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ABSTRACT  

 

  

Membrane technology is a viable option to debottleneck distillation processes and 

minimize the energy burden associated with light hydrocarbon mixture separations. 

Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic 

frameworks with highly tailorable zeolitic pores and unprecedented separation 

characteristics. ZIF-8 membranes demonstrate superior separation performance for 

propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. 

However, to date, little is known about the static thermal stability and ethylene/ethane (C2) 

separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies 

to investigate the thermal stability, transport and modification of ZIF-8 membranes for 

light hydrocarbon separations. 

Static TGA decomposition kinetics studies show that ZIF-8 nanocrystals maintain 

their crystallinity up to 200○C in inert, oxidizing and reducing atmospheres. At 

temperatures of 250○C and higher, the findings herein support the postulation that ZIF-8 

nanocrystals undergo temperature induced decomposition via thermolytic bond cleaving 

reactions to form an imidazole-Zn-azirine structure. The crystallinity/bond integrity of 

ZIF-8 membrane thin films is maintained at temperatures below 150○C.  

Ethane and ethylene transport was studied in single and binary gas mixtures. 

Thermodynamic parameters derived from membrane permeation and crystal adsorption 

experiments show that the C2 transport mechanism is controlled by adsorption rather than 

diffusion. Low activation energy of diffusion values for both C2 molecules and limited 
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energetic/entropic diffusive selectivity are observed for C2 molecules despite being larger 

than the nominal ZIF-8 pore aperture and is due to pore flexibility. 

Finally, ZIF-8 membranes were modified with 5,6 dimethylbenzimidazole through 

solvent assisted membrane surface ligand exchange to narrow the pore aperture for 

enhanced molecular sieving. Results show that relatively fast exchange kinetics occur at 

the mainly at the outer ZIF-8 membrane surface between 0-30 minutes of exchange. Short-

time exchange enables C3 selectivity increases with minimal olefin permeance losses. As 

the reaction proceeds, the ligand exchange rate slows as the 5,6 DMBIm linker proceeds 

into the ZIF-8 inner surface, exchanges with the original linker and first disrupts the 

original framework’s crystallinity, then increases order as the reaction proceeds. The ligand 

exchange rate increases with temperature and the H2/C2 separation factor increases with 

increases in ligand exchange time and temperature.  
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CHAPTER 1 

INTRODUCTION & BACKGROUND 

 

1.1 General Background 

Sustainable separation of light hydrocarbons and substituent gasses formed during 

light hydrocarbon processing is emerging as an increasingly important topic. Expanding 

middle class economies and economic growth in both developing and developed world 

markets have increased the demand for polymer purity (99.5%) olefins ethylene (C2=) and 

propylene (C3=). As shown in Figure 1.1, the demand for both chemicals has shown stable 

growth since 1990 and total demand for ethylene and propylene is expected to grow by 100 

billion pounds between 2016 and 2020 (Cooms, 2016).   

 

 
Figure 1.1 World ethylene and propylene demand between 1990 and 2016 with 

projection to 2020 (Cooms, 2016) 
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Ethylene and propylene are essential polymerization precursors used to form polyethylene 

and polypropylene plastic products and numerous derivatives which are ubiquitously 

essential for many uses each day.  

In 2015 world scale consumption of polyethylene and polypropylene reached 

approximately 150 million tons with the majority of the annual consumption growth rates 

in each region greatly exceeding world GDP growth. Accelerated world plastic 

consumption with respect to GDP growth shown in Figure 1.2 is a result of significant 

growth in the industrial, retail and automotive sectors in each of the world markets. As 

emerging economies specifically in China, India and Africa continue to grow, demand for 

each product is projected to increase (Galiè, 2016). Meeting demand is quite feasible due 

to the development of hydraulic fracking which has made it possible and more 

economically viable to access petroleum and natural gas resources once deemed 

inaccessible. In 2015, the U.S. alone produced approximately 20 million metric tons of 

polyethylene and by 2018 it is estimated that U.S. polyethylene capacity will increase to 

24.5 million metric tons (Petrochemical Update, 2017) and is projected to be 6 million 

metric tons in excess of total demand by 2020 (Galiè, 2016). In terms of polypropylene 

supply, Middle Eastern dominated exports and significant investments in on-purpose 

technologies will each serve to meet global polypropylene market needs in the future 

(Galiè, 2016).  
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Figure 1.2 Total consumption of polyethylene (PE) and polypropylene (PP) and 

average annual growth rate (AAGR) of total PE and PP consumption by world region 

(Galiè, 2016) 

 

 Traditionally, most of the world’s ethylene and propylene were produced as by-

products of heavy oil feedstock/naphtha thermal and catalytic cracking processes. More 

recently, the advent of hydraulic fracking has significantly increased the supply of once 

inaccessible light hydrocarbon liquid petroleum gas (LPG) components such as ethane, 

propane and butane and has made light hydrocarbons more profitable cracking feedstocks 

for light olefin production and propane a valuable source for on-purpose production of 

propylene through propane dehydrogenation. 

Depending upon the feedstock and process utilized, considerable amounts of high-

value co-products such as hydrogen (H2), methane (C1), ethane (C2-), propane (C3-) and 

potentially higher hydrocarbons are produced in mixture with light olefins after cracking. 
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Each of the gasses are important products in their own right when separated/purified. High 

purity hydrogen is a valuable feedstock for numerous chemical processes, is essential in 

hydroprocessing (cracking and treating) and is an important and emerging source of 

energy. Methane and propane are widely used as sources of relatively clean industrial and 

residential fuels, and ethane, in addition to its use as a cracking feedstock is an important 

refrigerant for the cryogenic separation of post-cracking products.  

Modern facilities employ cryogenic distillation processes to separate H2, C1, LPGs 

and C2=/C2- and C3-/C3= post cracking. The method is effective in producing high purity 

product streams but the method is highly energy intensive. The United States Department 

of Energy (DOE) estimates that approximately 0.34 quads or 3.4 x 1014 BTUs (3.6 

kilojoules) per year are dedicated to separating LPGs and C2/C3 olefin/paraffin mixtures 

(Ozokwelu, 2005). To place this number in a broader context, approximately 98 quads of 

energy were consumed in the U.S. in 2015, therefore 0.3% of U.S. energy use was allocated 

to separating just 5 molecules.  

Although light olefin precursors are now produced more efficiently, the separation 

of light olefins from their reaction co-products continues to induce large energy costs which 

will only increase as growing international middle class economies demand more plastic 

and energy products. To this accord, both academia and industry have placed great focus 

on designing effective, yet more sustainable separation techniques aimed at purifying 

olefins and valuable substituent gasses produced from cracking and dehydrogenation. 
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1.1.1 Alternative Separation Processes  

To better understand the potential and efficacy of alternative separation processes 

for purification olefins and high-value cracking/dehydrogenation products the current 

process should first be briefly detailed. Cracked naphtha produces a mixture of H2 and C1-

C4+ olefin/paraffins. The relative amount of each component depends upon the feedstock 

and process used. Figure 1.3 shows a simplified schematic of a fractionation train utilized 

for separation of gasses post hydrocarbon cracking. Post cracking, the hydrocarbon stream 

is first stripped of sour gasses and dehydrated. In the subsequent fractionation units, 

CH4/H2, C2 and C3 are produced in the overhead streams of the demethanizer (DM), 

deethanizer (DE) and depropanizer (DP) respectively. 

The C2 and C3 splitters are largest fractionation columns (>120 trays) and perform 

the more intensive ethylene/ethane and propylene/propane separations. If it is necessary to 

produce more propylene, propane from the C3 splitter is fed to the high temperature a 

propane dehydrogenation reactor which forms propylene and hydrogen. Hydrogen 

produced from the demethanizer and dehydrogenation processes are typically recovered 

through pressure-swing adsorption or cryogenic separations. The process detailed in Figure 

1.3 is just one of many possible configurations, but what is inherent in all configurations 

are the expensive and energy intensive compression, heat exchange and refrigeration steps 

required to attain the extreme tower/feed conditions shown and the high reflux ratios 

necessary to obtain high purities. 
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Figure 1.3 Simplified schematic of light hydrocarbon fractionation train post cracking. 

Process conditions adapted from Eldridge, 1993 

 

Absorption, adsorption and membranes are the most researched alternative or 

augmentative technologies suggested to replace or debottleneck the unit operations 

outlined in Figure 1.3 (Angelini et al., 2005; Eldridge, 1993; W. J. Koros & Fleming, 1993). 

In contrast to distillation, the alternative processes do not require thermodynamic phase 

change of the mixture components to attain separation. Separation of products can 

commence in the gas phase at moderate temperatures without the need for extensive 

compression and refrigeration. As debottlenecking steps, the alternative units can provide 

pre or post purification steps that decrease the number of equilibrium stages, 

condenser/reboiler heat duties and reflux ratios required for distillation units to produce 

high-purity product streams. Alternative separation technologies should perform high 

throughput separations, be resilient in the presence of feed impurities and not significantly 

disrupt the intricate heat integration schemes and upstream/downstream process 
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parameters already present within the olefin production plant in addition to alleviating 

energy consumption (Eldridge, 1993). 

 In absorptive processes olefins are separated from paraffins by contacting the gas 

mixture with an aqueous amine, nitrile, ionic liquid or aromatic solvent containing a copper 

or silver metal salt. The olefin remains dissolved in the liquid phase through cation-π 

complexation with metal ions (Moura, Darwich, Santini, & Costa Gomes, 2015; Safarik & 

Eldridge, 1998). The absorption process suffers a trade-off between loading and absorptive 

separation ability (Safarik & Eldridge, 1998) (Reine & Eldridge, 2005) and deactivation of 

the cation’s complexing ability occurs in the presence of CO and H2S. Less expensive lean 

oil is the solvent phase for H2 purification from hydrocarbon streams, but identical to the 

olefin/paraffin process, still requires large amounts of energy to heat/cool non-active 

liquid/solvent.  

 Adsorptive olefin/paraffin and H2/hydrocarbon separation is a major area of study 

and is a technique currently performed in industry. Adsorptive processes are generally 

utilized when low-to medium contents of a desired component exist in a feed. In practice, 

solid zeolite materials packed in fixed bed vessels selectively separate gas phase adsorbate 

molecules based upon their size and chemical affinity. In academia, porous carbons, metal-

organic frameworks, and zeolites have been investigated as sorbent materials for adsorptive 

separations (Bao et al., 2011; Da Silva & Rodrigues, 1999). Much work has been dedicated 

to tuning the pore aperture for molecular exclusion, pore size for maximum uptake/capacity 

and surface chemistry to enhance the adsorption affinity of one substituent over the other 

(Lin, 2016).  
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Membranes of thin polymer or polycrystalline film material formed from the 

sorbent precursors mentioned above and are generally utilized when medium-to-high 

content of a desired component exists in a feed. The pore aperture, pore size and surface 

characteristics of the membrane thin film are important in determining the permeability 

and selectivity of each permeating gas. In both material forms (membrane or adsorbent) 

there often exists a trade-off between permeability (adsorption capacity) and selectivity 

(Beyond, Rungta, Zhang, Koros, & Liren, 2013). However a large advantage of thin film 

membranes is the ability to conduct separation processes under steady-state conditions as 

compared to adsorbent technology which is operated under transient conditions requiring 

an energy intensive regeneration step.  

An intrinsically stable membrane with exceptional permeance, able to obtain 99% 

olefin purity and high recovery has yet to be realized, however, technoeconomic analyses 

estimate that current state of the art olefin/paraffin membrane separation technology 

implemented optimally within current distillation infrastructure (Figure 1.4) could 

potentially alleviate energy consumption by 90% as compared to current processes (Sholl 

& Lively, 2016) and makes membrane separation the most compelling process among 

alternatives for debottlenecking or possible replacement of current separation technologies. 
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Figure 1.4 Membrane-distillation process for ethene/ethane debottlenecking 

process 

 

1.2 Membranes for Light Hydrocarbon Separations 

The energy savings potential associated with membranes over distillation is an 

effect of the disparate thermodynamics which control each process. Distillation relies on 

thermodynamic phase change to achieve separation of higher volatility mixture 

components from lower volatility components through contact of vapor and liquid phases 

within equilibrium stages. Table 1.1 shows the physiochemical properties of hydrogen and 

light hydrocarbons.   

 

Table 1.1 Selected Physiochemical Properties of Hydrogen and Light Hydrocarbons 

Molecule 
van der Waals 

Diameter (Å) 

Molecular 

Weight (g/mol) 

Boiling 

Point (oC) 

H2 2.76 2.02 -252.9 

C2H4 3.59 28.05 -103.7 

C2H6 3.72 30.07 -89.0 

C3H6 4.03 42.08 -47.6 

C3H8 4.16 44.10 -42.0 
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Due to their similar relative volatilities, the separation of C2 olefin/paraffin and C3 

olefin/paraffin mixtures requires a large number of equilibrium stages (100+), high reflux 

ratios and thus energy (Comyns, 2001). Additionally, high pressures and/or cryogenics are 

necessary to obtain liquid phases for low boiling point hydrocarbons and hydrogen. In the 

case of membrane separations, phase change is not required. Mechanical energy normally 

already present from an upstream process is sufficient to drive membrane separation 

processes which approach the much less energy intensive thermodynamic limit of 

demixing (William J. Koros & Lively, 2012; Pimentel, Parulkar, Zhou, Brunelli, & Lively, 

2014). Figure 1.5 provides an illustrative graphic of a basic membrane separation process 

in which molecules A and B enter the feed side of the membrane, the molecule with greater 

permeability across the membrane (A) will be enriched on the permeate side, while the 

pressurized retentate will be enriched with molecule B.  

 

 
Figure 1.5 Membrane-based gas separation 

 

Membranes with high permeability (productivity): 
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𝑃 =
𝐽 ∗ 𝑙

𝑃ℎ − 𝑃𝐿
                                                                                                                                 (1.1) 

 

or flux (J) normalized by membrane thickness (l) and transmembrane pressure difference, 

[upstream pressure (Ph) - downstream pressure (PL)] for the selective component and 

selectivity:  

 

𝛼 =
𝑃𝐴

𝑃𝐵
                                                                                                                                           (1.2) 

 

in addition to stability, have potential to intensify the separation and reaction processes 

purvey energy savings in multiple areas in accordance with Figure 1.2 Hydrogen separation 

membranes implemented prior to the demethanizer will increase the dew point or 

condensability of the hydrocarbon mixture thus decrease the amount of 

cooling/refrigeration required by the demethanizer unit (Baker, 2002). Membranes which 

can perform C2 and C3 olefin/paraffin pre-purification to a reasonable extent prior to the 

C2 and C3 splitters can reduce the necessary reflux and boilup ratios required by the 

condenser and reboilers respectively. The heat duties (energy) of the reboiler and condenser 

are a function of the reflux and boilup ratios respectively (Seader & Henley, 2006):  

 

𝑄𝐶 = 𝐷𝑅Δ𝐻𝑣𝑎𝑝                                                                                                                            (1.3) 

 

𝑄𝑅 = 𝐵𝑉𝐵Δ𝐻𝑣𝑎𝑝                                                                                                                          (1.4) 
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Where Qc and QR are the condenser and reboiler heat duties for a partial condenser and 

partial reboiler respectively. D, R and Hvap are the distillate rate, reflux ratio and heat of 

vaporization. B and VB are the bottoms flow rate and boilup ratio respectively. Membranes 

also present an opportunity to intensify dehydrogenation processes. Propane 

dehydrogenation is thermodynamically limited and highly endothermic. Membranes offer 

a method to shift reaction equilibrium when implemented as membrane reactor systems 

through simultaneous reaction and removal/separation of reaction products during the 

dehydrogenation process to produce enriched olefin and hydrogen streams (Choi et al., 

2015). Membranes with attractive productivity, selectivity and stability present an 

opportunity to enhance hydrocarbon separations while providing energy/cost savings. 

 

1.3 Membrane Materials, Transport and Stability for Light Hydrocarbon Separations: A 

Literature Review 

Figure 1.6 illustrates the major modes of molecule transport through membrane 

substructures. Permeability (productivity) and selectivity (efficiency) are of the utmost 

importance in addition to stability when initially evaluating membranes for specific 

applications. Membranes are generally classified according to their pore size. The IUPAC 

designations pore classifications and expected light hydrocarbon transport mechanisms are 

highlighted in Table 1.2. Membranes exploit size or chemical differences between 

permeating molecules to facilitate separations. Depending upon the permeating molecule’s 

size and chemical affinity relative to the membrane substructure, its mode of transport 

varies. While macropores and mesopores offer high permeances, they are not efficient in 

separating small molecules comparable to the sizes shown in Table 1.1. Small molecules 
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(< 0.5 Å) permeating in macro or mesopores experience viscous or Knudsen diffusion 

respectively and selectivities approach that of Knudsen. Knudsen diffusion is based upon 

the relationship between a molecule’s mean free path (λ) and pore diameter (dp) as shown 

in Equation 1.6: 

                                                            

𝐾𝑛 =
𝜆

𝑑𝑝
                                                                                                                                 (1.6) 

                                                     

 𝜆 =
1.15𝜇𝑇

1
2

𝑃𝑀𝑤
1/2

                                                                                                                               (1.7) 

 

where Kn is the Knudsen number, μ and Mw are the viscosity and molecular weight of the 

permeating gas, P and T are the system pressure and temperature respectively. If the 

Knudsen number is greater than 10, gas transport is in the Knudsen regime; that is, gas 

molecules have more pore wall collisions than intermolecular collisions. This diffusion 

mechanism is predominant in smaller mesopores and large micropores depending upon the 

molecule’s size. When Knudsen diffusion is the dominating transport mechanism, the 

Knudsen diffusion coefficient (Dk) is modeled by Equation 1.8: 

 

𝐷𝑘 =  
𝑑𝑝

3
√

8𝑅𝑇

𝜋𝑀𝑤
                                                                                                                          (1.8) 
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At low pressures and high temperatures in the absence of adsorption effects, Knudsen 

selectivity (αij) is inversely proportional to the square root of molecular weights of the 

permeating gasses: 

 

𝛼𝑖𝑗 = √
𝑀𝑗

𝑀𝑖
                                                                                                                                    (1.9) 

   

The highest achievable Knudsen separation factor corresponding to the molecular weights 

for the molecules in Table 1.1 is 4.7 for H2/C3H8 which is quite low in comparison to 

microporous and dense membranes which employ much disparate transport mechanisms 

that take advantage of size and physiochemical differences between hydrogen and light 

hydrocarbons in order to perform high resolution separations (William J. Koros & 

Mahajan, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  15 

 

 
Figure 1.6 Transport mechanisms through porous membranes 
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Table 1.2 IUPAC Membrane Pore Size Classifications and Expected Transport 

Mechanisms for Light Hydrocarbons and Hydrogen 

Membrane Pore  

Classification  
Pore Diameter 

Expected Transport 

Mechanism  

for Light Hydrocarbons 

and Hydrogen 

Macroporous  > 50 nm Viscous 

Mesoporous 2-50 nm 

Viscous, Knudsen, 

Capillary Condensation 

Microporous < 2 nm 

Knudsen, Molecular 

Sieving, Solution-Diffusion 

Dense ≈ 0 nm 

Solution Diffusion, 

Facilitated Transport 

 

 

1.3.1 Polymeric Membranes 

In this review of membrane materials, transport and stability for olefin/paraffin and 

hydrogen/hydrocarbon separations it is fitting to begin with a discussion of polymeric 

materials which have a long history in membrane-based gas separation research and 

industrialization. Polymeric (natural rubber) membranes first demonstrated gas separation 

potential in the 1830’s and subsequently during the first half of the 20th century, the 

majority of gas phase membrane separation work was applied to isotope separations 

(Ockwig & Nenoff, 2007). It was not until the 1950’s that membranes garnered attention 

beyond isotope separation and were considered for helium/methane separations, oxygen 

removal from air and hydrogen recovery from hydrocarbon streams (Perry, Nagai, & 

Koros, 2006). Further industrialization of gas separation membranes remained mostly 

dormant until 1977 upon introduction of DuPont’s melt spun polyester hollow fiber 

membranes for hydrogen recovery (Gardner, Crane, & Hannan, 1977). Polymeric materials 

have since continued to hold a monopoly for industrial gas separation applications such as 
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H2 and CO2/CH4 separations due to their efficiency, ease of manufacturability, 

comparatively low cost and high modular scalability in high surface area-to-volume spiral-

wound or hollow fiber modules (Baker, 2002).  

Gas transport in polymeric membranes can be described using the solution-

diffusion model (William J. Koros & Mahajan, 2001): 

 

𝑃 = 𝐷 ∗ 𝑆                                                                                                                                    (1.10) 

 

in which permeability (P) is a function of a gas’s diffusivity and solubility (S) within the 

membrane. Specifically in polymers, gas molecules sorb on the upstream surface of the 

membrane, diffuse through the polymer matrix and desorb on the permeate side (W. J. 

Koros & Fleming, 1993). Dense polymeric membranes typically fall into two broad 

categories: glassy (high Tg) and rubbery (low Tg). Glassy polymers possess rigid molecular 

chains with limited segmental motion that typically enable sized-based separation of gas 

mixtures but exhibit low permeance while rubbery polymers contain mobile chains that 

enhance the diffusivity of all gasses from which larger penetrates benefit the greatest and 

facilitate sorption-reliant selectivity for the larger more condensable permeating gas. For 

olefin/paraffin separation glassy polymers present the greatest performance due to the 

similar size and solubility of the gasses, while for H2 separations, both glassy H2 selective 

and rubbery hydrocarbon selective membranes have been studied. 

The limitation of the absolute and relative single gas permeabilities 

(permselectivity) for each separation mentioned above are well predicted for polymeric 

membranes. In 1991 Robeson analyzed the permeability and selectivity of CO2 and several 
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permanent gas pairs in high performing glassy polymers in literature and a clear, inversely 

proportional relationship between selectivity (𝛼) and permeability (P) was identified 

(Robeson, 1991): 

 

𝛼𝐴/𝐵 =
𝛽𝐴/𝐵

𝑃𝐴

𝜆𝐴/𝐵
                                                                                                                             (1.11) 

 

The relationship now referred to as the Robeson upper bound is usually presented as a log-

log plot of α vs P and applies to most gasses in polymers including olefin, paraffin and 

hydrogen molecules. It is the standard with which polymeric and all other membrane 

materials are compared and thus is of great importance.  

In 1999, Freeman presented a model to predict the upper bound slope (λA/B) 

(Freeman, 1999) which is proportional to the ratio of the slow gas (B) to the fast gas (A) 

Lennard-Jones diameters: 

  

𝜆𝐴/𝐵 = (
𝑑𝐵

𝑑𝐴
)

2

− 1                                                                                                                     (1.12) 

 

and the front factor (βA/B): 

 

𝛽𝐴/𝐵 =
𝑆𝐴

𝑆𝐵
𝑆𝐴

𝜆𝐴/𝐵𝑒𝑥𝑝 {−𝜆𝐴/𝐵 [𝑏 − 𝑓 (
1 − 𝑎

𝑅𝑇
)]}                                                                (1.13) 
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controls the intercept. The front factor is a function of: SA and SB which are the solubilities 

of gasses A and B within the polymer matrix, the parameter 𝑓 which considers polymer 

interchain spacing and ranges from 0 for low performance rubbery polymers to 14,000 

kcal/mol for high performance rigid polyamides (Freeman, 1999; Haraya et al., 1989) and 

a and b are linear free energy coefficients which relate the diffusion front factor (D0A) to 

the activation energy of diffusion Ed (Barrer & Rideal, 1939; Van Amerongen, 1946):  

 

𝑙𝑛𝐷0𝐴 = 𝑎 
𝐸𝑑𝐴

𝑅𝑇
− 𝑏                                                                                                                  (1.14) 

 

The value of (a) has a generally accepted value of 0.64 (Barrer & Skirrow, 1948) 

independent of gas and polymer type and b also independent of gas type is equal to –ln(10-

4 cm2/s) for rubbery polymers and –ln(10-5 cm2/s) for glassy polymers (Rungta et al., 2013; 

van Krevelen, 1997).  

The major significance of the combined efforts of Robeson (Robeson, 1991) and 

Freeman (Freeman, 1999) was that the upper bound trade-off between ideal permeability 

and selectivity of gas pairs within polymers could be rationally predicted based upon the 

relative gas sizes, gas solubilities within the polymer matrix in addition to the intrinsic 

properties of the polymer studied. The upper bound is the standard at which all new 

membrane materials, polymeric and non-polymeric are evaluated against. Specific to 

olefin/paraffin separation, Koros and co-workers presented the experimental upper bound 

lines for C2=/C2- (Rungta et al., 2013) and C3=/C3- (Burns & Koros, 2003) using data points 

tabulated directly from studies which utilized only the highest performing polymers. This 
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method is in direct accord with the work of Robeson such that only a few exceptional 

polymer materials reside at the upper bound line (Robeson, 1991).  

Koros and co-workers also predicted the upper bound upper bound slope and front 

factor for C2 and C3 molecules based upon the physical properties of 6FDA polyamides 

which are best in class for both separations (Burns & Koros, 2003; Rungta et al., 2013).  

 

 
Figure 1.7 Structure of 6FDA/BPDA-DAM polymer precursor (Steel & Koros, 

2005) 

 

The upper bound slope is modeled well by the stiff polymer chains of 6FDA 

chemistries which enable size based exclusion of gasses. The upper bounds obtained from 

the experiments and modeling coincide well and predict for C2 molecules, a selectivity of 

10 can only be achieved at low permeability (< 0.5 Barrer) and for permeabilities greater 

than 10 Barrer, selectivity cannot exceed 6 (Figure 1.8) In the case of larger C3 molecules, 

selectivity of 90 can be reached at 0.01 Barrer and for permeabilities of 1000 Barrer a 

selectivity of only 8 is achievable (Figure 1.9). The current upper bound limitations placed 

on even the highest performing stable, plasticization-resistant polyamides have limited 

their consideration for industrial use in olefin paraffin separations.  
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Figure 1.8 C2H4/C2H6 experimental data and upper bound prediction and 

experimental fits (Rungta et al., 2013) 
 

 
Figure 1.9 C3H6/C3H8  experimental data and upper bound prediction and 

experimental fits (Burns & Koros, 2003) 

 

In terms of hydrogen separation, polymeric membranes have been used in industrial 

applications for H2/CO ratio adjustment in syngas processes, removal of hydrogen from 



  22 

ammonia purge gas and hydrogen recovery from petrochemical/refinery gas streams 

(Ockwig & Nenoff, 2007; Perry et al., 2006). Wide-scale, economical implementation of 

membranes was enabled by Monsanto, Separex, Air Products and Ube hydrogen selective 

membranes that give higher hydrogen productivity rates in comparison to the first 

generation DuPont hollow fibers (Perry et al., 2006). Table 1.3 shows H2/CH4 separation 

factors for top commercial membrane materials. Solely separation factor data is presented 

because limited transport data is provided for the commercial membranes. 

 

Table 1.3 Hydrogen/Methane Separation Factors of First Generation Commercial 

Gas Separation Membranes Adapted from Perry et al., 2006 

Membrane Material Developer H2/CH4 

Cellulose Acetate Separex 26 

Polyamide  Ube - 

Polysulfone Silicone Rubber Monsanto 24 

 

In academia both hydrogen selective and hydrogen rejective membranes have been 

studied for hydrogen/hydrocarbon separations. Figure 1.10 shows the H2/CH4 upper bound 

for newest state-of-the-art hydrogen selective polymeric materials for comparison to the 

commercial materials in Table 1.3. Currently Triptycene-based polymer of intrinsic 

microporosity (PIM) polyamide (KAUST-PI) membranes and other PIM based membranes 

transcend the upper bound defined by earlier generation 6FDA-based polyamide 

membranes (Ghanem, Swaidan, Litwiller, & Pinnau, 2014). As compared to low-free 

volume 6FDA polyamides, PIMs contain relatively high free volume, yet tightly packed 

highly interconnected microstructures. High free volume along with the ability to tune the 
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rigidity of microstructure endows PIMs with both enhanced permeabilities and selectivties 

over all known polymers used in industrial gas separations. 

 

 
Figure 1.10 H2/CH4 2008 upper bound trade-off line with notable PIM 

membranes highlighted (Ghanem et al., 2014)  

 

Hydrocarbon selective membranes offer an attractive method for recovering high 

pressure hydrogen from the retentate stream. Although the separation factors for hydrogen 

rejective membranes are often lower than the H2 selective membranes mentioned above, 

hydrogen  recompression is avoided and offsets the cost of hydrogen losses (Baker, 2002). 

Hydrocarbon selective PTMSP (I. Pinnau, Casillas, Morisato, & Freeman, 1996) and PMP 

(Morisato & Pinnau, 1996) membranes are the most highly cited of their type and 

especially interesting because they are glassy polymers which would typically lead to H2 

selectivity, but due to the extremely high excess free volume in PTMSP (20-25%) and PMP 

(28%) which is ~18-20% greater than conventional glassy polymers (Morisato & Pinnau, 

1996; I. Pinnau et al., 1996).  
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It is postulated that the free-volume elements are interconnected and allow transport 

of larger condensable gasses by a sorption/surface diffusion mechanism favorable for large 

molecule permeability. Sorption of condensable hydrocarbons in the intersegmental free 

space allows efficient blocking of smaller molecules such as hydrogen for sizeable 

propane/H2 and butane/H2 selectivities of 13 and 39 respectively with high permeabilities 

of 28,000 (propane) and 85,300 (butane) Barrer respectively.  

Polymer stability especially in the presence of highly condensable hydrocarbons 

(C3+) is of great concern. At high feed pressures in the presence of condensable gasses, 

polymer chains experience swelling/dilation and drop in glass transition temperature while 

this can be advantageous for sorption based separations, this is detrimental for glassy 

polymers which exclude molecules based upon size. This phenomena termed plasticization 

leads to a drop in selectivity and membrane performance. Crosslinking is a method utilized 

to circumvent plasticization in membranes, however this process can be complex and will 

add complexity to the manufacturing process (Baker & Lokhandwala, 2008). Pretreatment 

to remove C3+ molecules prior to membrane separation has also been proposed.  

In terms of thermal stability, polymeric membranes are suitable for low temperature 

and near-ambient olefin/paraffin and hydrogen/hydrocarbon separations, however, due to 

their low Tg most polymers suitable for membrane reactor applications which are typically 

operated at temperatures above 300○C. In an effort to provide a shift in reaction 

equilibrium, 6FDA-IPA with a Tg of 310○C was studied in a butane to butene membrane-

assisted reactor configuration by Koros and co-workers (Rezac, Koros, & Miller, 1994). 

The membrane was continuously operated at 180○C for inter-stage production and removal 
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of hydrogen between two catalytic reactors enable a conversion 33% which is 12% greater 

than normal equilibrium conversion.  

As advanced polymeric membranes are further developed, potential improvements 

in paraffin/olefin and hydrogen/hydrocarbon separations may enable further 

implementation in industrial applications. However, the current upper bound limitations 

and plasticization increase the pursuit of other membrane materials in both academic and 

industrial research. 

 

1.3.2 Facilitated Transport & Dense Metallic Membranes 

Facilitated transport membranes boast extremely high C2 and C3 olefin/paraffin 

selectivity and permeability. Virtually absolute olefin selectivity is enabled through olefin-

metal complexation which was originally discovered in the early 19th century by Ziese who 

discovered platinum-ethylene complexes upon boiling a metal salts in ethanol (Zeise, 

1831). Metal-olefin complexes are formed by two chemical bonds which include a σ-bond 

formed from the overlap of the vacant outermost s orbital of the metal with the full, electron 

dense π molecular orbital of the olefin, and a π-bond is formed from the donation of outer 

4d atomic electrons of the olefin to the vacant π* (antibonding) orbital of the olefin.  

Dense or porous membranes containing an aqueous liquid or solid electrolyte 

composed of a metal (Cu or Ag) salt solution take advantage of olefin-cation complexations 

which facilitate the still debated transport mechanism of activated jumping of olefins across 

metal sites of the membrane or passive transport enabled by the carrying of olefin 

molecules across the membrane by metal cations. In liquid-based systems, a porous support 

is impregnated with an immobilized liquid or a support (SLM) saturated with flowing 
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solution; both configurations containing metal facilitators. Teramoto et al. were the first to 

investigate ethylene/ethane transport in supported liquid membranes containing aqueous 

silver nitrate solutions impregnated within porous supports. An ethylene/ethane selectivity 

of 1000 was reported, but after continuous membrane operation it was noted that ethylene 

selectivity was depleted due to solvent evaporation (Teramoto, et al., 1986).  

Subsequent studies proposed using ion-exchanged polymeric membranes (IEM) 

which originally are in proton form, then upon pretreatment swelling occurs and 

subsequently enhances metal-salt solution absorption not only in the pores but also at 

electrostatic exchange sites within the polymer matrix. IEMs more stable than their SLM 

counterparts, however the swelling effect is not permanent and the only method for 

maintaining high olefin permeability (1000 Barrer) and selectivity (470) over long periods 

is to saturate feeds with steam to prevent solution dehydration (Eriksen, Aksnes, & Dahl, 

1993). This method is highly impractical for real-world applications.  

Flowing liquid membranes (FLM) have been studied to overcome the shortcomings 

of immobilized liquid membranes by providing a continuous flow of the liquid carrier 

solution. HFMCs utilize bore/shell configurations in which the olefin/paraffin mixture 

flows through the bore side of the hollow fiber and the solvent phase is pumped either 

counter-currently on the shell side or co-currently through the bore side of the membrane 

along with the gas mixture. During HFMC operation with carrier solution flowing counter-

currently, researchers have cited significant olefin mass transfer resistance due to solvent 

penetrating the pores (Faiz & Li, 2012). Sulfonated poly(ether ketone) hollow fiber 

membrane contactors have shown high olefin selectivity (> 2700) and permeability (10,000 

Barrer) (Nymeijer, Visser, Assen, & Wessling, 2004) . The HFMC process has been 
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validated as technically sound, but presented limited long-term chemical and thermal 

stability due to continuous contact with silver nitrate (Narasimhan Calamur, Mark P. 

Kaminsky, Vincent J. Kwasniewski, John A. Mahoney, Charles G. Scouten, 1999). 

Another possible issue not significantly highlighted in literature is that the olefin must be 

removed from the solvent and which necessitates a thermal regeneration step.  

Membrane electrolytes are a novel class of facilitated transport membranes. Metal 

facilitators are dissolved within polymer matrices which enables the facilitated transport 

process to occur entirely in the solid phase. Both the cations and anions of the metal salt 

are sufficiently mobile without a liquid solvent. In contrast to liquid based facilitation 

systems, the membrane electrolyte process can operate at higher transmembrane pressure 

drops without physical loss of the complexing agent, can be operated with dry feeds and 

don’t call for olefin separation from solvents (Ingo Pinnau & Toy, 2001).  

 

 
Figure 1.11 Olefin transport mechanism in solid electrolyte membrane (Faiz & 

Li, 2012) 
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Ethylene selectivities of 280 have been achieved (Ryu, Lee, Kim, Kang, & Kim, 

2001), however, metal ions can be reduced in the presence of light, and the presence of 

trace impurities such as H2, H2S, and acetylene in the feed can poison the metal carriers. 

Overall, facilitated transport membranes maintain allure because they are not subjected to 

the permeability/selectivity tradeoff exhibited by most membranes, however their stability 

is a major contention for future industrial implementation (Faiz & Li, 2012).  

 Similar to olefin facilitated transport membranes, dense metallic membranes allow 

highly selective permeation of a single molecule: hydrogen. Hydrogen permeation 

proceeds via 7 intricate steps but can be elucidated down to H2 chemisorption/oxidation at 

the catalytic metal surface of the membrane to form H+ ions, H+ diffusion through the 

metallic lattice interstitial vacancies, dislocations/grain boundaries, H+ reduction/re-

association and diffusion of H2 gas away from the permeate interface (Ward & Dao, 1999). 

Hydrogen permeability in dense membranes is generally governed by the solution diffusion 

model as presented in the previous section. Dense metallic membranes are operated at high 

temperatures for high hydrogen flux and have shown potential for high temperature 

separation of hydrogen from hydrocarbons. At high temperatures when the bulk diffusion 

of H+ ions is non rate limiting, the bulk concentration of H+ is low and metal-hydrogen 

interactions are negligible, Sievert’s law can be used to model H2 flux as a function of the 

upstream/downstream H2 partial pressure difference (Ward & Dao, 1999): 

 

𝐽 =
𝐷𝐻2

𝑙
∗ 𝑆 ∗ (𝑃𝐻2

𝑓𝑒𝑒𝑑
)0.5 − (𝑃𝐻2

𝑝𝑒𝑟𝑚)0.5                                                                                 (1.16) 

 



  29 

Pure, crystalline palladium membranes with body-centered cubic (BCC) 

microstructure typically out-perform most other metallic materials in terms of H2 

permeability, however Pd-H phase transition at ~ 300○C causes membrane degradation due 

to significant lattice strain caused by hydrogen embrittlement and pure palladium 

membranes are highly susceptible to deactivation by CO and H2S impurities (Ockwig & 

Nenoff, 2007). Palladium membranes are intricately alloyed with group IV, group V or 

other metals such Ag, Al, Co, Cr, Cu, Fe, and Ni among others to avoid Pd-H formation 

and/or reduce surface deactivation by H2S/CO while maintaining the BCC microstructure 

for high hydrogen permeability (Ockwig & Nenoff, 2007).  

Pd-Ag membranes have shown good performance in ethane and propane 

dehydrogenation membrane reactor studies for in situ production and separation of 

ethylene or propylene from hydrogen. Gobina and Hughes performed ethane 

dehydrogenation experiments using a Pd-Ag membrane reactor and observed a conversion 

of 18% at 387○C which is 7 times greater than equilibrium conversions achievable in 

conventional fixed-bed reactor systems (Gobina & Hughes, 1994). Using the same 

membrane material, Yildirium et al. were able to obtain a 21% propane conversion at 

400○C which is 4 times greater than typical fixed-bed equilibrium (Yildirim, Gobina, & 

Hughes, 1997).  

In each of the above studies stability issues were not cited, but in the very specific 

case of long-term H2/C3= separations, metallic membranes have shown performance 

instability. At high temperatures (> 400○C) propylene dissociatively chemisorbs on 

palladium forming a coking layer at the membrane surface, the resulting carbon atoms 

dissolve in the palladium lattice forming Pd-C which significantly deactivates sites for 
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hydrogen dissociation and permeation (Jung, 2000). Formation of carbonaceous matter on 

the membrane surface can be avoided by performing H2/hydrocarbon separations at lower 

temperature, however, H2 permeability is greatly reduced at lower temperatures, which 

decreases hydrogen recovery and if running as a membrane reactor, paraffin conversion 

would decrease. In order to remove carbonaceous matter and recover H2 permeability, the 

palladium membrane can be reactivated in air at 600○C.  

Further research on doping, grain size manipulation and amorphous microstructures 

is in progress to enhance the mechanical strength, eliminate stability issues and augment 

the manufacturability of metal membranes (Bryden, 2002; Lai, Yin, & Lind, 2015; McCool 

& Lin, 2001), but even with the above alleviated, the cost of such membranes and dopants 

may be prohibitively expensive for industrial realization and may limit metallic membranes 

to niche applications where ultra-high purity hydrogen is necessary.  

 

 

1.3.3 Microporous Membranes  

1.3.3.1 Transport in Microporous Membranes 

Molecular sieving of light olefin/paraffin and hydrogen/hydrocarbon mixtures 

based on molecular size exclusion is a viable technique that has already surpassed the upper 

bound set by advanced polymeric materials (Burns & Koros, 2003). Microporous 

membranes such as zeolites, silica and metal organic framework (MOF) membranes can 

be selected or tailored to contain pore diameters/apertures that are just between the larger 

and smaller component molecular sizes for effective molecular sieving. The remainder of 

this work seeks to highlight the potential of microporous molecular sieving membranes for 
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light hydrocarbon separations and therefore transport in such membranes will be developed 

in more detail than in the previous sections.  

Considering the application of light hydrocarbon and hydrogen separations, defect-

free small micropore (< 8Å) membranes should be utilized. Inorganic/metal organic 

membranes are typically grown on mechanically/thermally stable ceramic supports or on 

polymeric supports depending upon the application. Growth of a continuous, thin film layer 

free of grain boundary defects is often times challenging. Smaller gas (< 5Å) transport 

through membranes containing moderate defects or larger micropores can present similar 

transport behavior to that of mesoporous membranes. Small gas permeance in defect 

containing or large micropores membranes can be modeled by a simplification of the 

Dusty-Gas model (Lin & Burggraaf, 1993):  

 

𝐹 = 𝛼 + 𝛽 (
𝑃𝑓 + 𝑃𝑝

2
)                                                                                                               (1.17) 

 

where F is permeance Pf is the feed pressure and Pp is permeate pressure. The Dusty-Gas 

model considers the contribution of both Knudsen flow (α) through relatively larger pores 

and viscous flow (β) through macroporous defects. As mentioned earlier, Knudsen and 

viscous transport are not sufficient to separate light hydrocarbon mixtures. In relatively 

defect free microporous membranes the transport mechanism highly dependent on both the 

kinetic factor (diffusivity) and the thermodynamic factor solubility (adsorption) and is 

macroscopically described using 5 steps (Bakker, Kapteijn, Poppe, & Moulijn, 1996): 

adsorption from the gas phase to the feed side membrane surface, mass transport from the 



  32 

external surface to the membrane pore, intracrystalline diffusion, transport from the pore 

to the external surface and finally, desorption from the external surface to the gas phase. 

Steady-state single gas hydrocarbon flux through microporous membranes is best modeled 

microscopically by the Maxwell-Stefan (M-S) treatment as described by Krishna with 

modifications (Krishna & Paschek, 2000): 

 

𝐽 = −𝜙𝑞𝑠𝑎𝑡𝐷𝑐 (
𝜃𝑖

𝑅𝑇
∇𝜇)                                                                                                          (1.18) 

 

where Φ is a geometric correction factor which accounts for membrane physical properties 

density (ρ) and porosity (ε) and tortuosity (τ): (Φ = ρ∙ε/τ). θ is fractional surface occupancy 

of adsorption sites within the microporous material. The transport of gas phase molecules 

in microporous materials involves the activated movement of sorbed gas molecules from 

open sorption sites on the porous surface. μ is the chemical potential of the adsorbed species 

or the driving force required to make a diffusive jump from one adsorption site to the next 

which is directly proportional to the gradient of the fractional surface occupancies: 

 

1

𝑅𝑇
∇𝜇 =

1

𝜃
Γ∇𝜃                                                                                                                          (1.19) 

 

Γ = 𝜃
𝜕𝑙𝑛𝑃

𝜕𝜃
                                                                                                                                 (1.20) 
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Dc is the Maxwell-Stefan (M-S) thermodynamically corrected diffusivity Fickian 

diffusivity is highly loading dependent whereas, the Maxwell-Stefan treatment decouples 

drag effects (M-S diffusivity can be physically interpreted as inverse drag) from 

thermodynamic (sorption) effects and assumes that the mechanism of transport of 

molecules inside the micropores is by activated movement of adsorbed species along 

sorption sites (Krishna & van den Broeke, 1995). Γ is the Darken thermodynamic 

correlation factor which decouples typical Fickian diffusivity (D) from Dc: 

 

𝐷 = 𝐷𝑐Γ                                                                                                                                      (1.21) 

 

The thermodynamic factor is inversely proportional to the density of un-occupied 

adsorption sites:  

 

Γ =
1

1 − 𝜃
                                                                                                                                   (1.22) 

 

Light hydrocarbons often show Langmuir-type isotherm behavior when adsorbing on 

microporous materials such as zeolites (Duong D Do, 1998). Other isotherm types may 

more appropriate but the proceeding analysis will assume the Langmuir relationship exists. 

Langmuir theory assumes localized (one adsorbate per adsorption site) monolayer surface 

adsorption and is modeled by: 

 

𝜃 =
𝑞

𝑞𝑠𝑎𝑡
=

𝑏𝑃

1 + 𝑏𝑃
                                                                                                                   (1.23) 
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where q is the quantity adsorbed (mmol/g), qsat is the total saturation of the adsorbed 

species, b is the affinity constant and P is system pressure.  

 Steady-state single gas flux can be presented in terms of experimentally, readily 

measurable variables from the following model (Nikolakis et al., 2001):  

 

𝐽 =  
𝜌

𝐿
∗

𝜀

𝜏
∫ 𝐷𝑐

𝑑𝑙𝑛𝑃

𝑑𝑙𝑛𝑞
𝑑𝑃

𝑞𝑝𝑒𝑟𝑚.

𝑞𝑓𝑒𝑒𝑑

                                                                                                  (1.24) 

 

where q is quantity adsorbed (mmol/g) derived from the Langmuir equation, the term after 

Dc corresponds to the thermodynamic driving force. After integration an expression 

explicit in terms of the feed and permeate (perm) pressures can be obtained:  

 

𝐽 =
𝜌

𝐿

𝜀

𝜏
𝑞𝑠𝑎𝑡𝐷𝑐 ln (

1 + 𝑏𝑃𝑓𝑒𝑒𝑑

1 + 𝑏𝑃𝑝𝑒𝑟𝑚
)                                                                                           (1.25) 

 

The diffusion of hydrocarbons in microporous membranes, specifically zeolites 

was studied extensively by Xiao and Wei (Xiao & Wei, 1992). In microporous membranes, 

if the permeating molecule size is comparable to the pore channel diameter, diffusion is 

said to reside within the configurational regime. As the molecule size approaches the pore 

size, the potential field of the solid surface effects the molecule to a greater extent than that 

which occurs during Knudsen diffusion and must be modeled accordingly (Xiao & Wei, 

1992): 
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𝐷 = 𝑔𝛾𝑢𝑒−
𝐸𝑑
𝑅𝑇                                                                                                                             (1.26)  

 

where g is a geometrical factor, u is velocity of the permeating molecule, γ is the diffusive 

jump length and Ea. is energy barrier that must be overcome for a molecule to make a 

diffusive jump between adjacent adsorption sites.  In the case of no specific adsorbate-

adsorbent interactions with the pore wall surface Xiao and Wei purposed the gas 

translational (GT) model (Xiao & Wei, 1992):     

 

𝐷𝐺𝑇 =
𝛼

𝑧
𝑑𝑝√

8𝑅𝑇

𝜋𝑀𝑊
 𝑒−

𝐸𝑑
𝑅𝑇                                                                                                         (1.27) 

 

where α replaces L as the diffusion length and 1/z is the diffusion coordination number. 

This model is most often utilized for high temperature permeation where adsorption is 

minimal (Masakoto Kanezashi, O’Brien-Abraham, Lin, & Suzuki, 2008). In the case of 

strong gas molecule/solid lattice interaction, the solid vibration model is used: 

 

𝐷𝑆𝑉 =
𝛼2

𝑧
𝑣𝑒𝑒−

𝐸𝑑
𝑘                                                                                                                        (1.28) 

 

where ve is the effective vibrational frequency of the molecule inside the solid and k is 

Boltzmann’s constant. In the aforementioned diffusivity models it is assumed that diffusion 

takes place via activation diffusion across adsorption sizes within the pore channel. In 
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certain cases the pore cage and/or the pore aperture separating cages is small enough to 

limit the rotational, translational and/or vibrational degrees of freedom of the diffusing 

molecule which must orient itself such that it can pass through the channel/aperture to the 

adjacent cage. This is typically the case for diffusion of larger non-permanent molecules 

in ultramicropores (< 5Å pore diameter) and the effects of intracrystalline partitioning 

(entropy) must be considered (D. M. Ruthven, Derrah, & Loughlin, 1973; Xiao & Wei, 

1992). Diffusivity is then expressed in terms of a pre exponential factor (D0) and activation 

energy: 

 

𝐷𝑐 = 𝐷0𝑒−
𝐸𝑑
𝑅𝑇                                                                                                                              (1.29) 

 

Intracrystalline partitioning is modeled in the pre-exponential term: 

 

𝐷0 = 𝑒𝛾2 𝑘𝑇

ℎ
𝑒

𝑆𝐷
𝑅                                                                                                                          (1.30)  

 

where SD is the activation entropy of diffusion, k is Boltzmann’s constant and h is Plank’s 

constant. From transition state theory, SD can be described in terms of partition coefficients 

and Equation 1.30 can be re-written as: 

 

𝐷𝑐 = 𝛾2
𝑘𝑇

ℎ

𝐹≠

𝐹
𝑒

−𝐸𝑑
𝑅𝑇                                                                                                                  (1.31) 
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 where F is the product of the translational, rotational and vibrational partition functions: F 

= Ftrans ∙ Frot ∙ Fvib  in the normal state (within the pore cage) and F≠ is the partition function 

in the transition state (at the ultramicropore window): F≠ = Ftrans
≠

 ∙ Frot
≠

 ∙ Fvib
≠.  

 

𝐹𝑡𝑟𝑎𝑛𝑠 = (
2𝜋𝑚𝑘𝑇

ℎ2
)

𝑛
2

⋅ 𝑎𝑛                                                                                                        (1.32) 

 

where m is the mass of the molecule and n is the number of degrees of freedom  

 

𝐹𝑟𝑜𝑡 =
𝜋𝑛/6

𝜎𝑛/3
⋅ (

𝑇3

Θ𝑟𝐴Θ𝑟𝐵Θ𝑟𝐶
)

𝑛
6

                                                                                                (1.33) 

 

Θ𝑟 =
ℎ2

8𝜋𝐼𝑘
                                                                                                                                  (1.34) 

 

𝐹𝑣𝑖𝑏 = (
𝑒−

ℎ𝜈
2𝑘𝑇

1 − 𝑒−
ℎ𝜈
𝑘𝑇

)

𝑛

                                                                                                               (1.35) 

 

where Θr is the characteristic rotational temperature which is expressed in terms of moment 

of inertia I. The diffusion coefficient utilized should be selected based upon the specific 

regime of gas transport occurring during permeation. Ideal permselectivity can be 

calculated from the ratio of the individual component fluxes.  

 It is also important to model binary gas mixtures in order in order to observe how 

the diffusivity and solubility of one component in the mixture affects other permeating 
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components. In multicomponent mixtures, adsorbate-adsorbate interactions affect both the 

diffusivity and solubility of the mobile components as outlined by Krishna (Krishna & 

Paschek, 2000):  

 

𝐽 = −𝜙[𝐵]−1[Γ]∇𝜃                                                                                                                   (1.36) 

 

𝐵𝑖𝑖 =
1

𝐷𝑖
+ ∑

𝜃𝑗

𝐷𝑖𝑗
; 𝐵𝑖𝑗 = −

𝜃𝑖

𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, … 𝑛                                                         (1.37) 

 

Equation 1.37 is the multicomponent flux equation explicit in terms of the n-dimensional 

rectangular matrix B which accounts for single component diffusivities Di and interchange 

diffusivities Dij. Interchange diffusivities represent the counter exchange of gas j and i at a 

sorption site where i is replaced by j. During counter exchange the faster molecule is slowed 

by the species with lower mobility and the slower molecule is accelerated by the faster 

component. The extent of slowing down or speeding up can be expressed by the exchange 

coefficients which adhere to the Onsager reciprocal relationship (Krishna, Li, van Baten, 

Falconer, & Noble, 2008): 

 

𝐷𝑖𝑗𝑞𝑠𝑎𝑡,𝑗 = 𝐷𝑗𝑖𝑞𝑠𝑎𝑡,𝑖                                                                                                                  (1.38) 

 

The elements of matrix Γ are often determined by ideal adsorbed solution theory (IAST) 

as outlined by Myers and Prausnitz (Myers & Prausnitz, 1965) or a simplified treatment of 
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mixed gas adsorption using the extended Langmuir model (van de Graaf, Kapteijn, & 

Moulijn, 1999): 

 

𝜃𝑖 =
𝑞𝑖

𝑞𝑖,𝑠𝑎𝑡
=

𝑏𝑖𝑃𝑖

1 + ∑ 𝑏𝑗𝑃𝑗
𝑛
𝑖=1

 𝑖, 𝑗 = 1,2, … 𝑛                                                                          (1.39) 

 

If intermolecular interactions are negligible binary permeance can be modeled using the 

following equation (Nikolakis et al., 2001): 

 

𝐽𝑖

=
𝜌

𝐿

𝜀

𝜏
𝐷𝑐,𝑖𝑞𝑠𝑎𝑡,𝑖

𝑏𝑖(𝑃𝑖
𝑓𝑒𝑒𝑑

− 𝑃𝑖
𝑝𝑒𝑟𝑚)

𝑏𝑖(𝑃𝑖
𝑓𝑒𝑒𝑑

− 𝑃𝑖
𝑝𝑒𝑟𝑚) + 𝑏𝑗(𝑃𝑖

𝑓𝑒𝑒𝑑
− 𝑃𝑖

𝑝𝑒𝑟𝑚)
ln (

1 + 𝑏𝑖𝑃𝑖
𝑓𝑒𝑒𝑑

+𝑏𝑗𝑃𝑗
𝑓𝑒𝑒𝑑

1 + 𝑏𝑖𝑃𝑖
𝑝𝑒𝑟𝑚+𝑏𝑗𝑃𝑗

𝑝𝑒𝑟𝑚) (1.40) 

   

1.3.3.2 Zeolite Membranes 

Aluminosilicate zeolites are highly diverse group ordered structures composed of 

SiO4 and AlO4 building blocks with O-M-O (O = oxygen, M = metal) bonds of 145○ with 

a diverse array of cell configurations that have resulted in more than 200 different types of 

zeolites being discovered or synthesized. In terms of light hydrocarbon separations, small-

pore molecular sieving zeolite crystals such as FAU (0.7 nm), MFI (0.55 nm), LTA (0.3-

0.5 nm), DDR (0.4 nm) SAPOs - CHA type (0.38 nm) have been evaluated in kinetic gas 

uptake and equilibrium sorption experiments and present promising diffusive molecular 

sieving of ethane/ethylene and propylene/propane mixtures (Agarwal et al., 2010; Douglas 
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M. Ruthven & Reyes, 2007) but comparatively less work has been reported for thin film 

membranes.  

 

   
 

   
Figure 1.12 From left to right: FAU, MFI, LTA and CHA type zeolite 

crystallographic structures from IZA database 

 

Fajusite-type (FAU) membranes have shown ideal C3 selectivities of 28, however 

in the binary mixture, the propylene/propane selectivity is reduced to 13.7 (Ioannis G. 

Giannakopoulos & Vladimiros Nikolakis, 2004) due to the enhancement of propane 

diffusivity in the presence of propylene (Y. H. Huang, Liapis, Xu, Crosser, & Johnson, 

1995). ETS-10 membranes have shown good propylene permeability (C3= permeance = 7.9 

x 10-8, thickness = ~ 8 μm) and a separation factor of 5.5 however this value was diminished 
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by 19% over time due to hydrocarbon decomposition/carbonaceous residue formation 

caused by interaction with the highly basic sites located on ETS-10 surface (Tiscornia, 

Irusta, Téllez, Coronas, & Santamaría, 2008).  

Strong molecular sieving of C2 molecules in zeolite membranes has yet to be 

reported. C2 molecules are smaller and closer in size as compared to C3 molecules, zeolite 

molecular sieves haven’t produced separation factors much beyond 3 for C2H4/C2H6 

mixtures (Rungta et al., 2013). Metal-cation doped zeolites such as Ag-Zeolite A (Aguado 

et al., 2012) have shown excellent C2H4/C2H6 sorption selectivity through strong 

electrostatic interactions between the π-bond of C2H4 and the adsorbent surface, but 

selectivity is quickly diminished as atmospheric/saturation pressures are approached and 

are a manifestation of the capacity/selectivity trade-off often experienced by many 

adsorbent materials at higher pressures. C2H4/C2H6 permselectivities are predicted to be 

less than 5 in most cases (Rungta et al., 2013). 

 Similar to polymeric materials, depending upon the structure zeolites can present 

either hydrogen selective or hydrogen rejective behavior. Silicoaluminophosphate SAPO-

34 which crystallizes in the CHA zeolite topology has been the most prominently cited 

hydrogen/hydrocarbon selective molecular sieving zeolite material. Nair and co-workers 

synthesized thin (~1 μm thick) SAPO-34 membranes and showed H2/C3H8 binary 

selectivities ranging from ~7 at room temperature up to 27 at 650○C with a permeance 

increase from ~3 x 10-8 to 2.3 x 10-7 mol/m2sPa over the temperature interval and showed 

good stability at high temperature (S.J. Kim et al., 2016). The membranes from the same 

study were evaluated as packed bed membrane reactors and presented propane conversions 

(65-75%) that were 10-15% greater than that of conventional packed bed reactors under 
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similar conditions (S.-J. Kim et al., 2016). SAPO-34 membranes have also shown 

promising H2/CH4 separation characteristics. Selectivties >20 have been achieved with 

hydrogen permeabilities greater than commercial polymeric membranes (M. Hong, Li, 

Falconer, & Noble, 2008).  

LTA-type membranes also contain small pores but have typically have not shown 

sharp molecular sieving for gas phase separations. The high hydrophilicity, cation content 

and often reported hard to control intercrystalline defects have limited its use as a gas 

separation membrane (Aoki, Kusakabe, & Morooka, 1998; A. Huang, Liang, Steinbach, 

Gesing, & Caro, 2010) however neutral, cation-free LTA-type aluminophosphate 

membranes with low hydrophilicity fabricated by Caro and co-workers has shown long-

term permeation stability and an H2/C3H8 separation factor of 146 (A. Huang, Liang, et al., 

2010).  

MFI (silicalite) zeolite membranes were studied in extensive detail by Dong and 

Lin (J. Dong, Lin, & Liu, 2000) for hydrogen separation from refinery gas (85% H2, 

balance C1-C4 molecules). In isobaric, temperature dependent experiments the membrane 

showed excellent hydrogen rejection at temperatures below 100○C due to competitive 

adsorption effects. At room temperature, no hydrogen or iso-butane permeance was 

detected; the efficient blocking of the zeolite pores inhibits non-adsorbing hydrogen flow 

and the shape selectivity of the MFI membrane hinders iso-butane flow. As temperature 

increased beyond 200○C the permeation selectivity became diffusion controlled due to low 

adsorption of all components and hydrogen flux reached one to two orders of magnitude 

greater than that of the hydrocarbons as temperature increased to 500○C. The work clarified 

that for hydrocarbons, the major driving force for flux is the concentration in zeolite pores, 
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while for non-adsorbing hydrogen, the fraction of free pores/H2 partial pressure gradient 

across the membrane is the major driving force for flux. Furthermore the MFI zeolite 

membrane showed good thermal and permeation stability with no negative permeation, 

selectivity or structural effects after repeated heating to 500○C (J. Dong et al., 2000). 

Zeolites are deemed as chemically and thermally stable materials due to strong O-

Si-O bonds. The degree of stability depends on the silica to aluminum ratio. High silica 

content zeolites are considered the most stable and hydrophobic and less susceptible to 

water vapor effects. However, it been noted that at high temperatures after long periods, 

aluminum content from ceramic aluminum oxide supports can migrate from the support 

layer to the zeolite layer and decrease performance stability of even high silica content 

membranes. Lin and co-workers proposed usage of a thermally stable yttria stabilized 

zirconia interlayer between the support and the membrane layer to avoid aluminum 

migration and demonstrated stable separation performance with a simulated syngas feed 

containing 500 ppm H2S at 500○C (Wang & Lin, 2012).   

 

1.3.3.3 Carbon Molecular Sieves 

Carbon Molecular Sieves (CMS) are a formidable contender amongst membrane 

materials for C2 and C3 paraffin/olefin separations. CMS membranes are formed from 

temperature programmed pyrolysis of polymer precursors. Through careful polymer 

selection, tuning of pyrolysis temperature programming and pyrolysis O2 partial pressure, 

the CMS pore structure and thus permeability/selectivity can be modulated (Kiyono, 

Williams, & Koros, 2010; R. Singh & Koros, 2013). CMS membranes contain a bimodal 

pore distribution, a majority of the structure containing ultramicropores ≤ 0.6 nm and the 
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remainder of pores ranging between 0.6-2 nm. CMS are visualized as condensed sp2 

hybridized, hexagonal graphite-like sheets with slit-like pores formed from ordering 

imperfections. CMS 1-D slit-shaped pores offer an advantage over highly ordered 3-D pore 

structures of crystalline materials though size/shape exclusion; the CMS pore can 

discriminate between the planar ethylene molecule versus the bulkier ethane configuration 

which is a difficult task.  

 

 
Figure 1.13 Carbon molecular sieve sheets (a), pore structure (b) and bimodal 

pore size distribution (c) (Kiyono et al., 2010) 

 

 

CMS membranes formed from Matrimid and high performance polyimides have 

overcome both the C3 and C2 the upper bound. Suda and Haraya formed a pyrolized Kapton 

polyamide CMS membrane after pyrolysis at 1000○C under vacuum, then activated the 

membrane in water vapor for pore volume enlargement from < 4.0 Å to 80% of pores with 

size < 4 Å and 20% between 4.0-4.3 Å (Suda & Haraya, 1997). The resulting membrane 



  45 

displayed pure gas ideal C2 and C3 selectivities of 6 and 20 respectively and permeabilities 

for both olefins around 10 Barrer.  

Steel and Koros investigated the effects of various polymer precursors and 

pyrolysis conditions on the gas separation properties of flat CMS membranes using 6FDA 

and Matrimid polymer precursors (Steel & Koros, 2005). The 6FDA/BPDA-DAM derived 

CMS membrane presented the best performance when pyrolized at 550○C for 2 hours 

showed a C3 selectivity of 100 with a propylene permeability around 200 Barrers, while 

the best performing Matrimid derived CMS membrane exhibited slightly lower 

performance; propylene permeability 20 Barrer and C3 selectivity ~40. Their findings 

showed that lower temperature pyrolysis conditions < 550○C enabled an open pore 

structure and avoided closure of main selective ultramicropores to maintain high selectivity 

and permeability. Ma et al. (Ma, Lin, Wei, & Kniep, 2016) formed extremely thin (520 

nm) CMS membranes derived from a proprietary 6FDA-based polyamide by coating the 

polymeric layer on gamma alumina supported by a mechanically stable alpha alumina 

support. Their membrane showed low C3 permeability (10 Barrer) but achieved 

competitively high permeance (1 x 10-8 mol/m2sPa) and separation factor (31) due to the 

high integrity thin membrane layer.    
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Figure 1.14 C3H6/C3H8 selectivity and propylene permeability in relation to 

polymer precursor type and pyrolysis time/temperature (Steel & Koros, 2005)  

 

For C2 separations, Matrimid derived CMS membranes have been the most studied 

in literature. Koros and co-workers have demonstrated C2 selectivities up to 12, however 

the membranes produce low ethylene permeabilities (15-20 Barrer) which is attributable to 

the collapse of the dense Matrimid substructure (L. Xu, Rungta, & Koros, 2011). CMS 

membranes based on intrinsically microporous polymers such as carbonized PIM-1 have 

reached ethylene/ethane ideal selectivities of 17.5 at a C2 olefin permeability of 10 Barrer 

and a selectivity of ~6.5 at 70 Barrer (Salinas, Ma, Litwiller, & Pinnau, 2016). Higher 

permeabilities at selectivities comparable to Matrimid were attributed to the higher free 

volume PIM-6FDA-OH polymer which did not fully collapse during pyrolysis.  
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Figure 1.15 Plot of ethylene/ethane selectivity as a function of ethylene 

permeability for highest performing carbon molecular sieves with polymer membrane 

Robeson upper bound depicted (Salinas et al., 2016)   

 

In terms of stability, CMS have been cites as thermally stable up to ~500○C in most 

gasses but < 200○C in O2. A major concern associated with carbon molecular sieves is 

physical aging as a result of the presence of highly reactive sites within the ultramicropores. 

Oxygen chemisorption and physical adsorption of organics and water can occur at 

structural microvoids causing a decrease in long-term membrane performance (L. Xu et 

al., 2014). Membranes must often times must be aged for long periods (5-12 months) (L. 

Xu et al., 2014), consistently activated (Jones & Koros, 1994) or undergo pyrolysis in low 

partial pressure O2 to stabilize reactive sites during synthesis (Kiyono et al., 2010) in order 

to observe consistent results.  

 

1.3.3.4 Metal Organic Frameworks 

Metal-organic frameworks are a set of highly studied hybrid materials containing 

micropores with high surface area that have been studied for light olefin/paraffin 
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separations. Metal-organic frameworks consist of metal cations (Al, Cu, Co, Mg, Mn, Zn) 

(non-exhaustive), coordinated to the oxygen a vast array of organic ligands including 

benzene tri or di carboxylates and imidazoles in a large number of coordination geometries. 

Due to the diversity of metal/organic chemistries and coordination, an unprecedented 

number of MOFs of varying pore shapes for molecular exclusion and pore functionality 

for selective adsorption affinity been created and have yet to be synthesized.  

As in zeolites, a majority of the light hydrocarbon separation MOF studies have 

focused on adsorptive separations in crystals. Early investigations of light olefin/paraffin 

in MOFs were conducted with Cu3(BTC)2 which showed sorptive selectivity for olefins 

enabled by cation-π interactions between the π electrons of ethylene/propylene and the 

open metal Cu sites of the MOF (Wang et al., 2002). Further studies showed limited C2 

and C3 olefin selectivities (~2) in Cu2(BTC)3 (Wang et al., 2002; Plaza et al., 2012), but 

sparked further studies in MOFs with open metal sites for olefin/paraffin separations. The 

heavily cited M2(dobdc), (M = metal, dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) or 

MOF-74 which gives C2 and C3 sorptive selectivities between 4-18 at low loadings (~1 

atm), with the highest selectivity presented in the Fe-based isostructure (Fe-MOF-74) 

(Bloch et al., 2012).  
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Figure 1.16 Crystallographic Structures of Mg-MOF-74 and Cu3(BTC)2 (Herm, 

Bloch, & Long, 2014) 

 

At higher feed pressures (> 1 atm) olefin sorption selectivity in MOF-74 diminishes 

due to the capacity/selectivity trade-off. While the high adsorption selectivity may be 

advantageous for a possible for low olefin partial pressure feeds, however the 

capacity/selectivity trade-off in addition to low diffusive selectivity hinders further 

development of MOF crystallites into polycrystalline membranes because significant feed 

pressures are needed to drive membrane separation processes, therefore binary permeation 

selectivties are expected to be less than 5 in most applicable process conditions (Rungta et 

al., 2013).  

The rationally designed NbOFFIVE-1-Ni or KAUST-7 may offer an exception as 

a MOF with a potential for future membrane development (Cadiau et al., 2016). KAUST-

7 features Ni(II) square grid layers with NbOF5
2- pillars connecting pyrazine ligands. The 

Nb cation was specifically selected to impede rotation of the pyrazine ligand and create a 

small 3.05Å aperture that facilitates excellent molecular sieving of propylene and propane 

mixtures. Propane sorption was negligible up to 1.2 bar while propylene showed 
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considerable uptake which is indicative of strong molecular sieving. Further work with 

uptake kinetics will further prove the feasibility of KAUST-7 as a potential membrane 

material for C3 olefin/paraffin separations. 

A.              B.  

     
Figure 1.17 Crystallographic structure of NbOFFive-1-Ni (A) and 

pure/equimolar C3H6 and C3H8 adsorption isotherms 298 K (B) (Cadiau et al., 2016) 

 

Zeolitic Imidazolate Frameworks (ZIFs) are a relatively new subclass of metal-

organic frameworks which contain zeolitic topologies in which the Si-O-Si bond is 

replaced with a M-Im-M bond (M = metal, Im = Imidazole) just slightly perturbed from 

145○. Like traditional MOFs, the basic building unit of a ZIF consists of a metal cation 

coordinated to an organic linker but instead of metal-oxygen bonds, the metal is 

coordinated to 4 nitrogen atoms from 4 different imidazole ligands. Each ligand 

coordinates two metal centers. The functionality of the imidazole linker and the 

coordination enables tuning of the ZIF structure for a specific steric or adsorptive based 

separation. ZIF-8 membranes surpass the polymer upper bound and outperform most 

carbon membranes in the areas of C3= permeability and C3=/C3- selectivity through 



  51 

molecular sieving (Pan, Li, Lestari, & Lai, 2012). Table 1.4 shows the light hydrocarbon 

selectivities in ZIF-8:  

 

 
Figure 1.18 Illustrative graphic of Zeolitic Imidazolate Framework-8 (ZIF-8): 

sodalite cage (left & center) and cage showing Zn-imidazole coordination bonding 

(right) (Park et al., 2006) 

 

Table 1.4 Light Hydrocarbon Separation Characteristics of ZIF-8 Membranes 

Reported in Literature 

Light Hydrocarbon 

Mixture 

Light Gas Permeance 

(mol/m2sPa) 

Binary Separation 

Factor 

H2/C3= 3.0-3.8- x 10-7 mol/m2sPa 23 

H2/C3- 3.0-4.4- x 10-7 mol/m2sPa 545-2700 

C2=/C2- 1.8-14 x 10-8 mol/m2sPa 2.1-2.8 

C3=/C3- 0.1-3 x 10-8 mol/m2sPa 20-180 

 

In terms of C3 separation, the lowest propylene permeability represented in Table 1.4 is 

98 Barrer confirming separation and permeability performance which exceeds reported 

CMS membranes.  

The exceptional C3 performance is due to the sodalite (SOD) topology of ZIF-8 

along with bonding coordination and crystal dimensions that enable a structure with a 6-

member ring sieving-active pore aperture of 3.4 Å and a pore cage size of 11.6 Å. 

Framework flexibility and the swinging motion of the 2-methylimidazole (2-MIm) ligands 

enables an effective pore aperture of 4.2 Å (C. Zhang et al., 2012). The ZIF-8 effective 
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pore aperture diameter is just a perturbation larger or statistically identical to the van der 

Waals diameter of propane (4.16 Å) and larger than propylene (4.03 Å) and hydrogen 

(2.76 Å) which facilitates exceptional molecular sieving of C3 substituents and hydrogen 

while maintaining industrially attractive light gas permeability. ZIF-67 is an isostructural 

Co analogue to ZIF-8 and also shows promise for C3 sieving. The shorter/stronger Co-N 

bond limits liker motion to attain propylene/propane selectivties of 200 while still 

maintaining permeances comparable to those shown in Table 1.4.   

Results of C2 separations are also shown for ZIF-8 in Table 1.4. There has yet to be 

a ZIF membrane realized or precisely tuned for exceptional C2 paraffin exclusion that 

compares to CMS membranes in terms of separation factor. The similar sizes of ethylene 

(3.59 Å) and ethylene (3.72 Å) which are both smaller than the effective ZIF-8 pore 

aperture limit binary selectivities to just below 3. Smaller pore ZIFs such as ZIF-7 (3.0 Å) 

which contains a larger benzimidazole ligand has been studied for adsorptive separation of 

alkanes from alkenes but there are no studies specifically focused on the diffusive behavior 

of C2 molecules in ZIF-7.  

The stability of traditional MOFs is often of concern. Open metal site MOFs 

experience instability in the presence of water vapor and other nucleophiles, water 

molecules coordinate at the unsaturated metal sites and are susceptible to protonation/bond 

breaking through hydrolysis reactions (DeCoste et al., 2013). Although hydrocarbon feeds 

are dehydrated prior to downstream separation, long term stability even with small 

magnitudes of water impurity should be studied.  

ZIFs are regarded as the most stable in the MOF family materials. ZIF particles 

have shown resilience in the presence of boiling water and organic solvents in addition to 
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thermal stability up to 550○C in dynamic TGA experiments (Park et al., 2006). The 

exceptional chemical and thermal stability of ZIFs is linked to strong metal-nitrogen bonds 

and hydrophobic pores. Researchers have reported stable separation for both on-stream and 

off-stream propylene/propane experiments for durations longer than 1 month. The 

exceptional H2/C3 selectivities in ZIF-8 and perceived thermal stability may present a new 

application for ZIFs as membrane reactors for propane dehydrogenation. However little is 

known about the static thermal stability of zeolitic imidazolate frameworks and thus should 

be studied in detail. 

 

1.3.4 Concluding Remarks on Membrane Materials, Transport and Stability for Light 

Hydrocarbon Separations 

 As previously discussed, the permeability and selectivity and stability of a 

membrane material are immensely important for its consideration as a viable replacement 

or debottlenecking step for light hydrocarbon separation. Productivity and efficiency are 

governed by the intrinsic properties of the material and the transport properties which 

facilitate separation of the permeating mixture. Without exceptional stability, the 

separation properties of a membrane cannot be maintained for long periods. Although not 

discussed in high detail, the cost/processability of a membrane is of immense importance 

for further industrial consideration.   

 In the above review, a number of membranes were discussed for light hydrocarbon 

separations, however most do not currently present all four requisites: productivity, 

selectivity, stability and processability/cost that are necessary for large-scale 

implementation. Polymeric membranes are attractive and currently utilized in industry due 
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to low cost, ease of fabrication and decent separation performance for hydrogen 

separations. However these membranes often show instability in the presence of C3 

hydrocarbons and are subject to the upper-bound tradeoff in olefin/paraffin separations.  

 Dense metallic and facilitated transport membranes offer a distinct opportunity to 

produce ultrapure hydrogen from hydrogen/hydrocarbon or olefins from olefin/paraffin 

mixtures respectively. However, propylene deterioration in the presence of metallic 

membranes and instability of facilitators dampen the prospects of using these membranes 

for light hydrocarbon separations. Additionally, the cost of such membranes may not be 

attractive for industrial implementation for the specific application.  

 The microporous membranes discussed offer an interesting characteristic of 

tuneability to select or design a membrane material which can fit a specific light 

hydrocarbon separation application. Zeolites show exceptional stability and have potential 

for sieving hydrogen/hydrocarbon mixtures at high temperatures and low temperatures for 

basic separations or membrane reactor configurations. Zeolites do not however show as 

strong of potential for sieving olefin/paraffin mixtures as CMS and MOF/ZIF membranes. 

CMS membranes set themselves apart from the other microporous materials in that they 

can be easily produced from polymeric hollow fibers and directly implemented into easily 

manufacturable modules. Zeolites and MOFs must be grown on supports and often the 

reproducibility of high-quality thin films is of concern. CMS membranes also offer an 

advantage thus far for C2 separations due to their 1-D slit pore geometry. Ageing and 

brittleness of CMS membranes are of concern for future implementation.  

 Zeolitic imidazolate frameworks, specifically ZIF-8, has proven the ability to sieve 

hydrogen and C3 mixtures and outperforms most other microporous materials in terms of 
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productivity and selectivity. The reported chemical and thermal stability of ZIFs material 

make them a promising prospect for further study. Exceptional thermal properties could 

present an opportunity for high temperature membrane reactor applications. Furthermore, 

the countless number of linkers, cations and coordination geometries that can be realized 

for ZIFs broaden the possibility of rationally designing new ZIF structures which can sieve 

other light hydrocarbon mixtures such as C2 molecules.  

 

1.4 Zeolitic Imidazolate Frameworks (ZIFs) for Light Hydrocarbon Separations 

1.4.1 ZIF Chemistry: Bonding and Crystal Formation  

Zeolitic imidazolate frameworks are an emerging class of metal-organic 

frameworks (MOFs) that embrace both the hybrid metal-organic nature of MOFs and the 

topologies zeolites. Since their inception over a decade ago, discovery of their exceptional 

chemical/thermal stability in addition to their permanent, high porosity/surface area and 

the ability to tune the framework both electronically and sterically for a specific separation 

has generated an abundance of studies on ZIF materials. ZIFs and zeolites diverge largely 

due to organic nature of the ZIF framework. ZIFs show interesting framework flexibility 

(rotational displacement of the imidazole ligand), framework tuneability through facile de 

novo syntheses or post synthetic modification. The wide array of imidazole functionalities 

at specific positions of imidazole linker and the ability to mix linkers provides routes not 

only to tune the electronic/chemical properties of the ZIF, but also the type of zeolitic 

topology (Pimentel et al., 2014). The first step to taking advantage of the of the highly 

customizable ZIF framework for the study and enhancement of light hydrocarbon 
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separation applications is to gain a better understanding of the basic processes which form 

the fundamental building units.  

In comparing zeolites to ZIFs, Yaghi and co-workers described the structural 

building unit of a zeolite as a four coordinated net of metal vertices in which tetrahedrally 

coordinated metals (Si, Al, P) are covalently bonded to -O- links whereas ZIFs are 

composed of metals (Zn or Co) tetrahedrally coordinated to the nitrogen of an imidazole 

ligand which is an unsaturated, 5 member ring containing two nonequivalent amides 

(Tranchemontagne, Mendoza-Cortés, O’Keeffe, & Yaghi, 2009). As previously described, 

the zeolitic topologies of ZIFs are derived from M-Im-M bond angles that are similar to 

that of zeolite Si-O-Si as shown in Figure 1.19:   

 

 

 
Figure 1.19 Comparison of M-Im-M and Si-O-Si bond angle in ZIFs and zeolites 

respectively (Park et al., 2006) 

 

The bonding in ZIFs is slightly different than that for the covalently bonded zeolite. In a 

normal covalent bond each atom contributes one electron and shares the pair between the 

two nuclei. In ZIFs the coordination bond is such that the nitrogen solely contributes 

electrons to a metal cation when mixed in solution. As shown in Figure 1.19, the formal 

bond valence between zinc and nitrogen is 1/2 thus the tetrahedrally coordinated zinc 

effectively shares ½ an electron with 4 nitrogen atoms from four different imidazole ligand 

and this sum (2) corresponds to the oxidation number of zinc (+2). The normal covalent 
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zeolite bonds are stronger than the coordination bonds of ZIFs, however the non-zero 

valence of the Zn-N tetrahedral coordination bonds enable strong bond energy (~360 

kJ/mol) similar to that of a C-C bond (Tranchemontagne et al., 2009). The Lewis basicities 

of imidazole ligands are typically higher than that of benzene carboxylate molecules of 

MOFs and leads to stronger metal-organic bonds and greater chemical/thermal stability for 

ZIFs (Karagiaridi, Bury, Mondloch, Hupp, & Farha, 2014).  

 The formation of M-N bonds in ZIFs are facilitated through the deprotonation of 

imidazole ligands which form bidentate coordination with solvated metal nodes to yield 

structural building units. Continuous coordination of the building units enables the 

formation of 3-dimensional supermolecular structure. Below, we specifically outline the 

most robust procedure of ZIF-8 crystal formation in methanol as it is the most the most 

studied and gives insight into the general processes that occur during the formation of all 

ZIFs.  

 
Figure 1.20 Kinetics of transformation of ZIF-8 as a function of time (Venna, Jasinski, & 

Carreon, 2010) 
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Table 1.5 ZIF-8 Formation Solution pH and Crystal Size as a Function of 

Growth Time Adapted from Reference X 

Reaction Time pH  Crystal Size 

0 7.8 Nuclei Formation 

10 min 7.5 50 

1 hr 7.2 230 ± 20 

12 hrs 7.2 500 ± 40 

24 hrs 7.2 500 

 

 

The structural evolution of ZIFs (specifically ZIF-8) was deconvoluted in the work of 

Venna et al. using time-resolved XRD and pH analyses during ZIF-8 crystal formation in 

methanol (Venna et al., 2010). Figure 1.20 shows ZIF-8 crystallinity and Table 1.5 shows 

the ZIF-8 solution pH and crystal size as a function of time from their experiments. In a 

typical ZIF synthesis imidazole and a zinc salt are separately dissolved in an organic 

solvent. At equilibrium, in a protic solvent the imidazole, 2-methylimidazole exists in its 

neutral (HMIm) and protonated H2MIm+ forms (Cravillon, Münzer, Lohmeier, Feldhoff, 

& Huber, 2009).  

As shown in Table 1.5 and Figure 1.20, it can be deduced that the initial stage of 

ZIF formation (< 10 minutes) is dominated by nuclei evolution which corresponds to the 

initial deprotonation of HMim ligands caused by the driving force for crystallization (pH 

decrease between 0-10 mins) enabling coordination with zinc to form primary ZIF-8 

building units. At the onset of stage 2 (10 mins), crystal growth begins as evidenced by 

formation of 50 nm ZIF-8 particles evolved from the solution. Crystallinity measurement 

is not possible due to a low yield of metastable crystals.  
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Further reaction time (10 min – 1 hour) presents significant crystallinity/crystal size 

increases and corresponds to further deprotonation of imidazole ligands (pH decrease) and 

coordination to form larger likely more stable crystals. The sigmoidal increase in 

crystallinity/crystal size corresponds to Avrami’s classical model for crystal growth and is 

further correlated to the Ostwald ripening effect where smaller higher energy crystals 

dissolve/re-precipitate onto larger crystals.  

Beyond 1 hour of growth signifies stage 3; the stationary phase, upon which 

crystallinity, crystal size and pH stabilize. As more HMIm deprotonate, the driving force 

for further linker deprotonation decreases causing a stabilization in the solution pH. The 

neutral imidazole ligands can then form monodentate coordination at positively charged 

portions of ZIF crystals and terminate growth (Cravillon et al., 2009) while the imidazole 

solution comes into new equilibrium with stable ZIF-8 crystals formed. The detailed 

process above is specifically relevant for the case of ZIF-8 crystal formation in methanol 

solution but is broadly relevant to the formation of most ZIFs which undergo nucleation, 

growth, Ostwald ripening and stabilization processes upon formation. 

A deeper understanding of ZIF bonding, formation processes and methods to alter 

nucleation and growth provide a basic background to further understand topology control. 

Topology control allows for effective tuning of the overall physical properties of the 

framework such as pore/pore aperture size, pore aperture shape, surface area and volume 

which each have an effect on the transport and separation of molecules throughout the 

framework. The effects of ligand substitution and solvent on topological control are 

detailed below.   
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1.4.2 Topology Control 

 

 
Figure 1.21 ZIF crystal structures organized by topology. Reproduced with permission 

(Phan et al., 2010). Copyright American Chemical Society 2010. 

  

 The steric and chemical functionality of the imidazole ligand play a crucial role in 

the coordination and substitution equilibria which direct ZIF crystallization. Imidazole 

ligands present functionality at the 2, 4 and 5 positions of the 5-member ring, without 
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ligand functionalization, dense and/or low symmetry structures are formed (Park et al., 

2006; Tian et al., 2007). Under similar reaction conditions, substitution at the 2 position 

with a methyl (electron donating) or carboxaldehyde (electron withdrawing) enables the 

SOD topology with a apertures of ~ 3.3 Å (Huang, Lin, Zhang, & Chen, 2006) and 5.0 Å 

(Eum et al., 2015) respectively while substitution at the same position with an ethyl group 

(electron donating) formed the ANA topology and a smaller aperture size (~2.2 Å) due to 

the bulkier ligand at the pore aperture window (X. C. Huang et al., 2006). In this specific 

case of substitution at the 2 position, steric effects likely lead to the differences in 

topologies rather than the chemical composition of the substituent.  

The effect of ligand substitution in single linker ZIFs was further demonstrated in 

the work of Yaghi et al (Hayashi, O E, Furukawa, & Yaghi, 2007) who showed using 

similar synthesis conditions that benzimidazole could form the SOD structure ZIF-7, 

however N substitution on the benzene substituent (purinate/5-azabenzimidazole) at the 5 

position was necessary for crystallization of LTA type zeolitic imidazolate frameworks. In 

their work it was postulated that electrostatic and dipole-dipole interactions between CH-

N∙∙∙N-CH of two adjacent imidazole ligands, (N is at position 5 and C is at position 6) show 

significant interactions that produce the LTA topology.  

The complexity of ligand substitution and number of realizable topologies was 

exponentially expanded when 2-linker ZIFs were introduced. ZIFs with the GME topology 

were obtained by mixing functionalized imidazole and benzimidazole linkers (Banerjee et 

al., 2009b). It was also determined that ZIFs could present a single topology in both a single 

linker and 2 linker system. For example, a ZIF material was crystallized into the RHO 

structure by mixing 2-methylimidazole and 2-ethylimidazole in DMF (X. C. Huang et al., 
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2006) whereas, single linker (benzimidazole) ZIF-11 formed in N, N diethylformamide 

contains the same topology.   

In addition to ligand substitution, solvents play crucial roles as both a structural 

template for overall pore formation and can alter ligand-ligand interactions during the 

crystallization process to form different topologies. The effects of solvent as a template for 

pore formation in ZIFs formation is well exhibited in the case of ZIF-11 and ZIF-7 which 

both contain benzimidazole as a single linker. ZIF-7 is formed in DMF and crystallizes into 

the SOD structure while ZIF-11 is synthesized in the larger DEF and crystallized into the 

more open RHO structure. A similar example is exhibited for ZIF-7/ZIF-9 (SOD) and ZIF-

11/ZIF-12 (RHO) using methanol as the main solvent. When solely ethanol is utilized the 

SOD structures are formed, however addition of toluene alters ligand-ligand interactions 

and spacing by forming π-π T-stacking of toluene with the benzene substituent of the 

imidazole ligand to once again produce the higher pore volume RHO topology (He et al., 

2013).  

An underlying set of guidelines to specifically design or obtain specific topology 

has not yet been fully elucidated. As further knowledge is developed using high through-

put methods to obtain more ZIFs and correlate imidazole chemical and structural 

functionalization to the intricate interplay of solvent selection as well as time/temperature 

effects, guiding principles will be developed to precisely control ZIF topology.  

 

1.4.3 Composition Control  

Composition control of imidazolate frameworks is the practice of modulating the 

chemical composition of identical frameworks within a fixed topological group. 
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Composition control is exercised by alternating the ligand and/or cation of physically 

similar or isoreticular frameworks. This method has been performed to tune the chemical 

and physical properties of ZIF structures for enhanced attributes to fit specific applications 

(Kaneti et al., 2017). Composition control can be achieved through multiple routes in ZIFs 

which is another property which makes them attractive candidates for gas separations.  

 

1.4.3.1 Mixed Linker and Hybrid ZIFs 

The advent of mixed linker/hybrid ZIFs opens a plethora of additional degrees of 

freedom in rational design that may be advantageous for light olefin/paraffin separations 

in ZIFs. Mixed linker ZIFs are prototypical ZIF structural materials often cited in literature 

such as ZIF-68 (nitroimidazole/benzimidazole) or ZIF-69 

(nitroimidazole/chlorobenzimidazole) (Hou & Li, 2010) among others. The synthesis of 

ZIFs containing multiple linkers can enable increased functionality and tunablility over 

single linker ZIF materials.  

A representative example of mixed linker synthesis with composition control was 

performed in the work of Yaghi and co-workers (Banerjee et al., 2009a). Isostructural 

mixed linker ZIFs with GME topology were prepared by mixing equimolar amounts of 

nitroimidazole and a second linker (imidazole or benzimidazole) to vary pore diameter 

(7.1-15.9 Å) and functionality was introduced to each linker type to vary polarity across 

the pore sizes. Their study determined that pore polarity rather than pore size presented the 

largest effect on CO2 uptake in the set of isoreticular ZIFs studied. Mixed linker materials 

are known to form specific porous structures over a specific imidazole linker concentration 

range. Outside of this concentration range, the structure will crystallize into unwanted 
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topologies or non-porous structures (Pimentel et al., 2014) and thus considerable time and 

effort are necessary to tune the synthesis parameters for enhanced structure-property 

relationships as compared to single linker ZIFs.  

Hybrid ZIFs can be crystallized into a porous structure that includes two different 

linkers and present linker mixtures over a wider range of relative concentrations. The 

properties of the hybrid ZIFs (adsorption, sieving properties etc.) are usually concomitant 

with the relative linker concentration. The first reported hybrid ZIFs were ZIF-8-90 and 

ZIF-7-8 crystals synthesized de novo by Thompson et al. (J. A. Thompson et al., 2012). 

The size similarity between 2-methylimidazole (2-MIm) (ZIF-8 linker) and 2-

imidazolecarboxaldehyde (Imca) (ZIF-90 linker) allowed synthesis across the large range 

of compositions without crystal structure alteration. For ZIF-8-90, as the fraction of 

hydrophilic carbonyl groups from the Imca linkers was increased in the de novo synthesis 

procedure, the pore aperture size increased from 3.4 Å (pure ZIF-8) to 5.0 Å (pure ZIF-90) 

and correspondingly, the hybrid crystals’ hydrophilicity increased as observed from water 

vapor uptake measurements performed by Eum et al. (Figure 1.22) (Eum et al., 2015).  
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   A.      B.   

 
Figure 1.22 Pore size distributions of ZIF-8-90 hybrids (A) (J. A. Thompson et al., 

2012) and water adsorption isotherms in ZIF-8-90 hybrid crystals 308 K (B) (Eum et al., 

2015). 

 

Upon incremental incorporation of BzIm into the ZIF-7-8 hybrid framework, the 

pore size distribution became bimodal and presented a smaller pore size (0.32 nm) closer 

to that of ZIF-7 (3.0 Å) (Figure 1.23) (Thompson et al., 2012). However, after reaching a 

35 mol% composition of BzIm in the hybrid framework (ZIF-735-865), steric hindrance of 

the bulkier benzimidazole (BzIm ZIF-7 linker) caused crystal structure change which was 

evident from XRD spectra. The structural change was a result of transition from the ZIF-8 

cubic I43 space group to the ZIF-7 R3 rhombohedral space group. 
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Figure 1.23 Pore size distributions of ZIF-7-8 hybrids (J. A. Thompson et al., 

2012) 

 

The works by Thompson (J. A. Thompson et al., 2012) and Eum proved (Eum et al., 2015) 

that both the chemical and steric properties of hybrid ZIFs can be effectively tuned over a 

comparatively wide range of linker concentrations.  

 

Hybrid ZIF synthesis may present an effective solution for enhancement of light 

hydrocarbon separations.  A ZIF membrane incorporating both ZIF-8 and ZIF-7 

functionality could potentially enhance light hydrocarbon separations. ZIF-7 contains the 

bulkier aromatic benzene ring connected to the imidazole substituent thus producing a 

smaller (3Å) aperture. Thin (2μm thickness) ZIF-7 membranes have been synthesized, but 

have low hydrogen permeance of (4.5x10-8 mol/m2sPa) (Y. Li, Liang, Bux, Yang, & Caro, 

2010) indicative of low intrinsic permeability, and it can be assumed that ethylene 

permeability in a pure ZIF-7 membrane would be far too low for industrial use. However, 

ZIF-7 membranes have demonstrated enhanced H2 sieving ability over ZIF-8 (Y. Li et al., 

2010) and could potentially enhance C2 and C3 olefin paraffin separation. A hybrid 
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membrane incorporating a finely tuned composition of both ZIF-7 and ZIF-8 functionality 

could possibly exhibit increases in light hydrocarbon separation factors while maintaining 

attractive hydrogen/olefin permeability. 

A slight challenge associated with hybrid ZIFs is quantitative control. Although 

linker ratios within the framework can be varied over a wide range of compositions, 

synthesis of specific compositions is difficult because linker solubility differences and 

metal site competition is a factor. Quantitative compositional control is feasible after 

experimental trials in free crystals, but would become extremely difficult in membrane 

fabrication.  

Although ZIF membranes are usually synthesized through well established in-situ, 

counter-diffusion, or seeded secondary growth methods, the synthesis of new hybrid 

polycrystalline membranes would two eminent challenges: (1) many of the hybrid MOFs 

(ZIFs) have only been obtained on the scale of a few crystals. Synthesis of a large quantity 

is often difficult or costly and thus limits the amount of information necessary to decide 

whether further fabrication into a polycrystalline membrane is advantageous. (2) 

Conversion of new MOF materials to membrane thin films requires cumbersome trial-and-

error fine tuning of synthesis parameters which may or may not yield success. For this 

reason, of the thousands of MOFs synthesized, only twenty to thirty thin film membranes 

have been prepared. While formulating hybrid ZIF membranes through de novo synthesis 

would enable unparalleled diffusion and adsorbent-adsorbate control for separation 

purposes, the fabrication process would become even more arduous.    
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1.4.3.2 Solvent Assisted Ligand Exchange  

Further development of new single linker, mixed linker/hybrid ZIFs into 

polycrystalline membranes is needed and necessary, however there already exists large 

number of prototypical ZIFs (ZIF-7, ZIF-8, ZIF-67, ZIF-68, ZIF-69) that have well 

established crystal and membrane syntheses protocols that contain attractive but imperfect 

physical and chemical properties which poise them for small to moderate composition 

changes to enhance their separation performance.  

A facile route for modifying prototypical ZIF crystals to obtain mixed linkage over 

of varying concentrations for framework tuning is through solvent assisted ligand exchange 

(SALE) (Karagiaridi et al., 2014). SALE is a novel postsynthetic modification (PSM) 

method in which a parent MOF particle is placed in solution with a linker other than that 

already within the framework. Ligand exchange between linkers of the parent MOF and 

free linkers in solution occurs to form an isostructural, topologically identical daughter ZIF 

structure with new functionality. In order to be considered a true post synthetic 

modification, the reaction must proceed in a single-crystal to single crystal fashion, thus 

dissolution/recrystallization to form new crystals does not fit the definition a PSM (Cohen, 

2017). Reactions can proceed via solution-to-particle ligand exchange (Figure 1.23 A) or 

particle-to-particle ligand exchange (Figure 1.23 B). Each type of exchange has been 

reported, even in very stable MOFs such as UIO-66 (M. Kim, Cahill, Fei, Prather, & 

Cohen, 2012) 
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A.   

                           

    B.  

 
Figure 1.24 Illustrative graphics showing (A) solution-to-particle and (B) 

particle-to-particle ligand exchange (Pimentel et al., 2014)  

 

Since SALE places parent MOF linkers in a concentrated solution with new linkers. 

The linker solubility differen4e/metal competition hurdle experienced in hybrid/mixed 

linker synthesis is alleviated because the concentration of linker present in the MOF prior 

to exchange is fixed. The driving force for linker exchange can be explained by the 

following (Gross, Sherman, Mahoney, & Vajo, 2013):  

 

Δ𝐺 = Δ𝐺0 + 𝑅𝑇 ⋅ 𝑙𝑛
[𝐿𝑜]

[𝐿𝑖]
⋅

𝑋𝑖

𝑋𝑜
                                                                                               (1.41) 

 

where Lo is the concentration of original framework linker exchanged out from the 

framework into the exchanging solution after reaction, Li is the concentration of the 

exchanging linker in the original solution, Xi is the concentration of the new ligand in the 

framework after reaction, and Xo is the concentration of the original linker remaining in 
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the framework after reaction. Explained in more general terms, the driving force for ligand 

exchange is determined by the free energy difference between the original and modified 

structures. This this driving force is partially a result of relative coordination bond strength 

between the original/substituting ligand with the metal site of the ZIF framework.  

A direct example is evidenced in the work of  Hupp and co-workers (Karagiaridi, 

Bury, Sarjeant, Stern, Farha, Hupp, et al., 2012). In the Cd-based MOF CdIF-4 (RHO 

topology) 2-ethylimidazole was successfully exchanged (100%) with 2-methylimidazole 

to form a new MOF (SALEM-1) and the RHO topology was successfully maintained, 

however, when attempting to exchange either ligand with nitroimidazole which contains 

lower basicity nitrogens, framework dissolution occurred due to the weaker Cd-

nitroimidazole bond; the alkyl-substituted linkers extracted the Cd ions from the 

framework (Karagiaridi et al., 2012).  

Thus, in the specific system studied, it is likely that the most favorable exchange 

reaction was one in which stronger coordinating ligands are replaced with weaker 

coordinating ligands. However, this is not to say that the converse is not true, stronger 

coordinating ligands have been exchanged with weaker coordinating ligands already in the 

framework. Other variables/reaction conditions must be considered such as solvent, 

temperature, steric/kinetic factors and relative concentration of exchanging ligand and 

amount of ZIF material in solution must be considered in order to predict the most 

favorable products to be formed upon exchange  (Karagiaridi et al., 2012; Lalonde et al., 

2015).  

Although further understanding of the SALE processes is needed, the method 

provides an exceptionally facile route for framework property tuning for specific 
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applications. In conceptual studies, ligand exchange has been carried out in a number of 

MOFs including: MOF-5 (Gross et al., 2013),  MIL-53, MIL-68, UIO-66 (M. Kim, Cahill, 

Fei, et al., 2012), ZIF-7 (Jiang, Yang, & Yan, 2015) ZIF-8 (Karagiaridi et al., 2012) and 

ZIF-71 (Fei, Cahill, Prather, & Cohen, 2013) to add new functionality to each framework 

while maintaining their original crystallinity and topological features. For application, ZIF-

8 crystals have been exchanged with the more hydrophobic 5,6 dimethylbenzimidazole to 

enhance framework hydrophobicity for stability in the presence of high water activity (H. 

Zhang et al., 2017) and for enhancement of butanol uptake (X. Liu et al., 2013). ZIF-8 

crystals have also been exchanged with the more hydrophilic ZIF-90 2-

imidazolecarboxaldehyde linker to increase water uptake (Jayachandrababu, Sholl, & Nair, 

2017). Considerable CO2 adsorption enhancement was achieved in UIO-66 through 

exchange of the original terephthalic acid linker with alkanedioic acid.  

To date, only Lin and co-workers have utilized ligand exchange for direct 

postsynthetic modification of a supported polycrystalline membrane (H. Zhang et al., 

2017). In their work ZIF-8 membranes exhibited decomposition by hydrolysis during static 

immersion and pure water pervaporation experiments. A single solvothermal reaction was 

performed by placing a pristine, as-synthesized ZIF-8 membrane in solution of 5,6 

dimethylbenzimidazole for 15 hours. After treatment, membrane surface ligand exchange 

was successfully exhibited by characterization tests and enhanced water stability during 

pure water flux experiments conducted for 24 hours. This study fully exhibited the effective 

and facile nature of solvent assisted ligand exchange for membranes and may prove to be 

effective for new applications including light hydrocarbon separations. 
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1.5 Problem Statement, Research Objectives and Structure of the Dissertation 

1.5.1 Problem Statement 

ZIF-8 is particularly compelling for light hydrocarbon separation study because it 

contains a large pore (11.6 Å) for high olefin/hydrogen permeability and small pore 

aperture (3.4 Å) for large molecule exclusion and greatly exceeds the propylene/propane 

separation performance of most of the previously reviewed membrane materials. Further 

analyses are needed to evaluate ZIF-8 for applications beyond the highly studied C3 

olefin/paraffin separation. 

 There are few fundamental studies assessing the static thermal properties of ZIF-8 

crystals and membranes to determine their suitability for high temperature separation 

applications. An assessment ZIF-8 thermal stability will dictate the range of applications 

in which the framework can be applied. If thermally stable at high temperatures (> 300○C), 

ZIF-8 would be an exceptional membrane reactor material for light hydrocarbon 

dehydrogenation processes. 

 Additionally, ZIF-8 literature lacks a fundamental description of the 

thermodynamic and kinetic properties that govern C2 molecule transport in single gas and 

binary mixtures. Further understanding of the transport characteristics of C2 molecules in 

the prototypical ZIF-8 membrane will offer insight into the factors which affect C2 

permeability/selectivity and enable development new or modification of prototypical ZIF 

membranes for enhanced C2 separations. 

Finally, ZIF-8 is a prototypical membrane material which can be facilely modified 

through solvent assisted ligand exchange to enhance its properties. To date, most studies 

have focused on hydrostability improvement, but the technique has yet to be explored for 
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gas separation enhancement; specifically light hydrocarbons. A systematic study of ZIF-8 

membrane postsynthetic modification will provide new insight into the mechanism of 

solvent-assisted ligand exchange in ZIF membranes how it can be utilized to exploit and 

enhance the steric properties of ZIF-8 for light hydrocarbon separations.   

 

1.5.2 Objectives 

This dissertation will present findings from fundamental studies of the stability, 

transport and modification of zeolitic imidazolate framework-8 for light hydrocarbon 

separations. Objective 1 of this research is to assess the static thermal stability and changes 

in physical properties of ZIF-8 crystals and membranes in various environments and 

temperatures. Membrane studies will also characterize the transport properties of gas 

mixtures as a function of temperature/time and correlate the changes in transport to changes 

in the physical structure of the membrane. The overall purpose of objective 1 is to 

determine the suitability of ZIF-8 for high temperature applications.  

The results of thermal stability tests will guide and place a temperature limitation 

on subsequent analyses of the temperature dependency of C2 permeation in single gas and 

binary mixtures to partially fulfill objective 2 of this research which is to provide 

fundamental knowledge of both the thermodynamic and kinetic properties which control 

C2 transport in ZIF-8 membranes. Temperature dependent permeation and adsorption tests 

in ZIF-8 membranes and crystals will enable thermodynamic properties such as activation 

energy of diffusion, entropy of diffusion and heat of adsorption to be derived to understand 

the contribution of each factor to the diffusive/adsorptive selectivity and permeation 

behavior of C2 molecules in ZIF-8. A deeper understanding of C2 transport will aid in 
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characterizing H2/C2 separation performance of ZIF-8 membranes as a function of 

temperature which is relevant for post ethane cracking applications. Additionally, the 

pressure dependency of C2 transport will be evaluated for further understanding of the C2 

transport mechanism in ZIF-8.  

Finally, objective 3 of this research is to utilize the facile process of solvent assisted 

ligand exchange to enhance the gas separation properties of ZIF-8 membranes. A time and 

temperature dependent study of membrane surface ligand exchange with the bulkier 5,6 

dimethylbenzimidazole ligand will be performed with the goal of tuning the steric 

properties of ZIF-8 to obtain higher resolution C2, C3 and hydrogen separation 

performance. Characterization of both the physical and permeation properties of the 

framework during the exchange process will provide a deeper understanding of the 

membrane ligand exchange mechanism and how to control the chemistry for light 

hydrocarbon separation enhancement. 

 

1.5.3 Structure of Dissertation 

The following chapters in this dissertation will accomplish the objectives set forth 

in the preceding section. Chapter 2 is a detailed study of the static thermal stability of ZIF-

8 nanocrystals in inert, oxidizing and reducing environments. Chapter 3 characterizes the 

stability of ZIF-8 thin film membranes through analyses of changes in the physical material 

properties and transport characteristics of the membrane as a function of temperature and 

time. Chapter 4 details the transport characteristics of C2 molecules in ZIF-8 in single gas 

and binary mixtures. Chapter 5 will provide a fundamental study of the solvent assisted 

ligand exchange reaction using ZIF-8 membranes and will describe the effects of 
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postsynthetic modification time and temperature on light hydrocarbon gas permeation and 

separations. 
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CHAPTER 2 

KINETICS OF ZIF-8 THERMAL DECOMPOSITION IN INERT, OXIDIZING 

AND REDUCING ENVIRONMENTS 

 

2.1 Introduction 

As outlined in Chapter 1, the steric properties of ZIF-8 enable its 0.34 nm diameter 

pore aperture which facilitates exceptional performance in C3 paraffin/olefin, C4 isomer 

separations and hydrogen/light hydrocarbon separations (C. Zhang & Koros, 2015). In 

addition, the coexistence of both Lewis acid (Zn) and Lewis base (imidazole nitrogen) sites 

makes ZIF-8 a promising material for catalysis applications (Bhattacharjee, Jang, Kwon, 

& Ahn, 2014). Many of the aforementioned separation and some catalytic applications 

involving ZIF-8 can be carried out at temperatures below 100○C. However, ZIF-8 is a 

promising membrane for kinetic separation of H2 from propylene, ethylene and isobutene 

(Bux, Feldhoff, et al., 2011; Pan & Lai, 2011). A ZIF-8 dehydrogenation membrane reactor 

could potentially be utilized for the on-purpose production and in situ removal of H2 from 

C2-C3+ olefins. A ZIF-8 catalytic membrane reactor for paraffin dehydrogenation would 

need to be operated continuously at temperatures greater than 300○C (Champagnie et al., 

1992; Ziaka, Minet, & Tsotsis, 1993).  

 Although ZIF-8 is often highlighted for its potential as high performance 

membrane material in terms of its intrinsic permeability and selectivity properties, the 

stability of ZIF-8 has yet to be measured using realistic experimental conditions. Upon its 

inception, ZIF-8 along with many other ZIFs first reported, were originally lauded for their 

exceptional chemical and thermal stability. It was reported that ZIF powders could 
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maintain their chemical and structural integrity in boiling water and alkaline environments 

for durations up to 24 hours (Park et al., 2006). The thermal robustness of ZIFs and MOFs 

such as ZIF-8 and MOF-5 are attributable to strong Zn-N and Zn-O bonds with non-zero 

formal bond valences (Tranchemontagne et al., 2009).  

However, recent studies showed that ZIF-8 was not as stable as originally reported.  

It was recently determined that when in dilute concentrations as a powder or in membrane 

form, less hydrophobic ZIFs such as ZIF-8, undergo hydrolysis in the presence of water 

and other organic solvents (X. Liu et al., 2013; H. Zhang, Liu, Yao, Zhang, & Lin, 2015). 

Gas phase thermal stability studies conducted in inert and oxidizing atmospheric conditions 

report that dramatic ZIF-8 decomposition is not incurred until reaching temperatures 

between 400-550oC when utilizing dynamic temperature thermal gravimetric analyses 

depending upon TGA conditions and particle sizes utilized (Chen, Yang, Zhu, & Xia, 2014; 

Pimentel et al., 2014). Increasing temperature analyses such as these only capture the 

instantaneous temperature at which MOFs or ZIFs decompose under fast temperature 

ramping rate conditions. For industrial applications, isothermal TGA tests under static 

temperature conditions are more relevant for material valuation.  

Various studies have performed isothermal heat treatments at temperatures between 

300-1000○C to directly carbonize ZIF-8 and enhance its structure for CO2 adsorption (Bai, 

Xia, Chen, Su, & Zhu, 2014; Gadipelli & Guo, 2015), C4 transport (C. Zhang & Koros, 

2015), supercapacitor electrode (Chaikittisilp et al., 2012; Gao et al., 2014), and 

electrocatalyst ( Li, Zhu, & Xu, 2015; Linjie Zhang et al., 2014) applications,  but few 

studies have methodically examined ZIF-8 with the purpose of understanding its kinetic 

isothermal stability to determine its limitations. Lai and co-workers conducted isothermal 
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stability TGA tests with ZIF-8 nanocrystals in air atmosphere and observed no changes in 

XRD spectra in comparison to as-synthesized crystals after being subjected to thermal 

treatment at 200○C for 24 hours. However, XRD analyses illustrated a slight elimination 

of ZIF-8 crystallinity when holding fresh ZIF-8 nanocrystals at 300○C in air atmosphere 

for only 10 hours and significant crystallinity depletion during 300○C isothermal treatment 

for 24 hours (Pan, Liu, Zeng, Zhao, & Lai, 2011). Yin et al. recently examined ZIF-8 

thermal decomposition under isothermal temperature conditions for long periods (24 

hours) in both inert, steam and oxidative environments to evaluate Au/ZIF-8 as a possible 

catalyst for CO oxidation (Yin, Kim, Choi, & Yip, 2014). Significant degradation was 

observed when holding ZIF-8 in the presence of air or steam environments at temperatures 

greater than 300oC for 24 hours. ZIF-8 was also extensively depleted when held in inert 

environments at temperatures above 400oC (Yin et al., 2014).  

The works by Lai (Pan et al., 2011) and Yin (Yin et al., 2014) provided a greater 

understanding of the thermal limitations of ZIF-8, but there has not yet been a rigorous 

study on understanding ZIF-8 thermal decomposition (carbonization) kinetics, an analysis 

of how environment affects decomposition kinetics and a postulation of the 

mechanism/chemical composition of the carbonized structure after thermal decomposition. 

This work will assess the rate of weight change in ZIF-8 crystals under inert, oxidizing and 

reducing atmospheres at isothermal conditions between 200-300○C to develop ZIF-8 

thermal decomposition kinetics and deduce the resulting structure after decomposition. 
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2.2 Experimental 

2.2.1 Preparation of ZIF-8 Crystals 

ZIF-8 crystals were prepared by the method reported by Cravillion et al. (Cravillon 

et al., 2011). 734.4 mg of zinc nitrate hexahydrate [Zn(NO3)2●6H2O] (99.0% Sigma 

Aldrich) and 810.6 mg of 2-methylimidazole (99% Sigma Aldrich) were each dissolved 

separately in 50 mL of methanol and stirred for 30 minutes. The 2-methylimidazole 

solution was then added slowly to the zinc nitrate solution under stirring and mixed for 6 

hours. After mixing, the ZIF-8 crystals were aged in solution for 24 hours without stirring. 

The resulting supernatant was poured off, and white precipitate crystals were collected after 

3 cycles of centrifugation and washing with fresh methanol (99% BDH). After washing, 

the ZIF-8 crystals were placed under vacuum (60 kPa) for 12 hours at room temperature. 

After drying the ZIF-8 crystals, the resulting white powder was placed in a tightly sealed 

container and stored in a desiccator.  

 

2.2.2 ZIF-8 Characterization 

ZIF-8 crystallinity analysis for each experimental trial was conducted utilizing a 

Panalytical X’Pert Pro X-Ray Diffractometer at 45 kV and 40 mA with a scan speed of 

2.99o/min about 2θ using CuKα radiation (λ = 0.1543 nm).  An XL30 Environmental FEG 

(FEI) scanning electron microscope (SEM) equipped with EDAX software for EDS 

measurement implementing an accelerating voltage between 20-30 kV was used for a 

comparative analysis of ZIF-8 morphology and atomic composition change between fresh 

ZIF-8 samples versus crystals remaining after heat treatment at 300oC for 20 hours. Prior 

to SEM/EDS characterization, ZIF-8 powder samples were coated with Au-Pd prior to 
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imaging, to prevent surface charging. Fourier Transform Infrared (FTIR) spectra of as-

synthesized ZIF-8 and ZIF-8 samples thermally treated at 300○C for 20 hours were 

analyzed with a Thermo Scientific Nicolet iS50 Fourier Transform Infrared (FTIR) 

equipped with a deuterated triglycine sulfate (DTGS) potassium bromide (KBr) detector 

element and potassium bromide (KBr) window. Spectra were compared utilizing 5 mg of 

as-synthesized or thermally treated sample which was then mixed with 90 mg of KBr 

powder to prevent IR detector saturation. Measurements were performed after collecting a 

pure KBr background spectra.  

 

2.2.3 Thermal Gravimetric Stability Tests 

Thermal gravimetric tests were conducted utilizing a TA Instruments SDT Q600 

Thermal Gravimetric Analyzer. Approximately 15 mg of ZIF-8 sample was loaded into an 

alumina sample pan which was placed on a sample beam for each experimental trial. 

Isothermal stability tests utilized either air, argon, a 50:50 (mol) mixture of 

hydrogen/carbon dioxide (H2/CO2) or nitrogen at a temperature of 200, 250, or 300oC for 

each trial. The respective gas or gas mixture flow rates were set to a total of 50 mL/min (1 

atm, 25oC) using a mass flow controller (MFC). Hydrogen and carbon dioxide gasses were 

set at flow rate of 25 mL/min each at their respective MFCs, then mixed and fed to the 

auxiliary reactive gas line on the TGA. After closing the TGA, each respective gas or gas 

mixture was used to purge the system before commencing the temperature program. The 

temperature ramping rate was set to 5oC/min for all isothermal experimental runs. After 

reaching either 200, 250 or 300oC, the TGA furnace temperature was held isothermal for 

20 hours. In addition to isothermal stability analyses, two dynamic temperature tests were 
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conducted in air and nitrogen atmosphere for comparison to literature. The TGA 

temperature was increased from room temperature to 1000oC at a temperature ramping rate 

of 10 oC/min with gas flowing at 50 mL/min.   

 

2.3 Results and Discussion 

2.3.1 Results of Thermal Stability Tests 

Highly crystalline, rhombic dodecahedral ZIF-8 crystals of approximately 100 nm 

in diameter were formed utilizing the room temperature methanol synthesis method 

(Cravillon et al., 2011). The size and crystallinity of the ZIF-8 particles formed were 

verified through SEM micrographs and the XRD spectra included in Figure 2.1 (A&B). 

The combination of both figures corroborate existence of the highly reported ZIF-8 

geometric morphology (Pan et al., 2011) and sharp, characteristic peaks around 7.3○ (011), 

10.2○ (002) and 12.7○ (112) indicating ZIF-8 of high integrity was synthesized.  

 

 

A.               B. 

 
 

Figure 2.1 SEM micrograph (A) and XRD spectra (B) of as-synthesized ZIF-8 crystals 
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Figure 2.2 shows results of the dynamic temperature TGA thermal stability tests of ZIF-8 

powder under air or nitrogen implementing the increasing temperature method. The weight 

change profile with respect to temperature shown in Figure 2.2 remains constant until 

reaching 100○C at which point weight reduction increases in relation to temperature up to 

200○C. Between 100 and 200○C a 10% weight reduction is incurred and corresponds to the 

removal of guest molecules occluded within and adsorbed on the ZIF-8 surface. After 

reaching 200○C, a constant weight profile up to temperatures of 425○C in air and 500○C in 

nitrogen, upon which significant weight loss with respect to temperature occurs and 

suggests the onset of instability temperature of the ZIF-8 nanocrystals. After reaching 

either decomposition temperature, the TGA weight curve indicated a steep reduction in 

weight corresponding to a collapse of the ZIF-8 structure and carbonization under extreme 

thermal stress. In both experiments a final equilibrium of 33 weight% composition was 

reached.  The results obtained verify the findings in previous literature which indicate that 

ZIF-8 is more stable in inert versus oxidative air environments (Yin et al., 2014). However, 

dynamic TGA temperature tests do not give an accurate indication of how the ZIF-8 

structure changes as a result of sustained thermal loads for extended periods of time.  
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Figure 2.2 Temperature dependent TGA weight decomposition traces of as-synthesized 

ZIF-8 in air (black) and nitrogen (red) environments 

 

Figure 2.3 illustrates weight decomposition and temperature ramping profiles for 

ZIF-8 while held under isothermal stress during experimental treatments in H2/CO2 

environment.  As shown in Figure 3, the ZIF-8 sample exhibited an initial steep decrease 

in weight (5-11%) which is attributed to evaporation of solvent and vaporization of excess, 

unreacted imidazole ligands adsorbed on the surface and within the ZIF-8 framework (Yin 

et al., 2014). The initial weight loss profiles representing the release of volatile components 

from the ZIF-8 framework were almost identical irrespective of decomposition 

environment and are well represented by the initial weight decreases shown in Figure 2.3. 

Differences in initial weight loss are due to heating time which is proportional to the final 

isothermal temperature. After volatilization of adsorbed components, the isothermal 

weight change profiles depict a small amount of further guest volatilization but mainly 

structural decomposition especially in the case of 300○C decomposition.  
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Figure 2.3 Representative ZIF-8 weight decomposition and temperature ramping 

(5○C/min) profiles to 200, 250 and 300○C depicting initial weight loss dependence on 

final isothermal temperature (H2/CO2 atmosphere profile shown) 

 

Plots of weight at time t (Wt) normalized by weight after reaching each respective 

isothermal temperature (Wo) with respect to time are displayed in Figures 2.4-2.6 and 

graphically describe ZIF-8 structural decomposition in each isothermal decomposition 

environment. It is expected that after an extended time beyond 20 hours, a steady-state, 

equilibrium weight greater than that found in the dynamic TGA experiment should be 

reached during the decomposition process, but the experimental conditions employed in 

this study suggest an approximately statistically linear relationship between ZIF-8 

decomposition and time over the 20 hour experimental duration. The approximately linear 

relationship between ZIF-8 weight decomposition and time is corroborated by R2 values 

all greater than 0.97 for the regression lines overlaying the transient weight change profiles 

in Figures 2.4-2.6.  
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Figure 2.4 Isothermal transient profiles of ZIF-8 weight decomposition at time t (Wt) 

normalized by weight after reaching isothermal state (W0) at 200○C in air, argon, 

H2/CO2 and nitrogen atmospheres 

 

 
Figure 2.5 Isothermal Transient profiles of ZIF-8 weight decomposition at time t (Wt) 

normalized by weight after reaching isothermal state (W0) at 250○C in air, argon, 

H2/CO2 and nitrogen atmospheres 
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Figure 2.6 Isothermal Transient profiles of ZIF-8 weight decomposition at time t (Wt) 

normalized by weight after reaching isothermal state (W0) at 300○C in air, argon, 

H2/CO2 and nitrogen atmospheres 

 

Qualitative analysis of the transient profiles in Figures 2.4-2.6 suggests that the rate 

of weight decomposition increases upon intensification of the isothermal temperature 

irrespective of environment. Evaluation of ZIF-8 decomposition with respect to 

environment shows that the deviation between decomposition rates increases as isothermal 

temperature increases, suggesting a temperature-environment interaction especially in the 

case of decomposition in air. At 300○C ZIF-8 decomposition in air is greatest, but at lower 

isothermal temperatures, the rate of ZIF-8 thermal decomposition is closer to that of argon, 

H2/CO2 and nitrogen. At 200oC, the rates of ZIF-8 thermal decomposition in all 

environments nearly converge to a minimum value. From these observations we postulate 

that the mechanism for ZIF-8 thermal decomposition in air especially at high temperatures 

is most distinctly different than thermal decomposition in inert and reducing environments, 
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and low temperature (200oC) transient data suggests that the ZIF-8 framework experiences 

minimal change irrespective of environment. 

The transient weight decrease curves, like those shown in Figures 2.4-2.6, can be 

quantitatively analyzed by the following kinetic equation  (Jasinki, 1964): 

 

𝑑𝛼

𝑑𝑡
= 𝑘(𝑇) ∗ (1 − 𝛼)𝑛             (2.1)    

 

where α is the fraction of reactant decomposed or fractional conversion at time t, k(T) is 

the kinetic fractional decomposition rate constant as a function of temperature T, and n is 

the reaction rate order.  

 

𝛼 =  
𝑚0−𝑚𝑡

𝑚0−𝑚𝑓
              (2.2) 

 

mo, mt and mf are the mass of the sample at the isothermal state, sample mass at time t and 

final mass of the sample respectively. As observed earlier, weight loss versus time follows 

an approximately linear trend after vaporization of volatile components.  Thus  
𝑑𝛼

𝑑𝑡
  is 

constant and it corresponds to pseudo 0-order fractional decomposition kinetics over the 

fractional conversion range.   

 

With the Arrhenius rate law: 

 

𝑘(𝑇) = 𝐴𝑒
−𝐸𝑎
𝑅𝑇                                                                                 (2.3)   
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Equation (2.1) can be written as:  

𝑑𝛼

𝑑𝑡
=  𝐴𝑒

−𝐸𝑎
𝑅𝑇                          (2.4) 

 

where A is the pre-exponential frequency factor, Ea is activation energy associated with 

thermal decomposition. The parameters A and Ea were determined by regressing ln (
𝑑𝛼

𝑑𝑡
) 

with respect to 1000/T for ZIF-8 decomposition in each gas environment.  

Table 2.1 presents ZIF-8 thermal fractional decomposition rate constants at each 

experimental temperature and Arrhenius parameters collected during ZIF-8 decomposition 

experiments. A gas environment-temperature interaction is quantitatively confirmed in the 

case of ZIF-8 decomposition in air. At 300○C, the ZIF-8 fractional decomposition in rate 

air is 33%, 147% and 57% greater than the decomposition rates measured in argon, H2/CO2 

and nitrogen atmospheres respectively. However, as the isothermal temperature decreases, 

the ZIF-8 fractional decomposition rate in air converges closer to that of argon and 

nitrogen. The preceding analysis suggests that oxygen interactions or oxidative effects 

enhance ZIF-8 decomposition in air at temperatures greater than 250○C, but once ZIF-8 

decomposition commences at temperatures below 250○C, the decomposition process/rate 

in air becomes identical to that of nitrogen and oxidative effects are less apparent.   
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Table 2.1 ZIF-8 Thermal Fractional Decomposition Rate Constants k(T) & Arrhenius 

Parameters in Inert, Oxidizing and Reducing Atmospheres 

Gas Atmosphere k(T) [0.01/min]  Arrhenius Parameters 

 200oC 250oC 300oC Ea (kJ/mol) A [0.01/min] 

Air 7.00x10-6 4.81x10-5 3.16x10-4 85.69 ± 4.16 1.93x104 ± 1.65 

Ar 9.07x10-6 5.81x10-5 2.37x10-4 73.71 ± 1.80 1.27x103 ± 1.52 

H2/CO2 3.77x10-6 1.68x10-5 1.28x10-4 78.83 ± 11.22 1.27x103 ± 13.60 

N2 7.47x10-6 4.73x10-5 2.02x10-4 74.40 ± 1.03 1.24x103 ± 1.13 

 

It can also be noted that ZIF-8 decomposition in argon atmosphere is consistently 

greater than nitrogen irrespective of temperature and greater than that of air at 200○C. In 

addition, ZIF-8 decomposition in H2/CO2 environment is consistently the slowest 

irrespective of isothermal temperature. Using thermodynamic intuition, at 300○C the 

greater extent of ZIF-8 decomposition in argon as compared to decomposition in nitrogen 

is plausible because ZIF-8 decomposition takes place in an environment devoid of a 

nitrogen partial pressure. Under the absence of an N2 partial pressure, nitrogen molecules 

from the imidazole ligand more are more readily released from the framework as 

equilibrium is further shifted towards a nitrogen-deficient structure as compared to the case 

when decomposition occurs in an N2 rich atmosphere. This explanation in conjunction with 

air temperature-dependent oxidative effects explains why at 300○C the ZIF-8 

decomposition rate with respect to environment trend is as follows: air > Ar > N2 > H2/CO2, 

but at 200○C the trend is Ar > N2/air > H2/CO2.  

The Arrhenius parameters found in Table 2.1 are representative of macroscopic 

mechanistic models which include multiple reaction steps, diffusion of gasses, evaporation 

of structural components and gas-solid interfacial interactions specific to the current system 

being studied and TGA parameters utilized (M. E. Brown, 1997). The activation energy 



  90 

and pre-exponential values derived from TGA analyses are not necessarily indicators of 

energy barriers and molecular collision probabilities respectively. However, in this study, 

comparison of activation energy values with respect to gas environment can give 

qualitative insight into similarities/disparities between the temperature dependencies 

governing the reactions which induce framework decomposition (Fox, Gilman, De Long, 

& Trulove, 2005). The activation energy of ZIF-8 decomposition in air (85.69 ± 4.16) is 

the most statistically distinct as compared to the values obtained in Ar (73.71 ± 1.80) and 

N2 (74.40 ± 1.03) environments when considering mean and standard deviation. The 

activation energy of ZIF-8 decomposition in H2/CO2 atmosphere (78.83 ± 11.22) is most 

similar to Ar and N2 on a mean basis, but not as conclusive when considering standard 

deviation as well. The pre-exponential factors present an identical trend. Observation of 

the mean Arrhenius parameters enables deduction that the temperature dependency of ZIF-

8 thermal decomposition is most unique in air, and the activation energy of ZIF-8 

decomposition is more comparable in inert and reducing environments. 

Comparative XRD spectra in Figures 2.7-2.10 illustrate ZIF-8 decomposition with 

respect to temperature in each gas environment and corresponds well with the transient 

trends from Figures 4-6 as well as the kinetic data from Table 2.1. After subjecting ZIF-8 

crystals to thermal stress in each gas at 200○C for 20 hours all XRD spectral peaks and 

intensities corresponding to ZIF-8 remained. ZIF-8 crystallinity was preserved irrespective 

of gas environment. This aligns well with the transient curves in Figure 2.4 which indicate 

extremely slow decomposition under isothermal conditions at 200oC. XRD spectral 

analysis indicated significant structural decomposition of ZIF-8 at temperatures above 

200oC irrespective of gas environment, but the least amount of crystallinity loss is evident 
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in the case of decomposition in H2/CO2 and confirms TGA weight loss data. As seen from 

the 250 and 300oC spectra in Figures 2.7-2.10 there is a significant decrease in overall XRD 

spectral intensity corresponding to ZIF-8 partial framework carbonization/elimination of 

crystallinity and incremental loss of long range order at miller indices corresponding to 

2θ> 19 with respect to increasing isothermal temperature.  

 

 
Figure 2.7 XRD spectra after isothermal heat treatment at 200, 250 and 300○C for 20 

hours in air 
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Figure 2.8 XRD spectra after isothermal heat treatment at 200, 250 and 300○C for 20 

hours in argon 
    

 

 

 
Figure 2.9 XRD spectra after isothermal heat treatment at 200, 250 and 300○C for 20 

hours in H2/CO2 
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Figure 2.10 XRD spectra comparison  to as-synthesized sample after isothermal heat 

treatment at 200, 250 and 300○C for 20 hours in nitrogen 

 

 

In experiments conducted by Yin et al. (Yin et al., 2014), after exposing ZIF-8 to 

temperatures of 300oC for 24 hours and 400oC for 10 hours in air, a complete disappearance 

of characteristic ZIF-8 XRD spectral peaks and emergence of zinc oxide peaks was 

observed, but when holding ZIF-8 at 300○C in inert argon atmosphere for 24 hours, all 

peaks were preserved (Yin et al., 2014). In this work, significant decreases in XRD 

intensity were observed when holding ZIF crystals at 300○C for 20 hours irrespective of 

environment. In addition, the ZIF-8 sample synthesized by Yin and co-workers 

decomposed at a rate of ~ 1 wt%/hr in air at 300 oC (Yin et al., 2014). In this work under 

similar conditions, the as-synthesized ZIF-8 sample decomposed at a rate of 1.89 wt%/hr. 

The TGA purge flow rate in this study (50 mL/min) versus that utilized in the work of Yin 

and co-workers (25 mL/min) is the most identifiable and possibly significant difference 
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between decomposition protocols. The greater purge flow rate utilized in this work 

promotes faster removal of decomposition products, increasing the driving force for 

thermal decomposition which can shift the reaction equilibrium and increase 

decomposition kinetics and may explain some of the differences in results.  

In the work of Pan et al. (Pan et al., 2011), XRD spectra showed slight crystallinity 

elimination when holding ZIF-8 crystals in air atmosphere at 300oC for 10 hours and 

similar to this work, significant degradation was shown when holding crystals at 300oC for 

24 hours in air. Complete loss of ZIF peaks and emergence of ZnO peaks were not observed 

until ZIF-8 nanocrystals were held under air atmosphere at 400oC for 5 hours. The absence 

of ZnO XRD peaks and significant oxygen signals in EDS characterization (Tables 2-4) 

during the experiments conducted in this study most likely indicates that measurable 

amounts of crystalline/amorphous ZnO were not formed during ZIF-8 decomposition in 

air at 300 oC. Lai and co-workers concluded that ZIF-8 particles present kinetic thermal 

stability at temperatures of 200oC and below which is similar to the results found herein.  

Figure 2.11 (A-D) shows SEM micrographs of ZIF-8 crystals exposed to each gas 

environment at 300oC for 20 hours. A common, moderate morphology change is evident 

amongst the samples thermally annealed in air, argon, and nitrogen atmospheres. The 

carbonized ZIF-8 crystal aggregates show a less uniform rhombic-dodecahedral 

morphology, with reduced grain boundaries that present larger, rounded aggregates with 

significant crystal size inhomogeneity as compared to the small, individual crystals shown 

in Figure 1. The change in remaining particle size and shape is attributable to thermally 

induced particle coarsening/Ostwald ripening (Wakai, Yoshida, Shinoda, & Akatsu, 2005), 

previously observed during ZIF thermal decomposition studies (Hongyu Wu et al., 2016). 
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The crystals thermally treated under H2/CO2 conditions show the greatest structural 

morphology change despite kinetics results indicating that decomposition is slowest in the 

presence of hydrogen and carbon dioxide. The remaining structure completely transformed 

from a network of smooth dodecahedra to bud-shaped structures patterned with a striated 

texture. 

 

A.      B.  

                                                                                       
 

C.      D.  

  
Figure 2.11 (A-D) SEM micrographs of carbonized ZIF-8 after decompositon at 300oC 

for 20 hours in (A) air, (B), argon, (C) H2/CO2, (D) nitrogen  
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2.3.2 Thermal Decomposition Residual Structure Analysis 

Tables 2.2 & 2.3 present comparative weight and atomic percentage and proportion 

data capturing C, N and Zn energy dispersive x-ray spectroscopy (EDS) elemental 

quantification of fresh ZIF-8 crystals and samples treated at 300oC for 20 hours in each 

atmospheric environment. The weight of zinc is expected to remain unchanged since all 

experiments were carried out at temperatures below its melting point, thus proportion tables 

were normalized with respect to zinc composition.  The “Ideal ZIF-8” column tabulates C, 

N and Zn quantification data based on the work by Park et al. which presented the ZIF-8 

chemical Equation C24H30N12O10Zn3 (Park et al., 2006). Please note that oxygen was added 

to the chemical formula for ZIF-8 as a means of reconciling x-ray crystallography data due 

to unidentified electron density (guest molecules) within expected void spaces of the 

framework. The following analysis uses C24H30N12Zn3 as the theoretical basis.  

EDS quantification data in Table 2.2 of the as-synthesized ZIF-8 sample gives a 

C:N:Zn atomic ratio of 10.51:4.32:1 which is proximate the theoretical value of 8:4:1. 

Hence, EDS quantification analysis can provide a reliable, preliminary, semi-quantitative 

relative order of magnitude atomic comparison between fresh and thermally treated 

samples. Upon observation of as-synthesized ZIF-8 and thermally treated ZIF-8 samples, 

quantification data indicates a significant decrease in the carbon and nitrogen content of 

the remaining carbonized ZIF-8 residual structure. After being exposed to air atmosphere 

at 300○C for 20 hours EDS quantification suggested the residual carbonized ZIF structure 

contained a C:N:Zn atomic ratio of 2.70:0.52:1. ZIF-8 decomposition in the inert and 

H2/CO2 mixture environments, yielded statistically comparable deviations in C, N and Zn 

composition with respect to the ideal ZIF-8 structure (Table 2.2). Averaging the C, N and 
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Zn content of the residual framework after decomposition in argon, nitrogen and reducing 

environments produces a postulated carbonized ZIF structure with a C:N:Zn atomic ratio 

of 5.64:1.61:1.   

 

Table 2.2 Weight%/Atomic% Composition and Proportion EDS Quantification 

Data for Ideal, As-synthesized and Heat Treated ZIF-8 Samples 

 

Weight %/Atomic % Composition Weight %/Atomic % 

Proportion Normalized 

by Zinc 

State 

C 

(Wt/At) 

N 

(Wt/At) 

Zn 

(Wt/At) 

  C/Zn  

  (Wt/At) 

  N/Zn  

  (Wt/At) 

Ideal ZIF-8 44.18/61.54 25.76/30.77 30.06/7.69 1.47/8.00 0.86/4.00 

As-

synthesized 

ZIF-8  50.07/66.39 24.00/27.29 25.93/6.32 1.93/10.51 0.93/4.32 

ZIF-8 (Air, 

300oC, 20 hrs) 30.86/63.98 6.93/12.32 62.21/23.70 0.50/2.70 0.11/0.52 

ZIF-8 (Ar, 

300oC, 20 hrs) 42.84/67.48 15.06/20.34 42.10/12.18 1.02/5.54 0.36/1.67 

ZIF-8 

(H2/CO2, 

300oC, 20 hrs) 44.25/69.55 13.56/18.27 42.19/12.18 1.05/5.71 0.32/1.50 

ZIF-8 (N2, 

300oC, 20 hrs) 43.49/68.15 14.76/19.83 41.75/12.02 1.04/5.67 0.35/1.65 

 

EDS quantification data was utilized to derive a preliminary chemical composition 

of the residual carbonized ZIF structure after carbonization in air atmosphere and a single 

structure after carbonization in inert/reducing environments. Table 2.3 summarizes the C 

and N atomic composition ratios of carbonized ZIF-8 with respect to the ideal ZIF-8 

chemical composition. EDS quantification shows that the residual carbonized ZIF structure 

exposed to air contained approximately 34% of the C atomic content and just over 10% of 

the N atomic content of an ideal ZIF-8 sample. After carbonization of ZIF-8 in inert and 

reducing environments EDS quantification suggests that approximately 71% of the C 
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content and roughly 40% of N remained in the residual structure. Referring back to the 

theoretical ZIF-8 basis: C24H30N12Zn3, two carbonized ZIF-8 chemical equations can be 

postulated. 

For ZIF-8 decomposition in air at 300○C for 20 hours: 

𝐶24𝐻30𝑁12𝑍𝑛3 + 𝐴𝑖𝑟 + 𝐻𝑒𝑎𝑡 → 𝐶8𝐻10𝑁2𝑍𝑛3 + 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠                           (2.A) 

 

ZIF-8 decomposition in inert/reducing environments at 300○C for 20 hours: 

𝐶24𝐻30𝑁12𝑍𝑛3 + 𝐻𝑒𝑎𝑡 → 𝐶17𝐻21𝑁5𝑍𝑛3 + 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠                            (2.B) 

 

Table 2.3 ZIF-8 C, N Atomic Composition Ratios of Heat Treated Samples to Ideal 

ZIF-8 Structure 

 

Ideal ZIF-8 Atomic Composition/Experimental Atomic ZIF-8 

Composition Ratio 

State CExperimental/CIdeal NExperimental/NIdeal 

ZIF-8 (Air, 300oC, 20 

hrs) 0.34 0.13 

ZIF-8 (Ar, 300oC, 20 hrs) 0.69 0.42 

ZIF-8 (H2/CO2, 300oC, 

20 hrs) 0.71 0.38 

ZIF-8 (N2, 300oC, 20 hrs) 0.71 0.41 

 

 

The focus of the preceding analysis was to postulate the residual carbonized 

structure remaining after decomposition at 300○C for 20 hours in inert, oxidizing and 

reducing atmospheres. The off-gasses in the products for each reaction could not be 

measured by thermal gravimetric-mass spectra (TG-MS) analysis because the 

decomposition reaction is a slow (0.77-1.89 wt%/hr), constant process upon reaching 

300○C and forms diluted decomposition products over the 20 hour decomposition duration 
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at concentration levels below MS detection limits. In comparison, Gadipelli and co-

workers performed isothermal TG-MS measurements of ZIF-8 crystals under argon 

atmosphere at temperatures ranging from 600-1000○C (Gadipelli & Guo, 2015). MS 

detection was possible for their work because after reaching isothermal temperatures of 

600○C or greater, a significantly larger (~32 wt%/hr) ZIF-8 decomposition rate was 

observed (Gadipelli & Guo, 2015). To account for hydrogen evolution during this work, it 

was assumed that the ratio of hydrogen loss was identical to that of carbon. For 

approximation, atomic stoichiometry values were rounded to the nearest whole number 

after comparison to the ideal structure. The molar mass of the proposed air carbonized ZIF-

8 structure is 330.32 g/mol and 491.53 g/mol for the samples decomposed in inert/reducing 

environments which represents a 51.61% and 28.01% mass loss with respect to the ideal 

ZIF-8 structure containing a molar mass of 682.73 g/mol. 

The preceding model can be refined to postulate a decomposition mechanism 

through examination of comparative FTIR spectra of as-synthesized ZIF-8 and ZIF-8 

samples decomposed at 300○C for 20 hours presented in Figure 2.12. The spectral bands 

of the as-synthesized sample are in good agreement with those presented by Ordonez et al. 

(Ordoñez, Balkus, Ferraris, & Musselman, 2010). The overall weakening/broadening of 

the convoluted bands between 1350-1500 cm-1, 900-1350 cm-1 and below 800 cm-1 

corresponding to entire ring stretching, in-plane bending and out-of-plane bending of the 

imidazole ring respectively and macroscopically indicates overall 

carbonization/disordering of the ring-ring interactions between imidazole substituents of 

the ZIF-8 framework in each of the decomposed samples (Y. Hu, Kazemian, Rohani, 

Huang, & Song, 2011). The specific breaking of Zn-N, C=N and aliphatic/aromatic C-H 
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bonds of the imidazole ring is realized by the loss/broadening in spectral intensity at 

stretching bands located at: 421 cm-1, 1584 cm-1, and 2929/3135 cm-1 respectively. 

Complete loss of spectral bands at 1668 and 1731 cm-1 further confirm significant cleavage 

or disruption at the C=N bond for the air, Ar and N2 decomposed samples and noticeable 

weakening at each band is confirmed in the case of the sample thermally annealed in 

H2/CO2 atmosphere.  

Methyl group dissociation from the 2 position of the imidazole ring is confirmed 

through weakening of the δ CH3 IR mode at 1384 cm-1. Note for the case of air 

decomposition, the δ CH3 IR absorbance signal is almost depleted and is noticeably less 

intense than when ZIF-8 was decomposed in inert and reducing environments.  The 

emergence of IR modes at 904, 1041, 1251 and 2200 cm-1 are associated with disordering-

induced bond structures formed between C and N (Gadipelli, Travis, Zhou, & Guo, 2014) 

and the specific IR mode at 1041 cm-1 most likely can be assigned to formation of an 

aliphatic amine within the solid phase linked to zinc after ring pyrolization. Isothermal TG-

MS ZIF-8 carbonization studies in argon determined that carbon and nitrogen containing 

molecules are not released from the framework until reaching temperatures of at least 600-

700oC (Gadipelli & Guo, 2015). However, in this work, a steady decomposition rate similar 

to that experienced in the work of Yin and co-workers (Yin et al., 2014) is shown, and we 

conclude that under the specific TGA protocol utilized herein, C and N molecules are 

released from the framework.  
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Figure 2.12 FTIR Spectra of As-synthesized ZIF-8 and carbonized ZIF-8 after 

decomposition at 300○C for 20 hours in air, argon, H2/CO2 or nitrogen atmosphere 

 

The magnitude of IR mode weakening and to some extent, IR mode emergence for 

each sample is concomitant with decomposition atmosphere and agrees well with earlier 

data suggesting that the decomposition rate follows the trend: air > Ar > N2 > H2/CO2, 

which affirms a significant difference between ZIF-8 samples decomposed in oxidative 

atmosphere versus inert and reducing environments. Time-resolved FTIR studies of a 

150μm thick undecylimidazole film adhered to a copper slide annealed isothermally at 

150○C in air atmosphere showed the rapid increase of carbonyl IR bands at 1580 and 1640 

cm-1 and complete destruction of imidazole IR modes after 2 hours, indicating a fast rate 

of imidazole cleavage and incorporation of oxygen within the decomposed imidazole 

structure during thermal decomposition/oxidation at moderate temperatures (Yoshida & 

Ishida, 1995).  Ishida and co-workers noted that the cleavage rate of the both the imidazole 

ring and elimination of substituted alkyl groups are enhanced during thermal oxidation, 
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however a significant metal source/surface area is needed to catalyze a reaction which 

forms carbonyl (Yoshida & Ishida, 1995).  

Although the isothermal temperature and time were both greater in this work, IR 

modes corresponding to the formation of carbonyl were not observed after thermal 

decomposition, we suspect that a majority of the oxidative interactions occurred directly at 

the methyl substituent of the imidazole ligand which may explain why measurable amounts 

of Zn-O were not observed. The oxidized methyl group would form CO2 and other gas 

phase products. In the case of decomposition in H2/CO2 environment, peaks corresponding 

to the formation of a carbonyl group, indicative of CO2 chemisorption to form an 

imidazole-carbamate or imidazole-carbonate structure were not observed. Formation of 

such a structure is sterically unfavorable. This enables deduction that the presence of 

reducing hydrogen molecules may slow the driving force for hydrogen evolution from the 

framework and the formation of N atoms to be oxidized and released from the imidazole 

ligand as compared to decomposition in inert and oxidizing environments. Although 

hydrogenation reactions typically occur at much greater temperatures than those utilized in 

this study, it is possible that hydrogen interactions at the decomposing imidazole ring slow 

framework decomposition but cause morphological changes of ZIF-8 crystals and could be 

a point for future study. 

 

2.3.3 Proposed ZIF-8 Thermal Decomposition Mechanism 

A concrete understanding of specific bond cleavage reactions during the ZIF-8 

decomposition process under the conditions imposed during this study enables formation 

of a possible chemical structure after decomposition and refinement of thermal 
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decomposition reaction Equations 2.A & 2.B. TGA decomposition studies have confirmed 

onset decomposition temperatures of approximately 200-300○C for un-substituted and 

substituted imidazole and triazole molecules (Anniyappan, Sonawane, Pawar, & Sikder, 

2015; Fox et al., 2005; Hadjiantoniou-Maroulis, Charalambopoulos, & Maroulis, 1998; 

Venkatesh, Ravi, & Tewari, 2013). Detailed analyses of single methyl substituted 

imidazole decomposition reaction mechanisms were not found. However, previous work 

on the thermal decomposition of imidazole suggests the formation of vinylcarbene through 

a reaction pathway involving competitive reactions of imidazole cyclization to 3H-

imidazole and nitrogen extrusion/elimination to form vinylcarbene, which then rearranges 

into more stable propyne (Venkatesh et al., 2013). 2-nitroimidazole thermal decomposition 

studies confirm the cleavage of C-NO2 bonds and after which, the imidazole ring is 

attacked in an autocatalytic decomposition reaction in which dissociated gas-phase 

oxidative NO2 radicals decompose the remaining destabilized imidazole molecule (J. Li et 

al., 2008). In the ZIF-8 structure, steric hindrance of zinc-nitrogen coordination bonds 

greatly negates the possibility of formation of a zinc substituted propyne structure.   

Recent studies have shown that the decomposed methyl radicals from ZIF form gas 

phase products and/or recombine with other methyl radicals to form C2H6 (Gadipelli & 

Guo, 2015) and thus, attack by the methyl substituent is not as likely as in the case of highly 

oxidative NO2. Quaternary amines such as tetrapropylammonium hydroxide or 

tetrapropylammonium bromide decompose into lower amines and olefin products in the 

presence of their strong basic substituents (OH- and Br-) at temperatures greater than 400○C 

through a Hofmann/E2 elimination mechanism (Bhange, Pandya, Jha, & Ramaswamy, 

2008; Cope & Mehta, 1963; Karwacki & Weckhuysen, 2011).  During ZIF-8 carbonization 



  104 

an olefin gaseous product and a solid residual lower amine containing structure are formed 

without significant presence of a strong base and occurs at lower temperatures as compared 

to quaternary amine decomposition, which possibly precludes a Hofmann/E2 elimination 

mechanism as the major decomposition reaction. The works by Aniyappan and Maroulis 

involving the pyrolysis of imidazole and triazole ligands suggest thermolytic bond cleavage 

as a main mechanism for imidazole thermal decomposition (Anniyappan et al., 2015; 

Hadjiantoniou-Maroulis et al., 1998). Both authors concluded that azirine molecules were 

formed after thermal decomposition.  

Based upon known azirine formation upon imidazole decomposition and FTIR 

spectra in Figure 2.12, we propose a two refined decomposition reaction equations.   

For ZIF-8 decomposition in air at 300○C for 20 hours: 

 

𝑍𝑛(𝐶4𝐻5𝑁2)2 + 𝐴𝑖𝑟 + 𝐻𝑒𝑎𝑡 → 𝐶3𝐻3𝑁2 − 𝑍𝑛 − 𝐶2𝐻2𝑁 + 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠          (2.C)                                               

 

For ZIF-8 decomposition in inert/reducing environments for 20 hours: 

 

𝑍𝑛(𝐶4𝐻5𝑁2)2 + 𝐻𝑒𝑎𝑡 → 𝐶4𝐻5𝑁2 − 𝑍𝑛 − 𝐶2𝐻2𝑁 + 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠         (2.D)                                               

 

where the ZIF-8 chemical composition on the reactants side of Equations 2.C & 2.D 

represent a single building block of ZIF-8 (227.58 g/mol) consisting of a zinc cation 

coordinating two imidazole ligands. [Zn(C4H5N2)2]3 (682.73 g/mol) yields the original 

C24H30N12Zn3 basis found in Equations 2.A & 2.B. We propose that the average remaining 

structural unit within the ZIF-8 framework after 20 hours of decomposition in air at 300○C 
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consists of a zinc cation coordinated with an N atom of a mostly intact de-methylated 

imidazole ligand and the N of an azirine substituent that was formed upon decomposition 

of the corresponding imidazole ligand. The corresponding average carbonized ZIF-8 

structure after decomposition in inert/reducing environments at 300○C for 20 hours consists 

of a zinc cation coordinated with an N atom of a fully intact 2-methylimidazole ligand and 

the N atom of an azirine substituent decomposed from imidazole. With respect to weight, 

the remaining carbonized ZIF-8 structures derived based on Equations 2.C & 2.D represent 

building units with molecular masses of 172.50/186.52 g/mol or 517.48/559.75 g/mol 

respectively when utilizing the basis presented for Equations 2.A & 2.B. The derived 

decarbonized structures present a 24.2% mass loss in air and an 18.0% mass loss in 

inert/reducing environments with respect to as-synthesized ZIF-8. 

We propose an intermediate product formed from a series of thermolytic cleavage 

reactions over the 20 hour decomposition duration that is illustrated in Figures 2.13 & 2.14. 

TGA weight change data does not indicate finite step changes for a sequence of bond 

breaking reactions, however we outline the steps to obtain the proposed intermediate and 

final products. It has been noted that in the ZIF-8 crystal, the relatively weak bonds are the 

Zn-N coordination bond and the C-C bond bridging the imidazole ring to the methyl 

substituent (Gadipelli et al., 2014). It is likely that dissociation of the methyl group occurs 

through homolytic cleavage at the C-CH3 bond of the imidazole ring. The methyl radical 

formed can further decompose to form hydrogen radicals which interact at the 

decomposing imidazole ring or recombine with other methyl radicals to form C2H6.  

To further proceed with ring decomposition, Zn-N heterolytic cleavage in which 

the nitrogen bond inherits both electrons would be a logical step in the decomposition 
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process. The same N which underwent heterolytic cleavage with Zn would also undergo 

heterolytic cleavage at the C-N bond of the decomposing ring, forming a positively charged 

carbon atom at one end of the structure. Heterolytic cleavage must also occur at the 

opposite N atom (still connected to Zn) in which the N-C bond is broken and the N atom 

inherits both electrons forming a highly negatively charged N atom one end of the 

decomposed structure. As a result of the series of thermolytic reactions it is proposed that 

an azirine ring forms after electron donation from the negatively charged N atom to the 

positively charged carbocation. We propose that the main difference between ZIF-8 

samples carbonized in air versus inert/reducing environments, is the cleavage of a second 

methyl group upon decomposition in air. 

 

 
Figure 2.13 FTIR-azirine derived proposed thermolysis decomposition mechanism 

depicting the average ZIF-8 building unit after thermal treatment at 300○C for 20 hours 

in air atmosphere 
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Figure 2.14 FTIR-azirine derived decomposition thermolysis mechanism depicting the 

average ZIF-8 building unit after thermal treatment at 300○C for 20 hours in argon, 

H2/CO2 or nitrogen atmosphere 
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Table 2.4. compares theoretical percentage mass losses derived from EDS 

quantification and the FTIR/azirine derived mechanism of the carbonized ZIF structures 

with the actual mass losses observed in the TGA experiments to validate Reactions 2.A-

2.D. Reaction 2.A moderately overestimated ZIF-8 weight loss by 15.62% for ZIF-8 

decomposition in air. However, Reaction 2.B was significantly more accurate in predicting 

ZIF-8 percentage weight loss for decomposition in inert environments and slightly better 

for prediction in the reducing mixture. On average, Equation 2.B overestimated weight loss 

by 5.98%. Equation 2.C underestimated air decomposition by 11.79%. Equation 2.D 

underestimated ZIF-8 decomposition in inert and reducing environments by an average of 

3.99%. Overall, the EDS derived models overestimate ZIF-8 decomposition by 8.39% and 

the FTIR/azirine derived model underestimates ZIF-8 decomposition by 5.94%.   

Differences in theoretical versus actual weight loss for Equations 2.A & 2.B can be 

attributed to error in EDS quantification and/or an incorrect assumption of hydrogen loss. 

In addition, the final remaining carbonized ZIF-8 weight/composition just after TGA 

analysis may be greater than the values measured by EDS because after placing samples 

under vacuum for EDS analysis, the content of the carbonized samples possibly changed. 

The underestimation of weight decomposition in Equations 2.C & 2.D for decomposition 

in air, Ar and N2 may arise because an average structure was calculated, it is possible that 

a greater fraction of the intact imidazole ring or azirine further decomposed. It is also 

possible that during TGA tests, guest solvent molecules were still being removed after 

reaching isothermal temperatures and thus the weight change during ZIF-8 decomposition 

was actually slightly less than observed. We postulate that a heterogeneous carbonized ZIF 
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structure containing both 2-methylimidazole and azirine rings was formed. The theoretical 

equations developed from the methods described above can serve as a respectable starting 

point for future, refined prediction of the residual structures produced during ZIF-8 thermal 

decomposition.  

 

2.4 Conclusions  

ZIF-8 crystals thermally treated in inert, oxidizing and reducing environments 

isothermally at 200, 250 and 300○C for 20 hours exhibit increasing fractional 

decomposition rates with respect to temperature. At 200○C, ZIF-8 crystallinity was 

preserved irrespective of environment, but above 200○C the magnitude of crystallinity 

depletion increased with respect to isothermal decomposition temperature.  At 300○C in air 

atmosphere, ZIF-8 carbonization is accelerated in comparison to decomposition in inert 

and reducing environments due to oxidative effects. At lower temperatures the 

decomposition rate in air behaves more similarly to that of nitrogen and argon indicative 

of a significant temperature-environment effect. The rate of ZIF-8 thermal decomposition 

is the lowest in the reducing H2/CO2 mixture atmosphere at all isothermal temperatures 

studied and may be attributable to ZIF-8 decomposition commencing in a hydrogen-rich 

environment which possibly lowers the driving force for hydrogen evolution and N 

oxidation to promote detachment from the framework and induces considerable 

morphology change.  

FTIR spectra specifically confirm carbonization of the imidazole ring and Zn-N 

and C/N bond cleavage. Four chemical formulas postulating the chemical composition of 

the residual ZIF structures decomposed at 300○C were developed based on the results of 
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EDS, FTIR and XRD analyses of the crystals. The results cohesively suggest that an 

imidazole-azirine structure is produced upon carbonization of ZIF-8 crystals at 300○C in 

inert, oxidizing and reducing environments.  
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CHAPTER 3 

THERMAL STABILITY OF ZIF-8 MEMBRANES FOR GAS SEPARATIONS 

 

3.1 Introduction 

The study of ZIF-8 thermal stability in Chapter 2 revealed that ZIF-8 crystals 

preserve their crystallinity in inert, oxidizing and reducing atmospheres at 200○C under 

isothermal conditions for 20 hours. However, a slight elimination of ZIF-8 crystallinity 

when subjecting crystals to isothermal temperatures of 250○C or greater for 20 hours in 

each environment (James & Lin, 2016). When held at 300○C for 20 hours, ZIF-8 crystals 

underwent partial carbonization in inert, oxidizing and reducing atmospheres to form an 

imidazole-Zn-azirine structure as postulated though evidence obtained from multiple 

characterization techniques (James & Lin, 2016). The finding likely precludes ZIF-8 as a 

potential light hydrocarbon dehydrogenation membrane reactor material.  

Hydrogen selective membranes also have potential for use in moderate temperature 

applications such the low temperature water-gas shift and hydrocarbon dehydrogenation 

membrane-assisted reactor configurations which typically operate at temperatures of 

180○C or greater (M.E. Rezac, Koros, & Miller, 1994; Y. Zhang, Wu, Hong, Gu, & Xu, 

2012). Since ZIF-8 crystals have shown preliminary stability at 200○C. ZIF-8 membranes 

can potentially add value in each of the mentioned processes. A fundamental understanding 

of the thermal limitations of ZIF-8 membrane thin films is of great importance for valuation 

of future ZIF-8 applications. ZIF enabled membranes including ZIF-7, ZIF-8/PBI and ZIF-

90 have each displayed promising thermal stability with stable hydrogen separation at 

temperatures of 200○C and greater (A. Huang, Dou, & Caro, 2010; Y. Li et al., 2010; Yang 
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& Chung, 2013). Specific to ZIF-8 enabled membranes, Caro and co-workers prepared 

ZIF-8 membranes using novel polydopamine functionalized supports and reported H2/CO2 

separation factors of 8.1 and 8.9 respectively at temperatures of 100 and 150○C respectively 

( a. Huang, Liu, Wang, & Caro, 2014; Q. Liu, Wang, Caro, & Huang, 2013), however the 

single data points collected at each temperature do not give indication of thermal stability.  

Zhang et al. performed successive single gas permeation experiments with ZnO 

nanorod supported ZIF-8 membranes from 25-200○C in H2, CO2, N2 and CH4 atmospheres 

and noted that the membrane remained defect free after repeated heating and cooling for 

each single gas test (X. Zhang et al., 2014). Drobek and  co-workers formed ZIF-8 

membranes through a novel ZnO atomic layer deposition (ALD) conversion method and 

performed binary H2/CO2 separation from 25-100○C and observed an increasing separation 

factor from ~3.2-7.8 with respect to temperature (Drobek et al., 2015). The studies by 

Zhang and Drobek stressed the use of ZnO interlayers between the ZIF-8 thin film and α-

alumina supports to compensate for the thermal expansion coefficient mismatch between 

α-alumina and ZIF-8 to decrease the likelihood of thin film cracking upon successive 

heating and cooling between experiments.  

The aforementioned works provided insight to solve a specific dynamic, 

thermomechanical stability issue for ZIF-8 membranes, however there has yet to be a static 

or isothermal stability study which simultaneously observes changes in the physical 

characteristics and separation performance of ZIF-8 membrane thin films as a result of 

sustained thermal stress. The present work and experiments within are designed to obtain 

a fundamental understanding of ZIF-8 membrane thermal stability using H2 and CO2 as a 

sample gas mixture.  
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3.2 Experimental 

3.2.1 ZIF-8 Membrane Synthesis and Characterization 

ZIF-8 membranes were prepared according to our previously reported method with 

a few modifications (D. Liu, Ma, Xi, & Lin, 2014). α-alumina membrane supports 22 mm 

in diameter and 2 mm thick (average pore diameter: 120 nm, porosity: 45% were custom 

prepared using A-16 calcinated alumina powder (Almantis). After sintering at 1150oC for 

30 hours, α-alumina disks were polished to form a smooth membrane substrate using 500, 

800, 1200, and 2000 silicon carbide (SiC) polishing paper (Struers). The supports were 

then washed under sonication for 10 minutes in 20 mL of pure deionized water, then for 

10 minutes in pure methanol for removal of impurities. After 5 minutes in each solvent, 

full liquid exchange was performed to provide a fresh bath. The supports were 

subsequently dried at 250oC for 4 hours after washing.  

ZIF-8 crystals were prepared by the method reported by Cravillion et al. (Cravillon 

et al., 2011). 734.4 mg of zinc nitrate hexahydrate [Zn(NO3)2●6H2O] (99.0% Alpha Aesar) 

and 810.6 mg of 2-methylimidazole (99% Sigma Aldrich) were each dissolved separately 

in 250 mL beakers containing 25 mL of methanol and stirred for 30 minutes. The 2-

methylimidazole solution was then added slowly to the zinc nitrate solution under stirring 

and mixed for 6 hours. After amalgamation, the mixture was aged for 24 hours without 

stirring. White precipitate crystals were collected after 3 cycles of centrifugation and 

washing with methanol (99% BDH). After washing, the ZIF-8 seeds were placed under 

vacuum (60 kPa) for 12 hours at room temperature. A stable, well dispersed colloidal 

solution of ZIF-8 nuclei was prepared by forming a 0.035 wt% ZIF-8 suspension in 

methanol. 
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An earlier prepared α-alumina disk support with polished side down was brought 

in contact with the ZIF-8 seed solution for 10 seconds followed by drying in air for 10 

minutes, the preceding steps were then conducted a second time. Two dip-coatings were 

performed for short time intervals to decrease the probability of forming seed layer cracks 

while ensuring homogenous seed coverage across the entire substrate. The ZIF-8 seed 

coated disk was placed in an oven and ramped by 0.3○C/min to 95○C, held for 3 hours then 

ramped down to room temperature at the same rate.  

 A seeded secondary growth method adapted from Pan et al. (Pan et al., 2012) was 

utilized to promote growth of a thin, continuous, defect-free membrane layer across the α-

alumina substrate. The secondary growth solution was prepared by dissolving 2.27 g of 2-

methylimidazole and 0.12 g of Zn(NO3)2●6H2O in 40 mL of deionized water. The seeded 

disk was placed vertically with the polished face tilted slightly up in a Teflon holder 

contained within a 45 mL Teflon lined stainless steel autoclave. The clear secondary 

growth solution was poured slowly into the Teflon container and immersed the seeded 

support. Secondary growth was carried out at 130○C for 6.5 hours. After membrane growth 

the stainless steel autoclave was removed from the oven and cooled to room temperature. 

The ZIF-8 membrane was removed from the secondary growth solution, washed briefly 

with deionized water then immersed in a methanol bath for 6.5 hours to exchange solvent 

within the membrane pores. After solvent exchange the membrane was placed under 

vacuum (60 kPa) for 12 hours at room temperature. The secondary growth synthesis was 

repeated again to seal defects and generate a highly crystalline ZIF-8 structure in a highly 

reproducible process. 
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Membrane surface morphology and cross section analyses were conducted using 

an XL30 Environmental FEG (FEI) scanning electron microscope (SEM) with an 

accelerating voltage of 20 kV. Samples underwent gold/palladium deposition prior to 

imaging to prevent surface charging. The ZIF-8 membrane crystal structure was examined 

using a Bruker D8 x-ray diffractometer at 20 kV, 5 mA with a scan speed of 2○/min about 

2θ using Cu Kα radiation (λ = 0.1543 nm). ZIF-8 membrane functional group 

characterization was observed using a Thermo Nicolet 6700 Fourier transform infrared 

spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector element and a 

diamond window. An α-alumina support was used as a zero background so that only ZIF-

8 spectral peaks were displayed. 

 

3.2.2 Gas Permeation/Separation Experiments and Thermal Gravimetric Analysis 

Each as-synthesized α-alumina supported ZIF-8 membrane was sealed into a 

stainless steel permeation cell using VITON O-rings (O-rings West). The permeation area 

of each membrane was 2.27x10-4 m2. All membranes were probed at room temperature 

using helium (He) and sulfur hexafluoride (SF6) to evaluate their molecular sieving 

transport characteristics using a single gas steady-state permeation system (D. Liu et al., 

2014). He or SF6 was supplied to the permeation cell directly from tubing attached to each 

respective gas cylinder and maintained at 20 psig using a needle valve. The permeate side 

was connected to a bubble flow meter at atmospheric pressure without a sweep gas.  

 

Membrane permeance Fi of component i is defined as: 
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𝐹𝑖 =
𝑄𝑖

∆𝑃𝑖𝐴
                                                                                                        (3.1) 

 

where 𝑄𝑖 is the permeate molar flow rate of component i (mol/s), ∆𝑃𝑖 the transmembrane 

pressure drop of i (Pa) and A, is the effective permeation area (m2). Ideal or permselectivity 

in molecular probing experiments is defined by the ratio of pure gas permeances: 

 

𝐼𝑑𝑒𝑎𝑙 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐹𝑖

𝐹𝑗
              (3.2) 

 

where j denotes larger kinetic diameter component j.  

 

Hydrogen/carbon dioxide single gas, binary temperature dependent and binary 

transient permeance experiments were performed using the Wicke-Kallenbach technique 

shown in Figure 3.1. For the single, binary temperature dependent and binary transient gas 

permeance experiments, H2 and CO2 feed gases were each maintained at 25 mL/min (50:50 

mol ratio) and nitrogen sweep gas at 50 mL/min using mass flow controllers. Volumetric 

flow rates correspond to ambient temperatures ranging between 23.6-25.0○C and a pressure 

of 1 atmosphere. In each experiment, both the feed and sweep sides of the permeation cell 

were maintained at 1 atmosphere. The feed pressure was controlled by a needle valve on 

the retentate side (fully open) and the sweep side pressure was maintained using N2 sweep 

gas. The composition of both the retentate and sweep gasses were analyzed by gas 

chromatography (GC) (Aligent 6890 N, Alltech Haysep DB 100/120 column with 

dimensions: 9.1 m x 3.2 mm O.D. x 2.2 mm I.D., argon carrier gas and TCD detector). The 
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single gas and binary temperature dependent permeance tests present H2/CO2 permeance 

behavior as a function of temperature. Temperatures were ramped by 1○C/min from 25○C 

to 300○C (25-250○C in single gas tests) and held for 1.5 hours at each successive 25○C 

increment to reach a steady state permeance before collecting permeate and retentate 

compositions. Permeate and retentate composition collection by GC lasted approximately 

30 minutes in total, then the furnace was ramped to the next 25○C temperature interval. In 

the transient tests, H2/CO2 mixture permeance was studied as a function of time over a 24 

hour period at 50, 100, 150 and 300○C respectively. A temperature ramping rate of 

20○C/min was used to isolate temperature and time effects on the ZIF-8 membrane 

structure and transport properties during the 300○C test. A ramping rate of 1○C/min was 

utilized in subsequent transient tests.   

The mixture gas separation factor (SF) calculated in both the temperature dependent 

and time dependent experiments is defined by: 

 

SF = 
𝑦𝐻2/𝑦𝐶𝑂2

𝑥𝐻2/𝑥𝐶𝑂2

               (3.3) 

 

where y denotes permeate partial molar fraction and x denotes retentate partial molar 

fraction. Mixture permeance was calculated using the difference in retentate and permeate 

partial pressures as the driving force. Hydrogen permeance for example was calculated as 

follows during mixture gas tests 
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` 

Figure 3.1 Binary gas permeance apparatus and configuration 

 

 

𝐹
𝐻2=

𝑄𝐻2

(𝑥𝐻2𝑃−𝑦𝐻2𝑃)∗𝐴

             (3.4) 

 

Carbon dioxide mixture permeance was calculated using the same method. 

Thermal gravimetric analysis (TGA) measurements using ZIF-8 powders were 

utilized to help describe/prognosticate the underlying decomposition phenomena occurring 

during the ZIF-8 binary temperature dependent membrane test. TGA analyses were 

conducted under H2/CO2 atmosphere using mass flow controllers to achieve a 25 mL/min 

flow rate (50:50 mol) in each respective gas at 1 atmosphere. The TGA test utilized a time 

and temperature profile identical to the binary mixture temperature dependent membrane 

experiment (ramp rate 1○C/min, hold time 2 hours at each 25○C interval from 25-300○C). 
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The hold time of 2 hours corresponds to 1.5 hours to reach steady state followed by 30 

minutes of GC sampling that occurred during membrane testing. 

 

3.3 Results and Discussion  

3.3.1 Membrane Characteristics and Temperature Dependent Binary Separation Properties 

Figures 3.2 and 3.3 show cross-sectional, top surface view and XRD patterns 

representative of the as-synthesized ZIF-8 membranes obtained using the above synthesis 

procedure. SEM micrographs and sharp XRD pattern intensities at the corresponding 2θ 

values cohesively indicate the formation of 2.5-3.0μm thick, highly crystalline, continuous 

ZIF-8 films formed after membrane fabrication. Prior to H2/CO2 permeation tests, 

membranes underwent molecular probing with He/SF6 to verify the presence of high 

integrity, molecular sieving ZIF-8 thin films present on the α-alumina surface. The 

presence of large defects can significantly affect permeance behavior and molecular 

sieving properties.  
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Figure 3.2 SEM micrograph of as-synthesized ZIF-8 membrane: cross section (A) and 

top view at 5000x magnification (B)  

 

B A 

B 
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Figure 3.3 XRD pattern of as-synthesized ZIF-8 membrane on alumina support 

 

Table 3.1 presents the single gas He and SF6 permeances and ideal separation factors for 

the membranes used in each permeation experiment. All membranes exhibit separation 

factors at least 60 times greater than the ideal Knudsen He/SF6 separation factor of 6.0, 

which verifies synthesis of molecular sieving membranes. 

 

 

Table 3.1 Permeance (mol/m2sPa) and ideal He/SF6 Separation Factor Values for 

Membranes used in Thermal Stability Studies 

Membrane  He Permeance SF6 Permeance 
Ideal 

SF 
Test Conducted 

M1 4.6x10-7 1.1x10-9 402 H2 Single Gas 

M2 6.7x10-7 1.7x10-9 390 CO2 Single Gas 

M3 9.1x10-7 2.3x10-9 395 Binary H2/CO2 

M4 6.5x10-7 8.4x10-10 775 Transient H2/CO2 at 300oC 

M5 4.4x10-7 1.1x10-9 405 Transient H2/CO2 at 150oC 

M6 4.4x10-7 1.1x10-9 395 Transient H2/CO2 at 100oC 

M7 2.7x10-7 5.1x10-10 541 Transient H2/CO2 at 50oC 
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Figure 3.4 shows CO2 and H2 single gas permeances as a function of temperature. 

The permeance of both H2 and CO2 decrease with respect to increasing temperature.  Since 

diffusivity and solubility are directly and inversely proportional to temperature 

respectively, the results suggest that the activation energy for diffusion is smaller than the 

heat of adsorption in ZIF-8 for both H2 and CO2.  Molecular simulations incorporating 

specific force-field parameters to account for ZIF-8 framework flexibility indicate that the 

free energy of CO2 migration through the ZIF-8 crystalline network (9.9 kJ/mol) is lower 

than the isoteric heat of adsorption (14.19 kJ/mol) (Liling Zhang, Wu, & Jiang, 2014). The 

CO2 adsorptive affinity for the ZIF-8 framework is enabled by strong quadrupole-π 

electrostatic interactions between the π electrons of the imidazole ring and the partial 

positive charge of the carbon on CO2 (Amrouche et al., 2011; D. Liu, Wu, Xia, Li, & Xi, 

2013). In addition to electrostatic affinity for CO2, the large cage diameter (1.16 nm) of the 

ZIF-8 structure enables significant equilibrium uptake of carbon dioxide (kinetic diameter 

= 0.33 nm) (Pérez-Pellitero et al., 2010).  
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Figure 3.4 ZIF-8 membrane H2 and CO2 single gas permeance as a function of 

temperature from 25-250○C 

 

The temperature dependent H2 permeance plot in Figure 3.4 indicates a 38.2% 

decrease in H2 permeance over the 25-250○C temperature range. This trend was also 

observed by (X. Zhang et al., 2014) who conducted hydrogen permeance as a function of 

temperature from 30○C to 200○C and observed a 65% decrease in hydrogen permeance 

(15.9-5.6x10-8 mol/m2sPa) with incresing temperature.  Distinct hydrogen electrostatic 

binding sites at the C=C bond of the imidazole ligand and at the center channel of the six 

member ring contribute to H2 adsorption in ZIF-8 (Assfour, Leoni, & Seifert, 2010; Hui 

Wu, Zhou, & Yildirim, 2007). The temperature dependent permeation data for H2 confirm 

lower activation energy for diffusion than heat of adsorption for H2 in ZIF-8.  

Figure 3.5 graphically illustrates the ZIF-8 membrane permeance and separation 

factor for a binary 50:50 H2/CO2 feed as a function of temperature ranging from 25-300○C.  

Between 25-250○C, the permeance for both H2 and CO2 decreases as a function of 
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increasing temperature, which is similar to the temperature dependency of pure gas 

permeance. Gas permeation through ZIF-8 membranes follows the solution-diffusion 

mechanism (D. Liu et al., 2014); the permeability of a permeating gas is the product of the 

diffusivity and solubility (or adsorption constant). Due to the similarity in single and binary 

gas permeance behavior, we map the ideal solution-diffusion model to the binary mixture 

to describe the phenomena observed. The kinetic diameters of H2 and CO2 are 0.29 and 

0.33 nm respectively, each just slightly smaller than the 0.34 nm crystallographic pore 

aperture of ZIF-8.  

However, due to framework flexibility and imidazole substituent displacement, the 

ZIF-8 pore configuration inhibits strict molecular sieving cut offs before 0.42 nm (C. Zhang 

et al., 2012). Framework flexibility/displacement results in large intracrystalline 

diffusivities for H2 (9.4x10-5 cm2/s) and CO2 (1.7x10-6 cm2/s) in ZIF-8 (D. Liu et al., 2014). 

H2/CO2 diffusive selectivity in ZIF-8 is 55, however, the adsorption equilibrium constant 

for CO2 in ZIF-8 (0.56 mmol/g.bar) is much larger than that for H2 (0.039 mmol/g.bar) (C. 

Zhang et al., 2012) at room temperature. This gives an adsorptive selectivity of about 1/15 

for H2/CO2. The product of the H2/CO2 adsorptive and diffusive selectivites determines the 

ideal H2/CO2 permselectivity which is 3.7 and consequently is the same value as the 

separation factor obtained at room temperature during the binary experiment. The binary 

H2/CO2 separation factor is diffusion controlled or increases with respect to temperature 

between 25-225○C because of the relatively weaker adsorptive/stronger diffusive 

dependence for H2 permeance as compared to that for CO2 permeance.   
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Figure 3.5 ZIF-8 membrane binary H2/CO2 permeance and separation factor as a 

function of temperature from 25-300○C 

 

Figure 3.6 presents the transient weight change of ZIF-8 crystals under 50:50 

H2/CO2 atmosphere using a temperature profile identical to the heating protocol utilized 

during the binary gas separation measurements shown in Figure 3.5. A dramatic rate of 

weight decrease at the onset of data collection, attributable to the loss of solvent molecules 

and unreacted organic moieties in trapped within ZIF-8 microcavities (Yin et al., 2014) is 

observed. Between 50-250○C the weight loss is extremely slow (0.04 wt %/hr) and small 

(less than 2%).  This indicates that the large change observed for H2 and CO2 gas 

permeances (33-38%) in the membrane separation experiments between 50-250oC are not 

caused by membrane structural changes during the temperature dependent separation 

experiments, and confirms that the temperature dependence of gas permeance and 

separation factor shown in Figure 3.5 is determined by the temperature dependence of 

diffusivity and solubility of the mixture at temperatures between 25-250○C. 
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Figure 3.6 TGA weight decomposition profile of ZIF-8 crystals using a temperature 

profile and H2/CO2 atmosphere identical to temperature dependent permeation 

experiment 

 

The mixture feed permeance temperature dependences for ZIF-8 membranes are 

quite different from the mixture permeation for microporous MFI zeolite membranes. MFI 

zeolite membranes have been substantially studied for H2/CO2 separations and provide an 

interesting comparison to ZIF-8 membranes. Both materials contain zeolitic structured 

micropores, yet present very disparate H2/CO2 separation characteristics as a function of 

temperature. During binary H2/CO2 permeation in MFI zeolite membranes, H2 permeance 

increases while CO2 permeance decreases as a function of increasing temperature, though 

pure gas permeance for both gasses decrease with increasing temperature (Bakker et al., 

1996; M. Kanezashi & Lin, 2009).   

It is known that diffusivity in micropores is mainly determined by the ratio of the 

permeating gas molecular diameter to the effective pore diameter, =dm/dp (= 0.69 and 0.79 

for H2 and CO2 in ZIF-8) and the activation energy for diffusion sharply increases or 

diffusivity decreases with increasing  when it approaches 1 (permeating molecule size 
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close to the membrane pore size) (M. Kanezashi & Lin, 2009).  The diffusivity for H2 and 

CO2 in MFI zeolite is respectively about 2x10-4 and 3x10-5 cm2/s, much larger that in ZIF-

8 (9.4x10-5  cm2/s and 1.7x10-6 cm2/s) due to larger pore size for MFI zeolite (about 0.55 

nm).  The ratio of the diffusivity for H2 to CO2 for MFI zeolite (about 6) is also much 

smaller than that for ZIF-8 (about 55). Due to smaller differences in diffusivities for these 

two gases in MFI zeolite membranes, the presence of the strongly adsorbed CO2 in the 

mixture feed has a larger effect on the diffusivity of lightly adsorbed H2, reducing its 

permeance at low temperatures while CO2 adsorption is enhanced. This explains the 

opposite temperature dependence of H2 permeance within the mixture feed as compared to 

the pure H2 permeance in MFI zeolite membranes (M. Kanezashi & Lin, 2009).  For ZIF-

8 membranes, such an adsorption induced effect in the mixture feed is insufficient to 

reverse the diffusion controlled selectivity that would give an opposite permeance 

temperature dependence for H2 as compared to the single gas feed. 

From 250-275○C, the permeance behavior for both H2 and CO2 inverts or increases 

as a function of increasing temperature, as shown in Figure 3.5.  At such high temperatures, 

adsorption becomes negligible thus permeance is essentially controlled by diffusivity, 

which increases with temperature.  The permeance selectivity decreases with temperature 

between 225-275○C because the change in diffusivity for CO2 with a larger activation 

energy, increases more with temperature as compared to H2. Beyond 275○C the H2/CO2 

separation factor displays a step change from 4.0 to 5.1.  TGA data in Figure 3.6 shows 

with a temperature increase from 275 to 300○C the membrane experiences a greater 

magnitude weight loss (2%) than previously experienced due to a faster decomposition rate 

(0.1-0.3 wt%/hr).  As will be discussed later, this indicates a structural change in ZIF-8 
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material which is most likely responsible for altering the transport mechanism previously 

governing H2/CO2 permeability and selectivity.  

 

 
Figure 3.7 ZIF-8 membrane XRD patterns before and after binary H2/CO2 temperature 

dependent (25-300○C) permeance study 

 

Figure 3.7 shows XRD patterns of the ZIF-8 membrane before and after the 

temperature dependent membrane experiment shown in Figure 3.5. Structural changes in 

the ZIF-8 membrane thin film are evidenced through the disappearance of all peaks 

associated with the ZIF-8 morphology. This finding is corroborated by corresponding SEM 

images of the ZIF-8 membrane after the temperature dependent experiment shown in 

Figure 3.8.  The micrographs present a new structure bearing an amorphous topology 

similar to that of a polymeric or carbon molecular sieve membrane upon analysis at low 

magnification (Ma, Lin, Wei, Kniep, & Lin, 2013). Greater magnification shows evidence 
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of a transformed, lacerated surface with slightly raised portions resembling extremely faint, 

flattened/decomposed ZIF-8 rhombic dodecahedral crystals. 

 

  

  
Figure 3.8 ZIF-8 membrane SEM micrographs after temperature dependent (25-300○C) 

binary H2/CO2 experiment: cross-section (A), top views (B-D) 

 

 ZIF-8 crystal decomposition from the analogous TGA experiment is also 

corroborated by pre and post experimental XRD patterns in Figure 3.9 which show a 

decrease in peak intensities at the characteristic ZIF-8 2θ values. It is duly noted that only 

a partial decrease in XRD pattern intensity (56% decrease in (011) peak intensity) was 

experienced after the ZIF-8 powder temperature programmed TGA study. In contrast, the 

analogous membrane permeance test showed complete elimination of all peaks associated 

A B 

C D 
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with ZIF-8. A significantly larger amount of material must be consumed before 

crystallinity is eliminated in a 15 mg ZIF-8 powder sample as compared to a ZIF-8 film 

2.5μm in thickness and 22 mm in diameter which weighs around 1.08 mg and can explain 

the differences in x-ray diffraction patterns. 

 

 
Figure 3.9 ZIF-8 powder XRD patterns before and after H2/CO2 atmosphere temperature 

dependent (25-300○C) TGA experiment 

 

3.3.2 Transient Separation Properties and ZIF-8 Membrane Structural Changes 

In the previously performed binary experiments the ZIF-8 membrane was subjected 

to each temperature for only 2.5 hours in a dynamic experiment over a 30 hour duration. 

To better understand and more carefully analyze the thermal stability of ZIF-8 membrane 

thin films, isothermal, transient, 50:50 H2/CO2 permeation experiments were conducted at 

temperatures of 50, 100 and 150○C for 24 hours enabling adequate bounds to be placed on 

ZIF-8 membrane static thermal stability. The permeation results of each isothermal test are 

shown in Figure 3.10.  
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Figure 3.10 Transient profiles of ZIF-8 membrane H2/CO2 mixture permeance and 

separation factor with respect to time at isothermal temperatures of (A) 50○C, (B) 100○C 

and (C) 150○C (24 hours) 
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Qualitative analysis of the transient profiles suggest that the extent of decline in 

both H2 and CO2 permeances is intensified with respect to increasing isothermal 

temperature. Table 3.2 tabulates and quantifies the percentage decreases in H2/CO2 

permeances and separation factors during the isothermal transient experiments. At 50○C 

both H2 and CO2 permeances and separation factor remain essentially constant over the 24 

hour duration. However, at 100○C 26.5% and 12.2% decreases in H2 and CO2 permeances 

are observed. The greater extent of decline in H2 permeance as compared to that of CO2 

causes the separation factor to decrease by 12.9% over the 24 hour period. At an isothermal 

temperature of 150○C, more dramatic decreases in H2 and CO2 permeances are incurred. 

The transient permeance profiles obtained during the 150○C experiment indicate that the 

percentage declines in H2 and CO2 permeances were 2 and 4 times greater than those 

observed during the 100○C test respectively.  

It is possible that local defects at un-saturated Zn sites of the ZIF-8 secondary 

building units might have been created during permeance tests and caused performance 

instability (Kwon, Jeong, Lee, An, & Lee, 2015b). It is also possible that the CO2 

chemisorption phenomena previously observed by Xu et al. (G. Xu et al., 2011) during 

transient H2/CO2 tests occurred, however it would seem that the temperature dependency 

of the CO2/imidazole reaction is greater in this study and may be due to differences in 

membrane crystallinity. Xu et al. observed the postulated chemisorption phenomena at 

room temperature (G. Xu et al., 2011), whereas in this study, comparable H2/CO2 decreases 

were not observed until performing isothermal tests at 150○C.  

Membrane characterization can enable further insight into the physical changes of 

the membrane structure and further explain the permeation phenomena observed. Figure 
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3.11 presents comparative pre and post transient experiment XRD patterns and changes in 

XRD relative pattern intensity are quantitatively described in Table 3.2 which tabulates 

ZIF-8 membrane (011) plane intensity with respect to α – alumina (012) plane intensity 

before and after the 24 hour isothermal transient experiments studied at 50, 100 and 150○C 

respectively. XRD patterns corroborate preservation of the ZIF-8 phase after each 

isothermal experiment. After isothermal 50 and 100○C experiments, ZIF-8 to α-alumina 

peak intensity is essentially comparable or even slightly increased due to slight changes in 

ZIF-8 crystal dimensions through removal of guest solvent molecules during permeation. 

However, decreases in the relative peak intensity are significant for the sample tested at 

150○C and indicates that ZIF-8 degradation or crystallinity elimination occurred over the 

24 hour isothermal experiment.  
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Figure 3.11 ZIF-8 membrane XRD patterns before and after 24 hour binary H2/CO2 

separation isothermal study at (A) 50○C, (B) 100○C and (D) 150○C 
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Figure 3.12  SEM micrographs of ZIF-8 membranes post binary H2/CO2 24 hour 

transient separation studies at isothermal temperatures of (A) 50○C, (B) 100○C and (C) 

150○C 

A 

B 

C 
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Upon analysis of SEM micrographs, the crystal morphology and textural features 

of the membranes held at 100 and 50○C remain intact (Figures 3.12 A&B). However, 

intermittent defects are expressed along the faces and edges of the rhombic dodecahedral 

crystals composing the ZIF-8 membrane held at 150○C (Figure 3.12 C) and may illustrate 

ZIF material precipitating out from the ZIF-8 polycrystalline network crystals. The results 

found in SEM micrographs and XRD analysis complement each other and the permeance 

data well. The greatest amount of crystal destruction and permeance performance decreases 

were observed during the 150○C isothermal transient experiment, but at lower 

temperatures, comparatively little to no changes in crystallinity, external crystal 

morphology and performance were observed.   

The data shown in Figures 3.7 and 3.8 suggest more prominent changes in the ZIF-

8 thin film structure occur at higher temperatures. To further understand structural changes 

in the ZIF-8 framework at high temperature, a transient separation test was conducted on a 

separate ZIF-8 membrane at 300○C for 24 hours. Figure 3.13 graphically depicts H2/CO2 

permeance and separation factor during the high temperature isothermal transient 

experiment. Between 0-4 hours, a sharp decrease in H2 and CO2 permeances with a 

resulting increase in H2/CO2 separation factor is observed. After 4 hours, the H2 and CO2 

permeances both increase and reach steady-state values after 12 total hours of permeation 

time and a separation factor of ~3.7 is sustained for the duration of the study. After 12 

hours, we prognosticate that a stable permeance and separation factor is indicative of 

forming a structure that is kinetically or possibly thermodynamically stable at 300○C.  
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Figure 3.13 ZIF-8 membrane H2/CO2 mixture permeance and separation factor with 

respect to time during 300○C isothermal transient experiment (24 hours) 

 

Post experimental XRD patterns and SEM micrographs of the membrane utilized 

in the 300○C isothermal transient experiment are depicted in Figures 3.14 & 3.15. The 

disappearance XRD peaks associated with the ZIF-8 phase again indicates formation of an 

amorphous structure. SEM images show that the surface of the ZIF-8 membrane after 

subjection to thermal stress at 300○C still retains crystal facets but with less defined, eroded 

faces. As noted from Figure 3.13, the steady-state H2 and CO2 permeances are slightly 

greater than the initial rates observed at 0 hours and although the separation factor is lower 

than initially observed, the newly formed amorphous material is still able to separate H2 

from CO2. It is likely that the new amorphous structure has a somewhat wider pore structure 

that decreases transport resistance enabling greater H2 and CO2 permeances. To maintain 

H2/CO2 selectivity, the new structure with comparatively less-order, likely bears new pore  

shape with a modified tortuosity that enables separation of H2 and CO2 more based upon 
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entropic selectivity rather than energetic/sorptive selectivity similar to that of carbon 

molecular sieve (CMS) membranes (Rungta, Xu, & Koros, 2012).   

 

 
Figure 3.14 ZIF-8 membrane XRD pattern before and after 24 hour binary H2/CO2 

separation isothermal study at 300○C 

 

Figure 3.16 illustrates comparative IR spectral bands of experimental membranes. 

The fresh, as-synthesized ZIF-8 membrane transmittance bands are in good agreement with 

those reported by Ordonez et al. (Ordoñez et al., 2010) and Hu et al. (Y. Hu et al., 2011). 

IR bands between 900-1350 cm-1 are associated with in-plane bending modes of the 

imidazole ring. The intense bands between 1350-1500 cm-1 are concomitant with entire 

imidazole ring stretching and the small peaks indicated at 1384 cm-1 and 1584 cm-1 

correspond to –CH3 bending and C=N stretching modes respectively. Due to spectral 

saturation, Zn-N modes usually present at 421 cm-1 are not shown. Table 3.2 additionally 

highlights relative IR spectral intensities of the –CH3 and C=N bonds of isothermally tested 
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membrane thin film surfaces with respect to an as-synthesized membrane for semi-

quantitative relative magnitude analysis.  

 

 

            

 
Figure 3.15 ZIF-8 membrane SEM micrographs post 300○C isothermal transient binary 

H2/CO2 experiment: 5,000X magnification (A), 10,000X magnification (B) and 15,000X 

magnification (C) 

 
 

B 

C 

A 
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Figure 3.16 FTIR spectra of ZIF-8 membranes held in H2/CO2 atmosphere after 25-

300○C temperature dependent experiment and 24 hour transient isothermal experiments 

at 50, 100, 150, and 300○C respectively all relative to as-synthesized (fresh) ZIF-8 

membrane spectrum 

 

Visual comparison of post experimental low temperature isothermal IR spectra to 

that of the as-synthesized spectra indicate preservation of imidazole ring physical 

properties after permeation at 50 and 100○C. Further detailed evidence of bond 

preservation is evidenced by the relative intensity data in Table 3.2 which show comparable 

spectral intensities before and after the 50 and 100○C experiments. In contrast, relative 

intensity values at the corresponding spectral bands for the membrane isothermally tested 

at 150○C indicate depletion of CH3 and C=N bonds. The results found in the FTIR 

experiments complement the SEM/XRD data well and indicate that alumina supported 

ZIF-8 thin films preserve full crystallinity and structural integrity at temperatures below 

150○C. 
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At greater temperatures, significant, definitive changes in C=N, methyl group and 

entire ring bonding occurred and is evidenced by considerable broadening of the 

corresponding spectral modes for the membranes isothermally tested at 300○C and utilized 

in the temperature dependent test. Specific evidence of C=N bond breaking and 

demethylation observed in the high temperature spectra agree with the results observed by 

Lin and James (James & Lin, 2016) who postulated that a heterogeneous imidazole-Zn-

azirine partially carbonized ZIF-8 structure is formed through a sequence of thermolytic 

decomposition reactions after thermally annealing ZIF-8 crystals at 300○C for 20 hours in 

H2/CO2 atmosphere. For ZIF-8 crystal decomposition in H2/CO2 environment at 300○C for 

20 hours the following decomposition reaction equation was proposed (James & Lin, 

2016): 

 

𝑍𝑛(𝐶4𝐻5𝑁2)2 + ℎ𝑒𝑎𝑡 →  𝐶4𝐻5𝑁2 − 𝑍𝑛 − 𝐶2𝐻2𝑁 + 𝐺𝑎𝑠𝑒𝑜𝑢𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠     (3.A) 

 

where the Zn complex on the reactants side of Reaction 3.A represents a single building 

block of ZIF-8 consisting of a zinc cation coordinating two imidazole ligands. After 

sustained thermal stress at the corresponding temperature it is postulated that the average 

solid structure remaining (product) after ZIF-8 crystal decomposition is a Zn cation 

coordinated to the N atom of a fully intact 2-methylimidazole ligand and the N atom of an 

azirine molecule. Differences in ZIF-8 material concentration between a bulk sample of 

ZIF-8 crystals and an alumina supported ZIF-8 thin film invalidate a 1-to-1 comparison of 

FTIR spectra, however we postulate that a similar structure is formed upon decomposition 

of ZIF-8 membranes. 



  144 

The morphology changes shown in the post experimental SEM images of Figures 

3.8 and 3.15 can be explained in part by the partial carbonization process described in 

Reaction 3.A. Upon sustained thermal stress of ZIF-8 membrane crystals at 300○C, 

demethylation and release of framework N atoms from deteriorated C/N and Zn-N bond 

destruction each occur to form the postulated imidazole-Zn-azirine structure. Although Zn-

N spectral bands are not shown, Zn must lose coordination with N in order to form the 

postulated imidazole-Zn-azirine structure. We deduce that if C=N and –CH3 bonds are 

broken, Zn-N bonds must also break as they are comparatively the weakest bond in the 

ZIF-8 structure (Gadipelli et al., 2014). In the case of ZIF-8 membrane crystals, partial 

carbonization and loss of coordination at Zn-N nodes which act as major structural supports 

most likely induces framework collapse to form eroded crystals which eventually reduce 

to a partially carbonized membrane surface topology that is visibly flat or presents eroded 

crystal facets.  

The structural collapse noted in this study somewhat contrasts the phenomena 

observed when thermally treating loosely packed ZIF-8 crystalline powders. In our 

previous work (James & Lin, 2016), ZIF-8 crystalline powders were treated isothermally 

at 300○C in H2/CO2 atmosphere for 20 hours in a TGA experiment analogous to the 300○C 

transient membrane experiment conducted in the current study. Comparative SEM 

characterization analyses before and after thermal treatment of ZIF-8 crystals illustrated 

particle growth through coarsening/Ostwald through ripening phenomena (James & Lin, 

2016) and XRD pattern/FTIR spectral analyses from our previous work (James & Lin, 

2016) show that ZIF-8 crystals retain a relatively greater amount of crystallinity/bond 

preservation as compared to membrane thin films decomposed under similar conditions. In 
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this study, particle collapse occurs rather than particle coarsening and may allude to slight 

differences in microstructural changes that occur upon thermal treatment of ZIF-8 powders 

which present kinetic thermal stability up to 200○C versus ZIF-8 membrane thin films 

which seem thermally stable below 150○C.  

 It has been noted in literature that the thermomechanical compatibility (Drobek et 

al., 2015; X. Zhang et al., 2014) and acidity (J. Kim & Lee, 2016) of the membrane support 

plays a significant role in membrane thermal and hydrothermal stability respectively. 

Under hydrothermal conditions in the presence of 10 mol% water vapor it was determined 

that the acidic nature of α-alumina supports catalyzes hydrolysis reactions which enable 

protonation and subsequent deterioration of ZIF-7 and ZIF-8 material adhered α-alumina 

supports (J. Kim & Lee, 2016), however, under dry (J. Kim & Lee, 2016) and more mild 

humidity conditions (3 mol% water vapor) (Y. Li et al., 2010), the support does not seem 

to initiate ZIF decomposition through protonating reactions. These findings enable 

deduction that support acidity does not play a significant role in ZIF stability under dry 

conditions.  

During thermal annealing under dry conditions, ZIF-8 thin films are subjected to 

incongruent mechanical stresses as a result of differences in thermal expansion coefficients 

between the alumina support and the membrane structure (X. Zhang et al., 2014). The 

resulting thermomechanical stress possibly compromises the ZIF thin film bonds during 

thermal annealing. ZIF crystals do not experience the aforementioned thermomechanical 

stresses during TGA experiments. The additional stress mechanism induced during thermal 

annealing of alumina supported ZIF-8 membranes likely exacerbates framework instability 

upon static thermal treatment. High temperature static stability experiments directly 
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comparing α-alumina supported ZIF-8 membranes with and without thermomechanically 

stabilizing interlayers or supports with thermal expansion coefficients more similar to that 

of ZIF-8 may be a point for future study. Additionally, metal oxide supports of varying 

acidity that are thermomechanically compatible with ZIF-8 would enable an effective study 

on the influence of support acidity on ZIF-8 hydrothermal stability.   

 

3.4 Conclusions 

 The thermal stability of high quality ZIF-8 membranes was systematically studied 

in terms of material structure and separation characteristics in H2/CO2 atmosphere at high 

temperatures. Dynamic temperature dependent permeation experiments show that H2/CO2 

permeance and selectivity adhere to the solution-diffusion model between 25-275○C, 

however beyond 275○C it is postulated that an amorphous carbonized imidazole-Zn-azirine 

structure is formed. Static isothermal permeation tests more adequate for static stability 

determination, show that ZIF-8 membrane thin films maintain crystallinity/bond integrity 

and sustain separation performance over a 24 hour experimental duration at temperatures 

below 150○C. However, at temperatures of 150○C and greater, ZIF-8 membrane thin films 

incur increased amounts of thermally induced carbonization of the imidazole ligand with 

respect to increasing temperature. The extent of carbonization changes the pore structure 

of the ZIF-8 membrane, and hence H2/CO2 permeance and selectivity. 

Thermomechanically induced stresses are caused by differences in thermal expansion 

coefficients of ZIF-8 membrane thin films and α-alumina supports which likely 

compromise ZIF-8 membrane structural bonds and may account for differences in static 
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thermal stability observed when comparing ZIF-8 thin films and ZIF-8 crystals which do 

not incur identical thermomechanical stresses upon thermal annealing.  
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CHAPTER 4 

ZIF-8 MEMBRANE ETHYLENE/ETHANE TRANSPORT CHARACTERISTICS IN 

SINGLE GAS AND BINARY MIXTURES 

 

4.1 Introduction 

According to the preceding thermal stability studies, ZIF-8 shows the most 

immediate promise for low to moderate temperature (< 150○C) separation applications 

which is not prohibitively limiting because the intricate Zn-N coordination in ZIF-8 enables 

a structural configuration which facilitates excellent kinetic-based separation of propylene 

(propene)/propane (C3=/C3-) (K. Li et al., 2009; Pimentel & Lively, 2016) which is 

conducted at near-ambient temperatures. The effective ZIF-8 pore aperture (0.42 nm) (C. 

Zhang et al., 2012) is just above that of C3= (0.402 nm) and comparable to C3- (0.416 nm). 

In binary propylene/propane studies ZIF-8 membrane thin films have demonstrated high 

separation factors ranging between 30-180 (Eum, Ma, Rownaghi, Jones, & Nair, 2016; 

Kwon, Jeong, Lee, An, & Lee, 2015a), acceptable stability specific for light hydrocarbon 

separations (Eum et al., 2016; D. Liu et al., 2014), and promise of modular scale-up (A. J. 

Brown et al., 2014; Eum et al., 2016) to potentially debottleneck and alleviate energy 

consumption in highly intensive C3 splitter processes (Alshehri & Lai, 2015).   

While the C3 separation prowess of ZIF-8 is largely known, ethylene 

(ethene)/ethane (C2=/C2-) separations which are currently conducted in highly energy 

intensive cryogenic distillation processes are less abundant in ZIF-8 literature. Most 

experimental works focus on equilibrium adsorption (Böhme et al., 2013; C. Zhang et al., 

2012) and kinetic uptake (Chmelik, Freude, Bux, & Haase, 2012; Pimentel & Lively, 2016; 
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C. Zhang et al., 2012) of ethylene and ethane in ZIF-8 crystals. Consensus amongst studies 

show that ethane/ethylene adsorptive selectivity is close to 2 (Böhme et al., 2013; Bux, 

Chmelik, Krishna, & Caro, 2011; C. Zhang et al., 2012) and ethylene/ethane diffusive 

selectivity is  approximately 5 (Bux, Chmelik, et al., 2011; Chmelik et al., 2012) in the 

linear adsorption isotherm pressure region.  

In terms of membrane study, Caro and co-workers performed ethylene/ethane 

permeation experiments in ZIF-8 membranes as a function of pressure (Bux, Chmelik, et 

al., 2011) and utilized grand canonical monte Carlo (GCMC) simulations and infrared 

microscopy (IRM) equilibrium/transient uptake experiments in a single ZIF-8 crystal to 

describe phenomena observed in the membrane. A decrease in the C2 separation factor 

(2.8-2.4) as a function of total feed pressure (1 to 6 atm) as a result of decreased ethylene 

diffusive selectivity with increasing adsorbate loading in the ZIF-8 pore was observed 

(Bux, Chmelik, et al., 2011). At a total feed pressure of 6 atm, it was noted that the ideal 

C2 separation factor was above 4.2; approximately 75% greater than observed in binary 

experiments (Bux, Chmelik, et al., 2011). In subsequent ZIF-8 membrane studies, Lai and 

co-workers obtained thermodynamically corrected C2 diffusivities calculated from 

pressure dependent permeation measurements correlated to previously collected isotherm 

data (Pan, Liu, Zhao, Wang, & Lai, 2015). Previous studies have also shown sharp 

molecular sieving of ethane/propane (Pan & Lai, 2011), ethylene/propane (Pan & Lai, 

2011) and H2/C3 mixtures (Eum et al., 2016; Pan & Lai, 2011). 

The previous studies on ZIF-8 membranes reported C2 diffusivity/permselectivity 

data at room temperature (Bux, Chmelik, et al., 2011; Pan & Lai, 2011) and the pressure 

dependency of binary C2 permeation (Bux, Chmelik, et al., 2011). However, the differences 
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between binary and single gas C2 permeation/separation behavior as a function of pressure 

and an explanation of why binary C2 selectivity is significantly lower than single 

component ideal selectivity has not been provided.  Furthermore, there lacked  C2 

permeation data for ZIF-8 membranes as a function of temperature, from which, 

parameters such as activation energy and entropy of diffusion can be derived to obtain a 

better understanding of the energetic and entropic contributions to C2 transport and 

selectivity. Additionally, H2/C2 separations as a function of temperature, relevant to post 

ethane cracking applications have not been studied in ZIF-8 membranes.  

A better understanding of C2 transport properties in the well-understood ZIF-8 

structure can enable the design/selection of new or existing ZIF materials with structures 

that can provide improved ethylene/ethane separation characteristics. In the present work, 

we studied single and binary gas permeation/separation properties of ethylene/ethane and 

H2/C2 in ZIF-8 membranes as a function of temperature and feed pressure in addition to 

the adsorption isotherms of these gases in ZIF-8 at different temperatures.  These data will 

provide an improved understanding of gas diffusion in ZIF-8 as compared to other 

microporous materials and effects of intermolecular interaction on binary gas separation 

by ZIF-8 membranes.   

 

4.2 Experimental 

 

4.2.1 ZIF-8 Sorbent and Membrane Synthesis and Characterization 

 ZIF-8 membranes were prepared according to our previously reported protocol 

(James & Lin, 2017). Briefly, A-16 calcinated alumina powders (Almantis, Pennsylvania, 
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U.S.A.) were formed into 22 mm diameter green-body disks using a custom prepared 

mold/die set and a pressing apparatus (Carver Inc., Indiana, U.S.A.). Mechanically 

strengthened α-alumina substrates were formed by sintering the custom prepared green-

body disks at 1150○C for 30 hours. The substrates were polished with 500, 800, 1200 and 

2000 grit SiC polishing papers (Struers, Ohio, U.S.A.) then washed in deionized water and 

methanol under sonication.  

 ZIF-8 sorbent crystals were prepared by the method reported by Cravillion et al. 

(Cravillon et al., 2011) 0.734 g of zinc nitrate hexahydrate [Zn(NO3)2●6H2O] (98% Sigma 

Aldrich) and 0.811 g of 2-methylimidazole (99% Sigma Aldrich) were each dissolved 

separately in glass beakers each containing 25 mL of methanol (99% Sigma Aldrich) under 

stirring for 30 minutes. The 2-methylimidazole solution was poured dropwise into the zinc 

nitrate hexahydrate solution and kept stirring for 1 hour. After mixing, the ZIF-8 crystals 

were aged for 24 hours without stirring. A well separated, clear methanol supernatant and 

white crystal precipitant interface was formed after aging. The white precipitant crystals 

were washed and centrifuged in methanol then dried in a vacuum oven at 60 kPa and 25○C. 

0.028 g of dried, ground ZIF-8 crystals were placed in a glass container containing 100 mL 

of methanol. A homogeneous 0.035 wt% colloidal ZIF-8 seeding solution was formed by 

sonicating the mixture for 15 minutes.  

Slip-cast coating of the α-alumina supports with a ZIF-8 seed layer was performed 

by bringing the previously prepared α-alumina support in contact with the seeding solution 

for 10 seconds, the support was dried in ambient air for 10 minutes then the coating 

procedure was repeated a once more. The seeded supports were placed in a furnace which 

was ramped to 95○C at a rate of 0.3○C/min, held at constant temperature for 3 hours and 
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subsequently ramped down to room temperature at the same rate. For secondary growth, 

the seeded supports were placed in a Teflon holder, held vertically, and submerged into a 

growth solution containing 0.11 g of [Zn(NO3)2●6H2O] and 2.27 g of 2-methylimidazole 

in 40 mL of deionized water contained within a Teflon lined stainless steel autoclave and 

placed in an oven at 120○C for 7 hours. Secondary growth was repeated again to seal 

defects.  

 Visual analyses of ZIF-8 crystal and membrane surface morphology were 

performed using an XL30 Environmental FEG (FEI) scanning electron microscope with 

an accelerating voltage of 20 kV. ZIF-8 membrane crystallinity was analyzed using a 

X’Pert Pro PANalytical x-ray diffractometer at 45 kV, 40 mA with a scan speed of 2○/min 

for 2θ, using Cu Kα radiation (λ = 0.1543 nm).  

 

4.2.2 Ethylene/Ethane Adsorption Analysis and Permeation/Separation Experiments 

Equilibrium adsorption experiments for ethylene and ethane were carried out 

utilizing a Micromeritics ASAP 2020 volumetric adsorption device. Adsorption isotherms 

for each gas were collected at temperatures between 25-100○C using gas pressures up to 1 

atm. A dewar with a circulating oil bath was utilized to maintain each isothermal 

temperature. Approximately 80 mg of ZIF-8 powder from the same batch of crystals 

synthesized for membrane seeding were used for each adsorption test. Initial sample 

degassing took placed at the degassing sample port of the ASAP 2020 for 12 hours at 150○C 

at a vacuum pressure of 500 μm Hg. Subsequent degassing between each isotherm 

experiment took place for 3 hours at 150○C at the same vacuum pressure. The free space 

of the system was determined using helium gas. Commercially pure grade (99.5%) 
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ethylene and Instrument grade (99.5%) ethane gasses from Air Liquide were utilized for 

all gas adsorption and permeation test. All hydrocarbons were used as received without 

any further purification.  

In gas permeation tests, the α-alumina supported ZIF-8 membrane was sealed into 

a stainless steel permeation cell using VITON O-rings (O-rings West). The effective 

permeation area after sealing the membrane was 2.27 cm2. The as-synthesized membrane 

probed with helium (He) and sulfur hexafluoride (SF6) to assess the quality of ZIF-8 

membranes. He or SF6 was supplied directly to a single gas steady-state permeation 

apparatus (James & Lin, 2017) and maintained at 2.4 atm using a needle valve. The 

permeate side was maintained at atmospheric pressure and connected directly to a bubble 

flow meter without a sweep gas.  

Subsequent ethylene, ethane, single gas/binary permeation/separation experiments 

were performed utilizing the Wicke-Kallenbach technique. A total feed flow rate of 100 

mL/min (50 mL/min of each gas in binary experiments) and a nitrogen sweep gas flow rate 

of 50 mL/min was utilized in each experiment. Volumetric flow rates correspond to 

measurements collected at ambient temperatures ranging between 23.6-25○C and 

atmospheric pressure. All gas flow rates were maintained by mass flow controllers 

connected directly to the respective gas cylinders through non-combustive tubing. The feed 

pressure was modulated by a needle valve which was remained fully open for 1 atm feed 

pressure and incrementally closed to reach pressures up to for 4 atm. All temperature 

dependent tests were performed between 25-100○C at total feed pressure of 1 atm, a ramp 

rate of 1○C/minute was utilized to reach each 25○C temperature increment spanning the 



  154 

interval. Each temperature or pressure was held typically for 2 hours or longer, until a 

steady state permeance was reached before collecting permeation readings.  

The composition of the retentate and sweep sides of the membrane were analyzed 

using gas chromatography (Agilent 6890, Alltech Haysep DB 100/120 packed column with 

dimensions: 9.14 m, 0.3175 cm, 0.2159 cm). In each permeation experiment, triplicate runs 

were performed and the error bars represent the standard error of the mean for permeation 

and selectivity/separation factor measurements reflected in experimental plots.   

 

4.3 Results and Discussion 

 

4.3.1 Characteristics of ZIF-8 Crystals and Membranes  

Figure 4.1 shows an XRD pattern and SEM micrograph top view and cross section 

of the as-synthesized ZIF-8 membrane utilized in this work. The ZIF-8 phase of the α-

alumina supported membrane is confirmed through XRD spectral intensities and physical 

morphology in agreement with that of ZIF-8 crystalline powders from simulation (Lewis 

et al., 2009) and membranes from our previous work (James & Lin, 2017). The ZIF-8 

membrane thickness is ~ 5 μm.  Table 4.1 tabulates permeance and separation data for 

molecular probing of the ZIF-8 membrane. The data were measured at 1 atm, 25○C for the 

light olefin/paraffin pairs and at 2.4 atm, 25○C for He and SF6. SF6 permeance on the order 

of 10-10 mol/m2sPa and an He/SF6 ideal selectivity of 1000 (165 times greater than the 

Knudsen selectivity value of 6.0) are both indicative of a good quality ZIF-8 thin film layer.  

The 50:50 binary propylene/propane permeances and separation factor of 36.0 are 

competitive with ZIF-8 membrane literature values tabulated by Kwon et al. (Kwon et al., 
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2015) and further corroborates a ZIF-8 membrane with molecular sieving ability. The 

50:50 binary ethylene/ethane separation factor of 2.0 is slightly lower than the value of 2.4 

obtained by Caro and co-workers who performed binary experiments at a total feed 

pressure of 1.5 atm under similar conditions utilizing a 25 μm thick membrane formed 

from in-situ microwave growth (Bux, Chmelik, et al., 2011). However our binary 

separation factor is comparable to the ideal C2=/C2- selectivity (2.1) calculated from the 

work of Lai and co-workers who also utilized seeded secondary growth (Pan & Lai, 2011). 

Differences in the C2=/C2- separation factor could be due to slight differences in 

polycrystalline structures as a result of different synthesis protocols; a relatively thick ZIF-

8 membrane likely possesses fewer or covered defects. The ethylene permeance of 7.8 x 

10-8 mol/m2sPa obtained in this work for a 5 μm ZIF-8 membrane is approximately half 

that obtained by the 2.5 μm thick membrane obtained by Lai and co-workers (15.0 x 10-8 

mol/m2sPa, 1 atm feed pressure) and is consistent with the difference in membrane 

thickness. From the comparison data we conclude that the ZIF-8 membrane utilized in this 

work likely possesses some sub-nano/nanosized intercrystalline defects but is of high 

integrity.  
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Figure 4.1 SEM micrograph top view (A) , cross section (B)  and XRD pattern (C) of the 

as-synthesized ZIF-8 Membrane 
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4.3.2 Ethylene/Ethane Permeation in Single Gas and Binary Mixtures 

4.3.2.1 Ethylene/Ethane Permeation 

Figure 4.2 presents ethylene and ethane single gas permeances and ideal selectivity 

as a function of temperature. Similar magnitude, monotonic permeance decreases for both 

ethylene and ethane (~ 30%) enables an approximately stable ideal C2=/C2- selectivity of 

2.3 over the temperature range studied. Figure 4.3 presents binary, equimolar 

ethylene/ethane permeance and separation factor under identical temperature and total feed 

pressure conditions as utilized in the single gas test. The permeances of ethylene and ethane 

in binary mixture present monotonic decreases of 31% and 34% respectively over the 

temperature range studied and selectivity increases from 2.0 to 2.1 at 100○C.  

 

 
Figure 4.2 Single Gas ethylene and ethane permeances and ideal selectivity as a function 

of temperature (25-100○C) at 1 atm total feed pressure 
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Figure 4.3 Binary equimolar ethylene/ethane permeances as a function of temperature 

(25-100○C) at 1 atm total feed pressure 

 

It is noted that the binary separation factor is ~ 20% lower than the ideal separation 

factor. This phenomenon has not yet been linked to specific theory. The decrease in 

separation is likely a result of cooperative adsorption phenomena where lateral electrostatic 

interactions induce a preferentially parallel configuration between C2 molecules as 

described in the theory by Do and Do (D. D. Do & Do, 2005), and presented in ZIF 

simulation studies by Wu et al. (Y. Wu, Chen, Liu, Qian, & Xi, 2014). At low pressures, 

the cooperative effect enhances ethane solubility in ZIF pores, however, the solubility 

enhancement is not mutual; the existence of ethane does not enhance the ethylene solubility 

(Y. Wu et al., 2014). In the binary C2 mixture, enhanced ethane sorption decreases the C2 

selectivity as compared to the ideal case.   

Figure 4.4 (A & B) shows the permeances and separation factors for single gas and 

binary ethylene and ethane separation tests with respect to total feed pressure. In both the 

gas and mixture separation tests, C2 permeance increases between 1-2 atm. Beyond 2 atm, 
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slightly differing permeation trends and notable differences in selectivity profiles are 

observed. To provide a fundamental understanding the observed permeation behavior, 

Table 4.2 presents approximate C2 diffusivities directly tabulated from the work of Caro 

and co-workers and solubilities calculated using the extended dual-site Langmuir 

parameters and IAST obtained from the same study (Bux, Chmelik, et al., 2011). It is 

important to note that ethylene and ethane intracrystalline diffusivities are independent of 

C2 molar composition (Bux, Chmelik, et al., 2011; Mueller, Hariharan, Zhang, Lively, & 

Vasenkov, 2016). The estimated permeability/selectivity values are calculated as the 

product of diffusivity and single gas/binary solubility as outlined by solution-diffusion 

theory (Wijmans & Baker, 1995) and should be interpreted qualitatively in terms of 

increases/decreases rather than relative magnitudes due to the units provided.  

As noted from Table 4.2, the increase in C2 permeance for both the single and 

binary gas tests between 1-2 atm (Figure 4.4 A & B) is attributed to the increases in C2 

diffusivity which outpace decreases in C2 solubility. C2 diffusivity increases/diffusive 

selectivity decreases as a function of pressure for both C2 molecules in ZIF-8 due to 

pressure induced rotational displacement of the imidazole ligand (Verploegh, Nair, & 

Sholl, 2015). Beyond 2 atm, the permeation trends are well predicted by calculated values 

from the solution-diffusion parameters generated from single crystal experiments. Large 

deviations from predicted behavior only occur for ethylene single gas permeance at 3/4 

atm and ethylene binary permeance at 2 atm. 

The single gas and binary C2 selectivity profiles starkly contrast (Figure 4.4 A & 

B). C2 diffusive selectivity is molar composition independent, therefore the differing trends 

observed are more strongly an effect of disparate single gas/binary C2=/C2 solubility 



  161 

behavior. The solubility data in Table 4.2 show that single gas ideal ethylene sorptive 

selectivity in ZIF-8 increases as a function of pressure while binary C2=/C2- sorptive 

selectivity is constant at 0.5 in favor of ethane due to cooperative adsorption effects as 

discussed above. The increasing C2=/C2- permselectivity shown in Figure 4.4A is correlated 

with the pressure dependency of ideal sorptive selectivity, but deviates from solution-

diffusion estimates (Table 4.2). The permeation data in Figure 4.4B agrees well 

qualitatively with the trends from the crystal experiments. The initial decrease in the binary 

C2=/C2 permeation separation factor (1-2 atm) followed by smaller decreases in selectivity 

beyond 2 atm are due to constant sorptive selectivity combined with the decreasing 

diffusive selectivity trend. 

 

 
 
 

A. 
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Figure 4.4 Ethylene and ethane single gas permeances/ideal selectivity (A) and binary 

equimolar permeances/separation factor (B) as a function of total feed pressure (1-4 atm, 

25○C)

B. 
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The deviations observed in membrane C2 permeation/selectivity versus that predicted by 

IRM crystal studies likely are most related to diffusivity. The membrane data is collected 

using steady-state permeation while transient uptake experiments are used to measure 

diffusivity in single crystals. The transient process is more heavily influenced by heats of 

adsorption especially for thermally insulating MOF materials (B. L. Huang et al., 2007). 

The ZIF-8 membrane may experience slightly different relative changes in C2 diffusivity 

as a function of pressure that may account for the deviations from values estimated from 

single crystal experiments. 

 

4.3.2.2 Hydrogen/C2 Permeation 

Binary H2/C2 permeation studies were also conducted as a function of temperature 

to gain a better understanding of ZIF-8 membrane hydrogen/light hydrocarbon separation 

ability. Figure 4.5A and 4.5B present H2/C2= and H2/C2- binary permeance as a function of 

temperature. In the H2/ethylene system, the opposite permeation behavior of hydrogen and 

ethylene as a function of temperature enables the H2/C2= separation factor to increase from 

3.5 to 5.3. A similar trend in permeance and separation factor is noted for the H2/Ethane 

system, enabling an increase in the H2/C2- separation factor from 7.3 to 11.6.  
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Figure 4.5 Binary equimolar H2/ethylene (A) and H2/ethane (B) permeances as a function 

of temperature (25-100○C) at 1 atm total feed pressure  

 

It is noted that hydrogen permeation increases as a function of temperature in the 

presence of C2 as shown in this work and C3 mixtures reported by Nair and co-workers 

(Eum et al., 2016). The hydrogen permeation behavior contrasts that observed during single 

gas H2 permeance and binary H2/CO2 permeance where hydrogen decreases as a function 

A. 

B. 
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of temperature (James & Lin, 2017; X. Zhang et al., 2014),.  Similar H2 permeation 

behavior is noted in MFI zeolite membranes. At low temperatures in the presence of 

strongly adsorbing hydrocarbons (C2+) (J. H. Dong, Lin, & Liu, 2000), hydrogen 

permeance increases as a function of temperature, but H2 permeance is negatively 

correlated with temperature in the single gas (J. H. Dong et al., 2000),(M. Kanezashi & 

Lin, 2009) because the presence of strongly adsorbed hydrocarbons in mixture feeds have 

a large effect on the diffusivity of the more lightly adsorbed H2. H2 permeance is reduced 

at low temperatures while hydrocarbon solubility is enhanced. This work illustrates that 

the presence of C2 molecules is also sufficient enough to reverse the temperature 

dependency of permeation for H2 in ZIF-8 membranes. 

 

4.3.3 Analysis of Ethylene/Ethane Adsorption and Diffusion  

  A fundamental study of C2 transport in ZIF-8 can be developed through analyses 

of C2 adsorption and diffusion as a function of temperature to better understand C2 

permeation characteristics. The transport behavior of both C2 gasses in ZIF-8 are 

articulated well by the Maxwell-Stefan (M-S) solution-diffusion model explicit in terms of 

membrane physical properties (Bux, Chmelik, et al., 2011) and can provide further insight 

into the observed phenomena: 

 

𝐽 =  
𝜌

𝐿
∗

𝜀

𝜏
∫ 𝐷𝑐

𝑑𝑙𝑛𝑃

𝑑𝑙𝑛𝑞
𝑑𝑃

𝑞𝑝𝑒𝑟𝑚.

𝑞𝑓𝑒𝑒𝑑

                                                                                                     (4.1) 
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where 𝜌, L 𝜀, and 𝜏 are membrane density (0.95 g/cm3) (Tan, Bennett, & Cheetham, 2010), 

thickness (5μm), porosity (0.47) (Pan et al., 2015) and tortuosity (1.732, assuming diagonal 

transmission down the cubic lattice of the ZIF-8 structure) (D. Liu et al., 2014) 

respectively. 𝑃 represents pressure. The M-S model which utilizes the thermodynamically 

corrected diffusion coefficient (Dc) is able to better predict diffusion in systems where 

adsorbent-adsorbate interactions are significant. Fickian diffusivity is highly loading 

dependent whereas, the Maxwell-Stefan treatment decouples drag effects from 

thermodynamic (sorption) effects and assumes that the mechanism of transport of 

molecules inside the micropores is by activated movement of adsorbed species along 

sorption sites (Krishna & van den Broeke, 1995). q is quantity adsorbed (mmol/g) derived 

from the Langmuir equation: 

 

𝑞 =  𝐶𝑠

𝑏𝑃

1 + 𝑏𝑃
                                                                                                                             (4.2) 

 

Cs is the capacity constant and b is the affinity constant. Upon integration of Equation 4.2, 

Equation 4.1 takes the form: 

 

𝐽 =
𝜌

𝐿

𝜀

𝜏
𝐶𝑠𝐷𝑐 ln (

1 + 𝑏𝑃𝑓𝑒𝑒𝑑

1 + 𝑏𝑃𝑝𝑒𝑟𝑚.
)                                                                                                (4.3) 

 

Figure 4.6 (A & B) shows the adsorption isotherms for ethylene and ethane on ZIF-

8 crystals from 25-100○C up to 1 atm for determination of the (thermodynamic) sorption 
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component of flux. The isotherms for both ethylene and ethane present linear Henry region 

behavior up to 1 atm. In the Henry pressure range where the product of the affinity constant 

and equilibrium pressure are negligible compared with unity, the Langmuir model can be 

reduced to Henry’s Law and the product of Cs and b is Henry’s constant (K). Equation 4.3 

can be simplified to: 

 

𝐽 =
𝜌

𝐿

𝜀

𝜏
𝐷𝑐𝐾(𝑃𝑓𝑒𝑒𝑑 − 𝑃𝑝𝑒𝑟𝑚.)                                                                                                   (4.4) 

 

Table 4.3 presents Henry’s constants for ethylene and ethane in ZIF-8 obtained from the 

isotherm slopes in Figures 4.6A and 4.6B. The Henry’s constants obtained are comparable 

to those collected by Hartmann (Böhme et al., 2013) and Koros (C. Zhang et al., 2012). It 

is noted that ethane presents greater solubility in the ZIF-8 pores. Preferential adsorption 

of paraffin over olefin gasses is common in non-polar microporous materials where 

molecular polarizability is the main factor attributable to adsorption strength (Bux, 

Chmelik, et al., 2011; C. Zhang et al., 2012).  
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Figure 4.6 Ethylene (A) and ethane (B) isotherms at 25, 50, 75 and 100○C respectively 

 

 

 

 

 

 

B. 

A. 
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Table 4.3 Ethylene and ethane Henry's constants and transport diffusivities as a 

Function of Temperature 

  

Henry's Constant 

(mmol/g.bar) Transport Diffusivity Dc (m
2/s) 

Temperature (oC) C2= C2- C2= C2- 

25 1.45 2.41 9.6 x 10-11 2.5 x 10-11 

50 0.9 1.39 1.4 x 10-10 4.0 x 10-11 

75 0.54 0.8 2.0 x 10-10 6.2 x 10-11 

100 0.4 0.63 2.4 x 10-10 7.0 x 10-11 

 

 

Although ethane presents greater solubility in the ZIF-8 framework, diffusivity is 

the dominating component that enables ethylene permselectivity in ZIF-8 (Chmelik et al., 

2012). C2 diffusivity values are calculated from the steady-state single gas experimental 

flux values in Figure 4.2 and parameters listed using Equation 4.4. Table 4.2 also tabulates 

the calculated diffusivity values as a function of temperature. Table 4.4 compares 

diffusivity values obtained in previous studies at 35○C to the interpolated value of Dc 

calculated from Equation 4.5 in this work. The thermodynamically corrected diffusivity 

values for ethylene (1.1 x 10-10 m2/s) and ethane (3.1 x 10-11 m2/s) calculated at 35○C in 

this work are in general agreement with the diffusivity values collected in literature (Bux, 

Chmelik, et al., 2011; Pan et al., 2015; C. Zhang et al., 2012).   
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Table 4.4 Calculated thermodynamically corrected diffusivities of ethylene and 

ethane in ZIF-8 at 35oC 

  Transport Diffusivity (m2/s) 

  
Wicke-Kallenbach 

Mixed-matrix membrane 
6  

IR 

Microscopy 14  

  This work Pan et al.15     

Ethylene 

1.1 ± 0.6 x 10-

10 
1.9 x 10-10 3.6 ± 1.6 x 10-11 5 x 10-11 

Ethane 

3.1 ± 1.3 x 10-

11 
2.4 x 10-11 8.8 ± 2.7 x 10-12 1 x 10-11 

 

 

The transport behavior of both C2 components as a function of temperature can be 

elucidated through analysis of the temperature dependency of both diffusivity and 

solubility through the Arrhenius equation: 

 

𝐷𝑐 = 𝐷𝑜𝑒
−𝐸𝑑
𝑅𝑇                                                                                                                                  (4.5)  

  

and van’t Hoff equation: 

 

𝐾 = 𝐾𝑜𝑒
−∆𝐻𝑠

𝑅𝑇                                                                                                                                  (4.6)  

 

respectively. D0 and K0 are pre-exponential factors for each equation, Ed is activation 

energy of diffusion and Hs is heat of adsorption. Arrhenius (Ln Dc vs 1000/T) and van’t 

Hoff (Ln K vs 1000/T) plots are shown in Figure 4.7 (A & B) and the regression gives 

activation energy of diffusion values of 11.7 and 13.2 kJ/mol, and heat of adsorption values 

of 16.2 and 17.0 kJ/mol,  respectively, for ethylene and ethane. For C2 transport in ZIF-8, 
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the respective activation energies of diffusion are less than the heats of adsorption, meaning 

that the energy required to move a molecule from its equilibrium position at an initial 

adsorption site to a new adsorption site is less than the energy released upon adsorbing. 

Thus, C2 permeance is greater function of exothermic adsorption interactions which well 

explains the negative correlation between permeance and temperature observed in Figures 

4.2 & 4.3.  
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Figure 4.7 Arrhenius activation energy of diffusion (A) and van’t Hoff plots (B) for 

ethylene and ethane 

 

In terms of the C2 ideal separation factor presented earlier in Figure 4.2, a stable 

ideal separation factor of 2.4 is maintained. The observed phenomenon is due to similar 

A. 

B. 
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decreases in ethane and ethylene permeances as a function of temperature. As temperature 

increases, similar magnitude (< 5% difference) increases in diffusivity and decreases in 

solubility occur for ethylene and ethane while permeating through the ZIF-8 framework 

which enables constant permselectivity. 

Equation 4.5 models diffusivity in terms of a pre-exponential factor and an 

energetic (activation energy) component. The energetic contribution to diffusivity is a 

function of the ratio of permeating gas molecular diameter (van der Waals diameters: C2= 

= 0.359 nm, C2- = 0.372 nm) to the pore aperture diameter (λ = dm/dp) and the pre-

exponential term takes into consideration intracrystalline partitioning or the entropic 

contribution to diffusion. Larger, non-permanent gasses such as C2+ molecules experience 

reduced rotational, translational and vibrational degrees of freedom upon passage through 

interconnected ultramicropore (dp < 0.5 nm) windows of adjacent cavities (D. M. Ruthven 

et al., 1973; Xiao & Wei, 1992). As a result of repulsive forces in addition to desorption 

energy, the passage of large molecules through ultramicropore windows can be considered 

a rate limiting process involving an activated transition state (D. M. Ruthven et al., 1973; 

D M Ruthven & Derrah, 1972). The pre-exponential factor for the specific case of 

intercrystalline partitioning in the ZIF-8 system can be modeled by: 

 

𝐷𝑜 = 𝑒𝛾2
𝑘𝑇

ℎ
𝑒

𝑆𝐷
𝑅                                                                                                                           (4.7) 

 

where γ is the average diffusive jump length (approximately equal for C2 molecules) 

(Rungta et al., 2012; A. Singh & Koros, 1996) , SD is the activation of entropy, k is 
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Boltzmann’s constant and h is Plank’s constant. Ethylene/ethane diffusive selectivity or 

DEthylene/DEthane can be expanded in terms of energetic and entropic contributions 

respectively:   

 

𝐷𝐸𝑡ℎ𝑒𝑛𝑒

𝐷𝐸𝑡ℎ𝑎𝑛𝑒
= 𝑒

Δ𝑆𝐷,𝐸𝑡ℎ𝑒𝑛𝑒/𝐸𝑡ℎ𝑎𝑛𝑒

𝑅 ∙ 𝑒−
𝐸𝑎,𝐸𝑡ℎ𝑒𝑛𝑒−𝐸𝑎,𝐸𝑡ℎ𝑎𝑛𝑒

𝑅𝑇                                                                (4.8) 

 

where the first term on the right of the equal sign is Do,Ethene/Do,Ethane (entropic selectivity) 

or the ability of a molecular sieving material to exclude molecules based upon shape and 

the second term is the ratio of activation energies (energetic selectivity) which is based 

upon size exclusion.  

Table 4.5 tabulates the energetic and entropic parameters for C2 diffusive selectivity 

in ZIF-8 which contains a flexible sodalite structure and compares the parameters to those 

obtained for ultramicroporous molecular sieving Zeolite 4A (rigid sodalite structure) 

(Hayrettin Yucel- & Rutwen, 1980; Douglas M. Ruthven & Reyes, 2007) and a Matrimid® 

derived carbon molecular sieve (CMS) membrane (Rungta et al., 2012) (rigid slit-like pore 

structure) to elucidate the relationship between ultramicropore physical properties on the 

energetic and entropic effects on C2 diffusive selectivity. Comparison of C2 Ed values 

between materials shows that the energy required for C2 diffusion is the lowest in ZIF-8. 

Although ZIF-8 posseses a smaller nominal crystallographic pore aperture than that of 

Zeolite 4A, the lower Ed for C2 in ZIF-8 demonstrates that the effective pore aperture, 

derived from molecular sieving cut-off experiments, is most appropriate for determining 

the parameter λ in ZIFs. Temperature, pressure and adsorption induced disortion of the 
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flexible metal-ligand bonds and rotational displacement of methyl group on the imidazole 

moiety enables uptake and diffusion of molecules with larger diameters than the 

crystallographic ZIF-8 pore aperture (Peralta et al., 2013; Verploegh et al., 2015; K. Zhang 

et al., 2013). In contrast, relatively rigid Zeolite 4A and Matrimid derived CMS materials 

are less amenable to pore distortion and greater energy is required for diffusion.  
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Comparison of the relative values of Ed for C2 molecules shows that the energetic 

contribution to C2 diffusive selectivity is most similar in ZIF-8 and Zeolite 4A as compared 

to the Matrimid derived CMS which shows an inverted energetic diffusive selectivity. 

Similar relative Ed values between ZIF-8 and Zeolite 4A is likely due to their similar pore 

structure (~ 11 Å pore cages interconnected by ultramicropore windows) and the similar 

size of the diffusing C2 molecules. Both C2 molecules present λ values < 1 for ZIF-8 and 

Zeolite A which prevents substantial energetic-based molecular sieving for C2 in either 

material. Additionally, Zeolite 4A is assigned actual crystallographic pore dimensions of 

0.38 x 0.42 nm due to non-idealities in the configuration of the 8-ring oxygen arrangement 

of the zeolitic pore window (Douglas M. Ruthven & Reyes, 2007). Thus, the averaged 

apertue size is slighlty larger than 0.38 nm and closer to the effective ZIF-8 aperture 

diameter. 

The entropic selectivity for C2 molecules in the Matrimid® derived CMS membrane 

is 16.2 and ~2.0 for the zeolitic materials. Due to its planar shape, ethylene is 16 times 

more likely than the bulkier ethane molecule to orient itself in a configuration such that it 

can diffuse through the rigid CMS slit-like pore. Ethylene’s rotational, translational and 

vibrational degrees of freedom are less restricted upon diffusion into the CMS pore as 

compared to ethane which is more restricted and has a higher probability of rejection and 

thus higher resolution C2 molecular sieving (Rungta et al., 2012). In the zeolitic structures 

this probability is decreased by a factor of 8 because the zeolitic pore apertures compared 

are not optimally shaped for efficient entropic discrimination of C2 molecules.  
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4.4 Conclusions 

 Ethylene/ethane transport properties and separation characteristics were studied in 

single and binary gas mixtures as a function of temperature and pressure in a high quality 

ZIF-8 membrane. The activation energies of diffusion for ethylene and ethane (11.7 kJ/mol 

& 13.2 kJ/mol) are less than their respective heats of adsorption (16.2 & 17.1 kJ/mol). Pore 

flexibility enables low Ed values and λ values < 1 for both C2 molecules limits energetic 

diffusive selectivity. The zeolitic pore shape of ZIF-8 limits entropic-based diffusive 

selectivity. Ethylene/ethane permeation selectivity is approximately 20% lower in the 

binary mixture as compared to ideal permselectivity due to cooperative adsorption effects 

which enhances ethane adsorption in the presence of ethylene. In binary mixtures with 

hydrogen, the presence of C2 molecules decreases hydrogen permeability and inverts the 

temperature dependency of hydrogen permeation from adsorption to diffusion controlled. 

In pressure dependent single and binary C2 permeation tests, rotational ligand displacement 

increases C2 diffusivity/permeability and decreases ethylene diffusive selectivity. Ideal C2 

selectivity shows an increase with pressure while the binary C2 separation factor decreases 

then stabilizes due to stark contrasts in single gas and binary C2 adsorption isotherms.  
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CHAPTER 5 

EX SITU TIME-BASED CHARACTERIZATION AND LIGHT HYDROCARBON 

GAS PERMEATION STUDY OF ZIF-8 MEMBRANES MODIFIED VIA 

MEMBRANE SURFACE LIGAND EXCHANGE 

 

 

5.1 Introduction 

Chapter 4 elucidated the ZIF-8 membrane transport characteristics of ethylene and 

ethane in single gas and binary mixtures. Although the nominal pore diameter of ZIF-8 is 

smaller than the van der Waals diameters of both molecules, pore flexibility limits C2 

diffusive selectivity and ethane is more soluble in the ZIF framework. Thus, C2 

permselectivity is limited in ZIF-8. Several opportunities exist to design, synthesize or even 

modify new or existing prototypical ZIFs to enhance light hydrocarbon separations as 

outlined in Chapter 1. The diverse number of linkers and metal nodes available for ZIF 

syntheses enables a myriad of structures that can be formed through de novo or 

postsynthetic routes. While reticular chemistry can be employed to form new structures 

designed for a specific application, there are many variables to control during the synthesis 

process which can lead to arduous, time consuming trial and error iterations to obtain the 

optimal structure for a specific application. 

An attractive alternative to fully custom reticular synthesis for framework tuning is 

mixed linker syntheses to form hybrid ZIFs. Hybrid ZIFs incorporate the functionality of 

multiple ZIFs, often over a wide range of linker compositions by amalgamating the single 

linkers of two different ZIFs de novo followed by traditional solvothermal crystal growth. 

Hybrid ZIFs such as ZIF-7-8 (Thompson et al., 2012), ZIF-8-90 (Eum et al., 2015; 
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Thompson et al., 2012) and ZIF-7-90 (Rashidi, Blad, Jones, & Nair, 2016) have displayed 

chemical and physical properties that correspond to the relative amount of linker within the 

hybrid framework. The corresponding studies demonstrated the highly tunable nature of 

ZIF framework properties showing effective control the adsorption and/or diffusion 

properties of various molecules interacting with the framework.  

As discussed in chapter 1, another quite facile approach to framework tuning and 

formation of mixed linker ZIFs is postsynthesis modification, specifically solvent assisted 

ligand exchange (SALE). SALE places a new linker in solution with already formed ZIF 

crystals that are composed of a different linker. The resulting daughter ZIF is topologically 

identical to the parent and contains a fraction of the new linker. This method overcomes 

some of the compositional control limitations of mixed linker syntheses because the effects 

of relative linker solubility in the synthesis solvent and metal site coordination competition 

experienced in de novo, mixed-linker syntheses are eliminated when utilizing SALE.  

A number SALE studies have been performed to incorporate carboxylate or 

imidazole linkers with new functionalities within MOF crystals including MIL, highly 

stable UIO and ZIF structures (Karagiaridi et al., 2014; M. Kim, Cahill, Fei, et al., 2012; 

M. Kim, Cahill, Su, Prather, & Cohen, 2012). These studies have provided insight on the 

effects of SALE time (M. Kim, Cahill, Su, et al., 2012), temperature (Jayachandrababu et 

al., 2017; Karagiaridi, Bury, Sarjeant, Stern, Farha, & Hupp, 2012), linker concentration 

(Karagiaridi, Lalonde, et al., 2012), incoming linker functionality/size (Jiang et al., 2015; 

Karagiaridi, Bury, Sarjeant, Stern, Farha, & Hupp, 2012; Lalonde et al., 2015; C. Liu et al., 

2016) and solvent (Karagiaridi, Lalonde, et al., 2012) on the resultant changes in 
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composition and physical properties of the exchanged ZIF crystals. Further studies have 

sought out to observe specifically enhance the properties of MOFs and ZIFs through SALE. 

Yang and co-workers enhanced the hydrothermalstability properties of ZIF-8 through 

incorporation of the more hydrophobic 5,6 dimethylbenzimidazole ligand for 

water/butanol separation (X. Liu et al., 2013), Zhang et al. demonstrated hydrostability 

enhancement of ZIF-8 membranes using the same linker through membrane surface ligand 

exchange (H. Zhang et al., 2017). In ZIF-8 crystal SALE experiments with Imca (ZIF-90 

linker) exchange, Nair and co-workers noted that the SALE process is diffusion-limited 

and leads to formation of core-shell morphologies under moderate postsynthetic conditions 

via diffusion of 2-imidazolecarboxaldehyde (Imca) into the crystal lattice and counter-

diffusion of the original 2-methylimidazole (2-MIm) out of the crystal structure 

(Jayachandrababu et al., 2017). The study provided a better mechanistic understanding of 

the SALE process and illustrated the enhancement of water uptake with respect to increased 

incorporation of the relatively hydrophilic Imca ligand. This is one of few mechanistic 

studies on the topic.  

In terms of gas separation property enhancement, most studies highlight CO2 

adsorptive separations. Hu et al. demonstrated the ability to enhance the CO2 working 

capacity and IAST CO2/N2 separation of UIO-66 through ligand exchange with metalated 

1,2,4,5-benzenetetracarboxylic acid (Z. Hu et al., 2015) and Hong et al. enhanced CO2/CH4 

adsorptive separation in UIO-66 through ligand exchange with alkanedioic acid (D. H. 

Hong & Suh, 2014).  
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The aforementioned studies have provided a better understanding of the SALE 

process and its potential to enhance the separation properties of MOFs, however there is 

still much room for further elucidation of the ligand exchange mechanism and there has 

yet to be a detailed fundamental study of its effects on ZIF membrane-based gas 

separations. An analysis of both physical property/structural changes and gas separation 

changes as a function of ligand exchange time has yet to be conducted, but can give further 

insight into the process and its efficacy for gas separation enhancement.  

In this work we will perform a time-based ex-situ study of ZIF-8 membrane surface 

ligand exchange (MSLE) with 5,6 DMBIm as the exchanging ligand. The membrane 

surface ligand exchange reaction (MSLER) time and temperature will be controlled and 

changes in structure property-relationships will be examined through physical 

characterization analyses and light hydrocarbon gas separations. The larger 5,6 DMBIm 

ligand was chosen as the exchanging ligand to potentially enhance hydrogen/light 

hydrocarbon and/or light olefin/paraffin gas phase separations.  

 

5.2 Experimental 

5.2.1 ZIF-8 Membrane Synthesis and Modification 

 As-synthesized ZIF-8 membranes were prepared with modifications to our 

previously reported method, however α-alumina substrate fabrication and preparation was 

identical to our previous reports (James & Lin, 2017; James, Wang, Meng, & Lin, 2017). 

ZIF-8 crystals for membrane seeding were prepared according with modifications to the 

method of Lai and co-workers (Pan et al., 2012). All chemicals were purchased from Sigma 
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Aldrich (U.S.A) unless otherwise stated. 1.17 g of zinc nitrate hexahydrate 

[Zn(NO3)∙6H2O] (98%) was dissolved in 8 mL of deionized water and 22.7 g of 2-

methylimidazole (2-MIm) was dissolved separately in 80 mL of deionized water. The 

separate dissolved solutions were stirred for 10 minutes. The imidazole solution was 

poured into the zinc solution and stirred for 5 minutes. After mixing, the resultant white 

solution was centrifuged (10,000 rotational centrifugal force) and washed 1 time in 50% 

(v/v) water/methanol and 2 times in 99% methanol (BDH, U.S.A). The resulting white 

crystals were washed and centrifuged in methanol then dried under vacuum at room 

temperature at 60 kPa for 24 hours. 0.04 grams of dried, ground ZIF-8 crystals were placed 

in glass vial containing 100 mL of methanol to form a 0.05 wt% colloidal ZIF-8 seeding 

solution.  

 Slip-cast coating of the prepared α-alumina substrate was conducted by bringing 

the substrate into contact with the seeding solution for 20 seconds, the support was then 

dried in ambient air for 10 minutes and then the coating procedure was repeated once more. 

The seeded supports were placed in a furnace which was ramped to 95○C by 0.3○C/min, 

held at constant temperature for 3 hours and subsequently ramped down to room 

temperature at the same rate. Secondary growth was performed by placing the seeded 

support vertically in a Teflon holder with the seeded side slightly tilted face-up and 

submerged in a growth solution containing 0.11 g of [Zn(NO3)∙6H2O] and 2.27 g of 2-

methylimidazole in 40 mL of deionized water within a Teflon lined stainless steel autoclave 

and placed in an oven at 130○C for 8 hours, secondary growth was repeated as needed 

subsequently for 7.5 hours to seal defects.  After synthesis the ZIF-8 membrane was 
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washed in methanol for 12 hours, then allowed to dry under ambient conditions for 24 

hours. After drying the membrane is place in solution with 4.54 grams of 2-MIm in 40 mL 

of deionized water, sealed in an autoclave and heated to 130○C for 4 hours. After ligand 

treatment, the membrane was washed and dried as reported above.  

 Post-synthesis modification of ZIF-8 membranes with 5,6 dimethylbenzimidazole 

was conducted using the solvent assisted ligand exchange method utilized in the ZIF-8 

crystal study by Yang and co-workers (X. Liu et al., 2013) and modified in our previous 

work for supported ZIF-8 membranes (H. Zhang et al., 2017). 0.1 g of 5,6 

Dimethylbenzimidazole (5,6 DMBIm) was added to a glass beaker, dissolved in 20 mL of 

methanol then placed under stirring. After 5 minutes, 0.1 grams of triethylamine was added 

into the 5,6 DMBIm solution using a burette. The solution was allowed to stir for 5 minutes. 

A dried ZIF-8 membrane was placed in a Teflon holder and held vertically, the holder was 

then placed into the autoclave liner and submerged by the 5,6DMBIm solution. The liner 

was sealed in the stainless steel autoclave for reaction.  

Time-dependent membrane surface ligand exchange (MSLER) experiments were 

performed by reacting a single ZIF-8 membrane in fresh 5,6DMBIm solutions for a total 

of 30 minutes, 5 hours, 10 hours and 15 hours respectively. A single membrane was utilized 

to avoid confounding effects. After each reaction, the membrane was washed in methanol 

for 2 hours and dried at room temperature for 24 hours. After drying, characterization then 

gas permeation were performed. After gas permeation, the membrane was placed under 

helium flow at 2 bar for 12 hours to remove adsorbed molecules, then washed in methanol 

for 12 hours to clean the surface, dried for 12 hours then placed in the 5,6 DMBIm solution 
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for the subsequent reaction time. Reactions were performed isothermally at 60○C or 75○C 

using separate membranes of similar quality.  

 

5.2.2 Characterization  

Membrane surface imaging of ZIF-8 crystal and membrane surface morphology 

were performed using an XL30 Environmental FEG (FEI) scanning electron microscope 

(SEM) with an accelerating voltage of 10 kV. ZIF-8 membrane crystallinity was analyzed 

using a SIEMENS D5000 x-ray diffractometer (XRD) at 30 kV, 30 mA with a scan speed 

of 2○/min for 2θ, using Cu Kα radiation (λ = 0.1543 nm). Samples underwent 

gold/palladium deposition prior to visual analyses to prevent surface charging.  

Water contact angle analyses of as-synthesized and modified ZIF-8 membranes 

were conducted using a Kruss Easy Drop Contact Angle apparatus equipped with a CCD 

camera. Measurements were conducted at ambient pressure with temperatures ranging 

between 21-23○C. A 4μL water droplet was contacted with the surface of each modified 

membrane at 5 different points on the membrane surface, each drop was allowed to settle 

for 5 minutes before taking contact angle measurements. Drop Shape Analyzer software 

was used to measure the contact angle. The average of the 5 measurements and the error 

bars represent the standard deviation in the mean. Solution 1HNMR experiments were 

performed using a Bruker 400 MHz spectrometer. As-synthesized and modified membrane 

layers were scraped from the support and fully digested in a 99% solution of d4-acetic acid 

(CD3CO2D) with TMS standard. To determine the fraction of 5,6 DMBIm in the sample, 

the peak area of the methyl groups at the 5 and 6 position of 5,6 DMBIm peak was 
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normalized by the sum of the HMIm methyl peak area and the 5,6 DMBIm peak area, 

accounting for 2 methyl groups per 5,6 DMBIm ligand.  

 

5.2.3 Gas Permeation 

In gas permeation tests, the α-alumina supported ZIF-8 and modified ZIF-8 

membranes were sealed into a custom-fabricated stainless steel permeation cell using 

VITON O-rings (O-rings West, U.S.A.). The effective membrane permeation area after 

sealing was 2.27 cm2. All tests were conducted under binary (50:50) feed conditions at a 

total feed pressure of 2 atm at room temperature (23.6-25○C) using the Wicke-Kallenbach 

technique (James et al., 2017). Brooks mass flow controllers were utilized to control the 

total feed flow rate of 100 mL/min (50 mL/min of each gas). The nitrogen sweep flow rate 

was set to 50 mL/min for the H2 and C2 binary pairs and a sweep flow of 10mL/min was 

utilized for the C3=/C3- binary pair. Volumetric flow rates correspond to measurements 

collected at ambient temperatures ranging between 23.6-25○C and atmospheric pressure. 

Each binary pair was allowed to permeate for 2 hours or longer (4 hours for C3=/C3- (Pan 

et al., 2015)), until a steady state permeance was reached before collecting permeation 

readings.  

The composition of the retentate and sweep sides of the membrane were analyzed 

using an Agilent 7890 A gas chromatograph (TCD detector) with an Alltech Haysep DB 

100/120 packed column (dimensions: 9.14 m L, 3.2 mm O.D.) for the H2 and C2 binary 

pairs and a silica gel column (dimensions: 1.8 m L x 3.2 mm O.D.) when analyzing the 

C3=/C3- binary permeation mixture. In each permeation experiment, triplicate runs were 
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performed and the error bars represent the standard error of the mean for permeation and 

selectivity/separation factor measurements reflected in experimental plots.   

 

5.3 Results and Discussion  

5.3.1 Time and Temperature Effects of MSLER on ZIF-8 Membrane Physical Properties 

 Figure 5.1 shows SEM micrograph of an as-synthesized ZIF-8 membrane 

approximately 5 μm in thickness (Figure 5.1 A&B) and membranes after MSLER 

modification with 5,6 DMBIm after 15 hours at 60○C (Figure 5.1 C) and 75○C (Figure 5.1 

D) respectively. No distinguishable changes in the membrane crystals’ size, outer 

morphology or orientation are apparent from SEM images after modification for 15 hours. 

Micrographs of membranes reacted at intermediate times are not shown to avoid 

redundancy. This finding is consistent with previous ZIF-8 crystal and membrane studies 

(X. Liu et al., 2013; H. Zhang et al., 2017) using 5,6 DMBIm under similar reaction 

conditions (60○C, 15 hours) and shows that reaction at 75○C also maintains the outer 

surface morphology/integrity and orientation of the crystals. This also denotes that 

significant framework dissolution did not occur during the ligand exchange.  
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Figure 5.1 SEM micrograph of as-synthesized ZIF-8 membrane (A), as-synthesized 

membrane cross section (B) and membranes after 15 hours of MSLER at 60○C (C) and 

75○C (D) 

 

 

Evidence of membrane surface ligand exchange is presented in Figure 5.2 which 

shows static contact angles of as-synthesized and modified ZIF-8 membranes with respect 

to ligand exchange time and grouped by MSLER reaction temperature. As shown in Figure 

5.2 and graphically illustrated in Figure 5.3, the rate of contact angle increase is greatest 

during the first 30 minutes of reaction then exhibits lesser extent increases thereafter. The 

increase in water contact angle is due to the more hydrophobic nature of the 5,6 DMBIm 

ligand as compared to HMIm. Furthermore, the contact angle trend shows that the surface 

A 

 

D C 

 

B 
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sites are heterogeneously covered with the new 5,6 DMBIm linker after short reaction time, 

then the density of new ligand coverage converges to a greater value at longer reaction 

times.   

 

 

 0 hrs       0.5 hrs                 5 hrs            10 hrs                  15 hrs 

 
Figure 5.2 Static water surface contact angle micrographs of ZIF-8 membranes with 

respect to MSLER time at 60○C (top row) and 75○C (bottom row) 

 

 

 

 

 
Figure 5.3 Plot of water contact angle with respect to MSLER time at 60○C and 75○C 
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To analyze internal microstructural changes occurring in the ZIF-8 membrane 

during the MSLER process, Figure 5.4 shows XRD patterns of ZIF-8 membranes before 

MSLER and as a function of MSLER time at 60○C (A) and 75○C (B) respectively. As the 

MSLER reaction proceeds, notable changes in the lowest angle ZIF-8 (011) peak intensity 

relative to that of alumina are presented at both temperatures which is indicative of 

microstructural change. All other ZIF peaks retained their intensities with respect to the 

alumina peaks Nair and co-workers also observed changes in the low angle peak intensities 

of ZIF-8 crystals exchanged with 2-imidazolecarboxaldehyde (ZIF-90 linker) during 

SALE experiments and noted that the observations were due to changes in the unit cell 

parameters while preserving the SOD structure (Jayachandrababu et al., 2017).  

Figure 5.5 further illustrates/quantifies the changes in relative intensities shown in 

Figure 5.4 and plots the change in ZIF-8 XRD peak intensity relative to Al2O3 at time t and 

is normalized by the same ratio at time 0.  The peak ratio reaches a minima after 5 hours 

then increases during the 60○C experiment and for the 70○C experiment, the peak intensity 

reaches a minima after 30 minutes of reaction then increases. The changes in x-ray intensity 

of the (011) peak is due to incorporation of the new 5,6 DMBIm linker within the internal 

framework surface along the corresponding plane. Changes only occurring at the outer 

membrane crystal surface likely would not be exhibited in the XRD patterns.  
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Figure 5.4 XRD patterns of as-synthesized ZIF-8 membranes and membranes after 

MSLER at 60○C (A) and 75○C (B) as a function of time 
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Figure 5.5 ZIF-8 (011)/Al2O3 (012) peak intensity ratio at time t normalized by the ratio 

at time 0 as a function of MSLER time for ZIF-8 membranes modified at 60 and 75○C 

respectively 

 

During the initial period of x-ray intensity decline we postulate that the internal 

microstructure of the parent ZIF-8 structure loses periodicity upon incorporation of 5,6 

DMBIm.  After further reaction, the ZIF internal surface likely becomes more ordered with 

the new incoming ligand and reaction at higher temperature enables faster organization to 

a more ordered structure. In fact, after 10 hours of MSLER at 75○C, the (011) peak intensity 

is greater than the peak intensity of the as-synthesized membrane. This is due to 

incorporation of new ligand which carries a higher electron density benzene substituent. 

Farha and co-workers noticed an identical trend when functionalizing NU-1000 with 

perfluoroalkanes of varying lengths through solvent assisted linker incorporation; longer 

alkane chain lengths exhibited greater XRD peak intensity at low angles due to increased 

electron density along the corresponding plane (Deria et al., 2013).  
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The XRD phenomena observed in this work is partially analogous to the assembly-

disassembly-organization-reassembly (ADOR) process studied in zeolites (Roth et al., 

2013; Wheatley et al., 2014). Under specific reaction conditions time-dependent ADOR 

experiments show initial crystallinity reductions at short reaction times then a return in 

crystallinity after long reaction periods with a shift in the main XRD reflection (Wheatley 

et al., 2014). The ADOR process involves zeolite framework dissolution and leads to 

daughter zeolites with new topologies, while MSLE maintains the topology of the parent. 

Despite the noted differences, similar time-based XRD behavior between both processes 

may substantiate that ZIFs undergo some form of disassembly, organization and 

reassembly steps during the MSLER, but in a manner such that topology is conserved.  

 1HNMR was performed to quantify the fraction of new linker incorporated in the 

ZIF structure and is graphically presented as a function of time in Figure 5.6. The exchange 

kinetics are greatest initially which is attributable to an initial exchange with surface 

ligands and is corroborated by the large initial increase in surface contact angle shown in 

Figure 5.1. The subsequent exchange kinetics are slower than initially but show 

acceleration between 5-15 hours of exchange.  Exchange ratios of 1.3% and 1.6% were 

observed after 15 hours of reaction at 60○C and 75○C respectively. The MSLER exchange 

kinetics shown are much slower than that observed during ZIF-8 crystal ligand exchange 

with Imca which shows approximately 20% new linker incorporation after 16 hours of 

reaction (Jayachandrababu et al., 2017).  The difference is due to faster diffusion of the 

smaller Imca linker into the ZIF-8 structure as compared to that of the bulkier 5,6 DMBIm. 

Additionally, the thin film studied in this work is a compact polycrystalline structure; not 
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all crystal facets are exposed to the reaction solution and thus also leads to slower surface 

exchange rates.  

 

 
Figure 5.6 Composition analysis of modified ZIF-8 membrane with respect to MSLER 

time obtained by solution 1HNMR 

 

From the characterization data collected we propose a preliminary mechanism for 

further refinement. Upon initial contact with the highly concentrated 5,6 DMBIm ligand 

solution, ligand exchange occurs mainly at the membrane surface where hydrophobicity is 

increased. As time progresses, 5,6 DMBIm at the outer surface of the membrane breaks its 

initial bonding at the outer surface of the membrane crystals and proceeds inside the 

framework. Although 5,6 DMBIm is a large molecule, it can proceed into the large main 

cage of the ZIF-8 structure which is 11.6 Å in diameter, this is plausible as 1,2,4 

Trimethylbenzene (7.6Å) has shown uptake in ZIF-8 due to the flexible nature of the 

framework (K. Zhang et al., 2013). The large ZIF-8 pore facilitates a large pathway for 
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diffusion of 5,6 DMBIm into the structure and counter-diffusion of HMIm out of the 

framework.  

Significant changes in XRD intensity along the 011 plane (d-spacing of 11.6 Å) 

because it is the largest and most periodic plane in which the 5,6 DMBIm ligand can travel 

and exchange with original HMIm ligands. Initial exchange on the inner pore surface 

seemingly disrupts the periodicity of the 011 plane causing the decreases in relative XRD 

intensity shown in Figures 2 and 3. We postulate that after 5 hours of exchange at 60○C 

and 30 minutes of exchange at 75○C, the 011 plane becomes increasingly ordered with the 

new linker which leads to increases in 011 XRD peak intensity/periodicity. The difference 

in time to re-ordering is due to the faster diffusion and exchange occurring at higher 

temperatures.  

Between 5-15 hours of reaction the acceleration in the ligand exchange rate 

exhibited in NMR suggests that there is a driving force for further incorporation of 5,6 

DMBIm. SALE materials are often not well mixed (Jayachandrababu et al., 2017) and the 

observed phenomenon may suggest that the modified ZIF pore structure along the 011 

plane exists in a high energy, unstable or metastable state that can attain lower free energy 

(stabilization) after the inner surface 5,6 DMBIm concentration is increased and/or the 

linker distribution is re-organized. The observation is directly correlated with the times in 

which Figures 5.4 & 5.5 present increases in XRD intensity and more strongly supports 

our postulation that the 011 plane becomes more ordered with an increasing amount of 5,6 

DMBIm as MSLER time increases.   
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5.3.2 Effects of MSLER Time and Temperature on Light Hydrocarbon Gas Permeation 

Figure 5.7 (A&B) shows binary ethylene/ethane permeance and separation factor 

as a function of time in membranes modified at 60 and 75○C respectively. After 30 minutes 

of modification, the ethylene and ethane permeances present notable declines. The 

permeation changes are concomitant with the initial exchange of ligand at the surface of 

the ZIF-8 membrane crystals and corresponds to the point at which the exchange kinetics 

are greatest. After 30 minutes of exchange, the relative changes in ethylene/ethane 

permeance enable an increase in separation factor from 2.1 to 2.2 after 30 minutes of 

MSLER at 60○C while the separation factor remains constant for the membrane reacted at 

75○C. As the MSLER time proceeds, more monotonic decreases in permeance are observed 

for both membranes. The extent of C2 separation factor increase and permeation decline 

corresponds to the extent of 5,6 DMBIm incorporation. After 15 hours of MSLER, the 

membrane reacted at 60○C gives a 68% decrease in ethylene permeance and the separation 

factor remains stable at 2.2. The membrane reacted at 75○C which contains a higher 5,6 

DMBIm linker content shows an 82% decline in ethylene permeance and the separation 

factor increases from 2.2 to 2.4.  
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A.                     

  
 

   B. 

 
Figure 5.7 Ethylene/ethane permeance and separation factor as a function of MSLER 

time at 60○C (A) and 75○C (B) 

 

From the current findings, incorporation 5,6 DMBIm into the ZIF-8 structure using 

the current synthesis parameters does not provide significant enhancement for C2 

olefin/paraffin separation. Permselectivity is a function the relative diffusivity and 

solubility of the permeating gasses. From the ZIF-7 work of Kapetijn and co-workers (Van 
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Den Bergh et al., 2011) we can deduce that ethylene and ethane solubility are similar in 

benzimidazole containing ZIF frameworks at the current feed pressure. It is reasonable to 

conclude that the current modification provides limited enhancement because the C2 

diffusivities are slowed to similar extents upon incorporation of the new bulkier linker.  

 Figure 5.8 (A&B) shows binary hydrogen/ethylene permeance and separation 

factor as a function of MSLER time. The ethylene permeation trend observed is similar to 

that of Figure 7, however, the extent of hydrogen permeation decline is not comparable to 

the ethylene molecule. The incremental addition of 5,6 DMBIm linker exhibits less of a 

slowing effect on the faster diffusing hydrogen molecule as compared to ethylene. This 

enables an H2/C2= separation factor increase from 3.9 to 6.8 in the 60○C membrane and 3.6 

to 11.3 in the 75○C membrane over the 15 hour MSLER reaction time.  

Hydrogen/ethane permeation and separation factor is shown as a function of 

MSLER time in Figure 5.9 (A&B). The trend observed is almost identical to that of Figure 

5.8 Hydrogen selectivity increases with increasing 5,6 DMBIm content. It is interesting to 

note that that step change increases in the H2/ethane and H2/ethylene separation factors are 

noted between 5-10 hours for the 60○C membrane and 5-10/10-15 hours for the 75○C 

membrane. These times correspond to the accelerated rate of 5,6 DMBIm increase as 

shown in the 1HNMR data in Figure 5.6 and increases in crystallinity/electron density 

shown in Figures 5.4 & 5.5 and agrees well with the permeation phenomena observed. 
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A.                        

  
 

 

 B. 

 
Figure 5.8 Hydrogen/ethylene permeance and separation factor as a function of MSLER 

time at 60○C (A) and 75○C (B) 
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A.                     

  
 
 

B. 

 
Figure 5.9 Hydrogen/ethane permeance and separation factor as a function of MSLER 

time at 60○C (A) and 75○C (B) 

 

 

Figure 5.10 illustrates binary hydrogen/propylene permeance as a function of 

MSLER time. During H2/C3= permeance in the 60○C membrane, hydrogen permeance 
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decreases to a similar extent as compared to C3 between 0-5 hrs reaction time; this differs 

as compared to C2. The larger propylene molecule more efficiently blocks H2 during this 

time period and can more significantly slow H2 as compared to C2 molecules. Between 5-

10 hrs propylene permeance increases, H2 permeance does not and likely means that C3 

solubility is enhanced by the increased presence of the benzene-substituted linker. H2/C3 

permeance and separation factor remains constant after 10 hours. The 75○C membrane 

presents similar phenomena but at shorter time, a small propylene permeance increase is 

shown after 30 minutes of MSLER followed by a relative flattening of the permeance and 

separation factor trends thereafter.  

The H2/C3= separation behavior seems to track or be correlated to the phenomena 

graphically illustrated in Figure 5.5. During the 60○C experiment, crystallinity decreases 

between 0-5 hours of exchange. During this time period relative changes in H2/C3= 

permeances are similar. After 5 hours of exchange, Figure 5.5 shows an inflection point 

after which an increase in crystallinity/order or electron density along the 011 plane. At 

corresponding time of the inflection point in Figure 5.5, a decrease in the H2/C3= separation 

factor is denoted which we ascribe to enhanced C3= solubility. In the case of reaction at 

75○C, the inflection point in Figure 5.5 occurs just after 30 minutes of exchange and 

coincides with the H2/C3= separation factor decrease. Between 30 minutes and 15 hours of 

exchange, the 011 peak intensity ratio increases and the H2/C3= separation factor converges 

to a stable value. The relationship between the dynamic changes in crystallinity and H2/C3= 

behavior suggest that C3= solubility is enhanced after the framework’s crystallinity 

increases during incorporation of the new 5,6 DMBIm ligand.  
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A.         

    
 
 

   B. 

 
Figure 5.10 Hydrogen/propylene permeance and separation factor as a function of 

MSLER time at 60○C (A) and 75○C (B) 

         A. 
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       B. 

 
Figure 5.11 Propylene/propane permeance and separation factor as a function of 

MSLER time at 60○C (A) and 75○C (B) 

 

 

Figure 5.11 presents propylene/propane permeance and separation factor as a 

function of MSLER time. Significant increases in C3 selectivity and minimal propylene 

permeance losses occur after 30 minutes of reaction for both the 60○C membrane (70% SF 
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increase,~10% C3= permeance decrease) and the 75○C membrane (44% SF increase, ~20% 

decrease in C3= permeance). The finding implies that propane diffusivity is decreased more 

than propylene diffusivity after short-term modification. 30 minutes of exchange likely 

creates a decorated outer pore aperture containing a heterogeneous composition of both 2-

MIm and 5,6 DMBIm linkers. Addition of the bulkier linker enhances the pre-existing 

C3=/C3- diffusive selectivity exhibited in pure ZIF-8 while limiting propylene permeance 

loss. The short-time modification is more effective for C3 molecules as compared to C2 

because of the molecular size difference the two groups.  

Beyond 30 minutes of modification, propane permeance increases relative to 

propylene then stabilizes for both membranes and the separation factor decreases. The 

decreases in selectivity are also concomitant with the inflection points found in Figure 5.5 

and the acceleration in 5,6 DMBIm exchange shown in Figure 5.6. We propose that the 

propane permeation enhancement is also an effect of increased solubility. Furthermore this 

effect may only be expressed for C3 molecules because they are more polarizable than 

lower carbon molecules (C. Zhang et al., 2012) and may have more interaction with the 

benzene substituents of the imidazole ligands lining the ZIF pore undergo an 

adsorption/surface diffusion mechanism in the modified pore system.  

 

5.4 Conclusions 

 ZIF-8 membranes were modified with 5,6 DMBIm through the membrane surface 

ligand exchange reaction technique. Changes in the modified ZIF’s physical properties and 

resulting light hydrocarbon binary permeation/separation properties were analyzed ex-situ 
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as a function of MSLER time and temperature. Our findings suggest that MSLER with the 

bulky 5,6 DMBIm ligand proceeds quickly during the first 30 minutes of exchange mainly 

at the outer surface of the membrane crystals, then slows as the new ligand proceeds inside 

the framework, exchanges with the original linker and disrupts the original framework’s 

crystallinity.  

As the reaction time proceeds the exchange rate accelerates as crystallinity is 

increased with the new linker. The overall rate of exchange increases with MSLER 

temperature. MSLER with 5,6 DMBIm slows C2 olefin/paraffin molecules to a similar 

extent and provides minimal separation enhancement. In H2/C2 separations, C2 molecules 

are slowed to a greater extent than hydrogen which enables significant increases in H2/C2 

the separation factor as a function of MSLER time and temperature. H2/propylene 

separations are not enhanced by MSLER with the bulkier ligand and seems to be an effect 

of C3 molecule blocking the smaller H2 molecule and increased C3 solubility as 5,6 DMBIm 

content increases in the inner pore surface. MSLER significantly enhances C3 

olefin/paraffin separation after short (30 min) modification time, but is decreased thereafter 

likely due to a relative solubility enhancement in propane over propylene.  
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CHAPTER 6  

SUMMARY AND RECOMMENDATIONS  

 

6. Summary and Recommendations  

 The studies presented in this dissertation were focused on providing a better 

fundamental understanding of the thermal stability of ZIF-8 crystals and thin films, the 

transport of light hydrocarbons in ZIF-8 membranes and the modification of ZIF-8 

membranes though ligand exchange. The main goals of this work were to determine the 

feasibility of ZIF-8 to be utilized as high temperature membrane reactor material and study 

its potential as a template for surface modification to enhance light hydrocarbon and 

hydrogen separations. 

 

6.1 ZIF-8 Thermal Stability Studies 

6.1.1 ZIF-8 Crystal Thermal Stability Studies 

 To gain a better understanding of ZIF-8 crystal thermal stability, ZIF-8 crystalline 

powders were synthesized and subjected to temperatures of 200, 250 and 300○C in inert, 

oxidizing and reducing atmospheres for a duration of 20 hours during static TGA 

experiments. The study determined that ZIF-8 nanocrystals maintain their crystallinity up 

to temperatures of 200○C irrespective of environment. At 250○C and higher our findings 

support the postulation that ZIF-8 crystals undergo temperature induced decomposition 

through a set of thermolytic bond cleaving reactions to form an average structure composed 

of Imidazole-Zn-Azirine subunits. At 300○C the ZIF-8 decomposition rate in air is greatest 
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due to oxidative interactions likely at the methyl group of the 2-methylimidazole ligand. 

At lower temperatures, decomposition in air behaves more similarly to that of nitrogen. 

Decomposition in argon is greatest at lower temperatures because the decomposition 

environment is devoid of nitrogen as compared to air and N2 gas which slow the driving 

force for nitrogen evolution from the framework. Decomposition in H2/CO2 environment 

is slowest at all temperatures. The findings from the crystal experiments enable the 

conclusion that ZIF-8 does not present static thermal stability at the temperatures normally 

utilized in applications such as propane dehydrogenation which occurs at temperatures > 

300○C.  

 The preceding work was performed with ZIF-8 nanocrystals which are formed from 

synthesis protocols which enable fast nucleation and slow growth. Sometimes this method 

of crystal growth leads to structural defects and incomplete growth of crystal facets. The 

use of more mature, larger, faceted crystals may be a point of future study and can be 

employed in an analogous study to determine the differences in static thermal stability 

between ZIF-8 nanocrystals and microcrystals.  

 

6.1.2 ZIF-8 Membrane Thermal Stability Studies 

 The findings in the ZIF-8 crystal decomposition experiments likely preclude ZIF-8 

as a high temperature material for hydrocarbon dehydrogenation membrane reactor 

materials, however the observed preservation of crystallinity at 200○C necessitated a study 

of ZIF-8 thin film membrane stability and permeation characteristics at moderate to high 

temperatures for gas separations applications such as the low temperature water-gas shift 
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membrane reactor and dehydrogenation membrane assisted reactors which can run at 

temperatures of 180○C or higher.  

 Temperature dependent tests were conducted from room temperature to 300○C 

using hydrogen and carbon dioxide as permeation tests gasses. The permeance of both 

gasses behaved according to solution diffusion mechanism between 25-250○C, however as 

temperature was further increased, sudden increases in both gasses’ permeance and H2/CO2 

separation factor were observed. This departure from the solution diffusion mechanism 

was due the partial carbonization of the framework into amorphous ZIF-derived partially 

carbonized molecular sieve between 250-275○C. Further isothermal tests were performed 

at 50, 100, 150 and 300○C for 24 hours in separate, comparable membranes to de-convolute 

the time/temperature dependency of ZIF-8 thermal decomposition. The ZIF-8 membranes 

were determined to maintain crystallinity/bond integrity at temperatures below 150○C.  

The differences in ZIF-8 membrane and ZIF-8 free crystal (stable up to 200○C) 

thermal stability is attributed to membrane thin film cracking that occurs during elevated 

temperature experiments. The observed cracking is likely an effect of thermomechanical 

instability due to the difference in the thermal expansion coefficients of the ZIF-8 

membrane and the α-alumina support. We postulate that the thermomechanical stress 

creates incongruent strain in the framework in addition to thermal stresses and exacerbates 

the ZIF-8 bonding in the thin film membrane to a greater extent than what is experienced 

in free crystals. It is recommended that thermally and mechanically stable supports with 

thermal expansion coefficients more compatible with that of ZIF-8 be utilized in analogous 
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static thermal stability experiments to determine if the α-alumina support does in fact affect 

the stability of ZIF-8 thin films. 

An interesting finding was discovered during the temperature dependent and 300○C 

transient experiments. The ZIF-8 membranes which were both partially carbonized on-line 

during the permeation tests still presented good H2/CO2 separation performance with 

higher H2 and CO2 permeances. The membrane carbonized during the temperature 

dependent experiment showed an increase in separation factor from 3.7 to 5.0 while the 

membrane partially carbonized during the 300○C experiment showed a stable H2/CO2 

separation factor of 3.7 for 16 hours. The partially carbonized ZIF-8 membranes may be 

potential candidates for n-butane (n-C4)/i-butane (i-C4) isomer separations. In a ZIF-8 

crystal transient uptake study by Koros and co-workers an n-C4/i-C4 diffusive selectivity 

of 2.5 x 106 was determined (C. Zhang & Koros, 2015). In the same study, the n-C4/i-C4 

diffusive selectivity was increased 28 times with a 1 order of magnitude decrease in 

selectivity after partially carbonizing ZIF-8 crystals (C. Zhang & Koros, 2015). The 

increased n-butane diffusivity with still sizeable diffusive selectivity is highly attractive. It 

is recommended that further study of structure-property relationships of carbonized ZIF-8 

crystalline powders and membranes be conducted. Variables such as decomposition 

atmosphere, temperature ramping rate, final temperature and temperature soak time can be 

modulated during on-line partial decomposition experiments and the resulting membranes’ 

or powders’ structural properties (composition, bonding, surface area, volume) can be 

characterized and correlated to their gas separation properties (adsorption, diffusion, 

permeability, selectivity). 
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6.2 ZIF-8 Membrane Transport and Modification Studies 

6.2.1 ZIF-8 Membrane Ethylene/Ethane Transport Studies 

 According to the previous findings, ZIF-8 currently shows the most promise for 

separations which can be conducted at temperatures below 150○C. In subsequent 

experiments, the transport of light hydrocarbons, specifically ethane and ethylene in single 

gas and binary mixtures was studied in ZIF-8 membranes due to the lack of information on 

parameters which govern C2 molecule permeation through the ZIF-8 framework. During 

single gas and binary ethylene and ethane experiments conducted from 25-100○C, the 

permeances of both molecules decreased monotonically with respect to temperature 

because the activation energies of diffusion for both molecules are less than their respective 

heats of adsorption as calculated from permeation and adsorption experiments.  

Although the van der Waals diameters of ethylene and ethane are larger than the 

nominal pore aperture of ZIF-8, low activation energy of diffusion values and no 

appreciable energetic-based diffusive selectivity is exhibited for C2 molecules in ZIF-8 due 

to the intrinsic pore flexibility of the framework. The similarly sized C2 molecules are both 

smaller than the effective ZIF-8 pore aperture. Entropic selectivity for the C2 molecules in 

ZIF-8 is limited by the zeolitic pore shape. Binary C2 permeation selectivity is 20% lower 

than ideal selectivity due to cooperative adsorption which enhances ethane solubility in the 

presence of ethylene. Due to limited diffusive selectivity and preferential ethane adsorption 

in ZIF-8, C2 binary selectivity in ZIF-8 is not much greater 2 in ZIF-8 membranes.  



212 
 

During H2/C2 separation experiments it was noted that the presence of strongly 

adsorbing C2 molecules in mixture with hydrogen decreases H2 permeability and inverts 

the H2 temperature dependency of permeation from adsorption to diffusion controlled. 

Pressure dependent experiments illustrated that ideal and binary ethylene/ethane 

permeation behavior as a function of pressure starkly contrast due to differences in single 

gas and binary adsorption isotherms for the corresponding molecules. 

 

6.2.2 ZIF-8 Membrane Modification Studies 

 A time based ex situ study of ZIF-8 membrane surface ligand exchange was 

conducted to determine the effects of ligand exchange time and temperature on the 

membrane structure and correlate the resulting structural changes to changes in light 

hydrocarbon gas permeation and separation behavior in the modified ZIF-8 framework. 

The bulky 5,6 dimethylbenzimidazole ligand was utilized for exchange with 2-

methylimidazole with the goal providing enhanced large molecule resistance in 

olefin/paraffin and hydrogen/hydrocarbon gas separations.  

According to the findings within the MSLER study, relatively fast exchange 

kinetics occur at the mainly at the outer surface of the ZIF-8 membrane between 0-30 

minutes of exchange. Short time exchange enables significant increases in C3 

olefin/paraffin selectivity with minimal olefin permeance losses because mainly the outer 

ZIF-8 crystal surface is endowed with the new linker which provides enhanced 

propylene/propane selectivity while the inner surface maintains most of the original ZIF-8 

linker which facilitates sizeable propylene permeability. The C2 olefin/paraffin separation 
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factor does not show sizeable increases during MSLER because the permeances of both 

molecules are slowed to a similar extent upon incorporation of 5,6 DMBIm within the 

framework. 

 We postulate that as the reaction time proceeds, the ligand exchange rate slows as 

the 5,6 DMBIm linker proceeded into the ZIF-8 inner surface, exchanges with the original 

linker and disrupts the original framework’s crystallinity. The majority of 5,6 DMBIm 

interpenetration occurs along the 011 plane as this plane contains the largest d-spacing 

suitable for diffusion of 5,6 DMBIm into the framework and counter-diffusion of the 

original linker out of the system. As the reaction time proceeds further, the exchange rate 

accelerates as crystallinity is increased with the new linker. The overall rate of exchange 

increases with increasing temperature. The H2/C2 separation factor shows increases with 

increasing 5,6 DMBIm content while H2/C3 and C3 olefin paraffin binary selectivity 

decreased with respect to increasing MSLER time due to what seems to be an increase in 

the relative solubility of the larger molecule within each binary pair.  

 The MSLER study provided broad, new pathways for future study. From the 

current findings, modification for short durations can enhance olefin/paraffin separation. 

Potentially a ligand modification which only penetrates the very outermost crystals can 

provide a true gating effect in which enhanced sieving occurs at the outer membrane 

surface, then once inside, the fast molecule (hydrogen or olefin) can proceed efficiently 

through the uninterrupted ZIF-8 inner core.  

 To achieve outer surface only modification for enhanced olefin/paraffin separation, 

shorter MSLER times can be utilized while varying the ligand concentration and/or 
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reaction temperature. Additionally, the as synthesized ZIF-8 membrane can be placed in a 

flow cell apparatus in which two immiscible fluids such as butanol and water are flowed 

from opposite sides of the membrane and contact one another at the membrane surface to 

form an immiscible interface. The new exchanging linker likely solvated in alcohol can 

diffuse across the interface in a controlled manner to form a monolayer across the 

membrane surface.  

 New ligands of differing functionalities can also be utilized to modulate separation 

performance. Benzene substituted ligands with functionality at the two position of the 

ligand with or without the methyl groups at the 5 and 6 positions can be utilized. Also, 

modulation of the chemical functionality of the substituting linker may be a point for future 

study. Electron donating methyl groups were substituted on the benzimidazole ligands 

studied in this work. Electron withdrawing groups can be substituted on benzimidazole 

linkers to compare the effect chemical functionality on light hydrocarbon sieving. 

 Further work can also be performed to purposely decorate the inner pore surface of 

ZIF membranes. Hydrogen/hydrocarbon selectivity was significantly enhanced by 

incorporating the bulkier ligand within the ZIF framework. Further studies with new 

ligands may provide enhanced selectivity with minimal hydrogen permeability losses. 

 Lastly, ZIF-67 the Co analogue of ZIF-8 has already been proven as a superior 

propylene/propane molecular sieve over ZIF-8. The Co-N bond is stronger, shorter more 

ridged as compared Zn-N and facilitates a slightly smaller 3.0 Å pore aperture for higher 

resolution molecular sieving. C3 selectivities of 200 with propylene permeabilities 

comparable to that of ZIF-8 have been reported by Jeong and co-workers (Kwon et al., 
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2015). Further study of C2 separation in ZIF-67 is suggested. Subsequent gating 

experiments may show improvement over analogous ZIF-8 studies because the gates 

(larger, exchanging linkers) may be tighter or more rigid.  
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APPENDIX B 

PROCEDURE FOR PREPARATION OF ALPHA ALUMINA SUPPORTS 
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Table B.1 Materials for Alpha Alumina Substrate 

Preparation     

Chemicals  
Molecular 

Formula 
Purity 

MW 

(g/mol) 
Supplier 

A-16 Alumina 

Powder 
Al2O3 

≥ 

99.9% 
101.96 Almatis 

Deionized Water H2O - 18.02 - 

Ethanol C2H5OH 99% 32.04 Koptek 

 

The following protocol yields approximately 20, 2 mm thick alpha alumina substrates: 

 

1. Measure 42 g of A16 alumina powder place in mortar bowl 

2. Add between add between 4.2 – 5.08 g of deionized water to the alumina powder this 

yields a 1-1.12:10 ratio by weight, water to alumina powder mixture. The ratio of water 

added depends on the relative humidity of the laboratory.  Below 15% relative humidity 

add larger amount of water.  

3. Mix the water and powder thoroughly with a pestle; the powder will flatten and conform 

to the bottom of the mortar; gently scrape loose with a spatula and repeat 2 times more; the 

wet powder mixture should be free of large aggregates 

4. Measure 2.1 g of the wet powder mixture and place into the 22 mm stainless steel mold 

5. Insert the die assembly piece into the mold, and with the Carver Press, apply a load of 

20,000 lbs. for 1.5 minutes 

6. Remove from mold 

7. Remaining powder within the mortar will dry over time, use clean spray bottle 

containing deionized water to moisten the powder (spray remaining powder modestly after 

pressing 5 or so supports) 
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8. The green bodies should be dried at 40○C at a relative humidity of 60% in the humidity 

chamber for 2 days 

9. Sinter the green bodies according to Table B.2 

Table B.2 Furnace Temperature Program for Alumna Substrate Preparation 

STEP RATE (oC/hr) TSP (
oC) tHOLD (hrs) 

1 60 600 0.1 

2 96 1260 0.1 

3 96 200 0.1 

4 60 1150 30 

5 60 200 0.1 

6 60 50 1 

 

10. The sintered supports are then polished with 500, 800, 1200 and 2000 grit sandpaper  

11. After polishing immerse place supports in a 250 mL beaker and immerse in 50 mL of 

deionized water  

12. Sonicate supports for 5 minutes, stop sonication, pour off water containing alumina 

powder precipitates, add fresh deionized water, then sonicate for 5 more minutes 

13. After water sonication, pour off water, add 50 mL of 200 proof ethanol to the beaker 

containing the alumina substrates, sonicate for 10 minutes  

14. Dry supports for 2 hours at 200○C before further processing for membrane synthesis 
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APPENDIX C 

PROCEDURE FOR ZIF-8 MEMBRANE SYNTHESIS VIA SEEDED SECONDARY 

GROWTH 
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Table C.1 Materials for ZIF-8 Membrane Preparation Via Seeded Secondary Growth 

Chemicals  
Molecular 

Formula 
Purity 

MW 

(g/mol) 
Supplier 

Zinc Nitrate 

Hexahydrate 
Zn(NO3)∙6H2O 98% 297.49 

Sigma 

Aldrich 

2-Methylimidazole C4H6N2 99% 82.1 
Sigma 

Aldrich 

Methanol  CH3OH 
99.8 % 

(Anhydrous) 
32.04 

Sigma 

Aldrich 

Deionized Water H2O - 18.02 - 

 

All chemicals utilized in this work were purchased from the following suppliers and used 

without further purification. The synthesis occurs in three separate stages: ZIF-8 seed 

formation, support seeding and secondary growth. 

 

C.1 ZIF-8 Crystal Synthesis Procedure 

  

1.  Measure out 1.17 g of zinc nitrate hexahydrate into to a glass beaker, add 8 mL of 

deionized water to the zinc nitrate and stir at room temperature 

2. In a separate beaker add 22.7 g of 2-methylimidazole (2-HMIm) to 80 mL of deionized 

water and stir vigorously at room temperature 

3. Add the zinc solution to the 2-HMIm solution; vigorously mix the two solutions at room 

temperature for 7 minutes 

4. After mixing, wash and centrifuge the crystals 1 time in a 50% water/methanol (v/v) 

solution followed by 2 times in pure methanol 

5. Dry wet crystals under vacuum (60 kPa) for 24 hours at room temperature 



245 
 

5. Add 0.04 g of dried ground ZIF-8 crystals to 100 mL of methanol to form a 0.05 wt.% 

seeding solution 

6. Sonicate seeding solution for 20 minutes and allow larger crystals to settle at the bottom 

of the solution for 12 hours 

 

C.2 Procedure for Seeding Alpha Alumina Supports 

 

7. Place approximately 15 mL of the seed solution into a weighing boat using a disposable 

pipette  

8. Bring the polished support surface in contact with the seed solution for 20 seconds 

9. Allow the excess solution to run off 

10. Allow the seeded support to dry in ambient air for 10 minutes 

11. Repeat steps 8-10 once more 

12. Place the seeded support in a glass covered petri dish, place dish in a furnace, ramp 

temperature to 95○C by 0.3○C/min and hold at constant temperature for 3 hours  

13. Ramp temperature down to 50○C by 0.3○C/min 

 

C.3 Procedure for Secondary Growth: 

 

14. Place the seeded support in a Teflon lined autoclave with the seeded side facing slightly 

up 

15. Add 10 mL of deionized water to 0.11 g of zinc nitrate hexahydrate and stir 



246 
 

16. Add 30 mL of deionized water to 2.27 g of 2-MIm and stir 

17. Add the zinc solution to the stirring 2-MIm solution dropwise to form the ZIF-8 

secondary growth solution 

18. Pour the secondary growth solution slowly into the 50 mL Teflon liner which contains 

the seeded support secured vertically in a Teflon holder, seal the liner within a stainless 

steel autoclave 

19. Place the autoclave into an oven at 130○C for 8 hours  

20. After 8 hours remove the stainless steel autoclave from the furnace allow and allow to 

cool 

21. Remove membrane, rinse under water, then place in a bath of approximately 35 mL 

methanol for 12 hours 

22. Remove membrane from methanol and allow to dry under ambient conditions for 1 day 
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APPENDIX D  

PROCEDURE FOR ZIF-8 CRYSTAL AND MEMBRANE LIGAND EXCHANGE 
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Table D.1 Materials for ZIF-8 Crystal and Membrane Ligand Exchange 

Chemicals  
Molecular 

Formula 
Purity 

MW 

(g/mol) 
Supplier 

5,6 Dimethylbenzimidazole 

(5,6 DMBIm) 
C9H10N2 99% 146.19 

Sigma 

Aldrich 

Triethylamine (TEA) (C2H5)3N 99% 101.19 
Sigma 

Aldrich 

Methanol (MeOH) CH3OH 
99.8 % 

(Anhydrous) 
32.04 

Sigma 

Aldrich 

 

D.1 Standard Procedure for ZIF-8 Crystal Ligand Exchange 

 

1. Measure 0.1 g of ZIF-8 crystals and place in Teflon liner 

2. Measure 0.1 g of 5,6 DMBIm linker and place in a beaker 

3. Add 20 mL of methanol to the 5,6 DMBIm linker solution and stir for 5 minutes 

4. While stirring, add 0.1 g of triethylamine to the 5,6 DMBIm linker solution and stir for 

5 minutes; standard syntheses utilize a 1:1:1:160  ZIF-8:5,6 DMBIm:TEA:MeOH weight 

ratio 

5. Add the linker solution to the Teflon liner containing the ZIF-8 powder allow the stir bar 

to fall into the liner  

6. Place the liner on the stir plate and mix the entire solution containing ZIF-8 crystals, 5,6 

DMBIm linker, TEA and methanol for 5 minutes then remove stir bar from liner 

a. If ZIF crystals are stirred in the beaker, the crystals will fall to the bottom of the 

solution and will be need to be rinsed out with excess methanol upon pouring into 

the autoclave 

7. Place Teflon liner into a stainless steel autoclave 



249 
 

8. Heat autoclave to 60○C for 15 hours  

9. After 15 hours remove autoclave and allow to cool naturally 

10. Wash and centrifuge crystals 3 times in methanol 

11. Dry crystals at 60○C under ambient pressure 

 

D.2 Standard Procedure for ZIF-8 Membrane Ligand Exchange 

 

1. Measure 0.1 g of 5,6 DMBIm linker and place in a beaker 

2. Add 20 mL of methanol to the 5,6 DMBIm linker solution and stir for 5 minutes 

3. While stirring, add 0.1 g of triethylamine to the 5,6 DMBIm linker solution and stir for 

4. minutes 

5. Secure as-synthesized ZIF-8 Membrane vertically in a Teflon holder and place in a 

Teflon liner 

6. Add the linker solution to the Teflon liner containing the as-synthesized ZIF-8 

membrane and seal in a stainless steel autoclave 

7. Heat autoclave to 60○C for 15 hours  

9. After 15 hours remove autoclave and allow to cool naturally 

10. Place modified ZIF-8 membrane in a beaker containing 35 mL of methanol for 12 hours 

11. Remove modified ZIF-8 membrane from methanol and allow to dry under ambient 

conditions for 1 day 

 

 



250 
 

APPENDIX E 

PROCEDURE FOR ZIF LIGAND AND MEMBRANE PREPARATION FOR 1HNMR 

ANALYSIS 
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Table E.1 Materials for ZIF-8 Membrane Ligand Exchange 1HNMR Analysis 

Chemicals  
Molecular 

Formula 
Purity 

MW 

(g/mol) 
Supplier 

Acetic Acid – d4 CD3COOD 

≥ 99.5 Atom 

%D 

0.03% (v/v) 

w/TMS 

Standard 

101.96 
Sigma 

Aldrich 

2-Methylimidazole C4H6N2 99% 82.1 
Sigma 

Aldrich 

5,6 Dimethylbenzimidazole 

(5,6 DMBIm) 
C9H10N2 99% 146.19 

Sigma 

Aldrich 

 

Ligand Preparation: 

1A. Measure 1 to 2 mg of ligand (either 2-MIm or 5,6 DMBIm) and add to a 5 mL glass 

vial 

 

Membrane Preparation: 

1B. For membrane analysis, use an X-Acto knife to gently scrape the membrane material 

grown on top of the alpha alumina support onto weighing paper; it is best to hold the 

membrane vertically against the weight paper and scrape the contents down onto the paper; 

be sure to obtain the entire membrane sample which weighs between 1-2 mg; carefully 

pour contents into 5 mL glass vial  
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Further Steps for Ligand and Membrane Preparation: 

2. Use a Pasteur pipet to add approximately 0.6-1 mL of d4 acetic acid to the glass vial 

containing either ligand or membrane contents  

3. Fully dissolve the sample in the deuterated acetic acid by agitating the sample (shaking, 

vortexer or ~1 minute of sonication); sample should be clear not cloudy for accurate 1H 

NMR measurement 

4. Use Pasteur pipette to add the solution from the glass vial to an NMR tube (Norell 5 mm 

width, High Throughput 178 length Secure Series NMR Tube) 

5. Use Bruker 400 MHz NMR spectrometer with 1HNMR using 512 scans   
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APPENDIX F  

PROCEDURE FOR 1HNMR ANALYSIS AND QUANITIFICATION OF LIGAND 

EXCHANGE IN ZIF-8 MEMBRANES 
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Figure F.1 1HNMR spectra of 2-methylimidazole, 5,6 dimethylimidazole, an as-synthesized 

ZIF-8 membrane and a ZIF-8 membrane modified with 5,6 dimethylbenzimidazole at 60○C 

for 30 minutes 
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1HNMR peak shift assignment according to Figure E.1 using standard notation:  

2-Methylimidazole 1HNMR (400 MHz, d4-Acetic) δ (ppm): 7.35 (1H, s), 2.66 (1.57H, s). 

5,6 Dimethylbenzimidazole 1HNMR (400 MHz, d4-Acetic) δ (ppm): 9.21 (1H, s), 7.61 (2H, 

s), 2.41 (6H, s), 2.18.  

 

The numbers next to the protons of each molecule correspond to the peak shifts in the 

1HNMR spectra. The numbers in the above peak shift assignments are the relative 

integration areas which correspond to the relative number of protons at each position of the 

respective 2-methylimidazole and 5,6 dimethylbenzimidazole ligands. 

 

 
Figure F.2 Scaled view of 1HNMR spectra: 2-methylimidazole, 5,6 dimethylimidazole, an 

as-synthesized ZIF-8 membrane and a ZIF-8 membrane modified with 5,6 

dimethylbenzimidazole at 60○C for 30 minutes 
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The relative ratio of 2-methylimidazole and 5,6 dimethylimidazole content or molar ligand 

exchange ratio for the modified ZIF-8 membrane can be calculated after integration of the 

peak areas found for the modified ZIF-8 membrane 1HNMR spectrum (purple) using the 

following equation:  

 

𝑀5,6 𝐷𝑀𝐵𝐼𝑚

𝑀5,6 𝐷𝑀𝐵𝐼𝑚 + 𝑀2𝑀𝑖𝑚
                                                                                                                 (𝐹. 1) 

 

In this work, the methyl groups of the 5,6 dimethylbenzimidazole molecule (peak labled 

5) give the strongest signal for calculation of the ligand exchange molar ratio. The molar 

ligand exchange ratio can be calculated using the relative peak areas of peak 1 (methyl 

group of 2-MIm) and peak 5 (2 methyl groups of 5,6 DMBIm): 

 

0.5 ∙
𝑃𝑒𝑎𝑘 5 𝐴𝑟𝑒𝑎

𝑃𝑒𝑎𝑘 5 𝐴𝑟𝑒𝑎 + 𝑃𝑒𝑎𝑘 1 𝐴𝑟𝑒𝑎
                                                                                       (𝐹. 2) 

 

The 0.5 accounts for the two methyl groups (dimethyl group) of the 5,6 DMBIm ligand 

which correspond to only one 5,6 DMBIm molecule.  
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APPENDIX G  

X-RAY DIFFRACTION AND SCANNING ELECTRON MICROSCOPY  
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G.1 X-ray Diffraction  

1. X-ray diffraction (XRD) is performed (Bruker AXS-D8 Focus, Cu Kα radiation) to 

characterize the crystal structure of ZIF-8 membranes and sorbent powders 

2. Place the alumina disk supported membrane in the designated plastic, zero background 

sample holder in the XRD machine  

3. Set 2θ in the range of 5-40○ with a scan rate of 2○/min 

 

G.2 Scanning Electron Microscopy 

1. Scanning electron microscopy (SEM) is performed using a Phillips FEI XL-30 SEM to 

observe the morphology, crystallinity and intergrowth of alumna supports, sorbent 

crystals and membranes  

2. If needed us a mechanical device such as pliers to break the membrane sample into 

smaller pieces for top surface and/or cross-section analyses and use clean, dry 

compressed air to remove debris from the sample 

3. Place conductive carbon adhesive tape on a sample stage, place the membrane sample 

on the conducting tape  

4. For ZIF membrane samples place carbon conductive tape directly on top of the 

supported membrane to allow a drain for electron flow to prevent surface charging and 

eventual burning of the sample 

5. Coat the sample with Ag (best) or Ag/Pd or carbon for at least 4 minutes  

6. Place the sample in to the SEM apparatus, choose the appropriate voltage (often 20 

kV) choose a spot size of 2 for measurements 
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APPENDIX H 

LIGHT HYDROCARBON MIXTURE MEMBRANE SEPARATION 

MEASUREMENTS 
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H.1 Binary Gas Separation Measurement 

1. Light hydrocarbon binary gas separation measurements were measured using the Wicke-

Kallenbach technique as shown in Figure H.1. 

2. Load the membrane into the stainless steel permeation apparatus. Use Viton o-ring to 

seal the membrane  

3. Using mass flow controllers connected to primary gas cylinders, feed the 

propylene/propane or ethylene/ethane mixture to the membrane side. Typically the total 

feed flow rate is controlled to 100 mL/min (measured at atmospheric pressure and 

temperature) with the binary substituent gasses usually in 50:50 mixture with flow rates of 

50 mL/min each 

4. On the retentate side use the needle valve to control the feed pressure. The pressure is 

measured by an Omega pressure transducer with a digital pressure readout 

5. Feed nitrogen sweep gas flow at a rate of 50 mL/min for C2 mixtures; utilize 10 mL/min 

for C3 mixtures (propane flux is low, a smaller sweep flow will concentrate the permeate 

for higher resolution gas chromatograph peaks) 

6. Use a bubble flow meter to measure the permeate flow rate  

 

H.2 Gas Chromatography (GC) Measurements 

1. Use gas chromatography (GC) (Agilent 6890 with Thermal Conductivity Detector) to 

measure the nitrogen and light hydrocarbon concentrations on both the retentate and 

permeate sides of the membrane 
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2. An Alltech Haysep DB 100/120 column with dimensions: 9.1 m L x 3.2 mm O.D. with 

argon carrier gas (28.9 mL/min) and an oven temperature of 130○C and detector 

temperature of 200○C is utilized for C2 separation experiments  

3. A silica gel column with dimensions: 1.8 m L x 3.2 mm O.D. with argon carrier gas (5 

mL/min) was utilized for C3 separation experiments with an oven temperature of 150○C 

and a detector temperature of 200○C 

4. The GC calibration curves for ethylene and ethane gasses in the Haysep column are 

shown in Figure H.2. The nitrogen calibration constant is detailed in the Membrane and 

Energy Laboratory standard calibration chart 

5.  The GC calibration curves for nitrogen, propylene and propane using the silica gel 

column are shown in Figure H.3  

6.  Table H.1 shows the calibration constants and approximate retention times for each of 

the light hydrocarbon gasses in their respective columns 
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Figure H.1 Light hydrocarbon binary gas permeance apparatus and configuration 
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Figure H.2 GC calibration curve for ethylene and ethane gasses 

 

 

  
Figure H.3 GC calibration curve for nitrogen, propylene and propane gasses 
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Figure H.4 Representative chromatogram of permeate for ethylene/ethane separation 

with nitrogen sweep gas 
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Figure H.5 Representative chromatogram of permeate for propylene/propane separation 

with nitrogen sweep gas 
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Table H.1 Calibration Constants and Retention Times for Light Hydrocarbon 

Gasses 

  Haysep DB Column Silica Gel Column 

  Nitrogen  Ethylene Ethane Nitrogen  Propylene Propane 

Retention Time 

(mins) 
3.49 8.35 9.96 1.29 9.07 5.54 

GC Constant 

1.56 x 

109 

3.82 x 

109 

4.74 

x109 

5.12 x 

109 

1.37 x 

1010 

1.66 x 

1010 

 

 

 


