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ABSTRACT  

   

Semiconductor nanowires have the potential to emerge as the building blocks of 

next generation field-effect transistors, logic gates, solar cells and light emitting diodes. 

Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages 

of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement 

present in nanowires. The focus of this thesis is on developing a low field mobility model 

for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-

Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum 

Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN 

heterostructure device is designed which creates 2-dimensional potential well for electrons. 

The nanowire is treated as a quasi-1D system in this work. A self-consistent 2D 

Schrödinger-Poisson solver is designed which determines the subband energies and the 

corresponding wavefunctions of the confined system. Three scattering mechanisms: 

acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering are 

considered to account for the electron phonon interactions in the system. Overlap integrals 

and 1D scattering rate expressions are derived for all the mechanisms listed. A generic one-

dimensional Monte Carlo solver is also developed. Steady state results from the 1D Monte 

Carlo solver are extracted to determine the low field mobility of the GaN nanowires. 
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CHAPTER 1 

NANOSCALE STRUCTURES AND TRANSPORT 

1.1 Introduction to Nanowires 

Quasi-two dimensional and quasi one-dimensional devices offer an interesting perspective 

into novel applications such as ballistic transport, high electron mobilities as well as 

interesting optoelectronic phenomena. Nanowires, in the strictest sense, are defined as a 

class of nanostructures with diameter in the tens of nanometers (for cylindrical nanowires) 

or a length to width ratio of 1000 (in the case of rectangular nanowires). Nanowires open 

huge possibilities in the field of Ultra Large Scale Integrated circuits(ULSI) since they can 

offer a large density of transistors for a relatively small chip area [1]. Semiconductor 

nanowires such as silicon nanowires and gallium nitride nanowires are increasingly finding 

applications in logic devices [2], optoelectronic devices such as light emitting diodes and 

lasers as well as photovoltaic devices.  Nanowires are also being studied for their 

applications in Third Generation Photovoltaics [3]. 

Aside from silicon and the ‘conventional’ III-V materials like GaAs, wide bandgap 

materials like the III-Nitrides show promising potential for electronic and optoelectronic 

applications. ‘Conventional’ III-Vs are typically Phosphides and Arsenides [4], while wide 

bandgap and ultra-wide bandgap III-Vs are the Nitrides such as the GaN, AlN and InN 

material family. AlGaN alloys have excellent physical properties such as high breakdown 

fields, high electron mobilities and can be easily doped [5]. These large carrier mobilities 

make GaN nanowires perfect for FETs and logic devices.  The morphology and size of 

GaN nanowires make them highly suitable for nanoscale devices and interconnects as well 

[6]. The properties of gallium nitride, such as direct band gap, high saturation velocity and 
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high thermal stability, make GaN nanowires ideal candidates. Ultrawide bandgap materials 

such as GaN and associated III-Nitride alloys also have large optical phonon energies 

which lead to observation of ballistic transport at room temperature and at larger voltages 

[7].  GaN nanowires have been grown by various methods including Chemical Vapor 

Deposition, Molecular Beam Epitaxy and Metal Organic Chemical Vapor Deposition [8]. 

Ballistic transport is one of the many uniquely observable phenomena in nanoscale 

structures [7]. In this transport regime, the electrons travel a distance larger than the mean 

free path without any scattering [7]. If there are no scattering events to impede the flow of 

electrons, it can lead to development of faster devices.  

In [9], the authors observe ballistic transport in III-Nitride Heterostructures at room 

temperature. Since the optical phonon energy of these materials is very large compared to 

that of silicon (ℏωop = 91.2 meV), this limits the polar optical phonon emission scattering 

events. This, coupled with the fact that GaN has mean free paths in the order of (<100nm), 

led the authors to observe quasi ballistic behavior nanoscale crosses as shown in Figure 1. 

 
Figure 1.1 Nanowire crosses used to demonstrate ballistic transport by authors in [9] 

Figure Courtesy of [9] 

 



  3 

To comprehensively understand the transport phenomena in gallium nitride nanowires, it 

is necessary to characterize the confinement and the low field mobility of the nanostructure. 

Hence this work aims to develop a tool and simulate a “free standing” gallium nitride 

nanowire structure. A basic double gated AlGaN/AlN/GaN Heterostructure used by the 

authors in [9] is designed and simulated. In these structures, a 2-dimensional electron gas 

(2DEG) is induced at the AlN/GaN interface due to the strong polarization charges and 

additional confinement is achieved by the depletion regions created by the dual split gates. 

A 2D Schrödinger-Poisson solver is developed to determine the eigenstates and eigen-

energies of the quasi-1D electron gas. The eigenfunctions and the subband energies are 

then fed into the 1 D Monte Carlo solver which simulates the 1D nanowire transport at low 

fields and outputs the electron mobility. As such, this solver will act as a precursor for 

future study onto lateral transport in complex nanowire structures.  

The electron-phonon interactions are considered only in this study (phonon limited 

mobility). Specifically, we incorporate acoustic, polar optical phonon scattering and 

piezoelectric Scattering in the theoretical model. Electron-electron interactions and ionized 

impurity scattering are not considered as background doping in GaN nanowires is very 

low. 

1.2 Device Design 

To determine the mobility, an AlGaN/AlN/GaN heterostructure, like the one developed by 

the authors in [9] is simulated. In the experimental structure, a 200 nm thick GaN layer 

grown on a GaN substrate is followed by a strained layer of 8nm thick AlN. 20 nm thick 

AlGaN layer with an aluminum composition of 20% forms the top of the device. A double 

gated structure is created by placing metal contacts on top of the AlGaN layer leaving a 
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channel that is 87 nm wide.  The same experimental device design is used for simulation 

in this work. Figure 1.2 shows the device structure along with dimensions and doping. The 

structure is double gated, leaving a channel in which the quasi 1D region exists. 

Confinement along the width (x-direction) of the device is ensured by putting a sufficiently 

high negative potential on the contacts in order to deplete the underlying regions. The 

doping of the top layers is kept high enough to create sufficient conduction band bending 

in the underlying GaN layer.  

 
Figure 1.2 The design and dimensions of the dual gate AlGaN/AlN/GaN heterojunction 

device used in this work 

 

As mentioned earlier, the dual gate structure is essential for 2-dimensional confinement. 

The conduction band bends below the fermi level at the GaN/AlN interface. A net positive 

charge is induced at the interface due to presence of spontaneous as well as piezoelectric 
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polarization. These factors lead to formation of a 2DEG at the interface and hence 

confinement along the depth (y) of the device.  

1.3 Theory of Polarization charges 

Group III-nitride materials naturally occur as a Wurtzite crystal structure with lattice 

constants a0 and c0 along the base hexagon and along the height respectively [10]. Since 

growth along the c plane {0001} is a highly mature standard, this discussion will be 

restricted to polarization in the c plane. The atoms are arranged in closely spaced hexagonal 

bilayers with alternating anion and cation layers creating a dipole moment. This forms the 

basis of spontaneous polarization present in the c plane of GaN.  Depending on which atom 

is on the top surface, Ga-face or N- face crystals can be grown in [0001] and [0001̅] plane 

respectively [11]. 

 
 

Figure 1.3 Gallium and Nitrogen faced Wurtzite crystals and their growth directions [11] 
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The spontaneous polarization in materials increases with increasing bond length. That is, 

with increasing cation-anion length, the spontaneous polarization (Psp) increases from 

GaN to AlN. Aside from spontaneous polarization, which is an inherent structural property 

of the material itself, piezoelectric polarization is also present in the strained layers. The 

total polarization charges present is the algebraic sum of spontaneous and piezoelectric 

polarization. Piezoelectric polarization along the c axis is given by the contribution of 

piezoelectric tensors and the in-plane and c-plane strain components. The relationship is 

given as [12] 

𝑃𝑝𝑒 =  𝑒33 ∗ 𝐸𝑧 + 𝑒31 ∗ (𝐸𝑥 + 𝐸𝑦) (1.1) 

 

Where, e33 and e31 are piezoelectric coefficients and 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 are strain along the 

basal plane and c plane respectively. 

The respective strain components are given by [12] 

𝐸𝑥 = 𝐸𝑦 =
𝑎 − 𝑎0

𝑎0
 (1.2) 

𝐸𝑧 =
𝑐 − 𝑐0

𝑐0
 (1.3) 

 

The unstrained lattice constants are given by a0 and c0, while a and c denote the lattice 

constants of the strained layer. 

Using the relationship between lattice constants c and a in the GaN/AlN system[12], 

𝑐 − 𝑐0

𝑐0
=  −2

𝐶13

𝐶33

𝑎 − 𝑎0

𝑎0
(1.4) 
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where, C13 and C33 are elastic constants. Thus, from equation (1.2) – (1.4) above, the 

expression for piezoelectric polarization is given as[12] 

𝑃𝑝𝑒 =
2(𝑎 − 𝑎0)

𝑎0
(𝑒31 − 𝑒33

𝐶13

𝐶33
) (1.5) 

For the AlGaN system, the second term in the above equation is always negative. Hence, 

the piezoelectric polarization is negative for tensile strain and positive for compressive 

strain. As mentioned earlier, the spontaneous polarization is also negative. Therefore, in 

the case of compressively strained AlGaN, the piezoelectric and spontaneous polarization 

are antiparallel to each other, while in the case of tensile strained layers, the spontaneous 

and piezoelectric polarization fields are parallel to each other. The net polarization charge 

at any interface is given by[12] 

𝜎( 𝑃𝑠𝑝 + 𝑃𝑝𝑒) =  𝑃(𝑏𝑜𝑡𝑡𝑜𝑚) − 𝑃(𝑡𝑜𝑝) (1.6) 

For the device structure being considered, there are two abrupt interfaces; the AlN/GaN 

interface and AlGaN/AlN interface. Since the aluminum nitride and aluminum gallium 

nitride layers are under tensile strain, the piezoelectric and spontaneous polarization are 

parallel to each other. There is a net positive induced polarization charge at the AlN/GaN 

interface and hence free electrons from the GaN layer will populate the interface. This leads 

to the formation of a triangular well at the interface and a 2DEG, if the conduction band 

drops below the Fermi Level at the interface. 

1.4 Formation of the 2 dimensional well and the 1D Density of States Function 

The presence of AlGaN/AlN heterostructure causes the conduction band at the AlN/GaN 

interface to bend below the Fermi level. Along with the positive induced polarization 

charge at the interface, this causes electrons to be trapped in the triangular well. This is the 
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basis of confinement along the depth of the device. The aluminum composition as well as 

the doping and thickness of the layers can be adjusted to change the extent of band bending 

and, hence, alter the dimensions of the well. 

Application of a negative potential at the dual gates present on the edges of the device 

causes depletion of electrons under the gates. This depletion layer forces the electron gas 

near the center of the device, with the peak electron density at the center of the nanowire 

just below the heterointerface. Effectively, this leads to formation of a square well along 

the width of the device and hence confinement of electrons along the (x) as well. Figures 

1.4 and 1.5 describe the formation of the wells along the depth and the width of the device.  

 

Figure 1.4 The triangular well obtained along the depth of the device. The 2D well region 

is shaded. 
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Figure 1.5 The square well obtained along the x direction near the AlN/GaN interface 

upon application of Gate voltage -Vg. The 2D well region is shaded. 

 

This so formed 2-dimensional confining potential well will trap electrons along the width 

and the depth of the device and therefore, allow transport only along the length of the 

device (z-axis). Since the energy levels are quantized laterally, the distribution of electrons 

as well as available energy states is also altered. To enable an in depth understanding of 

distribution and transport phenomena in these 2D wells, the 1D density of states function 

needs to be defined. This along with the distribution function will determine the occupancy 

of the states, which would lead to determination of electron line density in the nanowire. 

The density of states is defined as the number of states per unit energy per unit volume of 

real space [13]. Namely,  

 
dN

E
dE

 
 

where ‘N’ is the number of states per unit volume of free space. 

From the solution of the Schrödinger’s equation for the free-electron problem, in the 

periodic boundary condition case, k-values are restricted to value, 

22 2
; ;

yx z
x y z

nn n
k k k

L L L

 
  
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where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are the in-plane quasi-momentum vectors in x, y and z directions and are 

𝑛𝑥, 𝑛𝑦 , 𝑛𝑧positive and negative integers. For the 1D case, electrons are restricted to x axis 

and hence N will be restricted to a region along a line as shown in figure 1.6 [13] . 

 

Figure 1.6 The 1-dimensional line density. The available states are restricted to this line. 

 

The final expression for 1D density of states function is given as 

𝜌1𝐷 =
1

𝜋
(

𝑚∗

2ℏ
)

2 1

√𝐸
 (1.7) 

  
If there are 𝑛 number of confined states within the quantum well system, then the density 

of states 𝜌1𝐷(𝐸) at any specific energy level is the sum total of all the subbands below that 

energy level, which can be represented as 

𝜌1𝐷  =  ∑
1

𝜋
(

𝑚∗

2ℏ
)

2 1

𝑠𝑞𝑟𝑡(𝐸 − 𝐸𝑖)
𝜃(𝐸 − 𝐸𝑖) (1.8) 

 

 

where Ei is the current Subband energy level and θ is a Heaviside step function. 

1.5 Organization of the Thesis 

This thesis is organized as follows: A Schrödinger-Poisson solver is developed for the 

above described structure and described in Chapter 2. Then, in Chapter 3, scattering 

mechanisms and overlap integrals used in the Monte Carlo Solver, are discussed. 

Development of a one-dimensional Monte Carlo solver is discussed in Chapter 4 and 

simulation results are presented in Chapter 5. 
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CHAPTER 2 

SCHRÖDINGER - POISSON SOLVER 

Poisson’s Equation describes the relationship between the charges present in the system 

and the electrostatic potential. It arises out of Gauss’s law for electrostatics and relates the 

charge density to the Laplacian of the electrostatic potential 

∇. (𝜀∇𝜑) =  −𝜌 (2.1) 

where ρ is the charge density and ε is the dielectric permittivity. 

The solver developed as part of this work does a self-consistent solution of Poisson’s 

equation and Schrödinger’s equation and determines the potential profile, conduction band 

profile, the subband energies as well as the line density of electrons in the nanowire.  The 

solver first proceeds to determine a semiclassical solution, that is, the quantum confinement 

is not being considered in the initialization stage.   Poisson’s equation is solved iteratively 

until a desired tolerance is reached. The resulting conduction band profile is stored for use 

in the Schrödinger solver. 

The Schrödinger solver works on a much finer mesh in a smaller subset of the whole 

device, namely the nanowire region. The conduction band profile provides the confining 

potential for the 2D Schrödinger equation. The Eigenvalues and Eigenvectors determined 

by the solution of the Schrödinger equation are the subband energies of the 2D well and 

wavefunctions of the confined electrons respectively. The resulting electron density is fed 

back to the Poisson solver to calculate the updated potential. This procedure is repeated 

until a desired tolerance is reached to arrive at the self-consistent solution of the 

Schrödinger-Poisson equation. Subsequent sections will describe in the detail the 

discretization procedures as well as the solution method in detail. 
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2.1 Linearization and Discretization of the 2-dimensional Poisson’s Equation 

The 2 dimensional Poisson’s Equation is given as 

𝜕

𝜕𝑥𝜕𝑦
(𝜀(𝑥, 𝑦)

𝜕

𝜕𝑥𝜕𝑦
𝜑(𝑥, 𝑦)) = −𝜌(𝑥, 𝑦) (2.2) 

Where 𝜀(𝑥, 𝑦) is the spatially varying dielectric permittivity, 𝜑(𝑥, 𝑦) is the potential and 

𝜌(𝑥, 𝑦) is the charge density. 

To solve this equation numerically, a discretization scheme such as a finite element 

scheme or a finite difference scheme is routinely employed [14]. This work uses finite 

difference discretization in the Schrödinger-Poisson solver. 

 

Figure 2.1 Five-point stencil used in 2-dimensional discretization of Poisson’s equation 

Consider the five-point stencil as shown in figure 2.1. Xi and Yj indicate the grid sizes at 

the ith and jth node points along the x and y direction respectively. The outer differential in 

the Poisson’s equation is determined at the midpoints of the grid. If the values of the 
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permittivity are known in the four quadrants, the value of 𝜀 at the midpoints is then simply 

a weighted average of the permittivity at the neighboring node points. 

Numerically, 

𝜕

𝜕𝑥𝜕𝑦
(𝜀(𝑥, 𝑦)

𝜕

𝜕𝑥𝜕𝑦
𝜑(𝑥, 𝑦)) =

 

𝜀
𝜕𝜑
𝜕𝑥 |(𝑖+

1
2

,𝑗)
− 𝜀

𝜕𝜑
𝜕𝑥 |(𝑖−

1
2

,𝑗)

0.5(𝑋𝑖 + 𝑋𝑖−1)
+  

𝜀
𝜕𝜑
𝜕𝑦 

|(𝑖,𝑗+1/2)
− 𝜀

𝜕𝜑
𝜕𝑦 

|(𝑖,𝑗−1/2)

0.5(𝑌𝑗 + 𝑌𝑗−1)
 (2.3)

 

Where the subscripts in the numerator indicate the grid mid-points. 

Expanding the inner differential as 

𝜕𝜑

𝜕𝑥 |(𝑖+
1
2

,𝑗)
=

𝜑(𝑖 + 1, 𝑗) − 𝜑(𝑖, 𝑗)

𝑋𝑖
(2.4) 

Using the inner stencil to compute the value of ε at the midpoints,  

𝜀
𝑖,𝑗+

1
2

=
𝜀(𝑖, 𝑗) + 𝜀(𝑖, 𝑗 − 1)

2
 (2.5) 

Computing the values of the differentials at other node midpoints similar to Equation 2.4 

and 2.5 and back substituting into Equation 2.3, one arrives at the discretized form of the 

left-hand side of the Poisson’s equation. 

 

(𝜀(𝑖, 𝑗) + 𝜀(𝑖, 𝑗 − 1))
𝜑(𝑖 + 1, 𝑗) − 𝜑(𝑖, 𝑗)

(𝑋𝑖(𝑋𝑖 + 𝑋𝑖−1))
+ (𝜀(𝑖, 𝑗) + 𝜀(𝑖 − 1, 𝑗))

𝜑(𝑖, 𝑗 + 1) − 𝜑(𝑖, 𝑗)

(𝑌𝑗(𝑌𝑗 + 𝑌𝑗−1))

+ (𝜀(𝑖 − 1, 𝑗) + 𝜀(𝑖 − 1, 𝑗 − 1))
𝜑(𝑖 − 1, 𝑗) − 𝜑(𝑖, 𝑗)

(𝑋𝑖−1(𝑋𝑖 + 𝑋𝑖−1))

+ (𝜀(𝑖 − 1, 𝑗 − 1) + 𝜀(𝑖, 𝑗 − 1))
𝜑(𝑖, 𝑗 − 1) − 𝜑(𝑖, 𝑗)

(𝑌𝑗−1(𝑌𝑗 + 𝑌𝑗−1))
= 𝜌𝑖𝑗               (2.6) 
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Rearranging the above equation in the form of coefficients and introducing a forcing 

function in the right-hand side of the equation; 

𝐴𝑖𝑗 𝜑𝑖,𝑗−1 + 𝐵𝑖𝑗 𝜑𝑖−1,𝑗 + 𝐶𝑖𝑗 𝜑𝑖,𝑗 + 𝐷𝑖𝑗 𝜑𝑖+1,𝑗 + 𝐸𝑖𝑗 𝜑𝑖,𝑗+1 =   𝑓𝑖,𝑗 (2.7) 

The coefficients can then be expressed as 

𝐴𝑖𝑗 =
𝜀(𝑖 − 1, 𝑗 − 1) + 𝜀(𝑖, 𝑗 − 1)

(𝑌𝑗−1(𝑌𝑗 + 𝑌𝑗−1))
 (2.8) 

𝐵𝑖𝑗 =
𝜀(𝑖 − 1, 𝑗) + 𝜀(𝑖 − 1, 𝑗 − 1)

(𝑋𝑖−1(𝑋𝑖 + 𝑋𝑖−1))
(2.9) 

𝐷𝑖𝑗 =
𝜀(𝑖, 𝑗) + 𝜀(𝑖, 𝑗 − 1)

(𝑋𝑖(𝑋𝑖 + 𝑋𝑖−1))
(2.10) 

𝐸𝑖𝑗 =
𝜀(𝑖, 𝑗) + 𝜀(𝑖 − 1, 𝑗)

(𝑌𝑗(𝑌𝑗 + 𝑌𝑗−1))
(2.11) 

𝐶𝑖𝑗 = −(𝐴𝑖𝑗+𝐵𝑖𝑗 + 𝐷𝑖𝑗 + 𝐸𝑖𝑗 ) (2.12) 

2.2 Linearization of the Forcing Function 

The right side of the Poisson’s Equation is the charge density 𝜌 of the system. The charge 

density 𝜌 is the total density of all the charged species in the system. In order to solve the 

Poisson’s equation, the charge density needs to be expressed as a function of 𝜑 and be 

linearized. The procedure is outlined below. 

As seen in the discretization above, the forcing function  𝑓𝑖,𝑗 is given as 

 𝑓𝑖,𝑗 = 𝜌𝑖𝑗 

Therefore, the forcing function can be further expressed as 

 𝑓𝑖,𝑗 =  −𝑒(𝑝 − 𝑛 − 𝑁𝐴 +  𝑁𝐷) (2.11)

where e is the fundamental charge, d aN N is the doping concentration, p and n are electron 

and hole charge densities respectively. 
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In the semiclassical approximation, the electron and hole densities can be expressed as 

𝑛 =  𝑛𝑖exp (
𝜑

𝑉𝑇
) 

𝑝 =  𝑛𝑖exp (−
𝜑

𝑉𝑇
) 

Here 𝑛𝑖  is the intrinsic carrier concentration, φ is the potential and 𝑉𝑇 is the thermal energy. 

Assuming    , applying  1xe      and substituting d aN N / 𝑛𝑖= C; the forcing 

function can be expressed as[14] 

 𝑓𝑖,𝑗 =  −𝑒(𝑝 − 𝑛 + 𝐶) +
𝑒

𝑉𝑇

(𝑝 + 𝑛)𝛿 (2.12) 

Substituting 𝛿 =  𝜑𝑛𝑒𝑤 − 𝜑𝑜𝑙𝑑 and rearranging 𝜑𝑛𝑒𝑤 terms with left hand side of the 

equation, the central coefficient and the forcing function can now be written as 

𝐶𝑖𝑗 = −(𝐴𝑖𝑗+𝐵𝑖𝑗 + 𝐷𝑖𝑗 + 𝐸𝑖𝑗 ) −
𝑒

𝑉𝑇

(𝑝 + 𝑛) (2.13) 

 𝑓𝑖,𝑗 =  −𝑒(𝑝 − 𝑛 + 𝐶) −
𝑒

𝑉𝑇

(𝑝 + 𝑛)𝜑𝑜𝑙𝑑 (2.14) 

Normalizing φ with 𝑉𝑇, the grid sizes with Debye length (𝐿𝐷) and the doping densities with 

the intrinsic carrier concentration (𝑛𝑖), the prefactor of 
𝑒

𝑉𝑇
  drops out. The final expression 

after linearization and discretization of the 2D Poisson equation is given as: 

𝐶𝑖𝑗 = −(𝐴𝑖𝑗+𝐵𝑖𝑗 + 𝐷𝑖𝑗 + 𝐸𝑖𝑗 ) − (𝑝 + 𝑛) (2.15) 

 𝑓𝑖,𝑗 =  (𝑝 − 𝑛 + 𝐶) − (𝑝 + 𝑛)𝜑𝑜𝑙𝑑 (2.16) 

Equations 2.15 and 2.16 are the governing equations for the Poisson solver. The above set 

of equations is solved iteratively to arrive at the potential.   

This work uses Successive Over relaxation method to iteratively solve the problem. 

Successive over relaxation is a variant of Gauss Seidel method which results in a faster 



  16 

convergence [15]. SOR method employs residuals to arrive at a faster convergence. The 

procedure is briefly outlined below. 

2.3 The Successive Over Relaxation method 

For any equation 𝐴𝑥 = 𝑓, If v0, v1,…vn define the approximations that converge to x. If 

Vi approximates x after the ith iteration, then the residual is defined as[16] 

𝑟𝑖 = 𝑓 − 𝐴𝑣𝑖 

𝑣𝑖+1 = 𝑣𝑖 + 𝜔𝑟𝑖 (2.17) 

The above equation is the governing equation for SOR method, which determines the value 

at the next iteration. 𝜔 is the relaxation parameter which should be chosen to maximize the 

rate convergence. The value of 𝜔 depends on geometry, grid spacing and boundary 

conditions. SOR method is employed in the solution of the Poisson’s equation to iteratively 

solve for the potential 𝜑. 

2.4 Discretization of 2D Schrödinger Equation -Varying Effective mass 

It is necessary to solve for the energy states and electron wave functions in the confined 2-

Dimensional well region which constitutes the nanowire. As such, it is necessary to solve 

Schrödinger’s equation in the nanowire domain.   The 2 dimensional Schrödinger’s 

Equation is given as 

−ℏ2

2
∇. (

1

𝑚∗
∇ψ) + 𝑉(𝑥, 𝑦)𝜓(𝑥, 𝑦) =∈ 𝜓(𝑥, 𝑦) (2.18) 

Here 𝜓(𝑥, 𝑦) is the electron wavefunction, ∈ is the sub-band energy of the electron and 

𝑉(𝑥, 𝑦)  is the confinement potential. 

Since the effective mass is a property of a bulk, it is not well defined near a sharp material 

transition. In the hypothesis of slow material composition variations in space, one can adopt 
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the Schrödinger equation with a spatially varying effective mass, taken to be the mass of a 

bulk with the local material properties [17] [18]. As given in the above equation, the 

effective mass is taken inside the differential operator for the case of abrupt 

heterojunctions.  

A similar discretization technique like the one used for Poisson’s equation is used for 

discretization of the time independent Schrödinger equation. The stencil used for 

discretization is shown in Figure 2.2. The outer derivative for the effective mass is 

determined at the midpoints of the grid along X and Y axes.  

 

Figure 2.2 Five Point Stencil used in 2-dimensional discretization of Schrödinger’s 

equation 

 

The outer derivative is evaluated at point (𝑖, 𝑗)  with centered finite differences, using 

quantities defined at points (𝑖 −  1/2, 𝑗) , (𝑖 +  1/2, 𝑗)  and (𝑖, 𝑗 + 1/2), (𝑖, 𝑗 − 1/2) 

respectively. Effective mass may be known only at the midpoints [18]. The abrupt 
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heterojunction located at point (𝑖, 𝑗) leads to an abrupt change in effective mass at the 

junction. The midpoint method describes above treats this abrupt heterojunction without 

ambiguity.  Adopting the discretization technique outlined in section 2.1 and rearranging 

the equation, one arrives at the following discretization coefficients for the 2 dimensional 

Schrödinger’s equation. 

𝐴𝑖𝑗 =
4

𝑚∗(𝑖, 𝑗 − 1) + 𝑚∗(𝑖 − 1, 𝑗 − 1)(𝑌𝑗−1(𝑌𝑗 + 𝑌𝑗−1))
 (2.19) 

 

𝐵𝑖𝑗 =
4

𝑚∗(𝑖 − 1, 𝑗) + 𝑚∗(𝑖 − 1, 𝑗 − 1)(𝑋𝑖−1(𝑋𝑖 + 𝑋𝑖−1))
(2.20) 

 

𝐷𝑖𝑗 =
4

𝑚∗(𝑖, 𝑗) + 𝑚∗(𝑖, 𝑗 − 1)(𝑋𝑖(𝑋𝑖 + 𝑋𝑖−1))
(2.21) 

 

𝐸𝑖𝑗 =
4

𝑚∗(𝑖 − 1, 𝑗) + 𝑚∗(𝑖, 𝑗)(𝑌𝑗(𝑌𝑗 + 𝑌𝑗−1))
(2.22) 

 

𝐶𝑖𝑗 = −(𝐴𝑖𝑗+𝐵𝑖𝑗 + 𝐷𝑖𝑗 + 𝐸𝑖𝑗 ) + 𝑉𝑖𝑗 (2.23) 

Here 𝑚∗ is the effective mass at the given node points and 𝑉𝑖𝑗 is the confining potential 

which is given by the conduction band profile determined by the solution of the Poisson 

Solver. 

The discretization coefficients are formed into a matrix 𝐻̂ (Hamiltonian Matrix) and written 

in the form of an eigenvalue equation. 

𝐻̂𝜓 =∈ 𝜓 (2.24) 
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This is a real non-symmetric eigenvalue problem which can be solved using subroutines 

found in the LAPACK module [19]. This work makes use of the “sgeevx” subroutine 

provided by the LAPACK module for FORTRAN90.  The subroutine solves a real general 

matrix and determines the eigenvalues and the left (or right) eigenvectors. The eigenvalues 

and eigenvectors so found form the subband energies and the wavefunctions.  

2.5 Subband Density and Quantum Electron Density 

The required number of eigenvalues and the corresponding eigenvectors are determined by 

solving the eigenvalue equation stated previously. The subband occupation (or line density) 

is determined by the product of 1D density of states function with the Fermi Dirac 

distribution function. 

𝑁𝑙 = ∫ 𝑓(𝐸)𝑔(𝐸)𝑑𝐸
∞

𝐸𝑖

 (2.25) 

Here 𝑁𝑙 is the line density of subband 𝐸𝑖 and 𝑓(𝐸) and 𝑔(𝐸) are the distribution function 

and the density of states function respectively. 

𝑓(𝐸) =
1

1 + exp (
𝐸 − 𝐸𝐹

𝜅𝑇 )
 (2.26) 

 

𝑔(𝐸) =  
√2𝑚∗

𝜋ℏ

1

√𝐸 − 𝐸𝑖

𝜃(𝐸 − 𝐸𝑖) (2.27) 

Here, 𝜃(𝐸 − 𝐸𝑖) is a Heaviside step function allowing states only above the given Subband 

energy 𝐸𝑖. Upon solving, we arrive at the following expression for the line density for given 

Subband 𝐸𝑖 in the nanowire.   
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𝑁𝑙
𝑖 =

√2𝑚∗𝜅𝑇

𝜋ℏ
𝐹

−
1
 2

(𝜂𝑖) (2.28) 

 

𝜂𝑖 =
𝐸𝐹 − 𝐸𝑖

𝜅𝑇
 

𝐹
−

1

 2

 is the Fermi integral which can be evaluated by standard analytical expressions 

[17][20].    The electron wavefunctions are obtained by normalizing the Eigen vectors and 

using the fact that 

∬ ‖𝜓(𝑥, 𝑦‖2
∞

−∞

𝑑𝑥 𝑑𝑦 = 1 (2.29) 

The above equation (2.29) is integrated over the nanowire mesh.  The resulting factor is 

used to normalize the eigenvectors to yield the wavefunctions. 

 The electron density in the nanowire (the Volume density) is then determined by 

multiplying the line density with the magnitude squared of the electron wave function and 

then summing it over all subbands ‘m’. Numerically 

𝑛(𝑥, 𝑦) = ∑ 𝑁𝑙
𝑖|𝜓(𝑥, 𝑦)|2

𝑚

𝑖=1

(2.30) 

 

here 𝑛(𝑥, 𝑦) is the electron density in the nanowire calculated quantum mechanically 

considering the quasi 1D nature of the region. The Hartree potential, the subband energies 

and the electron density are all calculated self consistently as outlined below in figure 2.3. 
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Figure 2.3 Flowchart for the self-consistent solution of the Schrödinger-Poisson solver. 
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2.6 Initialization and self-consistent solution 

The entire self-consistent loop is depicted in the flowchart shown in Figure 2.3.  Some of 

the steps involved are also discussed in detail below. 

1. Initialization:  

The material parameters for the heterostructure is calculated. The polarization parameters 

are also calculated. After the device structure is read from file, the domains are set and 

doping is defined. Non-uniform mesh is set accordingly in semiclassical and quantum 

mechanical (nanowire) domains. The polarization charges so calculated are added to the 

interfaces. The potential 𝜑 is then initialized per the charge neutrality conditions assuming 

complete ionization of dopant atoms. Since this is a heterostructure, the band parameters 

(Vn and Vp) are also added to the overall potential 𝜑 for calculating the carrier densities.  

Vn and Vp are Heterostructure band parameters which arise due to the conduction band 

offsets at the heterojunction [21]. The band parameters are given by 

𝑉𝑛 = 𝜒 − 𝜒𝑟𝑒𝑓 − (𝐸𝑔 − 𝐸𝑔𝑟𝑒𝑓) + (
𝜅𝑇

𝑞
log

𝑁𝑐

𝑁𝑐𝑟𝑒𝑓
) (2.31) 

 

𝑉𝑝 = 𝜒 − 𝜒𝑟𝑒𝑓 − (𝐸𝑔 − 𝐸𝑔𝑟𝑒𝑓) + (
𝜅𝑇

𝑞
log

𝑁𝑣

𝑁𝑣𝑟𝑒𝑓
) (2.32) 

Here χ, χref, 𝐸𝑔 and 𝐸𝑔𝑟𝑒𝑓 are the electron affinities and band gaps at a given node point 

and at a reference point respectively. 𝑁𝑐, 𝑁𝑣 and 𝑁𝑐𝑟𝑒𝑓, 𝑁𝑣𝑟𝑒𝑓 are the effective density of 

states of the conduction band and valence band at the given node point and at a reference 

point respectively. 
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2. Boundary Conditions:  

Dirichlet boundary conditions exist at the dual gates, while the other boundaries of the 

device are under Neumann boundary conditions. 

3. Output Files:  

Once the solution converges, the potential profile, the subband density, the electron density 

and the wavefunctions for all the subbands are exported to the Monte Carlo solver. 

 

The following chapter will introduce scattering rates which will be a prerequisite for the 1 

dimensional Monte Carlo solver development. 
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CHAPTER 3 

PHONON SCATTERING MECHANISMS 

Understanding the dominant scattering processes in the material is a crucial step in 

determining the low-field mobility. Although scattering is detrimental to the device, it is 

what dictates the transport in the device.  

This chapter discusses the scattering mechanisms relevant for studying transport in the 

nanowire. The Bandstructure considered for gallium nitride is a single valley (Γ1 ) non-

parabolic band model with non-parabolicity (α = 0.189 eV-1). The scattering mechanisms 

considered are electron-phonon interactions such as acoustic phonon scattering, polar 

optical phonon scattering and piezoelectric scattering.  

The scattering processes which interrupt the carrier free-flights are calculated quantum 

mechanically. The scattering event is treated by defining a scattering potential, which is 

calculated for each type of scattering process. Each of the different processes, or 

interactions leads to a different “matrix element” form in terms of its dependence on the 

initial wave vector, the final wave vector and their corresponding energies. 

Scattering processes for Quasi 1D systems differ from their bulk counterparts as confined 

scattering rates also involve overlap integrals arising from the electron wavefunctions 

overlaps of different states [22].  

The electron wavefunctions are plane waves in the unconfined z-axis and obtained from 

the Schrodinger Poisson Solver in the confined x-y plane.  Therefore, the electron 

wavefunctions for the initial and final states are given by 
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Ψ𝑛(𝑘𝑧) =
1

√𝐿
𝜓𝑛(𝑥, 𝑦) exp(kz. z) (3.1) 

  

Ψ𝑚(𝑘𝑧′) =
1

√𝐿
𝜓𝑚(𝑥, 𝑦) exp(kz′. z) (3.2) 

Here 𝐿 is the length of the quasi 1D region, ψ (x, y) is obtained by solving the Schrödinger’s 

equation and z is the position vector along the unconfined direction.  Overlap integrals play 

a crucial role in confined scattering processes as they dictate the matrix element and hence 

the scattering rates out of state 𝑘𝑧 and subband 𝑛.  

As the carriers are confined in the two-dimensional quantum well, the uncertainty in the 

momentum increases which follows directly as a result of uncertainty principle. 

∆𝑘𝑥. ∆𝑥 ≥
ℏ

2
(3.3) 

∆𝑘𝑦. ∆𝑦 ≥
ℏ

2
 (3.4)                                                                                                                                                   

Since the wavefunctions of electrons are known in the confined directions, the uncertainty 

in the momentum becomes infinite [22].  This directly results in momentum conservation 

being valid only in the unconfined z plane since there is well defined momentum only in 

this plane.  

The matrix element for any scattering process is given by 

𝑀(𝑘𝑧, 𝑘𝑧′) =
1

𝐿
∫ exp (𝑖(𝑘𝑧 − 𝑘𝑧′). 𝑧) 𝑑𝑧 ∬ 𝜓𝑛

∗(𝑥, 𝑦)𝐻̂(𝑥, 𝑦)𝜓𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.5) 

 Here 𝐻(𝑥, 𝑦) is the perturbation potential. 

Fermi’s golden rule describes scattering rates from states 𝑘𝑧 in 𝑛th subband to state 𝑘𝑧’ in 

the 𝑚th subband [23].  
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𝑆𝑛𝑚(𝑘𝑧, 𝑘𝑧′) =
2𝜋

ℏ
|𝑀(𝑘𝑧, 𝑘𝑧′)|2𝛿(𝐸 − 𝐸′ ± ℏ𝜔) (3.6) 

Equation (3.6) is called Fermi’s Golden Rule, where 𝑘𝑧 and 𝑘𝑧′ are the initial and final 

states of the carrier, 𝐸𝑘 and 𝐸𝑘′  are the corresponding kinetic energies and ℏ𝜔𝑞 is the 

phonon energy and 𝛿(𝐸𝑘 − 𝐸𝑘′ ± ℏ𝜔𝑞) describes the conservation of energy during the 

scattering process. The conservation of energy is only valid in the long-time limit, that is 

when the scattering events are infrequent. The top sign is for absorption and the bottom 

sign is for the phonon emission process. 

3.1 Acoustic Phonon Scattering 

 

Phonon scattering is due to the vibrations of the crystal lattice.  Acoustic phonons are 

caused by the lattice atoms oscillating in the same direction. Hence acoustic phonons cause 

the deformation of the unit cell. This differential displacement along with the deformation 

potential forms the perturbation potential for acoustic phonon scattering [24]. At room 

temperature, Acoustic phonons have energies much less than the thermal energy, hence the 

interaction of electrons with them is treated as an elastic scattering. Acoustic phonons can 

cause either intersubband or intrasubband scattering.  

The scattering potential due to acoustic phonon scattering is of the following form. 

 

𝐻̂ = Ξ𝑎𝑐  ∇. 𝒖(𝒓) (3.7) 

 

Where Ξ𝑎𝑐  is the acoustic deformation potential and u(r) is the phonon unit vector given 

by [24] 

𝑢(𝑟) =  ∑ √
ℏ

2𝜌𝜔𝑞Ω
𝑞

𝒆𝒒(𝑎𝑞𝒆𝒊𝒒.𝒓 + 𝑎𝑞
+𝒆−𝒊𝒒.𝒓) (3.8) 
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Here  𝑎𝑞 , 𝑎𝑞
+ are the creation and annihilation operators, q is the phonon wave vector, ρ is 

the material density, 𝒆𝒒 is the unit polarization vector and ℏ𝜔𝑞 is the phonon energy. The 

perturbation potential can then be found by substituting (3.8) into (3.7) [23]. 

𝐻̂(𝑟) =   Ξ𝑎𝑐  ∑ √
ℏ

2𝜌𝜔𝑞Ω
𝑞

𝒒 . 𝒆𝒒(𝑎𝑞𝒆𝒊𝒒.𝒓 − 𝑎𝑞
+𝒆−𝒊𝒒.𝒓) (3.9) 

 

 To arrive at the expression for the matrix element, equation (3.9) is integrated over phonon 

coordinates and substituted into equation (3.5) [25]. 

𝑀𝑛𝑚(𝑘𝑧, 𝑘𝑧′) =  √
ℏ

2𝜌𝜔𝑞Ω
Ξ q √(𝑁𝑞 +

1

2
±

1

2
)

1

𝐿
… 

 ∫ exp(𝑖(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧)) 𝑑𝑧 ∬ 𝜓𝑛(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦)) 𝜓𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.10) 

Here 𝑁𝑞 is the phonon number density given by the Bose-Einstein distribution function 

𝑁𝑞 =
1

e
ℏ𝜔𝑞

𝜅𝑇 − 1

(3.11) 

Under the elastic and equipartition approximation [24], one can assume that the phonon 

energy is much less than thermal energy (ℏ𝜔𝑞 ≪ 𝜅𝑇). Thus, in addition to the interactions 

with electrons being elastic, it also leads to 

𝑁𝑞 = 𝑁𝑞 + 1 ≅
𝜅𝑇

ℏ𝜔𝑞

(3.12) 

For low energies, the dispersion curve for acoustic phonons is linear, therefore one can 

approximate 

𝜔𝑞 =  𝑣𝑠𝑞 (3.13) 

Here 𝑣𝑠 is the sound velocity in the material. 
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Furthermore,  

1

𝐿
∫ exp(𝑖(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧)) 𝑑𝑧 = 𝛿(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧) (3.14) 

∬ 𝜓𝑚(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦)) 𝜓𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =  𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦) (3.15) 

 

 The overlap integral for acoustic scattering is denoted by 𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦). From Equations 

(3.11) to (3.15), the matrix element can then be written as 

|𝑀(𝑘𝑧, 𝑘𝑧′)|2 =  
Ξ2𝜅𝑇

2𝜌Ω𝑣𝑠
2

|𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦)|2𝛿(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧) (3.16) 

 

Substituting (3.16) into equation (3.6) and integrating over all final states  𝑘𝑧′, one arrives 

at the final expression for Acoustic Scattering rate from subband m to subband n. 

Γ𝑛𝑚
𝑎𝑐 = 2 ∑ 𝑆𝑛𝑚(𝑘𝑧, 𝑘𝑧′)

𝑘𝑧′𝑞

(3.17) 

Where the prefactor of 2 accounts for absorption and emission of phonons. Substituting the 

expression for 𝑆𝑛𝑚(𝐾𝑧, 𝐾𝑧′) from Fermi’s golden rule and converting the summation to 

an integral, equation (3.17) expands to 

Γ𝑛𝑚
𝑎𝑐 = 2

2𝜋

ℏ

Ξ2𝜅𝑇

2𝜌Ω𝑣𝑠
2

1

2𝜋
 

∬
1

(2𝜋)2
|𝐼𝑛𝑚

𝑎𝑐(𝑞𝑥, 𝑞𝑦)|2𝑑𝑞𝑥𝑑𝑞𝑦 ∫ 𝛿(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧) 𝛿(𝐸 − 𝐸′)𝑑𝑘𝑧′ (3.18) 

Converting the integration variable in the delta function integral from 𝑑𝑘𝑧′to 𝑑𝐸′ where E’ 

is the final energy after scattering, the delta function integral evaluates to the final density 

of states function [25] 
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∫ 𝛿(𝑘𝑧 − 𝑘𝑧′ ± 𝑞𝑧) 𝛿(𝐸 − 𝐸′)𝑑𝑘𝑧′ = √(
2𝑚

ℏ2
)

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

(3.19) 

Where 𝐸𝑓 = 𝐸𝑛 − 𝐸𝑚+𝐸𝑖, is the final energy after scattering, 𝐸𝑛 and 𝐸𝑚 are subband 

energies and 𝐸𝑖 is the initial electron energy. 

Evaluating the integral of overlap function |𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦)|2 one arrives at the following 

expression [26] 

𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = ∬

1

(2𝜋)2
|𝐼𝑛𝑚

𝑎𝑐(𝑞𝑥, 𝑞𝑦)|2𝑑𝑞𝑥𝑑𝑞𝑦 =  ∬|𝜓𝑚(𝑥, 𝑦)|2|𝜓𝑛(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 (3.20)  

 

The overlap integral is evaluated over the entire quasi 1D region. Substituting (3.20) and 

(3.19) into (3.18), the final scattering rate for Acoustic Phonons is given by 

Γ𝑛𝑚
𝑎𝑐 =

Ξ2𝜅𝑇√2𝑚∗

2𝜌𝑣𝑠
2ℏ2

 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

Θ(𝐸𝑓) (3.21)
 

Here the step function Θ(𝐸𝑓) allows only those transitions when the final energy is 

positive.  

Acoustic scattering rate decreases with increasing energy. Hence acoustic phonons are 

primarily active at low electron energies. 

3.2 Polar Optical Phonon Scattering 

Polar Scattering occurs in materials having two different kinds of atoms in their basis. In 

such crystals, there is charge transfer in between the two atoms creating a dipole moment. 

Polar Scattering can be due to optical phonons (polar optical phonon scattering) and 

acoustic phonons (piezoelectric scattering). This section discusses the scattering due to 
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Optical phonons. Since GaN is a highly polar material, Polar optical phonon scattering 

would be a dominating factor in determining the mobility of the GaN nanowire.  

Optical phonons arise out of lattice vibrations wherein the constituent atoms oscillate in 

opposite directions creating a relative displacement. This does not induce lattice strain, 

rather alters the size of unit cell [24]. Therefore, any perturbation potential arising out of 

optical phonon interaction is a product of the optical deformation potential and the lattice 

displacement. 

𝐻̂ = D𝑜𝒖(𝒓) (3.22) 

In polar materials, the optical phonons cause oscillatory behavior in the existing dipole. 

Electrons are scattered by this long-range dipole field which oscillates in time and space 

[27]. This forms the basis of the perturbing potential. Although there is no clear distinction 

between Longitudinal mode(LO) and Transverse Mode (TO) optical phonons in Wurtzite 

materials [25], it is seen that LO phonons have higher scattering rates than TO phonons 

[28]. A detailed discussion on LO and TO phonons in wurtzite materials would be beyond 

the scope of this thesis. This work would consider only the longitudinal Mode(LO) optical 

phonons as participating in polar optical scattering. The interaction between LO optical 

phonons and electrons is called Froehlich interaction and the so derived Froehlich 

Hamiltonian is used in determination of the matrix element. 

The polarization field arising out of displacement of atoms in the unit cell due to the 

propagation of optical phonon is given by [29] 

𝑷(𝑟) =
𝑒∗

Ω
𝒖(𝑟) (3.23) 
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Here u(r) is the lattice displacement vector, e* is the effective charge and Ω is the unit cell 

volume. The effective charge is further given by[29] 

𝑒∗2
= 𝜇Ω𝜔𝐿𝑂

2 (
1

𝜀∞
−

1

𝜀(0)
) (3.24) 

Here μ is the relative mass of the atoms in the unit cell, 𝜔𝐿𝑂 is the LO optical phonon 

frequency. 𝜀∞ and 𝜀(0) are the high frequency and static dielectric constants respectively.  

Using equation (3.8) for the phonon displacement vector and the using the fact that in the 

absence of free charge the divergence of displacement field is zero, that is 

∇. 𝑫 = 0 

𝑞(𝜀𝑬 + 𝑷) = 0 (3.25) 

Where E is the induced electric field.  

From the above equations (3.23) -(3.25), the Froehlich Hamiltonian [29]can be derived as 

𝐻̂𝑝𝑜𝑝 =  
𝑖𝑒𝑒∗

𝜀∞Ω 
 ∑ √

ℏ

2𝜇𝑁𝜔𝑞
𝑞

1

𝑞
(𝑎𝑞𝒆𝒊𝒒.𝒓 − 𝑎𝑞

+𝒆−𝒊𝒒.𝒓) (3.26) 

 

Following the approach taken in acoustic phonon scattering, the matrix element is 

determined by integrating the above equation over phonon coordinates. 

𝑀(𝑘𝑧, 𝑘𝑧′) =  
𝑖𝑒𝑒∗

𝜀∞Ω 
√

ℏ

2𝜇𝑁𝜔𝑞

1

𝑞
 √(𝑁𝑞 +

1

2
±

1

2
)

1

𝐿
 … 

∫ exp(𝑖(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧)) 𝑑𝑧 ∬ 𝜓𝑛(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦)) 𝜓𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.27) 

 

Using equation (3.24) for e* and using the fact that 𝜔𝑞 = 𝜔𝐿𝑂  for optical phonons, one 

can obtain,  
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|𝑀(𝑘𝑧, 𝑘𝑧′)|2 =  
 ℏ𝑒2𝜔𝐿𝑂

2𝑉
(

1

𝜀∞
−

1

𝜀(0)
)

1

𝑞2
(𝑁𝑞 +

1

2
±

1

2
) …  

|𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|2𝛿(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧) (3.28) 

 

Where the double integral over the wavefunctions has been re-written as 𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)  

∬ 𝜓𝑚(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦)) 𝜓𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =  𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦) 

and 𝑁𝑞 +
1

2
±

1

2
 takes into account the absorption and emission of phonons respectively. 

Using Fermi’s golden rule for determining the scattering rate 𝑆𝑛𝑚(𝐾𝑧, 𝐾𝑧′) and summing 

up over all final states 𝐾𝑧’, the final polar optical phonon scattering rate from subband m 

to subband n is given as[25] 

Γ𝑛𝑚
𝑝𝑜𝑝 =

𝑒2𝜔𝐿𝑂

8𝜋2
(

1

𝜀∞
−

1

𝜀(0)
) (𝑁𝑞 +

1

2
±

1

2
) ∬

1

𝑞2
|𝐼𝑛𝑚

𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|2𝑑𝑞𝑥 𝑑𝑞𝑦 

∫ 𝑑𝑘𝑧′ 𝛿(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧) 𝛿(𝐸 − 𝐸′ ± ℏ𝜔0) (3.29) 

The delta function integral is calculated similar to the approach adopted for Acoustic 

Scattering by converting 𝑑𝑘𝑧′to 𝑑𝐸′[25],  

∫ 𝛿(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧) 𝛿(𝐸 − 𝐸′)𝑑𝑘𝑧′ = √(
2𝑚

ℏ2
)

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

 

Here 𝐸𝑓  now considers absorption or emission of Optical phonon as well, that is 

𝐸𝑓 = 𝐸𝑛 − 𝐸𝑚+𝐸𝑖 ± ℏ𝜔𝐿𝑂 (3.30) 

The calculation of the overlap integral 𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦) is discussed below. 
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3.2.1 Evaluation of the Overlap Integral: Forward and Backward Scattering 

The rate of polar optical phonon scattering in confined systems such as the nanowire in this 

case depends on the overlap integral which couples the initial and final electron states. 

The overlap integral appearing in equation (3.29) contains the wavefunctions of the initial 

and final state as well as the phonon wave vector q with components 𝑞𝑥, 𝑞𝑦 and 𝑞𝑧. One 

can define the components along the confined directions (𝑞𝑥 and 𝑞𝑦) as  

𝑞𝑥,𝑦 =
2𝜋

𝐿𝑥,𝑦

𝑛

100
𝑛 = 1,2,3 … 

Where 1/100 is an arbitrarily chosen prefactor. 

Along the transport direction z, the phonon wave vector (𝑞𝑧) takes a form depending on 

the initial and final electron wavevectors 𝑘𝑧 and 𝑘𝑧’. The process is derived below.  

∬
1

𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2

|𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|2𝑑𝑞𝑥 𝑑𝑞𝑦 =  𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑝𝑜𝑝 (𝑞𝑧) 

𝑘𝑧′ = 𝑘𝑧 + 𝑞𝑧 

𝑘𝑧′2 = 𝑞𝑧
2 + 2𝑘𝑧𝑞𝑧 𝑐𝑜𝑠𝜃 + 𝑘𝑧2 (3.32) 

Since the electrons travel only along positive (or negative) z axis, 𝑐𝑜𝑠𝜃 can take only two 

values ± 1. Based on the two values, the electrons can either undergo forward (𝑐𝑜𝑠𝜃 = 1) 

or backward (𝑐𝑜𝑠𝜃 = −1) scattering. Therefore, the phonon wave vector can take on two 

possible values 

𝑞𝑧 =  −𝑘𝑧 + 𝑘𝑧′ (3.33) 

Which corresponds to forward scattering and 

𝑞𝑧 = 𝑘𝑧 + 𝑘𝑧′ (3.34) 
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Which corresponds to backward scattering. 𝑘𝑧 and 𝑘𝑧’ are electron wavevectors before and 

after scattering respectively.  

Finally, the overlap integral for polar optical phonon scattering between electron states in 

subband 𝑛 and subband 𝑚 is calculated by determining |𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|

2
  numerically by 

using equation (3.33) and (3.34) to calculate the integral in equation (3.32).  

The resulting overlap factor 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑜𝑝 (𝑞𝑧) is substituted back into Equation (3.29) to get 

Γ𝑛𝑚
𝑝𝑜𝑝 =

𝑒2𝜔𝐿𝑂

8𝜋2
(

1

𝜀∞
−

1

𝜀(0)
) √(

2𝑚

ℏ2
) (𝑁𝑞 +

1

2
±

1

2
) 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑝𝑜𝑝 (𝑞𝑧)
(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

 (3.35) 

 

Polar optical scattering is q-vector dependent and favors small angle scattering, which as 

seen in later chapters, in quasi 1D systems favors Forward scattering against backward 

scattering. 

3.3 Piezoelectric Scattering 

Piezoelectric scattering is a type of polar scattering which is effected by acoustic phonons. 

As described in section 3.2, charge transfer occurs in polar materials which creates a dipole. 

Second order interaction of electrons with these fields gives rise to Piezoelectric scattering 

which is discussed here. Piezoelectric polarization is proportional to the acoustic strain 

which further depends on differential displacement [24]. Numerically 

𝑷 =  𝑒𝑝𝑧∇. u(𝐫) (3.36) 
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Where 𝑒𝑝𝑧 is a piezoelectric constant which depends on the piezoelectric and elastic 

properties of the material [30]. Similar to the one obtained for polar optical phonon 

scattering, the perturbing Hamiltonian is given by[30] 

𝐻̂𝑝𝑖𝑒𝑧𝑜 =  −
𝑒𝑒𝑝𝑧

𝜀∞
 ∑ √

ℏ

2𝜇𝑁𝜔𝑞
𝑞

(𝑎𝑞𝒆𝒊𝒒.𝒓 + 𝑎𝑞
+𝒆−𝒊𝒒.𝒓) (3.37) 

Integrating over phonon coordinates along with initial and final electron states to get the 

Matrix Element[25] 

𝑀(𝑘𝑧, 𝑘𝑧′) =  −
𝑒𝑒𝑝𝑧

𝜀∞Ω 
√

ℏ

2𝜇𝑁𝜔𝑞
 √(𝑁𝑞 +

1

2
±

1

2
)

1

𝐿
…  

∫ exp(𝑖(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧)) 𝑑𝑧 ∬ 𝜓𝑛(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦)) 𝜓𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.38) 

Since this scattering mechanism is acted upon by acoustic phonons, at low energies, one 

can use the elastic and equipartition approximation to write 

𝑁𝑞 = 𝑁𝑞 + 1 ≅
𝜅𝑇

ℏ𝜔𝑞
 

Since the dispersion of acoustic phonons is linear, 𝜔𝑞 =  𝑣𝑠𝑞 , equation (3.37) can be 

transformed to 

|𝑀(𝑘𝑧, 𝑘𝑧′)|2 =  (
𝑒𝑒𝑝𝑧

𝜀∞
)

2 𝜅𝑇

2𝜌𝑣𝑠
2

1

𝑞2
|𝐼𝑛𝑚

𝑝𝑖𝑒𝑧𝑜(𝑞𝑥, 𝑞𝑦)|
2

𝛿(𝑘𝑧 − 𝑘𝑧′ ∓ 𝑞𝑧) (3.39) 

 

Here 𝐼𝑛𝑚
𝑝𝑖𝑒𝑧𝑜(𝑞𝑥, 𝑞𝑦) is the overlap integral containing the initial and final electron states 

defined similarly to overlap integral in polar optical phonon scattering[25]. The overlap 

integral is evaluated in the method described in section 3.2.1. 
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The final scattering rate out of state 𝑘𝑧 and subband m is given by using Fermi’s golden 

rule to determine the total transitions and summing it up over all final states 𝑘𝑧’. That is 

Γ𝑛𝑚
𝑝𝑖𝑒𝑧𝑜 = 2 ∑

2𝜋

ℏ
|𝑀(𝑘𝑧, 𝑘𝑧′)|2𝛿(𝐸 − 𝐸′)

𝑞𝑧

(3.40) 

The prefactor of 2 accounts for absorption and emission of acoustic phonons. The energy 

conserving delta function omits the phonon energy term (ℏ𝜔) as acoustic phonons carry 

negligible energy at room temperature. 

Expanding the Matrix element from (3.38) and converting the delta function integral from 

𝑑𝑘𝑧’ to 𝑑𝐸’, equation (3.39) becomes 

Γ𝑛𝑚
𝑝𝑖𝑒𝑧𝑜 =  (

𝑒𝑒𝑝𝑧

𝜀∞
)

2 𝜅𝑇√2𝑚∗

4𝜋ℏ2𝜌𝑣𝑠
2

𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑖𝑒𝑧𝑜 (𝑞𝑧)

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

(3.41)
 

Where 𝐸𝑓 = 𝐸𝑛 − 𝐸𝑚+𝐸𝑖  

The overlap integral here is termed 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑖𝑒𝑧𝑜 (𝑞𝑧)  and is calculated using the same algorithm 

as that of the polar optical phonon scattering.  

∬
1

𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2

|𝐼𝑛𝑚
𝑝𝑖𝑒𝑧𝑜(𝑞𝑥, 𝑞𝑦)|

2
𝑑𝑞𝑥 𝑑𝑞𝑦 =  𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑝𝑖𝑒𝑧𝑜 (𝑞𝑧) 

 

Similar to polar optical phonon scattering, Piezoelectric scattering also has q dependence 

in the overlap integral, and favors forward over backward scattering. 
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CHAPTER 4 

THE ONE-DIMENSIONAL MONTE CARLO SOLVER 

4.1 The Boltzmann Transport Equation 

 

The Boltzmann Transport equation is given as [24] 

𝜕𝑓

𝜕𝑡
+ 𝒗. ∇𝑟𝑓 + 𝑭. ∇𝑝𝑓 = 𝑠(𝒓, 𝒑, 𝑡) +

𝑑𝑓

𝑑𝑡
|𝑐𝑜𝑙𝑙 (4.1) 

The distribution function is denoted by 𝑓(𝑟, 𝑘, 𝑡). It is a complicated integro-differential 

equation in seven-dimensional phase space. Three dimensions each in momentum (k) space 

and real space and one in time. The left-hand side of equation (4.1) consists of three terms, 

the first term describes the time variation of the distribution function f, the second term 

describes the spatial variation of the distribution function and finally the third term 

describes the effect on the distribution function due to applied fields [31]. On the right-

hand side, the first term describes the recombination and generation processes and the 

second term is the collision integral which describes the scattering processes [31]. 

Analytical solution of the BTE requires unrealistic approximations which may not lead to 

desired results.  

Therefore, stochastic methods such as Monte Carlo are best suited to solve the Boltzmann 

Transport Equation. There are three approaches to solving a BTE using Monte Carlo: 

• Single Particle Monte Carlo - in which the motion of a single particle is tracked for 

an extended period of time until it reaches steady state. 

• Ensemble Monte Carlo - A large number of particles (hence an ensemble) are 

simulated at the same time. This is particularly useful in transient analysis as it 
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allows for average quantities to be computed by ‘freezing’ the simulation at regular 

intervals 𝑑𝑡. 

• Self-consistent Monte Carlo -  The ensemble Monte Carlo solver is coupled with a 

Poisson equation solver and self consistently solved which also tracks changes in 

potential with time. This approach is best suited for a full simulation of any device. 

This work employs the Ensemble Monte Carlo method to calculate mobility of the 

nanowire along the transport (unconfined) direction. 

4.2 Self-scattering and Free Flight 

The free-flight scatter routine forms the basis of every Monte Carlo algorithm. Hence it is 

imperative to understand the underlying methodology to calculate the free flight time and 

scatter rates. As seen previously, the scattering rate for each scattering mechanism is a 

function of the electron energy and hence the total scattering rate is also a function of the 

energy of the particles.  

Consider an electron in a system. If Γ[𝑘(𝑡)]𝑑𝑡 is the probability that an electron in state k 

suffers a collision during the time interval 𝑑𝑡, then the probability that an electron which 

has had a collision at time t=0 has not yet undergone another collision after time t is [24], 

𝑃 =  𝑒− ∫ Γ[𝑘(𝑡)]𝑑𝑡
𝑡

0  (4.2) 

Therefore, the probability 𝑃(𝑡) that the electron will suffer a collision during 𝑑𝑡 around 𝑡 

is given by 

𝑃(𝑡)𝑑𝑡 = Γ[𝑘(𝑡)]𝑒− ∫ Γ[𝑘(𝑡)]𝑑𝑡
𝑡

0  (4.3) 

Random free flight times can be generated by integrating the left-hand side of (4.3) to the 

desired free-flight time 𝜏𝑟 such that 
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𝑟 =  ∫ 𝑃(𝑡)𝑑𝑡
𝜏𝑟

0

(4.4) 

Where r is a uniformly distributed random number between [0.1]. Substituting (4.3) in (4.4) 

gives 

− ln 𝑟 =  ∫ Γ[𝑘(𝑡)]𝑑𝑡
𝜏𝑟

0

 (4.5) 

The above integral gets very complicated to solve analytically due to the presence of energy 

dependent total scattering rate 𝛤(𝑘). In order to simplify and make the integral trivially 

solvable, a scattering term called self-scattering (𝛤𝑠𝑠 ) is introduced [24]. Self-scattering 

does not change the momentum or the energy of the particle and therefore does not change 

the physics of the particle.  The self-scattering adjusts in such a way that the total scattering 

rate is constant in time. Numerically,  

Γ𝑇 = Γ(𝑘(𝑡)) + Γ𝑠𝑠 (4.6) 

 

Since the self-scattering term has no effect on the physics of the particle, it, therefore, does 

not change the free-flight of the particle, therefore equation (4.5) is converted to  

𝜏𝑟 = −
1

Γ𝑇
ln 𝑟  (4.7) 

From (4.7) it is evident that the total scattering rate must be determined for the range of 

energy values, in other words, a scattering table containing the scattering rates for all N 

scattering mechanisms should be formed. The particle is drifted under the applied Field E 

for the free-flight time so determined. 
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4.3 Scattering Table and Renormalization 

The expression for scattering rates of different scattering mechanisms has been derived in 

Chapter 3. This section discusses the methodology to determine the total scattering rate 

and the maximum scattering rate  𝛤𝑚𝑎𝑥. This is followed by renormalization of the 

scattering table with 𝛤𝑚𝑎𝑥. This procedure is necessary as it allows selection of a scattering 

mechanism based on a uniformly distributed random number. 

 

Figure 4.1 Scatter table creation and normalization procedure [31] 

Figure 4.1 outlines the procedure followed in creating a scattering table for a system having 

3 scattering mechanisms (Γ1, Γ2, Γ3). This process is repeated for all the subbands. The 

scattering table is L x M x N matrix where L is the number of subbands, M is the number 

of scattering processes and N is the total number of energy intervals.  

After the duration of free flight elapses, the energy and the subband of the particle are 

extracted and then the particle is scattered according to a scattering mechanism selected 

according to a random number between 0 and 1. The procedure is outlined below [31].  

A random number (R) is chosen between 0 and 1 and if  
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∑
𝛤𝑖

𝛤𝑇
< 𝑅 ≤

𝑗

𝑖=0

∑
𝛤𝑖

𝛤𝑇

𝑗+1

𝑖=0

 where  𝑗 = 0,1,2, . . 𝑛  𝛤𝑗+1 = 𝛤𝑠𝑠      (4.8) 

then scattering type j+1 is chosen. Here, of course, 𝛤0 = 0. If self-scattering is chosen, 

nothing is done and the loop continues to the next particle. The final state (as well as the 

final subband) of the particle is then arrived at by changing the electron wave vector and 

the final subband depending on the scattering mechanism which the particle underwent. 

4.4 Carrier Drift 

For the duration of free-flight, the particle is accelerated under the applied field E according 

to Newtonian laws of motion.  The change in momentum 𝛿𝑘 and new energy of the carriers’ 

due to this drift process is obtained from the equation of motion. 

𝑑𝑝

𝑑𝑡
= ℏ

𝑑𝑘

𝑑𝑡
 

Therefore, 

𝛿𝑘 =  
−𝑞𝐹

ℏ
 𝜏 

𝑘𝑛𝑒𝑤 = 𝑘 + 𝛿𝑘 

𝐸 =  
ℏ2𝑘𝑛𝑒𝑤

2

2𝑚∗
 

𝐸𝑛𝑝 =  
−1 + √1 + 4𝛼𝐸

2𝛼
 (4.9) 

 

where, 𝐸𝑛𝑝 is the final energy after drift process considering non-parabolic bands (α is the 

nonparabolicity factor) and 𝜏 is the free-flight time.  For quasi-1d systems such as the 
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nanowire considered in this work, the field F is along the unconfined direction z and hence 

the electron wavevector k is also calculated along z direction only. 

4.5 Ensemble Averages 

The ensemble Monte Carlo method does not require steady-state conditions to calculate 

the ensemble averages. Therefore, at regular intervals of 𝛿𝑡, the quantities of carrier 

velocity and energy are averaged for every subband by counting the number of particles in 

each subband.  

To obtain the time evolution of certain physical quantities, the simulation is ‘frozen’ at 

intervals of 𝛿𝑡. The time steps δt at which the simulation is paused and the ensemble 

averages are taken should not be much larger than the maximum frequency of scattering 

[24]. The time interval should be chosen such that it is neither too small to introduce noise 

in the output, nor too large to lead to information loss [31]. Therefore, there are now two 

time quantities in the simulation, free-flight time and sampling time.  

 

Figure 4.2 Ensemble Monte Carlo: Free flight, scatter and sampling time intervals [26] 

time 

t - dt t + dt t 

1 

2 

3 

N 

. 

. 
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Figure 4.2 shows the Ensemble Monte Carlo simulation in a nutshell. The number of 

particles (N) is represented vertically, while the time evolution of each particle proceeds 

horizontally along the blue line. The dashed horizontal line represents the sampling 

intervals of 𝑑𝑡. Each * represents a scattering event taking place after the duration of the 

free-flight.  

At each time interval, the ensemble averages are calculated using the following expression 

(for non-parabolic bands). For the nth subband, the expressions are 

𝑣𝑛(𝑡) =
1

𝑁𝑛
∑ 𝑣𝑖(𝑡)   and      𝐸𝑛(𝑡) =

1

𝑁𝑛
∑ 𝐸𝑖(𝑡)

𝑁

𝑖=1

𝑁

𝑖=1

(4.10) 

Here 𝑁𝑛  is the number of particles in the nth subband. Further, 𝑣𝑖(𝑡) is calculated according 

to 

𝑣𝑖(𝑡) =  
ℏ𝑘𝑧

𝑚∗(1 + 2𝛼𝐸)
 (4.11) 

Here 𝑘𝑧 is the electron wavevector along the z-direction. 

4.6 The One-dimensional Monte Carlo algorithm 

 The previous section explained in detail the Monte Carlo procedure used in device 

simulations. This section provides the algorithm used in Monte Carlo Simulation of the 

Quasi 1D nanowire.  The 1D Monte Carlo code calculates mobility by simulating transport 

along the unconfined z-direction.  Electrons are moved in k space in response to field 

applied along the positive z-direction. This work is concerned with low field mobility; 

hence the applied field is restricted to a few kV/cm in the transport direction. 

The entire Monte Carlo algorithm is displayed as a flowchart in figure 4.3. The code starts 

with the output files saved from the Schrödinger Poisson Solver. Following files are used 
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from the Schrodinger-Poisson Solver: a) the subband energies, b) the subband population 

and c) the electron wavefunctions. 

As discussed in chapter 3, overlap integrals between the initial and final states are a crucial 

factor in the scattering rates.  The number of electrons taking part in the simulation may 

range from 20000 to 30000. The overlap integrals for various scattering mechanisms are 

also calculated in this code. The major functions used in this algorithm are outlined below. 

• Read_wavefunctions 

This subroutine reads the files saved from the Schrodinger Poisson solver and stores them 

into arrays or matrices as deemed suitable. There is also a provision to change the number 

of subbands to be considered in the simulation. The acoustic overlap integral which is 

independent of energy is also calculated for the n subbands and is stored in an array. 

• Scatter_table 

Depending on what scattering mechanisms are enabled (determined by appropriate flags), 

the scatter table subroutine calls the appropriate subroutines to calculate the scattering rates 

for the scattering mechanisms as a function of energy. The scattering rates are then stored 

in a scatter table corresponding to the nth subband (the initial subband). In addition, the 

final subband and the change in energy from before and after the scattering event are also 

stored in an array. For Polar optical phonon and piezoelectric scattering, the scattering 

subroutines are further divided into Absorption/emission and forward /backward 

scattering. The overlap integrals for Polar optical scattering and Piezoelectric scattering are 

dependent on energy and hence are calculated within the respective subroutines.   
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• Renorm_table 

This subroutine normalizes the scattering rates according to the normalization procedure 

described previously in figure 4.1. This subroutine also calculates the maximum gamma for 

each subband which is used in calculated random free flight times for each particle 

depending on its subband. 

• Initialization 

This subroutine initializes the electrons into the subbands and assigns them a kinetic energy 

according to the Boltzmann Distribution.  Since the motion of electrons is restricted to only 

one direction, the average energy according to a Boltzmann distribution is subsequently 

modified to 
1

2
𝜅𝑇   [24]. The momentum vector is also determined according to non-

parabolic E-k relationship and assigned either a forward (+z) or a backward(-z) direction 

according to a uniformly distributed random variable. The electrons are distributed among 

different subbands by using the percentage population of the subbands obtained from the 

subband density file output by the Schrödinger-Poisson Solver [25]. 

• Free-Flight 

Once the time loop starts this subroutine is called for every sampling time interval 𝛿𝑡. In 

this routine, each particle is drifted (by calling the drift routine, which moves the particle 

under the applied field) and at the end of free flight duration, a scattering mechanism is 

selected according to the random variable method outlined previously.  Another subroutine 

scatter_angle exists to change the electron energy, its subband, and the wavevector 

according to the scattering which the electron underwent.  At the end of free-flight-scatter 

routine, the new particle attributes are mapped back to the particle array for the next time 

interval. 
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• Scatter_angle 

This subroutine is called after a scattering mechanism is chosen at the end of free-

flight/drift duration. The scattering mechanism is chosen as follows. After extracting the 

subband information form the electron, a bin is chosen to correspond to the energy of the 

electron. Then, the scattering mechanism is chosen according to the uniformly distributed 

random variable method highlighted in the previous section. The corresponding scatter 

angle subroutine pertinent to the scatter mechanism is then called. 

The scatter angle subroutine would change the energy of the electron (if scattering 

mechanism entailed an energy change) and shifts the electron to a new subband if the 

scattering mechanism caused an intersubband scattering. 

The magnitude of the electron wavevector 𝑘𝑧 is then calculated from the new energy 

according to the non-parabolic E-k relationship. For isotropic mechanisms like acoustic 

scattering, the direction of the wavevector, forward (+z) or backward (-z), is randomized. 

For non-isotropic mechanisms like polar optical phonon scattering or piezoelectric 

scattering, the direction of the new electron wavevector is chosen according to the 

mechanism so selected. For example, if a polar optical phonon forward scattering 

(emission) is selected, then there would be no change in the direction of the electron 

wavevector, while the direction is reversed if backward scattering is selected. 

• Histograms_Mobility 

As the name suggests, this subroutine calculates the histograms as well as the ensemble 

averages of subband velocity and subband energy.  The ensemble average of the subband 

velocity at time-step 𝑡 for N particles for the nth subband is calculated as 
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𝑣𝑛
𝑡 =

1

𝑁𝑛
∑ 𝑣𝑗

𝑁𝑛

𝑗=1

(4.12) 

Similarly, at time step t, the mean electron drift velocity is calculated as 

𝑣𝑎𝑣𝑔
𝑡 =

1

𝑚
∑ 𝑣𝑚

𝑡

𝑚

𝑛=1

(4.12) 

Where m is the total number of subbands in the system. 

The mean energy of the electrons at each time step t is calculated in a similar fashion 

𝐸𝑛
𝑡 =

1

𝑁𝑛
∑ 𝐸𝑗

𝑁𝑛

𝑗=1

(4.13) 

𝐸𝑎𝑣𝑔
𝑡 =

1

𝑚
∑ 𝐸𝑚

𝑡

𝑚

𝑛=1

 (4.14) 

 

Upon reaching steady state, the mobility is calculated by a weighted average of the mobility 

of each subband, which is in turn calculated by dividing the steady-state subband velocity 

with the applied field ϵ. Numerically, mobility of the nth subband is calculated as 

𝜇𝑛 =
𝑣𝑛

𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒

𝜖
(4.13) 

For M subbands, the weighted average of mobility is calculated as 

𝜇 =  
∑ 𝜇𝑖𝑁𝑖

𝑀
𝑖=1

∑ 𝑁𝑖
𝑀
𝑖=1

 (4.14) 

Where 𝑁𝑖   is the subband population of the ith subband. 

The simulation parameters and results are presented in the next chapter. 
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Figure 4.3 The complete 1D Monte Carlo algorithm 
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CHAPTER 5 

STEADY STATE RESULTS 

5.1 Simulation Parameters and Program design 

The device design is introduced in Chapter 1. The device dimensions along with the mesh 

spacing is stored in a file and read into the Schrödinger solver at the start of the routine. 

The program is arranged as follows; Material and device parameters as per Table 5.1 and 

5.2 are read into the main program. Gate voltages are applied onto the double gates. The 

Schrödinger-Poisson solver is then executed. The Monte-Carlo is executed next. The 

applied field is varied from 1-10 kV/cm and the steady-state results are saved. 

Table 5.1 Material Parameters used in Schrodinger Poisson Solver 

 

Parameter GaN AlN AlGaN References 

Aluminum 

Composition 

- - 0.25  

Bandgap (eV) 3.39 6.12 Linearly 

interpolated 

[32] 

Effective 

Mass (Γ1 

valley) (𝑚𝑜) 

0.2 0.31 Linearly 

interpolated 

[33] 

Electron 

Affinity (χ) 

(eV) 

3.3 1.64 2.4 [34] 

Relative 

permittivity 

(ε) 

8.9 8.5 Linearly 

interpolated 

[33] 

Lattice 

Constant (Å) 

3.189 3.112 Linearly 

Interpolated 

[35] 
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Table 5.2 Device Dimensions 

 

Parameter GaN AlN AlGaN 

Doping (m-3) 5x1022  

n-type 

1x1025 

n-type 

1x1024 

n-type 

Layer 

thickness 

(nm) 

200 8 20 

Gate Length 

(nm) 

- - 100 

Nanowire 

width (nm) 

87 - - 

Nanowire 

thickness(nm) 

15 - - 

 

Table 5.3 Piezoelectric Parameters 

 

Parameter GaN AlN AlGaN References 

Spontaneous 

Polarization 

(PSP) (𝐶/𝑚2 ) 

 

-0.029 -0.081 Linearly 

interpolated 

[12] 

𝑒33(𝐶/𝑚2 ) 0.73 1.46 Linearly 

Interpolated 

[12] 

𝑒31(𝐶/𝑚2 ) -0.49 -0.60 Linearly 

Interpolated 

[12] 

𝑒15(𝐶/𝑚2 ) -0.3 -0.48 Linearly 

Interpolated 

[12] 

𝜖11 9.5 9.0  [12] 

𝜖33 10.4 10.7  [12] 

𝐶𝑇(𝑃𝑎) 2.65x1011 - - [28] 

𝐶𝐿(𝑃𝑎) 4.42x1010   [28] 

 

Table 5.3 highlights the piezoelectric parameters used in calculation of piezoelectric 

polarization charges for use in the Schrödinger-Poisson solver as well as the piezoelectric 

scattering rates. 
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5.2 Schrödinger Poisson Solver Results 

In the following figures, both the classical and quantum mechanical results of the 

Schrödinger-Poisson solver are shown. The dual gates are biased at -3V each to induce 

creation of channel.   

5.2.1 Conduction Band Energy 

 Figures 5.1-5.3 show the conduction band profile of the device. Figure 5.1 shows a 3D 

plot of the entire device. The quasi 1D region created is indicated. Figures 5.2 and 5.3 

further show the conduction band edge at the AlN/GaN interface as a 2D plot. One can see 

the creation of wells along the device width (X) and thickness (Y). The zero level is taken 

as the reference and the Fermi level (EF). This conduction band profile acts as a confining 

potential in the Schrodinger Equation solver.  

 

Figure 5.1 3D plot showing the Conduction band energy of the entire device. 
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Figure 5.2 Conduction band profile along the width of the device at the AlN/GaN 

interface.  

 

 

Figure 5.3 Conduction band profile along the depth of the device. The cutline is taken at 

the center of the well created along the width X.  
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As seen in figure 5.3, the triangular well is created in GaN layer near the AlN/GaN 

interface. Seen together, figures 5.2 and 5.3 describe the 2-dimensional potential well 

created, which forms the quasi-1D nanowire region.  

5.2.2 Electron Density 

The electron density in the quasi 1D region are plotted below. The electron density is 

obtained as discussed in Chapter 2 upon solving Schrödinger’s equation in the nanowire 

region self-consistently with Poisson’s equation. Figure 5.4 shows a 3D plot of the electron 

density calculated in the nanowire. As can be seen, the density peaks at the center of the 

nanowire, below the AlN/GaN interface. Figures 5.5 and 5.6 show the electron density 

along with the conduction band profile. 

 

Figure 5.4 Electron Density in the nanowire determined by self-consistent solution of 

Schrodinger Poisson Equation. 
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Figure 5.5 Electron density at the interface along device width. The density peaks at  

x = 144nm, which is the center of the nanowire. 

 

Figure 5.6 Electron density at the center of the nanowire along device depth. 
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5.2.3 Subband Energies and Wavefunctions 

The Schrödinger Solver outputs the eigenvalues and eigenvectors which are used to 

calculate the subband energies and the subband population in the quasi 1D wire.  The 

eigenvectors are normalized to yield the wavefunctions in the quasi 1D region.   

The first 15 eigenvalues were extracted from the eigenvalue solver which form the subband 

energies of the quasi-1D nanowire. The Subband energies (Ei) and the electron line density 

in each subband (Ni) is plotted in Figure 5.7. 

 

Figure 5.7 Subband Energy (Ei) and population of the first 15 subbands 

 

The wavefunctions are obtained by normalizing the Eigen Vectors.  The wavefunctions of 

the first two subbands are shown in figures 5.8 and 5.9. 

 



  56 

 

Figure 5.8 Wavefunction for the first energy level (E1) 

 

Figure 5.9 Wavefunction for the second energy level (E2) 
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5.3 Monte Carlo Solver Results 

The Monte Carlo solver is built as described in Chapters 3 and 4. Tables 5.4 and 5.5 list 

the initialization parameters for the Solver. The subband energies and population as well 

as the wavefunctions are imported from the Schrodinger Solver. The initial distribution of 

electrons into subbands is done according to the subband population data.  

The Monte Carlo simulation domain is the quasi 1D nanowire region. Single valley (Γ1) 

non-parabolic band structure is adopted for GaN. Since this is a simulation of low-field 

transport, intervalley scattering is not accounted for in this work.  

Table 5.4 Material Parameters (GaN) for Monte Carlo Solver 

 

Parameter Value References 

Non Parabolicity (α) 0.189 eV  

Effective Mass (m*) 0.2 [32] 

Static Dielectric constant (ε0) 8.9 [32] 

High Frequency Dielectric 

constant (ε∞) 

5.35 [32] 

Material Density 6150 Kg/m3 [36] 

Sound Velocity 6560 m/s [36] 

Deformation Potential 8.3 eV [36] 

Optical Phonon energy 0.0912 eV [36] 

 

 

Table 5.5 Simulation parameters for Monte Carlo Solver 

 

Parameter Value 

Number of simulation electrons 20000 

Step interval 10 fs 

Total Simulation time 20 ps 

Applied Field (z) 1 kV/cm 
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5.3.1 Scattering Rates 

 The following figures show the cumulative scattering rates out of the first subband (n=1) 

for acoustic scattering, piezoelectric scattering and polar optical phonon (absorption and 

emission) scattering respectively. The cumulative scattering rate out of subband ‘n’ for 

each scattering mechanism is arrived at by totaling the scattering rate (Γ𝑛𝑚) over all the 

final subbands ‘m’.   

 

Figure 5.10 Acoustic Scattering rate out of the first subband.  

 
Figure 5.11 Piezoelectric Scattering rate out of the first subband. 
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Figure 5.12 Polar optical Absorption Scattering rate out of the first subband. 

 

 

Figure 5.13 Polar optical Emission Scattering rate out of the first subband. 

 

The scattering rates carry the signature of 1D density of states with the peaks being the 

result of the Heaviside step function which allow intersubband scattering only when the 

kinetic energy of the electron exceeds the difference in subband energy.  
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Piezoelectric scattering rate behaves similarly to the acoustic scattering rates, due in part 

to the fact that acoustic phonons are responsible for both. At low energies, the frequency 

of piezoelectric scattering is much higher than acoustic scattering, leading to the former 

being a dominant scattering mechanism for low field transport. This is expected since GaN 

is a highly piezoelectric material.  

Out of the two polar optical phonon scattering rates, polar optical phonon emission has a 

higher scattering rate. But polar optical emission has a threshold energy which is equal to 

the optical phonon energy, since only upon exceeding this energy the electron can emit an 

optical phonon. At low fields, the electrons would be unable to gain this energy, hence the 

Polar optical phonon scattering would not be a dominant mechanism. 

5.3.2 Electron distribution, Transient and Steady State results 

During initialization, the energy of the electrons is assigned according to Boltzmann 

distribution. In accordance with the limited degrees of freedom for the electrons (1D) in 

the confined nanowire, the energy of each electron is assigned as 

𝑒 =  −
1

2
𝜅𝑇 ln 𝑟 (5.1) 

here, r is uniformly distributed random number between 0 and 1.  

Figures 5.14 and 5.15 plot a histogram of the energy of the carriers after initialization and 

after the end of simulation respectively. 
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Figure 5.14 The energy of electrons after initialization, plotted as a histogram. 

 

The electron distribution changes as the electrons gain and lose energy by undergoing 

scattering and drift processes. The changed electron distribution after reaching steady state 

is shown in figure 5.15 for an applied field of 1kV/cm. 

 

Figure 5.15 Electron energy distribution after reaching steady state for an applied field of 

1kV/cm 

 

The transient behavior of the mean electron energy and mean drift velocity, for an applied 

field of 1kV/cm, is shown in figures 5.16 and 5.17. The figures plot the mean electron 
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energy and the mean drift velocity, obtained as shown in chapter 4, versus the simulation 

time.  The electron energy rises initially as the electrons gain energy from the applied field 

and then settles down as they lose the excess energy to scattering processes. At steady state, 

the mean energy is 16.5 millielectronvolts for an applied field of 1kV/cm. 

The drift velocity is negative implying that the electrons are traveling in the opposite 

direction to the applied field (+z).  The transient behavior of mean drift velocity is also 

similar to that of the mean energy and it reaches a steady state velocity of 𝑣𝑑 =

3.15×106 𝑐𝑚/𝑠.  

 

Figure 5.16 Mean electron energy versus time (Applied field 1kV/cm) 
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Figure 5.17 Mean electron velocity versus time (Applied field 1kV/cm) 

 

The applied field was varied from 1kV/cm to 10kV/cm and the steady state characteristics 

was obtained. As the applied field increases, the electron energy increases enabling a higher 

number of intersubband scattering. This alters the subband population and hence the 

mobility.  Figure 5.18 shows the subband population as a function of the applied field. As 

the magnitude of the applied field increases, intersubband transitions increase which is 

evident by the decrease in the population of the first subband. 
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Figure 5.18 Variation of subband population with applied field. 

5.4 Mobility Results and Inferences 

 The electron mobility is calculated by the first calculating the mobility of each individual 

subband and then averaging it using the subband population as weights. Numerically, 

𝜇 =  
∑ 𝜇𝑖𝑁𝑖

𝑀
𝑖=1

∑ 𝑁𝑖
𝑀
𝑖=1

 (5.2) 

 

Table 5.6 shows the calculation process for an applied field of 1 kV/cm. Figure 5.19 shows 

the Velocity vs field curve for the nanowire. It is seen that in the low field regime (up to 7 

kV/cm), the velocity varies linearly with field, hence implying that the mobility remains 

constant.  At fields at and above 10 kV/cm, there is a noticeable increase in the slope of the 

curve. However, one should note that intervalley scattering mechanisms, which are not 

considered in this work, may increase at these energies and hence this model may not be 

accurate. 
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Figure 5.19 Mean electron velocity vs Applied field   

 

 

Table 5.6 Mobility Calculation for an applied field (ϵ = 1kV/cm) 

 

Subband Velocity (𝒗𝒊) 

(m/s) 

Subband Population (𝒏𝒊) 𝒗𝒊

𝝐
𝒏𝒊 

23099.72 4922 1.14E+03 

27658.43 3510 9.71E+02 

28892.77 2646 7.65E+02 

29215.7 2181 6.37E+02 

36991.53 1667 6.17E+02 

38323.75 1432 5.49E+02 

39513.04 1122 4.43E+02 

45091.28 918 4.14E+02 

46425.46 883 4.10E+02 

49764.2 719 3.58E+02 

Mobility (
𝑐𝑚2

𝑉
. 𝑠) ∑

𝒗𝒊

𝝐 𝒏𝒊

∑ 𝒏𝒊
 

3149.96 
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5.4.1 Comments on Mobility and Experimental Validation 

 The electron mobility of the GaN nanowire considered in this work is determined to be 

about 3150 cm2/V.s. It should be noted that this is a low field mobility and considers only 

three electron-phonon scattering mechanisms while leaving out impurity scattering such as 

Coulomb scattering and Dislocation scattering. Both mechanisms can be a limiting factor 

to electron mobility. However, since the GaN region is lightly doped, not considering 

ionized impurity scattering can be justified to an extent.  

Indeed, the authors in paper[37] grow a similar AlGaN/AlN/GaN nanowire, albeit with 

radial geometry) without any doping. They report an intrinsic mobility of 3100 cm2/V.s. at 

300K determined through four-probe measurements. Since the as-grown nanowire 

consisted of intrinsic, high purity GaN, it would be safe to say that the mobility would not 

be limited by ionized impurity scattering or dislocation scattering. Figure 5.20 shows a 

snapshot of the experimental structure and the subsequent result. 

 

Figure 5.20 The experimental structure and mobility reported by authors in [37] 

Figure Courtesy of [37] 

 

As such, the mobility calculated in this work closely matches the experimental mobility 

obtained for a similar structure, validating the model and solver used in this work. Since 
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the solver developed in this work is generic, further scattering mechanisms can be 

conveniently added as and when needed. 

The dominant scattering mechanism in the low field regime is found to be Piezoelectric 

scattering. As can be seen in figures 5.14 and 5.15, mean energy of the electrons is not 

enough to activate polar optical phonon scattering. However, as the applied field is 

increased, Polar optical scattering becomes increasingly dominant as a higher number of 

electrons gain excess energy over the optical phonon energy. This also means that due to 

the high optical phonon energy in GaN, the electrons have fewer scattering mechanisms at 

very low fields, paving the way for GaN nanowires to be used in applications such as 

ballistic transport.   
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Semiconductor nanowires are finding a variety of application from logic devices and FETs 

to solar cells. The attractive properties of gallium nitride make it a potential candidate for 

many nanowire applications and hence the need to develop a mobility model arises. This 

work developed a low field mobility model for AlGaN/GaN Heterostructure nanowires. A 

2 dimensional self-consistent Schrödinger-Poisson solver was developed and coupled with 

a 1 dimensional Monte Carlo solver.  

Two-dimensional confinement was achieved by designing a double gated 

Al0.25Ga0.75N/AlN/GaN Heterostructure with 20 nm thick AlGaN and 8 nm thick AlN 

layers. The triangular and square wells so formed created a quasi 1D nanowire region.  

The self-consistent Schrödinger-Poisson solver determined the subband energies and the 

respective line densities as well as the electron wavefunctions which were in turn fed to 

the Monte Carlo solver. Three electron phonon scattering mechanisms were considered: 

acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering. 

Expressions for the one-dimensional scattering rates were derived for all three. The 

scattering rates were determined to be a strong function of the overlap integrals between 

the initial and the final states. These were obtained by coupling the wavefunctions of the 

initial and final electronic states. 

The one-dimensional Monte Carlo kernel was operated on the quasi 1D nanowire region 

and steady state results were obtained. The velocity vs. field characteristics were obtained 

for the low field regime by varying the applied fields in the 1kV/cm-10 kV/cm range. The 
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resulting characteristics suggested a linear Velocity variation vs. field in the low field 

regime. 

The electron mobility was determined to be 3150 cm2/V-s which agrees with experimental 

results for intrinsic mobility of an undoped GaN nanowire. Among the scattering 

mechanisms considered, piezoelectric scattering was found to be most dominant at low 

fields. As expected, since the polar optical phonon is very high for GaN, the electrons do 

not scatter from polar optical phonons.  

6.2 Future Directions of Research 

➢ Scattering Mechanisms 

Further scattering mechanisms such as impurity scattering may be added to accurately 

model highly doped nanowires. Interface roughness scattering can be added to account for 

scattering at the GaN/AlGaN hetero-interface. Dislocation scattering mechanism may also 

be necessary to account for scattering from dislocation cores arising due to dislocations 

present in the crystal.  

➢ Coupled Schrodinger - Monte Carlo Solver (Device Simulation) 

The Schrodinger-Poisson solver can be solved in slices and coupled with Monte Carlo 

device solver to simulate I-V characteristics of a device. 

➢ Confined Phonons 

 The confinement of phonons was not considered in this work. The impact of spatial 

confinement of phonons on the electron mobility may become noticeable in dimensions 

below 10 nm. Further research is necessary to account for confined phonons. 
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➢ Investigation of some novel applications  

Many applications for nanowires discussed in this work such as a Nanowire FET or a 

Ballistic transport device may be investigated by extending this solver. 

➢ Collisional Broadening of states and Green’s function solver 

A full quantum-mechanical treatment of GaN nanowires would entail accounting for the 

collisional broadening of the states and designing a Green’s function solver for mobility 

calculation in nanowires.   
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