational researchers is the set of 

classroom practices associated with rules of discourse since speech essentially unites the 

cognitive and social (Barnes, 1974 as cited in Cazden, 1988). These practices focus on 

the communication and interactions that occur in a classroom, specifically how 

participants voice and exchange ideas as they engage in constructing mathematical 

meanings. Speaking with meaning is a prime example of a rule of discourse because it 

emphasizes the importance of communicating meaningfully with others (Clark, Moore, & 

Carlson, 2008). This classroom practice requires both the instructor and students to hold 
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one another accountable for articulating ideas and processes in ways that can be 

understood by others in the classroom. Although developed in the context of a 

mathematics classroom, speaking with meaning is a practice that also applies to other 

subject areas and learning environments. 

Similarly, Hackenberg (2010) discusses student and instructor interactions as a 

linked chain of bearable perturbations that she calls mathematical care relationships 

(MCRs) but that are applicable to other subject areas as well. MCRs measure the quality 

of the interaction between a student and instructor in both affective and cognitive realms 

with the goal of increasing mathematical learning (Hackenberg, 2005). MCRs require a 

two way street of information and participation between the instructor and student. The 

instructor needs to place herself in the mindset of the student. This act of decentering 

helps the instructor understand the student’s mathematical meanings and prepare 

discussions (with tasks) to build on those meanings. In turn, the student must feel 

comfortable to freely communicate with the instructor. Thus, MCRs emerge through the 

coordination and effort of both parties. 

Establishing, Maintaining, and Changing Mathematical Classroom Practices 

In order to better understand how students learn mathematics, mathematics 

education researchers not only study the practices that exist in mathematics classrooms, 

but also how they develop and change over time (cf. Cobb & Yackel, 1996; Hackenberg, 

2005; Hackenberg, 2010). One perspective looks at classroom communities in general so 

that practices exist prior to and independently of instructors and their students (Cobb, 

Stephan, McClain, & Gravemeijer, 2011). Accordingly, there is a prescribed way of 

reasoning and communicating into which instructors and their students are expected to 
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conform (Cobb et al., 2011). However, an alternative to this sociocultural perspective is 

to look at a particular classroom community and analyze the ways in which the instructor 

and his or her students construct the mathematical classroom practices through 

interaction. Cobb and Yackel (1996) developed a sociological perspective on 

mathematical activity that involved identifying both social norms and socio-mathematical 

norms within a mathematics classroom. Social norms involve beliefs about the roles and 

the general nature of mathematical activity in school. Socio-mathematical norms 

encompass the community’s agreed upon process for conducting mathematical activities 

(e.g. what counts as a different, sophisticated, efficient, and acceptable mathematical 

solution). In this approach, the authors found that both the social and socio-mathematical 

norms were created through negotiation between the instructor and students. This 

negotiation relied on both parties working together to establish norms in the classroom. 

Thus, mathematical classroom practices can be seen as an emergent phenomenon, 

resulting from a collective effort on the part of an instructor and students.  

Establishing practices. Practices are established when ways of reasoning, 

arguing, and symbolizing are accepted by the majority (Cobb et al., 2011). It is important 

to note that the reasoning, arguing, and symbolizing occur within the context and 

discussion of a particular mathematical idea. These established practices emerge as a 

reorganization of prior practices held by the instructor and his or her students. In other 

words, neither instructors nor their students are blank slates (Steffe & Thompson, 2000), 

so the establishment of practices in a learning environment requires participants to 

discard, reorganize, and supplement practices that they have previously established. 
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Maintaining practices. Maintaining mathematical classroom practices relies on 

consistency and reflection (Tabulawa, 1997). Instructors cannot simply fix their 

mathematical classroom practices and stick to them throughout the duration of their 

career (Pickering, 1995). In fact, taking the approach of a local classroom with emergent 

practices it would be expected that each year a fine-tuning must be made to accommodate 

the new set of students and the practices that emerge. Continual reinforcement and 

revision of mathematical classroom practices, by the instructor and her students, through 

tasks, activities, and discussion is necessary to keep emergent practices honed. In this 

case, maintaining practices can be seen as a form of housekeeping where one is trying to 

remove the layer of dust from objects. This maintenance amplifies or bolsters the 

mathematical classroom practices. In contrast, changing practices requires reorganization. 

In this case, instead of simply dusting, objects are removed, added, or replaced. 

Changing practices. Changing practices requires a modification, if not complete 

reorganization, of the ways participants engage in activity. Regarding mathematical 

classroom practices, curricula, resources, and technology can all provoke change (Duffy 

& Roehler, 1986; Richardson, 1990). Appleton (2008) found instructors given a new 

curriculum experienced uncomfortable changes in their practices. Some instructors even 

chose to avoid the new curriculum and just continued to teach the old curriculum. 

However, the instructors who attempted to adopt the new curriculum had a 

transformation occur in their practices, prompted by new ways of thinking. Instructors’ 

ways of thinking can be perturbed and modified, and this, in turn, affects their classroom 

practices. 
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In addition to definitive events that evoke changes in practices (such as the 

adoption of a new curriculum), the passage of time can also be thought of as an instigator 

of continual changes in practices. Pickering (1995) suggests that practices or goals are 

temporally emergent and can be transformed in real-time, which includes encounters with 

material agency. Temporal emergence refers to the idea that the disruptions caused by 

material agency, or non-human agents, are never decisively known. This means that there 

is a constant expectation that practices will have to be changed continuously. Pickering 

(1995) explains that performativity of new machines must be found out in real time, just 

as human practices used in conjunction with the machine can only become known as they 

emerge over time.  

Mathematical classroom practices are a blend of the norms associated with the 

discipline of mathematics and the norms associated with classroom activities and 

instruction. These mathematical classroom practices are established and maintained over 

time. However, similar to the impact of new curriculum on mathematical classroom 

practices, novel technology can perturb and change the established mathematical 

classroom practices.  

Technology and Mathematical Classroom Practices 

Technology is an umbrella term that is used to describe or refer to any modern 

electronic device and engineering innovation. In a mathematics classroom, technology 

can take the form of calculators, interactive whiteboards, immediate response devices, 

computers, software, and web-based applications (Kaput, 1992; Ozel et al., 2008; Pope, 

2013). Each of these different technologies has the potential to impact learning in 

different ways.  
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Regardless of how sophisticated or innovative the technology is, though, its very 

presence in a mathematics classroom will not necessarily impact mathematical classroom 

practices. For example, placing a projector into a mathematics classroom where the 

instructor proceeds to present PowerPoint slides with same information she would have 

written on the board does not change the mathematical classroom practices of the 

instructor. Instead, this instructor has experienced a shift in pedagogical knowledge 

which now incorporates technology. In terms of the TPACK framework, the change is 

localized to the intersection of just technological and pedagogical knowledge. In order to 

meaningfully affect instructors’ mathematical classroom practices, the novel technology 

must push the instructors to make changes within their technological pedagogical content 

knowledge, the very center of the TPACK framework. Didactic objects that incorporate 

technology are one example of an educational resource that has the potential to impact 

mathematical classroom practices and prompt instructors to employ and coordinate 

technological knowledge, pedagogical knowledge, and content knowledge.  

Didactic Objects 

Thompson (2002) defines didactic objects as tools or objects that are created with 

the intent of supporting reflective mathematical discourse (p.198) and considers them to 

have two components: first, the object itself, and, second, the classroom discussion that 

the instructor designs to engage students in constructing shared mathematical 

understandings. For example, base ten blocks (or the virtual equivalent) together with a 

plan for guiding a conceptual understanding of place value would constitute a didactic 

object. It is important to note that designing the plan for guiding a conceptual 

understanding should include questions that prompt a discussion. These questions that are 
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included in the plan should be conceptual rather than calculational (Thompson, Phillip, 

Thompson, & Boyd, 1994). Questions that are calculational elicit and solidify answer-

getting behaviors and the idea that only one process or answer exists. Conceptual 

questions that prompt deeper thinking and multiple answers will cultivate stronger 

meanings, as well as a conceptual understanding. In this way, the goal of didactic objects 

is to promote ways of thinking that go beyond what is actually present in the discussion 

surrounding the object. Ideally the discussion that the instructor leads will help students 

take the conversation and extend the ideas so that, instead of creating islands of 

knowledge, the instructors are helping students build bridges that support more coherent 

and connected ways of thinking. 

Design of didactic objects. Thompson (2002) points out that objects cannot be 

didactic in and of themselves. “Rather, they are didactic because of the conversations that 

are enabled by someone having conceptualized them as such” (Thompson, 2002, p.198). 

Thus, the design of didactic objects requires the creator to consider the two components 

of didactic objects, the object and the discussion, equally. 

Design of the object. The object used in conjunction with the discussion to make 

up the didactic object can be anything. This wide interpretation of “object” gives the 

creator a limitless perspective on what type of object can be implemented. However, the 

creator must be aware of why she has selected a specific object and how the object will 

assist students in developing conceptual understandings of mathematics. For example, if 

the goal is to develop a stronger understanding of adding polynomials (by stronger, I am 

referring to more than “combining like terms” when given the two function rules), the 
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object might be designed to display the graphs of two polynomials that are not easily 

identified, so the students cannot fall back on algebraic manipulation. 

Design of the discussion. Designing the discussion to accompany an object is not 

an easy task. Since the object has such a wide interpretation, it is even more important for 

the discussion to have a tight focus. For example, there is a big difference between telling 

students to “graph or represent a situation” that is being depicted (e.g., in an applet) and 

directing their attention to relevant quantities and covariational relationships.  For 

instance, if an instructor were to use an applet depicting a bottle filling with water, with 

the intention of having the students construct a height-volume graph of the amount of 

water in the bottle, the discussion should be designed in such a way as to help students to 

identify the height of the water in the bottle and the volume of the water in the bottle as 

quantities that are changing over time and to attend to how the change in these quantities 

is affected by the shape of the bottle. Virtual manipulatives, such as applets, can be 

considered as a technologically enhanced form of physical manipulatives, such as algebra 

tiles or unit cubes (Moyer, Bolyard, & Spikell, 2002). The combination of a thought-

provoking discussion and a virtual manipulative can be considered as a didactic object 

(Thompson, 2002).  When used as didactic objects, virtual manipulatives can demonstrate 

attributes and behaviors of advanced mathematical concepts in readily available and 

flexible ways. 

Virtual Manipulatives  

Manipulatives are physical objects or concrete models that can be touched and 

moved around by the learner (Durmus & Karakirik, 2006; Heddens, 2005).  In 

mathematics instruction, manipulatives afford opportunities for learners to interact with 
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abstract mathematical concepts and procedures through visualization and movement. For 

example, base ten blocks (cubes and bars representing 1’s and 10’s place value) allow 

learners to explore the concept of place value and mathematical operations through 

activities such as physically configuring the blocks and combining them in various ways 

(Moyer et al., 2002). 

However, we now recognize that the benefits of using manipulatives do not 

necessarily require the sense of touch, e.g., moving around physical objects, and this has 

led to the creation of a new class of computer-based manipulatives (Durmus & Karakirik, 

2006; Moyer et al., 2002; Moyer-Packenham, Sallkind, & Boylard, 2008). Moyer et al. 

(2002) define a virtual manipulative as a “web-based visual representation of a dynamic 

object that presents opportunities for constructing mathematical knowledge” (p.373). 

Thus, a computer program that allows students to select, configure, and combine 

representations of base ten blocks using keystrokes or by moving a hand control (i.e. 

computer mouse) would be considered a virtual manipulative. 

Design and impact of virtual manipulatives. Virtual manipulative design is 

flexible and there are multiple software and web-based programs that can be used to 

create virtual manipulatives (i.e. Graphing Calculator, GeoGebra, Geometers Sketchpad, 

etc.). This flexibility allows the creator to design virtual manipulatives with verbal (i.e. 

letters, numbers) and visual (i.e. pictures, animations) information codes that can be 

presented separately or simultaneously (Moyer-Packenham et al., 2008). Decisions 

regarding how best to present information have been informed by theories that are based 

on information processing models of cognition, such as Dual Coding Theory (Clark & 

Paivio, 1991). According to this theory, presenting visual and verbal codes in tandem will 



  27 

have a positive effect on student recall since the information can be processed and 

encoded in two complementary ways. The contiguity principle (which states that 

presenting words and pictures together temporally or spatially) is now recognized as one 

of the basic principles of effective multimedia instructional design (Mayer & Anderson, 

1992).   

However, just as with any other instructional materials, there are factors beyond 

design considerations that contribute to the effectiveness of virtual manipulatives. The 

very presence of virtual manipulatives in mathematics instruction does not guarantee that 

students will develop solid conceptual understandings. For instance, students might fail to 

link the actions made with a manipulative and the underlying intended mathematical 

understanding (Clements & McMillen, 1996). Thus, additional support might be 

necessary to foster these meaningful connections.  

Multimedia in the classroom. Although research on instructional multimedia 

predominantly uses short segments of material or content (e.g. a few minutes or less) 

(Mayer & Anderson, 1992) and is conducted in a laboratory setting (e.g. using human 

subjects versus authentic students), there is some research exploring virtual manipulatives 

in a classroom setting. The results of some such studies indicate that the use of virtual 

manipulatives in the classroom results in higher learning gains through the additional 

visualization opportunities (Bolyard, 2006; Moyer et al. 2002; Yerushalmy, 1997). In 

addition to the gains made by students in mathematics when taught with virtual 

manipulatives, there appears to be an increase in student engagement, including on task 

behavior (Drickey, 2000). The use of virtual manipulatives creates a dynamic learning 

environment (Durmus & Karakirik, 2006; Moyer-Packenham et al., 2008) by allowing 
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educators and students to explore mathematical concepts more deeply. When this 

happens, the role of the instructor becomes less of a “sage on the stage,” and more of a 

discussion leader, or “guide on the side” (King, 1993). 

Virtual Manipulatives as Didactic Objects 

Research on the use of objects (physical or virtual) in mathematics instruction has 

traditionally focused solely on how the tool itself supports student learning and 

understanding in terms of cognition (Spicer, 2000).  However, there has been a shift to 

expand the focus beyond the object itself to include the accompanying discussion 

(Bowers, Bezuk, & Aguilar, 2011).	As previously discussed, didactic objects require 

more than just an object. Didactic objects are the combination of two components, the 

object and the discussion. The design of both components relies on the creator making 

the effort to keep the mathematical understanding she would like to co-construct with her 

students in the forefront. 

Virtual manipulatives vs. didactic objects. In sum, the term ‘didactic objects’ 

refers to a much broader category of instructional resources, and some virtual 

manipulatives might be used as didactic objects. However, not all virtual manipulatives 

are didactic objects since virtual manipulatives, in and of themselves, do not require 

conversation between the students or with the instructor. In fact, many virtual 

manipulatives can be seen in online education platforms where there are instructional 

prompts that guide the online learner to see the indicated pieces and features of the 

manipulative. 

Impact of technology on mathematical classroom practices. Instructors have 

established practices of teaching that they must modify in various way to incorporate 
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technology. Mathematical classroom practices provide the instructor with stability and 

consistency on a daily basis (Tabulawa, 1997). These established mathematical classroom 

practices are deeply seeded in instructors, which make altering those practices 

challenging. However, mathematical classroom practices provide researchers an 

opportunity to analyze the effect that a new technology, such as virtual manipulatives, 

has on those practices. 

According to Sherman (2014), cognitive technology can serve as either an 

amplifier or as a reorganizer of mental activity. Cognitive technologies assist in 

influencing thought and learning by transcending the limitations of the mind in thinking 

and problem-solving activities. If a technology can more efficiently perform a tedious 

process that is usually done by hand, then the technology can be labeled as an amplifier. 

An example of an amplifier technology is a calculator since the technology offers faster 

computational results that would take longer if done by hand. Technology designed to 

shift the focus of students’ mathematical thinking or activity is classified as a reorganizer. 

Reorganizing technology can take the form of novel representations, which draw 

attention to salient aspects of a mathematical concept that might have been difficult to see 

without the technology. An example of a reorganizer technology can be found when 

answering questions surrounding the relationship between two quantities such as the 

height of the water in a bottle and the volume of water in the bottle (Carlson, Jacobs, Coe, 

Larsen, & Hsu, 2002). There are a number of web-based or software based technologies 

that can produce a graph relating the two quantities and demonstrate the changes in the 

two quantities as more water is added. Using technological tools to demonstrate and 

represent the changes in the two quantities, students are able to focus on the interpretation 
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within the context of the problem posed, in this case the relationship that exists between 

the height of the water in the bottle and the volume of the water in the bottle. 

Reorganizing technologies of this type allow students to focus on using the 

representations rather than producing them (Greeno & Hall, 1997).  

The addition of reorganizing technology in mathematics education allows for 

curriculum to be restructured, giving priority to a new set of skills and abilities (Heid, 

1988; Palmiter, 1991; Schwarz & Hershkowitz, 1999).  Restructuring curriculum, 

however, is often met with resistance since the change impacts instructors’ established 

mathematical classroom practices. Technology designed as a reorganizer can also affect 

the structure of the learning environment, such as a flipped classroom model (Gannod, 

Burge, & Helmick, 2008; Prober & Heath, 2012). In a flipped classroom the instruction is 

provided in the form of video lectures to be watched outside of class. During class, 

students work in groups to discuss problems or engage in projects. A flipped classroom 

models how drastically instructors’ mathematical classroom practices can be altered by 

technology. The impact of technology on mathematical classroom practices requires 

instructors to rethink, and in some cases abandon, old practices for new ones. 

Instructors make pedagogical decisions by drawing on their knowledge of and 

ideas about mathematics (Thompson, 1984; Silverman & Thompson, 2008). This is why 

mathematics instructors might have to transform their ways of thinking and teaching to 

include new resources causing instructors to try a new approach. This new approach to 

teaching requires additional ways of thinking, such as how to use the technology and 

what benefit the technology will have on student understanding. The instructor might 

even need to change the ways of thinking that she has about the mathematical concept 
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that is to be taught with the new resource (Silverman & Thompson, 2008).  However, if 

mathematics instructors do not make the necessary changes to their ways of thinking, 

integrating the new resource in their mathematical classroom practices could cause 

additional perturbations. 

Potential Perturbations 

Instructors need to understand the mathematics they teach differently than they 

currently understand it in order to use reorganizing technology effectively. Traditionally, 

a mathematics classroom has an instructor, who leads and develops instruction based on 

his or her content and pedagogical knowledge. In such a classroom, the instructor, as seen 

by the students, is the authority in the classroom and the mathematics expert. The role of 

students is to take notes and complete tasks given by the instructor throughout the lesson. 

Communication between instructor and student in this type of learning environment is 

minimal, with only occasional questions that typically follow an Initiation-Response-

Evaluation pattern (Cazden, 1988; Mehan, 1979). However, a new approach with 

reorganizing technology disrupts the traditional mathematics classroom practices by 

changing lesson planning, structure, and communication. 

Mathematics instructors must transform their ways of thinking to include the new 

approach. A new approach with reorganizing technology requires additional ways of 

thinking; such as how to use the technology and what benefit will the technology have on 

student understandings. However, if mathematics instructors do not make the necessary 

changes to their ways of thinking, integrating technology in their mathematical classroom 

practice could cause perturbations. “If students are equipped with tools that allow them to 

make and explore conjectures, then it is likely that they will rapidly press the edges of the 
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instructor’s knowledge of the subject” (Schwartz, 1999, p.113). This is a legitimate fear 

for mathematics instructors because they will need to actively expand their mathematical 

knowledge. Cooney and Wilson (1995) suggest that instructors make decisions on what 

resources to use in a lesson by considering how smooth the lesson will run. When 

students push the boundaries of instructors’ mathematical meanings, instructors might 

become uncomfortable and choose to abandon the approach entirely. 

Instructors need to rethink their presentation of the mathematics concepts so that 

the presentation reflects their new understandings of the mathematics they want students 

to learn. Based on the instructors’ new understandings of the mathematics, classroom 

structure will need to change from direct instruction and note taking, to discussions on 

what the technology is demonstrating mathematically. These discussions require 

instructors to develop ideas of student responses and understandings prior to the 

implementation of the new approach. Discussions force both instructor and student to 

participate as equals, listening carefully and interpreting understandings. The new 

approach with technology changes the roles of the instructor and students. Mathematics 

instructors are still the authority in the classroom but their roles transform from dictators 

of instruction to discussion facilitators. The role of the student changes from mindless 

note taker to discussion participant.  

The adoption of new approaches, involving technology, to mathematics teaching 

and learning creates disruptions within established classroom practices. However, the 

classroom environment, instructor actions, and stability of the mathematics classroom, 

between instructor and student, can determine whether the new approach with technology 

is successful.  
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Instructors need to rethink the activities they will arrange for students so that they 

are coherent with the new understandings that they (the instructors) present and are 

coherent with the new forms of activities that the new technology makes possible. Ozel et 

al. (2008) believe effective implementation of technology augments the learning of every 

student by providing diversity in instructional models, developing a student-centered 

learning environment, and restructuring the teaching and learning process to make it 

intellectually rigorous (p.82). 

Edmondson et al. (2001) found similar characteristics of effective implementation 

of technology in hospitals. The authors “take the perspective that when new technology 

disrupts existing work routines, the adopting organization must go through a learning 

process, making cognitive, interpersonal, and organizational adjustments that allow new 

routines to become ongoing practice” (Edmondson et al., 2001, p.686).  

Similar to the approach of Appleton (2008), mentoring is a viable way to battle 

the low self-confidence mathematics instructors’ experience when integrating technology 

into current mathematical classroom practices. Mentoring could evoke changes in the 

mathematical practices of an instructor by assessing the instructor’s mathematical 

meanings. After assessment, mentor and instructor collaborate on a new approach with 

technology. The mentor guides and discusses the potential uses of the technology while 

assessing any perturbations that occur in the instructor’s mathematical meanings. The 

mathematics instructor then teaches the new approach with technology to students as the 

mentor looks for perturbations in existing mathematical classroom practices. A reflection 

on the new approach with technology is made at the completion of the lesson to discuss 

the effectiveness of the approach. 
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It does not make sense to study the intersection without including the 

mathematical concept and the instructor understanding of the mathematical concept. You 

cannot study the perturbations in practice that occur when a novel didactic object is 

integrated in instruction if you do not know the mathematical meanings the instructor 

possesses for the mathematical concept that is to be taught. In the following chapter, I 

present my theoretical perspective that includes a conceptual analysis of the mathematical 

concept I selected, namely rational functions.  

Perturbations in practice in industry due to the introductions of novel technology 

have been researched in fields such as emergency rooms and labor floors. However, there 

is limited research on the perturbations in practice in mathematics classrooms when novel 

technology is integrated in instruction. I explored the perturbations in mathematical 

classroom practices that occurred in the context of rational functions, which represented a 

concept taught with a conceptual approach using novel didactic objects. 



  35 

CHAPTER 3 

THEORETICAL PERSPECTIVE 

This chapter presents the theoretical perspective for the dissertation study I 

conducted. I start with a description of how rational functions are traditionally taught as 

the backdrop to an alternative conceptual understanding. Then I provide a brief 

discussion of the central constructs of Piaget’s (1971) genetic epistemology in order to 

describe how this alternative conceptual understanding of rational functions might 

develop. Finally, I conclude this chapter with an interpretation of rational functions and 

their characteristics based on the conceptual analysis I have created.  

Traditional Teaching of Rational Functions 

Individuals are first introduced to rational functions in Intermediate Algebra, a 

course that is usually taken in high school. After being taught how to combine functions 

by adding, subtracting, and taking the product of given polynomials, students are 

introduced to rational functions as the result of dividing two polynomials.  It is in this 

context that the issue of domain can be problematized since the resulting function can be 

discontinuous at certain input values. In particular, the graph of a rational function can 

contain holes (e.g. at input values for which both the function in the numerator and the 

denominator equal zero), or vertical asymptotes (at input values for which the function in 

the denominator, but not the numerator, equals zero), or both. For example, as seen in 

Figure 3,  has a vertical asymptote at x = -2. h(x) = 2
x + 2
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Figure 3. The graph of .	

Traditionally students are taught how to algebraically simplify the rule of a 

rational function and then to find the vertical asymptotes by setting the denominator 

equal to zero. However, this calculational orientation (Thompson et al., 1994) does not 

provide students with a conceptual understanding of how rational functions behave. In 

particular, simply setting the denominator equal to zero does not capture the covariational 

relationship that exists between the two polynomials that make up the rational function. 

As the polynomial in the denominator of an algebraically simplified rational 

function is getting closer to zero for some input value, the entire rational function will 

increase (or decrease) without bound, resulting in a vertical asymptote. This issue sets the 

stage for the adoption of a conceptual analysis that encourages individuals to explore 

rational functions more dynamically and to construct an understanding of the 

covariational relationship that exists when two functions are combined through division. 

Conceptually, rational functions can be considered as the “fractions of algebra.” 

Just as a fraction is the ratio of two integers, a rational function is the ratio of two 

polynomials (Tussy & Gustafson, 2008). Because the focus of this analysis is a ratio 

h(x) = 2
x + 2
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relationship between two functions, relative size and covariational thinking can be used 

as foundational unifying constructs. A conceptual analysis considers the ways in which 

an individual may understand a mathematical concept, such as rational functions 

(Glasersfeld, 1995; Thompson, 2008). My conceptual analysis describes ways of thinking 

about relative size, together with covariational reasoning to construct a coherent 

understanding of rational function. This conceptual analysis generates models of thinking 

that will lend themselves to the ways of thinking about rational functions that I have 

identified as being useful. (However, I am not claiming that my conceptual analysis 

covers every detail involved in an individual understanding rational functions.) In this 

conceptual analysis I also introduce ways of thinking that will assist individuals in 

developing a coherent scheme of meanings that would constitute a powerful 

understanding of rational functions. 

Piagetian Constructs 

In this study I constructed and analyzed ways of thinking about relative size and 

covariational reasoning as a bridge to connect understandings of fractions and rational 

functions. In order to discuss how new understandings develop and relate to previous 

understandings and to better articulate what it means to have a conceptual understanding 

of rational functions, I drew on Piaget’s (1977) ideas regarding schemes, assimilation, 

and accommodation (Montangero & Maurice-Naville, 1997).  

Schemes.	A scheme, which describes how information is encoded and retrieved, 

can be considered as a mental structure or organization of actions which supports flexible 

thinking and is repeatable (Piaget, 1954, 1972; Monatangero & Maurice-Naville, 1997). 



  38 

Here, action does not necessarily refer to an experience outside of the body that can be 

observed by another, but can also extend to the context of the mind, e.g., mental actions. 

Thus, action encompasses “all movement, all thought, or all emotions that respond to a 

need” (Piaget, 1968, p.6 as cited in Thompson, Carlson, Byerley, & Hatfield, 2014, p.10).  

Piaget’s use of scheme allowed him to address the mental organizations that 

support flexible thinking and reasoning without emphasis on the contents of the mental 

organizations (Thompson et al., 2014).  Although there is no way of truly knowing what 

another person’s schemes actually consist of or what the person knows, these 

organizations of mental activity, schemes, can be expressed through behavior; an 

observer of the behavior can attempt to discern meanings and ways of thinking of the 

individual, thus supporting a useful model of student understanding. Gaining 

understanding, or learning, can be thought of as the result of existing schemes being 

augmented or new schemes developing. 

Assimilation and accommodation.	In some cases, new information can find a 

home in an existing scheme. Assimilation is the process of thoughts or cognitive 

information “fitting” into a current scheme. Initially, assimilation occurs when the 

individual mentally identifies features of a stimulus that might match an existing 

scheme.  However, beyond the process of identification, assimilation involves making 

inferences.  “Assimilating an object to a scheme involves giving one or several meanings 

to this object, and it is this conferring of meanings that implies a more or less complex 

system of inferences, even when it is simply a question of verifying a fact. In short, we 

could say that an assimilation is an association accompanied by inference” (Piaget, 1958, 

p.59 cited in Montangero & Maurice-Naville, 1997). Thus, assimilation occurs when the 
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mind recognizes and interprets a stimulus, such as thoughts or cognitive information, and 

assigns the stimulus to an existing scheme.  

Accommodation, on the other hand, is the process that occurs when an individual 

is unable to assimilate a stimulus, such as thoughts or cognitive information, within a 

current scheme. “Accommodation is a source of change, whereas assimilations 

guarantees the conservation of a system” (Montangero & Maurice-Naville, 1997, p.65). 

An accommodation occurs if a modification is made to an existing scheme, or if a new 

scheme is created. Another way accommodation can be triggered is when an individual 

assimilates a stimulus into a scheme but the actual result does not “fit,” or is inconsistent, 

with the anticipated result.  

I used these Piagetian constructs to describe schemes, assimilations, and 

accommodations that might occur during the interviews I conducted. This Piagetian lens 

assisted me in identifying generalizations made by the subjects in my study with respect 

to the ways of thinking about rational functions. In particular, the approach I took with 

rational functions drew on a scheme of relative size, together with covariational 

reasoning.  At the same time, however, because my subjects were graduate teaching 

assistants in the school of mathematical and statistical sciences, who had already learned 

about rational functions, I expected that they would attempt to assimilate the new 

instructional materials into their existing rational function scheme. I also expected the 

graduate teaching assistants to experience disequilibrium when they could not assimilate 

the new instructional materials into their existing schemes for rational functions which 

might lead to potential accommodations.  
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Rational Function Scheme 

A conceptual understanding of rational functions can be built on existing schemes 

of relative size, together with covariational thinking. First, relative size lays the 

groundwork for understanding ratio and division in terms of arithmetic quantities. 

Covariational thinking then broadens this conceptual understanding so that it can be 

applied algebraically to rational functions. 

Relative size. A major theme in mathematics concerns the relationships between 

various quantities, where a quantity is the measurable attribute of an object (Carlson, 

Oehrtman, & Moore, 2015). For example, the size of one quantity can be thought of, or 

measured, in terms of the size of another quantity. In this case the relationship between 

the two quantities is one of relative size.  For example, when comparing the relative 

height of an elephant (approximately 120 inches) and a mouse (approximately 1.25 

inches), the height of the elephant could be measured in units that correspond to the 

height of the mouse. So, if a stack of 96 mice reaches to the top of the elephant, then the 

relative size (in this case, height) of the elephant to a mouse is 96.  

In the case of a multiplicative comparison, the resulting quantity is called a ratio. 

If the quantities are being compared according to the same attribute (e.g., height), then 

the ratio of the two represents the answer to the question: “How many times as large is 

one quantity in terms of another quantity?”  In the previous example, we could say that 

the ratio of an elephant to a mouse is 96 since an elephant is 96 times as large (tall) as the 

mouse. The use of the phrase, “times as large,” here reflects the multiplicative nature of 

the comparison. Of course, multiplicative comparisons can also be made using numbers. 

For example, the multiplicative comparison of 3 to 4 leads to a ratio of ¾, indicating that 



  41 

the measure of 3 in terms of 4 is ¾. The equivalent statement framed multiplicatively 

would be 3 is ¾ times as large as 4.  

Notice that, in both of these cases, we are measuring something, i.e., the size of 

the elephant or the size of 3. Indeed, the idea of ratio is at the very heart of measurement 

(Thompson & Saldanha, 2003,p.109). Conceptualizing measurement requires an 

individual to imagine a ratio relationship (i.e. Quantity A is some number times as large 

as Quantity B) that is invariant across changes in the unit of measure (Thompson & 

Saldanha, 2003, p.110). An individual’s ability to understand that unit substitution does 

not change the magnitude of a quantity (amount) is a conceptual breakthrough that Wildi 

(1991) emphasized by distinguishing between the measure of a quantity and the 

magnitude of a quantity. Thus, a quantity’s magnitude is independent of the unit in which 

the quantity is measured, even though the quantity’s measure will be different 

(Thompson & Saldanha, 2003). In other words, the choice of a comparison quantity does 

not change the magnitude of a quantity. In the elephant example, the size of the elephant 

is still the same, regardless if we compare it with a mouse or a house although it has a 

different measure in the two cases. 

Division is a mathematical operation that is built on the concept of ratio. In this 

case the two associated quantities are the numerator and the denominator, and the 

quotient is the result of expressing the numerator in terms of the denominator. Using the 

vocabulary associated with division, the quotient is therefore the dividend measured in 

units of the divisor. Conceptualizing division in this way (as opposed to the use of a 

grouping metaphor) represents an opportunity to think about what it means to express one 

quantity in terms of another. For example, if 21 is divided by 2, then 21 can be thought of 
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as 21/2 times as large as 2, or, equivalently, it means that 21 measured in units of 2 is 

21/2.   

This way of thinking focuses attention on the role that units play when 

constructing and interpreting the result of dividing two quantities. In particular, because 

the dividend is being measured in units of the divisor, the quotient is measured relative to 

the divisor (Coughlin, 2010). In the previous example, 21 divided by 2 = 10 ½ means that 

10 ½ times the quantity 2 equals 21.  What happens, though, if the quantities involved in 

division are not whole numbers, but fractions instead? In this case, the multiplicative 

comparison no longer uses whole numbers. However, the dividend is still measured in 

terms of the divisor. For example, ¾ divided by ½ is 1 ½ meaning ¾ is 1 ½ times as large 

as ½.  

Despite the fact that there is no difference in the relationship between the 

dividend and the divisor when fractions, instead of whole numbers, are involved, such 

instances often lead to confusion. Research has shown that individuals have difficulty 

interpreting the result of fraction division, namely using the unit of the divisor when the 

result is not a whole number  (Coughlin, 2010). One hypothesis is that this issue stems 

from the fact that the commonly used procedural rule of inverting and multiplying 

obscures the role of the divisor and, consequently, the meaning of division. In addition to 

the interpretation of results, the construction of problem situations involving fraction 

division is also challenging. Ball (1990) found that mathematics majors at the college 

level struggled when asked to propose situations where dividing by fractions would be 

appropriate.   
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Relative size thus lays the arithmetic foundations for understanding rational 

functions. But, since rational functions are ratios of polynomial functions, covariational 

reasoning is also at play. In particular, the numerator and denominator of a rational 

function are both functions, and the resulting ratio is also a function. Therefore, the 

covariational relationship between the input quantity and the output quantity of each of 

these components must also be considered and coordinated. 

Covariational Reasoning  

The type of covariational reasoning needed to understand rational functions is 

layered. Rational functions require an individual to construct an image of the changing 

value of the polynomial function in the numerator with respect to the varying input value, 

as well as an image of the changing value of the polynomial function in the denominator 

with respect to the same varying input value. This imagery is foundational to a 

conceptual understanding of function (Carlson et al., 2015).  As an additional layer, a 

higher order of thinking must then be applied in order to construct an image of the value 

of the polynomial function in the numerator in terms of the value of the polynomial 

function in the denominator as a single quantity. This image is powerful because it allows 

the individual to construct a rational function without the need for a function rule.  

There are two distinct ways of thinking about function, function as process and 

functions as covariation (Thompson, 1994). Both ways of thinking, function as process 

or function as covariation, rely on the individual thinking quantitatively. Reasoning 

quantitatively about a concept suggests that the individual perceives a situation in terms 

of quantities (Thompson, 1989), where a quantity is an attribute of an object that is 

measureable (Carlson et al., 2015).  
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Function as process suggests that individuals see a function as an input-output 

process, where, for example, an input value is placed into a function machine and the 

output value emerges out the other side (Clement, 2001; Eisenberg, 1991). This type of 

thinking does not support individuals in visualizing a smooth continuous string of input 

values with a corresponding continuous string of output values. Function as process 

constructs a chunky image of a set of input values with corresponding set of output 

values. For example, if an individual views the function  as a process of 

substitution of the value of x which will yield a result for , then this individual will 

most likely not think about how varying x affects the output values.  

An individual with function as process ways of thinking can build to thinking 

about function as covariation. Function as covariation suggests that the individual can 

imagine the values of two quantities varying in tandem (Saldanha & Thompson, 

1998).  Covariational reasoning requires an individual to think about how the value 

represented by a variable changes with respect to the value represented by a second 

variable. Individuals with covariational ways of thinking have a smoother image of 

function. Rather than thinking of functions as machines, individuals can coordinate the 

smooth varying values of one quantity represented by a variable and the corresponding 

smooth varying values of a second quantity represented by a different variable. 

    An individual must have an understanding of function notation in order to construct 

coherent meanings of rational functions. The individual should understand that function 

notation such as  represents the covariational relationship between the 

dependent and independent quantities. However, simply being able to rewrite a function 

with an equal sign and a function rule does not imply that the individual understands 

g(x) = 3x − 4

g(x)

f (x) = 2x2
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function or function notation. There are nuances of function notation that cannot be taken 

for granted; such as f is the name of the function and not an additional variable (Mohr, 

2008) 

Relative Size Coordinated with Covariational Thinking 

A conceptual understanding of rational functions requires an individual to 

coordinate the co-varying relationship of the polynomial in the numerator (the input 

quantity and the output quantity of the polynomial) and the polynomial in the 

denominator (the input quantity and the output quantity of the polynomial). In order to 

see this relationship the individual must see the value of the numerator and the value of 

the denominator as two individual quantities while also seeing the relative size of the 

output quantity of the numerator in terms of the output quantity of the denominator as a 

single quantity. In other words, there are three covariational relationships that the 

individual must coordinate and seamlessly transition between (See Figure 4). 

 
Figure 4. Covariational relationships within a rational function 
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The relative size of one quantity (Quantity A) to another quantity (Quantity B) is 

a quantity that is constructed from the ratio of the value of Quantity A in terms of the 

value of Quantity B. In the context of rational functions, the value of the numerator can 

be considered as Quantity A and the value of the denominator can be seen as a second 

quantity, Quantity B, for a given value of the input. The relative size of the value of the 

numerator of the rational function in terms of the value of the denominator of the rational 

function can then be constructed as a third quantity (Quantity C) for a given value of the 

input. Extending this idea to multiple values of the input over the domain of the rational 

function, this conceptual orientation to rational functions also relies on the coordination 

of the covariation of the value of the numerator and the value of the denominator as the 

input value varies. This means that, as the input value changes, the value of the numerator 

will change, the value of the denominator will change, and the resulting value of the 

relative size of the value of the numerator measured in terms of the value of the 

denominator will change.  

Understanding rational functions based on a scheme of relative size coordinated 

with covariational reasoning also leads to specific ways of interpreting features of 

rational functions, such as asymptotes. By interpreting a rational function as a 

relationship between quantities, it is also possible to draw conclusions about the behavior 

of the function and its graphical representation that are not driven by algebraic 

manipulations.   

Conceptual Interpretation of Rational Functions 

A conceptual approach to rational functions requires that an individual attend to 

the behavior of the covariational relationship between the input value and output value of 
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the function in the numerator and denominator, both individually and as a single quantity. 

This means that vertical asymptotes, holes, and horizontal asymptotes of rational 

functions can be described by considering the behavior of the ratio of the two 

polynomials as the input value changes.  

Vertical asymptotes and holes. Let us consider an example as the basis of a 

discussion on the behavior of rational functions around vertical asymptotes and 

holes.  Figure 5 provides the graphical representation of the function in the numerator of 

a rational function (on the left) and the function in the denominator of a rational function 

(on the right). 

 
Figure 5. Graph of the Function in the numerator (left) and the denominator (right). 

Notice that this example does not provide the rule of the rational function as is 

usually found in curriculum, so the focus can be on the behavior rather than algebraic 

manipulation. In particular, we want to analyze the behavior of the two quantities around 

values of the input for which the denominator approaches zero. Consider the value of the 
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numerator, as the value of the input increases to -3; notice that the output value of the 

numerator approaches a positive number, approximately 8. By looking at the graph on the 

right, we see that, as the value of the input increases to -3, the value of the denominator is 

decreasing to zero. The fact that the value of the numerator approaches a positive number 

and the value of the denominator approaches zero from above, means that the relative 

size of the value of the numerator in terms of the value of the denominator is increasing 

without bound. This behavior suggests that a vertical asymptote exists at the input value 

of  -3.  

We can also analyze the behavior of the rational function as the input value 

decreases to -3, namely as the value of the input approaches -3 from the right hand side. 

As shown in Figure 5, when the value of the input decreases to -3, the value of the 

numerator approaches a positive number, approximately 8, and the value of the 

denominator increases to zero. The fact that the value of the numerator approaches a 

positive number and the value of the denominator approaches zero from below, means 

that the relative size of the value of the numerator in terms of the value of the 

denominator is decreasing without bound.  

Using a similar analysis of behavior, we can also characterize holes in a rational 

function. As shown in Figure 5, the denominator approaches zero at the input value of 1. 

As the value of the input increases to 1, the value of the numerator approaches zero, and 

the value of the denominator approaches zero, as well. The fact that both the value of the 

numerator and the denominator approach zero as the input value approaches 1 means that 

the graph of the rational function has a hole at this input value. 
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Horizontal Asymptotes. Determining horizontal asymptotes requires an analysis 

of the end behavior of a rational function. In other words, one must consider the value of 

the numerator and the value of the denominator as the input quantity increases and 

decreases without bound. In order to do this, an individual must imagine that the static 

image of the function extends beyond the edge of the depicted graph. What happens to 

the relative size of these values? If the relative size “stabilizes” to a certain value, then 

this value represents a horizontal asymptote of the rational function. Otherwise, the 

rational function does not have a horizontal asymptote.  

Notice that this conceptual approach provides a much richer picture of rational 

functions. Finally, this approach gives meaning behind the value of the horizontal 

asymptote that goes beyond computing the ratio of the leading coefficients. 

Importance of a Conceptual Approach to Rational Functions 

Although I have chosen to work with rational functions, the same conceptual 

understanding built on schemes of relative size, together with covariational reasoning, 

can be applied to quotients of functions, in general. Individuals still need to coordinate 

the covariational relationship between the input quantity and the output quantity of the 

function in the numerator and denominator as well as the relative size of the value of the 

numerator in terms of the value of the denominator. Individuals who have a conceptual 

understanding of the behavior of rational functions (e.g. vertical and horizontal 

asymptotes) have a better platform for calculus concepts, such as limits. The concept of 

limits requires understandings of many of the same ideas, including infinity, dividing by 

zero, zero divided by zero, and asymptotes (Hitt & Lara, 1999). Thus, rational functions, 
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if taught conceptually, can help individuals form these understandings and images prior 

to entering calculus.  

In this chapter I presented the theoretical perspective for the dissertation study I 

conducted. I described how rational functions are traditionally taught as a backdrop to an 

alternative conceptual understanding. Then I provided a brief discussion of the central 

constructs of Piaget’s (1971) genetic epistemology in order to describe how this 

alternative conceptual understanding of rational functions might develop. Finally, I 

concluded this chapter with an interpretation of rational functions that is based on the 

conceptual analysis I created. In the next chapter, I provide a methodology for this 

dissertation study that characterized a novice instructor and investigated perturbations in 

mathematical classroom practices when a novice instructor teaching pre-calculus 

introduced novel didactic objects into his rational function instruction. 
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CHAPTER 4 

METHODS 

In this chapter I describe the methods I used in this study to characterize a novice 

instructor and to investigate perturbations in mathematical classroom practices when a 

novice instructor teaching a pre-calculus course introduced novel didactic objects in his 

rational function instruction. I begin this chapter with an overview of the study I 

designed, followed by a discussion of the research activities within each phase of the 

study. Finally, I close this chapter with details on how I analyzed the data. 

Overview of Study 

In this study I first characterized what it means to be a novice instructor and then 

investigated the perturbations that occurred when a novice instructor introduced novel 

didactic objects into his lessons for rational functions. The study consisted of two phases 

of data collection (See Figure 6). In Phase 1, the pre-intervention semester, a novice 

instructor and an experienced instructor participated in a pre-interview, classroom 

observations, and a post-interview. During Phase 2, the intervention semester, the novice 

instructor participated in two pre-interviews, classroom observations, and a post-

interview. 
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Figure 6. Outline of the Study 

The interviews were semi-structured, task-based interviews (Goldin, 2000), 

approximately two hours in length.  The tasks were designed to serve three purposes: 

first, to characterize the instructor’s meanings and ways of thinking about rational 

functions; second, to give insight into the instructor’s current mathematical classroom 

practices; and third, to introduce an instructor to novel didactic objects that were designed 

to foster a conceptual understanding of rational functions. All interviews were recorded 

using a camera focused on the instructor, a second camera focused on the written artifacts 

produced by the instructor (first pre-interview) and the computer screen on which the 

novel didactic object (intervention interview) or the video clips (post-interview) were 

displayed.  

The interviews allowed me to differentiate between an experienced and novice 

instructor and to generate hypotheses regarding the effect of novel didactic objects on the 

novice instructor’s classroom instruction and mathematical meanings for rational 

functions. Studies with a generative purpose interpret data through a larger lens unlike 



  53 

studies with a convergent interpretation. The generative approach to data analysis allows 

the researcher to discern new models and theories from the data (Clement, 2000). The 

goal of this study was to generate theory about perturbations in a novice instructor’s 

mathematical classroom practices that occurred when novel didactic objects are 

implemented in rational function instruction.  

The classroom observations in this study were designed to provide a detailed 

account of the goings on while the instructor taught rational functions with and without 

the novel didactic objects. I conducted one set of classroom observations in each phase of 

the study.  Each class session was approximately 50 minutes in length. Every class 

session in which the instructor taught rational functions was recorded. A video camera 

was placed in the back of the classroom to record the instructor’s discourse and gestures, 

as well as the projector screen. Recording both discourse and gesture provides a well-

rounded, integrated picture of learning as an interactional, versus mental, phenomenon 

(Koschmann & LeBaron, 2002).  

Role of researcher.  My role in this study differed depending on the research 

activity.  During some of the interviews, I acted as an investigator by asking the 

instructor to complete tasks that helped me to identify his mathematical meanings 

relevant to understanding rational functions and inquiring into his classroom practices. 

During the intervention interview, I again asked the instructor to complete tasks that gave 

me insight into the mathematical meanings he had for rational functions, but then I took 

on more of an instructor role as I introduced the novice instructor to the novel didactic 

objects that he would later use in his rational function instruction. The didactic objects 

were novel to the instructor who had no prior knowledge of the didactic objects used in 
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this study.  Finally, during the classroom observations, my role was that of observer.  The 

purpose of the observer was “to identify and account for aspects of a culture by analyzing 

regularities and patterns that arise as, say, a instructor and students interact during 

mathematics instruction” (Cobb, 1989, p.33). 

The participants. The participants in this study were two graduate teaching 

assistants (instructors) teaching MAT170: Pathways Pre-Calculus (Carlson et al., 2015) at 

a large public university in the southwest United States in the Fall of 2016 and Spring of 

2017. The participants were selected from a pool of volunteers who previously taught the 

course and a pool of volunteers who were teaching the course for the first time. Both 

pools of volunteers were enrolled in a teaching seminar that assisted instructors in 

developing mathematical meanings and instruction. The participants signed a consent 

form prior to participating in the study (see Appendix A).   

Norbert (the novice instructor) was a full-time graduate student that was working 

as a graduate teaching assistant (GTA) in the fall of 2016 at a large public university in 

the southwest United States. He was enrolled in a Ph.D. program for pure mathematics. 

Fall 2016 was Norbert’s first semester as a full-time graduate student and first semester 

teaching Pathways Pre-Calculus. Norbert had no teaching experience prior to this 

semester.  

Edwin (the experienced instructor) was a full-time graduate student that was 

working as a GTA in the fall of 2016 at a large public university in the southwest United 

States. He was enrolled in a Ph.D. program for mathematics education. It is important to 

note that this was his first year as a mathematics education Ph.D. student. In the previous 

two years he was enrolled in a Ph.D. program for applied mathematics. Fall 2016 was 
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Edwin’s fifth semester as a full-time graduate student and third semester teaching 

Pathway’s Pre-Calculus. Edwin had no teaching experience prior to becoming a graduate 

student.  

Research Phases 

There were two phases to this study: a pre-intervention phase and an intervention 

phase. The pre-intervention phase was designed to showcase the differences between a 

novice instructor and an experienced instructor as they planned, taught, and reflected on 

their rational function lessons. The intervention phase contained a series of research 

activities that allowed me to explore the perturbations in the novice instructor’s 

mathematical classroom practices that occurred when novel didactic objects were 

introduced into rational function instruction (See Figure 7). Both phases consisted of 

interviews and classroom observations, but Phase 2 included an additional pre-interview 

during which the novice instructor was introduced to the novel didactic objects.  
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Figure 7. Outline of study, including goals of each activity. 
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Phase 1 (Pre-Intervention). Phase 1 was designed with the goal of characterizing 

a novice instructor while also providing a picture of the novice instructors’ meanings for 

rational functions and existing mathematical classroom practices surrounding rational 

function instruction. First, I needed to characterize what it means to be a novice 

instructor. I could have used time in the classroom as a measure of the instructor’s novice 

status, but this is not adequate since teaching experience is not sufficient, in and of 

itself, to capture what it means to be a novice. There are new-to-the-job instructors who 

have extensive pedagogical content knowledge and there are instructors with many years 

of teaching experience who have very little pedagogical content knowledge (Berliner, 

2001; Glaser, 1987; 1990). Therefore, I chose to conduct interviews with both an 

instructor who had no previous experience teaching Pathways and a more seasoned 

instructor to see if I could flesh out what differentiated them in terms of how they thought 

about rational functions.  Toward this end, I conducted a pre-interview, classroom 

observations, and a post-interview in Phase 1 using two participants (a new-to-Pathways 

instructor and a seasoned instructor). 

Pre-Interview. During the pre-interview, I attempted to gain insight into the 

instructors’ current understandings of rational functions and gather descriptions of the 

instructors’ mathematical classroom practices prior to the introduction to the novel 

didactic objects. For example, I was interested in whether they have a more calculational 

or conceptual orientation to instruction (Thompson et al., 1994) on rational functions and, 

accordingly, how they go about teaching rational functions to their students. 

The Phase 1 pre-interview incorporated tasks that targeted the instructors’ 

mathematical meanings of rational functions. For this purpose, I designed interview tasks 
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to probe the instructors’ problem-solving approaches and schemes of rational functions. 

In particular, the tasks were designed to elicit their meanings of relative size, together 

with covariational reasoning, in the context of rational functions.  

In order to elicit thinking about relative size, I designed tasks that were both static 

and dynamic. Through conversations surrounding these tasks I constructed models of the 

instructors’ understanding of relative size as it pertains to fractions and rational functions. 

During this process, I made an effort to consider the ways of thinking I wanted the novice 

instructor to have after the intervention had ended. Appendix B contains the interview 

protocol.  

One of the first tasks was a word problem that allowed me to elicit the instructors’ 

meanings for division and dividing fractions (Figure 8). Research has shown that 

instructors have difficulty interpreting the result of fraction division, namely using the 

unit of the divisor when the result is not a whole number (Coughlin, 2010). 

 
Figure 8. Division of fractions task 

I designed this task as a way to ease the instructors into thinking about relative 

size while I assessed their current thinking on division and dividing fractions. My focus 

was on the treatment of the remainder of ribbon and the unit associated with the 

remainder. The goal of this task was to find out how instructors think about division of 

numbers as a precursor to how they might think about rational functions as quotients of 
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functions, and, more specifically, whether they can interpret the value of the numerator as 

measured in terms of the value of the denominator. 

This task afforded me the opportunity to evaluate the instructors’ ways of thinking 

about division with a specific focus on their process of solving. I did not expect the 

instructors to experience any disequilibrium in the process of dividing fractions. 

However, I expected that there could be disequilibrium when I ask, “What does your 

answer mean in the context of the situation?” If an instructor explained that the solution 

is the number of cheerleaders, which is a possibility based on Coughlin (2010), then he 

did not attend to the divisor as a measurement unit, or that the instructor equates a 

yard piece of ribbon as equivalent to one cheerleader. 

The instructors might experience disequilibrium based on the word choice 

of  “how many.” Asking a question of “how many” might result in thinking that the 

answer must be a whole number. This would be a learned assumption since many 

mathematics textbooks ask how many and the result is a whole number (Yan & 

Lianghuo, 2006). This means that the instructors might find an answer that is not a whole 

number to be unusual, which can lead to further disequilibrium.  

Additional disequilibrium might occur when the instructor is asked “How much 

ribbon do you need to supply all 12 cheerleaders?” This question forces the instructors to 

consider the unit of the divisor in order to correctly answer how much more ribbon is 

necessary to supply 12 cheerleaders. I expect some disequilibrium in answering this 

question, if the pre-service instructor did not correctly identify the divisor as the 

measurement unit. An instructor might also struggle if his scheme for division is limited 
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to an “into” model or measurement model of division (Kouba, 1989; Kouba & Franklin, 

1995; Ma, 1999), in which the numerator must be larger than the denominator. 

In another task I provided instructors with a sequence of six static images of two 

bars, one red and the other blue (Figure 9 and Figure 10). Each static bar image was 

chosen to explore instructors’ thinking on relative size. I asked the instructors to 

determine the relative size of the red bar in terms of the blue bar for each static bar 

image. The images were revealed one at a time and instructors were asked to arrange the 

static images in order of the value of relative size, after every static image we discussed 

the instructor’s answer. The static bar task was created so the instructors could not find a 

specific value for the relative size. In fact, values were purposefully absent from the tasks 

to encourage instructors to reason about the relative size of the red bar in terms of the 

blue bar instead of trying to calculate an exact numerical answer. I designed these tasks 

similar to Dr. Patrick Thompson’s work so that the instructors could not rely on their 

number sense to create an exact or “nice” answer for the task (Thompson & Thompson, 

1994; Thompson & Saldanha, 2003). 
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Figure 9. Static bar task where the relative size is greater than or less than 1.  

In the first static bar image (Figure 9A) the relative size of the red bar in terms of 

the blue bar is approximately one and one-third. This task was first since I hypothesized 

that instructors with an “into” model for measurement (Kouba, 1989; Kouba & Franklin, 

1995; Ma, 1999) would be more comfortable in answering the question if the red bar had 

a greater length than the blue bar. 

In the second image (Figure 9B) the length of the blue bar has decreased, 

resulting in a larger relative size of the red bar in terms of the blue bar. In this case the 

relative size of the red bar in terms of the blue bar is approximately eight. This task 

supports instructors who have an “into” model of division, but the image could represent 

a whole number relative size (versus one and one-third from Figure 2A). Asking the 

instructors to compare Figure 9A and 9B, in both of which the relative size is greater than 
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one, allowed me to see how the instructors understand change in the relative size as the 

blue bar changes in length. For example, if the red bar remains the same length but the 

blue bar decreases in length, the relative size of the red bar in terms of the blue bar 

increases. 

The third static bar image (Figure 9C) has a relative size of approximately two-

thirds. This is the first image for which the measuring stick (the blue bar) is larger than 

the thing to be measured (the red bar). This image was designed to perturb an “into” 

model of division and require instructors to adopt another method of determining relative 

size. One of the hypothesized outcomes is that instructors might identify the relative size 

of the red bar in terms of the blue bar as the difference in the length of the bars. 

The relative size represented in Figure 9D is approximately one-fifth. This task 

continued to perturb instructors understanding of relative size since the length of the red 

bar is smaller than the length of the blue bar. Asking instructors to compare Figure 9C 

and 9D in which the relative size of the red bar in terms of the blue bar is less than one 

allowed me to once again see how the instructors understand change in the relative size, 

but this time as the red bar changes in length. For example, if the blue bar remains the 

same and the red bar decreases in length, the relative size of the red bar in terms of the 

blue bar decreases. 

The continuation of the first task included two additional static bar images in 

which the relative size of the red bar in terms of the blue bar is equal to one (Figure 10). 

When instructors were asked to compare Figure 10A and 10B, I hypothesized that, if 

instructors used the length of the bars for quantifying the relative size of the red bar in 
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terms of the blue bar, the instructors would provide a larger value for Figure 10A than for 

Figure 10B. 

 
Figure 10. Static bar task where the relative size is equal to 1. 

Once all six of the static bar images were revealed to the instructors, I asked them 

to order the images based on relative size from largest to smallest. The correct order 

would be Figure 9B, 9A, 10A and 10B, 9C, and lastly 9D. Since the bars depicted in 

Figure 10A and Figure 10B have the same relative size, these should be placed one on 

top of the other (see Figure 11). 

 
Figure 11. Figures 9A-9D, 10A, and 10B ordered from largest to smallest relative size.  
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Up until this point in the interview, I only explored schemes of relative size using 

static images. Such static images provide a solid foundation upon which to build an 

understanding of how relative size differs according to the lengths of the two bars. 

However, static images of relative size do not support a smooth understanding of rational 

functions which requires covariational reasoning.  For this reason, a second type of task 

was needed to explore how static notions of relative size could be coupled with 

covariational reasoning. After the completion of the static bar activity, I introduced the 

instructors to a dynamic bar task using a virtual manipulative. In this task, I asked similar 

questions as in the static bar activity. 

The virtual manipulative, created using GeoGebra, produced the same type of 

images used in the static bar activities; there are two bars on the screen, one red and one 

blue (Figure 12). When the virtual manipulative plays, the bars change in length 

depending on the setting of the two sliders in the top left corner. For example, when the 

one slider is set to three and the other slider is set to two, the red bar decreases in length 

as the blue bar increases in length. In essence, the dynamic bar task takes an 

accumulation of static bar images and plays them like a flipbook. 
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Figure 12. Screen shot of dynamic bar virtual manipulative  

During this task instructors were asked to participate in an embodiment activity 

(Glenberg & Robertson, 2000; Glenberg, Witt, & Metcalfe, 2013) that further explored 

thinking about relative size and coordinating changes in relative size. Using embodiment 

activities as a foundation upon which to help students build a conceptual understanding is 

a hallmark of the Pathways curriculum (Carlson, 1999). The embodiment activity that 

was used in this study involved an instructor tracking the relative size of the red bar in 

terms of the blue bar as the distance between his index fingers. This activity revealed 

thinking about relative size in ways that could not be seen in the static bar activity. For 

example, when the length of the red bar is decreasing and the length of the blue bar is a 

constant, an instructor might track the length of the red bar instead of the relative size. 

This would indicate that the instructor had not internalized relative size but instead 

focused on the length of a single bar, in this case the length of the red bar. 

Upon the completion of the static and dynamic bar tasks, instructors were 

provided with a graph of the relative size of the red bar in terms of the blue bar (Figure 

13). I asked the instructors to describe and draw what the relative size of the red bar in 
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terms of the blue bar is at specific points I indicated on the graph. As an example, at the 

point (2,1), the relative size of the red bar in terms of the blue bar is one. The depiction of 

the relative size of the red bar in terms of the blue bar at a value of one should result in an 

image of two bars of equal length. 

 

Figure 13. Graph depicting the relative size of the red bar in terms of the blue bar  

Once the instructors correctly identified the relative size of the red bar in terms of 

the blue bar, I asked them to predict what happens to the relative size of the red bar in 

terms of the blue bar as the input value varies. For example, as the input quantity 

increases without bound starting at the value of four, how will the relative size change 

and what could this look like for the red and blue bars? I expected an answer for this 

might be an explanation that the relative size is decreasing toward zero as the input 

values increases without bound from four. This could be a result of the red bar decreasing 
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as the blue bar remains constant, the red bar remains constant while the blue bar 

increases, or as the red bar decreases, the blue bar increases. 

In addition, the instructors were asked to describe the behavior of the relative size 

around the input value of three, in the hope that they might verbalize their thoughts on the 

relationship between relative size and the existence of a vertical asymptote. I asked the 

instructors if they had ever seen a function that resembles the behavior found in the 

provided graph. I asked this question to see if the instructors might recognize the graphed 

function as a rational function. If the instructor did recognize the graph of the relative size 

of the red bar in terms of the blue bar as a graph of a rational function or quotient of 

functions, then the instructor was asked to explain how rational functions and relative 

size are related. In this context, the instructors could articulate that the red bar represents 

the output of the function in the numerator while the blue bar represents the output value 

of the denominator. The ratio of the two output values results in the graph of the rational 

function. 

Once all the tasks were complete, I asked the instructors to describe the rational 

function instruction they planned to implement (see Appendix B). This was the first time 

I was introduced to the instructional practices the instructors had planned for rational 

function instruction. For instance, I asked the instructors to provide a detailed account of 

how they planned to introduce the concept of rational functions to students, whether 

technology would be part of the instruction (and, if so, in what manner), and what 

activities would be used as part of the instruction. I also asked the instructors what 

mathematical meanings for rational functions they hoped their students would have at the 

end of the rational function instruction. 
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  Journal and observations. Classroom observations were bookended by video 

journal entries made by the instructors. Journaling is a methodology that can be used to 

move back and forth in time and across students and content. This method allows 

instructors to prepare for future lessons simultaneously with reflecting on what happened 

the day before (Lampert, 2003). In this study, each of the video journal entries served a 

different purpose. First, an instructional preparation video journal kept by the instructors 

allowed me to capture the instructional preparation made after the pre-interview but 

before the classroom observations. The second time video journal entries were made was 

in the time period between the classroom observations and the post-interview. The 

purpose of these entries was to capture the instructor’s perspective, i.e., thoughts and 

reflections, immediately following the lessons on rational functions.  

The classroom observations in Phase 1 of the study provided a picture of existing 

mathematical classroom practices during rational function instruction. I took notes on the 

instructors’ gestures and actions while teaching rational functions. These notes and 

classroom observation videos allowed me to focus on recurring mathematical classroom 

practices that the instructors demonstrated when teaching rational functions. 

Post-interview. The post-interview in Phase 1 of the study targeted the instructors’ 

mathematical classroom practices prior to the introduction of the novel didactic objects. 

The interview protocol can be found in Appendix C. This post-interview allowed me to 

construct a baseline model of the instructors’ mathematical classroom practices and better 

characterize what it means to be a novice instructor. During this interview, I showed the 

instructors video clips from their rational function lessons and asked them to reflect on 

their intentions and how they perceived that their instructional decisions and actions (e.g., 
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choice of examples, questioning, and gestures) contributed to student learning. 

Schoenfeld (1998) used a similar method to study instructors’ perception of students’ 

thinking. These mathematical classroom practices that I identified and confirmed with the 

instructors helped me to detect perturbations that occurred in Phase 2 of the study.  

Intervention Activities. The names of the novel didactic objects I introduced to 

the novice instructor included Moving Vectors, Sum Bar, Rat Bar, and Rat Graph.  It is 

important to note that I use the term didactic object from my perspective rather than that 

of the novice instructor. To an instructor, these interventions initially are tools or applets 

(Cobb, Yackel, & McClain, 2014; Dewey, 1944) and may eventually become didactic 

objects if their value and use for teaching the concept is internalized. I used GeoGebra to 

create Moving Vectors and Sum Bar as a way to draw attention to the coordination 

necessary to evaluate the covariational relationship between multiple quantities (See 

Appendix D for screenshots of each of the virtual manipulatives). Dr. Thompson 

designed Rat Bar and Rat Graph to foster a conceptual understanding of rational 

functions. He developed the didactic objects using Graphing Calculator Software to 

progressively scaffold an understanding of the numerator and denominator of a rational 

function as single quantities, but also to see the relative size of the numerator measure in 

terms of the denominator as a separate quantity. 

Table 3 contains the supports that were used in this study for implementing the 

novel didactic objects in rational function instruction. These included teaching guides for 

every novel didactic object, student activity guides for select didactic objects,  and a 

worksheet that allowed students to further practice with Rat Graph that is completed 

online (using iMathAS). These supports worked together as a system to serve two 
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purposes: first, to assist the instructors when implementing the novel didactic objects in 

rational function instruction; and second, to help students construct a conceptual 

understanding of rational functions. 

Table 3. Supports used in this study for implementing didactic objects 

Virtual 
Manipulative Resource Description Author Location 

Moving 
Vectors 

Teacher 
Guide 

Contains instructions on how to use the 
virtual manipulative and discussion prompts 
to construct the graph of the sum of two 
functions represented graphically 

Krysten 
Pampel 

Appendix E 

Sum Bar Teacher 
Guide 

Contains instructions on how to use the 
virtual manipulative and discussion prompts 
for embodied activity to track the sum of two 
quantities 

Krysten 
Pampel 

Appendix E 

Rat Bar Activity 
Guide 

Guide for the four progressive stages of 
conceptual understanding for rational 
function 

Dr. Patrick 
Thompson 

Appendix F 

Teacher 
Guide 

Contains instructions on how to use the 
virtual manipulative and discussion prompts 
for embodied activity to track the relative 
size of one quantity in terms of the other 

Krysten 
Pampel 

Appendix E 

Rat Graph Activity 
Guide 

Guide for the four progressive stages of 
conceptual understanding for rational 
function 

Dr. Patrick 
Thompson 

Appendix F 

Teacher 
Guide 

Contains instructions on how to use the 
virtual manipulative and discussion prompts 
to construct the graph of the relative size of 
two functions represented graphically 

Krysten 
Pampel 

Appendix E 

Online 
Worksheet 

Additional practice for students to construct 
rational functions using Rat Graph. 

Krysten 
Pampel 

Appendix E 

 
In order to assist the instructors with preparation and implementation of the novel 

didactic objects in the classroom, I created teaching guides for every didactic object. The 

teaching guides I created are a revision of Thompson’s four-stage activity guide, which 

provides step-by-step instructions that assisted the instructor with setting the didactic 
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objects for each stage, as well as discussion prompts he needed to deliver to students at 

certain times throughout the instruction of rational functions. In addition to the teaching 

guides, I created an online worksheet that the instructor assigned to his students. This 

online worksheet was used as an assessment to test students understanding of relative 

size. The students had an opportunity to practice graphing rational functions using the 

conceptual approach demonstrated in-class by the instructors.   

In Moving Vectors, two functions are graphed in the same plane. The instructor 

can check a box in the upper left corner to turn on the vectors, which represent the output 

value of the respective functions. After having a conversation with the class about how to 

add the two functions together to make a graph of f(x) + g(x), which is available in the 

guide that accompanies Moving Vectors, the instructor can move the end of the vectors 

of g(x) to the point of the vectors of f(x). This process is repeated until all the vectors 

have been moved. Then the instructor can sketch the graph of f(x) + g(x). The 

aforementioned guide I authored to assist instructors in using Moving Vectors as part of 

rational function instruction can be found in Appendix E. 

Sum Bar further helps students coordinate the covariational relationship between 

two quantities by assisting the instructor in leading the students through an embodiment 

activity. In this activity the students demonstrate, using the distance between their hands, 

the sum of the red bar and the blue bar depicted in Sum Bar. The Sum Bar guide found in 

Appendix E, provides the instructor with detailed instruction on how to change the 

lengths of the red and blue bars as well as questions to ask the students in order to guide 

the discussion.  
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As seen in Figure 2, the didactic object (Rat Bar) uses the Scenario slider in a 

single position and the Display slider in three different positions for labeling the red and 

blue bars that represent the value of the numerator and the value of the denominator of 

one specific rational function. In the first display option, the red bar is labeled “Top” 

representing a single magnitude, and the blue bar is labeled “Bot”. The “a” located at the 

bottom of the didactic object represents the parameter values from zero to 6.28. If the 

play button is pressed, the animation will begin changing the lengths of the red and blue 

bars so that the instructors and their students can identify the relative size of the 

numerator measured in terms of the denominator.  

Dr. Thompson also created an instructional activity guide (found in Appendix F) 

that supports four progressive stages of conceptual understanding for rational functions. 

The first three stages use Rat Bar see Figure 14. 

 
Figure 14. A screen capture of Rat Bar used in the first stage. 

The first stage, Stage 1, of the guide assists students in conceptualizing and 

representing relative size as the quotient of functions. Rat Bar starts out, as seen in Figure 

15, with the red and blue bars of equal length. In other words, the measure of the top in 
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units of the bottom is one. During Stage 1, the instructor continues to change the 

parameter value that alters the length of the red and blue bars and asks students, “What is 

the relative size of the top measured in units of the bottom?” Students respond by 

suggesting a value for the relative size of the top measured in terms of the bottom. Once 

the instructor has completed this with the class numerous times, there is a discussion 

stemming from the question “How can we represent these relative sizes so that we can 

differentiate among them?” The intent of this question is to lead the students to use 

function notation, such as Top(a)/Bot(a). 

The second stage, Stage 2, of the guide assists the students in internalizing 

relative size as a quantity. Rat Bar is altered slightly, as shown in Figure 15, when the 

Display slider is moved into position one relabeling the top and bottom labels to “Top(a)” 

and “Bot(a)”. 

 
Figure 15. A screen capture of the Rat Bar in Stage 2. 

The goal of Stage 2 is for students to no longer just see two separate quantities 

but instead to see the relative size of these quantities as its own quantity. This 

coordination is foundational for students to sketch a graph of the relative size of Top(a) 
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measured in terms of Bot(a) in relation to the parameter value, a. In this embodied stage, 

the instructor asks the students to use the distance between their hands to represent the 

relative size of Top(a) measured in terms of Bot(a).  When changing the parameter 

values, the students begin to change the distance between their hands. Students are given 

the opportunity to discuss and practice as they attempt to vary the distance between their 

hands to represent the relative size of Top(a) measured in terms of  Bot(a) as the 

parameter value varies. This stage scaffolds to the next by having the students develop an 

image of the relative size of Top(a) in terms of Bot(a) that they can coordinate with the 

parameter value, a.  

The third stage of the guide, Stage 3, assists students in graphing relative size. In 

this stage, students use distance between the tabletop and their left index finger to 

represent the relative size of Top(a) in terms of Bot(a). In addition, the students use their 

right index finger sliding along the tabletop to represent the parameter values, a, that are 

varying. Once the students have tracked the relative size vertically above the table and 

the parameter values horizontally along the table, the students are instructed to keep their 

left index finger directly above their right forefinger as they track both quantities’ values. 

After practicing numerous times, a discussion should be prompted by the question, “Does 

this activity you have just done have anything to do with graphing?” Lastly, the students 

attempt to sketch a graph of the relative size of Top(a) measured in terms of Bot(a) in 

relation to the parameter value, a. 

The fourth stage, Stage 4, uses a different didactic object (Rat Graph), as shown 

in Figure 16 and Appendix D.  In this stage, the goal is for the students to solidify the 

ways of thinking that they have just developed to envision graphing, where n(x) represent 
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the function in the numerator and d(x) represent the function in the denominator of the 

rational function r(x).  Rat Graph offers additional practice for the students to envision 

the relative magnitude of n(x) and d(x) and construct graphs of r(x) = n(x)
d(x)

.  By 

introducing Rat Graph to the students first, a conversation can be had about the ways of 

thinking that surround coordinating the numerator and denominator of a rational function. 

The instructor can then assist students in continuing their thinking to imagine the 

relationships extending beyond the edges of the applet. 

 
Figure 16. A screen capture of Rat Graph used in Stage 4 of the guide. 

Phase 2 (Intervention). The major goal of Phase 2 was to trace the effects of 

novel didactic objects on a novice instructor’s mathematical classroom practices.  Toward 

this end, I conducted a pre-interview, an intervention interview, classroom observations, 

and a post-interview in Phase 2 using one participant, the novice (new-to-Pathways) 

instructor. 
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Pre-Interview. The pre-interview in Phase 2 of the study was similar to the Phase 

1 pre-interview and consisted of tasks created to reevaluate the novice instructor’s 

mathematical meanings for rational functions. This pre-interview helped to identify 

changes that might have occurred in his mathematical meanings and mathematical 

classroom practices for rational functions since Phase 1. 

One task during the pre-interview allowed me to probe the novice instructor’s 

problem-solving approach and mathematical meanings of rational functions. (Appendix B 

contains the interview protocol and tasks.) In this task, the instructor is given the graph of 

two functions, f(x) and g(x), and asked to construct the graph of their quotient 

. 

 
Figure 17. Rational function task used in the pre-interview. 

 
I created this problem, seen in Figure 17, with the intent of gaining insights into 

the instructor’s meaning and ways of thinking about rational functions. Through 

questioning, I explored whether his approach involved seeing the numerator and the 

h(x) = f (x)
g(x)
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denominator, each as a single quantity, and then the ratio of the two as a third quantity. 

Additional tasks were constructed based on the outcomes of Phase 1 (see Appendix B).  

Intervention Interview. During the intervention interview, I introduced the novice 

instructor to the novel didactic objects, see Table 3, he later implemented in his rational 

function instruction, as well as collected his initial thoughts on how he wanted to 

implement the didactic objects in the classroom. Since these didactic objects were novel 

to the instructors, I acted as an instructor having him complete the tasks as if he were a 

student. After we worked through all of the didactic objects, I asked questions on how he 

planned to implement the didactic objects in his rational function instruction. I also asked 

the instructor to describe stumbling blocks he expected students would face during the 

lessons.  

After guiding the instructor through the novel didactic objects and the additional 

resources, I began to ask questions regarding the implementation of the novel didactic 

objects and the instructor’s initial perception of the novel didactic objects. I also asked 

the instructor where he might expect students to struggle during the implementation of 

the novel didactic objects. For instance, he might focus on stumbling blocks associated 

with the technology instead of focusing on obstacles stemming from the mathematical 

conceptions, or vice-versa. 

Journal and observations. As in Phase 1 of the study, classroom observations 

were once again bookended by video journal entries made by the novice instructor, each 

of which will serve a different purpose.  First, in the time between the intervention 

interview and their lessons, the instructor voiced his thoughts on the instruction of 

rational functions with the addition of the novel didactic objects. These thoughts 
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elaborated on how the instructor anticipated implementing the didactic object in his 

instruction on rational functions.  

I intended for the video journaling activity to serve as an occasion for the 

instructor to further reflect on the implications of teaching rational function with novel 

didactic objects that promote a conceptual understanding. My hope for the instructional 

preparation video journal was to obtain further insight into the instructor’s lesson 

planning process, as well as an account for changes in his perception of the novel didactic 

objects. In these ways, the video journal was a valuable method that allowed me access to 

the instructor’s thoughts during the gap between pre-interviews and classroom 

observation. The second time journal entries were made was in the time period between 

the classroom observations and the post-interview. The purpose of these entries was to 

capture the instructor’s perspective, i.e., his thoughts and reflections, immediately 

following his use of the novel didactic objects as part of his lessons on rational functions. 

The classroom observations in Phase 2 of the study required a slightly different 

focus than those in Phase 1. I still looked at the instructor’s mathematical classroom 

practices but, rather than identifying recurring practices, I focused on finding 

perturbations that occurred while teaching rational functions when implementing the 

novel didactic objects. My notes and the use of Studio Code helped me to identify video 

clips for the stimulated recall activity in the post-interview. 

Post-interview. The post-interview in Phase 2 of the study targeted the 

perturbations that occurred when the novice instructor taught rational functions using the 

novel didactic objects introduced to him in the intervention interview. I employed 

stimulated recall as a method of data collection to serve two purposes: first, I had access 
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to the instructors’ gestures, activities, and answer to questions without interrupting the 

overall classroom dynamics, and second, I ensured the analysis of the data reflected the 

instructor’s perspectives in addition to my own. The interview protocol can be found in 

Appendix C. 

Methods of Data Analysis 

This section presents the methods I used for data analysis in this study, which 

covers how I utilized each method, where in the study I used the methods, and an 

explanation of why the methods were appropriate. 

Overview. The data analysis methods I used in this study are consistent with the 

grounded theory approach (Glaser & Strauss, 1967, Strauss & Corbin, 1990). In general, 

the approach I used in this study to analyze the data follows a three-step cyclical process: 

1. Analyze data in order to identify instances that provided insight into the 

perturbations in mathematical classroom practices experienced by the novice 

instructor when introducing the novel didactic objects in the classroom, and 

formulate initial hypotheses based on these instances.  

2. Analyze the data for a second time searching for evidence to support or contradict 

my initial impressions I formulated in the first analysis of the data. 

3. Evaluate my initial hypotheses, accept, reject, or revise, with evidence gathered in 

the second step. 

Part 1: Reduction of data. This study generated an estimated 30 hours of video 

recordings.  I analyzed each video session with Studio Code as soon as possible 

following the recording. The timely analysis was necessary in identifying the 
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perturbations in mathematical classroom practices during the classroom observations, as 

well as in pinpointing the video clips used in the post-interview. 

The analysis of the interviews and classroom observations exposed possible 

perturbations in mathematical classroom practices experienced by the novice instructor 

when he implemented novel didactic objects in his rational function instruction. The 

theories I discerned from the data used a generative approach (Clement, 2000). The 

generative approach to data analysis helped me to generate hypotheses regarding the 

effect of novel didactic objects on the novice instructor’s classroom instruction. These 

hypotheses I identified within the videos formed the basis of the second stage of data 

analysis. 

Part 2: Analysis of perturbations. I utilized grounded theory (Glaser & Strauss, 

1967, Strauss & Corbin, 1990) to infer possible perturbations in mathematical classroom 

practices that occurred throughout the study. After analyzing the data, the results were 

examined using hypothesized perturbations I identified in part 1 of the data analysis (after 

the classroom observations) and the retrospective self-report given by the instructors 

during the post-interview. I used stimulated recall and gesture analysis to draw 

conjectures on the types of perturbations in mathematical classroom practices that are 

evoked within the novice instructor when introducing novel didactic objects in his 

rational function instruction. 

Stimulated recall procedures are used in situations where think aloud protocols 

would interfere with the performance of the task being examined (Stough, 2001). The 

stimulated recall methodology involves videotaping an activity with the intent to display 

video to a participant at a later time. While watching the video, the participant is asked to 
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retrospectively self-report on her actions, gestures, and discourse. Although, stimulated 

recall procedures are valuable, there are limitations associated with this methodology. In 

particular, the self-reflection might not truly convey the reasoning behind the 

participant’s actions, gestures, or discourse during the original recorded activity. 

However, participants generally recall more when they have prompts than they would 

otherwise. In my study, stimulated recall was used to prompt the instructor to reflect on 

his mathematical classroom practices when teaching rational functions. 

There is more to discourse than just verbal utterances. Gestures can function as 

co-participants with speech as two parts of a single utterance  (Koschmann & Lebaron, 

2002, p. 252).  A gesture is considered to be a movement of the body that is clearly part 

of an individual’s acknowledged intention to convey meaning (Kendon, 1987). Gestural 

performance is sensitive both to the composition of the audience and to prior interaction 

while showing evidence of the consequentiality of gesture for the development of 

subsequent understanding (Koschmann & Lebaron, 2002, p. 270).  Gestures are 

interactive phenomena in as much as they serve to regulate co-presence, affect the actions 

of others, accomplish something in the social world, and so contribute to the partially 

constitute social actions (Moerman 1990, p. 17). Treating gestures as the embodiment of 

thinking allowed me to analyze the gestures of the instructor as material signs that 

embody the knowledge being articulated while simultaneously shaping and lending 

structure to social interactions of the classroom.  

The task of journaling I gave the instructors required them to immediately, upon 

completion of each lesson on rational functions, capture their thoughts on the lesson 

using guiding questions found in Appendix G. For example: Overall how do you feel the 



  82 

lesson went? And were there any notable disruptions or hiccups in the lesson? The act of 

journaling “offers a rich means for describing practice; for recording and examining 

beliefs, assumptions, questions, and challenges; and for expressing feelings and 

identifying problems” (Pine, 2008, p.194). For this reason, journaling is used as a method 

of data collection in educational research (Epp, 2008). The instructors’ video journals 

provided me tangible evidence of their processes, struggles, and reasons for actions taken 

throughout the lesson. These video journals allowed me to further identify perturbations 

in their mathematics classroom practices that can be addressed and confirmed in the post-

interview.  

When analyzing the responses prompted by the stimulated recall and journaling 

activities, I used two general principles to accept, reject, or revise hypothesized 

perturbations in mathematical classroom practices experienced by the instructor. First, I 

did not infer more information from the instructors’ gestures, video journal entries, and 

discourse beyond what is necessary to explain the instructors’ actions. This ensured that I 

avoided making unsubstantiated claims. Second, I required substantial evidence to 

support a hypothesis before I accepted the hypothesis. For example, I considered 

evidence to be stronger when both the instructors and I concurred that a perturbation was 

experienced during the classroom observations. However, in the cases where I was 

unable to find enough evidence to accept or reject a hypothesis, I revised the hypothesis. 

Synthesis of Analysis. First I coded the data using the initial perturbations-in-

practice taxonomy shown in Table 4. This taxonomy, based on the perturbations in 

practice found in professions outside of education (Table 1), is effective for seeing 

similarities between perturbations in industry and mathematics classrooms. In particular, 
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the taxonomy contains leader actions, communication, expectation of technology, and 

roles and responsibilities as aspects of practice that are perturbed when novel technology 

is introduced. 

Table 4. Aspects of Practice Perturbed by Novel Technology 
Aspects of 

practice Description Example 

Leader Actions 
 
 
 
 

How instructor perceives novel 
didactic object and how the 
instructor uses the technology in the 
classroom 

The instructor’s introduction of 
the didactic object demonstrates 
his uneasy feeling toward trying 
something new.  

Communication Classroom discourse surrounding 
the novel didactic object 

The instructor’s students no 
longer rely on exact answers but 
instead they explain the behavior 
of the function.  

Expectations of 
Technology 

What understandings the instructor 
expects students to develop 

The instructor expects the novel 
didactic object to assist student in 
forming an image of the 
mathematics. 

Roles and 
Responsibilities 

Responsibilities of the instructor and 
students when using the didactic 
objects 

The instructor’s role is altered 
from lecturer to discussion 
facilitator.  

Student 
Engagement 

Student participation while the 
didactic object is being used 

The instructor’s students are more 
attentive in the lesson through the 
activities that accompany the 
didactic objects.  

Mathematical 
Conceptions 

How students perceive the 
mathematics addressed by the novel 
didactic object 

The instructor struggles to 
understand students’ 
mathematical conception of the 
concept while teaching with 
didactic objects. 

 
This taxonomy was constructed in a pilot study I conducted using two novel 

didactic objects in a mathematics classroom. The findings from this pilot study led me to 

add two aspects of practice that can be perturbed when novel didactic objects are 

introduced in an instructional setting. First, student engagement refers to how students 

perceive and act when a novel didactic object is used. Second, students’ mathematical 

conceptions can be perturbed, which will consequently perturb mathematical classroom 
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practices. I used this tailored taxonomy as a starting point for categorizing aspects of 

practice that are perturbed when novel didactic objects are introduced into rational 

function instruction. However, I was not able to fully explain the perturbations that the 

instructors experience when implementing the novel didactic objects. Therefore I used 

the stimulated recall post-interview session together with my own observations to further 

revise the taxonomy.  
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CHAPTER 5 

RESULTS OF PHASE 1: CHARACTERIZING A NOVICE INSTRUCTOR 

This chapter presents selected data and results from Phase 1 of this study. This 

chapter does not include a full analysis of every task and observation in the interest of 

readability. Instead, the focus of the chapter is on an analysis of presented episodes that 

were representative of the distinctions between the two instructors, one new-to-Pathways 

and the other a seasoned instructor.  

The results presented in this chapter were obtained through the interview 

transcriptions and video analysis of data collected in Phase 1 of the study. In the 

following sections, I present results that pertain to the distinctions between the two 

instructors and provide a basic model of the instructors’ meanings for rational functions 

and existing mathematical classroom practices surrounding their rational function 

instruction. This chapter is broken into three sections: division, relative size, and 

covariation; approach to promoting discussion of rational functions; and rational function 

lesson reflections, these sections represent the similarities and differences found in Phase 

1 between the two instructors. In each of the sections I present results on the new-to-

Pathways instructor, Norbert, and the experienced instructor, Edwin (These pseudonyms 

were chosen to help the reader associate Norbert with the novice instructor and Edwin 

with the experienced instructor).    

Division, Relative Size, and Covariation 

In the pre-interview of Phase 1, Norbert and Edwin demonstrated their thinking 

about division, relative size, and covariation to discuss rational functions. The results 

found in the pre-interview of Phase 1 hinted toward Norbert and Edwin having similar 
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understandings for division, relative size, and covariation to discuss and describe rational 

functions in a conceptual manner. Norbert and Edwin completed tasks designed to probe 

their understanding of rational functions through division, relative size, and covariation. 

The first task of the pre-interview (Figure 18) asked for the instructors to evaluate the 

following. 

 

Figure 18: First task of Phase 1 Pre-interview. 

    While answering this task (Figure 18), Edwin described how he was thinking about the 

problem (Excerpt 1). 

Excerpt 1 

1 

2 

3 

4 

5 

6 

7 

8 

Edwin: OK. So I think of this as... First I want to think about what this is, so one 

fifth. I think of this as, if you take one whole thing whatever your unit is 

it doesn't really matter and split up into five equal sections and you take 

one copy of those and... and then you're wanting to see how many of 

these you can fit into something of size 6. So we know something six 

times as large as our unit now and that's going to be very large. So we're 

asking how many of these lengths  (points to one-fifth) can we fit into 

this (points to the six). 

 
Edwin stated that we want to see how many of the one-fifths can fit into 

something of size 6 (lines 4-5). He went on to describe that the result of the task should 

be very large using a multiplicative comparison of the result and the unit one-fifth (lines 
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5-6). Edwin then restated that we are trying to find how many of these length of one-fifth 

can fit into 6 (lines 6-8). Edwin solved the problem by drawing a picture (Figure 19).  

 
Figure 19: Edwin’s work from task 1. 

Norbert described his thinking of the first task in a similar way to Edwin (Excerpt 

2). However, Norbert solved the problem in a procedural way. Only after being probed to 

find an alternative way to demonstrate how to find the answer of the task, did Norbert 

decide to draw an image. 

Excerpt 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Norbert: Ok number one. Evaluate six divided by one fifth. Ok so for division I 

try and measure how many times my denominator goes into my 

numerator. So here I'm going to see how many copies of one fifth go 

into my numerator. So in order to do so I'm going to clear my 

denominator by multiplying essentially by 1 or 5 over 5. So 

multiplying by 1 doesn't change the value I'm allowed to do that and by 

multiplying by 1 in the form of 5 over 5 I can get my denominator to 

look nice in terms of just being over 1. Then I also have the 

multiplication on top which will give me 30 over one. So completely 

simplified six over one fifth will give me 30. So if I'm looking at how 

many times one fifth goes into six, it goes in 30 times. 
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Norbert outlined his thinking about division as how many times the value in the 

denominator goes into the value of the numerator (lines 3-4). He continued to solve the 

problem using the traditional flip and multiply process (lines 5-11). Norbert finished this 

task by restating that we are looking for how many times one-fifth goes into six, which in 

this case is 30 (lines 9-10). After some additional questions on how Norbert could 

represent his result using a drawing, Norbert provided an image of six circles that were 

divided into one-fifth sections (Figure 20). 

 
Figure 20: Norbert’s work for task 1. 

Edwin and Norbert demonstrated a quotitive interpretation of division (Correa, 

Nunes, & Bryant, 1998; Fischbein, Deri, Nello, & Marino, 1985; Greer, 1992) where they 

both are thinking, how many times does one-fifth go into six. This quotitive interpretation 

of division has a strong correlation to the concept of ratio.  In this case the two associated 

quantities are the numerator (six) and the denominator (one-fifth), and the quotient is the 

result of expressing the numerator in terms of the denominator. Conceptualizing division 

in this way (as opposed to the use of a grouping metaphor or partitive interpretation of 

division) represents an opportunity to think about what it means to express one quantity 

in terms of another. Edwin and Norbert demonstrated this way of thinking multiple times 

throughout the Phase 1 pre-interview even when numerical values were not present.  
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The static bars task was designed intentionally without values in order to test if 

the instructors would persist in using their model of division and to explore instructors' 

thinking on relative size (See Figure 9 in Methods). The values were purposefully absent 

from the tasks to encourage instructors to reason about the relative size of the red bar in 

terms of the blue bar instead of trying to calculate an exact numerical answer. 

In the pre-interview I asked the instructors to determine the relative size of the red 

bar in terms of the blue bar for each static bar image. The images were revealed one at a 

time and instructors were asked to arrange the static images in order of the value of 

relative size, after every static image the instructors answered questions about how they 

came up with their answer. Edwin answered the first static bar image (See Figure 9A in 

Methods) similarly to the first task in the pre-interview (Excerpt 3, the notation of KP in 

the Excerpt refers to the researcher and author of this dissertation). 

Excerpt 3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

KP: 

 

 

Edwin: 

 

KP: 

Edwin: 

KP: 

Edwin: 

KP: 

What I'm going to be looking for is the relative size of the red bar in 

terms of the blue bar. OK. So what is the relative size of the red bar in 

terms of the blue bar? 

Relative size of the red bar in terms of the blue bar. So it's like one 

value? Can I write on this? 

Yes please do. 

(Marks on the static image) I would say one and a half. 

OK. So what is one and a half?  

So one and a half blue bars go into the red bar.  

OK. So the relative size of the red bar in terms of the blue bar is? 
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11 Edwin: Is one half… is one and a half.  

 
Edwin answered the first static bar image by writing tick marks on the image 

(Figure 21). Edwin’s first mark occurred at the end of the length of the blue bar and 

extended through the red bar above. The second mark was made at the end of the length 

of the red bar and the final mark was made about halfway through the length of the blue 

bar. After making all of the marks on the static bar image Edwin stated that the answer 

would be one and a half (line 7). He rearticulated his answer as one and a half blue bars 

go into the red bar (line 9). He responded in the same manner as the answer of the first 

task, which demonstrated cohesion in his thinking about division. In response to the 

original question of the static bar task being asked a second time, Edwin answered by 

stating one and a half (line 11).  

 
Figure 21: Edwin’s written work of static bar image 9A. 

As the static bar task progressed, Edwin’s answers became more confident. When 

the third static bar image (Figure 9C) was revealed Edwin responded in multiple ways 

that indicated the use of his understanding of division and correlation to relative size 

(Excerpt 4). 
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Excerpt 4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

KP: 

 

Edwin: 

KP: 

 

Edwin: 

 

 

KP: 

Edwin: 

KP: 

Edwin: 

KP: 

 

Edwin: 

All right. Let's try another one. So what is the relative size of the red 

bar terms of the blue bar? 

Two Thirds.  

So when you say two thirds what are... what is two thirds representing 

to you? 

The number... the number of blue bars that you can fit into the red bar. 

So you can fit two thirds of this ruler (points to blue bar) into that 

(points to red bar). 

OK so the relative size of the red bar in terms of the blue bar is?  

Two thirds.  

Two thirds.  

Yes. 

OK. Is there another way we could say that and say that the relative 

size of the red bar in terms of the blue bar is two thirds?  

The red bar is two thirds as large as the blue bar.   

 
Edwin answered two-thirds shortly after the image was flipped over but was 

probed further to describe what the answer of two-thirds represented (lines 4-5). Edwin 

restated his answer of two-thirds as the number of blue bars that can fit into the red bar 

(lines 6-8). His answer stated in this manner still demonstrates his understanding of 

division. Edwin was again asked to think of an additional way to describe the relative size 

of the red bar in terms of the blue bar. He responded by saying that the red bar is two 

thirds as large as the blue bar (line 15).  
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When faced with the static bar task Norbert exhibited his understanding of 

division once again by comparing one quantity in terms of another quantity (Excerpt 5). 

In the case of the first static bar image (See Figure 9A in Methods), Norbert measured the 

length of the red bar in terms of the length of the blue bar.  

Excerpt 5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

KP: 

 

Norbert: 

 

 

 

 

 

 

 

 

 

 

 

KP: 

Norbert: 

KP: 

Norbert: 

I would like to know what is the relative size of the red bar in terms of 

that blue bar? 

Relative bar or relative size in terms... of the red bar in terms of the 

blue bar. So I'm looking at the red bar and the red bar is longer than the 

blue bar so I'm thinking in terms of the blue bar I'm going to have more 

than one copy of the blue bar in there and it looks like if I divide my 

red bar half that I have a little over one half of the... little over.... So 

one half of one half of the red bar is a little less than the blue bar. So I 

look at the piece that's hanging over from the blue bar and I identify 

one half and it looks like it's about one half of the remaining... 

remaining distance. So if I want to measure the red bar in terms of the 

blue bar I would say that the red bar is three halves times the blue bar. I 

can fit one entire copy of the blue bar into the red bar plus an additional 

half copy of the blue bar into the red bar. 

Oh ok so three... three halves.  

Three halves. Yes. 

OK. So the relative size of the red bar in terms of the blue bar is what? 

Three halves. The red bar is three halves times the blue bar or one and 
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19  one half times the blue bar. 

 
Norbert displayed his understanding of division by fitting the length of the blue 

bar into the length of the red bar (lines 3-14). He determined that the relative size of the 

red bar in terms of the blue bar is three halves. When asked the original question for the 

static bar task a second time, Norbert rephrased his answer to that of a multiplicative 

comparison stating that the length of the red bar is one and one half times the length of 

the blue bar (lines 17-19).  

When the third static bar image (Figure 9C) was revealed, Norbert’s response 

indicated the use of his understanding of division and correlation to relative size (Excerpt 

6). 

Excerpt 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

KP: 

 

 

Norbert: 

 

 

 

 

 

 

 

OK. All right. So we are just going to put these off to the side we've 

got more. (flips over next image) So we're still looking for the relative 

size of the red bar in terms of the blue bar. 

Absolutely. So here you're throwing a curveball at me, we have the red 

bar is a little bit smaller than the blue bar. So I'm going to look and see 

OK I can fit an entire copy of the blue bar into the red bar so I know 

that my relative size is going to be less than one. So if I look at this it 

looks like I can fit... So just eyeballing it looks like it's about two thirds 

of the blue bar covers the red bar. So in terms of relative size the 

amount of blue bar that I can fit into the red bar, the relative size of the 

red bar to the blue bar would be two thirds. 
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12 

13 

14 

15 

KP: 

Norbert: 

 

OK 

Because in the other examples I was able to fit more than one copy 

here in this example I'm only able to fit two thirds of the entire blue bar 

into the red bar. 

 
Norbert explained the static bar image (Figure 9C) was a curve ball since this was 

the first image that the length of the red bar was smaller than the length of the blue bar 

(lines 4-5 and 13-15). However, even with this curve ball Norbert persisted in using his 

understanding of division to construct the relative size of the red bar in terms of the blue 

bar (lines 7-11).  

Edwin and Norbert continued to exhibit a quotitive interpretation of division 

through out the static bar tasks and began to leverage this interpretation of division to 

identify the relative size of the red bar in terms of the blue bar. Thus far Edwin and 

Norbert had not been exposed to simultaneously varying the lengths of the red and blue 

bars. The task leading up to dynamic bars had single values or static images that would 

result in a single answer.  

The dynamic bars tasks (See Figure 12 in Methods) required Edwin and Norbert 

to coordinate the changing lengths of the red and blue bar while utilizing their 

understanding of division. This coordination of the changing lengths relied on the 

instructors’ ability to use covariational reasoning in tandem with division to find the 

relative size of the red bar in terms of the blue bar.  

During the dynamic bars task the instructors participated in an embodiment 

activity that required them to demonstrate the relative size of the red bar in terms of the 
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blue bar as the distance between their hands. This physical motion allowed me to see how 

the instructors thought the relative size of the red bar in terms of the blue bar changed as 

the length of the red and blue bars varied.  

While participating in the dynamic bars task, Edwin and Norbert exhibited the 

ability to coordinate the relative size of the red bar in terms of the blue bar between their 

hands and articulate their coordination all of the varying quantities i.e., the length of the 

red bar, the length of the blue bar, and the relative size of the red bar in terms of the blue 

bar (Excerpt 7 and 8).  

Excerpt 7 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

KP: 

Edwin: 

KP: 

 

Edwin: 

KP: 

 

Edwin: 

KP: 

Edwin: 

KP: 

Edwin: 

 

KP: 

So in this scenario right. 

Yeah. 

Relative size starts where? So the relative size of the red bar in terms of 

the blue bar starts where in this scenario?  

Really large so like a thousand something. 

OK and then what's ending up happening, as the red bar decreases and 

as the blue bar increases?  

That number is decreasing.  

To where? 

Really fast to 1.  

To 1?  

To 1 yeah. It's decreasing to one and then after that it's also still 

decreasing past that and... and decreasing to zero.  

To zero because...  
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15 

16 

17 

18 

19 

20 

21 

Edwin: Yeah I see two... like I imagine this is two scenarios because like I split 

it... it's weird to think... like imagine two... like a stopping point when 

they're at the same size and I have to ask myself OK what happens past 

that. And then the ruler of the red line is still decreasing and blue line is 

still increasing. So I mean I guess it doesn't even matter if you do the 

stopping point, you can just... the red lines decreasing and the blue line 

is increasing so the relative size is always going to be decreasing. 

 
In Excerpt 7, Edwin is tracking the relative size of the red bar in terms of the blue 

bar between his index fingers as the red bar decreases in length and the blue bar increases 

in length. Edwin identified the relative size of the red bar in terms of the blue bar at the 

beginning of the scenario as really large l (line 5). However, Edwin articulated the change 

in the relative size of the red bar in terms of the blue bar as being split into two parts in 

his mind (lines 12-13).   

The first part of Edwin’s image consisted of the red bar having a length that was 

greater than the blue bar to the point of the length of the red bar and the blue bar being 

the same (lines 16-17). The second part of his image of the scenario consisted of what 

happens after the length of red bar and the length of the blue bar are the same (lines 18-

19). In other words, Edwin imagined a division at the point where the red and blue bars 

were the same length. After this point, Edwin used a second image where the length of 

the red bar is smaller than the length of the blue bar (lines 18-19). He convinced himself 

almost immediately after describing the two images that they are not necessary. Instead, 

he stated that we can think as the red bar decreases and the blue bar increases that the 
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relative size of the red bar in terms of the blue bar is decreasing (lines 18-21). Edwin 

demonstrated his ability to think about the covarying lengths of the bars and the effect of 

the covariation on the relative size of the red bar in terms of the blue bar. This thinking 

persisted into the next task associated to the graph of the relative size of the red bar in 

terms of the blue bar.  

Norbert, like Edwin, experienced little trouble with utilizing his understanding of 

division with the covariation of the length of the red and blue bars (Excerpt 8). 

Excerpt 8 

1 

2 
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6 

7 
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10 

11 

12 

13 

14 

KP: 

 

 

Norbert: 

 

 

 

 

 

KP: 

Norbert: 

 

So let's talk about what's happening in this scenario. So I'm going to... 

I'm just going to have this play so we can talk about it. So what's 

happening in this scenario?  

So right now my red bar is decreasing in magnitude and my blue bar is 

increasing in magnitude. So in the case where the red bar is decreasing 

I know that when my red bar decreases, I have a relative size going 

down. I also know that when my blue bar increases my relative size is 

also going down. So the combination of both those will cause relative 

size to decrease.  

OK. 

And once... So I hit that point I have a certain rate of decrease, it's 

happening pretty fast before I... before I hit the point one, and then that 

rate of decrease of relative size sort of slows down a bit as I... As I'm... 

as my red bar is going towards zero and my blue bar is going past one.  
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In this excerpt, Norbert articulated that relative size of the red bar in terms of the 

blue bar is decreasing as the red bar decreases in length and the blue bar increases in 

length (lines 4-9). Norbert also identified the a point, just like Edwin, after the length of 

the red and blue bars are the same length. Norbert explained this point in terms of the rate 

of decrease of the relative size of the red bar in terms of the blue bar (lines 11-14).  

During the dynamic bar task, Edwin and Norbert exhibited the ability to 

coordinate the relative size of the red bar in terms of the blue bar between their hands and 

articulate their coordination all of the varying quantities i.e. the length of the red bar, the 

length of the blue bar, and the relative size of the red bar in terms of the blue bar.  This 

coordination of the covarying quantities in conjunction with their understanding of 

division became even more apparent when completing the next task.  

The task following dynamic bars consisted of a graph of the relative size of the 

red bar in terms of the blue bar (See Figure 12 in Methods). This task required the 

instructors to describe and draw images of the relative size of the red bar in terms of the 

blue bar at specified points.  

Once the instructors identified the relative size of the red bar in terms of the blue 

bar, they were asked to predict what happens to the relative size of the red bar in terms of 

the blue bar as the input value varies. The predictions made by the instructors highlighted 

their ability to construct a conceptual understanding of rational functions using their 

understanding of division in conjunction with covariational reasoning.  

Edwin responded easily to the task by making multiple predictions about all of the 

scenarios of the changing red and blue bars for the points specified on the graph. It is 

important to note that upon first seeing the task, Edwin stated that the graph looked 
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similar to a rational function. This conversation of rational functions was revisited after 

all the predictions were made (Excerpt 9).  

Excerpt 9 

1 

2 

3 

4 

5 
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12 
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17 

18 

19 

20 

KP: 

 

 

Edwin: 

 

KP: 

Edwin: 

 

 

KP: 

Edwin: 

 

 

KP: 

Edwin: 

KP: 

Edwin: 

 

KP: 

 

OK. So because you said this is a rational function. How would that 

relate back to like the red and blue bars for think about a rational 

function?  

So I'm imagining these bars changing with respect to a varying quantity 

x.  

So that’s (slides finger along x-axis) like the input? 

Yeah. Well each of these are represented by some polynomial (points 

to red and blue bars). And so the values... the relative sizes are 

dependent upon the output of this polynomial expression. 

OK. So the output of the function of the rational function?  

Of Each of these sizes. And then… I imagine the rational function... the 

output of the rational function to represent the relative size of the 

values that each of those polynomials has.  

Ok so the top bar here would represent what?  

The output of a polynomial.  

Of any polynomial?  

Of the... the numerator of the polynomial of the rational function pre-

supposing that it's a rational function.  

OK… So if we're talking about a rational function then what would the 

blue bar or the bottom bar represent?  
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21 

22 

23 

24 

25 

26 

27 

28 

Edwin: 

KP: 

Edwin: 

KP: 

 

 

 

Edwin: 

The length of the line or the output of a polynomial as well.  

That is...  

In the denominator.  

That it is denominator and then the relative size of the red bar in terms 

of blue bar would represent?  

Relative size starts where? So the relative size of the red bar in terms of 

the blue bar starts where in this scenario?  

The output of rational function.  

 
Edwin articulated why he thought the graph of the relative size of the red bar in 

terms of the blue bar was similar to a rational function by him imagining the bars 

changing with respect to the input quantity (line 4-5). Edwin continued his explanation by 

stating that the bars represented polynomial functions and the output values seen on the 

graph were dependent on the output values of the polynomial functions (lines 7-9). After 

being probed further about his statement, Edwin identified all of the quantities that he 

was coordinating in order to construct the graph of the relative size of the red bar in terms 

of the blue bar that he related to rational functions (lines 14-28). Edwin articulated the 

covariational relationship that exists within a rational function using his understanding of 

division, relative size, and covariation.  

When faced with the same task Norbert provided similar results through his 

explanation of the specified points and articulated that the graph of the relative size of the 

red bar in terms of the blue bar could be similar to a rational function by writing a 

possible function for the depicted graph (Excerpt 10). 
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Excerpt 10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

KP: 

 

Norbert: 

 

 

 

KP: 

Norbert: 

 

  

KP: 

 

 

 

 

Norbert: 

 

 

 

 

 

KP: 

So we want the relative size of the red bar in terms of blue bar as the 

input value decreases to three. 

Ok. As the input value decreases to three, so as we're decreasing to 

three our relative size is increasing so decreasing to three our relative 

size is increasing. So that would correspond to the same... same three 

scenarios we had earlier.  

OK 

Where either the red bar is increasing and blue bar is decreasing; blue 

bar is fixed red bar is increasing; or red bar is fixed and blue bar is 

decrease.  

Okay great. Now what if we say we wanted to figure out the... we want 

the relative size right. We're going to describe the behavior the relative 

size of the red bar in terms of the blue bar as the input value increases 

from three. So we can say increases without bound if it's more 

comfortable.  

So increasing from three, we see that our real size is decreasing. So we 

can have the possible scenarios where a blue bar is fixed and our red 

bar is decreasing, getting smaller and smaller, the scenario where a red 

bar is fixed or a blue bar is increasing... red bar is fixed and our blue 

bar is increasing without bound, or the scenario where both our red bar 

is decreasing and our blue bar is increasing without bound.  

OK. All right. What's the relative size at 3?  
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23 

24 
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37 

38 

39 

40 

41 

42 

43 

44 

Norbert: 

 

 

 

KP: 

Norbert: 

KP: 

Norbert: 

 

KP: 

 

Norbert: 

KP: 

Norbert: 

 

 

 

KP: 

 

Norbert: 

KP: 

Norbert: 

So the relative size at three is... if you want to think about in 

practicality would be undefined it doesn't exist. But looking at the 

graph the limit as the... the limit of the relative size as we approach 

three would be getting arbitrarily large or approaching infinity.  

So have you ever seen a graph like this before? 

I have seen a graph with this before.  

What kind of graph comes to mind?  

So the example I think of is one over x squared. So I guess one over, X 

minus three squared would be.  

You can write it down. If you don't want to try to keep it inside your 

brain.  

Ok so 1 over X minus three squared.  

OK 

So as I kind of... I go towards the tails of my graph. I'm getting smaller 

and smaller approaching zero but I'm never getting negative because 

it's a squared term. And as I approach three my denominator gets 

arbitrarily small so then my function values get arbitrarily large. 

So what would... say... So if we what... can we call this a function? Is 

that okay with you if we put an f(x) there?  

Sure. 

So that would be okay with you? 

That's fine with me.  
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49 

KP: 

 

Norbert: 

KP: 

Norbert: 

All right. So this function here is (points to the written function) the 

function in the numerator, in this case, would represent what?  

Would represent the magnitude of the... magnitude of the red bar.  

OK. And then the denominator would be the...  

Magnitude of the blue bar.  

 
In this excerpt, Norbert described the behavior of the red and blue bars that would 

result in the behavior of the relative size of the red bar in terms of the blue bar (lines 3-

10). When asked if he had seen any graphs that reminded him of the graph of the relative 

size of the red bar in terms of the blue bar, Norbert decided to write out an expression 

that resembled a rational function (lines 30-39). Norbert articulated that the numerator of 

the function that he had written represented the length of red bar and the denominator 

represented the length of the blue bar. In this task Norbert used covariational reasoning 

with his understanding of division to articulate the relative size of red bar in terms of blue 

bar.   

Throughout the entire pre-interview Edwin and Norbert paralleled one another’s 

understandings and responses to the tasks provided. The lack of discrepancies in Edwin 

and Norbert’s mathematical thinking provided an even platform for identifying 

differences in their rational function instruction without having to consider their 

mathematical knowledge as being significantly different. 

Approach to Promoting Discussion of Rational Functions 

Differences between Edwin and Norbert were uncovered during classroom 

observation data collection. These differences were significantly based on Edwin and 
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Norbert’s focus and approach to teaching rational functions. Edwin approached rational 

functions with more of a conceptual orientation (Thompson et al., 1994) that promoted 

discussions and conversations within his rational function lessons. This included asking 

open-ended questions that allowed for students to explain their thinking. Norbert 

approached rational functions with a calculational orientation (Thompson et al., 1994), 

which is more aligned with the traditional approach to teaching rational functions. 

Norbert was more of a lecturer and asked questions that represented small tests of student 

knowledge (such as rules or properties) but provided little opportunities for students to 

articulate their thinking (Mehan, 1979).  

In preparing to teach module 6 on rational functions Edwin stated how he wanted 

his students to build an understanding of division and to a greater extent relative size 

(Excerpt 11) in his video journal. 

 Excerpt 11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Edwin: 

 

 

 

I want to think about a division of two numbers as a measurement 

scheme so... maybe I used scheme in a very wrong sense but I want 

them to think about it as a measuring process. So the denominator is, 

like your ruler, and the numerator is the thing you're measuring. So I'll 

start off probably with asking them simple numerical questions about 

division. So very similar to module three I think we should revisit this 

actually. Sorry module four, beginning of module four, starts with how 

many times does this compare to this and they use percentages instead 

of like relative size.   
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Edwin's repeated references to schemes (lines 1-2), a process (lines 3-4) , and 

division (lines 4-6) show that he planned to have his students construct an understanding 

of rational functions based on relative size. Also, he saw how this concept ties in with 

previously learned material and consequently planned to build on and revisit (lines 5-9) 

these previous understandings, thus creating a coherent curriculum (Thompson, 1994, 

undergraduate curriculum). 

Norbert revealed in his video journal that he would construct his rational function 

lessons in more of a traditional manner. He concocted a plan where he laid out the formal 

definition of rational function and leveraged the students’ knowledge of polynomials to 

find key features of the rational function (Excerpt 12).  

Excerpt 12 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Norbert: 

 

 

 

The topic of this module investigation is the introduction of rational 

functions and looking at the behavior of rational functions not quite 

end behavior but like the internal behavior of the rational functions. 

Primarily when approaching either singularities or vertical asymptotes. 

So the plan of attack is to first introduce what a rational function is and 

define it. And. I'm going to change up the order of the problems in the 

book a little bit. So I'd start off with either using Problem three 

problem three looks at. Arbitrary rational function and asks what 

values make the rational function undefined. So we're looking for 

values where the denominator function is zero. And what values make 

ah... the rational function equal to zero so what are the roots. And those 

would be ah… the numerator function. And the reason I want to do that 
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13 

14 

15 

16 

17 

first is because primarily ah... when looking at functions I feel you 

want to look for, I don't know, roots of the function, where the function 

equals zero. That seems like a good starting point and it will be a nice 

transition considering we just learned roots and umm things of that 

nature in the last module with polynomial functions.   

 
Norbert chose a traditional approach to rational functions, where he planned to 

instruct students to find the values of the function that are undefined by setting the 

denominator of the function equal to zero (lines 8-10). Further in the excerpt, Norbert 

explained that the approach to finding the roots of the rational function was similar to 

polynomial functions, a previously covered concept in the course (lines 12-17).  

The dichotomy between Edwin and Norbert’s approach to teaching rational 

functions persisted when they taught the first lesson. Edwin implemented his plan to draw 

attention to the division of quantities and leveraged student understanding of division to 

construct an understanding of rational functions (Excerpt 13). 

Excerpt 13 

1 

2 

3 

4 

5 

6 

7 

Edwin: 

 

 

 

 

 

Student: 

All right so rational functions have a lot to do with measuring stuff. So 

I'm assuming you guys have an understanding of measuring things. 

Let's give a... let's start with some appropriate measurements that we 

might use to measure different things like for example, if I wanted to 

measure my height, what are some appropriate units of measure that 

you would want to measure my height in? 

Feet. 
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23 

24 

25 

26 

27 

28 

29 

Student: 

Edwin: 

 

Student: 

 

Edwin: 

 

Student: 

Student: 

Edwin: 

Student: 

Student: 

Edwin: 

 

Student: 

Edwin: 

 

 

 

 

 

 

Centimeters. 

So I heard a couple answers, feet, centimeters, meters. Why are these 

relatively good unit of measures to measure my height with? 

Keeps our numbers like with in a certain range. It's always like one to a 

100, it's not like one to 400ths of a mile. 

OK, yeah. So you... you wouldn't use miles to measure me, right? I’m 

assuming, why? 

Too large. 

It’s too big. 

Why? What’s too big, be specific? 

The mile. 

The thing you are measuring. 

The thing you're measuring with is really big compared to the thing 

you're measuring, right? 

(As a class answer) Yes. 

So for that reason not only is it difficult to see what the corresponding 

measurement is but you end up getting a number that you might feel 

very comfortable with, right now. Today though we're going to be 

talking about, well what if we do measure things with really big... 

measuring sticks and what if we measure things that are really big 

compared to the measuring stick? What does that do? What happens to 

the output? Maybe you guys... how big... how tall do you think I am? 
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51 

Student: 

Edwin: 

 

 

 

 

 

Student: 

Student: 

Edwin: 

Student: 

Student: 

Edwin: 

Student: 

Student: 

Student: 

Edwin: 

Student: 

Edwin: 

(Multiple students respond with varying heights around 5 feet) 

5'8''?  Did you just say 5'1''?  5'1'' so I noticed you guys are using... first 

of all are you using two different measuring sticks to measure me. 

That's kind of unique, in my opinion. What if you were to measure me 

with one? So you are using feet and you are using inches to measure 

me. Let's start... let's stick with just one measuring stick. How tall do 

you think I am in terms of one measuring stick? 

60 inches 

68 inches 

68 inches. What about feet? 

5 feet. 

5 and 8/12ths. 

5 and 8/12ths. Why do you say 8/12ths? 

No that was a lie. 

8/12ths of a foot. 

Oh yeah that’s true. 

8/12ths of a foot so that would represent five feet and eight inches. 

(Multiple students respond) Yes. 

So five feet and 8/12ths is five feet and eight inches. All right. So I 

want you to get used to measuring because that is all we're going to be 

doing in all of this module. We are going to be measuring. We are 

going to talk about what happens if your measuring stick is really 
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52 

53 

54 

55 

56 

57 

small? What happens if your measuring stick is really large? What 

happens if the thing you are measuring is really large? And what 

happens if you are measuring... the thing you are measuring with is 

really small? So let's give an example, I have this whiteboard right here 

in front of me and let's say I want to measure it in terms of this marker. 

How many markers do you think I could fit into this whiteboard? 

 
In this excerpt Edwin asked questions that had multiple answers and pushed the 

students to discuss measurement when comparing two quantities (lines 2-6, 13-14, 32-

36). This discussion allowed Edwin to build a connection between the students meaning 

of measurement and division which allowed him to set up for a later discussion of 

rational functions. Norbert implemented his plan to draw on the similarities of 

polynomial functions and rational functions (Excerpt 14). 

Excerpt 14 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Norbert: 

 

 

 

 

 

 

 

 

So today at this point we really have only had exposure to these types 

of functions (points to the list of functions on the board). Really we 

have only had exposure to exponential and polynomial functions and 

some special cases of polynomial functions. So we're going to build a 

new type of function from some of the functions that we have already 

seen. So I'm going to define a rational function. And what a rational 

function is... is it's a function? Obviously. That doesn't make poor 

decisions. It's a function that is a ratio of polynomial functions. So q(x) 

is a polynomial, p(x) is a polynomial. So my first question is, should 
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Student: 

Norbert: 

 

Student: 

Edwin: 

 

 

 

 

 

 

 

 

 

 

 

Student: 

Norbert: 

 

 

we be worried that taking a ratio of polynomials is actually a function? 

So what makes a function, a function? 

For every input there is an output.  

So for every input there is an output that is true, but how many outputs 

for every...  

One? 

There is exactly one output for every input. (writes on the board) One 

output for every input. So q(x) is a polynomial, p(x) is a polynomial. 

That means I plug in an input, right? So I plug in an input. This is 

going to give me... q(x) is going to give me one output, p(x) is going to 

give me one output, so I'm only going to get one ratio, one fraction for 

a value of x. Does that make sense what I am saying here? (mumbles of 

agreement) So because q(x) and p(x) are functions, if I plug something 

into h(x), I'm only going to get one number for q(x), one number for 

p(x). So I'm only going to get one fraction at the end of the day. So 

we're ok here? No function illegality happening. So the first thing I 

want to look at is domain for rational functions. So what do I always 

say? What number do we not want to divide by?  

Zero. 

Zero because we will rip a whole in the universe and kill everyone. So 

for this general form h(x) is equal to q(x) over p(x), where both of 

those polynomials, where are the cases where I am dividing by zero?  
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Student: 

Norbert: 

 

 

 

Student: 

Norbert: 

 

 

 

 

 

 

 

 

Student: 

Norbert: 

Student: 

Norbert: 

When p(x) equals zero?  

When p(x) equals zero, right? So p(x) equals zero, great. Now what if 

p(x) equals zero? What does... What does that mean? What are the 

values of x so that p(x) equals zero? Pretend I'm a gardener. What am I 

going to be working with? (Makes pulling action with hands) My roots. 

Oh. (laughs from students) What were you doing?  

I was... I was pulling weeds or carrots of something. So I'm going to be 

looking at the values of X so that p(x) equals zero or the roots of p(x). 

So we can say that our domain is all values of X, real numbers, so that 

p(x) is different from zero. Where we will run into trouble, are the 

points where p(x) equals zero for the roots of our bottom function. So 

does that make sense? What we are doing here, any issues? So for 

example, if I had h(x) equals one over one minus x, right. So one is a 

polynomial, one minus x is a polynomial we have a rational function 

here. Can someone tell me what my domain of my rational function is?  

Ah negative infinity to 1.  

OK. 

And then 1 to infinity. 

Right. So we look at the roots of one minus x, it's simply just one. So 

we have to remove one from our domain. We start off with all the reals 

and we take out the point so that my bottom function is equal to zero. 

My bottom function is equal to zero when x equals one so we're 
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54 removing that point from our domain. So any issues here? 

 
In this excerpt Norbert started his lesson exactly as he had planned, as a review of 

the functions covered in previous sections (lines 1-11). Throughout this lesson Norbert 

asked questions that required the students to give short calculational responses (lines 12, 

15, 28). Norbert provided generalized forms of rational functions (lines 16-27) and gave 

students the properties and characteristics of rational functions (lines 38-46). This was a 

common theme that saturated all aspects of Norbert’s instruction of rational functions. He 

acted as the “sage on the stage” where Edwin took on a role that emulated the “guide on 

the side” (King, 1993). 

In the post interview of phase one, Edwin and Norbert were asked if they would 

teach rational functions in the same way as they did this semester (Excerpt 15 and 

Excerpt 16). 

Excerpt 15 

1 

2 

3 

4 

5 

6 

7 

8 

9 

KP: 

 

Edwin: 

 

 

 

 

 

 

All right . So why did you decide to start teaching rational functions in 

this way? 

So I feel like a lot of students have this preconceived notion that like if 

I want to talk about measurement... measuring things like I feel like 

these students have these preconceived notions that the thing you're 

measuring has to be bigger than the thing you're measuring with and it 

has to be like bigger for a certain amount like it can be huge it has to be 

like a sweet spot like... like what this guy here said. Like the numbers 

got to be around 1 to 100. And like I wanted to break that way of 
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31 

 

 

 

 

 

 

KP: 

 

 

Edwin: 

KP: 

Edwin: 

KP: 

Edwin: 

KP: 

Edwin: 

KP: 

Edwin: 

 

thinking like right off the bat so I want to just think about OK I know 

you feel comfortable with this. These units of measure, but in this 

lecture we're going to be talking about you know measuring things 

where it really doesn't matter what we what the size of the thing you're 

measuring with and really doesn't matter what the size of the thing 

you're measuring. 

Ok would you start the lesson the same... Like this whole entire 

rational function lessons would you start this the same way? If given 

the chance.  

Probably. 

Yeah? 

I would say so. 

OK. Have you started rational function instruction like this in the past?  

No. 

No. First time? 

First time. 

OK. Why did you want to start rational functions in this way?  

Again like I felt like I had this new powerful notion of like 

measurement... measurement and I wanted to convey that to... to the 

students. And like I never did that before like I would normally just 

like I initially just like go out and say this is a rational function. This is 

a vertical asymptote. This is a horizontal asymptote like a traditional 
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32 ways of thinking about it and that's kind of what I did. 

 
In this excerpt Edwin expressed his concern that students usually think of fraction 

in the sense of a smaller quantity measuring a bigger quantity which results in a number 

greater than 1 (lines 3-15). Edwin stated that he wants students to move away from and 

expand their understanding to include fractional results of comparing two quantities as 

well. Edwin explained that this was the first time that he taught rational functions in this 

manner (line 25) and that he would probably teach it the same way again (line 19), if 

given the chance. He elicited his feeling about teaching rational functions in a conceptual 

manner as a powerful notion rather than his previous ways of teaching rational functions 

(lines 27-32). 

Excerpt 16 
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10 

11 

KP: 

 

 

 

Norbert: 

 

 

 

 

 

 

So it is going to be a little awkward on that. So we're going to go ahead 

and start with your first day. (Shows first clip. You can hear the video 

playing.) All right. So my question is why did you decide to start 

rational functions in this manner?  

So we're just trying to... The idea was to create a bridge between what 

we've already... what we've already learned and really I think any good 

math class is, the more you can set up a math class like a story the 

better... I think the better the understanding comes and that's just the 

real... the real reason is, hey we really only looked at these types of 

functions. These aren't the only ones out there. But here's how we can 

take the ones we've already looked at and start creating new ones.  
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KP: 

 

 

 

Norbert: 

 

 

 

KP: 

Norbert: 

 

KP: 

Norbert: 

 

 

KP: 

 

Norbert: 

 

So who does this start up help? Like does it help you? does it help your 

students? does it help the overall like structure pathways? When you 

started the lesson in this way, what did you view it as being the most 

beneficial to? 

I do that as being the most beneficial to the students in the sense that so 

I think because I've noticed with a lot of stuff like when we went from 

linear to exponential functions it was kind of once we started the 

exponential functions nothing is ever going to be linear again. 

Oh. 

In the sense like there's the kind of like when you're learning topics 

their to sep... separate entities and....  

Like it doesn't exist anymore? 

Exactly like everything prior doesn't it. So that's.. that was kind of the 

main idea was, hey like this stuff is still... still existing and it's actually 

has a big role in what we are doing today.  

Would you still start your lesson off this way? Would you start rational 

functions off this way again? 

I would. Given the chance again, I would make the connection to prior 

stuff.  

 
Norbert clearly explained that he introduced rational functions in this manner 

because he felt like he was making a bridge from the students’ prior knowledge (lines 5-

11, 16-19). Norbert elaborated on his reasoning for wanting to connect the students prior 



  116 

knowledge by explaining his feels that students seem to think everything in a prior 

section of the curriculum doesn’t exist as soon as a new section has begun (lines 24-26). 

Norbert stated that if given the chance he would start his rational function lessons in the 

same manner (line 29-30). 

Throughout these excerpts Edwin demonstrated a conceptual approach to teaching 

rational functions whereas Norbert took a calculational approach. Edwin’s conceptual 

approach to rational functions allowed for students to be more involved in their learning. 

Edwin was able to become a guide in the students’ learning allowing him to ask questions 

that caused the students to articulate their thinking and encouraged class participation. 

Norbert’s approach to rational functions was calculational and allowed for some class 

participation. What is most striking between Edwin and Norbert was the approach to 

teaching rational functions. Edwin willingly changed his approach to teaching rational 

functions by creating conceptual lessons that stimulated his students and diverged from 

his previous calculational approach. Norbert stuck to the curriculum and played things 

safe throughout the rational function instruction. 

Rational Function Lesson Reflections  

When reflecting on the rational function lessons Edwin and Norbert differed on 

their focus. Edwin reflected on his actions and the actions and behaviors of the students. 

Norbert reflected on his teaching and what he wanted to accomplish in the lessons. This 

difference is focus during the reflection process gives insight into what the instructor felt 

was valuable to them (Lampert, 2003).   

After teaching the first lesson on rational functions Edwin reflected on his 

preparation for the lesson and how this impacted his students (Excerpt 17 and 18). 
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Excerpt 17 

1 

2 
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4 

5 

6 

7 

8 

Edwin: 

 

 

 

 

I could of done way better I could have been more organized. In 

general I am little lazy when it comes to preparing. This is why I 

should prepare. I should be prepared for one of the student’s questions 

that asked, with regards to relative size in terms of what so I think this 

is a problem with...this is his problem. His problem was, well my 

problem that I didn't develop in his head I couldn't... I didn't give him 

the right environment for him to develop the right meanings. He was 

asking relative size, what is the unit of the relative size. 

 
Edwin explained that he should have been more organized and prepared (lines 1-

2) since he felt that his lack of preparation for the lesson affected his ability to answer his 

students’ questions (lines 2-5). Edwin admitted that his lack of preparation did not 

provide his students with an environment to help in developing the mathematical 

meanings that he wanted them to create (lines 5-8). As Edwin continued his reflection of 

the first lesson on rational functions he stated that the number of problems that are 

covered in class does not correlate to the students building meaning related to the 

mathematics (Excerpt 18) 

Excerpt 18 

1 

2 

3 

4 

Edwin: 

 

 

 

I think it was a really good representation of an average day because I 

didn't really prepare so much. I should prepare a lot more. I need to 

work on that. But I have these meanings and I wanted students to 

develop these meanings so I slowly gradually work with that. I think I 
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 did a decent job of that. So to give specific details as to why this was 

an average day in class. Like I don't use pathways very much. I try to 

but I really try to like take a few pathways problems. Very few, 

because there's like 10 pathways problems per investigation. And let's 

be honest, can students develop meanings from 10 problems? No they 

can develop meanings with like one problem I think. So I work with 

one problem but I work with it very long. And so we did problem 

number one and problem number two for our entire 50 minutes. And I 

think that did better for my students than just going through it really 

quickly and like that would have been... I think that would be 

detrimental to start talking about like notations that they'd never seen 

before and just like flood them with problems all over the place. I don't 

think that's really good. 

 
Edwin articulated for a second time during this reflection of the first rational 

function lesson that he could have prepared more but that this lesson did resemble an 

average day in this classroom (lines 1-2). In his reflection Edwin stated he has meanings 

for rational functions he wanted to develop in his students (lines 2-4) and these meanings 

do not need to be developed using numerous problems (lines 6-10). Edwin continued to 

state that he felt that completing too many problems could be detrimental to his students 

(lines 14-17). Even though Edwin reflected on his actions, his major focus was on his 

students and how his actions affected his students. Norbert’s reflection of the first lesson 
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on rational functions focused predominantly on a mistake that he made on a single 

problem covered in the lesson (Excerpt 19). 

Excerpt 19 
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Norbert: 

 

 

 

 

The topic was rational functions, vertical asymptotes in particular ah so 

I felt I did a reasonably good job of motivating the topics and we want 

to examine more types of functions up until this point we've only really 

looked at exponential and polynomial functions in the special cases 

linear and quadratic. The motivation was to build the functions from 

polynomial functions that we already know really well and tie in that 

really a lot of the a lot of the analysis is the same as the analysis of 

polynomials. So I think I did a pretty good job of making that point 

clear. We went through some problems mostly looking at started off 

looking at where rational functions are undefined. So looking for roots 

of the denominator function and where the roots of the rational 

function are and those occur when the roots of the numerator function 

so at the roots of the numerator function with a with a minor caveat that 

it can't be a root if it's not my domain. So if it's a root that shared 

between both the numerator and denominator function we can't have it. 

And we did problem, Problem 2. You kind of look at identify some of 

the behavior and function and with problem 2 it went pretty smoothly 

until I made a mistake and said that some said that some portion of the 

functions should be decreasing when it should be increasing and that 

caused some trouble. And we tried to graph the function. And because 
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21 

22 

23 

24 

of that, really lost a good deal of time of me trying to regroup and 

cover myself so that that was not good at all not good on my part. But 

the majority of the information that I wanted to cover it covered it I'm 

going to have to go over review a little bit of stuff for the next lesson. 

 
When reflecting on his first rational function lesson Norbert focused on his 

performance by stating that he did a relatively good job (lines 1-5). He justified his 

motivation in connecting polynomial functions to rational functions (lines 5-9). Norbert 

articulated the problems that he covered in the class (lines 9-20) to include the mistake he 

made in the second problem (lines 16-22). Throughout the remainder of his reflection on 

the first rational function lesson Norbert continued to bring up his mistake from the 

second problem.  

The reflection of the first rational function lesson for Edwin and Norbert differed 

in focus significantly. Edwin discussed his actions and the effects of those actions on his 

student educational environment. Norbert had a more egocentric reflection that focused 

on what transpired in the lesson but dwelt heavily on his mistake when completing a 

problem with his students. This difference in the reflective focus of Edwin and Norbert 

continued into the following rational function lesson reflection.  

After teaching the second day of rational functions Edwin and Norbert once again 

reflected using their video journal. Edwin articulated that his lesson did not go well based 

on the behavior of his students (Excerpt 20). 

Excerpt 20 

1 Edwin: I am slightly concerned because there was a lot of silence. There were a 
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lot of people trying to figure out what's going on. I can tell people were 

not enthusiastic about the material. I asked them to d... draw some 

tables, I could tell maybe one or two people actually did. So people 

weren't following directions very much. I could tell people weren't 

enthusiastic and so building meanings in that kind of environment 

seems to be a little difficult. So I could tell that there were a lot of 

points people where people were just like huh? And I couldn't 

understand some of the question still... I still can't. 

 
Edwin expressed his concern about the second rational function lesson not going 

well by stating that there was silence (line 1) and that his students did not appear engaged 

in his lesson (lines 2-5). He explained that this unenthusiastic environment was not 

conducive to building meanings (lines 5-7) and that he could not at the time nor still 

understand some of the questions that the students were asking (lines 7-9). Edwin 

assessed the success of his lesson based on the student feedback that he was receiving 

through questions and overall demeanor of his students.  

As Norbert reflected on his second rational function lesson he expressed his need 

to fill in gaps from the previous lesson and what he covered in the lesson (Excerpt 21) 

Excerpt 21 
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Norbert: 

 

 

 

I started off the lesson with the review of module six, investigation one 

trying to fill in some of the gaps that I needed to cover on Wednesday. 

And that review went pretty well I think I covered all the holes that I 

missed and my students seemed to understand the topics that were 
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 taught on Wednesday. I wanted to motivate end behavior of rational 

functions by... This is a continuation in the sense of end behavior of 

polynomial functions because I built my rational function as a 

combination of polynomial functions. So we started off looking at a 

case from the book where the degrees of my numerator and 

denominator functions are equal. In this case we approach the ratio of 

the leading coefficients of my polynomial functions I make up my 

rational function. I finagled the book problem a little bit just to give 

coefficients different from one for both of my polynomials in my 

combination in my rational function just to see that we're actually 

approaching a ratio of the leading coefficients. I really wanted to stress 

that even with rational functions it is very similar to just looking at 

regular polynomials. We are looking at really the leading coeff... the 

leading terms of my polynomials in my rational function to tell us the 

whole story. 

 
Norbert focused his reflection on the events that occurred in the lesson and his 

motivation for those events.  Norbert started his reflection with a discussion of the review 

and continuation of Wednesday’s material that was not covered (lines 1-5). Norbert 

reflected on the events of his second rational function lesson through the description of 

his focus of end behavior of rational functions and the connections that can be made from 

end behavior of polynomials (lines 5-8, 15-19).  
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The reflection of the second rational function lesson for Edwin and Norbert 

differed once again in the focus of their reflection. Edwin discussed how his lesson was 

less than ideal because of the behavior that he saw in his students throughout the lesson. 

Norbert reflected on the events of his lesson discussing the connection that he wanted to 

make between the end behavior of polynomial function and the end behavior of rational 

functions.  

The completion of the final rational function lesson ended with a reflection on the 

lesson by both instructors. Edwin reflected on his lesson with an emphasis on the 

meaning behind the definitions of rational functions (Excerpt 22). 

Excerpt 22 
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Edwin: 

 

 

 

 

I think I embedded the meanings that I wanted inside of all of those 

definitions. That's basically what we did... what I just covered 

definitions that these students need to really learn but I really wanted to 

emphasize meaning behind those definitions and I think the textbook 

didn't really help me out with that so much. So I went on my own with 

that. They were able to solve all the problems. They were able to 

understand what was going on, I think at least. But they kept going 

back to the high school things that they learned and there was no 

meaning behind them they kept asking... like the one girl, she asked 

like isn't like a horizontal asymptote like the thing you get really close 

to but you never touch. I was just like huh that is not the meaning that 

we want in fact this is why we don't draw out the dotted lines and 

instructors like if you think about a dotted line and think about what 
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that graph looks like it hugs (air quotes) the vertical line. Oh I don't like 

that. It's just so geometric. 

 
Edwin stated that he thinks that he was able to embed all the meanings into the 

definitions for vertical and horizontal asymptotes of rational functions even though the 

textbook, in his opinion, did not set up the definitions the way he wanted (lines 1-5). 

Edwin expressed his irritation with the students reverting back to their previous 

knowledge of rational functions (lines 5-15) instead of applying the meanings to the 

behavior of rational functions that he was trying to develop with them for the previous 

two lessons.  

After teaching his final lesson on rational functions Norbert reflected on his 

performance and his concern about covering too much material in his lesson (Excerpt 23) 

Excerpt 23 
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Norbert: 

 

 

 

 

I probably went over a little bit more about limits than was required 

just because I felt that that would be good for the students when they 

go along, moving on towards calculus in the next, next years. And the 

one thing I definitely could have improved on, I was a little bit 

informal with the explanation for limits, certain limits and what that 

means. I wanted to...so we have certain cases when we approach 

horiz... a vertical asymptote where we both shoot off to infinity both 

shoot off to negative infinity and so on and so forth. And I wanted to 

make the point that if they both shoot off at the same direction the 

behavior is the same then the limit still does exist even though it's an 
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infinite limit. And that might have been a little bit confusing I think I'm 

going to review a little bit and kind of go over the topics some more to 

clarify some things. 

 
In this reflection Norbert expressed his concern that he covered too much material 

(lines 1-3) and might have confused his students with an informal definition of limits 

(lines 3-11).  Norbert reflected that he would need to review limits with his students in 

order to clarify some of the misunderstandings that might have happened in the final 

lesson of rational functions (lines 11-13).  

During Phase 1 data collection Edwin and Norbert’s reflections on their rational 

functions lessons differed due to their focus. In his reflection, Edwin utilized his students 

as a way to measure the success of his lessons, which led him to identify areas for him to 

improve as an instructor. In contrast, Norbert reflected on his actions and performance as 

an instructor and used himself (rather than his students) as the measure of his success.  

Summary 

The results found in Phase 1 suggested that similarities and differences existed 

between Norbert and Edwin. The pre-interview of Phase 1 revealed that Norbert and 

Edwin had similar ways of thinking about measurement, division, relative size, and 

covariation in a conceptual manner. The lack of discrepancies in Norbert and Edwin’s 

mathematical thinking provided an even platform for identifying differences in the novice 

and experienced instructors’ instruction on rational functions without having to consider 

their mathematical knowledge as being significantly different. In other words, both 

Norbert and Edwin demonstrated that they possessed the schemes that would support a 
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conceptual approach to rational function instruction. After the pre-interview of Phase 1 

the differences between Norbert and Edwin became more apparent in the video journal, 

classroom observations, and post-interview.  

Norbert and Edwin planned and executed different approaches to teaching rational 

functions in Phase 1. Norbert approached rational functions in a calculational way by 

presenting definitions and rules found in the curriculum. The questions Norbert asked of 

his students during the classroom observations required short numerical responses. Edwin 

approached rational function in a conceptual way by leading a discussion on 

measurement, division, relative size and covariation. The questions asked by Edwin in 

the classroom observations gave students the opportunity to discuss and describe their 

thinking of the mathematics. The reflections completed after the classroom observations 

revealed additional differences between Norbert and Edwin.  

In the video journal reflections of the Phase 1 data collection Norbert and Edwin 

reflected on their teaching of rational functions using a different focus. Norbert primarily 

reflected on his actions and performance as an instructor using himself as the measure of 

his success. Edwin, on the other hand, utilized his students as a way to measure the 

success of his rational function lesson and this focus led him to identifying areas of 

improvement that he could make as an instructor.  

Additional differences that were found in Phase 1 involved the amount of time 

spent on lesson preparation and student involvement. Norbert planned a lesson no later 

than 18 hours before teaching the lesson. Edwin prepared lessons approximately 30 

minutes before teaching the lesson. Norbert and Edwin also structured their daily rational 

function lessons different. For example, during the classroom observation of Phase 1, 
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Norbert was at the board instructing 90% of the class while the other 10% was dedicated 

to asking students questions and waiting on student responses to questions. Edwin was 

instructing the class 50% of the class while 50% of the class time was dedicated to asking 

students questions, letting students work on problems, and discussing the mathematics as 

a class. 

The differences found in Phase 1 between Norbert and Edwin pointed toward a 

distinction between the two instructors. Norbert exhibited characteristics of a novice 

instructor through his ability to articulate his mathematical content knowledge, choice of 

his teaching approach to rational functions, and his lesson reflection focus after teaching 

rational functions.  

After characterizing the differences between the novice and experienced 

instructors, the next phase of the study focused on how the practices of the novice 

instructor were perturbed by the addition of a virtual manipulative serving as a didactic 

object. 
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CHAPTER 6 

RESULTS OF PHASE 2: PERTURBATIONS IN NOVICE INSTRUCTOR’S 

CLASSROOM PRACTICES 

This chapter presents selected data and results from Phase 2 of this study. This 

chapter does not include a full analysis of every task and observation, in the interest of 

readability. Instead the focus of the chapter is on an analysis of presented episodes that 

were representative of the perturbations the novice instructor, Norbert, experienced while 

teaching rational functions with novel virtual manipulatives serving as didactic objects. It 

is important to note that I am not saying that Norbert thought of the virtual manipulatives 

as didactic objects. Indeed, initially Norbert viewed the intervention activities simply as 

applets and it is precisely the trajectory along which he internalized them as didactic 

objects that was the focus of this research.  

The results presented in this chapter were obtained through the interview 

transcriptions and video analysis of data collected in Phase 2 of the study. In each of the 

following sections, I present results that pertain to the effects of novel didactic objects on 

a novice instructor’s mathematical classroom practices and changes that occurred in the 

novice instructor’s mathematical meanings and mathematical classroom practices for 

rational functions. This chapter is broken into sections that correlate to the taxonomy of 

aspects of practices perturbed by the novel didactic objects of this study (Table 5). 

Table 5. Aspects of Practice Perturbed by the Novel Didactic Objects of this Study 
Aspects of practice Description 
Leader Actions How instructor perceives Moving Vectors, Sum Bar, Rat Bar, 

and Rat Graph and how the instructor uses these virtual 
manipulatives in the classroom 

Communication Classroom discourse on rational functions surrounding Moving 
Vectors, Sum Bar, Rat Bar, and Rat Graph. 
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Expectations of 
Technology 

What understandings about rational functions does the instructor 
expect students to develop 

Roles and 
Responsibilities 

Responsibilities of the instructor and students when using these 
virtual manipulatives 

Student 
Engagement 

Student participation while these virtual manipulatives are 
implemented in rational function instruction. 

Mathematical 
Conceptions 

How students perceive rational functions when these virtual 
manipulatives are implemented in instruction.  

 
Leader Actions 

Leader actions, in a mathematics classroom, refer to the instructor perception of 

the novel didactic objects and how the instructor uses the novel didactic objects in his 

teaching. Once exposed to all of the virtual manipulatives, from the intervention 

interview of Phase 2 data collection, Norbert explained how he saw the virtual 

manipulatives working with and becoming part of his rational function instruction 

(Excerpt 24).  

Excerpt 24 
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Norbert: 

All right. So let's talk about just a couple more questions and then I'll 

let you go ponder for a while. So how would you want to build these 

applets into your rational function instruction currently? Just spit 

balling ideas at this point. 

So the as of right now my plan is... the most organic way to fit in there 

would be to have them as so... To use them as many examples, in the 

sense of like I usually kind of go through theory first and then provide 

examples of like let's take what we just discussed and do it that way. So 

maybe like having... having it pulled off to the side just ready so I can... 

I get to that example just make a couple of clicks and up on the board 
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11 not wasting any time. 

 
Norbert explained the easiest way to incorporate the novel didactic objects into 

his rational function instruction was to make the virtual manipulatives into examples that 

would be covered in his lesson (lines 5-8). He hinted toward the necessity of the didactic 

objects being readily available for him to quickly have the didactic objects displayed 

(lines 8-11). This initial perception of the didactic objects suggested Norbert’s 

willingness to use the didactic objects in his rational function instruction with the caveat 

that the didactic objects caused as little disruption as possible within his lessons on 

rational functions. Norbert continued to articulate his perception of the didactic objects as 

the intervention interview continued (Excerpt 25). 

Excerpt 25 
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Norbert: 

KP: 

Norbert: 

So how do you see this fitting into like the last semester stuff that you 

did?  

So with the last semester's... (Long pause) 

It's been a while. I know it's OK.  

The last... I don't... I think I would need to do a little more... a little 

more surgery with my lessons because kind of the context in which I 

set... I think the context in which I set it up last semester is not really... 

at least right now at this point in time I don't see the... I don't see how I 

can like smoothly put these guys in there because I think the way that I 

set it up was more as this is just an extension of polynomial functions 

not so much as this is. 
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When asked about fitting the novel didactic objects into his rational function 

lessons from the previous semester, Norbert described the need to alter his lessons (lines 

5-7) since his set up to rational functions in the previous semester was an extension of 

polynomial functions (lines 8-11). This was the first indication Norbert articulated in 

Phase 2 data collection that suggested the task of implementing the didactic objects 

would not be as easy as making the didactic objects examples to be covered as a class. 

Near the end of the intervention interview of Phase 2 Norbert explained that he saw value 

in the didactic objects but was concerned that his own shortcomings and inabilities would 

take away from the benefits students could get from the didactic objects.  

As Norbert conducted his planning session for the first rational function lesson 

where the didactic objects would be implemented, he once again articulated his hesitant 

willingness to use the didactic objects (Excerpt 26). 

Excerpt 26 
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Norbert: So I'm going to, for the first time, incorporate some applets into my 

lesson. I normally don't use technology but in this case I will…. So I'm 

planning on using the applets for this first lesson when introducing… 

I'm just going to be using the... the vert... the applet that.. What's it 

called? The moving vectors applet. So we have two graphs of functions 

and we identify the values of the function with the vectors from the… 

emanating from the x axis. So my plan in using this is... last time I 

taught rational functions I really looked at teaching rational functions 

from very algebraic perspective in the sense of just looking at the 
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operations where we are doing operations on the output in an algebraic 

sense. So what that kind of misses is that we have a lot of questions and 

a lot of problems we do where we are either given graphs or tables and 

we don't really have a rule, a function rule at our hands in certain 

situations. So incorporating this applet this will kind of... This will 

provide a way to do these sorts of things with the rational functions 

even if we don't have a rule at hand and say we just have a graph for 

example. 

 
Norbert explained that he would be incorporating technology into his lesson for 

the first time (lines 1-2). Norbert described his lesson in the previous semester as very 

algebraic (lines 7-11) and missed the connection to problems where the function rule was 

not provided (lines 11-14). He perceived the didactic object, Moving Vectors, as a way to 

motivate a connection to problems given without function rules (lines 14-17). Further 

into his planning of the first rational function lesson with the didactic objects, Norbert 

described his reservations for teaching with the didactic objects (Excerpt 27). 

Excerpt 27 
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Norbert: I have some slight reservations about using the applets not... not 

because of the merit of the applets I think they are great but I just... I'm 

not the best when it comes to technology and I haven't really 

incorporated technology in my lessons so I'm just a little bit nervous 

about that, how it's going to transition. Just the smoothness of that, but 

I have... I have the idea that my students are going to like this a lot 
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more having... because my drawings aren't really the best so having an 

actual nice computer simulation are probably very beneficial. And I 

think my students are really going to... So when I implement these 

applets I think they're going to like it a lot more than what I normally 

do. Maybe I might have a change of heart and use technology more in 

the future. In terms of my planning it's actually made the planning 

process a little bit less time consuming because I have something that I 

can put my hands on... and put my lesson around this. So I'd say it's 

actually easier using these applets and... I really... I am excited about 

using the Moving Vectors applet. 

 
In this excerpt, Norbert described his hesitation in using the didactic objects (lines 

1-2) because of his limited experience integrating technology into his lessons (lines 2-6). 

But then he began reflecting on the possible positive contributions that didactic object 

could make for rational function instruction. He predicted that his students would enjoy 

the didactic objects because they look better than his drawings (lines 6-11). He reflects 

further stating that this experience might have him incorporating technology into his 

lesson in the future (lines 11-12). Norbert also perceived the didactic objects as making 

his lesson planning easier (lines 12-15) and he was excited to use the didactic object, 

Moving Vectors, in his upcoming lesson (lines 15-16). These sentiments of the didactic 

objects making the lesson planning for rational functions easier and the overall 

excitement in using the didactic objects in the rational function lesson were a common 

theme throughout Norbert’s planning sessions from his video journaling. In terms of 
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leader actions, Norbert experienced a perturbation that had a positive effect on his lesson 

planning for rational functions even though he remained hesitant in integrating the 

didactic objects into his lessons.  

During the first lesson Norbert defined rational functions in a different way than 

in the previous semester (Excerpt 28). 

Excerpt 28 
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Norbert: 

 

 

 

 

 

 

Student: 

Norbert: 

Student: 

Norbert: 

 

 

 

 

 

Student: 

Rational functions are functions that measure the relative size of one 

polynomials output with respect to another polynomials output. So I 

have used the term relative size frequently in this class. When I say 

relative size what idea are we thinking about? So if I want to... Suppose 

I had a stake with length 5 inches. Stick A has length 5 inches and 

Stick B has length 3 inches. If I want the relative size of Stick A with 

respect to Stick B, How do I compute that?  

Divide?  

Divide. Which one do I divide by which?  

Five by three.  

I divide the relative size of Stick A by the relative size of Stick B. 

Outstanding. So suppose I give you two polynomial functions, p(x) and 

r(x), and I wanted to find a function h(x), this is going to be a rational 

function that measures the relative size of the output of p(x) with 

respect to the output of r(x). How might I set that guy up? Similar to 

the relative size example we just did with the lengths of sticks. 

p(x) over r(x).  
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Norbert: p(x) over r(x), outstanding. p(x) divided by r(x), okay? And 

algebraically... so if we are given nice formulas for our p(x) and r(x) 

polynomials, computing the value of h(x) is very straight forward. 

 
Instead of starting off his lesson with a review of polynomial functions, as in the 

previous semester, Norbert framed rational functions more conceptually, introducing 

them as the relative size of one polynomial with respect to another polynomial (lines 1-

2). He provided the students an example with stick lengths so that they could form 

an  analogy between relative size of sticks with outputs of polynomials (lines 4-11) and 

related the stick example back to the construction of a rational function using two 

polynomial functions (lines 12-20).  When asked in the post-interview about his approach 

to teaching rational functions Norbert explained that he wanted to connect rational 

functions to the comparison of two objects (Excerpt 29). 

Excerpt 29 
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Norbert: 

 

 

 

 

 

So the... the connection that I wanted to make was... so... we are 

starting off with a definition and our idea is that we want to look at two 

polynomials and measure the relative size of one with respect to 

another. So I could have... I could have made more clear why we might 

want to do that if we had a polynomial function that measures 

something and we wanted to compare these two objects that are being 

measured by these functions. So that was the big idea, which is just that 

it might be useful at some point in a practical application to measure 

relative sizes of polynomials. So then we've looked at relative sizes for 
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in terms of just actual values because output values are going to be just 

actual values. Looking at relative size of two polynomial outputs 

there's really no difference in how we think about these things. Or work 

with these rational functions. So that was the big idea, just connecting 

this to previous material looking at... relative size. What does that even 

mean when we were talking about that past and how does that relate to 

this new function we're defining. 

 
Norbert articulated his desire to have students see the big idea of rational 

functions connecting to relative size (lines 7-9) for the purpose of a practical application 

and that this connection could be made by having students relate previous material to the 

definition of rational functions (lines 12-16). Norbert’s leadership exhibited two distinct 

perturbations when introducing rational functions with didactic objects. The first 

perturbation is related to how he defined rational functions as the relative size of one 

polynomial with respect to another polynomial.  

The second perturbation was highlighted by Norbert’s word choice when he 

discussed the algebraic form of rational functions.  In Excerpt 28, lines 17-19, Norbert 

explained that if given “nice formulas” calculating the value of the rational function is 

straightforward. The term “nice formulas” was used two additional times in the first 

rational function lesson when Norbert introduced the didactic object Moving Vectors. 

When asked about what he meant by “nice formulas” he responded that his students feel 

more comfortable with algebraic forms (Excerpt 30). 
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Excerpt 30 
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KP: 

 

Norbert: 

 

 

 

 

 

KP: 

Norbert: 

 

 

KP: 

Norbert: 

 

So in this clip you say nice formulas. What did you mean by given nice 

formulas? 

Really just given a formula at all. So I've noticed that with my class, 

my students really like the formula stuff better. Those type questions 

on homework and exams. And the ones where they're given graphs or 

tables not so much which I think it has something to say with like I 

kind of focus more on the algebraic stuff than tables and graphs and 

that sort of stuff.  

OK. 

So that's all I meant was just really I guess in this sense every formula 

would be nice but I mean these like these nice closed form sort of 

things that always seem to work out nicely when do our problems.  

So then when given graphs, are they not nice? 

So yes. At this point in time, I think my students would say that they're 

not nice because it's harder to tell what's going on. Well in terms of 

doing arithmetic... arithmetic operations it's harder to tell what's going 

on. 

 
Norbert described “nice formulas” as any formulas that are provided (line 3) 

especially the ones that work out nicely (lines 10-12). When pushed further on whether 

tables and graphs could be considered “not nice,” Norbert reported that these 

representations are not nice in the eyes of his students (lines 14-17). Norbert 
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hypothesized that his students might prefer algebraic forms over other representations 

because of his emphasis in the classroom (lines 6-8). 

Prior to teaching rational functions with didactic objects Norbert had not made the 

distinction that one representation of rational functions was nicer than another. Norbert’s 

distinction between the two representations in Phase 2 reflected what he thought his 

students found to be nice about mathematics. The distinction made by Norbert suggested 

that his practices associated with leader actions were perturbed. Norbert changed his 

word choice based on his perception of his students and how they would react when 

given a graphical representation of a rational function, which led to his actions changing 

in the classroom.   

Norbert identified another perturbation during the post-interview of Phase 2 when 

participating in stimulated recall where he watched clips of his teaching of rational 

functions from the recorded classroom observations. When discussing changes that he 

made to his teaching of rational functions Norbert explained that he had come early to 

class each day that he taught rational functions (Excerpt 31). 

Excerpt 31 
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Norbert: 

 

KP: 

 

Norbert: 

You had made mention that you came early to set up. So how early do 

you usually show up to class?  

So I usually... four or five minutes before the class starts in when I get 

there.  

So how much earlier... how much earlier did you feel like you were 

getting?  

About I'd say 10 minutes earlier to get myself... I tried to get there at 
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KP: 

Norbert: 

45. Give myself fifteen minutes before class started.  

Have you continued to show up that early to class?  

No not any more.  

 
Norbert remarked when teaching topics outside of rational functions he would 

arrive four to five minutes before class began (line 3-4), but, when teaching rational 

functions, Norbert explained that he arrived about ten to fifteen minutes before the start 

of the class (lines 7-8). However, Norbert no longer attempted to show up to class as 

early once the rational function lessons were completed (line 10). This finding suggested 

that the addition of the didactic objects to the rational function instruction perturbed his 

actions as a leader. Instead of arriving five minutes to the start of class, Norbert made 

sure that he was in class approximately three times earlier. This finding might seem 

mundane in comparison to other perturbations mentioned previously in this section. 

However, this finding demonstrates Norbert’s attempt to reestablish equilibrium related 

to his established comfort level of preparedness immediately before class began. Norbert 

spent the additional time before class checking the projector and making sure that the 

didactic objects were readily available on the computer in the classroom. 

Communication 

Communication refers to the discourse surrounding the implementation of the 

novel didactic objects in rational function lessons. In general, communication can be 

considered challenging since conversations are analogous to nonlinear, chaotic systems 

(Thompson & Thompson, 1994). Communication in a classroom presents a new level of 

difficulty since this setting requires upwards of thirty-five individuals to articulate their 
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thinking, attempt to understand one another, and build additional ways of thinking. 

Introducing novel didactic objects to the environment further increases complexity and 

potential perturbations through additional cognitive and attitudinal constraints.  

During Norbert’s rational function lesson with novel didactic objects he exhibited 

perturbations associated with the discourse surrounding the novel didactic object. The 

first instance of the identified perturbations was in Norbert’s reflection on the first 

rational function lesson where he introduced the novel didactic object, Moving Vectors 

(Excerpt 32). 

Excerpt 32 
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Norbert: 

 

Overall I think the lesson went pretty well. I covered the majority stuff 

that I wanted to cover. My students seemed pretty responsive and I 

felt... felt pretty good about teaching with the applets.  It went smoother 

than I thought it would. Going in before class and preparing everything 

really did help. And I think my students did pretty… pretty well during 

this lesson. They were responsive, about as responsive as they normally 

are. It's kind of hard to get them to answer questions sometimes they 

don't feel like doing that but for the most part I think it went pretty 

well. Today's lesson is a pretty average representation of what's... what 

happens in class. I have a couple of students who are pretty good at 

answering questions and the rest are more... I wouldn't say they're not 

participating it just they don't... they don't like to talk as much which I 

can't... I can't fault them for that. Not everyone needs to talk every 

lesson, every day.  
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In this excerpt Norbert discussed how he thought the lesson went (lines 1-2) even 

with the addition of the novel didactic objects (lines 2-6) and described that his students 

were as responsive as usual (lines 6-9). Norbert explained that the students who do not 

answer questions could not be classified as not participating (lines 10-14) and not all 

students need to talk during the lesson (line 13-14). Norbert exhibited a difference in his 

reflection of the Phase 2 lesson with the novel didactic objects since he focused on his 

students’ discourse in the classroom setting rather than on his own actions and 

performance as he had done in previous reflections.  

When asked in the post-interview, prior to the stimulated recall segment, if he 

liked the level of participation he received from his students, Norbert discussed his 

acceptance of the level of participation he received (Excerpt 33). 

Excerpt 33 

1 

2 

3 

4 

5 
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7 

8 

KP: 

 

Norbert: 

 

So do you like the level of participation that you receive from your 

class?  

Yes I do like it. I would always, I mean, if possible I would always like 

to increase the level of participation but a part of me is like you know 

they're paying for this class, they're here every day, you know how 

much really can I ask. But if given the choice that I would always want 

to increase the level of participation but with what I currently have, I'm 

happy. 

 
Norbert quickly responded that he did like the amount of participation he received 

from his students (line 3) and explained that he would like the level of participation to 
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increase (lines 3-4). However, Norbert articulated that he felt as if he could not really ask 

for more from his students since they were paying and attending to the lesson (lines 4-5). 

This excerpt confirmed Norbert’s sentiments in the first reflection of the rational function 

lesson in Phase 2. Norbert struggled with wanting his students to be more responsive but 

believing that the level of participation he received was sufficient since he could not ask 

for more.  

During the third rational function lesson, Norbert introduced the novel didactic 

object, Rat Bar, with a conversation about the graphs associated with the output value of 

a function (Excerpt 34) which he referred to as a “geometric interpretation (lines 5-6).” 

Excerpt 34 
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2 

3 
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5 

6 
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9 

Norbert: 

 

Earlier we made the connection that we are looking at functions, 

function graphs (Turns off board lights). We can identify the values of 

the function with a certain geometric interpretation (Turns on projector 

and brings down projector screen). So given a function, suppose this is 

what my graph looks like (Draws graph on the board). What geometric 

interpretation can I give to this point? …this function value? (points to 

the point made on the drawn graph) Let's suppose the value of that 

input is a, here is f(a). Does anybody remember the geometric object 

we attributed to that function value? (displays Rat Bar) 

 
After Norbert asked his initial question about the geometric interpretation that can 

be given to a point, he received no response from the students (lines 2-6) so he decided to 

draw a graph of a function on the board and place a point onto the graph of the function. 

When the students remained silent (perhaps confused by what was being asked), Norbert 
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added that the input value of the point is a and the output value of the point is f(a) (lines 

7-8). Norbert rephrased his initial question by asking what geometric object could the 

students attribute to that function value (lines 8-9). This question was met with another 

long and non-responsive pause from his students.  

During the stimulated recall segment of the post-interview Norbert viewed this 

classroom observation clip and was asked how he wanted his students to respond to his 

question leading up to the use of Rat Bar (Excerpt 35). 

Excerpt 35 
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KP: 

 

 

 

Norbert: 

 

 

 

 

KP: 

Norbert: 

KP: 

 

Norbert: 

 

OK so this is where you start Rat Bar. (Plays the next clip) So how 

were you hoping for them to respond? Because they don't respond the 

way you want them to... no one responds... So what were you hoping 

that they were going to give you?  

Because like what I was hoping was… I mean I'm pretty sure I said this 

exact same line of dialogue two days ago. I was hoping that someone 

would just be like, “Oh he wants an arrow. This is exactly what he 

asked us the other day.” That's... That's what I was looking for was put 

a frikkin vector there.  

OK. What quantity… 

But I'm not bitter or anything. 

…Obviously, what quantity are you really wanting them to really 

attend to? 

So I want them to focus on the output value of this... at this input value 

x and that that corresponds to a vector emanating from the x-axis. 
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17 
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20 

KP: 

Norbert: 

All right. 

Because it's like… I kind of like... the idea is just like the... It's... I 

always come back just beating them over the head with stuff that's like 

I'm not going to let you guys not understand what this is. I want this to 

be at the point where it's second nature. 

 
Norbert expressed that he wanted his students to realize an arrow should be 

placed on the graph to represent the output value of the function (lines 5-8). Norbert 

expressed his frustration that students did not pick up on his reference to the earlier 

lesson that included Moving Vectors  (line 9), but reflected that he was not “bitter” about 

this failed moment during his rational function lesson (line 11). He further explained his 

desire to have the students see the output value of the function as represented by a vector 

emanating from the x-axis (lines 14-15) and how this representation should be second 

nature to the students (lines 19-20). Norbert exhibited perturbation around the 

communication, in this case lack of response from his students, surrounding the 

introduction of the novel didactic object, Rat Bar. The fact that his frustration was still so 

vivid during the post interview that occurred a week after he completed all of the lessons 

on rational functions indicated a lasting perturbation surrounding the communication 

involved in teaching rational functions with the didactic objects. This was in stark 

contrast to the uneasy contentedness that Norbert previously associated with his students’ 

level of responsiveness and communication in the classroom.  
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As the stimulated recall segment of the post interview of Phase 2 continued, 

Norbert watched an additional clip of his third rational function lesson when 

implementing the novel didactic object, Rat Graph (Excerpt 36). 

Excerpt 36 
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Norbert: 

 

Student: 

Norbert: 

 

What does that mean about the magnitude of the output? Is it 

increasing or decreasing? (Checks watch)  

Increasing. 

Increasing. Outstanding. So as X approaches zero from the left, the 

magnitude is increasing. OK. (Looks at watch) So now we need to find 

which way are our ultimate vector is pointing. So let's look at this one 

more time. (Looks at watch) So as we move towards zero, which way 

are our numerator function vectors pointing? Up or down? (Looks at 

watch.) 

 
In this clip, Norbert exhibited behaviors that had not been seen in previous 

lessons, such as frequently checking his watch (lines 1-2, 4-9). Later in the clip Norbert 

began jogging in place as he waited for his students to respond to a question he posed. 

After asking questions Norbert expressed unrest by checking his watch multiple times 

and jogging in place. After watching the clip of his behavior in the stimulated recall 

segment of the post interview for Phase 2, Norbert articulated his reasons for his behavior 

(Excerpt 37). 

Excerpt 37 

1 KP: (Plays the video clip) So you asked a question. So you jog in place and 
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2 

3 

4 

 

Norbert: 

it's the oddest thing. I'm trying to figure out, why?  

So if I remember this correctly I just... I think it was just like someone 

for the love of God answer me; we don't have time for this.  

 
Norbert explained his behavior as an outward display of unrest since he felt that 

there was no time for waiting on students to answer his questions (lines 3-4). This display 

and embodiment of unrest exhibited by Norbert indicated an additional perturbation 

surrounding the discourse associated with the novel didactic objects. The novel didactic 

objects required Norbert to rely on his students to respond to his questions, which took 

additional time from the overall class. 

Expectations of Technology 

An instructor’s expectation of technology refers to the mathematical 

understandings the instructor expects students to develop when implementing novel 

didactic objects into the mathematics classroom. In a mathematics classroom the 

expectation of technology exhibited by an instructor includes the proposed impact the 

technology will have on the students’ mathematical understanding of the concept being 

presented, either as an amplifier or as a reorganizer  (Sherman, 2014). Once exposed to 

all of the virtual manipulatives, from the intervention interview of Phase 2 data 

collection, Norbert explained what mathematical understandings that he wanted his 

students to develop by the end of the rational function lessons with the novel didactic 

objects (Excerpt 38). 

Excerpt 38 

1 KP: So what mathematical understandings from module 6, do you want 
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Norbert: 

 

 

 

 

 

 

KP: 

Norbert: 

 

 

 

 

 

 

 

 

 

 

KP: 

your students to kind of walk away with? What understandings are you 

wanting them to have? 

Right. So the understanding and I would want them to have is... So I 

kind of... I kind of like to break down the rational functions into... 

Break it down into the three like three types... So really like the way 

that I view it is that three types like the classes are the types of end 

behavior you exhibit. Where there's the one where... So I'm going to 

zero in where really in the long run I think of OK... in the long run I'm 

one over some polynomial.  

OK. 

Or not even a polynomial... well it's still a polynomial but one over 

some power of x. Is what that... that's essentially happening in the long 

run. And then some other stuff is happening in between. And we have 

the means to find out what that stuff is happening in between the 

techniques just from regular polynomials, reduces to finding roots and 

so on and so forth but. So there's that class. There's the one where you 

approach some other asymptote where long run I'm just ending up like 

a constant function and then some stuff happening in between. And I 

think so now that I'm thinking about it. The last one is shooting off, 

some how. Where in the long run I'm looking like just a regular old 

polynomial.  

Oh a slant asymptote? 
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Norbert: 

KP: 

Norbert: 

 

KP: 

Norbert: 

 

 

 

KP: 

Norbert: 

 

Yes.  

Yeah.  

In the long run like that. So the way that I'm thinking about like this is I 

still keep it... keep it in those categories.  

OK.  

But now for the finding out what's in between I think that this will be a 

much better... much better way to do so with looking at the relative size 

of the vectors and then deciding, OK which way am I going to be 

pointing in the long run.  

OK.  

So the ultimate main thing is just that really mod... modulo like the 

combinations of the ideas, nothing we're doing is new. In the sense that 

we're just doing polynomials then we're just adding division, that's all it 

is. That's the main goal, this is not... this is not as scary as it looks.  

 
In this excerpt Norbert explained his desire to have students think about the three 

cases of end behavior, namely a horizontal asymptote at zero, an asymptote at a non-zero 

constant, or the presence of a slant asymptote (lines 4-10, 12-17). Norbert discussed the 

same procedural understanding of rational functions in Phase 1 of data collection. 

However, in this expert Norbert continued his explanation of the understandings that he 

wanted his students to develop with more of a behavioral expectation. Norbert expressed 

how looking at relative size (lines 29-32) could help his students understand the behavior 

of the rational function outside of end behavior. The mathematical understanding of 
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rational functions Norbert wanted his students to develop was altered by the prospect of 

teaching with the novel didactic objects. Prior to the Phase 2 intervention interview, 

Norbert described the understanding of rational functions he wanted students to develop 

in a procedural way. Once exposed to the novel didactic objects in the intervention 

interview, Norbert hinted at a change in his understanding for students by discussing the 

behavior of the rational function. This slight sway in focus from procedural to discussing 

behavior indicated the existence of a possible perturbation in Norbert’s classroom 

mathematical practices with respect to the expectation of technology.  

Norbert’s video journal entry for planning the first rational function lesson further 

confirmed the existence of a perturbation (Excerpt 39). 

Excerpt 39 
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Norbert: So in terms of key ideas and understanding I want my students to have, 

the big plan is I'm going to first introduce rational function so what is 

the definition. And so looking at ratios of polynomials we're looking at 

the relative size of one polynomials output with respect to another 

polynomial and start off with the lesson like looking at... OK let's do 

things algebraically suppose we have rules for these polynomials where 

I create my rational function and I have an example here where we're 

going to look at just OK we look at the value at the numerator function 

and then the denominator function and then look at the relative size of 

those guys. And the story that I've set up with rational functions is the... 

well not with rational functions... with functions in general kind of the 

prototype that I have had this year is that we say okay we introduce a 
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34 

new function and we look at vertical intercepts, x intercepts, or roots. 

How the function behaves whether it's invertible properties like that 

which we will look at first in an algebraic sense with rational functions. 

So this is more geared to be... I assume that my students have 

familiarity with rational functions or just like basic operations of 

functions. So this is going to be a good refresher of the algebraic... 

algebraic notions. In that sense looking at... still staying in the... in the 

land of algebraicness. We will then introduce the domain of rational 

functions. So we look at the values where our rational functions 

undefined and we get to the point where we say oh that's where our 

denominator function is zero because really the only bad thing that can 

happen is dividing by zero. So then we look at the two cases and what 

happens when we divide, that is when we have an undefined point. 

Those cases being holes where... so here we're still algebraically, we 

have a root of both the numerator and denominator so we can factor out 

a term x. Minus that root in our function, it identically looks like 

something else except at that point we just removed. Then we are done. 

And then algebraically looking at asymptotes we have that… we have a 

root of the denominator function. So our numerator function 

approaches a fixed value whereas our denominator function approaches 

zero. So we have something dividing by something smaller and 

smaller. It's going to blow up in some fashion, really not concerned at 
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this point which way it blows up, either increase or decrease without 

bound but just the idea that it blows up. So next what we'll look at is... 

algebraically with asymptotes... is how do we know when it's going 

to…. which way it's going to blow up. Here we just kind of calculate 

some values approaching the asymptote and then also get to discuss the 

notation x approaching a from the left, approaching a from the right, x 

arrow a minus, x arrow a plus, so on and so forth. And I also have an 

example here where we're going to look at a function with an 

asymptote and get a rough, it's a very simple example, will get a rough 

graph of what this looks like just to kind of look at like what happens 

near an asymptote. And then after that I'll get the actual definition we 

have in the book where it's saying an asymptote occurs when we 

approach from one side of the asymptote we blow up either positive or 

negative and likewise from the other side blow up either positive or 

negative. So at this point I will not have used the applets yet this is 

going to be a refresher of the algebraic properties. For me particularly I 

like algebraic stuff when it comes to like functions and function rules 

more than graphical means. Which is kind of ironic because I want to 

be a geometer but in terms of like function and rules, I like the 

algebraic stuff better. So after doing all that at this point is when I'm 

going to introduce the applets. So I'm going to say like OK guys we've 

had situations where we don't have a rule at hand. This is not 
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something new to my students and I'm pretty sure they don't like the 

examples where we're given graphs and have to do stuff so I'm going to 

be like, OK we have these examples, how could we do the same sort of 

analysis with say a graph, for example. 

 
In this excerpt Norbert defined a rational function as a ratio of two polynomials 

and the relative size of the output of one polynomial with respect to the output of the 

other polynomial (lines 2-5) is the output of the rational function. After articulating this 

conceptual definition of rational functions, Norbert explained the first lesson for rational 

functions would start with an introduction to the algebraic form of rational functions 

(lines 16-20). He detailed the properties of rational functions to include asymptotes (lines 

21-36) and the book definition of when an asymptote occurred (lines 36-49). Towards the 

end of Norbert’s planning session for the first lesson he discussed the addition of the 

technology as a way to talk about the graphical representation of rational functions (lines 

54-60). Norbert explained that this would occur when a rule for the rational function is 

not provided.  

The sentiments shared by Norbert in the planning session for the first lesson 

indicate a perturbation in his expectation of technology. Norbert defined rational 

functions in a different way than found in Phase 1. He emphasized the relative size of the 

output values of the two polynomials that make up the rational function rather than 

defining the rational function in a traditional manner. Even though Norbert planned an 

algebraic lesson for rational functions, his description of rational functions was altered. 
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This once again hinted toward a perturbation experienced by Norbert implementing the 

novel didactic objects in his rational function instruction.  

During the post-interview of Phase 2 data collection the existence of a 

perturbation became clear when Norbert was asked if he would have changed anything 

from his Phase 2 rational function lessons (Excerpt 40). 

Excerpt 40 
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KP: 

Norbert: 

OK. Would you change anything from your lessons? 

Yes I would change my lesson. So the first couple of... the first two 

investigations I did algebraic interpretation first and then geometric 

interpretation. The algebraic interpretation in both situations took a lot 

longer than I expected. So what I would do was flip those guys where I 

would do geometric interpretations first and then algebraic 

interpretations because the students are, I think more familiar with the 

algebraic interpretation and I think I took more time... spent more time 

on what they were already familiar with as opposed to the sort of new 

thing... new things and I wanted to introduce. So that's the biggest thing 

that I would change is just geometry first and then algebra. 

 
Norbert explained how he would change his first two lessons on rational functions 

to emphasize the graphs more, which he referred to as the “geometric interpretation” 

(lines 4-7) rather than the algebraic representations that he had started with in Phase 2. He 

reasoned that his students seemed to be familiar with the algebraic interpretation of 

rational functions (lines 7-8) so he would have rather spent more time in the context of 

graphs (lines 8-10).  Shortly after this moment in the post-interview, Norbert was asked if 
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he still believed that teaching the algebraic properties of rational functions was necessary 

before introducing the didactic objects (Excerpt 41). 

Excerpt 41 
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2 
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Norbert: I still think... I still think yes it is. Actually no I don't even believe that 

answer that I just said. I think OK so I change my answer. I think you 

can get away from teaching the... so you can teach the algebraic stuff 

second but I really think you need to hammer home the connection 

between what this vector in my graph represents with respect to a 

function of value and really... really get that connection because once 

you have that the algebraic stuff just kind of falls out afterwards from 

what you've done. 

 
Norbert answered the question first with a yes he believes that the algebraic rules 

should be taught first (line 1) but quickly changed his answer to no (lines 1-2). He stated 

that we could move away from teaching the algebraic rules first (lines 2-3) and that the 

algebraic rules fall out after a connection is made between the output values of the 

functions and the vector emanating from the x-axis in Rat Graph (lines 4-8). 

Roles and Responsibilities 

Roles and responsibilities, an aspect of mathematical classroom practice, refers to 

the responsibilities of the instructor and students when the novel didactic objects are 

implemented in mathematics instruction. For example, if the instructor experienced a 

shift in positioning (for example positioning students as co-constructors of understanding 

versus recipients of knowledge) when implementing a new technology in a mathematical 

lesson, then it might be said that the instructor exhibited signs of perturbations with 
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respect to roles and responsibilities. There was evidence that Norbert experienced some 

perturbations related to roles and responsibilities in the planning, teaching, and reflecting 

on his rational function lessons.  

The multiple planning entries in Norbert’s video journal indicated that he found 

the novel didactic objects as a useful tool in planning his lessons on rational functions. 

During the post-interview Norbert was asked questions to elicit more information about 

the impact of the novel didactic objects on his lesson planning (Excerpt 42). 

Excerpt 42 
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KP: 

 

 

Norbert: 

 

 

 

 

 

 

 

 

 

 

KP: 

OK. So during the video journal planning session that you had you get 

stating that the applets helped you plan your lessons. So could you 

explain how the applets helped you plan your lessons?  

So the biggest... the biggest thing was just having something tangible 

that I can... So just a point where so I have this applet. And then I have 

something around which I can base... base my lessons. Kind of gives 

me a nice rock foundation of I'm going to introduce this thing and from 

this my lesson is going to be kind of emanating from this applet. So it 

really just gave me like kind of what's... what's the word when you're 

climbing a rock where you put your foot... not a foot hold. I don't 

know.... it just gave... gave me a couple like foundation points just it 

made the... so that the skeleton of my plan was just kind of already 

given to me and then fill in the meat and bones and everything. Bones 

are already there. Meat and organs. It was a lot easier.  

OK. How...  



  156 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

Norbert: 

 

 

KP: 

 

 

Norbert: 

 

 

 

 

 

 

 

KP: 

Norbert: 

 

So it kind of, sorry to interrupt, it'd be kind of like... drawing a picture 

and then coloring a picture versus here's something for you to color. 

That's kind of the way that I was thinking about it.  

OK. So how is planning with the applets compared to planning with 

just the curriculum? So last semester you only had the curriculum to 

kind of run off of so what is the comparison there? 

So the big difference is that drawing... so building that skeleton for my 

lesson was all up to me in the sense of like I... so I completely missed 

an entire interpretation of these rational functions that being the 

geometric interpretation that we've gone over a couple of times. And so 

just the biggest... the biggest thing is that preparing in the first semester 

there were so many things, one big thing, but so many things within 

that big thing that I didn't even consider to go over which was that 

whole geometric flavor to the to the subject.  

How much did you practice with the applets before teaching them?  

So I went over for the rat... which one was it? Sum bar and sum graph, 

I didn't do any practice with those ones because I thought that those 

were going to be pretty straightforward. We saw that that bit me... bit 

me on the tail when I tried to move the unmoveable vectors. It was the 

ones, the blue ones you could move and the orange ones you couldn't 

or something along that line. So the reason there was just like I... I 

mean I didn't even use sum bar because I kind of consolidate sum bar 
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39 
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41 

and sum graph into one thing. But those ones I didn't practice at all. 

And looking back I should've. It would have saved me a little bit of 

time. But the rat... rat bar and rat graph I think I practiced four times 

total before my lesson.   

 
Norbert used two metaphors to describe how the didactic objects helped him plan 

his lessons, namely as having a skeleton (lines 4-14) or a coloring page (lines 16-18). He 

articulated the benefit of the novel didactic objects providing him with a structure or 

outline to construct the rest of his lesson around. When asked to compare planning with 

the curriculum versus the novel didactic objects, Norbert responded that he had more 

responsibility to construct his own lesson with just the curriculum (lines 22-25). He 

explained that without the novel didactic objects he missed the entire graphical 

interpretation of rational functions (lines 25-29).  Norbert was asked about how much he 

practiced with the novel didactic objects before teaching. He responded that he did not 

think it was necessary to practice with all the novel didactic objects before teaching (lines 

31-33) and expressed that this lack of preparation had side effects during the lesson (lines 

33-36). Norbert regretted not practicing more with the first two didactic objects (lines 38-

39) but did explain that he practiced the last two novel didactic objects at least four times 

before teaching (lines 39-41).  

Norbert’s answers to the probing questions in the post-interview indicated two 

possible perturbations associated with Norbert’s responsibilities as the instructor. The 

first perturbation is indicated by Norbert’s explanation that planning with the novel 

didactic objects provided him with additional assistance in constructing his rational 
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function lessons. He articulated that, with only the curriculum, he had missed the 

graphical interpretation of rational functions, which included the behavior of the rational 

functions when a function rule was not presented. The second perturbation is identified in 

the preparation required to teach with the novel didactic objects. Norbert expressed how 

he wished he had practiced the first two didactic objects since the lack of practice 

effected his implementation during the lesson. The need for additional practice suggested 

that implementing the novel didactic object into the rational function lessons requires the 

instructor to practice with the novel didactic objects multiple times before teaching.  

An additional perturbation associated with roles and responsibilities was 

identified during a reflection entry in Norbert’s video journal (Excerpt 43). 

Excerpt 43 
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Norbert: So all in all I think the lesson went very well I just. Would have liked 

to have... So I didn't factor in properly the fact that I need some time 

for my students to think before answering questions and also that most 

of them don't like to answer questions. I think that dragged me back a 

little bit. But. All in all I think am very well and should be able to make 

up the time Monday. 

 
During Norbert’s reflection on his first lesson on rational functions, he explained 

that he thought the lesson went well (line 1) but realized that he did not factor in time for 

the students to think before answering questions (lines 1-4). Even though Norbert’s 

reflection just touched on the time needed for students to answer questions, this perturbed 

Norbert’s practices associated with the roles and responsibilities. The addition of the 

novel didactic object in Norbert’s rational function lesson required more student 
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participation, a fact that Norbert had not considered. The time necessary for students to 

think and answer questions associated with the novel didactic object was an indication of 

a two-part perturbation. The first part resting on Norbert’s need to plan more time for 

students to think and answer questions associated with the novel didactic object. The 

second part required students to take more of a responsibility in their learning of the 

mathematics. 

Student Engagement 

Student engagement, in a mathematics classroom, refers to student participation 

while the novel didactic object is being used in a lesson. For example, the instructor’s 

students might be less attentive as the didactic object is presented or decide not to 

participate because the discussion surrounding the didactic object is uncomfortable 

compared to an average lesson. After teaching his third rational function lesson Norbert 

reflected on his students’ engagement during the lesson when the novel didactic objects, 

Rat Bar and Rat Graph, were implemented (Excerpt 44).  

Excerpt 44 
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Norbert: Overall I feel the lesson went very well with the minor caveat you 

know just didn't get to cover everything I wanted.  I remember in my 

planning I said I hope I'll cover everything and famous last words. I 

still don't have a feel for like how quickly my students are going to 

answer questions. I felt great teaching with the applets, the Rat Graph 

and Rat Bar applets. My students really seemed to understand the 

concepts I was trying to hammer home, that we're measuring the 

relative size of these vectors. When we looked at relative size of 
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polynomial outputs and they were able to pick up ideas that I wanted. 

That we can just forget about the sign, look at relative size and then 

notice where the vectors are pointing in order to get our ultimate sign. 

And I think my students did very well during this lesson, even more so 

than normal. They answer my questions quite quicker than normal. 

Even though it still took them a little bit of time to answer them and 

they seemed to have a good grasp on the things that I was trying to... 

Trying to put forth. 

 
Norbert expressed his dismay at not covering more of the problems that he had 

planned (lines 1-3) and remarked that he needed to have a better feel for how long 

students would take answering questions (lines 3-5). Norbert reflected on the use of the 

didactic objects in his lesson stating that he felt great teaching with Rat Bar and Rat 

Graph (lines 5-6).  He seemed to believe that his students understood the concepts that he 

wanted (lines 6-11) and explained that the students did very well in the lesson - even 

better than normal (lines 12-16).  

Norbert’s reflection in the third rational function lesson suggested a change in his 

students’ behavior while the novel didactic objects were used. He expressed how the 

students performed better than usual in the rational function lesson. Norbert’s remark on 

the students’ behavior hinted toward a possible perturbation in student engagement. In 

order to identify the perturbation Norbert was asked probing questions during the post-

interview about changes to his classroom while teaching rational functions with the novel 

didactic objects (Excerpt 45).  
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Excerpt 45 

1 

2 

3 

4 

5 

6 

7 

8 

KP: 

 

Norbert: 

All right. So did you notice any changes in your classroom while 

teaching rational functions this semester?  

So I noticed one big difference, I noticed that the engagement of the 

students was a lot better so that they... I noticed that my students were 

very, even more so than they normally are, more engaged in the lesson. 

And I think they just had a lot to do with... we had nice shiny applets 

up on the projector so it was kind of like, oh what's going on here? And 

they were more inclined to pay attention to what was going on.  

 
Norbert described the engagement of the students as a big difference in his 

classroom when teaching rational function with the didactic objects (lines 3-4). He 

remarked how students were more engaged than normal in the lesson (lines 4-5). He 

equated this change in the students’ level of engagement to the novel didactic objects 

(lines 6-8). Norbert discussed shortly after this moment in the post-interview that more of 

the students had their heads up and their attention was directed to the didactic object on 

the screen. Norbert’s response to the probing questions asked in the post-interview 

confirmed the existence of a perturbation in the students’ level of engagement when the 

novel didactic objects were used in the rational function lessons. 

Mathematical Conceptions 

Mathematical conception, as an aspect of practice, refers to how students perceive 

the mathematics addressed by the implementation of a novel didactic object. For 

example, when an instructor implements a novel didactic object in a mathematics lesson 

there is no guarantee that the students will interpret the mathematical concept being 
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presented in the manner the instructor intended. This might lead to the instructor 

struggling to understand students’ mathematical conception of the concept while teaching 

with the novel didactic object. During the classroom observation of the third rational 

function lesson, Norbert introduced the didactic object, Rat Graph, through questions 

related to the characteristics of a function (Excerpt 46). 

Excerpt 46 
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Norbert: 

 

 

 

 

 

 

 

 

 

 

Student: 

Norbert: 

 

Student: 

Norbert: 

 

We're going to look at this guy on the left, your left, is going to be my 

numerator function. And the guy on the right is going to be my 

denominator function. And we are going to see if we can use this idea 

of looking at relative size of vectors in order to compute a good 

approximation of what our graph should look like. Okay. So first things 

first let's look at... intercepts. So we have the red guy as our numerator 

function and what is the behavior of this numerator function? So let's 

roll this guy for a second. As I let x increase, what happens to the value 

of my numerator function? The guy on the left. (Long pause) So better 

yet using our identification, how does this vector change, as x is 

increasing?  

It stays constant.  

It stays constant. So if that vector doesn't change what does that mean 

about the function value?  

It doesn't change.  

Doesn't change. So the numerator function is a constant function. 

Okay. Now if a numerator function is a constant function and it looks 
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Student: 

Norbert: 

 

 

 

 

 

 

Student: 

Norbert: 

 

 

 

 

 

Student: 

like this constant value is happening... I don't care it happening 

somewhere not zero. So it is happening somewhere that is not zero. Is 

this numerator function ever going to be equal to zero? No. The 

numerator function will never be zero. So what does that tell us about 

intercepts...let's say, vertical intercepts of our rational function? No 

horizontal intercepts of our rational function. 

There are none.  

There won't be any because the roots or the horizontal intercepts 

happen when p(x) is equal to zero and that is never going to happen in 

this case. So we are not going to have any vertical intercepts. OK. So 

now what about horizontal intercepts, for any function how do I 

determine a horizontal intercept? So it's where I'm going to be 

intercepting the graph somewhere here. Right. What does that mean 

about my value of x?  

It's zero.  

Zero. So I look for the value of my rational function at x equals zero. 

So I look for the relative size of these vectors, when I'm at the value x 

equals zero. So looking at this guy we have that the relative size... sorry 

the vector for the numerator function is going to be two and then what 

about the vector for the denominator function? What is that going to 

be? So how long is this vector happening at zero?  

It's (0,0).  
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40 

41 

Norbert: 

 

It's zero. So then this would be two divided by zero, oh god, I don't 

want to tear a hole in the universe.  

 
Norbert introduced the Rat Graph didactic object to his students (lines 1-5) and 

started a conversation about the intercepts of the graph that would help in creating the 

graph of the rational function (lines 5-11). During this excerpt Norbert relied on students 

to answer questions using the didactic object and their previous knowledge regarding 

intercepts of a function (lines 12-32). At the end of this excerpt Norbert asked when the 

input is at the value of zero, how long is the vector for the denominator function (lines 

33-38)?  Norbert’s student responded with an ordered pair at the origin. In the moment of 

teaching, Norbert dismissed the student’s answer by taking zero as the answer and 

moving the class forward to the next characteristic of the graph of the rational function. 

This moment in the classroom observation of the third rational function lesson taught by 

Norbert was flagged as a possible perturbation (namely hearing what he wanted to hear) 

that was then confirmed in the post-interview.  

During the stimulated recall segment of the post-interview in Phase 2 of data 

collection Norbert watched this clip and was asked if he believed that the student thought 

the length of the vector was zero (Excerpt 47). 

Excerpt 47 

1 

2 

3 

4 

KP: 

 

Norbert: 

 

Do you believe that the student thinks that the vector has a length of 

zero?  

Umm from... I think he does. I think he was answering... So this is a lot 

of extrapolation on my part.  
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KP: 

Norbert: 

That's OK.  

I think he does know that the length of the vector is zero. But I think 

that he was giving me like the... I think what was going on in his head 

was the point (0,0), it's not like it's got a length but that was essentially 

what he was going for. If that makes sense, like... the position of... the 

position vector is... (0,0) essentially.  

 
Norbert believed this student understood that the length of the vector was zero 

but, instead of providing the length as a solution, gave the position of the vector instead. 

When asked what made him so confident in the student’s response Norbert said that this 

was just his interpretation of what the student was thinking. The student’s mathematical 

conception when introduced to the novel didactic object, Rat Graph, caused him some 

confusion about position and length of a vector, but Norbert experienced no change or 

discomfort in the student’s response.  

Another instance in the classroom observation of the third rational function lesson 

was flagged as a potential perturbation when Norbert asked the class about the end 

behavior of the rational function formed by the didactic object, Rat Graph (Excerpt 48). 

Excerpt 48 

1 

2 
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4 

5 

Norbert: 

 

 

Student: 

Norbert: 

Okay so we are going to fit this in for the last minute, end behavior. So 

now we are looking at if we keep increasing x or we keep decreasing x, 

what happens to the output of our vectors?  

It approaches zero.  

Ah it approaches zero, so here [name] I'm going to run through this 
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Student: 

Norbert: 

 

 

Student: 

Norbert: 

Student: 

Norbert: 

Student: 

Norbert: 

Student: 

 

Norbert: 

 

 

 

 

 

Student: 

Norbert: 

animation and I want you to quickly tell me why it is going to approach 

zero. So what's happening?  

Which one? The right one or the left one? 

So you are going to need both of them if you are going to tell me why 

it approaches zero. So we want to measure the relative size of this red 

vector with respect to the blue vector, right?  

Uh huh.  

The red vector is getting larger or smaller?  

It's staying constant.  

Staying constant but the blue vector is...?  

Constantly moving like it is increasing.  

It is increasing getting larger and larger and larger.  

So those numbers would be getting smaller and smaller and smaller 

approaching zero.  

Yes. So the output will be getting smaller and smaller and smaller. In 

which our vectors will look like (draw on the board decreasing lengths 

of vectors approaching zero) and will eventually level off to zero. Now 

lets look at the opposite direction, if we decrease without bound. So our 

red vector is staying constant and how is the length of the blue vector 

changing?  

Constantly going... constantly decreasing.  

Constantly decreasing. What's important is the magnitude is getting 
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Student: 

Norbert: 

larger. So then the output is going to be approaching what?  

It stays constant. So if that vector doesn't change what does that mean 

about the function value?  

Zero.  

It's going to be approaching zero, outstanding. 

 
In this excerpt Norbert asked a question about the behavior of the output value of 

the rational function as the input increased or decreased without bound (lines 1-3). A 

student responded quickly that the output values would approach zero (line 4). Norbert 

required the student to explain why the output values of the rational function would 

approach zero using the didactic object, Rat Graph (lines 5-7). The student exhibited 

confusion about which part of Rat Graph would help him explain why the output value of 

the rational function would approach zero as the input value increased or decreased 

without bound (line 8). Norbert helped the student discover how to use the didactic object 

through probing questions (lines 9-26). This moment in the classroom observation of the 

third rational function taught by Norbert was flagged because of the student’s quick 

answer to Norbert’s question but lack of confidence in using the didactic object to explain 

his thinking. During the stimulated recall segment of the post-interview Norbert viewed 

this clip and was asked questions associated with the student’s thinking in the moment 

(Excerpt 49). 

Excerpt 49 

1 

2 

KP: 

 

So my question is what do you think he actually understands in the 

moment?  
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Norbert: 

 

 

 

KP: 

Norbert: 

So I think he was just looking at this picture I have here (points to 

image on the board) and that's what he was… like he kind of cheated, 

for lack of better words. Oh I see those vectors are going to get smaller 

and smaller they are going to zero.  

OK.  

So that's what I think happened. That's kind of why I probed a little bit 

more because I was like you just looked at the board. I mean like I was 

happy that he was paying attention to what was on the board. I was 

happy in that sense but I kind of just wanted to probe a little more and 

be like, did you just look at the board or did you get that from the 

applet? 

 
Norbert believed that the student used the graph of the rational function that was 

on the board to answer the question about end behavior (lines 3-6). Norbert proceeded to 

explain that he chose to ask more questions (lines 8-9) because he felt as if the student 

did not use the didactic object to construct his answer (lines 9-13).  In this moment, 

Norbert probed a student’s thinking as a way to test if the student had made a lucky guess 

when answering his original question. This was the first time that Norbert pushed a 

student to articulate their thinking about the mathematics surrounding the novel didactic 

object. Based on the finding in the classroom observation and the stimulated recall 

segment of the post-interview, Norbert experienced a perturbation in his practice 

associated to mathematical conceptions. 
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Summary 

In this chapter I presented results obtained through the interview transcriptions 

and video analysis of data collected in Phase 2 of the study. These results pertained to the 

effects of novel didactic objects on a novice instructor’s mathematical classroom 

practices and changes that occurred in the novice instructor’s mathematical meanings and 

mathematical classroom practices for rational functions. Within the framework (Table 5) 

describing aspects of practice perturbed by the introduction of the novel didactic objects, 

the results are summarized below:  

Leader Actions. Norbert exhibited the effects of perturbations associated with 

leader actions in planning and teaching rational functions with novel didactic objects. The 

earliest perturbation Norbert experienced was in the planning stage. He articulated that 

the didactic objects helped him formulate his lessons with more ease even though he still 

had reservations about teaching with the didactic objects. When teaching rational 

functions with didactic objects Norbert experienced perturbations associated with how he 

introduced rational functions and his word choice when discussing algebraic and 

graphical representations of rational functions. An additional perturbation was revealed in 

the post-interview when Norbert explained that he was showing up to class 

approximately ten minutes earlier to teach his rational function lessons. In these ways, the 

introduction of novel didactic objects perturbed Norbert’s actions as a leader and resulted 

in changes to classroom practices.  

Communication. Norbert experienced perturbations associated with 

communication when teaching rational functions with novel didactic objects. Norbert 

expressed the first perturbation during his reflection of his first rational function lesson 
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where he implemented the novel didactic object, Moving Vectors. He articulated that he 

wished that his students would be more responsive in class but felt as if he could not ask 

more of his students. When teaching his third rational function lesson, Norbert 

experienced a perturbation surrounding the discourse of the introduction of the novel 

didactic object, Rat Bar. He asked his students to explain what geometric object is 

associated with the output of a graph of a function and received no response. Norbert 

expressed his frustration that his students were unable to give him his expected response 

of an arrow, which he felt should have been second nature. An additional perturbation 

was revealed in the stimulated recall segment of the post-interview when Norbert 

explained that he was continually checking his watch and jogging in place after asking 

the students a question because they did not have time to waste. In these ways, the 

introduction of the novel didactic objects perturbed the communication of Norbert’s 

classroom and resulted in changes to classroom practices.  

Expectation of Technology. After teaching rational functions with the novel 

didactic objects, Norbert changed his opinion on which representation of rational 

functions should be taught first. This change indicates that a perturbation occurred in 

Norbert’s practices associated with the expectation of technology. Before being 

introduced to the novel didactic objects Norbert’s conception of a rational function was 

limited to the ratio of two polynomials. After the novel didactic objects were introduced, 

Norbert changed his conception of rational functions to include the ratio of two 

polynomial functions where the ratio represented the relative size of the output of one 

polynomial function in terms of the output of the other polynomial function. The 

instruction of the novel didactic objects perturbed Norbert’s practices associated with the 
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expectation of technology so much that in the post-interview he articulated that he would 

change his lessons on rational functions. These changes consisted of leading with and 

emphasizing the graphical representation of rational functions rather than the algebraic. 

  Roles and Responsibilities. Norbert experienced perturbations associated with 

roles and responsibilities when planning, teaching, and reflecting on his rational function 

lesson with novel didactic objects. Norbert expressed the first perturbation during the 

post-interview when he was probed to explain how the novel didactic objects affected his 

planning for the rational function lessons. He articulated that the novel didactic objects 

allowed for him to discuss the graphical representations of rational functions, which was 

missing from his previous semester’s lessons on rational functions. In planning to teach 

with the novel didactic objects Norbert experienced another perturbation surrounding his 

responsibilities as the instructor when implementing the novel didactic objects. He 

expressed the need for practicing with the novel didactic objects multiple times before 

teaching. An additional perturbation was revealed in a video journal entry on the 

reflection of the first lesson on rational functions where the didactic object, Moving 

Vectors, was introduced. Norbert explained that he did not plan for the additional time 

students would require to think and answer his questions surrounding the novel didactic 

object. This perturbation affected both Norbert’s need to plan for additional time for 

questioning and the students’ need to take more responsibility in their mathematical 

education. These perturbations affected Norbert’s practices associated with roles and 

responsibilities, the responsibilities of the instructor and students when the novel didactic 

objects are implemented in mathematics instruction. 
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  Student Engagement. After teaching the third rational function lesson with the 

novel didactic objects, Rat Bar and Rat Graph, Norbert noticed a change in his students’ 

level of engagement. This change indicated that a perturbation might have occurred in the 

practices associated with the student engagement. Based on Norbert’s responses to the 

probing questions asked during the post-interview, the perturbation to student 

engagement was confirmed. Norbert expressed that the students’ level of engagement in 

the lesson was a big difference to the classroom environment and the rational function 

lesson. Norbert attributed the difference in the engagement to the novel didactic objects 

that were used in the rational function lessons.  

Mathematical Conceptions. After teaching the third rational function lesson with 

the novel didactic object, Rat Graph, Norbert probed student thinking to further identify 

how the student answered his original question. Norbert’s decision to probe the student 

further about his thinking suggests that there was a perturbation in Norbert’s practice. 

Based on Norbert’s response to questions asked in the post-interview about this moment 

during the classroom observation, the perturbation was confirmed. Norbert engaged in 

additional questioning and required his student to describe his thinking using the didactic 

object. This change indicated that a perturbation occurred in Norbert’s practices 

associated with mathematical conceptions. Norbert perceived the students answer as 

being a possible guess and changed his questioning to force the student to reveal his 

thinking using the novel didactic object. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

In this chapter, I will highlight the study’s key findings with respect to the 

perturbations in practice that occur when novel virtual manipulatives that are used as 

didactic objects are implemented by a novice instructor’s rational function instruction. I 

discuss the results of this study relative to the research questions presented in Chapter 1 

as well as contributions, implications, and limitations.    

• In what ways do novel virtual manipulatives that are used as didactic objects 

perturb a novice instructor's existing mathematical classroom practices? 

More specifically, 

• What characteristics, other than amount of teaching experience, classify an 

instructor as a novice? Are there aspects of planning a lesson, teaching a lesson, 

and reflecting on a lesson that differentiate novice from experienced instructors?  

• How does a novice instructor perceive a novel virtual manipulative that functions 

as a didactic object, both mathematically and as an instructional tool? 

• What are the differences between a novice instructor’s image of the meanings 

students might develop from the novel didactic object and how the instruction 

fosters these meanings? 

This chapter provides suggestions for curriculum and instruction surrounding rational 

functions and the use of novel virtual manipulatives as didactic objects in a mathematics 

classroom. The conclusion of this chapter addresses the limitations of this study as well 

as possible directions for future mathematics education research.  
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Key Findings 

The key findings of this study included characteristics of a novice instructor and 

perturbations in practice. I found multiple instances in the first phase of data collection 

that classified Norbert as a novice instructor. The data collected in the first phase of this 

study set the stage for exploring the perturbations that occur when a novice instructor 

uses the novel virtual manipulatives as didactic objects in rational function instruction. I 

found multiple instances during the interviews, classroom observations, and video 

journaling of how the implementation of the novel virtual manipulatives as didactic 

objects changed Norbert’s mathematical classroom practices. I saw perturbations 

characteristic of leader actions, communication, expectations of technology, 

responsibilities, student engagement, and mathematical conceptions. 

Characteristics of a Novice Instructor 

In order to maximize the emergence of perturbations for the study, I chose to 

focus on the instruction of a novice instructor.  I therefore had to first verify that Norbert 

was a novice instructor using a different measure than just his time teaching in a 

mathematics classroom. I compared Norbert, the instructor I hypothesized was a novice, 

and Edwin, the instructor I hypothesized to be experienced, as they planned, taught, and 

reflected on lessons regarding rational functions. During the Phase 1 data collection of 

this study, I validated my original hypothesis of Norbert displaying the characteristics of 

a novice instructor.   

Using the data collected in Phase 1 of the study and a comparison with Edwin’s 

mathematics instruction, I identified examples in Norbert’s mathematics instruction that 

could be classified as novice. There are three aspects in which I identified Norbert as a 
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novice instructor; mathematical understanding of rational functions, classroom discourse, 

and lesson reflection. 

The pre-interview during Phase 1 of data collection revealed that Norbert and 

Edwin had similar ways of thinking about division, relative size, and covariation with 

respect to a conceptual understanding of rational functions. Edwin and Norbert 

demonstrated a quotitive interpretation of division (Correa et al., 1998; Fischbein et al., 

1985; Greer, 1992) where they both were thinking, how many times does the value, one-

fifth fit into the value, six (Excerpts 1-2). Conceptualizing division in this way (as 

opposed to the use of a grouping metaphor or partitive interpretation of division) 

represents an opportunity to think about what it means to express one quantity in terms of 

another. When asked to find the relative size of the red bar in terms of the blue bar with 

both static and dynamic bars, Edwin and Norbert leveraged their quotitive interpretation 

of division to demonstrate in an embodiment activity the relative size of the red bar in 

terms of the blue bar (Excerpts 3-8). When given the graph of the relative size of the red 

bar in terms of the blue bar, Edwin and Norbert predicted how the red and blue bars 

would change in length with respect to the input quantity (Excerpts 9-10). These 

predictions highlighted their ability to construct a conceptual understanding of rational 

functions using their understanding of division in conjunction with covariational 

reasoning. The lack of discrepancies in Norbert’s and Edwin’s mathematical thinking 

provided an even platform for identifying differences in the novice and experienced 

instructor instruction on rational functions without having to consider their mathematical 

knowledge as significantly different.  
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After the pre-interview of Phase 1 the differences between Norbert and Edwin 

became more apparent in the video journal, classroom observations, and post-interview. 

Norbert and Edwin planned and executed different approaches to teaching rational 

functions in Phase 1. Edwin planned lessons surrounding rational functions that drew 

attention to the division of quantities and leveraged students understanding of division to 

construct a conceptual understanding of rational functions (Excerpts 11 and 13). Edwin 

approached rational function in a conceptual way by leading a discussion on division, 

relative size and covariation. The questions asked by Edwin in the classroom 

observations gave students the opportunity to discuss and describe their thinking of the 

mathematics. Norbert approached rational functions in a calculational way by presenting 

definitions and rules found in the curriculum associated with rational functions (Excerpt 

12 and 14). The questions Norbert asked of his students during the classroom 

observations required mainly short numerical responses.  

When reflecting on the lessons on rational functions, Edwin and Norbert focused 

on different aspects of instruction. For example, when Edwin reflected on his second 

rational function lesson, he stated that his students did not seem engaged in the lesson 

which was not conducive to students building the meanings for rational functions he 

wanted (Excerpt 20). Edwin focused on his students as a way to measure the success of 

his rational function lesson and this focus led him to identifying areas of improvement 

that he could make as an instructor (Excerpts 17, 18, and 22). In contrast, Norbert 

primarily reflected on his actions and performance as an instructor using himself as the 

measure of his success (Excerpts 19, 21, and 23). For instance, in the first rational 

function lesson reflection Norbert primarily discussed a mistake that he made in one of 
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the problems he presented to the students (Excerpt 19). Norbert articulated what 

transpired in the lesson but dwelled on his mistake. This egocentric type of reflection was 

common for all of Norbert’s reflections in Phase 1 of data collection.  

Additional differences between the two instructors were related to the preparation 

time and amount of time using direct instruction. Norbert planned a lesson no later than 

18 hours before teaching the lesson. Edwin prepared lessons approximately 30 minutes 

before teaching the lesson. Norbert and Edwin structured their daily rational function 

lessons differently. For example, during the classroom observation of Phase 1, Norbert 

taught using direct instruction 90% of the time while the other 10% was dedicated to 

asking students questions and waiting on student responses to questions. Edwin directly 

instructed his class only 50% of the time, with the rest of the class time dedicated to 

asking students questions, letting students work on problems, and discussing the 

mathematics as a class.  

Perturbations in Practice 

In order to validate the perturbations in practices I had identified in the classroom 

observations and video journal activity, I asked Norbert to retrospectively analyze the 

instances I had identified. During this stimulated recall segment of the post-interview 

session of Phase 2 of data collection, Norbert reaffirmed my original hypotheses of 

perturbations he experienced in the classroom while implementing the novel virtual 

manipulatives as didactic objects.  

Using the framework (Table 3), I identified examples in Norbert’s mathematics 

instruction where perturbations had occurred when he implemented the novel virtual 

manipulatives as didactic objects in his rational function instruction. There are six aspects 
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in which the introduction of novel virtual manipulatives as didactic objects can impact 

practice; leader actions, communication, expectation of technology, roles/responsibilities, 

student engagement, and mathematical conceptions.  

First, the impact of the novel virtual manipulatives as didactic objects needs to be 

viewed with a focus on the person who is positioned as the leader in the classroom, i.e. 

Norbert in this study. I identified instances where Norbert’s interpretation of the novel 

virtual manipulatives as didactic objects and his actions as he implemented the novel 

virtual manipulatives as didactic objects in rational function instruction perturbed his 

actions as a leader. For instance, when Norbert introduced the rational function with the 

novel didactic objects he defined rational function as the relative size of one polynomial 

with respect to another polynomial, which was a different approach than the previous 

semester where he defined a rational function as the ratio of two polynomials (Excerpt 

29). An additional perturbation was highlighted when Norbert discussed “nice formulas” 

referring to the algebraic representation of rational functions (Excerpt 28). Norbert 

experienced perturbations in his practices due to his perception of the didactic objects and 

his actions when teaching rational functions with the didactic objects (Excerpts 24-31). 

Second, communication practices surrounding the novel virtual manipulatives as 

didactic objects were disrupted. Norbert’s once comfortable environment, where direct 

instruction was routine and well established, was altered by the implementation of the 

novel didactic objects. I identified instances of discourse surrounding the novel didactic 

objects changing. For example, when reflecting on his first lesson with the novel didactic 

object, Moving Vectors, Norbert expressed his desire for his students to be more 

responsive in class (Excerpt 32). When implementing the novel didactic object, Rat 
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Graph, Norbert exhibited unique behaviors that included frequently checking his watch 

and jogging in place after posing a question for his students to answer (Excerpt 36). 

Norbert articulated during the post-interview that waiting on his students to answer 

questions was maddening and led to his need to release the frustration of waiting. Norbert 

experienced perturbations surrounding the discourse of the introduction of the novel 

didactic object in his desire to have students be more responsive, his frustration when 

students were unable to answer the questions he posed, and his mentality that there was 

no time to waste waiting for his students to answer his questions (Excerpts 32-37).  

Third, implementing the novel didactic objects in instruction comes with certain 

expectations that cause perturbations if the expectations are not met. For instance, 

Norbert expressed that teaching rational functions using algebraic rules and properties 

was necessary (Excerpt 38). However, during the post-interview Norbert articulated that 

he believed that he could move away from teaching the algebraic rules and instead start 

with the graphical representations used in the novel didactic objects (Excerpt 41). After 

teaching rational functions with the novel didactic objects Norbert’s practices associated 

with the expectation of technology were perturbed so much that in the post-interview he 

articulated that he would change his lessons on rational functions (Excerpt 38- 41). 

Fourth, the impact of the novel didactic objects affects the roles and 

responsibilities of the individuals who will be exposed to and use the innovation, i.e. 

Norbert and his students. The implementation of the novel didactic objects forced 

Norbert to see the value in practicing with the novel didactic objects prior to teaching a 

lesson where the novel didactic object would be included (Excerpt 42). Norbert identified 

the need to factor in more time for student to answer questions when teaching with novel 
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didactic objects (Excerpt 43). This perturbation affected both Norbert needing to plan for 

additional time for questioning and the students need to take more responsibility in their 

mathematical education. 

Fifth, implementing novel didactic object in instruction can cause perturbations in 

student engagement. During the post-interview Norbert discussed the engagement of his 

students seemed to increase when he taught with the novel didactic objects, Rat Bar and 

Rat Graph (Excerpt 45). Norbert identified that more students had their heads up and 

were looking at the didactic object being displayed on the projector screen. Based on 

Norbert’s responses to the probing questions asked during the post-interview, the 

perturbation to student engagement was confirmed. Norbert expressed that the students’ 

level of engagement in the lesson was a big difference to the classroom environment and 

the rational function lesson. Norbert attributed the difference in the engagement as a 

result of the novel didactic objects that were used in the rational function lessons (Excerpt 

44-45).  

Finally, novel didactic objects impact the mathematical conceptions that emerged 

in the classroom. For instance, after teaching the third rational function lesson with the 

novel didactic object, Rat Graph, Norbert probed a student’s thinking to further identify 

how the student answered his original question (Excerpt 48). Norbert’s decision to probe 

the student further about his thinking suggests that there was a perturbation in Norbert’s 

practice. Based on Norbert’s response to questions asked in the post-interview about this 

moment during the classroom observation, the perturbation was confirmed (Excerpt 49). 

Norbert perceived the student’s answer as being a possible guess and changed his 

questioning to force the student to reveal his thinking by appealing to the novel didactic 
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object. This change indicated that a perturbation occurred in Norbert’s practices 

associated with mathematical conceptions that emerged in the classroom (Excerpt 46-49).  

Summary of Findings 

In this section, I address the specific research questions that this study attempted 

to answer: 

Research Question #1: In what ways do novel virtual manipulatives that are used as 

didactic objects perturb a novice instructor's existing mathematical classroom practices? 

In this study, the novel virtual manipulatives that Norbert used as didactic objects 

in his rational function instruction did perturb the existing mathematical classroom 

practices. Perturbations, both positive and negative, occurred in Norbert’s classroom 

practices with regard to leader actions, communication, expectation of technology, 

roles/responsibilities, student engagement, and mathematical conceptions. These 

perturbations stemmed from Norbert’s perception of the novel didactic objects 

mathematically and as an instructional tool.  

Research Question #2: What characteristics, other than amount of teaching experience, 

classify an instructor as a novice? Are there aspects of planning a lesson, teaching a 

lesson, and reflecting on a lesson that differentiate novice from experienced instructors? 

Expert and novice instructors can differ based on mathematical content 

knowledge, ability to articulate mathematical content knowledge, choice of teaching 

approach, and lesson reflection focus. Although in this study, the novice and expert 

instructors shared similar relevant mathematical content knowledge, they differed 

according to their planning, comfort with a student-centered classroom, and measure of 

instructional success.   
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Research Question #3: How does a novice instructor perceive a novel virtual 

manipulative that functions as a didactic object for teaching rational functions, both 

mathematically and as an instructional tool? 

A virtual manipulative used as a didactic object can initiate a shift in an 

instructor’s mathematical meanings, but may not necessarily be valued as an instructional 

tool. Norbert’s perception of the novel didactic objects mathematically and as an 

instructional tool had a significant impact on the perturbations that occurred in his 

mathematical classroom practices. Norbert initially viewed rational functions 

symbolically with little to no emphasis on the covariational relationship that exists 

between the input quantity of the rational function, the value of the numerator, the value 

of the denominator, and the value of the relative size of the numerator in terms of the 

denominator. In Phase 1 of data collection, Norbert taught rational functions in a 

traditional manner by discussing the properties and characteristics of rational function 

using algebraic representations.  After being exposed to the novel didactic objects, 

Norbert’s perception changed to include the covariational relationship that exists within a 

rational function. However, Norbert’s new perception of the novel didactic objects 

mathematically was not strong enough to influence his rational function instruction to 

foster a deeper meaning of rational functions within his students.  

Norbert’s perception of the virtual manipulatives as novel didactic objects as an 

instructional tool, at first, was that of confusion. During the intervention interview in 

Phase 2 of data collection, Norbert articulated the need for time to think about how he 

would use the novel didactic objects as an instructional tool. Norbert said that he was 

interested in using the novel didactic objects in his classroom and explained that he did 
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see value in his students learning rational functions with these instructional tools. During 

the video journal lesson planning entries, Norbert explained that teaching with the 

didactic objects made planning his lesson easier since he had a solid outline to follow. 

Norbert’s actions and discourse while teaching with the novel didactic objects in his 

rational function instruction told a slightly different story. Norbert saw the virtual 

manipulatives just as applets throughout his teaching of rational functions. However, in 

the post-interview of Phase 2, Norbert expressed a desire to teach rational functions using 

the applets first rather than the algebraic interpretations. This suggested that Norbert 

might be moving from seeing the virtual manipulative just as applets to seeing the virtual 

manipulatives as didactic objects. With a shift in the order of activities that prioritized the 

interventions, he demonstrated that they have a legitimate place in instruction.  

Research Question #4: What are the differences between a novice instructor’s image of 

the meanings for rational functions that students might develop from the novel didactic 

object and how the instruction fosters these meanings?  

Norbert’s image of how the meanings of rational functions students should 

develop changed throughout the study as he taught the curriculum for the first time and 

was introduced to the novel didactic objects that he later implemented in his rational 

function instruction. After being exposed to the novel didactic objects Norbert attempted 

to foster his image of the meanings student should develop from the novel didactic 

objects in every rational function lesson. However, the study revealed differences 

between Norbert’s image of the meanings students should develop from the novel 

didactic objects and how the instruction Norbert led fostered these meanings.  
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During Phase 1 of data collection, prior to the introduction of the novel didactic 

objects, Norbert taught rational functions in a traditional manner by emphasizing the 

properties of rational functions using algebraic representations and procedural methods. 

Once exposed to the didactic objects in Phase 2 of data collection, Norbert began to 

articulate the value of a student determining the location of the asymptotes of rational 

function by assessing the behavior of the function, namely the relative size of the 

numerator in terms of the denominator. During the video journal planning session entries, 

Norbert continued to express the value of students thinking about the behavior of rational 

functions rather than the procedures and his excitement in teaching with the novel 

didactic objects. However, during the classroom observations, Norbert did not stay true to 

having the students think about the behavior of rational functions when locating 

asymptotes. Instead, Norbert led his class in a procedural lesson that looked at the 

properties of rational functions. When Norbert did introduce the novel didactic objects 

into his instruction of rational functions, he still fell back into giving students specific 

values to construct graphs of the rational functions. Thus, even though Norbert saw the 

value in students understanding the covariational relationship of rational functions, he 

was unable to break away from his comfortable routine to cultivate that meaning of 

rational functions within his students. During the post-interview, after teaching rational 

functions with the novel didactic objects, Norbert articulated that he would change how 

he taught rational functions for the next semester. He explained how he would want to 

teach with the novel didactic objects first and then discuss the properties of rational 

functions. Norbert’s post-interview discussion suggested that he still sees the value of the 
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instructional tools and is looking to the future when he can implement the novel didactic 

objects at the onset of rational function instruction.  

Contributions to the Literature 

This study explored how a novice instructor implemented virtual manipulatives as 

didactic objects in rational function instruction. In the TPACK framework, it therefore 

sits squarely within the intersection of technology knowledge, content knowledge, 

pedagogical knowledge, and pedagogical content knowledge. In various degrees, it 

contributes to our understanding of teaching expertise, use of technology in the 

classroom, didactic objects, and a conceptual understanding of rational functions.    

Teaching Expertise. Contrasting experts and novices sheds light on possible 

paths along a trajectory of increased fluency and expertise (Carlson & Bloom, 2005; Chi, 

Feltovich & Glaser, 1981; Schoenfeld, 1992; Shepherd & van de Sande, 2014).  In the 

context of teaching, expertise has been linked to many characteristics, both teacher- and 

student-focused. For instance, time in the classroom, a structure of mathematical 

knowledge that supports student understanding, pattern recognition in the moment of 

teaching, a flexible automaticity in actions and behaviors to allow conscious processing 

of information, and student achievement on assessments have all been used to 

characterize teaching expertise (Berliner, 2001; Glaser, 1987; 1990). Expertise, then, 

roughly corresponds to how a teacher scores on such a “pedagogical report card.” 

Instructors who are novices in the sense of a pedagogical report card (e.g., time in 

classroom, structured mathematical knowledge, pattern recognition in the moment, and 

flexible automaticity in their actions and behaviors) can vary considerably with respect to 

adapting to and growing from trying new approaches and resources in the classroom 
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(Rich, 1993). Without support and training, novice instructors demonstrate extremely 

impoverished pedagogical and mathematical content knowledge (Musgrave & Carlson, 

2017).  Given training and mentoring, however, some novice instructors can respond to 

unfamiliar instructional approaches (such as facilitating cooperative learning) by 

modifying their teaching based on an understanding of their students’ needs, thereby 

moving along a trajectory toward expertise.  

For this reason, much research has focused on how to design, implement, and 

evaluate effective mentoring for instructors  (Appleton, 2008; Fluckiger, McGlamery, & 

Edick, 2006; Zimpher & Rieger, 1988). One key ingredient to the successful mentoring 

of instructors involves a system of shared beliefs, e.g. teacher buy-in (Turnbull, 2002). In 

particular, the participants have to reach a mutual understanding of the intent, the 

implementation, and the benefits of the approach being supported by the mentorship. If 

an instructor does not believe in how the model or approach is supposed to improve 

student understanding, then the benefits of mentoring (even if intensive) are significantly 

hindered (Thompson & Thompson, 1994; 1996).  

In my study, however, Norbert did buy into the conceptual analysis of rational 

functions. He understood and valued the mathematical meanings that could be 

constructed from interacting with the virtual didactic objects. Even though Norbert’s 

classroom implementation of the virtual didactic objects was unpolished and clumsy, he 

began to shift to a more student-centered analysis of his teaching and was enthusiastic 

about finding alternative ways to implement the virtual didactic objects in the future. 

Therefore, virtual didactic objects have the potential to help novice instructors take baby 

steps towards becoming experts at helping students construct meaningful mathematics.    
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Use of Technology in the Classroom. Instructors play a critical role in the 

successful integration of technology in the classroom (Bitner & Bitner, 2002; Loveless, 

DeVoogd & Bohlin, 2001, Romano, 2003) since the direct determination of the 

instruction is in the hands of the instructor rather than the external educational 

requirements (Chen, 2008). In mathematics education, the general message is that 

electronic technologies ought to be used to enhance student learning of mathematics but 

there is a lack of research on the specifics of how to accomplish this. A popular lens for 

understanding the role of technology in student learning is based on the assumption that 

the technology will have a unidirectional impact, input-output approach, where the 

technology is injected into classrooms and the learning effects result from this addition 

(Lynch, 2003; 2006). Research studies that use a input-output approach measure 

technology usage rather than generating new knowledge about education (Wagner, 1993). 

Studies with this approach are usually large-scale quasi-scientific studies that generalize 

the effects of technology on learning through the use of surveys (Angrist & Lavy, 2002) 

but fail to answer questions on how to improve educational practice (Lynch, 2006).  

In my study, however, the use of technology in the classroom used an approach 

that sought to find the perturbations that occurred in the mathematical classroom 

practices of an instructor when implementing technology. As a comparison to the input-

output approach that usually involves large-scale survey instruments, my study was 

small-scale and had an interview and classroom observation driven approach. This 

approach allowed for aspects of the instructor’s practices to be assessed for changes when 

implementing technology in instruction. In this way, this study provides further insight 

into ways in which educational practices dealing with technology can be improved. 
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Didactic Objects. Didactic objects are objects, i.e. images, documents, 

technology, etc., in conjunction with a conversation or discussion that can support 

students’ construction of mathematical ideas (Thompson, 2002). Research studies that 

incorporate didactic objects as defined by Dr. Thompson have focused on the effects of 

the didactic objects on student understanding of mathematics in traditional and online 

classroom environments (Bowers et al., 2010; Poddiakov, 2001) as well as teacher 

professional development (Lima, McClain, Castillo-Garsow, & Thompson, 2009).  

In my study, I focused on the effect of virtual manipulatives as novel didactic 

objects on an instructor’s rational function instruction. This focus is unique as it uses Dr. 

Thompson’s definition of didactic objects but, instead of assessing the effect on the 

students, it looks at how the didactic objects are used by the instructor. This shift in focus 

allows for additional conversation around the implementation of didactic objects by 

instructors and ties to the professional development of instructors (Lima et al, 2009) so 

that instructors can be better prepared to orchestrate reflective discourse (Thompson, 

2002).  

Conceptual Understanding of Rational Functions. Typically, rational function 

instruction is approached as an extension of the mathematics of polynomials (such as 

finding roots). However, this study took a novel approach to rational function instruction 

by introducing a conceptual analysis of the topic that was based on a connected web of 

schemes, including measurement, division, covariation, etc. By taking this approach, the 

goal was to add meaningful coherence to the pre-calculus curriculum (Thompson, 1994). 

Indeed, in the short duration of the study, Norbert shifted his notion of coherence from a 
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procedural focus to this conceptually oriented approach that supports students as they 

reason quantitatively and embark on a transition to a deeper understanding of limits.     

Limitations of the Study 

Although this study begins to identify the perturbations in classroom practices 

experienced by a novice mathematics instructor, it has several limitations in terms of the 

participants and the choice of perturbing technology.  The instructors that participated in 

this study were graduate students at a large southwestern university. First, the participants 

were chosen from a very restricted pool of instructors. Edwin was a graduate student in 

the mathematics education doctoral program who had transferred from the pure 

mathematics doctorate program. Norbert was a graduate student in the pure mathematics 

doctorate program. Edwin was in his third semester of teaching pre-calculus in Phase 1 of 

data collection and had taken multiple courses focusing on research in undergraduate 

mathematics education. Norbert was in his first semester of teaching pre-calculus during 

Phase 1 of data collection, and in his second semester during Phase 2 of data collection. 

Edwin was not chosen at random since he was the only male graduate student that fit the 

criteria of an experienced pre-calculus instructor. Norbert was chosen from the Teaching 

Undergraduate Mathematics Education (TUME) seminar since he was the first to 

volunteer to participate in the study. In addition, since only one experienced and novice 

instructor was studied, it is difficult to make any overarching claims that would be 

applicable to every mathematics instructor implementing novel didactic objects in 

instruction. In particular, the study only focused on graduate students teaching 

introductory mathematics courses at a university. 
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Another limitation arises from the decision to use novel didactic objects as the 

representative perturbing technology. The study did not explore perturbations from other 

technologies but instead used novel didactic objects that were intentionally selected to 

elicit perturbations in classroom practices. Other technologies might have elicited 

different perturbations than those that were found in this study. This study deliberately 

assessed the effects of novel didactic objects in a mathematics classroom on the concept 

of rational functions. The didactic objects I used in this study were designed by Dr. 

Thompson to foster a conceptual understanding of rational functions. This concept was 

well suited for the study because rational functions are predominantly taught from a 

procedural orientation and therefore fostering a conceptual orientation afforded additional 

opportunities for perturbations.  

This study begins to identify the perturbations in classroom practices experienced 

by a mathematics educator. However, this study does not fully explain all types or forms 

of perturbations a mathematics instructor might experience when introducing novel 

didactic objects in instruction. Additional research is needed before a more 

comprehensive list can be constructed. For this study, I purposefully choose to use a 

broad brush to paint picture of the perturbations that occur when novel didactic objects 

are added to instruction. This broad brush provides a backdrop against which researchers 

can delve more deeply into the nuances that accompany perturbations in classroom 

practices and explore their duration and resolution.  

Directions for Future Research and Development 

This study produced several lines of possible future research and curricular 

development. For example, additional research is needed to understand the connection of 



  191 

instructors’ mathematical meanings to the instructional practices they employ in 

instruction with or without the implementation of technology. The expansion of 

technology in learning environments suggests that curriculum and instruction will need to 

change to encompass the new technological resources. For instance professional 

development opportunities to create applets might help instructors revisit and 

reconceptualize their mathematical meanings. Another change might need to come from 

the curriculum companies putting more effort into creating applets that accompany the 

curricula. However, the creation of applets, whether by instructors or professionals, is not 

enough; guides must be made to help instructors effectively implement the applets as 

didactic objects. If these guides are forgotten or pushed aside as a waste of time, the 

applets could become glorified pictures or videos with little to no impact on the 

classroom environments and student mathematical understandings.   

Future research is needed to understand the relationship between the mathematical 

meanings of an instructor and the resulting perturbations in classroom practices when the 

instructor implements novel didactic objects in his or her instruction. For instance, little is 

understood about the technological pedagogical content knowledge that allows an 

instructor to effectively foster student understanding. This study sets the stage for such 

research by demonstrating the promise and potential of virtual manipulatives used as 

didactic objects to promote curricular coherence (Thompson, 1994) and extend 

instructors’ mathematical meanings (Musgrave & Carlson, 2017) of rational functions. 
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Title of research study: Investigating Perturbations in Mathematical Classroom 
Practices Using Virtual Manipulatives as Novel Didactic Objects 
 
Investigators: Carla Van De Sande & Krysten Pampel 
 
Why am I being invited to take part in a research study? 
We invite you to take part in a research study because you currently teach a section of 
MAT 170 and participating in TUME. 
 
Why is this research being done? 
This study will attempt to characterize the perturbations that occur when virtual manipulatives as 
novel didactic objects are implemented into rational function instruction.  
 
How long will the research last? 
We expect that individuals who elect to participate will teach MAT170 in both Fall 2016 
and Spring 2017. In other words there will be two semesters of data collection on your 
course. The first semester will consist of 2 interviews (about 1 hour per interview) and 
classroom observations (up to 5 class days). The second semester will consist of 3 
interviews (about 1 hour per interview) and classroom observations (up to 5 class days). 
 
How many people will be studied? 
We expect at least two graduate students teaching MAT 170 to participate in this research 
study. 
 
What happens if I say yes, I want to be in this research? 
If you agree to be apart of this research study you will take part in the first phase of data 
collection this Fall 2016 by participating in interviews (2) and classroom observation (up 
to 5). The first interview will occur a week prior to the first classroom observation and 
will cover tasks related to the rational functions. The classroom observations will consist 
of the research sitting in the back of the room video taping you and your projector screen 
while teaching rational functions. Please note none of your students will be captured in 
the video. No more than a week after the final classroom observation there will be a 
second interview. In this interview we will discuss moments in your lesson that were of 
interest. During this phase of data collection you will also be asked to keep an 
instructional journal (provided to you by the researcher) that will be used with question 
prompts to help you reflect on your lessons.  
 
The second phase of the data collection does not begin until Spring 2017. This phase will 
consist of interviews (3) and classroom observations (up to 5). The first interview will 
happen a week before the classroom observations and you will be asked to complete tasks 
related to rational functions. The second interview will be conducted roughly 2 days 
before the classroom observations. In this interview you will be introduced to didactic 
objects and resources that will be used to teach rational functions. This will include 
questions about how you would implement the didactic objects into your rational function 
instruction for MAT 170. The classroom observations will consist of the research sitting 
in the back of the room video taping you and your projector screen while teaching 
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rational functions. Once again, none of your students will be captured in the video. In 
these classroom observations you will implement the didactic objects that were 
introduced in the second interview. No more than a week after the final classroom 
observation there will be a third interview. In this interview we will discuss moments in 
your lesson that were of interest. You will also be asked to reflect on the observations and 
answers questions about the didactic objects and resources. During this phase of data 
collection you will once again be asked to keep an instructional journal (provided to you 
by the researcher) that will be used with question prompts to help you reflect on your 
lessons. 
 
What happens if I say yes, but I change my mind later? 
You can leave the research at any time and it will not be held against you. 
 
Is there any way being in this study could be bad for me? 
Your participation will entail completing mathematical tasks while describing aloud how you are 
thinking. All efforts will be made to conceal your identity from individuals outside of the research 
community. It may take a minute or two to overcome initial discomfort related to being recorded 
and talking about your instruction. 
 
Will being in this study help me in any way? 
We cannot promise any benefits to you or others from your taking part in this research. 
However, possible benefits include improving mathematical classroom practices in the 
classroom and learn new ways to integrate technology in your classroom.  
 
What happens to the information collected for the research? 
We cannot promise complete confidentiality.  The results of this study might be used in 
reports, presentations or publications but your name will not be used. Copies of your work 
and recorded interviews will be stored on a password protected hard drive in the researcher’s 
office, which remains locked whenever she is not present.  
 
Who can I talk to? 
If you have questions, concerns, or complaints, talk to the research team by emailing 
Krysten Pampel at krysten.pampel@asu.edu or Carla Van De Sande at 
carla.vandesande@asu.edu  
 
This research has been reviewed and approved by the Social Behavioral IRB. You may 
talk to them at (480) 965-6788 or by email at research.integrity@asu.edu if: 

• The research team is not answering your questions, concerns, or complaints. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You have questions about your rights as a research participant. 
• You want to get information or provide input about this research. 

 
Your signature documents your permission to take part in this research, which includes 
agreeing to be videotaped in interviews and classroom observations.  
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Signature of Participant: ___________________________________   Date: __________ 
 
 
 
 
Printed Name of Participant: __________________________________________ 
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Phase	1:	Pre-interview	
Task	1	
Evaluate	the	following:	
	

1.)	 	 	 	 	 	 	 2.)	 	

	
	

• Please make sure to think out loud so that I can understand what you are thinking 
when completing the task 

• 6 divided by 1/5  
• What does your answer mean about the relationship between __6___ and 

___1/5___? 
• Could you use your answer to compare the sizes? 

o “Number of __1/5ths__ that fit into __6___” 
• Is there anyway that you could represent your thinking about the result of your 

evaluation? 
o Since flip and multiply does not provide a model could you make one? 

“Circles or bars” 
• 5/6 divided by 1/4  

• What does your answer mean about the relationship between __5/6___ and 
___1/4___? 

• Could you use your answer to compare the sizes? 
o “Number of __1/4ths__ that fit into __5/6___” 

• Is there anyway that you could represent your thinking about the result of your 
evaluation? 

o Since flip and multiply does not provide a model could you make one? 
“Circles or bars” 

	
	
Task	2	
Every	cheerleader	needs	1/5	yard	of	ribbon	to	decorate	a	football	player’s	locker	for	
homecoming.	A	spool	contains	2	¼	yards	of	ribbon.	How	many	1/5	yard	pieces	of	
ribbon	can	be	supplied	by	1	spool?	
	
	

• Please make sure to think out loud so that I can follow along with your thinking 
and process.  

• How many 1/5 yard pieces of ribbon can be supplied by 1 spool? 
• How many cheerleaders can be supplied by 1 spool of ribbon?  

• Can you explain to me what you are thinking about? 
• Why did you decide to…? 
• What does your answer mean in the context of the situation? 
• How much more ribbon do you need to supply all 12 cheerleaders? 

	

6
1
5

5
6

1
4
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Task	2	Option	B	(Note:	I	never	had	to	use	this	task.)		
A	seamstress	must	cut	1/3-yard	pieces	of	fabric	from	material	that	is	1	¾	yards	
long.	How	many	1/3	pieces	can	be	cut?	
	
	
Student	1:	The	problem	is	asking	how	many	1/3-yard	pieces	are	in	1	and	¾	
yards	of	fabric.	This	is	a	division	problem:	1	¾	divided	by	1/3	equals	7/4	*	3/1=	
21/4=	5	¼.	However,	1/12<	1/3	therefore	the	remaining	fabric	is	not	big	enough	
to	be	considered.	

	
	
Student	2:		Seven	fourths	divided	by	one	third	become	7/4	multiplied	by	3/1	
through	the	process	of	dividing	fractions.	The	answer	is	21/4;	or	5	and	¼	1/3	
yard	pieces.	So	the	correct	answer	is	5	pieces	with	¼-yard	left	over.		

	
	

• Given this contextual problem, here are two student answers and 
explanations for the problem. Please read the solutions and explanations 
out load. 

• What do you think about the two student responses? 
• Would you give the same score to both of the students? Why or why not? 
• Is one of the explanations better than the other? 
• Which has correct answer 

§ Have EXP describe which explanation is better  
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Task	3:	Static	Bar	Examples	given	on	index	cards.	

i. R>B 
1. What is the size of the red bar (relative to) in terms of the size of the blue bar? 
2. >1  

a. I noticed your answer is bigger than 1 why is that? 
3. =1  

a. I noticed that your answer is 1; can you explain how you got that? 
4. <1  

a. I noticed that your answer is less than 1 
i. What is the size of the blue bar relative to the red bar? 

ii. Why do you think the relative size is  
iii. How did you come up with the relative size? 

ii. B>R 
1. What is the size of the red bar (relative to) in terms of the size of the blue bar? 
2. >1  

a. I noticed your answer is bigger than 1 why is that? 
3. =1  

a. I noticed that your answer is 1; can you explain how you got that? 
4. <1  

a. I noticed that your answer is less than 1 
i. What is the size of the blue bar relative to the red bar? 

ii. Why do you think the relative size is  
§ If wrong talk about easier cases  

ú Such as same size, twice as large 
iii. Ask about R=B 

1. Can you  
2. How would you draw two bars  

iv. Comparative static images  
1. In which case, is the size of the red bar relative to the size of the blue bar 

larger? (Have the students order the static bars from largest to smallest.)  
v. Which mathematical operation or operations would you associated with the activity? 

1. Give options of addition, sub, multi, division 
• If I multiply by 2.5 to the red and blue bars what would our relative size be? 
• If I added 2 to the red bar and the blue bar what would happen to our relative 

size? 
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Task	4:	Conversation	about	Task	1	and	Task	3	
Numbers	and	comparison	of	two	numbers	as	ratio	
	
• Do you see any similarities in the tasks you have completed so far? 

o Make sure to see if the student addresses the ways of thinking needed to 
understand the tasks.  

• Do you see a relationship, what if any, between the bar activity and the first two tasks?  
• Could you make a model to help illustrate this relationship?  
• Could you draw a picture of the red and blue bars that would give you the same 

solution as you found in the first task?  
	
Task	5:	Dynamic	Bar	Examples	
	
• Animations (RB is constant and BB decreases; RB constant and BB increasing; RB 

increasing and BB decreasing) 
o What is the relative size of the red bar in terms of the blue bar when both bars 

are gone? 
o How is the relative size of the red bar in terms of the blue bar changing as the 

blue bar decreases in length? 
o If the blue bar were to no longer be seen (and the red bar is the same), what 

would the relative size of the red bar in terms of the blue bar be? 
o Using the zoom feature to better understand the students thinking: 

§ If the student thinks about the size of the bars 
• When zooming out the student will think that the relative size 

is affected. 
§ If the student thinks about the relative size of the red bar in terms of 

the blue bar.  
• When zooming out the student will think that the relative size 

is the same regardless of the size of he bars.  
o N=1 D=1 (0à t à 10) 
o N=1 D=1 (10à t à 0) 
o N=3 D=1 (0à t à 10) 
o N=3 D=3 (0à t à 10) 
o N=3 D=3 (10à t à 0) 
o N=3 D=2 (0à t à 10) 
o N=3 D=2 (10à t à 0) 
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Task	6:	This	graph	below	depicts	the	relative	size	of	the	red	bar	in	terms	of	the	size	
of	the	blue	bar.	(Be	sure	to	explain	exactly	what	this	means.)	

	 	
• Select random points 

o What could the relative size of the RB in terms of the BB be? 
o Can you draw a possible picture to represent the relative size? 
o Can you demonstrate with your hands how the relative size is changing as the 

input  
§ Increases to 0? 
§ Decreases to 3? 

• Behavior as the input changes 
o What would happen to your image as the values of the input approached the 

value _______?  
§ Would the RB increase or decrease? 
§ Would the BB increase or decrease? 
§ What would happen to the relative size of the RB in terms of the BB? 

• Rational Function 
o Can you construct the rule of the function graphed in this image? 
o How do the function of the numerator and the function of the denominator 

effect the construction of the rational function?  
o Add arrows to see if students change opinion about the graph.  

• In your own words, what is relative size? 
o Do we have to have a RB and BB in order to find/have a relative size? 
o Could you give me a different scenario where we could use relative size? 
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Task	7	
The	following	is	a	rational	function:	
	

	

	
	

• Starting with a fixed value of 2 
• What would the output of this function be if the input is 2? 
• Does your answer for the output of the function tell us anything about the 

value of numerator? 
• Does your answer for the output of the function tell us anything about the 

value of the denominator? 
• What does your answer mean about the value of the numerator and the 

value of the denominator?  
• In terms of the bars what would they look like when the input value of the 

function is 2? 
• Could you make a table of values for this function? 

• What would happen to the output value of the function as the input value 
increased from 2? 

• What does your answer indicate about the value of the numerator as the 
input value increases? 

• What does your answer indicate about the value of the denominator as the 
input value increases? 

• What would happen to the lengths of the bars based on your answer? 
• What would happen to the output value of the function as the input value 

decreased from 2? 
• What does your answer indicate about the value of the numerator as the 

input value increases? 
• What does your answer indicate about the value of the denominator as the 

input value increases? 
• What would happen to the lengths of the bars based on your answer? 

	
	
	
	
	
	
	
	
	
	
	
	

h(x) = x + 3
x2 + 4x −1
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Phase	2:	Pre-interview	
Personal	Background	

• What type of degrees do you have? 
• What degree are you working on now? 
• Did you have any previous teaching experience before ASU? 
• How many semesters have you taught MAT170: Pathways Pre-Calculus? 
• What made you interested in becoming a teaching assistant? (Motivation) 
• Do you plan to teach after getting your degree?  
• Does your instruction differ from the instruction you received or still receive? If 

so, in what ways? (Technology, practices, strategies, classroom environment, 
expectations, etc.) 

• Do you use anything that you learned in the TA Seminar led by Katie? 
• Do you use anything from the TUME Seminar led by Marilyn?  

o Compare the TA and TUME 
 

Read	the	Scenarios	
• Which scenario do you identify with more and in what ways? 

o (Two scenarios dump truck (discovery based learning) and bulldozer 
(direct instruction).) 

• In your own words, how do you prepare a general lesson for your course? 
o TUME seminar, key points for lesson, side notes, etc. (Use of 

Technology) 
• How do you decide what tasks to use in your lessons? 
• What mathematical meanings for rational functions do you want students to have 

at the end of your lessons? 
• Do you remember any thing specific about rational functions that students 

struggled with last semester?  
o What were those stumbling blocks? 

• Have you used technology (simulations, animations, manipulative software) to 
teach so far this semester?  

o If so, what types of technology did you use?  
o How did you implement the technology? 

	
Tasks	
Evaluate	the	following:	

1.)	
	 	 	

	

• Please make sure to think out loud so that I can understand what you are thinking 
when completing the task 

• 3/4 divided by 2/3  
• What does your answer mean about the relationship between __3/4___ and 

___2/3___? 
• Could you use your answer to compare the sizes? 

o “Number of __2/3rds__ that fit into __3/4ths___” 

3
4

2
3
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• Is there anyway that you could represent your thinking about the result of your 
evaluation? 

o Since flip and multiply does not provide a model could you make one? 
“Circles or bars” 

	
2.)	6/7	of	what	number	is	5?	

• 6/7 of what number is 5? 
• What does your answer mean about the relationship between __6/7___ and ___5___? 
• Could you use your answer to compare the sizes? 

o “__5___ is _______ times as large as ____6/7ths____” 
• Is there anyway that you could represent your thinking about the result of your 

evaluation? 
o Since flip and multiply does not provide a model could you make one? 

“Circles or bars” 
	
3.)	¼	of	what	number	is	5/6?	

• ¾ of what number is 5/6? 
• What does your answer mean about the relationship between __3/4___ and 

___5/6___? 
• Could you use your answer to compare the sizes? 

o “__5/6ths___ is _______ times as large as ____6/7ths____” 
• Is there anyway that you could represent your thinking about the result of your 

evaluation? 
o Since flip and multiply does not provide a model could you make one? 

“Circles or bars” 
 

	
Dynamic	Bars	D=2	N=2	

• Statics instances of dynamic bars (6 instances) 
o What is the relative size of the red bar in terms of the blue bar? 
o Discuss the changes that occur when the bars change length. 

• Dynamic bars 
• Can you draw the graph of the relative size? 
• Please draw the graph of the relative size to the best of your ability 
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Using	the	graph	of	 	and	 ,	construct	a	graph	of	 			

𝒇	

	
𝒈	

	
• Draw the graph 

• Look to see if he is creating the functions of the two graphs in order to graph. 
• How did you create the graph? 
• What were you looking at in order to graph h? 

Dynamic	Graphing	
• Draw the graph using the animation to help 
• N=1 D=1  

• Look to see if he is creating the functions of the two graphs in order to graph. 
• How did you create the graph? 
• What were you looking at in order to graph the relative size? 

• N=2 D=2  
• Look to see if he is creating the functions of the two graphs in order to graph. 
• How did you create the graph? 
• What were you looking at in order to graph the relative size? 

f (x) g(x) h(x) = f (x)
g(x)

x	

x	
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Construct	a	graph	of	the	following	rational	function.	

	

• Draw the graph 
• How did you create the graph? 
• What were you looking at in order to graph the rational function? 
• Do you see any relationship between graphing rational functions and the tasks that I 

had you complete? 
	

Phase	2:	Intervention	Interview	
Introduction	of	Tool/Supports	

• Do you have any experience with Graphing Calculator? If so, in what context did 
you use it? (Explain/discuss Graphing Calculator with short demo) 
 

Now	we	are	going	to	go	through	the	applets	that	you	will	use	in	your	classroom.	As	we	
go	through	the	applets,	I	would	like	for	you	to	take	on	the	role	of	the	student	and	I	will	
take	on	the	role	of	the	instructor.	Please	feel	free	to	stop	me	at	any	time	during	the	
demonstration	of	the	activity	and	applets	to	ask	clarifying	questions!	
	

• Moving vectors 
• Sum Bar 
• Rat Bar 
• Rat Graph  

	
The	questions	I	am	going	to	ask	you	will	involve	instructional	decisions	for	your	
upcoming	lessons	on	rational	function.	I	understand	that	you	will	not	have	solid	
answers	for	these	questions	and	that	your	answers	may	change	over	the	next	couple	of	
days.	That	is	why,	I	would	like	for	you	to	again	keep	a	video	journal	of	instructional	
decisions	that	you	make	over	the	next	couple	of	days.	Here	is	a	notebook	that	will	be	
used	as	a	back	up	plan	just	in	case	something	does	not	work	with	the	video	journal.	I	
also	have	questions	for	you	to	answer	as	you	are	completing	your	video	journal.	Please	
make	sure	to	voice	any	questions	or	thoughts	you	may	have	about	the	applets,	
teaching	rational	functions,	or	anything	else	related	to	this	study.		
	

• How would you build these applets into your rational function instruction? 
o How do you see this fitting in with your current materials/lessons? 
o Where would you add these applets into your instruction? 

• What mathematical understandings do you want your students to have after your 
rational function lessons with these applets? 

• Can you please identify what part of your lesson will build the students 
understanding of this concept? 

• How does this approach differ from your past rational function instruction? 
• What stumbling blocks do you think students will have during this lesson? 

o How do you anticipate handling the stumbling blocks? 

k(x) = 4 − x
28 − 3x − x2
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APPENDIX C 

POST-INTERVIEW PROTOCOL AND TASKS 
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Phase	1:	Post-interview	
Discussion	of	Observations	
Now	that	you	have	completed	the	lessons	on	rational	functions,	I	would	like	to	get	your	
thoughts	about	how	the	lessons	went.		
	
• Overall how do you feel the rational function lessons went?  

 

 
• How do you think your students did during the rational function lessons? 

 

 
• Do you believe that your rational function lessons are a good representation of an 

average day in class? 
o If yes, give specific details as to why these lessons represent an average 

day in class? 
o If not, give details on what made these lessons not an average day in 

class? 
• Did you notice any changes in your classroom while teaching rational functions? 
• What was the overall learning goal of the rational function lessons? What 

understandings of rational functions did you want your students to come away 
with? 

• Do you think your students demonstrated the understanding(s) that you were 
striving for in these lessons? Do you believe that the students have those 
understandings? What leads you to your conclusion on the students understanding? 

o If yes, please give an example from class. 
o If no, please give an example from class. 

• Were there any notable disruptions in the rational function lessons? Did you 
experience any moments while teaching rational functions that was awkward or 
unusual? 

o Why do you believe these disruptions might have occurred? 
o Could you have done anything differently to avoid the disruption? 

• Did you cover everything you wanted to cover in the rational function lessons? 
(This includes tasks, discussions, and activities) 

o If yes, why?  
o If no, what tasks, discussions, and activities would you have liked to 

cover? 
• Would you change anything from your lesson?  

o If so, would you modify anything? If not, why?  
o Time, order of lessons, etc.  

• Did your original timeline for the rational function lessons change? 
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o If yes, in what ways? 
o If no, what do you think helped you in constructing a timeline that was 

successful? 
• Did you have any difficulty in selecting the tasks/activities for these rational 

function lessons? 
o If yes, why? 
o If no, why not? 

• Have you ever considered adding technology into your lessons?  
o If so, what type of technology would you want to add? 
o What would the technology look like? 
o How would the technology help? 
o Who would the technology help? 

• Have you used technology in other lessons? 
• Are there other concepts that you would want to add technology to? 

o If yes, what type of technology would you want to add? 
o What would the technology look like?  
o How would the technology help? 
o Who would the technology help? 

• After teaching rational functions this semester, did your own understandings of 
rational functions change?  

o If so, how?  
• Why do you think your understandings changed? 
• Are you planning on giving an assessment on rational functions to your students? 

o If yes, what type of assessment? 
o When would you be giving the assessment? 
o Can I get copies of your assessment? (I do not need any identifying 

information about the students. Only the scores and the questions. ) 
• Since MAT170 has a common final, I would like permission to gather information 

about the Mod 6 items that are on the exam. This entails only the answers from 
those items with no student information.  

	
	
Now	I	am	going	to	show	you	short	video	clips	from	the	observations.	My	goal	in	doing	
this	is	to	help	you	recall	events	from	the	lesson.	We	will	watch	the	video	clips	one	at	a	
time	and	I	will	ask	you	to	describe	your	thoughts	and	emotions	at	the	time	to	the	best	
of	your	ability.	
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Phase	2:	Post-interview	
	
Discussion	of	Observations	
Now	that	you	have	completed	the	lessons	on	rational	functions,	I	would	like	to	get	your	
thoughts	about	how	the	lessons	went.		
	

• Overall how do you feel the rational function lessons went?  
 

 
• How do you think your students did during the rational function lessons? 

 

 
• Do you believe that your rational function lessons are a good representation of an 

average day in class? 
o If yes, give specific details as to why these lessons represent an average 

day in class? 
o If not, give details on what made these lessons not an average day in 

class? 
• Did you notice any changes in your classroom while teaching rational functions? 
• What was the overall learning goal of the rational function lessons? What 

understandings of rational functions did you want your students to come away 
with? 

• Do you think your students demonstrated the understanding(s) that you were 
striving for in these lessons? Do you believe that the students have those 
understandings? What leads you to your conclusion on the students understanding? 

o If yes, please give an example from class. 
o If no, please give an example from class. 

• Were there any notable disruptions in the rational function lessons? Did you 
experience any moments while teaching rational functions that was awkward or 
unusual? 

o Why do you believe these disruptions might have occurred? 
o Could you have done anything differently to avoid the disruption? 

• Did you cover everything you wanted to cover in the rational function lessons? 
(This includes tasks, discussions, and activities) 

o If yes, why?  
o If no, what tasks, discussions, and activities would you have liked to 

cover? 
• Would you change anything from your lesson?  

o If so, would you modify anything? If not, why?  
o Time, order of lessons, etc.  
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• Did your original timeline for the rational function lessons change? 
o If yes, in what ways? 
o If no, what do you think helped you in constructing a timeline that was 

successful? 
• Did you have any difficulty in selecting the tasks/activities for these rational 

function lessons? 
o If yes, why? 
o If no, why not? 

• How do you think the implementation of the applets went in your class?  
 

 
• Did you experience any moments during your planning for the applets that was 

awkward or unusual? If so what were they? 
• Did you consider the assessments that you will give your students when planning? 
• During your video journal planning sessions, you kept stating that the applets 

helped you plan your lessons. Can you please explain how the applets helped you 
plan your lessons? 

o Do you think the curriculum does a good job of helping you plan your 
rational function lessons? 

o How is planning with the applets compare to planning with the 
curriculum?  

• How much did you practice with the applets before teaching with them? 
o Did you have the guides out at the same time?  

• Did you experience any moments during the implementation of the applets that was 
awkward or unusual? 

o If so what/when did they occur? 
o Do you still have questions about the applets or applet guides? 

• Did you experience or see a change in your classroom structure/environment when 
the applets were introduced? 

o Were the discussions in your classroom affected? More or less? 
• Would you use this package of materials again?  

o If so, would you modify anything? If not, why?  
§ Time, order of lessons, etc.  

o Do you still believe that it is important to teach the algebraic rules of 
rational functions before using the applets? Why? 

• If you were to teach with these applets again would you teach them in the same 
manner? 

• Did these applets change your understanding of rational function in any way?  
o If so, how? 

• Do you believe that the students developed the mathematical understandings of 
rational functions that you designed your lessons for?  

o What leads you to your conclusion? 
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• Did you change mathematical understandings for students from the first semester to 
the second semester based on planning using the applets? 

o Would you add any additional mathematical understandings for rational 
functions after teaching in this semester with the applets? 

• Do you think your understanding of rational functions has changed over the two 
semesters? If yes, in what ways? If no, why not? 

• Do you think your instruction for rational functions has changed over the course of 
the two semesters? 

• Are you planning on giving an assessment on rational functions to your students? 
o If yes, what type of assessment? 
o When would you be giving the assessment? 
o Can I get copies of your assessment? (I do not need any identifying 

information about the students. Only the scores and the questions. ) 
• Since MAT170 has a common final, I would like permission to gather information 

about the Mod 6 items that are on the exam. This entails only the answers from 
those items with no student information.  

	
Now	I	am	going	to	show	you	short	video	clips	from	the	observation.	My	goal	in	doing	
this	is	to	help	you	recall	events	from	the	lesson.	We	will	watch	the	video	clips	one	at	a	
time	and	I	will	ask	you	to	describe	your	thoughts	and	emotions	at	the	time	to	the	best	
of	your	ability.	
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APPENDIX D 

DIDACTIC OBJECTS 
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Moving	Vectors	

	
	
	
	
Sum	Bar	
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Rat	Bar	

	
	
	
	
Rat	Graph	
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APPENDIX E 

ADDITIONAL DIDACTIC OBJECT SUPPORTS 
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Open	Moving	Vectors.ggb	
Object	setting:	
The	f(x)	and	g(x)	buttons	are	check.		
Discussion:		
We	have	already	discussed	algebraic	procedures	to	find	f(x)	+	g(x)	but	now	we	do	
not	know	the	rule	of	the	function.	Instead,	we	have	the	graph	of	both	f(x)	and	g(x).	
How	can	we	determine	f(x)	+	g(x)	without	knowing	the	rule	of	the	functions?	(Let	
students	have	a	discussion.	Once	the	student	groups	or	pairs	have	made	some	sort	of	
agreement	move	to	next	discussion.)		
	
Discussion:		
What	do	we	have	to	envision	if	we	were	to	find	the	f(x)+g(x)	graph?	What	does	f(x)	
represent?	What	does	g(x)	represent?	What	does	f(x)+g(x)	represent?	(Hopefully	
students	will	explain	that	they	need	to	envision	taking	the	vertical	distance	from	the	
horizontal	axis	to	the	graph	of	f(x)	and	add	the	vertical	distance	from	the	horizontal	
axis	to	the	graph	of	g(x).)	
Object	setting:	
	 Check	the	f(x)	vector	and	g(x)	vector	after	the	students	explain	what	f(x)	and	
g(x)	represent.		
	
Object	setting:	
Show	students	the	capabilities	of	the	GeoGebra	file	such	as	moving	the	g(x)	vectors	
as	well	as	the	reset	button.		
Discussion:		
Now	that	we	have	discussed	what	we	have	to	envision	to	find	f(x)	+	g(x),	use	the	
graph	and	the	magnitude	of	f(x)	and	g(x)	to	construct	the	graph	of	f(x)	+	g(x).	(In	
order	for	students	to	graph	a	sketch	of	the	function	they	will	need	to	uncheck	the	f(x)	
and	g(x)	vectors	and	use	the	ABC	drop	down	menu	to	select	the	pen	tool.	Allow	
students	to	explore	the	abilities	of	the	GeoGebra	file.)	
	
Note:	As	you	walk	the	room	make	sure	that	the	students	are	not	only	moving	the	
g(x)	vectors	and	trying	to	trace	f(x)	+	g(x).	You	can	remind	students	to	use	the	reset	
button	if	they	get	stuck	or	make	a	mistake.	Also	suggest	placing	one	arrow	at	the	
beginning	of	the	other	arrow.		
	
	
Discussion:		
Have	students	re-explain	what	they	had	to	do	to	find	the	graph	of	f(x)	+	g(x).		
Note:	You	may	even	want	students	to	write	down	what	f(x),	g(x)	and	f(x)	+	g(x)	
represent.		
Object	setting:	
Show	sample	of	traced	f(x)	+	g(x)	graph.	(You	can	type	into	the	input	bar	
h(x)=f(x)+g(x),	this	will	give	the	exact	graph	of	f(x)+g(x).)	
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Open	the	file	Sum	Bar.ggb	
Object	setting:	
N	=	1	and	D	=	1	
Discussion:	What	is	the	sum	of	Top	and	Bot?	(Repeat	this	question	for	each	of	the	
object	settings	below.)	
	
Object	setting:	
1.)	Set	t	=1.12,	Top	+	Bot	=	4	
2.)	Set	t	=	3.04,	Top	+	Bot	=	6	
3.)	Set	t	=	5.92,	Top	+	Bot	=	9	
4.)	Set	t	=	-0.96,	Top	+	Bot	=	2	
Discussion:	How	could	we	represent	the	value	of	the	sum	of	Top	and	Bot?	Is	there	a	
notation	that	would	help	us	distinguish	between	the	values	of	the	sum	of	Top	and	
Bot?	
Note:	If	students	do	not	suggest	function	notation	urge	them	in	that	direction	
	
	
Object	setting:	
N	=	1,	D	=1,	t	=	-0.96	
Discussion:	Ask	students	to	use	the	distance	between	their	index	fingers	to	
represent	the	value	of	the	sum	of	Top(t)	and	Bot(t).		
Note:	As	you	slide	the	t	value	scale	from	-0.96,	to	1.12,	3.04,	and	5.92,	you	should	
notice	the	students	hands	growing	further	and	further	apart.	(You	are	trying	to	get	
students	to	see	the	sum	of	Top(t)	and	Bot(t)	as	a	quantity)	
	

Open	the	file	Rat	Bar.gcf.	
	

Object	setting:	
Scenario	=	0	and	Display	=	0	
Discussion:	What	is	the	relative	magnitude	of	the	Top	and	Bot?	In	other	words,	
what	is	the	measure	of	the	Top	in	units	of	the	Bottom?	(Repeat	this	question	for	each	
of	the	object	settings	below.)	
	
Object	setting:	
1.)	Set	a	=0.78,	Top/Bot	=	1	
2.)	Set	a	=	1.12,	Top/Bot	=	2	
3.)	Set	a	=	1.46,	Top/Bot	=	8	
Discussion:	How	can	we	represent	these	relative	magnitudes	to	differentiate	
among	them?	Is	there	a	notation	that	would	help	us	make	a	distinction	between	
each	of	these	relative	magnitudes?	
Note:	If	students	do	not	suggest	function	notation	urge	them	in	that	direction	
	
Object	setting:	
Scenario	=	0,	Display	=1,	a	=	0.78	
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Discussion:	Ask	students	to	use	the	distance	between	their	index	fingers	to	
represent	the	relative	magnitude	of	Top(a)	and	Bot(a).		
Note:	As	you	slide	the	a	value	scale	from	0.78	to	1.12,	1.38,	1.46,	and	1.54,	you	
should	notice	the	students	hands	growing	further	and	further	apart.	(You	are	trying	
to	get	students	to	see	the	relative	magnitude	as	a	quantity)	
	
Object	setting:	
Scenario	=	0,	Display	=	1,	a	=	0	
Press	the	play	button	on	the	a	slider	
Discussion:	Explain	to	the	students	that	they	should	still	use	the	distance	between	
their	index	fingers	to	represent	the	relative	magnitude.		
Note:	As	the	slider	for	a	is	playing	the	students	demonstrate	relative	magnitude	as	
increasing	and	decreasing.	Let	the	students	practice	and	discuss	until	majority	of	
students	seem	satisfied	with	their	representation.	
	
	
Object	setting:		
Pause	the	a	slider	until	you	explain	the	discussion	below	then	begin	the	slider	again.	
Discussion:	Tell	students	to	use	the	distance	between	the	tabletop	and	their	left	
hand	to	represent	the	relative	magnitude.		
Note:	Look	for	students	to	demonstrate	relative	magnitude	using	tabletop	and	their	
left	hand.		
	
Object	setting:		
Pause	the	a	slider	until	you	explain	the	discussion	below	then	begin	the	slider	again.	
Discussion:	Point	out	the	value	of	the	a	slider	has	been	varying	from	0	to	3.14.	Tell	
students	for	this	next	part	they	are	still	going	to	track	the	relative	magnitude	with	
the	table-top	and	their	left	hand	but	they	will	now	track	the	value	of	a	by	sliding	
their	right	index	finger	along	the	table	top.		
Note:	Be	Patient	and	let	the	students	struggle.	Students	will	need	a	significant	
amount	of	time	to	coordinate	both	the	relative	magnitude	and	the	a	value.	
(Perfection	is	not	a	priority)	
	
Object	setting:		
Pause	the	a	slider	until	you	explain	the	discussion	below	then	begin	the	slider	again.	
Discussion:	Tell	students	to	still	track	both	the	relative	magnitude	and	the	a	value,	
but	this	time	they	will	need	to	keep	their	left	hand	directly	above	their	right	index	
finger.		
Note:	Be	Patient	and	let	the	students	struggle.	Students	will	need	a	significant	
amount	of	time	to	coordinate	both	the	relative	magnitude	and	the	a	value.	
(Perfection	is	not	a	priority)	
	
Discussion:	When	students	can	coordinate	both	quantities’	values	ask:	Has	what	we	
have	just	done	have	anything	to	do	with	graphing?	What	was	your	left	hand	
sketching	in	the	air?	
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Note:	You	can	always	go	back	to	the	pervious	discussion	for	additional	practice	if	
students	seem	lost.	Have	the	students	pay	attention	to	what	their	left	hand	if	
sketching.	
	
Discussion:	Tell	students	to	sketch	a	graph	of	the	relative	magnitude	of	Top(a)	to	
Bot(a)	in	relation	to	the	value	of	a	on	graph	paper.	Encourage	students	to	discuss	
one	another’s	graphs	and	answer	the	questions	on	the	worksheet.		
	

Open	file	Rat	Graph.gcf	
	

Discussion:	Explain	to	the	students	that	these	are	graphs	of	two	functions	n	and	d.	
The	left	graph	is	n(x)	and	the	right	graph	is	d(x).	Can	we	use	the	same	way	of	
thinking	we	just	developed	in	the	first	activity	to	envision	and	construct	a	graph	of	
h(x)	=	n(x)/d(x)?	
	
Object	setting:		
Scenario	=	0,	Display	=	1	
Discussion:		Ask	again,	can	we	use	the	same	way	of	thinking	we	just	developed	in	
the	first	activity	to	envision	and	construct	a	graph	of	n(x)/d(x)?	Additionally,	ask	
students	to	describe	the	behavior	of	h(x),	as	x	increases/decreases	without	bound.	
Also	make	sure	to	ask	questions	about	the	behavior	of	h(x)	when	n(x)	and/or	d(x)	
equals	zero.	Have	students	construct	the	sketch	of	the	graph	h(x)	=	n(x)/d(x)	on	
graph	paper.	
	
Object	setting:		
Scenario	=	1,	Display	=	1	
Discussion:	Have	students	construct	the	sketch	of	the	graph	h(x)	=	n(x)/d(x)	on	
graph	paper.	Once	the	students	have	began	to	construct	the	sketch	of	the	graph	of	h	
makes	sure	to	discuss	the	behavior	of	h(x)	similarly	to	the	pervious	object	setting.		
	
Object	setting:		
Scenario	=	2,	Display	=	1	
Discussion:	Have	students	construct	the	sketch	of	the	graph	h(x)	=	n(x)/d(x)	on	
graph	paper.	Once	the	students	have	began	to	construct	the	sketch	of	the	graph	of	h	
makes	sure	to	discuss	the	behavior	of	h(x)	similarly	to	the	pervious	object	setting.		
	
	

iMathAS Online Worksheet 

This was covered in 02-LessonLogic the online worksheet in MathAS would be a perfect summative 
assessment for this lesson on rational functions.  
	
Page	1	of	iMathAS	Worksheet	
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Page	2	of	iMathAS	Worksheet	
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Page	3	of	iMathAS	Worksheet	
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APPENDIX F 

DR THOMPSON’S ACTIVITY GUIDE 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



  236 

Rational Function Activity 
Pat	Thompson	

Open	the	file	Rational	Function	#1.gcf.	
Phase 1: Conceptualizing and representing relative magnitude as a quotient of 
functions 

Scenario = 0, Display = 0 

1. Relative magnitude of Top and Bottom: Measure Top in units of Bottom 

 
Relative magnitude of Top and Bottom is 1. 
Represent that: Top/Bot = 1 

2. Again: 

 
Represent this: Top/Bot = 2 (approximately) 

3. Again: 
 

 
Represent this: Top/Bot = 8 (approximately) 
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4. Problem: We said “Top/Bot” equals 3 different numbers. How can we represent 
these relative magnitudes to differentiate among them? 
 
Students often have suggested using subscripts or other similar device: 
Top1/Bot1=1, Top2/Bot2=2, Top3/Bot3=8 
Accept this, then ask, “How could we represent these relative magnitudes so that 
we can re-create them?” Point out that we used the a slider to change magnitudes.  

5. Lead the conversation toward the use of function notation, e.g. 
Top(0.78)/Bot(0.78) = 1. Introduce the idea yourself if it does not arise from the 
students. Recreate the above displays, and represent the relative magnitude using 
function notation and values of a. 
Scenario = 0, Display = 1 

	
	
Phase 2: Internalizing Relative Magnitude as a Quantity 

All	values	of	a	are	approximate.	Don’t	get	hung	up	on	getting	them	exact	while	
working	with	students.	But	practice	setting	the	value	of	a	to	these	different	settings	
before	using	the	tool	with	students.	

Scenario = 0, Display = 1, a  = 0.78 
The	aim	in	this	phase	is	that	students	cease	seeing	just	two	magnitudes	separately	
and	instead	begin	to	see	relative	magnitude	of	these	magnitudes	as	a	quantity	in	its	
own	right	in	addition	to	seeing	the	two	magnitudes	separately.	This	phase	is	
designed	to	that	students	develop	an	embodied	image	of	relative	magnitude	of	Top	
and	Bot	that	they	can	subsequently	(in	the	next	phase)	coordinate	with	the	value	of	
a	(actually,	with	experiential	time).	Their	ability	to	coordinate	relative	magnitude	
with	experiential	time	will	be	foundational	for	their	ability	to	sketch	a	graph	of	the	
relative	magnitude	of	Top(a)	and	Bot(a)	in	relation	to	the	value	of	a.	

Ask	students	to	hold	their	hands	like	below.	The	initial	distance	between	their	index	
fingers	will	represent	the	relative	magnitude	of	1	(alert	them	that	they	might	want	
to	think	ahead	about	how	large	they	want	a	distance	of	1	to	be).	

6. Slide a to a value of 0.78. Ask students to use the distance between their index 
fingers to represent the relative magnitude of Top(a) and Bot(a).  
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7. Slide a to a value of 1.12. Ask students to use their index fingers to represent the 
relative magnitude of Top(a) and Bot(a).  

	

8. Slide a to a value of 1.38. Ask students to use their index fingers to represent the 
relative magnitude of Top(a) and Bot(a).  

9. Slide a to a value of 1.46. Ask students to use their index fingers to represent the 
relative magnitude of Top(a) and Bot(a). Deal playfully with their complaints that 
the distance is too large or that their arms are not long enough. 

10. Slide a to a value of 1.59. Ask students to use their index fingers to represent the 
relative magnitude of Top(a) and Bot(a). Deal playfully with their complaints that 
the distance is too large or that their arms are not long enough. 

11. Repeat Steps 6-10, starting with 0.78, but moving the slider to any successive 
values of a. Repeat until students can represent various relative magnitudes with 
ease. 
Scenario = 0, Display = 1, a = 0. 

Tell	students	that	the	value	of	a	can	vary	automatically	(demonstrate	by	clicking	the	
a	slider’s	play	button).	

Reset	a	to	0.	Tell	students	to	use	their	index	fingers	to	track	the	relative	magnitude	
as	the	bars	vary.	

Click	the	play	button	on	the	a	slider.	DO	NOT	PAUSE	IT—REGARDLESS	OF	HOW	
MANY	STUDENTS	ASK	YOU	TO	PAUSE	IT.	

Let	students	practice,	discuss,	or	anything	else	they	find	helpful	as	they	attempt	to	
vary	the	distance	between	their	index	fingers	to	represent	the	relative	magnitude	of	
Top(a)	and	Bot(a)	as	it	varies.	Continue	until	all	students	are	satisfied	that	they	are	
representing	reasonably	well	the	relative	magnitude	as	it	varies.	
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 Phase 3: Graphing Relative Magnitude 

12. Tell students to rotate their left hand 90° clockwise and to use the 
table top as their right hand, and to use their index finger as their 
measuring point. 

13. Reset the a slider to 0. 

14. Play the a slider and let students represent the relative magnitude as it varies. Stop 
when students are satisfied with their attempts to represent the varying relative 
magnitude. 

15. Stop when students are satisfied with their attempts to represent the varying 
relative magnitude.  

16. Point out that the value of the a slider has been varying the whole time that the 
were tracking the relative magnitude of Top(a) and Bot(a), and that its value varies 
from 0 to 3.14. 

17. Tell students to continue using their left hand to track the relative magnitude, but 
in addition to slide their right forefinger along the table to represent the value of a. 
STUDENTS WILL TAKE A WIDE VARIETY OF TIMES TO ATTAIN 
PROFICIENCY. DO NOT MAKE EXACTNESS A PRIORITY. 

18. Tell students to keep their left hand directly above their right forefinger as they 
track both quantities’ values. STUDENTS WILL TAKE A WIDE VARIETY OF 
TIMES TO ATTAIN PROFICIENCY. DO NOT MAKE EXACTNESS A PRIORITY. 

19. When students can coordinate both quantities’ values satisfactorily, ask them if 
what they have just done has anything to do with graphs. If necessary, ask them if 
their left index finger traced a graph “in the air”. If necessary, have students 
repeat #18 again, this time paying attention to what they are sketching “in the 
air”. 

20. Tell students to sketch the graph of the relative magnitude of Top(a) to Bot(a) in 
relation to the value of a. 

21. Discuss their graphs. Why do they have the shape they do? What does the graph 
say about the relative magnitude of Top(a) and Bot(a) for values of a between 0 
and 1? Between 1 and 2? Between 2 and 3? 

22. Write f(x) = Top(x)/Bot(x). Ask what they think the graph of y = f(x) will look like. 
Scenario = 0, Display = 2 

23. Point out that these are the functions they were working with. That the value of 
the top magnitude was |sin(a)| for each value of a and that the value of the 
bottom magnitude was |cos(a)| for each value of a. 

24. Ask students what the graph of y = |sin(x)|/|cos(x)| might look like. 
Phase 4: Doing the same thing, with graphs 

Open	the	file	Rational	Function	#2.gcf	

25. Tell students that these are the graphs of two functions n and d. The left graph is 
y = n(x) and the right graph is y = d(x). 
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26. Ask students if they can use the way of thinking that they just developed to 
envision the graph of y = n(x)/d(x). Discuss. 
Scenario = 0, Display = 1 

27. Ask students again if they can use the way of thinking that they just developed to 
envision the graph of y = n(x)/d(x). Discuss as needed. 

28. Tell students to construct the graph of y = n(x)/d(x). Discuss as needed. 
Scenario = 1, Display = 1 

29. Tell students to construct the graph of y = n(x)/d(x). Discuss as needed. 
Scenario = 2, Display = 1 

30. Tell students to construct the graph of y = n(x)/d(x). Discuss as needed. Note that 
the two functions approach 0 simultaneously at several values of x. Go into this 
issue as deeply as you dare. 
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APPENDIX G 

JOURNALING PROMPTS 
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These	will	be	the	questions	provided	to	the	participants	in	conjunction	with	the	journal	
that	they	will	use	to	answer	these	questions	before	they	teach	and	after	each	lesson	on	
rational	functions.	This	journal	will	be	given	back	to	the	researcher	after	the	final	
observation	but	before	the	post-interview.		
	

Phase	1:	Journal	Prompts	
	

Please	provide	as	much	detail	as	possible	when	answering	the	questions.	Remember	I	
am	trying	to	better	understand	your	planning	and	teaching	process	the	more	
information	you	can	provide	me	the	better.		

	
	

Answer	these	questions	before	teaching	rational	functions,	preferably	when	you	are	
planning	your	lessons	on	rational	functions:	
	

• How are you planning on teaching rational functions? 
• Do you have a time line of how many days this lesson will take? If yes, please 

give detail about time line. 
• What key ideas/understandings do you want students to walk away with? 
• What activities or tasks will you use to assist students in building those 

understandings? 
o Please be specific and explain which task/activity goes with the key 

understandings you selected from above. 
• Do you plan to use any resources outside of the Pathways Pre-Calculus 

curriculum during these lessons? 
o If yes, why? 

• Did you have any difficulty in selecting the tasks/activities for these rational 
function lessons? 

o If yes, why? 
o If no, why not? 

• Do you believe that your students will have previous experience with rational 
functions? 

o If yes, what type of experiences? 
§ How will there previous experiences affect the rational function 

lessons you have planned? 
o If no, what leads you to believe that your students have not been exposed 

to rational functions until this point? 
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After	each	lesson	on	rational	functions	answer	the	following	questions:	
	

• Overall how do you feel the lesson went?  
 

	
• How do you think your students did during the lesson? 

 

	
• Was today’s lesson a good representation of an average day in class? 

o If yes, give specific details as to why this day was an average day in class? 
o If not, give details on what made this not an average day in class? 

• What was the overall learning goal of this lesson?  
o Do you think your students demonstrated the understanding(s) that you 

were striving for in this lesson? 
§ If yes, please give an example from class. 
§ If no, please give an example form class. 

• Were there any notable disruptions in the lesson? 
o Why do you believe these disruptions might have occurred? 
o Could you have done anything differently to avoid the disruption? 

• Did you cover everything you wanted to cover in this lesson? (This includes tasks, 
discussions, and activities) 

o If yes, why?  
o If no, what tasks, discussions, and activities would you have liked to 

cover? 
• After today’s lesson has your original timeline for the rational function lessons 

changed? 
o If yes, in what ways? 
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Phase	2:	Journal	Prompts	
	

Please	provide	as	much	detail	as	possible	when	answering	the	questions.	Remember	I	
am	trying	to	better	understand	your	planning	and	teaching	process	the	more	
information	you	can	provide	me	the	better.		
	
Answer	these	questions	before	teaching	rational	functions,	preferably	when	you	are	
planning	your	lessons	on	rational	functions:	
	

• How are you planning on teaching rational functions with the applets? 
• Do you have a time line of how many days this lesson will take? If yes, please 

give detail about time line. 
• What key ideas/understandings do you want students to walk away with? 
• What activities or tasks, including the applets, will you use to assist students in 

building those understandings? 
o Please be specific and explain which task/activity/applet goes with the key 

understandings you selected from above. 
• Do you have any reservations about using the applets in your rational function 

instruction? Please give specific details.  
• How do you think your students will have to adapt when you implement the 

applets?  
• Has planning with the applets changed the way you usually plan your lessons? 

o Is the planning process more time consuming? 
o Was it easier to plan your lesson using the applets? 
o Are you experiencing any frustration or excitement in planning to teach 

with the applets? 
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After	each	lesson	on	rational	functions	answer	the	following	questions:	
	

• Overall how do you feel the lesson went? 
 

	
 

• How did you feel while teaching with the applets? 

	
• How do you think your students did during the lesson? 

	
• Was today’s lesson a good representation of an average day in class? 

o If yes, give specific details as to why this day was an average day in class? 
o If not, give details on what made this not an average day in class? 

• Were there any notable disruptions in the lesson? 
o Why do you believe these disruptions might have occurred? 
o Could you have done anything differently to avoid the disruption? 

• What was the overall learning goal of this lesson?  
o Do you think your students demonstrated the understanding(s) that you 

were striving for in this lesson? 
§ If yes, please give an example from class. 
§ If no, please give an example from class. 

• Did you cover everything you wanted to cover in this lesson? (This includes tasks, 
discussions, activities, and applets) 

o If yes, why?  
o If no, what tasks, discussions, and activities would you have liked to 

cover? 
• After today’s lesson has your original timeline for the rational function lessons 

changed? 
o If yes, in what ways? 
o If no, what makes you think that you are still aligned with your original 

timeline? 
 


