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ABSTRACT

Online learning platforms such as massive online open courses (MOOCs) and

intelligent tutoring systems (ITSs) have made learning more accessible and personalized.

These systems generate unprecedented amounts of behavioral data and open the way

for predicting students’ future performance based on their behavior, and for assessing

their strengths and weaknesses in learning.

This thesis attempts to mine students’ working patterns using a programming

problem solving system, and build predictive models to estimate students’ learning.

QuizIT, a programming solving system, was used to collect students’ problem-solving

activities from a lower-division computer science programming course in 2016 Fall

semester. Differential mining techniques were used to extract frequent patterns based

on each activity provided details about question’s correctness, complexity, topic, and

time to represent students’ behavior. These patterns were further used to build

classifiers to predict students’ performances.

Seven main learning behaviors were discovered based on these patterns, which

provided insight into students’ metacognitive skills and thought processes. Besides

predicting students’ performance group, the classification models also helped in finding

important behaviors which were crucial in determining a student’s positive or negative

performance throughout the semester.
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Chapter 1

INTRODUCTION

Course management systems (CMSs) and online teaching systems have traditionally

been the main sources of data on students’ learning activities [11]. These data have

led to an array of research directions in educational data-mining, aimed at improving

the understanding of how students interact with such systems and use them to

improve their learning skills. Cognitive scientists have shown that self-regulation

and metacognition are the key components for developing effective learning, whether

in a classroom or using online resources [7, 32]. Because teaching is complex and

open-ended in nature, students must apply their cognitive skills to achieve success.

These skills are difficult to learn in a classroom environment [20, 31], but an

open-ended learning environment can help students to learn and to practice such

skills on an online teaching platform. In recent years, online platforms like EdX and

Practical Algebra Tutor have given researchers scope to analyze the rich sources of

data generated [5]. These studies have focused on examining students’ backgrounds,

the time spent on problems, and learning patterns that might contribute to success in

the course. Knowledge about students’ learning behavior and patterns aids instructors

in providing feedback to students to help them understand the subject matter. For

instance, Brown et al. [6] showed that through feedback, younger students can acquire

cognitive skillsets essential for learning, such as strategizing their learning path and

using self-monitoring techniques.

Predicting students’ success has been a cornerstone of educational research for

the last two decades [4, 29]. Several studies have focused on identifying students’
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performance predictors through information about their past academic performance,

screening tests, and questionnaires regarding cognitive behavior, background or ex-

pectations. The development of online tutoring systems, complete with educational

data-mining and learning analytics, has enabled researchers to track students’ per-

formance, learning patterns, and interactions with the system [28]. Based on these

strategies, predictive models can be built.

1.1 Motivation

Researchers such as Biswas et al. [3] used hidden Markov models (HMMs) [23] for

probabilistic representation of metacognitive strategies. They used HMM because the

hidden states were representations of students’ mental states, and the observable output

was equivalent to student actions. This technique helped in identifying, interpreting

and comparing students’ learning patterns at an aggregated level. However, averaged

descriptions do not provide a full picture about specific learning strategies that

students employ while interacting with the system. This lack fueled the need to

employ sequential mining techniques to yield a more precise analysis of learning

patterns.

Analyzing student patterns through sequential pattern-mining [1] helps in iden-

tifying relevant patterns from students’ action sequences. This information aids in

evaluating and comparing students’ learning behaviors and cognitive skills, across

different groups such as higher and lower performing students. However, the data can

produce a huge number of patterns when gaps between the learning sequences are

taken into consideration. The challenge is to limit these large-scale results to a set of

the most important patterns that differ across various learning groups [15].
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The work in this thesis was motivated by the intuition that the efficacy of daily

quizzing systems could be enhanced by a guiding mechanism that tracks students’

daily activity. This system should predict productive and unproductive behavior and

recommend more efficient learning strategies. Predicting student behavior based on

random patterns is difficult. However, if specific patterns are known to be associated

with students’ traits, knowledge, or learning curves then there is a better chance to

learn the underlying associations and use them for prediction [9].

This study examines data retrieved from QuizIT, a programming concepts’ problem

solving system. The identification of relevant traits among higher and lower performing

students was based on creating action sequences from QuizIT data, using mining

algorithms to find a set of frequent student patterns that affect student behavior.

Then a predictive model was built to try and predict students’ performances in a

subject, based on these traits.

1.2 Research Questions

This thesis evaluates two main research questions:

Q1 - What are the possible learning strategies adopted by a student working on

programming problems in QuizIT?

Q2 - Is it possible to build predictive models based on the patterns identified as

being relevant to students’ learning performance?

3



1.3 Organization

This introduction (Chapter 1) is followed by a discussion of the background

and literature review to provide in-depth understanding of the context of the study

(Chapter 2). The methodology is presented in Chapter 3. That chapter explains the

research platform, data collection, and differential mining techniques used to extract

frequent learning patterns. The results are discussed in Chapter 4; the evaluation of

the results explores the learning behaviors exhibited by students and the performance

of the predictive models based on these behaviors and patterns. The conclusion

(Chapter 5) summarizes the approach and findings of this thesis.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Student Assessments Based on Online Learning Systems

One of the main research areas in educational data mining is understand students’

behavior during learning, and the need to understand parameters that affect this

behavior. The relationship between students’ performance and gaps in duration, and

other factors, has always been of interest to researchers [22, 25]. However, to date it

has been difficult to manually assess student performances individually, due to time

constraints. Researchers thus tended to rely on students’ self-reporting of results.

However, the risk of response bias has led to the development of online learning

systems. These systems enable researchers to collect not only responses but also to

log information regarding duration, course details, topics, difficulty levels and so on.

Such information enables research on various aspects of the data.

One of the first major systems developed for this purpose was Computer-Assisted

Personalized Approach (CAPA) [14]. CAPA was a network-based personalized assign-

ment system that enabled students to discuss the solving strategy for assignments

having similar concepts. They could also submit the solutions without any restriction

on revisions before the due date. The same technology was used in a more advanced

version, the Learning Online Network with CAPA (LON-CAPA) [17]. These systems

provided strong evidence that personalized systems can enhance student performance,

offer in-depth understanding of topics, and reduce plagiarism. However, they were
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mainly parameter-based question-and-answer (QA) systems restricted to the physics

and mathematics domain.

Researchers were inspired by such systems to develop their own versions of param-

eterized QA systems to teach programming. One such system is QuizJET for teaching

Java [13], which uses parameterized multiple-choice questions for programming con-

cepts. An interesting feature of this system is that students participated in the system

voluntarily. It was found that students were on average 2.5 times more likely to

answer questions that offered adaptive navigation support than those without such

support. This system helped both weak and strong students to learn concepts based

on a gradual increase in difficulty levels, and it led to a high success rate. However,

around 25% of students felt that feedback on the quizzes was insufficient.

Perera et al. [21] were interested in understanding the learning behavior of

students in group projects and its impact on individual students. A related system

was developed, called TRAC [27]. Student teams’ log data were captured in TRAC

whenever a user created or modified a wiki text page, a new ticket, or a subversion

repository. The student groups were ranked by performance and were clustered based

on their ticketing behavior. The results illustrated certain sequences pertaining to

strong and weak students, related to leadership qualities and monitoring behavior.

The sequences helped students obtain feedback on whether their progress was likely

to yield a positive or negative outcome at the end of the semester. The main problem

with this work was that the dataset was correlated, noisy, and incomplete.
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2.2 Sequential Pattern Mining to Study Learning Behaviors

The development of online-based learning systems gave rise to a new research

interest in educational data-mining, namely to mine sequential patterns of actions

performed by students using the system. Researchers hoped that studying such action

sequences would provide insight into students’ learning behavior and help to give

students feedback regarding their strengths and weaknesses.

As discussed in the previous section, Perera et al. [21] clustered student groups

according to their ticketing behavior. The researchers transformed the logged data

into list of events, with each event consisting of an event type, ticket number, author,

and timestamp. Events were encoded into items, using alphabets to form action

sequences which represented sequential patterns of group sessions. Frequent patterns

were mined using a modified version of the generalized sequential mining (GSM) [26]

algorithm. The most frequent patterns were used to distinguish stronger groups from

weaker ones.

Maldonado et al. [18] used a pen-based tabletop to study the problem-solving

behavior of students in groups, when they were asked to solve picture-based mysteries.

All actions performed by the pen were logged. These actions were then codified into

events as in [21]; each event consisted of details about time, author, action, and object.

The researchers used both raw human–computer interactions and the compact logged

actions for mining and clustering frequent patterns. They also used variable-order

n-gram-based mining algorithms [19] for both methods, and compared the results to

evaluate the strategies of high- and low-performing groups.

One of the most popular sequential pattern algorithms used in educational data-

mining is bitmap based sequential pattern mining (SPAM) [2]. This is a DFS-based
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pruning algorithm which tracks candidates using a vertical bitmap data structure.

SPAM has proven to be time-efficient compared with other algorithms for identifying

frequent patterns among long sequential patterns. However, a shortcoming was it did

not support user-defined constraints.

Joshua Ho et al. [12] developed a generalized version of the SPAM algorithm,

called the Pex-SPAM algorithm, which introduced gap constraints. Pex-SPAM was

developed to deal with protein sequences consisting of in-between noises to extract

high-quality transmembrane helix features. However, the algorithm is general in nature

and can be used in other pattern mining problems. It is necessary to incorporate such

constraints because action sequences are noisy. Students display patterns that relate

to their learning behavior but they also perform additional tasks in-between, which

are irrelevant to the pattern.

Guerra et al. [9] used a dataset from QuizJET to create students’ action sequences

using two alphabets, s and f to denote success or failures respectively. These alphabets

in lowercase and uppercase denoted short and long duration while solving subsequent

problems. The researchers used the Pex-SPAM algorithm to find frequent patterns

and termed these “problem solving genomes”. The genomes were then employed to

analyze the stability of the learning behavior of students at the temporal and spatial

levels. The researchers also analyzed the effect of the difficulty level of a problem on

the genome. The results of that research cannot indicate whether problem-solving

genomes in other subject domains might show similar properties.

Kinnebrew et al. [15] developed an ITS called Betty’s Brain [16] and created action

sequences of each student based on Betty’s Brain logged details. The researchers used

gap-constraint-based SPAM to find common patterns among all students. To identify

the most interesting patterns, they developed a novel technique called differential
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sequential mining. This technique uses t-tests to find differentially frequent patterns

and examines whether there is a statistically significant difference in a pattern’s

frequency for each sequence, for higher and lower performing students. This analysis

distinguishes the learning behaviors of high and low performing students. Kinnebrew

et al. also analyzed the reading behaviors of high and low performing students during

their productive and unproductive phases of work [16].

Herold et. al [11] collected students’ actions which were handwritten using a

digital pen. Variables such as ink color and the duration of strokes were also logged.

Action sequences were developed from the raw data, with each action representing an

assignment number, topic type, and duration. Differential sequential mining technique

was used to find patterns for strong and weak students, and a linear model was

proposed to predict students’ performance in the course based on these patterns.

Online learning platforms enabled researchers to gather behavioral data about users,

and inspired the study of behaviors related to problem-solving – both individually

and in groups. As these data were sequential in nature, researchers developed more

powerful sequential mining algorithms to extract patterns to represent cognitive

skills. Improvements in techniques over the years encouraged people to use these

representations to build systems to predict the strengths and weaknesses of users, with

the aim of helping users address their issues and improve their efficiency in learning

tasks. This thesis builds on those prior efforts by applying differential sequential

mining to identify higher and lower performing students’ habits, gain insight into their

metacognitive processes, and use these processes to build predictive models.
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Chapter 3

METHODOLOGY

3.1 Research Platform

QuizIT is a daily quiz system that generates a “quiz of the day” for programming

concepts. It was developed by the CSI research team of the School of Computing,

Informatics, and Decision Systems Engineering (CIDSE) at Arizona State University.

Students are not required to use QuizIT but are encouraged to do so and are awarded

extra credits if they do. Each day, QuizIT generates a random question with a

multiple-choice answer; only one of the options presented is correct. There is no time

limit on choosing the answer. The QuizIT system evaluates the student’s response and

reports whether the answer is correct or incorrect. Figure 1 shows the user interface

of QuizIT. The left panel shows the question of the day, and the right panel shows

the student discussion board related to questions that were previously attempted by

other students. The discussion board also provides a platform to post comments.

The student has the freedom to attempt the quiz of the day as well as previous

questions (which were either attempted or not by the student). Each question is

marked as a difficulty level of Easy, Moderate, or Difficult. If the question is correctly

answered, the student is invited to attempt other questions. The student is not

provided with the solution if the answer is incorrect but is rather prompted to redo

the question until they give the correct answer. The goal is to make the student

reflect on their mistakes to rectify them and find the solution on their own. This

enables instructors to gain insight into the cognitive skills students are applying while
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attempting new questions or re-attempting incorrectly answered questions. These

activities leave a trace of students’ successes and failures over time.

Figure 1: QuizIT daily programming system interface

3.2 Data Collection

The data of students enrolled for CSE 110 in Fall 2016, and who used QuizIT, were

collected. CSE 110 is an introductory object-oriented Java programming course at

undergraduate level in CIDSE at Arizona State University. QuizIT has 110 exercises

organized across 18 topics (such as strings, expression, and method), each of which

is labeled as either easy (71 exercises), moderate (30), or difficult (9). In 2016, 375

students were enrolled in CSE 110 but QuizIT was used by 187 students; 5963 correct

attempts were recorded, and 4094 incorrect attempts. Exercises at the easy level were

attempted 5562 times, moderate questions were attempted 3150 times, and difficult
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questions were attempted 1345 times. The timestamp at which the questions were

attempted was also recorded.

3.3 Building Action Sequences

In this section, the conversion of each data point to an action sequence is discussed.

The creation of action sequences was crucial because they represented discrete actions,

which are suitable for differential pattern mining. Each action is a set of alphabets

representing the particular event. The event is characterized using the difficulty level,

correct or incorrect attempts, and duration between successive actions.

The process of building sequences of actions required rearranging the data belonging

to the same student. The data were first sorted and grouped by student ID, then by

the question ID (i.e., the questions attempted by the same student), and finally by

timestamp sorted within each question ID. Then the difference in time for consecutive

attempts on a specific question was computed. This measure represented the duration

of each successive attempt if the student re-attempted the question.

After this, each event segment was labeled using alphabets and numbers denoting

a particular action. Each action segment was labeled with a triple {L, F, D}, where

L ∈ {Easy, Moderate, Difficult} represents the difficulty level, F ∈ {1, 2} represents

the correctness flag where 1 denotes a correct attempt and 2 denotes an incorrect

one; and D ∈ {F, S, M, L, VL, XL} represents the duration of the action. If the

student attempted a particular question for the first time, it was denoted as first

occurrence (F). For successive re-attempts, the terms S, M, L, VL and XL were used

to indicate an action of small, medium, long, very long, and extremely long durations,
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respectively. For instance, <Easy-1-F> represents a question of easy difficulty that

was answered correctly on the first attempt.

Most of the researchers in their prior work on behavioral mining divided the raw

data into sessions to form action sequences. However, it was interesting to examine

the changes in learning behavior over a semester, considering the intermittent breaks

between the action sequences of a student. Therefore, a different way of labeling the

durations was devised. To determine the cut-off points for each duration category,

univariate k-means clustering in 1D using dynamic programming was used [30]. Among

the 10057 data entries, 5344 entries were non-zero (i.e., there were 5344 sequential

time data points which were not a first occurrence). Among these, 5299 data points

fell below 1 hour; the rest of the data were treated as being of too long a duration

and were excluded as outliers to achieve better convergence in the k-means.

The threshold was set at 3600 seconds to exclude more points as outliers and

to prevent overfitting and retain the cut-off boundaries. The Bayesian information

criterion (BIC) [24] was used for model selection, with models having lower BIC being

preferred. The best BIC for four cluster centers was calculated at -39192.96. The

resulting thresholds were 6.3287 seconds for small duration, 121.0022 seconds for

medium duration, 394.4931 seconds for long duration, and 914.5216 seconds for very

long duration. Finally, to create action sequences from these action segments for each

student, the data were first sorted by timestamp and then grouped by student IDs.

Students received percentages and were graded on their performance in assignments,

midterms, and finals in CSE 110. Using these data, each student’s action sequence

was assigned to a performance group. An action sequence was assigned to the high-

performance group if the student’s percentage fell above the median for the class

percentage. Similarly, the action sequence was assigned to the low-performance group
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if the student’s percentage fell below the median of the class percentage. The data

were divided into these two groups because the differential sequential mining that

would be employed uses two databases as inputs. Hence the division would help to

highlight the difference between the learning patterns of higher and lower performing

students.

3.4 Differential Pattern Mining

To identify patterns that were distinctive to either higher or lower performing

students, the differential pattern mining technique was used. This technique was

developed by Kinnebrew and Biswas [15] and it uses two sequence databases, known

as the left database and the right database. The order of the left and right groups

did not matter. The algorithm uses two important metrics to measure the support of

patterns: s-support and i-support.

• s-support: This stands for “sequence support”. Sequence support of a pattern

is defined as the number of sequences that contain a particular pattern. Patterns

that meet a set threshold for s-support are known as s-frequent patterns.

• i-support: This stands for “instance support”. Instance support of a pattern is

defined as the maximum number of times the pattern appears within a sequence

without any overlap. The i-support of a pattern for a sequence database is

commonly used as it basically represents the mean i-support value of the pattern

for all sequences in both databases.

An example will help to illustrate the concepts of s-support and i-support. A

sequence database has 5 sequences, with the first 3 sequences showing 1 instance of a

specific pattern, and the last 2 sequences showing 4 instances of the same pattern. In
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this case, the pattern has an s-support of 5 and an i-support of 1 and 4 in the first

and last sequence respectively. The mean i-support of the pattern for this sequence

database will be 2.2.

The differential sequential mining algorithm shown in Figure 2 was implemented

in Python to extract the differential patterns. The algorithm begins by finding all the

patterns in the left and right sequence databases that meet the s-support constraint.

To find the initial set of s-frequent patterns, an open-source data-mining library

called SPMF [8] was used for the SPAM algorithm, which takes into account the gap

constraint. The gap constraint means that between each pair of action segments in a

frequent pattern, additional action segments up to the gap limit can be accommodated.

For instance, if the gap constraint is 2 and the sequence is P-B-X-Q-S-R, a

frequent pattern <P-Q-R> can be extracted. Incorporating gap constraints in mining

algorithms is crucial because action sequences are noisy. A student’s learning behavior

is reflected in the action sequences, but the student also performs other actions

in-between the relevant pattern – such as randomly attempting a different question

out of boredom. This action is out of context of the student’s learning behavior. A

maximum gap constraint of 2 was used in this work.

In the next step, to compare frequent patterns across both databases, the mean

i-support of each pattern was computed in the left and right databases. Computation

of i-support also considers the maximum gap constraint of 2 to allow for noise

interspersed between the action sequences. After this, the t-test was performed for

all the s-frequent patterns. This step determined whether an i-support value for a

particular pattern in the left database differed significantly from the i-support value

of the same pattern in the right database. If the p-value of the t-test result was below
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the set p-value threshold (based on confidence intervals), that pattern was considered

to be differentially frequent.

Figure 2: Differential Sequential Mining Algorithm [15]
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Although this approach employs multiple t-test comparisons between the databases,

it is important to note that the t-test was not used to statistically prove that the

left and right databases differ. Also, neither Bonferroni or other corrections were

used to determine the p-value threshold for rejecting the null hypothesis. Rather,

it was used as an exploratory-analysis heuristic to extract more interesting patterns

for specific characteristics that were relevant to the two student groups. After that,

the mean values for i-support for the left and right databases were compared to see

which patterns emerged more in one group. This comparison yielded four types of

differentially frequent patterns:

• s-frequent in both databases but mean i-support higher in left database

(ptrnsbothLeft)

• s-frequent in both databases but mean i-support higher in right database

(ptrnsbothRight)

• s-frequent only in left database (ptrnsLeft)

• s-frequent only in right database (ptrnsRight)

Only the last two cases (ptrnsLeft and ptrnsRight) were considered as they were

crucial for distinguishing high-performing students from the weaker ones. The high-

performing students were used as the left database and low-performing students as

the right one. The s-support was set at 0.3 (i.e., for a pattern to be s-frequent, it

must appear in at least 30% of the sequences in a database). The p-value threshold

was set at 0.05, or 95% confidence level.
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3.5 Building Predictive Models

Using differential sequential mining, 35 s-frequent patterns were found. Among

these, 23 patterns belonged to higher performing students and 12 to lower performing

students. The aim was to use these 35 patterns to build a predictive model that

could predict the performance of a student. The patterns were first represented as

features with binary coding: the feature was labeled as 1 if the pattern was present in

a student’s action sequence and as 0 if not. To remove patterns that were strongly

correlated with each other and to avoid overfitting, an algorithm named correlation-

based feature selection (CFS) [10] was used with 10-fold cross-validation. The CFS

algorithm helps in identifying feature subsets having the most weights. Features

selected by CFS in more than 5 out of 10 folds were included in the final features

for training the predictive model. From CFS, 8 high-performing patterns and 2

low-performing patterns were retrieved. Table 1 shows all the patterns with their

p-values and mean i-support values.

Table 1: Patterns filtered by CFS algorithm

Pattern Category Mean i-support P-value
<Easy-1-F> <Medium-2-F> <Medium-1-M> HIGH 0.0107 0.0001

<Medium-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> HIGH 0.0072 0.0002
<Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> HIGH 0.0221 0.0001

<Easy-1-F> <Easy-1-F> <Difficult-1-F> HIGH 0.0101 0.0005
<Easy-1-M> <Medium-1-F> HIGH 0.0093 0.0005

<Easy-1-F> <Easy-1-F> <Easy-1-F> <Medium-1-F> HIGH 0.0154 0.0008
<Medium-1-F> <Easy-1-F> <Easy-1-F> HIGH 0.0286 0.0002
<Easy-1-F> <Easy-1-F> <Medium-1-F> HIGH 0.0259 0.0041

<Medium-2-F> <Medium-2-S> <Medium-1-S> <Medium-2-F> LOW 0.0086 0.0082
<Easy-2-S> <Medium-2-F> LOW 0.0086 0.0452

These 10 features were used to build a linear regression model that can predict a

student’s performance in the course. Random forest and logistic regression classifiers
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were used to predict whether a student belonged to the high-performing group or the

low-performing group. Linear models and random forest classifier are relatively easy

to interpret, as the weights of the features provide deep understanding of the features’

importance. The results of the models are discussed in the next chapter.

19



Chapter 4

EVALUATION

4.1 Exploring Learning Strategies with Behavioral Patterns

Among the extracted 10 patterns, seven learning behaviors were observed, based

on students’ problem-solving patterns. They were labelled as follows: persistent-

practicing, jump-forward-progression, steady-progression, experimental-progression,

jump-backward-progression, struggling, and withdrawal. The pattern behaviors are

summarized in Table 2.

Table 2: Patterns classified into various learning strategies

Patterns Behavior
<Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> Persistent-practicing

<Easy-1-M> <Medium-1-F> Steady-progression
<Easy-1-F> <Medium-2-F> <Medium-1-M> Experimental-progression
<Easy-1-F> <Easy-1-F> <Medium-1-F> Jump-forward-progression
<Easy-1-F> <Easy-1-F> <Difficult-1-F> Jump-forward-progression

<Easy-1-F> <Easy-1-F> <Easy-1-F> <Medium-1-F> Jump-forward-progression
<Medium-1-F> <Easy-1-F> <Easy-1-F> Jump-backward-progression

<Medium-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> Jump-backward-progression
<Medium-2-F> <Medium-2-S> <Medium-1-S> <Medium-2-F> Struggling

<Easy-2-S> <Medium-2-F> Withdrawal

The learning behavior are further described in detail as follows:

1. Persistent-practicing is shown as <Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-

1-F>. This behavior is displayed when a student repeatedly solves one or more

problems of the same difficulty level correctly, all on the first attempt. This

behavior aligns with QuizIT’s design rationales to help students space their

learning opportunities, by practicing simple problems distributively.
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2. Jump-forward-progression behavior, such as <Easy-1-F> <Easy-1-F>

<Medium-1-F>, is seen among three patterns. In this behavior, students

repeatedly solve one or more problems of the same difficulty level correctly;

then they progressively solve a problem of higher difficulty level, all on the

first attempt. This behavior demonstrates the testing effects of QuizIT in

preparing students to solve harder problems in future after practicing simpler

ones. Among 10 observed patterns, three jump-forward-progression patterns

represented this behavior.

3. Steady-progression, <Easy-1-M> <Medium-1-F>, illustrates that students take

their time when attempting a question, although they did not answer it correctly

on the first try. Eventually they solved the problem correctly and moved on to

another more complex problem.

4. Experimental-progression, <Easy-1-F> <Medium-2-F> <Medium-1-M>, occurs

when a student correctly solves a question of a certain difficulty level but

makes mistakes when attempting a question of a higher difficulty level. In this

case, the student re-attempts the incorrectly solved question, takes a while to

comprehend the question, and finally solves the question correctly. This behavior

is particularly interesting as it shows the student’s effort to learn from mistakes

while solving a tougher problem and eventually solving it.

5. Jump-backward-progression behavior, such as <Medium-1-F> <Easy-1-F>

<Easy-1-F>, is seen among two patterns. The student correctly solves a relatively

difficult question and then correctly solves one or more problems of a lower

difficulty level, all on the first attempt. This behavior suggests that some student

may not understand the medium level problem. Their first attempt for medium

problem can be a guess, so they jump backward to restart practicing. This
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pattern is a good evidence to show that these students are working on their

concepts, and the system can adapt to different learning pace of students.

6. Struggling, <Medium-2-F> <Medium-2-S> <Medium-1-S> <Medium-2-F>,

expresses the behavior in which the student solves questions of same difficulty

level repeatedly. Among all the attempts, there are only limited correct ones in

the middle. This behavior suggests that the student struggled to get the answer

right, and may have applied trial-and-error strategy to get the limited correct

answer. This is because from the pattern it can be seen that the student takes

too short a time to re-attempt the questions. This is particularly a poor learning

behavior as the student does not try to think and work out on the problem.

7. Withdrawal, <Easy-2-S> <Medium-2-F>, is a behavior where the student

attempts a question they attempted before, but then they skip the question if

their answer is incorrect so as to move on to the next question of a different

difficulty level, which is again solved incorrectly. This is another undesirable

behavior as it shows that students simply give up on the problem if they are

unable to solve it. This learning pattern can prove detrimental to performance

in the long run and this needs to be addressed by the instructor.

The distribution of learning behaviors across the two performance groups is

shown in Figure 3. All learning strategies are used by students in both groups.

However, the strategies of persistent-practicing, jump-forward-progression, steady-

progression, experimental-progression, and jump-backward-progression are mainly

used by higher performing students. Struggling and withdrawal are strategies used

by lower performing students.The most observed behavior among high performers is

persistent-practicing, which was used by 63.29% of top students. Jump-backward-
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progression and jump-forward-progression were used by 50% and 47.25% of high

performers, respectively.

This finding shows that half of the top students tended to correctly solve an

easier question after attempting a tougher question, which suggests a confidence

gain regarding specific topics. Withdrawal was the behavior seen most often among

low-performing students, at 39.24%, followed by struggling, at 34.17%. Interestingly,

the third most used strategy in the lower performing group was persistent-practicing,

at 29.11%. This finding supports the design rationale of QuizIT regarding students’

need to practice solving simple questions.
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Figure 3: Learning behavior distribution across the two performance groups

The distribution of learning behaviors with respect to final grades is shown in

Figure 4. The students’ grades were classified according to four main grade lists,

namely A, B, C and D. The bar chart shows that 64.47% of A-grade students adopted

persistent-practicing. Jump-backward-progression and jump-forward-progression were
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Figure 4: Learning behavior by students’ final grades

used by 50% and 48.68% of A-graders respectively. This result shows that most

A-graders were using five strategies pertaining to the highly performing group.

Among the B-graders, 37.7% of students showed persistent-practicing. However,

withdrawal was the most prominent behavior in this group (41.5%) and struggling

was the third most prominent behavior (32%). This finding shows that more B-grade

students employed negative behaviors than positive ones. Hence, most of them were

average students and fell into the group of lower performing students. Among the

C-graders, 50% of the students who withdrew also struggled, which means that both

these behaviors contributed negatively to the students’ performance. Interestingly,

more C-graders showed experimental-progression behavior than B-graders. With
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regard to the D-graders, most both withdrew and struggled, although one D-grader

had adopted jump-backward-progression as a learning strategy. This suggests that

student should have followed QuizIT’s progression instead of venturing too fast too

soon, especially for lower-performing students.

4.2 Exploring Models Based on Behavioral Patterns

The patterns and learning behaviors (discussed in the previous section) were used

to build models to predict a student’s performance group and final scores. The purpose

of the models was to gain in-depth knowledge about individual learning patterns

and learning behaviors which are influential in determining students’ performances.

This section discusses the different classifiers used with hyperparameter settings. The

individual models are evaluated in terms of assigning importance to patterns and

behaviors, and the models are compared to assess the best predictor.

The R2 score was used as the metric for assessing the linear regression model.

Precision, recall, and F1 scores were used to assess the logistic regression (LR) and

random forest (RF) classifiers. For all models, stratified 10-fold cross-validation was

performed because the dataset was small and to prevent overfitting while training the

models. The R2, F1, precision, and recall scores were yielded by the weighted average

of all the scores for 10-fold cross-validation. No class imbalance affected the models

as the data were divided according to the median. The models were trained for both

patterns and behaviors to see whether different models imparted different information.
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4.2.1 Individual Pattern Based Predictive Models

For linear regression, the student’s percentage was rounded to a whole number

and used as the dependent variable; the student’s patterns (obtained through CFS)

were used as the independent variables. The linear regression model did not work well,

as R2 was negative (-3.6473). Hence, the linear regression model was not suitable

for predicting students’ percentage scores. The coefficients of linear regression are

shown in Table 3. The patterns with bold coefficients had the maximum weight for

the model and patterns with italicized bold had minimum weights for the model.

For both LR and RF classifiers, the independent variables are same as those used in

the linear regression model. However, the dependent variable was a binary label that

represented which group the student belonged to in terms of performance.

Table 3: Coefficients of models based on individual patterns

Pattern Linear Regression Logistic Regression Random Forest
<Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> 6.0481 0.2899 0.1549

<Easy-1-M> <Medium-1-F> 3.4994 0.1768 0.0400
<Easy-1-F> <Medium-2-F> <Medium-1-M> 2.7910 0.2457 0.0687
<Easy-1-F> <Easy-1-F> <Medium-1-F> 2.2614 0.1847 0.0990
<Medium-1-F> <Easy-1-F> <Easy-1-F> 2.0549 0.2224 0.0961

<Easy-1-F> <Easy-1-F> <Easy-1-F> <Medium-1-F> 1.2447 0.2721 0.1335
<Easy-1-F> <Easy-1-F> <Difficult-1-F> -1.2560 0.2328 0.0617

<Medium-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> <Easy-1-F> -1.5811 0.2835 0.1220
<Easy-2-S> <Medium-2-F> -2.6576 -0.4972 0.1261

<Medium-2-F> <Medium-2-S> <Medium-1-S> <Medium-2-F> -5.5565 -0.4261 0.0981

For LR, a liblinear solver was used with L2 penalty and 100 iterations. The logistic

model was trained with various C-values using grid-search cross-validation with 10

folds. The training and validation scores with different C-values are plotted in Figure

5. From the validation curve it can be observed that for C of < 0.1, both training

and validation scores were low, which caused underfitting. For values greater than
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0.1, the training scores increased but the validation scores decreased. Therefore, the

best model was for C = 0.1 with an F1 score of 0.6715.

Figure 5: Validation curve for pattern-based LR model

The coefficients of LR, also known as logits, are shown in Table 3 and are graphically

represented in Figure 6. For better interpretation of these coefficients, the logits were

converted to probabilities using the following equation:

Probability = exp(logit)
1 + exp(logit)

The probabilities are shown in Figure 7. The difficulty level for patterns in Fig. [6,

7, 8] are denoted by the initials {E, M, D} for conciseness. This model is a predictor

of whether a student belonged to a high-performing group or not. As expected, the

coefficients for the patterns used by most high-performing students were weighted as

positive, and those for patterns used by low-performing students were negative while

training the model.
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Figure 6: Logistic Regression coefficients for individual patterns

Persistent-practicing obtained the highest logit weight, 0.2899, and the greatest

probability (0.572) for predicting student belonging to high-performing group. This

result shows that the design rationale of QuizIT, namely to provide students with

learning opportunities by solving simpler questions, was given the greatest importance

in the model. Withdrawal and struggling were two patterns with negative logits, at

-0.4972 and -0.4261 respectively. Withdrawal had the highest probability (0.6218),

followed by struggling (0.6049), for predicting which students belonged to the low-

performing group.
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Figure 7: Probability of patterns for high-performance in LR model

A random forest (RF) classifier was also trained to gain deeper insight into which

patterns might prove useful for improving students’ learning skills. The RF model

was hypertuned using grid-search cross-validation with 10 folds on parameters such as

the number of trees, maximum depth of tree, and minimum number of samples for

leaf node and split internal node. The best configuration was as follows:

• Random forest estimators : 500

• Minimum samples leaf : 7

• Minimum samples split : 2
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• Split criterion : gini

• Maximum tree depth : 3

This model achieved an F1 score of 0.6777. The weighted patterns of the RF

classifier, ordered by decreasing importance, are shown in Figure 8 and the same

coefficients are shown in Table 3. As can be seen, the RF classifier gave most

importance to persistent- practicing, as was the case for both logistic and linear

regression. Interesting, this classifier also termed withdrawal as the third most

important feature. The model attempted to assign high importance to both positive

and negative behavior patterns in predicting students’ performances.
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Figure 8: Importance of features defined by pattern-based RF classifier
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The jump-forward-progression pattern <Easy-1-F> <Easy-1-F> <Medium-1-F>

was the fifth most important pattern in the RF model. However, it was the second

least important positive pattern in the LR model. Experimental-progression was the

fourth most important pattern in LR but the third least important pattern in RF

classifier. Steady-progression was assigned the least important positive pattern in

both the LR and RF models.

4.2.2 Learning Behavior Based Predictive Models

For linear regression, the student’s percentage (rounded to a whole number) was

used as the dependent variable and students’ behaviors were used as independent

variable. The R2 score was -3.6477, even worse than that of the pattern-based

model. Therefore, the linear regression model was not suitable for predicting students’

percentage scores using learning behaviors. The coefficients of linear regression are

shown in Table 4. (As before, bold coefficients represent maximum weights and

italicized bold represent minimum weights for behaviors in the model.)

Table 4: Coefficients of models based on learning behavior

Behavior Linear Regression Logistic Regression Random Forest
Experimental progression 2.6905 0.8656 0.1105

Jump-backward progression 2.327 0.3955 0.1375
Jump-forward progression 0.5141 0.6691 0.2022

Persistent practicing 6.2809 0.6723 0.1981
Steady progression 3.9269 0.5375 0.0854

Struggling -5.5138 -1.0988 0.1226
Withdrawal -2.6402 -1.1758 0.1436

The dependent variable for the LR and RF models was a binary label – which

represented whether a student showed the particular behavior or not. Liblinear solver
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was again used with L2 penalty and 100 iterations for LR. As shown by the validation

curve in Figure 9, the best C-value was 0.1. The model at C = 0.1 had an F1 score

of 0.6854. The coefficients of LR are shown in Table 4, and Figure 10 provides a

bar chart representation. The probability for each behavior is represented in Figure

11. The logits of behavioral strategies used by most high-performing students were

weighted as positive.

Figure 9: Validation curve for learning behavior based LR model

Interestingly, in this LR model experimental-progression obtained the highest

probability (0.7038) for predicting whether a student belonged to the high-performing

group. Persistent-practicing was second, whereas it was the most important in the

LR model for patterns. Withdrawal and struggling had the lowest probabilities at

0.2358 and 0.25 respectively; these behaviors were better for predicting low-performing

students. In addition, jump-backward- progression was termed the least important

positive behavior by this LR model, with a probability of 0.3955.
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Figure 10: Logistic Regression coefficients for learning behaviors
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Figure 11: Probability of learning behaviors for high-performance in LR model

For the RF model, the best configuration after hypertuning using a grid search

with 10-fold cross-validation was as follows:
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• Random forest estimators : 200

• Minimum samples leaf : 3

• Minimum samples split : 3

• Split criterion : gini

• Maximum tree depth : 3

This model achieved an F1 score of 0.6644. The weighted patterns of the RF

classifier, ordered by decreasing importance, are shown in Figure 12 and the same

coefficients are listed in Table 4.
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Figure 12: Importance of features defined by behavior-based RF classifier

This RF classifier gave the most importance to jump-forward-progression (compared

with persistent-practicing in the pattern-based RF model). Withdrawal was the third

most important behavior in this model; steady-progression was the least important

pattern (as in the previous RF model). Thus, the top three behaviors were the same

in both RF models. This shows that both RF classifiers were relatively consistent

in computing the importance of behaviors, compared with their LR counterparts.

34



Another interesting observation was that experimental-progression was rated second

least important in predicting students’ behavior, whereas it was the most important

in the LR model.

4.2.3 Model Comparison

The LR and RF models, for both individual patterns and learning behaviors, were

evaluated in the previous section. Table 5 summarizes the metrics of all the classifiers

as well as the means and standard deviations of their validation scores. Figure 13

shows the precision, recall, and F1 scores for all the models. As shown in the table

and figure, the LR model using learning behaviors as independent variables was the

best classifier model; it achieved the best precision at 69.93%, recall at 69.11%, and F1

score of 0.6854. However, the classifier model with the highest mean validation score

and lowest standard deviation of validation scores was the RF model using individual

patterns as independent variables. This was the second best model, with an F1 score

of 0.6777.

Table 5: Comparison of metrics in LR and RF models

Model Precision Recall F1-score µValidation Score σValidation Score

LR - Pattern 0.6912 0.6777 0.6715 0.6840 0.0800
LR - Behavior 0.6993 0.6911 0.6854 0.6840 0.0490
RF - Pattern 0.6979 0.6839 0.6777 0.7110 0.0390
RF - Behavior 0.6837 0.6714 0.6644 0.6840 0.0770

Table 6 provides the statistical measures of all the classifiers. The metric score

differences between these classifiers were not significant. The mean F1 score of all the

classifiers was 0.6748 and the standard deviation was only 0.0089.
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Table 6: Mean and standard deviation of metrics of all classifiers

Measure Precision Recall F1-score
Mean (µ) 0.6930 0.6810 0.6748

Standard Deviation (σ) 0.0072 0.0084 0.0089

This result indicates that the classifiers accurately allocated slightly more than

two-thirds of students to the right performance group.
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Figure 13: Comparison of classification model metrics
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Chapter 5

CONCLUSION

The purpose of this thesis was two-fold. The first aim was to understand the

learning strategies adopted by students to solve programming questions in QuizIT,

and the second aim was to use data on these behaviors to build predictive models

to determine a student’s performance. Descriptive analysis of learning behavior was

based on class performance to understand the adaptation of behaviors by different

levels of students. Classification models were used to gain insight into individual

learning patterns and learning behaviors which played a role in determining students’

performance. These models will help instructors to build a robust system to address

a student’s weaknesses. These models can also be used to build recommendation

systems customized to students’ situations, to provide them with suggested learning

paths to enhance their performance.

5.1 Summary

This thesis presents an application of data mining and machine learning techniques

to data extracted from QuizIT programming system. These data represented the

state of students’ programming solving activities while using QuizIT. These states

were recorded through the questions that were attempted, their complexity level,

the correctness, and the timestamp. Each of the actions were a combination of

numbers and letters characterized by its correctness, complexity and duration. These

features were used to represent student’s problem-solving behavior based on the
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action sequences. Sequential pattern mining was used to extract frequent patterns in

analyzing all these behaviors to uncover students’ problem solving patterns over the

course of entire semester. Additionally, the action sequences were examined according

to students’ performances in their course work, labeled as higher and lower performing

groups. Differential sequential mining technique was applied on sequences belonging

to each groups to identify sequential mined patterns which were more prominent in

one group compared to the other.

Seven main learning behaviors were discovered using these patterns. Among these,

five behaviors were prominent in the high-performing group and two were prominent

in the low-performing group. The patterns were also used as features to build models

to predict students’ membership of a performance group. Logistic regression (LR) and

random forest (RF) classifiers were trained on individual patterns as the independent

variables, and thereafter on learning behaviors as the independent variables. The

rationale behind choosing these classifiers was that they are good at showing features

that are important for the classification of data points. The best model was an LR

model trained on behaviors, which achieved an F1 score of 0.6854.

The models provided insight into which patterns and behaviors correlated most

strongly with students’ performances. They also helped in identifying cognitive

tendencies which were detrimental to students in their coursework. This information

can help instructors to address the issues faced by their students and to suggest a

better learning path.
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5.2 Limitations and Future Work

A major limitation of this work is that the discovered patterns and behaviors were

not helpful in building a predictive model about students’ final percentages. Linear

regression models were trained on both patterns and behaviors, but the best R2 score

was only -3.6473. One of the main reasons was not having enough data points and

features to define a polynomial relationship between patterns and behaviors, which

could have placed students’ scores on a continuous range.

More data need to be collected by increasing student participation in the QuizIT

platform. Currently, only 49.86% of students enrolled in coursework also use QuizIT.

This proportion can be increased by providing incentives for those enrolled in courses

and by increasing the interaction with users by sending them weekly newsletters to

keep them engaged with the system. If data is collected on a daily basis, a LSTM

based model (with time step being one day) can be created to predict students’ future

performance at any particular time. Different methods for building action sequences

can be explored, such as topic difficulty, question IDs, and session IDs. Such details can

be explored to build different feature vectors, which might increase the performances

of the existing classification models. Other machine learning models, like AdaBoost or

support vector machines with different kernels, can also be explored for their ability

to predict students’ performance groupings. These models can be integrated with the

dashboard in the later versions of QuizIT. The students’ data could then be used to

assess the students’ patterns and behaviors so as to notify the students about their

weaknesses, and suggest alternatives for improving their performance.
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