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ABSTRACT

Affect is a domain of psychology that includes attitudes, emotions, interests, and values.

My own affect influenced the choice of topics for my dissertation. After examining asteroid

interiors and the Moon’s thermal evolution, I discuss the role of affect in online science

education. I begin with asteroids, which are collections of smaller objects held together by

gravity and possibly cohesion. These “rubble-pile” objects may experience the Brazil Nut

Effect (BNE). When a collection of particles of similar densities, but of different sizes, is

shaken, smaller particles will move parallel to the local gravity vector while larger objects

will do the opposite. Thus, when asteroids are shaken by impacts, they may experience the

BNE as possibly evidenced by large boulders seen on their surfaces. I found while the BNE

is plausible on asteroids, it is confined to only the outer layers. The Moon, which formed

with a Lunar Magma Ocean (LMO), is the next topic of this work. The LMO is due to the

Moon forming rapidly after a giant impact between the proto-Earth and another planetary

body. The first 80% of the LMO solidified rapidly at which point a floatation crust formed

and slowed solidification of the remaining LMO. Impact bombardment during this cooling

process, while an important component, has not been studied in detail. Impacts considered

here are from debris generated during the formation of the Moon. I developed a thermal

model that incorporates impacts and find that impacts may have either expedited or delayed

LMO solidification. Finally, I return to affect to consider the differences in attitudes towards

science between students enrolled in fully-online degree programs and those enrolled in

traditional, in-person degree programs. I analyzed pre- and post-course survey data from the

online astrobiology course Habitable Worlds. Unlike their traditional program counterparts,

students enrolled in online programs started the course with better attitudes towards science

and also further changed towards more positive attitudes during the course. Along with

important conclusions in three research fields, this work aims to demonstrate the importance

of affect in both scientific research and science education.
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To all wanderers who are striving to find their way home
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Chapter 1

INTRODUCTION

We shall not cease from

exploration...

T. S. Eliot

Why do we explore? When the word “we” is used to mean human beings in general, one

could argue that “we” are naturally inquisitive and collectively seek out the unknown as

suggested by T.S. Elliot. But why do “we” as individuals explore? What is our motivation?

What gets us started? Of course the answers to those questions will vary from person

to person. Yet, I assert that those answers will often be grounded in affect (a domain of

psychology that includes attitudes, emotions, interests, and values). Here, while introducing

my research topics I will also describe how affect largely influenced my decision to pursue

those lines of research.

Chapter 2 examines how the interiors of asteroids, the leftover small bodies from the

early planet formation process, may evolve over time. Most asteroids are likely “rubble-piles”

(i.e. a collection of objects held together by gravity and possibly cohesion). Due to their

considerable age and orbital evolution, asteroids would have experienced many impacts that

broken them apart. When that occurred, mutual gravity between constituent particles would

have re-accumulated the particles that did not escape. Thus, their rubble-pile nature is

the result of the repeated break up and re-accumulation process. The degree to which a

particular asteroid is a rubble-pile may vary depending on its bombardment history, with

some consisting of a monolith along with rubble, while others may be completely rubble.

Interestingly, the rubble-pile nature of asteroids would mean that they should behave like

granular materials. Granular material, such as sand, have many interesting properties. For

instance, we know that sand can behave like a solid when we lay down on the beach but it

can also flow like a liquid when poured out of a bucket.
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One effect of granular material that is particularly pertinent to asteroids is the Brazil Nut

Effect (BNE). The BNE is when a collection of contained particles, of nearly the same density

but of different sizes, sort themselves by size due to repeated shaking or a series of jolts. The

effect is named after Brazil nuts, which, generally being larger than other nuts, are often

found at the top of a can of mixed nuts. The effect is that smaller objects migrate parallel

to the local gravity vector, while larger objects migrate in the opposite direction. Though a

consensus has not been reached, there are two proposed mechanisms that explain why the

BNE occurs. One is that repeatedly shaking a collection of objects creates voids that are

more easily filled by the smaller particles. Thus, over time this allows the smaller particles to

migrate parallel to the local gravity vector. The other mechanism explains that repeatedly

shaking a collection of particles will set up granular convection cells that trap larger particles

away from the local gravity vector. It is possible that one mechanism is more prominent

in certain situations or that both occur simultaneously. Regardless of the mechanism, it is

plausible that the BNE may occur on asteroids. This is further supported by large boulders

seen on the surfaces of asteroids. Nevertheless, past experiments and computer simulations

have mainly focused on studying the BNE in vertical containers. Those conditions are rather

different from that of asteroids particularly since particles on asteroids are not interacting

with a wall but rather other particles. Thus, for a more realistic demonstration of the BNE

as it applies to asteroids, in this work I ran computer simulations to show the BNE on an

asteroid-like simulated body. I find that while the BNE is plausible on asteroids, it is likely

limited to the outer layers. For asteroids that are mostly or completely made of rubble, this

would leave asteroids with an interior region that has a mixture of particles sizes and an

exterior that is sorted with larger objects near the surface.

This project began incidentally while I was working on a different project related to

asteroids. At that time Erik Asphaug had suggested that I use the Discrete Element Modeling

(DEM) code, pkdgrav, for that work. pkdgrav models spherical particles that can bounce,

experience friction and be drawn to each other due to gravity. It is a code that is often used

for asteroid research since it is suitable to model asteroids that are made of rubble.
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During my research, I found past works to often cite the BNE as a possibility on asteroids.

When I first started learning about the BNE, it was clear that though a number of

previous works had studied it in detail, no one had simulated it using a three-dimensional

self-gravitating collection of particles. I was intrigued. Since I knew that pkdgrav was

capable of doing such a simulation, I set off exploring if the BNE would actually happen on

such a simulated body. When I first saw the movie of the BNE taking place on the simulated

asteroid, I was captivated. It worked! It had begun with “I wonder what would happen if...”

and it had produced an interesting result. I was not following particular instructions that

said such a simulation would be beneficial. I was simply exploring on my own because I was

interested in what would happen. Affect helped get the rubble shaking.

Chapter 3 discusses the thermal evolution of the Moon. The Moon likely formed from

the debris generated after a giant impact between the proto-Earth and another planetary

body. The accretion of the Moon would have occurred rapidly, which resulted in most of

the Moon being molten. Thus, a 1000 km deep Lunar Magma Ocean (LMO) would have

existed right after the Moon formed. The first 80% by volume of the LMO would have

solidified rapidly (in about 1,000 years according to previous work). Afterwards, some of the

solidifying material would have been low-density anorthosite, which would have floated to

the surface and formed a conductive lid. That conductive lid would have considerably slowed

solidification of the remaining 20% of the LMO. Though the first 80% of the LMO would

have solidified in about 1,000 years, due to the conductive lid that formed after that, previous

work showed that complete solidification of the LMO would have taken 10 million years

(Myr). Impacts onto the Moon during the cooling of the LMO is an important aspect, but it

has not previously been considered in detail. Specifically, in this work I consider impacts

due to some of the debris that escaped the Earth-Moon system after the giant impact. That

debris would have been on heliocentric orbits and subsequently re-impacted the Moon over a

period of 100 Myr. Particularly after the conductive lid formed, these re-impacts could have

punctured holes. Compared to areas of the conductive lid that did not have holes, the areas

with holes would have had a higher thermal flux.
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As such the more holes that were punctured into the lid, the more rapid the LMO solidification

would have been. Nonetheless, re-impacts also contained significant kinetic energy, which

upon impacting the lunar surface would have been converted to thermal energy. If the

impacts were efficient at delivering thermal energy to the Moon, then that would have

countered the effect of holes by helping to prolong LMO solidification. In this work, I

developed a model that thermally evolves the LMO, while at the same time, allowing impacts

to puncture holes into the surficial lid and to deliver thermal energy. By varying model input

parameters over reasonable ranges, I give a range of possible LMO solidification times and

discuss implications for the lunar surface, interior, and orbital evolution.

For years, I have had a particular fixation about the Moon. It started as a child when

I saw the movie Apollo 13 and ever since then I have the persistent hope of getting the

opportunity to fly there one day. Growing up in a chaotic world, I suppose it is sensible to

want to escape to the quietness of the lunar surface. Unfortunately, we have seen that human

journeys to the Moon do not happen very frequently, with the last Apollo mission having

taken place nearly 45 years ago. Nonetheless, I eventually realized that I need not wait for

an opportunity to travel to the Moon. I could explore the Moon with modest resources,

often with a pencil, some paper, and a computer. My master’s degree research had pertained

to the Moon and as I was starting my dissertation research, I could not help but wonder

how I may again go back to researching the Moon. Thus, when Alan Jackson mentioned

working on research regarding the LMO, almost innately I leaped at the opportunity. It was

the Moon. The answer was: of course! Much like my research on asteroid interiors, it was a

strong interest about the Moon that got me started with my lunar research. Affect helped

start hole puncturing.

Chapter 4 evaluates attitudes towards science of two student populations: those who are

enrolled in fully online degree programs and those enrolled in traditional, in-person degree

programs. As mentioned earlier, attitudes are a component of affect (a domain of psychology

that includes attitudes, emotions, interests, and values). Learning takes place within three

domains: affect, cognition, and behavior.
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Thus, it is important to learn how students’ affect (particularly attitudes in this work) may

influence their cognition and behavior as a learner. Past work has often had mixed results

when linking the three domains with one another due to the complex ways they interact

with each other. One example is the link between positive attitudes and better course grades.

While there are a number of studies that show a positive correlation between attitudes and

course grades, there are many that do not find a correlation, and even one study showing a

negative correlation. Since we know students are influenced by their affect, it is still important

to assess those characteristics and to consider which specific aspects of their learning may be

influenced by their affect. In this regard, students enrolled in online programs are particularly

interesting to study since they are novel. As such it is important to consider how those

learners may be similar to and different from their traditional program counterparts. In

this work, I analyzed pre- and post-course survey data from three semesters of the online,

introductory astrobiology course Habitable Worlds. Using a factor analysis, survey items

were placed into latent variables. It was found that online program students started the

course with more positive attitudes towards science and they also changed towards more

positive attitudes at the end of the course. I consider the implications of this finding and

others while making recommendations for future online courses.

This project started due to the requirement that Ph.D. students in our department

pursue two distinct research projects. As I was exploring the different research areas of

the School of Earth and Space Exploration, I noticed that a few professors were involved

with science education research. I was intrigued mainly due to my past experiences with

non-scientists’ relationships with science. Being a person who adores the field in general, I

had been perplexed by the number of people I met who did not understand the scientific

process or certain scientific principles. Perhaps worse was meeting people who plainly denied

basic scientific principles. Thus, doing research in the process of understanding how I can

be a more effective science educator was very appealing to me. While exploring the data

generated by the Habitable Worlds course, I was particularly draw towards the work on

affect.
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My past experiences informed me that people’s affect should have some effect on their

willingness to learn science. Seeing that further research was needed in that area, I started

focusing on students’ attitudes towards science. Affect helped me understand its role in

science education.

A process that organizes constituent particles of asteroids by their sizes, debris impacting

onto the early molten Moon, and attitudes that students hold towards science may appear

to be a gallimaufry of research topics. Nevertheless, they are all tied together by affect. I

pursued all three topics because of my own interests and inclinations. Like me, I suspect

that most researchers pursue research topics that they are passionate about. As such the

topic of students’ attitudes towards science takes that notion into science education. Much

like research is often directed by the affect of researchers, student learning is undoubtedly

influenced by their own attitudes, emotions, interests, and values. Therefore, I argue that

affect is instrumental both in driving researchers to explore the unknown and driving students

towards science education.
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Chapter 2

THE SPHERICAL BRAZIL NUT EFFECT AND ITS SIGNIFICANCE TO ASTEROIDS

If finished planets are the loaves

of bread, asteroids are the scraps

on the floor of the bakery.

Erik Asphaug

Many asteroids are likely rubble-piles that are a collection of smaller objects held together

by gravity and possibly cohesion. These asteroids are seismically shaken by impacts, which

leads to excitation of their constituent particles. As a result it has been suggested that their

surfaces and sub-surface interiors may be governed by a size sorting mechanism known as the

Brazil Nut Effect. I study the behavior of a model asteroid that is a spherical, self-gravitating

aggregate with a binary size-distribution of particles under the action of applied seismic

shaking. I find that above a seismic threshold, larger particles rise to the surface when friction

is present, in agreement with previous studies that focused on cylindrical and rectangular

box configurations. Unlike previous works I also find that size sorting takes place even with

zero friction, though the presence of friction does aid the sorting process above the seismic

threshold. Additionally, I find that while strong size sorting can take place near the surface,

the innermost regions remain unsorted under even the most vigorous shaking.

2.1 Introduction

Asteroids are small bodies that are remnants of the early planet formation process

(Asphaug, 2009). Space missions have imaged certain asteroids and as a result have

greatly helped the understanding of asteroid surface properties. However, due to the lack

of seismic data, it has been difficult to definitively constrain the internal structure of asteroids.
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The understanding of their internal structures is important for planetary science, for

future asteroid exploration and mining (Hatch and Wiegert, 2015), and for deterring

potential Earth impact hazards (Shapiro et al., 2010).

Previous works have inferred that asteroids 150 m to 10 km in size are likely rubble-pile

objects that are a collection of smaller objects held together by gravity and possibly cohesion

(Michel et al., 2001; Richardson et al., 2002; Pravec et al., 2002; Sánchez and Scheeres, 2014).

This characterization arises from several key observations:

1. Craters on their surfaces and the dynamical evolution of asteroids indicate that

asteroids have undergone many impacts over their lifetimes that will have left disrupted,

reaccumulated objects (Asphaug et al., 1998; Richardson et al., 2004).

2. Low bulk densities and high macroporosities of asteroids indicate the presence of large

internal voids (Carry, 2012).

3. The limited spin rates of asteroids possibly point to loosely held aggregates (Scheeres

et al., 2015).

4. Spacecraft images have shown that some asteroids have large boulders that seem to

be protruding from their surfaces such as Eros (Asphaug et al., 2001) and Itokawa

(Miyamoto et al., 2007; Tancredi et al., 2015).

As a rubble-pile asteroid is being seismically shaken by impacts, its constituent particles

should undergo granular flow once frictional forces are overcome. Particularly, the Brazil Nut

Effect where larger constituent objects rise to the top against gravity may occur on these

rubble-pile asteroids (assuming the constituent objects are approximately the same density).

Past work has shown that when a collection of particles of varying sizes is excited, over time

larger particles will accumulate at the top given gravity is downward (Rosato et al., 1987).

Some large boulders on asteroids could be the result of the Brazil Nut Effect, though this

may not be the only mechanism for producing large surface boulders (e.g. Thomas et al.,

2001).
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The Brazil Nut Effect is a complex phenomenon, but it has been proposed to be mediated

through two primary mechanisms:

1. Smaller particles may fill in and pass through spaces created by excitations while larger

particles do not (Williams, 1976). If the direction of gravity is downward, this results in

smaller particles migrating to the bottom while larger particles are ratcheted upwards.

2. Depending on boundary conditions, excitation of particles may set up granular

convection that brings larger particles to the top but prevents them from moving

downward (Knight et al., 1993).

The Brazil Nut Effect has been studied in a terrestrial context through computer

simulations using hard spheres (i.e. simulated spheres do not deform when forces are applied

to them) (Rosato et al., 1987), using soft spheres (i.e. simulated spheres deform when forces

are applied to them) (Kohl and Schmiedeberg, 2014), and through experiments in cylindrical

columns (Knight et al., 1993). Additionally, in the context of the low-gravity environments

of asteroids, simulations have been done using a soft spheres method in rectangular and

cylindrical box configurations (Tancredi et al., 2012; Matsumura et al., 2014) and parabolic

flight experiments have been done in a cylindrical configuration to momentarily obtain

equivalent low-gravity conditions of the Moon and Mars (Güttler et al., 2013).

Previous preliminary work in two-dimensions has suggested that size sorting can occur

in self-gravitating aggregates (Sanchez et al., 2010); however, the Brazil Nut Effect has

not been studied in a fully three-dimensional configuration. Here I conducted simulations

using a spherical, self-gravitating configuration of particles since that configuration is more

representative of asteroids. In Section 2.2, I discuss the N -body gravity code that was used

(Section 2.2.1) and the initial conditions along with a short discussion of how I created

the aggregate that was used for the simulations (Section 2.2.2). In Section 2.2.3 I describe

the simulations that were conducted and the section concludes with a discussion of how I

compare the simulations to asteroids (Section 2.2.4).
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In Section 2.3, I state my results while focussing on the central region of the aggregate

(Section 2.3.1), the effect of friction (Section 2.3.2), and the time evolution of particle

distributions (Section 2.3.3). In Section 2.4, I discuss the results considering asteroid surface

processes (Section 2.4.1), the central region of the aggregate (Section 2.4.2), and the driving

mechanism of the Brazil Nut Effect (Section 2.4.3). Finally, I summarize and discuss future

work in Section 2.5.

2.2 Method

2.2.1 pkdgrav

For this work I used pkdgrav, a parallel N -body gravity tree code (Stadel, 2001)

that has been adapted for particle collisions (Richardson et al., 2000; Richardson et al.,

2009; Richardson et al., 2011). Originally collisions in pkdgrav were treated as idealized

single-point-of-contact impacts between rigid spheres. I use a soft-sphere discrete element

method (SSDEM) to model the collisions of particles. In SSDEM, particles are allowed to

slightly overlap with one another. Particle contacts can last many time steps, with reaction

forces dependent on the degree of overlap (a proxy for surface deformation) and contact

history. The code uses a second-order leapfrog integrator to solve the equations of motion,

with accelerations due to gravity and contact forces recomputed each step.

The spring/dashpot model used in pkdgrav’s soft-sphere implementation is described

fully in Schwartz et al. (2012) and is based on Cundall and Strack (1979). Two overlapping

particles feel a Hooke’s law type reaction force in the normal and tangential directions

determined by spring constants (kn and kt). I chose a normal spring constant (kn) that

kept particle overlaps <1%. The choice of a linear spring was made during the original

implementation of the soft-sphere code. While a Hertzian spring contact may provide benefits

in certain circumstances, the linear spring is adequate for the problem at hand, with the

added advantage of simplicity.
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In particular, the coefficient of restitution of meter-scale granite spheres has been

experimentally found to have no dependence on impact speed for low-speed impacts (Durda

et al., 2011), which is suggestive of a linear contact response. User-defined normal and

tangential coefficients of restitution used in hard-sphere implementations, εn and εt, determine

the plastic damping parameters (Cn and Ct), which are required to resolve a soft-sphere

collision (see Eq. 15 in Schwartz et al. 2012). Frictional forces can also be imposed on the

interaction by adjusting static, twisting, and rolling coefficients.

This SSDEM implementation has been validated through comparison with laboratory

experiments (e.g., Schwartz et al. (2012) and Schwartz et al. (2013)). In addition, Ballouz

et al. (2015) used this SSDEM to model the collisions of rubble-pile asteroids made up of

40 m spheres, and showed that the outcomes of binary collisions were consistent with scaling

laws for low- and high-speed collisions. Furthermore, Matsumura et al. (2014) studied the

classical Brazil Nut Effect for centimeter-sized grains in a cylindrical container using this

method.

2.2.2 Initial Conditions

The initial spherical aggregate used in the following simulations was made by creating

500 particles of radius 40 m (colored yellow) and 500 particles of radius 80 m (colored red)

that were randomly positioned inside a cubic space of 4 km per side. All particles had a

density of 3 g/cm3. Particles were then allowed to gravitationally collapse due to self-gravity

with the coefficients of friction set to zero to form a mixed aggregate and left to settle for 75

simulation hours. The maximum free-fall time of the initial cubic distribution of particles

(i.e. from the corners) is around 3 hours.

The aggregate that was created in the process had a mass of 3.62 × 1012 kg, a bulk

radius of about 800 m, and a bulk density of about 1.7 g/cm3. The aggregate properties are

representative of common asteroids. The escape speed of the aggregate was 75 cm/s.

11



In order to properly resolve particle collisions, I use a normal spring constant of

kn = mp

(
vmax

xmax

)2

(2.1)

where mp is the typical particle mass, vmax is the maximum expected particle speed, and

xmax is the maximum expected fractional overlap, which I set to 1% of the typical particle

radius. This chosen value of kn allows all the kinetic energy of the particle collision to be

stored in a single spring that compresses to xmax. Furthermore, in order to ensure that a

collision is properly resolved, I require that particle overlaps last at least 12 time steps for

the smallest particles. The length of a single time step can be estimated by considering the

oscillation half-period of a spring with normal spring constant kn (see Eq. 36–38 in Schwartz

et al. 2012). Using the typical particle sizes, masses, and expected speeds I find that a spring

constant of kn ∼ 4.856× 109 kg/s2 and a time step of 8.523× 10−2 s are required to properly

resolve the collisions in the simulations. The tangential spring constant, kt, is taken to be

equal to 2
7 × kn. Tests with one half and one quarter of the chosen time step showed no

deviation in behavior demonstrating that the chosen time step is adequate.

Since Matsumura et al. (2014) found that the Brazil Nut Effect is largely insensitive to

the choice of the coefficients of restitution and since I wanted to focus on the magnitude of

seismic shaking and the coefficients of friction, I set the normal coefficient of restitution to

0.2 and the tangential coefficient of restitution to 0.5 for all the simulations. I will further

examine the effect of these damping coefficients on the Brazil Nut Effect in a future study.

In Figure 1 I show the likelihood that radial distributions of larger (red) and smaller

(yellow) particles were drawn from the same parent population as a function of settling time.

A higher probability indicates that it is more likely that the two particle groups were drawn

from the same parent population, and thus that their radial distributions are more similar to

each other. Probabilities were calculated using a two-sample Kolmogorov-Smirnov (K-S) test.

The two-sample K-S statistic quantifies the distance between the cumulative distributions

of the two samples (here the number of particles within a radius r), which determines the

probability that the two samples are drawn from the same underlying distribution.
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The utility of the K-S test lies in the fact that it is a non-parametric test, and so allows

me to make no assumptions about the shape of the underlying distribution. The thick

black line shows the initial aggregate used in this study. I also show five additional two-size

aggregates (dashed lines) and an aggregate with equal-sized particles (solid gray line). The

trial aggregates have largely settled by 5 hours and all have completely stabilized by 30

hours.

Since the particles in the equal-size case are identical aside from a randomly assigned

color, it is expected that the colors to be well mixed and so I can use this as the ideal

case. By comparison it is clear that the aggregate used for this study (solid black line)

displays a statistically significant difference between the two particle groups. Nevertheless,

the aggregate used for this study shows less of a difference than the other two-sized particle

aggregates (dashed colored lines), which enabled me to more easily distinguish further Brazil

Nut Effect size sorting during the later simulations.

I attribute the statistically significant difference to the occurrence of the Brazil Nut Effect

during the formation of the two-sized particle aggregates. When particles collapsed due to

self-gravity during the formation of the aggregate, their mutual kinetic energies imparted

a seismic shock that size sorted the particles. During the collapse process, the coefficients

of friction were set to zero to ensure that the aggregate would be approximately spherical

in shape. Using higher coefficients of friction could possibly reduce the effect of the initial

size sorting; however, it would also introduce the issue of a misshaped aggregate that would

complicate the analysis of the motion of the particle distributions. An alternative method

would be to create the aggregate particle by particle; however, that would have been very

computationally intensive.
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Figure 1: Probabilities that larger (red) and smaller (yellow) particles were drawn from the
same parent distribution for seven initial aggregates. Probabilities shown as a function of
initial aggregate formation/settling time and were determined using the K-S test. For all
seven initial aggregates the friction coefficients were set to zero (to ensure aggregates that
were formed were spherical) and the coefficients of restitution were 0.2 and 0.5 for the normal
and tangential directions respectively. The solid black line shows values for the aggregate
composed of particles of two sizes used for this work. Colored dotted lines show other trial
aggregates composed of particles of two sizes. The solid gray line shows an aggregate that
was composed of particles of the same size but were randomly assigned either a color of red
or yellow for comparison.
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2.2.3 Simulations

All simulations started with the same original aggregate (black line in Figure 1). This

ensured that all of the numerical results began from the same initial distributions, aiding

comparison of the results. The parameters varied for this study were the magnitude of the

shaking and the coefficients of friction. In the first set of simulations particles did not have

friction (i.e. friction coefficients were set to zero) and in the second set of simulations I

assigned each particle a static friction coefficient of 0.7 and a rolling friction coefficient of

0.1 similar to nominal values used in Matsumura et al. (2014). They showed that the set of

friction parameters listed above would lead to the Brazil Nut Effect occurring for a range of

seismic and gravitational environments in a cylindrical box configuration.

At the beginning of each simulation each particle was independently assigned a random

velocity drawn from a distribution of velocities that ranged from 0 to vmax. The values

of vmax prescribed for the run are given in Table 1. The directions of the velocities were

isotropically distributed with respect to the particle. After this ‘shaking,’ particles were

allowed to gravitationally settle for a period of 4.7 simulation hours (200,000 time steps).

Figure 1 shows that ∼5 hours is sufficient for the aggregate to have largely settled after the

initial collapse and that the initial collapse is more violent than any individual shake in any

of the simulations as well as having a longer lead time before settling can begin (∼3 hours).

After settling, all particles were again assigned new random velocities that were again no

larger than the predefined maximum magnitude. For each run, the ‘shaking’ and settling

process was repeated for 102 simulation days for a total of 516 ‘shakes’ to mimic a prolonged

period of seismic shaking. Each simulation run took approximately 15 days to complete.

For each of the friction and no friction sets, there were six simulations each for six different

maximum magnitudes of velocity. Six speeds were chosen initially to be a percentage of the

aggregate’s estimated escape speed (1%, 10%, 25%, 30%, 40%, and 50%). These speeds

were later converted to be a percentage of the aggregate’s true escape speed (0.92%, 9.24%,

23.10%, 27.73%, 36.97%, and 46.21%).
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Table 1: Simulation runs

Run Static Friction Rolling Friction Max Speed (cm/s) Max Speed (escape speed)
1 0 0 0.692 0.92%
2 0 0 6.95 9.24%
3 0 0 17.4 23.10%
4 0 0 20.9 27.73%
5 0 0 27.8 36.97%
6 0 0 34.7 46.21%
7 0.7 0.1 0.692 0.92%
8 0.7 0.1 6.95 9.24%
9 0.7 0.1 17.4 23.10%
10 0.7 0.1 20.9 27.73%
11 0.7 0.1 27.8 36.97%
12 0.7 0.1 34.7 46.21%

These values have no special significance other than to have a range of speeds to explore the

parameter space. Friction coefficients and maximum magnitudes of velocity used for each

run are listed in Table 1.

2.2.4 Considerations for comparisons with asteroids

There are several aspects to consider when comparing these simulations to asteroids.

Rubble-pile asteroids are believed to be composed of self-gravitating particles and have

friction and restitution, much like the simulated aggregates. In a rubble-pile asteroid however

the constituent particles will be non-spherical and the friction and restitution parameters

will likely be complex. To a certain degree, the asphericity of the particles can be considered

as a source of large scale friction due to interlocking, and so this can be partly accounted for

by the coefficient of friction.

While asteroids, like these aggregates, are self-gravitating, they are typically not spherical,

but rather have a variety of odd shapes (Durech et al., 2015). While these simulations may

not be exactly representative of the typical non-spherical asteroid, the important aspect lies

in the fact that these aggregates are three-dimensional and self-gravitating.
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A corollary to this, which I believe is important, is that unlike simulations that involve

box configurations these simulations do not have walls. Therefore, any size sorting that

takes place can only be due to particle-particle interactions, and not due to particle-wall

interactions.

2.2.4.1 The size distribution

An important aspect for comparing these simulations (or any other model of the Brazil

Nut Effect) with asteroids is the size distribution. The constituent particles of a rubble-pile

asteroid will form part of a likely largely continuous size distribution, however the shape of

this distribution is poorly understood. As such it is preferable to adopt a simple assumption

that allows me to make inferences about the behavior without being reliant on highly

uncertain details of the size distribution. The simplest such assumption is that of a binary

size distribution with two populations of particles. Like many works before them, Matsumura

et al. (2014) focused on the intruder model. In intruder models, there is only one or a few

large particle(s) in comparison to the quantity of small particles. Matsumura et al. (2014)

argue that since the internal structures of asteroids are poorly understood, that assumption

is valid. Though the intruder model might be applicable in the case of a single or a few large

boulders buried beneath the surface of an asteroid, it is not clear that the model is suitable

to study granular flow of all constituent particles of an asteroid. Rather than an intruder

model, I chose to adopt a different implementation of a binary size distribution, with equal

numbers of large and small particles, which I believe may be a better representation of a

bulk asteroid.

2.2.4.2 The shaking model

The main seismic input for most asteroids is most likely from impacts, though other

sources are possible, such as unloading of tidal stresses during close-encounters.
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In an impact the seismic impulse will have a discrete source on the surface of the asteroid from

which the seismic waves will propagate outwards, attenuating with distance travelled. This

is clearly rather different from the method I use here, in which the seismic impulse is equally

applied throughout the body. One important point here is that while an individual impact

is a localized source I am not interested here in the effects of a single impact, but rather in

the collective effect of many impacts over time. Individual impacts will occur at random

locations on the surface, as such the bulk effect of many impacts over time will be uniformly

distributed across the surface. In the interior I note that the seismic shock waves will reflect

off the far side of the asteroid and off interior flaws within the body. Since asteroids are

irregularly shaped these reflections will be chaotic and will likely lead to unpredictable foci

and dead zones. As such it is unclear how attenuation into the interior of the asteroid should

be handled, and so I choose to use my model of applying the seismic impulse uniformly

throughout the interior for simplicity. I also note than any non-impact source of seismic

disturbances, such as unloading of tidal stresses, would likely result in a more distributed

source located below the surface, and that for any given shaking velocity my shaking model

can be expected to give the maximum effect in the interior.

2.3 Results

In Figure 2, I show three time steps from Run 6 (no friction) on the left and three time

steps from Run 12 (with friction) on the right. Progressive random shaking, in this case with

a maximum magnitude of 46.21% of the escape speed (34.7 cm/s), resulted in the mixed

aggregate becoming sorted. Over time, larger (red) particles can be observed rising to the

surface while smaller (yellow) particles that were on the surface submerged. In the final

cut-through views, there are larger particles on the surfaces with smaller particles beneath

them. The innermost regions remain well mixed however. These size sorted and well mixed

regions are also discernible on the histograms of particle radial distance (bottom panels of

Figure 2).
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Figure 2: Two simulation runs shown without friction on the left and with friction on the
right. Larger particles (radius 80 m) are colored red and the smaller particles (radius 40 m)
are colored yellow. For both the runs (i.e. Runs 6 and 12), the maximum magnitude of
shaking was 46.21% of the escape speed (34.7 cm/s). Each panel shows three stages (0, 51,
and 102 days) of the simulations. Top row: external views. Middle row: cut-through views.
Bottom row: histograms using a radius bin size of 20 m where particle radial distance is
measure from the aggregate’s center of mass. The yellow and red curves represent the smaller
and larger particles respectively.

2.3.1 The well mixed central region

To explore this well mixed region further, I divided the aggregate into ten shells of 100

particles each. The first shell consisted of the first 100 particles from the center of mass, the

second shell the next 100 particles and so forth. I chose to define the shells in this manner,

rather than for example by defining them according to fixed radii, as this ensured that the

shells always contained the same number of particles. This made comparisons between the

simulation runs more straightforward.

Figure 3 lists percentages change, from initial and final stages of the simulations, of the

number of smaller (yellow) particles present inside each of the ten shells.
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The depletion of smaller particles from the outer part of the aggregate is again clear

from the negative percentages listed. It is also apparent that for Shells 1 and 2 (the

innermost shells) there is little change in the number of smaller particles (and thus also

larger particles) present for any of the simulation runs. It should be noted that preliminary

work by Sanchez et al. (2010) also found a well mixed central region with a rather different

simulation setup.

2.3.2 The effect of friction

Friction first hinders size sorting due to particle interlocking. Row 7 of Figure 3 shows the

case with friction and with a maximum shake speed of 0.92% of the aggregate’s escape speed

(0.692 cm/s). Unlike its no-friction counter part (Row 1), when friction is present there are

no changes in the number of smaller (yellow) particles for the smallest shake magnitude in

any of the shells. When friction is present, there is a seismic activation threshold that needs

to be exceeded before particles can move past each other. In the 0.92% with friction case

(Run 7), shake velocities are not large enough to overcome the frictional threshold. This

suggests that there is likely a lower energy limit to impacts that are effective at triggering

the Brazil Nut Effect on asteroids.

Once the threshold is met however, friction aids in the sorting process. This is likely a

result of particle ratcheting. When friction is present the uppermost shell (Shell 10) is fully

depleted of smaller (yellow) particles when constituent particles are shaken at a maximum

magnitude of 27.73% of the aggregate’s escape speed (20.9 cm/s) or higher. By comparison,

in the no friction runs the uppermost shell is not fully depleted of smaller (yellow) particles

even at the largest shake magnitude used for this study (46.21% of the aggregate’s escape

speed).
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Figure 3: Percentage change of the number of smaller (yellow) particles present inside defined
spherical shells from beginning to end of the simulations. Shell 1 contains the first 100
particles from the center of the aggregate while each of the following shells has the next
100 particles. Shell 10 contains the last 100 particles from the center of the aggregate. The
coloring indicates whether smaller particles are being depleted (red coloring) or whether they
are being augmented (blue coloring). Number of smaller (yellow) particles present at the
end of the simulations are listed in parenthesis for each shell. Runs 1 to 6 have no friction
(top) and Runs 7 to 12 have friction (bottom). For each of the no friction and with friction
sets, progressive run numbers have increasing shake magnitudes.
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2.3.3 Statistical analysis and time evolution

Figure 4 shows K-S test results for both the no friction and friction sets. The cases with

maximum speeds that are 9.24% of the escape speed (Runs 2 and 8) are not shown as they

are very similar to the 0.92% cases. In the left-hand column I show the comparison of the

large and small particle distributions, while in the center and right-hand columns I show

the comparison of each of the larger and smaller distributions respectively over time with

their initial distributions. Comparing the distributions over time with their initial values

allows me to fully account for the minor size sorting that occurred during the formation

of the aggregate ensuring I am only analyzing additional size sorting that occurred after

formation. While the K-S statistic shown in the left-hand column starts from a position

of significant difference between the distributions due to the size sorting during formation,

these plots allow me to see whether changes in the shape of each of the individual larger and

smaller particle distributions are driving the distributions to greater or lesser dissimilarity.

When considering the left column plots in Figure 4, there are several cases that show

substantially increased size separation. For the no-friction set, three aggregate cases show size

separation (the 27.73% [green], 36.97% [orange], and 46.21% [red] cases). For the with-friction

set, four aggregate cases show size separation (the 23.10% [blue], 27.73% [green], 36.97%

[orange], and 46.21% [red] cases). The K-S statistic illustrates that the differences between

larger particle and smaller particle distributions are highly significant in these cases. When

comparing the middle column plots to the right column plots in Figure 4, they indicate that

smaller particle distributions are changing significantly, while the larger particle distributions

are remaining largely unchanged in shape. Even though larger particles are migrating

outward, they are moving outward uniformly such that the shape of the distribution does

not change dramatically while the smaller particles are filtering inwards.

Previous works have shown that the timescale for the Brazil Nut Effect to take place is

either proportional to 1/g (Güttler et al., 2013) or to 1/
√
g (Matsumura et al., 2014).
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Though both of these works focused on the intruder model and the exact inverse factor of g

is uncertain, I expect that size sorting would take longer in the interior of my aggregate

(and similarly in the interiors of asteroids) due to decreasing gravity towards the center of

the body. It could thus be argued that if my simulations were run for a longer period of

time, even innermost regions of the aggregate would be size sorted. However, Figure 5 shows

that it is not the case. In Figure 5 the number of smaller particles in each of the 10 shells

over time are plotted for Run 12 (the most vigorous case with friction). Changes that occur

initially can be seen to plateau off even before the simulations have reached the halfway

stage. Although at lower shake speeds the simulations take longer to reach a plateau, in all

cases this is still reached before the end of the simulation run. The plateauing of the number

of smaller particles in each shell indicates that particles have reached an equilibrium state

for the given shake speed.

2.4 Discussion

My simulation results show that the Brazil Nut Effect occurs in these aggregates. To the

extent that the simulated aggregates are representative of rubble-pile asteroids, I also expect

the Brazil Nut Effect to occur in rubble-pile asteroids. While the effects of moving to a

continuous size distribution from a binary one are not entirely clear, I expect larger boulders

to rise to the surface of an asteroid over time as the asteroid experiences impacts or other

seismic shaking events. These shaking events will be subject to an activation threshold since

I expect the constituents of rubble-pile asteroids to have friction, and possibly cohesion.

2.4.1 Asteroid surfaces

The number of asteroids with sufficiently high resolution imaging of the surface to make

any inferences about the size distribution of the surface material is rather small.
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Figure 4: Probabilities that particles are drawn from the same distribution as determined
by the K-S test. Top row: no friction sets (Runs 1 and 3–6). Bottom row: with friction
sets (Runs 7 and 9–12). Runs 2 and 8 are not shown to reduce confusion since the lines are
very similar to Runs 1 and 7 respectively. Left column: probability that larger and smaller
particles were drawn from the same distribution as a function of time. Middle column:
comparison between the distribution of larger particles over time and the initial distribution
of larger particles. Right column: comparison between the distribution of smaller particles
over time and the initial distribution of smaller particles. Line colors represent maximum
magnitude of shaking as a percentage of the aggregate’s escape speed (indigo = 0.92%, blue
= 23.10%, green = 27.73%, orange = 36.97%, and red = 46.21%). All plots have been
smoothed using a 50-point moving average.

One asteroid that does have such imaging is the small (535 m x 294 m x 209 m) near-Earth

asteroid (25143) Itokawa. The surface of Itokawa displays regions that have substantially

different ratios of larger boulders to smaller material, and Tancredi et al. (2015) compared

these with gravity maps to suggest that there is a systematic trend for lower surface gravity

(‘higher’) regions to have greater amounts of larger boulders. They argued that this is

evidence that the Brazil Nut Effect has indeed been at work on Itokawa and resulted in size

sorting.
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Figure 5: Smaller particle count inside each of the ten shells as a function of simulation
time. Shown are particle counts for the with friction case that was shaken with a maximum
magnitude of 46.21% the escape speed. All lines have been smoothed using a 100-point
moving average.

In this way the irregular shape of Itokawa and other asteroids may be beneficial since the

presence of regions with substantially different surface gravities can allow the observation

of size sorting with only surface images, whereas for my spherical aggregates the only way

to distinguish an aggregate in which the Brazil Nut Effect has brought larger material to

the surface from one that is only made up of larger material is with information about the

sub-surface.

While Itokawa may show evidence for size sorting it does not display complete size

separation, that is regions that have larger numbers of boulders still also have finer material.

There are a number of reasons why this might be the case. It is possible that the size sorting

process on Itokawa has not yet had time to run to completion.
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While I showed that the aggregates reached a steady-state configuration in which maximal

size separation had occurred, I have not attempted to match this with the expected frequency

of impacts or other seismic events on rubble-pile asteroids to determine whether it would be

expected that the Brazil Nut Effect on rubble-pile asteroids to have reached an end state.

This comparison is not immediately straight forward since it is not only the number of

impacts or other seismic events that matters, but how many of these exceed the activation

threshold. In addition, when an asteroid undergoes a catastrophic impact and is broken up

into smaller pieces, the size sorting on those fragments will likely be reset since what was

formerly in the interior may now be on the surface. The time over which the Brazil Nut

Effect can act is thus more likely to be the time since the last catastrophic impact rather

than the age of the solar system. Detailed study of this issue is beyond the scope of this

work, but I note that the Brazil Nut Effect may not have had time to reach a steady-state

on all asteroids.

Additionally, an asteroid sits in the wider environment of the solar system and the seismic

events that enable the Brazil Nut Effect are not occurring in isolation. Impacts that are

below the seismic activation threshold, particularly micro-meteorite impacts, will gradually

break up surface material into finer sizes (Basilevsky et al., 2015), and thermal fatigue may

also play a similar role (Delbo et al., 2014). The size-distribution of material on the surface

of an asteroid is thus likely to be influenced by a balance between the Brazil Nut Effect

bringing larger material to the surface and other processes breaking this material down into

regolith.

2.4.2 The well mixed central region

A plausible explanation for why the innermost region of my aggregate is not size sorted

could be that the magnitude of the shake speed was not sufficiently large. I should note,

however, that the largest shake velocity, 50% of the escape velocity, is already very large and

such large shaking velocities may not be plausible in asteroids.
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To address this, it should be considered that asteroids are seismically shaken from their

surfaces due to impacts. When impacts impart kinetic energy to their surfaces it is sufficient

to influence the entire body (Garcia et al., 2015). However, as I discussed in Section 2.2.4.2,

due to attenuation the innermost regions will only receive some fraction of that energy, with

my simulations representing the maximal case of no attenuation. Therefore, the innermost

particles attaining a high velocity (larger than the 50% of the escape speed used in the

most vigorous cases) would mean the outer layers of the asteroid would have likely received

velocities exceeding the escape speed. This would mean that the outer layers of an asteroid

would be disrupted and removed, leaving a modified body that is smaller than the original.

While some of what was previously the innermost regions will now have been size sorted in

this scenario, they will now be closer to the surface of the asteroid. Therefore, I deduce that

asteroids will only be size sorted in their outermost regions, retaining a well-mixed central

region.

2.4.3 Examining the Driving Mechanism of the Brazil Nut Effect

That the distribution of larger particles remains largely unchanged while the distribution

of smaller particles changes substantially is interesting and deserves closer attention. Part

of this difference in the behavior of the larger and smaller particles may be a result of the

greater volume occupied by the larger particles. A large particle occupies 8 times the volume

of a small particle and so, clearly, when a large particle rises upwards, multiple smaller

particles can move down to take its place. The precise number of small particles that can

occupy the space vacated by the red particle will vary, however. The maximum packing

efficiency for hexagonal close-packed spheres (of equal size) is 0.74, so 5–6 small particles

could be placed within the volume of the large particle. This neglects the voids near the

original large particle however, which the smaller ones will be better able to fill, and so the

removal of a large particle would generally create space for more than 5–6 small particles.
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The theoretical packing efficiency (of equal sized particles) is independent of particle

size, and so completely replacing large particles with small particles would increase the

number of particles per unit volume by a factor of 8. Thus, it can be expected that on

average each rising large particle is replaced by around 8 sinking small particles, but this

will vary somewhat on a case-by-case basis.

While the difference in volume between large and small particles can account for some

of the difference in the changes in the large and small particle distributions, it is unclear

if it can account for all of the difference. In particular, if this was the sole reason for the

difference in behavior of the evolution of the large and small particle distributions, then I

would expect the large particle distribution to follow the same trend as the small particle

distribution in Figure 4 but with a reduced magnitude. If Runs 11 and 12 (orange and

red lines in the lower panels of Figure 4) are considered, it can be seen that although the

changes in the distribution of large particles are not statistically significant, those changes

that occurred do so over a much shorter time than the changes in the distribution of smaller

particles. This suggests that an additional factor may be required to explain the difference

in the behavior of the large and small particle distributions.

Another reason for the difference in the behavior of the large and small particle

distributions may lie in the mechanism that drives the Brazil Nut Effect in these simulations.

As mentioned previously, there are two mechanisms that have been postulated to mediate

the Brazil Nut Effect: percolation of smaller particles through gaps created by the excitation

of larger ones, and granular convection. If granular convection were the primary mechanism

at work here, I would expect the distribution of large particles to undergo similarly large

changes to the distribution of small particles (moderated by the greater volume of the large

particles). On the other hand, if the small particles are filtering through the large ones while

the large particles rise in a relatively uniform fashion, I would expect to see much smaller

changes in the large particle distribution than the small particle distribution.
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The lack of changes in the large particle distribution could thus be an indication that

percolation of the smaller particles is the primary mechanism at work in driving the

appearance of the Brazil Nut Effect here.

To examine this further I look at the motions of individual particles in detail. Figure 6

shows the motions of 16 randomly selected particles (8 of each particle size) from the outer

regions (400 m and further from the center of mass) of the aggregate in Run 11. I selected

Run 11 since it has a reduced magnitude of the shakes imparted, which is shown in the plots

as short, sharp upward spikes in the radial locations of the particles. Though the curves are

quite noisy, two behaviors are apparent in the right-hand panel of Figure 6 (for the smaller

particles): long-term oscillations in radial position and rapid drops to a new plateau level.

The latter effect is the most prominent by a considerable margin, while the former is less

easily discernible, but can be best seen in the red and purple curves. The left-hand panel

has less evidence for any distinctive behaviors with the majority of those particles that show

long-term changes in radial location showing relatively gradual rises. Long-term oscillations

in location are the signature of granular convection as particles rise and fall in a convection

cell. Percolation meanwhile has the signature of rapid falls inward for the smaller particles

as gaps open between the larger particles allowing the smaller ones to filter down between

them at stochastic intervals, while the larger particles would rise more gradually. Since

both effects are seen, both mechanisms are operating; however, the sudden drops account

for the majority of the inward motion of the small particles (confirmed by examining many

iterations of Figure 6). It thus appears that percolation is the dominant mechanism at work

in these simulations in driving the Brazil Nut Effect.

While this analysis is suggestive that percolation is the dominant mechanism, I must note

several caveats. Firstly, since as I stated in Section 2.3.1 the inner region of the aggregate

remains well mixed, the region in which the Brazil Nut Effect occurs, and thus in which its

driving mechanisms operate, is confined to the surface layers. This surface layer is relatively

shallow in comparison to the size of the constituent particles of the aggregate, especially the

large particles.
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While this is unlikely to be a hindrance to the operation of percolation, it may well inhibit

the formation of convection cells and thus act to dampen granular convection. Secondly, by

the same token since the surface layers in which the Brazil Nut Effect occurs are relatively

shallow, the problem of small number statistics should be considered.

Though there are definite indications that percolation is the primary mechanism at work

in these simulations, I am cautious about applying this result to asteroids as a whole. To

investigate the driving mechanisms of the Brazil Nut Effect in more detail will require a

dedicated study with higher resolution simulations. For the purposes of this work however

I note that this does not change the primary results; that the Brazil Nut Effect occurs in

self-gravitating rubble-pile aggregates when I account for their three-dimensional shape and

that the central regions remain well mixed. If granular convection is being artificially damped

in these simulations due to the thinness of the surface layers, then I expect the Brazil Nut

Effect should be more vigorous on asteroids. I note that if damping is due to the presence of

the well mixed central region, if convection becomes more vigorous with higher resolution

(smaller particle) simulations, I would not expect it to influence the well mixed central region.

2.5 Summary and Outlook

I find that in the spherical configuration the Brazil Nut Effect occurs both with and

without friction. Friction hinders the sorting process at low shake velocities; however, after

the frictional energy threshold is exceeded, friction works to aid the sorting process. Above

a certain vibrational threshold, cases with friction require a lower shake speed to achieve

the same level of size sorting as cases without friction. To the extent that the simulated

aggregates are representative of rubble-pile asteroids, my results indicate that size sorting

likely occurs in the outer part of rubble-pile asteroids. They also indicate however that the

innermost regions should consist of a mixture of particle sizes, since even a shake magnitude

of nearly 50% of the escape speed was insufficient to sort the center.
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Figure 6: Radial distance with respect to the center of mass (COM) as a function of time for
16 randomly selected large and small particles (8 particles each) for Run 11. Larger (red)
particles are shown on the left and smaller (yellow) particles are shown on the right. Only
particles that started in the outer regions of the aggregate (i.e. 400 meters from the COM
or further) were selected for these plots. The colors are used to distinguish between the
different randomly chosen particles.

If an asteroid were to undergo an impact that resulted in the central particles acquiring

a speed of 50% of the body’s escape speed, then the surface of the asteroid is likely to be

disrupted.

Percolation appears to be the dominant driving mechanism behind the Brazil Nut Effect

in my simulations, with granular convection playing only a minor role. I note however that

the shallow depth (in terms of particle radii) of the size sorted layer due to the presence of

the well mixed central region may inhibit the formation of convection cells, thus damping

granular convection.

I will further explore the layers of size sorting in the future by using a larger number of

particles for finer resolution. Future work will also include exploring the Brazil Nut Effect in

the spherical configuration for a range of aggregate sizes, constituent particle sizes, various

rotational states of aggregates, coefficients of restitution, and coefficients of friction.
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A spherical geometry is an idealization that I make to reduce invoking additional free

parameters. Future modeling will also consider how the process would vary on bilobed

asteroid shapes, and include better approximations for the input of seismic energy.
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Chapter 3

EFFECT OF RE-IMPACTING DEBRIS ON THE SOLIDIFICATION OF THE LUNAR

MAGMA OCEAN

Guess what we just found! I think

we found what we came for.

Dave Scott (Apollo 15

Commander after finding rock

sample 15415 colloquially known

as the “Genesis Rock”)

The anorthosites that comprise the bulk of the lunar crust are believed to have formed

during the solidification of a Lunar Magma Ocean (LMO) in which these rocks would have

floated to the surface. This early flotation crust would have formed a thermal blanket over

the remaining LMO, prolonging solidification. Geochronology of lunar anorthosites indicates

a long timescale of cooling of the LMO, or else re-melting and re-crystallization in one or

more late events. To better interpret this geochronology, I model LMO solidification in a

scenario where the Moon is being continuously bombarded by returning projectiles released

from the Moon-forming giant impact. More than one lunar mass of material escaped the

Earth-Moon system onto heliocentric orbits following the giant impact, much of it to come

back on returning orbits for a period of 100 Myr. If large enough, these projectiles would

have punctured holes in the nascent floatation crust of the Moon, exposing the LMO to space

and causing more rapid cooling. I model these scenarios using a thermal evolution model of

the Moon that allows for the production (by cratering) and evolution (solidification and

infill) of holes in the flotation crust that insulates the LMO. For effective hole production,

the solidification of the magma ocean can be significantly expedited, decreasing the cooling

time by more than a factor of 5.
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If hole production is inefficient, but shock conversion of projectile kinetic energy to

thermal energy is efficient, then LMO solidification can be somewhat prolonged, lengthening

the cooling time by 50% or more.

3.1 Introduction

The Moon likely coalesced from debris in the aftermath of a giant impact between the

proto-Earth and another planet-sized body (Daly, 1946; Hartmann and Davis, 1975; Cameron

and Ward, 1976). This Giant Impact Model explains the high angular momentum of the

Earth–Moon system, the iron depletion of the Moon relative to the Earth, and the Moon’s

volatile depletion (Wolf and Anders, 1980; Taylor et al., 2006b; Taylor and Wieczorek, 2014).

After several iterations, a Canonical Giant Impact Model of a low-velocity, glancing impact

by a Mars-sized body developed (see Canup, 2004, for a review). In the Canonical model, the

Moon is predominantly composed of material from the impactor; however, recent geochemical

analyses show that the Earth and the Moon have nearly identical isotopic signatures (e.g.

Touboul et al., 2007; Spicuzza et al., 2007; Zhang et al., 2012). As a result, several works have

proposed modifications to the Giant Impact Model to account for the isotopic similarities

(e.g. Pahlevan and Stevenson, 2007; Canup, 2012; Ćuk and Stewart, 2012; Reufer et al., 2012;

Mastrobuono-Battisti et al., 2015; Ćuk et al., 2016; Rufu et al., 2017). Though the Giant

Impact Model will undoubtedly continue to be revised and improved, it still is the accepted

mechanism for the formation of the Moon (Asphaug, 2014; Barr, 2016).

3.1.1 Initial Thermal State of the Moon

The initial thermal state of a newly formed planet is primarily determined by how long

it takes to form and how efficient accretionary impacts are at depositing thermal energy.

Formation time is particularly important for two reasons.

34



First, it will determine how much of gravitational potential energy is thermally radiated

away and how much is used to heat constituent material. Second, it will determine if hot

disk material will be accreted quickly (e.g. silicate material in the debris disk were likely

between 2,500 to 5,000 K after the Giant Impact (Canup, 2004)). Thus, the Moon would

have been initially molten if it accreted rapidly. In that case, the debris would have been

hot and the Moon’s gravitational binding energy, which, per unit mass, is comparable to

the latent heat of silicates (Pritchard and Stevenson, 2000), would have been used to melt

constituent material. Though the Moon likely accreted rapidly, accretionary models vary

in their estimates as to how long the Moon took to acquire the majority of its mass. For

the Canonical model, that period is generally thought to be between a month to a year

(Ida et al., 1997; Kokubo et al., 2000b; Takeda and Ida, 2001). Additionally, how efficient

accretionary impacts are at depositing thermal energy is subject to considerable uncertainty.

Past works have assumed that a certain fraction of the accretion energy was deposited into

the planet as thermal energy (e.g. Kaula, 1979; Ransford and Kaula, 1980; Squyres et al.,

1988; Senshu et al., 2002; Merk and Prialnik, 2006); however, the temperature of the planet

at the end of accretion is strongly dependent on those assumptions (Stevenson et al., 1986).

Given these uncertainties, while dynamics suggests that an early Lunar Magma Ocean

(LMO) is likely, it is currently not possible to be definitive regarding the initial thermal state

of the Moon from a purely dynamical perspective.

An alternative, yet complementary, approach to characterizing the initial thermal state

of the Moon is by geochemical analyses of lunar samples. Early work on Apollo samples

found ferroan anorthosite (FAN) rock fragments (Wood et al., 1970a). From that observation

it was inferred that the early lunar crust was made from anorthositic rocks that floated to

the surface of a LMO (Wood et al., 1970b). Anorthosite rocks were buoyant due to the

low density of its primary mineral plagioclase feldspar. Recent reflectance spectral data are

consistent with this scenario since they show the presence of pure anorthosite on a large

fraction of the lunar surface (Yamamoto et al., 2012). The europium (Eu) anomaly is further

evidence for a past LMO.
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Eu is drawn to plagioclase feldspar and as such is enriched in the lunar crust and depleted in

the mantle (Philpotts and Schnetzler, 1970; Wakita and Schmitt, 1970). Additionally,

incompatible KREEP elements (i.e. potassium [K], rare earth elements [REE], and

phosphorous [P]) that exists on the lunar surface are likely from residual liquid of the

LMO (i.e. ur-KREEP) (Warren and Wasson, 1979). Some works have questioned the

existence of an LMO (e.g. Walker, 1983; Longhi and Ashwal, 1985; Longhi, 2003; Boyet and

Carlson, 2007), but the amalgamation of evidence suggests that a LMO existed (for a review

see Elkins-Tanton, 2012).

To understand the thermal evolution of the Moon, it is important to estimate the initial

depth of the LMO and the time that it took to solidify. The initial depth has been estimated

by starting with an estimate for the lunar crustal thickness and arguing that a LMO of a

certain initial composition (viz. Al2O3) needed to have been a particular depth to have

produced that crust by fractional crystallization (Warren, 1985; Yamamoto et al., 2012).

For that depth estimate, it is assumed that a percentage of the crust is anorthositic. An

additional assumption is the fractionation of Al2O3 that went into various minerals that

crystallized. Some works have assumed that all of the Al2O3 went into forming plagioclase

feldspar (e.g. Warren, 1985), while others have assumed that some of the Al2O3 also went

into forming spinel (Elkins-Tanton et al., 2011). Due to the varying assumptions, the

estimated LMO initial depths range from 100 to 1000 km (Hodges and Kushiro, 1974;

Walker et al., 1975; Solomon and Chaiken, 1976; Solomon, 1980; Kirk and Stevenson, 1989;

Elkins-Tanton et al., 2011; Andrews-Hanna et al., 2013; Lin et al., 2017b). Similarly, the

solidification time also has a range of estimates. For thermal models, it ranges from 10 to

nearly 300 Myrs (Solomon and Longhi, 1977; Minear, 1980; Meyer et al., 2010; Elkins-Tanton

et al., 2011), while for geochemical analyses, it ranges from about 100 to 254 Myrs (Nyquist

et al., 1995; Rankenburg et al., 2006; Boyet and Carlson, 2007; Nemchin et al., 2009). To be

consistent with the LMO model, it is important that the solidification time of the LMO is

comparable to the time span of primordial lunar crustal ages. Yet, this does not seem to be

the case.
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Recent work suggested the LMO would have crystallized in 10 Myrs (Elkins-Tanton

et al., 2011), which is much faster than what is suggested by the range of crust sample ages

of ∼ 200 Myrs (Alibert et al., 1994; Borg et al., 1999). Further work is required to refine

these ages to be consistent with each other.

3.1.2 Re-impacting Debris

Recent work has shown that a substantial amount of debris (about 1023 kg or ∼ 1.3 lunar

masses) had sufficient speed to escape the Earth–Moon system after the Moon forming impact

(Kokubo et al., 2000a,b; Marcus et al., 2009; Jackson and Wyatt, 2012). That quantity of

escaping debris is for the Canonical model, which is a rather gentle impact with an impact

velocity only just above the escape velocity. For many of the newer, modified versions of

the Giant Impact Model, the giant impacts are more violent, thus they tend to produce

more escaping debris. Leinhardt and Stewart (2012) find that a typical giant impact releases

around 3 to 5% of the colliding mass as debris, as compared to 1.6% for the Canonical model.

For this work, I am making a conservative estimate by assuming the quantity of debris is

that of the Canonical model.

While on heliocentric orbits, much of the debris would have subsequently re-impacted

onto both the Earth and the Moon (Daly, 1946; Jackson and Wyatt, 2012). Jackson and

Wyatt (2012) found that within a million years after the giant impact, debris would have

accreted onto the Moon at an average rate of ∼ 9× 1013 kg/yr (with 50% loss to collisional

grinding). Debris would have re-impacted the Moon while the LMO was solidifying. Impacts

could have significantly altered the cooling rate when the Moon had developed a conductive

lid (i.e. at the point of plagioclase stability). Impacts that punctured holes into a conductive

lid would have increased the thermal flux by exposing magma that used to be thermally

insulated. A similar scenario is expected on Europa when impacts puncture holes into its ice

shell to expose liquid water beneath (Bauer and Cox, 2011).
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Hartmann (1980) proposed that early impacts should have pulverized the nascent floatation

crust and they may have sped up the LMO solidification; however, they did not quantify the

LMO solidification time. Minear (1980) and Davies (1982) both argued that impacts should

have sped up LMO solidification; however, their models were highly simplified.

3.1.3 Scope of this Work

In this work, I include the sustained bombardment of debris generated after the giant

impact with the thermal evolution of the LMO. I am primarily interested in how re-impacting

debris affects the thermal evolution of the LMO. For this work, I use a model that can

thermally evolve the LMO while producing and thermally evolving holes generated in the

lunar crust by re-impacting debris. In Section 3.2.1 I discuss numerical calculations of debris

evolution and in Section 3.2.2 I discuss the details of my thermal evolution code. In Section

3.3 I show the results. In Section 3.4 I discuss consistency of my results with lunar crust

sample ages, implications for the lunar surface and interior, and implications for the lunar

orbital evolution.

3.2 Methods

Since I was interested in the bulk, rather than spatially resolved, properties of the

LMO thermal evolution, for this work I use a 1-D spherically symmetric thermal model.

Following a similar procedure to Elkins-Tanton et al. (2011), I use minute volume segments

to iteratively solidify the modeled LMO and release the relevant energy through the modeled

Moon’s surface. Unlike previous work, here I consider the effect of re-impacting debris on the

solidification of the LMO. In Section 3.2.2 and in following subsections I discuss the thermal

evolution code in detail; however, I begin with Section 3.2.1 by discussing the expected

quantity and evolution of debris after the Moon forming impact.
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3.2.1 Re-impacting Debris Evolution

As noted above, the Canonical Moon-forming impact results in the release of around 1.3

lunar masses of material onto heliocentric orbits (Jackson and Wyatt, 2012). That mass is

comparable to the mass that remains in Earth orbit as the proto-lunar disk (e.g. Canup,

2004). As it orbits the Sun this debris will encounter the terrestrial planets, especially Earth

since it by definition must begin on Earth-crossing orbits, and will be re-accreted over time.

Jackson and Wyatt (2012) conducted an extensive analysis of the dynamical evolution of

the heliocentric Moon-forming debris using N -body simulations. I utilize the results of an

improved N -body simulation that uses the same initial conditions and setup as Jackson and

Wyatt (2012) and the same Mercury integrator (Chambers, 1999), but with an increased

number of debris particles (105) and a longer integration time of 100 Myr rather than 10 Myr.

As described by Jackson and Wyatt (2012), it is not feasible to resolve the orbit of the

Moon in a long term dynamical simulation and as such the Earth and Moon are treated as a

single body. The debris accretion rate determined from the simulation is thus the accretion

rate onto the Earth-Moon system as a whole. To separate them the ratio between the

accretion rates for Earth and the Moon is required. Bandermann and Singer (1973) derive

an analytic relation for the accretion ratio between the Earth and Moon, which they give as

AE
AM

=
RE
RM

1 + u2

7
6
RE
r + 0.045 + u2

, (3.1)

where AE and AM are the accretion rates for Earth and the Moon, RE and RM are the

respective radii, r is the Earth-Moon separation and u is the ratio of the relative velocity to

the escape velocity of Earth, vrel/wE . Note that strictly this is a lower limit to the accretion

ratio (or an upper limit to the lunar accretion rate) since it ignores the effect of shadowing

by Earth, but this effect is small at all but the smallest Earth-Moon separations. The impact

velocity, vimp, of each impacting debris particle is provided by the N -body simulation and

the relative velocity is then just vrel =
√
v2imp − w2

E .
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In addition to the relative velocity that can be determined from the N -body simulation,

the accretion ratio also depends on the Earth-Moon separation, which is an independent

parameter. Today the Earth-Moon separation is 60 RE , however the Moon is migrating

outwards over time and would likely have formed near the Roche limit at around 3 RE . The

timeline of the evolution of the lunar orbit is complicated however, especially at early times,

and as the Moon crossed orbital resonances it likely went through high-eccentricity periods

that further complicate the picture (e.g. Touma and Wisdom, 1998). Furthermore, the

thermal state of the Moon and the rate of tidal evolution are somewhat coupled, as studied

by Tian et al. (2017), such that if we expect the thermal evolution of the Moon to change as

a result of re-impacting debris, this would also change the tidal evolution. Nonetheless, the

Moon likely reached a separation of 10 RE quite rapidly (e.g. Touma and Wisdom, 1994;

Touma and Wisdom, 1998), and beyond this the accretion ratio changes fairly slowly (see

Figure 7). As such I use a constant Earth-Moon separation of 10 RE as being relatively

representative of the early Moon.

While the N -body simulation in combination with Equation 3.1 provides the rate at

which the massless N -body debris particles strike the Moon, that rate needs to be converted

into a mass accretion rate. Individual bodies in the disk of heliocentric debris will collide

with one another and gradually break up into ever smaller fragments until the resulting

dust is small enough (roughly 1 µm) that it can be removed from the Solar System by

radiation pressure. To calculate an accurate mass accretion rate, debris evolution needs to

be accounted for through self-collision between debris fragments.

To compute the collisional evolution, the code developed by Jackson et al. (2014) was

used. Jackson et al. (2014) improves on the work of Jackson and Wyatt (2012) by accurately

accounting for the initial asymmetry in the debris disk and allowing the mass assigned

to each N -body particle to evolve individually. The collisional evolution is dependent on

the size-distribution of the debris fragments. The shape of the size-distribution is poorly

constrained. Thus, following Jackson and Wyatt (2012) and Jackson et al. (2014), the

size-distribution is assumed to be a single power law that follows n(D)dD ∝ D−7/2dD.
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Figure 7: Mass accretion rate over time for the Earth (dark cyan and red lines) and the
Moon (blue and orange lines) for two populations of re-impacting debris based on the size of
the largest debris (LD). Top: Accretion rate when the Moon is at a distance of 10 Earth
radii. Bottom: Accretion rate when it is at a distance of 60 Earth radii. An estimate for
the accretion rate due to ‘background’ asteroidal impacts during the proposed Late Heavy
Bombardment (Ryder, 2002) is shown by a black dashed line for comparison.
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This is the slope to which a self-similar collisional cascade will relax over time (e.g. Dohnanyi,

1969; Tanaka et al., 1996). Small fragments will have short collisional lifetimes and thus will

rapidly evolve towards collisional equilibrium, where this slope will be a relatively accurate

reflection of the reality (e.g. Wyatt et al., 2011). Larger, longer lived fragments will evolve

more slowly and so this assumption is less certain, however there is no evidence to support a

different distribution and this is the simplest assumption.

For a size distribution that is in collisional equilibrium the evolution of the mass in the

cascade is governed by the size of the largest fragments, since these are the longest lived,

meaning that as these largest bodies break up their mass is redistributed down the cascade

on timescales short compared with their lifetimes. Mass is ultimately lost from the cascade

once it reaches micron sizes at which point Solar radiation pressure is sufficient to blow the

dust out of the Solar System. This is a very useful property as it means that in addition to

the assumption of the shape of the size-distribution only one other assumption is needed,

which is the size of the largest objects in the debris. In Figure 7 I show the evolution of the

mass accretion rate for two different values of the size of the largest object in the debris,

500 km and 100 km. Jackson and Wyatt (2012) chose 500 km as their fiducial estimate of

the size of the largest objects in the debris from Moon-formation, and suggested that objects

much larger than this are implausible. To be conservative I choose to use 100 km as the size

of the largest object in the debris for this study. It is important also to note that while a

certain size-distribution was assumed to determine the rate of collisional evolution of the

debris, this only feeds into this work through the mass accretion rate, it does not influence

any of the aspects of this study.

3.2.2 Thermal Evolution Code

As stated earlier, there are many estimates for the initial LMO depth; however, no

geochemical modeling estimate has called for an entirely molten early Moon.
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Additionally, Salmon and Canup (2012) have argued that a cold “parent body” (about 40%

of lunar mass), which would not have undergone intense bombardment, would have formed

shortly after the giant impact. Thus, here I assume that the Moon formed with a nearly

solidified interior and a molten exterior (e.g. Solomon, 1986). I use a nominal LMO depth

of 1000 km similar to Elkins-Tanton et al. (2011) for this work and in Section 3.3.2 I show

that the LMO solidification time is rather insensitive to the initial depth. I recognize that

the Moon could have a liquid outer core (Williams et al., 2014; Matsuyama et al., 2016);

however, provided it is not undergoing significant solidification (and attendant heat loss),

that should be inconsequential to the LMO’s overall thermal evolution. I also ignore the

lunar core formation process since Solomon (1980) showed that it only raised the average

temperature of the Moon by 10 K.

Unlike, for example, Minear and Fletcher (1978) and Elkins-Tanton et al. (2011), I did

not explicitly model the geochemical crystallization of the LMO. I am interested in how

re-impacts affected the bulk thermal properties of the LMO (e.g. its overall solidification

time), rather than the geochemical internal structure of the Moon. This choice simplified

the code and made it faster, which allowed me to explore a wider parameter space to better

understand the effect of re-impacts. This is further justified by Minear and Fletcher (1978),

who found that the LMO solidification time is mainly dependent on the mode of heat

transportation, crust thermal conductivity, and final crustal thickness. A limitation of not

modeling the geochemical crystallization process is that there is not a natural prescription for

what fraction of the solidified material should sink or float. To approximate how crystallizing

material would partition according to density, initially, for each iterative step, all material

that solidified is assumed to be denser than the LMO and thus is added to the top of the

solid interior. To model floatation crust formation, when the LMO depth decreases to

100 km, instead of all crystallizing material sinking to the interior, a fixed fraction (viz. 45%)

is directed to the surface to form crust. This is similar to Tian et al. (2017) who used a

40% fraction in the final 110 km of the LMO with the crust beginning with a thickness of 5 km.
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I choose this partitioning fraction to closely replicate the geochemical evolution in

Elkins-Tanton et al. (2011) and the current crustal thickness of the Moon (Wieczorek et al.,

2013).

My Python code iterates over a minute LMO volume segment, which is determined by

dividing the initial LMO volume by a user defined number of segments. At each iteration, the

total energy released through the modeled surface is the sum of energy released due to secular

cooling and partial solidification of the LMO. The total energy is allowed to be released both

via direct thermal radiation and conduction depending on the surface conditions. Unlike

Elkins-Tanton et al. (2011), I do not assume that an early atmosphere would be capable of

maintaining a free, liquid surface to the LMO. Instead, I allow quench crust to form if the

conditions are suitable (see Section 3.2.2.1). Quench crust is a rapidly solidified layer of crust

that is approximately the same composition as the liquid magma. Therefore, in this work,

the LMO cooling is initially controlled by thermal conduction through the quench crust.

The temperature in the LMO is estimated by calculating the temperature at the

solid-liquid boundary at the base of the LMO and using the adiabat slope to calculate

the temperature at a given radial position. By definition, the temperature at the solid-liquid

boundary will be the solidus temperature of the LMO at the relevant depth/pressure. I use

the same solidus temperature equation (Equation 3.2) as in Elkins-Tanton et al. (2011). The

solidus temperature (in Kelvin) is given by

Ts(r) =
(
− 1.3714× 10−4

)
r2 − 0.1724r + 2134.15− 4.4

0.2L+ 0.01
, (3.2)

where r is the radial position from the Moon’s center in km and L is the remaining liquid

fraction of the LMO ranging from 1 to 0.
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The surface temperature is calculated self-consistently by equating the conductive flux

through the crust to the radiative flux on the surface as given by

κcρccc

(
Tbc − Ttc

dc

)
= εσ

(
T 4
tc − T 4

e

)
, (3.3)

where κc is the thermal diffusivity of the crust, ρc is the density of the crust, cc is the

specific heat capacity of the crust, Tbc and Ttc are the temperatures at the bottom and at

the top of the crust respectively, dc is the crustal thickness, ε is the emissivity, σ is the

Stefan–Boltzmann constant, and Te is the equilibrium temperature of the surface in the

absence of internal heat sources. At each iterative step, I solve for the surface temperature

(i.e. Ttc) that equates the conductive and radiative fluxes.

Whether quench or floatation crust is present on the surface, the simple conductive

energy release is complicated by re-impacting debris, which may puncture holes into the

crust. At each iteration, I consider the area of holes that are punctured by impacts (see

Section 3.2.2.2). I calculate the equilibrium quench crust that would form in a particular

hole and I account for the increased conductive flux (due to the thin layer of quench) in the

energy release calculations.

Since I use increments of constant volume rather than constant time, it is necessary to

calculate the time taken for each volume increment to solidify, which is simply the energy that

must be released in that step divided by the net heat flux at the lunar surface. Note that the

quantity of material accreted, and thus the area of holes produced during the solidification

of a volume increment is dependent on the time taken, but that the area of holes produced

will also influence the time taken. As such within the calculation for each volume increment

an iteration is required to ensure consistency. While this adds to the computational cost

of each volume increment calculation it converges quickly and the very large variation in

solidification rates over a complete run makes this preferable to using increments of constant

time.

The iteration is terminated when 1% by volume of the initial LMO remains.
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Previous work, such as Elkins-Tanton et al. (2011), typically stop their calculations

at that point since the remaining liquid consists of incompatible elements and is proposed

to be the ur-KREEP layer (i.e. the hypothesized source region of KREEP elements on

the lunar surface) (Warren and Wasson, 1979). I list the nominal values for the relevant

parameters used for these calculations in Table 2.

During the thermal evolution of the LMO, it is likely that it had additional heat sources

due to some or all of the following: secular cooling of the core (e.g. Zhang et al., 2013),

radiogenic heating (e.g. Meyer et al., 2010; Elkins-Tanton et al., 2011), tidal heating (Meyer

et al., 2010; Chen and Nimmo, 2016), and electrical induction heating (Herbert et al., 1977).

In this work, I do not explicitly consider individual heat sources but I allow for additional

energy to be added to the LMO during its thermal evolution (see Section 3.4.1).

3.2.2.1 Quench Crust

Quench crust at the early stage of the LMO’s thermal evolution has been considered

inconsistently, with some works having included it (e.g. Minear, 1980), while others having

disregarded it (e.g. Elkins-Tanton et al., 2011). That choice has a dramatic effect on how

long the LMO takes to solidify up to the point at which floatation crust formation begins.

When quench crust is not considered, magma radiates directly to space and consequently,

cooling of the LMO is extremely rapid. On the other hand, when quench crust is considered,

thermal evolution of the LMO is always conductive. That makes the cooling slower since

the conductive flux is only proportional to the temperature difference between the top and

bottom of the quench crust. Quench crust has also been considered for Mercury (Riner et al.,

2009), which, like the Moon, may have also had a floatation crust form from a magma ocean

(Vander Kaaden and McCubbin, 2015).

I argue that quench crust would have been present for two reasons. First, I compare the

convective flux from the LMO to the radiative flux from the surface.

46



Table 2: Nominal Parameter Values

Symbol Value Units Description Reference
Sa 1.5× 10−4 K/m Adiabat Slope Zhang et al. (2013)
dm 1000 km LMO Initial Depth Elkins-Tanton et al.

(2011)
df 100 km Floatation Crust

Formation Depth
Elkins-Tanton et al.
(2011)

fp 0.45 – Floatation Crust
Partition Fraction

Set to match lunar
crustal thickness

zm 1% – Residual LMO Warren and Wasson
(1979)

Hf 4.187× 105 J/kg LMO Heat of Fusion Elkins-Tanton et al.
(2007); Piskorz et al.
(2014)

αm 3× 10−5 1/K LMO Thermal
Expansion Coefficient

Elkins-Tanton et al.
(2007)

ηm 103 Pa · s LMO Dynamic
Viscosity

Bottinga and Weill
(1972)

ρm 3.0 g/cm3 LMO Density Meyer et al. (2010)
ρc 2.7 g/cm3 Crust Density Gast and Giuli (1972)
ρq 2.7 g/cm3 Quench Density Set equal to crust value

for quench floatation
cm, cc, cq 1256.1 J/kg · K LMO, Crust & Quench

Specific Heat Capacity
Elkins-Tanton et al.
(2007); Eppelbaum et al.
(2014)

κm, κc, κq 10−6 m2/s LMO, Crust & Quench
Thermal Diffusivity

Elkins-Tanton et al.
(2007); Eppelbaum et al.
(2014)

dq 10 m Maximum Quench
Thickness

Rathbun et al. (2002);
Matson et al. (2006)

Tmelt 1000 K Quench Melting
Temperature

Eppelbaum et al. (2014)

Te 250 K Equilibrium Radiative
Temperature

Approximate lunar
equilibrium temperature
without an atmosphere

ε 1.0 – Emissivity Idealized perfect emitter
ag 1.6 m/s2 Acceleration Due to

Gravity
Approximate surface
value
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If the LMO radiated directly to space with a surface temperature > 1000 K and an equilibrium

temperature of 250 K, convection would not be able to deliver heat to the top of the LMO

fast enough to balance the rate of heat loss by thermal radiation. As such, quench crust

would form on the surface. This can be shown using the Nusselt number (Nu), which is the

ratio of convective and conductive heat fluxes and is given by

Nu = a ·Raβ, (3.4)

where a and β are constants. I use a = 0.124 and β = 0.309 from experimental work by

Niemela et al. (2000) (see Appendix B.1 for additional details). Ra is the Rayleigh number,

which is given by

Ra =
ag · ρm · αm ·∆T · d3m

ηm · κm
, (3.5)

where ag is acceleration due to gravity, ρm is the density of the LMO, αm is the thermal

expansion coefficient of the LMO, ∆T is the temperature difference, dm is the depth of the

LMO, ηm is the dynamic viscosity of the LMO, and κm is the thermal diffusivity of the

LMO. Using an initial ∆T of 150 K (adiabatic temperature change over 1000 km) along with

nominal values from Table 2, Ra is approximately 2× 1022 and in turn, Nu is approximately

106. The conductive heat flux of the LMO is given by

Fluxmcond = κmρmcm
Tmb − Tmt

dm
, (3.6)

where κm is the thermal diffusivity of the LMO, ρm is the density of the LMO, cm is the

specific heat capacity of the LMO, Tmb and Tmt are the temperatures at the bottom and at

the top of the LMO respectively, and dm is the thickness of the LMO. Using the nominal

values along with initial values for Tmb equal to 1912 K (the solidus temperature at the

initial solid-liquid boundary) and Tmt equal to 1400 K (the solidus temperature at the top

of the LMO initially, which I thus expect to be the temperature at the base of the quench

layer), the conductive flux is equal to ∼ 2 × 10−3 W/m2. By using Nu, I calculate the

convective flux to equal ∼ 2× 103 W/m2.
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This is about two orders of magnitude smaller than the radiative flux of a surface

with a temperature of 1400 K and an equilibrium temperature of 250 K (i.e. ∼ 105 W/m2).

Therefore, a substantial atmosphere would be required to decrease the radiative flux from

the surface and thus to prevent quench crust formation.

I will now consider the plausibility of a thick early lunar atmosphere. It is possible that

an early lunar atmosphere was generated by vapor outgassed by the LMO and/or water

released by impacts. That was likely the case for the Earth, where an early steam atmosphere

may have kept the surface from rapidly solidifying (i.e. forming quench crust) (Abe and

Matsui, 1986). The Moon, however, is depleted in volatiles relative to Earth (Taylor and

Wieczorek, 2014), and being less massive has a significantly larger surface area to mass ratio

such that any atmosphere will be spread more thinly. Furthermore, the Moon formed at

approximately the Roche limit (Canup, 2004). Thus, any initial atmosphere would have

been highly susceptible to Roche lobe overflow (e.g. Repetto and Nelemans, 2014), especially

considering the large scale height a hot early lunar atmosphere would have had. There are

also other depletion mechanisms to consider including hydrodynamic escape (e.g. Pepin,

1991), impact removal (e.g. Melosh and Vickery, 1989) and charged particle interactions (e.g.

Luhmann et al., 1992). Thus, it seems unlikely that the Moon was able to retain a substantial

atmosphere for at least 1,000 years (the approximate time required to start forming floatation

crust according to Elkins-Tanton et al. (2011)). As such, I consider quench crust to have

been present atop the LMO.

I use the work of Matson et al. (2006) for Loki Patera on Io as a model for quench crust

formation and evolution. Their model considered Loki Patera to be a silicate ‘magma sea’

that is large enough to have negligible shore influence and deep enough to ignore floor effects.

That model should be readily extensible to the LMO in which there were no shores and

which was deep. Matson et al. (2006) also argued that though material that solidifies out of

magma is generally denser than the magma itself and thus should sink (e.g. Walker et al.,

1980; Spera, 1992), solidified material should be buoyant due to trapped volatiles until it

grows to a certain maximum thickness.
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As solidified material gets thicker, additional material would be solidifying at greater depths

meaning that the bubbles would be smaller and provide less buoyancy. As such Matson et al.

(2006) argued at greater than approximately 7 m thickness (for magma on Io), the solidified

layer should sink. Similarly, quench crust thicknesses have been estimated to be about 6 m

for Hawaiian lava lakes (Rathbun et al., 2002). This suggests that maximum quench crust

thickness in the order of 10 m may be ubiquitous to silicate magmas on any planet. Hence,

for this work, I allow quench crust to growth up to a nominal maximum thickness of 10 m.

Equilibrium quench crust thickness is calculated by equating the convective heat flux out

of the LMO, the conductive heat flux through the quench crust, and the radiative flux from

the top of the quench crust. Once the convective heat flux of the LMO has been calculated,

I then calculate the temperature at the top of the quench crust by setting the convective

heat flux from the LMO equal to the radiative heat flux from the quench crust surface using

Ttq =
(Fluxmconv

εσ
+ T 4

e

)1/4
, (3.7)

where Ttq is the temperature on top of the quench crust, Fluxmconv is the convective heat

flux of the LMO, and Te is the equilibrium temperature of the atmosphere. With the

temperatures at the bottom and at the top of the quench crust defined, the thickness of the

quench crust can then be calculating by setting the conductive flux through the crust equal

to the convective flux of the LMO as given by

dq = κqρqcq
Tmelt − Ttq
Fluxmconv

, (3.8)

where dq is the thickness of the quench crust, κq is the thermal diffusivity of quench crust,

ρq is the density of quench crust, cq is the specific heat capacity of quench crust, and Tmelt

is the melting temperature of quench crust.

Quench crust growth rate may be quantified using the Stefan problem (see Appendix

B.2). However, since timesteps in this work are larger than the time required to form quench

crust, I do not explicitly calculate quench growth at each iteration. Additionally, as stated

above, an early lunar atmosphere may have affected quench crust stability.

50



Though I do not explicitly model an early lunar atmosphere, this formulation is sufficiently

general to indirectly mimic an atmosphere (using emissivity and equilibrium radiative

temperature).

3.2.2.2 Incorporating Re-impacts

At each iterative step, the code looks up the mass of debris that impacted onto the

Moon during that timestep using the results mentioned in Section 3.2.1. As stated there, the

mass of debris can be accurately quantified; however, the size distribution of the impactors

is difficult to estimate due to the lack of constraints. In addition, even if a certain size

distribution is assumed, it is unclear how hole diameter is related to the size and the velocity

of an impactor. The diameter of a hole is also likely dependent on the crustal thickness and

the strength of the crust, with both changing over time. As such, rather than attempting to

model the production of individual holes at each timestep, I utilize a conversion factor, k,

which is defined so that

Aholes(tstep) =
Mimp(tstep)

k
, (3.9)

where Aholes(tstep) is area of holes produced on the surface during a certain timestep

and Mimp(tstep) is impacting mass during that same timestep. Thus, k has units of kg/m2.

This method allows me to characterize bulk properties of the thermal evolution of the LMO

without making assumptions about the impactor size or velocity distributions or the process

of hole production.

There are no true bounds for k, however very small values are unrealistic. For instance if

k = 103 kg/m2, that would mean that ∼ 4 ·1016 kg of accreted mass (equivalent to a ∼ 30 km

object with a density of 3 g/cm3) would produce an area of holes that is equivalent to the

surface area of the Moon. For the lowest k value used in this work (i.e. k = 105 kg/m2),

∼ 4 · 1016 kg of accreted mass would produce an area of holes equal to about 1% of the lunar

surface area or a single hole with a radius of about 360 km.
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For this example, if the crustal thickness was 4 km, it means that impacting material

is able to displace crustal mass about two orders of magnitude more than its own mass.

On the other hand, larger values of k means that, though the Moon is accreting mass by

impacts, the conditions are such that few to no holes are produced, with the no holes case

represented by the limit where k → ∞. This could be due to small impactors, low-velocity

impactors, a thick crust, and/or a high strength crust. For the largest k value extremum I

use k = 109 kg/m2. In this case, only a small area of holes, equivalent to a single hole with a

radius ∼ 4 km, is produced by my hypothetical 30 km impactor, which is again an unlikely

scenario. To estimate what might be typical values, recall that the final lunar crust is around

45 km thick, and so thicknesses of around 10 km will be typical during LMO solidification.

It seems reasonable to expect that a 10 km impactor could produce a hole of at least 10 km

diameter in 10 km thick crust, which would correspond to k ∼ 107. As such, the lower and

upper bounds cover the range between a very intense bombardment that produces large hole

areas and a very feeble bombardment that produces small hole areas, while I expect that

values of k around 107 may be typical.

3.2.2.3 Distribution and Redistribution of Crustal Material

Though I do not explicitly model individual impacts, there are certain physical effects

that need to be implemented in the code to make the calculations realistic. One such effect is

to allow holes to be closed naturally by newly formed floatation crust. This is implemented

by dividing newly formed floatation crust material between existing crust and holes according

to the surface area covered by each. The other effects that need to be considered are allowing

impacts to occur in both non-impacted and previously impacted areas of the Moon and the

conservation of crustal material. To account for allowing impacts in both non-impacted areas

and previously impacted areas, when a new hole area is generated it is divided between areas

that do and do not contain holes according to the surface area of the Moon covered by each

so that a uniform probability of impact at any point on the lunar surface is maintained.
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To ensure conservation of crustal material, when new hole area is generated the volume of

crust removed from the new holes is spread across the remainder of the lunar surface.

3.2.3 Convergence Tests

It is important to ensure that a sufficient number of volume segments (and equivalently

sufficiently small timesteps) is used such that results are not dependent on the number of

volume segments used. In particular, since the mass added to the Moon during any given

numerical step is dependent on the timestep, too few volume segments (equivalently timesteps

that are too large) will generate very large holes. The conservation and redistribution of

crustal material will usually ensure that saturation, i.e. the total area of holes approaching

the surface area of the Moon, is appropriately handled. If, however, the area of holes added

in any time step is a large fraction of the surface area of the Moon there is a danger that this

will break down and cause the total area of holes to exceed the surface area of the Moon.

Since the conversion of impacting mass into hole area is governed by k the number of volume

segments required for convergence will also depend on k. Therefore, I conducted a number

of convergence tests by varying the impact intensity (i.e. k) and the number of volume

segments to find the minimum number of volume segments required. For all convergence

tests I used the nominal values listed in Table 2. Figure 8 shows the LMO solidification

time for the convergence tests. Overall, the less intense the bombardment (i.e. higher k

values which produce smaller hole areas) the fewer volume segments that are needed for

convergence, as expected. When the largest debris is 100 km, for k ≥ 107 kg/m2, I find that

105 volume segments is sufficient. For k = 106 kg/m2 I find that 3× 105 volume segments is

sufficient and for k = 105 kg/m2 I find that 6 × 105 volume segments is sufficient. When

the largest debris is 500 km, for k ≥ 107 kg/m2 I find that 1.5 × 105 volume segments is

sufficient and for k = 106 kg/m2 I find that 5× 105 volume segments is sufficient.
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Figure 8: Convergence test of the LMO solidification time (on the top) for varying levels
of impact intensity (i.e. k) as a function of the number of volume segments. Shown on
the bottom is the difference between a solidification time and the solidification time with
the most volume segments for a particular set. Colored markers and lines are used for the
different k values. The filled markers and solid lines correspond to the case when the largest
debris (LD) is 100 km. The open markers and dashed lines correspond to the case when
the LD is 500 km. Black filled circles show the no impacts runs. Note that these are almost
completely overlain by the k = 109 kg/m2 points. The solid black line marks the 0% point
and the dashed black line marks the -2% point (the point at which a particular k value is
considered converged).
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3.3 Results

3.3.1 Surface Area with Holes

In Figure 9 I show the effect of k on the percentage of the Moon’s surface that has been

impacted at the end of the iteration. For large values of k (∼ 109 kg/m2), the percentage

of the Moon with holes is close to zero and when k is small (≤ 106 kg/m2), nearly all of

the Moon’s surface had holes after the LMO solidified. Since both newly formed crustal

material and crustal material removed from newly formed holes are distributed equally across

the lunar surface, the crust thickness of holes will not catch up to the crustal thickness

of non-impacted areas. Therefore, holes should theoretically be identifiable at the end of

the LMO solidification since their crustal thicknesses will be less than non-impacted areas.

In Figure 9 I show results for two populations of debris, one with the largest object being

100 km in size (the nominal case) and one with the largest object being 500 km in size. For

the 500 km case, the bombardment intensity does not decrease as rapidly as for the 100 km

case (as shown in Figure 7), and as such, for a given k value, the 500 km case produces more

holes. The runs for the various values of k had different numbers of volume segments to

ensure convergence, as described in Section 3.2.3

3.3.2 Lunar Magma Ocean Solidification Time

In Figure 10 I show the fraction of the magma ocean remaining as a function of time

for conditions matching those used by Elkins-Tanton et al. (2011), i.e. a 25 K equilibrium

radiative temperature, which I refer to as the EBY11 cooling model. I find a similar, but

slightly longer solidification time of 26 Myr for these conditions, compared with the ∼ 10 Myr

found by Elkins-Tanton et al. (2011). This difference is likely because I did not explicitly

model the fractional crystallization process like they did in their work.
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Figure 9: Surface area of the Moon that has holes at the end of the iteration as a function
of k. Cases where the largest debris is 100 km in size is shown with closed orange squares,
while cases where the largest debris is 500 km in size is shown with open blue circles.

That the difference is only a factor of ∼ 2-3 however reassures me that I am capturing the

broad characteristics of the cooling process and that I can realistically explore the effect of

re-impacts on the cooling process. Elkins-Tanton et al. (2011) does not consider quench crust,

rather keeping the liquid surface of the magma ocean exposed to space until plagioclase

formation begins. For the solid blue curve in Figure 10 I turn off the quench crust to replicate

the fast early phase of Elkins-Tanton et al. (2011) in which the first 80% of the LMO solidifies,

which here I find takes around 100 years. Though quench crust does not significantly alter

the overall solidification time of the LMO, it prolongs the early, rapid cooling phase by

∼ 104 years, as shown by the dashed orange curve in Figure 10.

In Figure 11 I show lunar crustal thickness over time as a function of k. As k is reduced,

the time taken for the completion of crust formation (and solidification of the LMO) decreases

substantially, from ∼ 32 Myr at k ≥ 109 kg/m2 to only ∼ 5 Myr at k = 105 kg/m2.
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Figure 10: Fraction of magma ocean remaining over time. The EBY11 cooling model is
shown by the solid blue curve and the EBY11 model with quench crust is shown by the
dashed orange curve. In the EBY11 model, the initial rapid cooling is due to the thermally
radiative global surface, while the slower cooling from ∼ 100 years onward is due to the
presence of the thermally conductive global lid. The case with quench crust is similar to the
EBY11 model, except the rapid cooling is delayed by ∼ 104 years. Although nominally I used
250 K as the equilibrium radiative temperature, here I used a value of 25 K to approximate
the temperature used in the EBY11 model.

For k & 109 kg/m2, the crust evolves as essentially identically to there being no holes

generated by re-impacting debris. Nominally the number of volume segments used was 105;

however, for k = 106 kg/m2 and k = 105 kg/m2 more volume segments (3× 105 and 6× 105

respectively) were used for convergence as noted above. Note that the difference between the

32 Myr here for large k values and the 26 Myr for the EBY11 model is due to the change

from an equilibrium temperature of 25 K for the EBY11 model to my nominal equilibrium

temperature of 250K.
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Figure 11: Crustal thickness over time for different k values (colored curves) compared to
the no impacts case (black curve). The curve for the k = 109 kg/m2 case is dashed so that
the no impacts case is visible. All parameters aside from k are set at their nominal values as
given in Table 2.

3.3.2.1 Model Parameter Sensitivity

Although I use the nominal input parameter values listed in Table 2 for the majority

of this work, some of those parameters are subject to uncertainty. For example, estimates

for the percentage by volume of the LMO that has to be solidified prior to plagioclase

stability vary from 60% to 80% (Longhi, 1980; Snyder et al., 1992; Elkins-Tanton et al., 2011;

Lin et al., 2017b). Thus, it is important to evaluate the sensitivity of output parameters,

particularly the solidification time of the LMO, to variability of input parameters. In Figure

12 I show the fractional change in LMO solidification time as a function of varying some

of the model input parameters (with the exception of k and the LMO dynamic viscosity).

Dynamic viscosity is not shown since it was varied over eight orders of magnitude.
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Some input parameters have the same effect on the LMO solidification time whether

impacts are or are not included. Three parameters, the maximum thickness of quench crust,

the initial depth of the LMO, and emissivity have (nearly) no effect on the solidification

time in either case. The insensitivity of the solidification time to the initial LMO depth

is consistent with Solomon and Longhi (1977). This implies that having precise values

for these three parameters is not vital. The equilibrium radiative temperature, depth

at which plagioclase formation begins, and the heat of fusion and heat capacity of the

LMO all correlate positively with the solidification time (i.e. increasing them increases the

solidification time), which is as expected. Increasing the equilibrium radiative temperature,

and increasing the depth at which plagioclase formation begins (which increases the final

depth of the crust) both act to slow down the release of thermal energy from the LMO.

Increasing the heat of fusion or the heat capacity of the LMO increases the total thermal

energy that must be released during the solidification process. On the other hand, the heat

capacity of the crust is negatively correlated with the solidification time. A higher heat

capacity in the crust increases the conductive flux through the crust, and so I would expect

it to decrease the solidification time.

Other parameters have different effects on the LMO solidification time depending on if

there are impact generated holes or not. Dynamic viscosity and the melting temperature of

quench crust have no effect on the solidification time when there are no impacts; however,

when there are impacts dynamic viscosity is positively correlated and the melting temperature

is negatively correlated with the solidification time. When there are impacts, varying

dynamic viscosity from 1 to 108 Pa·s results in a -35% to 7% change in the solidification

time. Lower dynamic viscosity values would increase Ra, which through Nu would lead to a

thinner quench layer (see Section 3.2.2.1) and thus would decrease the solidification time by

increasing the thermal flux. Lower values of the melting temperature of quench crust will

have the opposite effect since it will reduce the conductive flux through quench crust by

decreasing the temperature at the bottom of quench crust (i.e. its melting temperature).
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The heat capacity of the quench crust and the slope of the adiabat also have no effect on the

solidification time when there are no impacts but when there are impacts, they have a small

correlation with the solidification time. The positive correlation of the quench heat capacity

arises for exactly the same reason as the positive correlation with the heat capacity of the

plagioclase floatation crust. On the other hand, the negative correlation of the adiabat slope

is due to smaller values reducing the temperature difference between the bottom and top of

the LMO and thus decreasing the thermal flux out of the LMO.

From Figure 12 it can be seen that the LMO solidification time is most sensitive to

the depth at which plagioclase starts to form and the heat capacity of the crust. This is

consistent with the work of Minear and Fletcher (1978). As mentioned previously, there is a

range of estimated LMO depths at which plagioclase becomes stable. The depth could be

about the nominal value used in this work (i.e. 100 km) or as deep as 250 km (Longhi, 1980;

Snyder et al., 1992; Elkins-Tanton et al., 2011; Lin et al., 2017b). Since I do not model the

geochemistry, I limit the variable change of the plagioclase stability depth since varying it

significantly changes the final crustal thickness. With or without impacts, when I set the

depth to 70 km, the final crustal thickness was 31 km and when I set the depth to 130 km,

the final crustal thickness was 58 km. It is plausible that the thickness of the primordial

lunar crust was greater than the average crustal thickness today. However, I do not explore

that possibility in this work. Overall, these results indicate that the LMO solidification is

primarily governed by the conductive flux through the crust, which is both a function of its

thickness and its thermal properties (i.e. specific heat capacity).
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3.3.3 Kinetic Energy Imparted by Re-impacting Debris

As mentioned in Section 3.2.1, re-impacting debris will not only produce holes in the lunar

crust but they will also impart thermal energy due to their kinetic energy (see Figure 13).

Thus far I have only considered the effect of re-impacting debris producing holes. In Figure

14 I show the variation of the LMO solidification time as a result of different assumptions

regarding the efficiency by which the impactors’ kinetic energy is converted to thermal energy.

I define that efficiency, λKE , to range from 1 (all of the kinetic energy is converted to thermal

energy) to 0 (none of the kinetic energy is converted to thermal energy). When kinetic

energy is not considered, the effect of re-impacting debris is to reduce the LMO solidification

time from ∼ 32 Myr (k = 109 kg/m2) to ∼ 5 Myr (k = 105 kg/m2). Interestingly, when I

consider both hole production and thermal energy impartment by re-impacting debris, the

LMO solidification time may be longer or shorter than the no impacts solidification time (i.e.

∼ 32 Myr). If fewer holes are produced (i.e. k > 107 kg/m2) and impacts are efficient at

delivering thermal energy (i.e. λKE > 0.5), the LMO solidification time is greater than its

value when impacts are not considered. On the other hand, regardless of λKE , if impacts

generate a larger number of holes (i.e. k < 3× 106 kg/m2), the LMO solidification time is

less than its value when impacts are not considered. Thus, there are particular values of k

and λKE that balance the increased amount of heat out due to holes and the additional heat

input due to the kinetic energy of impacts. This would mean that for those values of k and

λKE , the LMO solidification time would be the same, with or without impacts.

The number of volume segments used for the different values of k are the same as

mentioned early. However, for λKE = 1, k = 3×108 kg/m2 required 5×105 volume segments

and k = 106 kg/m2 required 6 × 105 volume segments for convergence. For λKE = 0.5,

k = 3 × 108 kg/m2 required 5 × 105 volume segments, k = 105 kg/m2 required 7 × 105

volume segments, and k = 3× 105 kg/m2 required 106 volume segments. The larger number

of segments required is a result of the increased amount of heat that must be lost from the

LMO when impactor kinetic energy is considered.
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Figure 13: Energy accretion rate over time for the Earth (dark cyan and red lines) and the
Moon (blue and orange lines) for two populations of re-impacting debris based on the size of
the largest debris (LD). On the left is the accretion rate when the Moon is at a distance of
10 Earth radii and on the right when it is at a distance of 60 Earth radii.
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Figure 14: LMO solidification time as a function of k for different assumptions regarding
kinetic energy imparted by re-impacting debris. λKE , kinetic energy efficiency, of 1 signifies
that all of the kinetic energy of the impactors was imparted as thermal energy. The no
impacts solidification time is shown with a dashed black line for reference.

3.3.4 Concentrating Floatation Crust into Holes

So far I evenly divided newly formed floatation crust between existing crust and holes

according to the surface area covered by each. It may be expected that more of the newly

formed plagioclase would be drawn to the holes for a number of reasons. Due to the increased

thermal flux from the holes it is likely that convective upwellings would be located beneath

them, which could concentrate new floatation crust into the holes. Additionally, in much

the same way as a ball will tend to roll down a hill, since the holes represent highs in the

topography of the base of the crust buoyant material will tend to roll towards the holes. The

nominal case has an enhancement factor (fe) of 1, such that equal amounts of new floatation

crust per unit area go to both the holes and the rest of the crust, but I can vary fe to force

more floatation crust into the holes.
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Using the nominal values with k = 107 kg/m2 and fe = 1, the LMO solidification time is

∼ 21 Myr. LMO solidification time increases to ∼ 27 Myr and ∼ 29 Myr for fe = 3 and

fe = 10 respectively, with even higher fe values producing results that are very similar to

the fe = 10 case. Another outcome of interest is the surface area of the Moon that has holes

at the end of the iteration. Holes are considered closed when their crustal thickness is equal

to the non-impacted crustal thickness. Thus, in the nominal case, holes do not close since

their crustal thicknesses will always be less than the non-impacted crustal thickness. If holes

acquire an enhanced amount of floatation crust, they will close and thus reduce the area

of the Moon that has holes at the end of the iteration. That area is 34% for the nominal

case, while it is 3% and 0.7% when fe = 3 and fe = 10 respectively. Though floatation crust

enhancement has a significant effect on the surface area of holes; overall, it has little effect

on the LMO solidification time.

3.4 Discussion

3.4.1 Reconciling Crust Sample Ages with the Magma Ocean Solidification Time

The LMO model predicts that the ages of the primordial lunar crust will be determined

by the LMO solidification time. Assuming that lunar crustal ages have not been reset, the

crust that formed from the floating anorthosite rocks should have an age that decreases

with increasing depth below the surface. I would expect the age difference between the top

and bottom layers of the crust should approximately be the time that it took for the last

20% of the LMO to solidify. Age dating of lunar FAN samples have implied that the LMO

may have taken over 200 Myr to solidify (Alibert et al., 1994; Borg et al., 1999). However,

geochemical modeling work by Elkins-Tanton et al. (2011) showed that the LMO should

have taken about 10 Myr to solidify, and I find a maximum solidification time of around

50 Myr with the probably somewhat unrealistic scenario of minimal hole puncturing and

maximal impact energy deposition.
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Therefore, there is a discrepancy between the lunar crust sample ages and cooling models

of the LMO. The reasons for this discrepancy may be due to one or both of the following:

misinterpretation of lunar crust sample ages or the presence of additional heat sources for

the LMO. I will discuss each of these in turn.

It is possible that the primordial lunar crustal ages do not actually span 200 Myr. As

discussed by Borg et al. (2011), some FAN samples, such as sample 60025 with an age of

4.360 ± 0.003 Gya, may have recorded more recent melting events rather than the formation

time of the primordial lunar crust. If this is the case, then samples with older ages such

as samples 67016c (4.53 ± 0.12 Gya, Shirley 1983), 67075 (4.47 ± 0.07 Gya, Nyquist

et al. 2010), and Y-86032 (4.43 ± 0.03 Gya, Nyquist et al. 2006) may have recorded the

crystallization time of the primordial crust, while the younger samples may have recorded

more recent re-melting events. These melting evens may be due to both ‘background’

asteroidal impacts (Nyquist et al., 2006; Rolf et al., 2017) and re-impacting debris (Taylor

et al., 1993). Evidence to the recrystallization of some parts of the lunar crust is given by

both Ogawa et al. (2011) and Yamamoto et al. (2015) who argue that high-calcium pyroxene

material near young lunar craters was due to re-differentiation of the primordial anorthosite

crust due to impacts. To help elucidate these ages, it may be possible to delineate ages by

the crystallization time of ur-KREEP material, which is estimated to have taken place at

4.368 ± 0.029 Gya (Gaffney and Borg, 2014; Borg et al., 2015). If ur-KREEP is identified

with the final, incompatible remnant dregs of the LMO, the ur-KREEP crystallization time

would represent an upper limit to the LMO solidification time since it must have solidified

after the rest of the LMO. Hence, if I assume that the LMO solidification time is given

by the difference between the ages of the oldest crust samples and the time of ur-KREEP

crystallization, the crust samples would then indicate that the LMO solidification time was

less than 160 Myr instead of 200 Myr. Taking the ur-KREEP crystallization time as an

upper limit to the LMO solidification time improves the discrepancy between crustal age

estimates and modelling, though it does not remove it completely.
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That the ur-KREEP crystallization time is itself discrepant with some of the measured

crustal ages is however suggestive that some re-examination of crustal age measurements

may be in order.

As mentioned in Section 3.2.2, additional heat sources would have likely influenced the

thermal evolution of the LMO. For example, Meyer et al. (2010) suggested that tidal heating

may have extended the LMO solidification time to 272 Myr. To explore this effect on the

LMO, my code allows for additional constant heating. I use that to estimate the effects

of heat sources such as tidal and radiogenic heating. Such heating is often approximately

constant for the time interval of interest (e.g. Meyer et al., 2010). Using the nominal

input parameter values, I varied this constant heating rate to see the result on the LMO

solidification time. In Figure 15 I show the solidification time as a function of additional

heating for the no impacts case and three impacts cases (with k = 105, 106 & 107 kg/m2).

For the no impacts case, a heat rate of about 2.4× 1012 W is sufficient to increase the LMO

solidification time to about 300 Myrs. When impacts are included, higher heat rates are

required to increase the LMO solidification time to about 300 Myrs. For the case where

k = 107 kg/m2, the required heat rate is between 3.4 to 4.5×1012 W depending on λKE . For

the case where k ≤ 106 kg/m2 the required heat rate is more than 1.2× 1013 W. Meyer et al.

(2010) suggested that the typical tidal heating rate is around 6× 1011 W, lower than the

roughly 1012 W provided by radiogenic heating. This would not be sufficient to significantly

increase the solidification time of the LMO if impact generated holes play an important

role. Calculations by Chen and Nimmo (2016) however suggest larger typical tidal heating

rates of ∼ 4− 8× 1012 W. Tidal heating at these rates would be sufficient to substantially

extend LMO solidification provided that hole production is moderate (k > 106 kg/m2).

Tidal heating rates can be much higher than these typical values when the lunar orbit passes

through resonances (e.g. Touma and Wisdom, 1998), however these very high rates are

short lived and occur early in the tidal evolution of the Moon. Existing work thus suggests

that tidal heating can only provide a large increase to the LMO solidification time if hole

generation is not too vigorous.
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Figure 15: LMO solidification time as a function of additional constant heating. The
without impacts case is shown with orange circles. The with impacts and with λKE = 0
cases are shown with filled markers: blue triangles (k = 107 kg/m2), dark cyan diamonds
(k = 106 kg/m2), and dark red squares (k = 105 kg/m2). The corresponding λKE = 1
cases are shown with unfilled markers. The impact rate decays inversely with time beyond
100 Myr.

When considering the lunar crust sample ages, a caveat is that those samples are likely from

the upper layers of the lunar crust. This means that we may be measuring time periods that

only partially cover the time that it took for the LMO to solidify. It may be possible to

obtain crust samples from the bottom of the crust by sampling certain impact craters, such

as Moscoviense and Crisium, which may have been excavated down to the mantle (Wieczorek

et al., 2013). However, such samples are unlikely to solve the discrepancy between the LMO

solidification times estimated by sample ages and those estimated by modeling work. A

partial sampling of the upper crust would mean that the estimates based on crust samples,

which are already much longer than estimates from modeling, should be even longer.
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3.4.2 Implications for the Lunar Surface

Re-impacting debris may have affected the primordial lunar crust by shock heating it,

by puncturing holes into it, and by adding material onto it. While some of the changes

to the crust caused by re-impacting debris may not be detectable today (such as crustal

thickness variations due to refilled holes), there may be other effects that are recognizable.

One potential effect, resetting of crustal ages by impacts, has already been mentioned in

the previous section (Section 3.4.1). In the same manner, re-impacting debris may have

produced feldspathic granulitic impactites (Simonds et al., 1974; Warner et al., 1977) and

granulitic noritic anorthosites (McLeod et al., 2016). Re-impacting debris may have also

aided the enrichment of 37Cl in lunar samples due to the degassing of 35Cl (Sharp et al., 2010;

Boyce et al., 2015) by breaching the primordial lunar crust (Barnes et al., 2016). Another

consequence of breaching the crust is that quench crust would form in newly created holes.

If the lunar surface was saturated with holes (i.e. k ≤ 106 kg/m2), at the completion of the

LMO solidification approximately ∼ 1×1018 kg (0.02% of the lunar crust by mass) of quench

crust would have formed and been incorporated into the primordial lunar crust. Lastly,

re-impacting debris would have added material onto the lunar crust. As such, the early

lunar crust should have comprised of largely anorthosite rock with some debris component,

which had a similar composition to the original debris of the Moon-forming impact. I may

assume that the LMO solidified in 60 Myr based on the average age differences between four

samples (i.e. FAN sample 60025, norite samples 77215 and 78236/8, and troctolite sample

76535) that met all five of the reliability criteria identified in Borg et al. (2015). In that case,

∼ 2× 1018 kg of re-impacting debris (0.05% of the lunar crust by mass) would be added onto

the crust after the solidification of the LMO, which would be higher if the LMO solidified

faster and if some fraction of impacting material does not penetrate the crust, but remains

on the surface.
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3.4.3 Implications for the Lunar Interior and Orbital Evolution

Re-impacting debris that punctured holes in the crust would have made the LMO an open

magmatic system (e.g. O’Hara, 1977) and thus may have altered its geochemical evolution.

Periodically adding material that has the composition of the initial debris created during the

Moon-forming impact may have altered the fractional crystallization process of the LMO.

In this work, ∼ 2× 1020 kg of re-impacting debris would be added to the LMO. While this

is a small fraction (0.33%) of the initial LMO mass, addition of external material would

become more significant as the LMO mass decreases. Thus, future geochemical modeling

should allow for open system behavior to consider what effect it may have, both in the

addition of material from debris and in loss of volatiles through degassing. One possible

result of this may be the considerable variability of zinc in lunar anorthosite samples (Kato

et al., 2015). Another may be the heterogeneous distribution of water in the lunar interior.

If debris stored and periodically added water to, or allowed it to be selectively degassed

from, hole regions it may explain the contradiction between works claiming the Moon to be

hydrous (Saal et al., 2008; Boyce et al., 2010; McCubbin et al., 2010) and works claiming it

to be anhydrous (Taylor et al., 2006a; Sharp et al., 2010). Importantly, water content also

controls the stability of plagioclase, with more water delaying plagioclase formation (Lin

et al., 2017a).

As discussed in Section 3.4.1, tidal heating is not only a possible external heat source

for the LMO, but it may also be required to explain the range of lunar crust sample ages.

Tidal heating is largely dependent on the eccentricity and the semi-major axis of the lunar

orbit. Nonetheless, Tian et al. (2017) showed that the Moon’s initial tidal quality factor,

Q, and rigidity along with how those values change over time are important to its orbital

evolution. Both Q and rigidity are linked to the internal structure of the moon, particularly

the fraction that is liquid. As such the thermal evolution and the orbital evolution of the

Moon are coupled. Previous work such as Meyer et al. (2010) and Chen and Nimmo (2016)

considered this coupling but they did not include the effect of re-impacting debris.
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Tides may also affect the holes themselves by producing cracks along lines of maximum

stress. This should be more pronounced given that these surfaces are already weakened by

impacts. Thus, tidal stress may make holes larger and prolong their closure, which can be

explored in the future using finite element modeling.

3.5 Conclusions

The Moon likely formed after a giant impact. A large quantity of debris from that

impact escaped the Earth-Moon system and subsequently returned over a period of 100 Myr.

During that time, the Lunar Magma Ocean (LMO) would have been solidifying with an

early quench crust, followed by an anorthositic crust on its surface. Re-impacting debris

would have affected the thermal evolution of the LMO by puncturing holes into the crust

and delivering thermal energy to the LMO. Holes that were produced would have increased

the thermal flux that was initially limited by the conductive crust. While that would have

sped up the solidification of the LMO, thermal energy imparted by impacts would have done

the reverse, to an extent that is not yet clear. By investigating a wide range of possible

values for the amount of hole generation and the efficiency of kinetic energy conversion by

impacts, I suggest LMO solidification times ranging from ∼ 5 Myr to ∼ 50 Myr at the

extrema. Given that the range of lunar crust sample ages may be 60 to 200 Myr, the lower

estimates for the LMO solidification time would require one or more additional heat sources

(e.g. tidal heating), potentially with very high heating rates to make the LMO solidification

time consistent with the range of lunar crust sample ages. At the higher end, with moderate

hole generation and efficient kinetic energy deposition, this work suggests that the amount

of tidal heating required to bring the LMO solidification time into concordance with lunar

crust sample ages may be less than previously thought, especially if the age span of samples

that truly date LMO solidification is closer to 60 Myr rather than 200 Myr. With this simple

model I have provided insight into how re-impacting debris influences the cooling time of the

LMO.
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Nonetheless, further work is still needed to integrate all aspects of the early thermal evolution

of the Moon, including geochemistry, re-impacting debris, tides and crustal structure.
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Chapter 4

STUDENTS IN FULLY-ONLINE PROGRAMS REPORT MORE POSITIVE ATTITUDES

TOWARD SCIENCE THAN STUDENTS IN TRADITIONAL, IN-PERSON PROGRAMS

The mind is not a vessel to be

filled, but a fire to be kindled.

Plutarch

Following the growth of online, higher-education courses, academic institutions are

now offering fully-online degree programs. Yet, it is not clear how students who enroll

in fully-online degree programs are similar to those students who enroll in in-person

(“traditional”) degree programs. Since previous work has shown students’ attitudes towards

science can affect course performance, it is valuable to ask how attitudes towards science

differ between these two populations. I studied students who completed a fully-online

astrobiology course. In an analysis of 451 student responses to the Classroom Undergraduate

Research Experience (CURE) survey, I found online program students began the course

with a higher scientific sophistication and a higher sense of personal value of science than

those in traditional programs. Pre-course attitudes also showed some predictive power of

course grades among online students, but not for traditional students. Given established

relationships between feelings of personal value, intrinsic motivation and, in turn, traits such

as persistence, these results suggest that open-ended or exploration-based learning may be

more engaging to online program students due to their pre-existing attitudes. The converse

may also be true, that certain pre-existing attitudes among online program students is more

detrimental than it is for traditional program students.
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4.1 Introduction

Online courses have proliferated and are being offered by many colleges and universities

as part of their broader distance education options. In the United States, 70.7% of all

institutions of higher education and 95% of institutions with enrollment greater than 5,000

students offer distance education (Allen and Seaman, 2015). In addition, 28% of students

in higher education use distance learning for some of their coursework (Allen et al., 2016).

While many students take only a few courses online, an increasing number are enrolling in

fully-online degree programs (National Center for Education Statistics, 2014). A number of

factors such as the wider availability of technology, difficult economic conditions, and changing

perceptions of the quality of online education have contributed to increasing popularity of

online platforms, by making learning more affordable, accessible, and personalized (Means

et al., 2014).

Research has been done to understand why students do or do not choose to take online

courses instead of traditional courses (Jaggars, 2014). There are clear advantages to online

courses, such as a more flexible schedule for those balancing family, work, and school. There

are also potential disadvantages, such as the fact that some students are unwilling to enroll

in fully-online degree programs out of a desire to maintain a connection to the campus (both

the location and the people) and to have a better connection with the instructor (Jaggars,

2014). However, online students may be alleviating this disadvantage by traveling to the

campus. Clinefelter and Aslanian (2017) found that 59% of respondents to their nationwide

survey travelled to the campus in which they were enrolled (between one to five times per

year). The process of weighing these advantages and disadvantages implies that there will

be systematic differences in preferences, financial circumstances, and family considerations

between students who ultimately choose to enroll in fully-online degree programs and those

who do not.

74



The extent to which these differences extend to differences in attitudes toward academics in

general, attitudes toward specific subjects, and the efficacy of specific strategies is unclear.

Therefore, I focused on students’ attitudes toward science and how those attitudes may

affect their performance in science courses.

Attitude is an expansive topic in psychology (cf. Bohner and Dickel, 2011); nevertheless,

for this work, I focus on explicit attitudes and use the definition for “attitude” from Eagly

(1992): “a tendency or state internal to a person which biases or predisposes a person toward

evaluative responses which are to some degree favorable or unfavorable.” Attitudes, in the

context of learning, fall within the broader characterization of affect. However, in the human

brain, cognition (which includes attention, language, memory, planning, and problem solving)

and affect (which includes attitudes, emotions, interests, and values) do not operate entirely

separately from one another (e.g. Pessoa, 2008). If they were independent, it would be

unnecessary to consider affect in the context of education. However, since cognition and

affect are integrated and influence each other (e.g. Shiv and Fedorikhin, 1999; Dolan, 2002),

it is not only vital to study how they interact with one another but also how they relate to

behavior. All three–affect, cognition, and behavior–are important to learning.

Elements of student affect, such as interest in the subject and perceived value of the skills

and content taught, have previously been argued to be important to learning (e.g. Koballa

and Glynn, 2007; van der Hoeven Kraft et al., 2011; McConnell and van der Hoeven Kraft,

2011; Fortus, 2014; Lin-Siegler et al., 2016). However, the question may be asked as to

how exactly student affect is linked to cognition and behavior. Previous works have, for

example, considered how attitudes may be the cause of certain behaviors. However, there

are alternative ideas such as attitudes following behaviors and attitudes and behaviors being

reciprocal (Shrigley, 1990). There are a number of examples where attitudes do not seem to

correlate with behavior (e.g. LaPiere, 1934; Kutner et al., 1952). For example, in a study by

Corey (1937) of sixty-seven university students who were taking an introductory educational

psychology course, students who stated that cheating was wrong still changed their own

exam responses when given the opportunity to grade their own work.
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Additionally, it has been shown that attitudes towards biology were largely independent of

whether or not a student majored in biology (Rogers and Ford, 1997), showing that the

decision to major does not imply a particular attitude toward the subject. These studies

may imply that human behavior is primarily unconscious and in turn that attitudes have

little, if any, control over behavior. However, studies have shown that imagining oneself

successfully completing a task can improve performance (e.g. Sanders et al., 2004; McGlone

and Aronson, 2007) and that even false memories can measurably change behavior (Geraerts

et al., 2008). Thus, a recent review concluded that human behavior is the result of both

conscious and unconscious processes (Baumeister et al., 2011).

Since the link between affect and behavior is complex, past research on student affect and

behavior have yielded mixed and often contradictory results. For example, though Hough

and Piper (1982) and Steiner and Sullivan (1984) found that students’ attitudes towards the

subject positively correlated with their performance, Rogers and Ford (1997) found a negative

correlation between final course grade and attitude gain. Studying students’ attitudes is

further complicated by the fact that they are functions of the classroom environment (e.g.

McMillan and May, 1979), discipline or topic (e.g. Ramsden, 1998), student’s culture (e.g.

Krogh and Thomsen, 2005; Ainley and Ainley, 2011), family background (e.g. Turner et al.,

2004), student’s age or grade level (e.g. Prokop et al., 2007) and student’s gender (e.g.

Simpson and Oliver, 1985; Weinburgh, 1995; Jones et al., 2000; Miller et al., 2006; Liu et al.,

2010). These complexities indicate that further research is necessary to better understand

connections among student affect, cognition, and behavior.

The study described here compares the attitudes toward science of two groups of students:

(1) those enrolled in fully-online degree programs and (2) those enrolled in traditional,

in-person degree programs. Students in both groups were enrolled in an identical online,

introductory astrobiology course. The intent was to contribute to the larger body of research

on connections among affect, cognition, and behavior; and to the still-limited body of research

into online science learning. From this work, I make recommendations to improve future

online courses and programs for both types of students.
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4.2 Methods

4.2.1 The course and the studied population

Habitable Worlds is a 7.5-week, fully-online course intended for non-science majors, which

satisfies a general-education laboratory science credit requirement for graduation at Arizona

State University (ASU). The course and its design are described in more detail by Horodyskyj

et al. (2017). The course is open to enrollment for students in traditional degree programs

(in which it is identified as an i-course) and for students in fully-online programs (in which

it is identified as an o-course).

This study was conducted according to a research protocol approved by the Institutional

Review Board at ASU (Study #00003679). A total of 774 out of 941 students who took the

course in the Fall 2014, Spring 2015, and Fall 2015 semesters consented to having their survey

responses and course data used for this study. I further limited the analysis to students who

completed the course and responded to all of the survey items ultimately included in the

analysis (see Section 4.3.1). This left 451 students as the main sample population for this

study.

The sample population had a nearly equal number of i-course students (ni = 232)

and o-course students (no = 219). Student ages ranged from 18 to 58 years. Overall, the

course not only had a higher percentage of self-identified White students than the university

average, but also higher than the nationwide average of 63% self-identified White students

reported by (Clinefelter and Aslanian, 2017). While the o-course group had more females

than the university average, the difference was not as great as in Clinefelter and Aslanian

(2017) who found that 75% of online students identified as female. The demographic data

(all self-identified) of the students are listed and compared to those of ASU as a whole in

Table 3.
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4.2.2 The survey

The learning design of Habitable Worlds emphasizes scientific practices and often asks

students to figure out how a phenomenon works through observation and experiment. The use

of this pedagogy guided the choice of survey instrument for this study. The instrument that

was selected was the widely-used Classroom Undergraduate Research Experience (CURE)

survey, which was originally developed to measure the effectiveness of small, in-person,

course-based undergraduate research experiences in improving students’ attitudes toward

science (Lopatto, 2009). CURE items relate to student experience, career intentions, attitudes

about science, and learning style (Denofrio et al., 2007; Shaffer et al., 2010). The survey is

typically used to assess students’ attitudes after the completion of a course with a research

component (Lopatto et al., 2008; Jordan et al., 2014). Because of the shared emphasis

on scientific practices between Habitable Worlds and course-based undergraduate research

experiences, it is expected that many of the CURE survey items would be relevant to

my study population and that the large existing CURE data set would offer meaningful

comparisons to my results.

Other surveys of students’ attitudes towards science exist, ranging from topic- or

subject-specific to science in general. I considered topic-specific surveys (e.g. Thompson and

Mintzes, 2002) and subject-specific surveys such as the Biology Attitude Scale (Russell and

Hollander, 1975) and the Colorado Learning Attitudes about Science Survey for Biology

(CLASS-Bio) (Semsar et al., 2011) to be less applicable because of the interdisciplinary

nature of Habitable Worlds. There are several surveys on attitudes towards science in general

that could have been used, such as the Views About Sciences Survey (VASS) (Halloun and

Hestenes, 1996) and the Views on Science and Education Questionnaire (VOSE) (Chen,

2006). I did not use these surveys due to their limited representation in the literature to

date. The CURE survey has thus far been administered to more than 10,000 students at 122

different institutions nationwide; as noted above, this wide use affords a strong comparison

with other courses and programs.
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The CURE survey was originally designed for in-person students with a strong interest

in science. In using the survey for an online course and with non-science majors, I could not

assume its validity. For this reason, I included a factor analysis step in the analysis to help

guide my interpretation of the survey responses.

For this work, I focused on two sections of the CURE survey. The Science Attitudes

section focuses on students’ attitudes towards science. The Benefits section focuses on

students’ perceived learning and development gains as a result of taking the course. The

items used for this work are listed in Tables 2 and 3. The 22 Science Attitudes items are a

subset of the 35 items of Wenk (2000), with the item in her work regarding intuition changed

to an item pertaining to creativity in the CURE survey. These items are both positively

and negatively worded (e.g., “I like studying science” vs. “I don’t like studying science”)

according to Wenk (2000) to demonstrate complex thinking on the part of the students. The

21 Benefits items are derived from earlier survey work by Lopatto (2003).

For each of the 22 Science Attitudes items and the 21 Benefits items, the students

responded on a five-point Likert response format plus an option to not respond. For the

Science Attitudes items, the options presented were “strongly disagree,” “disagree,” “neutral,”

“agree,” and “strongly agree.” For the Benefits items, the options presented were “no gain,”

“small gain,” “moderate gain,” “large gain,” and “very large gain.” These responses were then

numerically coded to 1, 2, 3, 4, and 5 respectively for analysis, with non-responses coded

as “not applicable.” It should also be noted that students were not required to respond to

any of the items above. The Science Attitudes items were presented to the students both at

the beginning and at the end of the course, while the Benefits items were only presented to

the students at the end of the course, which follows the typical administration of the CURE

survey. The pre- and post-course surveys each took approximately 10 minutes to complete.

Certain items from the original CURE survey were excluded from the final analysis

because they were not relevant to the learning objectives of Habitable Worlds. For instance,

the Science Attitudes item relating to writing was removed because there are no writing

assignments in Habitable Worlds.
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Additionally, 10 items were removed from the Benefits items since they pertained to learning

outcomes that were not emphasized in the course. These changes were supported by the

factor analyses (see Section 3). Additionally, items that were removed had substantially

more not applicable responses, which further supported the decision to exclude those items.

4.2.3 Factor analysis

As noted above, I excluded one item from the Science Attitudes section and 10 items

from the Benefits section as those were not applicable to the course (see Tables 2 & 3). This

left 32 items for further analysis.

Gardner (1995) recommended that a scale should be internally consistent (using Cronbach

Alpha values) and unidimensional (i.e., measures one attitude construct). A high Cronbach

Alpha value can indicate high internal consistency but it can also mean that there are items

that cluster together into multiple constructs. Therefore, in addition to calculating Cronbach

Alpha values, factor analyses were used to ensure that the scales are unidimensional.

I conducted a maximum likelihood, oblique rotation exploratory factor analysis to

identify latent factors in the data following recommendations of Preacher and MacCallum

(2003). The 21 Science Attitudes items were analyzed separately from the 11 Benefits items

because of their different response options (i.e., agreement or disagreement for the Science

Attitudes items versus no to high gain for the Benefits items). Since I was interested in

the effect the course had on students’ attitudes towards science, I chose to use the change

in response scores from pre- to post-course rather than pre- or post-course values for the

factor analysis of the Science Attitudes items. The Benefits items were only administered

post-course; therefore, I used those for the factor analysis. A confirmatory factor analysis was

also performed for which the robust diagonally weighted least squares (WLSMV) estimator

was used, which is recommended for use with Likert response format data (Flora and Curran,

2004; Brown, 2014; Li, 2016).
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I calculated the exploratory factor analysis in R using the package psych (Revelle,

W., 2016), while the confirmatory factor analysis was done with the lavaan package (Rosseel,

Y., 2012). I identified the number of factors to extract through a combination of scree plot

analysis and parallel analysis (Horn, 1965; Cattell, 1966). An oblique promax rotation was

used to allow inter-factor correlation, if present.

4.3 Results

4.3.1 Factor analysis

A two-factor solution was the most appropriate for the Science Attitudes items, while

the Benefits items could be described by a single factor. I retained only items with loadings

greater than 0.5 for the Science Attitudes items. All Benefits items loaded very strongly

onto a single factor. The rotated solutions are shown in Tables 13 and 14 in the Appendix. I

named the two Science Attitudes factors Scientific Sophistication (SS) and Personal Value

(PV), while the Benefits factor was simply called Benefits. Table 4 shows the items that

grouped into each of the Science Attitudes factors and Table 5 shows the items that grouped

into the Benefits factor. Since the items that grouped into the SS factor were negatively

worded, I reverse scored them so that a positive combined SS factor score would mean an

increase in scientific sophistication. The internal consistencies were α = 0.85 for the SS

factor, α = 0.69 for the PV factor, and α = 0.97 for the Benefits factor.
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I considered a three-factor solution for the Science Attitudes items; however, the third

factor was considerably weaker and was roughly the result of splitting up the SS factor

into two factors. Additionally, a scree plot analysis did not support a three-factor solution.

Therefore, I decided against a three-factor solution for the Science Attitudes items. A

confirmatory factor analysis using data from the Spring 2016 offering of Habitable Worlds

further supports this specific factor solution. This independent sample included 203 complete

and consented responses. The results indicate an acceptable fit (CFI = 0.95, TLI = 0.94,

RMSEA = 0.03). Therefore, I am confident that the specified factors are robust.

4.3.2 Factor correlations

To calculate correlations between the factors listed above and the final course grade, I

grouped the items within a single factor into one composite scale for each student. This

was done by taking the mean of all items within a factor for each student. See Table 6 for

Pearson correlation coefficients for the course grade in comparison to the three composite

scales (two for the Science Attitudes items and one for the Benefits items).

Table 6: Correlation of the two Science Attitudes factors (difference of pre- and post-course
responses), the Benefits factor (post-course responses), and the final course grade (numerically
coded e.g. “A” = 4, “B” = 3, etc.) for the whole cohort (correlations with a p-value ≤ 0.05
are highlighted in orange).

Course Grade Scientific
Sophistication (SS)

Personal Value
(PV)

Scientific
Sophistication (SS) 0.27

Personal Value (PV) 0.17 0.06
Benefits 0.16 0.07 0.52

The non-significant correlation between the SS factor and the PV factor illustrates that

these two factors are independent measures of latent variables in the data.
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Figure 16: Two-dimensional histogram of the number of students as a function of mean
changes in their responses to the SS factor items (horizontal axes) and their responses to the
PV factor items (vertical axes). The whole cohort is shown on the left (black), i-course
students in the middle (blue), and o-course students on the right (green).

To illustrate this further, I made two-dimensional histograms with the mean changes

in PV versus SS factor scores serving as axes, and the number of students who had that

particular change represented by color darkness (see Figure 16). The figure shows the results

for the whole cohort (Figure 16a), the i-course students (Figure 16b), and the o-course

students (Figure 16c). The desirable quadrant of the two-dimensional histograms is the

top-right quadrant since I consider both a positive change in PV and a positive change in SS

a desired outcome of the course.

4.3.3 Factor scores and factor score changes

To determine if the differences in Science Attitudes factor scores between i-course and

o-course students were statistically significant, I conducted several simultaneous linear

regressions (see Table 7 with additional models shown in Tables 15 to 20 in the Appendix).

For the SS factor, pre-course scores predicted 24.5% of the post-course score variance for the

whole cohort (Model SS1). When controlling for program type (i.e. i-course or o-course),

the model predicted 26.4% of variance of the post-course scores (Model SS2).
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Thus, there is a statistically significant effect of program type on post-course SS factor scores,

with o-course students having higher scores. For the PV factor, a model with pre-course

scores as the independent variable and the post-course scores as the dependent variable

was heteroscedastic (thus should not be considered), though the pre-course scores were

statistically significant with the model predicting 23.5% of the post-course score variance

(Model PV1). However, the model including program type was not heteroscedastic (Model

PV2). That model predicted 25.3% of the post-course score variance. Here again o-course

students had higher post-course scores. Unlike for the SS factor (Model SS3), for the PV

factor gender was also a statistically significant variable (Model PV3). In Figure 17 I

show pre-course and post-course factor scores for both SS and PV factors along with their

corresponding simultaneous linear regression models.

89



Ta
bl
e
7:

Si
m
ul
ta
ne

ou
s
lin

ea
r
re
gr
es
si
on

m
od

el
s
fo
r
pr
ed

ic
ti
ng

th
e
po

st
-c
ou

rs
e
SS

fa
ct
or

sc
or
es

(o
n
th
e
to
p)

an
d
P
V

fa
ct
or

sc
or
es

(o
n
th
e
bo

tt
om

)
of

th
e
w
ho

le
co
ho

rt
.
T
he

re
fe
re
nc
e
gr
ou

ps
fo
r
th
e
ca
te
go
ri
ca
lv

ar
ia
bl
es

ge
nd

er
(f
em

al
e
or

m
al
e)

an
d
pr
og
ra
m

ty
pe

(i
-c

o
u
r
se

or
o
-c

o
u
r
se

)
w
er
e
fe
m
al
e
an

d
i-
c
o
u
r
se

.
Li
st
ed

ar
e
st
an

da
rd
iz
ed

co
effi

ci
en
ts

(i
.e
.
co
nt
in
uo

us
va
ri
ab

le
s
w
er
e

sc
al
ed

an
d
ce
nt
er
ed

pr
io
r
to

th
e
re
gr
es
si
on

).
St
at
is
ti
ca
ls

ig
ni
fic

an
ce

(i
.e
.
p
≤

0.
05

)
in
di
ca
te
d
w
it
h
hi
gh

lig
ht
in
g.

T
he

St
ud

en
ti
ze
d

B
re
us
ch
-P
ag

an
te
st

w
as

us
ed

to
te
st

fo
r
he

te
ro
sc
ed

as
ti
ci
ty
. M
od

el
SS

2
V
ar
ia
bl
e

C
oe
ffi
ci
en
t

p-
va
lu
e

(I
nt
er
ce
pt
)

-0
.1
45

77
0.
01

13
SS

Fa
ct
or

(p
re
-c
ou

rs
e)

0.
45

68
9

<
0.
00

1
P
ro
gr
am

ty
pe

0.
30

01
9

<
0.
00

1
A
dj
us
te
d
R

2
=

0.
26

45
F
-s
ta
ti
st
ic

=
81

.9
1
on

2
an

d
44
8
D
F
w
it
h
p
<

0.
00

1
B
P

=
1.
22

79
,d

f
=

2,
p-
va
lu
e
=

0.
54

1

M
od

el
P
V
2

V
ar
ia
bl
e

C
oe
ffi
ci
en
t

p-
va
lu
e

(I
nt
er
ce
pt
)

-0
.1
36

07
0.
01

71
P
V

Fa
ct
or

(p
re
-c
ou

rs
e)

0.
47

35
6

<
0.
00

1
P
ro
gr
am

ty
pe

0.
28

02
2

<
0.
00

1
A
dj
us
te
d
R

2
=

0.
25

33
F
-s
ta
ti
st
ic

=
77

.3
1
on

2
an

d
44
8
D
F
w
it
h
p
<

0.
00

1
B
P

=
5.
78

97
,d

f
=

2,
p-
va
lu
e
=

0.
05

53

90



−4

−3

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2

Pre−course SS Factor (z−score)

P
o
s
t−

c
o
u
rs

e
 S

S
 F

a
c
to

r 
(z

−
s
c
o
re

)

Program Type
i−course
o−course

A

−4

−3

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2

Pre−course PV Factor (z−score)

P
o
s
t−

c
o
u
rs

e
 P

V
 F

a
c
to

r 
(z

−
s
c
o
re

)

B

Figure 17: Pre- and post-course Science Attitudes factor scores by program type (i-course
in blue and o-course in orange). Shown on the left (A) are the SS factor scores and on the
right (B) are the PV factor scores. Lines are simultaneous linear regression fits (see Tables 5
Models SS2 and PV2). All factor scores have been converted to z-scores.

Additionally, to test the significance of differences in pre-course factor scores between

i-course and o-course students I used the non-parametric Wilcoxon test. The test

was chosen since quantile-quantile (Q-Q) plots showed the factor scores were not normally

distributed. For both SS and PV factors, the pre-course score differences between i-course

and o-course students were statistically significant (p-values <0.001 and <0.02 respectively).

For the linear models, I also considered an interaction term between pre-course scores and

program type (Models SS4 and PV4) but those terms were not statistically significant for

either SS or PV factors (i.e. linear regression slopes are not significantly different). This

further demonstrates that the difference between i-course and o-course students is largely

due to their pre-course factor scores.
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4.3.4 Relationships between factor scores and final course grade

The SS (r = 0.27), PV (r = 0.17), and Benefits (r = 0.16) factors all displayed some

significant positive correlations with final course grades for the whole cohort. However,

the pre-course Science Attitudes factor score correlations differed between the o-course

and i-course students. Among the o-course students, pre-course factor scores showed

significant correlations with final course grade for both the SS factor (r = 0.19, p = 0.004)

and the PV factor (r = 0.16, p = 0.02), which was not the case with the i-course students.

Benefits factor scores were positively correlated with course grade for students in both groups

(r = 0.15, p = 0.03 for the o-course group and r = 0.17, p = 0.01 for the i-course group).

I conducted regressions to further explore the relationships with course grade. I used

logistic regressions, over linear regressions, since the course grades were not normally

distributed. First I modeled the odds of receiving an A grade in the course (see Tables 21

to 32 in the Appendix). Following from the correlations shown previously, I found higher

pre-course SS factor scores predicted greater chances of earning an A grade, but only for

o-course students (Models GA1 and GA2). When those models were expanded to include

university cumulative grade-point average (GPA) and students’ gender, I found the predictive

power of SS factor scores to be dramatically lower (Models GA7–9), though the pre-course

SS factor remained significant among o-course students (Model GA10). Next, I modeled

the odds of a student failing the course (see Tables 33 to 44 in the Appendix). Here I found

only a weak predictive relationship for odds of failure as a result of pre-course SS factor

scores (see Models GF1 and GF2). GPA remained a strong predictor of failure, as it was of

A grades.

Along with GPA and gender, the logistic regressions showed that the SS factor, which

quantified the pre- to post-course change, to be a statistically significant positive predictor

in predicting A grades. The SS factor had the reverse effect on course failure since it was a

negative predictor.
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However, the PV factor was not statically significant in predicting either A grades or

course failure. Program type was not a significant predictor in these models, in contrast to

the findings above for the pre-course factor scores.

4.4 Discussion

4.4.1 What do the factors represent?

4.4.1.1 Science Attitudes factors

Each of the two Science Attitudes factors represents a facet of students’ attitudes toward

science and learning science. The Science Attitudes section of the CURE survey is intended

to measure, through both positive and negative attitudes, how a student views the institution

of science, how accurately they conceive of the process of science, and how much value they

see in learning science. The high internal consistency from the CURE benchmark dataset

(shown in Tables 45 and 46 of the Appendix) indicates that respondents generally respond

similarly to these items. However, the correlational differences between the two factors

identified in this study show that there is valuable information hidden within the omnibus

Science Attitudes section.

Interpreting and naming the two factors was not straightforward. The items are

intuitively opposite, yet the results of the factor analysis indicate largely uncorrelated

factors (see Table 6). The factor labeled Personal Value (PV) includes four items. Items in

the PV factor assess whether students value leaning science. The factor labeled Scientific

Sophistication (SS) includes eight items. A high SS factor score would indicate that the

student likely has a more advanced understanding of how science works and what it means

to do science while a low SS factor score would indicate a more rudimentary understanding.
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Overall, I interpret a high SS and PV factor score to indicate the strongest “pro-science”

attitude and the reverse as indicating a combination of low value of learning science, dislike

of science, and/or disinterest in science. Changes in these scores pre- to post-course reflect

shifts in attitudes as a result of the course experience or outside factors.

Though these factors are not exactly the same as factors identified in previous works,

there are comparisons that can be made. Previous works, such as Germann (1988), have

argued for dividing attitudes pertaining to science into two factors such as “attitudes toward

science” and “beliefs about science” as in the case of Walker et al. (2013). Such a division is

consistent with the Science Attitudes factors in this work, with the PV factor being similar

to “attitudes towards science” and the SS factor being similar to “beliefs about science.”

Additionally, though their surveys were specific to either physics or biology, the “Personal

Interest” factors of Adams et al. (2006) and Semsar et al. (2011) contain items that are similar

to the items in the PV factor. This is perhaps an indication that personal value/interest is in

fact a stable latent variable. In considering the SS factor, as noted by Deng et al. (2011), I

heed that since items in the SS factor are declarative statements, a high SS factor score does

not necessarily mean that a student has a procedural knowledge of the practice of science.

Furthermore, as mentioned by Allchin (2011), agreement or disagreement to declarative

statements does not demonstrate a “functional understanding of scientific practice and its

relevance to decision making.” Thus, I do not suggest that a high SS factor score implies a

strong understanding of the Nature of Science (NOS); however, it may be the case that a low

SS factor score implies a weaker understanding of the NOS. Deng et al. (2011) listed 10 key

aspects to the NOS. Of that list, two aspects are not contained in the SS factor: “nature of

and distinction between observation and inference” and “nature of and relationships between

theories and laws.” Overall, both Science Attitudes factors have similarities with previous

work, which bolsters their validity as measures.
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4.4.1.2 Benefits factor

The 11 items that formed the Benefits factor represent skills and learning outcomes that

are consistent with the learning objectives of the course. This factor includes items that ask

students if they gained skills in interpreting results and working independently as well as

improving their understanding of the role of evidence in science. I expect high scores on this

factor to indicate that course learning objectives were met. It is interesting to note that in

Table 6 there is a strong, positive correlation between the Benefits factor and the PV factor

(r = 0.52). This indicates that there is a strong positive correlation between students’ change

in perceived value of learning science and their perceived benefits of taking the course.

4.4.2 Comparisons between o-course and i-course students

4.4.2.1 Factor scores

The linear regression models show that the primary difference between the Science

Attitudes of i-course and o-course students is their pre-course factor scores. This is

important since the regression models also show that a large part of the post-course factor

score variance is predicted by pre-course factor scores. I find that o-course students appear

to be aided in achieving a better course grade by their positive pre-course Science Attitudes.

I also find that pre-course SS factor scores were a predictor of course grades for o-course

students, which was not the case for their i-course counterparts.

The differences in Science Attitudes factor scores between o-course and i-course

students indicate that the o-course students increased their perception of personal value in

learning science, while the i-course students did not change their views on personal value

in learning science. In that sense, i-course students are similar to the CURE benchmark

(shown in Table 47 of the Appendix), which also shows little change in the PV factor from

pre- to post-course.
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For the pre-course PV factor scores, both the o-course and i-course students have a

lower perception of personal value than the CURE benchmark. As mentioned earlier, the

CURE survey is nominally administered to science majors, thus it is expected that the

pre-course perception of personal value in science should be higher for science majors. For the

post-course PV factor scores, the o-course students are higher than the CURE benchmark,

while the i-course students are lower. For the SS factor, the i-course students lowered

their factor scores from pre- to post-course (i.e., they decreased in their understanding of how

science works and what it means to do science), while o-course students showed no change.

In that sense, o-course students are similar to the CURE benchmark, which also shows

little change in the SS factor from pre- to post-course. For the pre-course SS factor scores,

the i-course students are similar to the CURE benchmark, while the o-course students

have a higher scientific sophistication than the CURE benchmark. It is surprising that the

pre-course CURE benchmark for the SS factor was not higher than both the o-course

and i-course students—something that was true for the PV factor. I would have expected

science majors to show a higher scientific sophistication than non-science majors regardless

of their degree program type (i.e. o-course or i-course). Overall, the o-course students

entered the course with both a higher scientific sophistication and a higher personal value in

learning science as compared to their i-course counterparts. The o-course students even

compare favorably to the CURE benchmark data, which primarily measures science majors’

attitudes.

There are also significant differences between i-course and o-course students in their

responses to the Benefits items. On average, the o-course students had higher self-reported

gains on the items surveyed than their i-course counterparts, though i-course students

were closer to the CURE benchmark. Course grades, as well as GPA, were not significantly

different between the two groups (see Table 8), so this finding reflects a difference in perceived

learning rather than an actual gap in learning outcomes between the two groups.
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Though these changes in perceptions did not seem to affect their course grades overall, the

differences in perception may affect their future science course performance as well as their

likelihood of continuing to be engaged with science in the future.

Table 8: Academic performance for Habitable Worlds students

Academic Performance i-course students
(ni = 232)

o-course students
(no = 219)

Habitable Worlds Grade Mean 3.34 3.39
Median 4.00 4.00

College GPA Mean 3.31 3.32
Median 3.30 3.46

Why do o-course and i-course students differ in these ways? One possibility is the

demographic differences between these two groups, which may lead to certain perceptions

about science. The o-course students are on average older than the i-course students,

which is typical of students in non-traditional degree programs (Clinefelter and Aslanian,

2016). One prior study presented evidence that online learners’ preferences with regard to

simulations or games-based learning varied by age (Hampton et al., 2016). However, none of

my linear models found age to be a statistically significant variable for predicting post-course

Science Attitudes factor scores when controlling for GPA, gender, and program type. From

this, I suggest that the distinctive characteristics and life circumstances that lead students

to enroll in fully-online degree programs also make them more likely to have more positive

attitudes toward science as well as to perceive greater benefits from the learning experience

as compared to i-course students.

A second possibility is that the differences between i-course and o-course students’

attitudes reflect a difference in why students from each group decided to enroll in the

course. As part of the pre-course survey, students were asked to rate the importance of 10

items pertaining to the reasons why they chose to take this course. For these items, the

options were “not applicable,” “not important,” “moderately important,” and “very important.”
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For the “interested in the subject matter” reason, the median response of the i-course

group was “moderately important,” while the median response of the o-course group was

“very important.” This difference was statistically significant (p = 0.001 using the unpaired

Wilcoxon test). A regression analysis indicated that this incoming difference of their interest

in the subject was a significant predictor of post-course attitudes toward science. However,

program type remained significant even accounting for the interest item. Thus, although

initial interest in the subject is more relevant than age in explaining the attitudes results,

o-course students are still more likely to have more positive attitudes toward science than

their i-course counterparts.

This relationship should be examined more directly in follow-up studies. A student’s

initial disposition towards a course clearly colors their experience in that course, but the ways

in which that disposition varies systematically could be useful for instructors or institutions.

If, as I find here, o-course students are more likely to enroll based on interest than are

i-course students, that tendency could be used to tailor instruction or course offerings.

Certainly, other similar relationships exist and would provide their own distinctive benefits

towards the goal of delivering more useful and productive learning experiences.

4.4.2.2 Relationships with course grade

The differences in factor score–course grade correlations between the o-course and i-

course students suggest an interesting motivational difference between the two groups.

The pre-course factor scores are significant predictors of success or failure in the course for

the o-course students, but show no predictive value for the i-course students. It has

already been observed that the o-course students were more likely to report enrolling

because of strong interest in the subject. Though predictive of positive science attitudes,

this preexisting interest has only a small, non-significant correlation with course grade.
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If this pattern holds in other online courses, it would suggest that success and failure among

o-course students is driven more strongly by students’ predisposition for the subject than

is the case among i-course students. It would also make the CURE survey, or a similar

survey, a valuable diagnostic tool for identifying students in danger of failure.

Unlike the pre-course measure, the post-course measures show the same correlations

with course grade among the o-course and i-course students. The post-course and the

pre- to post-course changes in both PV and SS are positively correlated with grade. The

logistic regressions showed that, while a student’s university GPA and gender were important

in predicting their course grade, their SS factor score was also statistically significant in

predicting their course grade. Similarly, although the o-course students report significantly

higher learning gains on the Benefits items, the correlations between total Benefits score and

course grade are very similar among o-course and i-course students. This indicates that

even though the o-course group exhibited more positive attitude shifts than the i-course

group, the better performing students in both groups had similar relative differences in

attitude change compared to the lower performing students.

The modest positive correlations of all three factors (i.e., PV, SS, and Benefits) with

the final course grade is consistent with previous work by Hough and Piper (1982); Steiner

and Sullivan (1984); Germann (1988); Singh et al. (2002); who found positive correlations

between students’ attitudes and course grades. However, the findings of this work are not

consistent with Rogers and Ford (1997), who found that positive attitudinal changes correlated

negatively with course grade. Though they found attitudes towards biology (particularly

personal relevance) to be correlated with course performance, the direct correlation was

weak, which led Partin and Haney (2012) to drop the term from their model. These results

illustrate the complexity of linking students’ affect to course performance.
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4.4.3 What are the implications of this work?

4.4.3.1 Students’ attitudes towards science

The two populations of students (o-course and i-course) began the course with

different attitudes towards science, and they changed their views differently after taking the

course. In spite of these differences in attitudes, there was not a significant difference in final

course grades between the two groups. This may be explained by the short duration of the

intervention (the course) in this study—only 7.5 weeks—which is very brief in comparison to

a student’s entire academic program. Over this period of time, differences in attitudes may

not affect course performance or the effect may be too small to be detected. By comparison,

in a longitudinal study over a four-year period of students’ attitudes toward science, Hansen

and Birol (2014) observed a positive relationship between the development of expert attitudes

toward science and academic performance. Therefore, although the attitudinal differences

that I observed in this work did not have a corresponding difference in final course grades

for o-course and i-course students, those attitudinal differences may predict students’

future performance in science courses or their future engagement with science.

Given the importance of students’ attitudes towards science, it might be suggested

that online courses (and perhaps traditional, in-person courses) should try to positively

change students’ attitudes towards science during the course. However, changing students’

attitudes towards science is both complex and difficult. Part of the complexity is illustrated

by the example of positive self-statements being helpful to some people but damaging to

others (Wood et al., 2009). The difficulty has been noted by a number of previous works

that found no changes in students’ attitudes towards science. For example, Gabel (1981)

found no change in attitudes towards science from pre- to post-course during an in-person,

introductory geology course for non-majors. Additionally, Cook and Mulvihill (2008) found

no change in students’ confidence in doing science or their interest in science from pre- to

post-course.
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They used a general attitudes survey during an in-person course for non- majors called

“Food, Values, Politics and Society.” However, for the same course, data from the Biology

Attitude Scale showed improved attitudes towards biology from pre- to post-course. There

are many complications that hinder an instructor’s attempts to improve students’ attitudes

toward science; for example, it becomes more difficult to change attitudes as students age

(e.g. Savelsbergh et al., 2016). In spite of these difficulties, some studies have identified

ways by which students’ attitudes toward science can be improved. For example, Wheland

et al. (2013) showed that attitudes of non-STEM majors towards science improved by

having them engage in authentic scientific activities during a four-course block of English

composition, oral communication, freshman seminar, and a special-topics course (led by a

biologist). But not all interventions are effective. A meta-analytic study by Savelsbergh

et al. (2016) found that certain teaching approaches improved students’ attitudes while

others improved achievement, but they did not find a correlation between an intervention’s

success in improving attitudes and success in increasing achievement. Thus, past studies

have demonstrated that changing students’ attitudes towards science is not straightforward.

Previous works contend that students’ attitudes towards science can be improved

by implementing certain types of instructional design such as active-learning lectures

(Armbruster et al., 2009) and building models during the learning process (Brewe et al.,

2009). Though educators should look for opportunities to improve learning outcomes, we

should avoid suggesting simplistic universal solutions. It has been shown that both positive

and negative affect can be beneficial depending on the individual and on the circumstance.

For example, George and Zhou (2002) found that when people were both aware of their

moods and they were rewarded for creativity, negative moods correlated with increased

creativity while positive moods correlated with decreased creativity. Additionally, Martin

et al. (1993) found that those with positive moods stopped a task faster than those with

negative moods when they were directed to achieve a certain goal.
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However, they found that those with positive moods continued with the task longer

than those with negative moods when they were directed to continue as long as they enjoyed

the task. Thus, the goal of the present work and work that follows should focus on helping

students with diverse affect to learn the course material and meet course objectives rather

than trying to change particular aspects of their affect. Overall, the implication of prior

findings and this work is that improving students’ attitudes with the aim of improving

learning outcomes is unreliable. Instead, I recommend using pre-course attitude surveys

to guide pedagogical decision-making. For example, the results of this work suggest that

o-course students, who express higher value in science, will be more willing to engage

with learning activities that allow them to explore and discover scientific concepts without

regard for their utility in other contexts. In the same way, i-course students may be more

interested in learning activities that emphasize the implications to everyday life or the

student’s own non-science interests. Those suggestions are supported by the work of Berg

(2005) who studied attitudes of first-year university chemistry students. They conducted

follow-up interviews of students who had the largest changes (positive and negative) in

their attitudes as measured by a pre- and post-course attitude questionnaire. They found

that students who had large positive changes in attitudes were more motivated and were

more persistent. Students who had large positive changes were also more willing to do open

ended or exploratory exercises than those who had large negative changes in attitudes. Berg

(2005) state that “for tasks requiring more self-regulated learning, such as planning open

experiments and tutorials, students with positive attitude shifts reveal greater acceptance,

while students with negative attitude shifts are more reluctant to express positive views,

even if they expressed an understanding of the relevance of such tasks.” Future work should

explore how students with different pre-course attitudes towards science respond to different

pedagogies.
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4.4.3.2 Student motivation

Motivation is sometimes conceived as a mediator between students’ attitudes toward

science (part of their affect) and their behaviors. Motivation and its role in learning have

been conceptualized differently by various authors (cf. Eccles and Wigfield, 2002). However,

motivation is commonly divided into intrinsic motivation (i.e., driven by interest or desire

to perform a task) and extrinsic motivation (i.e., driven by rewards or external forces to

perform a task). The PV factor may be a proxy for students’ intrinsic motivation since the

factor identifies a certain personal value in learning science. This would be consistent with

the findings of Glynn et al. (2007) who found that perceived relevance of science to students

(who were non-science majors) to their future careers was correlated with their motivation

(with the correlation stronger among female students). They also concluded that motivation

was correlated with student achievement (i.e., GPA). Similarly, Partin and Haney (2012)

also argued that personal relevance contributes to intrinsic goal orientation (i.e. intrinsic

motivation). Furthermore, the “Intrinsic Motivation” factor of Glynn et al. (2011) is similar

to my PV factor when the constituent items are compared and, though they used a semantic

differential scale, the “Interest and Utility” factor of Bauer (2008) may also be similar to

my PV factor. If the PV factor is in fact a proxy for intrinsic motivation, then the higher

pre-course PV factor scores of o-course students and their further increase in post-course

PV factor scores could mean that o-course students are more intrinsically motivated than

their i-course counterparts. This has implications for their education since those who

are intrinsically motivated are more likely to persist when they face obstacles (e.g. Simons

et al., 2004; Grant, 2008), which might be particularly important to the long-term success of

o-course students. Unlike i-course students, o-course students may have limited access

to on-campus support (such as tutoring centers and visiting instructor’s office hours).
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Future work can further test if in fact the PV factor is a proxy for intrinsic motivation by

considering if there are correlations between positive PV factor scores and persistence (e.g.,

by considering the number of reattempts for questions that a student initially answered

incorrectly).

4.4.3.3 Connection to the affect-cognition-behavior framework

Affect, cognition, and behavior interact with each other in complex ways, but all three

are important to learning. The results of this work demonstrate that there is a connection

between students’ affect (specifically attitudes in this work) and both cognition and behavior

(as implied by course grade). Though it is reasonable to assume that a student’s course

grade would measure their cognition and behavior during the course, future work should

address this directly. Additional specific measures of cognition (e.g. individual lesson and

question scores) and behavior (e.g. time spent on individual lessons or discussion board

participation) would allow fine-grained behaviors or learning to be tied to different science

attitudes. The significant relationships shown between SS and PV factor scores and course

grade, particularly among o-course students shows the potential of this line of research, yet

the far greater predictive power of student GPA shows the limits of the current aggregate-level

analyses. Overall, this work further demonstrates the fruitfulness of considering student

affect in education.

4.4.4 Limitations

4.4.4.1 Changes to the CURE survey and some individual items

As noted above, I excluded 11 items, one Science Attitudes and 10 Benefits items, from

the factor analysis. The decision to exclude those items does, in some ways, limit how this

work may be compared to previous CURE research.
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At the same time, it also represents a need that will be common to other large enrollment

courses that also do not include substantial writing or research activities. My CURE subset

will likely be more appropriate for those classes to use than the full CURE survey.

Starting in the Fall 2015 semester, the wording of 9 Science Attitudes items were re-

vised, two of which were ultimately included in my identified factors (see Table 4). This

revision was informed by results from an expert review wherein a group of faculty, research

scientists, postdoctoral researchers, and graduate students within our department at ASU

answered the 22 Science Attitudes items and commented on their interpretations of each item.

Based on these results, I changed the wording of 9 items to clarify them without changing

their initial meanings. To test whether these revisions changed the relationships between

the Science Attitudes items and the proposed factors, response data were divided into two

groups: original wording (Fall 2014 and Spring 2015) and revised wording (Fall 2015 and

Spring 2016). A factor analysis was then conducted for each group using only the 12 Science

Attitudes items the initial analysis found to load onto the SS and PV factors. Although the

exact factor loadings (i.e., eigenvalues) differed between the two response groups, the same

groupings shown in Table 4 held. Thus, I argue the item modifications do not materially

alter my findings with respect to the two Science Attitudes factors.

4.4.4.2 Student interpretation of survey items

It is possible that not every student in the cohort interpreted the items of the survey

in exactly the same manner. Given individual experiences and viewpoints, students in this

cohort may have taken various survey items to mean different things. For example, the

item regarding creativity (“Creativity does not play a role in science”) might evoke different

meanings to different students depending on how they interpret the word “creativity.” Some

students might associate creativity with the arts (i.e., painting, music, dance, acting, etc.),

while others might take it to mean thinking in a creative manner (which is closer to the

intended interpretation of the item).
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To understand and possibly account for this possible variance, I am in the process of

conducting think-aloud interviews with students in the current Habitable Worlds offering.

4.4.4.3 General limitations

The population of students included in my analysis accounts for only about half the total

number of students who completed the course during the period of my analysis. There are

two major reasons for this difference: non-consent for research participation, and course

attrition and non-completion of the post-course survey (typically a consequence of course

attrition). Such selection biases are common in survey research, but they raise concerns

that the retained students do not represent the overall population. Because substantially

more students completed the pre-course survey than the post-course, the average pre-course

response for each factor between the included population and those with partial responses were

compared. In spite of the large number of students who were excluded due to incomplete

post-course responses, there is no evidence that this exclusion has affected the results.

Pre-course Science Attitudes factor scores and the Benefits scores for the students who were

excluded are statistically indistinguishable from scores for the students used in this study.

Thus, although one could speculate that students who failed to complete a course may have

different attitudes than those who did, the data show no cause for concern.

The second potential selection effect is that from participant non-consent. I cannot

present survey responses from the non-consenting students, but the demographics of those

students (working from the class averages and removing the known makeup of the consenting

students) can be considered. Non-consenting students are much more likely to be i-course

students and more likely to be male. There are no significant differences in overall GPA or

course grade.
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Given this information, and working under the assumption that the decision to consent

to research participation reflects a positive disposition towards the course, I conclude that

the study population likely holds more positive attitudes toward science than the course

as a whole. However, this strengthens the claim that the o-course students differ from

i-course students.

Items using a Likert response format have a relatively constrained range; thus, analysis

of pre- to post-course changes could have ceiling (or floor) effects. To account for this, item

score changes were recalculated to show only the increase or decrease regardless of magnitude.

Scores that began and ended at the highest value were coded as an increase; scores at the

lowest value were treated as a decrease. The resultant factors were very similar to the ones

shown in Tables S1 and S2. Thus, ceiling and floor effects are not significant.

Finally, some skepticism is always warranted when working with self-reported data. Even

though self-assessments are important for learning (Guest et al., 2001) and people believe

that they can accurately assess themselves (Pronin et al., 2002), self-assessments are flawed

in some regards. Dunning et al. (2004) listed two major reasons for this: (1) there are only

small correlations between people’s perception of how skilled they are at a particular activity

and their objective performance, and (2) people are generally too optimistic about their

skills and their mastery of those skills. However, given the emphasis in the items used here

on attitudes and opinions over skills and proficiency, I argue that self-reported data are

meaningful for this work.

4.5 Conclusions

I have administered the CURE survey to three semesters of the online, introductory

astrobiology course Habitable Worlds. Additionally, data from the Spring 2016 offering

were used for the confirmatory factor analysis. I find that the items with relevance to the

experience of non-science majors in an online general education undergraduate course can be

described by three factors.
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The Scientific Sophistication (SS) factor characterizes a general understanding of science

and the process of doing science. The Personal Value (PV) factor characterizes a general

perception of personal value in learning science. The Benefits factor characterizes the

perceived skills and knowledge gained by taking this course.

The results indicate that there are significant differences between students enrolled in

traditional, in-person degree programs (i-course) and students enrolled in fully-online

degree programs (o-course). Overall, students in the fully-online program have more

positive views about science coming into the course and they shift further towards more

favorable views of science after taking the course. They also report greater benefits from

taking the course than their i-course counterparts.

I find that the pre-course CURE survey can be used as a predictor of success for the

o-course students. Interestingly, this predictive power does not hold for the i-course

students. It is expected that students in fully-online degree programs have different life

experiences, priorities, and outlooks than the traditional, in-person degree student. In

particular, there is evidence that fully-online degree program students consider interest in

the subject to be a more important factor in choosing to enroll in Habitable Worlds than do

traditional, in-person degree program students. The finding that science attitudes predict

outcomes only for o-course students should not be taken to mean that attitudes are only

useful predictors among non-traditional students. Instead, it argues for a richer consideration

of the circumstances that may change the salience of specific attitudes to the success of

specific students.

Online education has proliferated and research into its effectiveness is still being developed.

Given the steady rise in the number of fully-online degree seekers, there are clear benefits to

further research in this area. Previous works have demonstrated that students’ attitudes

towards the subject are important to their learning. In this study, I have shown differences

in attitudes towards science between traditional, in-person degree seeking students and

fully-online degree seeking students.
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These findings can now be used to better serve these different populations of students and to

compare these results with other online, introductory science courses.
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Chapter 5

SUMMARY

...and the end of all our exploring

will be to arrive where we started

and know the place for the first

time.

T. S. Eliot

I introduced affect as a theme in Chapter 1 to connect three seemly incongruent topics:

asteroid interiors (Chapter 2), the Moon’s thermal evolution (Chapter 3), and students’

attitudes towards science (Chapter 4). Below, I briefly state the main conclusions of those

three chapters.

In Chapter 2, I used a Discrete Element Modeling code to model size sorting of constituent

particles for a simulated asteroid. While previous preparatory works conducted experiments

and computer simulations to demonstrate the Brazil Nut Effect (BNE) in vertical containers,

this work is the first demonstration of the BNE in a three-dimensional self-gravitating

configuration of particles. I have argued that this type of simulation is more relevant to

asteroids. Like previous work, this work showed that the BNE is plausible on asteroids.

Yet, unlike previous work, this work showed that friction is not essential to this process. I

also showed that while the BNE is plausible, only the outer layers of asteroids are likely to

undergo size sorting. Lastly, though I did not definitively state that the driving mechanism

of the BNE is percolation (i.e. smaller particles filling into void spaces), I showed evidence

for percolation being more dominant to that of granular convection.

In Chapter 3, I used a thermal model to calculate a range of solidification times for

the Lunar Magma Ocean (LMO) while including the effect of impacts. I found that when

impacts only punctured holes into the lunar crust, the LMO solidification time was reduced

to ∼ 5 Myr for the most intense bombardment case.
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However, for a more realistic and moderate impact intensity, the solidification time was ∼

21 Myr. Both solidification times were lower compared to the ∼ 32 Myr it would have taken

without impacts. When the thermal energy imparted by impacts was also considered, the

solidification time was dependent on both the intensity of the bombardment and the efficiency

by which impacts converted their kinetic energy to thermal energy. For the lowest impact

intensities, even the most inefficient kinetic energy imparting caused LMO solidification time

to be greater than the ∼ 32 Myr it would have taken without impacts. For the highest impact

intensities, regardless of the efficiency of kinetic energy conversion, LMO solidification time

was less than the no impacts time (i.e. ∼ 32 Myr) by a factor of 5 to 6. Thus, when impacts

punctured holes into the lunar crust and imparted thermal energy, LMO solidification could

have taken as little as ∼ 5 Myr or as long as ∼ 53 Myr with the more likely case being

21 Myr. Even when the most reliable crust sample ages are considered, this would require

an additional heat source such as tidal heating to have prolonged LMO solidification. On

the other hand, if the age range of the lunar crust spans ∼ 200 Myr as some studies have

suggested, that requires a source that could have provided about 4 TW of additional heating

(or greater for more intense bombardments) throughout the LMO solidification process.

In Chapter 4, I used a survey to characterize changes in students’ attitudes towards

science as they completed an online astrobiology course. I studied two groups of students:

those enrolled in fully-online degree programs and those enrolled in traditional, in-person

degree programs. The online program students started the course with better attitudes

towards science than their traditional program counterparts. Online program students

also improved their attitudes towards science more than their counterparts during the

course. My factor analysis identified two latent variables, which were named Scientific

Sophistication and Personal Value. Though a student’s university GPA and gender were

highly predictive of getting an A grade in the course, I found that, to a lesser degree, their

Scientific Sophistication score was also predictive of getting an A grade in the course. That

demonstrated the link between a student’s affect, cognition, and behavior.
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While the survey characterized their affect, I was limited to the final course grade as

a metric for both their cognition and behavior during the course. The other latent variable,

Personal Value, may be used as a proxy for intrinsic motivation. This can be tested in the

future by identifying if higher Personal Value scores correlate with persistence in the course

(e.g. a student reattempting to answer a question that they initially got incorrect), which is

an indication of intrinsic motivation.

My scientific research has its origins in my own interests in asteroid interiors and the

Moon’s thermal evolution. Additionally, my science education research shows how affect can

influence students’ performance in the course. Taken together, this work demonstrates the

importance of affect in both scientific research and science education. Affect is a common

link that can either attract or repel both researchers and students from science. As such, I

hope that this work encourages a closer partnership between researchers and educators to

enhance both scientific research and science education.
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A.1 Considering the Effects of Particle Sizes, Shapes, and Densities on Sorting

A.1.1 Particle Sizes

In Chapter 2, I simulated a simplified asteroid composed of particles of two sizes. While
that assumption helped isolate and demonstrate the Brazil Nut Effect (BNE), asteroids are
clearly not composed of particles of only two sizes. Experimental and simulation work have
shown that having more diversity in particle sizes results in a reduced BNE (Metzger et al.,
2011). As such, for an asteroid of similar mass and size as my simulated asteroid and that
happened to experience a similar vigorous shaking due to impacts, the BNE is expected to
be less on the asteroid due to its distribution of particle sizes. Since seismic data of asteroids
are not available and will be limited going into the future, the dependence of the BNE on
the particle size distribution may provide an important means of estimating the internal
size distribution of asteroids by imaging their surfaces. Again for a given asteroid with a
certain impact history, a more binomial distribution of particles will make the BNE more
pronounced. As such, larger boulders should be seen on the surface. On the other hand, for
that same example asteroid, a wider distribution of particles would lead to a reduced BNE
meaning perhaps that fewer large boulders should be seen on the surface. Adding to the
complexity is the fact that even though the BNE is expected to occur to a lesser degree on
bodies with a wider distribution of particle sizes, as compared to the idealized binomial size
distribution, a single large particle (discussed further in Appendix A.2) may rise faster in
the case of the wider distribution of particle sizes (Liao, 2016). Thus, future work on the
BNE, should further study the effect of various particle sizes.

A.1.2 Particle Shapes

For simplicity, for isolating parameters, and due to computational limitations, most works
so far have used spherical particles in both experimental and computer simulation work.
Nevertheless, as noted in Chapter 2, asteroids are not made of perfectly spherical particles.
Thus, the effect of particle shapes on the BNE should also be considered. While Ahmad
and Smalley (1973) found particle shape to be inconsequential, Rippie et al. (1967) found
particle shape to have a substantial effect on size sorting. Rippie et al. (1967) noted that
in mixtures with small spherical particles and large particles made of paired-spheres, size
sorting occurred with less vibrational energy than in the case with spherical small and large
particles. That result can be taken to mean that it is easier to size sort non-spherical large
particles. However, they also found that when both constituent particles were particles made
of paired-spheres, size sorting seemed to be hindered. Thus, since asteroids are composed
of non-spherical particles, this may mean that the BNE will be hindered. As computer
modeling of non-spherical particles becomes more available, it would be valuable to further
explore the effect of particle shape on size sorting.
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A.1.3 Particle Densities

In Chapter 2, I made the simplifying assumption that particles of both sizes had the
same density. That assumption helped isolate the geometric effect of particle sorting (i.e. the
Brazil Nut Effect). However, it could be argued that while constituent particles of asteroids
will have different sizes, they will also likely have different densities. In the simple case
of equally sized particles of different densities, it would be intuitively expected that there
would be sorting with denser particles moving parallel to the local gravity vector. However,
experiments by Rippie et al. (1964) found no tendency for the denser lead and steel balls to
collect at the bottom of the container when they were embedded in a collection of glass balls.
They note that particles’ coefficient of restitution (the ratio of relative velocities prior to and
after a collision) and/or the specific mode of vibration used for their work might have caused
the unexpected result. Experimental work has shown that large particles with a certain
range of densities (≥ 50% to about 120% or 170% of the surrounding material density) will
rise to the top while low-density large particles (< 50% of the surrounding material density)
will move towards the bottom (Shinbrot and Muzzio, 1998). Overall, as noted by Rippie
et al. (1964) the BNE has a non-linear dependence on both particle size and density when
both are considered together. As such this is another interesting direction for future research.

A.2 The Intruder Model

A.2.1 Motivation

Most works on the BNE have used one large particle embedded in a collection of smaller
particles (e.g. Matsumura et al., 2014). This Intruder Model is convenient for tracking
the larger particle; however, it may not be the typical scenario for asteroids. To further
understand this Intruder Model and to explore the driving mechanism of the BNE, I made
a number of aggregates with one or a few large particles embedded within a collection of
smaller particles as an extension of my work discussed in Chapter 2.

A.2.2 Methods

I created 30 aggregates (10 aggregates each with one large intruder, two intruders, and
three intruders). The total number of particles in each case was 1,000. While all particles had
a density of 3 g/cm3, the smaller and larger particles had radii of 40 m and 80 m respectively,
similar to the work in Chapter 2. To properly resolve the collisions in these simulations, I
used the smaller particle radius and mass to calculate a spring constant of kn = 2.827× 109

kg/s2 and a time step of 3.949× 10−2 s. The tangential spring constant, kt, was taken to
be equal to 2

7 × kn. Table 9 shows the aggregates’ masses, bulk radii, and bulk densities
depending on the number of large intruder particles that were in the aggregates. These
masses, radii, and densities are typical values for asteroids.
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Table 9: Simulation Aggregate Properties

Intruders Mass (kg) Bulk Radius (m) Bulk Density (g/cm3)
1 8.10× 1011 525 1.65
2 8.16× 1011 538 1.71
3 8.21× 1011 521 1.70

Similar to the process described in Chapter 2, I put the 1,000 particles into a simulated

rectangular box of 2 km per side and let the particles gravitationally settle. For the masses

involved and the size of the box, I calculated the free-fall time to be about 3 hours (about

276,000 time steps). I therefore let the particles settle for a total of 700,000 time steps to

ensure that the aggregates had reached an equilibrium state before continuing with the

simulations. For the aggregate formation process, I set the coefficients of friction to zero since

I wanted to create spherical aggregates to make the analysis easier. After the aggregates

formed, friction was turned on. I used a static friction coefficient of 0.7 and a rolling friction

coefficient of 0.1 similar to nominal values used in Chapter 2 and by Matsumura et al. (2014).

Like in Chapter 2, I did not directly simulate impacts since I was again interested in the

overall effect of impacts over time. I assigned to each particle a random velocity (i.e. with a

random direction and a magnitude that was chosen between 0 and 50% the escape velocity

of the aggregate). The maximum magnitude was chosen as to not disrupt the aggregate but

rather to vigorously shake it. Simulations ran for about 104 simulation days.

A.2.3 Results

Tables 10, 11, and 12 show the initial and final radial positions (with respect to the

center of mass) of intruders for the one, two, and three intruder aggregates respectively.

Intruders that made it to the surface (as defined by having a radial position beyond the bulk

radius of the aggregate minus the radius of the intruder) are marked in blue.
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Table 10: Initial and final radial positions (with respect to the center of mass) of intruders
for the ten one-intruder simulations. Intruders that made it to the surface (defined to be
beyond a radial position of the bulk radius of the aggregate minus the intruder radius) are
highlighted with blue text.

Intruder 1
Run Initial (m) Final (m)
1 252 238
2 169 174
3 284 252
4 421 496
5 330 317
6 289 326
7 392 538
8 292 288
9 341 355
10 352 334

Except for one case (i.e. Run 2 in Table 11), intruders that made it to the surface

all started near the surfaces of the aggregates (as defined by the radial position of the

intruder being between the aggregate’s bulk radius and 110% of the aggregate’s bulk radius

minus the intruder diameter).

While Tables 10, 11, and 12 show the initial and final intruder radial positions, Figure

18 shows intruder radial positions over time for the one, two, and three intruder cases. It

should be noted that while all 10 one intruder aggregates are shown in Figure 18, only one

case is shown for the two and three intruder cases for clarity. As was the case with Tables

10, 11, and 12, for the most part, unless the intruders start near the outer regions of the

aggregates they do not rise to the surface.

Figure 19 shows the intruder initial and final positions as a percentage of the aggregate

bulk radius for all three aggregate types (i.e. one, two, and three intruder cases). While

intruders starting with a position that is less than 60% of the bulk radius have limited

movement, all intruders starting with a position that is greater than 70% of the bulk radius

were able to rise to the surface.
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Table 11: Initial and final radial positions (with respect to the center of mass) of intruders
for the ten two-intruder simulations. Intruders that made it to the surface (defined to be
beyond a radial position of the bulk radius of the aggregate minus the intruder radius) are
highlighted with blue text. Note that the numbering of the intruders is arbitrary. Yellow
highlighting indicates a starting intruder position more than 10% deeper from the bulk radius
minus the intruder diameter distance.

Intruder 1 Intruder 2
Run Initial (m) Final (m) Initial (m) Final (m)
1 239 246 311 278
2 372 515 329 523
3 409 484 368 488
4 395 492 109 114
5 349 331 168 188
6 396 503 355 514
7 320 327 288 301
8 382 495 415 540
9 388 523 420 493
10 281 271 398 525

Table 12: Initial and final radial positions (with respect to the center of mass) of intruders
for the ten three-intruder simulations. Intruders that made it to the surface (defined to be
beyond a radial position of the bulk radius of the aggregate minus the intruder radius) are
highlighted with blue text. Note that the numbering of the intruders is arbitrary.

Intruder 1 Intruder 2 Intruder 3
Run Initial (m) Final (m) Initial (m) Final (m) Initial (m) Final (m )
1 199 221 374 522 401 459
2 398 470 309 318 274 312
3 317 324 306 314 286 254
4 215 198 363 376 435 511
5 315 321 390 488 431 511
6 400 501 243 257 419 488
7 325 342 413 502 344 321
8 356 396 374 495 311 322
9 178 196 253 254 290 317
10 408 530 398 523 180 174
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Figure 18: Intruder particles tracked over time as a function of their radial positions from
the center of mass (COM). Top: 10 simulations of aggregates that each had one intruder.
Middle: One simulation of an aggregate with two intruders. Bottom: One simulation of an
aggregate with three intruders. Colors distinguish the different intruders for each case. Only
one simulation from each of the two and three-intruder simulations are shown here for clarity.
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Figure 19: Intruders’ initial and final positions with respect to the aggregates’ centers of mass.
The positions are shown as percentages of the aggregates’ bulk radii. The various marker
shapes and colors identify from which set of simulations (i.e. one intruder, two intruders,
or three intruders) the data are from. Initial positions of 60% to 70% of the bulk radius is
highlighted to mark the transition of size sorting of the intruders.

Some intruders whose starting position were between 60% and 70% of the bulk radius were

able to rise to the surface, while the movement of others were limited. This may imply that

between 60% and 70% of the bulk radius is a transition point.

Lastly, to further examine the driving mechanism for the BNE, Figure 20 shows the

initial and final position of the 1,000 particles of two sizes from Chapter 2 (Run 12). Going

radially outwards from the interior of the aggregate, the distribution of large particles spreads

(meaning that while some larger particles are moving upward, some are moving downward).

However, it is clear that smaller particles that started in the outer regions of the aggregate

have fallen inward at the end of the simulation. This may be evidence of percolation taking

place.
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Figure 20: Initial and final positions (in percentages of the bulk radius) of constituent
particles of an aggregate composed of 500 large and 500 small particles (Run 12 in Chapter
2)

A.2.4 Conclusions

Chapter 2 hinted that percolation might be the more prominent driving mechanism of

the BNE in asteroids. The Intruder Models shown here concur since aggregates made of

one, two, and three intruders only show a BNE when the intruders start near the surface of

the aggregates. Percolation explains this by noting that when the number of intruders are

limited, there are limited void space created. Void spaces are necessary for the small particles

to percolate. Since these aggregates should follow the large-scale kinetics of asteroids shaken

by impacts, I further propose that for asteroids, the important driving mechanism of the

BNE may be percolation.
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B.1 Calculating the LMO Convective Flux

For this work I used the Nusselt number (Nu) to calculate the convective flux of the

LMO (Equation 3.4). Breuer and Moore (2015) suggest that depending on the convecting

layer’s geometry, mode of heating, and boundary conditions, a may range from 0.195 to

0.339 and β may range from 1/4 to 1/3. They also note that Equation 3.4 is only valid if

the change in viscosity in the convecting layer is small. I use a = 0.124 and β = 0.309 from

experimental work by Niemela et al. (2000). It is worth noting that Ra is typically ∼ 1022

for the LMO, which is considerably higher that what is achievable by experiments. The

highest Ra experiments are also conducted with liquid helium (Niemela et al., 2000), which

is a rather different environment to the LMO. There is an alternative method of calculating

the convective heat flux. Neumann et al. (2014) and Monteux et al. (2016) used an effective

thermal conductivity for convection so that they could use the Fourier law formulation.

Nevertheless, I use the Nu procedure stated above for this work.

B.2 Stefan Problem

The Stefan problem was originally used to calculate ice thickness as a function of time as

a body of water freezes while it is cooled from the surface. However, the formulation can

be used generally for a liquid, such as magma, that is undergoing solidification. There are

two key assumptions: (1) The thickness of the solidifying layer is a function of the thermal

diffusion length as given by

ym = 2λ1
√
κt, (B.1)

where ym is the thickness of the solidifying layer as a function of time t, λ1 is a constant,

and κ is the thermal diffusivity. (2) The upper and lower boundaries of the solidifying layer

have fixed temperatures.
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For an infinitesimal time period, the crux of the Stefan problem is balancing the solidification

energy and energy released conductively through the solidified layer as shown by

ρL
dym
dt

= k

(
∂T

∂y

)
y=ym

, (B.2)

where ρ is the density of the liquid, L is the heat of fusion of the liquid, k is the thermal

conductivity of the solid, and T is temperature. By making substitutions to Equation B.2

and assuming that the density and thermal diffusivity of the liquid and the solid are the

same, gives the following transcendental equation

L
√
π

c (Tm − T0)
=

e−λ
2
1

λ1erfλ1
, (B.3)

which can be utilized to calculate λ1. Once λ1 is know, Equation B.1 can be used to find

the thickness of the solid layer as a function of time.
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Table 13: Factor analysis of the difference between the pre- and post-course responses to the
21 Science Attitudes items with corresponding eigenvalues shown (loadings of 0.5 or greater
are highlighted in orange).

Science Attitudes Item Factor 1 Factor 2
All valid 0.24 0.20
Creativity 0.77 -0.16
Experience 0.30 0.16
Just tell 0.68 -0.10

Missing facts 0.11 0.24
No major 0.66 -0.11

Not connected 0.76 -0.16
Satisfaction -0.18 0.60
Think skills -0.22 0.64

True 0.09 0.43
Do well -0.17 0.64

Experiment fail 0.27 0.10
Explain -0.20 0.62
Facts 0.27 0.21

Figure out 0.60 -0.09
Know before 0.66 -0.01
Lab confirm 0.20 0.42
Only experts 0.62 -0.08
Statistics 0.53 0.08

Straight line 0.37 0.16
Work ourselves 0.03 0.39

Table 14: Factor analysis of the post-course responses to the 11 Benefits items with
corresponding eigenvalues shown.

Benefits Item Factor Loading
Analyze 0.91

Demanding 0.88
Evidence 0.88
Integrate 0.90
Interpret 0.83

Knowledge construction 0.91
Obstacle tolerance 0.87
Real scientists 0.88
Independence 0.74

Science 0.83
Scientists think 0.85

145



Simultaneous linear regression models for predicting the post-course SS factor scores (SS
models) and PV factor scores (PV models) of the whole cohort. The reference groups for the
categorical variables gender (female or male) and program type (i-course or o-course)
were female and i-course. Listed are standardized coefficients (i.e. continuous variables
were scaled and centered prior to the regression). Statistical significance (i.e. p < 0.05) is
indicated with highlighting. The Studentized Breusch-Pagan test was used to test for
heteroscedasticity (when heteroscedasticity is present the p-values are marked with red text).

Table 15: Model SS1

Variable Coefficient p-value
(Intercept) 2.783× 10−16 1

SS Factor (pre-course) 4.968× 10−1 < 0.001
Adjusted R2 = 0.2451

F-statistic = 147.1 on 1 and 449 DF with p < 0.001
BP = 0.3275, df = 1, p-value = 0.57

Table 16: Model SS3

Variable Coefficient p-value
(Intercept) -0.16026 0.024

SS Factor (pre-course) 0.45629 < 0.001
Program type 0.30210 < 0.001

Gender 0.02819 0.73
Adjusted R2 = 0.263

F-statistic = 54.54 on 3 and 447 DF with p < 0.001
BP = 1.4596, df = 3, p-value = 0.69

Table 17: Model SS4

Variable Coefficient p-value
(Intercept) -0.15245 < 0.01

SS Factor (pre-course) 0.43097 < 0.001
Program type 0.29665 < 0.001

SS Factor (pre-course) X Program type 0.06335 0.46
Adjusted R2 = 0.264

F-statistic = 54.74 on 3 and 447 DF with p < 0.001
BP = 1.6136, df = 3, p-value = 0.66

Table 18: Model PV1

Variable Coefficient p-value
(Intercept) 5.154× 10−16 1

PV Factor (pre-course) 4.869× 10−1 < 0.001
Adjusted R2 = 0.2354

F-statistic = 139.5 on 1 and 449 DF with p < 0.001
BP = 3.9901, df = 1, p-value = 0.0458
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Table 19: Model PV3

Variable Coefficient p-value
(Intercept) -0.22015 0.00205

PV Factor (pre-course) 0.45890 < 0.001
Program type 0.29221 < 0.001

Gender 0.16264 0.0497
Adjusted R2 = 0.258

F-statistic = 53.16 on 3 and 447 DF with p < 0.001
BP = 9.8755, df = 3, p-value = 0.0197

Table 20: Model PV4

Variable Coefficient p-value
(Intercept) -0.13164 0.0212

PV Factor (pre-course) 0.52146 < 0.001
Program type 0.28161 < 0.001

PV Factor (pre-course) X Program type -0.10730 0.19
Adjusted R2 = 0.254

F-statistic = 52.19 on 3 and 447 DF with p < 0.001
BP = 5.3961, df = 3, p-value = 0.145

Logistic regression models for predicting course grade of the whole cohort. Binary
dependent variable was whether (1) or not (0) a student received an A for their course grade.
The reference groups for the categorical variables gender (female or male) and program type
(i-course or o-course) were female and i-course. Listed are standardized coefficients (i.e.
continuous variables were scaled and centered prior to the regression). Statistical
significance (i.e. p < 0.05) is indicated with highlighting.

Table 21: Model GA1

Variable Coefficient p-value
(Intercept) 0.58702 < 0.001

SS Factor (pre-course) 0.00738 0.96
Program Type -0.01455 0.94

SS Factor (pre) X Program Type 0.44155 0.038

Table 22: Model GA2

Variable Coefficient p-value
(Intercept) 0.580112 < 0.001

SS Factor (pre) X i-course 0.005799 0.96
SS Factor (pre) X o-course 0.447192 < 0.01
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Table 23: Model GA3

Variable Coefficient p-value
(Intercept) 0.7926 < 0.001

University GPA 1.4777 < 0.001

Table 24: Model GA4

Variable Coefficient p-value
(Intercept) 0.3102 0.019
Gender 0.6983 < 0.001

Table 25: Model GA5

Variable Coefficient p-value
(Intercept) 0.3712 0.0196

University GPA 1.5372 < 0.001
Gender 0.9493 < 0.001

Table 26: Model GA6

Variable Coefficient p-value
(Intercept) 0.2519 0.203

University GPA 1.5409 < 0.001
Gender 0.9839 < 0.001

Program Type 0.2469 0.32

Table 27: Model GA7

Variable Coefficient p-value
(Intercept) 0.4136 0.0111

University GPA 1.5396 < 0.001
Gender 0.9125 < 0.001

SS Factor (pre-course) 0.1403 0.26
PV Factor (pre-course) 0.1072 0.42

Table 28: Model GA8

Variable Coefficient p-value
(Intercept) 0.3302 0.11

University GPA 1.5422 < 0.001
Gender 0.9358 < 0.001

SS Factor (pre-course) 0.1193 0.35
PV Factor (pre-course) 0.1091 0.41

Program Type 0.1690 0.51
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Table 29: Model GA9

Variable Coefficient p-value
(Intercept) 0.27948 0.17

University GPA 1.54627 < 0.001
Gender 0.95390 < 0.001

SS Factor (pre-course) 0.03826 0.80
Program Type 0.16083 0.53

SS Factor (pre) X Program Type 0.36639 0.16

Table 30: Model GA10

Variable Coefficient p-value
(Intercept) 0.35852 0.0276

University GPA 1.54377 < 0.001
Gender 0.93084 < 0.001

SS Factor (pre) X i-course 0.05588 0.70
SS Factor (pre) X o-course 0.42294 0.0491

Table 31: Model GA11

Variable Coefficient p-value
(Intercept) 0.4002 0.0161

University GPA 1.5045 < 0.001
Gender 1.0478 < 0.001

SS Factor 0.5452 < 0.001
PV Factor 0.2505 0.09

Benefits Factor 0.1510 0.29

Table 32: Model GA12

Variable Coefficient p-value
(Intercept) 0.3682 0.0245

University GPA 1.4836 < 0.001
Gender 1.0346 < 0.001

SS Factor 0.5576 < 0.001

Logistic regression models for predicting course grade of the whole cohort. Binary
dependent variable was whether (1) or not (0) a student received a failing course grade. The
reference groups for the categorical variables gender (female or male) and program type
(i-course or o-course) were female and i-course. Listed are standardized coefficients (i.e.
continuous variables were scaled and centered prior to the regression). Statistical
significance (i.e. p < 0.05) is indicated with highlighting.
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Table 33: Model GF1

Variable Coefficient p-value
(Intercept) -3.3892 < 0.001

SS Factor (pre-course) 0.7794 0.0689
Program Type 0.2831 0.5884

SS Factor (pre) X Program Type -1.2514 0.0230

Table 34: Model GF2

Variable Coefficient p-value
(Intercept) -3.2382 < 0.001

SS Factor (pre-course) X i-course 0.7189 0.0633
SS Factor (pre-course) X o-course -0.4860 0.1813

Table 35: Model GF3

Variable Coefficient p-value
(Intercept) -4.2338 < 0.001

University GPA -1.3875 < 0.001

Table 36: Model GF4

Variable Coefficient p-value
(Intercept) -2.9178 < 0.001
Gender -0.8294 0.125

Table 37: Model GF5

Variable Coefficient p-value
(Intercept) -3.8872 < 0.001

University GPA -1.4027 < 0.001
Gender -0.9662 0.11

Table 38: Model GF6

Variable Coefficient p-value
(Intercept) -3.6419 < 0.001

University GPA -1.5391 < 0.001
Gender -1.0267 0.0915

Program Type -0.7672 0.22

Table 39: Model GF7

Variable Coefficient p-value
(Intercept) -4.24157 < 0.001

University GPA -1.39034 < 0.001
SS Factor (pre-course) 0.08498 0.78
PV Factor (pre-course) -0.11029 0.73
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Table 40: Model GF8

Variable Coefficient p-value
(Intercept) -4.0454 < 0.001

University GPA -1.5084 < 0.001
SS Factor (pre-course) 0.1179 0.70
PV Factor (pre-course) -0.1117 0.73

Program Type -0.6838 0.27

Table 41: Model GF9

Variable Coefficient p-value
(Intercept) -4.0926 < 0.001

University GPA -1.4799 < 0.001
SS Factor (pre-course) 0.6573 0.15

Program Type -0.5613 0.38
SS Factor (pre-course) X Program Type -1.0669 0.0684

Table 42: Model GF10

Variable Coefficient p-value
(Intercept) -4.2725 < 0.001

University GPA -1.3833 < 0.001
SS Factor (pre-course) X i-course 0.7760 0.10
SS Factor (pre-course) X o-course -0.3866 0.27

Table 43: Model GF11

Variable Coefficient p-value
(Intercept) -4.5833 < 0.001

University GPA -1.4074 < 0.001
SS Factor -0.5402 0.012
PV Factor -0.4041 0.18

Benefits Factor 0.2256 0.57

Table 44: Model GF12

Variable Coefficient p-value
(Intercept) -4.5184 < 0.001

University GPA -1.4315 < 0.001
SS Factor -0.5105 0.0148
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Table 46: Unpaired and unpublished CURE benchmark data for the Benefits items (aggregate of
over 5,000 students from the 2014-2015 academic year)

Item Label Mean Std. Dev. Factor
Interpret 3.52 1.04

Obstacle tolerance 3.49 1.05
Demanding 3.40 1.09

Knowledge construction 3.41 1.06
Integrate 3.44 1.05

Real scientists 3.57 1.08
Evidence 3.62 1.07
Analyze 3.72 1.02
Science 3.57 1.07

Scientists think 3.39 1.10
Independence 3.33 1.16

Benefits

Career 2.94 1.24
Your field 3.44 1.12
Ethical 3.11 1.22

Lab techniques 3.73 1.10
Self confidence 3.18 1.23

Learning community 3.44 1.14
Teacher 2.90 1.27

Primary literature 3.32 1.17
Oral 3.10 1.25

Writing 3.29 1.18

Excluded
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Table 47: Science Attitudes and Benefits factor scores by degree program type along with CURE
benchmark data.

Mean Valuesa

Factor Pre-course Post-course Changeb

SS 3.74 3.59 -0.16**
PV 3.94 4.05 0.11***Full cohort

(n = 451) Benefits – 3.69 –
SS 3.91 3.83 -0.08
PV 4.00 4.19 0.19***

o-course
students

(no = 219) Benefits – 3.92 –
SS 3.58 3.35 -0.23***
PV 3.89 3.92 0.03

i-course
students

(ni = 232) Benefits – 3.48 –
SS 3.64 3.54 -0.10
PV 4.11 4.02 -0.09

CURE
benchmark

datac Benefits – 3.50 –

a Significance indicators: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)

b Change calculated from paired pre- and post-course responses

c Unpaired pre- and post-course numbers (see Tables 45 & 46 above for the complete CURE benchmark
dataset)
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EXEMPTION GRANTED 

Chris Mead 
Earth and Space Exploration, School of (SESE) 
- 
Chris.Mead@asu.edu 

Dear Chris Mead: 

On 1/5/2016 the ASU IRB reviewed the following protocol: 

Type of Review: Initial Study 
Title: Ongoing Habitable Worlds Research 

Investigator: Chris Mead 
IRB ID: STUDY00003679 

Funding: Name: National Science Foundation (NSF), Funding 
Source ID: NSF-National Science Foundation 

Grant Title:  
Grant ID:  

Documents Reviewed: • Individual Investigator Agreement for Sanlyn 
Buxner, Category: Other (to reflect anything not 
captured above); 
• additional survey questions.pdf, Category: Measures 
(Survey questions/Interview questions /interview 
guides/focus group questions); 
• CURE Pre-Survey, Category: Measures (Survey 
questions/Interview questions /interview guides/focus 
group questions); 
• NSF Grant Document, Category: Grant application; 
• CITI certification for Sanlyn Buxner, Category: 
Non-ASU human subjects training (if taken within last 
3 years to grandfather in); 
• CURE Post Survey, Category: Measures (Survey 
questions/Interview questions /interview guides/focus 
group questions); 
• Generic_Course_Information Letter, Category: 
Consent Form; 
• Letter from Smart Sparrow, Category: Off-site 
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authorizations (school permission, other IRB 
approvals, Tribal permission etc); 
• CV for Lev Horodyskyj, Category: Vitaes/resumes 
of study team; 
• Ongoing Habitable Worlds.docx, Category: IRB 
Protocol; 
• Buxner_CV.pdf, Category: Other (to reflect anything 
not captured above); 
• CITI certification for Lev Horodyskyj, Category: 
Non-ASU human subjects training (if taken within last 
3 years to grandfather in); 
 

The IRB determined that the protocol is considered exempt pursuant to Federal 
Regulations 45CFR46 (1) Educational settings, (2) Tests, surveys, interviews, or 
observation on 1/5/2016.  

In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc:  
Ariel Anbar 
Lev Horodyskyj 
Steven Semken 
Jude Viranga Dingatantrige Perera 
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The previously published article titled “The spherical Brazil Nut Effect and its significance

to asteroids” had the following list of co-authors: Alan P. Jackson, Erik Asphaug, and

Ronald-Louis Ballouz. The article in press titled “Students in fully-online programs report

more positive attitudes toward science than students in traditional, in-person programs” had

the following list of co-authors: Chris Mead, Sanlyn Buxner, David Lopatto, Lev Horodyskyj,

Steven Semken, and Ariel D. Anbar. The article titled “Effect of Re-impacting Debris on

the Solidification of the Lunar Magma Ocean” is in the submission process and had the

following list of co-authors: Alan P. Jackson, Linda T. Elkins-Tanton, and Erik Asphaug.

All co-authors have granted their permission for use of these articles in this dissertation.
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