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ABSTRACT  
   

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently 

at the forefront of strategies that enhance immune based treatment of a variety of tumors. 

Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of 

CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes on the infected/malignant 

cell surface. However, how CTLs are able to respond to antigenic peptides with high specificity is 

largely unknown. Also unknown, are the different mechanisms underlying tumor immune evasion 

from CTL-mediated cytotoxicity. In this dissertation, I investigate the immunogenicity and 

dysfunction of CTLs for the development of novel T-cell therapies. Project 1 explores the 

biochemical hallmarks associated with HLA-I binding peptides that result in a CTL-immune 

response. The results reveal amino acid hydrophobicity of T-cell receptor (TCR) contact residues 

within immunogenic CTL-epitopes as a critical parameter for CTL-self/nonself discrimination. 

Project 2 develops a bioinformatic and experimental methodology for the identification of CTL-

epitopes from low frequency T-cells against tumor antigens and chronic viruses. This 

methodology is employed in Project 3 to identify novel immunogenic CTL-epitopes from human 

papillomavirus (HPV)-associated head and neck cancer patients. In Project 3, I further study the 

mechanisms of HPV-specific T-cell dysfunction, and I demonstrate that combination inhibition of 

Indoleamine 2, 3-dioxygenase (IDO-1) and programmed cell death protein (PD-1) can be a 

potential immunotherapy against HPV+ head and neck cancers. Lastly, in Project 4, I develop a 

single-cell assay for high-throughput identification of antigens targeted by CTLs from whole 

pathogenome libraries. Thus, this dissertation contributes to fundamental T-cell immunobiology 

by identifying rules of T-cell immunogenicity and dysfunction, as well as to translational 

immunology by identifying novel CTL-epitopes, and therapeutic targets for T-cell immunotherapy. 
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CHAPTER 1 

INTRODUCTION 

 

The vertebrate immune system is composed of a constellation of diverse immune cell types, each 

with an exquisite ability to protect the host from infectious agents, cancers, and other 

immunopathologies. Central to the success of this elegant complex system is the arm of adaptive 

immunity, dominated by the effects of T-lymphocytes and B-lymphocytes. In terms of evolutionary 

history, an immunological “big bang” resulted in the adoption of T/B lymphocyte receptors as 

dominant anti-pathogen defense system by the vertebrate lineage (Flajnik, 2014; Pancer & 

Cooper, 2006). The result is the near virtual conservation of the adaptive lymphocyte lineage in 

jawed vertebrates, underscoring the importance of lymphocyte-mediated immune protection 

across the tree of life (Pancer & Cooper, 2006). T/B Lymphocytes have three fundamental 

hallmarks that make them indispensable for host defense: 1) antigen specificity that is critical for 

self/nonself discrimination limiting off-target effects 2) receptor diversity that ensures sufficient 

frequency of pre-existing pool of immune cells to effectively combat any unknown pathogen over 

the course of the host’s lifetime 3) the unique immunologic memory that issues recall responses 

against a previous pathogen, and forms the basis of all modern vaccines (Abbas, Lichtman, & 

Pillai, 2014; Moticka, 2016a). 

Our understanding of the hallmarks of the lymphocyte immune response and its 

protective effects dates back to the early days of variolation performed by the Chinese as an 

effective deterrent against smallpox (Leung, 2011; Moticka, 2016a). It wasn’t until Edward 

Jenner’s smallpox vaccination efforts in 1796, that a true appreciation for concept of 

immunological memory impact on modern medicine was truly felt (Stewart & Devlin, 2006). About 

hundred years later, in 1890, an American pathologist William B Coley observed that injecting 

sarcoma patients with heat inactivated bacteria into the tumors resulted in occasional prolonged 

remissions (Decker & Safdar, 2009). It is now believed that a combination of innate and adaptive 

immune response by trafficking immune cells into the tumor injected with “Coley’s toxins” resulted 

in tumor remission observed in these patients (Decker & Safdar, 2009). Today, close to 120 years 

https://paperpile.com/c/dQ997g/qo4U+V94C
https://paperpile.com/c/dQ997g/qo4U+V94C
https://paperpile.com/c/dQ997g/V94C
https://paperpile.com/c/dQ997g/mvuJ+Ghln
https://paperpile.com/c/dQ997g/mvuJ+Ghln
https://paperpile.com/c/dQ997g/Ghln+lOLf
https://paperpile.com/c/dQ997g/1Ki8
https://paperpile.com/c/dQ997g/rPIM
https://paperpile.com/c/dQ997g/rPIM
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after Dr. Coley’s findings, cancer immune therapies have come to the forefront of therapeutic 

interventions of cancer (Couzin-Frankel, 2013).  

This chapter describes a broad historical account into the discovery of the major players 

in cell mediated immune response: MHC-restriction and T-cells, along with the foundations of 

self/nonself discrimination and cancer immunology. Particular focus is given to the last 50 years 

of research in T-cell immunology and tumor immunology. Finally, relevant unanswered questions 

specifically relating to this dissertation work, and contributions addressed by the investigations 

pursued in this dissertation are addressed.  

1.1 Discovery, structure and function of MHC 

1.1.1. Discovery of MHC 

The Major Histocompatibility complex (MHC) genes, also called human leukocyte antigen (HLA), 

make proteins that form the crux of adaptive cell mediated T-cell response. There is a deep 

historical relationship between tumor immunology and MHC, going back to early 1900s. During 

the early years of transplantation and tumor immunology, tumors in inbred and random outbred 

mice were commonly used to understand immune responses. In 1909, Ernest Tyzzer, an 

American pathologist, and a founding member of the American association of cancer research 

(AACR), studied the progression and rejection of tumors transferred between the inbred 

Japanese waltzing mice and the outbred albino mice (Moticka, 2016c). Tyzzer observed that 

spontaneous tumors from the Japanese waltzing mice were able to grow when implanted into 

other Japanese waltzing mice, but were rejected when implanted into the outbred albino mice 

(Moticka, 2016c). Along with another researcher in his lab, Clarence C. Little, Tyzzer also 

observed that while F1 hybrids crossed between the Japanese waltzing mice and inbred C57Bl 

mice accepted the transplanted tumors, almost 98% of the F2 generation hybrids rejected it 

(Little, 1914, 1920; Moticka, 2016c). These results indicated that there was a genetic basis of 

tumor rejection in these animals. The data from F2 hybrid mice seemed to indicate a non-

mendelian mode inheritance of tumor rejection, which they proposed in a 1914 paper (Little, 

https://paperpile.com/c/dQ997g/wxn7
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN+0IEA+OlRc
https://paperpile.com/c/dQ997g/0IEA
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1914). Little and Tyzzer later reconciled their data by proposing that perhaps more than one gene 

(upto 12, according to their calculations) was involved in these tumor rejection experiments (Little, 

1914, 1920; Moticka, 2016c).  

 During World War 2, Peter Groer performed similar experiments to identify genetic traits 

underlying tumor rejection by outbred mice. Gorer proposed that blood group antigens might be 

the source of tumor rejection in the different mice receiving the transplantable tumors. He 

reasoned that if this was the case, they should bear antibodies (which were described years 

before by Paul Ehrlich) against red blood cells from tumor donor in the recipient (Moticka, 2016c). 

Gorer was able to show that three types of antibodies indeed developed against blood antigens in 

the different types of inbred and outbred mice receiving the transplanted tumors (Gorer, 1936). 

Gorer then collaborated with George D. Snell from Jackson Laboratory who was interested in 

“histocompatibility genes” by studying tumor rejection in outbred mice. Together, they showed 

that tumors transplanted from mice with one of the blood antigens Groer identified (antigen II), 

was immediately rejected by mice which lacked antibodies against antigen II (Gorer, Lyman, & 

Snell, 1948). Gorer and Snell renamed this gene as Histocompatibility gene 2 (H-2) and proposed 

rules for tumor rejection during transplantation (Gorer et al., 1948).    

 The severe need for medical research on transplantation, especially of skin grafts to help 

soldiers and civilians recover from their severe injuries peaked during World War 2 (Moticka, 

2016c). Therefore, under the direction of Medical research Council of UK,  Peter Medawar 

studied transplanting non-malignant tissue in mice models, performing experiments largely similar 

to Groer and Snell (Moticka, 2016c), and obtained similar results as the MHC-H-2 antigen 

researchers. Medawar also observed that the severity of rejection of skin grafts transplanted 

between between animals decreased as the the “relatedness” between the animals increased 

(Medawar, 1944). Medawar made the very astute observation that graft rejection was therefore 

an immunological process associated with the adaptive immunity based on 1) the speed of 

secondary rejection (vastly higher than preliminary rejections) similar to “immune memory” 2) the 

specificity of graft rejection with limited off-target effects (Medawar, 1944). Medawar and 

colleagues were further able to demonstrate that it was lymphocytes from draining lymph nodes 

https://paperpile.com/c/dQ997g/0IEA
https://paperpile.com/c/dQ997g/0IEA+OlRc+y4QN
https://paperpile.com/c/dQ997g/0IEA+OlRc+y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/8SF9
https://paperpile.com/c/dQ997g/7sgA
https://paperpile.com/c/dQ997g/7sgA
https://paperpile.com/c/dQ997g/7sgA
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/09JM
https://paperpile.com/c/dQ997g/09JM
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in the transplanted animals that were responsible for the vigorous reaction against transplanted 

skin grafts (Brent, Brown, & Medawar, 1958; Medawar, 1944).  

Based on decades of previous research, in 1956, in a landmark study, the first ever 

successful kidney transplant was performed between monozygotic twins (Merrill, Murray, 

Harrison, & Guild, 1956). In the following years, Jean Dausset and Baruj Benacerraf identified the 

human MHC (HLA) protein and it was shown that tumor rejection antigens and transplant 

rejection antigens were the same, and they were linked to lymphocyte-mediated graft rejection 

(Benacerraf, 1981; Dausset, 1958). For their discovery of MHC, George Snell, Jean Dausset and 

Baruch Benacceraf were awarded the Nobel Prize for Physiology or Medicine in 1980 (Moticka, 

2016c). Peter Medawar shared the Nobel Prize with Sir Frank Burnett for their contributions to 

transplantation immunology in 1960 (Moticka, 2016c).  

1.1.2. Structure and function of MHC 

In the 1970s, there were several labs working on elucidating the structure of the transplant 

molecule - the MHC. Because Ethan Shevach had previously shown that antibodies raised 

against MHC could interfere with antigen induced lymphocyte proliferation (Shevach, 1972), Pete 

Cresswell and colleagues eluted and purified MHC from surface of lymphocytes (Cresswell, 

Turner, & Strominger, 1973). The results revealed the presence of two polypeptide fragments; a 

30 KD fragment and a 11 KD fragment (Cresswell et al., 1973). The smaller 11 KD fragment was 

later shown by by Howard Grey and Pete Cresswell to be the the Beta-2-microglobulin (β2M) 

protein (Figure 1B), which non-covalently associates with with MHC-I (Grey, 1973). Finally, in 

1987, the crystal structure of human MHC HLA-A*02:01-β2M complex was solved by Pamela J. 

Björkman, Don C. Wiley and Jack L. Strominger (Bjorkman et al., 1988). Figure 1A shows a 3D 

reconstructed model of the original crystal structure from Bjorkman et al., which demonstrated a 

clear cleft formed by the HLA’s α1, α2 domains for foreign antigen binding (later shown to be 

linear peptides). Figure 1B shows the orientation of an antigenic peptide from the Influenza virus 

A protein M1 forming non-covalent binding in the peptide binding cleft formed by α1-α2 domains. 

The MHC class II (HLA-II) structure, solved much later again from JL Strominger and DC Wiley’s 

https://paperpile.com/c/dQ997g/09JM+vH07
https://paperpile.com/c/dQ997g/jyU3
https://paperpile.com/c/dQ997g/jyU3
https://paperpile.com/c/dQ997g/lCrU+6CbI
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/y4QN
https://paperpile.com/c/dQ997g/SVVB
https://paperpile.com/c/dQ997g/sRzO
https://paperpile.com/c/dQ997g/sRzO
https://paperpile.com/c/dQ997g/sRzO
https://paperpile.com/c/dQ997g/lBFF
https://paperpile.com/c/dQ997g/cX8P


  5 

 

Figure 1-1. 3D protein structure of HLA-A*02:01 derived from Protein Database (PDB). (A) 
3D reconstruction of original x-ray crystal structure of the human-MHC HLA-A*02:01 complex 
(Bjorkman et al., 1988) showing α1-α3 domains of human HLA-A*02:01 heavy chain (green), and 
β2M (orange) complex derived from PDB (Rose et al., 2017). (B)  Top view of the HLA-A*02:01 
α1-α2 domains forming the antigen binding cleft in complex with a viral-antigenic peptide 
(GILGFVFTL in grey) from Influenza A virus matrix protein from (Celie et al., 2009) (PDB 2X70). 
 
 

groups showed that it was a heterodimer formed by an α chain and a β chain (Brown et al., 

1993). 

Functionally, MHCs contribute to host immune surveillance by binding and presenting 

small linear peptides derived from intracellular proteins on the cell surface (Blum, Wearsch, & 

Cresswell, 2013; Fernando et al., 2008). Encoded in the short arm of human chromosome 6, the 

MHC-locus encompasses a multi-gene region representing one of the most polymorphic locus of 

the human genome (Blum et al., 2013; Fernando et al., 2008; Murphy & Weaver, 2016). Variants 

in this locus contribute to the control and susceptibility to a wide range of immunologic diseases 

from autoimmunity, infectious diseases to transplantation, and tumor immunity (Blum et al., 2013; 

Fernando et al., 2008). Classical antigen processing machinery posits that MHC class I (or HLA-I) 

presents such intracellular peptides to CD8+ T-cells (CTLs) while MHC class II (HLA-II) does the 

same to CD4+ T-cells (Blum et al., 2013; Fernando et al., 2008). MHC class I is expressed in all 

nucleated cells except neurons and erythrocytes, while MHC class II proteins are expressed in 

specialized immune cells such as antigen presenting cells (APCs) (Moticka, 2016c; Murphy & 

https://paperpile.com/c/dQ997g/cX8P
https://paperpile.com/c/dQ997g/2Scw
https://paperpile.com/c/dQ997g/thJj
https://paperpile.com/c/dQ997g/SxfE
https://paperpile.com/c/dQ997g/SxfE
https://paperpile.com/c/dQ997g/CjlH+lWKh
https://paperpile.com/c/dQ997g/CjlH+lWKh
https://paperpile.com/c/dQ997g/lWKh+CjlH+xbZe
https://paperpile.com/c/dQ997g/lWKh+CjlH
https://paperpile.com/c/dQ997g/lWKh+CjlH
https://paperpile.com/c/dQ997g/lWKh+CjlH
https://paperpile.com/c/dQ997g/y4QN+xbZe
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Weaver, 2016). The peptide products are primarily derived from intracellular proteolysis of 

cytosolic proteins through the proteasome for the MHC class I pathway, and from exogenous 

proteins into the lysosome for MHC class II (Blum et al., 2013). In MHC class I pathway, the focus 

of CTL-recognition in this dissertation, long peptides generated by proteasomal degradation are 

imported into the endoplasmic reticulum (ER) via the transporter associated with antigen 

processing (TAP)  molecules as shown in Figure 1-2 (Blum et al., 2013). Subsequently, these 

longer peptides are further trimmed by ER aminopeptidase (ERAAP) to short 9-11 amino acid 

linear peptides, and the short peptides with binding motifs for the respective MHC subsequently 

bind with strong affinity (Blum et al., 2013).  Peptide binding stabilizes the MHC-β2M complex, 

and subsequently the pMHC-β2M trimeric complex is exported through the Golgi complex onto 

the cell surface for CTL- evaluation (Figure 1-2) (Blum et al., 2013). Thus, in classical MHC Class 

I pathway, the predominant ligands/peptides presented on cell surface via MHC-binding are 

 

Figure 1-2. Classical MHC class I and II antigen processing pathways. Top: MHC class I 
pathway. Bottom: MHC Class II pathway. Note that MHC class I is expressed in all nucleated 
cells, while MHC class II is expressed predominantly in immune cells (APCs). Figure reproduced 
with permission from Cellular and Molecular Immunology, Chapter 6, pg 127-128, Eighth Edition, 
Abul K. abbas, Andrew H. Lichtman, Shiv Pillai. Copyright Elsevier 2015 (Appendix C1).  

https://paperpile.com/c/dQ997g/y4QN+xbZe
https://paperpile.com/c/dQ997g/CjlH
https://paperpile.com/c/dQ997g/CjlH
https://paperpile.com/c/dQ997g/CjlH
https://paperpile.com/c/dQ997g/CjlH


  7 

 
 
self-peptides. However, during a pathogenic infection for instance, non-self-proteins (as well as 

autoimmune, tumor associated proteins) are subject to the same rules, resulting in the 

presentation of non-self antigenic “epitopes” on MHC class I/I. These antigenic peptide-MHC 

complexes on both class I and class II pathways (pMHC-I, pMHC-II) ultimately leads to T-cell 

(CD8, CD4 respectively) recognition of the infected cell (Blum et al., 2013; Fernando et al., 2008). 

This process will be covered in subsequent sections. 

 

1.2 Discovery and function of T-Cells 

1.2.1. Discovery of T-Cells 

The earliest known indication of cell mediated immunity was observed when Ilya Metchnikov, a 

Russian zoologist showed that a rose thorn inserted into starfish larvae attracted cells (later 

shown to be macrophages performing phagocytosis) which surrounded, engulfed and dissolved 

the thorn (Metchnikoff, 1989; Moticka, 2016e). The relative importance between the types of 

immune response observed in infections between antibodies (demonstrated by Paul Ehrlich) and 

cellular responses (Ilya Metchnikov) was the subject of long dispute and debate, despite them 

sharing the Nobel prize for Physiology and Medicine in 1908 (Metchnikoff, 1989; Moticka, 2016e).  

In the early 1940s, Merrill Chase and Karl Landsteiner were researching on skin 

hypersensitivity and inflammation after synthetic chemical injections (Moticka, 2016e). Chase and 

Landsteiner showed that serum transfer from guinea pigs sensitized with picryl chloride (a 

synthetic chemical) injections failed to protect non-sensitized animals indicating that antibodies 

alone failed to protect against skin hypersensitivity (Landsteiner & Chase, 1942; Moticka, 2016e). 

However, other immunologists around the same time had shown that skin hypersensitivity 

matched a number of tenets of immunological memory as proposed by Peter Medawar (section 

1.1.1) including immunological memory that mediated a vigorous secondary response to 

hypersensitivity. After several failures to explain skin hypersensitivity, Chase accidentally used 
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serum contaminated with cell preparation which elicited skin hypersensitivity in normal guinea 

pigs (Landsteiner & Chase, 1942). Building on these fortuitous observations, in 1945, Chase 

demonstrated that peripheral blood cell preparations were able to transfer and initiate  skin 

sensitivity to chemicals and tuberculosis pathogen used in the previous studies (Chase, 1945), 

demonstrating what is perhaps one of the first  attempts at adoptive T-cell transfer therapy.  

 Around the same time, Peter Medawar was studying the immunologic basis on skin graft 

rejection (section 1.1.1, (Medawar, 1944)). Because of a substantial amount of antibodies in sera 

of animals and human undergoing graft rejection, Medawar assumed that serum antibodies were 

the cause (as opposed to the consequence) of skin graft rejection (Hildemann & Medawar, 1959). 

Building on Chase’s findings, in 1955, Avrion Mitchison, showed that lymphocytes from tumor 

draining lymph nodes were able to mediate the rejection of tumor grafts in syngeneic animals 

(Mitchison, 1955). Medawar, in a subsequent seminal study, then reasoned and showed that 

similar lymphocyte-mediated inflammatory reaction might also occur during non-malignant tissue 

transplantation using skin grafts (Brent et al., 1958).  

1.2.2. Discovery of T-Cell-MHC-restriction 

By 1956, it was established that antibodies are synthesized and secreted by cells that are found 

in the mature Bursa Fabricus of birds (and later in mammalian bone marrow) called B-cells (Glick 

& Sadler, 1961), but no such equivalent was found for the cell-mediated responses. In 1961, 

Jacques Miller, an Australian immunologist, discovered the function of the thymus (an organ rich 

with lymphocytes) by demonstrating that thymectomy dramatically reduced an animal’s ability to 

respond to subsequent antigen challenge (Miller, 1961). Subsequent experiments by James 

Gowans and colleagues clearly showed antigen-dependent proliferation of small lymphocytes and 

thymocytes (Gowans, Mcgregor, Cowen, & Ford, 1962). Furthermore, Rupert E. Billingham, a 

British immunologist in 1968 showed unequivocally that lymphocytes, not antibodies from skin 

graft recipient mice were able to transfer their reactivity to other untransplanted mice, 

demonstrating the true importance of lymphocyte mediated histo-incompatibility (Billingham, 

Silvers, & Wilson, 1963).  
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In subsequent years several studies indicated the link between T-cells and MHCs 

(section 1.1.1). For instance, a 1975 study by Peter Doherty and Rolf Zinkernagel demonstrated 

that activation of cytotoxic T-lymphocytes by LCMV-infected fibroblasts required MHC-

compatibility, was contingent on MHC H-2
k
 interaction and was abrogated in mice lacking MHC-

H-2
k
 molecules (R. M. Zinkernagel, 1975). Similar results of histocompatibility were observed 

using T-cells and Macrophages, T-cells and B-cells (Katz, 1973). This led Zinkernagel and 

Doherty to propose that either 1) there were two separate molecules on CTLs (one interacting 

with virus and other with MHC) - the “intimacy model”; or 2) the virus infection altered the MHC to 

provide a signal to CTLs-”the altered self” model (Rolf M. Zinkernagel & Doherty, 1974). The duo 

would later be awarded the Nobel Prize for Physiology or Medicine in 1996.  

1.2.3. T-Cell-receptor discovery and structure 

Studies on the nature of T-cell receptor (TCR) structure in early 1980s by several groups clearly 

put to rest the debate of altered self versus intimacy model proposed by Zinkernagel and Doherty 

(Allison, McIntyre, & Bloch, 1982; Haskins, 1983; Meuer, 1983). The studies indicated that the 

TCR directly interacts with the MHC-I, and the immunogenic antigen was a linear 8-11 amino acid 

stretch of peptides derived from the antigen. In essence, the altered self resulted from the 

presence of the short antigenic epitope from the antigen (virus or tumor-derived) while the TCR 

itself recognized the MHC-peptide complex. Emil R. Unanue, a Cuban-American immunologist, 

fluorescently labelled the peptide derived from hen egg lysozyme and visualized on cell surface in 

complex with MHC-I, and proved the specificity of MHC-I, but not MHC-II (B. P. Babbitt, 

Matsueda, Haber, Unanue, & Allen, 1986; Bruce P. Babbitt, Allen, Matsueda, Haber, & Unanue, 

2005). In 1984, Mark Davis and colleagues, and Tak Wah Mak’s group in two successive papers, 

identified the elusive T-cell receptor gene (TCR from αβ-TCR expressing T-cells) by subtracting 

T-cell mRNA from that of B-cells (Hedrick, Cohen, Nielsen, & Davis, 1984; Yanagi et al., 1984). 

Harvey Cantor and colleagues, and a little later, Edgar Engleman and colleagues, showed that 

MHC-I and MHC-II bound peptides stimulated the two major subpopulations of T-cells, CD4+ T-

cells and CD8+ T-cells respectively (Cantor & Boyse, 1975; Engleman, Benike, Grumet, & Evans, 
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1981). These results were further confirmed by the solved X-ray crystal structure of the MHC-

class I peptide complex (section 1.1.2). Lastly, Don Wiley’s group in 1996, again succeeded in 

solving the X-ray crystal structure of TCR in complex with human HLA-A*02:01-Viral peptide 

complex (Garboczi et al., 2010).  

 Wiley et al’s results largely confirmed decades of previous research. The TCR is a cell 

surface membrane disulfide linked heterodimer of the α-chain and β-chain belonging to the 

Immunoglobulin superfamily proteins (Garboczi et al., 2010; Wucherpfennig, Gagnon, Call, 

Huseby, & Call, 2010). Both chains have a constant (C) region proximal to the cell surface of the 

T-cell, while the variable (V) region interacts with the MHC-peptide complex (Wucherpfennig et 

al., 2010). In general, the TCR interacts diagonally with the MHC-peptide complex (Figure 1.3), 

with different loops within the Vα and Vβ domains making contact with the antigenic peptide, or 

the MHC, or both (Garboczi et al., 2010; Wucherpfennig et al., 2010).  The V and C regions of 

αβTCRs as well as Igs from B-cells, are generated by the process of somatic recombination, 

discovered in 1978 by Susumu Tongeawa (Tonegawa, 1983). This process, referred to as V(D)J 

recombination, results in the generation of the incredible diversity of TCR-repertoire which can in 

theory, can generate up to 10
15

 to 10
20

 TCR-clonotypes (Laydon, Bangham, & Asquith, 2015). 

The diagonal placement of the TCR over pMHC complex ensures that the hypervariable 

complementarity determining region 3 (CDR3) of Vα and Vβ domains (CDR3α & CDR3β) are 

responsible for interacting with the center of the antigenic peptide (Wucherpfennig et al., 2010). 

The CDR1 and CDR2 of Vα and Vβ domains in turn interact with the N or C-terminal of the 

antigenic peptide, with the CDR2 also thought to be interacting with the presenting MHC, 

contributing to the TCR-MHC-restriction (Wucherpfennig et al., 2010). Recent studies have now 

pointed that TCRs although cross-reactive, have very similar recognition motifs across the 

different antigenic epitopes (Birnbaum et al., 2014; Cole et al., 2016).  Despite the generalizable 

properties of TCR-pMHC interaction, individual residues contributing a TCR’s recognition of an 

antigenic peptide-MHC complex is highly dependent on the specific antigenic peptide-MHC 

complex, giving high specificity and sensitivity to the sampling methodology for T-cells 

encountering infected/malignant cells throughout a host’s lifetime.  
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Figure 1-3. 3D protein structure of the 1E6-TCR-pHLA complex. 1E6-TCR in complex with 
preproinsulin peptide-HLA-A*02:01, derived from a patient with Type 1 diabetes (T1D). 3D 
reconstruction of X-ray Crystal structure of human-TCR 1E6 binding to the preproinsulin epitope 
AQWGPDPAAA-HLA-A*02:01 complex (Cole et al., 2016) obtained from PDB. The pMHC 
complex (right side) and the TCR (left side) are shown, colored by subunits within each protein. 
The 1E6 TCR also has cross-reactivity with several microbial peptides and is considered to be 
active in T1D patients by antigen mimicry (Cole et al., 2016; Stadinski, Obst, & Huseby, 2016). 
 
 

1.2.4. Function of T-Cells 

T-cells are the master mediators of the adaptive cell mediated immunity against infected, 

malignant cells. While antibodies secreted by B-lymphocytes (B-cells) function predominantly to 

protect an infection from getting established (by “neutralization” and other mechanisms), T-cells 

function by eliminating infected cells once an infection/malignant cell has already been 

established (Murphy & Weaver, 2016). When TCR-pMHC interaction is achieved, the membrane 

proximal Cα and Cβ constant domains region of TCR associate with cell surface CD3 proteins 

(CD3ϒ, CD3δ, and CD3 ) (Abbas et al., 2014). Subsequently, a number of signal transducing 

molecules are recruited to the TCRs, such as the SRC family kinase (SFK) member LCK which 

phosphorylates immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3ϒ, CD3δ, 
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and CD3  (Brownlie & Zamoyska, 2013). Following ITAM phosphorylation, a series of 

phosphorylation events occur via ZAP70 (ζ-chain associated protein kinase of 70 kDa) by LCK, 

LAT (linker for activation of T cells) by ZAP70, and subsequently assembles a multiprotein 

complex termed LAT-signalosome (Brownlie & Zamoyska, 2013). The phenotypic outcome of this 

diverse signaling network is the upregulation of genes necessary for sustained growth, effector 

functions (e.g. target cell cytolysis by CTLs), secretion of canonical cytokines (e.g. Interleukin-2 

by CTLs), cell adhesion molecules (e.g. CD62L for lymph node homing), and other functions 

associated with the memory state of the T-cell (e.g. Naive vs memory).  

 Although there are other types of T-cells (e.g. 𝛄𝛅 T-cells, NKT cells etc.), the primary 

focus of this dissertation will be on CTLs (and to some extent CD4+ T-cells and regulatory T-

cells). Functionally the two major subsets of T-cells, CD4+ T-cells and CD8+ T-cells (CTLs) play 

different yet complementing roles in cell mediated immunity. CD4+ T-cells, termed helper T-cells 

are stimulated by antigenic peptide-MHC class II complexes are involved in 1) secreting pro-

inflammatory cytokines (Th1, Th2 and Th17) that can either directly or indirectly eliminate 

intracellular, extracellular pathogens; 2) providing T-cell help to B-cells, CTLs to carry out their 

effector function (Abbas et al., 2014). CTLs, also known as cytotoxic T-cells, are stimulated by 

antigenic peptide-MHC class I complexes presented by proteasomal processing of antigen by 

professional APCs (Abbas et al., 2014). Once primed, effector CTLs home to the periphery or the 

site of infection and directly cause target cell (infected cell or malignant cells) apoptosis (Abbas et 

al., 2014). Target cell apoptosis by CTLs occur via the effector molecules secreted by CTLs such 

as Perforin and Granzyme, or via Fas-ligand (FasL) on CTLs binding to Fas on target cells 

(Abbas et al., 2014). CTLs that recognize target cells via their TCR-pMHC-I interaction, there is 

massive microtubule reorganization, and secretory granules containing Granzyme B and Perforin 

traffic towards the immunologic synapse (Voskoboinik, Whisstock, & Trapani, 2015). The 

secretory granules are then secreted by the CTLs at the immunologic synapse, along with 

directionally secreted cytokines onto the target cell (Huse, Lillemeier, Kuhns, Chen, & Davis, 

2006; Voskoboinik et al., 2015). A second sub-dominant but independent mechanism of CTL-

mediated killing involved the ligation of Fas ligand (FasL) on CTLs to Fas protein expressed on 
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target cells (C. Janeway, 2005). This directional secretion of effector molecules provide high 

sensitivity and specificity of target cell killing by CTLs, and are exploited in this dissertation 

(Chapter 5).  

1.3 Primer on self/nonself-discrimination 

The idea of individuality has been an exercise in intellectual debate beginning with philosophers 

such as Aristotle, and in the last century has morphed into the phenomenology of biological 

identity by evolutionary biologists (Clarke, 2010; Thomas Pradeu, 2012; Smith & Szathmary, 

1997). At its core, immunology aims to provide mechanistic and conceptual understanding to the 

biological identity of an organism by its differentiation of self from nonself. Immunologic 

self/nonself discrimination vigorously protects the biological identity of a living entity by preserving 

its lifespan, and by extension, its genetic makeup.  

 The concept of the immunological self pervades the tree of life, from prokaryotes all the 

way up to vertebrates. The elegant CRISPR system in bacteria and archaea for example, is a 

prokaryotic adaptive immune mechanism aimed at protecting the bacterial “self” against invading 

bacteriophages (“nonself”) and other viruses (Barrangou et al., 2007). Regardless of the species 

and complexity of the immune system, there are commonalities to the conceptual immunological 

self. First, the immunological self has evolved mechanisms that are almost always harmful for an 

organism/entity that is perceived as the nonself (Cohn, 2010; Thomas Pradeu, 2012). For 

instance, in jawed vertebrates, as explained in previous sections, CTLs specifically target and kill 

infected and malignant cells with great precision (Section 1.2.4). Second, because the 

mechanism of defection by the immunological self is harmful, there must be a way for the 

immunological self to prevent itself from its own adverse actions, and reduce “off-target” effects 

mounted by an immune response against the immunological self to avoid debilitating conditions 

such as autoimmunity (Cohn, 2010). An example of this limiting self-reactivity  criterion can be 

seen in the vertebrate adaptive immune system, where majority of autoreactive T-cells are 

eliminated via a process called negative selection during thymic development  (Starr, Jameson, & 

Hogquist, 2003). This results in the dramatic reduction of the diversity in self-reactive TCRs (Yu et 
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al., 2015). Lastly, the immunological self must maintain cooperation and a status quo with other 

perceived foreign entities that are not harmful (and are in some cases beneficial) to the host.  

Examples of this type of interaction are the extension of T-cell tolerance against gut microbiome 

that is beneficial for humans (Round & Mazmanian, 2009).  

 In the last century, there have been several attempts to develop unifying immunological 

theories of self/nonself discrimination. Based on decades of previous research on transplantation 

and tumor immunology, Frank Burnett, conceptualized one of the earliest known thesis on 

immunologic self/nonself by proposing that early during development, an organism’s immune 

system acquires the knowledge of self vs. nonself causing immunologic tolerance (F. M. Burnet, 

1961; Ebert, 1970; C. A. Janeway Jr, Goodnow, & Medzhitov, 1996). These theories would later 

spur Peter Medawar’s landmark experiments on transplanting donor splenocytes to neonatal 

mice to acquire immunological tolerance (section 1.1.1) (Billingham, Brent, & Medawar, 1953). 

This self/nonself theory which dominated the landscape of immune theories over much of the last 

century proposes that during development, the immune system actively learns to distinguish self 

and makes an immune response against the nonself foreign entity (C. A. Janeway Jr, 1992; 

Langman & Cohn, 2000). However, many foreign entities do not garner immune responses (gut 

microbiota for instance), insofar as there are immune responses often initiated against the self, 

observed in autoimmunity and immunopathologies (C. A. Janeway Jr et al., 1996). Furthermore, 

Matzinger and colleagues in 1996 were able to show that neonatal mice can make an immune 

response to foreign grafts using appropriate signals (derived from dendritic cells) in an apparent 

contradiction to Medawar’s experiments (Ridge, Fuchs, & Matzinger, 1996).  

These experiments challenged the notion that tolerance did not depend on the source of 

the nonself foreign antigen, but rather the context under which the nonself was visible to the self 

(Ridge et al., 1996).  To address these limitations, Polly Matzinger proposed the “danger model” 

of immune system, which theorized that the immune system does not learn to distinguish self vs. 

nonself, but rather responds to the perceived presence or absence of danger (Matzinger, 1994, 

2002). The danger theory invited much enthusiasm and critique, with respect to the definition of 

what constitutes molecular danger, and the notion that the immune system is pre-programmed to 
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respond to pathogen associated molecular patterns (PAMPs) along with the antigenic stimulus 

(Charles A. Janeway Jr, Goodnow, & Medzhitov, 1996; Thomas Pradeu & Cooper, 2012). 

Recently, a third theory, put forth by Pradeau and colleagues, tries to unify these theories by 

proposing that irrespective of the source of immune response (danger vs. self/nonself) it is the 

breakdown of non-antigenic patterns upon routine surveillance by immune cells such as CTLs, 

that an immune response can be made (T. Pradeu & Carosella, 2006; Thomas Pradeu & Cooper, 

2012). This theory thus abandons the idea of the context of immune response, or the semantical 

definition of what constitutes self vs. nonself, but rather defines an entity (organism, antigen, or 

epitope) as immunogenic, if it constitutes a distinct pattern that is normally not encountered by the 

immune system, innate or adaptive (T. Pradeu & Carosella, 2006).  

Regardless of the interpretation of these theories, any definition of what constitutes as 

nonself, or as danger, or as immunogenic, can only be conceptualized when the underlying 

biological parameters that make an immune response by the adaptive immune system are 

comprehensively elucidated. In context of human CTLs, the hallmarks of antigenic epitopes that 

contribute to a CTL immune response have not been fully discovered. In Chapter 2, I explore the 

biochemical parameters of epitopes from a variety of sources (pathogenic as well as self) that 

underlie what T-cells determine as worthy of an immune response. Understanding this 

phenomenon is particularly relevant when developing T-cell based therapies that target diseases 

of foreign, as well as of the self (such as autoimmunity, solid tumors). 

 

1.4 Brief history of tumor immunology 

Many of the fundamental immunology discoveries on tolerance and autoimmunity and infectious 

disease response were uncovered based on investigations into tumor immune response 

(examples in previous sections). This section will describe the history of cancer immunotherapy, 

major discoveries in the last decade, and current developments in the field.  
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1.4.1. Coley’s toxins 

William B. Coley (1862–1936), was an American pathologist and a physician at the Memorial 

Sloan Kettering cancer center (Moticka, 2016d). During the course of his treatments, Coley noted 

that occasionally patients would have their tumors regress following a high fever from a bacterial 

infection (Coley, 1891). Coley through a literature search found that there were close to 47 

previous cases of physicians documenting occasional regression of tumors in patients following 

bacterial fevers (Coley, 1891). Based on these reports, Coley reasoned that the regression was 

perhaps due to the fever in response to the infection, although the biological mechanism under 

which that happened remained understandably obscure. Coley started injecting end stage cancer 

patients (in most cases with inoperable sarcomas) by injecting heat killed Streptococcus 

pyogenes directly into the tumors (Coley, 1898a).  

 The results of Coley’s clinical trials were mixed (Moticka, 2016d). Coley was able to 

induce tumor regression by his method in several patients, although two patients died of the 

infection itself (Coley, 1891). Because of the danger of using S.pyrogenes strains in cancer 

patients, Coley also experimented with second less dangerous Enterobacter bacteria, Serratia 

marcescens in combination with S.pyrogenes. A subset (~ 10%) of patients in these trials 

benefitted from regression (Coley, 1895), with some patients succumbing to either the treatment 

or the disease (Coley, 1898b). However, because Coley did not maintain consistency with 

respect to preparation of the heat killed bacteria (up to 13 different mixture of strains were used), 

and administration or the toxins (intravenous vs. intramuscular vs. intratumoral), other physicians 

had difficulties replicating these trials and treatments (McCarthy, 2006). This resulted in criticism 

of his experiments, with other physicians and scientists suggesting that the response observed 

might just be natural regression rates, which prompted Coley to defend his techniques (Coley, 

1895). One interesting observation in Coley’s response was his remark that some of these 

patients with inoperable tumors (presumably late-stage metastatic disease) had complete long 

term benefit (by today’s standards) after the administration of his toxins (Coley, 1895). In 1895, 

Coley wrote “One of my cases has gone three and one-half years. This was a twice recurrent 

sarcoma of the neck and tonsil, with the patient in a most desperate condition, with no chance of 
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living more than a few months” (Coley, 1895). Based on current knowledge of anti-tumor 

immunity, it has been proposed that a combination of a strong intratumoral innate inflammatory 

response mediated by proinflammatory cytokines such as interferon-α (IFNα), tumor necrosis 

factor α (TNFα), and interleukin 12 (IL-12) (Tsung & Norton, 2006), and cross reactive T-cells 

targeting neo-epitopes were recruited into these patient tumors causing sustained tumor 

regression (Snyder et al., 2014).  

 Despite these occasional but significant response observed in his patients, Coley’s toxins 

were outcompeted by the ever growing prominence and usage of radiation therapy, and 

subsequently chemotherapy to treat cancers (McCarthy, 2006). In contrast to Coley’s toxins 

which primarily worked best in sarcomas, radiation therapy, using X-rays discovered by Wilhelm 

Röntgen in 1895, caused therapeutic regression (although short term) of many different types of 

tumors consistently (Holsti, 1995; McCarthy, 2006). Despite these issues, Coley’s studies 

ushered in early research on factors secreted by immune system in response to pathogenic 

infections that could have beneficial effects (Kienle, 2012; Tsung & Norton, 2006). For instance, 

bacterial lipopolysaccharide (LPS) and tumor necrosis factor α (TNFα) were discovered by 

conducting research on induced sarcoma in mice models (Carswell et al., 1975; Kienle, 2012). 

Post 1940, Coley’s toxins were empirically tested in retrospective analyses, which indicated 

benefit for up to 57% of the patients treated with heat killed bacterial vaccines (Kienle, 2012). 

However, these studies did not rigorously undertake spontaneous remission rates to truly 

delineate the beneficial effects of Coley’s toxins. Coley’s early immunotherapy was also 

empirically tested in a randomized clinical trial in 1962, where 20/93 (21%) patients showed 

regression (Johnston & Novales, 1962). Because of the wide variability in response to heat killed 

bacterial vaccines, and as mentioned above the difficulties in replicating Coley’s techniques, 

replacement of Coley’s toxins with radiation therapy happened for cancer treatment starting in the 

1900s (McCarthy, 2006). Post revival of tumor immunology as a viable therapeutic option, there 

are several clinical trials today evaluating heat killed bacterial vaccines as potential adjuvants for 

cancer therapy (Karbach et al., 2012).  
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1.4.2. Early tumor immunology and pre-checkpoint era 

As mentioned in earlier sections, many fundamental discoveries made in the last century with 

respect to histocompatibility and the adaptive immune system were discovered because of 

studies in tumor rejection in mice (see section 1.1.1 on Tyzzer, Groer and Snell). Paul Ehrlich, 

known for his Nobel Prize winning contributions to the discovery of antibody, and one of the first 

adopters of chemotherapy, was also one of the first proponents of the concept that tumors could 

be recognized by the immune system (Himmelweit, 1958; Moticka, 2016b). Because of large 

gaps in knowledge with respect to tumorigenesis, as well as on autoimmunity, Ehrlich did not link 

antitumor immunity as being autoimmune in origin. Instead, Ehrlich proposed the concept of 

“horror autotoxicus”, where immune response against self could not possibly happen because of 

the disastrous consequences to the organism’s integrity (Moticka, 2016b). Later in 1900s, this 

would be proven otherwise because of the seminal work on tumor and graft transplantation 

undertaken by George Snell, Peter Medawar and Frank Burnett (sections 1.1.1-1.2.2).  

 Parallel to the work conducted by early transplantation immunologists, the finding by Paul 

Uhlenhuth that tissue specific proteins can induce the formation of highly unique and specific 

antibodies in various animals indicated that tumors could also develop unique tumor-specific 

antigens (Moticka, 2016d). In 1965, Gold and Freedman showed that extracted human colon 

cancer cells when injected into mice produced antibodies that reacted with colon and 

gastrointestinal malignant tissue, proving first experimental evidence of tumor-specific antigens 

(Gold, 1965; Gold & Freedman, 1965). With the advent of monoclonal antibody production by 

Georges Kohler and Cesar Milstein in 1965, cancer biology and immunology was given access to 

unprecedented view of cellular proteins in various model systems for research (Moticka, 2016d). 

Monoclonal antibody production allowed immunologists in particular to define the many different 

subsets of the immune system via their cell surface cluster of differentiation (CD) markers (Who 

Nomenclature Subcommittee, 1984).  

 In the mid-1970s, Steve Rosenberg and colleagues at the National Cancer Institute, USA 

pioneered the tumor immunology field with several seminal studies (Moticka, 2016d). First, they 

showed that interleukin 2 (IL-2) treated mouse splenocytes in in vitro cultures were cytotoxic to 
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mouse tumors when adoptively readministered (Yron, Wood, Spiess, & Rosenberg, 1980). 

Subsequently, the group demonstrated partial regression (21/55, ~38%) of tumors using 

autologous IL-2 primed T-cells from the peripheral blood of several metastatic melanoma cancer 

patients in what would be the first in human adoptively transferred T-cell human clinical trials (S. 

A. Rosenberg et al., 1985). The Rosenberg group was also the first to demonstrate in mouse 

models that tumor infiltrating lymphocytes (TILs) were 50-100 times more cytotoxic against 

autologous tumors, which would later be revealed to be a tumor-specific CTL-memory response 

(S. Rosenberg, Spiess, & Lafreniere, 1986). In the 1970s, with the discovery of viral mediated 

tumors in the form of the human papillomavirus (HPV) (zur Hausen, Gissmann, Steiner, Dippold, 

& Dreger, 1975), Epstein Barr Virus (EBV), and Hepatitis B virus (HBV) (Buynak, 1976), indicated 

further that the adaptive immune system could be used against treating tumors.   

1.4.3. Advances in tumor biology 

During 1900s, there were also fundamental breakthroughs made in understanding tumor biology 

and tumorigenesis as a phenomenon. For instance, Peter Nowell and David Hungerford 

discovered the Philadelphia chromosome, a major chromosomal abnormality with translocation 

between chromosomes 9 and 22 in more than 95% of patients with chronic myeloid leukemia 

(CML) (Koretzky, 2007). PC Nowell would also later propose the seminal hypothesis on the clonal 

origins of tumorigenesis via acquired somatic mutations (Nowell, 1976). Subsequently, 

oncogenes (e.g. Her2) (Nowell, 1976; Slamon et al., 1989), tumor suppressor genes TP53 (Oren 

& Levine, 1983), and the retinoblastoma gene (Rb) (Cavenee et al., 1983) were discovered. All 

these seminal studies on the nature, the biology and the mutational spectrum of cancer would 

later be synthesized by Robert Weinberg and Douglas Hanahan into the seminal work of the 

hallmarks of cancer (D. Hanahan & Weinberg, 2000). However, between 1990-2010, the tumor 

immunology field would make several fundamental contributions and milestones to the field of 

both cancer biology and immunology that Weinberg and Hanahan would include Tumor immune 

evasion and Tumor promoting inflammation as two emerging hallmarks in their revised version of 

the hallmarks of cancer (Douglas Hanahan & Weinberg, 2011). 
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1.4.4. Tumor immune editing 

In the 1980s, the incidence of acquired immunodeficiency (AIDS) cases caused by the human 

immunodeficiency virus (HIV) rose to epidemic proportions in the US LGBT community 

predominantly due to their manifestation as Kaposi’s Sarcoma (KS), a viral mediated cancer 

(Haverkos & Curran, 1982). A major outcome out of the research on HIV-AIDS is the finding that 

the virus caused massive systemic immune suppression in the infected individuals, which in turn 

caused the patients to succumb to opportunistic infections such as KS (Haverkos & Curran, 

1982). However, HIV-induced KS also highlighted the dominant role of the human immune 

system to seek and destroy any cancer that could have been formed otherwise. It also implicated 

that there could be immune evasion mechanisms that are actively employed by viruses and 

cancers that allow them to persist, and in the subsequent decade these would become the 

subject of intense investigations.  

 Frank Burnett in 1957 proposed that tumors might be constantly forming and regressing 

in an individual because of an immunologic reaction to tumor specific antigens (M. Burnet, 1957; 

Dunn, Bruce, Ikeda, Old, & Schreiber, 2002). However, because of several failures to adequately 

test the hypothesis and in lack of an in depth understanding of the adaptive immune system, it 

would take more than 30 years before several groups revisited the immune surveillance 

hypothesis. For instance, nude mice lacking a functional immune system were prone to form 

more tumors when injected with a chemically transformed mouse carcinoma (Engel et al., 1996). 

The discovery that interferon-γ (IFNγ) produced endogenously or when administered to mice 

resulted in tumor regression in mice undergoing transplantable tumors suggested a T-cell 

mediated control of many tumors (Dighe, Richards, Old, & Schreiber, 1994). Similar results were 

obtained with C57BL/6 mice lacking perforin, effector molecules secreted by CTLs to initiate 

target cell lysis (van den Broek, 1996), as well as recombination activating gene (RAG-1, RAG2)  

deficient mice which have profound immunodeficiency (Shinkai et al., 1992). The human 

relevance of these studies was clearly observable in immunosuppressed HIV-1+ AIDS patients 

(Haverkos & Curran, 1982), and transplant patients, with both groups being susceptible to higher 

incidence of many different cancers (Gatti & Good, 1971; Penn & Staezl, 1972). Synthesizing all 
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these results, Robert Schreiber and colleagues proposed “cancer immunoediting”; the idea that in 

immunocompetent individuals, tumor evolution is sculpted by the host immune response, giving 

rise to tumors that are heavily resistant to immune targeting (Dunn et al., 2002). 

 Cancer immunoediting involves three major phases; 1) Elimination 2) Equilibrium and 3) 

Escape (Dunn et al., 2002). In the early elimination phase, tumors are immunogenic and are 

susceptible to host adaptive immune response. The coordinated innate and adaptive response is 

in part due to tumor intrinsic genomic instability and other hallmarks of the tumor (Dunn et al., 

2002). In this phase, the tumors also express tumor-specific/associated antigens, or tumor- 

specific neoepitopes that are derived from the antigen presentation of non-synonymous mutations 

on HLA class I molecules. Tumors in this phase can also be susceptible to CD4+ T-cells if they 

 

Figure 1-4. The Cancer Immunoediting process. Elimination (left panel) process occurs due to 
normal immune surveillance where in tumor infiltrating immune cells eliminate immunogenic 
clones. Effector molecules (e.g. Perforin, IFNγ) are secreted by immune cells. Resistant clones 
(pre-existing or arising de novo, in magenta) survive and exist in a dynamic equilibrium phase 
with the immune cells, and strength of immune response decreases. In Escape phase (right 
panel), occurs with clonal expansion of the resistant clones (select examples of mechanisms are 
shown). Figure was adapted with modifications from Dunn et al., 2002. 
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are antigenically processed and presented by APCs, NK cells if they lack antigen presentation, 

and other various different types of immune-mediated cell death (Dunn et al., 2002). Thus, the 

elimination phase is a direct consequence of the immune surveillance hypothesis proposed by 

Burnett and others (Figure 1.4, left panel). In the equilibrium phase, a darwinian selection of 

immune-resistant clones allows the temporal and spatial survival of the tumor (Figure 1.4, middle 

panel). Because there is a loss of the immunogenic clones from the tumor due to immune 

elimination, and a subsequent loss of tumor infiltrating immune cells, there is a dynamic 

equilibrium that persists over several years between the immune system in the tumor (Dunn et 

al., 2002). In this phase, it is likely that the resistant clone was pre-existing, or arose de novo due 

to the immune selection pressure (Figure 1.4, middle panel). In the escape phase, variant clones 

are now resistant and insensitive to immune detection and elimination. This process can involve 

for instance de novo or pre-existing variant clone upregulation of the programmed death ligand 1 

(PD-L1) in response to IFNγ secreted by TILs (Tumeh et al., 2014), or loss of the entire 

antigen/epitope that resulted in the CTL-mediated tumor cell death of the dominant immunogenic 

clone (Matsushita et al., 2012; Tran et al., 2016). Other mechanisms of immune escape and 

resistance have been described elsewhere (Schreiber, Old, & Smyth, 2011), and are currently the 

subject of intense investigation (Pardoll, 2012b; Schreiber et al., 2011). The resistant clones can 

thus largely avoid immune detection and escape, metastasize, and colonize the body. The cancer 

immunoediting hypothesis was seminal in that it gave an evolutionary framework to understand 

cancer immune response, based on clonal origins of tumorigenesis suggested by PC Nowell 

(section 1.4.3). Today, cancer immunoediting is widely applied to conceptualize and test immune 

based therapies. In Chapter 4, I apply this framework to investigate the mechanisms of immune 

resistance employed in response to the HPV-infection in head and neck cancers. 

1.4.5 The checkpoint era 

The logical extension from studies on tumor immunity, tolerance, and immunodeficiency observed 

in chronic viruses such as HIV-1, was the idea that there should be immune regulatory molecules 
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that rein in the efficacy of T-cell mediated immune response.  Such biochemical pathways could 

in be theory leveraged by self-reactive T-cells to avoid causing immunopathology, a major cause 

for many of the disease symptoms observed in autoimmune conditions.  

 The first such discovered molecule was cytotoxic T-lymphocyte–associated antigen 4 

(CTLA-4) in 1987 by Brunet et al (Brunet et al., 1987). CTLA-4 is expressed on 90% of human 

CD4+ T-cells and in about 50% of human CD8+ T-cells (Peggs, Quezada, Korman, & Allison, 

2006). Because of CTLA-4’s homology to CD28 (a co-stimulatory molecule expressed on T-cells 

required for adequate T-cell stimulation) (Linsley, 1991), CTLA-4’s apparently redundant function 

was under subject of investigation (Pardoll, 2012). However, Jim Allison, Jeffrey Bluestone and 

colleagues performed in vitro antibody cross linking experiments that suggested that CTLA-4 

might be a negative regulator of T-cell stimulation (Krummel & Allison, 1995; Walunas et al., 

1994). CTLA-4-deficient mice (CTLA-4
-/-

) developed by Arlene Sharpe’s group, and independently 

by Tak Mak and colleagues ultimately confirmed these findings by demonstrating that CTLA-4
-/-

 

mice displayed massive inflammatory conditions, characterized by severe lymphadenopathy and 

lymphoproliferation in all organs (Tivol et al., 1995; Waterhouse et al., 1995). Subsequently, 

CTLA4 antibodies that can partially block CTLA-4 functions in vivo developed by Allison and 

colleagues showed that substantial tumor rejection can be achieved in mice models (Leach, 

Krummel, & Allison, 1996; Sutmuller et al., 2001). The results highlighted the effect and extent of 

T-cells that are present in the periphery which could be leveraged to treat tumors (Pardoll, 2012).  

Functionally, CTLA-4 has been thought to inhibit T-cell function in two ways : 1) by 

recruiting alternative phosphatases to the TCR attenuating the strength of T-cell activation (Lee et 

al., 1998); 2) by directly competing for co-stimulatory molecules (CD80, CD86, due to its 

homology to CD28) on APCs making them unavailable for CD28-ligation (Qureshi et al., 2011). 

Biochemical and molecular functions of CTLA-4 is still a subject of active investigation. CTLA-4 

excited, and revived tumor immunology field spurring investigative humanized antibodies against 

CTLA-4 that were clinically developed by Medarex in collaboration with Jim Allison (later acquired 

by Bristol-Myers Squibb) (Pardoll, 2012). The first humanized immune checkpoint blockade 

antibody Ipilimumab (against CTLA-4) was approved by the FDA for the treatment of recurrent 
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metastatic melanoma in 2011 (Table 1-1) after a decade of clinical trials (Phan et al., 2003; 

Robert et al., 2011). In terms of response, Ipilimumab, although only effective in ~20% patients, 

causes long term complete regression of all metastatic lesions, with some stage III/IV melanoma 

patients surviving longer than 10 years (Pardoll, 2012).  

 The second major immune checkpoint molecules to be discovered were programmed 

death protein 1 (PD-1) and its ligand PD-L1. PD-1 was first discovered as a molecule that was 

thought to regulate programmed cell death in T-cells (Ishida, Agata, Shibahara, & Honjo, 1992). 

Although PD-1 knockout mice PD-1
-/-

 did not develop fulminant lymphadenopathy as CTLA-4
-/-

  

mice, PD-1
-/-

  mice upon aging would eventually develop strain specific and organ specific 

autoimmune reactions manifesting largely as Lupus like syndromes (Nishimura et al., 2001; 

Nishimura, Nose, Hiai, Minato, & Honjo, 1999). These results suggested a more fine-tuned 

regulatory function to PD-1 expressing T-cells. Subsequently, the ligands for PD-1 expressed on 

many dendritic cells, PD-L1 was discovered by Lieping Chen and colleagues (H. Dong, Zhu, 

Tamada, & Chen, 1999). Gordon Freeman and colleagues would then demonstrate that PD-

1/PD-L1 interaction delivered inhibitory signals to responding T-cells (Freeman et al., 2000).  

In contrast to the CTLA-4 pathway, PD-1/PD-L1 acted on the effector phase of T-cell 

stimulation, and was shown in several elegant studies by Rafi Ahmed and colleagues that in 

chronic virus systems, antigen persistence would result in the phenomenon of T-cell exhaustion 

(Barber et al., 2006; Day et al., 2006). T-cell exhaustion was characterized by the gradual loss of 

effector functions in antigen-specific CD8+ (and also CD4+) T-cells, with a distinct molecular 

signature resulting in impaired control of chronic virus infections in human and mice (Wherry et 

al., 2007; Zajac et al., 1998). Blockade of PD-1 restored (at least partially) functional exhaustion 

in CTLs and can resume T-cell mediated elimination of infections (Barber et al., 2006). Chen and 

colleagues would then demonstrate that PD-L1 expressing tumors evade immune response in 

mice models by causing T-cell apoptosis, establishing the link between PD-1 pathway and tumor 

immunity (Haidong Dong et al., 2002).  As with CTLA-4, investigations into blocking the PD-1 

checkpoint pathway was subsequently begun, resulting in several clinical trials again beginning 
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with melanoma (Brahmer et al., 2010; Topalian et al., 2012). Today, PD-1 antibodies Nivolumab 

and Pembrolizumab are among the most successful immune checkpoint blockade antibodies 

 

Table 1-1. Selection of FDA approved cancer immune therapies 

Name                                Target                              Type of Cancer                             Year 

Rituximab CD20 Non-Hodgkin lymphoma 1997 

Trastuzumab HER2 Breast Cancer 1998 

Ibritumomab CD20 Non-Hodgkin lymphoma 2002 

Cetuximab EGF Receptor Colorectal Cancer 2004 

Bevacizumab VEGF Colorectal Cancer 2004 

Panitumumab EGF Receptor Colorectal Cancer 2004 

Ofatumumab CD20 Chronic lymphocytic leukemia 2009 

Ipilimumab CTLA-4 Metastatic melanoma 2011 

Brentuximab CD30 Hodgkin lymphoma 2011 

Pertuzumab HER2 Breast Cancer 2012 

Obinutuzumab CD20 Chronic lymphocytic leukemia 2013 

Ramucirumab VEGF receptor 2 Gastric cancer 2014 

Blinatumomab CD19 and CD3 ALL, Melanoma 2014 

Dinutuximab GD2 Neuroblastoma 2015 

*Pembrolizumab,    
Nivolumab  
 

PD1 Melanoma 
NSCLC** 
Gastric Cancer**, HNSCC** 
Renal, Bladder Cancers  
MMR deficient, MSI positive CC    
Hodgkin lymphoma 

2014 
2016 
2017 
2017 
2017 
2017 

Tisagenlecleucel CAR T-cell therapy ALL  2017 

 
HER2, human epidermal growth factor receptor; EGF, epidermal growth factor; VEGF, vascular 
endothelial growth factor; CTLA-4, cytotoxic T lymphocyte antigen 4; PD1, programmed cell 
death protein 1; GD2,; Non-small cell lung cancer, NSCLC;  ALL,  Acute Lymphocytic Leukemia; 
MMR, Mismatch repair; MSI, Microsatellite instability. *Includes combined approvals for both 
Pembrolizumab and Nivolumab; ** Approved for recurrent metastatic cancers at present.  
Data current as of October 2017. Adapted from (Moticka, 2016d). 
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pursued in cancer immunotherapy with successful FDA approval for more than six cancers (Table 

1-1). PD-L1 and other checkpoint molecules are also being pursued for several ongoing clinical 

trials, as are other immune therapeutic modalities such as CAR T-cell, adoptive T-cell therapies. 

The dramatic, persistent, long-term response to CTLA-4 and PD-1 blockade antibodies in the 

treatment of select human cancers is partly attributed to the memory compartment of T-cell 

immunity, where recurring immunogenic lesions displaying antigens can be readily recognized 

and kept under control by a secondary immune response (Pardoll, 2012). However, the evolving 

fitness landscape of a tumor under cancer immunoediting hypothesis (section 1.4.4.) posits that 

some cancers will have resistant clones that can successfully thwart this immune assault. Thus, 

although checkpoint blockade immunotherapies are effective, objective long term clinical 

responses only occur in a subset of patients (~20% in CTLA-4 for melanoma, between 30%-40% 

for PD-1 blockade in melanoma and other cancers) (Pardoll, 2012a, 2012b).  Thus, it is highly 

likely that neoantigen and immune landscape of a tumor evolves as a result of specific tumor 

biology in addition to the immune heterogeneity observed in individuals (Schumacher & 

Schreiber, 2015). These observations argue for developing tumor-specific and perhaps patient-

specific immunotherapy regimens based on the tumor microenvironment and antigenic landscape 

of each tumor. The emphasis of current cancer immunotherapies has thus been to: 

● Understand response to checkpoint blockade immunotherapies to dissect mechanisms of 

immune dysfunction 

● Improve immunogenicity of weakly immunogenic tumors. This involves exploring the 

antigenic landscape of various tumors to identify epitope/neoepitope vulnerabilities.  

● Understand the limits of tolerance and self-reactivity in context of T-cells. 

● Understand the tumor microenvironment in context of the local factors influencing and 

editing the tumor immune response.  

In Chapter 4, I explore the landscape of antigenic epitopes and immune dysfunction in tumor 

microenvironment in the setting of HPV-associated head and neck cancers to develop better 

immune therapies.  
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1.5 Key thesis contributions 

This dissertation answers several fundamental questions in T-cell immunology, tumor 

immunology, and HPV-immunology, as well as develops novel techniques for applications in 

translational immunology. The key findings and contributions are listed as follows:  

1. The discovery that immunogenic MHC class I epitopes are characterized by a higher 

frequency of relatively hydrophobic amino acids at specific TCR-contact residues 

compared to non-immunogenic self-peptides, leading to a general biochemical parameter 

for T-cell self/nonself discrimination (Section 1.3) by CTLs (Chapter 2). 

2. The demonstration that amino acid biochemical properties in particular hydrophobicity, 

can be used to enhance the efficiency of prediction of immunogenicity of CTL-epitopes 

from any given antigen, and can correlate with epitope immunodominance hierarchies 

(Chapter 2). 

3. The discovery that human papillomavirus 16 (HPV16) antigen E2 elicits broad T-cell and 

B-cell reactivity in HPV+ HNSCC patients and is expressed in a subset of HPV+ HNSCC 

patients, making HPV16-E2 is a potential immunotherapeutic target for HPV-associated 

malignancies. (Chapter 4). 

4. The first comprehensive experimental definition of the landscape of HPV16 CTL-epitopes 

from E2, E6 and E7 across 12 different globally frequent HLA class I alleles from HNSCC 

patients (Chapter 4).  

5. The discovery that low immunogenicity of HPV16-E7 may be tied to the relatively higher 

levels of dysfunctional E7-specific CTLs compared to E2, E6-CTLs observed in HPV+ 

HNSCC patients (Chapter 4).  

6. The computational and experimental demonstration that the immunoregulatory enzyme 

indoleamine 2,3-dioxygenase (IDO-1) represents an HPV-specific immune evasion 

mechanism and is highly expressed in HPV-related malignancies (Chapter 4). 

7. The first mechanistic and experimental demonstration that IDO-1 inhibition can 

individually as well synergistically in combination with PD-1 blockade enhance the 
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cytotoxic potential of HPV-specific CTLs on HPV+ HNSCC cells, representing a new 

potential immunotherapeutic modality for HPV+HNSCCs (Chapter 4). 

8. The development of a novel single cell T-cell assay that can be employed to identify 

immunogenic T-cell antigens from whole pathogenome cDNA libraries (Chapter 5).  
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CHAPTER 2 

TCR CONTACT RESIDUE HYDROPHOBICITY IS A HALLMARK OF IMMUNOGENIC  

CD8+ T CELL EPITOPES 
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Abstract 

Despite the availability of major histocompatibility complex (MHC)-binding peptide prediction 

algorithms, the development of T-cell vaccines against pathogen and tumor antigens remains 

challenged by inefficient identification of immunogenic epitopes. CD8+ T cells must distinguish 

immunogenic epitopes from non-immunogenic self-peptides to respond effectively against an 

antigen without endangering the viability of the host. Because this discrimination is fundamental 

to our understanding of immune recognition and critical for rational vaccine design, we 

interrogated the biochemical properties of 9,888 MHC class I peptides. We identified a strong 

bias toward hydrophobic amino acids at T-cell receptor contact residues within immunogenic 

epitopes of MHC allomorphs, which permitted us to develop and train a hydrophobicity-based 

artificial neural network (ANN-Hydro) to predict immunogenic epitopes. The immunogenicity 

model was validated in a blinded in vivo overlapping epitope discovery study of 364 peptides from 

three HIV-1 Gag protein variants. Applying the ANN-Hydro model on existing peptide-MHC 

algorithms consistently reduced the number of candidate peptides across multiple antigens and 

may provide a correlate with immunodominance. Hydrophobicity of TCR contact residues is a 

hallmark of immunogenic epitopes and marks a step toward eliminating the need for empirical 

epitope testing for vaccine development. 
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2.1 Significance Statement 

The design of effective T-cell vaccines against pathogens and tumor antigens is challenged by 

the highly inefficient identification of the subset of peptides from a given antigen that effectively 

stimulate an immune response. Here we report that the relative hydrophobicity of T-cell receptor 

contact residues is markedly enriched in immunogenic major histocompatibility complex class I 

epitopes in both human and murine MHCs, and in both self and pathogen-derived immunogenic 

epitopes. Incorporating hydrophobicity into T-cell epitope prediction models increases the 

efficiency of epitope identification, which will manifest in the time and cost of T-cell vaccine 

development. Amino acid hydrophobicity may represent a biochemical basis by which T cells 

discriminate immunogenic epitopes within the background of self peptides. 

2.2 Introduction 

The interaction of CD8+ T cells with peptide-MHC complexes (pMHCs) is a key event in the 

development of cell-mediated immunity (Grakoui, 1999). MHC class I (MHC-I) molecules typically 

present 8-11 aa peptides derived predominantly from proteasomal degradation of intracellular 

proteins, either self-peptides or infection-derived antigens (Blum, Wearsch, & Cresswell, 2013). T 

cell receptors (TCRs) from CD8+ T cells bind antigenic pMHC molecules, triggering a 

downstream signaling cascade that leads to T cell activation, differentiation, and ultimately to 

cytolysis of target cells presenting the same epitope (Hennecke & Wiley, 2001). Vaccines and 

immunotherapies for the treatment of infection and cancer seek to incorporate cytotoxic T cell 

(CTL) epitopes, but defining such epitopes remains a costly and arduous process (Purcell, 

McCluskey, & Rossjohn, 2007). Understanding the molecular basis of TCR-pMHC recognition will 

aid discovery of immunogenic epitopes in infectious and autoimmune disease. 

During thymic development, CD8+ T cells undergo both positive and negative selection 

to acquire the ability to discriminate antigenic peptides from self-peptides (Hogquist et al., 1994). 

Costimulatory signals can enhance this discrimination (Medzhitov & Janeway, 2002), but a 

primary event that triggers CD8+ T cell activation is the non-covalent pMHC-TCR interaction. 

Proteasomal cleavage patterns and binding affinities of peptides to different MHCs have been 

https://paperpile.com/c/Pq59oi/Vvmz
https://paperpile.com/c/Pq59oi/cfxD
https://paperpile.com/c/Pq59oi/XBOI
https://paperpile.com/c/Pq59oi/1Mxl
https://paperpile.com/c/Pq59oi/1Mxl
https://paperpile.com/c/Pq59oi/k0Qo
https://paperpile.com/c/Pq59oi/4GSV
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extensively studied (Falk, Rötzschke, Stevanović, Jung, & Rammensee, 1991; Kubo et al., 1994; 

Rammensee et al., 1999). In contrast, the biochemical basis of immunogenic epitopes is less 

well-defined (van der Merwe & Dushek, 2010). T cell epitope discovery is complicated by the 

codominance and polymorphism of MHC alleles, diversity of antigens (both infectious and self-

antigens), limited mass spectrometry-based confirmation of MHC-bound peptides, and a scarcity 

of experimentally confirmed immunogenic epitopes within the infectious and self-proteome 

(Purcell et al., 2007). As a result, T cell epitope prediction algorithms have focused on aa binding 

affinity for specific MHC-motifs and the proteins proteasomal cleavage pattern to identify 

candidate T cell epitopes (Honeyman, Brusic, Stone, & Harrison, 1998; Moutaftsi et al., 2006; 

Nielsen et al., 2007; Tenzer et al., 2005). Although computational tools have improved over the 

past decade, they have not been trained to predict immunogenicity. The major limitation when 

using such prediction algorithms is the presence of a significant number of binders from a given 

antigen that will never lead to an immune response (Newell et al., 2013). Thus, immunogenic CTL 

epitopes fulfill additional criteria that go beyond antigen processing and MHC-binding. 

Here, we sought to identify the biochemical criteria that define immunogenicity within 

the subset of MHC-I binding peptides. Using a curated repository of MHC-I epitopes from the 

Immune Epitope Database (IEDB) (Vita et al., 2009), we evaluated the biochemical properties of 

aas that discriminate between immunogenic epitopes and non-immunogenic self-peptides. We 

found a strong bias towards hydrophobicity in aa residues of immunogenic CTL epitopes that is 

highly selective for exposed TCR contact residues. Using these criteria, we trained an artificial 

neural network (ANN) model to identify immunogenic CTL epitopes from a data set and 

empirically assessed our prediction model for 3 human immunodeficiency virus 1 (HIV-1) Gag 

protein variants in a murine model of immunogenicity. We demonstrate the utility of this ANN 

model, which has the potential to significantly enhance the efficiency of T cell epitope discovery. 

 

 

https://paperpile.com/c/Pq59oi/63vh+8a0R+bCZq
https://paperpile.com/c/Pq59oi/63vh+8a0R+bCZq
https://paperpile.com/c/Pq59oi/SWjj
https://paperpile.com/c/Pq59oi/34tJ+weqZ+gdgN+QElV
https://paperpile.com/c/Pq59oi/34tJ+weqZ+gdgN+QElV
https://paperpile.com/c/Pq59oi/MOk9
https://paperpile.com/c/Pq59oi/apjw
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2.3 Results 

2.3.1. Amino Acid Use Differs Between Immunogenic and non-immunogenic Peptides 

CTLs recognize immunogenic epitopes from a background of poorly immunogenic self-peptides. 

To understand the biochemical basis of differences between these two classes of peptides, we 

retrieved all known MHC class I-binding peptides reported as T cell reactive (hereafter 

immunogenic) and self-peptides from MHC-ligand elution experiments with no known 

immunogenicity (hereafter non-immunogenic) from IEDB. Any eluted peptide that was 

immunogenic (either pathogen derived or self-antigen derived) was excluded to generate two 

mutually exclusive datasets that avoid any potential bias. Out of the 34,586 total retrieved 

peptides from IEDB, 5,035 8-11mer non-redundant peptides were reported to be immunogenic 

and 4,853 were non-redundant non-immunogenic and were used for further analysis. Frequency 

distributions of aas in 8-11mer immunogenic and non-immunogenic peptides showed significant 

variability in aa composition (Fig. 2-1-A). 

To identify overrepresentation of certain aa's in immunogenic epitopes, we computed a 

probability ratio for each aa. We then performed a correlation analysis between the probability 

ratio of each aa and three major biochemical properties using independent numeric scales: 

hydrophobicity (Kyte-Doolittle) (Kyte & Doolittle, 1982), polarity (Grantham) (Grantham, 1974), 

and side chain bulkiness (Zimmerman) (Zimmerman, Eliezer, & Simha, 1968) (Table A-1). We 

found a strong, statistically significant correlation between probability ratios and hydrophobicity 

values (Spearman ρ = 0.71, P = 4.24×10−4; (Fig. 2-2 A). Similarly, we also found a negative 

correlation between probability ratios and polarity of aas (Spearman ρ = −0.77, P = 6.97×10−5; 

(Fig. 2-2 B)), with highly polar aas being underrepresented in immunogenic epitopes. No 

significant correlation was observed with aa side chain bulkiness (Fig. 2-2 C). Most of the 

overrepresented and strongly bulky aas were also strongly hydrophobic. Cysteine, a non-polar 

hydrophobic aa was an outlier in the immunogenic dataset. Two potential sources of bias in our 

analyses were the variation in peptide length of MHC-I peptides and the dominance of human 

leukocyte antigen (HLA) A2 epitopes within existing databases. We analyzed on the 9mer 

epitopes (Fig. 2-1 B) and HLA class I restricted peptides excluding HLA-A2 peptides (Fig. 2-1 C).  
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Figure 2-1. Bias in amino acid usage between immunogenic and non-immunogenic MHC-I 
peptides. (A) Comparison of frequency distributions of amino acids between immunogenic and 
non-immunogenic datasets. (B) Probability ratio (P(x I immunogenic)/P(x I non-immunogenic)) of 
each amino acid as a function of its hydrophobicity, analyzed on just 9mer MHC-I peptides. (C) 
Probability ratio (P(x I immunogenic)/P(x I non-immunogenic)) of each amino acid as a function of 
its hydrophobicity, analyzed on 9mer HLA-I peptides excluding HLA-A2 restricted peptides.  
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Figure 2-2. Probability ratio of each amino acid as a function of its corresponding 
biochemical property. Each probability of each amino acid was computed from the frequency 
distribution of immunogenic epitopes and non-immunogenic peptides. Biochemical properties 
analyzed were (A) hydrophobicity, (B) polarity, and (C) side-chain bulkiness. A probability ratio >1 
indicates overrepresentation of the amino acid in the immunogenic dataset. The overrepresented 
outlier cysteine (C) was omitted for scale.  Spearman correlations coefficients (ρ) are shown. 
 

 

2.3.1. Hydrophobicity Bias in Selective TCR Contact Residues 

We first compared the mean hydrophobicity of each residue between immunogenic and non-

immunogenic peptides using the Kyte-Doolittle numeric hydrophobicity scale. Immunogenic 9mer 

epitopes were significantly more hydrophobic than non-immunogenic 9mer peptides at each 

residue (P < 1.6×10
−5

; (Fig. 2-4 A) and (Table A-2)). We observed similar results in 10mer 

peptides (P < 2×10
−7

 at every residue; (Fig. 2-3 A)), and within HLA-A2 excluded 9mer and 

10mer subsets (Figs. 2-3 B and C). Because the immunogenic dataset is biased to pathogen-

derived immunogenic epitopes, we performed similar analyses between immunogenic self-

epitopes and non-immunogenic self-peptides (P < 1×10
−4

 at all residues, except P5 and P6; (Fig. 

2-3 D)). We further compared immunogenic HLA-A2 restricted 9mer epitopes derived from 

pathogens with those derived from self-antigens and observed no significant difference in 

hydrophobicity (P > 0.05 at each aa residue except P6, P = 0.04; (Fig. 2-3 G)) revealing that T 

cells that escape thymic deletion recognize self-peptides with hydrophobicity profile that is 

virtually the same as that of pathogen-derived epitopes. Lastly, to evaluate if there is potential  
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Figure 2-3. Immunogenic pathogen-derived and self-epitope hydrophobicity. Each peptide 
sequence was transformed into numeric sequence based on hydrophobicity and the mean 
hydrophobicity at each position was computed. (A) Immunogenic and non-immunogenic MHC-I 
10mers; all residues P < 2x10

-7
. (B) HLA-I immunogenic and non-immunogenic 9mers excluding 

HLA-A2 epitopes. (C) Human HLA-I immunogenic and non-immunogenic 10mers excluding HLA-
A2 epitopes. (D) Immunogenic and non-immunogenic MHC-I 9mer self-peptides. (E) MHC-I 
9mers peptides discovered using whole organism as immunogen as opposed to peptide-
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immunization experiments (non-immunogenic dataset – same as Fig. 2A) (F) Human HLA-A2 
restricted immunogenic and non-immunogenic 10mers with arrows indicating anchor residues 
and stars for P < 0.005. (G) Human HLA-A2 restricted immunogenic pathogen-derived and 
immunogenic self 9mer epitopes. P-values for each figure were obtained using Wilcoxon rank-
sum test and are shown in Table A-2. 

 

bias created by using peptide immunization experiments, we did the same analysis using 

immunogenic epitopes identified using whole “Organism” as the immunogen (P < 0.01 at all 

residues except P1, P5 (Fig. 2-3 E)). Thus, our results demonstrate a preference for 

hydrophobicity in immunogenic epitopes across antigenic sources (self and pathogen) and MHC 

molecules (HLA-A2 and non-HLA-A2). 

The locations of anchor residues and TCR contacts have been mapped for many MHC 

peptides (Rudolph, Stanfield, & Wilson, 2006). If the observed bias toward non-polar hydrophobic 

aa’s within immunogenic epitopes affects TCR affinity, we predicted that it would be selective for 

TCR contact residues. We analyzed the mean hydrophobicity along the peptide for the highest 

represented MHC epitopes within the database: HLA-A2 (Fig. 2-4 B), and murine MHC H-2D
b
 

and H-2K
b
 (Fig. 2-4 C and D). HLA-A2 restricted 9mer peptides are anchored at residues P2 and 

P9, with P6 as an auxiliary anchor. We observed no statistical difference in hydrophobicity 

between the anchor residues of immunogenic and non-immunogenic peptides (P2, P = 0.9; P9, P 

= 0.08; (Fig. 2-4 B)). The observed difference in hydrophobicity was at specific TCR contact 

residues P4, P7 and P8 (P4, P = 6.3×10−12; P7, P = 5×10−13; P8, P < 2.2×10−16). In contrast, 

the auxiliary anchor P6 was more hydrophobic in non-immunogenic peptides (P = 3.1×10−7). 

Similar results were found for HLA-A2 restricted 10mer peptides (Fig. 2-3 F).  

To determine if the difference in hydrophobicity was species-specific, we evaluated the 

subset of known mouse MHC H-2Kb restricted 8mer peptides. Again, we observed a marked 

increase in relative hydrophobicity for the TCR contact residues P6 and P7 of immunogenic 

epitopes (P6, P = 7 × 10−5; P7, P = 1.1 × 10−6) but no difference in anchor residues (P5, P = 

0.67; P8, P = 0.15; (Fig. 2-4 C)). As observed with HLA-A2, the auxiliary anchor residue P3 was 

more hydrophobic in non-immunogenic peptides (P = 0.005). Finally, we analyzed mouse MHC 

H-2Db restricted 9mer peptides and observed that P7 and P8 TCR contact residues were more  

https://paperpile.com/c/Pq59oi/cGAI
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Figure 2-4. Hydrophobicity comparison at each residue position between immunogenic 
and non-immunogenic MHC-I peptides. Mean hydrophobicity at each position was calculated. 
(A) All immunogenic and non-immunogenic MHC-I 9-mers; every residue had P < 1.6 X 105. (B) 
HLA-A2 restricted immunogenic and non-immunogenic 9-mers. (C) Murine MHC H-2Db restricted 
immunogenic and non-immunogenic 9-mers. (D) Murine MHC H-2Kb restricted immunogenic and 
non-immunogenic 8-mers. Down-arrows in B-D indicate anchor residues based on specific MHC 

motifs. ∗P < 0.008 in that residue position. P values are listed in Table A-2. 
 
 

hydrophobic in immunogenic epitopes (P7, P = 1.1×10−4; P8, P = 0.001; (Fig. 2-4 D)), with no 

difference in anchor residue P9 (P = 0.127). One exception was the anchor residue P5, which 

was more hydrophobic in immunogenic epitopes (P = 4.9×10−10). This discrepancy might be due 

to the presence of other potential anchors at P5 (apart from Asn) within immunogenic dataset. 

Hence we demonstrate that the observed bias towards relative hydrophobic aas in immunogenic 

epitopes is selective for TCR contact residues. 
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2.3.3. Differential Hydrophobicity can Predict Immunogenic CTL Epitopes 

While MHC-binding is necessary for antigen presentation, it is not sufficient to stimulate an 

immune response. We predicted that hydrophobicity could be incorporated into existing binding 

algorithms to improve prediction of CTL epitopes. To test this hypothesis, we used the IEDB-

consensus binding prediction tool to generate peptide predictions for HLA-A2 restricted peptides 

(9, 10mers) for two viral proteins: polyprotein from dengue virus type 1 (DENV1) and tegument 

protein pp65 from cytomegalovirus (CMV). Using mean hydrophobicity of aas in TCR contact 

residues (all residues except anchors: P2, P6, and P9 or P10), each predicted peptide was re-

ranked with decreasing TCR contact hydrophobicity values (Fig. 2-5). The rate at which 

experimentally defined HLA-A2 restricted CTL epitopes (Table A-3) were identified was increased 

using hydrophobicity-based predictions compared to IEDB-consensus binding predictions (Fig. 2-

5 A and B). As a negative control, we performed re-ranking of top predictions from the 2 proteins 

using mean hydrophobicity of just anchor residues (Fig. 2-5 C-D). The rate of prediction of HLA-

A2 restricted CTL epitopes was similar to IEDB-consensus binding predictions, confirming that 

relative hydrophobicity impacts immunogenicity and not HLA-binding. These results suggest that 

using TCR contact hydrophobicity could improve prediction of immunogenic epitopes.  

 

2.3.4. Hydrophobicity-based ANN Prediction Model 

The relative contribution of each aa residue to immunogenicity varies between MHC allomorph 

and is motif-dependent (Fig. 2-4) and (Table A-2). Furthermore, the immunogenicity of a peptide 

might result from nonlinear interactions between different TCR contact residues. Artificial neural 

networks (ANN) are designed to handle such nonlinearity (Bishop, 2006; Honeyman et al., 1998). 

Therefore, we developed and trained an ANN-based prediction model of immunogenicity using aa 

hydrophobicity (ANN-Hydro) with the goal of improving existing CTL epitope prediction algorithms 

and were used as the trainings sets for the two ANN-Hydro models (Fig. 2-6). An initial 

assessment of the trained ANN-Hydro model for HLA-A2 assigned a good probability of 

immunogenicity to 54/64 (> 80%) experimentally defined HLA-A2 restricted epitopes from 3 

https://paperpile.com/c/Pq59oi/34tJ+Utyx
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recent studies (Assarsson et al., 2008; Newell et al., 2013; Weiskopf et al., 2011) (P < 0.001, 

compared to the distribution of probabilities of immunogenicity of 64 randomly generated 9mer 

 

Figure 2-5. Differential Hydrophobicity can predict Immunogenic CTL Epitopes. Efficiency 
of predicting experimentally defined HLA-A0201 restricted immunogenic epitopes using mean 
hydrophobicity of TCR contact residues (straight lines) compared to IEDB consensus binding tool 
(IEDB-Bind) are shown (dashed lines). Tegument protein pp65 from cytomegalovirus (CMV) and 
polyprotein from dengue virus type 1 were used for predictions. (A-B) Predicted peptides from the 
IEDB-Bind were re-ranked using mean hydrophobicity of TCR contact residues. (C-D) Predicted 
peptides from the IEDB-Bind were re-ranked using mean hydrophobicity of anchor residues. 
  
 

https://paperpile.com/c/Pq59oi/MOk9+B2RU+0oRl
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peptides) (Table A-4). We then developed an epitope discovery strategy incorporating the ANN-

Hydro model to predict a previous set of experimentally validated H-2D
b
 and HLA-A2 epitopes 

from 5 pathogen and 5 tumor antigens (Table A-4). The IEDB-consensus MHC-binding prediction 

algorithm was used to obtain a list of predicted peptides for each antigen, which were each 

assigned a normalized binding score (SB). Since T cell epitopes are a subset of predicted 

peptides that bind to MHC molecules, normalized scores (SI) based on probabilities of 

immunogenicity obtained by ANN-Hydro were assigned to each peptide (Fig. 2-6). We then 

defined a total score (S) as S = SB . SI for the rate of identifying CTL epitopes from the list of 

predicted H-2D
b
 and HLA-A2 peptides from each antigen. The total score is therefore dependent 

on contribution of both scores, reflecting two critical aspects: binding and immunogenicity (Fig. 2-

6). Our strategy of re-ranking by prioritization of high-binding and high-immunogenic peptides 

over other predicted peptides ((Fig. 2-6), Materials and Methods), scored 42 out of the 43 H-2D
b
 

and HLA-A2 9mer epitopes within the top 20 ranked peptides (Table A-4). Each peptide 

sequence in the H-2D
b
 and HLA-A2 datasets was transformed into a corresponding numeric 

sequence based on the hydrophobicity value of aas prediction algorithms, ranked the same 

epitopes up to rank 133 (Table A-4). Therefore, the ANN-Hydro model can be used in conjunction 

with IEDB-consensus to improve the efficiency of prediction of CTL epitopes. 

 

2.3.5. Prediction Validation by in Vivo Discovery of HIV-1 Gag Epitopes 

To comprehensively evaluate the predictive capacity of our approach for CTL epitope discovery 

and to correlate immunodominance, we interrogated 3 HIV-1 Gag variant proteins: Consensus B 

 (ConsB), 96ZM651.8 (ZM96), and 97/CN54 (CN54) (Fig. 3.4). With no prior knowledge of Gag-

specific CTL epitopes, our model was used to generate a list of ranked H-2D
b
 restricted peptides, 

of which the top 20 predictions for each interrogated Gag sequence are shown (Table B.8). To 

validate our predicted epitopes in vivo, B6 mice were immunized independently against each of 

the three different Gag variants and the peptide specificity of effector CD8+ T cell responses 

analyzed using overlapping peptide pools (Table A-5). Deconvolution and truncation experiments 

allowed us to define a unique dominant H-2D
b
-restricted epitope within each Gag protein (SI9 for 
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ConsB, QL11 for CN54, RT9 for ZM96), as well as shared subdominant epitopes: Db-restricted 

RT9, AI9, YI9 and Kb-restricted VL8 (Fig. 2-7). Comparison of empirically defined epitopes to 

predictions made using ANN-Hydro revealed that H-2D
b
 restricted 9mer CTL epitopes for HIV-1 

  

Figure 2-6. Workflow for CTL epitope prediction using the ANN-Hydro model and the MHC-
binding prediction tool IEDB-consensus. For training and application of the ANN-Hydro model for 
immunogenicity scores, each peptide sequence in the HLA-A2 and H-2Db dataset was 
transformed into a corresponding numeric sequence based on the hydrophobicity value of amino 
acids. To obtain a list of candidates for MHC-bound peptides from a given antigen, IEDB-
consensus binding algorithm was used and a normalized binding score (SB) was assigned. The 
trained immunogenicity ANN model was applied on the same list of peptides independently to 
assign immunogenicity scores (SI). After the subset of top binding peptides was selected, 
peptides from each region ranging from high-binding highly-immunogenic peptides to modest-
binding low-immunogenic peptides (quadrants 1 through 4 in inset) were re-ranked based on total 
score S = SB . SI. An example of epitope prediction is shown in the plot for experimentally defined 
H-2D

b
 restricted CTL epitopes from LCMV-GP.  

 

 CN54 Gag and ZM96 Gag correlated with ANN-Hydro model epitope sequences predicted within 

the top 15 ranked peptides; and for ConsB Gag within the top 11 ranked peptides (Table A-5). In 

striking contrast, prediction of the identified Gag epitopes by individual prediction algorithms was 
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more varied, with predictions up to rank number 46, depending on the binding or processing 

algorithm used. Although the IEDB consensus binding and NetMHCpan algorithms predicted the 

identified Gag epitopes within the top 6 ranked peptides, the performance of these algorithms 

(unlike the ANN-Hydro model) was highly variant with the antigen selected (variance ranges 

from66.72 to 220.27; (Table A-5). In sum, the ANN-Hydro model predicted 52 out of 53 

experimentally validated H-2D
b
 and HLA-A2 9mer epitopes from 13 different antigens within the  

  

Figure 2-7. Summary of identified epitopes.  Responses to the RT9, VL8, AI9, and YI9 
epitopes are observed for all three Gag protein variant peptides. Overlapping sequences of 
individual peptides are shown. The QL11 epitope was only immunogenic for the CN54 Gag 
protein, but not ConsB or ZM96 Gag proteins, likely due to the A to E substitution at position 2. 
The SI9 epitope was only immunogenic in the ConsB Gag protein, as both CN54 and ZM96 had 
major deletions and substitutions in this sequence. MHC restriction was confirmed using MHC 
class I tetramer staining, and Gag amino acid positions are in reference to the HXB2 strain. 
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Figure 2-8. ANN-Hydro model prediction validation by in vivo discovery of HIV-1 Gag 
epitopes. Predictions for H-2D

b
 epitopes were made for three HIV-1 Gag proteins using the 

ANN-Hydro model, and then a blinded epitope discovery study was performed in vivo. (A–C) B6 
mice were immunized with AdHu5 vaccines expressing the ConsB, CN54, or ZM96 Gag, and 
CD8+ T-cell responses determined by intracellular IFN-γ or IFN-γ ELISPOT after ex vivo 
stimulation with peptide pools of 15-mer peptides (overlapping by 11 mer) spanning the entire 
Gag sequence (ConsB or CN54, A and B) or with a complete set of overlapping 20-mer peptides 
spanning ZM96 (C). (D–H) Positive responses to pools were deconvoluted by stimulation with 
individual 15-mer peptides from the positive pools (ConsB or CN54, D and E). Minimal epitopes 
were identified by stimulation with truncated peptides and are shown (F–H). 
 

top 20 ranked peptides (Fig. 2-9), corresponding to a 98% success rate in identifying 

immunogenic epitopes. Moreover, this predictive improvement was reflected in lower variability of 

epitope identification, a variance of 37.72 using ANN-Hydro as opposed to 66.72 by IEDB alone 

(P < 0.05, F-test). 

 

2.3.6. Prediction of Immunodominant Epitopes 

The probabilities of immunogenicity assigned by ANN-Hydro were interrogated with respect to 

epitope immunodominance using three antigens with a clear vertical epitope hierarchy, as 
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identified by ex vivo experimental data (Oukka et al., 1996; van der Most et al., 1998) and this 

study). The epitope hierarchy defined experimentally in LCMV-GP, Flu-NP, and ZM96 Gag 

showed robust correlation with the probabilities of immunogenicity assigned by ANN-Hydro (r > 

0.94,P < 0.05; (Fig. 2-9 B-D)). In contrast, predicted MHC-binding assigned by IEDB-consensus 

showed no correlation with epitope immunodominance in LCMV-GP and ZM96-Gag (Fig. 2-9 E 

and G). Epitope immunodominance in Flu-NP correlated with both predicted ANN-Hydros 

probability and predicted MHC-binding (Fig. 2-9 C and F). As a further correlate, seven of 13 

epitopes predicted in lower rankings by ANN-Hydro along with IEDB-consensus were modest 

immunogens derived from LCMV-GP, LCMV-NP, ZM96, CN54, and Consensus Gag (Table A-6). 

Therefore, efficient pMHC-TCR affinity may contribute towards epitope immunodominance. By 

using ANN Hydro, epitope predictions were consistently less variable, and improved the 

prediction of immunodominant CTL epitopes. 

2.4 Discussion 

At present, there is no consensus on the molecular mechanisms by which CD8+ T cells 

discriminate immunogenic antigens within the background of poorly immunogenic self peptides. 

Understanding this discrimination has implications in rational vaccine design and the identification 

of antigenic targets of malignant and autoimmune diseases. While several theories have been 

proposed to explain the concept of self/non-self discrimination (Pradeu & Carosella, 2006), the 

present study is the first attempt to provide a biochemical explanation for this fundamental 

phenomenon. We show that relative aa hydrophobicity within immunogenic epitopes reveal an 

antigenic pattern that could be recognized by TCRs. We leveraged these findings to design an 

immunogenicity model, trained and validated using experimentally defined epitopes. ANN-Hydro 

consistently reduced variable standard prediction outputs across multiple antigens, demonstrating 

an important step forward in reducing the empirical element of T cell epitope prediction.  

The majority of antigens within the immunogenic dataset used in this study are derived 

from intracellular pathogens, such as viruses, which have been shown to favor a lower G+C 

genomic content, reflected in their aa usage (Calis, Sanchez-Perez, & Keşmir, 2010). Strongly  

https://paperpile.com/c/Pq59oi/jZgK+pvG3
https://paperpile.com/c/Pq59oi/bLie
https://paperpile.com/c/Pq59oi/OR1R
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Figure 2-9. Incorporating ANN-Hydro in the IEDB-binding tool improves epitope prediction. 
(A) Ranked epitopes for 26 H-2D

b
 CTL epitopes from eight well-described antigens and for 27 

HLA-A2 CTL epitopes from five tumor antigens (Melan-A, Wt-1, gp100, TRAG-3, and p53), each 
column is a different prediction algorithm with epitopes and their corresponding predicted ranks 
shown. (B–D) Epitope immunodominance as a function of probability of immunogenicity for 
LCMV-GP, Flu-NP, and Gag-ZM96. (E–G) Epitope immunodominance as a function of predicted 
MHC binding (IEDB consensus) for LCMV-GP, Flu-NP, and Gag-ZM96. Immunodominance was 
determined from percentage-specific lysis of target cells ex vivo. (B and E) 9-mer versions of 
SGV11 and CSA10 were used. (C and F) Percent survival of peptide-primed mice on lethal 
challenge of virus (D and G) IFN-γ spots per million cells on ex vivo peptide stimulation post 
vaccination with antigen (this study). 
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hydrophobic aas (e.g. L, I, V, F, M) are characterized by low G+C codons while hydrophilic aas  

are not (Khrustalev & Barkovsky, 2011). This suggests the possibility that pathogens, in general, 

have a higher usage of hydrophobic aas that could be exploited for TCR recognition. A second 

possibility is that antigen presentation inherently favors hydrophobic regions within a protein. A 

recent study demonstrated that exposing hydrophobic domains significantly enhances the rate of 

proteasomal degradation and MHC presentation (Huang, Kuhls, & Eisenlohr, 2011). Moreover, 

immunogenic CTL epitopes are also positionally biased towards the center of their source 

antigens (Huang et al., 2011; Kim, Yewdell, Sette, & Peters, 2013), consistent with the fact that 

cytosolic proteins with a central hydrophobic core are the major substrates of proteasomal 

degradation. Thus, protein hydrophobicity can enhance both antigen presentation and 

immunogenicity, perhaps an evolutionary adaptation of hydrophobicity driven by damage-

associated molecular patterns (Seong & Matzinger, 2004).  

TCRs are estimated to recognize on average about 5 non-anchor residues of a presented 

peptide because of the angle of peptide contact (Burroughs, de Boer, & Keşmir, 2004; Hennecke 

& Wiley, 2001). For 3 pMHC allomorphs analyzed by hydrophobicity in this study, only 4-5 

positions on the peptide were significantly different between immunogenic and non-immunogenic 

peptides (Fig. 2-4), similar to published pMHC-TCR structures (Rudolph et al., 2006). This 

hydrophobicity difference is relative, not absolute. Certain aa positions in the peptide may be 

hydrophilic (e.g. P4 in HLA-A2 9mers, (Fig.2-4 B)). However, even in such inherently hydrophilic 

residues in the peptide, immunogenic epitopes are less hydrophilic (more hydrophobic). Covering 

exposed hydrophobic residues on the peptide by a TCR may be a thermodynamically favorable 

process, facilitating the pMHC-TCR interaction as noted in retrospect, by a recent study 

(Birnbaum et al., 2014). TCR-engagement of pMHC complexes may be enhanced by water-

exclusion from the immunological synapse or by increased Kon rates of the TCR-pMHC complex 

by relatively hydrophobic aas. 

In the absence of a good understanding of the biochemical composition of peptide 

ligands that result in T cell activation, current strategies for epitope discovery either rely on the 

https://paperpile.com/c/Pq59oi/JME7
https://paperpile.com/c/Pq59oi/Eolt
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https://paperpile.com/c/Pq59oi/XBOI+lwyz
https://paperpile.com/c/Pq59oi/cGAI
https://paperpile.com/c/Pq59oi/rq5w


  47 

unbiased synthesis of a large number of overlapping peptides, or use MHC-binding/antigen 

processing algorithms to select candidate peptides. While the former is an expensive and 

laborious process, the latter results in a large number of false positive peptides that are not 

immunogenic. Advances in the development of combinatorial technologies have allowed the rapid 

identification and characterization of antigen-specific T cells (Newell & Davis, 2014). However, 

even such novel technologies rely on binding predictions to create candidate peptides lists that 

require extensive empirical validation. For instance, 77 candidate good-binders for HLA-A2 from 

the rotavirus proteome were chosen for recombinant pMHC tetramer production based on their 

MHC-binding capability, but only 6 (four being 9mer epitopes) were confirmed to be immunogenic 

epitopes (Newell et al., 2013). Therefore, T cell antigen discovery studies need strategies that 

improve the efficiency of epitope prediction.  

ANN-Hydro assigned high probabilities of immunogenicity to 80% of the HLA-A2 9mer 

epitopes described in the three proteome wide studies. Of note, three of the four rotavirus 9mer 

epitopes from the data set scored a probability of immunogenicity greater than 0.8 (Table A-4). In 

the HIV-1 Gag study, over 364 overlapping peptides were tested in vivo from the Gag variants 

(length: 500aa) for epitope discovery. Using the ANN-Hydro model combined with SB scores 

narrows the validation discovery process down to 11-15 peptides per Gag protein to be tested. 

Similarly, applying ANN-Hydro also improved predictions of immunogenic H-2Db and HLA-A2 

epitopes from 10 independent antigens compared to individual prediction algorithms. Thus, 

models such as ANN-Hydro adds an extra dimension (immunogenicity) to MHC-binding for CTL 

epitope prediction and could be used to significantly reduce the variability associated with 

standard prediction algorithms, and the time and cost of experimental validation (Fig. 2-9), (Table 

A-6). With the advent of tumor exome sequencing in immune therapy settings, we anticipate that 

immunogenicity models such as ANN-Hydro will be critical in identifying immunogenic neo-

antigens for tumor immune therapies (Snyder et al., 2014; Yadav et al., 2014). 

The ANN-Hydro model differs from existing MHC-binding/antigen-processing prediction 

algorithms in two respects: First, the ANN-Hydro was trained on a relative hydrophobicity scale, 

which facilitates the model to discover complex numeric relationships between different aa 

https://paperpile.com/c/Pq59oi/fKN0
https://paperpile.com/c/Pq59oi/MOk9
https://paperpile.com/c/Pq59oi/fmot+2Kve
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residues. Second, the dataset used for training was immunogenic epitopes and non-immunogenic 

self-peptides, which do not differ in binding motifs but only in immunogenicity. While some high-

binding epitopes (e.g. SI9 from ConsB) are readily predicted by all algorithms, other epitopes 

(e.g. the immunodominant dominant RT9 from ZM96, LL9 from LCMV-GP) are predicted at 

variable rankings by different algorithms (Table A-6). In comparison, ANN-Hydro rescued these 

epitopes by virtue of their probability of immunogenicity. Although ANN-Hydro marks a step 

forward in efficiently predicting 9mer epitopes, it is currently limited in terms of predicting longer or 

shorter epitopes, exemplified by the 11mer epitope (QL11) deduced by epitope mapping from the 

CN54 Gag protein. To improve longer or shorter epitope predictions, larger representative 

datasets are required for training. Nonetheless, the model predicted a 9mer version of this 

epitope ranked at 35 and 44, which is consistent with presentation of nested length peptides 

(Riemer et al., 2010). A second limitation of the current model is its applicability to predict 

epitopes for other HLA class I alleles. In theory, the ANN-Hydro model could be applied to predict 

CTL epitopes for any MHC class I allele, but large representative datasets are required for 

training the model for representative MHC allomorphs. We anticipate that advances in mass 

spectrometry-based MHC peptide discovery will result in more extensive training databases for 

predicting longer and shorter epitopes from a broader selection of HLA class I molecules (Riemer 

et al., 2010; Tan, Croft, Dudek, Williamson, & Purcell, 2011). 

While immunogenicity models have been developed by others for prediction of CTL 

epitopes (Calis et al., 2013; Harndahl et al., 2012), they considered only the impact of pMHC 

stability and positional significance along the peptide for immunogenicity. In contrast, a crucial 

feature of our approach is the use of ligand-eluted non-immunogenic self-peptides as the 

comparator set. Because binding and antigen processing are required for all epitopes, we built 

upon existing algorithms for immunogenic pMHC predictions. “Layering” the immunogenicity 

model on top of existing prediction algorithms enabled us to predict epitopes with increased 

effectiveness than standalone predictions. Importantly, the empirical evaluation of our 

immunogenicity model and epitope prediction approach without a priori knowledge of the 

immunodominant HIV-1 Gag epitopes in vivo gives strong support for these results. In summary, 

https://paperpile.com/c/Pq59oi/rjDv
https://paperpile.com/c/Pq59oi/rjDv+7T8c
https://paperpile.com/c/Pq59oi/rjDv+7T8c
https://paperpile.com/c/Pq59oi/afHB+FioY
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integrating aa hydrophobicity into pMHC prediction algorithms should significantly enhance the 

success of epitope discovery. The biological mechanism underlying TCR preferences for non-

polar hydrophobic residues remains to be evaluated.  

 

2.5 Materials and Methods 

For full details of methods and construction of data sets see Appendix A. 

 

2.5.1. Construction of Datasets 

All MHC-I peptides used in this study and design of the ANN-Hydro prediction model was 

retrieved from IEDB (Vita et al., 2010) (www.iedb.org, last accessed: 08/11/2013). Epitopes with a 

positive T cell response represent the immunogenic epitope group. The non-immunogenic self-

peptide group represent cell surface ligand eluted MHC-I self-peptides that have been 

antigenically processed and MHC-bound. Additional curation and exclusion criteria resulted in a 

final dataset with 5,035 8-11mer immunogenic epitopes and 4,853 8-11mer non-immunogenic 

peptides (See Appendix A for further details). 

 

2.5.2. Amino Acid Scales 

These were derived from Expasys ProtScale (http://web.expasy.org/protscale/) (Gasteiger et al., 

2005), specifically, Hydrophobicity scale (Kyte and Doolittle) (Kyte and Doolittle, 1982), Polarity 

(Grantham) (Grantham, 1974), and Bulkiness (Zimmerman) (Zimmerman et al., 1968). The 

scales are relative, e.g., negative to positive values in the hydrophobicity scale correspond to a 

relative hydrophobicity increase between aas (Table A-1). 

 

2.5.3. Position-based Hydrophobicity Analysis 

We transformed our datasets of immunogenic and non immunogenic peptides into numeric  

arrays using the R statistical software (RDevelopment, 2012). Separate numeric arrays were 

generated for immunogenic and non-immunogenic 8, 9 and 10mers. Mean hydrophobicity of 



  50 

immunogenic and non-immunogenic peptides at each position was calculated and were 

compared residue-by-residue through Wilcoxon rank-sum tests to quantify statistical significance. 

 

2.5.4. Hydrophobicity-based ANN Prediction Model (ANN-Hydro) 

The R neuralnet package was used to design and train the two ANN-Hydro models on H-2Db and 

HLA-A2 restricted 9mer peptides known to be immunogenic (n=204 and n=374, respectively) or 

non-immunogenic (n=232 and n=201, respectively). Each peptide sequence in the respective H-

2Db and HLA-A2 datasets were transformed into a corresponding numeric sequence based on 

aa hydrophobicity using R statistical software. A three-layer fully connected feed-forward ANN 

was comprised by nine input neurons, one hidden layer with three neurons, and one output 

variable (Fig. 2-6). 

 

2.5.5. Application of ANN-Hydro 

For each H-2Db and HLA-A2 restricted epitope prediction, we used IEDB-consensus to generate 

a list of epitope predictions. Each peptide was assigned a normalized binding score (SB) and a 

subset of these predicted peptides was then selected by defining a SB threshold of 0.1 for antigen 

length >100 aas and a SB-threshold of 0.2 for antigen length ≤ 100 aas. Independently, 

probabilities of immunogenicity were obtained by applying ANN Hydro to this subset of binding 

predictions. Normalized scores (SI) were then assigned based on the probabilities of 

immunogenicity (Fig. B.3). Predicted peptides were re-ranked based on total score, S = SB . SI, 

ranging from lowest score to the highest score. The lower the total score of a predicted peptide, 

the higher its probability of being an immunogenic epitope. See Appendix A for details. 

 

2.5.6. Vaccines 

Recombinant Adenovirus type 5 (rAdHu5) vectors encoding codon optimized HIV-1 Gag from 

Cons B, strain 96ZM651.8 (ZM96) and strain 97CN54 (CN54) (Bachy et al., 2013) are described 

in Appendix A. 

 

https://paperpile.com/c/Pq59oi/6YiI
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2.5.7. Immunization of Mice 

C57BL/6 mice were immunized with 109 virus particles. All animal studies were conducted in 

accordance with UK Home Office regulations and Kings College London ethics committee. 

 

2.5.8. Peptides 

15mer peptides spanning HIV-1 CN54 Gag and a 20mer set of peptides spanning HIV-1 ZM96 

were provided by the UK Centre for AIDS Reagents. 15mer peptides spanning HIV-1 Cons B Gag 

were provided by the NIH AIDS Reagent Reference Program. Truncated HIV-1 Gag peptides 

were purchased from Proimmune. 

 

2.5.9. T Cell Epitope Mapping 

Spleen cells were re-stimulated either with media alone or with peptides, either in pools or 

individually (each at 1M final concentration) and IFN- production was detected by intracellular 

cytokine staining or by ELISPOT assay as previously described (Bachy et al., 2013). Cons B and 

CN54 Gag epitopes were deconvoluted to individual 15mers from peptide pools, and truncated 

versions of the 15mer peptides were synthesized and tested. For ZM96 Gag, 49 individual 20mer 

peptides were tested. Reactive peptide sequences were confirmed against the corresponding 

15mer peptide to the reactive sequence and 9mer peptides were synthesized and tested. 
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CHAPTER 3 

T-CELL EPITOPE DISCOVERY FOR THERAPEUTIC CANCER VACCINES 

 

This chapter is published: 

Sri Krishna and Karen S. Anderson. Vaccine Design: Methods and Protocols: Volume 1: 

Vaccines for Human Diseases, 779-796. Springer New York. 2016. 

 

Abstract 

The success of recent immune checkpoint blockade trials in solid tumors has demonstrated the 

tremendous potential of immune-mediated treatment strategies for cancer therapy. These 

immune therapies activate preexisting cytotoxic CD8+ T cells (CTL) to selectively target and 

eradicate malignant cells. In vitro models suggest that these therapies may be more effective in 

combination with priming of CTL using cancer vaccines. CTL-mediated tumor targeting is 

achieved by its recognition of tumor antigenic epitopes presented on human leukocyte antigen 

(HLA) class I molecules by tumor cells. Discovering CTL-antigenic epitopes is therefore central to 

the design of therapeutic T-cell vaccines and immune monitoring of these complex 

immunotherapies. However, selecting and monitoring T-cell epitopes remains difficult due to the 

extensive polymorphism of HLA alleles and the presence of confounding non-immunogenic self-

peptides. To overcome these challenges, this chapter presents methodologies for the design of 

CTL-targeted vaccines using selection of target HLA alleles, novel integrated computational 

strategies to predict HLA-class I CTL epitopes, and epitope validation methods using short-term 

ex vivo T-cell stimulation. This strategy results in the improved efficiency for selecting antigenic 

epitopes for CTL-mediated vaccines and for immune monitoring of tumor antigens. 

3.1 Introduction 

Recent clinical trials of vaccines, checkpoint blockade, and immunotherapy have demonstrated 

the potential efficacy of harnessing cytotoxic T cells for treatment of many cancers (H.-J. Kim & 

Cantor, 2014; Mellman, Coukos, & Dranoff, 2011; Trimble & Frazer, 2009). Unlike multimodality 

https://paperpile.com/c/7jr7AZ/wS2b+m0IT+6dJX
https://paperpile.com/c/7jr7AZ/wS2b+m0IT+6dJX
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therapy with surgery, radiation, and chemotherapy, immune therapies against tumor-specific or 

tumor-associated antigens hold great promise for targeted tumor eradication with relatively 

minimal side effects. Prophylactic subunit vaccines, such as the hepatitis B vaccine (HBV) and 

the human papillomavirus (HPV) vaccines, stimulate protective antibody responses and have 

been highly successful with >90 % efficacy (Chang et al., 1997; Giuliano et al., 2011; Mast et al., 

2005). However, eradicating preexisting pathogenic infections and malignancies is difficult to 

achieve by antibody-mediated immunity alone. For instance, the prophylactic HPV VLP vaccine 

has limited efficacy for the therapeutic treatment of existing lesions (Trimble & Frazer, 2009). 

Solid tumors, in particular, have a limited number of selective cell surface targets, a striking 

genomic heterogeneity, and rapid evolution of antigenic escape. Therefore, vaccines that induce 

T-cell-mediated immunity against established malignancies for therapeutic intervention are 

needed (H.-J. Kim & Cantor, 2014; Mellman et al., 2011; Trimble & Frazer, 2009).  

 The primary goal of immune therapies for tumor eradication has been the induction of 

cytotoxic CD8+ T cells (CTLs). CTLs are activated by their recognition of 8–11 amino acid 

peptides derived from proteasomal degradation of either pathogen-derived or self-antigens in 

association with human leukocyte antigen (HLA) class I molecules (Blum, Wearsch, & Cresswell, 

2013; Grakoui et al., 1999). The downstream signaling cascade triggered by the binding of T-cell 

receptors (TCRs) to epitope specific peptide-HLA complex causes antigen-specific effector CTL 

proliferation and the cytolysis of target cells presenting the epitope (Hennecke & Wiley, 2001). 

The αβTCR-peptide-HLA interaction is thus a critical event in CTL-mediated immunity and is 

fundamental for rational vaccine design. These CTL epitopes can be incorporated as a 

component of the therapeutic vaccine, or they can be useful for immune monitoring post-therapy 

(Trimble & Frazer, 2009).  Identifying immunogenic CTL epitopes remains a major challenge in 

vaccinology. Three major hurdles impede efficient discovery of CTL epitopes: (1) target antigen 

selection for vaccine design, (2) the codominance and polymorphism of HLA alleles which vary in 

populations by ethnicity and geographic location, and (3) the identification of the minimal peptidic 

sequence that can stimulate antigen-specific effector T-cell responses (Purcell, McCluskey, & 

Rossjohn, 2007). Identifying antigenic peptides reduces the cost of vaccine manufacture and 

https://paperpile.com/c/7jr7AZ/vHMd+tEhm+iL74
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https://paperpile.com/c/7jr7AZ/MmGK
https://paperpile.com/c/7jr7AZ/6dJX
https://paperpile.com/c/7jr7AZ/jcXK
https://paperpile.com/c/7jr7AZ/jcXK
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limits exposure to competing non-immunogenic peptides within the vaccine formulation (Purcell et 

al., 2007). Comprehensive T-cell epitope mapping across different HLA alleles is important to 

identify relevant epitopes that are antigenically processed and presented on the tumor tissue 

(Riemer et al., 2010).  

 Antigens for tumor immunotherapy may be derived from mutated, splice-variant, or 

structurally altered antigens (tumor specific antigens), overexpressed wild-type antigens (tumor-

associated antigens), as well as other neo-antigens against which central or peripheral T-cell 

tolerance has not been established (Ernst & Anderson, 2015; Mellman et al., 2011). Ideal 

antigens are those that are strongly expressed in tumor tissue and required for tumor 

pathogenesis. Examples of tumor-specific antigens are the HPV16 viral oncogenes E6 and E7 

which are integrated into the host genome in cervical carcinomas and have sustained expression 

during tumor progression. E6 and E7 are excellent candidates for CTL-mediated recognition of 

malignant cells harboring these “non - self” antigens (Trimble & Frazer, 2009). Several groups 

have targeted E6/E7 in therapeutic vaccines (Ma, Xu, Hung, & Wu, 2010), but comprehensive 

CTL epitope and HLA-restriction mapping of the HPV immunome are still limited (Riemer et al., 

2010; Yadav et al., 2014). With recent advances in tumor exome and RNAseq analysis, target 

antigens are increasingly being discovered using bioinformatics analysis of the tumor genome 

(Rajasagi et al., 2014), exome (Pulido et al., 2012; H.-G. Rammensee & Singh-Jasuja, 2013; 

Segal et al., 2008; Yadav et al., 2014), or post-hoc analysis of patients in response to immune 

therapies . Advances in proteomic tools such as mass spectrometry (MS) are now more routinely 

used to identify the tumor peptidome for antigen discovery (Rizvi et al., 2015; Snyder et al., 

2014). Advances in proteomic tools such as mass spectrometry (MS) are now more routinely 

used to identify the tumor peptidome for antigen discovery (Fortier et al., 2008; Riemer et al., 

2010; Yadav et al., 2014).  

The second limitation of CTL epitope discovery is the codominance and polymorphism of 

HLA alleles (Lund et al., 2004; Purcell et al., 2007). Bioinformatic and sequence analyses have 

demonstrated that most HLA-class I alleles can be classified into one of the 9–12 common 

https://paperpile.com/c/7jr7AZ/jcXK
https://paperpile.com/c/7jr7AZ/jcXK
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supertypes of HLA alleles, providing a population coverage of over 90 % within the HLA 

supertypes (Lund et al., 2004; Sette & Sidney, 1999). HLA alleles and their supertypes can 

be obtained using bioinformatic analyses from the global HLA database 

(http://www.ebi.ac.uk/ipd/imgt/hla/). For targeting HLA alleles from each supertype with maximal 

population coverage for tumor antigen discovery, we have chosen ten common HLA alleles 

corresponding to a 60 % of the HLA-A locus and a >35 % HLA-B locus-specific population 

coverage (HLA-A alleles: A*0101, A*0201, A*0301, A*1101, A*2402; HLA-B alleles: B*0702, 

B*0801, B*2705, B*3501, B*5701). Using these HLA supertypes, the selected alleles represent 

the most common representatives of HLA supertypes for a CTL vaccine targeting over 90% of the 

global population coverage, according to Lund et al. (Lund et al., 2004).  

There are several methods to define antigenic epitopes for T-cell immunotherapy (Fig. 3-

1). Conventional discovery of CTL epitopes has relied on in vitro or in vivo testing of overlapping 

peptides spanning the entire target antigen length, followed by peptide deconvolution and serial 

truncation to identify the minimal immunogenic epitope(s). Alternatively, the protein sequence can 

be scanned for potential HLA-binding motifs based on known amino acid preferences of different 

HLAs for peptide binding (Vonderheide, Anderson, et al., 2001). Potential peptides can be tested 

for HLA-binding affinity on cell lines with defective antigen processing such as T2 (Riemer et al., 

2010; Vonderheide, Anderson, et al., 2001). Recently, computational tools developed over the 

past decade have become increasingly reliable for predicting HLA-peptide affinity (Honeyman, 

Brusic, Stone, & Harrison, 1998; Moutaftsi et al., 2006; Tenzer et al., 2005). These computational 

prediction tools leverage large experimentally derived datasets on peptide-HLA binding for 

training Markov models or neural networks and have now been expanded to additionally include 

antigen-processing elements such as proteasomal cleavage patterns (Honeyman et al., 1998; 

Moutaftsi et al., 2006; Tenzer et al., 2005). Additionally, we and others have developed 

computational models which predict HLA-binding peptide immunogenicity (Calis et al., 2013; 

Chowell et al., 2015). These immunogenicity models can be used in conjunction with existing 

prediction algorithms to further improve efficiency of CTL epitope predictions (Chowell et al., 

2015). Additional algorithms for HLA-class II peptide predictions reviewed in Nielsen, & 

https://paperpile.com/c/7jr7AZ/YC4T+gs1B
http://www.ebi.ac.uk/ipd/imgt/hla/
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Figure 3-1.  Techniques to identify T-cell epitopes. Note that computationally predicted 
peptides need validation by one or more experimental techniques. 
 
 

Lundegaard, 2010 can be used concurrently with class I predictions to improve T-cell vaccine 

targets for tumor antigens.  

 Predicted CTL epitopes are conventionally tested for HLA binding using recombinant 

HLA proteins or cellular assays, T-cell stimulation with Elispot assays (Vonderheide, Schultze, et 

al., 2001), antigen processing using mass spectrometry (Fortier et al., 2008; Hirano, 2006), or 

HLA multimers to determine the frequencies of antigen-specific T cells in the peripheral blood 

(Fig. 3-1). Despite these major advances in computational immunology, there is huge variability 

that exists between the different prediction algorithms and results in a significant number of non-

immunogenic false-positive epitopes from a given antigen. Here, we will focus on a reverse 

immunology CTL epitope discovery strategy that improves the efficiency of epitope prediction and 

experimental validation by short-term ex vivo T-cell cultures (Newell et al., 2013; Newell & Davis, 

2014). Despite these major advances in computational immunology, there is huge variability that 

exists between the different prediction algorithms (Lin, Ray, Tongchusak, Reinherz, & Brusic, 

https://paperpile.com/c/7jr7AZ/VqiN
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2008) and results in a significant number of non-immunogenic false-positive epitopes from a 

given antigen (Newell et al., 2013). Here, we will focus on a reverse immunology CTL epitope 

discovery strategy that improves the efficiency of epitope prediction and experimental validation 

by short-term ex vivo T-cell cultures. 

 

3.2 Comparative CTL epitope prediction strategy 

CTL epitope identification strategies for tumor and pathogen derived antigens are predominantly 

limited to the well-represented HLA-A2 allele. There is a need to define CTL epitopes for other 

non-A2 major HLA supertypes in order to develop globally relevant immune therapies. A number 

of open-access prediction algorithms are available for peptide-MHC binding and antigen 

processing (Honeyman et al., 1998; Nielsen et al., 2007). However, a recent study showed that 

there is huge variability associated with the use of these prediction algorithms depending on the 

HLA type and antigen chosen (Lin et al., 2008). To counter this variation in performance and 

scores, we employ a strategy that makes use of commonly used algorithms (three HLA-binding 

tools and two antigen processing). This strategy of pooling multiple epitope prediction algorithms 

increases the likelihood of obtaining a true positive epitope. Potential HLA binders for the desired 

antigen are predicted for the five HLA-A alleles (A*0101, A*0201, A*0301, A*1101, A*2402) and 

five HLA-B alleles (B*0702, B*0801, B*2705, B*3501, B*5701). Five prediction algorithms are 

used to predict candidate peptides per antigen per HLA. Three of these algorithms (IEDB-

consensus (Moutaftsi et al., 2006), NetMHCpan (Nielsen et al., 2007), and Syfpeithi (H. 

Rammensee, Bachmann, Emmerich, Bachor, & Stevanović, 1999)) predict HLA binding, while the 

other two algorithms (IEDB recommended (Tenzer et al., 2005) and SMMPMBEC (Y. Kim, 

Sidney, Pinilla, Sette, & Peters, 2009)) predicted candidate peptides based on antigen 

processing. A common pool of top-ranked peptides from each algorithm is re-ranked using a 

normalization score from three binding algorithms, and the top candidate peptides are selected. 
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3.3 Pooled Epitope Screen-1 

Of the potential peptidome from a target antigen, only those peptides that can stimulate CD8+ T-

cell response in tumor samples will be useful targets for immunotherapy. Both epitope targets and 

HLA restriction of tumor-reactive T cells are largely unknown for both cancers and pathogens. 

Long overlapping peptides from target antigens have been widely used in T-cell assays, but serial 

truncation of positive peptides is still required for epitope identification. This is a labor-intensive 

and expensive process, limited by the number of samples and more difficult for large antigens 

(Purcell et al., 2007). The low frequencies of precursor tumor antigen-specific CTLs can be 

amplified by expansion of antigen-specific CTLs ex vivo in a 10-day stimulation protocol using 

autologous peripheral blood mononuclear cells (PBMCs) as antigen presenting cells (Fig. 2) 

(Hida et al., 2002; Parikh et al., 2014). Because of emerging evidence of the role of PD-1/PD-L1 

checkpoint blockade to activate a potent antitumor immunity in HPV-associated as well as other 

tumors (Binder et al., 2013; Lyford-Pike et al., 2013), anti-PD-1 antibody is used on day 1 of our 

culture protocol to inhibit antigen-specific T-cell suppression. Since candidate peptides are 

predicted for several HLAs, they are pooled into separate 8–10 peptide pools. Peptide pools are 

designed to limit intra-pool binding competition by different peptides to the same HLA. Activation 

of antigen-specific CTLs is identified by standard interferon gamma (IFNγ) enzyme-linked 

immunospot (Elispot) assay. The mean spot-forming units (SFUs) from each peptide pool are 

assessed in triplicate. The mean SFU of any peptide pool greater than twice the mean SFU of 

negative control (PBS-DMSO or irrelevant peptide pool) with statistical significance (P < 0.05 by 

two-sample T-test) is considered as a positive response. 

 

3.4 Peptide Pool Deconvolution Screen-2 

Once peptide pool(s) that has a positive signal from several patient PBMCs is identified by the  

primary screen culture protocol, the minimal peptide(s) responsible for CTL stimulation is 

identified by deconvoluting the peptide pool (Fig.  3-2). The same ex vivo short-term culture 

protocol (including anti-PD-1) is repeated now with individual peptides from the positive peptide 

pool from the initial screen (screen-2). The reactive parent peptide pools from screen-1 are 

https://paperpile.com/c/7jr7AZ/jcXK
https://paperpile.com/c/7jr7AZ/hCY3+SPqy
https://paperpile.com/c/7jr7AZ/MJK3+xnFV


  59 

included as a biological replicate. Concurrently, the positive responder’s HLA-class I type is 

identified either by HLA-specific monoclonal antibodies using flow cytometry (low-resolution HLA 

typing) or by commercial HLA-typing (high-resolution) services such as the type HLA 

(ProImmune, Oxford, UK). Low-resolution HLA typing by flow cytometry is performed on PBMCs 

set aside during screen-1 during any of the 2–3 days following day-1 stimulation. High resolution 

commercial HLA typing requires genomic DNA (2μg total) isolated from the PBMCs and sent out 

to commercial services. Because it requires more material, it is usually done on the last day of the 

Elispot screen. Cells are collected from the Elispot plate and washed once, and genomic DNA is 

isolated. 

  

Figure 3-2. Ex vivo short term cultures, epitope deconvolution, and HLA-restriction 
identification. 
 
 

If there are limitations on sample availability, only those peptides that correspond to the 

patient’s HLA-class I types are tested. In such cases, a small number (~1 million cells) of donor 

PBMCs is set aside during screen-1, and HLA typing is performed (low and/or high resolution). 

Once screen-1 is complete, only those candidate peptides from a pool that are predicted to bind 

the donor’s HLA type are tested in the subsequent screen-2. This minimizes the amount of 

sample and the number of peptides to be tested. However, this approach will not successfully 

identify cross- reactive promiscuous HLA binders, which can be lost when focusing on donor-

HLA-specific candidate peptides. 
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3.5 Materials 

 

3.5.1. Comparative CTL Epitope Prediction Strategy 

1. Antigenic protein sequence. Usually obtained from literature or from National Center for  

Biotechnology (NCBI) RefSeq database (Pruitt et al., 2014) and UniProt servers (UniProt 

Consortium, 2015).  

2. Immune epitope database (IEDB) MHC-peptide binding algorithms: NetMHCpan, IEDB 

consensus binding prediction tool, both accessible at http://tools.immuneepitope.org/main/tcell/. 

3. SYFPEITHI algorithm: http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm. 

4. IEDB antigen-processing: IEDB-consensus antigen-processing tool, SMMPMBEC antigen-

processing algorithms http://tools.immuneepitope.org/main/tcell/ 

5. Microsoft Excel 

6. R statistical software. 

 

3.5.2.   Assessing peptide immunogenicity by short term ex vivo cultures (Screen-1) 

1. 1x tissue-culture grade phosphate buffered saline (PBS) (Cellgro, Mediatech, VA, USA). 

2. Dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO, USA). 

3. Acetic acid (Amresco, Solon, OH, USA). 

4. T-cell culture media: To RPMI-1640 (ATCC, Manassas, VA, USA), add 100 U(μg)/mL 

penicillin-streptomycin (Gibco, Grand Island, NY, USA), 10 mM HEPES (Gibco, Grand Island, 

NY, USA), 2 mM l-glutamine (Gibco, Grand Island, NY, USA), and 10 % human serum (Gemcell, 

USA). Filter through 0.22μm Corning sterile filter, IL-2, IL-7. Store at 4℃.  

6. Recombinant human IL-2 (R&D Systems, MN, USA): Reconstitute at 100μg/mL (=1,640,000 

U/mL) in 100mM sterile acetic acid. Add 100 μL acetic acid into 16.6 mL water to make 100 mM 

acetic acid; filter through 0.22μm Corning sterile filter. Store at -80°C. Working solution is 2000 

U/mL in sterile PBS. Final concentration in culture is 20 U/mL and can be stored at 4°C. 

https://paperpile.com/c/7jr7AZ/4rLn
https://paperpile.com/c/7jr7AZ/chOS
https://paperpile.com/c/7jr7AZ/chOS
http://tools.immuneepitope.org/main/tcell/
http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm
http://tools.immuneepitope.org/main/tcell/
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6. Recombinant human IL-7 System Systems, MN, USA): Reconstitute at 50μg/mL in sterile PBS. 

Keep at −80℃. Working solution at 1μg/mL in sterile 1x PBS, stored at 4℃ until use. Final 

concentration in culture at 10ng/mL and can be stored at 4℃.  

7. Peptide pools (ProImmune, Oxford, UK, other commercial sources are also available): Peptide 

purity >70%. Reconstitute all stock peptides at 20mg/mL in DMSO or according to manufacturer 

specifications (for certain peptides) and store at −20°C. To create a working peptide pool, add 

each peptide corresponding to 1 mg/mL final concentration and make up the rest of the volume in 

sterile 1x PBS to 1mL. Make smaller 100μL aliquots and store at –20°C. Working peptide pool 

tube can be stored at 4°C for about 2 months. Final concentration in culture is 10μg/mL.  

8. CEF-peptide pool (ProImmune, UK): Reconstitute at 20mg/mL in DMSO. Follow 

manufacturer’s instructions and make a 1 mg/mL stock using sterile 1x PBS. Store in −20°C and 

an aliquot in 4°C. Final concentration in culture is 1μg/mL. 

9. Phytohemagglutinin M form (PHA-M), for positive stimulation (Gibco, NY, USA). 

10. DMSO in 1x sterile PBS can be used as a negative control. 

11. Anti-PD-1 antibody: Antihuman CD279 (PD-1) purified, clone eBioJ105 (eBioscience, CA, 

USA). Store at 4°C. Stock 0.5mg/mL. Working concentration is 1μg/mL. Store at 4°C. 

12. Levy counting chamber (Hausser Scientific, USA). 

13. Centrifuge (Beckman Coulter, Pasadena, CA, USA). 

14. Antihuman IFNγ monoclonal antibody, 1-D1K (1 mg/ mL) (Mabtech, OH, USA). Store at 4℃. 

15. Biotinylated antihuman IFNγ monoclonal antibody, 7-B6-1 biotin (1 mg/mL) (Mabtech, OH, 

USA). Store at 4°C.  

16. BCIP/NBT Color Development Substrate (Promega, Madison, WI, USA). Store at −20℃. 17. 

Ethanol (Avantor Performance Materials, Center Valley, PA, USA).  

18. Fetal bovine serum (FBS). Store at −20℃ after heat inactivation for 20 min at 56℃. 

19. Tris (Sigma, St. Louis, MO, USA). Store at room temperature. 

20. Magnesium chloride (MgCl2) (Sigma, St. Louis, MO, USA). Store at room temperature. 

21. Sodium chloride (NaCl) (Sigma, St. Louis, MO, USA). Store at room temperature. 

22. Multiscreen filter plate, 2EM004M9 or MSIPS4W10 (Millipore, Billerica, MA, USA). 
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23. AID or other ELISPOT reader (Autoimmun Diagnostika, Strassberg, Germany). 

24. 1x PBS 0.5 % FBS buffer for ELISPOT washes (0.5 % FBS wash solution).  

 

3.5.3. HLA-Typing and Positive Peptide Pool Deconvolution (Screen-2) 

1. Materials 1 through 23 from Subheading 2.2.  

2. Individual peptides from the immunogenic peptide pool identified through screen-1. 

Reconstitute all stock peptides at 20 mg/mL in DMSO or according to manufacturer specifications 

(for certain peptides) and store at −20℃. To create a working peptide solution, make a 1mg/mL 

final concentration and make up the rest of the volume in sterile 1x PBS to 1mL. Make smaller 

100μL aliquots and store at 20℃. Working peptide tubes can be stored at 4℃ for about 2 months. 

Final concentration in culture is 10μg/mL.  

3. Fluorescently conjugated monoclonal antibodies (mAbs) for 10 HLA alleles e.g., HLA-A2 mAb 

clone BB7.2-PE conjugated; from BD Pharmingen, San Jose, CA, USA). 

4. Fluorescently conjugated isotype controls (e.g., mouse IgG2a-PE for HLA-A2 staining, BD 

Pharmingen, San Jose, CA, USA). 

5. Attune or a similar flow cytometer (Life Technologies, Grand Island, NY, USA). 

6. Staining buffer. 1x PBS (Cellgro, VA, USA) with 1% bovine serum albumin (BSA, Sigma, USA). 

7. DNAzol Reagent (Life Technologies, NY, USA) for genomic DNA isolation. 

8. Sodium hydroxide monobasic (Sigma, St. Louis, MO, USA) used with DNAzol. 

9. 100 % ethanol (Avantor Performance Materials, Center Valley, PA). 

10. Nuclease-free water (Hyclone, Thermo Fisher Scientific, Waltham, MA, USA). 

11. Nanodrop 2000 C (Thermo Fisher Scientific, Waltham, MA, USA). 

 

3.6 Methods 

3.6.1. Comparative CTL Epitope Prediction Strategy 

1. Access IEDB prediction server: (http://tools.immuneepitope.org/main/tcell/). 

2. Select “Peptide binding to MHC class I molecules” link. 

3. Enter the antigen protein sequence in FASTA format. 

http://tools.immuneepitope.org/main/tcell
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4. Select “Consensus” or “NetMHCpan” as the prediction method. 

5. Select “human” as the MHC source species. 

6. Select the desired “HLA allele” (each of HLA-A’s and HLA-B’s listed in Subheading 1.3). 

7. Select “all lengths” as the predicted peptide length. 

8. Choose “Percentile rank” for IEDB-consensus and “Predicted IC50” for NetMHCpan as the 

output type to sort the peptides. 

9. Choose “XHTML table” as the output format. 

10. Download the results as an excel file. 

11. Select “Proteasomal cleavage/TAP transport/MHC class I combined predictor” IEDB server. 

12. Enter the antigen protein sequence in FASTA format. 

13. Select “IEDB recommended” or “SMMPMBEC” as the prediction method. 

14. Repeat steps 5–7 for the different HLA alleles. 

15. Sort the peptide list by “Total score” for both the algorithms (should be in a decreasing order). 

16. Repeat steps 9 and 10. 

17. Access SYFPEITHI: http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm. 

18. Select the “MHC type” for each of the HLA alleles. 

19. Choose “All mers” for peptide length. 

20. Paste the antigen protein sequence in non-FASTA format. Click Run. 

21. Save the output by copying all the predicted peptides into MS Excel and removing blank 

spaces between different lengths. 

22. From each prediction algorithm’s output per HLA, select the top two-thirds (66 %) of all 

predicted peptides (i.e., for 100 predicted peptides, select the top 66). Do this for each prediction 

algorithm’s output in MS Excel or database program. 

23. By using a local script on R, create a separate list of peptides common between the five 

prediction algorithms. 

24. Using the output scores as described above normalize the common pool of predicted 

peptides as follows: (a) For algorithms displaying results ranging from low score to high score 
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(IEDB-consensus binding and NetMHCpan), )/()( minmaxmin   ii , where i  

represents the normalized score of the peptide; i , the assigned output score by the prediction 

algorithm; min , the minimum score assigned in prediction output; and max , the maximum score 

assigned in the entire prediction output. 

25. Calculate the average binding score SB from the three normalized binding scores. 

26. Using the “sort” function in MS Excel, sort the SB score list ranging from the lowest to the 

highest. Lower the SB score, higher its probability of being a candidate peptide. 

27. Select the top candidate peptides including promiscuous binders (usually up to 5 or 10, 

depending on feasibility) and order synthetic peptides for immunogenicity assessment. Greater 

than 70% purity is sufficient for T-cell assays. 

28. Once synthesized peptides are received, reconstitute the peptides according to 

manufacturer’s instructions. 

29. Create the peptide pools by having between 1 and 3 binders per HLA allele within each pool. 

This limits intra-pool binding competition by different peptides for the same HLA. Store the 

peptide pools at 4℃. 

 

3.6.2.   Peptide pool immunogenicity assessment by short-term ex vivo cultures 

1. Obtain a frozen PBMC cryovial from liquid nitrogen and rapidly thaw in 37℃ water bath. 

2. Pipette the cells drop by drop into a 15 mL tube with pre-warmed T-cell culture media. 

3. Centrifuge at 300g for 5 minutes, remove supernatant for wash. 

4. Resuspend cells gently in T-cell culture media. Count cells using a hemacytometer. Set aside 

500,000 PBMCs for low-resolution HLA typing (Subheading 3.3). 

5. Prepare cell suspension at 1 x 10
6
 cells/mL. Seed cells in a round bottom 96-well plate, 200 

μL/well (=200,000 cells/well). 

6. On day 1, stimulate with 20U/mL IL-2, 10ng/mL IL-7 (1μg/mL Anti PD-1), and 10μg/mL peptide 

pool or CEF-peptide pool. Use 1 % PHA-M for positive control stimulation (2μL/well). 
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7. On day 5, remove 100μL media from each well and add 100μL/well fresh T-cell culture media. 

Add IL-2 for final concentration at 20 U/mL and peptide pool at concentration 10μg/well. 

8. On day 7, pre-wet an ELISPOT plate with 35% ethanol at room temperature, 35μL/well. 

9. Wash with sterile water for five times, 200μL/well. 

10. Coat with capture antibody 1-D1K, 100μL/well. Dilute capture antibody in 1x PBS at final 

concentration 5μg/mL. 

11. Seal the plate and incubate at 4℃ overnight. 

12. On day 8, wash with RPMI 1640 (serum free is fine) for five times, 200μL /well. 

13. Add T-cell culture media, 200μL/well. Keep at room temperature in the hood for 30 minutes. 

14. On day 8, remove 100μL media from each well and add 100μL/well fresh T-cell culture media. 

Add IL-2 for final concentration at 20U/mL, and peptide pool at concentration 

10 μg/well. Add IL-2 for final concentration at 20U/mL. 

15. Add cells from each of the wells (200μL/well) from the culture plate into a corresponding well 

on the ELISPOT plate, triplicate for assays. Stimulate with antigenic peptide at final concentration 

10μg/mL (2μg/200 μL). The same quantity of CEF-peptide pool as peptide controls. Use 1 % 

PHA-M (2μL/well) for positive control. 

16. Cover with plate lid and incubate in CO2 incubator for 48 hours (days 8–10). 

17. On day 10, wash with sterile 1x PBS for three times, 200μL/well. Save cells for genomic DNA 

isolation (high-resolution HLA typing, Subheading 3.3). 

18. Wash with 0.5% FBS wash solution three times, 200μL/well with intervals between washes. 

19. Add detection antibody 7-B6-1 Biotin, 100μL/well. Dilute detection antibody in 0.5% FBS 

wash solution at final concentration 1μg/mL. 

20. Seal the plate and incubate at room temperature for 2 hours in the dark. (Leave the sealed 

plate in the hood if preferred.) 

21. Wash with 1x PBS for three times, 150μL/well. 

22. Wash with 0.5 % FBS wash solution for three times, 150μL/well, 5 minutes interval washes. 

23. Add streptavidin-ALP, 100μL/well. Dilute streptavidin-ALP in 0.5 % FBS wash solution at final 

concentration 1:1000. 
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24. Incubate at room temperature (preferably dark) for 1 hour. 

25. Wash with 1x PBS for three times, 150μL/well. 

26. Wash with 0.5 % FBS wash solution for three times150μL/well. 

27. Add BCIP/NBT mixed solution, 100μL well. 

28. Watch for spot development. 

29. Stop reaction by rinsing with cool tap water. 

30. Dry the plate in the dark at room temperature overnight (leave the lid partially open). 

31. Read the ELISPOT plate after 24–48 h on the AID ELISPOT reader. 

32. Calculate mean Spot Forming Units for each peptide pool. 

 

3.6.3.    HLA-typing and positive peptide pool Deconvolution (Screen-2) 

1. Low-resolution HLA typing is performed using the 500,000 cells set aside on day 1 of screen-1. 

2. Pool cells in media into a single tube and wash once with staining buffer (500g, 3 min). 

3. Divide the washed PBMCs into appropriate number of HLAs and isotype controls to be tested, 

in 100μL staining buffer per tube. 

4. Add appropriate mAbs and isotype controls to be analyzed. 

5. Incubate on ice in the dark for 30 min. 

6. Wash twice with staining buffer. Resuspend in a final volume of 200–300μL 1x PBS for flow 

cytometry analysis. 

7. Run isotype controls, gate on live lymphocyte population, and collect 10,000 events/gate. 

8. Run the individual samples stained with HLA-mAbs and analyze. 

9. Genomic DNA (gDNA) extraction for high-resolution commercial HLA typing is performed on 

the last day (day 10) of screen-1; when incubating, PBMCs are washed from the Elispot plate. 

10. Collect cells from the Elispot plate (contains media) in a reservoir. 

11. Wash the Elispot plate with 1x PBS and collect remaining cells in the reservoir. 

12. Pool cells from reservoir into a 15 mL conical tube. 

13. Centrifuge the cells, 500g 3 minutes. Remove supernatant. 

14. Wash the pellet once with 5 mL 1x sterile PBS, centrifuge and remove the supernatant. 
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15. Add 500 μL DNAzol directly to the pellet. 

16. Follow manufacturer’s protocols and isolate gDNA. 

17. Determine the concentration of gDNA using nanodrop. 2μg gDNA is shipped to the company 

for high-resolution HLA typing. 

18. Once screen-1 (Subheading 3.2) is completed, perform data analysis to identify the peptide 

pool with statistically significant higher mean SFUs compared to the negative control  

19. Repeat the ex vivo short-term culture protocol (steps 1 through 32) using individual peptides 

from the reactive peptide pool from screen-1. 

20. At the end of the short-term culture, analyze mean SFU from individual peptides as described 

before and correlate with donor-HLA type to identify reactive CTL epitope and its HLA restriction. 
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CHAPTER 4 

IMMUNOGENIC AND DYSFUNCTIONAL CD8+ T-CELLS IN HPV+HEAD AND NECK CANCER 

 

Abstract 

Human papillomavirus subtype 16 (HPV16) is the primary cause of an increasing number of head 

and neck squamous cell carcinomas (HNSCCs), providing strong rationale for T-cell immune 

therapies against HPV+ HNSCC. Here, we sought to assess immunogenicity of HPV16-specific 

CD8+ T-cells (CTLs), and to understand HPV-specific mechanisms of T-cell dysfunction. We 

experimentally identified 16 strong and 29 moderately immunogenic CTL-epitopes from HPV16 

E2, E6 and E7 antigens restricted by 12 common HLA class I alleles. Relative to E6 and E7, E2-

specific CTL-reactivity is higher in HPV+ HNSCC patients than in healthy controls (>3-fold, P = 

0.012). Upon antigen re-exposure, E7/E2-CTL-dysfunction phenotype was observed in more 

patients than E6-CTL-dysfunction, indicating inter-antigenic heterogeneity of HPV-CTL-

exhaustion. Immunogenomic analyses of 119 HNSCC transcriptomes revealed high T-cell 

infiltration and dysfunction in HPV+ HNSCCs, and correlation of HPV-antigen expression with T-

cell exhaustion gene signatures. We found that Indoleamine 2,3-dioxygenase (IDO-1), is strongly 

expressed in HPV+ HNSCCs compared to HPV- HNSCCs (P = 0.001), and correlates with E7-

expression in vitro (R
2
 = 0.84, P = 0.033). Combination treatment with PD-1 blockade and IDO-1 

inhibition overcomes profound CTL-dysfunction, enhancing HPV+ HNSCC sensitivity to CTL-

cytotoxicity in vitro (up to 10-fold in E7-CTLs, P = 0.011). Our findings implicate mechanisms of T-

cell escape in HPV+ HNSCC, wherein high tumoral HPV-antigen load results in high expression 

of immune dysfunction genes on tumor cells (e.g. IDO-1), and dysfunction of HPV-specific CTLs 

(e.g. E7,E2-CTLs). The HPV16 CTL-epitopes identified in this study, in synergy with combination 

blockade of HPV+ HNSCC-specific checkpoints may be useful for targeted immunotherapy.        
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4.1 Significance 

Strategies enhancing immune based targeting of tumor cells have come to the forefront of cancer 

treatments. A subset of head and neck cancers (HNSCCs), caused by human papillomavirus 16 

(HPV16), is an ideal candidate for T-cell cancer immunotherapies. Here, we identified 

immunogenic CD8+ T-cell (CTL) epitopes from 3 HPV16-antigens, and studied T-cell dysfunction 

mechanisms in HPV+HNSCC. We detected several novel CTL-epitopes from HPV16-genes E2, 

E6 and E7 across multiple HLA-alleles in peripheral blood CTLs of HPV+ HNSCC patients. We 

identified that tumoral viral load largely drives T-cell infiltration and subsequent CTL-exhaustion 

observed in HPV+HNSCC. Our study underscores the importance of host immune control of 

HPV, and identifies combination PD-1/IDO-1 inhibition as a novel strategy to enhance CTL-

targeting of HPV+HNSCC.  

4.2 Introduction 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide 

with close to 600,000 cases diagnosed annually (Torre et al., 2015). A subset of HNSCCs are 

caused by the human papillomavirus (HPV), (HPV+ HNSCCs) (Marur, D’Souza, Westra, & 

Forastiere, 2010; Parfenov et al., 2014a), which are molecularly and clinically distinct from non-

HPV associated HNSCCs (HPV- HNSCCs)(The Cancer Genome Atlas Network, 2015). In the 

United States, 70-80% of HPV+ HNSCCs are caused by the oncogenic HPV type 16 (HPV16) 

(Chaturvedi et al., 2013; Dahlstrom, Anderson, & Sturgis, 2017; Giordano & Macaluso, 2016). 

Incidence of HPV+ HNSCC increased 225% from 1984-2004 and has now surpassed the 

incidence of cervical cancer (Maura L. Gillison et al., 2012; Jemal et al., 2013). Although HPV 

vaccines effectively prevent HPV-related cancers, the impact of vaccination on HNSCC incidence 

may not occur until 2060, likely due in part to slow vaccine uptake, and the decades between 

infection and clinical HPV+ HNSCC diagnosis (M. L. Gillison, Chaturvedi, Anderson, & Fakhry, 

2015; Williams et al., 2017). As a result, over 600,000 cases are predicted in the interim, 

providing a strong rationale for the development of novel therapeutic strategies against HPV+ 

HNSCC. 

https://paperpile.com/c/WujMI3/c1Vc
https://paperpile.com/c/WujMI3/Ys3B+lXpP
https://paperpile.com/c/WujMI3/Ys3B+lXpP
https://paperpile.com/c/WujMI3/QsnZq
https://paperpile.com/c/WujMI3/CxZc+kcPB+XXCu
https://paperpile.com/c/WujMI3/Vnjl4+BBdsv
https://paperpile.com/c/WujMI3/Adzpb+TLUvF
https://paperpile.com/c/WujMI3/Adzpb+TLUvF
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The recent development of clinically effective tumor immunotherapies, such as 

checkpoint blockade (CKB) using PD-1/PD-L1 inhibitors (Herbst et al., 2014; Pardoll, 2012; 

Robert et al., 2015), has led to FDA approval of nivolumab and pembrolizumab for HNSCC 

(Chow et al., 2016; Ferris et al., 2016). It is now established that the clinical response to CKB is 

correlated with tumor neo-epitope load. Tumor-specific neo-epitopes have been directly targeted 

using therapeutic vaccines and/or adoptive T-cell therapy (ACT), and have been shown to 

enhance cytotoxic T-cell targeting of multiple solid tumors (Ott et al., 2017; Schumacher & 

Schreiber, 2015; Tran et al., 2016). Thus, there is a renewed interest in defining the human 

leukocyte antigen (HLA) restricted antigenic repertoire of tumor infiltrating lymphocytes (TILs) to 

develop targeted therapeutic vaccines (Kenter et al., 2009), to identify T-cell receptors (TCR) for 

ACT (Schumacher & Schreiber, 2015), and to monitor clinical responses to complex cancer 

immunotherapies (Rizvi et al., 2015; Rosenblatt et al., 2016). 

HPV-associated cancers express multiple viral neo-antigens. HPV integration into host 

genome in cervical cancer results in derepression of the oncogenic drivers E6 and E7 

(Woodman, Collins, & Young, 2007). Immune therapies targeting E6 and E7 have thus been 

developed, including peptides, DNA, and ACT therapies (Draper et al., 2015; Kenter et al., 2009; 

Trimble et al., 2015). However, in comparison to cervical cancer, HPV+ HNSCCs have both lower 

rates of genome integration, and less interruption of the viral transcriptional regulatory gene E2 

(Akagi et al., 2014; Parfenov et al., 2014b; Rusan, Li, & Hammerman, 2015). Thus, subsets of 

HPV+ HNSCCs also express E2 in addition to E6 and E7 (Parfenov et al., 2014b; Zhang et al., 

2016). 

We and others have previously shown that high titers of serum antibodies against 

HPV16-E2, E6 and E7 are detectable in most HPV+ HNSCC patients, indicating immunogenicity 

and persistence of these antigens (Anderson et al., 2015; D’Souza et al., 2007). We thus 

hypothesized that patients with HPV+ HNSCC would have pre-existing HPV-specific CTLs, and 

that HPV-antigen expression levels would influence CTL-dysregulation in tumor 

microenvironment. We identified the T-cell antigenic landscape of globally frequent HLA class I 

alleles from HPV16 E2, E6 and E7. By phenotyping HPV-specific CTLs from HPV+ HNSCC 

https://paperpile.com/c/WujMI3/4ltdV+1xoY2+euYR6
https://paperpile.com/c/WujMI3/4ltdV+1xoY2+euYR6
https://paperpile.com/c/WujMI3/rUUCh+ucwUz
https://paperpile.com/c/WujMI3/sNNP3+PgGr5+7gmOU
https://paperpile.com/c/WujMI3/sNNP3+PgGr5+7gmOU
https://paperpile.com/c/WujMI3/igodX
https://paperpile.com/c/WujMI3/sNNP3
https://paperpile.com/c/WujMI3/iCW6D+O0PU1
https://paperpile.com/c/WujMI3/67KJN
https://paperpile.com/c/WujMI3/igodX+XRdZ0+HgX5c
https://paperpile.com/c/WujMI3/igodX+XRdZ0+HgX5c
https://paperpile.com/c/WujMI3/aFXfT+0l3LY+3Y4Pg
https://paperpile.com/c/WujMI3/0l3LY+u38r1
https://paperpile.com/c/WujMI3/0l3LY+u38r1
https://paperpile.com/c/WujMI3/CIOeP+lCMJK
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patients, and analyzing the immune transcriptomes of 119 HNSCCs, we demonstrate intratumoral 

and peripheral CTL-dysfunction in HPV+ HNSCC. We show that this CTL-dysfunction can be 

reversed using targeted HPV-specific T-cell expansion, and synergistic inhibition of IDO-1 and 

PD-1. These results have implications for the development of effective T-cell therapies for HPV+ 

HNSCC.  

4.3 Results 

4.3.1. Frequency and specificity of HPV16 E2, E6 and E7-specific CTLs in HPV+ HNSCC 

We performed a systematic analysis of potential CTL-epitopes from HPV16 E2, E6 and E7 

antigens restricted by 15 globally frequent HLA class I alleles representative of major HLA 

supertypes (Lund et al., 2004) (Fig 4-1 A-D). We used a comprehensive CTL-epitope prediction 

strategy we previously developed by incorporating stringent selection criteria (Appendix B, 

Methods) to control for inter-algorithmic variations (Chowell et al., 2015; Krishna & Anderson, 

2016). Fifty-nine candidate peptides (24 from E2, 20 from E6 and 15 from E7) were selected 

covering 13 of the 15 common HLA class-I alleles as candidate HPV-CTL peptides based on 

predicted HLA-affinity and antigen processing percentile scores (Fig. 4-1 A, 4-1 E-F). Several 

previously described HLA-A*02:01-restricted HPV16 E6 and E7 epitopes were predicted with high 

scores (e.g. E6-KLP epitope, total percentile 94.6, Table B1) confirming our prediction strategy. 

Within the 59 candidate HPV16-peptides, E2 had the lowest number of previously defined CTL-

epitopes (3/24, 12%), while E6 and E7 had higher number of previously described CTL-epitopes 

(35% and 46% respectively). The number of predicted HPV16-peptides ranged from 15 peptides 

(A*02:01), to 0 peptides (B*40:01, B*44:02) among the selected HLA-alleles (Fig 4-1 A). To 

determine if lack of HLA-binding motifs in the 3 HPV-antigens can poise specific HLA-alleles as 

risk-factors for HPV+ HNSCCs, we calculated the odds-ratio of HLA-allele frequencies in HPV+ 

HNSCCs (N=77), compared to HPV- HNSCCs (N=64) (Appendix B). HLA B*40:01, which had no 

predicted HPV16-peptides for E2, E6 and E7 had an odds-ratio of 7.48 compared to HPV- 

HNSCCs (Fig. 1A-B, P = 0.059), and had poor-binding peptides for all HPV16-antigens (bottom 

20
th
 percentile compared to other HLAs, Appendix Fig. B1). HLA-alleles A*24:02, B*07:02, and 

https://paperpile.com/c/WujMI3/XT2GE
https://paperpile.com/c/WujMI3/6xno8+fwudJ
https://paperpile.com/c/WujMI3/6xno8+fwudJ
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B*51:01 were also overrepresented (OR>=2) in HPV+ HNSCCs, although they were not 

statistically significant. Of note, HLA-B*07:02 (OR = 2, Fig. 4-1 B), has been previously reported 

to be associated with poor clinical outcome in cervical cancer and escape HPV-specific T-cell 

(HPV-CTL) recognition (Ellis et al., 1995). These results point to the importance of CTL-mediated 

control of HPV16 malignancies.  

Because HPV-CTLs in peripheral blood mononuclear cells (PBMCs) are not abundant 

(Badoual et al., 2013; Riemer et al., 2010), we used PBMCs stimulated for 10 days with 

candidate peptides and CKB antibodies αCTLA4 and αPD-1 to enhance HPV-CTL reactivity 

(Appendix B, Fig. B-2). We compared HPV-CTL frequency in PBMCs between HPV+ HNSCC 

patients (N=18) and healthy controls (N=14) by interferon gamma (IFNγ) Elispots using antigen 

specific peptide pools (Fig. 4-2 A-B, Appendix B Table B1) (Parikh et al., 2014a). The HLA 

frequency distribution of this cohort largely mirrored median HLA-frequency distribution in the 

USA (Fig. 4-1 D). IFNγ responses against HPV16-E2 were substantially more common (>3-fold 

higher) in HPV+ HNSCC PBMCs compared to healthy control PBMCs (Unpaired Welch’s T-Test, 

P=0.012, 4-2 A). Moderate to high E6-reactivity was observed in HPV+ HNSCC patients (1.5 fold 

higher in HPV+ HNSCCs), while E7-reactivity was generally low (Fig. 4-2 B-C). To determine if 

PBMC T-cell reactivity correlates with B-cell immunity, we measured IgG serologic responses to 

the E2, E6, and E7 antigens in the 18 patients. E2 and E7-specific serum IgG titers were higher 

relative to E6 (>2-fold, P < 0.05) in the patients (Fig. 4-2 C). The majority of patients who had IgG 

to E2, E6 and E7 also had a measurable CTL response (E2=72%, E6=60%, E7=70%, 

respectively, Fig. 4-2 D). There was strong concordance between seroreactivity and T-cell 

reactivity within same antigens (Chi-squared independence test, P = 0.03). These results indicate 

E2 and E6 antigens are more CTL-reactive than E7 in patients, and HPV-CTL response 

enhanced by CKB antibodies.  

 

4.3.2. Mapping immunodominant epitopes of HPV16 E2, E6 and E7 in HPV+ HNSCCs 

To identify novel CTL epitopes from E2, E6 and E7, we performed a second IFNγ Elispot analysis 

using individual predicted HPV16-peptides against patient-specific HLA-alleles (Fig. 4-3). 51 out 

https://paperpile.com/c/WujMI3/4yOal
https://paperpile.com/c/WujMI3/yFV1U+LTJK6
https://paperpile.com/c/WujMI3/Q7cQ
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of 59 predicted peptides elicited a T-cell response in at least one patient, indicating a high degree 

of success (86%) of our prediction-validation strategy (Fig. 4-3, Table B1). Consistent with pooled 

 

 

 

Figure 4-1. HPV16 E2, E6 & E7 predicted epitope distribution and risk factor for HPV+ 
HNSCCs. (A) Distribution of 59 predicted HPV16-peptides by each HLA-allele ranked from 
highest to lowest. (B) Odds ratio of HLA-allele frequency in HPV+ HNSCC patients compared to 
HPV- HNSCC patients *P = 0.059 (C) Median USA HLA-allele frequencies obtained from Allele 
frequency net database. (D) HLA-frequency distributions of MSSM-cohort. Distribution of 59 
predicted HPV16-peptides binned according to (E) total binding percentile scores (F) total 
antigen-processing percentile scores.  
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antigen Elispot results (Fig. 4-2 A-B), we observed sub-dominant E7-specific CTL-reactivity 

relative to E2, E6 epitope-specific CTL-responses (Fig. 4-3). Sixteen epitopes had an average 

response frequency of >=100 mean spot forming units (SFUs)/10
6
 PBMCs and were classified as 

strongly immunogenic (representative e.g. Fig. 4-4, Table B1). Twenty nine CTL-epitopes had an 

average response frequency between 10-100 SFU/10
6
 PBMCs (moderately immunogenic), while 

6 epitopes had an average response frequency <10 SFU/10
6
 PBMCs (low immunogenic). The 

majority of moderate to highly immunogenic epitopes (77%) was novel, or had not been 

described with the observed HLA restriction (Figs 4-3, 4-4, Table B1). We also observed 16 

unique epitopes that elicited a cross-reactive response to other alleles within the same supertype 

supporting the strategy for HLA-supertype based epitope prediction (Table B1). Figure 4-4 D 

shows a representative example, where an HLA-A*11:01 restricted E2-peptide had strong 

predicted binding affinity and elicited strong CTL-reactivity to HLA-A*68:01 (A3 supertype). 

Within the E2 antigen, most CTL-epitopes (52%) were clustered within the trans-

activating DNA-binding domain, 23% in the hinge region, and 24% in the DNA-binding domain 

(Fig. 4-5 A). Within E6, immunodominant regions (70% of epitopes) encompassed AAs 37-109 

with 40% of epitopes arising in the first zinc finger domain (Fig. 4-5 B). Interestingly, the zinc 

finger domain of E7 also had 42% of the CTL-epitopes (Fig. 4-5 C). Thus, we have defined 

immunodominant regions and enhanced the landscape of E2, E6 and E7 CTL-epitopes for future 

studies. 

 

4.3.3. HPV-specific T-cells exhibit dysfunctional phenotype in HPV+ HNSCC patients 

While CTL dysfunction in chronic viral infections and cancers has been described (Barber et al., 

2006), few studies have focused on the extent of T-cell exhaustion in HPV+ HNSCC patients 

because of the difficulties in studying low-frequency HPV-CTLs (Badoual et al., 2013). We 

assessed HPV-CTL dysfunction in HPV+ HNSCC patients after ex vivo stimulation by autologous 

antigen-presenting cells (APCs) presenting cognate HPV16-antigen in the absence of CKB 

antibodies. Our rationale here was that activated HPV-specific PD1+ CTLs that are poised 

towards the exhaustion spectrum, will become further dysfunctional after APC-stimulation and 

https://paperpile.com/c/WujMI3/4iJfj
https://paperpile.com/c/WujMI3/4iJfj
https://paperpile.com/c/WujMI3/LTJK6
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Figure 4-2. HPV16 E2, E6 & E7 T-cell and B-cell immunogenicity in HPV+ HNSCCs. (A) 
Summary of CTL-reactivity. Predicted HPV16-peptides were pooled according to antigen (Table 
S1) and tested for CTL-reactivity by IFNγ Elispot. P-values from Unpaired Welch’s T-test are 
shown. (B) Representative example of CTL-reactivity from one HPV+ HNSCC patient PBMC with 
SFUs after background subtraction (left panel) and images from each pool in triplicate (right 
panel). (C) Seroreactivity of HPV16-E2, E6, E7 antigens in HPV+ HNSCC MSSM patients 
screened for CTL-responses by Rapid-ELISA (SI Methods)  (D) Seroreactivity and CTL-reactivity 
concordance for each HPV-antigen in responding HPV+ HNSCC patients. Circles are 
proportional to number of responding HPV+ HNSCC patients for each antigen. % represent 
patient responses. 
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Figure 4-3. Landscape of CTL-epitopes from HPV16 E2, E6 and E7 in HPV+ HNSCCs. HPV+ 
Summary of Elispot epitope deconvolution screen showing all responding HPV+ HNSCC patients 
(each column) against tested HPV16-peptides (each row) in log scale. Within each antigen, 
peptides are ranked from most number of CTL responses (top) to the least (bottom).  
 

acquire additional inhibitory markers characteristic of profound dysfunction, such as CD39 and 

TIM-3 (Gupta et al., 2015; Wherry, John Wherry, & Kurachi, 2015). In 4 HLA-A*02:01+ patients 

with HPV-specific CTLs detectable by antigen-specific tetramers (Fig. 4-6), and one HLA-

A*68:01+ patient with CD137-positivity defining HPV-CTLs, we phenotyped total CD8+ and E2,  

https://paperpile.com/c/WujMI3/IHTBL+LG6H4
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Figure 4-4. Identifying antigen specific epitopes from HPV16 E2, E6 and E7 in HPV+ 
HNSCCs. Examples of individual responding patients after background subtraction. (A) HLA-
A*02:01+ patient; (B) HLA-A*02:01/B*07:02+ patient; (C) HLA-A*24:02/B*35:01+ patient. (D) 
HPV16-peptides predicted for the HLA-A3-supertype can stimulate a CTL response to 
representative allele (A*68:01). Inset shows binding affinities for predicted peptides for A*68:01, 
peptide labels shows HLA-allele the peptide was originally predicted. Positive responders are 
shown in bold.  *P < 0.1, **P < 0.01, Unpaired two-tailed Welch’s T-test.  
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Figure 4-5. Immunodominant regions of HPV16-E2, E6 and E7. All immunogenic CTL-
epitopes identified in this study mapped onto the 3 HPV16-antigens. Protein domain information 
was obtained from PAVE. Strength of immune response in the regions are indicated by the 
shaded boxes encompassing all peptides from the region, numbers indicate the number of unique 
HPV+HNSCC MSSM patient-specific responses.  
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Figure 4-6. HPV16-specific T-cells acquire dysfunctional phenotype upon ex vivo 
stimulation. (A) Representative flow cytometry plots from an HLA-A*02:01 HPV+ HNSCC patient 
CTLs stimulated with autologous APCs transfected with cognate antigen. Left: HPV16-Tetramer+ 
CD8+ T-cells one example for each HPV16-antigen; labels correspond to HPV16-epitope, % 
indicate tetramer+ events within CD8-gate; Right: CD8+PD1+CD39+ (in black) or 
CD8+Tetramer+PD1+CD39+ (DP

Ex
-phenotype, back gated in red). % - back gated 

CD8+Tetramer+DP
Ex

. (B) Pt.7002 HPV-CTL dysfunction, Top panel: CD8+ Tetramer+ events 
from the 3 HPV16-antigens (left), each point is an HPV16-epitope-tetramer. Fold change in total 
CD8+DP

Ex
 % after CTL-stimulation with HPV16-antigen transfected APCs, compared to mock 

transfected APCs (right). Bottom panel: % Total CD8+DP
Ex

 (left), % CD8+Tetramer+DP
Ex

 (right). 
P < 0.1, **P < 0.01, ***P < 0.001, Unpaired two-tailed Welch’s T-test.  

 

 

E6 and E7-specific CTLs exhibiting CD8+CD39+ PD-1+ or CD8+TIM-3+ PD-1+ phenotype (DP
Ex

-

phenotype) indicating substantial exhaustion. As shown in the representative example Pt.7002, 

two weeks after stimulation, E2-CTLs were higher in frequency than E6 and E7-CTLs (Fig. 4-6 A). 

Within the HPV16-antigens in Pt.7002, CTLs stimulated with E7-transfected APCs exhibited the 

highest levels of CD8+DP
Ex

 fold-change relative to mock-antigen transfected (2-4 fold,Fig. 4-6 B) 

followed by E2 (1-3 fold, Fig. 4-6 C) and E6 respectively. 
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Figure 4-7. Dysfunctional phenotype heterogeneity upon ex vivo stimulation. (A) Summary 
of dysfunction experiments in 4 other HPV+ HNSCC patients. Top: % Total CD8+DP

Ex
, Bottom: 

% CD8+Tetramer+DP
Ex

 for all except Pt. 7007 (% CD8+CD137+DP
Ex

). (B) Unsupervised 
hierarchical clustering of %DP

Ex
 from E2, E6 and E7 total CTLs (left) and HPV-specific CTLs 

(HPV-Tetramer+, CD137+, right) from patients analyzed in 3A-C. Each row is an epitope specific 
DP

Ex 
response per patient. *P < 0.1, **P < 0.01, ***P < 0.001, Unpaired two-tailed Welch’s T-test.  

 
 

In 3/5 HPV+ HNSCC patients, total CD8+ DP
Ex

 and HPV-specific CD8+DP
Ex

 cells were 

higher in CTLs stimulated with E7-antigen (between 2-10 fold) relative to E2/E6 antigen-

stimulated CTLs (Pts. 7002, 7007, 7012,  figs. 4-6 B, 4-7 A, Unpaired Welch's T-test, P < 0.1), 

independent of HLA-status (e.g. HLA-A*68:01+ Pt. 7007) (Fig. 4-7 A). In the other two patients, 
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E2-CD8+DP
Ex

 was higher than E7-CD8+DP
Ex

 (2-3 fold, Pts. 7035, 7050, Fig. 4-7 A, Unpaired 

Welch's T-test, P < 0.1), indicating heterogeneity in HPV-specific CTL-dysfunction in HPV+ 

HNSCC. Interestingly, compared to E2 and E7-CTLs, E6-CD8+DP
Ex

 remained relatively low in 

most patients, and there was an inverse relationship within patients between E7-CD8+DP
Ex

 and 

E2/E6-CD8+DP
Ex

 (Fig. 4-7 A). Unsupervised hierarchical clustering of DP
Ex

-frequencies of total 

CD8+ as well as HPV-specific CD8+ T-cells revealed this trend where high E2-CD8+DP
Ex

 and 

E6-CD8+DP
Ex

 co-occurred in patients who had relatively lower E7-CD8+DP
Ex

 and vice versa  

(Tukey’s multiple comparisons test, E2 vs. E7, P  = 0.014,  E6 vs. E7, P  = 0.084, E2 vs. E6, P = 

NS) (Fig. 4-7 B). These results indicate that in most HPV+ HNSCC patients, E7-CTL dysfunction 

is distinct and might be either temporally or mechanistically unrelated to E2/E6 CTL-dysfunction. 

 

4.3.4. HPV16-antigen load correlates with T-cell exhaustion  

To provide a broader analysis of immune dysfunction from the tumor side in HPV+ HNSCCs, we 

performed an immune signature analysis of publicly available HNSCC transcriptomes (TCGA, 

UM-cohorts N =119, 51 HPV+, 68 HPV-)(The Cancer Genome Atlas Network, 2015; Zhang et al., 

2016). We used previously-validated immune signatures representing tumor infiltrating immune 

cell subsets and performed single-sample gene set enrichment analysis (ssGSEA, Methods, 

Table B2 lists the gene signatures) to score the HPV+ and HPV- subsets (De Simone et al., 

2016; Mandal et al., 2016a; Şenbabaoğlu et al., 2016a). HPV+ HNSCC patients in general had 

higher immune infiltration scores compared to HPV- HNSCCs (Fig. 4-8), with 36/51 (70%) of 

HPV+ HNSCC samples represented in the T-cell-high gene cluster, and few HPV+ HNSCC 

samples (17%) with very low immune cell infiltration scores, confirming and expanding the 

findings in previous studies (Mandal et al., 2016a). To assess the impact of HPV gene expression 

on immune cell infiltration, we calculated the Spearman correlation coefficients among ssGSEA 

scores for the entire gene sets across all patients, including HPV16 genes and performed an 

unsupervised clustering on the correlation matrix (Fig. 4-9, Table B3).  

 

https://paperpile.com/c/WujMI3/QsnZq+u38r1
https://paperpile.com/c/WujMI3/QsnZq+u38r1
https://paperpile.com/c/WujMI3/8nene+vjncT+QkZly
https://paperpile.com/c/WujMI3/8nene+vjncT+QkZly
https://paperpile.com/c/WujMI3/vjncT
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Figure 4-8. T-cell infiltration and dysfunction signatures are enriched in HPV+HNSCCs. 
Unsupervised hierarchical clustering of validated normalized immune signatures (Table S3), in 
119 HNSCC transcriptomes (TCGA+UM cohorts) by ssGSEA (SI Methods). Each column 
represents one HNSCC patient tumor ssGSEA scores. Four clusters are revealed and their 
names are indicated in the bottom. Number and percentages of HPV+HNSCCs in each cluster 
are indicated. 
 
 

Interestingly, HPV-gene signatures also negatively correlated with neutrophils and other 

myeloid gene signatures, indicating that lymphocytes dominate the immune landscape of HPV+ 

HNSCCs (Fig. 4-9). We also observed a previously described exhaustion gene set correlating 

with HPV-gene sets in this module (Spearman ρ = 0.33, Fig. 4-9). Unsupervised hierarchical 

clustering on expression levels of constituent genes within the exhaustion gene set revealed 

three main groups with low (L), moderate (M), and high (H) expression of immune regulatory 

gene expression within HPV16+HNSCC patients  (Fig. 4-10 A). We then analyzed individual 

HPV16-gene expression in the HPV16+HNSCC tumors (N=40) stratified into Exhaustion-high 

(EX-H) and Exhaustion moderate/ low tumors (Fig. 4-10 B). EX-High HPV16+HNSCC tumors had 

higher gene expression of E1, E2, E4, E6 and L2 genes compared to the EX-ML subset (Fig. 4-

10 B, Unpaired Welch's T-test; E1, E2, P < 0.01; E4, E6, L2, P < 0.1). E7-expression was 



  83 

 

 

 

 

Figure 4-9. T-cell exhaustion signatures correlate with HPV16-antigen expression. 119 
HNSCC transcriptomes (68 HPV- HNSCCs and 51 HPV+ HNSCCs), were analyzed for immune 
cell infiltration by ssGSEA (Appendix B, Methods). Clustered correlation matrix of immune 
signatures with HPV-gene sets (HPV - All 8 HPV genes, HPV.Early - E1, E2, E4, E5, HPV.Onco - 
E6, E7). All gene sets are listed in Appendix B Table B-2. Gene set correlations were clustered by 
hierarchical clustering creating distinct modules (Table B3). 
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Figure 4-10. HPV16-antigen load likely drives T-cell infiltration and dysfunction. (A) 
Unsupervised hierarchical clustering of 49 genes in the exhaustion gene set (De Simone et al., 
2016) in HPV+ HNSCC. Patient clusters: low exhaustion (L), moderate (M) and high exhaustion 
(H). (B) HPV gene levels (Log2-TPM+1) in 40 HPV16+HNSCCs from 4-8 A classified into 
exhaustion high (EX-H in main text, N=15) and exhaustion low+moderate subsets (EX-ML in 
main text, N=25). *P < 0.1, **P < 0.01, Unpaired two-tailed Welch’s T-test.  
 

 

 

 

 

https://paperpile.com/c/WujMI3/QkZly
https://paperpile.com/c/WujMI3/QkZly
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comparably high in both the subsets, while E5 known to downregulate MHC-class I expression 

(Campo et al., 2010), remained low in the EX-H subset (Fig. 4-10 B). These computational 

analyses along with previous experiments (Fig. 4-7) suggest that HPV-specific CTLs have T-cell  

exhaustion at tumor sites, driven by intra-tumoral HPV-antigen expression. 

 

4.3.5. IDO-1 represents a novel HPV+ HNSCC specific immune target 

We analyzed differential expression of constituent genes within the exhaustion gene set 

between HPV+ HNSCCs and HPV- HNSCCs (Fig. 4-11). We observed several well-known T-cell 

regulatory genes such as LAG-3, GAL-9, CEACAM-1 and CTLA-4 overexpressed in HPV+ 

HNSCCs compared to HPV- HNSCCs, consistent with high T-cell infiltration and dysfunction as 

observed in our results (Figs. 4-8, 4-9), and other studies (Mandal et al., 2016a). Interestingly, we 

also observed exhaustion genes NRP1, CD39 and CD73 that were selectively upregulated in 

HPV- HNSCCs compared to HPV+ HNSCCs (Fig. 4-11), indicating distinct types of T-cell 

dysfunction between the two HNSCC subtypes. Indoleamine 2,3-dioxygenase (IDO-1), an L-

Tryptophan catabolizing enzyme was one of the highest differentially expressed gene (based on 

To validate the immune signature analysis indicating that HPV-antigen expression can impact 

immune regulatory gene expression such as IDO-1 (Fig. 4-12 A), we performed immunoblotting 

for IDO-1 expression in a panel of HPV16+ cancer cell lines (2 cervical, 4 HPV+ HNSCC). These 

showed variability in HPV16-E7 protein expression (Fig. 4-12 B). IDO-1 expression followed a 

striking correlation with E7-protein expression in the same cell lines (R
2
 = 0.84, P = 0.033, Fig. 

5B). Transfection of the 3-HPV16-antigens into a non-HPV cell line (HEK-293-T) did not alter 

IDO-1 protein expression (Appendix B-3A). A cross-cancer (N = 30 types, 45708 total tumors) 

gene expression analysis from cBioPortal (Cerami et al., 2012), revealed that IDO-1 is also highly 

expressed in the HPV-malignancy cervical cancer (Fig. 4-12 C). These results suggest that tumor 

IDO-1 expression is linked to immune selection pressure from TILs rather than a direct 

molecular/biochemical consequence of the HPV-life cycle. Of note, PD-L1 protein expression on 

the same cell lines did not correlate with E7-antigen expression (Spearman ρ = 0.17, P = NS, 

Appendix B-3B).  

https://paperpile.com/c/WujMI3/0ayxQ
https://paperpile.com/c/WujMI3/vjncT
https://paperpile.com/c/WujMI3/u2UHV


  86 

 

Figure 4-11. Differential expression of exhaustion genes in HPV+ vs. HPV- HNSCCs. Box 
plots representing Log2 TPM from HPV+, HPV- HNSCC patients showing median from 
exhaustion gene set (Table B2), whiskers indicate 10-90th percentile. P<0.1, **P<0.01 ranked P-
value) from exhaustion set in HPV+ HNSCCs compared to HPV- HNSCCs (Fig. 4-12A; Mann-
Whitney test, P = 0.0012).  
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Figure 4-12. IDO-1 expression is an HPV-specific immune regulatory gene. (A) Box plots 
representing  Log2 TPM from HPV+, HPV- HNSCC patients showing median from exhaustion 
gene set (Table S3), whiskers indicate 10-90th percentile. Each data point represents one 
patient. P < 0.1, **P < 0.01 by Mann-Whitney test. (B) Correlation of IDO-1 protein levels to 
HPV16-E7 antigen expression in 6 HPV16 cell lines (2 cervical cancer, 4 HPV16+ HNSCC). Top 
pane: Immunoblot, Bottom panel: correlation of IDO-1 and E7 protein levels normalized to 
GAPDH (R

2
 = 0.84, P = 0.033).(C) Log2 mRNA TPM levels were obtained from cBioportal, for 30 

different types of cancers from 45708 total tumors from TCGA. Each blue data point represents 
expression from one patient tumor for respective cancer, red representing a mutation or other 
alteration and grey represents unsequenced tumors. 
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4.3.6. IDO-1 inhibition enhances T-cell targeting of HPV+ HNSCCs 

IDO-1 inhibitors are being evaluated in pre-clinical and clinical settings to enhance tumor 

immunity (Gangadhar et al., 2015; Sheridan, 2015). We therefore explored the possibility of 

exploiting IDO-1 inhibition to overcome HPV-CTL dysfunction, especially using E7-CTLs. We 

fluorescently labelled the HLA-A*02:01+ HPV+ HNSCC cell line UM-SCC-104 (SCC-104), which 

has high IDO-1, E7 and PD-L1 expression (Fig. 4-12 B, Appendix B-3B). SCC-104 cells were 

previously reported to have a distinct hierarchy of HPV16-antigen expression where E7 > E6 > E2 

(Olthof et al., 2015).  We assessed HPV-CTL mediated cytotoxicity on SCC-104 cells, after co-

incubation with ex vivo expanded HPV-CTLs from an HLA-A*02:01+ HPV+ HNSCC patient in the 

presence of either anti-PD-1 antibody (ɑPD-1+DMSO) or IDO-1 inhibitor Epacadostat (Ig+IDO-1i), 

or both (ɑPD-1+IDO-1i). Within E7-CTLs (Fig. 4-13 A, 4-13 B right side), single-agent treatment 

with either ɑPD-1 or IDO-1i individually resulted in a 3-5 fold increase in sensitivity of SCC-104 to 

E7-CTL mediated cytotoxicity compared to mock (Ig+DMSO) treatment (Fig. 4-13 A-B, ɑPD-1 vs. 

mock, P = 0.024, IDO-1i vs. mock, P = 0.064). In contrast, combination blockade with both ɑPD-

1+IDO-1i resulted in a 10-fold increase in tumor cytotoxicity compared to mock treatment (4-13 A-

B, P = 0.011), and a 2-3 fold increase in tumor cytotoxicity compared to the single-agent 

treatments 4-13 A-B, P = 0.04 compared to IDO-1i, P = 0.013 compared to ɑPD-1). Similar 

results were obtained with ɑPD-1+IDO-1i combination therapy on E2 and E6 CTL cytotoxicity 

although to a lesser extent (3-fold increase for E2, and 5-fold increase for E6 compared to mock 

treatment, P <  0.01, Fig. 4-13 B) likely reflecting the lower expression of these antigens in SCC-

104 cell line (Olthof et al., 2015). These results demonstrate that IDO-1 is a novel HPV+ HNSCC 

specific checkpoint correlating with HPV-antigen expression, and combination inhibition of PD-1 

and IDO-1 can sensitize HPV+ HNSCCs to HPV-CTL mediated cytotoxicity.  

4.4 Discussion 

HPV-driven malignancies remain an ideal model system for cancer immunotherapy, due to 1) a 

long lead time from infection to malignancy, 2) emerging immune and viral biomarkers for early 

https://paperpile.com/c/WujMI3/n3j8i+uYjlr
https://paperpile.com/c/WujMI3/9O331
https://paperpile.com/c/WujMI3/9O331
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detection, 3) the persistent tissue expression of viral oncogenes and 4) epidemiologic evidence of 

the central role of T-cell control of viral persistence. However, the dynamics of viral persistence 

within immunocompetent individuals and the mechanisms of tumor immune escape remain 

 

Figure 4-13.  IDO-1 inhibition enhances T-cell targeting of HPV+ HNSCCs. Celltracker 
labeled SCC-104 cells were co-incubated with polyclonal E2, E6 and E7-specific T-cells at an 
effector/target ratio of 5:1 for 48 hours, and assessed for cell death (TRACK+ PI+ events) under 
ɑPD-1, IDO-1 single or dual-inhibition conditions. (A) Representative flow cytometry plot from E7-
specific T-cell mediated cytotoxicity on SCC-104 cells. % indicates celltracker labeled dead SCC-
104 cells. (B) Summary of SCC-104 cytotoxicity (3 biological replicates) by E2, E6 and E7-CTLs 
under treatments indicated. *P < 0.1, **P < 0.01, Unpaired two-tailed Welch’s T-test.  
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largely unknown, in particular for HPV+ HNSCC. The emerging epidemic of HPV+ HNSCC and 

lack of screening modalities represents a major clinical challenge and opportunity for targeted T-

cell immunotherapy. 

In this study, we have expanded the spectrum of HPV+ HNSCC-specific immune 

therapeutic targets at the CTL-epitope level and at the target tumor cell-modulatory level. We 

chose E2, E6 and E7-antigens, as they induce strong B-cell immunity, have been detected in pre-

invasive and/or invasive cervical cancer, and we confirmed viral antigen expression in HPV16+ 

HNSCC transcriptomes. Most studies that have attempted to define CTL-immunogenicity from 

HPV16 have primarily focused on a limited number of HLA-alleles (e.g. A*02:01) and peptides 

from E6 and E7 (Table B1), with limited data on immunogenic targets in in HPV+ HNSCC 

(Ressing et al., 1995; Riemer et al., 2010; Rudolf, Man, Melief, Sette, & Kast, 2001). The 15 HLA 

alleles chosen for this study are predicted to include 10/12 of HLA supertypes and over 95% of 

the global population (Lund et al., 2004; Riemer et al., 2010). Of the 15 HLA alleles, we failed to 

identify peptides for HLA-B*40:01 and HLA-B*4402. HLA B*40:01 is significantly overrepresented 

in the HPV+ HNSCC cohort compared with HPV- HNSCC (Fig. 4-1 B), but these data remain to 

be confirmed in larger datasets and association studies. Viral immune escape by altering HLA-

binding CTL epitopes has been documented in HIV-1 and HCV infections (Petrovic, Dempsey, 

Doherty, Kelleher, & Long, 2012; Price et al., 1997), but not as well for DNA viruses such as  

HPV, where the mutation rates are markedly lower. 

We identified several immunogenic CTL-epitopes from the 3 HPV16-antigens (Fig.4-3, 

Table B1). In our experiments, addition of PD-1 and CTLA-4 CKB antibodies aided our ability 

amplify and detect low-frequency HPV-CTL-response in both healthy and HPV+ PBMCs ex vivo 

(Figs.4-1-4.4, B1). Our results indicate that HPV16-E2 and E6 induce more CTL responses than 

HPV16-E7 (Figs. 4-1, 4-2). HPV16-E6 and E7 have been the dominant targets for T-cell based 

immune therapies against HPV thus far Draper et al., 2015; Kenter et al., 2009). In contrast E2-

specific CTL-reactivity has been unexplored as an immunotherapeutic target in HPV+ HNSCCs 

due to the assumption that E2-locus is interrupted by viral integration, similar to that observed in 

cervical cancer (Woodman et al., 2007). However, several recent whole genome studies in 

https://paperpile.com/c/WujMI3/vgRyU+dmSqk+yFV1U
https://paperpile.com/c/WujMI3/yFV1U+XT2GE
https://paperpile.com/c/WujMI3/Jehms+2EAB6
https://paperpile.com/c/WujMI3/Jehms+2EAB6
https://paperpile.com/c/WujMI3/igodX+XRdZ0
https://paperpile.com/c/WujMI3/67KJN
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HNSCCs have indicated that viral breakpoints in HPV+ HNSCCs are distributed throughout the 

genome, with preferential integration in the E1 region (Akagi et al., 2014; Parfenov et al., 2014b). 

E2 is also a larger antigen >3-times the size of E6, E7, possibly explaining the bigger spectrum of 

CTL-epitopes from the protein. These results, taken along with the high proportion of episomal full 

length HPV DNA in HNSCC lesions (Olthof et al., 2014), and our data demonstrating strong E2-

specific T-cell and B-cell reactivity (Figs. 4-1, 4-2) warrant further investigation of E2 as a T-cell 

therapeutic target in addition to E6 and E7 in HPV+ HNSCCs. 

Despite the addition of CKB antibodies in the ex vivo T-cell stimulation protocol, we 

detected low levels of E7-CTLs compared to E2 and E6-CTLs in this study. This can be due to 1) 

inaccurate prediction of CTL-epitopes, 2) inherently low immunogenicity of E7-antigen, 3) low 

antigen load in patients, or 4) higher levels of dysfunctional E7-specific CTLs. Our ability to 

accurately predict previously described epitopes from E7 and the successful identification of 

novel CTL-epitopes from E2 and E6 across various HLA-alleles (Fig. 4-3), argues against a sub-

optimal prediction strategy. The presence of high levels of serum titers against E7 in HPV+ 

HNSCC patients indicates that the antigen is presented and is immunogenic at least in context of 

B-cell immunity (Fig. 4-2C-D). Gene expression analysis of HPV+ HNSCC tissue and cell lines 

showed that E7-antigen load is high in patient tumors, consistent with several other studies 

(Olthof et al., 2014; Zhang et al., 2016). However, E7-CTLs tended to exhibit higher levels of 

PD1+CD39+ or PD1+TIM3+ DP
Ex

-phenotypes compared to E2 and E6-CTLs after ex vivo 

stimulation in 3/5 independent HPV+ HNSCC patients (Figs. 4-6, 4-7). In particular, E7-CTL 

dysfunction rarely occurred in concert with E2/E6 CTL dysfunction within the same patient (Fig. 4-

7). Since antigen persistence and subsequent magnitude of CTL-response are major factors in 

chronic viral T-cell exhaustion (Mueller & Ahmed, 2009), we speculate that in each of these 

patients, the variable HPV-dysfunctional CTLs might reflect temporal tumor HPV-load or tumor 

heterogeneity, although this remains to be elucidated. Future studies that compare and correlate 

tumor antigen load in vivo with the dynamics of E2, E6 and E7-CTL phenotypes in peripheral 

blood and tumor will be needed to verify in vitro CTL-dysfunction findings from our study. 

https://paperpile.com/c/WujMI3/3Y4Pg+0l3LY
https://paperpile.com/c/WujMI3/tepG8
https://paperpile.com/c/WujMI3/u38r1+tepG8
https://paperpile.com/c/WujMI3/0jinB
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While other studies have shown high levels of immune infiltration in HPV+ HNSCCs 

(Mandal et al., 2016a; Zhang et al., 2016), we show here that HPV-antigen load likely drives high 

CTL-infiltration and CTL-dysfunction (Fig. 4-9), arguing for better response to immune CKB 

therapies. Indeed, preliminary data from ongoing HNSCC clinical trials targeting the PD-1/PD-L1 

axis indicate more benefit for HPV+ HNSCCs compared to HPV- HNSCCs (Chow et al., 2016; 

Ferris et al., 2016). Our data thus provides mechanistic insights into this clinical response, 

wherein, high HPV-antigen load likely drives T-cell infiltration into HPV+ HNSCCs causing 

immune selection pressure for HPV-CTL dysfunction (in particular E7-CTLs), and that immune 

checkpoint blockade can at least partially reverse this effect in HPV+ HNSCCs (~32% ORR in 

(Chow et al., 2016)). 

In addition to the PD-1 checkpoint, we demonstrate both by computational and 

experimental in vitro assays that IDO-1 is highly expressed in HPV+ HNSCC and other HPV-

driven malignancies (Figs. 4-10, 4-12). In preclinical murine melanoma models, TILs increase 

tumor IDO-1 expression (Spranger et al., 2013) and IDO-1 inhibitors are showing promise in 

clinical trials in particular with PD-1/PD-L1 blockade (Sheridan, 2015). HPV+ HNSCCs 

expressing IDO-1 might similarly be driven by HPV-specific-CTL infiltration in response to high 

tumoral HPV antigen load (Fig. 4-12). In vitro, this resistance to CTL-targeting by HPV+ HNSCCs 

is apparent in the absence of PD-1/IDO-1 inhibition, where only ~5% of SCC-104 cells were 

sensitive to CTL-cytotoxicity regardless of the antigen-specificity of the HPV-CTLs (Fig. 4-13). In 

contrast, inhibition of IDO-1 alone or in combination with PD-1 blockade significantly enhances 

tumor cell cytotoxicity of E7-CTL (and, to a lesser extent, E2 and E6-CTL) derived from patients 

with HPV+ HNSCCs (Fig. 4-13). These data suggest that IDO-1/PD-1 blockade may have a 

significant effect to activate pre-existing HPV-specific CTL in the majority of HPV+ HNSCCs. 

Sixty years after the discovery of HPV and 10 years after FDA approval of the first HPV 

vaccine, HPV-associated malignancies remain a major public threat, with an estimated 14 million 

new HPV-infections occurring every year (Dunne et al., 2014).  The presence of highly-expressed 

viral antigens makes HPV+ HNSCCs a promising setting for targeted immunotherapies. We 

propose that vaccination or adoptive T-cell therapy to HPV16-specific CTL epitopes from E2, E6 

https://paperpile.com/c/WujMI3/vjncT+u38r1
https://paperpile.com/c/WujMI3/ucwUz+rUUCh
https://paperpile.com/c/WujMI3/ucwUz+rUUCh
https://paperpile.com/c/WujMI3/ucwUz
https://paperpile.com/c/WujMI3/s1uJ8
https://paperpile.com/c/WujMI3/n3j8i
https://paperpile.com/c/WujMI3/d2rEU
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and E7, and targeted immune modulation with a combination of PD-1 and IDO-1 inhibition 

warrant further evaluation in HPV+ HNSCC and other HPV-associated malignancies.  

4.5 Materials and Methods 

For full details of methods and construction of data sets see Appendix B. 

 

4.5.1. HPV16 candidate CTL-epitope prediction 

HPV16-candidate CTL epitopes were predicted using previously described prediction strategies 

developed by us (Chowell et al., 2015; Krishna & Anderson, 2016), except for the incorporation of 

immunogenicity scores. For the 15 HLA-class I alleles, 9-mer and 10-mer candidate epitopes 

derived from the HPV16 proteins E2, E6, and E7 were predicted from 5 independent prediction 

algorithms and normalized. Top 4-5 candidate peptides / HLA-allele were used for experiments. 

Further details are provided in Appendix B. For full list of peptides see Appendix Table B1. 

 

4.5.2. Epitope mapping from HPV+ HNSCC PBMCs 

PBMCs were obtained from stage III or stage IV HPV+ HNSCC patients (MSSM cohort). Patient 

characteristics are described in(Parikh et al., 2014b). All HPV16-peptides (> 80% purity) were 

synthesized by Proimmune, UK. HPV+ HNSCC PBMCs were thawed, rested with 1μg/mL of CKB 

antibodies anti-PD1 (eBosciences, USA) , anti-CTLA4 (eBosciences, USA) for 1 hour at 37 C. 

HPV16-peptides in pool or individually were added subsequently in biological triplicates, along 

with recombinant human IL-2 (20U/mL), human IL-7 (5ng/mL). On day 5, half the media was 

removed and replaced with fresh IL-2 and peptide pool. On day 8, half the media was removed 

and fresh media, IL-2 and peptide was added to the cells and replated into a 96-well multiscreen 

elispot plate for Elispot detection. Elispot detection is described in Appendix B. 

 

4.5.3. HPV-CTL stimulation for phenotyping 

HPV-specific T-cells were generated by stimulating autologous HPV+ HNSCC patient B-cell 

APCs (Appendix B). APCs were either peptide pulsed with HPV16-epitopes, or transfected with 

https://paperpile.com/c/WujMI3/6xno8+fwudJ
https://paperpile.com/c/WujMI3/ncLus
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whole HPV-antigen encoded in mammalian expression plasmid pCDNA3.2 (Invitrogen, CA, 

USA). APCs were washed and incubated with thawed whole HPV+ HNSCC PBMCs at a ratio of 

1:2 (200,000 APCs : 400,000 PBMCs) supplemented with 20U/mL recombinant human IL-2 (R&D 

Systems, MN, USA), 5ng/mL IL-7 (R&D Systems, MN, USA). On day 5, partial media exchange 

was performed. On day 10, expanded HPV-CTLs were restimulated with peptide-pulsed, 

transfected APCs similar to day 1. HPV-CTLs were used for cytolytic assays or 

immunophenotyped after day 20.  

 

4.5.4. Tetramer staining, HPV-CTL and HPV+cell line phenotyping 

HPV16-tetramers were obtained from NIH Tetramer Core Facility at Emory University. For 

tetramer staining, cells were re-suspended in 100μL staining buffer with 5% human serum and 

1mM Dasatanib (ThermoFisher Scientific, MA, USA), and each tetramer was added at 

concentration of 1:100 for 30 minutes at room temperature. Cells were washed twice and 

restained with anti-CD8-PC5, anti-CD4-FITC, anti-CD14-FITC and anti-CD19-FITC for exclusion 

gates, and either a combination of anti-PD1-BV605 and anti-CD39-BV-405 or anti-PD1-BV-605 

and anti-TIM3-BV-405 for 30 minutes on ice. HPV+ cell line PD-L1 staining was done for 30 

minutes on ice. Samples were then washed twice in 1x PBS, and analyzed by Attune flow 

cytometer (ThermoFisher Scientific, MA, USA). Tetramer and antibody details are provided in 

Appendix B. 

 

4.5.5. HPV-CTL cytotoxicity assays  

HLA-A*02:01+ HPV+ HNSCC+ SCC-104 cells were pre-labelled with 0.5μM CellTracker Green 

CMFDA (ThermoFisher Scientific, MA, USA) for 1 hour and washed. HPV-specific CTLs  were 

pooled by HPV-antigen, washed and resuspended in media supplemented with 20U/mL IL-2, with 

1μg/mL isotype IgG or anti-PD1 antibody, DMSO, and 1μM IDO-1 inhibitor Epacadostat (Selleck 

Chemicals, MA, USA) in various combinations as described. HPV-CTLs were added at ratio of 

5:1 to SCC-104 cells and incubated for 48 hours at 37 C, 5% CO2. Cocultured cells were 

harvested, neutralized with media supernatant from each well containing dead cells and 
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centrifuged for 850g, 10 minutes. Cell pellets were washed twice with sterile 1X PBS, 

resuspended with 1mL 1X PBS, and 2uL Propidium Iodide (ThermoFisher Scientific, MA, USA) 

and cell death was assessed by flow cytometry.  

 

4.5.6. RNASeq data alignment 

RNA-Seq reads for each sample were quality checked using FastQC (version 0.10.1, Babraham 

bioinformatics, Babraham Institute, Cambridge, UK) and aligned to the human genome build 38 

(GRCh38) primary assembly and HPV16 genome (GCF_000863945.1) simultaneously using 

STAR (version 2.5.2B). After alignment, variants were discovered following GATK Best Practices 

workflow for RNAseq. Raw RNAseq reads were pre-processed by adding read groups, indexing, 

marking duplicates and sorting, Split’N’Trim, reassigning mapping quality and base recalibration. 

 

4.5.7. ssGSEA analysis of HPV and immune gene signatures 

Log transformed transcripts per million (Log2 TPM+1) from each HNSCC sample, after 

subtraction of low expression genes was used for ssGSEA as previously described in 

Şenbabaoğlu et al (Şenbabaoğlu et al., 2016b). Pre-defined immune signatures (Appendix B 

Table B2), have been extensively validated in Şenbabaoğlu et al (Şenbabaoğlu et al., 2016b) and 

Mandal et al(Mandal et al., 2016b). ssGSEA scores were computed for each tumor sample using 

the R package GSVA, and Z-transformed across the cohort prior to analysis. To assess impact of 

HPV-gene expression on immune signatures, a correlation matrix was built using the R-library 

Corrplot with the Z-transformed ssGSEA scores and were displayed by hierarchical clustering of 

correlations (Appendix B Table B3). Individual gene expression analysis was performed by 

unsupervised hierarchical clustering methods and were used for heatmap analysis. 

 

4.5.8 Statistical Analysis 

Categorical variables, such as Elispot data, and Flow cytometric data were summarized as SFUs, 

and percentages. Continuous variables (RNAseq data) were presented with mean with standard 

error of mean (SEM). Unpaired T-test with Welch’s correction was used for all categorical variable 

https://paperpile.com/c/WujMI3/m5uhe
https://paperpile.com/c/WujMI3/m5uhe
https://paperpile.com/c/WujMI3/AgJIN
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analyses, and for continuous variable analyses non-parametric Mann-Whitney’s test was used. 

For heatmaps of T-cell frequencies and ssGSEA RNASeq analyses, Z-transformation was 

performed to normalize the data across the cohorts. R statistical software V3.4.0 and Prism 

software (GraphPad Software) were used for data managements and statistical analyses. 

Significance levels were set at 0.1 (*), and P-values of 0.01 (**) or 0.001 (***) for all tests are 

indicated. 
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CHAPTER 5 

T-CELL ANTIGEN DISCOVERY BY SINGLE CELL CYTOKINE CAPTURE 

 

Abstract 

Peripheral CD8+ T-lymphocytes (CTL) are critical components of the human immune system 

performing constant immune surveillance and elimination of infected, malignant cells thereby 

protecting the host against a multitude of pathogenic infections. Despite major advances in 

technologies for T-cell epitope discovery, CTL antigen and epitope identification from large 

complex genomes remain a major challenge. Here, we develop a novel single cell assay using 

autologous CTLs and antigen presenting cells (APCs) to enable identification of immunogenic 

antigens from a cDNA library encoding whole genomes without the need for HLA-typing. The 

assay relies on the capture of interferon gamma secreted by effector CTLs on the surface of 

autologous APCs encoding an immunogenic antigen. We empirically show the this assay using 

peptide pulsed as well as transfected APCs as well as with a limit of detection of up to 10% of 

antigenic epitope pulsed APCs. We validated the IFNϒ APC capture assay by magnetic sorting of 

the IFNϒ + APCs followed by PCR amplification of an antigen cassette. We anticipate that this 

technology will enable the accurate identification of immunogenic antigens and epitopes relevant 

for T-cell vaccine and immunotherapy design.    

  

5.1 Introduction 

CD8+ T-cell (CTL) recognition of an antigenically processed intracellular epitope is critical for the 

adaptive immune based clearance of many pathogenic infections. CTLs use their T-cell receptor 

(TCR) to interact with linear immunogenic epitopes in complex with the human leukocyte antigen 

(HLA) class I molecules of infected cell surface (Grakoui et al., 1999). In the lymph node, 

professional antigen presenting cells (APCs) such as dendritic cells (Mildner & Jung, 2014), or 

activated B-cells (Coughlin, Vance, Grupp, & Vonderheide, 2004), can activate CTLs by 

integrating TCR-HLA-peptide complex (Signal 1) and costimulatory molecules CD80/86 (Signal 2) 

https://paperpile.com/c/y2PDmD/OoO4
https://paperpile.com/c/y2PDmD/mOxV
https://paperpile.com/c/y2PDmD/RgVm
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to prime naive CTLs as well as boost memory CTLs (Pollizzi & Powell, 2014). This complex 

cellular interaction ultimately leads activated CTLs to seek infected, malignant cells expressing 

the same epitope, CTL-release of many proinflammatory cytokines such as interleukin-2 (IL-2), 

interferon gamma (IFNϒ), and finally release of effector molecules causing target cell lysis 

(Hennecke & Wiley, 2001). Thus, the identification of CTL-epitopes and antigens is a major effort 

in translational immunology which can aid in the design of effective T-cell vaccines, 

immunotherapies, and immune monitoring of many malignancies (Ott et al., 2017; Schumacher & 

Schreiber, 2015; Tran et al., 2016).  

The immense diversity of T-cell repertoire, the universe of pathogenic epitopes, and the 

polymorphism, codominance of HLA-alleles makes the identification of antigenic T-cell repertoire 

of any pathogen daunting. Several advances in genomics, proteomics and computational 

techniques have resulted in the development of novel approaches for identifying the HLA class I-

restricted antigenic repertoire of CTLs in the past decade. For instance, biochemical methods 

such as mass spectrometry (MS) can perform unbiased identification of the HLA-ligandome of 

any cell type (Kowalewski et al., 2015; Shao et al., 2017). However MS-identification while being 

sensitive, does not identify immunogenic epitopes that result in T-cell activation, and generally 

requires large amounts of sample. Fluorescent HLA-multimers in combination with 

multiparameter flow cytometry can be used identify immune reactive CTLs, and have recently 

been combined with genomics to identify immunogenic epitopes from complex libraries (Bentzen 

et al., 2016). However, such methodologies still require knowledge of the donor’s HLA-type, the 

predicted CTL-epitope, and its HLA-restriction. More recently, machine learning computational 

algorithms have been developed to predict HLA-binding candidate peptides from an antigen 

(Moutaftsi et al., 2006), and more recently, immunogenicity of HLA-binding CTL-epitopes 

(Chowell et al., 2015). However, computational predictions have an inherent error in their 

accuracy, and will need to be experimentally validated. Experimental techniques involve arduous 

low throughput immunological techniques such as Elispot, or flow cytometric evaluation (Miyahira 

et al., 1995; Zaritskaya, Shurin, Sayers, & Malyguine, 2010).  

https://paperpile.com/c/y2PDmD/yeRa
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Our goal here was to develop a sensitive and inexpensive immunologic assay that 

overcomes many of the limitations inherent to experimental T-cell antigen discovery approaches. 

We hypothesized that directional secretion of cytokines by activated T-cells into the immunologic 

synapse can enable the detection of antigenic APCs from a cDNA library. Our assay employs two 

color flow cytometry combined with magnetic or fluorescence based identification with deep 

sequencing allowed us to correctly identify immunogenic antigen from a pool of control genes, 

with high sensitivity (upto ~10% antigen encoding APCs), specificity at low effector:target ratios 

(~1:1) without the need of knowledge of donor’s HLA type. 

 

5.2 Results 

5.2.1. Development of autologous APC system and APC capture assay 

Interaction between a T-cell and an APC presenting a cognate antigenic epitope causes 

polarization of the T-cell cytoskeleton resulting in the directional secretion of specific cytokines 

such as  IL-2 and IFNϒ preferentially into the immunologic synapse secreted directionally into the 

immunological synapse into the target cell (Huse, Lillemeier, Kuhns, Chen, & Davis, 2006; Xie, 

Tato, & Davis, 2012). The directional CTL cytokine secretion is temporally dependent on early 

time points after TCR-HLA-epitope interaction (Han et al., 2011; Sanderson et al., 2012; von 

Bergwelt-Baildon et al., 2002). We leverage this dynamic paracrine cytokine secretion by 

capturing IFNϒ secreted by CTLs on the immunologic synapse of APCs presenting cognate 

antigen via a commercially available bispecific IFNϒ catch antibody (Brosterhus et al., 1999; 

Campbell, 2003) (Fig. 5-1 B-C). We utilize CD40L activated B-cells (CD40L.APCs) expanded 

from T-cell depleted fraction, and purified CD8+ T-cells from subject blood mononuclear cells 

(PBMCs). CD40L.APCs have been previously shown to be a rapid source of autologous APCs, 

have abundant expression of the target CD45 protein for bispecific catch antibody, and are highly 

programmable by transfection methods (von Bergwelt-Baildon et al., 2002). As shown in Fig. 5-1 

A top panel, after two weeks of CD40L feeder cell stimulation, >90% of cells are CD19+ CD86+ 

https://paperpile.com/c/y2PDmD/hY7r+gUEM
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Figure 5-1. Development of CD40L-APC system and workflow of APC-cytokine capture 
assay. (A) Autologous CD40L.APCs can be expanded and matured (CD19+ CD86+ fraction) in 
two weeks (top panel); CD40L.APCs are efficient in inducing CTL-memory responses (FLUM1 
epitope from Influenza A virus) in control peptide compared to M1-epitope pulsed APCs (bottom 
panel) (B) IFNϒ captured by bispecific catch antibody on immunological synapse of APCs. (C) 
Workflow of the APC-capture assay followed next generation sequencing of antigen identification. 
 
 

expressing B-cells, indicating a pure mature APC fraction. CD40L.APCs are also very efficient in 

stimulating virus-specific CTLs as demonstrated in Fig. 5-1 A, where an HLA-A*02:01+ healthy 

donor had a 37-fold increase in FLUM1-epitope specific CTLs in two weeks compared to baseline 

frequencies (Fig. 5-1A, bottom panel). We developed a workflow based on this assay where 

mature CD40L.APCs are transfected with antigens derived from a cDNA library (encoding the 

whole pathogenome) and are then subject to APC-cytokine capture assay (Methods, Fig. 5-1C). 

APCs with the captured cell surface IFNϒ are subject to secondary antibody staining, followed by 

standard fluorescent or magnetic cell sorting assays. Following cell sorting, the target antigen-
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expressing plasmid responsible for T-cell stimulation is isolated, amplified by universal primers, 

and identified by deep sequencing (Fig. 5-1 C). 

 

5.2.2. APC-capture assay methodology 

We first tested the feasibility of our APC-capture assay by peptide pulsing APCs overnight with 

pre-mixed virus specific peptide pools (CEF), labeled the APCs next day with the bispecific-IFNϒ 

antibody, and co-cultured them with purified CTLs for 4.5 hours at 37°C. A representative figure is 

shown in Fig. 5-2 A, where the CD8- fraction representing APCs have a significant increase (~ 5-

fold) in cell surface IFNϒ+ APCs compared to DMSO-pulsed APCs or APCs alone. We then 

tested the limits of the assay using peptide pulsed autologous CD40L.APCs at various CTL:APC 

ratios, and time points of APC maturity (Fig. 5-2). Although the assay worked well across all the 

conditions, we observed that an APC:CTL ratio of 2.5:1 was sufficient to distinguish CTL-targeted 

CEF-pulsed APCs from control-APCs, and increasing the number of CTLs led to slight increase in  

 

Figure 5-2. Experimental testing of APC-cytokine capture assay. (A) Representative example 
and gating strategy of APC-IFNϒ capture on peptide pulsed APCs E:T = 5:1. % indicate APC 
IFNϒ+ events within CD8- gate. (B) Quantification of APC-capture assay using different E:T 
(CTL:APC) ratios on day 10 of mature CD40L.APCs (top panel), and on day 20 of mature 
CD40L.APCs (bottom panel). CEF-Pep represents the pre-mixed immunogenic epitopes from 
CMV, EBV and FLU. Data represents mean of 3 biological replicates. *P < 0.05, **P < 0.01, 
Unpaired two-tailed Welch’s T-test.  
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background (5:1, Fig. 5-2 B top panel), and there was no benefit to increase CTL:APC ratio 

beyond 5:1 (Fig. 5-2 B bottom panel). We also observed a higher proportion of IFNϒ+ APCs 

when APCs were used by day 20, compared to less mature APCs from day 10 (>3-fold for 5:1 

E:T, 45% IFNϒ+ APCs compared to 15%), consistent with a highly pure CD19+ CD86+ faction 

observed in second week of CD40L.APC maturation (Fig. 5-1 A). We used an CTL:APC ratio of 

2:1, in week 3 of APC maturation for subsequent experiments.   

 

5.2.3. Specificity optimization of the APC-capture assay 

Because this workflow depends on capturing IFNϒ on single APCs encoding cognate antigen, we 

were concerned about “off-target” effects in which IFNϒ secreted by CTLs are captured on  

 

Figure 5-3. IFNϒ APC capture assay specificity optimization. (A) Representative flow 
cytometry plots from a donor with off-target effects showing no decrease in IFNϒ+ APCs with 
decreasing proportions of antigenic APCs. (B)  Representative flow cytometry plots from same 
donor with reduced off-target effects after optimization and dose-dependence (C) Quantification 
of biological triplicates in 5-3 B, with two different CTL:APC ratios.  
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bystander APCs without a cognate immunogen, leading to false positives. To test the specificity 

and sensitivity of this assay, we assessed CTL targeting of APCs with cognate antigen (CEF-

pulsed) mixed in varying proportions with control DMSO-pulsed “cold target” APCs. Our rationale 

here was that if there was off-target effects, bystander cold target APCs would also be labeled 

with IFNϒ regardless of the number of true antigen-specific APCs present in the pool. This 

assessment would allow us to estimate the specificity of the assay, especially for true target 

APCs present at low frequencies in the population.  

Our first attempts at this specificity experiments indicated that there were indeed off 

target effects, because IFNϒ+ APCs did not sufficiently decrease with decreasing proportion of 

CEF-pulsed APCs (Fig. 5-3 A). We further noted that the percentage of IFNϒ+ APCs in some 

cases far exceeded the total percent of immunogenic APCs (e.g. 25%, 10% CEF.APCs in Fig. 5-

3 A). However, because there was a general trend of decrease in overall IFNϒ+ APCs (100% 

CEF.APCs versus 10% CEF.APCs), we reasoned that IFNϒ secreted by CTLs diffused and 

labelled cold target APCs when the samples were mixed to transfer and perform antibody staining 

in the plate. To overcome these issues, we stopped CTL-IFNϒ secretion by incubating samples 

on ice for 30 minutes, followed by careful removal of any cytokine containing supernatant without 

mixing. These optimizations substantially decreased off-target issues, when the same donor 

showed substantially lower percentage of IFNϒ+ APCs even at 100% CEF.APCs (8.13% in Fig. 

5-3 B compared to 46.3% in Fig. 5-3 A). More importantly, there was a dose-dependent decrease 

of IFNϒ+ APCs following the trend of decreasing true antigenic APCs (Fig. 5-3 B-C), and was 

overall applicable to varying CTL:APC ratios (Fig. 5-3 C). These results indicated that the 

optimized APC capture assay was able to specifically label antigenic APCs, and had a sensitive 

detection limit of up to 10% target APCs (Fig. 5-3B). 

 

5.2.4. APC-capture assay and antigen recovery using transfected APCs 

We then tested the applicability of the assay to antigen transfected APCs in order to recover the 

target antigen responsible for CTL immunogenicity. We first assessed transfection efficiency by 

GFP expression 24 hours after transfection of APCs and observed that close to 60% of APCs 
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were positive (Fig. 5-4 A). We then repeated the cold targets experiment, where we mixed APCs 

transfected with either FLUM1 antigen (from Influenza A virus) or the control self-antigen GAPDH 

 

Figure 5-4. IFNϒ APC capture assay on transfected APCs. (A) Transfection efficiency of 
APCs assessed with GFP 24 hours post nucleofection (B) Representative flow cytometry plots 
from same donor with transfected cold targets showing dose dependent decrease in IFNϒ+ 
APCs (C) Quantification of biological triplicates in 5-4 B. 
 
 

in varying proportions and co-incubated with autologous CTLs (Fig. 5-4 B-C). Similar to the 

peptide pulse experiments, we observed a clear hierarchy of dose dependence from 9.5% mean 

IFNϒ+ APCs for 100% FLUM1.APcs down to 3% mean IFNϒ+ APCs with varying decreasing 

proportions in between (Fig. 5-4 C). We further noted that there was more consistency in 

hierarchy of dose dependence for antigenic IFNϒ+ APCs in transfected APCs compared to 

peptide pulsed APCs (Fig. 5-3). Similar results were obtained with other independent donors 

(data not shown). This might be due to a reduced antigen load in the APCs as opposed to 

saturating levels of epitopes loaded on HLA-I molecules when synthetic peptides are being used 

to load APCs. 
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Figure 5-5. Antigen recovery of IFNϒ+ APCs. (A) PCR amplification of the antigen cassette 
after MACS sorting of PE+ and PE- fractions (top panel); Gel intensity across lanes (horizontal 
profile) for GAPDH (middle panel), and FLUM1 antigen (bottom panel). (B)  Gel intensity of PCR 
cassette within the sample (vertical profile) indicating GAPDH and FLUM1 peaks. 

 

We then tested assessed the efficiency of antigen recovery from the transfected 

immunogenic APCs for applicability in the workflow described in Fig. 5-1 C. We labelled the 

pooled APCs and CTLs with IFNϒ-phycoerythrin (PE) conjugated secondary antibody, followed 

by magnetic associated cell sorting (MACS) with anti-PE conjugated magnetic beads (Methods). 

Following MACS isolation, cells were subject to plasmid extraction to recover the antigen, PCR 

amplified and run on an agarose gel to visualize the recovered antigen (Fig, 5-5). We compared 

the band intensities of the PCR-amplified cassette for both the IFNϒ+ fraction (PE+) and IFNϒ-

unbound flow through fraction (PE-) (Fig. 5-5). We observed a consistently higher FLUM1 band 

intensity in the PE+ fraction compared to the PE- fraction irrespective of the number of initial 

FLUM1.APCs (Fig. 5-5 A, bottom panel) indicating successful antigen recovery and that 

FLUM1.specific APCs are being enriched by the IFNϒ APC capture assay (Fig. 5-5 A-B). 
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Comparing the PE+ fractions alone, we observed a proportional decrease in FLUM1 bands with 

decreasing FLUM1-specific initial APCs (mirroring the flow cytometry results (Fig. 5-4). GAPDH 

bands on the other hand showed an increasing trend with decreasing FLUM1.APCs and were 

comparably represented in both the PE+ and PE- fractions in 100% GAPDH.APCs (Fig. 5-5, 

middle panel, last two samples). Lastly, within the sample, we observed higher intensity of the 

FLUM1 band relative to GAPDH band (Fig. 5-5 B) indicating specificity, although the specificity 

decreased with lower proportion of antigenic FLUM1.APCs (25%). These results indicated that 

while antigen specificity was significant by flow cytometry methods, magnetic sorting might be 

also selecting for non-antigenic targets via non-specific binding to cells (see Discussion).  

5.3 Discussion 

There is considerable interest in identifying the antigenic repertoire of CD8+ T-cells in a given 

individual. Knowledge of such antigens are critical to the development of novel T-cell based 

vaccines against pathogens (Robinson & Amara, 2005), cancer immunotherapies targeting tumor 

specific antigens, neoantigens (Carreno et al., 2015; van Rooij et al., 2013; Verdegaal et al., 

2016), identifying the T-cell receptor repertoire specific for antigens (Glanville et al., 2017; 

Strønen et al., 2016), and immune monitoring of various malignancies (Jäger et al., 2000; Snyder 

et al., 2014). 

 In this study, we aimed to develop an immunologic assay that when combined with next 

generation sequencing could yield a high throughput overview of immunogenic antigens from a 

given pathogenome. To this end, we leveraged directional IFNϒ secretion by CTLs to develop an 

IFNϒ APC capture assay presenting cognate immunogenic T-cell activating antigen. We 

optimized and tested the limits of this assay first by peptide pulsed APCs, then through antigen 

transfected APCs via flow cytometry and MACS sorting.  

 Our preliminary results indicate that IFNϒ APC capture can be used to identify 

immunogenic antigens and peptides with specificity and sensitivity to up to 10% APCs presenting 

cognate antigen (Figs. 5-3, 5-4). These results support other studies which have shown that even 

low frequency antigens (upto one epitope-HLA complex per cell) can stimulate and activate pre-

https://paperpile.com/c/y2PDmD/IUhM
https://paperpile.com/c/y2PDmD/CvTk+3tbE+Vtm6
https://paperpile.com/c/y2PDmD/CvTk+3tbE+Vtm6
https://paperpile.com/c/y2PDmD/Ygum+IlwI
https://paperpile.com/c/y2PDmD/Ygum+IlwI
https://paperpile.com/c/y2PDmD/Y20B+rhcu
https://paperpile.com/c/y2PDmD/Y20B+rhcu
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existing T-cells (Huang et al., 2013; Sykulev, Joo, Vturina, Tsomides, & Eisen, 1996). As such, 

this simple flow cytometry based assay is performed using low sample numbers (200,000 CTLs : 

100,000 APCs per well), using frozen CTLs within a day (4-5 hours incubation). Thus, without 

invoking sequencing techniques, one can envision that differential labeling of antigens can 

enhance the throughput of this flow cytometric assay.  

However, in large pathogenomes (e.g. CMV ~ 200 genes) methods beyond multi-

parameter flow cytometry are required for high throughput antigen discovery. Therefore, we 

tested IFNϒ APC capture in transfected APCs and showed that the assay is consistent in 

transfected APCs, with results largely similar to peptide-pulsed APCs. After controlling for IFNϒ 

diffusion and off target effects (Fig. 5-3 A-B), transfected APC experiments showed that there is a 

clear dose dependent decrease in IFNϒ+ FLUM1.APCs dependent on starting proportion of 

either FLUM1 or control APCs (Fig. 5-4) which is critical for a highly sensitive single-cell assay. 

Furthermore, we were successful in isolating the FLUM1 amplicon from IFNϒ+ APCs and we 

demonstrated enrichment of the antigen in samples with varying proportions of the antigenic 

APCs (Fig. 5-5). These experiments will enable us to employ the assay to identify T-cell 

immunogenic antigens from complex pooled antigen libraries in future studies.  

The current experiments have also revealed caveats in our methodology. Although, flow 

cytometry experiments revealed high sensitivity and specificity across multiple donors, at low 

frequency antigenic APCs there were discrepancies when flow cytometry results were compared 

to MACS based antigen recovery. For instance, at 25% FLUM1.APC frequency, there was a five 

fold higher percentage of IFNϒ+APCs compared to control APCs (0% FLUM1.APCs) by flow 

cytometry (Fig. 5-4 B). However, MACS isolation antigen recovery and PCR amplification of the 

exact same sample showed only a modest enrichment of FLUM1 band relative to the control 

GAPDH band (Fig. 5-5 B, bottom panel). Based on these results, I speculate that at low antigen 

APC frequencies MACS sorting can lead to non-specific isolation of bystander cells and might 

therefore not be ideal for this assay in complex libraries. We therefore propose either further 

optimization of MACS sorting methodology or employ fluorescent activated cell sorting (FACS) to 

isolate highly pure enriched populations of antigenic IFNϒ+APCs for future experiments. 

https://paperpile.com/c/y2PDmD/d262+HVoa
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5.4 Materials and Methods 

 

5.4.1. Donor PBMC processing and cell separation 

Peripheral blood was obtained from healthy donors at Arizona State University under IRB 

protocol #MOD00006783. All subject blood samples were obtained under informed consent in 

accordance with ASU’s human subject research policies. For some samples, trima leuko 

reduction chamber residuals from Blood Centers of the Pacific blood collection center, CA, USA. 

PBMCs were extracted from both these source samples using Sepmate PBMC isolation tubes 

(StemCell technologies, MA, USA) according to manufacturer’s instructions. Isolated PBMCs 

were counted and CD8+ T-cells were isolated using human CD8+ T-cell isolation kit (Miltenyi 

Bitoec, Germany) according to manufacturer’s instructions, and purified CTLs were frozen until 

use. CD8- fraction was further subject to CD4 fraction removal using CD4 microbeads (Miltenyi 

Biotec, Germany) and frozen. CD4- CD8- fractions were counted and either frozen or used to 

generate CD40L activated APCs. Purity of each fraction was assessed by flow cytometry prior to 

being frozen. 

 

5.4.2. Autologous APC generation 

Autologous APCs were generated by methods described in Chapter 5 (Appendix B5). Briefly, 

CD40L-activated B-cell APCs were generated from donor CD4- CD8- PBMC fractions by 

incubating them with irradiated (32Gy) K562-cell line expressing human CD40L (KCD40L) at a 

ratio of 4:1 (800,000 CD4- CD8- to 200,000 irradiated KCD40Ls) in each well. The cells were 

maintained in BCM consisting of IMDM (Gibco, USA), 10% heat inactivated human serum 

(Gemini Bio Products, CA, USA), Antibiotic-Antimycotic (Anti-Anti, Gibco, USA). BCM was 

supplemented with 10 ng/mL recombinant human IL-4 (R&D Systems, MN, USA), 2μg/mL 

Cyclosporin A (Sigma-Aldrich, CA, USA), 1X insulin transferrin supplement (ITES, Lonza, MD, 

USA). APCs were re-stimulated with fresh irradiated KCD40Ls on days 5 and 10, after washing 

with 1X PBS and expanding into a whole 24-well plate. After two weeks, APC purity was 

assessed by CD19+ CD86+ expressing cells by flow cytometry, and were generally used for  T-
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cell stimulation after >90% purity. APCs were either restimulated upto 4 weeks or frozen and re-

expanded as necessary. 

 

5.4.3. IFNϒ APC capture assay  

APCs were used on days as indicated for the APC capture assay. For peptide experiments, 

peptide pulsing of APCs were done under BCM 5% human serum, with recombinant IL-4 

overnight. Transfection of APCs were done using the Lonza 4D Nucleofector, primary P3 buffer, 

program EO117 (Lonza, MD, USA) and incubated in BCM-10% human serum, IL-4 without any 

Anti-Anti. Twenty four hours later APCs were washed resuspended in MACS staining buffer, 

counted, and 8uL of  IFN𝛄 catch reagent (IFN-γ Secretion Assay - Cell Enrichment and Detection 

Kit, Miltenyi Biotec, Germany) for 20 minutes on ice. Purified CTLs were thawed either the night 

before or on the day of the assay, and resuspended at desired E:T concentrations as indicated in 

the experiment in BCM-5% human serum. After catch reagent labelling, APCs were washed three 

times with BCM-5% human serum, resuspended in desired E:T ratios as necessary for the 

experiment, and co-cultured with pure CTLs in a 96 well U-bottomed plate (Costar, USA), total 

volume of 200μL. The plate was centrifuged at 400g, 1 minute, without brakes to promote 

conjugate formation, and incubated at 37C for 4-5 hours.  For the optimization experiments, after 

the incubation time, the plate was chilled for 30 minutes on ice to stop IFN𝛄 secretion, and 

supernatant media was carefully removed. For initial washing of the cells, cold MACS buffer was 

added drop by drop to minimize IFN𝛄 diffusion. The plate was centrifuged at 500g, 5 minutes, 

followed by careful removal of supernatant and same wash procedure was repeated. After 

centrifugation, secondary detection IFN𝛄-PE antibody(IFN-γ Secretion Assay - Cell Enrichment 

and Detection Kit, Miltenyi Biotec, Germany) in 2μL/100μL/well MACS buffer was added and 

incubated for 20 minutes on ice. For flow cytometry analysis, additional CD8 antibody anti-CD8-

PC5 (clone B9.11; Beckman Coulter 1:100) was added. After incubation the plates were washed 

twice with MACS buffer, resuspended in 1x sterile PBS and analyzed by Attune flow cytometer 

(ThermoFisher Scientific, MA, USA). For MACS sorting, after IFN𝛄-PE antibody staining, cells 

were pelleted and 10μL anti-PE microbeads were added to the pellet in 90μL MACS buffer for 15 
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minutes. Cells were then washed once, isolated using MACS MS columns (Miltenyi Biotec, 

Germany), and flow through and eluate were subject to Hirt plasmid extraction. 

 

5.4.4. Tetramer staining 

FluM1-tetramer (corresponding to the HLA-A*02:01-restricted epitope GILGFVFTL) was obtained 

from Proimmune, UK. For tetramer staining, cells were re-suspended in 100μL staining buffer 

with 5% human serum and 1mM Dasatanib (ThermoFisher Scientific, MA, USA), and each 

tetramer was added at concentration of 10uL for 30 minutes at room temperature. Cells were 

washed twice and restained with anti-CD8-PC5, anti-CD4-FITC, anti-CD14-FITC and anti-CD19-

FITC for exclusion gates for 30 minutes on ice. Samples were then washed twice in 1x PBS, and 

analyzed by flow cytometry. 

 

5.4.5. Antigen recovery by Hirt plasmid extraction 

MACS sorted PE+/PE- CD8- cells were first pelleted by centrifugation at 500xg for 10 minutes. 

The supernatant was carefully aspirated and the cells re-suspended gently in 250 uL of chilled 

Hirt Buffer #1 (50 mM Tris, 10mM EDTA, 50ug/mL RNase A). Following resuspension 250 uL of 

Lysis Buffer #2 (1.2% SDS in Water) was added to each sample and the tubes were slowly and 

fully inverted 3 times and incubated for 5 minutes at room temperature. Cell lysis was stopped via 

the addition of 350 uL of Hirt Precipitation Buffer #3 (3M CsCl, 1M Potassium Acetate, 0.67M 

Acetic Acid) to each sample. After incubation the samples were quickly loaded into a 

microcentrifuge chilled to 4 degrees C and centrifuged for 30 minutes at 17,300xg. The 

supernatant was loaded onto Qiagen QIAprep Spin Miniprep Columns by spinning the columns at 

17,300xg for 1 minute. The column was washed twice with 700 uL of Hirt Column Wash #4 (60% 

EtOH, 10mM Tris, 50uM EDTA, 80 mM Potassium Acetate) and the flow through was discarded. 

Plasmid DNA was eluted from the column in nuclease-Free Water to the membrane and heating 

the column at 70 degrees C for 1 minute, followed by spinning the warmed column at 17,300 xg 

for 1 minute. The eluted DNA concentration was quantified by Nanodrop. 
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5.4.6. PCR amplification and gel analysis 

For each reaction, 25ng of plasmid DNA added to a mastermix solution containing 10uL 

SapphireAmp PCR Mix, 1 uL of each primer at 10 uM, with water added up to 20 uL for the total 

reaction volume. After a 5 minute initial denaturation and activation of the hot-start polymerase at 

95°C, the samples were cycled 27 times. Each cycle consisted of a 30 second denaturation step 

at 95°C, a 50 second annealing step at 57C, and a 3 minute extension step at 72°C. Finally, after 

27 cycles, the samples were extended once more for 7 minutes at 72°C, followed by cooling to 4 

C for overnight storage. 2 uL of each PCR reaction was loaded onto a 2% agarose gel prestained 

with 1uL GelRed / 2mL 1X TAE and visualized. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE OUTLOOK 

 

CD8+ T-cells form a critical part of a complex network of cell subsets in the human immune 

system causing immune mediated the elimination of many pathologies and malignancies. Despite 

major advances in the understanding of the molecular mechanisms underlying T-cell 

immunobiology, the core driving features of T-cell immunogenicity and tumor-specific 

mechanisms that cause T-cell dysfunction remain largely unknown. This dissertation is an 

attempt to address these questions experimentally using classical and novel immunological 

techniques, and computationally using data mining, statistical and machine learning tools. 

 In Chapter 2, I studied the biochemical hallmarks underlying T-cell immunogenicity in 

context of self/nonself discrimination. We identified an over representation of relatively 

hydrophobic amino acids at specific TCR contact residues of immunogenic CD8+ T-cell epitopes. 

We leveraged these findings to develop a computational immunogenicity model which can 

consistently improve prediction of immunogenic CTL epitopes. We further validated these findings 

by in vivo experiments in a murine HIV-1 infection model (Chowell et al., 2015).  

Interestingly, strong support for our study came from a subsequent 2016 study by 

Stadinski et al. (Stadinski et al., 2016), describing importance of hydrophobic amino acids at 

positions 6 and 7 of TCR CDR3β in the development of self-reactive T cells. One implication of 

Stadinski et al’s findings is that hydrophobic amino acids in the CDR3β region may de facto be 

crucial for T cell activation via recognition of self or foreign antigen as alluded in their study. Since 

negative selection eliminates the majority of self-reactive TCRs, current thinking would anticipate 

that the biochemical composition of TCRs in the periphery would be skewed towards amino acids 

that are not strongly hydrophobic. Nonetheless, for a selected TCR to be able to recognize a 

foreign antigen it must bind to the epitope with very high affinity, which can be effectively 

accomplished if the epitope is also composed of hydrophobic amino acids residues. This 

interpretation is consistent with our findings from Chapter 2 (Chowell et al., 2015), where we 

https://paperpile.com/c/PydJZk/lbnG
https://paperpile.com/c/PydJZk/M3Kp
https://paperpile.com/c/PydJZk/lbnG
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reported that the hydrophobic composition of MHC class I epitopes determine their 

immunogenicity. Notably, we found that the relative differential hydrophobicity of TCR-contact 

residues (positions 4 to 7) is a hallmark of immunogenic pathogen-derived and self-reactive 

epitopes, in both human and mouse MHC-allomorphs (Chapter 2). This would explain that, both 

non-self-antigen and self-antigen reactive TCRs with hydrophobic CDR3β residues are perhaps 

not completely eliminated due to lack of antigenic gene expression in the thymus or inefficiencies 

in negative selection, respectively (Yu et al., 2015). 

Together, our study and that of Stadinski et al, shed light on understanding of the 

biochemical basis of self and non-self discrimination by T cells. They further underscore the 

predictive value of incorporating amino acid biochemical properties in identifying immunogenic 

epitopes
 
and their corresponding TCRs. Several important unresolved questions remain with 

respect to the role of hydrophobic amino acid residues in promoting T-cell activation. For 

instance, is TCR-pMHC interfacial hydrophobicity a general rule that applies across different 

MHC class I and II alleles and epitope lengths? Do TCRs tread a threshold value of affinity 

between their CDR3β and self-pMHC hydrophobic contact residues to avoid negative selection? 

Lastly, is the T cell receptor a hydrophobicity-driven pattern recognition receptor (Seong & 

Matzinger, 2004)? If so, the evolutionary basis of TCR recognition of amino acid hydrophobicity 

will be interesting to explore. Future studies will address these fascinating questions.  

In Chapter 3, I developed an experimental and bioinformatic methodology for the 

amplification and detection of low frequency T-cells in a short term ex vivo stimulation protocol 

(Krishna & Anderson, 2016). In Chapter 4, I used this methodology to define several novel CTL 

epitopes from the HPV16 antigens E2, E6 and E7. Although previous studies have attempted to 

define HPV16 CTL-epitopes (Ressing et al., 1995b; Riemer et al., 2010d; Rudolf, Man, Melief, 

Sette, & Kast, 2001b), to my knowledge this is one of the first comprehensive epitope, 

immunodominant domain mapping studies from E2, E6 and E7. Knowledge of these epitopes and 

regions from the antigens can aid the design and development of HPV-specific immunotherapies. 

My results also indicate that, in addition to E6 and E7, HPV16-E2 is an immunogenic antigen with 

https://paperpile.com/c/PydJZk/Fpfr
https://paperpile.com/c/PydJZk/thk6
https://paperpile.com/c/PydJZk/thk6
https://paperpile.com/c/VzJnIo/1iIvf
https://paperpile.com/c/VzJnIo/tezKw+dYIYS+ZphiT
https://paperpile.com/c/VzJnIo/tezKw+dYIYS+ZphiT
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broad T-cell and B-cell reactivity and is expressed in a subset of HPV+ HNSCCs. My findings of 

E2-immunogenicity, supported by other recent studies indicating lower rates of genome disruption 

at the E2-locus (Parfenov et al, PNAS, 2014), warrants further investigation of E2 in immune 

therapeutic modalities in addition to E6 and E7.  

In Chapter 4, I also studied the different modes of HPV-specific CTL dysfunction in HPV+ 

HNSCC. I compared and contrasted dysfunctional phenotypes of HPV16-specific E2, E6 and E7 

CD8+ T-cells after ex vivo stimulation in HPV+ HNSCC patients. Most patients had higher levels 

of E7 or E2-specific T-cell dysfunctional phenotypes, compared to E6-T-cells, indicating a 

predictable but heterogeneous mode of HPV-specific T-cell dysfunction in HPV+ HNSCC. HPV-T-

cell dysfunction in HNSCCs has not been described before, and my findings aids better 

understanding of HPV-immunobiology. I also found by transcriptomic analysis that high HPV-

antigen load is strongly correlated with, and likely drives, T-cell infiltration and subsequent T-cell 

dysfunction observed in these tumors. I further show computationally, and then experimentally, 

that the immune modulatory indoleamine 2,3-dioxygenase (IDO-1) expression correlates with 

HPV-antigen load and is highly expressed in HPV+ cancers. Inhibiting the IDO-1 pathway can 

synergize PD-1 blockade by enhancing cytotoxic potential of E2, E6 and E7-specific CTLs in 

vitro. This result is particularly significant considering ongoing clinical trials that are exploring PD-

1 blockade with IDO-1 inhibition as immune therapies against HNSCCs (Ferris et al, NEJM, 2016, 

Gangadhar et al, JITC, 2015). To my knowledge, this is the first description of a mechanistic 

explanation of HPV-specific CTL dysfunction and immunogenicity in HNSCC patients. Future 

studies that compare the dynamics and interplay of HPV-CTLs from tumor, periphery with tumor 

HPV load will be necessary to verify the HPV T-cell dysfunction findings from this study.  

In the last chapter (Chapter 5), I developed an in vitro immunologic assay that can enable 

the identification of CTL-immunogenic antigens by flow cytometry. The IFNϒ APC capture assay 

was antigen specific, was sensitive to upto 10% of antigen encoded APCs, and was highly 

reproducible in multiple donors. Furthermore, the IFNϒ APC capture assay is inexpensive, is 

performed within one day, and requires minimal sample (CTL:APC ratios of 2:1). I also 
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demonstrated efficient antigen recovery from antigen transfected IFNϒ+ APCs. However, the 

assay needs to be optimized for isolating and antigen recovery of low frequency by magnetic or 

fluorescence based sorting. This is especially important when antigenic APC frequencies are low 

for high throughput antigen identification. To this end, future experiments that assess and 

compare the efficiency of FACS and MACS sorting methods for antigen recovery after the IFNϒ 

APC capture assay. After optimization of antigen recovery, the assay will be employed to identify 

immunogenic antigens from three common human viruses CMV, EBV and Flu.  

Thus, this dissertation makes a step towards understanding fundamental CD8+ T-cell 

immunobiology in context of cancer and viral infections, and develops methodologies for the 

design of effective T-cell immunotherapies. As such, I believe this dissertation will be of interest 

and of relevance to the fields of tumor immunology, virology, vaccinology and immunogenomics. 
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APPENDIX A  

TCR CONTACT RESIDUE HYDROPHOBICITY IS A HALLMARK OF  

 IMMUNOGENIC CD8+ T CELL EPITOPES 
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A.1 Construction of datasets 

All MHC class I peptides used in this study for analyses and the design of ANN-Hydro prediction 

model were retrieved from IEDB (www.iedb.org, last accessed: 08/11/2014). The IEDB is the 

largest curated dataset of MHC-I peptides identified from different primary research studies from 

over 334 different source organisms. We set the “Immune recognition context” as T cell response 

and selected “MHC class I” as the criteria for data retrieval. In total, there were 28,444 T cell 

epitopes reported to be immunogenic by T cell assays, including self and pathogenic epitopes 

and 6,142 peptides were reported to be positive by ligand elution analysis (either mass 

spectrometry or HPLC). To avoid redundancy and overrepresentation bias, we excluded all 

duplicate peptides, so that each peptide is present only once in the dataset. Positive CTL 

epitopes represent the immunogenic epitope group. Ligand eluted MHC-I self-peptides are 

generally eluted from cell surface and therefore they have been antigenically processed and 

MHC-bound. A vast majority of eluted self-peptides are derived from endogenous proteins. To 

completely separate immunogenic and non-immunogenic datasets, any immunogenic eluted self-

peptide associated with autoimmunity or cancer was excluded. The remaining peptides were 

used as the non-immunogenic peptide dataset for our analyses. Additionally, we removed any 

pathogen derived non-self- eluted peptides from the eluted peptide dataset to generate mutually 

exclusive datasets. These unique peptides were annotated for antigen name, peptide starting 

position, peptide ending position, and MHC restriction, which were required for inclusion. 

Peptides with “undetermined class I alleles” were also excluded. These filtering criteria resulted in 

a final dataset of 5,035 8-11mer immunogenic and 4,853 8-11mer non-immunogenic peptides.  

A.2 Position-based hydrophobicity analysis 

We transformed our datasets of immunogenic and non-immunogenic peptides into numeric 

arrays using the R statistical software. Separate numeric arrays were generated for immunogenic 

and non-immunogenic 8, 9 and 10mers. Mean hydrophobicity of immunogenic and non-

http://www.iedb.org/
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immunogenic peptides at each position was calculated and were compared residue-by-residue 

through Wilcoxon rank-sum tests to quantify statistical significance.  

A.3 Rate analysis of predicted peptides 

An efficient prediction algorithm identifies consistently all possible CTL epitopes from a given 

protein in the fewest number of “hits” consistently. For each test protein, we created a subset with 

unique CTL epitopes retrieved either from the IEDB database. Each predicted peptide starting 

from rank one was queried for an exact match in the dataset of CTL epitopes. When there was an 

exact match, a positive hit was recorded. Graphical representations comparing the rate of 

predictions by the IEDB-consensus binding prediction algorithm and hydrophobicity-based 

predictions were generated (Fig 2-5).  

A.4 Hydrophobicity-based ANN prediction model (ANN-Hydro) 

The R neuralnet package
 
was used to design and train the two ANN-Hydro models on H-2D

b
 and 

HLA-A2 restricted 9mer peptides known to be immunogenic (n=204 and n=374, respectively) or 

non-immunogenic (n=232 and n=201, respectively). Each peptide sequence in the respective H-

2D
b
 and HLA-A2 datasets were transformed into a corresponding numeric sequence based on 

the hydrophobicity value of amino acids. Training peptides were derived from IEDB and 

SYFPEITHI’s epitope database. A three-layer fully connected feed-forward ANN was comprised 

by nine input neurons, one hidden layer with three neurons, and one output variable (Fig 2-6). 

Our ANN-Hydro prediction model is given by the following mathematical framework:  

,)()(
3
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Where w0
 denotes the intercept of the output neuron and w0i

 the intercept of the i
th
 hidden 

neuron. Additionally, wi  denotes the synaptic weight corresponding to the synapse starting at the 

i
th
 hidden neuron and leading to the output neuron. Wi = (w1i,w2i,...,w9i )  is the vector of all 

synaptic weights corresponding to the synapse leading to the i
th
 hidden neuron, and  
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))(),...,(),(( 921 RhRhRhH   the vector of all inputs, which corresponds to the numeric 

hydrophobicity representation of a 9mer peptide, where h(Ri ) is the hydrophobicity value of the 

amino acid . Finally, the output variable )(Hy  denotes the probability of a peptide being 

immunogenic (p-ANN-Hydro). Since the starting values for the weights are drawn from the 

standard normal distribution, the outputs were averaged over 60 realizations.  The activation 

function f (v) was chosen to be the sigmoid function f (v) =1/ (1+e-v ), and the sum of squared 

errors was used for the error function. The learning procedure was the resilient back-propagation 

with learning rate set to 0.01; a threshold set to 0.01 was defined for the partial derivatives of the 

error function.  

A.4 Application of ANN-Hydro 

For each H-2D
b
 and HLA-A2 restricted epitope prediction, we used the MHC-binding prediction 

tool IEDB-consensus to generate a list of epitope predictions on which the immunogenicity model 

could be applied. We normalized prediction binding scores (percentile rank) using the expression  

)/()( minmaxmin   iBi
S  where 

iBS represents the normalized score of a given peptide; 

i , the assigned output score by IEDB-consensus; min , the minimum score assigned in 

prediction output by IEDB; and max , the maximum score assigned in the entire prediction output 

by IEDB.  To remove poor binding peptides from the list, a subset of predicted peptides was 

selected by defining a SB -threshold of 0.2 for antigen length <= 100 aa’s and a SB -threshold of 

0.1 (10
th
 percentile of predicted binders) for antigen length >100 aa’s. Independently, probabilities 

of immunogenicity were obtained by applying the ANN-Hydro model to this subset of binding 

predictions. Normalized scores (SI) were then assigned based on these probabilities of 

immunogenicity. Within the spectrum of predicted binders, we prioritized epitope re-ranking based 

on both SB and SI scores with first priority given to high-immunogenicity high-binders (probability 

of immunogenicity >= 0.4 and SB <=0.05; region I in Fig. S3), followed by modest-immunogenicity 

high-binders (probability of immunogenicity < 0.4 and SB <=0.05; region II in Fig. S3), then high-
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immunogenicity modest-binders (probability of immunogenicity >= 0.4 and SB > 0.05; region III in 

Fig. S3), and modest-immunogenicity modest-binders (probability of immunogenicity < 0.4 and SB 

> 0.05; region IV in Fig. S3).  For the antigens with length <= 100 aa’s, the SB cutoff for the four 

regions was set to 0.1 and probability of immunogenicity threshold remained at 0.4. Predicted 

peptides in each section were re-ranked based on a total score defined as S = SBSI. Final ranked 

list was obtained by sequential appending of the re-ranked peptides from each region. The list of 

predicted peptides was ranked based on this total score ranging from lowest score to the highest 

score. The lower the total score of a predicted peptide, the higher its probability of being an 

immunogenic epitope. Workflow of the prediction strategy is shown in Fig. 2-6. 

A.5 Statistical analysis of predicted CTL epitopes 

We used the F-test to quantify statistical significance (P < 0.05) of the variation of predicted 

rankings of T cell epitopes across different antigens between ANN-Hydro together with IEDB-

consensus and IEDB-consensus alone. 

 

A.6 In vivo discovery of HIV-1 Gag epitopes 

Mice. C57BL/6 mice were obtained from Harlan Laboratories. All mice used were between 6 and 

8 weeks of age. All animal study protocols were conducted in accordance with guidelines 

approved by the Institutional Animal Care and Use Committee at Kings College London and in full 

compliance with UK Home Office regulations under a project license to L.S.K. 

  

Vaccine immunization. Codon optimized HIV-1 gag plasmid DNA ZM96 from strain 96ZM651.8 

(provided by B Hahn, through the Centre for AIDS Reagents [CFAR] UK) and codon optimized 

HIV-1 gag Consensus B plasmid DNA (provided by D Garber, Emory University, USA) were used 

to construct and propagate replication defective (E1, E3 deleted) recombinant Adenovirus type 5 

(rAdHu5) vectors as described previously for the HIV-1 gag strain 97CN54(4). Animals were 
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immunized with 10
9 

virus particles (vp) as determined by the DNA Pico-Green assay (Invitrogen) 

and administered either i.m. in the quadricep muscle (rAdHu5 Consensus B gag) or i.d. at the  

base of the tail (rAdHu5 ZM96 and rAdHu5 CN54). 

 

 Peptides. 15mer peptides with an 11 amino acid overlap spanning the HIV-1 CN54 Gag protein 

and a 20mer set of peptides with 10 amino acid overlap spanning HIV-1 ZM96 were provided by 

CFAR, a set of 15mers with an 11 amino acid overlap spanning the HIV-1 Consensus subtype B 

Gag protein were provided from the NIH AIDS Reagent and Reference Program. ‘Optimal’ 9mer 

or 11mer peptides from HIV-1 CN54 Gag, ZM96 Gag and HIV-1 Consensus B were purchased 

from Proimmune. 

 

 T cell epitope mapping by intracellular interferon gamma staining. Spleens were harvested 

14 days after immunization, homogenized to single-cell suspensions, and RBCs were lysed using 

ACK lysis buffer (Lonza). Splenocytes were then used for in vitro re-stimulation, where 10
6
 cells 

were incubated for 6 h at 37°C with anti-CD28 (2mg/ml; BD Pharmingen), either alone 

(unstimulated control) or with peptides, either in pools or individually (each at 1mg peptide/ml), 

derived from Consensus B Gag. Brefeldin A (10mg/ml, Sigma-Aldrich) was added for the last 5 h 

of culture. After washing, cells were stained with anti-CD8 (clone 37.51, BD Biosciences) for 20 

min, then fixed and permeabilized with the BD Cytofiix/Cytoperm Kit according to the 

manufacturers’ instructions, and then stained 30 min with anti-IFN-g (clone XMG1.2, 

eBiosciences), washed and analyzed by flow cytometry. Consensus B epitopes were 

deconvoluted to individual 15mers from peptide pools, where each peptide is present in two 

independent pools within the matrix and reactive peptides confirmed in the second round against 

the 15mer peptide. Finally, based on the sequence of the reactive 15mer peptide, truncated 

versions of the 15mer peptides were synthesized and tested. 

 

T cell epitope mapping by ELISPOT assay. 14 days after immunization, splenocytes prepared 

(as detailed above) were re-stimulated in vitro with media alone, or with peptides, either in pools 
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or individually (each at 1mM final concentration) derived from CN54 or ZM96 Gag on mouse anti-

INF-g antibody coated 96 well plates (U-Cytech) and incubated for 16 h at 37°C, 5% CO2. IFN-g 

production was revealed according to the manufacturer’s instructions and IFN-g spot forming 

cells (SFCs) enumerated using an immunospot image analyser (Bioreader 5000). In the first 

round, CN54 Gag epitopes were deconvoluted to individual 15mers from peptide pools, where 

each peptide is present in two independent pools within the matrix and reactive peptides 

confirmed in the second round against the 15mer peptide. Finally, based on the sequence of the 

reactive 15mer peptide, 9mer peptides were synthesized and tested. For ZM96 (due to the 

absence of a complete set of overlapping 15mer peptides), 49 individual 20mer peptides were 

tested. The reactive peptide sequences were confirmed against the corresponding 15mer peptide 

(data not shown) to the reactive sequence and then 9mer peptides synthesized and tested. 
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Table A-1. Amino acid property scales used for analyses. Hydrophobicity scale (Kyte-
Doolittle) (5), Polarity (Grantham) (6), and Bulkiness (Zimmerman). 
 

Amino acid Hydrophobicity Bulkiness Polarity 

Alanine (A) 1.8 11.5 8 

Cysteine (C) 2.5 13.46 5.5 

Aspartic acid (D) -3.5 11.68 13 

Glutamic acid (E) -3.5 13.57 12.3 

Phenylalanine (F) 2.8 19.8 5.2 

Glycine (G) -0.4 3.4 9 

Histidine (H) -3.2 13.69 10.4 

Isoleucine (I) 4.5 21.4 5.2 

Lysine (K) -3.9 15.71 11.3 

Leucine (L) 3.8 21.4 4.9 

Methionine (M) 1.9 16.25 5.7 

Asparagine (N) -3.5 12.82 11.6 

Proline (P) -1.6 17.43 8 

Glutamine (Q) -3.5 14.45 10.5 

Arginine(R) -4.5 14.28 10.5 

Serine (S) -0.8 9.47 9.2 

Threonine (T) -0.7 15.77 8.6 

Valine (V) 4.2 21.57 5.9 

Tryptophan (W) -0.9 21.67 5.4 

Tyrosine (Y) -1.3 18.03 6.2 
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Table A-2. Hydrophobicity comparison between immunogenic and non-immunogenic MHC 
class I peptides. P-values were calculated using Wilcoxon sum-ranked test using different 
datasets as described in main text. 
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Table A-3. HLA-A2 restricted CTL epitopes for dengue virus 1 polyprotein and 
cytomegalovirus pp65 used in the rate analysis of predicted epitopes as shown in (Fig.2-
5).  All epitopes were retrieved from IEDB Vita et al, 2010. 
 
 

Antigen Epitope 
Epitope 
length 

 CMV-
pp65 

 

NLVPMVATV 9 
MLNIPSINV 9 
VLGPISGHV 9 
RLLQTGIHV 9 
LMNGQQIFL 9 
ILARNLVPM 9 
SLILVSQYT 9 
SIYVYALPL 9 
VIGDQYVKV 9 
YLESFCEDV 9 
AMAGASTSA 9 
KYQEFFWDA 9 
GLSISGNLL 9 
RQYDPVAAL 9 
VAALFFFDI 9 
ALFFFDIDL 9 

KISHIMLDVA 10 
SDNEIHNPAV 10 
FTWPPWQAGI 10 
LLCPKSIPGL 10 

 
    

       
 

 
 
 

 

Antigen Epitope 
Epitope 
length 

Dengue-
Polyprotein 

VLMLVAHYA 9 
ILLMRTTWA 9 
MLLALIAVL 9 
TLYAVATTI 9 

QEGAMHTAL 9 
LPAIVREAI 9 

SRNSTHEMY 9 
AIVREAIKR 9 
YLPAIVREA 9 
TLLCLIPTV 9 

VLNPYMPSV 9 
LMMMLPATL 9 
VTYECPLLV 9 
MMMLPATLA 9 

IILEFFLMV 9 
KTDFGFYQV 9 
VQADMGCVV 9 
GLLFMILTV 9 
QLWAALLSL 9 
LLMRTTWAL 9 

CLMMMLPATL 10 
ELMRRGDLPV 10 
MLLILCVTQV 10 
FLMVLLIPEP 10 
TLMLLALIAV 10 
LMLLALIAVL 10 
IILEFFLMVL 10 
TLTAAVLLLV 10 
VLLLVTHYAI 10 
ITLLCLIPTV 10 

KVLNPYMPSV 10 
HQLWATLLSL 10 
YTPEGIIPTL 10 
SIILEFFLMV 10 
LSMGLITIAV 10 
NQLIYVILTI 10 

LMMMLPATLA 10 
TLMAMDLGEL 10 
FTMGVLCLAI 10 
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Table A-4: Probabilities assigned by the ANN-Hydro A2-model for HLA-A2 restricted 9mer 
CTL epitopes. Three recent epitope discovery studies Assarsson et al. (2008); Weiskopf et al. 
(2011); Newell et al. (2013) that were based on a proteome-wide screen of various viral antigens 
and self-epitopes were chosen for assessment of the predictive capacity of the ‘A2-model’. 
Neoepitopes were obtained from rotavirus Newell et al. (2013) dengue virus Weiskopf et al. 
(2011) and influenza A Assarsson et al. (2008) and other positive control epitopes from several 
antigens (pathogenic and self) were obtained from Newell et al. Newell et al. (2013). Any epitope 
that was present in the training set for ANN-Hydro was removed. A cutoff probability (p-ANN-
Hydro) of 0.4 was set for a positive “hit”. 
 
 

Source Epitope Antigen p-ANN-Hydro Reference 

Neo-epitopes 

Rotavirus 

SLISGMWLL Rota-VP2_4 0.89 

Newell et al. 
TLLANVTAV Rota-VP6_4 0.87 

FLDSEPHLL 
Rota-

NSP1_2 
0.84 

LLNYILKSV Rota-VP7_1 0.37 

Influenza-A 
(FluA) 

QIAILVTTV NA 0.90 

Assarsson et al. 

GLIYNRMGA M1 0.89 

GILGFVFTL Flu_1 0.80 

FVEALARSI PB1 0.58 

VMNILLQYL GAD 0.57 

FVANFSMEL PB1 0.54 

TTYQRTRAL NP 0.47 

GLADQLIHL HIV_7 0.47 

Dengue-Virus 2 
(DENV-2) 

GLLTVCYVL NS2B 0.88 

Weiskopf et al. 

RLITVNPIV E 0.88 

IMAVGMVSI NS2B 0.85 

IILEFFLIV NS4A 0.79 

ALSELPETL NS4A 0.61 

YLPAIVREA NS3 0.50 

KLAEAIFKL NS5 0.44 

AAAWYLWEV NS3 0.27 
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Table A-4 continued. 
 

Source Epitope Antigen 
p-ANN-
Hydro 

Reference 

Positive Control epitopes 

Human 
herpesvirus 5 

(CMV) 

ALFFFDIDL CMV_5 0.84 

Newell et 
al. 

LMNGQQIFL CMV_18 0.81 

RIFAELEGV CMV_22 0.81 

QMWQARLTV CMV_21 0.78 

NLVPMVATV CMV_1 0.75 

VLEETSVML CMV-IE1 0.72 

FLMEHTMPV CMV_8 0.61 

IIYTRNHEV CMV_13 0.54 

SLLSEFCRV CMV_23 0.52 

ILSPLTKGI CMV_15 0.46 

VLAELVKQI CMV_2 0.24 

Human 
herpesvirus 4 

(EBV) 

GLCTLVAML EBV_2 0.87 

Newell et 
al. 

YVLDHLIVV EBV_1 0.84 

YLQQNWWTL EBV_5 0.79 

CLGGLLTMV EBV_4 0.79 

YLLEMLWRL EBV_3 0.28 

Influenza-A (FluA) 

FLDIWTYNA Flu_4 0.85 

NMLSTVLGV Flu_14 0.78 

LLIDGTASL Flu_12 0.68 

FMYSDFHFI Flu_5 0.63 

MMMGMFNML Flu_13 0.48 

GMFNMLSTV Flu_7 0.29 

   

Human 
Immunodeficiency 

virus (HIV-1) 

NVWATHACV HIV_1 0.94 

Newell et 
al. 
 

TLNAWVKVV HIV_2 0.86 

KLTPLCVTL HIV_4 0.84 

SLYNTVATL HIV_5 0.61 

ALVEMGHHA HIV_8 0.44 

ILKEPVHGV HIV_9 0.38 

LTFGWCFKL HIV_6 0.36 

Mycobacterium 
tuberculosis 

GLPVEYLQV TB_1 0.85 

KLIANNTRV TB 0.79 

Plasmodium 
falciparum 

YLNKIQNSL CSP 0.79 

LCMV YLVSIFLHL LCMV 0.77 

Herpes simplex 
virus (HSV-1) 

SLPITVYYA HSV1/2 0.90 

RSV KMLKEMGEV RSV 0.29 

Self Antigens 

ALWMRLLPL pp-Insulin 0.83 

YMCSFLFNL EZH2 0.51 

YMDGTMSQV Tyrosinase 0.49 
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Table A-5. Schematic of ConsB (top) and CN54 (bottom) 15mer peptide pools. Peptides 
were combined at 1mM/each peptide such that each peptide occurs in only two pools numbered 
7872 –7994 for ConsB (top) or 7080.01-7080.121 for CN54 (indicated by 1–121, bottom).  Yellow 
highlight indicates positive response to peptide pool. Green highlight indicates positive response 
to individual 15mer peptide, and red indicates negative response to individual 15mer peptide. 
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Table A-6: Ranking comparison of all the predicted epitopes (Prevalidation and in vivo 
validation) used in this study. The predictions used are as follows: ANN-Hydro - ANN-
hydrophobicity prediction model combined with normalized binding scores from prediction 
algorithms, IEDB-Bind -IEDB consensus binding tool, NetMHC-Bind - NetMHCpan binding tool, 
SYFPEITHI - SYFPEITHI epitope prediction tool, IEDB-Prot-IEDB recommended processing 
prediction, ANN-Prot - IEDB processing predictions using ANN. p-ANN-Hydro – Probability of 
immunogenicity assigned by the corresponding ANN-Hydro immunogenicity model.  
 

Antigen Epitope 
IEDB.
bind 

Syfpei
thi 

NetMHC.
bind 

IEDB.
prot 

ANN
.prot 

IEDB*Si 
p-ANN-
Hydro 

LCMV_glyco FALISFLLL 1 10 1 3 1 1 0.62 

LCMV_glyco WLVTNGSYL 3 1 2 5 4 11 0.4 

LCMV_glyco LIDYNKAAL 45 12 39 68 77 32 0.8 

LCMV_glyco KAVYNFATC 8 9 10 39 53 5 0.77 

LCMV_glyco DEVINIVII 24 4 74 133 115 10 0.66 

LCMV_NP FQPQNGQFI 1 1 1 2 1 1 0.69 

LCMV_NP SEVSNVQRI 7 2 7 37 50 12 0.14 

Ad.v.T.antige
n 

VNIRNCCYI 1 1 1 1 1 13 0.31 

Ad.v.T.antige
n 

CSDGNCHLL 21 4 9 11 44 20 0.8 

Flu_NP ASNENMETM 1 1 1 1 2 1 0.87 

Flu_NP RLIQNSLTI 3 3 2 3 3 2 0.67 

Flu_NP GERQNATEI 18 2 36 100 103 8 0.42 

Flu_NP YRRVNGKWM 19 4 35 80 65 9 0.44 

FluA-
Neuraminidas

e 
FCGVNSDTV 3 2 4 11 3 13 0.35 

FluA-
Neuraminidas

e 
ITYKNSTWV 4 8 3 4 2 1 0.52 

FluA-
Neuraminidas

e 
YRYGNGVWI 5 7 11 29 7 4 0.45 

Consensus 
Gag 

SQVTNSATI 1 1 1 1 1 7 0.2 

Consensus 
Gag 

AMQMLKETI 4 9 6 4 2 9 0.19 

Consensus 
Gag 

YSPTSILDI 6 19 4 11 3 11 0.39 

Consensus 
Gag 

RSLYNTVAT 3 32 5 45 29 1 0.82 

ZM96 Gag AMQMLKDTI 1 4 4 3 2 13 0.17 

ZM96 Gag YSPVSILDI 5 12 3 9 1 3 0.43 

ZM96 Gag RSLYNTVAT 4 28 5 46 27 2 0.77 

97CN54 Gag AMQILKDTI 1 4 4 3 2 13 0.16 

97CN54 Gag YSPTSILDI 5 19 2 9 3 15 0.36 

97CN54 Gag RSLFNTVAT 2 35 3 40 23 2 0.76 

Melan-A ALMDKSLHV 1 3 1 1 1 1 0.65 
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Melan-A GILTVILGV 2 1 2 2 2 2 0.86 

Melan-A ILTVILGVL 7 5 5 4 5 8 0.9 

Melan-A AAGIGILTV 9 4 7 19 17 9 0.86 

Wt-1 SLGEQQYSV 1 3 3 3 3 1 0.79 

Wt-1 RMFPNAPYL 2 10 2 2 2 2 0.53 

Wt-1 ALLPAVPSL 3 1 1 1 1 3 0.44 

Wt-1 DLNALLPAV 6 2 8 16 27 4 0.9 

Wt-1 VLDFAPPGA 7 31 7 15 13 8 0.87 

Wt-1 KLGAAEASA 9 16 9 21 26 5 0.94 

Wt-1 NLGATLKGV 12 4 10 12 14 12 0.76 

Wt-1 CMTWNQMNL 13 27 11 7 9 13 0.69 

Wt-1 RVPGVAPTL 25 17 21 11 11 19 0.81 

gp100 RLMKQDFSV 1 21 1 2 2 1 0.83 

gp100 MLGTHTMEV 2 15 2 3 1 2 0.65 

gp100 KTWGQYWQV 5 62 3 4 3 5 0.5 

gp100 YLEPGPVTA 16 20 19 34 25 11 0.93 

TRAG-3 GLIQLVEGV 1 1 1 1 1 1 0.43 

TRAG-3 HACWPAFTV 9 10 6 9 20 9 0.82 

TRAG-3 SILLRDAGL 6 2 8 5 7 5 0.92 

TRAG-3 ILLRDAGLV 3 3 2 4 4 3 0.7 

TRAG-3 ALSKFPRQL 4 5 4 3 2 4 0.34 

p53 RMPEAAPPV 1 1 8 2 2 1 0.51 

p53 LLGRNSFEV 2 2 4 1 4 2 0.46 

p53 VVPCEPPEV 13 14 21 14 11 9 0.77 

p53 YQGSYGFRL 5 5 65 3 3 10 0.41 

p53 KTCPVQLWV 14 15 19 34 25 11 0.77 
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Table A-7: Ranked list of top 20 predicted peptides for each of the Gag variant using the 
ANN-Hydro combined with normalized binding scores from predictions. SB) - Binding 
score, p-ANN-Hydro - probability of immunogenicity obtained by applying ANN-Hydro model to 
each peptide, (S) - Total score. This list was ranked based on total score S ranging from lowest 
score to the highest score within each section (I through IV) classified based on p-ANN-Hydro 
and SB (see section Application of ANN-Hydro). 
 

Rank Epitope
Binding  

(S B )

p-ANN- 

Hydro

Total 

score (S)

1 RSLYNTVAT 0.006 0.82 0.001

2 ATPQDLNTM 0.033 0.77 0.008

3 QVSQNYPIV 0.049 0.83 0.008

4 RFAVNPGLL 0.025 0.66 0.008

5 RMYSPTSIL 0.039 0.72 0.011

6 KARVLAEAM 0.021 0.4 0.013

7 SQVTNSATI 0 0.2 0

8 SQVSQNYPI 0.004 0.12 0.004

9 AMQMLKETI 0.008 0.19 0.006

10 GWMTNNPPI 0.008 0.14 0.007

11 YSPTSILDI 0.02 0.39 0.012

12 RSLFGNDPS 0.023 0.27 0.017

13 ASVLSGGEL 0.022 0.07 0.02

14 KALGPAATL 0.036 0.36 0.023

15 AAMQMLKET 0.039 0.33 0.026

16 VQNANPDCK 0.053 0.84 0.009

17 SALSEGATP 0.054 0.84 0.009

18 LLVQNANPD 0.051 0.76 0.012

19 ASLRSLFGN 0.096 0.79 0.02

20 SLYNTVATL 0.061 0.64 0.022

ConsB Gag predictions

                 

Binding  

(S B )

p-ANN- 

Hydro

Total 

score 

0 0.64 0

0.001 0.78 0

0.004 0.43 0.002

0.016 0.77 0.004

0.032 0.83 0.005

0.028 0.75 0.007

0.04 0.8 0.008

0.048 0.83 0.008

0.046 0.81 0.009

0.027 0.67 0.009

0.016 0.42 0.009

0.042 0.61 0.017

0 0.18 0

0 0.08 0

0.026 0.36 0.017

0.026 0.18 0.021

0.039 0.34 0.026

0.033 0.18 0.027

0.033 0.1 0.03

0.092 0.92 0.007

19 AWMTSNPPI

20 WMTSNPPIP

17 IMKQLQPAL

18 VKNWMTDTL

15 KALGPGATL

16 KIVRMYSPV

13 AMQMLKDTI

14 KSLFGSDPL

11 KARVLAEAM

12 NFLQNRPEP

9 LLVQNANPD

10 RFALNPGLL

7 RMYSPVSIL

8 VQNANPDCK

5 KVSQNYPIV

6 ATPQDLNTM

3 YSPVSILDI

4 YMIKHLVWA

1 MSQTNSVNI

2 RSLYNTVAT

ZM96 Gag predictions

Rank Epitope

 
 
 

Rank
Total 

score 

1 0.0003

2 0.0004

3 0.005

4 0.005

5 0.006

6 0.008

7 0.008

8 0.008

9 0.01

10 0.01

11 0.015

12 0.018

13 0

14 0.008

15 0.01

16 0.015

17 0.018

18 0.025

19 0.027

20 0.006

VKNWMTDTL 0.033 0.2

WMTSNPPVP 0.077 0.92

KSLFGNDPS 0.025 0.28

IMKQLQSAL 0.037 0.33

YSPTSILDI 0.015 0.36

RALGPGASI 0.02 0.24

AMQILKDTI 0 0.16

KAKVLAEAM 0.012 0.35

NFLQNRPEP 0.042 0.65

SALQTGTEE 0.042 0.57

LLVQNANPD 0.046 0.78

RMYSPTSIL 0.034 0.7

RFALNPGLL 0.027 0.7

VQNANPDCK 0.048 0.82

ATPQDLNTM 0.028 0.78

SALSEGATP 0.049 0.84

YMLKHLVWA 0.018 0.72

KVSQNYPIV 0.032 0.83

MSQTNSAIL 0.002 0.85

RSLFNTVAT 0.002 0.76

CN54 Gag predictions

Epitope
Binding  

(SB)

p-ANN- 

Hydro
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APPENDIX B  

IMMUNOGENIC AND DYSFUNCTIONAL CD8+ T-CELLS IN HPV+HEAD AND NECK CANCER 
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B.1 HPV16 candidate CTL-epitope prediction 

HPV16-candidate CTL epitopes were predicted using previously described prediction strategies 

developed by us (Chowell et al., 2015a; Krishna & Anderson, 2016a), except for the incorporation 

of immunogenicity scores. Briefly,  we predicted HLA-class I restricted 9-mer and 10-mer 

candidate epitopes derived from the HPV16 proteins E2, E6, and E7 were predicted for the HLAs 

A*01:01, A*02:01, A*03:01, A*11:01, A*24:02, B*07:02, B*08:01, B*15:01, B*27:05, B*35:01, 

B*40:01, B*40:02, B*44:02 B*51:01, and B*57:01. The protein reference sequences for each of 

HPV16 proteins were obtained from Papillomavirus Episteme (PAVE) and were then entered into 

5 different prediction algorithms; 3 MHC-binding : IEDB-consensus binding (Moutaftsi et al., 

2006a), NetMHCpan binding (Hoof et al., 2009), Syfpeithi (Rammensee et al., 1999a) and 2 

antigen-processing algorithms: IEDB-consensus processing, ANN processing (Rammensee et 

al., 1999b). The individual scores from each of the prediction algorithms were then normalized 

within the pool of predicted peptides after removal of poor-binders as described in (Chowell et al., 

2015b; Krishna & Anderson, 2016b), and the mean normalized binding scores were used to re-

rank the candidate peptides. Top 4-5 candidate peptides satisfying binding percentile scores 

>80% were chosen per antigen per HLA-allele for experimental testing. Predicted candidate 

HPV16-peptides, individual normalized and total binding percentile scores are listed in Table B1.  

B.2 Ex vivo stimulation and epitope mapping of HPV+HNSCC PBMCs 

PBMCs were obtained from stage III or stage IV HPV+HNSCC patients (MSSM cohort) as 

described previously (Parikh et al., 2014a). All human PBMCs were obtained using informed 

consent under clinical protocol HSM 10-00585. Patient characteristics are listed in (Parikh et al., 

2014b). PBMCs were stimulated as previously described (Krishna & Anderson, 2016a). Briefly, 

HPV16-peptide pools shown in Fig.4-1 (and listed in Table B1) were designed to have equal 

representation of peptides predicted for each HLA-allele to prevent intra-pool peptide competition 

for binding to the same HLA (Table B1). All peptides (> 80% purity) were synthesized by 

Proimmune, UK. The HPV-peptide pools were created by mixing 7-8 HPV16 candidate peptides 

by antigen, each at a concentration of 1 mg/mL per peptide in sterile 1X PBS. For individual 

https://paperpile.com/c/v75gFe/X9qZ+8zqK
https://paperpile.com/c/v75gFe/vrXe
https://paperpile.com/c/v75gFe/vrXe
https://paperpile.com/c/v75gFe/jtuL
https://paperpile.com/c/v75gFe/0z9u
https://paperpile.com/c/v75gFe/e6L0
https://paperpile.com/c/v75gFe/e6L0
https://paperpile.com/c/v75gFe/vNo9+niQB
https://paperpile.com/c/v75gFe/vNo9+niQB
https://paperpile.com/c/v75gFe/LaB6
https://paperpile.com/c/v75gFe/OWwB
https://paperpile.com/c/v75gFe/OWwB
https://paperpile.com/c/v75gFe/X9qZ
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peptides, each peptide was reconstituted at 1mg/mL in sterile 1X PBS. Frozen PBMCs were 

thawed rapidly and stimulated with 10μg/mL pre-mixed HIV-negative control peptide pool, 

HPV16-peptide pools or pre-mixed CEF-positive control pool (all from ProImmune, UK) in 

biological triplicates in a sterile 96-well U-bottomed plate(Costar, Washington DC, USA). 

Recombinant human IL-2 (20U/mL), human IL-7 (5ng/mL) and 1μg/mL of checkpoint blockade 

antibodies anti-PD1 (clone J105, eBosciences, USA) , anti-CTLA4 (clone 14D3, eBosciences, 

USA) were added and cells were rested for two hours at 37C prior to peptide stimulation. On day 

5, half the media was removed and replaced with fresh IL-2 and peptide pool. On day 8, half the 

media was removed and fresh media, IL-2 and peptide was added to the cells and replated into a 

96-well multiscreen elispot plate for Elispot detection. Same procedure was repeated for 

individual epitope mapping and deconvolution using selected candidate epitopes as per the 

patient’s HLA-restriction (Fig. 4-3). 

B.3 Elispot detection of IFNϒ secretion 

Elispot detection assay was performed as previously described (Krishna & Anderson, 2016c). 

Briefly, sterile multiscreen Elispot plates, (Merck Millipore, Billerica, MA, USA) precoated 

overnight with 5μg/well anti-IFNg capture antibody (clone D1K, Mabtech, USA) in sterile 1X PBS. 

Eight days after stimulation, HPV+HNSCC PBMCs were subject to media change and IL-2, 

peptide (pools or individual) were added. Cells in each well were transferred to the Elispot plate 

and incubated at 37C 5% CO2 incubator for 48 hours. Plates were washed with elispot buffer 

(PBS + 0.5% FBS) and incubated with 1μg/mL anti-IFNg secondary detection antibody (clone 7-

B6-1, Mabtech, USA) for 2 hours at room temperature, washed and reincubated with 1μg/mL 

Streptavidin ALP conjugate for 1 hour at room temperature. The wells were washed again with 

elispot buffer and spots were developed by incubating for 8-10 minutes with detection buffer 

(33μL NBT, 16.5μL BCIP, in 100mM Tris-HCl pH 9, 1mM MgCl2, 150mM NaCl). Plates were dried 

for 2 days and spots were read using the AID Elispot reader (Autoimmun Diagnostika GmbH, 

Germany). Average number of spot forming units for the triplicates were calculated for each test 

https://paperpile.com/c/v75gFe/ykle
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peptide/pool and subtracted from background (either HIV-control peptide pool or PBS-DMSO 

controls).  

B.4 RAPID-ELISA for E2, E6 and E7 seroreactivity in HPV+HNSCC patients 

RAPID-ELISA was performed as described previously (Anderson et al., 2015). Briefly, patient  

sera were diluted 1:100 and blocked with E. coli lysate. Each antigen was expressed from 

template cDNA and captured onto 96-well plates coated with anti-GST Ab (GE Healthcare, 

Piscataway, NJ) in duplicates. Horseradish peroxidase (HRP) anti-human IgG Abs (Jackson 

ImmunoResearch Laboratories, West Grove, PA) were added at 1:10,000, and detected using 

Supersignal ELISA Femto Chemiluminescent substrate (Thermo Scientific). Luminescence was 

detected as relative light units (RLU) on a Glomax 96 Microplate Luminometer (Promega, 

Madison, WI) at 425 nm. To control for nonspecific and GST-specific antibodies, the ratio of RLU 

for individual HPV-specific Abs to the RLU for the control GST-antigen was measured.  

B.5 Autologous APC generation from HPV+HNSCC patient PBMCs 

Autologous CD40L-activated B-cell APCs were generated from specific HPV+HNSCC patients by 

incubating whole PBMCs with irradiated (32 Gy) K562-cell line expressing human CD40L 

(KCD40L) at a ratio of 4:1 (800,000 PBMCs to 200,000 irradiated KCD40Ls) in each well. The 

cells were maintained in B-cell media (BCM) consisting of IMDM (Gibco, USA), 10% heat 

inactivated human serum (Gemini Bio Products, CA, USA), Antibiotic-Antimycotic (Anti-Anti, 

Gibco, USA). BCM was supplemented with 10 ng/mL recombinant human IL-4 (R&D Systems, 

MN, USA), 2μg/mL Cyclosporin A (Sigma-Aldrich, CA, USA), 1X insulin transferrin supplement 

(ITES, Lonza, MD, USA). APCs were re-stimulated with fresh irradiated KCD40Ls on days 5 and 

10, after washing with 1X PBS and expanding into a whole 24-well plate. After two weeks, APC 

purity was assessed by CD19+ CD86+ expressing cells by flow cytometry, and were generally 

used for  T-cell stimulation after >90% purity. APCs were either restimulated upto 4 weeks or 

frozen and re-expanded as necessary.  

 

https://paperpile.com/c/v75gFe/P836S
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B.6 HPV-CTL stimulation by autologous APCs 

Antigen-specific T-cells were generated by stimulating HPV+HNSCC patient B-cell APCs by 

either peptide pulsing of specific HPV16-epitopes, or by transfecting whole antigen encoded in 

mammalian expression plasmid pCDNA3.2 (Invitrogen, CA, USA). Peptide pulsing of APCs were 

done under BCM 5% human serum, with recombinant IL-4. Transfection of APCs were done 

using the Lonza 4D Nucleofector, primary P3 buffer, program EO117 (Lonza, MD, USA) and 

incubated in BCM-10% human serum, IL-4 without any Anti-Anti. Twenty four hours later, on day 

1, APCs were washed and incubated with thawed whole HPV+HNSCC PBMCs at a ratio of 1:2 

(200,000 APCs : 400,000 PBMCs) in a 24-well plate in BCM supplemented with 20U/mL 

recombinant human IL-2 (R&D Systems, MN, USA), 5ng/mL IL-7 (R&D Systems, MN, USA). On 

day 5, partial media exchange was performed by replacing half the well with fresh B-cell media 

and IL-2. On day 10, fresh APCs were either peptide pulsed or transfected as described above in 

a new 24-well plate. On day 11, expanded T-cells were restimulated with peptide-pulsed, 

transfected APCs similar to day 1. T-cells were used for cytolytic assays or immunophenotyped 

after day 20.  

 

B.7 HPV-CTL cytotoxicity assays 

HLA-A*02:01 expressing HPV+HNSCC cell line SCC-104 was used for cytotoxicity assays. SCC-

104 cells were plated at a density of 50,000 cells per well in a flat bottom 96-well sterile treated 

plate (Corning, USA). Twenty four hours later, cells were pre-labelled with 0.5μM CellTracker 

Green CMFDA (ThermoFisher Scientific, MA, USA) for one hour, washed thrice with sterile 1X 

PBS. HPV-specific CTLs generated by either peptide pulsing or transfected antigens were pooled 

by HPV-antigen, washed and resuspended in BCM supplemented with 20U/mL IL-2 along with 

1μg/mL isotype IgG antibody, anti-PD1 antibody (eBosciences, USA), DMSO, and 1μM IDO-1 

inhibitor Epacadostat (Selleck Chemicals, MA, USA) in various combinations as described. HPV-

CTLs were added at ratio of 5:1 to SCC-104 cells and incubated for 48 hours at 37C, 5% CO2. 

The cocultured cells were harvested by trypsinization, neutralized with media supernatant from 
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each well containing dead cells and centrifuged for 850g, 10 minutes. Cell pellets were washed 

twice with sterile 1X PBS, resuspended with 1mL 1X PBS, and 2uL Propidium Iodide 

(ThermoFisher Scientific, MA, USA) and cell death was assessed by flow cytometry. All samples 

were acquired with Attune flow cytometer (ThermoFisher Scientific, MA, USA) in blue-violet 

configuration and analyzed using Attune-software.  

B.8 Flow cytometry staining for T-cell and tumor immunophenotyping 

Cells were washed once in MACs buffer (containing 1X PBS, 1% BSA, 0.5mM EDTA), 

centrifuged at 550g, 5 minutes, and re-suspended in 200μL MACS buffer. Cells were stained in 

100μL of staining buffer containing anti-CD137, conjugated with phycoerythrin (PE, clone 4B4-1; 

BD Biosciences, USA), anti-CD8-PC5 (clone B9.11; Beckman Coulter 1:100), anti-CD4 (clone 

SK3; BioLegend, 1:200), anti-CD14 (clone 63D3; BioLegend, 1:200) and anti-CD19 (clone HIB19; 

BioLegend,1:200), all conjugated to Fluorescein isothiocyanate (FITC) for exclusion gates, and 

either a combination of anti-PD1-Brilliant Violet 605 (BV605, clone EH12.2H7; BioLegend, 1:50) 

and anti-CD39-BV-405 (clone A1; BioLegend, 1:200) or anti-PD1-BV-605 and anti-TIM3-BV-405 

(clone F38-2E2; BioLegend, 1:50) for 30 minutes on ice. PD-L1 staining on HPV+HNSCC and 

cervical cancer cell lines were done using 5μL PD-L1 antibody (clone MIH1, ThermoFisher 

Scientific, MA, USA) in 100μL MACS buffer. Samples were covered and incubated for 30 min on 

ice then washed twice in 1x PBS, and resuspended in 1mL 1x PBS prior to analysis.  

B.9 Tetramer staining for T-cell immunophenotyping 

The following HLA-A*02:01 HPV16 tetramers were obtained from NIH Tetramer Core Facility at 

Emory University: TLQDVSLEV E2(93-101), YICEEASVTV E2(138-147), ALQAIELQL E2(69-77), 

KLPQLCTEL E6(18-26), TIHDIILECV E6(29-38), FAFRDLCIV E6(52-60), YMLDLQPET E7(11-

19), and YMLDLQPETT E7(11-20). Cells were washed (550g, 5 min) twice in MACS buffer with 

5% human serum. After washing, cells were re-suspended in 100μL staining buffer (MACS buffer, 

with 5% human serum and 1mM Dasatanib (ThermoFisher Scientific, MA, USA). Each of the 

eight HLA-A*02:01 HPV16 tetramers (NIH Tetramer Core, Emory University, Atlanta, USA), all 
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conjugated with phycoerythrin (PE) was added to each respective sample at concentration of 

1:100. Samples were incubated at room temperature for 30 minutes under dark. After incubation, 

cells were washed 2x in MACS buffer. Cells were stained in 100μL MACS buffer with anti-CD8-

PC5, anti-CD4-FITC, anti-CD14-FITC and anti-CD19-FITC for exclusion gates, and either a 

combination of anti-PD1-BV605 and anti-CD39-BV-405 or anti-PD1-BV-605 and anti-TIM3-BV-

405 for 30 minutes on ice. Samples were then washed twice in 1x PBS, and analyzed by flow 

cytometry. For flow cytometric analysis, all samples were acquired with Attune flow cytometer 

(ThermoFisher Scientific, MA, USA) and analyzed using Attune-software. Gates for expression of 

different markers and tetramers were determined based on flow minus one (FMO) samples for 

each color after doublet discrimination. Only samples with >50 CD8+Tetramer+ or CD8+CD137+ 

events were considered. Percentages from each of the gated population were used for the 

analysis. 

B.10 Cell lines and immunoblotting experiments 

Cervical cancer cell lines SiHa and Caski were obtained from ATCC (Manassas, VA, USA). 

HPV+HNSCC cell lines were obtained from the following sources: UPCI:SCC90 (SCC90) was 

obtained from ATCC (Manassas, USA), UM-SCC-47 (SCC47) and UM-SCC-104 (SCC104) from 

Merck Millipore (Billerica, MA, USA). 93-VU-147T (147T) cell line was a kind gift from Dr. 

Josephine Dorsman,VU Medical Center, Netherlands. All cell lines contained integrated HPV-16 

DNA, and were maintained in the following media: Caski was maintained in RPMI-1640 (ATCC) 

with 10% heat inactivated fetal bovine serum (FBS), SiHa in Eagle's Minimum Essential Medium 

(EMEM, ATCC, USA) with 10% FBS, SCC90 and, SCC47 in Dulbecco's Modified Eagle's 

Medium (DMEM, ATCC,USA) with 10% FBS, SCC104  cells were maintained in Iscove's 

Modified Dulbecco's Medium (IMDM, Gibco, NY, USA) with 10% human serum. Cells were 

harvested by trypsinization (0.25% Trypsin, GE Healthcare, IL, USA), and resuspended in 1mL 

RIPA buffer (Invitrogen, CA, USA) containing a cocktail of protease inhibitors (Roche Diagnostics, 

IN, USA). Equal amounts of cell lysates were loaded on a 4-20 % SDS–polyacrylamide gel 

(Invitrogen, CA, USA) and transferred to a Polyvinylidene fluoride membrane (GE Healthcare, IL, 
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USA). The membrane was blocked with 5% nonfat dry milk in PBS-1% Tween (PBST) for 1 hour 

at room temperature. Primary antibodies and concentrations were as follows: GAPDH (Cell 

Signalling Technologies, MA, USA, clone 14C10, 1:2000), IDO-1 antibody (ThermoFisher 

Scientific, clone PA5-29819, 1:1000), anti-HPV16-E7 antibody (Fitzgerald industries, MA, USA, 

clone 10-7987, 1:1000). Visualization was done with Dura Western Blotting Kit (Thermo Scientific, 

USA) according to the manufacturer’s instructions 

B.11 RNASeq data alignment 

RNA-Seq reads for each sample were quality checked using FastQC (version 0.10.1, Babraham 

bioinformatics, Babraham Institute, Cambridge, UK) and aligned to the human genome build 38 

(GRCh38, GCF_000001405.33_GRCh38.p7_genomic.fna) primary assembly and HPV16 

genome (GCF_000863945.1_ViralProj15505_genomic.fna) simultaneously using STAR (version 

2.5.2B). After alignment, variants were discovered following GATK Best Practices workflow for 

RNAseq (https://gatkforums.broadinstitute.org/gatk/discussion/3892/the-gatk- best-practices- for- 

variant-calling- on-rnaseq- in-full- detail). Raw RNAseq reads were pre-processed by adding read 

groups, indexing, marking duplicates and sorting, Split’N’Trim, reassigning mapping quality and 

base recalibration. 

B.12 HLA typing 

For MSSM-cohort, HLA-typing was performed by Proimmune HLA-tissue typing services, UK. For 

HLA-calling from RNAseq data (TCGA and UM cohorts), PHLAT (Bai et al., 2014) was used to 

infer the HLA typing of the three major MHC class I (HLA-A, -B, -C) alleles (Bai, Ni, Cooper, Wei, 

& Fury, 2014a). The method employs a read mapping based selection of candidate allele 

followed by a likelihood based scoring over all pairwise combinations of selected alleles and 

infers the first four digits with a high accuracy (Bai, Ni, Cooper, Wei, & Fury, 2014b). For HLA-

odds ratio calculations, HLA-allele typing from all 3 cohorts (MSSM, TCGA and UM) were 

combined resulting in 64 HPV-HNSCC (TCGA) and 77 HPV+HNSCCs. 

 

https://paperpile.com/c/v75gFe/l6ja
https://paperpile.com/c/v75gFe/l6ja
https://paperpile.com/c/v75gFe/EmjZ
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B.13 HPV16 epitope-prediction from RNAseq data 

HLA types obtained from PHLAT were used to predict the epitopes binding to patient-specific 

HLA alleles. Binding affinities were predicted using IEDB recommended algorithm from the 

Immune Epitope Database (IEDB) tool (Moutaftsi et al., 2006b; Vita et al., 2014). Reference fasta 

files for HPV protein sequences were used to predict peptide lengths of 8, 9, 10, 11 for each 

patient’s allele and peptide combination. If the matching HLA allele of the patient did not exist in 

the current IEDB list, the closest allele was identified by keeping the first two digits the same and 

searching for the nearest available match for the third and fourth digit. To retain only high affinity 

binding epitopes with the patient-specific HLA alleles, epitopes with a binding affinity greater than 

500 nM were not considered in downstream analyses.  

B.14 RNASeq datasets and gene signature sources 

Transcriptome data for HNSCC patient samples (n = 119) were obtained from TCGA (TCGA-

cohort), and University of Michigan study (UM-cohort) (Cancer Genome Atlas Network, 2015; 

Zhang et al., 2016). In total, there were 34 and 18 HPV+HNSCC samples from TCGA-cohort and 

UM-cohort respectively. HPV-HNSCC dataset comprised of 18 tumors from UM-cohort and 49 

tumors from TCGA dataset that were both HPV-negative by p16 status and HPV-FISH. For 

ssGSEA analysis, immune signatures, comprising of 509 genes were obtained from previous 

studies(Mandal et al., 2016a; Şenbabaoğlu et al., 2016a). Additional gene signatures were 

obtained as follows : Custom HPV gene sets were grouped into HPV (All 8 HPV genes), HPV. 

Onco (E6, E7) and HPV.Early (E2, E4, E5). TIGIT gene signature (50 genes) was obtained from 

Johnston et al (Rooney, Shukla, Wu, Getz, & Hacohen, 2015a), TIL.Treg (309 genes) and 

Exhaust gene sets (49 genes) were obtained from De Simone et al (De Simone et al., 2016), and 

CYT (GZMA, PRF) from Rooney et al (Rooney, Shukla, Wu, Getz, & Hacohen, 2015b).  

B.15 ssGSEA analysis of HPV and immune gene signatures 

All RNAseq analysis from HNSCC transcriptomes was performed on log transformed transcripts 

per million Log2(TPM+1) from each sample, after exclusion of low expression genes (< 1 average 

https://paperpile.com/c/v75gFe/Kp80+2NzG
https://paperpile.com/c/v75gFe/BAIT+i4tn
https://paperpile.com/c/v75gFe/BAIT+i4tn
https://paperpile.com/c/v75gFe/MJgF+SaQj
https://paperpile.com/c/v75gFe/o7sl
https://paperpile.com/c/v75gFe/eSY3
https://paperpile.com/c/v75gFe/v354
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Log2(TPM+1) across cohort). As opposed to GSEA, ssGSEA computes a gene set enrichment 

score for the relevant gene signatures on a per sample basis, without the need for a phenotypic 

pre-classification of the dataset. Thus, each patient’s tumor can be analyzed by pre-defined 

immune signatures, and have been extensively validated in Şenbabaoğlu et al (Şenbabaoğlu et 

al., 2016b)(Şenbabaoğlu et al., 2016c)(Şenbabaoğlu et al., 2016b), Mandal et al (Mandal et al., 

2016b). ssGSEA scores were computed for each tumor sample using the R package GSVA,  and 

Z-transformed across the cohort prior to analysis. To assess impact of HPV-gene expression on 

immune signatures, a correlation matrix was built using the R-library Corrplot with the Z-

transformed ssGSEA scores and was displayed by hierarchical clustering of correlations. 

Correlation values are displayed in Table S4. Individual gene expression analysis was performed 

by unsupervised hierarchical clustering methods and was used for heatmap analysis. 

B.16 Statistical Analysis 

Categorical variables, such as Elispot data, and Flow cytometric data were summarized as SFUs, 

and percentages. Continuous variables (RNAseq data) were presented with mean with standard 

error of mean (SEM). Unpaired T-test with Welch’s correction was used for all categorical variable 

analyses, and for continuous variable analyses non-parametric  Mann-Whitney’s test was used. 

For heatmaps of T-cell frequencies and ssGSEA RNASeq analyses, Z-transformation to 

normalize the data across the cohorts.  R statistical software V3.4.0 and Prism software 

(GraphPad Software) were used for data managements and statistical analyses. Significance 

levels were set at 0.1 (*), 0.01 (**) or 0.001 (***) for all tests as indicated. 

 

 

https://paperpile.com/c/v75gFe/b4ei7
https://paperpile.com/c/v75gFe/b4ei7
https://paperpile.com/c/v75gFe/0F7Q
https://paperpile.com/c/v75gFe/0F7Q
https://paperpile.com/c/v75gFe/qebN
https://paperpile.com/c/v75gFe/qebN
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Figure. B1. HLA-B*40:01 has low HPV16-predicted binding peptides. Distribution of HPV16-

predicted binding 9-11mer peptides from all 8 HPV16-antigens (IED-consensus IC50 < 500nM) 

for HLA-A, B alleles in TCGA+UM cohort (n=694 peptides), ranked by number of predicted 

peptides/ allele. HLA-B*40:01 is shown in red. Pareto line representing cumulative distribution of 

peptide frequencies is shown as dashed line.  
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Figure. B2. PD-1/CTLA-4 blocking antibodies can enhance in vitro expansion of peripheral 

CTLs. Assessment of ex vivo PBMC stimulation protocol after 10 days with αPD1+αCTLA-4 

blocking antibodies on day 1, compared to purified isotype IgG day 1 in healthy donor. 
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Figure. B3. (A) HPV16-E2, E6 and E7 genes do not alter IDO-1 levels in HEK-293 cells. HEK-

293-LX cells were transfected using Lipofectamine 2000 with the indicated antigens and 48 hours 

later IDO-1 expression levels were measured by immunoblots. (B) Cell surface PD-L1 protein 

expression analyzed by flow cytometry in the 6 HPV16+ cell lines. Normalized mean 

fluorescence intensity of 10,000 events each indicated by different color. The erythroleukemic cell 

line K562 represents the negative control. Red asterisk indicates SCC-104 cell line used in 

cytolysis experiments.  
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Table B-1. Summary of all predicted candidate HPV16-E2, E6 and E7 epitopes used for 
experiments. Peptide pool information from each antigen, relevant information for the epitope’s 
information from HPV T-cell antigen database (http://cvc.dfci.harvard.edu/hpv/). Highlighted 
epitopes represent immunogenic CTL-reactive epitopes identified in this study. 
 
 

Position HLA Sequence Length
IEDB.

bind

NetMHC.

bind

Syfpeithi.

bind

IEDB.

Prot

ANN.P

rot

Bind 

percentile

Total 

percentile

E2(329-338) HLA-B*15:01 KSAIVTLTY 9 0.8 78.78 15 0.96 0.81 82.62 82.54

E2(329-338) HLA-B*57:01 KSAIVTLTY 9 0.55 116.59 14 1.15 0.64 81.78 81.96

E2(329-338) HLA-A*01:01 KSAIVTLTY 9 0.55 128.89 22 0.28 0.6 88.97 89.92

E2(329-338) HLA-A*11:01 KSAIVTLTY 9 1.35 151.72 15 0.61 0.53 82.39 84.93

E2(329-338) HLA-A*03:01 KSAIVTLTY 9 1.15 245.15 19 0.15 0.32 85.99 89.78

E2(329-338) HLA-B*35:01 KSAIVTLTY 9 3.1 266.25 11 -0.09 0.28 78.12 85.46

E2(93-101) HLA-A*02:01 TLQDVSLEV 9 0.5 9.82 24 0.2 0.29 90.88 92.64

E2(138-147) HLA-A*02:01 YICEEASVTV 10 0.8 125.98 26 -0.73 -0.69 92.5 89.87

E2(37-45) HLA-A*11:01 RLECAIYYK 9 0.65 50.91 17 -0.34 -0.56 84.49 87.15

E2(37-45) HLA-A*03:01 RLECAIYYK 9 0.4 152.21 24 -0.73 -1.04 90.81 87.45

E2(284-292) HLA-A*11:01 NTTPIVHLK 9 0.6 34.72 24 -0.12 -0.28 90.82 92.97

E2(101-110) HLA-A*24:02 VYLTAPTGCI 10 1.05 162.38 24 -1.06 -0.87 90.59 86.68

E2(207-215) HLA-B*07:02 SPEIIRQHL 9 0.7 73.94 21 0.13 0.12 88.06 91.91

E2(303-311) HLA-B*08:01 YRFKKHCTL 9 0.3 11.1 20 0.51 1.28 87.34 85.27

E2(303-311) HLA-B*27:05 YRFKKHCTL 9 0.3 119.83 27 0.89 0.25 93.57 91.65

E2(303-311) HLA-B*40:02 YRFKKHCTL 9 2.8 695.16 14 -1.2 -0.51 80.63 81.6

E2(147-155) HLA-A*01:01 VVEGQVDYY 9 34.5 228.27 26 0.39 0.25 81.18 86.22

E2(69-77) HLA-A*02:01 ALQAIELQL 9 3.6 213.45 23 0.17 -0.27 88.8 91.59

E2(310-318) HLA-A*02:01 TLYTAVSST 9 3.6 656.75 21 -2.19 -2.17 86.69 74.57

E2(267-276) HLA-A*03:01 ILTAFNSSHK 10 0.35 25.3 27 -0.71 -0.55 93.62 91.19

E2(267-276) HLA-A*11:01 ILTAFNSSHK 10 0.95 75.17 17 -1.11 -1.02 84.37 82.15

E2(103-112) HLA-A*11:01 LTAPTGCIKK 10 0.45 64.89 26 -0.59 -0.63 92.66 90.77

E2(103-112) HLA-A*03:01 LTAPTGCIKK 10 1.1 234.38 14 -1.3 -1.18 81.51 79.02

E2(218-227) HLA-B*07:02 HPAATHTKAV 10 0.35 16.59 20 0.01 0.18 87.32 91.71

E2(62-70) HLA-B*08:01 LAVSKNKAL 9 1.3 232.92 27 -0.84 -0.38 93.16 91.08

E2(62-70) HLA-B*35:01 LAVSKNKAL 9 4.3 666.47 13 -1.47 -0.84 79.24 78.36

E2(263-271) HLA-B*35:01 DSAPILTAF 9 2.6 166.28 12 0.55 0.09 79.26 85.07

E2(94-102) HLA-B*15:01 LQDVSLEVY 9 0.8 243.23 21 -0.3 0.3 87.91 90.42

E2(94-102) HLA-A*01:01 LQDVSLEVY 9 41 259.3 27 -0.2 0.27 79.89 86.12

E2(102-110) HLA-A*02:01 YLTAPTGCI 9 4.4 470.3 22 -1.22 -1.41 87.45 81.98

E2(191-199) HLA-A*02:01 QVILCPTSV 9 4.6 672.2 18 -1.86 -1.64 83.64 76.2

E2(297-306) HLA-A*02:01 TLKCLRYRFK 10 53.5 24400.31 9 -3.11 -3.07 42.84 40.94

E2(297-306) HLA-A*03:01 TLKCLRYRFK 10 0.45 85.36 21 -0.67 -0.62 88.14 87.78

E2(297-306) HLA-A*11:01 TLKCLRYRFK 10 1.05 86.84 16 -0.89 -0.63 83.43 84.04

E2(302-312) HLA-A*24:02 RYRFKKHCTL 10 0.55 120.86 20 0.11 0.32 87.18 90.66

E2(302-312) HLA-B*27:05 RYRFKKHCTL 10 10.6 122.95 15 0.73 0.32 79.32 83.46

E2(249-257) HLA-B*07:02 NPCHTTKLL 9 1.1 1802.85 21 -1.43 -1.55 86.74 80.14

E2(163-171) HLA-B*15:01 GIRTYFVQF 9 0.3 110.82 16 0.27 0.67 83.67 86.49

E2(163-171) HLA-B*08:01 GIRTYFVQF 9 1.8 365.55 18 -0.35 0.15 84.79 88.95

E2(158-167) HLA-B*15:01 YYVHEGIRTY 10 8.75 59.78 14 1.11 1.05 79.08 78.85

E2(158-167) HLA-B*35:01 YYVHEGIRTY 10 0.8 485.11 13 0.3 0.14 80.54 86.64

Prediction scores, percentiles

 

 
 
 
 

http://cvc.dfci.harvard.edu/hpv/
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Table B-1 continued 
 
 

Position HLA Sequence Length
IEDB.

Bind

NetMHC.

Bind

Syfpeithi.

Bind

IEDB 

Prot

ANN.

Prot

Bind 

Percentile

Total 

Percentile

E6(82-90) HLA-A*24:02 EYRHYCYSL 9 1.3 573.3 19 -0.68 -0.86 89.14 87.52

E6(82-90) HLA-B*08:01 EYRHYCYSL 9 1.3 588.7 18 -0.69 -0.4 88.12 88.7

E6(33-41) HLA-A*03:01 IILECVYCK 9 0.7 265.9 23 -1.28 -1.21 93.59 86.41

E6(33-41) HLA-A*11:01 IILECVYCK 9 0.55 35.9 18 -0.41 -0.49 88.74 89.83

E6(80-88) HLA-A*01:01 ISEYRHYCY 9 0.25 107.9 27 0.82 1.33 97.89 90.34

E6(59-67) HLA-B*15:01 IVYRDGNPY 9 0.7 46.1 18 0.88 0.76 88.69 86.85

E6(59-67) HLA-B*35:01 IVYRDGNPY 9 0.9 36.9 12 0.98 1.07 82.57 81.55

E6(59-67) HLA-B*57:01 IVYRDGNPY 9 2.75 6475.6 4 -1.27 -0.97 69.53 72.97

E6(18-26) HLA-A*02:01 KLPQLCTEL 9 1.8 227 24 -0.43 -0.1 94.26 94.61

E6(15-24) HLA-B*07:02 RPRKLPQLCT 10 1.5 496.2 22 -2.03 -1.56 92.16 81.18

E6(93-101) HLA-A*11:01 TTLEQQYNK 9 0.3 27.5 21 -0.44 -0.38 91.86 92.02

E6(68-77) HLA-A*11:01 AVCDKCLKFY 10 2.5 533.8 15 0.03 0.42 84.73 89.21

E6(87-95) HLA-A*24:02 CYSLYGTTL 9 0.75 189.4 20 -0.21 0.03 90.59 93.56

E6(44-52) HLA-B*15:01 LLRREVYDF 9 1.2 87.9 20 0.4 -0.11 90.51 92.44

E6(44-52) HLA-B*08:01 LLRREVYDF 9 1.5 427 19 -0.29 -0.36 89.17 91.08

E6(65-74) HLA-B*07:02 NPYAVCDKCL 10 4.1 2833.6 21 -1.43 -1.53 88.7 81.61

E6(29-38) HLA-A*02:01 TIHDIILECV 10 2.65 320.2 23 -1.2 -1.13 92.9 86.64

E6(69-77) HLA-A*01:01 VCDKCLKFY 9 0.95 4559.1 26 -0.98 -1.13 93.64 87.96

E6(67-76) HLA-B*35:01 YAVCDKCLKF 10 0.5 578.6 9 -0.3 -0.44 79.3 84.8

E6(67-76) HLA-B*15:01 YAVCDKCLKF 10 14.3 341.8 9 -0.07 -0.66 74.86 82.17

E6(119-126) HLA-B*07:02 CPEEKQRHL 9 2.5 893.3 20 -1.47 -1.91 89.54 80.44

E6(37-47) HLA-A*11:01 CVYCKQQLLR 10 1.9 348.8 24 -0.85 -1.01 94.14 89.25

E6(37-47) HLA-A*03:01 CVYCKQQLLR 10 1.15 377.7 21 -0.88 -0.36 91.34 90.04

E6(127-135) HLA-B*08:01 DKKQRFHNI 9 0.2 210.8 24 -1.04 -0.8 94.8 89.73

E6(52-60) HLA-A*02:01 FAFRDLCIV 9 2.3 115 20 -0.91 -1.04 90.13 86.48

E6(106-116) HLA-A*03:01 LLIRCINCQK 10 0.9 79.4 29 -0.85 -1.19 99.71 91.88

E6(106-116) HLA-A*11:01 LLIRCINCQK 10 1.5 196.5 17 -1.25 -1.5 87.31 81.61

E6(82-90) HLA-B*35:01 YGTTLEQQY 9 3 395.1 11 -0.11 0.08 80.61 87.77

Prediction scores, percentiles

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



  168 

Table B-1 continued 
 
 

Position HLA Sequence Length
IEDB.

Bind

NetMHC.B

ind

Syfpeithi.

Bind

IEDB. 

Prot

ANN. 

Prot

Bind 

Percentile

Total 

Percentile

E7(15-23) HLA-B*15:01 LQPETTDLY 9 0.8 233.2 22 0.03 0.34 91.09 93.7

E7(15-23) HLA-A*01:01 LQPETTDLY 9 1.85 7312.4 17 -1.46 -1.5 81.2 77.08

E7(2-11) HLA-A*01:01 HGDTPTLHEY 10 0.45 413.9 28 -0.11 -0.55 96.8 95.92

E7(2-11) HLA-B*35:01 HGDTPTLHEY 10 2.05 3444.2 13 -1.03 -1.02 79.93 80.08

E7(2-11) HLA-B*57:01 HGDTPTLHEY 10 31.35 11936 10 -1.57 -1.37 61.57 65.39

E7(82-90) HLA-A*02:01 LLMGTLGIV 9 0.5 16 29 -0.12 -0.31 98 97.6

E7(82-90) HLA-B*15:01 LLMGTLGIV 9 8 860.8 10 -1.85 -2.29 76.83 69.57

E7(51-60) HLA-A*03:01 HYNIVTFCCK 10 2.2 4049.9 11 -2.21 -2.13 77.57 69.21

E7(51-60) HLA-A*11:01 HYNIVTFCCK 10 3.3 1212.9 11 -1.69 -1.62 79.12 74.39

E7(88-97) HLA-A*11:01 GIVCPICSQK 10 1.35 109 19 -1.04 -1.28 88.13 83.87

E7(88-97) HLA-A*03:01 GIVCPICSQK 10 1 156.6 24 -1.2 -1.54 92.98 85.04

E7(5-13) HLA-B*07:02 TPTLHEYML 9 1.7 505.2 20 -0.97 -0.98 88.7 85.75

E7(5-13) HLA-B*08:01 TPTLHEYML 9 4.4 1881.9 17 -1.54 -1.58 84.01 78.11

E7(5-13) HLA-B*35:01 TPTLHEYML 9 4.1 1139.5 20 -1.32 -0.58 87.47 85.25

E7(16-25) HLA-B*44:02 QPETTDLYCY 10 4.05 647.1 12 -0.19 -0.11 80.2 87.47

E7(16-25) HLA-B*35:01 QPETTDLYCY 10 0.6 653 22 -0.2 0.18 90.87 93.54

E7(7-15) HLA-A*02:01 TLHEYMLDL 9 2.1 64.9 24 -0.28 -0.16 92.67 94.37

E7(7-15) HLA-B*07:02 TLHEYMLDL 9 17 21631.5 12 -2.8 -2.6 61.73 55.34

E7(7-15) HLA-B*08:01 TLHEYMLDL 9 6.3 3016.1 18 -1.95 -1.44 83.56 76.75

E7(7-15) HLA-B*35:01 TLHEYMLDL 9 36 18002.2 11 -2.72 -2.79 56.88 51.96

E7(49-57) HLA-B*07:02 RAHYNIVTF 9 3.8 1801.2 9 -0.6 -0.75 76.65 80.99

E7(49-57) HLA-B*08:01 RAHYNIVTF 9 9 4103.7 13 -0.95 -1.12 77.17 78.33

E7(49-57) HLA-B*15:01 RAHYNIVTF 9 0.5 64.7 11 0.85 0.75 80.82 82.48

E7(49-57) HLA-B*57:01 RAHYNIVTF 9 0.6 233.8 14 0.29 0.25 83.53 88.48

E7(49-57) HLA-B*35:01 RAHYNIVTF 9 0.8 283.5 11 0.21 0.35 80.58 86.61

E7(85-93) HLA-A*02:01 GTLGIVCPI 9 4.4 107.2 21 -1.1 -1.37 89.02 83.79

E7(89-97) HLA-A*11:01 IVCPICSQK 9 0.45 66.9 21 -0.8 -0.67 90.36 88.74

E7(89-97) HLA-A*03:01 IVCPICSQK 9 0.55 182 31 -1.24 -1.42 99.78 89.46

E7(56-65) HLA-A*24:02 TFCCKCDSTL 10 4.4 5243 17 -1.68 -1.92 81.75 74.76

E7(44-53) HLA-B*35:01 QAEPDRAHY 9 4.9 462.8 12 0.13 -0.33 80.04 86.7

E7(11-19) HLA-A*02:01 YMLDLQPET 9 0.4 30.4 21 -0.59 -0.43 90.4 90.62

E7(11-20) HLA-A*02:01 YMLDLQPETT 10 1.45 236.8 19 -1.62 -1.49 88.01 80.55

Prediction scores, percentiles
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Table B-1 continued (Cross reactive epitopes) 
 

Patient HLA Epitope Sequence IC50  (ANN) Predicted HLA

A*68:01 E2(267-276) ILTAFNSSHK 66.98 A*03:01/A*11:01

A*68:01 E2(284-292) NTTPIVHLK 4.94 A*11:01

A*68:01 E2(297-306) TLKCLRYRFK 182.15 A*03:01/A*11:01

A*68:01 E2(37-45) RLECAIYYK 711.12 A*03:01/A*11:01

A*68:01 E6(106-115) LLIRCINCQK 183.06 A*03:01/A*11:01

A*68:01 E6(33-41) IILECVYCK 803.58 A*03:01/A*11:01

A*68:01 E6(37-46) CVYCKQQLLR 72.47 A*03:01/A*11:01

A*68:01 E6(93-101) TTLEQQYNK 58.08 A*11:01

A*68:01 E7(51-60) HYNIVTFCCK 505.69 A*03:01/A*11:01

A*68:01 E7(88-97) GIVCPICSQK 469.86 A*03:01/A*11:01

A*68:01 E7(89-97) IVCPICSQK 72.24 A*03:01/A*11:01

B*14:02 E2(147-155) VVEGQVDYY 492.79 A*01:01

A*32:01 E2(329-337) KSAIVTLTY 50.93 A*01:01/A*03:01/A*11:01/B*15:01/B*35:01/B*57:01

A*11:01 E6(68-77) AVCDKCLKFY 219.88 A*11:01

A*68:01 E2(103-112) LTAPTGCIKK 85.73 A*03:01/A*11:01

A*68:01 E2(284-292) NTTPIVHLK 4.94 A*11:01

A*68:01 E2(297-306) TLKCLRYRFK 182.15 A*03:01/A*11:01

A*68:01 E6(106-115) LLIRCINCQK 183.06 A*03:01/A*11:01

A*68:01 E6(37-46) CVYCKQQLLR 72.47 A*03:01/A*11:01

A*68:01 E6(93-101) TTLEQQYNK 58.08 A*11:01

A*32:01 E7(85-93) GTLGIVCPI 12.13 A*02:01

7027 A*03:01 E6(93-101) TTLEQQYNK 492.96 A*11:01

7030 A*03:01 E6(93-101) TTLEQQYNK 492.96 A*11:01

7007

7015

7019
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Table B-2. Gene signatures for ssGSEA used in this study.  HPV-Gene sets and immune 
signatures derived from for immunogenomic analyses 
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Table B-3. Clustered correlation matrix values for each gene-set correlations 
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Figure 1-2 Copyright permission 

Sri Krishna <Srikrishna@asu.edu>                                             Thu, Sep 28, 2017 at 11:36 AM  
 

  

Dear Sri Krishna 

We hereby grant you permission to reproduce the material detailed below at no charge in your 

thesis, in print and on ASU Electronic Theses and Dissertations and subject to the following 

conditions: 

1. If any part of the material to be used (for example, figures) has appeared in our 

publication with credit or acknowledgement to another source, permission must also be 

sought from that source.  If such permission is not obtained then that material may not be 

included in your publication/copies.  

2. Suitable acknowledgment to the source must be made, either as a footnote or in a 

reference list at the end of your publication, as follows: 

“This article was published in Publication title, Vol number, Author(s), Title of 

article, Page Nos, Copyright Elsevier (or appropriate Society name) (Year).” 

3. Your thesis may be submitted to your institution in either print 

or electronic form. 

4. Reproduction of this material is confined to the purpose for which 

permission is hereby given.  

5. This permission is granted for non-exclusive world English rights only. For other 

languages please reapply separately for each one required. Permission excludes use in an 

electronic form other than as specified above.  Should you have a specific electronic project in 

mind please reapply for permission. 

6. This includes permission for UMI to supply single copies, on demand, of the 

complete thesis.  Should your thesis be published commercially, please reapply for permission 

 

Yours sincerely 

 

Jennifer Jones, 

Permissions Specialist 

Elsevier Limited, a company registered in England and Wales with company number 1982084, whose 
registered office is The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom. 


