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ABSTRACT

Gerrymandering is a central problem for many representative democracies. Formally, gerry-

mandering is the manipulation of spatial boundaries to provide political advantage to a particular

group (Warf, 2006). The term often refers to political district design, where the boundaries of

political districts are “unnaturally” manipulated by redistricting officials to generate durable ad-

vantages for one group or party. Since free and fair elections are possibly the critical part of

representative democracy, it is important for this cresting tide to have scientifically validated

tools. This dissertation supports a current wave of reform by developing a general inferential

technique to “localize” inferential bias measures, generating a new type of district-level score.

The new method relies on the statistical intuition behind jackknife methods to construct relative

local indicators. I find that existing statewide indicators of partisan bias can be localized us-

ing this technique, providing an estimate of how strongly a district impacts statewide partisan

bias over an entire decade. When compared to measures of shape compactness (a common

gerrymandering detection statistic), I find that weirdly-shaped districts have no consistent re-

lationship with impact in many states during the 2000 and 2010 redistricting plan. To ensure

that this work is valid, I examine existing seats-votes modeling strategies and develop a novel

method for constructing seats-votes curves. I find that, while the empirical structure of electoral

swing shows significant spatial dependence (even in the face of spatial heterogeneity), existing

seats-votes specifications are more robust than anticipated to spatial dependence. Centrally,

this dissertation contributes to the much larger social aim to resist electoral manipulation: that

individuals & organizations suffer no undue burden on political access from partisan gerryman-

dering.
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Chapter 1

ELECTORAL SYSTEMS ANALYSIS

The analysis of partisan bias in electoral systems is one of the foundational issues in po-

litical science and electoral geography. Arising from both first-past-the-post and proportional

representation systems, the analysis of electoral geography and electoral rules to determine

whether they provide a structural advantage to one party over another is a longstanding inter-

est of political systems analysis, and is fraught with real-world consequences.

One kind of structural advantage, that conferred by gerrymandering, refers to the manipula-

tion of electoral boundaries in order to (dis)empower specific group or party. In the American

context, many social groups may benefit from the manipulation of political boundaries. One con-

tentious type of gerrymandering, racial gerrymandering, has strong legal remedies and effective

quantitative methods that can be used to identify when racial gerrymandering occurs. Another

type of gerrymandering benefits incumbents, those currently sitting, and can take the form of

anticompetitive gerrymandering, by which a districts’ boundaries are manipulated to prevent ef-

fective two-party competition, or factional gerrymandering, where party leaders force members

of their own party to compete or to leave their district in order to increase the power of the party

leaders. A final type of gerrymandering is partisan gerrymandering, which intentionally dilutes

the power of one party. Insofar as the various types can be separated, this dissertation focuses

explicitly on partisan gerrymandering, the intentional biasing of the political system towards or

against one political party.

At its core, statistical analysis of election systems requires solving a critical challenge: elec-

tions provide deceptively little information. The number of political districts in any state is often

quite small, as is the number of elections held under a single districting scheme (in the United

States). In addition, many district seats are uncontested or only nominally contested in many

elections. Thus, the critical issue for quantitative analysis of partisan gerrymandering is to make

statistically reasonable conclusions about partisan advantage when the raw data is both sparse
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Symbol Name Meaning Relation

Vij District Vote # votes cast for party j in district i Hij ∗ mi
Hij District Vote Share % of votes cast for party j in district i Vij/mi
h̄j Party Vote Share % of all votes cast that were for party j ∑i Vij/ ∑i mi
si District Winner index j of the party that won in district i argmaxj(Vij)

s̄j Party Seat Share share of all seats won by party j ∑i I(si = j)/N
mi Turnout # of votes cast in district i for any party -

Table 1. Fully-general notation for electoral systems analysis. I represents the indicator
function, which is one when the predicate is true and zero otherwise.

and noisy. How can advantage be identified in only two elections or in only three districts? The

methods used in this dissertation involve modeling the target data generating process and an-

alyzing sets of simulated elections, but this only shifts the issue of data scarcity to the initial

phase of analysis. While this is common method, it is important to acknowledge that this (and

much of the formal notation and methods that follow) is essentially designed to maximize the

information about the observed electoral process.

Before proceeding, I will define some terms. Each congressional election is a unique event,

a contest between two (or more) discrete choices in each of the N constituencies in a state’s

congressional delegation. At the end of the election, an N × 1 record is made of the total num-

ber of votes cast in each constituency, called m, as well as an N × P matrix of the raw number

of votes cast for each party j = 1, 2, . . . P over the constituencies, denoted V. Sometimes, if

full data is not available in historical settings, only the vote shares for party j, Hj, are recorded

as Vj/mj = Hj. In these cases, mj is often unavailable. Since this dissertation concerns bien-

nial contemporary United States congressional elections from Chapter 3, it deals exclusively in

first-past-the-post election rules, where the party with the most votes in a district wins the seat,

and when V is available, so too are H and m.

Under this win rule, let the vector s be the district seats vector, an N × 1 vector of indicator

variables where si = j if party j wins more votes in district i than any other party. Another

summary of the electoral performance of each party, the party seat share vector, s̄, is the

P-length vector containing the overall percentage of seats won by each party, or the empirical
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frequency vector of s. Thus, s̄j is the percent of the congressional delegation controlled by party

j. An analogue to the party seat share, called the party vote share, is also available. This vector,

h̄, is a P-length vector containing the fractions of votes cast for each party j = 1, 2, . . . , P, out

of all votes cast in the election. For clarity, these are summarized over districts i and parties j

in Table 1.

Since these terms are discussed for a single election, multiple elections in time yield an

additional index k in a total number of time periods T over which these observations can be

summarized. In general, symbols with a bar over them are party-wise summaries, and are

P × T in one dimension. Most other summaries are district-level, and so are N × T.

Fortunately, in the United States, some of the party complexity can be reduced. Since

there are only two major parties, J can be reduced to 1. The remaining party’s raw vote, vote

shares, or percentages are always recoverable from the grand totals, so recording only one

party provides significant simplifications. The party that becomes the focal point of analysis is

then called the reference party, and the party whose results are omitted the complementary

party. Using this reference/complement split, matrices can be reduced to single vectors: V

becomes v, an N × 1 vector of the raw votes cast for the reference party over N districts,

and H becomes h, the N × 1 vector of the reference party vote shares. In addition, h̄, s̄

become scalars, with h̄ representing the share of the popular vote the reference party wins

in the congressional election and s̄ the share of the seats in the congressional delegation the

reference party wins. Further, si becomes a binary indicator vector, reflecting whether the

reference wins in the district. The designation of the reference party is arbitrary, and its reversal

simply reverses the analysis.

Most questions about electoral fairness in the United States reduce to questions about the

relationship between vote share and seat share, h̄ and s̄. These party-level summaries are

often implicated in claims about the electoral system:

Candidate A won the electoral college, even though he won fewer votes than his
opponent. This is unfair!
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Symbol Name Meaning Relation

vi District Vote # of votes cast for RP in district i hi ∗ mi
hi District Vote Share % of votes cast for RP in district i vi/mi
h̄j Party Vote Share % of all votes cast for RP ∑i vi/ ∑i mi
s̄i District Winner 1 if the RP wins district i, 0 otherwise. I(vi > .5)
s̄j Party Seat Share % of all seats won by the RP ∑i s̄i/N

mi Turnout # of votes cast in district i for any party -

Table 2. Two-Party notation for electoral systems analysis. I represents the indicator function,
which is one when the argument is true and zero otherwise. “RP” stands for reference party,
which is always the Democrats throughout this dissertation. This choice is arbitrary, and only
affects the orientation of the effects.

Party A wins two seats for every 10, 000 votes they win, but party B only wins 1.2
seats on average. Clearly, votes for party B are being wasted, and the system is
biased in favor of A.

Both of these claims, at a point, reduce to questions about the seats-votes relationship. But,

each election only provides a small amount of information about the relationship between seats

and votes for each party, a single observation (h̄t, s̄t). While some focus on the historical re-

lationship between (h̄t, s̄t) pools elections over t (Tufte, 1973), newer techniques use “extra”

information: the information in the covariance of district-level vote counts. These techniques

tend focus on the h, s vectors, summarizing them in novel ways (Brookes, 1960; Johnston,

2002; Hill, 2010), or extracting information using simulations (Gelman and King, 1994a; Gel-

man et al., 2010; Linzer, 2012). An entirely separate set of detection measures relies on the

geometric properties of district shapes (Young, 1988). Districts whose shapes are irregular in

some way are considered likely to be gerrymandered, since their boundaries are likely to be ma-

nipulated. These measures do not involve the relationship between h̄ and s̄, and exist entirely

independently of the political outcomes in the electoral system.

Crucially, the analysis of partisan advantage in political systems often comes into play

around the time to redraw congressional district lines. This process, called redistricting, is a

constitutionally-mandated state-by-state spatial reconfiguration of the American electorate. Re-

districting occurs every ten years, at minimum, to equalize population between congressional

districts in the US House of Representatives (Wesberry v. Sanders, 376 US 1 (1964)) as well

as state legislatures (Reynolds v. Sims, 377 US 533 (1964)) and some local offices (Avery
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v. Midland County, 390 US 474 (1968)). While equalizing populations between districts is a

critical motivation for redrawing district lines, communities and constituencies also change in

composition and spatial configuration. For a congressional geography to be “representative” of

its underlying population distribution in addition to providing for equal “one person, one vote”

representation, the lines must be redrawn to capture this structural and spatial shift.

Redrawn districts may result in geographies that cause one party to be more successful

than it was in the previous plan. However, this change in fortunes is not necessarily indicative

of partisan gerrymandering outright; the change may be driven entirely by demographic or

ideological change in the state. Regardless, individuals may believe the system to advantage

a particular party and use subjective interpretations of how congressional districts in the state

should look to identify that partisan gerrymandering occurred. This perceptual standard of

evidence leads to many “common sense” solutions to redistricting issues.

Unfortunately, no silver bullet has yet been loaded or fired. Determining whether a specific

district or districting plan has been gerrymandered to advantage a given party over and above

the advantages the party may enjoy due to social attitudes or incumbent candidates requires

answers to a complex set of questions at the intersection of race, party, history, and community.

This dissertation provides a new technique to identify partisan gerrymandering that can be

used to answer those questions. This new technique may be applied to many different types

of inferential analyses of partisan advantage, and thus sidesteps much of the debate in the

literature attempting to identify the single most appropriate measure. In the tradition of model-

based gerrymandering identification techniques, the new method is able to conditionally control

for other potentially confounding sources of political advantage, in addition to being providing

an indication of the impact each district has on the measure of partisan advantage in state

congressional delegations.

To do this, I first examine the fundamental assumptions used in the counterfactual model-

ing process in Chapters 4, 5, and 6. The local measures of political advantage are secondary

statistics about an electoral model, so their values may be affected significantly by model mis-

specification in either of two models. The main concern is with the seats-votes model that
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drives inference. The seats-votes model assumes that the election results in each congres-

sional district are independent from one another. The extent to which the vote shares are in

fact independent will be assessed using spatial econometric techniques. Second, the inferen-

tial advantage measures also depend on a model of electoral swing used to generate electoral

counterfactuals, elections that occur under conditions that are not observed. Here, electoral

swing, δ, is the change in vote over N districts won by a party between two elections. Some-

times, δ is constant over all i = 1, 2, . . . , N, and sometimes it is modeled as a random effect with

varying specifications. Given this, some model of swing is used to shift the average expected

vote, E[h̄], to a known target value or to fix the simulated party vote share to the observed

party vote share. Under these simulations in controlled conditions, the resulting bias statistics

are analyzed. Thus, the swing model should represent plausible but unobserved elections. In

many cases, modeling electoral swing as an independent and identically-distributed random in-

novation is implausible in light of its observed empirical structure. Thus, the extent to which the

vote share model and the model of electoral swing reflect observed elections is assessed. In

addition, potential spatial misspecification of both the vote share and swing models is examined.

In general, I find that electoral swing in the United States is significantly spatially corre-

lated while accounting for various exogenous forms of heterogeneity. Thus, the use of inde-

pendent, identically-distributed random swing effects generates empirically-unlikely maps of

potential swings at either the county or the legislative level. However, the resulting maps of

electoral outcomes do tend to be realistic, even though the maps of swing are unrealistic, since

the magnitude of swing is often small with respect to the vote share to which it applies. Further,

using a spatially-correlated swing model to provide more “realistic” counterfactual maps of elec-

toral swing simply does not have a large impact on bias measures or the estimated seats-votes

curve. Adding a small magnitude of white (spatial) noise to an electoral map generates nearly

the same electoral results as adding a small magnitude of correlated noise. I also find that

a common model of electoral outcomes used in gerrymandering analysis suffers from spatial

misspecification. However, resolving this spatial misspecification does not significantly improve

counterfactual simulations in any plausible scenario. I develop a new, retrospective method to
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model the seats-votes curve using bootstrapping which does not depend on an explicit para-

metric model of swing. While this bootstrap is exceptionally simple (and highly-extensible), it

also does not account for dependence or heterogeneity in electoral swing. This method is

compared to two other types of seats-votes curve models, and tends to agree more with one

model than another. Thus, it appears that corrections to the standard linear model to account

for empirically-observed dependence in swing or vote share do not make a large difference in

conclusions about the electoral system as a whole.

Given that these models are more robust than anticipated, I derive novel jackknife measures

of district-level partisan impact. After deriving the impact measures, I examine their properties

in a few case studies. I focus on California first, as its large number of congressional districts

and adoption of vastly different electoral rules & districting schemes in the 2010 cycle yields an

interesting significant breakpoint. I also examine the post-2010 redistricting in Wisconsin. I aim

to determine whether impact behaves consistently over time and space. To do this, I develop

a method of analysis for these jackknife impact measures. In addition, I examine whether the

measure of impact is related to classical measures of observation influence in the underlying

statistical model. If the districts that influence bias scores tend to be the districts that influence

the underlying electoral model, then standard model influence measures might be more simple

to use as local partisan advantage measures. Otherwise, it may be the case that districts that

are influential on the underlying stochastic model do not significantly influence the bias of the

statewide plan, or that influence of districts is inconsistent over time. If either is true, districts

may be considered “not consistently impactful” on partisan advantage in a given state. Finally, I

characterize two axes along which plans may vary in terms of their bias statistics. The first axis

is balance. Balanced plans have impact measures that are symmetrically distributed around the

statewide advantage measure, meaning that some districts may increase statewide advantage

and some may decrease. Unbalanced plans have impact measures that fall primarily on one

side of the statewide advantage, meaning most districts tend to move the advantage in a single

direction. The second axis is precarity. Plans that are precarious have districts with consistently

large impact scores; plans that are not tend to have low district impact scores.
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I find that impact measures are significantly different from classical measures of influence

in linear regressions. Second, I find that the classical measures of influence are not consistent

over the model specification considered. Third, I find that a nominal control on incumbency

filters out many districts from being “impactful.” Since there is no definitive answer as to whether

bias under observed conditions or bias controlling for incumbency is more critical to examine,

this difference is important to acknowledge. I also find that the impact measures follow the same

general relationship to one another as the statewide measures which they decompose. Further,

I note that impact measures sometimes disagree with one another, in that one suggests a

district’s removal benefits Republicans and another suggests its removal benefits Democrats. In

general, the measures are observed to work in two groups: the efficiency gap of McGhee (2014)

and the bias-at-median defined in Gelman and King (1994a) tend to provide similar impact

classifications, and the attainment gap from Linzer (2012) and bias at observed vote (discussed

by Gelman et al. (2010)) tend to agree. Finally, I find that there are some precariously balanced

plans, where each district has a strong impact on statewide advantage and, those districts tend

to pull the bias in different directions. But, this bimodality tends to be stronger for individual

impact measures than an inherent property of the plan itself.

Then, I compare the statistic to commonly-used measures of boundary manipulation in

Chapter 8. This is done in a combination of exploratory regression and less-structured cor-

relation analysis. Geometric measures are used to identify when an individual district might

have had its boundaries manipulated during drafting. This manipulation is then assumed to

be caused by an attempt to provide advantage to a given group. Thus, if the districts picked

up for boundary manipulation do have large impact on statewide advantage, then this assump-

tion holds. Otherwise, geometric measures may pick up irregular geometries, but not discover

districts that provide advantage. By examining the relationship between the new impact mea-

sures and districts’ compactness scores, I aim to identify whether the boundary manipulation

measures tend to pick up on districts that also have significant partisan impact. If this were the

case, then shape measures would not necessarily discover gerrymandering, which is boundary

manipulation that generates political advantage.
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I find that geometric measures are unrelated to impact statistics for many different measures

of partisan advantage. Thus, a causal relationship of the “boundary manipulation” detected by

these measures generating partisan advantage qua impact is either unlikely, swamped by noise,

or both. This lack of relationship occurs despite the presence of a separate aggregate relation-

ship: compactness is negatively related to Democratic vote shares at the congressional district

level. Further, I find that using geometric measures as a decision rule to identify bad districts

would be unacceptable. Selecting “bad” districts based on their compactness scores would

single out a large number of districts that have negligible impact on statewide bias. Further, I

find that selecting on geometric measures would skip over some districts as not manipulated

when they in fact have a significant impact on partisan advantage in the state. Drilling further

down, I find that geometric measures are not useful predictors of partisan outcomes in the un-

derlying statistical models themselves, and changes in district compactness tend to have no

relationship to changes in partisan bias measures. Thus, geometric measures, insofar as they

detect boundary manipulation pursuant to partisan advantage, should be retired.

Overall, the main realizations from this dissertation are that impact measures provide a

powerful new tool to identify individual districts that influence statewide partisan advantage

scores. In addition, these measures tell us something novel about the structure of the electoral

models themselves and the conclusions we may draw about congressional districting plans.

Critically, spatial dependence matters a lot less for modeling seats-votes curves and partisan

bias than I thought it may from the outset. Thus, at least one commonly-used seats-votes

modeling method is robust to spatial misspecification, even though it (in theory) may require

a spatial correction. In finding this, I find that while some models are unrealistic and wrong,

they are so useful as to be effectively indistinguishable from an empirically “correct” model.

Finally, geometric measures are invalidated as an effective district-specific indicator of partisan

gerrymandering, since they are unrelated to partisan advantage.

9



Chapter 2

MEASURING ADVANTAGE & BOUNDARY MANIPULATION

Many different measures of partisan advantage are available in its longstanding literature.

While some suggest that measures of advantage should all standardize on specific indicators of

advantage and argue court precedent demonstrates this need (Grofman and King, 2007), many

core criticisms of these methods remain unanswered (Stephanopoulos and McGhee, 2015).

As a recent comprehensive overview by Nagle (2015) demonstrates, consensus on appropri-

ate measures has mainly fragmented since an early pre-Davis v. Bandemer review, Grofman

(1983). Notably, many of the measures suggested by Grofman (1983) are dismissed by Nagle

(2015) for concerns about construct validity: does the measure accurately & consistently indi-

cate advantage when present? Critiques of measures tend to focus on construct validity more

generally, such as with Altman (2002) on Johnston et al. (1999)’s application of Brookes (1960),

critiques of the excess seats measures from Gelman and King (1994a) & Grofman and King

(2007) made by McGhee (2014); McDonald and Best (2015), and Tam Cho (2017)’s review of

McGhee (2014). These concerns about validity complement jurisprudence skeptical of these

measures.

These advantage statistics abound because each strikes a novel compromise between

descriptive and inferential purpose, normative grounding, and empirical applicability. Starting

from a specific interpretation of what “advantage” means, they then provide a specific scalar

measure of advantage that relies on a model of how advantage arises. Critically, though, these

developments are often not unified with a consistent behavioral or process theory. Different

measures can be constructed with reference to many different standards of electoral justice,

and the process that generates the elections may be different from the process under which

fairness can be measured. Measures often require a zero point, a hypothetically “fair” position

against which some measure of distance is made. This zero point is frequently contentious,
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implicit, and difficult to model because it is both unobserved and must be established through

normative argument.

In what follows, I first briefly discuss the legal history of partisan gerrymandering in the

United States. Then, I outline two common standards by which electoral systems are judged,

both in academic and legal discourse. After this, I discuss how these standards are opera-

tionalized in a few common measures of partisan advantage in electoral systems. I pay specific

attention to the construct validity of these measures, the implicit model of electoral fairness

they operationalize, and how many fair positions are possible. In addition, I outline how to es-

timate these statistics in a two-party system given a generic model yet-unspecified stochastic

model of elections in Section 2.3. After the discussion of political measures, I will discuss mea-

sures of boundary manipulation in Section 2.4, again paying close attention to construct validity

concerns noted at least as early as Young (1988). After this introductory chapter on how to es-

timate system-wide partisan advantage measures and district-specific boundary manipulation

measures, a novel technique for constructing local measures of a district’s impact on partisan

advantage will be presented in Chapter 7. Also in Chapter 7, these measures will be compared

to classical measures of model influence for a specific model of electoral outcomes found in the

literature. Finally, these measures will be compared to the geometric measures discussed here

in Chapter 8, and the social and human contexts for this work discussed in Chapter 9. The work

concludes in Chapter 10, where general understandings are stated and a workflow presented

for using impact measures.

2.1 A Short Legal History of Partisan Gerrymandering

The history of legal review of partisan gerrymandering begins in earnest only in the latter

half of the twentieth century. Although major cases (like Baker v. Carr & Gomillion v. Lightfoot)

engage with districting questions, Davis v. Bandemer (478 US 109 (1986)) first established

partisan gerrymandering as a justiciable subject. However, the decision contains an extreme

reluctance to identify a single standard (or set of standards) that might be used to identify par-
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tisan advantage. Thus, while partisan gerrymandering could be reviewed, the court did not

set a standard on how to review it. Since courts in the United States have been reluctant to

participate in reviewing “political questions,” which are legal issues driven primarily by direct po-

litical motives, judicial review of alleged partisan gerrymandering without empirical standards is

a fraught endeavor. Cases after Bandemer, such as Vieth v. Jubelirer (541 US 267 (2004)) or

League of United Latin American Citizens (LULAC) v. Perry (548 US 399 (2006)) significantly

intensified the legal, social, and scholarly imperatives to provide convincing, valid measures of

partisan advantage. Specifically, in an opinion authored by the Justice Scalia, the Vieth prece-

dent hinges on the “lack of a judicially discoverable and manageable standard” for adjudicating

partisan gerrymandering cases, which is one of many definitive properties of “political ques-

tions” defined in Baker v. Carr (369 US 186 (1962)). This skepticism echoes that found in

Bandemer, that partisan gerrymandering cases are theoretically justiciable, but the lack of a

clear, manageable standard interferes with judicial action. This call from the courts to provide

a manageable judicial standard, a measure of partisan advantage grounded in the logic of the

American single-member district (SMD), first-past-the-post (FPTP) electoral system, has not

yet been definitively answered.1

Thus, despite the intensification of need from Bandemer v. Davis through Vieth v. Jubelirer

and LULAC v. Perry (Godfrey et al., 2005; Grofman and King, 2007), redistricting and partisan

gerrymandering-adjacent court cases have proliferated. A string of recent cases on redistricting

shows partisan gerrymandering and redistricting reform is an increasingly contentious legal

issue. Especially as scholarship intensifies, the search for a manageable standard to detect

partisan gerrymandering surfaces new debates and analyses in many court cases. In a pair of

cases about the Arizona Independent Redistricting Commission (AIRC), the US Supreme Court

validated the use of nonpartisan redistricting commissions2 and reaffirmed the importance of

1 First-past-the-post (FPTP) single-member district electoral systems are those in which the candidate with the
largest share of the votes in a given district wins the election in that district.

2Arizona State Legislature v. AIRC, 576 US ___ (2015)
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restraining partisan gerrymandering.3 Another case, Evenwel v. Abbot (578 US ___ (2016)),

clarified the meaning of “person” in the “one person, one vote” doctrine established by Baker

v. Carr (369 US 186 (1962)). The pace of litigation on redistricting is not set to slacken, either,

North Carolina (McRory v. Harris, 15-1262, (M.D.N.C. 2017), pending) Wisconsin (Whitford

v. Gill, 15 C.V. 421 B.B.C. (Wisc. 2016)), Maryland (Shapiro v. McManus, 1-13 C.V. 03233

J.K.B. (D.Md. 2015)), and Florida (League of Women Voters of Florida v. Detzner, 172 So. 3d

363, (Fla. 2015)) all have had redistricting plans overturned or challenged due in part to undue

partisan advantage.4 Critically, Cooper v. Harris (58 US ___ (2017)) seems to have broken

down the barriers between partisan and racial gerrymandering arguments, recognizing that in

many places in the United States, race and party identification are nearly indistinguishable, and

a racial gerrymander may look identically to a partisan gerrymander. Regardless, all of these

court cases will likely change the rules significantly for the 2020 redistricting, especially as the

cases percolate upwards through the system to the Supreme Court.

In each of these cases, many different measures of advantage and boundary manipulation

were used across many different amici curiae briefs. No single best measure of advantage is

championed in any of the eventual jurisprudence, however, so recent work on novel measures

and methods abounds. Specifically, dedicated paper competitions on gerrymandering foren-

sics have provided significant high-quality work in the area, focusing both on new measures

(McGann et al., 2015; McDonald and Best, 2015; Wang, 2016; Arrington, 2016) and plan eval-

uation methods (Chen and Rodden, 2015; Cho and Liu, 2016b). Complicating matters, former

President Barack Obama called for further political reforms to address partisan gerrymandering

in redistricting in his final State of the Union address in 2016 and, upon leaving office, joined

in the establishment of a specific, targeted redistricting reform organization and partisan action

group on redistricting. Further reforms, such as independent redistricting commissions, which

have an uncertain impact on redistricting outcomes (Miller and Grofman, 2013), are nonethe-

3Harris v. AIRC, 578 US ___ (2016)

4Regardless of the eventual success or defeat of Whitford et al. in Gill v. Whitford in the Supreme Court, explicit
measures of partisan advantage are unlikely to fade with a single Supreme Court case

13



less important non-consequentialist methods of improving procedural fairness in redistricting

(Webster, 2013; Stephanopoulos, 2013). Thus, new academic work on effective measures of

partisan advantage will both drive and be driven by innovation in law, jurisprudence, and insti-

tutional reform, regardless of where the legal precedent moves the federal position on partisan

gerrymandering.

2.2 Disentangling Standards and Measures

Thus, to provide a manageable judicial standard or usable measures,5 it is important to

differentiate between the standard of justice and the appropriate measure of this standard. An

electoral standard is a set of normative arguments that allow for the construction of a “fair” elec-

toral result. A measure of advantage is a statistic that expresses the discrepancy between the

state of an electoral system (observed or hypothetical) and fairness. Thus, measures exist in

reference to standards, and standards do not implicate any specific measure in their construc-

tion of “fair” reference positions.

Standards of electoral fairness in redistricting have almost always focused on this deviation;

the distance between the anticipated or observed impacts of a plan and what is “fair” constitutes

a tangible (or impending) harm. However, “consequentialist” standards that focus on the results

of elections & thus the consequences of redistricting are not the only standards of justice pos-

sible Stephanopoulos (2013). Alternative standards might focus instead on “procedural justice”

which places constraints on the actual process of drawing lines. Methods to provide for proce-

dural justice include the adoption of nonpartisan/independent redistricting commissions, explicit

rules focused on empowering historically disadvantaged groups (Webster, 2013), or precluding

the use of partisan information in the process of constructing districts.

However, procedural justice is quite difficult to ensure. First, it is unclear whether non- or

bipartisan redistricting commissions generate significantly different plans from partisan ones

5A common theme about existing partisan advantage measures is that no one responsible for drawing bound-
aries uses them, as per the interviews in Chapter 9
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(Abramowitz et al., 2006a; McDonald, 2006; Miller and Grofman, 2013; Hasen, 2013). This un-

certainty about the impact of redistricting is in part due to the rarity of independent redistricting

commissions and infrequent redistricting events. Regardless of the empirical stalemate, non-

or bipartisan commissions are strongly encouraged by participants in those systems, as will

be discussed in Chapter 9. Second, the type of redistricting for social justice suggested by

Webster (2013) is unlikely to be constitutional under existing racial precedents. Further, it may

be difficult to enact politically for redistricting commissions in states, which often are directed

by objectives in state constitutions, rather than in statutes. Finally, precluding the explicit use of

political information from redistricting hardly limits the unspoken political information in the dis-

cussions of “places that belong together” that occur between commissioners themselves, again

discussed further in Chapter 9.

As such, the standards considered in this dissertation are exclusively consequentialist. Fur-

ther, I suggest that empirically-validated partisan fairness is sufficient to constrain partisan ger-

rymandering, but other types of gerrymandering, such as racial or incumbent gerrymandering,

may require much stricter attention to procedural fairness. As such, I reject out of hand the pos-

sibility of “expressive harms” (Pildes and Niemi, 1993) in partisan redistricting. These harms

were first suggested as existing in the racial redistricting context. They are affective, may sup-

press individuals’ political efficacy or identity expression, and are exceedingly difficult to validate

empirically in racial redistricting cases (Ansolabehere and Persily, 2015). They are hypothe-

sized to be inflicted when individuals interact with a district map’s geographical imaginary, the

social, racial, and political power relationships embodied by the boundary lines. These harms

are sometimes used to justify developments of new redistricting tools focused on shape com-

pactness (Chambers, 2010, e.g.), but reflect an difficult-to-measure undercurrent in the context

of measures of political advantage. As such, affective factors like expressive harms are not

considered here, and are often not ignored when considering partisan gerrymandering.

This common explicit focus, designing standards and measures of the consequences of re-

districting, leads quite easily to the blending of standard and measure. The distinction between

standard and measure is hinted at by Grofman and King (2007), but they (and others) imme-
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diately proceed to conflate their chosen standard with their preferred measurement of it. They

argue that partisan symmetry as measured by an excess seats measure operationalized in Gel-

man and King (1994a) is the single most appropriate method for detecting bias in the shadow

of the Vieth decision. This conflation is then picked up and critiqued by McGhee (2014) when

defining a novel measure of partisan advantage. However, McGhee (2014) defines the “effi-

ciency gap” as if it were somehow against or independent of a symmetry. In fact, the efficiency

gap in some formulations is a substantially more constrained seat symmetry measure placing

a significantly stronger constraint on what a “fair” seat-vote relationship can look like (Jackman,

2017). However, since McGhee (2014)’s development occurs without a direct reference to a

seats-votes model, the fact that the measure is implicates a symmetry standard eludes the

initial discussion and other establishing presentations (Stephanopoulos and McGhee, 2015).

This is not a new deficit: early discussions of advantage measures like Brookes (1960) pro-

vide hardly any normative grounding for what the author considers the “fair” electoral position. A

similar level of implicitness affects the development of boundary manipulation measures as well,

which are often constructed without specific reference to the type of manipulation the author

hopes to identify. Later advantage measures, namely those counterfactual measures following

from standards discussed in King and Browning (1987), are focused explicitly on the standards

of “partisan symmetry.” Other measures, such as the efficiency gap of McGhee (2014), the at-

tainment gap from Linzer (2012), or registration comparisons from Kousser (1996), derive from

the same standards, but measure deviation from this standard in significantly different ways.

The fact that two methods of analysis may share the same standard but may not be concor-

dant on the measure is lost when these are conflated. Thus, confusion between the chosen

measure and given standard has significantly affected both the discussion and development of

novel techniques, and enforcing a clear distinction between standards and measures is critical.
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2.2.1 A Vocabulary to Define Standards

Before defining precisely standards of partisan advantage, it helps to distinguish a few con-

cepts in the theory of electoral system. The four concepts in Niemi and Deegan (1978) are

helpful and still implicitly inform many current structural analyses of first-past-the-post electoral

systems. However, Niemi and Deegan (1978) embed these concepts directly in measures of

the system. This means that the four criteria are not necessarily orthogonal and do not, in and

of themselves reflect distinct theoretical properties of the electoral system. These are proper-

ties of a seats-votes relationship, which is not a sufficient representation of an electoral system

by itself, since it often ignores discrepancies in turnout or party registration (Kousser, 1996;

McGhee, 2014), and is insufficient to distinguish the political system as observed from the the-

oretical representation. In addition, Niemi and Deegan (1978) present specific constraints of

these properties that are necessary to be satisfied if the system is to be fair. They use these

constraints to establish the “adequacy” of districting plans. This makes their development of

a “theory” of districting systems to be rather empirical, and admit no operational distinctions

between the concepts they suggest and the measures by which the system can be assessed.

Thus, I suggest two new criteria to add to the four presented by Niemi and Deegan (1978) that

can be used to ground or distinguish partisan advantage measures and then discuss and jus-

tify the two additional analytical criteria. I also back-out the underlaying theoretical concepts

of the various traits where necessary. I will avoid placing constraints on the structure of these

properties until after discussing them in full and presenting the revised indicators.

Responsiveness

One property discussed by Niemi and Deegan (1978) is a longstanding critical interest of

electoral systems analysis. Electoral responsiveness is the rate at which the number of seats a

party wins changes with respect to a party’s popular vote (or average district vote) share. For a

parametric model relating party seat share and popular/average vote share, this is simply slope
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of the curve fit by that model. Empirically speaking, seat shares are a stepwise linear function

of vote shares, since seats are either won or lost by a party. This means the number of seats

awarded for each percentage change in popular vote may not be constant. Some regions of the

system may be more “responsive” than others. Intuitively, this may seem to be the rule rather

than the exception in first-past-the-post systems: the difference in the number of seats won

when the vote share increases from 75% to 85% is likely much smaller than the change from

45% to 55% of the vote. This is shown to be the case empirically as well in Chapter 4. When

a single scalar estimate of responsiveness is made, the estimate is often referred to as the

“swing ratio,” reflecting the rate at which the legislature “swings” with respect to changes in vote.

As a theoretical construct, responsiveness reflects the extent to which legislative composition

changes with respect to changes in electorate preference, and seems well served by Niemi and

Deegan (1978)’s choice of empirical measure in both multiparty and two-party systems.

Range

A closely related property to responsiveness is the range of the system. The range of an

electoral system reflects the range of vote share over which seat share changes. Thus, this is

the set of vote shares where responsiveness is nonzero. This property can be thought of as

constituting the “barrier to entry” in a multiparty system, and extremely restrictive systems will

be expected to have a narrow range. In addition, systems with smaller ranges must have higher

responsiveness, since the entire range of seat shares must be traversed in a smaller vote share

domain. In theory, this concept reflects the set of outcomes that the electoral system rewards,

since movement in vote share below the minimum threshold or above the maximum threshold

provides no change in seat share.
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Competitiveness

Competitiveness, as defined by Niemi and Deegan (1978), refers to the fraction of districts

whose “normal” vote, the expected vote share for a given party in the district, is within some

fixed distance of 50%, the median in two-party systems. In their terms, competitive systems

have more districts with vote shares closer to 50%, and less competitive systems have districts

with party vote shares far away from 50%. In multiparty systems, identifying the correct loca-

tion for a reference point may be difficult. While pinning to 50% may still appear reasonable

(since that indicates outright control of the district), this is likely inapplicable. In addition, the

best hinge point may vary over districts: since patterns of competition often vary in multiparty

systems (Linzer, 2012), the relevant hinge point may as well. In this case, one might use the

size of the gap between the winning and next-most-popular party as a measure of the com-

petitiveness. More generally, the expression of competitiveness identified by this procedure

attempts to express how closely to the electoral margin districts fall, and attempts to provide

an indication of how marginal a district is. Incorporated in this measure are implicit proxy in-

dicators of candidate recruitment in the district, since hotly contested districts may have more

viable competitors, and districts with viable competitors tend to have tighter races.

Neutrality

Neutrality reflects the extent to which a political system does not favor one party over an-

other when parties are similarly-situated. Much subsequent work on neutrality focuses on one

necessary and sufficient condition Niemi and Deegan (1978) discuss, symmetry. While Niemi

and Deegan (1978) suggest neutrality be understood intuitively as advantage, the necessary

condition of symmetry becomes the criteria on which future research is established. Under sym-

metry, if one party wins s̄ seat share after having won h̄ fraction of the popular vote, it should

win 1 − s̄ seat share after winning 1 − h̄ percent of the popular vote. Thus, this criteria is or-

thogonal to range, responsiveness, and competitiveness, since any system can have different
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values for them while remaining symmetric or asymmetric. Symmetry is a difficult criteria to as-

sess directly, since elections in their typical course provide no direct indication about neutrality.

Further, it is rare for naturally-occurring elections under similar conditions to return h̄ one time

and 1 − h̄ the next, let alone return (h̄, s̄) and (1 − h̄, 1 − s̄). Niemi and Deegan (1978) provide

no direct empirical method to measure neutrality in their discussion, unlike most of the rest of

the properties which can be measured directly from electoral results.

Fixity

While competitiveness measures of district-level vote shares are useful to characterize vot-

ing behavior, they do not provide an indication of how stable partisan control of the delegation

or legislature is. Thus, one idea that captures aggregate competitiveness of an electoral system

is the fixity of its majority. This embodies the extent to which an electoral system plan provides

one party stable periods of control. One simple measure of fixity is the number of elections

under which partisan control of the legislature or delegation flips. An alternative measure might

be the distance between the “tipping” district vote share and 50%. In this context, the “tipping”

vote share is the fraction of vote share required to be added or subtracted to all district vote

shares in order to change the control of the state legislature from one party to another.6 Im-

portantly, the empirical assessment of neutrality depends strongly on a system’s fixity: many

statistical methods to assess neutrality assume that the case where control of the legislature

or delegation may flip is at least a plausible situation. If one party’s majority is unwavering,

this situation may reflect a significant extrapolation from the observed results. Thus, systems

with strong fixity may pose significant challenges to the validity of symmetry measures. Further,

fixity and competitiveness are not necessarily identical: an electoral system with small variance

in vote shares may result in highly-competitive elections with generally fixed majorities. Thus,

6Clearly, this relies on an assumption that this change in vote share applies uniformly over districts, an assump-
tion with deeply challenging geographic implications that are examined in Chapter 4.
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competitiveness (in Niemi and Deegan (1978)’s sense) is a district-level measure and fixity is

an aggregate system-level measure for a similar concept of party majority solidity.

Contest Size

One common complaint about seats-votes techniques is that they focus on parties and

their aggregate performance over the behavior of individual voters or blocs of voters. This

measurement is important, however, since the fraction of votes a party wins in a given district

implicitly standardizes the measure of system properties over the universe of voters, not the

universe of people. While legislative districts are required to be nearly exactly equivalent in

terms of district residents, the number of voters in each district can vary widely. Thus, the

extent to which turnout varies in a district may also reflect certain patterns of vote wasting

and also create differences in the effect districts have on system responsiveness (Johnston,

1983). In light of this, a few measures of partisan advantage have focused on derived properties

of observed or expected contest size (Brookes, 1960; Kousser, 1996; Johnston et al., 1999;

McGhee, 2014). Thus, its explicit inclusion in a vocabulary for discussing standards of electoral

fairness is important.

2.2.2 Defining Standards

With these six traits, a few common standards of fairness for representation systems are

immediate. First, a standard of proportional representation requires partisan neutrality and

linear responsiveness. Most common types of proportional representation also require that

the slope of responsiveness be as close to one as possible, meaning a 1% change in vote

share should be accompanied by as close to a 1% change in seat share as possible. How-

ever, in practice, many proportional representation systems implement a minimum threshold of

representation, so many proportional representation systems have an effective responsiveness

larger than 1 and that may fluctuate occasionally due to the finite number of seats available
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to assign (Taagepera and Shugart, 1989; Gallagher, 1991; Curtice and Steed, 1986; Grofman,

1983). In addition, some forms of minimizing discrepancies in contest size, such as attain-

ing a zero “simplified” efficiency gap (discussed by McGhee (2014)), would result in neutral,

piecewise-linear response in elections (Jackman, 2017; Tam Cho, 2017).

In contrast, King and Browning (1987) and Grofman and King (2007) suggest neutrality

alone is sufficient to provide for electoral fairness between parties in the United States. This is

a significantly more flexible standard, since it allows for winners bonuses. In first-past-the-post

single-member-district election systems, the responsiveness is nonlinear: increasing a party’s

average vote share from 45% to 55% might result in a much smaller shift in the fraction of seats

controlled in the legislature than an increase from 55% to 65%, as will be discussed in Chapter

5. If the distribution of individual district vote shares is bi-modal, with many safe districts for

either party and a few marginal districts in the center, the shift from 45% to 55% may entail a

party flipping only the few marginal districts while the winners of “safe” seats remain unchanged.

Moving from 55% to 65% might result in “safe” districts from the opponent beginning to flip to

the reference party en masse. This means that a nonlinear seats-votes response, which is

unfair under most common types of generalized proportionality, is just fine under neutrality-as-

fairness.

However, many critics of symmetry-only standards of fairness focus on the fact that fixity

and seat costs are important to how fair a political system is as actually experienced, rather

than in the hypothetical “tables-turned” electoral scenarios. Before the articulation of Niemi

and Deegan (1978), advantage measures like those developed by Brookes (1960) focus on

differences in the size of contests that parties tend to win or lose. If one party tends to lose many

small contests but win a few big ones, then the number of seats that party wins may often be

significantly smaller than their popular support may suggest. Alternatively, if a party wins many

small contests and loses large ones, they may be more represented than their popular support

may suggest. If districts that one party tends to win have much larger contest sizes, they may be

more expensive in terms of total human and organizational costs. Thus, the measure focuses

on consistent contest sizes for the losses and wins between parties and have been used in
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the American context (Johnston, 2002; Johnston et al., 2005; Hill, 2010). Other methods to

assess fairness like the efficiency gap based on turnout also focus on aspects of contest size,

but incorporate information about the size of majorities and minorities, rather than the sizes of

contests parties tend to win or lose. Finally, an early critique of symmetry-only analysis uses the

anticipated differences in contest sizes using differences in voter registration (Kousser, 1996),

arguing that registered voters tend to be effective predictive indicators of whether districts will

have excessively-large majorities or large but consistent minorities.

2.3 Measures of Partisan Advantage

In this dissertation, a stand on which measure of partisan fairness is “superior” will not be

made directly. Rather, I am concerned with developing a new technique that can be applied

to decompose the impact each district has on these scores. Some measures may be more

sensitive than others, have more stable distributional properties, or may have stronger face

validity relative to specific arguments about how the political process works. It is true that the

impact measures will inherit the same grounds as their plan-wide referents. But, the use of

these impact measures will also allow for a better understanding of the plan-wide statistics

themselves. By interpreting the types of districts that may (or may not) have strong influence

on a measure, arguments about what types of manipulation or partisan impact a measure is

supposed to detect can be directly assessed.

Five stochastic measures are considered in this dissertation. They all depend on the under-

lying data-generating process discussed in Chapter 5. In theory, two can be computed directly

from the observed election returns, but are not done so here in order to keep the analysis on the

same inferential footing. The stochastic measures must all be estimated using some simulation

regime: an electoral model and simulation strategy are used together to construct hypothetical

elections. These hypothetical elections occur under controlled conditions and are made to obey

certain constraints. These simulations are then analyzed using a summary statistic about that

condition. These “reference” conditions are electoral scenarios where bias can be measured
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directly, and arguments about their plausibility (or validity) justify the logic of the each method.7

The distribution of summary statistics generated across all simulations provides an uncertainty

bound on the statistic, and the distribution is either summarized directly in terms of quantiles or

indirectly in terms of its mean and dispersion. Importantly, no formal theory provides structure

to the measures’ simulation distributions, so statements about confidence intervals on the “true

value” of the simulation statistic are unavailable. Only statements about the likelihood of attain-

ing a similar result in simulation are available. The simulation distribution is contingent on the

entire chain of analysis, so misspecification in either the electoral model or the counterfactual

model may affect the simulation distribution. This misspecification in models of the observed &

counterfactual outcomes are discussed in Chapter 6.

Below, it is only necessary to understand that some stochastic process can generate simu-

lated (possibly counterfactual) electoral outcomes for election cycle t, called h◦
t , given a set of

observed vote shares ht, observed electoral conditions Xt, and simulation conditions X◦
t . In the

most general terms, the electoral model is some distributional statement about ht as a function

of Xt:

ht ∼ P(Xt) (2.1)

and the counterfactual model is a statement about h◦
t as a function of X◦

t , given that observed

situation Xt produced observed outcomes ht:

h◦
t ∼ P(X◦

t |Xt, ht) (2.2)

Some models have no analytical form for P ; other models stipulate that the conditioning on Xt

and ht is unnecessary, so there is no difference between forward simulation from the electoral

model (Eq. 2.1) and a counterfactual model (Eq. 2.2). Regardless, all of the simulated statistics

are driven by many realizations of h◦
t and the empirical versions are driven solely by ht.

The five partisan advantage measures I compute can be reduced to three essential types.

The first type are efficiency gap statistics. McGhee (2014) suggests two forms of the statistic;

7Practitioners and stakeholders were interviewed about their perceptions of the validity of these reference sce-
narios. These results are recorded in Section 9.4.
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the “full” version, which measures discrepancies in “wasted” votes between parties, and the

“simple” version, which assumes turnout is constant and reduces to a measure of the seats-

votes relationship directly. These statistics can be assessed directly from observed ht and

turnout vector mt in election t, and can also be computed for simulated elections h◦
t to provide

a sense of the uncertainty around the observed value. If the model for h◦
t does not include

information about mt, then simulated turnout m◦
t may be required.8 The efficiency gap statistics

can be computed directly from observed election returns, but this provides no indication of their

potential uncertainty, and so is not conducted in this dissertation.

The remaining types of advantage measures cannot be constructed without simulation. One

of these types are symmetry measures from Gelman and King (1994a). These can be mea-

sured at the observed share of the vote, at the electoral median, or summarized as an average

over an arbitrary range of vote shares. This dissertation computes the median & observed sym-

metry measures. Median bonus is the discrepancy between parties’ seat shares when they

split the popular vote at 50%. The observed bonus requires a counterfactual “tables turned”

scenario, summarizing a function of s̄ with one set of simulations at the observed h̄ and another

set at 1 − h̄. Finally, the attainment gap, suggested by Linzer (2012) in a multiparty context,

reflects the expected minimum share of votes required for a party to win a bare majority of

seats.

2.3.1 Efficiency Gaps

The efficiency gap discussed by (Stephanopoulos and McGhee, 2015), derived from the

relative wasted votes measure of McGhee (2014), and the partisan satisfaction measures sug-

gested by Nagle (2015) use the differences in the size of parties’ majorities and minorities to

measure define partisan advantage. McGhee (2014) suggests that most popular understand-

ings of gerrymandering revolve around the concept of “wasted votes,” votes that are cast which

8For this perspective, note Linzer (2012)’s use of Gaussian mixture models for the joint distribution of mt and
ht.
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do not affect the outcome of an election. He argues that votes cast for winning candidates

that they do not need in order to win and all votes cast for losing candidates are wasted, since

they might, under other circumstances, be transferred to another district and change its winner

without affecting the winner of the focal district. The votes wasted on winning candidates will be

called here “surplus votes,” and votes wasted on losing candidates will be called “losing votes.”

Added together, they provide the total number of votes wasted on a party. If the reference party

wastes few votes and the opponent wastes many votes as a fraction of all votes cast, the district-

ing plan makes the reference party more electorally efficient, and thus confers an advantage to

that party.

In its original form from McGhee (2014), the efficiency gap is driven by the difference in

parties’ total wasted votes. To define these let us first focus on a single election and let the

losing votes for the reference party (Wl) be all votes cast for the reference party in districts i

where the reference party loses:

Wl =
N

∑
i
I(hi < .5) ∗ vi (2.3)

where I(.) is the indicator function returning 1 when the argument is true and zero otherwise,

and vi is the raw number of votes cast for the reference party in district i. Further, let the surplus

votes be the share of votes cast in districts a party wins, minus 50%:

Ws =
N

∑
i
I(hi > .5) ∗ (hi − .5) ∗ vi (2.4)

Total waste for the reference party (Wr) is then the sum of losing and surplus votes, Wr =

Wl + Ws. Then, the same quantities are computed from 1 − hi, the opponent’s vote share

vector, to get Wo, the opponent’s total wasted votes. The efficiency gap is then:

Em =
Wo − Wr

∑N
i mi

(2.5)

Em reflects the difference in votes wasted between parties as a percentage of all votes cast.

The system is biased against the reference party when Em is negative, and biased towards the

reference party when Em is positive. To construct Em from simulated elections, h◦ is used in

place of h, and m◦ may be used in place of m if a model for m is specified.
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As discussed by McGhee (2014), the efficiency gap can be stated more simply in two-party

systems when assuming that all districts have equal turnout:

E = (s̄ − .5)− 2(h̄ − .5) (2.6)

This version of the efficiency gap is a straightforward constraint on the seats-votes curve, requir-

ing neutrality and linear response of 2. This hyper-proportionality requires that a party’s seat

share increases by 2% for every increase in popular vote percentage. To assess this measure

for simulated elections, s̄ and h̄ may be replaced by s̄◦ and h̄◦.

2.3.2 Bonus Measures

Bonus measures derive directly from the neutrality property of Niemi and Deegan (1978).

Reprising Niemi and Deegan (1978), King and Browning (1987) defines these measures as the

“excess” seat share won (or lost) by the reference party if its opponent were to do as well as

the reference party. For example, if the reference party wins s̄ = .6 of the legislature with an

observed popular vote share h̄1 = .52, then it is necessary to estimate s̄◦, the fraction of seats

the reference party wins when h̄◦ = 1 − .52. If s̄◦ = .62, then the system is biased against

the reference party by 2%, since it wins 2% fewer seats than the opponent when tables are

turned. Alternatively, if s̄◦ = .58, it is biased towards the reference party by 2% for the mirrored

reason. This reflection strategy quantifies the “observed” excess bonus, since it characterizes

the asymmetry of the seats-votes curve at the observed vote shares, h̄ for the reference party

and 1 − h̄ for the opponent. Alternatively, if it were the case that h̄ = 1 − h̄, then it would

be sufficient to consider s̄ alone. If the reference party wins 50% of the popular vote but wins

53% of the legislature, the system is biased towards them by 6%. This is the “median” bonus

measure, which demonstrates partisan symmetry at the electoral median, 50% vote share.

Both of these techniques require different sets of simulations. In addition, some view the

“median” bonus as more realistic: since the median scenario simulates h◦
t |h̄◦t = .5, it is always

closer to the observed h̄t than h̄◦t = 1 − h̄t. So, h◦
t in simulations at the median is never a
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more distant extrapolation than at 1− h̄t, and thus may reflect a less “extreme” counterfactual.9

Regardless of scenario, the counterfactual is core to the measure, resisted by academics, and

might be found unrealistic by practitioners. A simulation regime to construct these symmetry

measures are provided below.

Algorithm 1 To compute partisan bias in an election t at a given target vote share h̄∗ in a

two-party system with a counterfactual generation method like that in Eq. 2.2:

1. Simulate K realizations of district vote share vectors h◦.

2. Add a perturbation (electoral swing) δ to each h◦
k so that h̄◦k = h̄∗, k = 1, 2, . . . , K.

3. Simulate K new district vote share vectors (or translate previous K simulations using a

new δ) so that h̄◦k = 1 − h̄∗.

4. Compute the corresponding party seat shares, s̄◦, for all K realizations in both sets of

simulations.

5. Over all simulations, compute the average of s̄◦ in both sets of simulations, denoted s̄◦1

and s̄◦2 .

The bonus towards the reference party at h̄∗ is:

Bh̄∗ = s̄◦1 − (1 − s̄◦2) (2.7)

Breaking this down into its constituent terms, the second term, (1 − s̄◦2), is an estimate of

the share of seats the opponent wins when they get h̄∗ share of the vote. The first term, s̄◦1 is

the share of seats won by the reference party when they get h̄∗ vote share. So, B is expressed

in the percent of extra seat share the reference party wins. Positive values indicate that the

reference party would expect to win more seats than the opponent if it wins h̄◦ = h̄∗ share of

the popular vote. In contrast, negative values of B mean the opponent party can expect to win

more seats than the reference party would at h̄◦ = h̄∗.

9In all interviews in Washington and Arizona, interviewees corroborated this statistical intuition: parties splitting
the popular vote at 50% was more likely than parties swapping in their observed statewide vote share. This is
discussed in Chapter 9.
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This can also be simplified when h̄◦ = 1 − h̄◦. Since s̄1 = s̄2 in that case, the equation can

be restated:

B̂.5 = 2 ∗ s̄◦ − 1 (2.8)

which only requires K simulated h◦ vectors and a single shift term, δ. In addition, since |h̄◦ −

.5| < |h̄◦ − (1 − h̄◦)| for any h̄◦ ∈ (0, 1), the required δ will always be smaller to produce

simulations at the median election than simulations at 1 − h̄∗.

2.3.3 Attainment Gap

In theory, attainment gap is the inversion of the relationship measured by the median bonus

measure in Section 2.3.2. Instead of measuring the excess share of seats the reference party

wins when the vote is split evenly, the attainment gap estimates the difference in vote shares

when the seat share is split as close to evenly as possible from above. If one party can win a

majority of the seats with fewer votes than another party, it has an electoral advantage over the

other party. This measure can also be used in multiparty systems, since it focuses solely on a

single party and ignores the breakdown of other parties’ seat and vote shares Linzer (2012).

However, this inversion is more difficult to estimate. It requires the generation of scenarios

at fixed s̄◦ rather than h̄◦. Typical simulation models allow for both h̄◦ and h◦ to be controlled,

but s̄◦ is often not controlled. Since the functional relationship between h and s is lossy, a

specification in terms of s̄◦ would not be complete for h̄◦; a majority can be built many ways.

In addition, this simulation strategy also requires counterfactual estimation, since parties are

often not observed as winning the smallest possible majority. Further, this measure may be

difficult to apply in states with small, even-numbered delegations; for a state with two districts,

the barest majority is a single-party sweep of the delegation. The attainment gap in this case

would estimate the smallest expected vote share at which this sweep occurs.

While Linzer (2012) suggests estimating the attainment gap by extrapolating linearly (ac-

cording to an estimate of responsiveness) along the seats-votes curve to (h̄◦, .5), this estimating

procedure admits no uncertainty about the value of the attainment gap. Instead, the problem
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can also be stated as a direct optimization problem over a stochastic process. One algorithm

to estimate the attainment gap would conduct a grid search for the minimum h̄◦ with E[s̄] > .5:

Algorithm 2 Given a counterfactual generation method like that in Eq. 2.2 and a convex loss

function S(θ̂|θ), such as a mean absolute deviation or squared error loss for the estimate θ̂ and

target θ, the attainment gap in election t can be estimated by finding the h̄◦ such that S(s̄|.5) is

minimized from above.

1. generate a batch of K realizations of h◦ at a starting party vote share, h̄◦, and compute

E[s̄◦] for that batch.

2. generate two more batches of K realizations, h◦
+ and h◦

−, at both h̄◦ ± δ, where δ is a

small step size and compute the E[s̄◦] for each batch.

3. score each batch using the loss function S(s̄|.5). If s̄ < .5 for a batch, let the loss of that

batch’s h̄◦ value be infinite.

4. If h̄◦ has the lowest score, designate it as the optimal h̄∗ and save the value. Otherwise,

shift h̄◦ to the scenario with the lowest loss and return to 1.

Repeating this procedure L times, the attainment gap is the expected value of h̄∗ over L repli-

cations:

A = .5 − E[h̄∗] (2.9)

Thus, the attainment gap is expressed as the extra vote share a party must win (or can afford

not to win) in order to gain a majority. If the attainment gap is negative, the party expects to

need more than 50% of the votes in order to win a bare majority of the seats. Alternatively, if

the attainment gap is positive, the party can expect to need fewer than 50% of the votes to win

a majority

While the form of the loss function S may change slightly from batch to batch, using the

expected values over K realizations in each batch significantly reduces its variability. Thus,

standard bounded line search techniques, such as Brent’s method, can also be used instead of

grid search. In addition, estimates of A tend to be insensitive to whether absolute or squared
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District No. 1 2 3 4 5
h2016 0.55 0.64 0.38 0.0 0.42
m2016 349,398 325,408 313,277 229,919 323,534

6 7 8 9 10
0.62 1.0 0.39 0.73 0.59

327,834 378,754 320,865 281,482 290,564

Table 3. Washington congressional election results, 2016

error loss is used. However, each replication requires many batches of simulations to be gen-

erated as the loss function is minimized. One could also retain the initial h◦ vector and simply

optimize h̄◦ as a function of δ directly. In practice, either of these methods yields consistently

smooth loss functions, and the estimated attainment gaps are stable across replications for

either method.

2.3.4 Example: Washington 2016

In the following discussion, I compute the measures for the observed congressional elec-

tions in Washington in 2016. In the analysis in the rest of the dissertation, these observed

results stand in as one of the many realizations summarized using these advantage measures.

Thus, while I present only one realization in this example, the analyses later in the dissertation

summarize over many simulated elections. Table 3 contains the election returns for Washington

in 2016. Notably, districts 4 and 7 are considered “uncontested.” These were, in fact, contests

between the top-two primary finishers, which both happened to be of the same party. Due to

Washington’s top-two primary, two Republicans ran against each other in the general election

in district 4, two Democrats in district 7. I will leave them as uncontested in this example to keep

the discussion simple, but in Chapters 4,5, and 6 I impute the values of uncontested elections,

analyzing the expected vote share if they were to have been contested.

For the efficiency gap, it is necessary to total the vote waste. Districts 3,4,5, & 8 were lost
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to Democrats, and so all votes cast for Democratic candidates in those districts are lost:

WD
l = .38 ∗ 313227 + 0 ∗ 229919 + .42 ∗ 323534 + .39 ∗ 320865

and the waste in districts where Democrats won derives from the remaining districts:

WD
s =(.55 − .5) ∗ 349398 + (.64 − .5) ∗ 325408 + (.62 − .5) ∗ 327834

+ (1 − .5) ∗ 378754 + (.73 − .5) ∗ 281482 + (.59 − .5) ∗ 290564

The same calculations for the complement sets of districts yields the two components of waste

for Republicans:

WR
l =(1 − .55) ∗ 349398 + (1 − .64) ∗ 325408 + (1 − .62) ∗ 327834

+ (1 − 1) ∗ 378754 + (1 − .73) ∗ 281482 + (1 − .59) ∗ 290564

WR
s =(.5 − .38) ∗ 313227 + (.5 − 0) ∗ 229919

+ (.5 − .42) ∗ 323534 + (.5 − .39) ∗ 320865

and the final efficiency gap is:

Em =
(WD

l + WD
s )− (WR

l + WR
s )

∑N
i mi

= −.016

The simple gap can be obtained directly from the h̄ and s̄ values. In this case, we refer to the

simple average (not turnout-weighted average) of ht, since this measure assumes all districts

are equally-sized. Thus, the simple efficiency gap for 2016 in Washington is:

E = (.6 − .5)− 2 ∗ (.53 − .5) = .04

Using the turnout-weighted average vote share,10 the measure is slightly different:

E = (.6 − .5)− 2 ∗ (.55 − .5) = .00

Since there is no uncertainty information provided by these estimates, it is unknown whether

an efficiency gap of .04 is egregiously large (or even significantly different from zero) without

conducting simulation studies.

10which is also the share of popular vote for Democrats
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Moving to the bonus measures, I first examine the median bonus. The worked example

below might be thought of as a single realization of the bonus statistic, where many realizations

are used with simulated h and δ and summarized to provide an estimate. The empirical h2016

will be used below, with two types of δ considered, a strict uniform and generalized uniform

effect. Again, using the average (not turnout-weighted) vote share h̄ = .53, I add δ = −.03

to h to shift h̄◦ = .5.11 In the case of districts where δ causes an invalid vote share to occur,

these cases may be truncated to (0, 1) (Gelman and King, 1994a). If imputation is used (as

discussed in Chapter 6), this truncation is rarely required, since the shift to the median is often

much smaller than the distance from any imputed district’s vote share to 0 or 1. With this shifted

vote share vector, no districts change hands. Thus, Democrats still win 6 seats, so s̄ still is .6,

and the expected bonus at median is:

B.5 = 2 ∗ .6 − 1 = .2

Note that if δ were a random effect, a shift of −.03 in mean may result in district 1 flipping from

Democrats to Republicans, if δ1 ≤ −.05. In that case, that realization’s bias measure would be:

B◦
.5 = 2 ∗ .5 − 1 = 0

Since no other districts are likely to flip when E[δ] = −.03, the fraction of times district 1 is won

by Democrats versus the fraction of times it is won by Republicans in simulations is the effective

determinant of the value of B.5.

For the observed bonus, we must flip h̄◦ = 1 − h̄ = 1 − .53 = .47, which requires a

δ of twice the magnitude.12 If we simply add δ = −.06 to h2016, we see district 1 flipping

from Democrats to Republicans, but no other district flips. This would make s̄2 = .5, since

Democrats win 5 seats in the “tables turned” counterfactual, when their vote share is 47%.

11Accounting for varying turnout is not difficult here, too. A uniform swing of δ is converted using the turnout
weights into a vector of adjustments. I deal in the average here to keep discussions simple.

12Thus, one sees how potential spatial correlation in δ may cause different simulation outcomes to be more likely,
especially as swings become large.
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Thus, the observed bias in this scenario would be:

Bh̄∗ = .6 − (1 − .5) = .1

However, if δ were a random effect, it may be the case that district 10 flips in addition to district

1, or that neither districts 10 or 1 flips. If both flip, the realizations’ observed bonus would be

Bh̄∗ = .6 − (1 − .4) = 0

If neither flip, the realizations’ observed bonus would be

Bh̄∗ = .6 − (1 − .6) = .2

On the whole, it is only likely that districts 10 and 1 are “in play” during this counterfactual; either

both of them flips, only one flips, or none flip. The estimate of Bh̄∗ thus is a summary of the

frequency of those three outcomes.

For the attainment gap, the minimum value of h̄ such that s̄ > .5 is needed. Since there

are an even number of districts (and 50% is not a majority), this means the smallest vote share

where Democrats still win 6 seats is required. In this case, assuming a strict uniform swing,

that would be h̄ = .48, the value at which district 1 flips to Republicans and Democrats &

Republicans split the delegation at 50%. This would make the attainment gap estimate:

A = .5 − .48 = .02

indicating that Democrats win majorities in the Washington congressional delegation with

around 2% fewer popular votes than Republicans. For a random swing with fixed expecta-

tion, the average of the minimal attainable h̄◦ would be the estimate used for the attainment

gap, given that either districts 10 or 1 might flip in simulations.

2.4 Geometric Measures of Boundary Manipulation

While partisan gerrymandering is embodied by the existence of partisan advantage, many

previous studies and attempts at detecting partisan gerrymandering (and gerrymandering more
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generally) have focused instead on electoral boundary manipulation. Akin to the early work on

the measurement of partisan advantage, many measures that purport to identify when a con-

gressional districts’ boundary obscures or manipulates the underlying population distribution

have been developed. Early measures, such as the moment of inertia measure suggested

first by Weaver and Hess (1963), are essentially the same in spirit as more recent measures

(Fan et al., 2015). In addition, concern about the sufficiency of geometric measures to iden-

tify legitimate boundary manipulation have also been ever-present (Young, 1988; Humphreys,

2011).

Regardless, many of the most commonly-used measures of boundary manipulation arise

from simple geometric relationships between the observed shape of a congressional district

and an ideal reference shape. Typically, one measure purports to identify a single dimension of

shape regularity, such as shape elongation, boundary perforation, or winding (Niemi et al., 1990;

Altman, 1998a; Wentz, 2000). Recent measures, such as that suggested by Chambers (2010)

or Fryer and Holden (2011) attempt to make the scores relative to the context in which regularity

is achieved. They aim to account for the fact that some states are less regularly-shaped than

others. The way the frame is divided may affect the regularity of possible district shapes, so

controlling for this frame dependence is necessary to make geometric measures that can be

compared between states. For Chambers (2010), this is done by considering the set of shortest

paths between voters; districts that are likely to fully-contain shortest paths are considered well-

shaped. Likewise, Fryer and Holden (2011) suggest an index that describes plan compactness

relative to the maximal compactness possible for a given frame. More recently, Fan et al.

(2015)’s novel moment of area measure follows a similar logic to Weaver and Hess (1963) and

Boyce and Clark (1964), but also construct a relative measure, standardized by the maximally-

compact packing of population available in the district.

While these attempts to address shape measures’ generalizability is admirable, critical eval-

uations of the effectiveness of these new measures in the vein of MacEachren (1985) is not

common. Indeed, since allegations of boundary manipulation are based on these measures,

new ones are often not “ground-truthed” by identifying commonly-agreed-upon districts that
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were manipulated. While Ansolabehere and Palmer (2015) does this in a sense, comparing

recent districts to the original “Gerry mander” of 1812 to identify whether compactness has in-

creased or decreased as a whole, the use of a pre-Baker v. Carr district is not helpful; the legal

and social regime for redistricting was massively different after the 1960s cases discussed in

Section 2.1. Thus, while work strives to make these boundary manipulation measures compa-

rable between states or over time, fundamental issues with validity, uncertainty, and accuracy

have not been addressed.

At its core, many reservations with shape measures revolve around their overly-simplistic

view of human spatial social structure. Part of the issue with identifying boundary manipulation

is that people do not tend to live in regular polygons, tiled spatially with similar social, ideo-

logical, racial, and ethnic characteristics (Archer, 1988; Gimpel and Schuknecht, 2009; Walker,

2013) Indeed, the spatial and ethnic configuration of people in cities is not exogenous; so-

cial and spatial aspects of ethnic and racial divisions can reinforce or arrest political attitudes,

sometimes changing their expressions (Giles and Hertz, 1994; Sastry et al., 2002; Rocha and

Espino, 2009). Some cities (or subregions within cities) have significant disparities in terms of

their local population density, and the structure of these differences manifests in different styles

of population grouping (Reardon et al., 2006). In addition, the link between the observed district

boundary and the intuitive idea about how a given numerical summary presents the manipula-

tion of “natural” or “latent” social or physical boundaries is tenuous. Compactness (and shape

regularity more generally) has many dimensions (Angel et al., 2010), and many practitioners in-

terviewed in Chapter 9 could not articulate what they viewed as important when thinking about

district shape regularity.

Regardless, geometric measures provide the only commonly-used local measures of dis-

tricts. The partisan scoring methods discussed in Section 2.3 generate a single, plan-wide

score. In contrast, many of the geometric scores are expressed district-by-district. With the

exception of Fryer and Holden (2011), this means that individual “bad” districts can be identi-

fied. Thus, these measures are commonly used in both popular discussion and litigation about

redistricting concerns. In fact, occasionally these measures of shape regularity are balanced
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Figure 1. Ideal shapes for a congressional district, Maryland’s 5th District from 1903 to 1923.

against measures of political advantage; when political advantage is detected over the entire

plan, spatially-irregular districts are often singled out for legal reproach. Since the partisan

measures used up to this point have no capability to identify which districts strongly affect the

statewide bias measure, this is a reasonable mode of analysis.

So, in order to compare the localizations of the bias measures in Section 2.3 to geometric

measures, I first discuss which geometric measures are used and how they will be computed.

The five measures used in my comparison derive from four distinct ideal shapes. These ideal

shapes are shown below in Figure 1. Typically, ideal shapes refer explicitly to an optimization of

the given metric used to identify irregularity. When using a population measure, the ideal should

have a uniform and efficient distribution of population; when using a perforation measure, the

ideal should have as nearly smooth boundaries as possible. In practice, many ideal shapes are

circles or simplexes.
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Most of the common geometric forensics range between zero and one, where one indicates

perfect similarity to the ideal shape, and zero indicates perfect dissimilarity. As a result, districts

that score well are close to unity, and are considered “not gerrymandered” because their shapes

are close to the ideal comparison shape. Measures that focus on boundary perforation are often

highly-sensitive to the scale at which the boundary is measured (Mandelbrot, 1967), and so are

often avoided in cases of complex coastline districts. While these statistics have a restricted

domain, no further distributional theory is available for their values. They admit no uncertainty,

being simple summaries of the geometric or population information about a district, and provide

no indication of how unusual a given shape is in a relative or absolute sense.

2.4.1 Ideal Circle Measures

Three measures used in this dissertation fall into this category. Many compactness proper-

ties are satisfied by circles (Angel et al., 2010), but the reference circles constructed for each of

the three measures used in this dissertation are distinct. The first reference circle measure, sug-

gested famously by Polsby and Popper (1991) is the isoperimetric quotient, sometimes called

the Polsby-Popper metric in the districting literature. The isoperimetric quotient is a well-known

property of shapes that describes how “efficiently” an area is enclosed by a perimeter. Polsby

and Popper (1991) suggest that this measure should filter out districts that meander around the

map, attempting to avoid or pick-up target areas. For a district D, let its area be denoted AD

and its perimeter be denoted PD. Then, the isoperimetric quotient is the ratio between the area

of the district and the area of a circle having the same perimeter as the district:

IPQ =
4πAD

P2
D

(2.10)

The IPQ is always less than one, and is exactly one when the shape is circular. Since a circle

encloses an area with the minimal perimeter, this measure can be thought of as the “shrinkage”

in the size of the district due to its kinked and winding perimeter. Schwartzberg (1965) suggests

a similar metric, instead using the isoareal quotient. A less well-known quantity, the isoareal
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quotient relates the perimeter of the district to the perimeter of a circle enclosing the same area:

IAQ =

√
AD
π

PD
(2.11)

One novel measure for this purpose might acknowledge that a perfectly-spherical district would

not tile alongside other districts. Thus, an isoareal/isoperimetric quotient might also be derived

using the regular hexagon with the same area/same perimeter, respectively. While the origina-

tors suggest that these two measures ostensibly single out different districts and use different

arguments to justify the measures, the two are perfectly rank-correlated, since they are one-to-

one nonlinear transformations of one another. Thus, if examining the value of these scores or

their raw correlations with other measures, we might expect them to be different. However, ex-

amining quantiles or rank distributions of these statistics should yield nearly identical selected

districts, depending on the precision of the computation, and identify identically-manipulated

districts, despite the fact that both authors provide distinct arguments about what the indices

measure.

The final ideal circle measure used here is the Reock measure (Reock, 1961). This mea-

sure is argued to identify elongated shapes. It relates the area of the minimum bounding circle

to the area of the target district:

R =
AD

AMBC
(2.12)

Since the bounding circle is guaranteed to contain the district, it must have an area at least as

large as the district. Therefore, R varies between zero and one, with values approaching one

indicating that a district is very nearly shaped like its bounding circle. Computing the minimum

bounding circle is a linear-time optimization problem isomorphic to a facility location problem.

However, a large constant factor (and high-resolution boundaries) make it difficult to compute

this value for many shapes. At most, the minimum bounding circle intersects three points

of the input shape (Skyum, 1990), and at worst has the diameter of the shape (the furthest

pairwise distance between boundary points) as its own diameter. There is no intrinsic meaning

to the minimum bounding circle in this context, in the same sense as the circles in the isocircle

measures.
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2.4.2 Convex Hull Measures

Two other measures used to compare shapes involve the convex hull of the district. A con-

vex hull is the simplex containing all pairwise pairwise connections between points on the shape

(De Berg et al., 2008). Stated in terms of dissimilarity metrics, the following two measures are

studied by Brinkhoff et al. (1995) for examining geographic shape regularity. One was also

used by Ansolabehere and Palmer (2015): the convex hull areal ratio. This relates the area of

a shape to the area of its convex hull:

CA =
AD

ACH
(2.13)

Like the Reock measure, this lies between zero and one, with values close to one indicating

that the district is almost coincident with its convex hull. Since the convex hull is guaranteed to

contain the district, its area is guaranteed to be at least as large as the district. An alternative

measure involving convex hulls relates the length of the district perimeter to the perimeter of

the convex hull:

BA =
PCH

PD
(2.14)

This specification is a direct similarity measure. By pivoting the dissimilarity measures from

Brinkhoff et al. (1995) into similarity metrics, I preserve the same interpretation as the previous

ideal shape measures: values approaching one indicate close-to-ideal shapes, and values near

zero indicate potentially-manipulated boundaries. Brinkhoff et al. (1995) call their dissimilarity

specification of this measure the “boundary amplitude”, since it provides a rough indication of

how twisted the boundary of the polygon must be to fit within the convex hull.

These five measures will be used to attempt to characterize how “regular” district shapes

are when boundary regularity is compared directly to political impact. By relating them to the

measures of district impact developed in the next section, I will demonstrate the link between

suggested measures of boundary manipulation and the actual impact districts whose bound-

aries may be manipulated have on the measures of partisan advantage.
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Chapter 3

DATASET: SPATIOTEMPORAL DATABASE OF CONGRESSIONAL ELECTIONS, 1898-2016

3.1 Sources of Constituency-level Electoral Data

Longitudinal study of Congressional elections in the United States focusing on the estima-

tion of bias and responsiveness is not new. With the publication of King (1994), high-quality

data on US Congressional elections at constituency level was made available for various stud-

ies of redistricting, voter behavior, and electoral system analysis. Many of the influential post-

Bandemer studies on the impact of redistricting on Congress uses this data (Gelman and King,

1994b,a). In the decade after it was published, many other studies of American elections also

used this data.

However, later studies of elections have not provided data to extend King (1994) directly. In

most cases, these studies both extend and enrich the original data set, providing a superset

of the original Congressional elections data. Often, these analyses focused on sociodemo-

graphic study of redistricting’s impact on various aspects of the electoral system (Abramowitz

et al., 2006b; McDonald, 2006; McKee et al., 2006) or are general studies of the social and

demographic structure of American Congressional geography (Gimpel and Schuknecht, 2009;

Crespin et al., 2011). While privately-owned data exists for this purpose, the price of obtaining

coverage comparable to (King, 1994) is high. Thus, the Constituency-Level Electoral Archive

(CLEA) was developed in part to provide an extended, more detailed, and open data set on leg-

islative electoral geography (Kollman et al., 2016). For US Congressional elections, this data

set also provides much more data about minor parties and candidates themselves, and has

been used in a variety of contemporary electoral studies (Linzer, 2012; Gerring et al., 2015;

Kayser and Lindstädt, 2015; Bochsler, 2016). Since the CLEA is a multi-country data set, it is

used often for comparative studies that examine the generalizability or comparative validity of

particular theories about campaigns or elections, as well as generic polimetric or psephological
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studies. For US elections, the CLEA has been used for longitudinal analysis of electoral struc-

tures, examining how specific electoral properties, like effective number of political parties or

competitiveness, change over time.

For the geospatial research on US Congressional elections, work has focused on the devel-

opment and propagation of macro-scale sectionalism and the construction of ideological and

geographic voting blocs over time (Archer and Taylor, 1981; Bensel, 1987; Shelley and Archer,

1995), as well as the analysis of scale-sensitive political identities, both in redistricting and

in identifying “normal” vote (Openshaw and Taylor, 1979; Archer, 1988). Recently, calls for a

revitalized quantitative electoral geography, focusing on electoral systems analysis and voter be-

havior, have been made (Warf and Leib, 2011; Cho and Gimpel, 2012), and many foundational

problems in the spatial analysis of electoral systems, such as those articulated by Gudgin and

Taylor (1979), have been explicitly reclaimed by contemporary authors (Rodden, 2010; Calvo

and Rodden, 2015). This has seen an explosion of spatio-temporal analysis of the electoral ge-

ography of the U.S. Congress (Calvo and Escolar, 2003; Coleman, 2014), as well as analyses at

non-Congressional spatial scales (Gelman, 2007; Bishop, 2009; Hawley and Sagarzazu, 2012),

and non-American electoral systems (Shin and Agnew, 2007; Harbers, 2016). Altogether, the

literature on electoral analysis has become both robust and wide ranging.

Complementing the revitalization of electoral systems analysis, most of the data generated

in this literature has been openly shared under permissive licenses. However, the construction

and maintenance of spatially-referenced data sets for Congressional analysis can be a more

difficult process than analysis of elections at a state or county level. Indeed, King (1994) and the

CLEA only provide spatial information in terms of the states in which districts are found. They

do not provide information about the shape or extent of the districts, nor the neighborhood &

topological relations between districts. Geography & spatial effects may be richer than nesting

relationships alone, however, so longitudinal study of spatial effects in congressional districts

is quite restricted (Owen et al., 2015). While the CLEA provides a selection of “georeferenced

elections data” (the GRED), this data set is not comprehensive, with limited temporal scope

when compared to US elections coverage in the CLEA. To remedy this, I have constructed a
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general-purpose spatial database for this work that extends King (1994) forward in time using

data from the CLEA and novel data on incumbency. With this extended dataset, I connect the

individual district geometries compiled by Lewis et al. (2013) to yield a single spatio-temporal

database of US Congressional elections since 1898 using a single continuous encoding and

indexing scheme. In what follows, I discuss the process for constructing this data set, compare

the relative values of the source data sets, and briefly discuss potential use cases or novel

analyses that this new data may provide.

3.2 Methods

To extend King (1994) using the CLEA and bind both to Lewis et al. (2013), a common key

across all data sets was needed. This required a coherent data modeling strategy that could

encompass the abstractions in each of the data sources. Thus, the data set I construct is a

collection of the results of general elections to the US Congress. Elections to a Congress are

composed of some number of contests, which are electoral challenges in which some number

of winning candidates are declared. Each contest occurs within some territorially-bound con-

stituency, or district, which may or may not be unique in each Congress. Relating the three

data sets required disambiguating the relationship between contests, districts, and the Con-

gresses. Occasionally, a district may have more than one contest within it, like the Alabama

congressional for the 88th congress, where all eight seats were elected at large.

To ensure unique indexing of contests and disambiguation from the districts themselves,

the Inter-University Consortium for Political and Social Research (ICPSR) numerical codes for

states used in King (1994) were first converted to US Census Bureau Federal Information Pro-

cessing Standard Codes (FIPS codes). These codes are contained in column state_fips of

the example table segment shown in Table 4. Then, a composite database key was constructed

to refer uniquely to a contest’s Congress, state, and district. The first three characters of the

composite index reflect the Congress number of the record, with zero-padding on the left if the

Congress number is less than three digits. The second three digits of the composite index are
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the zero-padded state FIPS code. The third three digits of the composite index are the zero-

padded district number. This provides a unique index for each territory while allowing more

than one seat to be in each of these constituencies.

Finding a common district numbering scheme was the first design challenge for this data

set. In all cases, the sources used different conventions to refer to “at-large” districts, districts

that are the entire state. In the CLEA, at-large districts were variously referred to as the first

district (vermont 01), as the “zeroth” district (vermont 00), or having no number (vermont). In

all cases, Lewis et al. (2013) referred to at-large districts as the “zeroth” district. In both data

sets, district numbers refer to the spatial constituency in which the contest occurs, so multiple

contests may have the same district number. In contrast, King (1994) constructs multiple district

indexes in the case of a multi-member district. In at-large contests, a “district” index is labeled

decreasing from 98, meaning that in these cases, the index uniquely identifies a contest, not

a district. If two candidates run at-large in a state, their “district” numbers are 98 and 97 even

though the spatial territory of their electorate is the same.

The Lewis et al. (2013) convention is the most simple and robust for this application since

it treats the district consistently as a spatial object, rather than as a hybrid of contest and

district concepts. In addition, the Lewis et al. (2013) indexing strategy retains an advantage

of King (1994)’s index, since at-large contests can be separated efficiently. At-large contests

can be structurally different from typical Congressional elections that occur at the sub-state

level, and at-large occasionally merit separate consideration. So, the CLEA records were made

consistent with the Lewis et al. (2013) convention, and the King (1994) records were converted

to this convention as well. The final index is contained in the geom_id column of Table 4, and

the original indices retained in king_dist and lewis_dist, which reflect the two consistent

styles of district numbers.

In addition, a unique index for the geometries themselves, the index from Lewis et al. (2013),

is retained in each record. This is composed of four three-digit codes. The first component is

the zero-padded state FIPS code. The second component is the Congress in which the district

shape first appeared. The third component is the last Congress in which the district shape
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was used. The final component reflects the district number assigned to the district during its

lifetime. This index uniquely identifies the geometries of constituencies in US Congressional

elections, whereas the other index provides a unique identifier for the contests, referring to their

Congress, state, and constituency. In addition, this index allows for the construction of a high-

quality redistricting indicator variable since a contest in a “new” district is one whose congress

variable matches the second triplet in the component index.

For elections before 1992, the vote_share and turnout, delsouth, and inc covariates

are taken directly from King (1994). For later elections, vote_share, delsouth, and turnout

is constructed from the CLEA and inc is coded by hand. All variables aim to replicate the

method used to generate King (1994). The simplest to replicate is delsouth, a binary variable

indicating that a record is in a southern state. The vote shares, in this case, are the share of

the two-party vote cast for Democratic candidates. To construct this from the CLEA, the total

number of votes cast for the candidate endorsed by the major party candidates is recorded.

Thus, in cases of “fusion voting,” where the same candidate appears on multiple party tickets,

these counts are added to the major party’s total. The sum of these votes is turnout. Then,

the share of turnout that the Democratic candidate receives is the vote_share. To match

the structure of King (1994), the detail in the party identification in the CLEA was reduced to

three parties: Democrat, Republican, and Other. In most cases, the reduction in parties was

not significant. However, one case should be mentioned: Farmer-Labor candidates before the

Democrat Farmer-Labor merger in 1944 were considered to be Democrats. This decision does

not affect the resulting data product, since only King (1994) was used during this period, but will

be apparent in the validation plots shown below. The CLEA does not contain incumbency infor-

mation, so the inc variable was derived by hand from Congressional rosters. The post-1992

inc variate was coded to match King (1994): a Republican incumbent who runs for reelection

is coded as -1, a Democrat who runs for reelection is coded as 1, and a zero is recorded when

there is no single incumbent. Together, this comprises the dataset produced from the CLEA. It

provides similar data to King (1994) in addition to extending past 1992 and enriching the data

with spatial information. The period of overlap in King (1994) and the data derived form the

45



congress delsouth fips contest_uid inc king_dist lewis_dist

114 1 22 114022006 0 NaN 6
114 0 23 114023001 1 NaN 1
96 0 6 96006027 -1 27 27
96 1 13 96013002 1 2 2

state_name turnout vote_share year geom_uid wkb

louisiana 329327 0.288853 2014 022113114006 01060000. . .
maine 281425 0.663317 2014 022113114001 01060000. . .
california 175272 0.489981 1978 006094097027 01030000. . .
georgia 42234 1 1978 013093097002 01030000. . .

Table 4. The example schema of the final data product, broken into two lines. The column
containing the shapes encoded in well-known binary is truncated for brevity.

CLEA, all US elections from 1896 to 1992, will be analyzed in the validation section to ensure

that the CLEA data after 1992 comports with the data sourced from King (1994).

After this, all data was inserted into a SQLite database and a outer join conducted, retaining

all district shapes. The join resulted in over 98% of matches on keys, so only a tiny fraction of

the districts in Lewis et al. (2013) did not find matches in the extended King (1994). Most of

the remaining missing entities reflected duplications, malformed original entries that slipped

through the data cleaning process, or non-voting constituencies that were not recorded in the

CLEA or King (1994). The geometry information was stored in a text format in a column, wkb, of

the resulting comma-separated table. This column is shown truncated in Table 4, and contains

Polygons or MultiPolygons (as defined by Open Geospatial Consortium (2010)) encoded in well-

known binary (WKB), stated in hexidecimal. This more concise statement of WKB-encoded

geometry is common in database software (such as PostGIS), but still results in a column

with long elements. The coordinates are stored without a coordinate system using the NAD83

datum, inherited from Lewis et al. (2013).
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3.2.1 Code availability

The methods used to generate the data set will be made available through the Open Sci-

ence framework. All scripts were implemented in Python, and requires a few Python data

analysis libraries: pandas, a tabular data processing library, geopandas, a geospatial tabular

processing library, numpy, a numerical computation library, and SQLite, used for the final out-

of-core database join. In addition, a makefile is provided for convenience, to ensure the build

process executes in the correct order.

When run in the correct order, the scripts generate intermediate data and final data

products from a collection of sources. First, Kollman et al. (2016), King (1994), and the

manually-constructed collection of incumbency information for elections beyond 1992 are

contained in a sources directory. The first script, 00_get_all_shapes.py, collects all dis-

trict shapes from the repository maintained by Lewis et al. (2013), placing them in the

sources directory as well. Two intermediate data products are constructed. First, after

running 01_data_munge_clea.py, a cleaned and party-reduced version of the CLEA data

is stored in intermediates/clean_clea.csv. Second, the next script in the sequence,

02_rebuild_database.py, combines all of the district shapes together in a single table in

a SQLite database. Then, the fourth script, 03_extended6311.py, concatenates the original

King (1994) with the cleaned CLEA data. This first product, the extended_6311.csv data

set, has the same schema as the final data set constructed by 04_final_merge.py, which

accesses the SQLite database and merges the extended King (1994) with the collection of

district shapes. In this merge, two final outputs are generated, products/pre1948.csv and

products/post1948.csv, which split the results of the merge in two parts. The split divides

the series roughly in half, and corresponds to the division between full Congresses organized by

the Legislative Reorganization Act of 1946. Finally, if if more columns from the Lewis dataset

are required by analysts, the retained columns of the merge in 04_final_merge.py can be

changed without affecting the merge process.
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Figure 2. Relationship between Democrat share of the two-party vote in King (1994)
(ICPSR-6311) and that constructed from Kollman et al. (2016) (CLEA).

3.3 Data Records

As discussed in the Section 3.2.1, three data products are combined within the dataset.

The spatial dataset due to Lewis et al. (2013) is split into pre-1948 and post-1948 components

to reduce the size of the resulting product. To join these pieces together, the latter table’s

header must be removed and the tables concatenated. Both tables have the schema discussed

above in Table 4 with columns in the same order. To assist those who have no need for the

spatial referencing, products/extended_6311.csv, named for the original ICPSR numerical

designation of King (1994), contains the complete elections data with the geometric column

omitted.

3.4 Technical Validation

After merging and validation, the resulting two-party vote shares constructed from the CLEA

were compared to the original source King (1994) during the period of overlap in the dataset,

from 1896 to 1992. In this period, the CLEA data is not retained in the final product. But,
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Figure 3. Comparisons of the national average Democratic vote share between King (1994)
(ICPSR-6311) and Kollman et al. (2016) (CLEA)

comparisons over this period of overlap illustrates how closely the method constructs a dataset

from the CLEA with the same semantics as King (1994). First, the comparison shown in Fig-

ure 2 presents the scatterplot of the Democratic party vote shares in Congressional elections

constructed using the CLEA and that from King (1994) (ICPSR-6311). The plot for the early

period of overlap is shown on the left, and the comparison over the latter period is shown on

the right. The early period of overlap contains all Congresses conducted before the Legislative

Reorganization Act of 1946, and the latter period contains all full Congresses that take place af-

ter the passage of the Act. The correspondence in the two data sets is high, but is much better

in the second half of the data than in the first. This is likely both due to the way the Democrat-

Farmer-Labor faction was processed and the relative disappearance of minor factional party

classifications in the CLEA in the period after 1948. In addition, the prevalence of fusion voting

declines in this period, which makes tabulation of the two-party vote much simpler. Thus, this

comparison indicates that using the data derived from the CLEA should provide an accurate

post-1992 extension of King (1994), since accuracy is better for the contemporary Congresses

However, this plot does clearly show cases where the CLEA and King (1994) are almost

perfectly negatively correlated. When isolated, these cases occurred when the two source data

sets disagreed about the party identification of the legislators in a contest. Since this is two-
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party vote data, a disagreement about party would lead hi to be 1− hi in the other dataset over

a universe hi ∈ [0, 1]. Upon further examination, these cases were consistently determined to

be errors in the CLEA and were reported. However, since these coding errors are detected only

in the pre-1992 portion of the CLEA-derived data, these few coding errors do not propagate into

the derived spatiotemporal database.

A second verification step, comparing the share of votes Democrats receive and the share

of seats Democrats win in the US Congress between the two data sets was conducted. This

comparison is shown in Figure 3. Both sources generate similar estimates in these two cases,

and again tend to track better in later Congresses. Notably, however, the two most recent CLEA

releases (versions 8 and 9) omit elections in the United States for 1918, which this graph makes

clear. Since the derived dataset uses King (1994) for all years before 1992, this missing data

does not affect the final data product. Thus, with these two comparisons, it seems the two-party

vote data generated from the CLEA is sufficient to extend King (1994) past 1992, and the final

spatio-temporal database of US Congressional elections since 1896 is coherent.

3.5 Further Potential Uses

To use this enhanced version of King (1994), the data must first be loaded correctly into

an efficient spatial format. The format chosen here is standards-compliant and can be read by

any tabular data reader with access to GDAL, the Geographic Data Abstraction Library. In addi-

tion, the table can be read directly into various SQL engines (such as PostgreSQL or SQLite),

and the well-known binary column converted directly to geometries using appropriate PostGIS

or Spatialite functionality. Then, spatial analysis can be conducted using standard statistical

packages (Thomas et al., 2004; Rey and Anselin, 2007; Bivand and Piras, 2015). This may

include spatial econometric analysis of electoral models (Anselin and Rey, 2014), exploratory

local spatial modeling (Calvo and Escolar, 2003), or cluster analysis and voter diffusion detec-

tion (Coleman, 2014). In this dissertation, the dataset allows for a novel study of the relationship

between measures of partisan advantage and measures of electoral boundary manipulation. I
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also am interested in linking the dataset with *-NOMINATE scores Poole and Rosenthal (1987)

to investigate the ways boundary change and political ideology may shift together over time.
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Chapter 4

EMPIRICAL STRUCTURE OF ELECTORAL SWING

All of the partisan advantage measures considered in this dissertation (starting from Chap-

ter 2 onwards) and nearly all measures of partisan advantage discussed in the literature (e.g.

Nagle, 2015) stand upon a model of the relationship between seat shares and vote shares in the

electoral system. They either do so explicitly, by specifying and estimating a stochastic model

of elections against which fair reference scenarios are evaluated, or implicitly, by constructing a

measure of advantage that prizes certain functional relationships between seats and votes over

others. Abstract standards of electoral fairness often place constraints on the structure of this

relationship as well (Grofman, 1983; Stephanopoulos, 2013). In some studies, such as Tufte

(1973), the model of h̄, s̄ is stated, and statistics used to characterize the potential fairness of an

electoral system pertain to summaries of the estimated relationship. In others, an implicit stan-

dard of justice belies an “ideal” theoretical seats-votes relationship, but a specific parametric

form is not provided and the “fair” curve not constructed directly. Regardless, misspecification

in the model of elections may provide erroneous estimates of the seats-votes curve, and thus

incorrect or unrealistic values for bias and responsiveness estimates from these curves.

Recent work using implicit seats-votes models to diagnose advantage focus on compar-

ing the observed slope and location of an assumed-ideal seats-votes curve (McGhee, 2014;

Stephanopoulos and McGhee, 2015) or require a given skewness for the seats-votes relation-

ship (McDonald and Best, 2015; Wang, 2016). Some methods of measuring partisan electoral

advantage do consciously attempt to avoid implicating a model of the seats-votes relationship

(Brookes, 1960; Johnston et al., 1999; Hill, 2010), but these methods do not provide a clear

alternative theory for what they quantify (Altman, 2002). Other work simulates many district

plans and compare the outcome of the observed plan to the set of outcomes expected under

the simulated plans (Chen, 2013; Cho and Liu, 2016b). Alternative methods also focus on

comparing the enacted plan to alternative candidate plans known to policymakers, attempting
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to demonstrate specific directional tradeoffs between objectives rather than characterizing the

abstract fairness of plans given a standard (Altman et al., 2015). Many analyses that attempt to

avoid explicit seats-votes arguments end up invoking an implied seats-votes structure regard-

less (Kousser, 1996; McGhee, 2014), so identifying a sufficiently-robust seats-votes model will

benefit many different types of gerrymandering analyses.

Thus, before proceeding to develop & examine local estimates of partisan advantage gen-

erated by one of these modeling strategies, I will spend time considering deeply the structure

of seats-votes modeling strategies that are used in subsequent chapters to estimate local im-

pact scores. I develop a new seats-votes modeling strategy based around bootstrap inference.

I also aim to characterize the empirical structure of electoral swing. The difference between

each years’ election results, electoral swing holds a significant place in modeling elections,

and models of swing are required to estimate seats votes curves and measures of partisan

advantage. Thus, I will examine whether common assumptions about swing are empirically

verified and whether common electoral models are spatially misspecified. In addition, I will con-

sider whether corrections to account for spatial misspecification have any effect on the resulting

curve.

4.1 Political Advantage as a “Hypothetical” Edge

Historically, work on modeling the relationship between seats and votes focused on reliable

and robust estimation of system responsiveness. Namely, in an attempt to validate a “natu-

ral law” of democratic societies, the “Cube Rule”(Kendall and Stuart, 1950) motivated many

foundational analyses of bias and responsiveness in democratic systems (Tufte, 1973). The

movement away from full-system analysis to the current focus on district- or precinct-level mod-

els cemented in the early 1990’s with a sequence of influential papers, and is accelerating as

data availability becomes better.

In tandem with the development of new responsiveness and bias estimation methods, the

development of better seats-votes modeling methods surged around the Davis v. Bandemer
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(1986) case. As discussed in Chapter 2, theoretical and empirical arguments about partisan

advantage and boundary manipulation abound in this period. The literature engaging with

the case (Grofman, 1985; Niemi and Deegan, 1978), centered primarily on discussions of ap-

propriate measures of boundary manipulation and political advantage and the theory of stan-

dards in districting. Focusing on methods to reliably estimate these quantities, Niemi and Fett

(1986) critiques “historical” analyses, where a seats-votes relationship is estimated directly from

(h̄t, s̄t) across many previous elections. These methods tend to provide sensitive estimates that

change dramatically from year to year and are highly contingent on the few data points avail-

able.

In its place, Niemi and Fett (1986) suggests “hypothetical” analysis, where seats-votes

curves are constructed directly from district level information in a single year or pair of years

using an explicit model of electoral swing, or the model of how changes in party average vote

share apply to each district. Absent any other model for how a change in system-wide average

vote share is reflected in each district, Niemi and Fett (1986) assume that an increase in a

party’s system-wide vote share is well-modeled by a proportional increase in all districts. How-

ever, the assumption that changes in party average vote share should apply uniformly to all

districts in an electoral model is an assumption with a significant history of debate in electoral

geography. The model of strict uniform swing, where each district increases exactly by the

average increase, is still used thoroughly today as a first approximation of electoral dynamics.

Preliminary interest in hypothetical modeling using strict uniform swings is followed by a

pair of influential papers, Browning and King (1987) and King (1989). In this, a structural theory

of elections based entirely on the “hypotheticals” of Niemi and Fett (1986) is used to justify a

system to measure partisan advantage. These hypothetical methods rely entirely on an im-

plicit model partisan swing that is used to shift observed outcomes into desired counterfactual

scenarios (Gelman and King, 1994a). However, to provide for more realistic counterfactuals,

Gelman and King (1994a) suggest that uncertainty about the electoral process should be parti-

tioned into inherent error and a separate component for uncertainty within the electoral system.

Inherent error, they suggest, is present in all attempts to model the electoral system. Electoral
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Kind Mean Variance Covariance

Strict constant - -
Generalized constant constant -
Hierarchical regional regional within-region

Table 5. Swing specifications common in political science literature. Note that none assume
correlation between observations in different regions.

uncertainty, though, is unique to each redistricting period and allows counterfactual elections

to be simulated with less uncertainty: since the outcome for election t is observed, any coun-

terfactual for t should be some combination of the observed outcome ht and the predicted ĥt

given the counterfactual electoral conditions, X◦. Thus, Gelman and King (1994a) suggest a

method to conduct counterfactual analysis in a way that shrinks counterfactual h◦
t towards the

observed ht, meaning the realization-specific uncertainty is removed.13

In this model, a generalized uniform partisan swing is used to construct counterfactual

elections, where shifts in h̄ are generated by a random effect with a fixed expectation. Contem-

poraneously, Jackman (1994) also models seats-votes curves using multiple stochastic compo-

nents, but treats swing instead as a spatial hierarchical random effect, suggesting that swings

for a given constituency result from nested local, state, regional, and national processes. This

also results in a generalized uniform partisan swing, where any single district experiences a

swing correlated with its state and regional context.

Together, these illustrate that the sense of the term “uniform” swing is ambiguous at best.

Random effects are not uniform in value, though they may be in expectation. So, they are

hardly strictly uniform in value, the sense used by Niemi and Fett (1986). A spatial hierarchical

effect is not spatially uniform (even in expectation). Yet both authors discuss their methods as a

generalization or extension of “uniform” swing. This ambiguity is actually older than the reaction

to the models & work flowing from Bandemer, and can be divided into three distinct conceptual

13This will be detailed further in Section 5.3.1.1.
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models for how shifts in aggregate party vote share (h̄) is (or should be modeled as) related to

the vector of party vote shares (h):

Strict Uniform Swing: Empirically, constituency-level swing is so tightly clustered around

the aggregate swing that it is effectively constant. As a modeler, this means a single

scalar shift, δ, may be used to construct counterfactual elections.

Generalized Spatially Uniform Swing: Constituency-level swing has variability, but this

variability has a common distributional structure over space. Thus, swing can be modeled

as identically distributed random shocks in each constituency, exogenous to electoral

conditions or district context.

Spatially Independent Swing: Constituency-level swing may be spatially heterogeneous,

but conditional on the heterogeneity, swing is independent. Thus, swing may be modeled

as an exchangeable random effect.

In many ways, these three claims drive a significant amount of discussion about effective ways

to model electoral volatility. In general, the spatially-independent argument is still quite popular,

with some suggesting that it holds so strongly that electoral modeling is a “solved” (Gelman,

2014) problem.

Since the model for electoral swing is implicit in the construction of electoral counterfactuals,

the simulation distributions for the measures discussed in Chapter 2 are contingent on these

specifications. Thus, misspecification in either the electoral model or the simulation method for

counterfactual elections may result in an incorrect seats-votes curve and invalid measures of

advantage or responsiveness. It is necessary to clarify and examine the structure of electoral

swing in modeling seats-votes curves before developing the local measure of partisan impact

that rely on these measures.
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4.2 Disagreement About “Uniformity” in Electoral Swing

The longevity of argument between these perspectives on what uniformity means still re-

flects current divides; a clear lack of consensus about the spatial structure of electoral swing

has been manifest throughout the 20th century. Early use of uniform swing arguments include

Brookes (1960)’s method to decompose electoral advantage using strict uniform swing or the

model of electoral volatility provided by Hawkes (1969). However, Rasmussen (1964) opposes

arguments using strict uniform swing in British multiparty electoral politics, suggesting that it

oversimplifies electoral dynamics and presents a misleading picture of how elections are won

and lost.

In contrast to the strict uniform strategies, early foundational work from Stokes (1965)

presages Jackman (1994), modeling electoral swing with local- and state-level components.

Thus, “uniform” for Stokes (1965) is in fact a generalized swing: a shift in support for one party

manifests as a shift in all places towards that party, but the shifts are essentially random. Going

further, (Katz, 1973b,a) provides a revision of Stokes (1965) allowing for further spatial hetero-

geneity. Levels of the hierarchy may vary in their response to a given swing. But, given the

swing in a district’s state, region, or nation, the distribution is linked together by a common hi-

erarchy, and swings are independent conditional on this hierarchy (Wilson, 1978). While early

formal treatment of explicit models for spatial dependence existed at this time (Whittle, 1954),

dependence between districts was not a foundational concern like nested multilevel structures

were.

In another context, arguments about the meaning of “uniformity” surface in a robust debate

about the usefulness of swing in analyzing Australian elections. These elections pose a a

distinct set of challenges to the estimation of responsiveness and advantage, since instant-

runoff voting in a multi-party system means that swing is not zero-sum (Mackerras, 1973). In

this context, Mackerras (1976) suggests that changes in a constructed two-party vote share

for dominant coalition parties in Australia in 1975 tended to be strictly uniform, arguing that

each sub-national constituency experienced nearly the same swing as the national average
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swing. Sharp critiques of this view echo Rasmussen (1964), and focus on the fact that a

uniform swing in a multi-party democracy is an unnecessarily strong simplification (Sharman,

1978; Mackerras, 1978). One relevant critique, that of Austen (1978), focuses instead on how

Mackerras (1976) is inconsistent: if swing were strictly uniform, then the significant fraction of

text Mackerras (1976) uses to analyze how some areas do not swing like the nation would be

moot.

Their discussion of just how “uniform” is uniform enough, generated no conclusive answers.

This tension between “strict” and “generalized” senses of uniform swing has also re-aired since

then in different venues, such as the exchange initiated by Butler and Van Beek (1990). They ar-

gue that swing should be used in the analysis of American elections, citing its use in Australian

and British analyses. Rose (1991) disagrees, again suggesting that swing is an unnecessary

simplification and is generally unhelpful because volatility is rarely constant over space. Coun-

tering, Gibson (1992) argues that swing is no worse than Rose (1991)’s own favored electoral

simplifications. More recently, these arguments resurface in discussions of uniform swing as

a “first approximation” for presidential electoral models (Jackman, 2014; Ghitza and Gelman,

2013). In addition, recent work discussing relative swings by social group in an ecological anal-

ysis of voting behavior in the Weimar Republic vote for the NDSAP (Nazi party) King et al.

(2008) reiterate a view of generalized uniform swing as essentially correct.

Foundational work by quantitative electoral geographers is also critical of the empirical basis

for strict uniform swing (Johnston, 1982, 1983). Two important monographs, Johnston (1979)

and Gudgin and Taylor (1979), make explicit theories about the structure of electoral politics,

swing, and partisan efficiency. While Gudgin and Taylor (1979) suggest uniform swing may be

a helpful analytical technique to reason about the distribution of district vote shares, they do

not suggest that swing is strictly uniform over space. This avoidance of strict uniformity is all

the more interesting due to the contemporaneous work detailing how the spatial structure of

macro-political alignments is relatively consistent over time (Archer and Taylor, 1981; Bensel,

1987).

Johnston (1983) also provides a novel theoretical argument illustrating the tension between
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two types of strict uniformity. Strict uniform swing might be understood in two ways: all places

shift the same absolute percentage points, or they shift the same relative fraction of support

from their current level. A relative swing of +5% would move a constituency where Republicans

get 51% of the vote by 2.55 percentage points, but would move the district where they get

42% by only 2.21 percentage points. Thus, a strict relative swing must result in a generalized

swing, depending on the distribution of district vote shares. Further, a strict absolute swing,

where all districts rise or fall by the same number of percentage points, results in a distribution

of relative swings. Districts usually have unequal turnout, so this distinction affects the party’s

system-wide popular vote, and thus makes the relationship between the party’s system-wide

vote share and the district vote share less certain. More generally, Johnston (1983) argues

that the distribution of vote shares and the distribution of volatility are necessarily linked, and

constant shifts are empirically unlikely when districts are different, too.

These discussions and ideas from electoral geographers only weakly percolate into the later

discussions of electoral swing in political science (Johnston, 2005). Although King et al. (2008)

cites O’Loughlin et al. (1994) and states that “spatial research” analyzing electoral swing in the

Nazi vote is “informative” (p. 971), they then suggest in a footnote:

The idea that partisan swing is approximately uniform across geographic
units dates to Butler [(1951)] . . . [and] has been generalized to a stochastic model
that fits electoral data in Gelman and King [(1994)]. For an example of the no-
tion that citizen support for political candidates shifts uniformly across most social
groups in the same direction and extent as the national swing, see Gelman and
King [(1993)]. (emphasis added)

Thus, again, the sense of “uniform” is confused. The author suggests that prior work has

demonstrated swing is spatially uniform, so neither heterogeneous or dependent. However,

consulting Gelman and King (1993), where discussion focuses on swing in support among

social groups, they suggest that electoral swing is strongly geographically correlated and com-

monly distributed, so that “dependence among states” (p. 416) must be modeled within years.

While states might shift together uniformly in mean in presidential elections, the swings are not

correlated when conditioning on their group nested structure (Bernardo, 1996).

For the purposes of seats-votes modeling, Gelman and King (1994a) hardly engages with
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spatial structure for the electoral swing term. A preceding paper, Gelman and King (1990),

suggests instead that:

We assume, therefore, that vote swings about the statewide mean are spatially
independent across districts . . . Modeling districts with additional information such
as spatial correlation or covariates, if they were available, would probably yield more
accurate estimates of the seats-votes curve. Omitting this unavailable information
is unlikely to systematically bias our results.

Later, Thomas et al. (2013) also explicitly suggests “generalized” swing is sufficient, claiming

that swings tend to be independent conditional on state or regional groups.

A thread pulls consistently in objections to the spatially “uniform” swing asserted by King

et al. (2008). Claims that swing is distinctly spatially heterogeneous have been present ever

since (Katz, 1973b,a)’s critique of Stokes (1965). The line of reasoning remains in Austen

(1978)’s response to Mackerras (1976) and surfaces again with Rose (1991)’s critique of swing

in general as being unhelpful because it varies spatially. However, systematic spatial analysis

of electoral swing is not common in political science outside of hierarchical arguments (Katz,

1973b; Gelman and King, 1993).

Thus, an analysis of the empirical structure of electoral swing will prove rewarding in both its

own right. Targeting the structure of swing in seats-votes models may also improve the gener-

ation of realistic counterfactuals and improve the validity of those approaches. A “generalized”

uniform swing with no heterogeneity or dependence may only match the distribution of swing in

a given year and appear entirely unlike a map of swing that has ever been observed. Hypothet-

ical election maps would then be somewhat unrealistic, in that a heterogeneous white noise is

applied to all districts when, in fact, neighboring districts might tend to shift together. Theoret-

ically, if nearby districts swing together, then there are significant implications for questions of

polarization and sorting in redistricting (Carson et al., 2003; Bishop, 2009; McCarty et al., 2009;

Johnston et al., 2016).

Thus, in what follows, an empirical examination of the spatial structure of electoral swing will

be conducted. First, recent presidential election swings at the county level will reveal spatially-
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correlated electoral swings, even when controlling for heterogeneity. Then, the empirical struc-

ture of swing at the congressional level since 1992 will be analyzed.

4.3 Analyzing Spatial Dependence in Electoral Swing Under Known Spatial Heterogeneity

Voting in American elections has distinct structure at various levels of spatial hierarchies

(Archer and Taylor, 1981; Bensel, 1987; Archer, 1988; Gimpel and Schuknecht, 2009). While

significant attention in American electoral geography has focused on identifying the spatial struc-

ture of the “normal vote,” the expected behavior of places in regions or in political eras (Con-

verse, 1966; Miller, 1979), analysis of electoral volatility directly is less common. When done,

the work focuses on sectional realignment (i.e. macro-scale heterogeneity), on the long-wave

processes of political realignment and coalition building. Instead, Johnston (1983) suggests the

study of volatility not in terms of strategic coalitions and realignment but in terms of direct analy-

sis of electoral swing, which is not as common in the analysis of American electoral geography.

Since models of electoral swing are critical to the generation of the plausible counterfactuals

required by partisan advantage measures, the lack of direct spatial analysis of electoral swing

is somewhat surprising. Below, I will discuss the structure of the 2016 election in terms of

the spatial structure of electoral swing at county level. Then, I will focus explicitly on swing in

legislative elections since 1992. Doing this analysis at two scales, I aim to identify that swing

in congressional elections is substantively different than swing in the county level, and may re-

quire much more subtle treatment for a few reasons that will be identified after the discussion

of empirical results.

4.3.1 Macro-geographical Structure of 2016 Presidential Swing

At the county level, contemporary presidential voting patterns tend to be fairly stable. In

this vein, the three county-level maps of presidential elections since 2008 shown in Figure 4

demonstrate a trend to red in some marginally-aligned areas of the Midwest and Ohio River
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Figure 4. Democratic share of the Two-Party Vote in presidential elections since 2008 at the
county level

Valley states, but the overall pattern of strongly-aligned areas does not change significantly.14

A reasonable visual interpretation of these spatial trends is that everything appears to get more

red, moving from the 2008 to the 2016 contest. While 2008 and 2016 are memorable electoral

contests, neither fit the pattern of the “watershed” election, which would present strong spatial

realignments in partisan coalitions.15

However, examining the maps of swing in the presidential elections since 2008 (shown

in Figure 5, the two maps appear quite different. Notably, these maps show that change in

the electorate from election to election is strongly patterned, but was inconsistent between the

08-12 swing and the 12-16 swing. Some areas, such as Wisconsin and Michigan, appear to

have moved steadily red over the past two elections; in contrast, the Minnesota break to the

Republicans is a 2016 innovation. Regardless, the swing is strongly spatially patterned, with

both 2016 and 2012 exhibiting similar levels of spatial dependence. The Moran’s I for electoral

swing in county-level presidential vote in 2012 is .66 (p < .0001) and 2016 is .61 (p < .0001).

Clearly, swing is not spatially uniform; some places move towards Democrats and some away

from Democrats, and the spatial structure of this deviation is likely not random. In addition, the

distribution of swings at the county level shown in Figure 6 appears to be well-behaved and

accord with the generalized uniform partisan swing arguments. The distribution is unimodal

and nearly symmetrical in both years, hanging close to the slightly-negative national median

14Robert Watrel & J. Clark Archer’s recent work on spatial and temporal principal components of normal voting
in the US Presidential is further illustrative here, but remains unpublished.

15Again here, citing Watrel & Clark would be illustrative.

62



Figure 5. Swing in Democrat two-party vote share from 2008 to 2012 & from 2012 to 2016.
Here, negative values indicate states that became much more strongly republican, and
positive values indicate counties that became more Democrat, measured in percentage points
of popular vote for president. The swing in the 2016 election was around twice as dispersed as
the swing for 2012, so the color-bars are nearly double in range between the two maps. In
addition, the “midpoint” of the color ramp is the median national swing; it is slightly negative in
both elections.

Figure 6. Distributions of county presidential swing and its spatial lag using Queen contiguity
weights from 2008 to 2012 and from 2012 to 2016.

swing. In addition to the distribution of swing being well-behaved, the distribution of the spatial

lag of swing is also well-distributed, with almost identical apparent structure to the distribution

of swing itself.

However, determining whether or not this positive dependence value is robust to spatial het-

erogeneity is somewhat complicated. While spatial dependence is distinct from spatial hetero-

geneity (Anselin and Arribas-Bel, 2013), the extent to which exploratory statistics like Moran’s

I are robust to heterogeneity can be examined. One thing that is clear in the maps of swing

is strong state and region heterogeneity. For example, Utah becomes significantly more Re-

publican during the 2012 election. Mitt Romney, a candidate with significant connection to the

state, attained an usually-strong level of support there, which reverted in the next election. To
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examine the extent to which the Moran statistic is robust to exogenously-identifiable spatial

heterogeneity, I develop two methods. One, a “hierarchical” Moran technique, re-specifies the

Moran regression as a hierarchical mixed-effect model. The second involves a conceptually-

simpler de-meaning of the response vector by group means before conducting analysis.

To define the hierarchical model, first consider the typical Moran-form regression:

WY = α + ρY + ϵ (4.1)

where α is the conditional mean, W is a row-standardized spatial weighting matrix that records

the N × N spatial relationships between observations, Y is the N × 1 vector of the variate

under study, and ϵ is an independent and identically-distributed Gaussian error term. I call

this specification a “Moran-form” regression to distinguish from the so-called “spatial lag”-form

of mixed regressive, spatial autoregressive model considered by Cliff and Ord (1973); Anselin

(1988) which is more standard in multivariate spatial regression work. The mixed-regressive,

spatial autoregressive specification is more well-used because it is well-defined when ρ = 0,

whereas Eq. 4.1 is often undefined when ρ = 0 in reduced form:

WY = α + ρY + ϵ (4.2)

WY − ρY = α + ϵ (4.3)

(W − ρI)Y = α + ϵ (4.4)

Y = (W − ρI)−1(α + ϵ) (4.5)

When ρ = 0, this leaves W−1 alone. Many common specifications of W are singular, and thus

the specification becomes undefined. Regardless, I proceed from the Moran-form regression

as the underlying specification of Moran’s I, one exceedingly-common diagnostic statistic for

spatial autocorrelation in univariate data (Anselin, 1996).

Thus, a hierarchical Moran statistic involves the same type of specification as in Eq. 4.1, but

instead of fitting a single global intercept α, the intercepts are modeled hierarchically. Thus, with

data Y, the same W mapping the N × N spatial proximity relationships between observations,

and a new N × J matrix, ∆, relating each of the N observations to their group j = 1, 2, . . . , J.
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This lets us express the model as a function of both the global mean µ and group-mean effects

γ:

WY = ∆α + ρY + ϵ

α = 1Jµ + γ + u
(4.6)

where 1J is a J-length vector of ones. In this model, u is the group-wise variance component,

ϵ is the unit-specific error term, and ρ corresponds to a Moran’s I-style dependence coeffi-

cient conditional on the hierarchical model for α, containing global effects µ and region-specific

effects, γ. This results in the following single-equation Moran-form regression in reduced form:

Y = (W − ρI)−1(1Nµ + ∆γ + ∆u + ϵ) (4.7)

However, due to the introduction of the joint random effect ∆u + ϵ, custom estimators are

required to fit this model (Wolf, 2016). For a simplification that can be implemented without

specialized estimators, the group-level variance component can be removed. This results in

the following model, a spatial fixed-effect Moran model:

WY = ∆γ + ρY + ϵ (4.8)

where γ is still the J-length vector of conditional group means. Another extension may privilege

variation due to heterogeneity over variation in dependence by constructing the group-means

unconditionally. This “group de-meaned” functions like a standard Moran specification where

the empirical (unconditional) group means are subtracted off of Y before estimation:

W(Y − ∆γ̂) = µ + ρ(Y − ∆γ̂) + ϵ (4.9)

where γ̂ is the naive group mean of Y grouped by J groups. This provides a measure of

the relationship between the N lower-level units after having removed the potential effects of

exogenous spatial heterogeneity in ∆γ̂. While this model is not as rich as that in Eq. 4.6, this

initial group de-meaning is incredibly simple to implement, can be estimated without concern

for the dual error terms, and has a “direct” empirical interpretation as removing the spatial

heterogeneity expressed in ∆γ̂ This method allows for the analyst to control for the presence of
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potential known heterogeneity while still exploring the structure of dependence in a dataset. By

examining the group de-meaned data directly, the structure of dependence after heterogeneity

can be examined after filtering out the potentially different means.16

4.3.2 Exploring a Decomposition of Spatial Heterogeneity & Dependence in County-level

Presidential Vote

First, simply examining the following Moran-form regression using OLS provides a compa-

rable value of ρ to the univariate Moran’s I, conditioning on heterogeneity across states:

W(h2016 − h2012) = Wδ2016 = δ2016 + ∆Sγ + ϵ (4.10)

where ∆S is the grouping matrix for counties-in-states, meaning γ models the state-specific

conditional means. In addition, δt is the swing vector from the previous election to the tth

election. The parameter estimates from this regression are contained in Table 4.3.2. Using

this model, we obtain an autoregressive coefficient of .3817, which is about half the Moran

coefficient estimated without the fixed effects, .6171. Twenty-seven statistically-significant state

fixed effects surface in this model, and these are shown graphically in Figure 7.

So, conditional on the heterogeneity at the state level, the county-level spatial dependence

(as measured by the ρ effect in regression 4.10) is still around half of the Moran’s I for the

2016 swing without attempts to control for spatial heterogeneity. But, what if this heterogeneity

is diagnosed at the wrong scale? Referring again to figure 5, some larger-than-state regions

appear to swing together frequently. This might be addressed using endogenous cluster detec-

tion in the future (Duque et al., 2012), but here I suggest a repeated application of the group

de-meaning strategy from Equation 4.9 using states, census divisions, or census regions. This

16This style of dependence-after-control strategy is similar to that advocated in the remarkable study conducted
by Hodges and Reich (2010), which suggests partitioning the sums of squares in spatial error specifications to avoid
“clobbering” your fixed effects with correlated errors.
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Coefficient Std. Err. p-value Coefficient Std. Err. p-value

Swing 0.3817 0.0091 0.0000**
AL -0.0262 0.0025 0.0000** AZ 0.0216 0.0059 0.0003**
AR -0.0033 0.0034 0.3343 CA 0.0279 0.0037 0.0000**
CO 0.0029 0.0035 0.4058 CT 0.0022 0.0076 0.7713
DE -0.0010 0.0119 0.9308 FL 0.0006 0.0035 0.8603
GA 0.0076 0.0029 0.0096** ID 0.0088 0.0039 0.0254*
IL -0.0269 0.0032 0.0000** IN -0.0270 0.0033 0.0000**
IA -0.0480 0.0033 0.0000** KS 0.0003 0.0032 0.9358
KY -0.0233 0.0031 0.0000** LA 0.0070 0.0035 0.0471*
ME -0.0248 0.0056 0.0000** MD 0.0140 0.0048 0.0037**
MA 0.0231 0.0063 0.0003** MI -0.0288 0.0033 0.0000**
MN -0.0404 0.0033 0.0000** MS 0.0042 0.0033 0.2038
MO -0.0345 0.0031 0.0000** MT -0.0122 0.0037 0.0009**
NE -0.0175 0.0032 0.0000** NV 0.0050 0.0055 0.3596
NH 0.0011 0.0068 0.8673 NJ 0.0143 0.0051 0.0047**
NM 0.0022 0.0043 0.6106 NY -0.0219 0.0036 0.0000**
NC 0.0029 0.0032 0.3550 ND -0.0410 0.0038 0.0000**
OH -0.0371 0.0033 0.0000** OK -0.0084 0.0034 0.0131**
OR 0.0023 0.0042 0.5793 PA -0.0207 0.0035 0.0000**
RI -0.0178 0.0094 0.0574* SC 0.0046 0.0039 0.2327
SD -0.0314 0.0035 0.0000** TN -0.0180 0.0032 0.0000**
TX 0.0115 0.0028 0.0000** UT 0.0396 0.0046 0.0000**
VT -0.0105 0.0059 0.0782* VA -0.0013 0.0031 0.6753
WA 0.0067 0.0041 0.1008 WV -0.0353 0.0037 0.0000**
WI -0.0270 0.0035 0.0000** WY 0.0020 0.0049 0.6763

Table 6. Regression results for a spatial fixed effects Moran model detailed in Eq. 4.6. The
model achieved an adjusted R2 of .75 and a significant F statistic. Two asterisks indicates the
p-value is less than .01, and one asterisk indicates p < .1.

might also be implemented using a hierarchical Moran regression specification that nests these

levels (like Stokes (1965)) to identify the empirical structure of this variation through an ex-

ploratory model.17

17 In theory, since the group de-meaning occurs before applying the Moran statistic, local indicators could be
naively constructed for the de-meaned sequences simply by treating them as input data (Anselin, 1995). However,
it is both unclear whether this is statistically appropriate, given the multiple layers of distributional assumptions im-
plicit in repeated demeaning, and if the identified clusters have any useful interpretable meaning without conducting
further basic research into the use of hierarchical Moran techniques. Further, with the nested hierarchical imple-
mentation, distributional assumptions are made about the structure of the model which likely push the technique
out of the exploratory spatial data analysis context supplied by common deployments of the Moran & Local Moran
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Figure 7. Statistically-significant fixed effect estimates in model 4.10. Twenty-seven states in
all have fixed-effect estimates distinct from zero at the .01 level.

Figure 8. The four Moran scatterplots for county-level presidential vote swing in 2016 with their
lines-of-best fit in orange. The coefficients of each of these lines represents the equivalent
Moran-style spatial autoregressive effect, conditional on the regional heterogeneity. The effect
size and p-value are stated at the bottom of the scatterplot. All are significant at p ≤ .001.
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Figure 9. The full spatial autocorrelation function, truncated at the first kth order at which the
correlation becomes negligible. This is computed on the 2016 presidential swing at county
level.

The successively de-meaned Moran scatterplots are shown in Figure 8. In this case, each

plot subtracts its groupwise mean from its constituent observations and treats the data as if

it were organic input data to a typical Moran statistic. All of the p-values for these repeated

analyses are statistically significant Thus, the x and y axes plot the de-meaned swing and

lagged de-meaned swing. The line of best fit is plotted through each point cloud, whose slope

represents the Moran coefficient for that regression. Thus, as you increase the scale of controls

for the spatial heterogeneity, the dependence measure declines in this dataset. Conceptually,

this means that Moran statistics may not be robust to spatial heterogeneity, especially when

that heterogeneity is strong.

Another method of examining this similar facet is to compute the (partial) spatial autocorre-

lation function. Akin to the temporal (p)ACF, the spatial p(ACF) measures the (partial) depen-

dence between successive orders of spatial lag in a lattice dataset. Here, the full spatial ACF is

most illustrative, since it characterizes the speed of the decay in correlation between counties

as the order of neighbors increases. In the spatial context, the kth exact order neighbors of

observation yi is the set of observations yj that are first reached in k steps. This means that
statistics. Thus, while I have implemented “local” hierarchical Moran statistics for this analysis, I do not present their
results on this data in this dissertation.
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the graph distance between observation yj and yi is exactly k:

{yik : min(||yj − yi||) = k ∀j = 1, 2, . . . , n}

Thus, the kth order spatial autocorrelation function is:

ρk = cor(y, Wky) (4.11)

where Wk is the adjacency matrix for k-minimal neighbors. The kth-order partial spatial auto-

correlation function is:

ρ̇k = cor(y, Wky | Wk−1y, Wk−2y, . . . , W1y) (4.12)

This structure, focusing on the counties first reached in k steps, prevents the repeated inclu-

sion of low-order neighbors in high-order lag evaluations. As shown in Figure 9, the correlation

between adjacent counties declines as a smooth function of proximity. At around the 20th-

order neighbors, observations begin to become uncorrelated. Conceptually, this means that

dependence between counties likely operates at a scale somewhere between the state and the

Census division, since Census divisions are populated by around 200 to around 500 counties,

whereas states typically have well under 100 counties. In contrast, the partial spatial autocorre-

lation function, which conditions on each subsequent set of kth order neighbors as discussed

in Eq. 4.12, suggests that correlation goes to zero almost immediately. Once the first-order

neighbors are conditioned on, the second-order neighbors provide nearly no information about

the source observation.

4.3.3 Spatial Dependence & Heterogeneity in Congressional Swing

When conducting a similar analysis for the swing in Congressional election returns in recent

elections, it becomes necessary to handle uncontested elections in some way. This concern

of how to address uncontested elections has long affected seats-votes modeling work. Since

many elections are uncontested in Congress, the “swing” from year to year in legislative vote
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Figure 10. Distributions of congressional-level Democratic vote share and swing each year.
For swing, matching of congressional districts is done when no redistricting occurs, so only
years with known successor-predecessor pairs are shown. This means swing is unavailable
for all years ending in 2, immediately following redistricting.

shares may be much more volatile than for county-level presidential returns. In the case where

an election is uncontested one year and then contested the next, the swing might be on the

order of ±.4. This does communicate some information about the change in vote shares, but

it may provide more noise than valuable information. In addition, the move from uncontested

to weakly-contested is more common than the move from uncontested to strongly-challenged,

so most swings for uncontested districts that are contested in the next period are smaller than

the worst case. Finally, the distribution of swings without imputing the uncontested elections is

more similar to than without the correction than that for the vote shares directly.

For example, consider the distribution of swings and vote shares on the left side and right

side of Figure 10, respectively. Regardless of whether swing or vote shares are being used,

the imputation removes the extreme secondary peaks of the distributions. These secondary

peaks surface due to uncontested districts becoming contested in the subsequent election.

Regardless, though, the magnitude of these peaks is much smaller in the swing distributions
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Figure 11. Global and group-wise de-meaned Moran statistics for Congressional elections
since 1992. Points in red are “statistically significant” with no multiple comparison correction.
The magnitude of the statistic is provided on the y-axis. Uncontested elections have been
imputed using an autoregressive strategy detailed in Section 6.2.

than in the vote share distributions. Examining the structure of the imputed distributions results

in a more well-conditioned analysis. In addition, the spatial dependence in the swing distribution

increases when uncontested districts are dropped. This is in part due to the fact that dropping

uncontested districts affects both the connectivity structure and distribution of values. Thus,

it seems most appropriate to analyze the distributions after imputing the uncontested election

vote shares, rather than only the contested elections.18

Given that we are using the autoregressive imputation strategy, the results from the year-

by-year Moran statistic plot is shown in Figure 11. Without any multiple comparison correction,

Moran statistics with pseudo-p-values under .05 are colored red. With a Bonferroni correction,

only the second and last Regional D-Moran statistic are significant; only the second Division

D-Moran, and the D-Moran for 2008 are significant under a Bonferroni correction for the Divi-

sion and State versions. Regardless, the spatial patterning in Congressional vote shares after

accounting for uncontested districts is inconsistent over time; swing is not always significantly

correlated, regardless of whether a correction for exogenous spatial heterogeneity along cen-

sus region, division, or state lines is used.

In addition, the fact that the I statistic becomes negative after the state-level heterogeneity

correction is remarkable. If, as some suggest (see Haining (2003, pg. 87), also Griffith and

18For more on the actual imputation model, refer to Section 6.2.
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Arbia (2010)), negative spatial autocorrelation arises from competitive processes in ecology or

human geography, then an interesting theory might be explored given the shift towards nega-

tive spatial dependence in the congressional swing after accounting for spatial heterogeneity at

the state level. Noting that districts are drawn to be “safe” more often than not,19 swings tend

to act on these safe districts in opposing directions, conditional on the statewide swing. Thus,

since safe Democrat and safe Republican districts likely share borders, the negative spatial

dependence after accounting for statewide swing would imply that neighboring congressional

races tend to “tighten” or “loosen” together, rather than shift linearly together. Since the auto-

correlation is negative, a “tightening” would involve safe Democrat districts swinging down and

safe Republican districts swinging up, with respect to the Democrat vote share in the district. A

“loosening” would involve safe Democrat districts swinging towards a Democrat vote share of

1 and safe Republican districts swinging towards 0. While this exploratory analysis indicates

there may be negative dependence in the movement of Congressional vote shares after ac-

counting for spatial heterogeneity at the state level, this result should not be over-interpreted;

the p-values on these statistics are marginal (at most two in each series are significant after a

Bonferroni correction) and the implied model is likely underspecified.20

4.4 Conclusion

Regardless, electoral swing is clearly not strictly uniform. Indeed, electoral swing does not

behave empirically like any of the common models of swing suggested above. Despite con-

trolling for differences in the mean swing over states or regions, swing still exhibits significant

spatial dependence in presidential elections. Thus, it seems that a single theory for how elec-

toral swing is best specified will likely not hold across time, elections, or geographies. Indeed,

19For example, see the analysis of interviews in Chapter 9.

20 To truly demonstrate whether this holds, that congressional races tend to either tighten or loosen together
rather than drift together linearly after accounting for spatial heterogeneity would require a follow-up study that
attempts to control for incumbency and midterm structures, likely through some form of spatial panel model with
state fixed effects.
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claiming that electoral swing can be modeled sufficiently as a uniform random (or hierarchical

random) effect should be justified by empirical illustration. In this instance, electoral swing in

presidential vote by county is strongly spatially-dependent even when accounting for potential

spatial heterogeneity. Thus, and modeling it as a uniform random effect is inapt. However,

spatial dependence in electoral swing is much weaker in congressional geographies.

After this thorough exploration of introducing spatial effects into seats-votes counterfactual

generating processes, a few takeaway points are clear. First, electoral swing (like raw vote

shares) are strongly correlated over space, in many elections, and at many scales. In presi-

dential election returns, electoral swing is quite strong, positive, and is robust to corrections for

spatial heterogeneity at the state, Census division, or Census region level. As far as the “cor-

rect” scale of spatial heterogeneity present in the macrogeography of presidential vote, it seems

that swing is best modeled as heterogeneous somewhere between the state- and division level.

This was detected using two novel analyses; one, a family of hierarchical/group de-meaned

Moran statistics were specified. Two, a spatial autocorrelation function akin to the temporal

autocorrelation function was developed for discontinuous lattice data and estimated. This pro-

vided an estimate of scale in county-level presidential vote that suggested that counties are

unrelated after moving around 20 counties out. Exploratory regionalization or scale-discover

regression techniques (such as GWR or multi-scale GWR) might corroborate this analysis. In

congressional elections, the spatial dependence is much weaker and is less-consistent over

time as well. Indeed, after a correction for spatial heterogeneity, swing becomes negatively

spatially correlated, although this correlation is again marginal.

Thus, when the models discussed in Chapter 5 are examined for potential spatial misspec-

ification in chapter 6, I anticipate there being misspecification. However, since the strength of

dependence in the congressional models is so weak, I also anticipate the correction for this

misspecification (either in vote share models directly or in the counterfactual generating model)

having little-to-no effect on the resulting advantage measures or seats-votes curves. That is, the

models will likely be misspecified in the sense that there exists a spatial pattern to swing that is

not modeled sufficiently by treating swing as a uniform random effect. But, using an empirically-
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realistic model of electoral swing might only induce slight patterning, since the dependence is

small.
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Chapter 5

MODELING SEATS & VOTES: SPECIFICATION AND COMPARISON

Given that electoral swing is empirically nonuniform, it is important to explore whether more

realistic models of partisan swing may affect estimates seats-votes curves. That is, does it

make a difference to the shape of seats-votes curves if vote models or swing structures exhibit

spatial dependence? Even ignoring Johnston (1983)’s argument from first principles, positive

spatial correlation in swing might indicate that, in general, nearby constituencies swing in a

similar manner, and that volatility in electoral outcomes may cluster. But, without perfect spatial

correlation, there must be fluctuation in the structure of the swing over the electoral map. A

model that assumes swings are independent between observations when electoral conditions

are held constant (c.f. Gelman and King, 1994a; Jackman, 1994; Linzer, 2012; McGann et al.,

2016) would provide for generalized spatially-independent swings.

Thus, in the following discussion, I review seats-votes modeling techniques and make their

models of electoral swing explicit. First, the basic theoretical model is presented. Originally

justified as a model under strict uniform swing (Jackman, 1994), the empirical seats-votes curve

estimate is shown to be a translation of the rank distribution of vote shares. This will allow for

a thorough explanation of the way the seats-votes curve represents an electoral system, and

illustrate one critical step of all more complicated seats-votes curve estimation strategies. After

this, two stochastic methods to generate seats-votes curves will be discussed, and a novel

bootstrapping method will be developed.

The estimated seats-votes curves from the three approaches are compared, and the simula-

tions assessed along multiple dimensions of quality. Then, one of these methods is selected for

an intensive study of potential spatial misspecification. In addition to straightforward testing of

model adequacy, I also conduct extensive simulations under four distinct spatially-explicit data

generating processes to examine how this misspecification may result in different estimates

than the original specification in Chapter 6. If there is no substantial difference when explicitly-

76



spatial models are used— if correlated swings tend to result in similar seats-votes models than

uncorrelated swings— then the introduction of complex models and estimators that account for

spatial dependence may not be worth the additional effort.

5.1 Development of Seats-Votes Modeling Frameworks

In general, seats-votes models, are composed of two distinct models; one of legislative

vote shares and one of electoral swing, the change in vote shares from year to year examined

in Chapter 4. The model of electoral swing is used to generate “counterfactual” or “hypotheti-

cal” elections, which then in turn are analyzed to identify partisan advantage. The analysis of

“hypothetical” elections (suggested by Niemi and Fett (1986)) has a few advantages over the

straightforward empirical analysis of observed elections. Constructing a seats-votes curve as

the functional relationship between the observed system-wide average party vote, h̄, and the

share of the delegation or legislature that the party wins, s̄, ignores essentially all information

about the district-level dispersion, correlation, and electoral conditions that give rise to s̄ and

h̄. For a given districting plan in the US, there might be five observations of (h̄t, s̄t) under the

typical decadal redistricting and reapportionment regime in the US. This is simply not enough

information to reliably estimate a relationship if only these five observations are used.

More information is available in each election, however: the district-level vote share vector,

ht. This is useful since it implicitly contains information about how probable values of s̄t may

be under minor changes in electoral conditions or outcomes. By treating s̄t as the only useful

realization of the response in election t, a potentially rich source of information about the seats-

votes relationship is ignored.

Thus, district-level analysis models the seats-votes relationship using plausible hypothetical

district vote share vectors, h◦t that attain known hypothetical average vote shares, h̄◦t but occur

under changed electoral conditions or small disturbances. These simulation ensembles consti-

tute the “zone of chance” surrounding an observed (h̄, s̄) (Wang, 2016). Elections in this “zone”

are just as useful as the observed election in computing summaries of advantage, efficiency,
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or responsiveness. Thus, for district-level seats-votes analysis techniques, two models are re-

quired: a distributional model for h and a generative model of h◦. While some methods use

the same construct for both (McGann et al., 2016), many use separate process and generative

models (Jackman, 1994; Gelman and King, 1994a; Kastellec et al., 2008; Thomas et al., 2013).

Further still, some analyses compare the results of plans directly, either to candidate plans

(Kousser, 1996; Altman et al., 2015) or simulated plans (Chen and Rodden, 2015; Cho and Liu,

2016b). These strategies aim to reveal the impacts of the enacted plan as contrasted to known

or attainable alternative plans. This contrasts from seats-votes perspectives that estimate ad-

vantage conditional on the given boundaries. Instead, these plan comparison strategies identify

when an enacted plan deviates significantly from the simulated or observed comparison plans.

Thus, these strategies are still essentially comparative, but the “zone of chance” surrounds the

boundaries of an electoral system, rather than the observed results within fixed boundaries. In

theory, these methods are not mutually exclusive, since seats-votes models may be estimated

for simulated district plans, too. But, the goal of using district map comparisons is often to avoid

seats-votes constructs entirely (Kousser, 1996), since advantage in these approaches derives

directly from boundary differences rather than the structure of simulated h◦ for the observed

plan.

Focusing on seats-votes approaches, many recent analyses of districting plans used in le-

gal proceedings or academic literature focus on critiquing the accuracy and validity of the model

of h.21 Typically, models of h need only be accurate distributional models, in that the typical

parameters in the linear model are not substantively interesting. Regardless, thorough specifi-

cation searches for models of h are uncommon. Although simple forms of misspecification have

received attention for seats-votes curve estimation (King and Roberts, 2015), empirical compar-

isons of new seats-votes methods to one another is relatively uncommon (McGann et al., 2016,

21For this, many defendant amici curiae in both Florida League of Women Voters v. Detzner (2015) and Whitford
v. Gill (2016) are illustrative, simple critiques of the inaccuracy and uncertainty in the predictions of these models.
Neither swayed the court, but this line of argument is expected.
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c.f.), although the comparison of the summary measures from seats-votes curves is common

(Grofman et al., 1997a; Linzer, 2012).

This is unfortunate, since many different measures of partisan advantage can be computed

from a given seats-votes curve (Nagle, 2015). They focus on different sections of the curve or

compute deviation from fairness differently, so it may affect these measures if a given seats-

votes curve estimate is significantly different from another. Most of the time, due to structural

stability in US legislative elections, reasonably accurate post-hoc analysis of h using demo-

graphic, political, social, or candidate factors (contained in a design matrix, X), is not too difficult,

and predicted h vectors often agree between many modeling methods. However, the structure

of the seats-votes curve may be different depending on the generative model of h◦. By com-

paring only the estimates of a given quantity of interest, there is no systematic understanding

of how the differences in the generative model differs.

5.1.1 Common Methods for Estimating Seats-Votes Curves

Typically, seats-votes curve estimation methods divide into two groups. One group, sug-

gested by Tufte (1973), estimates the curve as a linear function of the observed relationship

between system-wide seat shares and vote shares pooled over a number of elections. In each

election, one observation of a party’s average national/statewide vote share h̄ and the fraction

of the legislature/congressional delegation it controls (s̄) are observed. Pooling over many elec-

tions, a linear regression relating s̄ and h̄ provides the expected share of seats a party wins

given that it wins some level of the popular vote.

This technique discards all information about the dispersion and modes of the underlying

district vote shares, h, and has largely been superseded by alternative methods (Jackman,

1994). On this, Jackman (1994) and Gelman and King (1994a) suggest that district-level infor-

mation should be used to construct a seats-votes curve. They argue that these single-election

(or paired-election) strategies avoid pooling between dissimilar elections. These techniques

typically combine two conceptual models of the electoral process: a substantive model of elec-
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toral outcomes under uncertainty, a model of the inherent randomness in an electoral system

even under perfect estimation. The first model is justified as a method of constructing accurate

estimates of the n-length vector of district-level vote shares, h, and the second model is justified

as a method of constructing plausible hypothetical outcomes, h◦, from h.22

Various techniques of increasing complexity are used in the first vote shares model, depend-

ing on data availability and the demands of the model. These techniques vary from focusing

exclusively on observed election results (i.e. empirical model-free analysis) to large modeling

frameworks designed to control for multiple structural factors under counterfactual simulation.

Typically, the second component is called the model of “electoral swing,” a term used to imply

randomness in the deviations between the last election and the current election. While many

different model specifications exist for the first case, most methods of elections assume that

swing is an independent, identically-distributed random effect, while prediction uncertainty can

be complex, correlated, and heteroskedastic.

In addition, Nagle (2015) suggests and I show below that previous intuitions about the

seats-votes curve are equivalent to statistics about the rank-vote distribution of a given elec-

toral system. Summaries of expected seat shares that a party wins at a given expected

statewide/national vote share map directly to questions about the expected rank of the district

won with that vote share. This both simplifies the conceptual model of the seats-votes curve,

the presentation of its results, and the computation of statistics about the seats-votes curve.

While developed historically with reference to a swing model, the seats-votes curve shape is,

in fact, available without one. Most critically, this means that the full length of the seats-votes

curve is informative, since the vote shares attained by the most Democratic or most Republican

contest may be wider than the vote shares attained at the median district, but the curve through

this domain is less “valid” from the perspective of the model. This contrasts with the focus in

Tufte (1973) inherited by Gelman and King (1994a); Gelman et al. (2010), which suggests that

22In general, k◦ will denote a “hypothetical” k, for any symbol or property k. Any hypothetical k◦ may be simulated,
in that it obtains under identical conditions to that of k, or it may be counterfactual, in that it obtains under alternative
electoral conditions. For this discussion, this distinction is not important. But, in later discussions of the validity of
these approaches, this distinction matters greatly.

80



seats-votes curves are only “valid” within a close band of the observed (h̄, s̄). Extreme ranks

are not intrinsically “less certain” than middle ranks, nor are ranks around the pivotal district

more certain than ranks near the edges. As will be shown below, the certainty associated with

a rank (shown by range of vote shares that can be expected for a district at that partisan rank)

may vary in a nonstandard way.

In the following discussion, I will detail a few methods of estimating seats-votes curves, from

the simplest empirical uniform-swing strategy to arguably the most complex model types found

in the literature deriving from that suggested by Gelman and King (1994a). Then, I examine

three stochastic methods to model the seats-votes curve, comparing their estimates and model

specifications. Then, I explore the extent to which these model specifications are valid and

whether the elections generated are plausible electoral events. This line of inquiry suggests

that, in general, better vote share models will lead to more valid seats-votes curves, but the

impact of various vote share model misspecifications on the structure of the seats-votes curve

estimates may not be straightforward to determine.

5.2 Uniform Swing & the Seats-Votes/Rank-Votes Curves

The uniform swing method forms the basis for all other types of seats-votes curve estimation

strategies. This technique examines the hypothetical relationship between party average vote

share and the fraction of seats it wins in a Congressional delegation or state legislature by using

the size of the average change required to flip each district from one party to another. In the

end, it is an analysis of the rank distribution for h (Nagle, 2015), or a scaled-shifted version of it.

Thus, the techniques for constructing this seats-votes curve and its corresponding rank-votes

curve are used in every other seats-votes estimating technique considered in Section 5.3, and

are critical to the construction of advantage measures discussed in Chapter 2. Since each of

the realizations from a model of ht corresponds to a single rank-vote distribution, the set of

simulated rank curves is a direct summary of the relationship between expected seat shares

given a party’s level of popular support.
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Figure 12. Seats Votes Curves for the US House in the 2012 elections under uniform partisan
swing.

Proceeding, the uniform swing presentation of the empirical seats-votes curve requires the

vector of vote shares, h, the average statewide or national vote share for that party, h̄, and a

shift term, δ. Let the fraction of the delegation won by the reference party (s̄◦) when the average

vote share increases by some amount, δ, be the point (h̄ + δ, s̄◦) that lies on the seats-votes

curve (Jackman, 1994). This point reflects a strict uniform swing in h (in the sense from Chapter

4, since a shift in average vote share is achieved by adding δ directly to each hi, i = 1, 2, . . . , N.

Using a uniform swing, the fraction of seats the Democrats win at a given hypothetical shift δ◦

is:

s̄◦ = ∑N
i I(hi + δ◦ > .5)

N
(5.1)

where I is the indicator function. This means the seats-votes curve under uniform swing is

a monotonically-increasing step function related to the cumulative distribution function for the

opponent’s vote shares. The districts most strongly aligned with the reference party sit at the

bottom left of the seats-votes curve, since those districts are the most strongly aligned with

Democrats. Since they sit at very low values of h̄◦, they must have large district-level Democrat

vote shares, hi, since they are still won by Democrats when their average support is weak. As δ◦

increases (Democrat aggregate support increases), districts can only flip from the Republicans

to Democrats, until the districts in the top right of the seats-votes curve — the ones most

strongly aligned with the Republicans — flip to the Democrats as they win overwhelming levels
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of aggregate support. An example of this method, three empirical seats-votes curves for each

election since 2012, are shown in Figure 12.23

While this provides one way that the relation between seats and votes can be measured,

this construction requires a theory of strict uniform electoral swing, which is a contentious as-

sertion (as discussed in Chapter 4). However, the assumption of uniform partisan swing is not

necessary to develop the curves shown in Figure 12. In fact, these curves are a scaled and

shifted rank distribution of the district vote shares (Nagle, 2015). The seats-votes curve con-

structed by uniform swing is always a non-decreasing step function; this is apparent in Figure

13, a detail of the national 2012 seats-votes curve shown in Figure 12 that focuses on the me-

dian “tipping point” district, the district closest to hi = .5 from above. For these curves, any

step point in a uniform swing seats-votes curve occurs at some hypothetical party vote share,

when some district’s vote share crosses .5 for a given value of δ◦. To the left of the step, the

reference party wins district i and all other districts k that require δk ≤ δi to cross .5. To the

right, the party loses i and all k where δk > δi.

Let the rank of a district in the distribution of vote shares be denoted ri, and let ranks be

assigned by a ascending ranking function R on the “right” edge, so that ties are all assigned

the maximum rank of members of the set. This means that, for 435 congressional districts,

the district most strongly aligned with the reference party has rank 1, the three districts tied for

the second all have rank 4, and the district with the lowest support for the reference party has

rank 435. Thus, when a hypothetical “pointer” district with vote share hi + δ◦ crosses .5 and

increases rank, the seat share won by Democrats also increases at that δ◦.

Together, the set of (1 − hi, ri) points define the rank vote curve that corresponds to the

seats-votes curve. This is simply a reflection on the x-axis of (hi, ri). At each observed hi, the

rank either stays the same or increments by one. The strongest-aligned Democratic party dis-

tricts are in the bottom left, have the smallest rank numbers, and are won with the lowest levels

23This uses the technique suggested by Jackman (1994) from in the Political Science Computational Library
(Jackman, 2015), reimplemented in Python.
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Figure 13. Detail of a uniform-swing Seats-Votes curve in the 2012 House elections alongside
a normalized Rank-Vote curve.

of aggregate support; the upper right is the set of districts most aligned with the opposition,

have the largest rank numbers, and require that the Democratic party win a large average vote

share to flip.

However, if ri alone were used, then the curve would not have the correct range, varying

between 1 and N instead of 0 to 1. In addition, the rank-vote curve is slightly offset from the

seats-votes curve in some cases, namely when h̄ ̸= .5. To show this shift, let us first define the

rank of the “marginal district,” the district where Democrats win with the smallest margin:

rk = R({hi|hi > .5}) (5.2)

where (x− y)+ denotes a censored positive difference between x and y.24 Since the maximum

rank is assigned among ties, s̄ = rk
N for any δ◦ where h̄ + δ◦ maintains the rank rk. When

the rank of the hypothetical h̄ + δ◦ changes, the seat share changes by #rk
N , the fraction of

all districts that share rank rk and thus change hands when the marginal rank changes.25 This

24In the Washington example from 2 (data in Table 3, this is district 1. Its rank would be 6, since it is the 6th most
Democratic district. In that example, Democrats win s̄ = .6 at h̄ = .53.).

25Practically, contested district vote shares are rarely exactly equal, so there is often only two sets of ties: the
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means any step point on the rank-vote curve in Figure 13 can be re-scaled to match the domain

of the seats-votes curve: each seats-votes step point is level with a re-scaled rank-vote step

point, (1 − hi, R(hi)/N).

Finally, the rank-vote curve may not necessarily pass through (h̄, s̄), but it must have a level

set at s̄. In fact, there are only, at most, N possible level sets of seat shares because of the finite

number of seats. If a party wins 12 districts, then some district (or set of districts) must be the

12th-most aligned district for that party. Since that district is the marginal district by definition,

its level set must pass through .5, and it must be the seat with the closest vote share below

h̄. Thus, the marginal district k is the step point to the left of h̄, and can be aligned with the

seats-votes curve by adding h̄ − .5 to hk. Since the width of steps is the same between the two

curves, adding h̄ − .5 to the marginal district aligns the rest of the rank-vote curve with the left

edge of the seats-votes curve, as shown in Figure 13.

5.3 Generalized Uniform Partisan Swing Methods

Critically, recognizing the seats-votes curve as a transformation of the rank distribution sim-

plifies both the language and the empirics of structural elections analysis. This relationship is

easiest to present for the empirical, observed election. But, it is most helpful when consider-

ing stochastic methods to model the seats-votes curve. These techniques, sometimes called

“generalized” uniform partisan swing methods, are obtained from the uniform swing method of

constructing seats-votes curves by relaxing the assumption of strict uniform swing. Given the

mapping from rank-votes to seats-votes curves, these techniques can also be seen as leverag-

ing many simulated rank-votes curves to provide a single expected seats-votes curve.

In this vein, stochastic seats-votes modeling methods construct a model for h, simulate h◦

under controlled conditions X◦, and summarize the resulting s̄◦ given the controlled h̄◦ and h◦.

With the mapping between rank-vote and seats-vote distributions, this is equivalent to summa-

uncontested districts where either the reference party or the opponent receives all recorded votes. All other steps
are increments of 1

N .
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rizing the average rank of districts that attain a specific h◦i . Some techniques explicitly model

the deviation in simulated elections as if they were random changes from the previous election,

and thus partition the variance in outcomes between a “structural” component due to electoral

rules, norms, or geographies, and an idiosyncratic component that embodies uncertainty due

to estimation. Other methods focus simply on generating accurate process models of h that

produce believable h◦ under hypothetical conditions (X◦), and another set focuses on model-

ing the distribution dynamics of h, without reference to process justifications. In the discussion

that follows, I present two current methods for constructing seats-votes curves in a predictive

context and suggest two alternative methods of seats-votes curve construction.

5.3.1 Stochastic Methods for Estimating Seats-Votes Curves

Earlier stochastic models of seats-votes curves focused on estimating the empirical rela-

tionship between h̄ and s̄, pooling observations over many elections (Tufte, 1973). In contrast,

newer methods aim to use the district-level information about the electoral system contained

in the full vote share vector (h) to model the relationship between h̄ and s̄. The uniform swing

method discussed above has its roots in early scholarship that relied heavily on the assump-

tion, since many seats-votes analyses use no explicit stochastic models for h or swing (Brookes

(1960), see also Jackman (1994); Johnston et al. (1999)). And, while the assumption of uniform

swing is useful, it is certainly not empirically accurate, as shown in Chapter 4. However, it does

appear to be relatively well behaved in recent congressional elections. This regularity drives

the pervasive use of normal approximations and is the justification for “generalized” uniform

partisan swing. Critically, this assumption makes estimation of the seats-votes curves from

district-level data tenable using simple regression techniques. Before wading into the complexi-

ties of how this modeling strategy works, I present a simple example using one of the methods

considered in this dissertation.
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5.3.1.1 The Gelman-King Model

One of the more commonly-used methods to construct seats-votes curves is due to Gelman

and King (1994a). First, a model of h is estimated. Then, a counterfactual/hypothetical election,

h◦, is simulated using this model. After h◦ is obtained, it is then adjusted using the model of

swing, δ◦. Finally, this results in a single realization of a rank distribution, r◦ that is simply

the rank vector of the hypothetical outcome, h◦ + δ◦. As discussed above, this rank vector

is sufficient to construct one realization of the seats-votes curve implied by the model. Then,

many seats-vote curves over many simulations are generated and analyzed. When each of

these seats-votes curves are considered together together, any level set of s̄◦ has a α-sized

confidence band: the middle 1 − α
2 % range of simulated vote shares for the s̄◦ ∗ Nth-ranked

district contains a “level set” of 1 − α
2 % of all simulated seats-votes curves. When considering

all simulations, this “level set” represents the set of h◦
i that are attained at that rank, ri, or seat

share ri/N. By connecting the quantiles of h◦i across all ranks, an estimate and simulation

interval for the entire seats-votes function is attained.26

One example of this method is shown in Figure 14. On the left, a single simulated election

is plotted against the observed election’s rank-vote distribution. The observed h̄ is plotted in

the gold vertical line on the left, and the observed s̄ is the point at which that line intersects the

black quantile plot. Then, on the right, 1000 seats-votes realizations are plotted in green under-

neath the observed outcome in black. The 5th, 50th and 95th percentiles of vote shares within

the rank are connected by the overlaid gold lines, meaning 90% of all simulated seats-votes

curves fall within the gold lines. Practically, these gold lines are formed by connecting the target

percentiles within each rank/level set, (1 − hi, i
N ), i = 1, 2, . . . , N. Critically, all hypothetical

measures of advantage pertain to quantities that summaries the sets of simulations in green.

Likewise, “empirical” measures of advantage pertain only to the black observed rank-vote out-

26While this is not discussed directly in Gelman et al. (2010), the package it explains implements this method
when computing quantities of interest.
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Figure 14. A Seats-Votes curve estimate for the California congressional delegation in 2014.
On left, the gold vertical line is the statewide average party vote share. On right, the gold lines
connect the 5th, 50th, and 95th percentiles of simulated vote shares within each rank, centered
on the median of simulations.

come set. Thus, if spatial misspecification were to affect this model, it must affect the shape of

the simulation envelope shown in green. It is not enough to simply affect the covariance of the

disturbances in the model; it must also generate differently-shaped rank distributions to matter.

Another view of this procedure is shown in Fig. 15. In this example, we are attempting to

construct E[s̄|h̄ = .5], a very common quantity of interest. This value is used to estimate the

median bonus measure discussed in Section 2.3, a measure of partisan advantage. The figure

portrays the full simulation envelope (like that shown on the right of Figure 14) on the left. Then,

the center plot shows a high-detail focus on the median vote share, h̄ = .5 In this case, Gelman

et al. (2010); Linzer (2012) suggests summarizing the distribution within a search band around

h̄ = .5 instead of directly at the target value. Thus, a small search band, .5 ± .005, is plotted in

light blue around .5, and is made clear in the detail at the center of the plot The distribution of

s̄◦ that fall within within the search band is shown to the right of the plot. So, the rank of districts

within this search band are recorded for every simulation. Then, a measure of central tendency
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Figure 15. Seats-Votes curve for Texas in 2014. When the share of the vote Democrats win is
50%, the party can expect to win only around 41% of the Texas Congressional delegation.
This would correspond to a median bias estimate of −.18. Here, this estimate is computed
from the average rank of a district that falls within the blue band, divided by N, and is the
average value of the distribution on the right of the figure. This distribution is the set of
simulated seat shares that fall within the search band and is shown on the right.

for the distribution to the right is used as the estimate of s̄◦, and can be used in the measures

of advantage outlined in Section 2.3.

Proceeding to a more detailed presentation, the authoritative discussion is provided in Gel-

man and King (1994a), while the most current implementation derives from work in Gelman

et al. (2010). Occasionally, these describe different techniques; when in doubt, the interpre-

tation provided in Gelman et al. (2010) is considered the canonical form, since it is the only

existing implementation of the technique. A presentation of the method described there will

be provided below. While popular, the method has also been soundly critiqued many times

since its inception. I use it here not as the end-all method of modeling seats-votes curves, but

rather in hopes that using a stable model specification with well-known properties will make the

exploration of the new impact statistics simpler. The following discussion focuses on the main

estimating concerns as discussed by Kastellec et al. (2008); Gelman et al. (2010) and that are

required to generate the style of curve from Figure 14.

First, Gelman and King (1994a) suggest modeling the district vote shares for the reference

party in a given year, ht, as a function of available electoral conditions in that year, Xt and the
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vote outcome in the previous election, ht−1 if available. No attempt is made to link districts

across the redistricting threshold if boundaries change. Thus, every year immediately following

a redistricting, only Xt is available for the model; in all other years, both Xt and ht−1 are avail-

able. In this way, the method suggested by Gelman and King (1994a) and many analyses that

follow from it (Gelman and King, 1994b; McKee et al., 2006; McGann et al., 2015, e.g.) concep-

tualize each districting plan as a single continuous panel. Each decadal redistricting breaks the

panel, even if the districts themselves mostly remain unchanged. However, Gelman and King

(1994a) do not use typical panel analysis techniques, since their model uses the one-step pool-

ing of ht−1 to predict ht. Over a single decade, this results in four separate two-cycle models

and one single-cycle model, each with their own parameter estimates. Thus, even though ht−1

is present in most models of ht, the model is not a typical autoregressive process model either,

since all parameters are considered non-stationary and temporally independent.

Using these models, an estimate of the inherent deviation (σ) and structural uncertainty (λ)

are made for each decade. To explain, let the basic model be stated for pairs of elections in

time t and t − 1:

ht = Xtβt + αtht−1 + γ + ϵt

γt ∼ N (0, λσ2)

ϵt ∼ N (0, (1 − λ)σ2)

(5.3)

In this, γ is the structural error component that applies to all realizations within the redistricting

decade, ϵt is the inherent error component, βt are the marginal effects of the electoral condi-

tions, and λ is the fraction of the overall variance that is “systemic,” which is assumed to remain

constant from year to year. In a single model, γt is not separable from ϵt without additional

information, so their sum is the only thing identified at each individual t. This also means λ is

unidentified at any t. In addition, it is unlikely that separate, two-cycle regressions will recover

time-stationary σ, though they may be similar.

Thus, a correction/secondary modeling step is suggested. First, to estimate λ and the

invariant σ, Gelman and King (1994a); Gelman et al. (2010) estimate λ from the average of the
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first-order temporal autoregressive effect, αt, over all of the two-cycle models, and estimate σ2

from the average of σ2
t . Since the specification for each cycle pair ((t, t − 1)) has a different

estimate of βt, αt and σ2
t , the average αt over the entire decade provides the estimate for the

fraction of the variance that is “structural,” i.e. the decade random effect in a panel sense.

Then, each year’s random effect ,ϵt, derives from the fraction of remaining variance once this

is accounted for.

For the purposes of counterfactual simulation and election prediction, these grand estimates

are then plugged back into the model in 5.3. But, since γ is now known, a “more precise” coun-

terfactual can be generated, since more information is known about ht than that available if it

were not observed at all. Thus, Gelman and King (1994a) ostensibly suggest a process jus-

tification for this model term, but appear to leverage it heavily in order to reduce the variance

of counterfactual simulations. The “known” information from observing ht that is yielded when

simulating h◦
t is contained directly in γ, so only the remaining (1 − λ)σ2 variance is required.

As such, the distribution of a hypothetical/counterfactual district vote share vector, h◦
t , for hypo-

thetical electoral conditions X◦
t conditions on the observed district vote share vector ht in time

t and is Gaussian:

p(h◦
t |ht) = N

(
λht + (X◦

t − λXt)β̂t + δt, (1 − λ2)σ2 I + (X◦
t − λXt)Σ̂βt(X

◦
t − λXt)

′) (5.4)

where Σβt is the covariance matrix of the β estimates in the model for period t and δt is a scalar

electoral swing term used to control the magnitude of h̄◦. In this model, λ ensures that the

counterfactual realization of h◦
t is shrunk towards the observed ht. Gelman and King (1994a)

emphasizes this similarity by considering the expected counterfactual h◦
t when hypothetical

conditions are equivalent to observed conditions, X◦
t = Xt:

E[h◦
t |ht) = λht + (1 − λ)Xt β̂t + δt (5.5)

Thus, the use of this decadal “structural” random effect term allows h◦ to condition on h, reduc-

ing its variance using λ. This is made clear when examining the predictive distribution, which

has no conditioning on ht+1 because it is unavailable. This takes the form:

p(h◦) = N (X◦ β̂ + δt, X◦Σ̂β(X◦)′ + σ2 I) (5.6)
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which shows no shrinkage due to λ. However, I use only the counterfactual mode in this

dissertation, so the predictive distribution, while implemented, is largely ignored.

This method is defensible, since expanding a first-order autoregressive representation

yields a similar expression to that given in 5.3, if α were time-consistent, this would result in

a model for ht with a persistent error akin to γ:

ht = Xβ + αht−1 + ϵ = Xtβt + α(Xt−1βt−1) + αϵt−1 + ϵt (5.7)

But, since this is indeed not a VARX(1) model, αt are not necessarily bounded between −1

and 1 like typical stable autoregressive coefficients. This means λ has no domain bounds,

either. In theory, λ may fall outside of (0, 1), which would force the resulting variance of γ

or ϵ to be negative. In all models considered, both λ and α remain firmly in (0, 1), clustering

tightly between .6 and .8.27 In addition to potential issues with λ, the substantive effects (β) can

vary wildly over time since they are unconstrained. In practice, these effects also tend to be

relatively stable over time for the two-cycle models. However, their estimates in the initial model

each decade is rather different. This occurs because the mode with ht−1 is quite different from

the model without it, since ht−1 is often a very good predictor of ht.

Three implications are important to note about this modeling strategy. First, since Σβt is

used in the covariance of h◦
t , the covariance between the electoral processes in X◦

t may induce

correlation or heteroskedasticity in the simulated outcomes. In practice, this makes sense,

since the vote share won by Democrats in a district with an uncontested Democratic incumbent

might be expected to be much less volatile than a contested election with no incumbent. If this

is consistently observed, then it will also manifest in the resulting counterfactuals.

Second, the variance of the counterfactual can be decomposed to emphasize how this is

a generalized uniform random swing model. Reprising the counterfactual distribution from Eq.

5.4:

p(h◦
t |ht) = N

(
λht + (h◦

t − λht)β̂t + δt, (1 − λ2)σ2 I + (X◦
t − λXt)Σ̂βt(X

◦
t − λXt)

′)
27A result noted by Gelman and King (1994a) as well.
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we can identify a “functional” separation into three components. First, a component from the

conditioning with no uncertainty attached. Second, a stochastic component due to the intrinsic

uncertainty surrounding the estimation of βt and its application to a counterfactual electoral

condition X◦
t . Third, a stochastic generalized uniform random swing term. Stated in descending

order:

p(h◦|ht) =λht

+N
(
(X◦

t − λXt)β̂t, (X◦
t − λXt)Σ̂βt(X

◦
t − λXt)

′)
+N (δt, (1 − λ)σ2 I)

(5.8)

In addition, note that any linear model of ht that uses ht−1 as a predictor can be treated in

this manner. Thus, this structure is not unique to the Gelman-King formulation, and is instead a

property of first-differencing. Without using the repeated estimation and averaging of Gelman

and King (1994a), we can state a generic two-cycle model:

ht = Xβt + αht−1 + ϵ (5.9)

Then, we introduce an additional ±ht−1 term, which has no net effect on the model, but allows

us to rearrange the model for ht into one for δt:

ht = Xβ + αht−1 ± ht−1 + ϵ (5.10)

ht − ht−1 = Xβt + (α − 1)ht−1 + ϵ (5.11)

δt = Xβt + (α − 1)ht−1 + ϵ (5.12)

Thus, the “total” uncertainty for δt will be due to uncertainty in estimating β, uncertainty in

estimating α, and inherent error in ϵ. Again, the breakdown can be applied from Eq. 5.8 and

result in the same statement of an explicit model for the covariance of the generalized partisan

swing term, δt, which will typically be independent of the estimation uncertainty for β̂ and α̂ for

specifications in this style.

Third, the use of varying values for E[δ◦] is not required to generate a seats-votes curve

unless E[δ◦] affects the covariance of h◦
t |ht. As discussed above, the rank vector for any h◦ is
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sufficient to construct a seats-votes curve. When simulations are conducted for the observed

electoral conditions X, simulations have h̄◦ = h̄ on average. When shifted by δ◦, the δ◦ applies

uniformly to all simulated h◦
i in the same fashion as the uniform constant swing method. Since

h̄◦ = h̄ + E[δ◦] by construction, the expected fraction of seats won at h̄◦ is the average rank of

the marginal district with h◦i = h̄ + E[δ◦] over simulations, divided by N. However, depending

on the specification, the magnitude of δ◦ may change the expectation of each realization of any

given h◦i,t. Many specifications for this effect will be explored later in this chapter, to examine

whether this can indeed affect the structure of the simulated seats-votes curve.

5.3.1.2 Alternative Model-Driven Seats-Votes Constructions

A model for h that can generate plausible elections in simulation is a critical concern for

seats-votes curves. Refinements of the Gelman and King (1994a) method, such as those

developed by Linzer (2012) or McGann et al. (2015, 2016), use substantively different models

of electoral structure, leading them to simulate h◦ in markedly different ways. For brevity, Linzer

(2012) will not be discussed at length here, since it incorporates no information about electoral

conditions, and instead jointly models turnout and vote share. It provides a useful technique

in estimating seats-votes curves for multiparty systems, where techniques for doing so are

rarer and more difficult to justify, and in cases where a stochastic model for both turnout and

vote share is desired. Its lack of predictive capability means that it is critically limited in the

analysis of candidate redistricting plans, however. A simpler post-hoc modeling strategy that

uses only information about vote shares and turnout is also available for two-party systems.

This technique is based on bootstrapping (Efron, 1982) and serves as a diagnostic method for

parametric prediction-capable seats-votes curve models.
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5.3.1.3 Modeling Swing as Hierarchical Deviation

In recent work, McGann et al. (2016) presents (and McGann et al. (2015) uses) a strategy

to construct seats-votes estimates in linear modeling framework similar to Gelman and King

(1994a). Their model, however has a substantially different take on how electoral variability

should be modeled in a seats-votes framework. McGann et al. estimate the deviation used for

simulations in a seats-votes framework directly:

h ∼ N (Xβ + αh̄, τ2) (5.13)

where h̄ is the party vote share at some higher level of geography. The analyst has options

on how to best pick the aggregating units for h̄: McGann et al. (2016) suggest h be pooled

either over states or nationally, depending on the scale of analysis. In addition, h is pooled

over an entire redistricting decade, making the model as a whole fit a full set of Nt district-

years, with h̄ then becoming a block-constant Nt vector of the aggregate vote shares for the

reference party in year t. As before, X contains information about the electoral system. Like

Gelman and King (1994a), McGann et al. (2016) suggests an ordinal incumbency fixed effect

and, depending on the way uncontested elections are handled before model fitting, a centered

ordinal fixed effect for contestedness by party. After estimating this model over the pooled

decade of data, simulated h◦ are drawn directly from Eq. 5.13, possibly under counterfactual

electoral conditions X◦.

Together, the direct modeling of h and accommodation of X◦ means the McGann method

can be compared to the Gelman-King method directly. Notably, McGann et al. (2016) does

not provide a direct comparison of their technique against the implementation in Gelman et al.

(2010)28. In addition, the development of their method in McGann et al. (2016, ch. 3, Ap-

pendix 3B) does not provide the same kinds of model justification provided by Gelman and King

28This may be due to the fact that the program made by Gelman et al. (2010), uploaded to the R package index
in 2011, was removed in early 2015 for relying on deprecated functionality. I provided a patch to maintainers at the
IQSS in fall of 2015, but the patch was not merged. Is still unavailable from the Central R Archive Network, and the
source hosted by the IQSS website is unusable for current versions of R.
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(1994a). Discussing the aspects in which the techniques differ and comparing them empirically

may provide insight into the strengths and weaknesses of the two techniques and illustrate

where the derived quantities of interest may differ.

First, the variance of h◦ is modeled exactly as τ2. This means observing ht provides

no additional information about h◦
t |ht beyond the estimate of the mean and variance. Flatly,

uncertainty about what would happen is not reduced by knowing what did happen. This results

from the fact that there is no division of variance into estimation uncertainty (Σβ) and inherent

electoral deviation (σ), and no modeling of the potential temporal autoregressive relationship

between subsequent elections outside of the incumbency variate. For this, the authors suggest

that decadal pooling rather than using an autoregressive model or a full panel design yields a

more robust yet tenable simplification of the complicated Gelman-King method.

This simplicity comes at a steep cost: since the model for h is indistinguishable from the

generator for h◦, the i.i.d. covariance model of h applies to h◦
t as well, for any time period dur-

ing the decade. Drawing new h◦ directly from Eq. 5.13 assumes that any magnitude of swing

is equally likely for any district at any time. Electoral conditions, such as contestedness, incum-

bency, or candidate quality have no effect on the variance of simulated vote shares in each

district like they do in the Gelman-King model. On its face, this seems exceedingly implausible,

but it remains to be demonstrated that it matters empirically.

On less technical grounds, the two methods express different fundamental conceptions of

“swing” in the contexts of a structural election model. McGann et al. include higher-level party

vote shares where Gelman-King use previous years’ vote shares. Holding electoral conditions

in X equal, electoral swing is modeled as random fluctuations in districts around the state

or national mean in that year. In contrast, the Gelman & King model takes “swing” to mean

the changes in district-level vote shares between elections, either counterfactual or observed.

While both approaches involve some sort of pooling over contiguous districting periods there is

no reason to believe that variance within an election around a group mean should correspond

to the variance between pairs of elections across time.
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5.3.1.4 Bootstrapping

Model-based approaches, such as Gelman and King (1994a) or McGann et al. (2016), are

desirable insofar as they stipulate real, contestable theories of how vote shares and electoral

swing may be understood. Less process-driven methods focus on modeling the distribution

of electoral results directly (Linzer, 2012). One novel technique I have developed in this vein

uses bootstrapping to simulate alternative plausible elections directly from observed results.

Bootstrapping is a data amplification technique that has been used extensively for model vali-

dation and sensitivity analysis (Efron, 1982; Efron and Hastie, 2016). Seats-votes curves are

inherently data-limited, since only one vector of h (and thus only one pair (h̄, s̄)) occurs for each

election. Bootstrapping to generate plausible counterfactual elections, then, may provide a third

method against which the McGann and Gelman-King methods can compared.

To construct a bootstrapped seats-votes curve, electoral swings are simulated using a pair

of sequentially-observed elections (ht and ht−1). Vote share in the previous election is treated

as fixed, and alternative h◦
t are constructed by resampling with replacement from the vector of

empirically-observed district-level swings, δ = ht − ht−1. The resampled swing vector, δ◦, is

then added to the previous years’ results to generate hypothetical elections in time t. When

districts have equal turnout, this ensures:

E[h◦
t |ht−1] = E[ht−1 + δ◦] = h̄t−1 + δ̄ = h̄t (5.14)

However, when districts have unequal turnout, this does not hold, since h̄t is a turnout-weighted

average of ht and δ◦ is drawn without respect to turnout.29 Since the full rank distribution for

any realization is available regardless of the value of h̄◦, the elections can be analyzed like in

the examples at the head of Section 5.3.1.1. This method ensures that the simulated vote share

for each district, on average, will have the same dispersion as the overall distribution of swings.

In addition, it avoids placing a parametric model on the election outcomes. In a similar fashion

29This also occurs for linear models of h: if OLS is used, E[ ¯̂h] may not be h̄, since all districts are weighted
equally. If WLS is used with weights proportional to turnout as recommended by Gelman et al. (2010), this holds.
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to the McGann et al. method discussed above, the variance of a district’s simulated vote shares

is independent of the political conditions within it, since the swings are sampled without respect

to this data. In addition, the bootstrap assigns swing without respect to potential inter-district

correlation. This method may also be used to resample for new districting plans. For any new

district composed of q pieces of old districts, weight q draws from the swing distribution by a

population variate (either raw population, eligible voters, registered voters, etc.) and add to the

weighted combination of observed ht.

5.4 Comparing Seats-Votes Curves

To get a sense of how different the resulting estimates are for these three methods, the

results of the three techniques are compared for California congressional districts and the na-

tional congressional seats-votes curve in 2014. The fitted curves for three methods are shown

for California in Fig. 16 and for the US as a whole in Fig. 18. The Gelman-King model specifi-

cation predicts the 2014 Democrat vote share using the 2012 Democrat vote share and political

conditions in the district:

ht = αht−1 + β0 + β1incumbent + β2uncontested + γ + ϵ (5.15)

where “incumbent” is −1 if the district has an incumbent Republican candidate running for re-

election, 1 if the district has a Democratic candidate running for reelection, and 0 if no single

incumbent is running. Likewise, “uncontested” is −1 when a Republican runs uncontested, 1

when a Democrat runs uncontested, and 0 when the election is contested.30 Here, elections

below 1% or above 99% Democrat share of the two-party vote are considered effectively un-

30This model can get much more complex, using a state fixed effect and a hierarchical model over states when
fitting for the national seats-votes curve, but the naive model typically has an R2 of around .95, so many of the
additional covariates simply degrade the quality of the model by inducing collinearity or worsening its parsimony.
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contested. When district i is uncontested, its vote share is imputed from a sub regression on

the complete data.31

In this case, the model is estimated using weighted least squares, with weights proportional

to turnout. This is mainly done to ensure that E[ĥ] = h̄ when all elections are contested, since

h̄ is the turnout-weighted average of h. This also ensures that h̄◦ generated in simulation are

comparable to h̄, conditional on an effective imputation of missing vote shares. For the the

event that a district’s turnout is unavailable, it is imputed from the available data. A side effect of

weighting by turnout is that any potential heteroskedasticity due to turnout like that Linzer (2012)

is concerned with is resolved. More broadly, heteroskedasticity in the national-level model is

likely to follow a significantly different form than that due to turnout alone. To conduct the

weighted least squares estimation, a diagonal matrix, T, is used that contains turnout in each

district. Then, γ is a modeled as a heteroskedastic error term with variance λσ2T−1 and ϵ is

normal heteroskedastic with variance (1− λ)σ2T−1. In this example, data from 2012 and 2014

are used, meaning counterfactual 2014 elections are drawn from the weighted modification of

Eq. 5.8 that uses heteroskedastic independent swing rather than homoskedastic independent

swing.

In addition, a McGann-style model is fit by pooling elections in 2012 and 2014:

h = β0 + β1h̄ + β2incumbent + β3uncontested + ϵ (5.16)

with ϵ being a normal, independent error term with variance σ2 and similar heteroskedastic

turnout variance weights T−1. Using the McGann strategy, the estimated seats-votes curve is

significantly different, depending on whether h̄ is the statewide average vote share or the na-

tional average vote share. Using statewide vote share in the national model actually increased

the discrepancy between the McGann model and the other two models, tending to bias the

curve towards Republicans by almost ten seats over the entire curve. At the state level, the

31Sensitivity analyses were conducted to determine whether there is a strong impact depending on the location
of the cutoff and method of resolving uncontested elections. A subset of these explorations are presented in Section
6.2.
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choice made no difference. So, a consistent specification using the national Democrat vote

share is compared for both examples.32

Finally, a bootstrapped seats-votes curve is constructed, where swings are resampled from:

δ◦ ∼ {ht − ht−1} (5.17)

Simulated 2014 election results are then constructed by h◦
t = δ◦ + ht−1. In this case, the

bootstrap is unweighted, so all swings are equally likely to be chosen. Akin to the other methods

considered here, this results in a spatially-independent swing vector, since the swing at district

i is independent from the swing of any of its neighbors. This method also does not respect

potential spatial heterogeneity in swing, but a stratified bootstrapping approach might resolve

this concern. In addition, for the national curve, all swings, regardless of state, are pooled for

the national bootstrap. The bootstrap, in addition to the simulations for the Gelman-King and

McGann methods, are run 10, 000 times.

5.4.1 Example: California Congressional Districts in 2014

The example for the 2014 seats-votes curve estimate from California is shown in Figure 16.

The bands denote the space within the 5th and 95 simulation percentiles for the simulated seats-

votes distributions, which typically appear as point clouds along each rank as in the right side

of Figure 14. In terms of the lowest average discrepancy, the McGann and Bootstrap methods

agree most closely over the full range of values. In comparison, the median simulated election

from the Gelman-King method has Democrats winning more seats than either the McGann

model or the Bootstrap over the range of competitive elections, where .45 < h̄ < .55. The

difference in median between the simulations (for either the McGann method or the bootstrap)

32Here, the use of hierarchical or spatial fixed effects has an impact on the national estimated seats-votes
curve, though it appears to be smaller than the impact of using the statewide average vote share in each year. State
fixed/pooled effects could be used in either linear modeling framework, and bootstrapping could be stratified by state.
Notably, using state fixed effects in addition to statewide means in each year induces unacceptable multicollinearity
in the design matrix, and so are not presented. More generally, McGann et al. (2016) provides no guidance on this
specification question.
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Figure 16. Three methods of estimating the seats-votes curve for California Congressional
districts in 2014. The top row is a pairwise comparison between two methods, and the bottom
row displays the difference in number of seats awarded as a function of statewide Democratic
vote share.

in this range varies between a one- to four-seat difference. Out of fifty-three seats, a four seat

difference is nearly 10%, and is a significant discrepancy.

While the middle 90% of simulations overlap over the entire domain for all simulations, the

medians of the bootstrap and the Gelman-King curves are not covered by each others’ confi-

dence intervals for “tightly” contested elections, where .48 < h̄ < .52. In fact, the simulation

intervals almost diverge entirely at h̄ = .5. This means that the expected share of the California

congressional delegation that Democrats can expect to win under bootstrapping would be ex-

ceedingly unlikely in the Gelman-King simulations, and vice versa. At h̄ = .5, the Gelman-King

model would suggest democrats win four more seats, an excess seat share of almost 7%, than
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that estimated by the bootstrap model. This range is also the range of maximal disagreement

between the Gelman-King and McGann curves. Critically, disagreement is highest in the range

where many counterfactual advantage measures focus, suggesting these estimates may be

sensitive to the structure of the model used. In contrast, the McGann and Bootstrap methods

differ most strongly just below the electoral median, .4 < h̄ < .5. Even in this range, however,

the median simulations in either technique is within the middle 90% range of simulations.

In part, the divergence in median s̄◦ of the Gelman-King and Bootstrap methods for com-

petitive elections is driven by narrower confidence bands around that range. Again, the largest

difference in s̄ over h̄ for the McGann-Gelman contrast and the Bootstrap-Gelman contrast is

four seats. But the simulation intervals are wider for the McGann method in that range, so it is

unsurprising that the median Gelman-King simulation remains firmly within the wider simulation

envelope for the McGann method.

Importantly, the variance of vote shares attained within each level set is not necessarily the

variance of each district, as is shown in the furthest right of Figure 17. In Fig. 17, the apparent

standard deviation over simulations is computed for three different marginalizations. On the left

is the standard deviation of h◦ in any given simulation. This is comparable to the deviation in

observed vote shares. On the right is the deviation of each district over all simulations. This

would be comparable to the deviation of hi for some district i if many elections were run from

the same conditions. On the right, the deviation of vote shares in each rank is provided, which

corresponds to the width of the seats-votes curve estimate within each level set.

All methods generate simulations with roughly comparable electoral deviation to the ob-

served election. Each election simulated in the Gelman-King method tends to be slightly less

noisy than the observed 2014 election. The bootstrap tends to be more noisy, and the McGann

method centers on the empirical variance, but the difference in all three methods is small in this

regard. For the heteroskedasticity in the right plot, Gelman-King method explicitly incorporates

heteroskedasticity due to turnout. Potential correlation in Σβ̂ also reduces the magnitude of the

post-hoc univariate estimator of standard deviation.
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Figure 17. Distributions of variance within and between simulations used to generate Fig. 16.
The empirical mean is shown by the vertical line in the left plot. In the right plot, the bootstrap
variances are so tightly clustered around .061 that its kernel density is too tall to display on the
same scale.

Both the Gelman-King and McGann models are estimated using weighted least squares,

and this provides the McGann method the heteroskedasticity in h◦i shown in the right plot of

Figure 17. In contrast, the districts in bootstrapped simulations tend to all have a standard

deviation of around .061. In the rank-deviation plot on the furthest right, the McGann and

Bootstrap curves both have long right tails, indicating some ranks are much wider than others.

However, the bootstrap also has a few very narrow ranks, with the narrowest occurring near

h̄ = .36. The Gelman-King curve tends to be narrower than the McGann curve, and its widest

point is also narrower than the widest point in the other two curves.

5.4.2 Example: National Seats-Votes Curve in 2014

A second example, the national seats-votes curves, is shown in Figure 18. In this case, the

bootstrap is the closest to the Gelman-King curve, only coming close to divergence at extreme

average national Democratic vote. Both the Gelman-King and Bootstrap methods pick up on a

distinct undulation in the seats-votes curve present in the uniform partisan swing curve shown

in Fig. 12. That is, responsiveness is lower (the curve flattens slightly) as Democratic vote

share approaches .5 — in this case .44 < h̄ < .51 — and then increases in responsiveness

again. This means that, in that range, Democrats tend to win less seats than Republicans for

every marginal increase in vote share. After they attain a majority of support, this reverses,
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meaning Democrats win more seats than proportionate. The shape of this undulation, common

in many seats-votes curves, is critical to many estimates of partisan advantage.

Counter to the other two methods, the McGann seats-votes curve has a nearly uniform re-

sponsiveness, around 2.2, over the entire domain. While the magnitude of the seat discrepancy

is larger in the national case, it is less than a half of the discrepancy in the California case in

terms of the size of the legislature. In addition, the shape of the discrepancy as a function of

h̄ is different in this case, and is dominated by the undulation near h̄ = .5. In aggregate, the

Bootstrap simulates a more favorable curve for Republicans than the other methods, in that

it indicates Republicans tend to win more seats with fewer votes than would be expected if

the curve were symmetric. The Gelman-King and McGann do not exhibit a clear directional

discrepancy towards or against either party.33

In terms of the variance profiles shown in Figure 19, the simulated elections tend to be much

noisier on average than the observed national 2014 congressional election. Every bootstrapped

election had a higher variance than the observed election; 99.2% of the McGann elections and

85.7% of the Gelman-King simulations did as well. This means that the conditional variance

reduction of the Gelman-King method is working as intended, since it tends to have lower

variance than the other methods. The right plot of district heteroskedasticity is actually very

similar between the California and national cases; the swings in California had only a slightly

larger deviation than the swings nationally, so bootstrapped district deviations converge quickly

to .056. Also like the California case, the districts in the Gelman-king simulations tend to have

lower deviation and the McGann simulations have higher district deviation with a long right tail.

This long right tail occurs in almost all curves’ rank standard deviation plots. This reflects the fact

that the vote shares covered by the low- and high-ranked districts is much wider than the width

of ranks near the middle of the domain. Notably, the bootstrap has the broadest rank-variance

33It is important to reinforce this is in terms of the discrepancy in the predicted number of seats Democrats win
at a given national vote share, not a bias towards one party or another embedded in the model. In fact, all methods
provide similar estimates of the bias at median in this case. This may not be the case for other bias measures,
though.
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Figure 18. National Congressional seats-votes curve estimates for 2014, with plots of the
estimated seats votes curves in the first row and the discrepancy in the expected number of
seats won by Democrats given their average vote share at the bottom.

distribution; the Gelman-King and McGann methods both cluster tightly around their average

rank deviations, meaning the seats-votes curve estimates tend to have a more consistent width

than the bootstrapped curve.

Compared to the difference between the McGann et al. estimate discussed in the previous

section, the bootstrap estimates are somewhat closer to the McGann estimates over all quan-

tiles. If, as McGann et al. (2015) suggest, a simpler method of estimating seats-votes curves is

useful for post-hoc analysis, bootstrapping the seats-votes curves appears to provide a signif-

icantly simpler method that retains the same sense of “swing” used by other authors than the

series of regressions suggested by McGann et al. (2016). However, the bootstrap seats-votes

method cannot estimate the seats-votes curve for counterfactual electoral conditions, since
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Figure 19. Distributions of variance within and between simulations used to generate Fig. 16.
The empirical mean is shown by the vertical line in the left plot. In the right plot, the bootstrap
variances are so tightly clustered around .056 that its kernel density is too tall to display on the
same scale.

no information about electoral conditions other than outcomes are used in the technique. In

that case, McGann et al. (2015)’s technique still may prove a more efficient trade off between

simplicity and estimability, as long as the conceptual differences in the operationalization of

electoral swing is resolved or considered unimportant by the analyst.

One straightforward extension would be to introduce ht−1 directly into the McGann model,

retaining the pooled estimate. The ability to prove predictions or results under counterfactuals is

critical for the analysis of candidate redistricting plans, a common use of seats-votes estimation

techniques, and the lack of apparent directional bias in either predictive method suggests both

may be used, with the McGann method preferred if simplicity is desired.

5.5 Concluding Remarks on Seats-Votes Specifications

Two existing seats-votes modeling frameworks were presented and one novel method dis-

cussed. The novel method is based around bootstrapping, and constructs simulated elections

by resampling the observed distribution of difference in vote share between years. In gen-

eral, the bootstrap method reproduced most strongly the Gelman-King model’s estimates of

the seats-votes curve in the national case study and in California in 2014. Thus, where coun-

terfactual inference or prediction is necessary, we suggest using the Gelman-King model, and

where it is not required, using bootstrapping. In general, both of those methods had more ef-
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ficient simulation results than the method suggested by McGann et al. (2016). Although the

McGann method is marginally simpler to implement than the Gelman-King method, its slightly

different semantics and more simple counterfactual generation method make it less desirable

for this analysis. However, no existing public implementation of these methods are available, so

the bootstrapping implementation (as well as all other implementations of seats-votes modeling

frameworks) will be released as free software along with this dissertation.

Further, I note that the discrepancy between the modeling techniques tends to be highest

in the range where elections are most competitive, with h̄ near .5. This means that most of the

observed electoral outcomes, which have an average vote share near .5 in many states, fall

within the range where the simple choice of specification may significantly affect the resulting

seats-votes curves. In all cases, this means that a rigorous defense of the actual primary model

specification, that for vote shares, should be conducted each time the seats-votes curve is

constructed. Lastly, the semantics of the model should be rigorously examined; the continuity

McGann et al. (2016) argues for is broken by the different model of swing. While they both

generate seats votes curves, it is unclear whether swing terms and counterfactuals that depend

on them are the same in the McGann specification as in a Gelman-King model.
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Chapter 6

ARE GENERALIZED UNIFORM PARTISAN SWINGS SPATIALLY REALISTIC?

The seats-votes curve estimation methods discussed in the previous section all share signif-

icant assumptions about how legislative elections operate. Critically, one longstanding assump-

tion in modeling elections focuses on the modeling of congressional elections as stationary

spatial processes where many independent electoral contests occur simultaneously. In con-

trast, many longstanding models of electoral outcomes suggest that swings should be modeled

as hierarchically dependent (Stokes, 1965). Recently, spatial multilevel modeling has come to

prominence as a method for accounting for the effect of spatial context on voting and partisan-

ship (Levendusky et al., 2008; Gelman et al., 2005; Durch and Stevenson, 2005). Some have

even suggested that spatial multilevel techniques are sufficient to predict the the bulk of con-

gressional and presidential elections, in addition to constructing simulations that comport well

with observed outcomes. This, as some have claimed recently, “solves” the problem of geogra-

phy and context in electoral modeling (Gelman, 2014). At the very least, multilevel models are

now a common general technique for controlling for some degree of spatial heterogeneity and

providing within-group dependence for spatial groups (Park et al., 2004; Hersh and Nall, 2015).

While this is often not framed explicitly in reasoning about elections as geosocial processes,

this evolving standard of practice indicates a gradual embrace of basic spatial reasoning about

context sensitivity that was essentially rejected out of hand in earlier times (King, 1996).

Indeed, the introduction of multilevel strategies in redistricting applications and electoral

modeling derives from the recognition discussed in Chapter 4 from Gelman and King (1990):

“[m]odeling districts with additional information, such as spatial correlation or co-
variates, if they were available, would probably yield more accurate estimates” (p.
277)

Despite this, models of explicit spatial correlation in election results or inter-year swing are not

as well recognized as the importance of controlling for heterogeneity. While the spatial reason-
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ing embedded in multilevel models engages with classical quantitative geographic concerns

about spatial heterogeneity, its treatment of spatial dependence and potential non-stationarity

is not as fluent. Classic spatial multilevel models hardly engage these concerns on their own

(Owen et al., 2015).

A pervasive justification of multilevel models in treating spatial heterogeneity is in the case

where a spatial fixed effect would be used to treat spatial groups of varying size (Gelman,

2006). By stipulating these spatial fixed effects as having a common underlying distribution,

groups with fewer members or noisier groups are shrunk towards the global average effect.

In the typical centered multilevel intercept model, this provides group means that are spatially

heterogeneous, divided into j = 1, 2, . . . , J groups, with the J × 1 group means αJ distributed

normally around a single global intercept µ. Letting an n × J dummy variable matrix ∆ classify

n observations into J groups, the typical varying-intercept model for response Y and response-

level data X is stated:

Y ∼ N (∆αJ + Xβ, σ2)

αJ ∼ N (µ + Zγ, τ2)
(6.1)

where σ2 is the variance of the response-level component, τ2 is the variance of the group-level

error component, Z is an group-level design matrix, γ are the substantive effects unique to

the upper-level, and β are the substantive effects unique to the response level. This results in

a “spatially-varying intercept” model, where all observations i in unit j have a common group

effect. Stated in a single line, this becomes:

Y ∼ N (µ + ∆Zγ + Xβ, σ2 + ∆∆′τ2) (6.2)

Notably, the covariance matrix of this model is non-diagonal: ∆∆′ produces within-group cor-

relation due to its off-diagonal elements. This results in the response being correlated within

groups, but independent across groups.

No formal spatial specification test is available for these kinds of models. But, introducing

a state-level hierarchical component into the Gelman-King national seats-votes model for 2016
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Figure 20. Shrinkage plot showing the band of the fixed effect estimates ±2σ. Effects that
overlap with zero are colored black, and effects that do not are colored red. Each column is
one different specification to control for spatial heterogeneity.
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indicates that most states do not have significantly different distributions of swing, conditional

on the rest of the model. This is exemplified in the shrinkage plot in Figure 20, which compares

three different models for the 2016 congressional votes shares using incumbency, the 2014

congressional vote shares, and state-level effects. Contrasted in the figure are three specifi-

cations; a spatial fixed effect specification which simply includes each state, an uncorrelated

state variance components model in the vein of Browne et al. (2006); Leckie et al. (2014), and

state spatial autoregressive variance components model (Wolf, 2016). What becomes appar-

ent is that, even in the spatial fixed effect model which tends to exaggerate the magnitude of

difference between subgroups (Gelman, 2006), most states are not substantially different from

the common mean. When aspatial hierarchical shrinkage is introduced, more states become

indistinct. Finally, when allowing for the possibility that district vote shares might follow a spatial

autoregressive error model with a hierarchical state effect, states become even less distinct.34

In addition, these substantially more complicated models do not yield significantly better pre-

dictions for h2016, so their utility in this context is dubious. Finally, in state-specific analyses,

these hierarchical components are unavailable anyway, so their introduction is irrelevant for

most deployments of seats-votes models. Unless a national (or super-state) structure is re-

tained, stratifying the model using state-level hierarchical effects is useless for processes that

occur within the state.

While this form of model is useful, many recent explorations of spatial structure in electoral

geography focus instead on the prospect of spatial nonstationarity in the electoral process.

Often, this is done by stating a model with hierarchical substantive effects, in addition to or

instead of hierarchical intercepts. In this case, some number of covariates, k = 1, 2, . . . p, are

separated into l “local” covariates and g global covariates. Then, a model is specified with:

Y ∼ N (α +
l

∑
k

Xk∆βk,J + Xgβg, σ2) (6.3)

34This is somewhat unsurprising, as the prospect of spatial autocorrelation smooths the boundaries between
groups that multilevel modeling aims to leverage, regardless of the level at which the correlation process is admitted.
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Then, each βk,J has :

βk,J ∼ N (µ + Zkγk, Σβk) (6.4)

where Σβk is often shared over all k processes. This model structure generates β-

nonstationarity, since the estimates of β are unique to the group. This modeling structure has

been used to explore spatial non-stationarity in the electoral impacts of income (Gelman et al.,

2005), race (Hersh and Nall, 2015), and partisanship (Levendusky et al., 2008).

Spatially-nonstationary models with endogenous scales are also used in the analysis of

elections and voting behavior. In an attempt to handle the complex interplay between hetero-

geneity, dependence, and “alchemy” at issue in the ecological inference problem (Anselin, 2000;

Anselin and Cho, 2002), geographically weighted regression (GWR) techniques have been

used (Calvo and Escolar, 2003; Wing and Walker, 2010). Recent work using GWR to explore

smooth nonstationarity in political behavior or electoral dynamics is also promising (Crespin

et al., 2011; Clemens et al., 2015), since the formal treatment of nonstationarity by nested “geo-

in-geo” hierarchical is limited by the extreme heterogeneity in basic spatial enumeration units

available for social scientific research.

Centrally, the pervasive use of exogenous-boundary spatial multilevel models provides for

spatial dependence in a limited group-wise sense. In these cases, inter-observation correla-

tion is a matter of membership, not proximity or relation (Owen et al., 2015). Heterogeneity is

discrete, bounded, and its spatial structure is known a priori. Some marginal theoretical justifi-

cations for these strategies exist. Elections law and candidate contests are bound within states.

In addition, group-wise dependence in electoral outcomes may result from national- and state-

level coattails effects (Hogan, 2005, e.g.). However, state-specific coattails are quite weak, and

both coattails effects can be controlled for with dedicated covariates. Regardless, the formal

justification of multilevel structures in terms of substantive arguments about voting behavior and

electoral geography is not routine.

In contrast, spatial dependence in electoral outcomes, as well as spatial dependence in

inter-year electoral swing is empirically pervasive. To this end, explicit models of spatial de-

pendence have been employed in electoral analysis and voter behavior. Darmofal (2006) pro-
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vides a thorough discussion of spatial econometric praxis for questions in political science, and

Franzese Jr and Hays (2008, 2007) provide applications and review of the opportunities of ex-

plicit spatial reasoning for models in comparative politics. In an analysis of political participation,

Cho and Rudolph (2008) identifies endogenous feedback between neighboring areas while us-

ing a spatial group effect strategy to control for potential contextual impacts. In a similar vein,

Burnett and Lacombe (2012) conducts an econometric specification search for a demographic

model of vote choice at the county level, finding significant improvements when dependence

between counties is modeled with a local, small-scale spillover process embedded in a spatial

error or spatial Durbin error model.

In addition, Monogan (2013) analyzes the structure of immigration policy adoption in US

States with conditional autoregressive effects, and suggests these may provide further effec-

tive tools to analyze policy contagion (Monogan, 2012). With the advent of various multilevel

model specifications that incorporate simultaneous autoregressive spatial dependence and hi-

erarchical heterogeneity (Lacombe and McIntyre, 2016; Dong and Harris, 2015; Wolf, 2016),

multilevel group-wise dependence and neighborly spatial dependence — implicated by spatial

Markov random fields (Besag, 1974) or simultaneous autoregressive processes (Anselin, 1988)

— can be modeled together. In fact, this has already been applied in the modeling of recent

British elections (Lacombe et al., 2014). Thus, the analysis of the impact of spatial dependence

on estimates of seats-votes curves, either through dependence in vote shares themselves or

through dependence in swing from year to year, may improve the validity of elections simulated

in seats-votes curve modeling.

6.1 Spatial Misspecification in Vote Share & Swing Models

However, these various specification changes largely do not buy any significant benefit in

the context of seats-votes modeling, since the rank distribution often remains the same. In spite

of this, the prospect of spatial correlation in swing or vote shares is both empirically justified and

theoretically interesting. If swing were correlated in space, then we might observe “pockets”
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of volatility, areas that all shift together towards or against the global trend. In addition, the

implicit relationship between last years’ vote and this years’ vote may be spatially-nonstationary,

justifying the use of local models. However, since no specification testing regime is available

yet to determine whether GWR is appropriate, this comparison is elided for a future project.

There are two clear ways to determine whether spatial dependence is a necessary concern

in models of h or δ◦. The first method is to examine the regression residuals for potential spa-

tial structure using classic tests for spatial misspecification. The second would be to examine

whether the introduction of a correlated model for h or ffi affects the rank distribution.35 In

Figure 21, the robust Lagrange Multiplier statistics to identify potential spatial misspecification

in model residuals (Anselin et al., 1996) are shown for each two-cycle Gelman-King model

specification in the national vote share model considered in Section 5.4. For assuredness,

each two-cycle or one-cycle model since 1992 is estimated under two different methods of re-

solving uncontested elections. On the left, only the districts that are contested in both t and

t − 1 for the two-cycle models or are contested in election t for the single-cycle models are

retained. On the right, uncontested elections are imputed using the first-order autoregressive

sub-regressive strategy detailed in Section 6.2. Significant robust LM statistics are shown in

red, and non-significant statistics are shown in black. If each two-cycle model is considered

independently, almost all models relating only the mutually-contested elections in each cycle

exhibit a significant robust LM test. This means that there is statistically significant spatial cor-

relation in the error term, even when admitting the potential for an endogenous spatial lag term

for the response. These statistics are large, and many also are significant under a conservative

Bonferroni correction. In contrast, the robust spatial lag statistic is not significant as consis-

tently, with only one significant statistic, that for contested elections in 2012. Thus, it is likely

that the direct model for vote shares is spatially misspecified, and could benefit from some type

of correlated error correction in the model for h.

35This exploration could be directly conducted with Geographically-Weighted Regression, even though it does
not have recourse to formal specification testing.
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Figure 21. Robust LM Error tests for national Gelman-King models since 1992. On the left, the
tests apply to a Gelman-King model with Democratic vote share censored to .25 and .75. On
the right, the diagnostics are computed for the AR(1) imputation suggested above.

6.1.1 Generating Spatially-Correlated Electoral Swing

Critically, introducing spatial patterning into δ◦ or h◦ opens up many potential model spec-

ifications. Correlation in either process can be specified independently. In theory, swing and

expected typical vote may differ in the strength of spatial patterning, and different models may

be required for either process. Here, I consider specifications with only a single autoregressive

term, not allowing for both correlated h and δ.

First, a spatial lag model could be used for h, which would result in spatial patterning in

both h◦ and δ◦:

h◦ = (I − ρW)−1ĥ◦ + (I − ρW)−1δ◦ (6.5)

This could be achieved within a Gelman-King specification by estimating each submodel using

the lag specification and then treating the model artifacts in the same manner. Alternatively, a

model with endogenous lag only for the swing process can be stated:

h◦ = ĥ◦ + (I − ρW)−1δ◦ (6.6)

In the McGann model, this would correspond to a spatial error model for the panel of congres-

sional districts. For the Gelman model, this requires specifying a correlation structure for δ◦ at

the end of the modeling process.
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Then, a spatial error process for δ◦ may be useful. In that, the process becomes:

h◦ = ĥ◦ + µ + (I − ρW)−1ϵ (6.7)

where δ◦ has now been broken into its constituent parts, µ, the mean swing, and ϵ, the random

fluctuations around the mean swing. Note that, in this specification, the expected swing is still

µ, a useful property that will be discussed later.

Finally, the variance in Eq. 6.7 should be critically examined. Critically, if ϵ has variance τ2,

the apparent variance of each observation will be larger than τ2 if the autoregressive specifi-

cation in 6.7 is used. To ensure that spatial correlation exists without inflating the variance of

each district’s outcomes, one can recast the specification in terms of the correlation matrix, R.

First, note that the covariance matrix of δ◦ under Eq. 6.7 is:

cov(δ◦) =
[
(I − ρW)′(I − ρW)

]−1
τ2 = (F′F)−1τ2 (6.8)

where τ2 is simply σ2 for the McGann model and (1 − λ2)σ2 for the Gelman-King specification.

In general, the diagonal of (F′F)−1 is greater than one; this means the apparent simulation

variance of δ◦i for any district i will appear greater than the variance intended by τ2.

To prevent this, a separation strategy inspired by Barnard et al. (2000) is used. This strategy

separates the implied correlation matrix from (F′F)−1 and the variance parameters intended for

the distribution. To do this, let diag(M) be the square matrix containing the diagonal of M and

zeros elsewhere. Then, the correlation matrix R corresponding to (F′F)−1 is available using

the familiar formula:

R = diag
(
(F′F)−1

)− 1
2
(F′F)−1diag

(
(F′F)−1

)− 1
2

(6.9)

The Cholesky decomposition of R can then be used to draw random variates with correlation

governed by ρ and variance governed strictly by σ2. Letting the Choleksy factorization be:

R = CRC′
R (6.10)

then,

δ◦ = µ + CRϵ (6.11)
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means that, marginalizing a single district i over many simulations:

var(δ◦i ) = var(ϵ) = τ2 (6.12)

Whereas, without this standardization,

var(δ◦i ) = var(ϵ) ∗ (F′F)−1
i,i = τ2 ∗ (F′F)−1

i,i (6.13)

with (F′F)−1
i,i > 1. This apparent variance inflation is important for data generating processes

in simulation studies where control of variance is required for precise simulation design, but is

not a generally-applicable model specification due to its complexity.

Fortunately, for all of these specifications, the introduction of any spatial correlation does not

affect the relationship between the rank-vote and seats-votes curves. First, for the equivalence

to hold, it must be the case that the fraction of seats won at swing µ is also the fraction of seats

won under no swing, plus the seats where a swing of size µ flips the seat. Since µ is the same

for all districts, its does not affect the rank order of h◦. So, the rank of the marginal district at

h̄◦ + µ is the same as the rank of the district of h̄◦ + 0 nearest to the left side of the level set of

h̄◦ + µ.

In Eqs. 6.6 & 6.5, the net swing applied to all districts is not µ, but (I − ρW)−1µ, for some

value of ρ and mean swing µ. While the expected apparent swing due to this term depends on

both µ and ρ, the resulting mean is still constant over districts since µ is scalar. So, the marginal

district under swing µ is still the district under no swing that sits below h̄ +
[
(I − ρW−1)µ

]
.

However, this does affect the expected value of h̄◦ depending on ρ (holding all else constant)

so any simulation regime that requires h̄◦ to be fixed precisely must account for this discrepancy.

If E[δ◦] is not strictly constrained in models with endogenous h or δ◦, the responsiveness of the

seats-votes curve necessarily changes. The discrepancy between the mean swing parameter,

µ, and the expected swing, E[δ◦] drives this change; if E[δ◦|µ] > µ for some ρ, then the

apparent swing at that value of µ will be larger than the specified µ, and thus E[s̄◦|h◦] under

that mean swing will be larger than if ρ = 0 if any districts fall in the gap h̄ + µ and h̄ + E[δ◦|µ].

This reverses when E[δ◦|µ] < µ.
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Whether or not this should be “controlled” (or, indeed, whether the variance inflation and

heteroskedasticity induced by the error autoregressive specification) are largely questions of

experimental design, and are subjective in terms of what the analyst aims to discover. Plainly

speaking, I am interested in whether modeling places as “swinging together” or “swinging apart”

changes the substantive interpretation of the resulting seats-votes conclusions. Thus, I simply

admit outright that uncorrected endogenous h or δ◦ necessarily increases responsiveness due

to its inflation of E[δ◦|µ], since I view this as a constraint of the specification rather than a

substantively interesting trait. Instead, if effects show up in the moment-corrected specifications,

where E[δ◦|µ] = µ always and var(δ◦) = var(ϵ) = τ2 always, then the substantive question

might be evaluated: “does spatial dependence matter?” — not induced mean non-stationarity,

heteroskedasticity, or excess variance.

6.1.2 Correlated h or δ◦ in Seats-Votes Model Specifications

Fortunately for the status quo of electoral modeling, the simulation of seats-votes curves un-

der these autoregressive/correlated specifications yields nearly identical seats-votes curves as

those that assume votes or swing is spatially independent. Thus, while there may be potential

spatial misspecification in the Gelman-King model (or many other models of vote shares at the

legislative level), the impact this misspecification has on the estimated seats-votes curve and

eventual quantities of interest appears to be quite slight.

Recalling the robust LM test results from Figure 21, most of the two-cycle models clearly

had significant correlation in their residuals. Thus, the 2014 election was selected for a close,

intensive simulation study. Across the specifications considered in Section 6.1.1, 10, 000 real-

izations of h◦ were constructed for the previous example’s national seats-votes model for 2014.

Thus, in Figure 22, the distribution of simulated Democratic vote shares is plotted with respect

to the autoregressive parameter. As you move down the histogram matrix, the autoregressive

parameter increases, moving from modeling strong negative spatial autoregressive processes

to strong positive spatial autoregressive processes. At almost all levels in any of the specifica-
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tions, the distributions of simulated results, shown in grey pooled over all simulations, is very

close to the observed distribution, shown in red. Except for the case where h is modeled in

a mixed-regressive, spatial autoregressive specification, the distributions are nearly identical

across the whole range of the spatial autoregressive parameter.

Since the distributions of h◦ tend to appear to be the same as the distributions of observed

h, the rank-vote distributions (and thus the seat-vote distributions) are likely to be the same as

well. To examine, this, seats-votes curves are constructed for these simulated elections under

the spatially-correlated data generating processes. Then, a similar style of discrepancy-plot as

that shown in Figures 16 & 18 is made for each scenario. That is, over the entire range of party

vote share, the difference in the expected number of seats is computed. Thus, if the curves

for the spatial data generating processes are significantly different over a set of h̄◦ values than

that under the null, the discrepancy plot will provide both the extent and the magnitude at which

these plots differ. In addition, we can compare the overlap of quantiles in each level like done

between the three different types of seats-votes curve estimation strategies.

The raw discrepancy plot is shown in in Figure 23. Each row of the plot corresponds to a

simulation batch where the spatial autoregressive parameter is fixed to the same value across

specifications. The columns contain each of the four different specifications. The inner y axis

labels correspond to the raw number of seats difference between the seats-votes curves es-

timated from the null process and the spatial autoregressive process in that column. Thus,

a negative value indicates that the null seats-votes curve is below the spatial autoregressive

seats-votes curve at that level of h̄◦ by that many seats. A positive value indicates the null

is above the spatial autoregressive estimate. Thus, regions of h̄◦ where discrepancy is large

would be regions where the resulting estimates of partisan advantage would differ the most.

As is apparent from the distributional plots, the data generating specification with an endoge-

nous lag for the h vector is most distinct from the null of no spatial autoregressive effect in any

component. In general, this forces the mass of the vote distribution to the tails, which reduces

the total number of districts that can be flipped by the parties. Effectively, as the strength of
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Figure 22. Distributions of vote shares for various process specifications over a range of
autoregressive effect size. The autoregressive effect for 2, 000 realizations is shown on the
y-axis. The grey distribution is the distribution under the simulated data generating process,
and the red distribution is the observed vote share distribution for 2014.
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autoregressive effect in the endogenous lag of h model becomes large, districts either become

wholly Republican or wholly Democrat, and the rank distribution flattens significantly. Many ties

at 1 and 435 result. This causes the seats-votes curve to flatten significantly, since fewer dis-

tricts are in the center of the h̄◦ range, so the change in y must be smaller, too. Thus, even

at mild levels of an induced endogenous spatial autoregressive effect in h◦, the maximum seat

discrepancy is around 6 seats. For seats that are “safe Democrat” on the left of the seats-votes

curve (where h̄ ≈ .25), positive ρ results in the null assigning more seats to Democrats than

would be assigned under the spatial autoregressive simulations. In addition, for the mode of

seats that are “safe Republican” on the right of the seats-votes curve (where h̄ ≈ .75), positive

spatial autoregressive effects in the endogenous h◦ specification results in the null assigning

fewer seats to the Democrats than the autoregressive process. That is, if h◦ is modeled even

with a weak spatial autoregressive effect, the seats-votes curve will be “flatter” than the null

curve if the spatial autoregressive effect is positive, and “steeper” than the null curve if the

spatial autoregressive effect is negative.

Regardless, the introduction of a non-zero spatial autoregressive effect in this specification

makes the seats-votes curve more linear, since the bimodality is flattened. Thus, if vote shares

were endogenously correlated in this manner, even minor changes in the way h were modeled

would affect anything depending on the seats-votes model. However, tests for model misspec-

ification suggested instead that the specification lay in the error term, δ, so (strictly speaking),

this sensitivity is inapplicable here.

The discrepancy in all simulations tends to be lowest around the median, h̄◦ = .5, so

bias measures that focus on the median will be robust to this discrepancy. This means that

measures like the median bonus & attainment gap discussed in Section 2.3 should be more

robust to dependence misspecification. In contrast, a measure like Observed Bonus, which

evaluates the curve at h̄◦ and 1 − h̄◦ with h̄◦ = h̄t, may catch this discrepancy at its height.

And, the slight asymmetry in the discrepancy curve about .5 means that the under-prediction

on the left likely will not be balanced by the over-prediction on the right side of the median.

However, for all other specifications, the discrepancy in expected number of seats won by
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Democrats is marginal for all but the most extreme values of ρ. However, for the cases where

the shape of the discrepancy curve can be identified, it tends to remain the same over the

varying levels of autoregressive effect strength. Thus, when ρ = −.9 or when ρ = .7, the

resulting discrepancy between either the endogenous lag specification for the swing term δ◦ or

the nuisance dependence specification for δ◦ both result in similarly-shaped discrepancy curves

with similar magnitudes. In these scenarios (and all scenarios with ρ between these values) the

estimated discrepancy between the null is with ±3 seats. The form holds approximately the

same for both specifications, with only the amplitude of the discrepancy curve affected by the

value of ρ. Practically speaking, this means that most commonly-encountered values of ρ,

between 0 and .7 or so, result in a maximum discrepancy of three seats between the null and

the autoregressive model. This discrepancy is quite small with respect to the total 435 seats

being assigned, and would not affect the resulting advantage estimates in a noticeable way.

In addition, none of the results for the correlated δ specification, which keeps the apparent

variance in simulation fixed to σ regardless of the value of ρ, differ from the null simulation

model by more than one seat.

The extent to which the change in covariance specification affects the width/height of quan-

tiles or the magnitude of the variance for level/vertical sets of the seats-votes curve is also

relevant. The width/height of the seats-votes curve contributes directly to the variance of rele-

vant advantage measures. Thus, if the autoregressive specifications change the dispersion of

the curve across its domain, it may affect the dispersion of the estimated advantage statistics.

Thus, the relative difference in standard deviation of s̄◦ at each h̄◦ is reported Figure 24, with

the formula:
σ(s̄◦0)− σ(s̄◦A)

σ(s̄◦0)

where k0 pertains to the statistic k from the null process. Each set of s̄◦0 is constructed from

realizations that fall within a small search band around h̄◦, like that discussed in detail of the

Texas example from Figure 15. While it does appear that the change in variance is non-random.

For the endogenous lag of h specification, the variance tends to inflate sharply around h̄◦ =

.5, with variance either deflating or staying nearly the same when outside of part of the vote
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share distribution. Semantically, this means that the endogenous h specification increases the

range of ranks possible for a district that Democrats might barely win, meaning that that district

is much less likely to be pivotal (or nearly-pivotal) to a legislative majority, since its rank is

much more variable. This same general behavior occurs for the endogenous lag specification

for δ and for the nuisance spatial autoregressive specification for δ, albeit only manifesting

clearly when the autoregressive effect is very large. Otherwise, when ρ is not too large in these

specifications, the autoregressive specification tends to inflate the vertical width of the seats-

votes curve by under 10%, and also occasionally narrows the vertical width. In contrast, the

model with spatially-correlated δ that fixes the apparent variance tends to deflate the variance

with ρ is large and positive, and inflate the variance when ρ is large and negative. For most of

the realizations, though, the correlated model fluctuates around inflating/deflating the variance

by under 6%, a quite marginal change in vertical width.

6.2 Validating the Imputation Model

Uncontested elections pose a significant problem to post-hoc estimation of the seats-votes

curve and prediction. Critically, they cannot be treated simply as outliers, since they represent

substantively interesting parts of the process and contribute to any hypothetical seats-votes

curve. Dropping uncontested elections entirely may also bias estimates of partisan advantage

(Niemi and Fett, 1986; Tufte, 1973; Niemi and Deegan, 1978), since these districts are not

counted as “won” by any party.

In the dataset constructed for this dissertation from Kollman et al. (2016) and King (1994),

“truly” uncontested elections, where the two-party vote share is exactly zero or one, comprise

around 14% of all elections between 2016 and 1992. The distribution of these vote shares

is shown on the left of Figure 25. In addition, around a quarter of elections are “nominally

contested,” with candidates winning by more than 75% of the vote. This can be seen on the

left side of Fig. 25. Since 1992, republicans nominally contest many Democrat-held districts,

where .75 < hi < 1, but few Republican districts are nominally contested, with Democratic vote
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Figure 25. Distribution of Congressional district vote share for Democrats, pooled since 1992.

shares below 0 < hi < .25. The number of “fully” uncontested districts by the two parties is

roughly equal, though.

Uncontested elections are too common to ignore outright, so many techniques to handle

uncontested elections exist. One method common in seats-votes analysis is to estimate the

vote share for uncontested districts as if they were contested. Often, this is done using an

auxiliary regression or single imputation. McGann et al. (2016) use presidential election results

at the congressional district level to predict the baseline partisanship of a district in a panel. This

is motivated by the assumption that split ticket voting is rare, so congressional margins should

appear similar to presidential margins if all seats were contested. This strategy is a useful,

simple method that yields reasonably accurate results, as will be shown below. However, this

data augmentation approach is less useful than one that imputes directly from the available

data.

6.2.1 Common Imputation Strategies

To impute uncontested elections directly from the available data, Gelman and King (1994a)

use a single-imputation strategy under a first-order temporal autoregressive model. Uncon-

tested districts in a given year are imputed from the model fit to the available data in that year.
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Two Three Four Five

1990s 43 11 6 0
2000s 48 13 7 3
2010s 35 6 0 0

Table 7. Count of congressional districts with uncontested runs of the target length in each
decade.

Since the Gelman-King specification relies on ht−1 to predict t over a sequence of two-cycle

models, this imputation can take two forms in practice. One form uses only mutually-contested

districts, those that are contested in both both the current and the previous cycle. For the mu-

tual strategy, a model for election t is fit using districts that were contested in both t and t − 1,

meaning both ht and ht−1 are informative. Then, uncontested districts in t are predicted as out-

of-sample cases. However, this approach loses efficiency with serially contested elections. If

an election has been uncontested for two periods, then the previous vote share does not reflect

the characteristics of the district when contested.

To remedy this, a recursive propagation strategy is available. This recognizes that an impu-

tation for t may require imputation for t − 1, which itself may require imputation for t − 2, and

so on. Thus, imputed values are propagated forward and used in the next time period. First, an

imputation is conducted for the first available time period using all available data. Then, the next

time period uses the full vector of ht−1, both imputed and observed, to fit a model for ht. Since

all ht−1 are either contested or imputed, all uncontested districts in ht have an informative ht−1

value.

Serially-uncontested districts comprise a small portion of the dataset, as shown in 7. Out

of 5616 general congressional election contests in the contiguous US since 1992, 126 have

been uncontested by a major party for at least 2 sequential elections. This comprises just shy

of 2% of the total. In addition, this fraction tends to be relatively constant over the decades

since 1992. In the redistricting decade from 1992 to 2000, 43 districts went uncontested for two

sequential elections, again around 2%. In the period from 2002 to 2010, 48 went uncontested

for two sequential elections. Over the three Congressional elections since 2012, 35 districts
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have been uncontested in two sequential elections, around 2.5%. Notably, three districts were

contested by only one of the major parties during the 2000s redistricting decade. Alabama’s 6th

district, represented by Spencer Bacchus, was never contested by Democrats; Florida’s 17th

district, represented by Kendrick Meek, and Massachusetts’s 8th district, represented by Mike

Capuano, were never contested by Republicans in that decade.

6.2.2 Presidential Imputation is Slightly Superior

To compare the quality of the various imputation strategies, a k-fold crossvalidation was

conducted, and the results are shown below. In a set of test years, a fifth of all available ht

was sampled, censored to appear uncontested, and recovered using one of the three methods

discussed above; imputation from presidential results, mutually-contested imputation, and re-

cursive forward propagation. Since recursive imputation may be sensitive to the sequence of ht

drawn in the k-fold crossvalidation, 2000 replications of 5-fold crossvalidation were conducted,

resulting in around 10, 000 imputation passes for congresses since 1992.

For the mutually-contested and recursive forward propagation strategies, cases where ht

are available were randomly sampled and censored to appear uncontested. Periods immedi-

ately following a redistricting period were omitted, since they pose no difference between the

two approaches. This means that three periods, 1992, 2002, and 2012, are omitted from the

comparison. In both cases, the model used for imputation is

ht = αht−1 + β0 + β1incumbency + ϵ (6.14)

where the ht−1 contains the raw vote shares in the mutually-contested case, but may contain

imputed values for the recursive forward propagation.

Using the presidential imputation strategy, periods immediately following redistrictings are

available. However, due to the limits of data availability for presidential elections by congres-

sional district, the comparison is restricted to congressional elections after 2004, using pres-

idential results since 2000. The imputation model also includes an incumbency variable and
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a year fixed effect. However, due to data availability restrictions, the presidential imputation

strategy is broken up into three distinct model sets. First, congressional elections from 2006 to

2010 are predicted using presidential election results from 2000, 2004, and 2008, meaning the

imputation model is stated:

h = β0 + ∆γ + β1incumbency + β2 p2000 + β3 p2004 + β5 p2008 + ϵ (6.15)

where h is the vector of contested district results pooled over 2006, 2008, and 2010, ∆ is

the set of dummy variables classifying district-years into the year fixed effects γ, pt is the

presidential vote share in the congressional district in time t, and ϵ is an independent and

identically-distributed error term. In this case as well, incumbency is an ordinal effect. For

congressional elections in 2012 and 2014, presidential vote shares from 2008 and 2012 are

used:

h = β0 + ∆γ + β1incumbency + β2 p2008 + β3 p2012 + ϵ (6.16)

with h now being pooled over 2012 and 2014. Due to inter-censal redistrictings between 2012

and 2016, congressional elections in 2016 are imputed separately, using presidential election

results from 2008, 2012, and 2016:

h2016 = β0 + ∆γ + β1incumbency + β2 p2008 + β3 p2012 + β4 p2016 + ϵ (6.17)

As in the recursive and mutually-contested imputation methods, a 5-fold crossvalidation strategy

is conducted with 10, 000 passes for each time period. This results in a comparatively larger

number of replications for each congress, but the accuracy statistics in crossvalidation stabilize

quickly with the number of passes, so this difference in typical number of passes per congress

is not itself significant.

To accommodate the differing sets of data availability, imputation accuracy will be presented

both over all available years and in each election year. If an imputation strategy is not effective,

the out-of-sample prediction after censoring hit will be far from the true hit. In addition to

raw prediction accuracy, the classification accuracy is also analyzed. This ensures that an

imputation method produces likely vote shares and seat winners. The two forecast accuracy
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Figure 26. Imputations versus known vote shares over 10, 000 crossvalidation passes

RMSE SMAPE FDWR FRWR Accuracy N Replications

Presidential 0.0544 0.0444 0.0307 0.0396 0.9297 4,550,000
Recursive 0.0645 0.0505 0.0422 0.0372 0.9207 4,627,037
Mutual 0.0833 0.0674 0.0494 0.0323 0.9182 4,627,037

Table 8. Summary of accuracy & precision for imputation over all available data. “FDWR”
stands for “False Democrat Win Rate”, and “FRWR” for “False Republican Win Rate.”

statistics, the symmetric mean absolute percent error (SMAPE) and root mean squared error

are defined for N observations in a forecast f and observed vector k:

SMAPE =
1
N

N

∑
i

|fi − ki|
|fi|+ |ki|

RMSE =

√
∑N

i (fi − ki)2

N

These measures are provided in Table 6.2.2, alongside the false party win rate, or the percent-

age of cases the imputed vote share suggested that the party wins when the observed vote

share indicates the party lost. This is computed for both Democrats and Republicans. Finally,

the “accuracy” is the percent of times the winner of the imputed election was the observed

winner. Finally, all this occurs over a K-fold cross-validation, so the number of cross-validated

predictions for each type is shown in the last column.

First, the scatterplot of the imputations is shown in Figure 26, and full results for the total

crossvalidation runs is shown in Table 6.2.2. Over all instances, the presidential imputation

method has significantly lower root mean square error and symmetric mean absolute percent-
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Figure 27. Root Mean Square Error and symmetric MAPE for the three imputation methods
over all Congresses since 1994. Circles represent elections where the crossvaldiation was
unavailable due to the lack of a predecessor election.

age error, followed closely by the recursive forward imputation. Finally, the mutually-contested

strategy consistently has the highest prediction error.

When slicing the imputations by congress, this trend also holds. The comparison of im-

putation accuracy by congress are shown in Figure 27. In general, the recursive and mutual

imputation strategies move in the same direction over congresses, with the recursive method

consistently dominating the mutually-contested strategy. For the range of Congresses available,

the presidential imputation strategy has lower error in all but the 110th and 111th Congress, in

2006 and 2008. The misclassification rates by congress are shown in Figure 28. There, the

presidential imputation strategy is almost always more accurate than the other two approaches,

with the recursive forward propagation typically misclassifying about as many seats as the

mutually-contested strategy. The misclassification rate for some elections, mainly elections

to the 104th and 112th Congresses, implies that around an eighth of the winners in elections to

that congress are not correctly predicted by the imputation methods.

The weakness of the mutually-contested strategy is also tangible when considering cross-

validation cases for districts within each congress. For example, the root mean square error for

each district in each congress is shown in Figure 6.2.2. In general, the presidential imputation
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Figure 28. Classification Error rates by Congress. Here again, circles represent elections
where the imputation method was unavailable.

Figure 29. Distribution of Root Mean Square Errors (RMSE) for each district in each Congress.

method is consistently more accurate for most districts in most congresses, but the recursive

imputation method fares nearly as well. The mutually-contested tends to have larger RMSE by

district as well.

This also holds for the percent of all correct classifications-per-district-year, but the dif-

ferences in classification accuracy between methods are all under a single percentage point.

Critically, around six percent of district-year outcomes are never classified correctly in any

imputation method. In addition, a contest is almost always classified correctly as a Demo-

crat/Republican win or is almost never classified correctly: between 93% and 98% of contests,

regardless of imputation method, are either correct 99% of the time or incorrect 99% of the

time.
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Thus, when presidential results are available, they tend to produce more accurate esti-

mates of observed vote share, and thus may provide more plausible hypothetical values for

uncontested elections. If presidential data is not available, recursive imputation is nearly as

effective. Both approaches have clear, sharp disadvantages, though. Estimating a hypothetical

contested vote share for uncontested elections using presidential returns at the congressional

district level suffers strongly from data availability, since it requires an augmenting. Using the

recursive forward-propagating method, while nearly as accurate, cannot be easily used for elec-

tions immediately following redistrictings, unless successor districts are identified. Regardless,

a choice between the two appears to be a lateral move: no appreciable gain in classification

or prediction accuracy is obtained from using one over another, although both have lower er-

ror than the mutually-contested imputation strategy. Likewise, it is also important to note that

the true “accuracy” of these methods are unobtainable, since the anticipated vote share for an

uncontested district if it were contested is an inherently counterfactual, unobservable quantity.

6.3 Conclusion

When considering the potential for spatial misspecification in the electoral models that drive

seats-votes constructs, it is likely that models for vote shares at the congressional level require

some form of correction for spatial dependence. However, this correction likely does not signif-

icantly impact the resulting model for the seats-votes curve if the “correct” treatment is in the

error term for the vote share model. Corrections for spatial heterogeneity only result in some

states with significantly-different vote share or swing distributions. These effect structures com-

plicate the model significantly while contributing little to its predictive performance or model

accuracy, and so likely do not constitute a useful innovation in their own right. In addition, since

many analyses (such as the novel ones conducted later in this dissertation) occur at the state

level, the use of a super-state hierarchy is moot.

If the correction for spatial dependence in the vote share model is of the mixed-regressive,
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spatial autoregressive form,36 the shape of the estimated seats-votes curve, both its slope and

width, may change significantly. This would, in turn, impact the measures of partisan advan-

tage defined in §2.3 computed about those seats-votes curves. In addition, the assumption

of generalized uniform partisan swing, that change in vote shares over time can be efficiently

modeled by an independent and identically distributed random effect, is empirically unsound.

In truth, electoral swing is highly spatially patterned, while the distribution of swings in most

states are nearly identical. However, introducing a correction to this assumption does not signif-

icantly change the properties of the estimated seats-votes curves, unless spatial dependence

is quite strong. In that case, the exact specification of the spatial autoregressive structure for

the swing term is critical. If a class simultaneous autoregressive specification (either the lag or

error form) is used, the change can be detectable, even when the autoregressive effect is small.

However, when considering a novel variance-consistent specification in simulations, the magni-

tude of the autoregressive effect does not significantly change the estimated seats-votes curve

from that estimated under the null. Thus, it may be the case that heteroskedasticity induced by

introducing spatial autoregressive structures is truly driving the change in the two alternative

specifications for the partisan swing term.

More generally (and more directly), this dissertation suggests that spatial misspecification

in the vote models or counterfactual models driving seats-votes models may affect the resulting

estimate of the seats-votes curve. But, the size of the impact depends greatly on the model

specification. A classic econometric testing regime would suggest a specification that has no

large impact for most of the commonly-encountered spatial autoregressive effect sizes. In con-

trast, in other electoral data (for the United States Congress or abroad), the specification search

may settle on a different model or have a different spatial autoregressive effect strength. Thus,

this simulation-driven exploration of the impact of spatial effects in seats-votes models builds

intuition about a wide variety of the models discussed in the seats-votes modeling literature. In

general, it seems that seats-votes curve estimates should be robust to moderate spatial autore-

36also known as the “spatial lag” or “endogenous lag” form
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gressive effects or spatial misspecification in large samples if and only if the misspecification

is of a special form. This means a rigorous specification search should always be conducted,

since it is very likely that the underlying model requires a spatial correction, and this correction

may, depending on its form, significantly affect results.

135



Chapter 7

LOCALIZING PARTISAN SYMMETRY MEASURES

Measures of partisan bias have long been used in attempting to characterize the fairness

of electoral systems. From the theory and measures discussed in Chapter 2, many different

analyses could be conducted, but all would statewide analyses. That is, all of the measures of

partisan bias in Chapter 2 work by first estimating a seats-votes model like those considered in

Chapter 5, simulating many elections at each partisan advantage measure’s reference position,

and then characterizing those simulations in some way. These models are estimated for the

entire state under study, and the bias measures refer to the statewide tilt of the congressional

districts. No individual district scores are available.

Thus, only the geometric measures of boundary manipulation provide “local” indications

of which districts may be gerrymandered. This is clear in popular and legal discussions at-

tempting to identify gerrymandering. Often, allegations about gerrymandering characterize the

overall slant of the districting plan, and then attempt to argue that specific oddly-shaped districts

generate that advantage. This pattern is present in many of the recent lawsuits and analyses

of gerrymandering in after the 2010 redistricting discussed in Section 2.1, but chiefly in the

Cooper v. Harris, League of Women Voters v. Detzner, and Whitford v. Gill cases.

However, the use of different standards of evidence to argue about the partisan advantage

as a whole and which districts generate this bias means that weirdly shaped districts might

not end up contributing significantly to any given statewide bias measure. While the analysts

presume that strangely-shaped districts drive the unexpectedly large bias measures, it might

be the case that other districts impact the measure more strongly, whose shapes are consid-

ered more regular or intelligible. Again, as discussed before, the mere presence of strange

boundaries does not indicate boundary manipulation, since human habitation and community

character does not necessarily admit regular polygonal tilings. But, intuitively speaking, many

of the districts singled out for legal review or popular reproach have strange boundaries. Thus,
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strange shapes are neither necessary nor sufficient for partisan advantage, but they are what’s

available to most. As such, the use of boundary regularity is suspect, but this is not always

recognized. Regardless, shape measures are the most wide-spread “score” used to assess

how likely it is any individual district is gerrymandered, while bias scores at the state level are

used to identify statewide advantage.

In this sense, Chapters 7 and 8 will be about the forensics of gerrymandering; detecting

the potentially-illicit districts that impact statewide bias measures. This exhibits a local/global

divide, as currently no local measure of partisan advantage is available to assess districting

plans, whereas geometric measures are often only used in a local context. A “good” forensic,

then, should be a statistic with some sort of control for “significance” and should provide a stan-

dardized method to compare between states or across time. The significance filter should avoid

identifying a fixed fraction of bad districts, like a top-k percentile-based filter might. Instead, a

district should only be singled out as gerrymandered if its effect on plan-wide bias is both large

relative to its variance and is consistent over time. Below, I develop a method to define such a

statistic for any measure of statewide partisan bias using classic methods in model criticism.

I am interested in local measures of district impact for three reasons. First, I am interested in

examining the set of districts identified by these techniques, if they “work” so-to-speak. Whether

they “work” is not necessarily indicated by them singling out the same districts that have been

identified as gerrymandered by the legal system. This is for two reasons. First, the courts and

most analyses up to now have used the same inconsistent global/local measures, suggesting

that individual districts that impact statewide bias may not be the ones identified in the past.

Second, the impact measures may select an entirely different (but meaningfully-consistent) set

of districts. That is to say, the districts which courts have identified as gerrymandered (using

potentially flawed or inconsistent empirics) should not be used as the sole truth against which

these measures are assessed. If the impactful or influential districts have a “typology,” a con-

sistent interpretation or set of interpretations, then the intuition about these impact measures

can be built independently of whether the measures identify the same districts that the courts

or interest groups select. I am also interested in whether one class of these impact measures,
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those deriving from classical leverage measures of regression influence are distinct from an-

other class, those deriving from jackknife techniques. Critically, if the model-based measures of

district influence all agree, then it may be the case that the simplest way to create local scores

for district partisan impact is to analyze the source model’s leverage matrix. This would indicate

that the peculiarities of each bias measure are effectively moot when it comes to which districts

impact their values, since partisan impact would be a function of observation influence.

Further, I am interested in determining whether these impact measures relate to the geo-

metric measures of boundary manipulation. Since geometric measures are currently the most

common “local” district discriminant, the relationship between the measures of boundary manip-

ulation and impact on partisan bias is critical. Proponents of boundary manipulation measures

suggest they may identify districts that create advantage, but the arguments linking identified

boundary manipulation to advantage directly are weak and fiercely contested. It may be the

case that some districts with irregular boundaries do not significantly impact partisan advantage

in a state. It also may be the case that strangely-shaped districts do tend to impact partisan

bias in states. While aggregate arguments exist (Altman, 1998b, e.g.), the lack of a viable local

measure of partisan advantage has left the direct relationship unexamined.

Finally, I am interested in the distribution of effect sizes for its own sake. One question that

surfaces from interviews that will be discussed Chapter 9 is a trade-off: should practitioners

attempt to make each district as fair as possible versus making a plan fair in aggregate? Often,

respondents suggested that each district’s “fairness” was essentially its competitiveness, so this

question became about whether all districts should be competitive, or whether a congressional

delegation should avoid large majorities. Many did not consider the fact that having many

competitive districts may magnify the extent to which a states’ aggregate representation does

not reflect the partisan preferences of its electorate. Thus, I am curious as to the existence

of two types of plans with nonzero advantage: what I call “balanced” plans and “accumulative”

plans. Balanced plans are plans where district impact measures might cluster on both sides of

zero with large magnitudes. But, altogether, the plan is not significantly biased. Accumulative

plans would be plans where most districts have a small impact on statewide bias, but the bias
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is present nonetheless. This speaks to questions of district design and the way representation

might be balanced in states to achieve aggregate representativeness versus competitiveness

in each district.

7.1 Classical Leverage Measures for Seats-Votes Models

I suggest two ways to examine the impact individual districts have on the general partisan

bias scores. First, and most straightforward, the seats-votes models discussed in Chapter 5

tend to reduce to a standard linear regression (or weighted linear regression) to predict vote

shares for a reference party given some set of political or demographic covariates. Thus, ex-

amining the structure of the influence statistics for that model may indicate which districts are

playing an outsized role in defining the characteristics of the plan in aggregate. Influence anal-

ysis is a foundational subfield of model criticism (Carota et al., 1996), and is related to many

other styles of residual analysis in regression work (Atkinson and Riani, 2012; Chatterjee and

Hadi, 2009; Cook and Weisberg, 1982; Belsley et al., 2005) Typically, the analysis of influence

involves identifying or estimating some score for each of the observations that characterizes

how important observations are to a model. One measure relevant to linear models is an ob-

servations’ leverage. Formally, an observation’s leverage on a a linear model is a measure of

how far any given point i covariate vector, Xi, is from the center of the point cloud in X-space. If

the point has high leverage, it means that the point represents part of the vector support of the

underlying information in X which few other observations in the dataset also span. Thus, the

“distance” from the remaining points means that the regression line of best fit will fit the point as

strongly informative. For general linear models, leverage is constructed through the hat matrix

for the given model specification (Hoaglin and Welsch, 1978).

Extending the analysis of Gelman-King models from the previous chapter, it is possible to

identify the hat matrix for any single model for a given election. Thus, it may be the case that

high-leverage districts are the districts that strongly affect the partisan advantage of a district.

Typically, hii represents the ith element of the diagonal of the leverage (or hat) matrix, and
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corresponds to the “leverage” of observation i. For a linear regression with variance weight

matrix V, the hat matrix is:

H = X′(X′V−1X)−1X′V−1 (7.1)

Thus, for any of the model specifications in the Gelman-King seats-votes framework, the lever-

age of each years’ model can be computed and analyzed.

However, as often noted, high-leverage points are not necessarily influential, since their

removal may provide essentially the same estimated relationship between the response and

covariates. This idea of removal is critical to the idea of influence, which is a much larger,

informal concept in model criticism. A point is influential when its absence is “noticed,” for

some operational, formal definition of “notice.” Whether or not an observation’s absence is

“noticed” depends on the model property the analyst examines. Since influence is dependent

on the model property, many different kinds of influence measures exist, and arbitrary new ones

created through the focus on empirical influence functions (Mallows, 1975).

Explored initially in the first edition of Belsley et al. (2005) in 1980, commonly-used influence

measures are constructed focusing on a given model property. The difference-of-fits (DFFITS)

statistic is a diagnostic providing the standardized change in predictions for observation i when

Xi is omitted from the regression. For a response vector y with elements yi, i = 1, 2, . . . , N,

the difference-of-fits statistic for observation i is:

DFFITSi =
ŷi − ŷ(i)i

σ̂i
√

hii
(7.2)

where k(i) is the statistic k from a model where observation i has been removed, whereas k is

from the model estimated with all observations. Substantively, this statistic provides the differ-

ence in the prediction of the fitted yi value when observation i is treated as an out-of-sample

prediction. Another commonly-used influence measure, the difference-of-betas (DFBETAS)

statistic, provides the extent to which the removal of i influences the estimate of β:

DFBETASi = β̂ − β̂(i) =
(X′X)−1X′

iei

1 − hii
(7.3)

Here, ei is the residual for i in the full regression and Xi again is the ith row of the design matrix

X.
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For the purposes of this dissertation, I focus on the Cook’s D, or distance statistic (Cook

and Weisberg, 1982). Cook’s D is a joint influence measure, describing the extent to which an

observation affects all p marginal effects in a given regression.

Di =
e′iei

σ̂p

(
hii

(1 − hii)2

)
(7.4)

An observation that substantially changes the generating process for the election might be an

observation that also substantially affects the bias statistics derived from that process. Since

the bias statistic is insensitive to the substantive interpretation of a β effect in the Gelman-

King models for a given decade in a given state, the Cook’s Distance provides an effective

computationally-simple measure of overall influence an district may exert on the seats-votes

curve. Importantly, Cook’s D is a standardized distance with common rules-of-thumb on what

an extreme value is. While there is no formal distributional testing for the statistic per se, one

rule of thumb common in statistical practice is to consider an observation “influential” when it is

Di ≥ 2. More generally, Cook’s distances that are markedly larger than the rest of the distances

in the set of observations should be considered suspect. Thus, we can not only examine the

high leverage districts in Gelman-King models, but also use the Cook’s D as a significance filter.

This avoids the issue with many of the common geometric forensics that have no significance

filter.

However, Cook’s D or hii may not be consistent over time. This is magnified by the use of

two-cycle models like the Gelman-King specification. Since one model is fit in each year, the

leverage & residual (and the D) may be different or each district in each model. Thus, I will

examine whether or not Cook’s D or hii fit the criteria outlined for our statistics above. While I

expect them to perform fine within a given year, there is no guarantee that the measures will be

able to characterize the influence a district has consistently over time. In addition, a full-decade

model (such as the one suggested by McGann et al. (2016) considered in Chapter 5) could be

used, since leverage and influence measures for some specifications of longitudinal models are

available (Tan et al., 2001). To hone discussion, I focus only on the Gelman-King models, but
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leverage and Cook’s D-style statistics could be identified for any parametric model specification

for h where leverage statistics are identified.

7.2 Local Measures of Partisan Impact: Jackknifing the Plans

Fortunately for the original authors of various deletion statistics, many of the parameters

of interest for influence analysis are available without having to estimate the global model and

N deletion models. This is primarily because the parameters of interest are related directly to

H, and each of the influence statistics can be sufficiently characterized as transformations of

full-model statistics and elements of the leverage matrix. Since most analysts are interested in

identifying the influence of Xi on direct model properties like β, ŷi, or both, many analyses of

influence do not actually require the evaluation of the model with Xi removed. And, while the

measures of leverage or Cook’s D are available to examine the influence districts have on the

regression underlying the seats-votes model, direct parameters of the vote model are not at

interest here.

In fact, the measures of partisan advantage from Chapter 2 are what the impact analysis

requires. They are not “direct parameters” of the vote share model, and have no convenient

expression in terms of the leverage matrix. Indeed, since they pertain to the seats-votes curve,

itself estimated from many sets of simulations from the model, characterizing the influence of

each district in Xi on a given advantage measure would likely not have a formal expression.

However, the original intuition behind influence analysis is still available: which observa-

tions generate markedly different estimates when they are missing from the analysis? If this

can be computed, then their presence in the full ensemble of size N, conditional on the re-

maining N − 1 observations, can be estimated. This is the concept behind jackknife estimators,

suggested by Efron (1982). Jackknife estimators, conceptually, take a given estimate of in-

terest, θ̂, and compare it to the set of estimates θ̂(i) constructed when each observation i,

i = 1, 2, . . . , N, is removed. Jackknifing has a long history in statistical practice. Efron and

Gong (1983) demonstrate that the jackknife is related to the empirical influence function dis-
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cussed by Mallows (1975), where the “influence” of an observation is the empirical impact of its

removal directly on the quantity of interest.

Jackknifing is commonly-used to derive estimates of standard errors or confidence intervals

that are robust to collinearity or poor specification; however, they are much more broadly used

in machine learning contexts to improve or assess model sensitivity in chains of analyses. Here,

I propose to use a similar approach: by jackknifing the districting plan, we can identify which

districts significantly influence a given bias score, which is the final statistic obtained from a

chain of analysis. The removal of the single district and re-simulation of advantage, then, pro-

vides an estimate for how that district affects the entire analytical pipeline. If the district is not

influential, then its impact will not propagate. I call these district partisan impact statistics, or

simply district impact statistics.

Although they do not parcel out the fraction of a bias score that each district contributes

(Anselin, 1995), the local impact measures do allow the analyst to determine which the districts

impact statewide advantage. In addition, it allows for the filtering out of districts that have no

significant impact on advantage. It allows for the consistency of influence to be characterized

over time. The measures admit uncertainty in the estimate and a characterization of the “sig-

nificance” of the result using the statewide variance and jackknifed simulation variance. Most

importantly, the district impact statistics work directly in terms of the measure used to charac-

terize statewide bias. So, the impact measure for each district uses the same conceptual model

as the statewide bias estimate and its impact is estimated on the same terms. This is exactly

what is desired by policymakers when attempting to infer which districts drive the plan-wide

estimates of advantage. Thus, with these local statistics, we characterize the political impact of

each district in the plan in a manner that is consistent with the statewide estimate, resolving pre-

cisely the inconsistency of using partisan measures statewide but using geometric measures

locally/district-wise.

I characterize this influence directly using a deletion & re-estimation strategy, since the

impact cannot be stated in terms of the observation leverage for arbitrary bias statistics.
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Algorithm 3 Consider a partisan advantage statistic for a district plan with N districts in elec-

tion t, denoted bt. Let b̂t be the point estimate of bt constructed from a set of L replications,

b = b1, b2, . . . , bL, each made over a batch of simulated elections in the N districts. Let the

observed conditions in election t be Xt. Each element of b is constructed using the a simulation

algorithm A(X◦
t ), where X◦

t is a scenario under which the bias will be evaluated. It may be true

that X◦
t = Xt but it is not necessary. Finally, let A(X◦

t ) involve a model of vote shares estimated

from the observed outcomes & electoral conditions in time t, M(ht, Xt). A set of N influence

measures corresponding to each district can be constructed:

1. Estimate M(ht(i), Xt(i)), the results from election t in N − 1 districts, having omitted

district i, i = 1, 2, . . . , N.

2. Construct the bias of the state plan as if district i were not included in the plan. This

involves L replications of elections in the N − 1 districts using simulation regime A(X◦
t(i)).

3. Store the set of L deletion bias statistics, bt(i).

4. Increment i and return to step 1 until all districts have been evaluated.

This yields N sets of “deletion statistic simulation distributions,” bt(i), each with L independent,

identically-distributed replications.

Given the “statewide” bias simulation distribution bt and each of the N deletion statistic

simulation distributions bt(i), these distributions must be compared. First, however, note that

each bl is independent of other bk for k, l ∈ {1, 2, . . . , L}. This is because, in any one problem

configuration (statewide or deleting i), each realization from A(.) is independent from every

other realization, thus elements of bt are independent from one another. In addition, since

the data generating process does not change during the simulation runs, elements of bt must

be identically distributed. This ensures that, between elements in bt and elements in bt(i)

(or between elements of bt(i) and others in bt(j), i, j ∈ {1, 2, . . . , N}), there is no correlation

even though the data generating processes share at most N − 2 members. Conceptually, this

occurs because we analyze statistics generated from the model, not the models themselves;

these realizations are “strongly” independent, since the simulation regime is stateless between
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replications. Further, since the model does not change during replications for a given jackknife

of i, b(i) are identically distributed. In addition, b is unordered, since the replications from

A(X◦
t ) could occur in any order. Thus, analyzing b and a permutation of b yields the same

results. This means that the sets of bt and all N bt(i) cannot be paired, so a specific set of

distributional analysis methods must be used instead.

Before proceeding, though, it is also important to reiterate that the analysis is not focused on

identifying which districts’ removal benefits Democrats or Republicans, i.e. shifts the distribution

of bias statistics left or right in absolute terms. Rather, given that statewide bias estimates may

advantage Democrats or Republicans, identifying which districts increase bias or decrease

bias is the more central concern. Thus, it is not the raw value of the deletion bias estimate that

matters, it is the position relative to the statewide estimate. If a district is removed and increases

bias, then the plan is more fair than it would be if that district were not present, regardless of the

winner of the seat or the tilt of the state as a whole. However, I will discuss districts at first brush

as moving the state more towards Democrats or Republicans, but whether these increase or

decrease bias depends on the statewide advantage estimate.

Further, it is important to note that this strategy does not reapportion the omitted individuals

back to the districting plan. At the district-level, it is reasonable to consider the impact of a

district to be some estimate of advantage of that particular spatial-social configuration of voters.

Thus, the fact that those voters are omitted and not redrawn into a new districting plan is

precisely the point of these influence statistics. The district, its candidate, and its voters each

exert an influence on the statewide advantage experienced by all. While sufficient controls

may be placed on candidate properties, it seems unlikely that sufficient ecological inference

can be conducted to construct population countefactuals more fine-grained than the shifts in

aggregate partisan support considered in Chapter 5 & 6. Regardless, the omission of the

district, its voters, and its candidate is intentional here, and the re-drawing of an N − 1 plan that

includes the voters omitted from the jackknife would obscure the point of this analysis.
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7.3 Interpreting and Comparing Impact Distributions

To enable the analysis of jackknifed impact distributions, three testing procedures are avail-

able. To ensure consistency over elections in a decade, the tests can be adapted in three ways.

First, one could test in each t and only accept consistently-significant results using an N × T

multiple comparison correction. Second, one could simply pool bt over all t = 1, 2, . . . , T in

a decade to provide a single omnibus statistic for each of the N districts for a pooled sample

of size T × L. Third, one could construct a stratified (or hierarchical) estimate, admitting that

the mean might be different in each t. This would pool the differences between statewide and

jackknife distributions in each time period and use an appropriate pooled estimate of variance.

Any method should yield consistent results, so long as the statewide and deletion distributions

are stable over t. I will only define the stratified and pooled forms of the effect size statistics

discussed in Section 7.3.3.

7.3.1 Nonparametric Difference in Distribution Tests

First, each set of realizations might be judged to be distinct from the state or from one an-

other using some kind of distributional ANOVA test. This can be done in many ways (Elliott and

Hynan, 2011), but I choose a standard Mann-Whitney U test between the statewide distribution

and each deletion distribution. I choose this instead of other types of nonparametric distribu-

tion tests (such as the Kruskal-Wallis) since I am only interested in determining whether each

deletion distribution is different from the statewide distribution, not whether each distribution

is distinct from one another. This means that there are only N direct comparisons instead of

all N(N−1)
2 pairwise comparisons accounted for by Kruskal-style nonparametric ANOVA, since

we are only concerned with identifying whether a district is distinct from the statewide distribu-

tion, not from every other distribution. Thus, multiple comparison corrections are still required,

but the Bonferroni correction is not as severely conservative in this case as it would be if all

pairwise comparisons were analyzed. In case studies using Q measures in S scenarios, I will
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use an N × T × S × Q correction, where N is the number of districts and T is the number of

decades. In most cases, significance is not marginal, so the choice of including a correction for

the number of scenarios or measures in the Bonferroni factor is not critical.

7.3.2 Binomial Sign Testing for Deletion Distributions

The binomial sign test is a method to determine whether or not a treatment shifts a sample

in a consistent direction. In this case, the removal of district i has a consistent effect if its

removal tends to benefit one party. This would allow the analyst to filter out which districts

have an inconsistent impact on a bias measure from those that consistently either increase

or decrease the statewide bias estimate. This can be done in a two-tail specification (simply

looking for “consistent influencers”) or can be done in a single-tail fashion (looking at whether

a specific district consistently increases bias). This is done first by computing the number of

realizations in bt(i) that are below the statewide point estimate:

nt(i≤) =
L

∑
l
I
(

bt(i),l ≤ b̂t

)
(7.5)

where I is the indicator function which is 1 when its argument is true and zero otherwise.

Then, nt(i≤) is distributed binomially with population parameter n = L. Testing the undirected

hypothesis pair, that H0 : p̂t(i) = .5 versus HA : p̂t(i) ̸= .5 provides a two-tailed test identifying

whether the removal of district i has a consistent influence on b̂i in terms of the direction of

the effect. In concept, nt(i≤)/L is the fraction of cases where the removal of district i benefits

Republicans, since I have designated Democrats as the reference party arbitrarily. When the

fraction of realizations benefiting Republicans relative to the statewide estimate is distinctly

smaller than .5, the removal of i benefits Republicans more than Democrats, and the opposite

when flipped. When pooling all samples over a decade, t = 1, 2, . . . , T, then n.(i≤) is binomially

distributed with n = T × L, and is computed from all bt(i) pooled over the decade. The α level

for the pooled test under a Bonferroni correction in time t is simply α
N , since N comparisons are

made between the deletion distributions and the statewide distribution, each distribution having
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T × L observations. For the unpooled comparison strategy, the Bonferroni correction is α
T×N

since T sets of N tests are conducted on samples of size L.

7.3.3 Effect Size Estimation for Deletion Distributions

In addition to sign-consistency, the effect of removing district i can be estimated directly.

Typical effect size estimators in the statistical literature can be adapted to this context, mod-

eling each bt, bt(i) as two distributions separated by a treatment, removing district i from the

districting plan. One estimate of the effect of removing district i from the plan (for each N)

would be:

d(i) =
b̂t(i)−b̂t

s∗

s∗ =

√
σ(bt)2 + σ(bt(i))2

2

(7.6)

This estimator is a Cohen’s d-style effect estimate and also bears similarity to measures of

deletion residuals. In this case, it measures the difference in means between the statewide &

jackknifed distributions, and divides by an estimator of the shared deviation of the two distribu-

tions. A similar nonparametric estimator is suggested by Grissom and Kim (2012) as:

dr(i) =
U(i)

N(N − 1)
(7.7)

where U(i) is the Mann-Whitney U statistic comparing (bt, bt(i)). I will focus on the Cohen’s d-

style estimator for simplicity. Here, interpreting the effect size from the d estimate is done using

the typical rules-of-thumb common in statistical literature. I break down the difference using

three tiers of effect magnitude. A marginal effect is one between .25 and .5, a moderate effect

is one between .5 and 1, and an effect size greater than 1 is considered a large effect. The

sign of the d retains the original meaning, so that if the state is biased towards Democrats (b̂t is

positive) then a negative d statistic indicates the district i increases the bias towards Democrats.
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7.4 Advantage Impact, Model Leverage, and Model Influence

First, I engage in a few case studies to examine the properties of the jackknife impact mea-

sures. Then, I examine whether or not these statistics relate well with each model’s Cook’s

D & leverage. In the next chapter, I will compare impact statistics directly to the geometric

measures, examining many potential multivariate relationships in exploratory regression & cor-

relation analyses. In all cases, the jackknife measures are constructed from P = 1000 repli-

cations of K = 1000 simulated elections. This yields a set of P statistics for each district, and

a set of P statistics for the full state, reflecting a full simulation load of 1000 × 1000 elections

in each state. In most cases where a point estimate is required for the deletion distribution,

the effect size estimate from Eq. 7.6 will be used. This means that any point estimate is an

expression of the district’s impact relative to the statewide bias. Thus, even when statewide

bias is negative, a positive effect size indicates that the state becomes more Democratic when

the district is removed/more Republican when the district is present, conditional on the rest of

the districts in the plan. Thus, N + 1 sets of P jackknife impact statistics (as well as the N

difference-in-means point estimates) will be analyzed. In addition, N of the “classic” model

influence measures, such as the observation residual, leverage, and Cook’s D, are available.

Relationships between the impact measures and these other measures will be conducted using

the difference-in-means statistics, since the change in point estimate reflects the impact of the

deletion on the model.

7.4.1 General Properties about Impact Measures

I conducted preliminary study using the dataset developed in Chapter 3 for eleven states in

two decades: Arizona, California, Illinois, Michigan, New York, North Carolina, Ohio, Pennsylva-

nia, Texas, Washington, and Wisconsin in 2000 and 2010. I focus on two decades for California

and a single decade in Wisconsin in the following sections. In general, there is a strong nega-

tive relationship between impact measures and Democratic vote share in all cases and nearly
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all times, meaning that districts that are won by Republicans tend to benefit Republicans when

included in the districting plan. In some rare cases, this relationship is reversed, in that the

presence of districts won by Democrats actually benefits Republicans. In theory, this is possi-

ble, since measures like the efficiency gap or the observed bonus measure may catch districts

whose intent is to pack partisans. If packing is operant, then districts that pack are intended to

disadvantage the party that wins the district. So, a district won by Democrats whose deletion

strongly benefits Democrats indicates a district packing Democrats, but most districts benefit

the party that wins them.

In addition, there is a distinct difference between plans that are balanced versus plans

where most districts have marginal impact on an unbiased statewide measure. However, this

is highly contingent on the measure type. Some measures are strongly bimodal, as will be

discussed for California. The strongly-bimodal measures track the partisanship of the district.

However, these measures may be more or less separated into partisan clusters depending on

the decade under analysis. Thus, it does seem to be the case that plans can be characterized

as “balanced,” where many districts provide significant advantage but balance each other out

statewide, or “consistently neutral,” in that all districts have very small impact on statewide bias.

But, this characterization tends to be strongly influenced by the measure type, since some

measures are much more strongly bimodal than others under a given simulation scenario.

In addition, simulation scenarios strongly affect the impact statistics. Depending on whether

the summaries of impact are constructed from simulations under observed conditions or with no

incumbents, most districts shift from being “impactful” to having no clear impact. This highlights

the importance of controlling for incumbency in these analyses, but does not resolve the nor-

mative argument about whether it makes more sense for the analysis of advantage to be about

scenarios that are never experienced. I believe it makes sense to compare both scenarios,

the simulations under observed conditions and simulations about the no-incumbency elections
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(which never occur), but priority should be given to districts identified in the no-incumbent anal-

ysis.37

7.4.2 Case Study: California, 2000 & 2010

California’s congressional districting plan from 2000 was thoroughly-discussed in popular

literature as an incumbency-protecting gerrymander (Fan et al., 2015). Critique of the 2010

districting plan has been much less pointed, often suggesting the plan exhibits less bias. While

both plans were drawn by the same style of commission, changes in electoral politics in Califor-

nia may have changed the balance of power on the commission and its institutional culture. In

addition, the adoption of a so-called blanket or top-two primary, where the top two candidates

of any party get selected in the primary election to run in the general election, likely changes

the resulting measurement of the congressional districting plan. The blanket primary applies

to all elections under the 2010 plan and a traditional partisan primary applies to all elections

before 2000.

Thus, direct comparisons over the redistricting event cannot necessarily declare that the

commission’s new plan is solely responsible for the change in performance of the new system;

both rules changes and district line changes may have impacted the scores. While only a few

districts in California ever see the practical result of the blanket primary result in single-party

general elections—a single-party general election—these can be be treated as uncontested

elections in the same style as standard elections or the primary election can be used to assess

an effective two-party vote. In this analysis, the single-party general elections are treated as

uncontested, and the two-party contested vote share imputed according to the methods in

Section 6.2. I do not suggest that the change in structure from one plan to another is solely

caused by the new district lines.

37Many of the interviewees in Chapter 9 referred to incumbency when mentioning skepticism of partisan advan-
tage measures.
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Figure 30. Annotated scatterplots of the leverage for observations in each Gelman-King-style
model in California, from 2002 to 2016. The labels are the district number, and have been
jittered to improve visibility within each year.

7.4.2.1 Leverage

The leverage of each district in the various single- and two-cycle Gelman-King models of

California congressional districts is shown in Figure 30. In general, the observations with high

leverage do not persist over time. While some districts do have consistently large leverage

(such as district 40 in the latter decade), they often are not unusually large, in that they are

significantly larger than any other observations’ leverage. Districts 10 and 49 in 2002 have

exceedingly high leverage, but they immediately return to the fold for later years. Adding to the

fact that leverage cannot solely identify influence and no rules of thumb or statistical testing exist

for identifying unusually extreme values, leverage is ineffective at determining which districts

might be impactful.

7.4.2.2 Cook’s Distance

First, consider the distributions of Cook’s D in each year shown by Figure 31. Here, the

district numbers are plotted each year with the Cook’s distance on the y-axis. Thus, we see

that some districts consistently have large Cook’s distances in the first decade, such as district

20 (showing up as distinct in 2004, 2008, and 2010) and district 19 (showing up as distinct

152



Figure 31. Annotated scatterplots of the Cook’s distance for each Gelman-King-style model in
California, from 2002 to 2016. For the 2000 decade plot, the axes have been truncated; district
19 in 2008 has a Cook’s distance of .74 and in 2010 of 8.19. The labels are the district number,
and have been jittered to improve visibility within each year.

in 2002, 2006, and extremely distinct in 2008 and 2010).38 The fact that the district returns

such a large margin for an open seat is likely what drives the large Cook’s distance in the

2010 model. District 20, immediately south of district 19 & containing parts of Kings, Kern, and

Fresno counties, was also a safe district for Democrats. It consistently returned a Democratic

representative, but typically with a much lower (sub 10%) margin when contested. Both districts

went uncontested a single time during the decade, with district 19 being considered “influential”

in 2008, when it was uncontested. In the second decade, some districts have consistently large

Cook’s distances, such as district 31 & district 21, but the districts with extreme Cook’s d values

tend to not persist over each year.39

38District 19, which contained parts of Tuolumne, Mariposa, Madiera, Stanislaus, and Fresno counties, was
consistently won by Republicans during the 2000 decade, with Republicans winning with margins in the two-party
vote of around 15 percent when contested and was uncontested in 2008. Even when the Republican incumbent
(George Radanovich) retired in 2008, the district returned a 30 percent margin for the newcomer (Jeff Denham).
Electoral margin refers to the difference in vote shares between the winning and losing vote shares between the
largest two parties. Thus, a 30% margin reflects a two-party vote split around 65/35.

39 District 31 encompasses a portion of San Bernardino county near north-west Los Angeles. It was won by a
Republican incumbent (Gary Miller) in 2012 with a margin of 12%. The seat became open again in 2014, when a
Democrat won by a margin of 4% and won re-election in 2016 with a margin of around 15%. District 21 encompasses
much of the same area as the previous plans’ district 20 did. District 21 has been consistently represented by a
single Republican (David Valadao) who ran and won in the open contest in 2012 and returns a consistent margin of
around 14%.
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Describing any of these districts as “gerrymandered” based on their consistently large (but

not ever extreme) Cook’s distances seems premature. Further, the most extreme districts tend

to hold for only a single election. Sometimes, this single election is the election in which we

know the least about the district: when it is uncontested and hi imputed. Since we seek a

forensic that can characterize whether a district has a consistent impact over the decade, the

Cook’s distance of a district in two-cycle models is also too unstable to distinguish any districts

as influential over a decade.

7.4.2.3 Impact Measures

For analyzing the impact measures, I will step through three types of analyses outlined

in Section 7.3. The first is a nonparametric distributional difference test, designed to indicate

where and when the impact statistics differ from the statewide distribution. The second is to

identify when each district’s removal (or presence) specifically benefits one party. The final is a

measure of both the size and direction of impact when a district is removed. I also consider the

pooled and stratified forms of the effect estimate towards the end of the chapter.

To briefly recapitulate the five advantage statistics shown in Chapter 2 that are used in the

remainder of the chapter:

• The efficiency gap reflects the difference in parties’ “wasted votes” as a percentage of all

votes cast (Eq. 2.5).

• The simple efficiency gap is the difference from the observed s̄ and h̄ and the line with a

slope of 2 through (.5, .5), derived from the efficiency gap when all seats have identical

turnout (Eq. 2.6).

• The attainment gap reflects the expected smallest h̄ at which the party wins the smallest

feasible majority (Eq. 2.9).

• The bonus at median reflects the difference in expected seat share when parties both win

50% of the vote (Eq. 2.8).
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• The observed bonus reflects the difference in expected seat share received by Democrats

when they win h̄ and the expected seat share received by Republicans if they were to win

h̄ (Eq. 2.7).

Since these measures each reflect different types of advantage, they may consider different

districts as impactful or disagree about who benefits. This means that some measures may be

nonzero while others are indistinguishable from zero. In addition it may also mean that some

measures are negative (biased Republican) and others biased positive (towards Democrats) for

the same state. My concern is with the development of the jackknife localization method rather

than with the validation of these statewide statistics directly, so potential disagreement between

measures themselves is not at issue in this dissertation. However, disagreement about the

district impact does occur and is relevant to this analysis.

Exploratory distribution analysis and visualization for California is conducted in the chapter

appendix, 7.6. This includes both examining the distribution of each of the 53 districts’ impact

statistics with respect to the statewide distribution, and an examination of the relationship in the

effect estimate across measures. If further detail is desired about the structure and relationship

of these measures to one another (and the performance of statewide indices more broadly),

refer to this appendix.

Otherwise, let us proceed informed by a few general concepts. First, the relationship be-

tween the impact statistics’ effect size estimates indicates that the two decades tend to have

quite different distributional structure, with the 2000 plan having much more bimodal distribu-

tions than the 2010 plan. This indicates the 2000 plan was “balanced” around its average bias,

which tends towards Democrats in most measures and years. In contrast, the partisan separa-

tion is not as stark in the 2010 plan. Second, there is a clear positive moderate to strong rank

correlation in many years between measures. Almost all rank correlations between measures

(except for the attainment gap) had significant rank correlation. Further, the variance of district

realizations within a year tends to be quite stable. The jackknifed distributions tend to have

similar dispersion to the statewide distribution. This dispersion is more different between years
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than within any year, meaning that all of the jackknife distributions within a year are more similar

to one another than they tend to be to another years’ simulations. So, jackknife distributions

tend to fall quite close to the statewide distribution, exhibit similar dispersion within years, and

tend to concentrate into peaks that clearly benefit Democrats or Republicans.

7.4.2.4 Are the Jackknife Distributions Meaningfully Distinct from the Statewide Distribu-

tions?

For each jackknife distribution, I conduct a Mann-Whitney nonparametric distribution dom-

inance test to identify whether it is distinct from the distribution of statewide bias statistics.

The Mann-Whitney test examines the pair of distributions and indicates whether the two rank

distributions constructed from the source distributions are likely to share a common distribu-

tion. In Figure 32, the significance of a p-value at the .05 α level (with a Bonferroni correction)

for the Mann-Whitney dominance test is shown. A black cell indicates that the district had a

significantly-different distribution than the state in every year after correcting for multiple com-

parisons. What becomes immediately apparent is that the median bonus and the efficiency gap

recover every district as “distinct” from the statewide distribution when incumbents are used in

simulation. But, the measures disagree about which districts are distinct. Further, the incum-

bent simulations tend to identify more districts than the simulations without incumbents. This

illustrates a claim made in Gelman and King (1994a), that the partisan advantage of a district-

ing plan is strongly dependent on the structure of incumbency advantage in that state, and

that failure to control for incumbency may make partisan bias appear. Simulating the expected

advantage absent incumbency gives us one way to do this, but the measures thereof are inher-

ently unrealistic in the sense of McGhee (2014): the characterization of partisan advantage in

a never-realized “no incumbent” scenario may not reflect the experienced partisan advantages

that the system provides. Regardless, what this makes apparent is precisely the magnitude of

difference between simulations under observed conditions and simulations in the no incumbent

counterfactual.
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Figure 32. Significance results for the Bonferroni-corrected Mann-Whitney U distribution
dominance tests for California congressional district impact measures in the 2002-2010
congressional elections. If the cell is black, it indicates that district (marked on the horizontal
axis) had a significantly different deletion distribution than the statewide distribution for the
given statistic (marked on the vertical axis) under a Bonferroni correction factor
f = N × T × Q × S = 53 × 5 × 5 × 2. Measures suffixed with “(I)” are simulated with the
observed incumbency structure and measures suffixed with “(N)” are simulated with no
incumbents.

For the 2010 plan, the analogous significance diagram is shown in Figure 33. This test

set uses a smaller correction factor, since it entails only 3 years of elections (rather than 5).

In general, fewer districts are selected as significantly different from the statewide distribution

in the 2010 decade than the 2000 decade, which implies that the 2010 redistricting provides

a political advantage that is less sensitive to any individual district. Again, the no-incumbent

simulations tend to find fewer districts than the incumbent cases. District 21 appears particularly

egregious, selected by three measures as distinct in the incumbent simulation case and by two

measures in the no-incumbent case. More generally, it seems the jackknife measures do differ

substantially from the statewide distribution, so characterizing how they differ would be helpful.

7.4.2.5 Examining Influence Direction

To characterize how the jackknife distribution is different from the statewide distribution, I

focus first on the binomial sign test procedure outlined in Section 7.3.2. The results of the sign

test for the 2002-2010 congressional elections is shown in Figure 34, and for the 2012-2016

congressional elections is shown in Figure 35. In these figures, a cell is colored to correspond to
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Figure 33. Significance results for the Bonferroni-corrected Mann-Whitney U distribution
dominance tests for California congressional district impact measures in the 2012-2016
congressional elections. If the cell is black, it indicates that district (marked on the horizontal
axis) had a significantly different deletion distribution than the statewide distribution for the
given statistic (marked on the vertical axis) under a Bonferroni correction factor
f = N × T × Q × S = 53 × 3 × 5 × 2, since there are only three observed elections since the
2010 redistricting. Measures suffixed with “(I)” are simulated with the observed incumbency
structure, and measures suffixed with “(N)” are simulated with no incumbents.

Figure 34. Directionality results for the Bonferroni-corrected binomial sign tests for California
congressional district impact measures in the 2000-2010 districting plan. If the cell is white, it
indicates that the district did not consistently move the plan towards either party. If the cell is
red, the removal of the district shifted the advantage towards Republicans in every year & if
blue, Democrats. Inverting this partisan relationship would provide the impact of including the
district in the plan.

the districts’ consistent partisan impact. If a cell is white, the district has no consistent impact on

that statistic. If a cell is red, the district’s jackknife distribution is substantially more Republican

than the statewide distribution; if blue, the jackknife distribution is substantially more Democrat,

at a Bonferroni-corrected α = .05 level. Thus, this characterizes how the district affects the

state when removed. The reverse of this relationship is the impact of the district’s inclusion

conditional on retaining the rest of the districts. In this sense, a district whose removal benefits

Democrats is one whose deletion distribution stochastically dominates the statewide distribution

and is also one whose presence benefits Republicans given the rest of the plan.
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In Figure 35, corresponding to the 2002-2010 elections, most districts are classified con-

sistently if they are classified at all. There are notable exceptions to this, however. The effi-

ciency gap differs from the rest on districts 8 & 9, finding their removal shifts the state towards

Democrats when all other measures find them negligible or shift-Republican. All measures clas-

sify district 23 as having an impact in the incumbency case, but disagree about the direction

of influence. The difference in reasoning about how each district affects the impact statistics

provides a useful way to understand how the measures operationalize advantage differently.

So, I discuss the 9th district in detail.

7.4.2.6 Digging Deeper Into Impact

Examining the 9th district during 2002-2010, the district was a strong Democratic district

with a notable incumbent, Barbara Lee. Critically, note that these directionality measures refer

to the deletion distribution; this means that the districts’ inclusion in the plan has the reverse

partisan effect. One might anticipate that a California delegation without Barbara Lee would

be a more Republican delegation, and so the inclusion of her district should benefit Democrats.

However, the efficiency gap impact statistic suggests instead that the inclusion of Barbara Lee’s

district wastes a significant amount of Democratic votes.

Recall that the efficiency gap from Equation 2.5 is driven by three factors: the total votes

cast, the lost vote cast for losers, and the excess vote cast for winners who do not need them.

The inclusion (removal) of any district can only increase (decrease) the first and increase (de-

crease) the two latter factors. The latter two factors will also apply to one party for each district,

since the winner will change the excess vote and the loser will change the lost vote. The

difference between a districts’ excess and lost vote provides the differential in that district (nu-

merator of Equation 2.5) and its turnout affects the denominator of Equation 2.5. Marginally,

the presence of a district won by Democrats will (on average) bias towards Democrats when

.5 < hi ≤ .75, since votes cast for losing Republicans outnumber the excess vote won by

Democrats. When h > .75, the presence of district benefits Republicans, since they cast
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fewer votes than excess Democrats waste in districts at this vote share range. Thus, Lee’s

district, with hi ≈ .85 for the entire decade, typically has a differential benefiting Republicans

in simulations, since its simulated Democratic vote share lies mainly in the 80s. Put simply,

the efficiency gap suggests the district wastes too many Democratic votes, so Democrats are

better off without Lee’s district.

Further, in a state with a system-wide bias towards a party, the inclusion of a “neutral”

district (whose differential is zero) will reduce the statewide efficiency gap, since it increases

the denominator of Eq. 2.5 while keeping the numerator constant. Since California’s plan

during the 2000s exhibited a statewide Democratic bias, the presence of Lee’s district pulls the

efficiency gap towards Republicans with both its Republican vote waste differential and increase

in total vote. Thus, it is also a de-biasing district: its presence makes the plan more balanced

by reducing the statewide Democratic advantage.

In contrast, the attainment gap suggests that Lee’s district is a boon for Democrats, since it

provides a safe seat in the congressional delegation. When Democrats win a bare majority of

the California congressional delegation, the district tends to be a part of the majority. Thus, its

presence lowers the fraction of votes required to win a bare majority, and removing it drops a

safe Democratic seat in the typical minimal majority.40 Along similar lines, the removal of Lee’s

district benefits Republicans according to the observed bonus measure: if Democrats were to

win as many votes as the Republicans do statewide for congress, they still tend to win Barbara

Lee’s seat in simulations. So, its removal would harm Democrats during the tables-turned

counterfactual.

In addition, it is important to note district 23 during the 2000s. This district is selected by

all of the directional statistics as having an impact on the state, although measures disagree

whether its existence benefits Republicans or Democrats. Critically, district 23 was a highly

irregularly-shaped district, stretching in a thin strip along the coast from Ventura to north of

San Luis Obispo. That the district shows up as directionally-influential in all statistics is notable,

40Further, the attainment gap is likely influenced slightly by seat integrality. Dropping Lee’s district reduces the
number of districts by 1, but does not decrease the minimal majority, which is 27 in either the full or jackknifed case.
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especially since it is the only district to be selected by all of the measures in the incumbent sim-

ulation scenario. However, the district is not selected by any of the non-incumbent simulation

sets, meaning its partisan impact may be solely due to incumbent effects.

In light of this, measures are influenced by different types of districts. However, the effi-

ciency gap and the median bonus measures never disagree on their directional classifications

for districts in elections from 2002 to 2010: if a district is identified as having an impact with con-

sistent direction by both measures, they never disagree on the direction the jackknife impacts

the state. In addition, only one district identified by the median bonus statistic is not identified

by the efficiency gap. There is an even split of districts identified as shift-Democrat and shift-

Republican in most of the measures under the incumbent simulations, although the observed

bonus only identifies districts whose removal benefits Republicans. In the no-incumbent sim-

ulations, no one district is identified as directional by any two measures. The attainment gap,

simple efficiency gap, and observed bonus measures identify no districts as having a direc-

tional impact when incumbent effects are removed. Notably, the efficiency gap identifies some

districts as having a partisan impact under the no-incumbent case, and the direction of this

impact is the same as when incumbents are used in simulation. Since the impact is observed

regardless of incumbents, these districts confer a durable partisan advantage.

For the second decade shown in Figure 35, the picture is quite different. Many more shift-

Republican districts are identified. This means that the plan has more districts whose inclusion

benefits Democrats conditional on the rest of the plan. The attainment gap identifies these

types of districts exclusively, regardless of the incumbency controls. In addition, the median

bonus measure never identifies a California congressional district in the 2012-2016 elections

as directionally impactful, even though the Mann-Whitney tests suggest that some districts are

distinct from the statewide distribution.41.

Notably (again) district 21 is a shift-Republican district in both incumbent and no incumbent

41This is likely because the removal increases the variance of the outcomes, which would cause the deletion
distribution increase its mass into extreme ranks of the pooled distribution against which the U test is constructed.
Thus, it is possible for two distributions to be distinct in rank sets but not directionally-different (i.e. a non-equality,
non-dominance relationship)
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Figure 35. Directionality results for the Bonferroni-corrected binomial sign tests for California
congressional district impact measures in the 2010-2020 districting plan. If the cell is white, it
indicates that the district did not consistently move the plan towards either party. If the cell is
red, the removal of the district shifted the advantage towards Republicans in every year & if
blue, Democrats. Inverting this partisan relationship would provide the impact of including the
district in the plan.

simulations. District 21 is Devin Nunes’s district, a reliably-Republican district with a margin of

around 15% (when contested). Its removal benefits Republicans, making the plan less biased

overall (since the statewide bias distribution indicates a bias towards Democrats in all statistics).

Alternatively, one can interpret its inclusion given the rest of the plan as benefiting Democrats.

Classifications of the district impact differ often between the efficiency gap and the observed

bonus measures; each district identified by the observed bonus measure as shift-Democrat is

identified by the efficiency gap as shift-Republican or no impact. In addition, the attainment

gap and efficiency gap again select some districts that have consistent impact on partisan

advantage in the state, regardless of the inclusion of incumbents. Like in the 2000s, these are

likely gerrymanders, since they strongly and consistently influence partisan advantage. Lastly,

only one district, district 51, is identified as shift-Democrat in the no incumbent simulations.

Since this is a safe Democrat (majority-minority) district, its inclusion tends to create a safe

Democratic district in simulations. This gives it a rather large number of wasted votes, picked

up by the efficiency gap. All the remaining districts identified in the no incumbent scenario are

shift-Republican, or identified as districts whose inclusion provides advantage to Democrats.
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7.4.2.7 Which Districts are Truly Beyond the Pale?

When it comes to the magnitude and direction of impact a district has on the system, I move

to consider the effect estimates. This presents a similar view to the binomial sign test, but now

characterizes both who benefits & how much they benefit. If the cell is colored, then the effect

is “larger than marginal,” so that |d| > .25. Then, effects with |d| > .5 are colored slightly

darker, and effects where |d| > 1 are darker still. I first consider each election year separately,

illustrating the patterns in each years’ impact estimates. Then, I will compute a pooled- and

stratified-effect estimator, which groups observations by decade and computes an effect over

the entire decade. The exact method by which this pooling or stratification is presented, and

then the pooled analyses conducted.

7.4.2.8 Yearly Impacts in California Since 2000

In the yearly analysis mode, a few things become clear about the effect size estimates.

These insights echo the conclusions from the nonparametric and sign-only analyses. The ef-

ficiency gap and bonus at median effectively take the same perspective on most districts in

most years, and the gist of the classification for each district provided by either measures is

the same in all cases. In addition, the measures also conform exactly to the partisan winner in

each district. Thus, reading the chart across in 2002 for either the efficiency gap measure or

the median bonus measure provides the losing party in that district. Since these are deletion

effects, the removal of the district benefits the opposing party; blue districts were districts won

by Republicans so their removal helps Democrats. In general, the classification provided by

the efficiency gap is strictly partisan, and nearly useless in terms of how the impact measure

“filters” a given district: most districts have consistently large effect sizes to be considered not

“marginal” within each year.

The attainment gap, though, appears to reflect something substantively different from the

other measures. The determination of its directional effects do not simply follow the winner in
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the district. Some of the districts identified as shift-Republican for the efficiency gap/median

bonus are identified as shift-Democrat by the attainment gap, but not all are (e.g. districts

31,32); likewise, some shift-D districts for the efficiency gap/median bonus impact statistics are

shift-R for the attainment gap (e.g. districts 4,52), but not all (districts 19, 11). Notably (again)

the observed bonus measure tends to agree with the attainment gap impact estimate in most

cases, although the effect size is smaller. In the no-incumbent simulations (Figure 37), a similar

story holds: some effect estimates for the attainment gap are nearly the reversed estimates for

the efficiency gap/median bonus again, and some are not.

For the 2010 decade simulations shown in Figures 38 & 39, there tends to be slightly better

agreement between the attainment gap and efficiency gap, but the correspondence between

the efficiency gap and the median bonus breaks down. In addition, fewer districts have a

consistently-large effect; most districts (at some point) have a negligible impact measure. While

many districts are identified in the simulations under observed conditions, no districts are identi-

fied under no incumbent conditions for all years42 and one district is identified as having a large

but inconsistent impact (district 24, attainment gap). Regardless, depending on a persons’ cho-

sen measure of bias, the impact statistics provide a consistent directional characterization of a

district’s impact on the partisan advantage of a districting plan over a decade. So, measures

tend to either be all shift-R, all shift-D, or fade between one color and white. It is rare for a

district to have a district be both shift-R and shift-D in one decade, but this occasionally does

happen (e.g. district 20). While each measure tends to be consistent over time, they are often

disagree with one another. Thus, the impact measures considered in this dissertation appear to

be internally consistent, repeatedly characterizing a district with respect to its own operational-

ization of advantage, but they are not externally consistent, agreeing on how districts impact a

plan across measures.

42Although, considering only years where both ht and ht−1 are available changes this. These are the elections
not immediately following a redistricting.
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7.4.2.9 A Grand Decadal Estimate of District Partisan Impact

To reduce the number of comparisons and make the conceptual picture clearer, I examine

a “grand” estimate of effect size. This provides a single estimate of district impact over the

entire decade, rather than an estimate in each year. I see two ways to construct this full-decade

estimate of district impact. One method is through pooling. The pooled estimate is of the same

form as the estimator in Eq. 7.6, with the statewide and deletion distributions pooled over all

years in a decade. This simply treats the T distributions with K replications of the deletion

statistic as if it were a single T × K distribution of statistics. Thus, the grand decadal means

and variances are used to compute a grand decadal effect. This ignores the fact that each

years’ mean (and districts’ impacts) are distinct, reducing the magnitude of the effect estimate.

In contrast, a stratified estimator takes into account the temporal differences while incorpo-

rating information together across years. Stratification acknowledges the fact that each year

may have a distinct mean, and that a consistent estimate of the effect size should be made

relative to that years’ mean (given an appropriate correction for the variance over years). One

such stratified estimator of effect size is a modification of Eq. 7.6 using within-year differences

and a stratified estimator of variance:

d(i) =
∑T

t (b̂t − b̂t(i))/T
s∗

s∗ =

√
∑T

t (σ(bt)2 + σ(bt(i))2)

2T

(7.8)

This provides the overall effect of removing the district within a decade, accounting for the

fact that each years’ mean may not be equal. Essentially, it uses a grand mean of a districts’

difference-in-means for the entire decade, divided by the square root of the average pooled vari-

ance estimator from the standard Cohen’s d. Using this stratified “mean-of-differences” effect

size estimate, the stratified scores are perfectly linearly related to their unpooled counterparts,
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but the stratified effect sizes are more extreme, since the difference in each year’s mean is

accounted for.43

Thus, I present both the pooled and stratified effect size estimates for districts in the 2000

plan (Figure 40) and the 2010 plan (Figure 41). In this, it again becomes clear that the effi-

ciency gap and median bonus impact measures essentially recover all districts and the removal

(inclusion) of each district benefits the party that lost (won) the district in effectively all cases.

Again, the relationship between the attainment gap and efficiency gap is inconsistent. Regard-

less, the stratified/pooled method allows us to identify a few districts that are impactful on the

statewide scores. In the 2000s, district 19 again becomes a district-of-interest. The district, rep-

resented consistently by Republicans who win with margins at-or-above 30%, has an impact on

the statewide bias measure for more than one measure in both incumbent and no-incumbent

simulations, indicating it is impactful. In addition, district 20 is also identified as a potential

impact district, with two measures identifying it in no-incumbent simulations.

In the 2010s, districts 21, 40, and 44 become notable. Again identified as consensus im-

pactors in previous steps, these districts are further filtered out when they are identified by mul-

tiple measures regardless of pooled/stratified, incumbent/no-incumbent simulation structures.

District 21’s removal consistently benefits Democrats.44 California’s 40th and 44th districts both

are marked as districts whose removal benefits Republicans.45 Thus, for nearly all measures,

the districts’ inclusion in the plan provides a strong benefit for Democrats, and their removal

43A more involved method to do this comparison while capturing potential covariance between years would be to
model the temporal dimension hierarchically (Kruschke, 2013). This would induce further shrinkage on the stratified
estimate, likely placing it somewhere between the pooled and stratified values according to the variance of that
difference.

44Represented by Republican David Valadao, the district is one of the few districts that split between the con-
gressional and presidential vote in 2016 and 2012. The district returns reliable Democratic majorities in state and
national races, but Valadao won the open contest in 2012 with around a 15% margin, and wins re-election with
nearly the same.

45 These districts are both Democrat-only districts; since the blanket primary and redistricting both occurred from
the 2012 elections onwards, the districts have not had a two-party contest since they were drawn.
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strongly benefits Republicans. Altogether, the districts that “fall out” of the analysis as signifi-

cant would be district 19 in the 2000s and districts 21, 40, and 44 in the 2010 plan.

7.4.2.10 Relationship Between Classical Influence and Impact in California Since 2002

Notably, district 19 in the 2000s plan and district 21 in the 2010 plan have larger-than-

typical classical leverage/impact measures as shown in Figure 30. District 19 is a strongly-

outlying, with a Cook’s distances so large that its value required truncation to display in Figure

31. However, district 21 does not have remarkably high leverage or large Cook’s distances in

any of the years during the 2010 plan. Further, the fact that some districts selected by the

classical measures are also impactful on the advantage measures does not help characterize

those high-leverage/outlier districts with no impact. Thus, I show the relationship between

the classical impact measures and the jackknife effect estimates in Figure 42 for the 2000s

and Figure 43 for the 2010s. The relationships between measures are decidedly weak; while

some of the pairwise correlations pooled over the entire decade are statistically significant,

all are of marginal or weak magnitude (τ < .25). Some of the correlations within years are

significant and modestly large (τ < .5), but they’re not consistent over time. The closest to

consistent significance comes from the relationships between the simple efficiency gap and

model residuals; in the 8 elections under study, the relationship is significant (p < .05) in six of

them, varying in strength between .19 and .55. In addition, each measure has a nonzero rank

correlation with the Cook’s D in two out of three years in 2010s, with some pairing 2012 & 2014

and others 2014 & 2016. Regardless, the aggregate relationship between the new measures

of partisan impact and classical sensitivity measures is weak & inconsistent, suggesting they

provide different information about the state’s districting plan.46

46An exploratory regression analysis was also carried out relating each of the classical measures to the set of 5
impact measures. In general, the relationships were quite weak, but it was notable that the magnitude of the effect
size tended to be marginally more related to classical influence/leverage measures than the raw estimate.
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Figure 42. The relationship between the classic measures of model structure and jackknifed
measures of district impact in elections held using the 2000 districting plan. On the left, the
relationship for realizations under observed conditions are plotted; on the right, simulations
with no incumbents are shown.

7.4.3 Case Study: Wisconsin, 2010

Before drawing general conclusions, I present a smaller case study, that of Wisconsin’s con-

gressional districts since the 2010 redistricting. The districting plan currently under litigation in

Whitford v. Gill involves the state legislative districts generated for Wisconsin in the 2010 redis-

tricting. Critics allege that the plan creates a strong, durable advantage for Republicans using

the efficiency gap measure of McGhee (2014). In the nearly 100-member state assembly, the

modeling techniques used above in the California case study become even further empowered,

since nearly 100 districts are available in each cycle to fit, the model can be much more robustly

specified. A relatively thorough analysis conducted by Jackman (2017) examines sets of state

legislative districts. in order to develop a threshold value for which “extreme” efficiency gaps
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Figure 43. The relationship between the classic measures of model structure and jackknifed
measures of district impact in elections after 2010. On the left, the relationship for realizations
under observed conditions are plotted; on the right, simulations with no incumbents are shown.

Figure 44. Apportionment histogram showing the number of districts in each state for the 2010
redistricting. California, out on the far right, has 53 congressional districts. Marked by the grey
line slightly above the median, Wisconsin’s 8 districts makes it a decidedly small-n problem,
but places it well above the number of observations available in some states.
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can be differentiated from non-extreme gaps at the state legislative level. However, allegations

about the congressional district plan have also been made, namely that the congressional map

is also tilted unacceptably towards Republicans In what follows, I analyze that plan.

However, a typical barrier to seats-votes analysis in many states’ congressional district

plans is that the number of districts may be quite small. For illustration, the apportionment

histogram showing the number of districts in each state is provided in Figure 44. California has

the most congressional districts (53), while most states have under 10 districts. Wisconsin has

eight districts, two more than the national median. This means that each year’s distributional

model for Wisconsin congressional elections only takes into account eight observations.

What I am interested in identifying with this example is whether the procedure I have sug-

gested above is powerful enough to identify differences even in small numbers of districts when

the underlying vote model fit is strong. Part of the benefit of the Gelman-King approach is that

the counterfactual simulation distribution (Eq. 5.4) has a lower variance than the predictive dis-

tribution (Eq. 5.6), since the counterfactual is shrunk towards the observed result. In general,

this leads to more precise counterfactual simulations, as discussed in Chapter 5, and the use of

the previous’ years election returns in the two-cycle model structure provides quite good model

fit. In fact, the R2 for the ht models in 2012, 2014, and 2016 are .82, .95, and .99, respectively.

Thus, the models have incredibly strong fit. This is a function of the stability of congressional

elections, since ht−1 is an exceptionally strong predictor of ht. Notably, the two-cycle models,

for 2014 and 2016, do markedly better than the first, single-cycle model. This occurred in Cal-

ifornia as well, but to a smaller degree. Thus, despite the fact that the models are only over 8

observations, the simulations of elections results are quite precise.

What this does mean is that the leverage indicators for the model are somewhat uninforma-

tive. With only 8 observations, all observations will have relatively high leverage. In addition, it

is nearly impossible to identify an outlier in 8 observations using a Cook’s distance (or a similar

style of measure). However, the new impact measures will accurately incorporate the strength

of the effect and the variance of the underlying measure given that only 8 observations are
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Figure 45. Ridgeline plots for the attainment gap and efficiency gap in the 2016 congressional
elections in Wisconsin.

available to structure the simulations. This reinforces the utility of these measures over the

deterministic leverage measures.

Here may be important to identify that the bonus measures are dependent on the granu-

larity of the seat share. Since the expected seat share in an 8-member delegation has only 9

possible values, the expected difference in seat shares also has a finite number of possible val-

ues. This increases quickly with respect to the number of seats, but becomes quite noticeable

below around 20 seats. Here, the observed and simulated bonus measures have four or five

unique realization values from simulation. Taking their average presents a point estimate that

is not empirically possible. Gelman et al. (2010) summarize seat-denominated bias measures

using their means/variances, and so present a smoother picture that disguises the integrality.

But, since you can only win an integer number of seats, using the mean and standard deviation

provides artificial precision or granularity to the estimate. In contrast, summarizing the distribu-

tions in terms of medians and their quantiles provides empirically-attainable summaries. The

integrality is reflected in the “lumpiness” of the kernel density plots in Figure 53, although the

smoothing inherent to KDE presentations disguise the inherent integrality for the realizations

of seat-share differences. These issues do not affect the measures that operate in terms of

votes, such as the attainment gap or the efficiency gap, since vote shares and totals are effec-

tively continuous. Although individual vote counts are integral, there are so many votes at the

congressional district level as to make their counts or shares nearly continuous.
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Figure 46. Distinctiveness and directionality tests for the Wisconsin districts since 2010, in the
style of Figures 52 & 33, using the same style of Bonferroni-corrected significance filter.

Interestingly, the bimodality for the attainment gap is generated solely from the impact of

three districts in the Wisconsin plan. That is, the impact distributions for districts 2,3, and 4

are bimodal, but no other distributions are. This anomaly is visualized in Figure 45, where only

the impact distributions for districts 2-4 are bimodal, and the rest are not. This bimodality does

not manifest in other measures, such as the efficiency gap. In the efficiency gap, the impact

distributions do have some mass beyond their mode, but it does not manifest in the distinct way

that the attainment gap does. Indeed, in most measures, the relationship between the shape

of the statewide distribution and the shape of the subdistributions is relatively consistent; all

distributions have the same general silhouette. However, the statewide attainment gap impact

distribution appears quite directly to be a composition of the impact distributions added together.

The prominent two modes in the statewide distribution appear to come from the masses of

districts 2,3,4 and districts 1, 5-8’s modes. Regardless, the deletion distributions are clearly

distinct from the statewide distributions, and would result in different inferences about the bias

of the plan. So, the impact measures so far function as desired in this small-N case.

Since there are only eight districts, it is simple to represent the choroplot in the same space

as a full table of effect estimates. Thus, I present the full table of effect size estimates in

178



Figure 47. Effect estimate choroplots for Wisconsin during the 2010 redistricting cycle in the
style of Figure 38. On the left is the stratified estimate, on the right is the pooled estimate.
Again, the darkest colors have |d| > 1, the middle range have |d| > .5, and the lightest have
|d| > .25. Red cells are districts whose removal significantly benefits Republicans, and blue
benefit Democrats.

Table 9, and the corresponding choroplot is in Figure 47. Entries in Table 9 that are negative

indicate districts whose removal benefits Republicans, or whose presence, conditional on the

rest of the plan, benefits Democrats. Since the plan tends to have an aggregate Republican

bias overall, districts with a negative sign in the plot are “centering” districts, whose presence

reduces aggregate bias if they were not present. Districts that have a positive sign (whose

removal benefits Democrats/inclusion benefits Republicans) exaggerate the bias in the state.

In this case, the impact scores break down consistently and directly along partisan lines

for all measures. However, not all district effects are equal. Examining the choroplot, we see

that district 2,3,4,5, and 7 are inconsistently characterized, either having small effect sizes

for a given measure or having opposing-sign indices for a given measure. Thus, districts 1,

6, and 8 are singled out as consistently partisan, and strongly so. Districts 6,7 have effect

estimates larger than 1 for all measures, meaning that each measure identifies the district

as strongly compounding the statewide Republican advantage, conditional on the rest of the

districts in the plan. In this case, districts 1,5,6, and 8 might be singled out as districts whose

impact consistently increases Republican advantage in the state overall, since their stratified
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Measure 1 2 3 4 5 6 7 8

I Efficiency Gap 1.223 -1.566 -2.066 -2.124 1.119 1.251 1.164 1.179
Simple Eff. Gap 0.348 -0.665 -1.072 -0.368 0.162 0.577 0.539 0.432
Attainment Gap 0.897 -0.034 -0.110 -0.314 0.652 0.880 0.876 0.896
Median Bonus 1.045 -0.440 -1.151 -0.602 1.030 1.055 1.071 1.063
Observed Bonus 1.295 -0.160 -1.340 0.309 1.239 1.309 1.294 1.326

N Efficiency Gap 0.287 -0.603 -0.008 -0.876 0.516 0.354 0.145 0.290
Simple Eff. Gap 0.110 -0.416 -0.129 -0.456 0.248 0.246 0.094 0.161
Attainment Gap 1.180 0.860 0.109 0.250 0.784 1.435 1.059 1.263
Median Bonus 0.210 0.071 -0.192 -0.070 0.112 0.220 0.183 0.163
Observed Bonus 0.256 0.382 -0.089 0.368 0.120 0.234 0.244 0.196

Table 9. Grand effect estimates for the removal of districts from the 2010 Wisconsin plan.
Positive numbers denote that Democrats benefit from the removal and negative numbers
indicate Republicans benefit from removal. The inverse of the effect estimate provides the
impact of including the district, conditional on the rest of the districts in the plan. Thus, if a
deletion effect is positive/Democrat, the district’s inclusion increases advantage for
Republicans. Like the choroplots, the “I” block involves incumbents and the “N” block does not.

estimates without incumbency are picked up by both the efficiency gap and the attainment gap.

A more skeptical take might use instead the directionality results in Figure 46, only admitting

districts as “biasing” if their inclusion pushes the plan towards Republicans (deletion is shift-

Democrat) in all measures. This would identify districts 1, 7, and 8 as consistently assisting

Republicans. Regardless, districts 1 and 8 show up in many analyses as biasing districts,

those whose presence in the plan magnifies the advantage of the distinctly Republican-biased

plan.

The classical influence/leverage measures are shown in Figure 48. Again, since there

are only eight observations within each year, most observations tend to have higher leverage.

However, district 3 shows up as having a distinct Cook’s distance in 2012 and 2014. Further,

district 6 has a large Cook’s distance in 2014, and district 1 shows up in 2016. This provides

us with no indication as to the direction which the district shifts the plan, but the partisan impact

measures in this case suggest these might be interpreted simply as biasing in the direction of

whoever won the district in that year.

Regardless, the size of these measures does not provide an estimate with any level of uncer-
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Figure 48. Jittered annotated scatterplots for model leverage and Cook’s Distance in the
Gelman-King models for 2012, 2014, and 2016.

tainty or stochastic theory, and cannot differentiate between the advantage the district confers

due to incumbency versus without incumbency, as the simulation-based jackknife impact mea-

sures do. The correlations between the impact and influence/leverage measures (when pooled

over all years) are never statistically significant. When computed within each year, the absolute

value of the impact measures are only weakly correlated with leverage. This holds the same as

in the California case, suggesting that only impact magnitude and leverage have a consistent

weak relationship. Since effect magnitude is not enough to identify whether a district reduces

or increases bias, the leverage measure is again insufficient in this case, even though there is

consistent agreement among all of the jackknife impact measures with the partisan control of

the district in Wisconsin, which was not the case in California.

Thus, overall, the districts singled out for further examination would likely be districts 1, 6,

7, and 8. These districts are reliably Republican districts in the state, but none are the most

Republican (by typical margin in Congressional races or by Cook’s Partisan Voting Index). The

Speaker of the House, Paul Ryan, represents district 1, so it is unsurprising that the district

consistently benefits Republicans, as it is likely drawn to provide a safe district with sufficient

representation from the party regulars to provide the speaker with consistently large margins,

but avoid over-packing Republicans into the district, which might fuel primary challengers. Of

the remainder, districts 6 and 7 have had an incumbent occupant since 2012, and a Republican
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succeeded a Republican incumbent in district 8 in 2016. They tend to have margins in the 20 to

30% range, with candidates winning around 60% of the vote. Thus, the districts are quite “safe”

when accounting for an estimate 8-to-10 point incumbent advantage in the state.

7.5 Conclusion

In sum, the impact measures can be used to provide distinct indicators of which districts

strongly affect bias statistics. These impact measures, derived from jackknife theory, are mostly

consistent over changes in the counterfactual specification, and the identification of fairness

under a given counterfactual should be possible, regardless of the counterfactual. While the

measures tend to disagree with one another, this reflects disagreement that is embodied in the

statewide estimates. Thus, no novel disagreement is uncovered by the impact analysis, only

the intensification of lurking ones.

What is not answered here is whether it is right to assess partisan advantage under condi-

tions that are never observed versus under conditions as experienced. At least in the California

case, many of the districts’ outsized effect estimates fell away when the effect of incumbency

was removed from simulations. While California will likely never experience an election where

no incumbents run for congress (and indeed never has), the fact that the behavior of the bias

measures under these two conditions is so starkly different means that the sensitivity of the

study of advantage itself to the counterfactual simulation design requires critical thought about

the intended use, theory, and practical implications of this study. Fortunately, some districts are

clearly impactful regardless of incumbency.

In the Wisconsin case, the impact statistics demonstrated utility in a (statistically) small-N

scenario. However, as noted by Tam Cho (2017) and visualized in Figure 44, the statistical

analysis of districting plans will always be hampered by smaller N than Wisconsin’s 8 con-

gressional districts. Thus, while the process of generating impact scores, identifying impactful

districts, and understanding the typologies of what makes them impactful is available for Wis-

consin, what constitutes unacceptable partisan bias in a system with two districts? These
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measures clearly make large-sample assumptions, and the routine use of mean/variance sum-

maries (rather than quantile summaries) in software and other results (Gelman et al., 2010;

McGann et al., 2016) obscures this fundamental validity issue. I address this here by consid-

ering and expressing when the analysis is fundamentally constrained by integrality, and the

consistent use of quantile-based summary, which avoid representing the bias statistics as con-

tinuum measurements.

As far as a workflow to deploy these impact statistics, the measures and the jackknifed

impact scores do seem to be sufficient to both identify some districts as impactful and filter

out districts that are not. Further, they clearly identify districts that a standard analysis of

model leverage would not identify unambiguously. These districts have meaningful types, and

these types can be understood consistently with respect to the statewide bias measure with

which they are specified. While any identification is contestable, the general technique used to

construct the impact scores can be applied to any model or statewide bias measure.47 Analysts

interested in coherent detection of biased plans and districts within those plans that generate

the bias can follow a relatively straightforward analysis workflow:

1. Specify and estimate a model of the elections and a simulation strategy to generate new

elections under plausible conditions.

2. Examine the model and the simulation strategy for potential misspecification issues, ei-

ther in the specification of the counterfactual simulation process or in the source model

itself.

3. Estimate statewide effects.

4. Regardless of unambiguous statewide effects, examine the jackknife impact distributions

to identify whether certain districts have an outsized influence on the districting plan.

The last two steps are critical; as Florida v. Detzner discusses (and mentioned previously in

Section 2.1), a challenge to a districting plan should be consistent; a challenge to an entire plan

should have specific egregious districts in mind, and a challenge to individual districts should

47I also examine the component-wise contribution of districts to the efficiency gap estimator in Appendix 7.6.
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demonstrate that their presence results in an overall plan with unacceptable bias. Since most

of the measures in California demonstrate a likely non-zero advantage for Democrats, districts

like district 40 in 2010 are implicated as “impactful” districts since their presence pushes the

plan to be further tilted towards the advantaged party. Districts like district 19 in 2000 (or district

21 in 2010) have a typical impact that increases bias with respect to the party who enjoys the

full-state advantage. Thus, while their removal is impactful, they work to push the plan’s total

advantage towards the center and would likely not be “gerrymandered,” only impactful.
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7.6 CHAPTER APPENDIX I: A FIRST BRUSH WITH IMPACT DISTRIBUTIONS

For analyzing the impact measures, it is first helpful to characterize the distributions of re-

alizations. These distributions are shown for all advantage measures in all years since 2002

in Figure 49 & 51. In these plots, the left column is the summary of realizations under the

“observed” electoral conditions that year, so that X◦ = X. The right column is the summary of

realizations under an electoral counterfactual where no incumbents run. This means the result-

ing "No Incumbent" distributions can be interpreted more nearly as “raw” partisan advantage,

since the effects of incumbency have been estimated and removed in each year through simu-

lation. In all images, a black vertical peg is placed at zero. If distributions overlap significantly

with zero, then the estimated advantage should be interpreted as marginal, regardless of the

magnitude of its point estimate.

McGann et al. (2016) suggest lowering the significance threshold to provide an indication

of how “certain” it might be to detect bias at a given α. I do not suggest doing that in this

dissertation. This would interpret the fraction of realizations of simulated effects on the “right

side” of zero (i.e. the side that the point estimate is on) as as if this fraction reflected a true

posterior probability about the sign of the bias estimate. In truth, the bias estimates have no

explicit distributional model. Thus, I will avoid this language of pseudo-p-values and express

everything directly in terms of the simulation quantiles.

7.6.1 Distributions for California since 2002

Note the distributions in Figure 49. First, see that most of the jackknife statistics lie close

to the observed statewide statistics. This indicates that the jackknifing estimates are well-

conditioned. The jackknifed estimate distributions should (in large part) nearly the same as
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Figure 49. Distributions for impact statistics for California Congressional elections after the
2000 redistricting. The saturated dashed line indicates the distribution of all P full-plan
statistics. Each thin line represents one set of P jackknifed impact distributions. The
counterfactual where no incumbents run is plotted shown on the right, and the left shows
simulations conducted under observed conditions.

the statewide estimates if most observations are not very influential. Further, the impact of any

one district within a 53-district plan should be relatively small. This is what occurs.

In addition, all measures indicate that the state plan in the 2000s was biased towards

Democrats except for the simple efficiency gap, which suggests instead that the plan was

biased towards Republicans. For the simulations with incumbents, all of the efficiency gaps,

attainment gaps, and bonus-at-median realizations are nonzero; the observed bonus in 2004

and 2002 is nonzero, but the remaining years in the decade have significant mass below zero.

This means (by the observed bonus measure) bias decreased over time in the state, so the

gerrymander was not “durable.” In a similar vein, the simple efficiency gap drifts increasingly
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Figure 50. Distributions of the standard deviations for simulated distributions of each statistic
after the 2000 redistricting. The kernel density estimate reflects the distribution of deviations
for the deletions and the vertical peg is the standard deviation of the statewide realizations.

towards Republicans from a “neutral” value, finding the state plan biased towards Republicans

in 2006 and 2008.

Accounting for the presence of incumbency affects the bias estimate distributions substan-

tially. In most cases, the removal of incumbency in simulations causes shrinkage towards zero.

However, for 2002 in the simple efficiency gap, the measure actually grows in magnitude in

some years. The attainment gap & efficiency gap realizations shrink substantially, but all re-

main distinct from zero. The 2002 bonus at median becomes indistinct from zero, with nearly

25% of realizations as negative and the remainder positive. All observed bonus distributions be-

come indistinct from zero in the no-incumbent case. This means most that, in most years, under
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most measures, there is somewhere between a slight and a significant Democratic advantage

in the California congressional districting plan since 2000.

In addition to the distributions of effects, I show the distributions of realizations’ standard

deviations in Figure 50. We see that the deviance of the statistic is consistent within each

year. Most statistics cluster around the statewide deviation estimate (shown in the colored

vertical peg), indicating that the realizations from the jackknifing process tend to be about as

dispersed as the full data realizations. The move from simulation as observed to simulating

with no incumbents tends to increase the variance of the advantage statistics in this simulation

set.

Moving to the realizations from the post-2010 redistricting decade, the distributional realiza-

tions are shown in Figure 51. In this instance, all distributions indicate either no advantage or

significant advantage for Democrats. Notably, the distribution of attainment gap statistics has

two collections of mass; one around 2% (indicating Democrats can expect to win a bare majority

of the California congressional delegation with around 48% of the votes while Republicans tend

to require 52%), and one around zero. In addition, the efficiency gap statistic indicates a durable

Democratic bias, but its simplified version suggests no bias in the state over simulations. The

bonus-at-median statistics also suggest a Democratic bias consistently over all years. Finally,

the observed bonus suggests an observable Democratic bias only in 2014. When simulating

with no incumbents, most distributions again shrink towards zero. In this case, the efficiency

gap realizations remain positive and, in 2012 and 2016, increase. In addition, the 2012 sim-

ple efficiency gap estimate increases substantially, becoming positive and distinctly nonzero.

The bonus statistics both become indistinct from zero. Finally, the attainment gap statistics all

shrink towards zero, with 2016 becoming the only one remaining nonzero when incumbency is

removed.

The standard deviations for the 2010 realizations are shown in Figure 52. Again, the distri-

butions of deviances tend to be similar within years and distinct between years, although the

deviance tends to be much more similar between years in this set than in the 2000s. However,
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Figure 51. Distributions for impact statistics for California Congressional elections after the
2010 redistricting. The saturated dashed line indicates the distribution of all P full-plan
statistics. Each thin line represents one set of P deleted-plan statistics. The counterfactual
where no incumbents run is plotted shown on the right, and the left shows simulations
conducted under observed conditions.

the statewide deviations tend to be slightly smaller than the average jackknife distributions’ devi-

ation, which is especially clear in 2016 deviations for the case with no incumbents. Regardless,

the assumption that realizations have common variance in each year seems to be tenable given

the similarity of the simulation deviances.

189



Figure 52. Distributions of the standard deviations for simulated distributions of each statistic
in California after the 2010 redistricting. The kernel density estimate reflects the distribution of
deviations for the deletions and the vertical peg is the standard deviation of the statewide
realizations.

7.6.2 Distributions for Wisconsin since 2012

Distributions of the statewide and jackknife impact measures for Wisconsin since 2012 are

shown in Figure 53. In it, the left side demonstrates simulations under the observed conditions

and the right shows simulations with no incumbents. In general, the state shows a strong bias

to Republicans under the observed conditions, but not unambiguously so. For example, the

vast majority of simulations for the efficiency gap under observed conditions result in Repub-

lican bias, with 75% of simulations showing Republican bias in 2012, 96% showing it in 2014

and 2016. The observed bonus and simple efficiency gap show a Republican bias in around
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Figure 53. Distributions of statewide and jackknifed effects for Wisconsin after the 2010
redistricting. On the left are simulation results under observed conditions. On right,
simulations with no incumbents are shown. This is akin to the plots shown in the Chapter
Appendix, Section 7.6.

95% of simulations in all years. The median bonus is Republican in around 85% of simulations

in all years. The attainment gap, however, is nearly evenly split, showing a Republican bias

only around 60% of the time, and has a decidedly bi-modal distribution of votes required for

democrats to win 5 or more seats in Wisconsin. This means the bias detected in the state

legislative district plan is likely also present in the congressional district map, but to varying

degrees of certainty depending on the measure. Under no-incumbent conditions, many simu-

lations also result in a Republican advantage, but this is strongest in the cases where the R2

is the highest, in 2014 and 2016. In addition, the efficiency gap measures indicate a nonzero

191



Democratic advantage in 2012 when incumbents are removed. Finally, the bonus measures

are quite inconclusive, moving strongly to the center when simulating under no incumbents.

7.7 CHAPTER APPENDIX II: INTER-IMPACT CORRELATIONS IN CALIFORNIA SINCE

2002

To examine how distinct the impact measures are from one another, I conduct two analyses.

First, I provide the scattermatrix of pairwise relations for both the 2000s districting plan and the

2010 districting plan for the estimated effect size using Eq. 7.6.48 The simulations for the 2000s

are shown in Figure 54 and those for the 2010 districting plan are shown in Figure 55. The plots

show the results using simulations under observed conditions on top and under no incumbent

simulations on the bottom. In addition, the plot hues are stratified by election year, and the

Kendal’s τ rank correlation for each year (in display order) is shown in the upper right, with

p-values in parenthesis. What becomes clear first is that some statistics, namely the efficiency

gap and median bonus statistics, are strongly bimodal and decompose into Republican and

Democrat district clusters. In addition, some years are more strongly bimodal than others, with

the 2000s having more strongly bimodal impact scores than any case in the 2010s. The rest of

the measures tend to not exhibit this stark bimodality, regardless of year.

Second, the rank correlation between the efficiency gap and the bonus at median is the

strongest and most consistent of all measures. The rank correlation between the efficiency gap

and the median bonus is around .6 for each year in 2002-2010 and is around .4 for each year

in 2012-2016. In the no-incumbent case, the correlation tends to be even stronger in the years

where both ht and ht−1 are available. This casts doubt on whether the measure is actually

strongly distinct from the median bonus measure McGhee (2014) intends to critique.

48Direct comparisons of the simulation vectors is inapt since the ordering of the simulations is arbitrary.
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Figure 54. Scattermatrix relating all California districts’ deletion effect estimate in the 2000s
districting plan. Hue is the year in which the deletion effect is estimated. The top figure shows
the measurements under observed conditions and the bottom figure shows the simulations
with no incumbents. The upper triangle of each figure shows the Kendall’s rank correlation for
that pairwise relationship in each year (in display order).
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Figure 55. Scattermatrix relating all California districts’ deletion effect estimates for the 2010s
districting plan. This figure is styled akin to Figure 54.
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Chapter 8

MANIPULATION AND LOCAL ADVANTAGE

In past studies (Fan et al., 2015, e.g.) and some theories about gerrymandering (Pildes and

Niemi, 1993), district shape is taken to be a likely indicator of a district conferring advantage. In

principle the geometric measures discussed in Chapter 2 indicate when a districts’ boundary

is manipulated; districts whose boundaries are highly irregular are assumed to be drawn that

way for partisan advantage or racial animus. Many measures of shape regularity exist, and new

methods are developed frequently. However, these measures often have high correlation with

the few, standard measures of shape regularity discussed in Chapter 2, and it is difficult to find

studies in the grey literature that use measures not discussed by Young (1988) or that are not

classified in the taxonomy provided by Altman (1998a).

Part of the reason why boundary irregularity measures are both illustrious and suspicious

are because they are difficult to connect directly to measures of partisan advantage. Further,

boundary irregularity is symmetric; a boundary is shared between a district and its neighbor, so

irregularity in one part of a district’s boundary influences irregularity in a neighbors’ boundaries.

Altogether, this means that boundary irregularity can be used both to argue gerrymandering for

the group in the district and against the group in the district, depending on the evidence. While it

is simple to construct the relationship between the measures and the size of electoral margins

(or consistency of a districts’ partisanship over a decade), these measures are not explicit

measures of partisan advantage. Indeed, while studies on the partisan impact of compactness

preferences are not new (Altman, 1998b; Chen, 2013), they do not fit into a causal framework;

that is, does boundary irregularity cause partisan bias?

Answering this question in total is difficult, and I cannot do so here. I can, however, demon-

strate that while boundary regularity and shape measures have partisan import, they do not

identify districts with significant partisan impact. Put another way, while boundary regular-

ity and partisan impact are related, the set of high-impact districts are not always the set of
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Figure 56. Scattermatrix of the shape measures used in this dissertation. Notably, all
measures have significant rank correlation (shown in the upper triangle of the matrix), and in
the case of the IPQ and Schwartzberg measures, perfect rank correlation. This pools over all
states under analysis and all times.

weirdly-shaped districts. To show this, I conduct two analyses. First, I examine the relationship

between geometric scores and the decade stratified effect estimate under observed conditions

from Chapter 7. If boundary regularity were causal for advantage, there should be a detectable

relationship between the two. In addition, analyzing the stratified effect estimates in simulations

with no incumbents would indicate the extent to which this relationship changes depending on

incumbency.

8.1 Shape and Impact

Across the eleven states where exploratory analysis was conducted, it appears that there

is no consistent verifiable relationship between the shape measures and the political impact

measures like there is between the impact measures and partisanship. In general, the impact

measures are not well-predicted by geometric scores, even when accounting for fixed effects by

state decade, or incumbent/no-incumbent scenario. Further, the shape measures all correlate
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Figure 57. Shape measures considered in this dissertation over the whole time period
contained in the dataset from Chapter 3. The dashed black line denotes the Baker v. Carr
“one person, one vote” ruling which dramatically changed the landscape of disticting law and
constraints on district design.

well with one another, as shown in Figure 56, suggesting that they may not identify distinct traits

about a district. That is, the fact that the perimeter-sensitive (IPQ, Schwartzberg, & Boundary

Amplitude) measures correlate well with areal measures (Reock & Convex Hull Areal Ratio)

suggests that the supposed differences in the measures are slighter than proponents suggest.

Moving to their relationships with the impact measures, I provide three analyses. In ad-

dition to the pairwise correlation measures plotted in Figures 58 & 59, I conducted a set of

exploratory regressions to examine the multivariate relationships between the shape regularity

measures and the models. Last, I will examine the set of districts selected as “historically bad”

and examine their partisan impact. This follows from the typical use of compactness as an

exploratory filtering diagnostic, a decision rule about which districts are bad and which are not.

Thresholding arguments about compactness and bizarre shapes derive largely from academic

discussion around Shaw v. Reno, but their use as a method with quantifiable accuracy has not

been studied. Thresholding was considered by Ansolabehere and Palmer (2015), but I use a

different cutoff. Here, I use the distribution of all measures observed in the state to construct a

critical α value specific to that state, rather than arbitrarily selecting the compactness measures

of the original “gerrymander” as the reference district. That is, I pick those districts in the 2000s

and 2010s which are in the lowest 1% of compact districts ever seen in that state. The use

of a floating threshold presents an interesting problem, since district compactness has been
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declining since the Baker v. Carr decision, as shown in Figure 57. Some also contend that this

decline in compactness is due to computerized districting algorithms, in that the redistricting

process now is easier to game. It is unlikely that the distinction between the two is possible.

Regardless, the use of a historical percentile-based selection criteria means that more districts

will be selected as bad in modern times than before 1960. Stratifying the sample into pre- and

post-1960 components would also be a viable method, but I will select only the worst 1% of

districts by a given measure for the decision rule analysis.

8.2 Shape is Hardly Related to Impact

First, consider the results from exploratory regressions shown in Table 10. In these cases

a model to predict effect estimates (or their magnitude alone) was fit on the effect estimates

generated under observed conditions for all states and decades under study. The model used,

for each partisan impact measure, is:

impact = ∆state + ∆decade + X + ϵ (8.1)

where ∆factor represents the dummy matrix classifying N observations into the J groups de-

noted by the factor and X contains the geometric statistics, and ϵ is a normal independent and

identically distributed error term. This model is fit only on the stratified effect estimates under

observed conditions for the decades under study. Thus, I fit five models, one for each impact

measure type. In addition, I conduct a regression on only the effect size, disregarding sign:

|impact| = ∆state + ∆decade + X + ϵ (8.2)

The collinearity between the Schwartzberg and IPQ measures doubles the condition number

of the regression, but I retain both measures because the models with both covariates have

significantly better fit, and both are variables of interest. All models have significant F-statistics.

But, the models of effect estimates (Eq. 8.1) have exceptionally poor fit. While the models

relating the effect size alone (Eq. 8.2) have much better fit, it is difficult to suggest they are
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well-fit to the data. Regardless of whether the effect or simply the effect magnitude is analyzed,

the models simply do not indicate a strong relationship. Further, none of the shape statistics

are good predictors across more than one impact measure. That is, no geometric measure

has a consistent impact on the impact measures, either when considering their effect size or

their estimate directly. The only consistently-significant effects across the impact measures

are the state fixed effects and decade fixed effect, meaning some states and decades have

substantially different baseline effect sizes. Not all states have significant fixed effects, however.

Regardless, while there is an improvement in R2 when moving from predicting effect size to

simply predicting the magnitude of the impact, the effect of geometric measures remains too

noisy to contribute to predictions about partisan impact.49 In an absolute sense, the R2 of any

of these models is weak enough to suggest that if these measures of boundary manipulation

are causal for partisan advantage, then there must also be a significant amount of extraneous

noise or additional factors at play. More generally, this compounds the already significant doubt

in the literature that strange shapes cause partisan bias.

Moving to a less structured analysis of pairwise correlations, the scattermatrix of relation-

ships between the impact measure effect estimate and vote share & geometric measures is

shown in Figures 58 & 59. When examining only the pairwise relationships between measures

and compactness, we see a few things. First, note that the first column in each scattermatrix is

the vote share, and the remaining columns are the geometric measures. Second, lines/points

in blue are the stratified effect estimate for 2010 in each state, and in red are the 2000 decade

estimate. In cases of mid-decade redistrictings (such as Texas in 2003) I have simply taken

the average effect over the decade.50 Since each facet shows a different state, this implicitly

49A hierarchical model was also fit to examine whether the relationship between geometric measures and impact
was different over states. This model did not improve on the fit from the non-hierarchical model, and none of the
hierarchical effects were significant.

50A more detailed analysis of the bias due to intercensal redistricting in Texas is provided by McKee et al. (2006).
The existence of a single election before the intercensal redistricting would make an impact analysis more difficult
in this case. In addition, since the redistricting is generally acknowleged to have targeted specific districts for
reevaluation and those districts have easily-identified successor districts, simply averaging over this revision yields
a conceptually consistent (if not adjusted) panel.
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acknowledges that the differences between states dominate the variance between these re-

lationships, and the difference between decades is the second-most critical factor governing

these relationships. Corresponding correlation matrices are reported in Figures 60 with a .05

significance filter, with the correlation matrices for each decade separated by a thick black line;

the 2000 estimates are on the left and the 2010s on right.

The first thing that becomes clear from these scattermatrices and correlation visualizations

is that the relationships between many of the geometric statistics is mainly inconsistent. Where

it is consistent, it is weak. Democratic vote share tends to be negatively correlated with the

impact measure, when it is correlated at all. The cases where it is positively correlated with

impact are mainly in the observed bonus measure, and sometimes also in the attainment gap.

Vote share does have an opposing correlation direction between measures in California (both

decades), New York (2000s), Ohio (2010s), and North Carolina (2010s). All of these states have

had allegations of partisan packing, suggesting that the plans may have too many districts with

overwhelmingly-Democratic support. While statewide bias in California and New York benefits

Democrats, statewide bias estimates in Ohio and North Carolina are either inconclusive or

benefit Republicans. The fact that the observed bias and attainment gap measures are the

only measure to flip in their relationship to vote share suggests that they may have more unique

properties as indicators of district impact. This difference also manifests in Chapter 7, where the

districts identified by the efficiency gap/median bonus tended to be the same, and attainment

gap occasionally opposed, whereas the observed bonus was often too weak to single out any

districts using the same cutoffs as the rest of the measures.

Geometric measures (if they are correlated at all with the impact measure) tend to be pos-

itively correlated. This means that districts that are more compact tend to benefit Democrats.

The only state where this holds for all measures in a decade is in Michigan in the 2010 plan,

where all geometric measures are significant and positively correlated with efficiency gap and

observed bonus impacts. In Illinois and Texas in 2010, four of the five shape measures were
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Figure 58. Scattermatrix relating impact measures and geometric measures for six out of the
11 states under study. The impact measures appear on the vertical axis, and Democrat vote
share & the geometric measures on the horizontal axis.
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Figure 59. Scattermatrix relating impact measures and geometric measures for the remaining
five out of 11 states under study. The impact measures appear on the vertical axis, and
Democrat vote share & the geometric measures on the horizontal axis.
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Figure 60. Correlation matrices that correspond to the comparison shown in Figures 58 & 59.
The matrix on the left of the vertical black line in each subfigure shows the relationship for the
2000s and on right, the 2010s.
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positively correlated with the efficiency gap impact score. In some cases, the relationship be-

tween geometric measure and impact measure appears to reverse between decades. This

occurs for the relationship between IPQ and Schwartzberg measures to the observed bonus in

Ohio, while no shape-impact correlation is significant during the 2000s for North Carolina’s con-

gressional districts. Critically, these are also where the relationship between impact and vote

share reverses between those decades, indicating again that the properties of the observed

bonus measure in cases of partisan packing may be significant. In most cases, however, the

relationship is only slightly different in slope between the two decades. Both the correlation and

the change in correlation between decades is marginal more often than not, and any argument

that geometric measures provide any consistent information about partisan advantage is not

supported.

8.3 Compactness as a Decision Rule

Lastly, the results shown in Tables 11 and 12 contain the 30 districts selected as in the worst

1% of districts in the state by a given compactness measure. Many districts were selected by

more-than-one measure. The measures which the district is “historically bad” in are contained

in the column titled Measure(s); SB denotes the Schwartzberg measure, R for Reock, CH for

convex hull areal ratio, and BA for boundary amplitude. Since the IPQ and Schwartzberg mea-

sures are perfectly rank-correlated, districts fall in nearly the same percentiles between the two

distributions, out to rounding precision. Thus, every district that is identified as historically bad

in the IPQ measure is also historically bad in the Schwartzberg measure. Only one district,

Illiois district 17 in the 2000s, is selected by the Schwartzberg and boundary amplitude mea-

sures and not the IPQ. We see no district selected only by IPQ/SB, since they are effectively

identical in percentiles. This occurs since the IPQ is right on the boundary of the class, whereas

the Schwartzberg measure falls below. In addition, we see that the measures tend to work to-

gether, with perimeter-focused measures selecting together (IPQ/SB & BA) and area-focused

measures (CH,REO) selecting together. This is in spite of the fact that most of the measures
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have significant aggregate correlation (noted in Figure 56)). Thus, studies of aggregate shape-

party correspondence do not tell the whole story.

What is striking is that most of the districts selected by shape criteria are safe Democratic

districts, according to their average decade vote share. Thus, the “worst” districts according

to their geometric scores tend to be won by overwhelming Democratic margins. Assuming

this is casual however, is fallacious; as shown in Section 8.2, shape does not correspond well

to impact. This means that even though ill-compactness does tend to correlate with partisan

lean, just because a district is weirdly shaped and won by Democrats does not mean the dis-

trict is gerrymandered to favor Democrats. The impact measure (and statewide bias) must be

considered. More generally, most of the districts selected by the shape measures are very

safe districts, with margins of victory at-or-above 10%. The most competitive selected district,

Michigan 1 in 2010, had an average vote share of .461, a Republican win by 8%.

Going further, districts that would be picked up as “historically bad” districts according to

their compactness do occasionally have large impact scores. Take, for example, the second

row of Table 11, Ohio’s 9th district in the 2010 plan. Its stratified efficiency gap impact estimate

(under observed conditions) is about -1.2. Thus, by that measure, the district’s inclusion in the

Ohio plan provides a significant benefit to Democrats. In contrast, the observed bonus impact

is around 1, suggesting its inclusion provides a significant seat bonus to Republicans at the

observed level of support for Democrats in Ohio. The district is won by Democrats (with around

70% of the vote) and statewide average Democrat vote share in Ohio is 43%. Plus, the state

experiences a marginal Republican advantage, although (depending on the measure and the

year) this advantage is not strongly distinguishable from zero in simulations. Recall that the

observed bonus compares the seat discrepancy between what Republicans were observed to

win and what Democrats would be predicted to win if their average support was the observed

Republican support, 57%. Since OH-9 is quite safe, it likely does not make a difference to either

the simulations at the observed vote or the simulations at the counterfactual 57% Democratic

average vote, being reliably Democrat. Notably, district 23 from California in 2000 was picked

up by both the partisan analysis and the compactness analysis. As mentioned in Chapter 7,
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it is picked up as directional in the partisan analysis, but its effect estimate is not overly large.

Thus, like Ohio’s 9th district in the 2010 plan, the district is impactful but not the most impactful

in the plan.

Only two districts selected by these compactness measures have stratified effect estimates

in simulations from observed conditions larger than .25 for all measures.51 The two districts

are Washington’s 2nd district in 2010 and Michigan’s first district. WA-2’s presence bene-

fits Democrats unambiguously, with consistently large negative removal impact scores. MI-1

likely benefits Republicans, although the attainment gap suggests its presence actually tends

to benefit Democrats marginally. Notably respondents in the surveys discussed in Chapter 9

mentioned district 2 as a particularly interesting district; they attempted to make the district

competitive but, in the view of some practitioners, failed to do so. MI-1, containing the upper

peninsula of Michigan and northern portions of the state, has been continuously represented

by Republicans during the 2010s, but has also been consistently competitive. It had an open

seat in 2016 when incumbent Dan Benishek retired, and was replaced by a Republican. No-

tably, the district has an occasionally-decisive third-party contingent of Libertarians and Green

party voters who, in 2012, had more than enough vote share between the two to flip the major

party result. Thus, it is surprising that such a competitive district is picked up by the impact

measures as likely shift-Republican and by geometric measures as being irregular. In theory,

though, the district fits the reverse of the profile respondents from Washington described WA-2

to be: a theoretically-competitive district that consistently returns to a single party likely due to

incumbency advantage. Further, in both cases, the districts are won by the party who likely

benefits statewide. It is unlikely that either district is drawn for the candidate that occupies the

district, but the fact that these two districts do share the same typology is notable.

Inverting this structure, only one district is selected by all five shape measures as uniquely

ill-compact for its state, Pennsylvania district 1 in the 2000s. It has marginal partisan impact

when measured by the attainment gap or the efficiency gap, and again there is disagreement on

51Note that the stratified estimates are strictly larger than the pooled estimate, so stratified estimates are the
most likely to be large if significant.
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its direction of effect. The remaining impact estimates are not large. This reinforces insight from

the the regressions from Section 8.2 which suggest that the effect magnitude alone may be eas-

ier to predict than jointly predicting the magnitude and direction. Regardless, though, the least

regularly-shaped districts clearly do not have large political impacts across all measures, al-

though many of districts selected by three-or-more measures do have large negative efficiency

gap impacts (indicating their removal benefits Republicans/presence benefits Democrats). This

would comport with the intuition that compactness constraints tend to favor Republicans (Alt-

man, 1998b), since removing the districts by a consensus on poor compactness tends to benefit

Republicans’ electoral efficiency. However, the fact that these districts are not consistent in the

other measures indicates that this benefit is ambiguous.

I anticipated that majority-minority districts may be selected as most strongly impactful or

most bizarrely shaped due to the discussions from racial gerrymandering practice and literature.

Since race and political alignment are typically quite strongly-linked, I anticipated deeply Demo-

cratic majority-minority districts to be selected as "gerrymandered" according to their shape

measures. However, just considering the districts in 2010, six of the 17 districts selected by the

shape measures are majority-minority districts.52 This is around 35% of the selected districts;

for reference, majority-minority districts tend to compose around a third of the Congress. Thus,

majority-minority districts are not markedly over-represented in this selection of ill-compact dis-

tricts. Further, none of the ill-compact districts selected that were majority-minority had consis-

tently large partisan impact scores. Therefore, it seems unlikely that weirdly-shaped majority-

minority districts have an outsized impact on partisan bias, which may be one empirical im-

plication of the theory of gerrymandering by expressive harm.(Pildes and Niemi, 1993). This

provides a further skeptical light (furthering Ansolabehere and Persily, 2015) to a difficult-to-

measure argument at the intersection of partisan and racial gerrymandering study. Thus, the

analysis of the intersection of the partisan measures and racial data seems a promising avenue

52Here specifically I mean plurality-white, which is slightly different from majority-single-minority.
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to explore, considering that the aggregate relationship between the “bizarre” shapes focused on

by expressive harms arguments appear to be relatively unrelated to the partisan impact scores.
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8.4 Conclusion

In general, shape measures are weakly related, if at all, to a district’s impact on partisan

advantage in any of the eleven states under study. In addition, it is not necessarily the case that

strangely-shaped districts have a significant partisan impact. Further, it may be the case that

theoretical arguments about compactness’s inability to constrain gerrymandering (Humphreys,

2011) are empirically validated, since districts with poor compactness scores are not neces-

sarily impactful, and districts that are impactful are not necessarily ill-compact. This is a clear-

sighted conclusion, in that these results simply validate these arguments.

Another concurrent perspective may be that compactness and advantage are not strongly

linked because districting officials may have a hard time making precise predictions about what

the impact of their drawn lines will be. That is, maybe gerrymanders are ineffective. Since ef-

fective gerrymandering involves complex predictions about the interaction of future candidates,

electorates, and district lines, it is possible that uncertainty about the characteristics of marginal

districts results in lasting advantage despite intent. This perspective was offered by some redis-

tricting officials in Washington, discussed in Chapter 9. These people suggested that, despite

their best efforts, some districts that were drawn to be competitive ended up as non-competitive,

returning a consistent partisan majority since their inception and initial open-seat election.

Uncertainty about the role of future incumbents and the candidate recruitment plays a large

role in the characteristics of a plan after its enactment, but sometimes are not easily foreseen

by linedrawers. Once a quality candidate establishes themselves in a new district, it can be

quite difficult to oust them until they retire (often at the cusp of a districting boundary again).

Alternatively, the aggregate lack of relationship between shape and partisan impact could be

because districts that are “ecologically meaningful” to voters are not necessarily going to be

compact. Regardless of these concerns, it is the case that a clear, unambiguous temporally- or

spatially-consistent relationship between these measures does not exist.

Instead, we find that there is a fleeting, weak positive relationship, in that districts whose

presence benefits Republicans tend to be more compact than districts whose presence ben-
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efits Democrats at some times, in some states, for some measures. This is a precise, di-

rect district-level comparison that corroborates the aggregate, approximate findings of Altman

(1998b) and Chen (2013), who suggest that the presence of individual district compactness

constraints tends to generate plans biased towards Republicans in general. Thus, if there were

a relationship, it should manifest in this analysis. This is the first time the relationship between

shape and impact on partisanship can be directly measured at the district level. It appears that

the shape of districts does not consistently relate to the districts’ impact on partisan advantage.
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Chapter 9

SOCIAL, HUMAN, AND POLICY FACTORS

9.1 The General State of the Literature

A significant amount of academic work on identifying gerrymandering, both partisan ad-

vantage estimation and detecting boundary boundary manipulation, has yielded a traditionally-

robust literature, full of healthy debate and criticism. However, many studies discussed in the

preceding pages were developed by academics for academics, so to speak. While there is an

exchange between academics who study redistricting and the actual redistricting process, this

only manifests in the grey literature surrounding cases. This grey literature, a combination of

university-sponsored technical reports, amicus curiae briefs, and reports to redistricting com-

missions is massive. While some work does eventually hop from grey (Godfrey et al., 2005) to

white (Grofman and King, 2007), it is difficult in some cases to even call those works derivative

or successor works, since the process of preparation for academic publishing often radically

changes the content and substance of the work.

This is not necessarily a bad thing. However, it does result in a redistricting literature that

is somewhat uni-directional in its exchange: papers are written and techniques provided to

policymakers. Education and outreach campaigns by motivated academics actively lobby re-

districting officials to use their specific measure or method of analysis. The fact that the grey

literature is so large speaks to the fact that there is an intense need for a “routine” analysis

method for these kinds of claims. While certain outlets like Election Law Journal routinely pub-

lish high-quality scholarship on quantitative/forensic analysis of gerrymandering and are the

host of paper-writing competitions on the topic,53 the penetration of gerrymandering as an aca-

demic topic into the mainstream of either political geography or political science has declined.

53From where many studies discussed here follow (McGann et al., 2015; Chen and Rodden, 2015; McDonald
and Best, 2015; Nagle, 2015; Cho and Liu, 2016a; Wang, 2016; Arrington, 2016)
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Indeed, a cursory survey of journals is provided in Table 9.1. I record popular journals in ge-

ography, political science, and specific electoral politics journals. Searching for publications on

“gerrymandering” in these journals on Google Scholar occasionally yields a significant amount

of text hits, but few dedicated studies by keyword, subject classification, or title. In the table,

“prominent” articles are the highest cited articles from that journal whose main subject is mainly

concerning gerrymandering (either forensic detection or analysis of its suggested impacts on

voter or legislator behavior). The “recent” article is the most recent hit from that journal judged

to be primarily dealing with gerrymandering. The “number of results” is simply the number of

articles returned that mention gerrymandering in some way. If a journal has no article detail-

ing mainly with redistricting, I record it as “None.” While there are many full-test hits in many

journals, this only indicates that gerrymandering is a phenomenon often mentioned in passing.

This is especially true for areas of geographic methodology, where basic research in regional-

ization heuristics or measures often touts the mitigation of gerrymandering (e.g. Li et al. (2013,

2014a,b)) but whose applications typically do not entail a detailed study of the issue beyond

a measure demonstration (Fan et al., 2015). For the papers that treat gerrymandering as the

main event, much of the “recent” work outside of Election Law Journal is somewhat dated. In

general, the recent cycles obtain close to the finish of the previous redistricting cycle, aver-

age time since the most recent article across all these journals being 4 years. Again, while the

preprint literature54, the grey literature, and paper-writing contests held for Election Law Journal

are all quite robust, work in the mainline journals is infrequent.

9.2 Interview Results

In addition to this infrequency, personal communication with local stakeholders and political

operatives in Arizona led me to believe that many of the investigations conducted in the aca-

demic literature (i.e. not in the grey literature) about redistricting did not involve redistricting

54The Social Science Research Network is one notable community.
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officials personally. Thus, I attempted to ground the statistics & study developed in previous

chapters in the needs, perspectives, and affordances of the redistricting process. To do so,

I targeted four redistricting commissions for engagement in a set of confidential, anonymized

interviews. Commissioners, their support staff, interested non-governmental participants, and

journalists were all interviewed. For the interviews, participants in California, Arizona, Iowa, and

Washington were targeted. In general, the commissioners in these states are not considered

“public figures;” as such, their contact information is occasionally difficult to track down. While

the commissioners are interested in participating in social research in the process, they are

under no legal or political obligation to do so. In fact, due to the conflictual nature of the 2010

redistricting process, which occurred at the height of the Tea Party movement and spawned at

least one Supreme Court case from the states targeted for study, I anticipated recruitment to

be difficult.

Therefore, I proceeded through snowball sampling. Individuals with publicly-listed contact

information were targeted first. These were never the commissioners themselves. I made

sure to consistently and actively assure that interviews were confidential and anonymous, and

that the identity of all participants would be protected. Due to the assurance of confidentiality

and anonymity, participants often felt comfortable in either providing the contact information

for fellow participants or, in some cases, reached out themselves to recruit new candidates.

Then, when it came time to enlarge the sample, I would suggest that the candidate provide

more/different names if they provided individuals I had interviewed before. Just in the process

of generating this sample, a significant amount of information was apparent about the culture

and structure of the process in the various states.

All states targeted were “non-traditional” redistricting states with “independent” commis-

sions. However, the legal structures for each state’s commission are different. In addition,

the context and objectives of each commission is also distinct, and the character of the pro-

cesses where interviews were conducted were markedly so. While all states must follow the

federal requirements for district legality, the individual state processes and political cultures re-

sult in significantly distinct local experiences of the redistricting process. In addition, statutory
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constraints on the information that can be considered in drawing lines changed the nature of

the discussion in a the states analyzed. Below, I will summarize the processes of the targeted

states, outline the snowball sample, and provide insight to the specifics of each states’ inter-

views. At the close of this chapter, I will draw some general conclusions from the interviews

that were conducted, and aim to make explicit the trends I note in the interview results.

9.2.1 Iowa

Iowa’s lines are approved with final authority by the legislature, but the process typically

is dominated by a nonpartisan redistricting advisory body and a bipartisan legislative commis-

sion. The nonpartisan component is a bureaucratic organ within the states’ Legislative Services

Agency, and the bipartisan 5-member secondary committee is composed of four members ap-

pointed by the legislature and a chair selected by the legislative appointees members. Ostensi-

bly, the nonpartisan body exercises ultimate authority about the boundaries, with the bipartisan

body providing input on non-statutory inputs to the process. However, all requests for interviews

made from March to August by phone and email to multiple parties in the legislative services

agency were successfully transmitted but unanswered, so no interviews were conducted.

9.2.2 California

The California bipartisan redistricting commission is a 14 member commission with mem-

bers who represent either major party or ostensibly represent no party. This commission is

larger than that selected in any other state and has been extensively studied. The 2010 redis-

tricting was the first time the commission was used. However, no commissioners nor officials

involved in the process responded to requests for interviews during the solicitation period from

March to August. Many different contact avenues were tried. A few initial participants expressed

interest in April of 2017, but never eventually consented to participating in the interview. They

also seemed loath to reveal their participation, so when they declined full participation, they
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provided no new candidates. While generalizing about the process from these few initial con-

tacts, it seems that the set of candidates who were interested in participating the most felt under

pressure to conceal their participation lest they be viewed as “leaking” information about the in-

ternals of the process. This attentiveness to information security may also be heightened by the

recent release of Ratfucked: The True Story Behind the Secret Plan to Steal America’s Democ-

racy, a book by David Daley. Every candidate solicited for interviews in California mentioned

the book, and expressed a concern that their material would be used against them or the patron

under which they worked (such as executive directors, partisan staff leaders, or interest group

leaders). Thus, while the assurance of confidentiality and presence of an NSF grant award

page led many to be comfortable entertaining talking to me, none, in the end, judged the risks

to their personal or professional stature worth the risk to engage in a candid interview about

the process. This was both frustrating and confusing, since the interview protocol provided to

participants notes:

• participants can pick and choose questions they want to answer while continuing partici-

pation

• participants can terminate interview at any point

• participants can retroactively remove consent to use the conversation transcripts or

recordings

• the identity of participants is not recorded in the artifacts generated from the interviews,

so the identity of participants cannot be reconstructed from interview artifacts.

Regardless of these assurances and further assurances to candidates about secure methods

of interviewing, none eventually consented to participate.

9.2.3 Arizona

In Arizona, this risk-averse behavior was also present. In the staff and stakeholders sur-

rounding the five member committee, participation was similarly difficult to elicit. The Arizona
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Independent Redistricting Commission (AIRC) is composed of four individuals identified with

the two major parties (two from each) and a single nonpartisan chair. The commission is only

intended to be independent of the legislature, and not necessarily a nonpartisan commission,

as many participants were eager to state. In addition to partisan balance, the commission was

geographically balanced, with at most two commissioners from any county in the state. The

2010 redistricting was the second time the AIRC drew lines, the first time being in the 2000

redistricting.

The wariness in participation may be driven by the high-profile litigation around the states’

congressional and state legislative plans, or the cases contesting the redistricting commission

in general. In addition, nearly all candidates in Arizona also brought up Ratfucked. However, in

this case, an entire chapter in the book was devoted to illustrating allegations of bias in the in-

dependent commission, so the concerns were either from having participated in that project or

having seen how participation in that project turned out for others. Candidates in my study

were concerned about participating in another skewering, and every candidate interviewed

expressed notions of betrayal and discomfort at how the process in Arizona was portrayed

in Ratfucked. These notions of betrayal and discomfort were similar to those mentioned by

candidate-participants in California, but was immediate and experienced rather than prospec-

tive and risk-avoiding. One participant went so far as to describe the book as a sequence of

unfair hit-pieces to fit a revisionist narrative about the Democratic loss in 2014 that caught fire

after the 2016 presidential election among despondent liberals looking for one of many “struc-

tural” explanations for Clinton’s (& local Democrats) 2016 loss. In general, participants were

highly sensitized to this narrative, and the experience of the book seemed to feed a difficulty of

recruiting new candidates.

Unlike the process in California, however, this was one of many aspects of significant par-

tisan consternation in the state. Many candidates noted the political climate of the redistricting

process was heated, with significant participation in public comment periods and active individ-

ualized protest of the commissioners by various interest groups. While Arizona was not unique

in having public comment and testimony in their redistricting process, many participants felt the
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process was uniquely partisan and was fixated on the behavior of individual commissioners

in particular. Where participants were able, they suggested that the previous redistricting pro-

cess in 2000 was not as significantly divided, and expressed both surprise and dismay at the

character of the 2010 public comment phase.

Nevertheless, participants were eventually recruited. All candidates felt that the process

was not supported well by the legislature, and identified significant gaps in technical support for

the technical process of exploratory drawing & plan assessment. In many cases, they felt that

they understood what was required, but felt ill-equipped to delve into the process. The latency

between requesting a candidate map and receiving it was too large, and the staff dedicated to

the commission was too small to handle the number of requests suggested. The introduction

of partisan staff, by the accounts of participants, occurred late in the process, only after consis-

tent dissatisfaction by the partisan commissioners about their ability to engage in exploratory

analysis. This concern was unique among states where candidates were solicited.

In addition to this concern about technical support, the participation of an interest group

focused on improving competitiveness across Arizona districts tended to drive the conversation

much more strongly towards generating universally-competitive districts. Many in the process

seemed most dissatisfied with the existence of safe seats in general, rather than the partisan

balance of the congressional delegation or state house. All participants interviewed felt strongly

that competitiveness was a strong component of a “fair” redistricting plan. Almost every can-

didate defined competitiveness as the margin size of a district, and most put the boundary

somewhere between 3 and 5%. That is, districts where the margin of victory is greater 5%

were nearly always considered uncompetitive by participants in Arizona.

Notably, the concern about competitiveness reflected a concern of the elections in each dis-

trict and not over the composition of the state delegation as a whole. That is, the relationship be-

tween the congressional delegation and the popular vote for Congress was less important than

the fact that as many districts as possible had small-margin winners. Throughout discussions,

this concern focused explicitly on the desire of many participants to have responsive politics,

in the sense of encouraging turnover, national partisan investment, and an effective general
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election check on the state’s members of Congress. Competitiveness was not understood in a

systemic or structural sense, whereby control of the overall majority of the statehouse or con-

gressional delegation mapped well to the states’ relatively consistent low popular vote margins.

In addition, when asked, the value of having senior representatives sitting in important struc-

tural committees in the House of Representatives was less interesting to participants than the

prospect that individuals could remove their representation at will.

Thus, the redistricting community interviewed in Arizona exhibited a strong belief in ensur-

ing responsive delegatory representation, and significantly rejected or considered unimportant

factors related to the accrual of individual representative power, such as seniority, committee

assignment, or even the provenance of a successor district in which an incumbent could run.

Notably, this apparent resistance to district boundary consistency contrasted with the actual

consistency in district boundaries and survival of many incumbents from the 2000 plan to the

2010 plan. While interviewed candidates suggested the commission succeeded in creating

competitive districts when it was attempted, many also acknowledged that there were only

three “true” seats in which a competitive district could be drawn. The constraining factor was

often cited as partisan and ethnic geographies of the state, that the desired “truly” competitive

map would never be spatially feasible.

Finally, a subgroup of interviewed participants suggested that the focus on competitive-

ness was a clearly partisan strategy. This group of participants viewed the fact that Democrats

or Democrat-aligned interest groups tended to participate in the public comment period and

advocate for competitiveness indicated that the competitiveness was only to increase Demo-

cratic representation. For these participants, competitiveness was a sham argument used to

instead attempt to bias the plan towards Democrats. This group tended to be concerned that

the supposedly-competitive districts were drawn using a metric of partisanship focused on past

election results, rather than on registration statistics. Many viewed the use of past elections to

extrapolate baseline partisanship of a new district as suspect, and instead suggested that com-

petitiveness be understood in terms of the registration discrepancy in a district. This distinction

is not novel in the academic literature (embodied often by Kousser (1996)’s critique of Gelman
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and King (1994a) by focusing on registration discrepancy in California & resurfaced by McGhee

(2014)’s critique of excess seat measures in general), but these discussions among commis-

sioners, partisans, and staff apparently occurred without recourse to the academic study. While

a single analysis was discussed that resembled similar to Kousser (1996), the fundamental con-

testedness of these measures was never resolved, and many analyses provided multiple char-

acterizations of the anticipated Democrat/Republican percent vote of the candidate districts.

While this was not a formal stochastic model of anticipated partisanship of the new districts,

Beyond the focus on competitiveness, conflict about what "communities of interest" meant

was apparent among participants. Some viewed them as “natural” geographic communities that

had both an intrinsic value and legal requirement to be preserved. Other participants suggested

that they were created to justify the creation of Democratic safe districts at the expense of

Republican safe districts. That is, a subgroup of participants claimed that the delineation of

communities of interest was a political tool used to influence which parts of which districts

should form safe Democrat districts, and that the focus on communities of interest was neither

consistent spatially or procedurally. While there is an ongoing question about what communities

are of interest and to whom they should be interesting (Webster, 2013), this discussion among

commissioners was much more immediate: since race & ethnicity is nearly indistinguishable

from party, identifying and protecting communities of interest as if it were a separate standard

from identifying partisan-consistent communities, rankled a few participants.

Finally, a desire for the process to change was expressed by a subset of participants. Many

expressed dismay that the commission was so small, and that partisans on the commission

did not have a formal or legally-sanctioned staff separate from the commission staff. Most

suggestions of larger commission stemmed from a belief that a larger committee would reduce

the pressure on individuals in the commission, and particular attention was paid on how to

reduce pressure on the chair of the commission. The focus on district-specific competitiveness

was identified as a great strength of the model used in Arizona, and many largely considered the

commission succeed in its stated goals, regardless of the individual’s perspective on how the

process of drawing the plan may have been canted. In part, this may be due to the fact that the
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competitive districts drawn by the commission have indeed tended to flip between Democratic

and Republican representation since 2012.

9.2.4 Washington

Washington’s commission is distinctly a bipartisan commission. A similar 5-member panel

is selected from an applicant pool is approved. However, the “nonpartisan” chair of the commis-

sion is a nonvoting member, meaning that the commission is split between two Democratic and

two Republican appointees. This means that the plans for the commission must be approved

with at least one opposing-party vote. Many interviewed in the process identified this as a criti-

cal strength of the structure of the commission, and claimed that the comity between members

derived primarily from this structure. This was also the second time the commission was used,

with the first time being the 2000 redistricting.

Acquisition for Washington participants was significantly easier than that for any other state.

Individuals were eager, active in their consent, and seemed strongly personally interested in

participating in the research. Only one participant mentioned the Ratfucked book; no individu-

als mentioned feeling betrayed, disheartened, or maligned by popular media investigations of

redistricting processes. As such, many of the participants were unconcerned with the confiden-

tiality and anonymity of the interview procedures; many eagerly suggested I mention that they

participated in the interviewing process as social proof to improve the study’s acquisition rate.

Many even suggested doing so across states after I had briefly mentioned issues with acqui-

sition in California and Arizona, indicating that many participants felt somewhat of a kindred

relationship to redistricting officials in general across state lines. No other states’ participants,

either full or in part, actively suggested this.

In addition, the Washingtonian participants seemed to exhibit a remarkable level of partisan

comity, with offhand remarks from self-identified partisan stakeholders, commissioners, and

staff indicating a generally high level of trust and respect in the opposing party’s competence.

Individuals were largely satisfied with the technical support provided for the commission, and
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many suggested that the nonpartisan staff’s use of standardized styles and measures in the

artifacts of redistricting, the maps & analyses used to actually discuss plans in public comment

and internally, helped level the playing field. Nonpartisan staff interviewed also highlighted this

role; chief among the concerned identified by the individuals was the importance of serving

equally and ensuring that discussions and support was provided to both parties equally.

Another notable facet of the redistricting process in Washington was the actual working

structure of the commission. Many participants noted that the commissioners paired off, work-

ing by twos to construct Congressional and state legislative districts that had bipartisan support

at their genesis. While participants identified a similar initial phase of providing candidate maps

of how commissioners may wanted to have partitioned the state, this procedure of pairing up

between parties and working on the plan was not mentioned in other states. In addition, the

nonpartisan staff seemed invested in ensuring that these working dyads had sufficient support

for their custom needs, interests, and concerns.

Washington participants also noted a similar contest about measures of expected partisan-

ship for the drawn districts. However, the use of partisan registration information (like done in

Arizona) is legally unavailable to the Washington commission. Thus, instead of debate between

using registration figures and past election results, the debate occurred about which races in

which years might provide a good enough precinct baseline to extrapolate an expected parti-

sanship of new districts. Partisans disagreed about which elections should be used, and the

different measures were also propagated in many analyses like done in Arizona. Possibly, the

fact that the difference in the choice within elections is a smaller difference than the choice

between elections and registration led to a smaller contested surface on this front.

As far as the chief objectives of the redistricting were concerned, competitiveness was a

critical concern for the commission. Depending on the participant, Washingtonians identified

anywhere from one to three potential swing districts that the commission attempted to construct.

While many felt the commission succeeded in its more abstract goals, many individuals inter-

viewed suggested the commission was not successful in drawing competitive districts in some

cases. They cited the emergence of high-quality candidates in the 2012 election as the gener-
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ative process; once strong candidates emerge, the combination of incumbency advantage and

candidate quality was suggested to both suppress effective challengers and the recruitment of

future potential successful challengers. Regardless, the commission viewed the districts drawn

as significantly fair and representative of a bipartisan consensus. No candidate interviewed sug-

gested any modifications be made to the redistricting process in Washington. All candidates

seemed to have high faith in the procedures, and that the next redistricting period would yield

similarly-high confidence districts.

In a way, the concern about “successful” or “unsuccessful” attempts to construct swing

districts struck me as a “chicken-and-egg” concern; if the first election in an open district is won

by a high-quality candidate (over another supposedly high-quality candidate), then whether

the district can be considered “swing” or not becomes a question of how effectively the high-

quality candidate can develop a personal vote, not an intrinsic property of the district. If it

weren’t for the good candidate, would that district revert to swing if the candidate’s personal vote

disappeared? I attempted to inquire about this from Arizona participants about the “swingness”

of Arizona’s Congressional District 2, as well. A few enlightening discussions with participants

did not resolve this fundamental question of whether the “swing” district that the commissions

attempted to create was about the composition of the electorate or the anticipated results in

future elections. In more casual language, one participant averred the idea that composition

entailed a district "likely to swing" because the population was weakly partisan-identified and

other districts might be "liable to swing" because the observed election results did not reflect the

true partisan nature of the eventual district. The extent to which this is a meaningful distinction

may be relevant to explore in future analyses.

9.3 Commonalities between California, Arizona, and Washington Participants

In all states where participants were solicited, there were public comment periods available

for members of the general public to remark on candidate plans or submit their own draft dis-

tricts. However, those successfully interviewed in Washington and Arizona both expressed a
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somewhat divided notion of the function of these public comment sections. Those in Wash-

ington noted significant involvement of academics, but suggested that their involvement was

ineffective. In particular, persistent and dedicated individuals who attended nearly every public

comment period occasionally came off as too professorial. Many felt that this severely hindered

the efficacy of the lobbying, and suggested that interested academics should both speak at

public comment and lobby commissioners individually if they have a merit-based quantitative

argument about how things might be done better. What all suggested was particularly inef-

fective was the use of the public comment period as a time to “educate” both the public and

commissioners. They suggested that the most useful transfer of knowledge in these public

comment periods was subjective and occurred from what interviewees believed were members

of the general public or a specific protected group.

Regardless, though, a subgroup of the participants in Washington suggested the public

comment period was more effective as a legitimation of the commission’s later line drawing

activities than as a period of the public generating new constraints and demands for the even-

tual redistricting plan. In this way, the model for the public comment period in the redistricters’

perspective appeared to be more akin to local zoning boards, where the policy is not directly

set in community meetings, but many likely courses of action are discussed with affected com-

munities in order to identify potential improvements and judge public reaction. A similar type of

skepticism about the public comment period in Arizona was expressed by participants, but the

skepticism was engendered by what those participants considered to be its use as a method for

partisan operatives to air or instigate grievances with the commission. There was no significant

Arizonan analogue to the academic-political exchange described in Washington. While both

states did ascribe significant value and learning to these public comment periods, both groups

suggested that the direct decisions about which lines eventually were drawn and which were

made chiefly in consultation with legal counsel and along statutory or constitutional criteria,

rather than members of the public or academia. Participants felt that these main constraints left

very little room to act on public suggestions or demands or address the concerns brought forth

by concerned academics.
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Critically for this dissertation, however, no participant interviewed in any state recalled a

single measure of partisan advantage being used to assess candidate plans. While these mea-

sures are critical in post hoc analysis of the districting plan, no participant recalled any of the

measures as having been relevant or useful in the 2010 process. In this sense, participants in

both states suggested that the focus of drawing and discussion was on each district, negotiat-

ing its spatial extent, population composition, inclusion of specific communities, rather than the

aggregate properties of the plan as a whole, such as a reflection of the aggregate preferences

of the electorate. Where relevant, the focus on these specific districts was often in terms of

their expected partisanship, competitiveness, or status as a majority-minority district.

9.4 Practitioner Beliefs About Construct Validity

Despite this, a few participants stated they were familiar with a few common advantage

measures, but suggested that the measures are politically unrealistic. By this, the familiar par-

ticipants were not concerned with their model-driven nature55, but instead suggested that the

measures were either incomplete, incorrectly-premised, or simply incorrect. For the individuals

not familiar with existing measures, many found the premises, assumptions, or operative con-

cepts of these measures as irrelevant or unhelpful. Finally, many found the idea of uncertainty

to be critical for the measurement of expected partisanship, but seemed resistant to consider

or examine how uncertainty about partisan advantage might be incorporated into the process.

To assess these attitudes, I interviewed participants about the “reference” conditions re-

quired to construct each estimate of advantage. Like the ideal shapes of geometric measures,

these are the conditions under which the advantage measures make a determination about the

size and direction of bias. These are discussed in Section 2.3, but are repeated here for clarity.

First, seat bonus measures require the assessment of an electoral counterfactual, when the

party average vote share h̄ = 1 − h̄◦. The difference in the share of seats the reference party

55a common objection in the model-focused academic literature

228



wins when it wins h̄ and how many the opponent wins when they win h̄ provide the seat bonus.

Some analyses construct an out-of-sample prediction for the special case when h̄ = .5 = 1− h̄.

Second, the attainment gap measure requires the assessment of an electoral counterfactual

where the reference party wins the barest majority, or .5 ≥ s̄◦ ≥ .5 + ϵ, for sufficiently small

ϵ. Then, discrepancies in the expected vote share required to win s̄◦ for parties reflects advan-

tage. Third, the the standard efficiency gap was discussed with practitioners. This measure

requires that parties waste an equal number of votes, which relies both on the full vector m

and vote share vector h. The so-called “simplified” version of this measure, assuming turnout

is constant across all districts, was not mentioned in interviews. When prompted to consider

these abstract electoral realizations, participants seemed to be interested in reasoning about

the aggregate representativeness of a plan. However, many immediately expressed skepticism

of the warrants required to get to that state upon “return[ing] to Earth,” as one participant de-

scribed. Thus, it remains to be seen whether or not these forensics would be used, regardless

of how well-specified they might be made.

9.4.1 Premises of Symmetry Measures & the Attainment Gap

For both Washington and Arizona, the congressional delegations very nearly map to the

popular vote breakdowns for the state congressional delegations. As such, many individuals

interviewed in either state thought it possible for majority control of the delegation to flip to mi-

nority control of the delegation, so measures focused on the fixity of a congressional delegation

were deemed quite reasonable. Thus, questions about the votes required to win the barest

of majorities, the reference condition for the attainment gap, the smallest possible majority in

the congressional delegation, was seen as intrinsically plausible. No individual suggested the

state would not see this division in the congressional delegation, but did suggest such a division

would be rare in the statehouse, where Republicans tend to win more-than-minimal majorities.

However, many participants also suggested that the percentage of vote required to win

that barest majority was not meaningful unless contextualized. They suggested that, in reality,
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each years’ vote share was highly dependent on the unique properties of legislators and that

election cycle. Participants tended to concede that this might be modeled statistically, but none

were confident that an analysis they had seen had been done in a way they found satisfactory.

Thus, while the attainment gap reference condition was viewed as intrinsically plausible, some

suggested it might be uninformative for the lived reality of the political system in each state.

Regardless, participants often did agree with the principle of the attainment gap: in general,

if parties can win majorities with increasingly smaller percent of the aggregate vote, partisan

gerrymandering is likely.

In addition, many considered it plausible that the total raw congressional vote might split

evenly between parties. However, no individuals believed that excess or deficit seats when

the congressional vote split evenly at 50% would indicate advantage or unfairness outright.

Most thought that unless the excesses were flagrant, this split-at-50% reference scenario was

unhelpful. In all cases, individuals were skeptical about how that relates to concerns about

incumbency, personal vote, and the mechanics of campaigning. Again, while all participants

understood that these factors may be addressed statistically, most were not interested in relying

on this treatment to conduct potentially-legally-binding assessment of partisan advantage. In

the case that these factors could be controlled for statistically, participants still felt the difference

in seats at an even vote split was suspect, depending on the spatial distribution of those votes.

In addition, most participants considered it to be implausible that parties would flip in their level

of aggregate congressional district vote shares during the time the congressional districts they

participated in drawing were in use.

9.4.2 Premises of Wasted Votes

When identifying whether “wasted” votes matter or should be considered “wasted,” the word-

ing of the question became incredibly relevant for individuals. Participants were divided on

whether they were comfortable with calling any votes “wasted” or “ineffective.” Many more par-

ticipants were comfortable discussing whether voters would be satisfied with the outcome, in

230



the sense that the person they voted for won the election. These are subtly different concepts.

A “wasted” vote (by the measure in McGhee (2014)) is one cast in excess of victory or one cast

for a losing candidate. Participants were much more comfortable considering only the votes

cast for losing candidates as somehow ineffective, and almost all participants felt that the two

components should be treated as distinct.

During interviews, some participants suggested that losing votes were more wasted than

votes cast in excess of victory would be, and asked if a weighted efficiency gap had been con-

sidered. The semantic arguments about what type of vote is more or less effective focused on

the idea of the electoral mandate; if a candidate wins some strong (but not overwhelming) vic-

tory, the votes cast in excess of victory communicate information to the candidate that suggests

a reward for effective representation. Thus, those votes are less wasted than votes cast for

losers, who accrue no mandates. Centrally, those who tended to endorse this idea, that losing

votes are more wasted than those cast in excess of victory, were also mainly interested in those

cast for an overwhelming loser. Thus, in general, they considered “hopeless” votes, those cast

for candidates who lost by a margin of around 8% or larger, as the least effective, if they were

willing to entertain differences in vote efficacy at all.

As far as how these recommendations can be translated directly into efficiency gap calcu-

lations, a few critical challenges are presented. First, it is unclear whether using a weighted

efficiency gap would ever resolve the arbitrariness practitioners identified as undesirable about

the measure. In addition, it is unlikely that a consensus weight could be found, despite the

remarkable regularity in what individuals considered “hopeless” elections. It is possible that,

due to the differences in the distributions of parties’ margins of victory detailed in Figure 25

from Chapter 5, weighting the distributions as the practitioners suggest would result in a shift

towards Republicans in the values of the bias measures, since Democrats tend to win with

larger margins of victory (and thus there may be more “hopeless Seattle Republicans”, as one

respondent suggested). Alternatively, since Republicans tend to win with smaller margins, it

may be that the bulk of losses Democrats experience fall just outside of the 8 10% margin win-

dow suggested by many practitioners. Further analysis would be required to identify the effect
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of weighting on the aggregate measures (and the resulting local impact scores). Regardless

of this concern about weighting, participants tended to agree that the fundamental idea of the

efficiency gap was valid: if one party wastes a larger amount of votes than another, the system

may be biased.

However, a subgroup of respondents in Washington did feel that the use of turnout infor-

mation or registration discrepancy is invalid on its face for defining advantage. In those cases,

participants suggested two different reasons for its inadmissibility. First, objections tended to

place turnout into a different “category” of measure than partisanship, and suggested that dis-

crepancies in the numbers that turnout between districts should simply never be included in re-

districting decisions, since that gets too close to fixation on “registered” voter population break-

downs. In this perspective, a district’s turnout is endogenous to the boundaries of the district; a

cohesive community may be easier to organize to show up to vote, so using a prediction or an-

ticipation about turnout before the district is drawn is invalid. Second, objections suggested that

turnout is a direct, partisan-relevant indicator, but that using it to measure advantage focuses

on the wrong variable. These objections suggested that “large” and “small” districts are equally

likely to provide bias, and that discrepancies in the sum of waste by party misrepresents the

effects of advantage. Instead of focusing on how one party may win more easily than another,

many participants suggested that vote waste measures fall apart due discrepancies in political

cultures in the urban and rural districts. In spite of this (and further attempts at clarification),

further clarification from participants of the mechanism driving this was not available. The re-

spondents did suggest that this was not a necessary conclusion and could change in the future,

but I remain unclear as to what the the participants in this subgroup meant.
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Chapter 10

CONCLUSION

Partisan gerrymandering is both critical to understand and detect. Methods to model parti-

san advantage have long provided one method to identify when a legislative district plan may

place an undue burden on one party. This dissertation improves the state of partisan advan-

tage analysis in many ways. Through the construction of a novel dataset, exploratory analysis

of electoral data, a formal specification analysis and simulation study, new insights about elec-

toral modeling are available.

10.1 Empirics

First, the exploratory characterization of the structure of swing definitively answers disagree-

ment in the political science literature about the empirical structure of electoral swing in legisla-

tive and presidential elections in the United States. Electoral swing, the change in vote share

between elections, is neither strictly uniform nor spatially independent, but this depends on

the frame of analysis. Even when accounting for state or regional heterogeneity, spatial de-

pendence is both strong and significant in presidential elections by county. In the case of the

legislative elections, spatial dependence in swing is much weaker, and may become totally

marginal when controlling for spatial heterogeneity at the regional or state level. The “neighbor-

hood” of swing clusters tends to be somewhere above the state but below the Census division,

so modeling spatial heterogeneity in congressional elections at the state level may not be an

appropriate scale of treatment. While the legislative model of elections used in Gelman and

King (1994b) is spatially-misspecified, the correction of this misspecification yields very small

differences for the shape and structure of the simulated seats-votes curves that are used in the

analysis of partisan advantage. This may not hold for other types of electoral models, however,
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so a thorough specification analysis of the source electoral model should always be conducted

when attempting to characterize electoral advantage.

10.2 Electoral Model Specification

Thus, it seems that, while the discussion about spatial effects in electoral analysis around

Gelman and King (1994b) is apt, it is not substantial — no major differences were observed

using a variety of models of spatial dependence in vote shares or electoral swing at a national

level. Further, I find that accounting for a spatially-dependent multilevel model of electoral out-

comes provides a different shrinkage structure for spatial effects than that observed in a typical

multilevel model, but this difference does not appear to be substantial in terms of model fit or

effect interpretation in most cases. In general, the empirical effects of modeling spatial depen-

dence in electoral outcomes at the congressional level in the US appears slight. Accounting for

the mean adjustment and variance inflation/de-syncing involved in common simultaneous au-

toregressive model specifications, only a slight difference in estimated seats-votes curves was

observed when allowing partisan swing to be a spatially-correlated random effect with constant

variance and fixed mean in simulation. Once controls on the variance and mean were removed,

the seats-votes curves began to become significantly more different. Thus, in general, it seems

that the spatial dependence in swing or vote shares alone is not sufficient to induce large

changes in the seats-votes model after controlling for the potential induced heteroskedasticity,

variance inflation, and mean inflation.

This issue has further import for spatial research and simulation design. Many studies in

spatial analysis stipulate a data generating process (possibly of the simultaneous autoregres-

sive types examined here) and suggest that, as spatial dependence increases or decreases,

statistics or models behave in unexpected ways. What I did not appreciate (and I wonder

whether is not appreciated more broadly in the literature) is that the choice of this specifica-

tion has impact beyond simply inducing a pattern in the observed response (or the model er-

ror term). Indeed, as discussed in the Chapter 6, the use of a spatially-autoregressive error
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model may result in a covariance matrix with a non-constant diagonal, regardless of whether

heteroskedasticity is intended (see also Rey and Dev, 2006) While the fact that mixed regres-

sive, spatial autoregressive model specifications affect the mean response is well known in the

literature, the fact that a SAR-Error specification induces both heteroskedasticity and larger

marginal variance is not well-known in the spatial simulation literature, and is often never men-

tioned in simulation studies. While the movement from spatial covariance to spatial correlation

complicates the specification, it allows for a more precise control. Further, it allows the analyst

to identify whether is it spatial dependence causing claim A, or simply spurious induced vari-

ance/heteroskedasticity due to the specification of the simulation design. In this instance, this

led me to identify that no, spatially-dependent electoral swing is not significantly distinct from

independent electoral swing when it comes to generating seats-votes curve estimates, even

though the map of dependent swing will be quite different from that of independent swing.

10.3 Local Indicators of Partisan Impact

Using these electoral models, a novel measure to identify district influence on partisan

advantage was developed. I developed measures based on the essential idea of influence

measures. These measures focus on the effect of removing one district from electoral simula-

tions for N districts used to estimate partisan advantage. Given that a district is removed, the

partisan bias for the N − 1 districts is estimated. Then, the difference between the estimates

for the full (statewide) set and those for the N − 1 (deletion) set can be compared using many

different types of distribution comparison methods. The analyses can be reversed to provide

conclusion about the inclusion of a district, conditional on the rest of the districts. Thus, a district

i whose removal benefits Democrats is one whose inclusion benefits Republicans. If a state

has an aggregate Republican bias, then the presence of i would make the situation less neutral.

Since these measures work directly in terms of a given measure of partisan bias, the conclu-

sions about the statistics are sensitive to the measure of bias used. Therefore, the technique I
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develop is applicable for many existing measures of partisan bias in a legislature or delegation,

and can be used in a large variety of circumstances.

I suggest the use of three different methods: a nonparametric non-directional dominance

test, a binomial sign test, and effect size estimation. Each of these uses “more” information to

provide an estimate of the partisan impact of districts. The nonparametric test only differentiates

the statewide and deletion estimate distributions, suggesting that a district is either “impactful,”

show by its distribution being distinct from the statewide distribution. This method provides no

indication of the direction of difference, and cannot identify whether a district makes the state

plan more or less biased. The binomial sign test provides an indication of the direction in which

a district influences the statewide bias. Thus, it can characterize which districts consistently

benefit Democrats, which benefit Republicans, and which do not consistently benefit either

party. However, the binomial sign test provides no measure of the strength of benefit. This is

done using the effect size estimates. In this method, a standard effect size estimator (such as

Cohen’s d or a nonparametric equivalent) can be used to compare the statewide and deletion

distributions. This assumes that the “treatment” is the removal of the district.56 This provides

an estimate of both the direction and the magnitude of impact, controlling for the variance of

the simulations in both distributions. Further, the method can leverage a full decade of data in a

variety of ways, allowing for the identification of districts consistently over an entire redistricting

decade without estimating a panel for the decade.

Using these methods for five different measures of partisan advantage, I find that a few dis-

tricts in California and Wisconsin provide a marked advantage for Democrats/Republicans dur-

ing the 2000s and 2010s. Further, I find that the 2010 and 2000 districting plans differ markedly

in terms of the structure of district impact in California. The 2000s plan tends to be much more

strongly partisan, with each district having a strong partisan impact depending on the measure

of advantage used. For the Wisconsin plan, I identified three of the eight congressional districts

in Wisconsin as contributing markedly to partisan advantage. The identified districts often (but

56Or, measured in reverse, that the treatment is the inclusion of the district.
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not always) benefited the party that won the district. Depending on the measure of advantage

used, the conclusion about who benefits changed. All impact measures behaved differently

from the classical measures of leverage and influence, which characterized the relationship

between the districts and the model of vote shares used to generate the measures of partisan

advantage.

In all cases, the choice whether to analyze the electoral system in simulations where incum-

bents run versus simulations where no incumbents run generated significantly different results.

When analyzing simulations where no incumbent ran, measures were much smaller and district

impact much more slight. Though biasing districts were still identifiable, the signal was much

weaker. Often, districts which were selected in a simulation analysis under observed conditions

had no impact when incumbents were removed. This means that any district-specific measure

of partisan advantage will be sensitive to the size of incumbent advantage.

The existence of districts that are impactful in both scenarios is heartening, but not sufficient

to suggest the choice has no effect. Thus, where possible, I suggest that the distributions in

observed conditions be analyzed, since the processes of redistricting, strategic retirement, and

incumbent advantage are both difficult to disentangle and of dubious use to disentangle. If a

district is drawn to create favorable conditions for those in power and generates a partisan bias

in doing so, then incumbent advantage and impact on bias may be directly, mutually-implicated.

Since the analysis of a plan (and its rectification) must deal with districts and incumbents to-

gether, the analysis of bias in simulations under observed conditions speaks directly to the way

districts function to both build and shape partisan strength in a districting plan. The separation

through analysis of simulations under conditions with no incumbents seems to be an extreme

counterfactual, since no election has been held under these conditions. Thus, making decisions

about districts under an extreme scenario seems premature.
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10.4 Shape and Advantage

This dissertation finds that previous studies of the relationship between compactness and

partisan advantage are upheld by new measures of partisan impact. In general, no consistent

relationship exists between shape measures that purport to identify boundary manipulation and

the jackknife measures of impact on partisan bias scores. Further, using geometric to select

districts that are ill-shapen and likely manipulated selects districts with no consistent relation-

ship to partisan impact. That is, oddly-shaped districts are just as likely to be non-impactful as

impactful. The districts selected by compactness rules are districts whose presence benefits

Democrats, reinforcing the observation that compactness constraints tend to benefit Republi-

cans in the US. Thus, in aggregate and in specific, there seems to be no useful relationship

between common measures of boundary manipulation and measures of the impact a district

has on partisan bias scores. Thus, arguments to the contrary (e.g. Fan et al., 2015) should be

resisted.

10.5 Interviews

In soliciting and analyzing interviews with redistricting officials, stakeholders, participants,

and scholars, a few conclusions become clear. Over thirty individuals in four states were con-

tacted for interviews, and eventually sixteen individuals between two states consented to par-

ticipate. Many more participants consented in Washington than in Arizona, and no individuals

consented to be interviewed in California or Iowa. Across all states a few things are clear.

First, since many stakeholders are private individuals in states with non/bi-partisan citizens’

commissions, the technological infrastructure to contact commissioners after the fact is some-

what underdeveloped. There is often no consistent way to get a hold of commissioners or staff

involved in the process after the fact, since the state agencies responsible for drawing maps

often are drawn down quickly after the commission completes work. It seems that, in many

cases, the link between a states’ professional services divisions responsible for Geographic
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Information Systems more generally and the redistricting commission are not well-integrated,

since the commissions are impermanent. Further, in the interviews conducted in Washington

and Arizona, it is critical that commissioners have access to dedicated nonpartisan technical

support staff and dedicated partisan support staff. That is, there must be both a “neutral” map-

maker who constructs representations of the consensus of the commission (or for a nonpartisan

chair) and dedicated (distinct) partisan staff that draw partisan candidate maps. In the district

generation phase, it seems critical for the partisan staff to work closely with partisan-aligned

commissioners conducting responsive exploratory regionalization. Without dedicated staff pro-

vided by the party for their commissioners, a significant amount of computational issues were

exposed directly to commissioners.

When it came to public hearings in Washington and Arizona, the hearings served more as

discursive legitimation of the commission’s deliberations rather than a period where specific

ideas about districts or plans were incorporated. Commissioners suggested that public com-

ment is, by in large, not the place to lobby the commission about preferred shapes, metrics,

fairness, or representativeness. While practitioners seemed to suggest that the contentious-

ness of the process was different between the two states, it remains unclear as to whether

this was due to institutional design or political culture. Public comment in Arizona occasion-

ally resembled protests of the commission, and the litigation surrounding the AIRC presented

a distinct character to that experienced in Washington. Further, the Washington participants

often suggested that the fact that the commission was an even-number of individuals with no

non-partisan voting chair (i.e. that the commission was bipartisan, not non-partisan) accounted

for the distinct comity of the Washington commission. In addition, some Arizonans suggested

that having publicly-identified official mapmakers from the parties may resolve concerns about

the impartiality of the mapping firm. Regardless, it seems that protecting both the commission

and commissioners from allegations of nefarious wrongdoing and aligning the incentives of the

commission to produce consensus maps seem most important for a successful commission.
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10.6 Avenues of Further Work

There are a few avenues of study I believe would be fruitful to explore given the results here.

The first would be to examine whether the conclusions about partisan impact hold constant

over different types of model specifications, like the shapes of the seats-votes curve estimates

broadly do in Chapter 5. Where these models may disagree on the statewide estimates, direct

empirical comparisons of the models’ results on partisan advantage and an analysis of how

sensitive these models are to each district could be helpful. Since the leverage statistics may

take a different form in a model like that used by McGann et al. (2016) than that used in Chapter

7, the impact statistics may comport better with leverage or influence in that model. Alternatively,

if they continue to be distinct from leverage/influence, then the method can be shown to be more

robust to specification. An interesting use may be in the Gaussian Mixture model of Linzer

(2012), which would also open the way to deletion impact analysis of multiparty systems.

Second, it may be interesting to conduct a more thorough analysis of the different typologies

of extreme impactful districts. While this dissertation examines a case studies in Chapter 7, a

comprehensive analysis of the typologies of districts that are rated as impactful is not conducted.

This is partially because context, i.e. identifying the idiosyncrasies as to why a given measure

may flag a given district in a decade, is quite thick and the construction of these typologies itself

requires meta-analysis of the traits of districts and the deletion statistics. However, since the

five measures occasionally disagree on which districts are impactful in any given state context,

this could be helpful to both shed light on the properties of each measure itself. While Tam

Cho (2017) provides a cogent analysis of the efficiency gap measure of McGhee (2014) in em-

pirical settings, similarly detailed analyses tend not to be conducted for other measures when

they are used in the literature (McDonald and Best, 2015; Arrington, 2016, e.g.). Thus, using

deletion statistics as one avenue of a thorough analysis of the measures may be helpful. This

would complement an analysis at more scales as well, such as for state legislative districts or

aggregating vote and turnout predictions from a precinct-level model, rather than congressional

districts focused on here.
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More broadly, using this type of deletion/removal analysis to conduct sensitivity analysis for

derived properties in spatial model criticism may be useful. While the use of bootstrap influence

measures is quite old (Leamer, 1983), the interest in spatial econometrics has been less-than-

apparent. Regardless, these kinds of measures are at the forefront of research (Harris et al.,

2017) and may yield significant results for the analysis of spatial systems beyond those dis-

cussed here in specific electoral spatial systems. Since the methodology driving this analysis

is quite general, it may be used in a host of problems where model sensitivity to region is rel-

evant or important to estimate quantities not covered by classical leverage methods. Going

forward, using jackknifing, simulation, and analysis in terms of direct quantities of interest (King

et al., 2000) should be at the forefront of making meaning of geographic models in spatial social

science.

The fact that interview participants could not recall partisan advantage measures being

used in the redistricting process indicates how strongly out of touch this literature is with the

politics as practiced. While the wake of the redistricting seems to generate a more academic

interest, as litigation about the results of districting propagate upwards through the legal system,

it may be of interest in the future to provide actual documents for professional end users to

consult in the districting processes. These would likely take the form of handbooks that both

technical teams and commissioners could consult during the process that explain and codify

academic perspectives on these issues. Further, much of the existing academic work on these

measures and types of analyses are short articles; very few book-length studies of this process

exist. While McGann et al. (2016) is one recent study, its section on modeling is both short

and light on formal detail. Thus, I hope to conduct more work on the empirical sections of this

dissertation and publish as a series of articles or a monograph about these models specifically

and the use of advantage statistics in this style. Finally, concerns about construct validity of

these measures is borne out throughout the analysis; while the local measures do consistently

identify biased districts, they occasionally disagree. Since the local measures will inherit all

the flaws of the statewide measures, further validation work of the statewide measures (i.e.

significant statistical, empirical, simulation study in the vein of Tam Cho (2017)) is critical. While
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the new local measures of partisan advantage developed here are useful, their reliance on the

statewide measure validity means that it is important to be sure about the structure and behavior

of the statewide measures of advantage.
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