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ABSTRACT

This study concerns optimal designs for experiments where responses consist of both

binary and continuous variables. Many experiments in engineering, medical stud-

ies, and other fields have such mixed responses. Although in recent decades several

statistical methods have been developed for jointly modeling both types of response

variables, an effective way to design such experiments remains unclear. To address

this void, some useful results are developed to guide the selection of optimal ex-

perimental designs in such studies. The results are mainly built upon a powerful

tool called the complete class approach and a nonlinear optimization algorithm. The

complete class approach was originally developed for a univariate response, but it is

extended to the case of bivariate responses of mixed variable types. Consequently, the

number of candidate designs are significantly reduced. An optimization algorithm is

then applied to efficiently search the small class of candidate designs for the D- and

A-optimal designs. Furthermore, the optimality of the obtained designs is verified by

the general equivalence theorem. In the first part of the study, the focus is on a sim-

ple, first-order model. The study is expanded to a model with a quadratic polynomial

predictor. The obtained designs can help to render a precise statistical inference in

practice or serve as a benchmark for evaluating the quality of other designs.
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Chapter 1

INTRODUCTION

Many experiments in engineering, medical studies, and other fields have mixed

responses that contain both categorical and continuous variables. These two types

of outcomes are possibly correlated to each other. For example, in the early stage of

drug development studies, efficacy and toxicity of treatments of interest are simulta-

neously observed. Efficacy is often represented by a continuous variable, and toxicity

is characterized by a categorical variable such as the occurrence of adverse events

(Fedorov, Wu, and Zhang, 2012). There are similar examples in the manufacturing of

solar panels and semiconductors, developmental toxicity studies, depression clinical

trials, stent comparison studies, etc. (Deng and Jin, 2015; de Leon and Chough,

2013). Finding a surge in demand for using mixed response variables, researchers de-

veloped several methods for analyzing data of this sort (de Leon and Chough, 2013;

Ryan, 2000).

In contrast to an animated discussion on how to analyze mixed responses, a way

to design an experiment for those responses remains rather unclear. As a result, the

experimenters often settle for designs that might be inefficient. What is even worse is

that there is no benchmark for evaluating the efficiency of the chosen designs. When

an inefficient design is chosen, the experimenter is not likely to avoid wasting limited

resources. In the worst case, the experimenter gets non-informative data, so that he

or she can hardly estimate the parameters of interest.

Here, we study optimal experimental designs of mixed categorical and continuous

responses. We use an optimal design approach which constitutes a way to achieve

‘good’ designs. We will explain later what characterizes a ’good’ design. Good designs
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are obtained by using an insightful statistical theory, or an efficient computational

approach, or both. We model mixed responses by combining a generalized linear

model for the categorical response and linear models for the continuous response under

the different values of the categorical response variable. In the next two sections, we

provide a brief discussion on the analysis and design of mixed response experiments.

1.1 Analysis of Mixed Responses

As mentioned earlier, the focus of this study is on mixed responses that contain

a categorical variable as well as a continuous variable. The study of such mixed re-

sponses appeals to researchers in many fields such as developmental toxicity studies.

Since the 1990s, researchers in this field have delved into a joint modeling problem us-

ing the fetal data of pregnant laboratory mice (Ryan, 2000). The outcomes contained

the presence or absence of malformations, body weight and size, and sometimes organ

weights.

In particular, regarding continuous and binary outcomes such as fetal weight

and malformation, two major factorization approaches emerged (Catalano and Ryan,

1992; Fitzmaurice and Laird, 1995). For the continuous variable y and the binary

variable z, a joint probability density function (pdf) of mixed responses was expressed

as f(y, z)=f(y)f(z|y) or f(y, z)=f(z)f(y|z).

To formulate f(y, z)=f(y)f(z|y), Catalano and Ryan (1992) introduced a latent

variable y∗ and made it concrete by using the form of f(y, z)=f(y)f(z(y∗)|y). They

assumed that, in the fetal data, the binary response of malformation was explained

by the unobservable continuous latent variable. They then considered the usage

of a well-established bivariate normal distribution as the joint distribution for the

latent variable and the fetal weight. In addition, they used the correlation parameter

to specify a correlation structure between y and y∗. They extended the model by
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adding more correlation parameters that account for a clustering effect in the fetus

of a litter.

On the other hand, Fitzmaurice and Laird (1995) suggested a direct factorization

approach using the joint pdf of f(y, z)=f(z)f(y|z) where z is a binary response. They

had an interest in the marginal expectation of the continuous response, E(y), and

considered the association between two responses a nuisance regression coefficient.

This framework was inspired by the general location model in Olkin and Tate (1961).

Fitzmaurice and Laird (1995) used a logistic regression model for the binary response

zi and one linear model for the continuous response yi|zi assuming the distribution

of N(µ + γ(zi − πi), σ2) where µ=β0 + β1xi, βi’s are parameters, xi is a covariate,

πi=E(zi), and γ is the association parameter obtained by regressing yi on zi.

Hirakawa (2012) also used this approach for a dose-finding study in oncology trials

after changing µ to µ=β2 + (β1 − β2)/(1 + (xi/β3))β4 . He mentioned that a latent

approach was not preferred since the simulation study showed that the existence

of a latent variable undesirably pushed the level of dose toward a higher level. He

considered the model to use antitumor activity as a continuous response that was

in charge of the efficacy endpoint. He stated that researchers often categorized the

continuous response by a threshold, which led to the loss of information.

Later, Deng and Jin (2015) suggested another approach when explaining a quality

control process in the manufacturing system. The pdf in their approach was similar

to the pdf in Fitzmaurice and Laird (1995), but they used two linear regression mod-

els for y|z=0 and for y|z=1 to capture an association between the continuous and

categorical responses. The lapping process of a wafer, a thin slice of semiconductor

material, was examined in the case study. The total thickness variation (TTV) of

a rapped wafer was a continuous response and the conformity of site total indicator

readings (STIR) was explained as a binary response. Their interest was on the asso-
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ciation of mixed responses rather than on the marginal expectation of the continuous

response, which was different from the case of Fitzmaurice and Laird (1995). Deng

and Jin (2015) stated that they appraised a binary response under this formulation

which was often informative in the manufacturing system. The focus of our study is

to develop efficient designs for this recently proposed model. The details of the model

will be presented in Chapter 3.

Without a consensus on how to formulate a joint pdf, various approaches are

still being explored. There is a book-length collection of studies on the analysis

of mixed responses (de Leon and Chough, 2013). Current models were compared,

possible extensions were examined, and new modeling techniques such as a copula-

based model were introduced there. Among other topics were longitudinal analysis,

the Bayesian approach, and incomplete data. The benefits of joint analysis over

separate univariate analysis were also measured. We refer the readers to this book

for details.

1.2 Designing Mixed Response Experiments

Whereas the discussion on the analysis of mixed responses is vivid, little attention

has been given to the design of mixed response experiments. While important, few

studies have focused on the selection of an optimal design for such experiments.

Among a small handful of literature, Coffey and Gennings (2007) found D-optimal

designs for multiple outcomes from a dose-response experiment in toxicology and other

biological sciences. The D-optimality criterion will be explained in Chapter 2. They

separately specified nonlinear models for five outcomes including two continuous vari-

ables, two binary variables, and one count variable. A nonlinear threshold exponential

model and a logistic threshold model were used and generalized estimating equations

(GEEs) were adopted. They used a model-based variance-covariance matrix instead
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of a working correlation matrix since the residual, which is necessary to construct

a working correlation matrix, could not be obtained before experimentation. As a

result, their approach did not gain one of the important benefits of the GEE, which is

the consistency of parameter estimates even under misspecification of the correlation

structure. This benefit is obtained by using a working correlation matrix (Fitzmaurice

and Laird, 1995; Agresti, 2007; Dobson and Barnett, 2008).

On the other hand, Fedorov et al. (2012) searched for D-optimal designs for

bivariate mixed responses in a dose-finding study using a latent factorization model.

They considered two-stage designs and fully adaptive designs as well as locally optimal

designs. The first-order exchange algorithm was used for obtaining these designs.

In their study, some parameters were not separately estimable according to the

authors. In particular, for a latent variable, its mean η2, variance σ2
2, and a threshold

parameter c2 for discretization of a latent variable were not estimable. This might

make it difficult to fully interpret the results obtained from such an approach. No-

tably, the association between mixed responses was hard to interpret since, in this

model, the association was parametrized by a correlation parameter in the variance-

covariance matrix between y and y∗, not between y and z, and then, y∗ reached out

to z through a cut-off point c. Additionally, the variance-covariance structure of the

parameters had a complex form. For example, the information matrix, which was the

inverse of the variance-covariance matrix, had a component called ak. It was obtained

by numerical integration of a function over [−∞,∞]. The function is a multiplication

of several probability density functions.

In contrast, Biswas and López-Fidalgo (2013) found optimal designs for mixed

responses which were modelled by a direct factorization approach. The goal of the

study was to propose an optimal design for a dose-finding study in clinical trials.

They also considered an experiment of mixed responses where toxicity was binary and
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efficacy was continuous. In particular, they used the compound optimality criterion.

One component of the criterion was a traditional optimality criterion such as the

D-optimality criterion and the other component was a specialized criterion for a

dose-finding experiment. The latter one was devised to find designs that maximize

efficacy under no toxicity. They additively combined two components using a weight

λ which was a chosen value, not a design parameter.

The model contains two models which were a logistic model for the binary response

and a linear model for the continuous response given the value of the binary response.

A conditional variable yi|zi had the distribution of N(µ + γzi, σ
2) where µ=β0 +

β1xi + β2x
2
i , βi’s are parameters, xi is a covariate and γ is the association parameter.

They put a quadratic term into a predictor. They searched for optimal designs by

implementing a classic first-order algorithm based on an equivalence theorem which

will be explained in the next chapter. The original design space was [0, 50] with the

unit of mg for dose treatment. They used a linear transformation of the space and

thus had the design space of [0, 1].

The focus of our study is also on optimal experimental designs for mixed responses.

For the underlying models, we consider a new direct-factorization approach recently

proposed by Deng and Jin (2015). They involve the combination of an ordinary linear

model for normal data and a generalized linear model (GLM) for non-normal data.

This approach gives detailed information about the association of the two types of

responses by using two conditional linear models for y|z=1 and y|z=0.

While results on optimal designs for each model can be found in the literature,

a design problem involving both types of models together is rather complex and not

much guidance is available. After we provide background knowledge about optimal

designs for linear models and for GLMs, we will develop new optimal design results

for mixed responses.
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1.3 Outline of Dissertation

We will proceed in the following order. In Chapter 2, we first build background

knowledge on optimal experimental designs and some approaches for obtaining opti-

mal designs.

From Chapter 3 to Chapter 5, we provide three results of our studies. In Chapter

3, we identify a complete class in a systematic way and expatiate on the range of the

number of support points. We note that while some of our results on the range of

the number of support points can be well explained based on the previous knowledge

about the design of experiments, we also discover here some rather remarkable but

mathematically justifiable findings when solving this complex design problem.

The complete class results in Chapter 3 facilitate two successive numerical studies

including the search for D-optimal designs and A-optimal designs. We demonstrate

a basic strategy for finding optimal designs with the popular D-optimality criterion

in Chapter 4 and then expand to the search for A-optimal designs in Chapter 5. The

study of A-optimal designs enables us to see the effect of the variance σ2 of continuous

responses on the obtained designs, which cannot be examined in Chapter 4.

In Chapter 6, we extend our results to a model with a quadratic polynomial

predictor. This setting is intended to describe a curvature trend between a covariate

and a response. Such models are not uncommon in practice. Finally, we summarize

the study and give concluding remarks in Chapter 7.
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Chapter 2

LITERATURE REVIEW

2.1 Optimal Design Approach

The principle of an optimal design search is to hit the target right in the center by

browsing all candidates of designs according to rigid mathematical standards. The

object of the search is to find the best design to make an experiment as efficient as

possible. It often means that, given statistical models, parameter estimation should

be precise, or equivalently, the variability of estimation should be minimized. The

‘goodness’ of a design can then be understood in this sense when a precise parameter

estimation is of interest. As Hinkelmann and Kempthorne (2005) mentioned, an opti-

mal design approach does not provide a common answer for dealing with equipment,

setting budgets, and so on. However, if experimenters want to obtain high-quality

data with the analysis of it in mind, then the optimal design approach is appropriate.

Using this approach, we find more statistically accurate guidelines. The data then

allows for such a reliable statistical inference.

For illustration purposes, let us consider a linear regression model, Yi= f(xi)
ᵀθ+εi.

Yi is the response from the ith run, xi is a vector of independent variables, f(xi) is a

model vector expressed as (f1(xi), ..., fm(xi))
ᵀ, fj(xi) is some known function of xi,

θ is a vector of m unknown parameters, and εi is the experimental error for the ith

run.

If a simple linear regression model has only one covariate x, a model vector is

f(x)=[1, x]ᵀ and, for a quadratic model, we have f(x)=[1, x, x2]ᵀ. An experimental

design of size N can be represented as {x1, x2, ..., xN}; i.e. the N values of the
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covariate x. If the number of replicates can be expressed by a variable ri for a trial

xi, the design of the above experiment is denoted by {(x1, r1), (x2, r2), ..., (xn, rn)}

where
n∑
i=1

ri=N and ri∈N is a positive integer. The xi’s are called support points

when they are all distinct.

The variance-covariance matrix of the least squares estimator θ̂ of θ is cov(θ̂)=

σ2(FᵀF)−1 where F is aN×m full-column-rank matrix. We have FᵀF=
N∑
i=1

f(xi)f(xi)
ᵀ =

n∑
i=1

rif(xi)f(xi)
ᵀ. In the second member, f(xi)’s represent all rows of F while f(xi)’s

of the third member are distinct rows repeated ri times for each i in F. We often

want to minimize the determinant of the variance-covariance matrix, i.e. |FᵀF|−1

since the square root of it is proportional to the expected volume of a confidence

ellipsoid for θ. This popular criterion is called the D-optimality criterion. We mostly

use a real-valued function of the variance-covariance matrix as an optimal criterion

such as a determinant because it normally is difficult to rank candidate designs by a

matrix (FᵀF)−1. Under this setting, the value of σ2 is not relevant to the search for

an optimal design since all candidate designs have the same value of σ2.

Another common criterion for selecting designs is the variance of the predicted

response for a given x, which is var(ŷ(x))=σ2f(x)ᵀ(FᵀF)−1f(x). After scaling the

variance σ2 and the number of trials N , the standardized variance is obtained as

d(x, ξ)= f(x)ᵀ(FᵀF/N)−1f(x). We often want to find an optimal design that sup-

presses the worst case of the standardized variance d(x, ξ). For that purpose, we use

the G-optimality criterion, aiming to minimize the maximum of d(x, ξ) over a design

region X .

Among candidate designs, we pick the design that achieves the minimum of

|FᵀF|−1 or that of max d(x, ξ) based on the object of an experiment. The obtained

design is called a D-optimal design if the former criterion is used or a G-optimal

design when the latter criterion is considered.
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2.1.1 Continuous Design Theory

The development of an optimal design approach gained momentum as Kiefer

(1959) introduced a continuous design theory. Assuming ri’s take any value in be-

tween 0 and N instead of being limited to integers, we avoid the complexity of discrete

optimization. For example, Kiefer (1959) stated that, unless the discreteness of ri is

dismissed, D-optimal designs for a cubic regression model on an interval [−1, 1] have

irregular design patterns whenever N is not a multiple of 4. Such an optimization

problem is in general difficult to solve. Using the continuous design theory, also known

as the approximate design theory, we obtain an optimal continuous design which pro-

vides an approximate solution to a discrete design, namely an exact design. Also, if

N is sufficiently large, it is known that a continuous design is close to an exact design

(Berger and Wong, 2009). After obtaining an optimum continuous design, we may

then use a rounding technique to get an exact design (Pukelsheim, 2006).

In the continuous design theory, designs are represented as probability measures

ξ :xi 7→wi. We can normalize the number of replicates ri by N . A continuous design is

then expressed as ξ={(x1, r1/N), (x2, r2/N), ..., (xn, rn/N)} or {(x1, w1), (x2, w2), ...,

(xn, wn)}, where wi=ri/N , and
∑
wi=1. The size of N no longer affects the search

for optimum designs. We call x a support point when the corresponding weight has

w>0, or a design point when the corresponding w can possibly be zero. The value

of wi is known as a ‘weight’ of xi in the literature of an experimental design.

The continuous design approach is to make the information matrix M(ξ) as large

as possible or the variance-covariance matrix M−1(ξ) as small as possible in some

sense. The information matrix is inversely proportional to the variance-covariance

matrix. By the continuous design theory, the information matrix is defined as M(ξ)=∫
f(x)f(x)ᵀξ(dx)=

n∑
i=1

wif(xi)f(xi)
ᵀ for the aforementioned linear models.
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Several functions have been proposed for measuring the largeness of the informa-

tion matrix or the smallness of the variance-covariance matrix. We optimize such

a real-valued function of M(ξ) or M−1(ξ) over all ξ that make M(ξ) non-singular.

Some of optimal criteria that we want to minimize include:

1. G-optimality: ΦG=maxx f(x)ᵀM−1f(x)

2. D-optimality: ΦD= |M−1|

3. A-optimality: ΦA=trace(M−1)

4. E-optimality: ΦE =λmax(M−1) where λmax(·) gives the greatest eigenvalue.

Minimizing the A-optimality criterion is equivalent to minimizing the average

variance of parameter estimates. E-optimal designs minimize an upper bound of

a variance of the linear combinations of parameters when the sum of the squared

coefficients is 1.

There are some discussions on which optimality criterion to use when searching for

optimal designs. Stufken and Yang (2012) stated that the selection of the optimality

criterion depends on the purpose of experiments and personal preferences. In some

cases, a design can be optimal under a broad class of optimality criteria. On the

other hand, an optimal design under the certain criterion may not be optimal under

another criterion. The search for optimal designs thus starts with the selection of the

standard.

One significant result from the continuous design theory is the equivalence the-

orem established by Kiefer and Wolfowitz (1960). Over a compact design space,

the theorem states that two seemingly different D-optimal and G-optimal designs

are equivalent. The search for D-optimal designs is thus supplemented by that for

G-optimal designs, and vice versa.
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The theorem is more generally applicable under the unified optimality criterion

Φp by Kiefer (1974). The Φp criterion function for a given p≥0 is expressed as:

Φp(M)=



|M|−1/m for p=0;

[ 1
m trace((M−1)p)]1/p for p∈(0,∞);

λmax(M−1) for p=∞,

where m is the length of a row or a column of M. The Φp criterion covers D-, A-,

and E-optimal criteria as when p=0, p=1, and p=∞, respectively.

Under the Φp criterion, the general equivalence theorem states that, over a com-

pact design space X , the following three conditions are equivalent: (i) A design ξ∗ is

Φp-optimal (ii) A design ξ∗ maximizes infx∈X φ(x, ξ) (iii) It holds that infx∈X φ(x, ξ∗)=

0. Here, φ(x, ξ) is the directional derivative at M(ξ) in the direction of M(ξ̄) where

ξ̄(x) has a unit mass at a point x∈X . Using this theorem, we construct an optimal

design or validate the optimality of some designs obtained by another approach.

Several books and papers discuss an optimal design approach and the continuous

design theory (Fedorov, 1972; Silvey, 1980; Pukelsheim, 2006; Atkinson, Donev, and

Tobias, 2007; Wynn, 1984; Steinberg and Hunter, 1984; Atkinson, 1996; Atkinson

and Bailey, 2001).

2.1.2 Unknown Parameter Problem

A search for an optimal design of a mixed response experiment comes with the

challenging issue of an unknown parameter. Khuri, Mukherjee, Sinha, and Ghosh

(2006) discussed this type of problem relating to a generalized linear model (GLM).

In contrast to the case of a linear model experiment, a design problem in a generalized

linear model depends on unknown model parameters. Since a mixed response model

contains a generalized linear model as a part of the model, we encounter the same
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issue described above. The same challenge also exists when finding an optimal design

for a nonlinear model.

The GLM is of the form g(E(yi))= f(xi)
ᵀβ, where g(·) is a link function that

connects a linear predictor component ηi= f(xi)
ᵀβ and a response variable yi with

µi=E(yi). A linear model uses two components including ηi and E(yi), but a GLM

uses one more component, that is, a link function. The distribution for a response y

is in an exponential family of which the pdf is f(yi)=exp[(θyi− b(θ))/a(φ) + c(yi, φ)].

We then express the information matrix as M(ξ)=
∑n

i=1 wivif(xi)f(xi)
ᵀ for the GLM

where vi is represented as vi(θ)=[a(φ)b′′(θ)]−1(∂µ/∂η)2. We can check that the com-

ponents of b′′(θ) and ∂µi/∂ηi contain a parameter vector θ by a calculation.

Consequently, vi depends on θ and so does the information matrix M(ξ). Since

a parameter vector θ is ‘unknown’ before executing an experiment, we have an issue

called an ‘unknown parameter problem’ which is not the case for a linear model.

Before performing an experiment, we do not have data for estimating the true value

of the model parameters. Hence, when finding optimal designs for GLMs or nonlinear

models, we need to handle the unknown quantities of parameters in the information

matrix. To deal with this situational irony, we fix the parameter values by substituting

guessed values for finding a locally optimal design. Chernoff (1953) presented the

statistical validation of this approach.

Mostly, experimentation is not a one-time procedure and the previous experiment

may provide reasonable initial values for parameters. Even when little information on

a guessed value is available, a locally optimal design can be searched for as a bench-

mark. Also, in many studies of an optimal design approach, various mathematical

techniques have been developed to reduce the effects of unknown parameters on an

optimal design problem, for example, decomposition of the information matrix and

representation of a design space.
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One of the possible way of finding locally optimal designs is via the general equiv-

alence theorem explained in the previous section. The theorem originally considers

only linear models, yet, if a parameter value is fixed, the general equivalence theorem

applies to nonlinear cases, too (Stufken and Yang, 2012; Pukelsheim, 2006). Another

possible approach is a geometric method proposed by Elfving (1952). After generating

a space by a model vector f(x) over all possible x, the smallest ellipsoid containing the

space is studied to find support points. Apart from these two approaches, Yang and

Stufken (2012) recently proposed a new strategy called the complete class approach

for finding a locally optimal design for nonlinear models. We apply this approach to

our problem in Chapter 3. We explain the approach in detail in the next section.

2.2 Complete Class Approach

The complete class approach is a way of identifying a subclass of desirable designs.

For any given design, if we identify a complete class, we know that there exists a design

within the complete class that performs the same as or better than any other design.

We consequently want to limit our attention to this class, when we search for optimal

designs, instead of examining innumerable candidate designs. In the 1950s, there

were initial attempts to conceptualize a complete class or an essentially complete

class (Ehrenfeld, 1956; Kiefer, 1959). Later, some researchers proposed different ways

to define and find a complete class (Pukelsheim, 1989; Cheng, 1995).

In this study, we use the complete class approach proposed by Yang and Stufken

(2012). The strategy of Yang and Stufken (2012) is to identify a complete class

with a simple form, so that there exists a design ξ∗ in the complete class to satisfy

M(ξ∗)�M(ξ) for any given design ξ under the Loewner ordering. We say that a

design ξ∗ is at least as good as another design ξ under the Loewner ordering if we

have M(ξ∗)�M(ξ), i.e. M(ξ∗)−M(ξ) is nonnegative definite. The Loewner ordering
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is one of the possible ways to compare designs. The design ξ∗ is then no worse than ξ

under the popularly used Φp criteria that include the D-, A-, E-optimality criterion;

that is, M1�M2⇒Φp(M1)≤Φp(M2) for p∈ [0,∞). The main benefit of the complete

class approach in Yang and Stufken (2012) is that we can identify an upper bound

for the number of design points.

This approach evolved from several preceding studies (De la Garza, 1954; Yang

and Stufken, 2009; Yang, 2010). Yang and Stufken (2009) showed an early idea using

a GLM with two parameters, and Yang (2010) laid the foundation of the complete

class approach based on this. As mentioned in Yang (2010), de la Garza (1954) found

that, for a polynomial regression model of degree p with independently identically

distributed random errors, we always have a (p + 1)-point design whose information

matrix is no worse than that of any n-point design where n>p + 1 in the Loewner

ordering. This finding implies that the upper bound for the number of design points

is p + 1 for a polynomial model. Yang (2010) analytically revived the so-called de

la Garza phenomenon in nonlinear models while Dette and Melas (2011) and Dette

and Schorning (2013) gave thought to this phenomenon by using the concept of the

Chebyshev systems developed by Karlin and Studden (1966).

Yang and Stufken (2012) generalized the approach of Yang (2010) so that we might

identify a smaller complete class than before. In Lemmas 1 and 2 and Theorem 1

of Yang and Stufken (2012), they explained how to identify a complete class and, in

Theorem 2, provided a tool for identification.

A nonlinear model including a mixed response model commonly has the decom-

posed form of the information matrix as M(θ)=B(θ)(
∑
wiC(θ, ci))B(θ)ᵀ where a

non-singular matrix B(θ) depends only on θ. We also consider a represented design

point of ci instead of xi, where ci is obtained by xi through a bijection. A different

model requires a different transformation or decomposition. Bijections will be clearly
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specified in the subsequent chapters when we describe our findings. We note that the

information matrix M(θ) depends on the represented design point ci only through

the matrix C(θ, ci).

The complete class approach of Yang and Stufken (2012) is built upon the follow-

ing fact. For a design ξ={(ci, wi), i=1, ..., n} and a design ξ̃={(c̃i, w̃i), i=1, ..., ñ}

in a represented design space, it is obvious that
ñ∑
i=1

w̃iC(θ, c̃i)≥
n∑
i=1

wiC(θ, ci) implies

Mξ̃(θ)�Mξ(θ). After partitioning C as

C(θ, c)=
(

C11(c) C12(c)
C12(c)ᵀ C22(c)

)
(2.1)

where C11 is an m1-by-m1 matrix, and C22 is an m2-by-m2 principal submatrix

for some 1≤m1,m2<m, we have Mξ̃(θ)�Mξ(θ) if
ñ∑
i=1

w̃iC22(θ, c̃i)≥
n∑
i=1

wiC22(θ, ci),

ñ∑
i=1

w̃iC11(θ, c̃i)=
n∑
i=1

wiC11(θ, ci) and
ñ∑
i=1

w̃iC12(θ, c̃i)=
n∑
i=1

wiC12(θ, ci).

To identify a complete class using the tool of Theorem 2 in Yang and Stufken

(2012), we extract relevant element functions from the matrix C(θ, c) and denote

them Ψi’s (i=1, ..., k). The functions Ψ1, ...,Ψk−1 are selected from C11 and C12, and

they form a maximal set of linearly independent non-constant functions of c. We then

make a sequence of Ψi’s for i=1, ..., k− 1 with a judiciously selected order and define

Ψ0 =1 and Ψk=C22(c). Note that Ψk can be a matrix while other Ψi’s are scalars.

A proper choice of Ψi’s and C22 is required. With the selected C22 and Ψ-functions,

we calculate F (c), as suggested in Theorem 2 of Yang and Stufken (2012) and see the

sign of it to check a condition of identification.

Following Yang and Stufken (2012), let us define the functions fl,t(c), 1≤ t≤ l≤k

as

fl,t(c)=



Ψ′l(c) if , t=1, l=1, ..., k − 1,

C′22, if t=1, l=k,(
fl,t−1(c)
ft−1,t−1(c)

)′
, if 2≤ t≤k, t≤ l≤k,

(2.2)
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Figure 2.1: Structure of the Indices in f4,4
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assuming that Ψi(i=1, ..., k) is differentiable. Then, if it holds that

F (c)=
k∏
l=1

fl,l>0 or F (c)<0 for all c∈ [A,B], (2.3)

Theorem 2 in Yang and Stufken (2012) directly affirms the existence of a complete

class.

For a fixed l, we see that fl,l(c) in (2.2) and (2.3) is expanded as fl,l(c)=
(

fl,l−1(c)

fl−1,l−1(c)

)′
=((

fl,l−2(c)

fl−2,l−2(c)

)′
/
(
fl−1,l−2(c)

fl−2,l−2(c)

)′)′
= ... until fl,l floats every necessary Ψi’s and C22. For

example, f3,3(c)=
(
f3,2(c)

f2,2(c)

)′
=

((
f3,1(c)

f1,1(c)

)′
/
(
f2,1(c)

f1,1(c)

)′)′
=

((
Ψ′3
Ψ′1

)′
/
(

Ψ′2
Ψ′1

)′)′
. As another

example, the structure of the indices in f4,4 is shown in Figure 2.1. When fk,k is a

matrix, F (c)>0 means that the matrix fk,k is positive definite for all c∈ [A,B]. The

differentiation of these functions can be done sequentially with a symbolic software

such as Mathematica or Maple. MATLAB also supports a symbolic calculation.

Although we conveniently derive a checking condition for many nonlinear models

using this tool as shown in their examples, the tool is not directly applicable to our

case since mixed responses are bivariate. We therefore broaden the scope of discussion

and attempt to apply their approach as follows.

We understand the strategy of the complete class approach by using the definition

of the Chebyshev system (Karlin and Studden, 1966; Dette and Melas, 2011). The
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F (c) defined in (2.3) is such a general-purpose tool that it is applicable not only

to some element functions of the information matrix relating to an optimal design

problem but also to some nonlinear functions in general. This can be explained by

using the Chebyshev system. The Chebyshev system is defined as a set of continuous

functions u0, ..., uk from [A,B] to R if the inequality∣∣∣∣∣∣∣∣∣∣∣∣∣

u0(x0) u0(x1) . . . u0(xk)

u1(x0) u1(x1) . . . u1(xk)

...
...

. . .
...

uk(x0) uk(x1) . . . uk(xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
>0 (2.4)

is satisfied for all A≤x0<x1<...<xk≤B (Karlin and Studden, 1966).

We assume any continuous functions Ψ1, ...,Ψk on [A,B]. We define Ψ0 =1, Ψk=

C22 for any matrix C22, and ΨQ
k =QTC22Q for every nonzero vector Q. If we can form

pairs of Chebysyhev systems with {Ψ0,Ψ1, ...,Ψk−1} and {Ψ0,Ψ1, ...,Ψk−1,Ψ
Q
k } or

{Ψ0,Ψ1, ...,Ψk−1} and {Ψ0,Ψ1, ...,Ψk−1,−ΨQ
k } for all non-zero vectors Q, we can then

find a dominant set S∗={(c∗i , w∗i ) :w∗i >0, i=1, ..., n∗} defined by Yang and Stufken

(2012) for any given set S={(ci, wi) :wi>0, i=1, ..., N} such that

∑
w∗iΨl(c

∗
i )=

∑
wiΨl(ci), l=0, 1, ..., k − 1; (2.5)∑

w∗iΨ
Q
k (c∗i )>

∑
wiΨ

Q
k (ci), for every nonzero vector Q, (2.6)

where subscripts of summations are n∗ and N for (c∗i , w
∗
i ) and (ci, wi), respectively.

This holds based on Lemmas 1 and 2 in Yang and Stufken (2012). In these lemmas,

we find n∗ of S∗ from a relationship between k, n∗, and N , which will be specifically

presented on the next page with a certain configuration of endpoints of c∗i ’s. The

elements of S∗ and S do not need to be designs as the w∗i ’s or wi’s do not need to sum

to 1. If the above two equations are explained for relevant elements of the information

matrix, it implies the non-inferiority of S∗ to S under the Loewner ordering and we
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immediately identify a complete class. Yang and Stufken (2012) used this fact to

render complete classes in their Theorem 1 and suggest F (c) in Theorem 2. We rather

use the F (c) in (2.3) to verify whether the Ψ functions form Chebyshev systems in

the following lemma, which is a direct consequence of (the proof of) Theorem 2 of

Yang and Stufken (2012).

Lemma 2.2.1. For any continuous function Ψ1, ...,Ψk, if either F (c) or −F (c) is

positive definite for all c ∈ [A,B], then there exists a set of functions Ψ̂1, ..., Ψ̂k−1 that

satisfy the following results. Here, Ψ̂l=Ψl for some l, but Ψ̂l=−Ψl for the other l.

(a) If F (c)>0, {1, Ψ̂1, ..., Ψ̂k−1} and {1, Ψ̂1, ..., Ψ̂k−1,Ψ
Q
k } form Chebyshev systems

on [A, B] for all non-zero Q.

(b) If −F (c)>0, {1, Ψ̂1, ..., Ψ̂k−1} and {1, Ψ̂1, ..., Ψ̂k−1,−ΨQ
k } form Chebyshev sys-

tems on [A, B] for all non-zero Q.

We note that the lemma is useful because equalities in (2.5) are true for Ψ̂1, ...,

Ψ̂k−1 if they hold for Ψl’s, and vice versa. Based on the above lemma, we check

the sign of F (c) and get one of four types of a dominant set S∗ for S according to

the parity of k by using the following Lemma 2 of Yang and Stufken (2012). The

notations are the same as those previously defined in this section.

Lemma 2.2.2 (Lemma 2 in Yang and Stufken, 2012). Let S={(ci, wi) :wi>0, A≤

ci≤B, i=1, ..., N}. Then the following results hold:

(a) For k=2n− 1, if Lemma 2.2.1 (a) holds, then there exists a dominant set S∗

of size n with c∗n=B for S when N≥n.

(b) For k=2n− 1, if Lemma 2.2.1 (b) holds, then there exists a dominant set S∗

of size n with c∗1 =A for S when N≥n.

(c) For k=2n, if Lemma 2.2.1 (a) holds, then there exists a dominant set S∗ of

size n+ 1 with c∗1 =A and c∗n+1 =B for S when N≥n.
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(d) For k=2n, if Lemma 2.2.1 (b) holds, then there exists a dominant set S∗ of

size n for S when N≥n+ 1.

After identifying S∗, we use it to form a complete class. The emphasis is on

the fact that we can reduce n∗ to a certain size that depends on k. The key is

to explain (2.5) and (2.6) for all element functions in the information matrix and

ultimately demonstrate the Loewner ordering. In addition, we note that we do not

use an assumption of symmetric designs in the complete class approach. We then

distinguish a class of symmetric designs and manage it to solve a complex design

problem. A symmetric design ξs is defined as ξs={(±ci, wi), i=1, ..., n} where there

exists −ci for any ci in a design ξs with the same weight wi as a common definition.

After identifying a symmetric design as a ‘good’ design, we will form a complete class

within the collection of symmetric designs in Chapter 6.

2.3 Constrained Nonlinear Optimization

The domain of mathematical programming, i.e. mathematical optimization, has

been well developed by many disciplines including applied mathematics, operations

research, electrical engineering, and so on. Optimization algorithms are a powerful set

of tools that can efficiently manage a subject’s resources. Large scale of optimization

problems can be solved reliably using various optimization algorithms if it is possible

to formulate a real problem into a mathematical standard form. After submitting the

form to an appropriate solver, we can get optimal solutions.

In the area of optimal design, a few researchers have used mathematical program-

ming as an alternative to traditional algorithms such as the Fedorov-Wynn algorithm

(Wynn, 1970; Fedorov, 1972) and the multiplicative algorithm (Silvey, Tittering-

ton, and Torsney, 1978). Recent works cover semi-infinite programming (Duarte and

Wong, 2014), semi-definite programming (Papp, 2012), and others. In Duarte and
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Wong (2014), the semi-infinite programming was available for a minimax design prob-

lem since their problem could be formulated into the semi-infinite programming. They

used the solver QQNLP from the GAMS package. Papp (2012) found optimal designs

for rational function regressions using semi-definite programming. He set up a two-

step search procedure for design points and weights separately. After design points

were determined, weights were also found. The procedure was, however, restricted to

polynomial or rational function regressions which do not cover our model.

We solve the nonlinear constrained problem by using the fmincon solver in MAT-

LAB. The Optimization Toolbox in MATLAB includes various solvers to deal with

problems ranging from linear to nonlinear, from continuous to discrete, and from un-

constrained to constrained. In our case, an objective function is a nonlinear smooth

function. Also, there are some constraints of an optimal design approach. The con-

straints are the restriction of a design space and a continuous design setting for

ξ={(ci, wi), i=1, ..., n} on [A,B]. Taking all constraints into account, an optimal

design problem is formulated into a mathematical standard form as follows.

minimize
ξ0

Φp(M(ξ0))

subjectto
∑

wi=1, (i=1, ..., n)

wi≥0, (i=1, ..., n) (2.7)

and A≤ci≤B (i=1, ..., n),

where Φp(M(ξ0)) is the objective function, and the equations in (2.7) are the set of

the equality and inequality constraints. A vector ξ0 =(c1, ..., cn, w1, ..., wn) represents

decision variables consisting of design points and weights. A and B are upper and

lower bound points of a design space. If n is fixed, optimization formulation can be

completed. Since mathematical programming is devised for allocating given resources,

the subject of resources should be decided beforehand. In our case, n should be fixed.

21



We still use an induced point c instead of x. In a represented design space, we

identify a complete class and then without transforming it to the point of an original

design space, we continue to do an algorithm search. In a represented design space

[A,B], if a complete class contains A, B or both, that point or those points are

excluded from decision variables of ξ0. For example, if two bounds are fixed points

of an at most 4-point design, decision variables or input variables are contained in

ξ0 =(c2, c3, w1, w2, w3, w4).

2.4 General Equivalence Theorem

The general equivalence theorem (GET) was discussed in the previous section.

Using part of the theorem, we derive two types of the equations to verify the D-

optimality and the A-optimality of the obtained designs. The main purpose of the

verification is to prove that the design searched by our methods is optimal by the

GET. If the verification is successful, the reliability of our results increases.

Let a measure ξ̄ put unit mass at a point c and another measure ξ′ be given by

ξ′=(1− α)ξ + αξ̄ for ξ={(ci, wi), i=1, ..., n}. We then have

M(ξ′)=(1− α)M(ξ) + αM(ξ̄).

Thus, the directional derivative of Φp(M) at M(ξ) in the direction from M(ξ) to

M(ξ̄) is defined as

φ(x, ξ)= lim
α→0+

1

α
[Φp(M(ξ′))− Φp(M(ξ))]

= lim
α→0+

1

α
[Φp{(1− α)M(ξ) + αM(ξ̄)} − Φp(M(ξ))]

= lim
α→0+

1

α
[Φp{M(ξ) + α(M(ξ̄)−M(ξ))} − Φp(M(ξ))].

Based on this result, we derive the equations for verification.
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D-optimality verification For the D-optimality, φ(x, ξ) is expressed as

φ(x, ξ)=trM−1(ξ)M(ξ)− trM−1(ξ)M(ξ̄).

We used a represented design space of c mentioned in the previous sections. Then,

noting that M(ξ)=BC∗(ξ)Bᵀ where C∗=
∑
wiC(θ, ci), we have

φ(c, ξ)=tr(BC∗(ξ)Bᵀ)−1(BC∗(ξ)Bᵀ)− tr(BC∗(ξ)Bᵀ)−1(BC∗(ξ̄)Bᵀ)

=trC∗−1(ξ)C∗(ξ)− trC∗−1(ξ)C∗(ξ̄)

=m− d(c, ξ)≥0 (2.8)

wherem is the number of parameters, and d(c, ξ)=tr C∗−1(ξ)C∗(ξ̄). We use d(c, ξ)≤m

for verification.

A-optimality verification From a directional derivative of ΦA, we obtain the

equation of the A-optimal verification as follows.

φ(x, ξ)=tr[−M−1(ξ)
dM(ξ′)

dα
M−1(ξ)]

=− tr[M−1(ξ)[M(ξ̄)−M(ξ)]M−1(ξ)]=tr[M−1(ξ)]− tr[M(ξ̄)M−2(ξ)].

For a represented design space of c, using the same notation as in the case of the

D-optimality verification, we see that

φ(c, ξ)=tr(BC∗(ξ)Bᵀ)−1 − tr(BC∗(ξ̄)Bᵀ)(BC∗(ξ)Bᵀ)−1(BC∗(ξ)Bᵀ)−1

=tr(BC∗(ξ)Bᵀ)−1 − trC∗(ξ̄)(C∗(ξ)BᵀBC∗(ξ))−1

=C − s(c, ξ)≥0 (2.9)

where C=tr (BC∗(ξ)Bᵀ)−1 is a constant for an obtained design ξ, and s(c, ξ)=tr

C∗(ξ̄)(C∗(ξ)BᵀBC∗(ξ))−1. We use s(c, ξ)≤C for A-optimality verification. The two

inequality equations derived here will be extended for a mixed response model in

Chapter 4, 5, and 6.
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2.5 Scope of Studies and Specific Aim

In this study, we investigate locally optimal designs for an experiment where

responses include both binary and continuous variables. Among possible statistical

models, we adopt a direct-factorization approach to formulating the joint pdf and use

one logistic model and two conditional linear models. When we are interested in an

association between mixed responses, this type of modelling provides a useful analysis

of mixed responses. On the other hand, Fedorov et al. (2012) found D-optimal

designs for such responses based on a latent-factorization approach by assuming an

unobservable continuous latent variable for the categorical variable. Also, Biswas

and López-Fidalgo (2013) found optimal designs for these types of responses by using

a direct factorization approach, but their model used one conditional linear model.

Under the compound optimality criterion, they found 4-point designs.

We tackle our design problem using a complete class approach and a nonlinear

optimization technique. We identify a complete class in an analytic way to signifi-

cantly decrease the number of candidate designs. Staying within a complete class, we

search for optimal designs by using a computer algorithm for nonlinear constrained

optimization. The obtained designs are verified as optimal by the general equivalence

theorem suggested by Kiefer (1974).

We note that the complete class approach that we consider discloses a different

aspect of an optimal design approach in contrast to the GET. The GET is an im-

portant ground of the continuous design theory and is still used for constructing and

validating an optimal design. However, the GET does not tell about the maximal

number of support points n that optimal designs can possess. Researchers thus may

start with a large n or a moderate n depending on characteristics of their algorithms

and use the fine grid of a design space. Consequently, computation is expensive and
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the evidence of final answers is less conclusive. Hence, if a complete class is identi-

fied, we have a theoretically supported information on optimal designs and need to

browse possible designs within the complete class. Then, we lighten the burden of an

algorithmic search.

Since complete class results allow us to shift our focus on a small collection of

designs, we still need a method for identifying an optimal design. There are some

follow-up works focusing on how to derive concluding answers after identifying a

complete class (Wu and Stufken, 2014; Hu, Yang, and Stufken 2015). Wu and Stufken

(2014) algebraically found a Φp-optimal design for a generalized linear model with a

quadratic polynomial predictor. Hu, Yang, and Stufken (2015) found optimal designs

in various nonlinear models using Newton’s algorithm along with some theoretical

results. In our case, we use a nonlinear constrained optimization in mathematical

programming to get numerical solutions.

The primary interest of mathematical programming is an allocation of resources

so the subjects of allocation should be determined beforehand. In other words, for an

optimal design problem, the number of design points should be decided. However, in

most cases, this number is not determined so mathematical optimization is not more

popular in optimal design studies despite its efficiency. The complete class approach

helps us overcome this difficulty.

Using the GET, we will validate the optimality of the results. The GET serves

as an excellent tool for optimality verification. Our study focuses only on searching

locally optimal designs. A locally optimal design presumes a best-guessed parameter

value to remedy an ‘unknown parameter problem’ regarding the information matrix

which depends on unknown parameters. Despite this limitation, a locally optimal

design is obtained and studied for a mixed response experiment since the obtained

designs can be at least a good benchmark for evaluating other designs.
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As mentioned earlier, not much work has been done in finding optimal designs

for mixed response experiments. Our focus is on the search for a continuous optimal

design by considering a locally optimal design approach. Our results will be provided

in the next four chapters.

26



Chapter 3

COMPLETE CLASS RESULTS

3.1 Statistical Model and Fisher Information Matrix

We assume that the experiment is described by one independent variable x, one

continuous response variable y, and one binary response variable z. Let us denote

observable data as (xi, yi, zi), i=1, ..., N , where xi, yi∈R and zi∈{0, 1}.

A mixed response regression model is described as follows. In this model, we

use the product of the marginal distribution of z and the conditional distribution

of y given z for the joint probability density function (pdf) of (y, z). The binary

variable zi is modeled by a logistic regression model with probability πi for zi=1,

and the conditional distribution of yi given zi=0 or 1 is assumed to follow a normal

distribution. In particular, we have the following,

zi=


1 with πi

0 with 1− πi
with πi=E(zi)=

exp(α0 + α1xi)

1 + exp(α0 + α1xi)
, (3.1)

and

yi|zi∼


N(µ1, σ

2) if zi=1

N(µ2, σ
2) if zi=0

with


E(yi|zi=1)=µ1 =β

(1)
0 + β

(1)
1 xi

E(yi|zi=0)=µ2 =β
(2)
0 + β

(2)
1 xi

,

where α0, α1, β
(1)
0 , β

(1)
1 , β

(2)
0 , β

(2)
1 , and σ2 are unknown parameters. The joint model

describes the relationship not only between x and (y, z) but also between y and z.
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The mixed response model that we consider has the joint pdf of y and z as

f(yi, zi)=f(zi)f(yi|zi)

=πzii (1− πi)1−zi [f(yi|zi=1)]zi [f(yi|zi=0)]1−zi

=
[

exp(α0 + α1xi)

1 + exp(α0 + α1xi)

]zi [ 1

1 + exp(α0 + α1xi)

]1−zi
[

1

σ
√

2π
exp(−

(yi − (β
(1)
0 + β

(1)
1 xi))

2

2σ2
)

]zi [
1

σ
√

2π
exp(−

(yi − (β
(2)
0 + β

(2)
1 xi))

2

2σ2
)

]1−zi
.

We denote the vector of all model parameters as θ0 =(αᵀ,β(1)ᵀ,β(2)ᵀ, σ2)ᵀ =(α0, α1,

β
(1)
0 , β

(1)
1 , β

(2)
0 , β

(2)
1 , σ2)ᵀ. The form of f(yi|zi)=[f(yi|zi=1)]zi [f(yi|zi=0)]1−zi is avail-

able when zi is binary. Then, the log-likelihood function is

lN (θ0)=log

N∏
i=1

f(yi, zi)

=log
N∏
i=1

f(zi)[f(yi|zi=1)]zi [f(yi|zi=0)]1−zi

=
N∑
i=1

log f(zi) +
N∑
i=1

zi log f(yi|zi=1) +
N∑
i=1

(1− zi) log f(yi|zi=0).

If necessary, f(yi) and f(zi|yi) can be easily derived from the models. The former

one is f(yi)=f(yi, zi=0)+f(yi, zi=1)=(1−πi)f(yi|zi=0)+πif(yi|zi=1). Following

this, the latter one is obtained as P (zi=k|yi)=f(yi|zi=k)P (zi=k)/f(yi) for k=0, 1.

Then, we see that

zi|yi=


1 with π0

i

0 with 1− π0
i

with π0
i =

exp(α0 + α1xi)

l + exp(α0 + α1xi)
,

where l=exp((yi − (β
(2)
0 + β

(2)
1 xi))

2)/ exp((yi − (β
(1)
0 + β

(1)
1 xi))

2) as also indicated in

Deng and Jin (2015). Expectations and variances of yi and zi|yi can also be calculated.

We have an interest in the information matrix since the inverse of an infor-

mation matrix is the smallest asymptotic variance of the unbiased parameter es-

timates of θ in a maximum likelihood estimation. Confining our consideration to

θ=(αᵀ,β(1)ᵀ,β(2)ᵀ)ᵀ, the Fisher information matrix M for a continuous design ξ=
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{(xi, wi), i=1, ..., n} is the following 6× 6 symmetric block diagonal matrix:

M(ξ,θ)=


FᵀWP(I−P)F 0 0

0 1
σ2F

ᵀWPF 0

0 0 1
σ2F

ᵀW(I−P)F

 , where F=


f(x1)ᵀ

f(x2)ᵀ

...

f(xn)ᵀ

 ,

f(xi)=[1, xi]
ᵀ is the model vector, P=diag(π1, ..., πn) with πi=

exp(α0+α1xi)
1+exp(α0+α1xi)

, and

W=diag(w1, ..., wn). Here, σ2 cannot be factored out as opposed to most traditional

design problems under linear models.

For dealing with the information matrix conveniently, we consider a represented

design point ci and a represented design as ξ={(ci, wi), i=1, ..., n}, for ci∈ [A,B].

Using a bijection from xi to ci, we define ci as ci=α0 + α1xi. This representa-

tion is expressed in the information matrix by a matrix B−1
1 (θ)=( 1 0

α0 α1
) that gives

( 1 0
α0 α1

) ( 1
xi )=( 1

ci ). Ford, Torsney, and Wu (1992) also used such a canonical form

to solve an optimal design problem independently of θ, although a locally optimal

design still depended on the values of θ. For a design ξ={(ci, wi), i=1, ..., n}, the

information matrix can be written as

M(ξ,θ)=B(θ, σ)

(
n∑
i=1

wiC(θ, ci)

)
(B(θ, σ))ᵀ, (3.2)

where B(θ, σ) is a 6× 6 nonsingular matrix that depends not only on θ but also on

σ as

B(θ, σ)=



1 0 0 0 0 0
α0 α1 0 0 0 0
0 0 σ 0 0 0
0 0 σα0 σα1 0 0
0 0 0 0 σ 0
0 0 0 0 σα0 σα1



−1

=diag(B1,
1

σ
B1,

1

σ
B1), (3.3)
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and C(θ, c) is a 6× 6 symmetric matrix as

C(θ, c)=



Ψ11(c) Ψ12(c) 0 0 0 0
Ψ12(c) Ψ22(c) 0 0 0 0

0 0 Ψ33(c) Ψ34(c) 0 0
0 0 Ψ34(c) Ψ44(c) 0 0
0 0 0 0 Ψ55(c) Ψ56(c)
0 0 0 0 Ψ56(c) Ψ66(c)

 (3.4)

=



ec

(1+ec)2

c ec

(1+ec)2
c2 ec

(1+ec)2

0 0 ec

1+ec

0 0 c ec

1+ec c2 ec

1+ec

0 0 0 0 1
1+ec

0 0 0 0 c 1
1+ec c2 1

1+ec


. (3.5)

We use the notation of Ψij for i≤j where i, j=1, ..., 6 to indicate the location of the

element function in C.

3.2 Complete Class Results

We will find five complete classes using a step by step procedure with five lemmas

and then identify the smallest class. The complete class that we suggest first is a

collection of designs having at most five support points. The remaining complete

classes are composed of at most four-point designs. The conclusion of some lemma

implies that of other lemma, but here we record multiple identifications of complete

classes to show the existence of many complete classes under the same model.

To apply the complete class approach introduced in Section 2.2, we first choose

C22 and select a maximal set of linearly independent nonconstant functions from

the matrix C in (3.5). After fixing C22 to Ψk, we make a sequence of Ψ1, ...,Ψk−1

using the remaining elements. Since there are many options for choosing C22 and a

sequence of Ψ functions, the process is somewhat heuristic and exhaustive.

In the case of a 1-by-1 C22, only one element is selected for C22 from the diagonal

elements of C. For an m2-by-m2 C22, we pick m2 elements from the diagonal of C,

and use them as the diagonal elements of C22. We then determine what the off-
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diagonal elements of C22 should be. Or, in a more general way, we may consider

simultaneously permuting the rows and the columns of the C matrix to set C22.

For example, the first row and first column may be rearranged to the third row and

third column, respectively. We then select the lower-right m2-by-m2 submatrix of the

resulting matrix as C22. Different permutations may give a different C22 matrix, and

thus different complete classes. It also had been observed that some of permutations

will not allow us to form a complete class. We note that permuting the rows and

columns within the selected C22 will not change the complete class result. A judicious

selection of C22, including its size, is important to this approach.

Another important issue to consider when applying the complete class approach

is the order of the Ψ functions. After selecting C22, the remaining elements in C

will be used to generate a sequence of Ψi for i=1, ..., k − 1. As indicated in Yang

and Stufken (2012), different orders may give different results. Specifically, Yang

and Stufken (2012) indicated that the selected elements (which are represented as

functions of c) should all be non-constant and linearly independent of each other.

They also mentioned that the element to be represented as Ψ1, the one to be selected

as Ψ2, and so on will have an effect on the complete class result. For a given sequence

of Ψi’s, we then calculate fl,t as in (2.2) and obtain F (c) in (2.3).

In our problem, it is noteworthy that we have ec

1+ec
+ 1

1+ec
=1 by combining two

functions in C. This relationship originates from the two conditional linear models

for y|z=1 and y|z=0, or more precisely, from the fact that Pr(z=0) + Pr(z=1) =1.

Because of this, Theorem 2 of Yang and Stufken (2012) is not directly applicable to

our design problem since we always have fl,l=0 for some l. If we have zero of fl,l, it

hinders a complete class approach since F (c) also has zero and it is unclear whether

there exists a complete class due to the lack of information. However, this issue can

be taken care of as follows.
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We may consider, for example, a 1-by-1 C22 with C22 = c2

ec+1
. We then follow the

above mentioned steps to calculate F (c). We have F (c)=0 for this case regardless

how we permute the order of the Ψ functions. While this result seems to suggest

considering another C22, it immediately becomes clear that useful results will never

be reached as long as we keep both ec/(1 + ec) and 1/(1 + ec) in the sequence of Ψ

functions, although they both should be included if we closely follow the procedure

of Yang and Stufken (2012). With a simple modification of the approach, we have

the following result.

Lemma 3.2.1. For a mixed response model, up to a change of signs of some Ψl,

l=1, ..., 8, {Ψ0,Ψ1 =Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ22,Ψ4 =Ψ34,Ψ5 =Ψ44,Ψ6 =Ψ55,Ψ7 =Ψ56}

and {Ψ0,Ψ1 =Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ22,Ψ4 =Ψ34,Ψ5 =Ψ44,Ψ6 =Ψ55,Ψ7 =Ψ56,Ψ
Q
8 }

form Chebyshev systems for every nonzero vector Q. Here, Ψ0 =1 and ΨQ
8 =QᵀΨ66Q.

In addition, the designs with at most 5 design points, including both A and B, form

a complete class in the design space [A,B].

Proof. When we consider any of the two sets using the elements, Ψ0,Ψ1 =Ψ11,Ψ2 =

Ψ12,Ψ3 =Ψ22,Ψ4 =Ψ34,Ψ5 =Ψ44,Ψ6 =Ψ55,Ψ7 =Ψ56, and Ψ8 =Ψ66, it holds that F (c)=

16
(ec+1)2

>0. Our first claim then follows from Lemma 2.2.1. Then, Lemma 2 of

Yang and Stufken (2012) implies that, for any set S={(ci, wi), i=1, ..., N} with

N≥5, we find a set S∗={(c∗i , w∗i ), i=1, ..., 5}, including A and B as points c∗i ’s,

that satisfies
5∑
i=1

w∗iΨl(c
∗
i )=

N∑
i=1

wiΨl(ci), l=0, 1, ..., 7, and
5∑
i=1

w∗iΨ
Q
8 (c∗i )>

N∑
i=1

wiΨ
Q
8 (ci)

for every nonzero vector Q. Since Ψ0 =1 and Ψ55 are parts of the Ψl functions, we

have
∑
w∗iΨ33(c∗i )=

∑
wiΨ33(ci) using Ψ33 =1 − Ψ55 for Ψ33 discarded from a max-

imal set of Ψ functions. Then, we have
5∑
i=1

w∗iC11(θ, c∗i )=
N∑
i=1

wiC11(θ, ci). It also

holds that
5∑
i=1

w∗iC12(θ, c∗i )=
N∑
i=1

wiC12(θ, ci) and
5∑
i=1

w∗iC22(θ, c∗i )≥
N∑
i=1

wiC22(θ, ci).

We then have M(ξ∗)�M(ξ) and the conclusion follows.
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Table 3.1: F (c) Values in 1-by-1 C22 Cases

Discarded Ψ9 Ψ1,Ψ2, ...,Ψ7 Ψ8 =C22 F (c)

ec

1+ec
ec

(ec+1)2
, cec

(ec+1)2
, c2ec

(ec+1)2
, cec

ec+1 ,
c2ec

ec+1 ,
1

ec+1 ,
c

ec+1
c2

ec+1
16

(ec+1)2
(>0)

1
1+ec

ec

(ec+1)2
, cec

(ec+1)2
, c2ec

(ec+1)2
, ec

ec+1 ,
cec

ec+1 ,
c2ec

ec+1 ,
c

ec+1
c2

ec+1
16

(ec+1)2
(>0)

Table 3.2: Other Examples in 1-by-1 C22 Cases

Ψ1,Ψ2, ...,Ψ7 Ψ8 =C22 F (c)

ec

(ec+1)2
, cec

(ec+1)2
, c2ec

(ec+1)2
, 1
ec+1 ,

c
ec+1 ,

c2

ec+1 ,
cec

ec+1
c2ec

ec+1
16e2c

(ec+1)2
(>0)

1
ec+1 ,

c
ec+1 ,

c2

ec+1 ,
cec

ec+1 ,
c2ec

ec+1 ,
ec

(ec+1)2
, cec

(ec+1)2
c2ec

(ec+1)2
− 16e2c

(ec+1)2(8ec+e2c+1)
(<0)

1
ec+1 ,

ec

(ec+1)2
, c
ec+1 ,

cec

ec+1 ,
cec

(ec+1)2
, c2

ec+1 ,
c2ec

ec+1
c2ec

(ec+1)2
− 16e2c

(ec+1)2(8ec+e2c+1)
(<0)

c2ec

(ec+1)2
, cec

(ec+1)2
, ec

(ec+1)2
, c

2ec

ec+1 ,
cec

ec+1 ,
c2

ec+1 ,
c

ec+1
1

ec+1
16e2c

(ec+1)2((e2c−1)c2−9(e2c+1)c+24(e2c−1))

Table 3.1 shows that between ec

1+ec
and 1

1+ec
, any functions can be discarded for

the same results. Also, the complete class approach is applied to the other selection

of C22 as in Table 3.2. The first row in Table 3.2 gives the same result as the previous

Lemma although we choose the different C22. The second and third rows show that

there exists another complete class. We then have the next lemma for which we omit

the proof since it is similar to that of Lemma 3.2.1.

Lemma 3.2.2. For a mixed response model, up to a change of signs of some Ψl,

l=1, ..., 7, {Ψ0,Ψ1 =Ψ55,Ψ2 =Ψ56,Ψ3 =Ψ66,Ψ4 =Ψ12,Ψ5 =Ψ22,Ψ6 =Ψ11,Ψ7 =Ψ34}

and {Ψ0,Ψ1 =Ψ55,Ψ2 =Ψ56,Ψ3 =Ψ66,Ψ4 =Ψ12,Ψ5 =Ψ22,Ψ6 =Ψ11,Ψ7 =Ψ34,Ψ
Q
8 }

form Chebyshev systems for every nonzero vector Q. Here, Ψ0 =1 and ΨQ
8 =QᵀΨ22Q.

In addition, the designs with at most 4 design points form a complete class in the

design space [A,B].

Furthermore, we consider the case of a 2-by-2 C22 to search for other com-

plete classes that have designs with the smaller number of support points. We

can select two types of 2-by-2 C22 as one has nonzero off-diagonal elements such as(
ec

(1+ec)2
c ec

(1+ec)2

c ec

(1+ec)2
c2 ec

(1+ec)2

)
, and the other has zero off-diagonal elements such as diag( ec

(ec+1)2
, c

2ec

ec+1
).
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The number of Ψ is six in the former case and it is seven in the latter. By using the

principal minor test, we check the sign of a 2-by-2 fk,k in F (c) for k=6, or 7. For the

positive definite test, we check if the (1, 1) component of fk,k and the determinant

of fk,k is positive. For the negative definite test, the (1, 1) component of fk,k should

be negative and the determinant of fk,k should be positive to prove the negative

definiteness of the matrix.

We examined the cases with nonzero off-diagonal elements, but F (c)’s were not

easily tractable and we did not identify a complete class. We searched all permutations

(5!) for two types of C22. Since we exclude Ψ33 from a maximal set, we had no C22

with Ψ33.

On the other hand, when C22 is a diagonal matrix, we identify complete classes

and the results are found in two following lemmas. We use a similar order of a

sequence to in Lemma 3.2.1.

Lemma 3.2.3. For a mixed response model, up to a change of signs of some Ψl, l=

1, ..., 7, {Ψ0,Ψ1 =Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56,Ψ6 =Ψ66} and {Ψ0,Ψ1

=Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56,Ψ6 =Ψ66,Ψ
Q
7 } form Chebyshev systems

for every nonzero vector Q. Here, Ψ0 =1 and ΨQ
7 =Qᵀ diag(Ψ22,Ψ44)Q. In addition,

the designs with at most 4 design points, including B, form a complete class in the

design space [A,B].

Proof. When we consider any of the two sets using the elements, Ψ0,Ψ1 =Ψ11,Ψ2 =

Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56,Ψ6 =Ψ66,Ψ7 =diag(Ψ22,Ψ44), we have f7,7>0 since

the (1,1) element of f7,7, 4ec

(ec+4)2
), is positive, and |f7,7|=

16e2c(8ec+e2c+1)
(ec+4)4

>0. Also, we

have
6∏
i=1

fi,i=
2(ec+4)

(ec+1)2
>0. We then verify F (c)>0. Our first claim then follows from

Lemma 2.2.1. Consequently, Lemma 2 of Yang and Stufken (2012) implies that, for

any design ξ={(ci, wi), i=1, ..., N} with N≥4, we can find a design ξ∗={(c∗i , w∗i ), i=
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1, ..., 4}, including B as one of the points c∗i ’s that satisfies
4∑
i=1

w∗iΨl(c
∗
i )=

N∑
i=1

wiΨl(ci)

for l=0, 1, ..., 6, and
4∑
i=1

w∗iΨ
Q
7 (c∗i )>

N∑
i=1

wiΨ
Q
7 (ci) for every nonzero vector Q. In a

similar way to the proof of Lemma 3.2.1, we conclude that M(ξ∗)�M(ξ) and identify

the complete class.

Lemma 3.2.4. For a mixed response model, up to a change of signs of some Ψl, l=

1, ..., 7, {Ψ0,Ψ1 =Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ44,Ψ5 =Ψ55,Ψ6 =Ψ56} and {Ψ0,Ψ1

=Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ44,Ψ5 =Ψ55,Ψ6 =Ψ56,Ψ
Q
7 } form Chebyshev systems

for every nonzero vector Q. Here, Ψ0 =1 and ΨQ
7 =Qᵀ diag(Ψ22,Ψ66)Q. In addition,

the designs with at most 4 design points, including A, form a complete class in the

design space [A,B].

Proof. When we consider any of the two sets using the elements, Ψ0,Ψ1 =Ψ11,Ψ2 =

Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ44,Ψ5 =Ψ55,Ψ6 =Ψ56,Ψ7 =diag(Ψ22,Ψ66), we have f7,7>0 since

the (1,1) element of f7,7, 2e2c(2ec+1)

(4ec+1)2
, is positive, and |f7,7|=

4e2c(2ec+1)2(8ec+e2c+1)
(4ec+1)4

>0.

Also, we have
6∏
i=1

fi,i=− 4(4ec+1)

(ec+1)2(2ec+1)
<0. We then verify F (c)<0. Our first claim

then follows from Lemma 2.2.1 and the remaining proof is similar to that of Lemma

3.2.3.

Furthermore, we set a 3-by-3 C22 with Ψ22,Ψ44 and Ψ66 and find a complete class.

Here we use again the principal minor test. If a matrix is a 3-by-3 diagonal matrix

such as A=diag(f1, f2, f3), we determine that A is positive definite if f1>0, f1f2>0,

and f1f2f3>0, i.e. f1>0, f2>0, and f3>0 , and that A is negative definite if f1<0,

f1f2>0, and f1f2f3<0, i.e. f1<0, f2<0, and f3<0.

Lemma 3.2.5. For a mixed response model, up to a change of signs of some Ψl, l=

1, ..., 6, {Ψ0,Ψ1 =Ψ11,Ψ2 =Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56} and {Ψ0,Ψ1 =Ψ11,Ψ2 =

Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56,Ψ
Q
6 } form Chebyshev systems for every
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nonzero vector Q. Here, Ψ0 =1 and ΨQ
6 =Qᵀ diag(Ψ22,Ψ44,Ψ66)Q. In addition, the

designs with at most 4 design points, including A and B, form a complete class in

the design space [A,B].

Proof. When we consider any of the two sets using the elements, Ψ0,Ψ1 =Ψ11,Ψ2 =

Ψ12,Ψ3 =Ψ34,Ψ4 =Ψ55,Ψ5 =Ψ56,Ψ6 =diag(Ψ22,Ψ44,Ψ66), we have f6,6>0 since the

(1,1) element of f6,6 is ec

2
>0, the (2,2) element is e2c

4
+e3c>0, and the (3,3) element is

1
8
e2c (17ec + 4e2c + 4)>0. Also, we have

5∏
i=1

fi,i=
4

(ec+1)2
>0. We then verify F (c)>0.

Our first claim then follows from Lemma 2.2.1 and the remaining proof is similar to

that of Lemma 3.2.3.

Table 3.3: The Obtained Complete Classes for a Mixed Response Model

Complete classes Design

Complete class 1

(
A c2 c3 c4 B
w1 w2 w3 w4 w5

)
Complete class 2

(
c1 c2 c3 c4
w1 w2 w3 w4

)
Complete class 3

(
c1 c2 c3 B
c1 c2 c3 c4

)
Complete class 4

(
A c2 c3 c4
w1 w2 w3 w4

)
Complete class 5

(
A c2 c3 B
w1 w2 w3 w4

)

When we denote the five complete classes that we identified in the previous lemmas

as Ξ1,Ξ2,Ξ3,Ξ4, and Ξ5, respectively, we see that Ξ5⊂Ξ4⊂Ξ2⊂Ξ1 and Ξ5⊂Ξ3⊂Ξ2⊂

Ξ1 in Table 3.3. Based on our results, we use the complete class Ξ5 as a collection of

candidate designs for a search for optimal designs under a given optimality criterion

in the next two chapters. We have our first main result of the study.

Theorem 3.2.6. For any design ξ={(ci, wi), i=1, ..., n} in the design space [A,B]

for a mixed response model, there exists a complete class of designs that have at most

four design points including both A and B.
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3.3 Estimability and Number of Support Points

In many cases, we normally would need the number of support points of a design

to be at least as large as the number of parameters of interest to make all parameters

estimable. A design is sometimes called saturated when the number of support points

is the same as the number of parameters in the model (Dette and Melas, 2012).

However, for a mixed response model, it is not necessary to have saturated designs

to make parameters estimable. In other words, we do not need at least six support

points for having a linear, unbiased estimator of the six mean parameters in our

model. The complete class results in the previous section provide evidence of this,

and in this section, we give another explanation. At first, we remind that the Fisher

information matrix is as follows (see Section 3.1).

M(ξ,θ)=


FᵀWP(I−P)F 0 0

0 1
σ2F

ᵀWPF 0

0 0 1
σ2F

ᵀW(I−P)F

 ,where F=

f(x1)ᵀ

f(x2)ᵀ

...
f(xn)ᵀ


and f(xi)=[1, xi]

ᵀ. Based on the following theorem, we understand that all the mean

parameters can be estimated even when the number of the support points of the

selected design is less than the number of parameters (=6).

Theorem 3.3.1. For any design ξ={(xi, wi), i=1, ..., n, wi>0}, if 0<P (zi=1)=

πi<1 for all i, and F is a full column rank matrix, then M�0.

Proof. We observe that WP(I−P), WP, and W(I−P) are positive definite since

wi>0, πi>0 and 1− πi>0. When F is full column rank, all block diagonal matrices

of M are positive definite. Therefore, M�0 .

Based on the above theorem, we know that six parameters are estimable in

a mixed response model when using designs with at least two support points as

long as F is in full column rank. Unless xi goes to ∞ or −∞, it is true that

πi>0 and 1 − πi>0 since πi=
exp(α0+α1xi)

1+exp(α0+α1xi)
is not zero or one. Moreover, when

we define M=diag(M1,
1
σ2M2,

1
σ2M3) where M1 =FᵀWP(I−P)F,M2 =FᵀWPF, and
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M3 =FᵀW(I−P)F, we see that if F has full column rank, it holds that M2�M1 and

M3�M1 since M2 −M1 =FᵀWP2F�0 and similarly, M3 −M1�0.

3.4 Discussion

Our study shows that the complete class approach is helpful in tackling a locally

optimal design problem for the mixed response model that we consider. We found

five complete classes and, in search of an optimal design, selected one complete class

that possessed designs with at most 4 design points, including A and B, in the design

space [A,B]. Instead of a countably many number of n, we considered n=4 as the

number of design points which gave a small candidate set of designs. The number

was clearly less than p(p+ 1)/2=6(7)/2=21 guaranteed by Carathéodory’s theorem,

and remarkably, it also was less than the total number of unknown parameters in

the model. In addition, our case showed that a complete class approach can be

successfully adapted to a nonlinear model for bivariate responses.

Our first two lemmas confirmed that, with a 1-by-1 C22, there exist complete

classes which have designs with at most n=4 design points, and with n=5 design

points including two bound points. In the cases of a 2-by-2 C22, we found two

complete classes with designs that have at most n=4 support points including either

c1 =A or c4 =B. Lastly, using a 3-by-3 C22, we found a complete class with at most

n=4 design points including both A and B in the design space [A,B].

With a symbolic software, an exhaustive search was tried for some cases that

consider every possible permutation of Ψi’s (i 6=k). The number of candidates for

the pair of Chebyshev systems is (the number of selection options in C22) × (the

number of permutations in Ψ1, ...,Ψk−1). We found that in many cases, differently

permuted sequences shared the same F (c). While an exhaustive search is available,

it is true that we often detected the successful results after few trials. In our case,
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we already knew that a simple logistic regression has a complete class from Yang and

Stufken (2009), so we started to examine our case considering a possible C22 in their

results. On the other hand, we observed that the smaller complete classes could be

formed by larger complete classes previously identified. One of complete classes of

the 2-by-2 C22 had the Ψk=diag(Ψ3,Ψ9) where each diagonal element was 1-by-1

C22 in Lemmas 3.2.1 and 3.2.2. Furthermore, we found the case of a 3-by-3 C22 of

which the elements were used for smaller size of C22.

For a mixed response model, we always had fl,l=0 for some l if we simply followed

the procedure of Yang and Stufken (2012). This was because we had Ψ33 + Ψ55 =1

and if both Ψij were in a sequence of Ψ, we had F (c)=0. From such a relationship, we

saw that Ψ′33 and Ψ′55 were linearly dependent as Ψ′33 +Ψ′55 =0, i.e. Ψ′33 =−Ψ′55. Since

the derivative of the Ψ′33/Ψ
′
55 =−1 was zero, we had fl,l=0 for some l. As an another

example, if Ψ′4 and Ψ′9 are linearly dependent, then, we have f9,5 =0. In Figure 2.1,

f4,4 has Ψ′4 on the uppermost location. Similarly, f9,4 has the same form replacing

Ψ′4 with Ψ′9. Then, if Ψ′9 =mΨ′4, we obtain f9,5 =f9,4/f4,4 =0 during differentiation.

When we use a model that we suggest for mixed responses, it should be considered

that the sum of two Ψi,i is one.

On the other hand, we found the range of design points as 2≤n≤4. In many

cases of the complete class results for other models, the number of design points is

at most m where m is the number of parameters. Also, we normally consider that

the number of support points is at least m for estimabiltiy. Combining two facts, we

mostly find saturated designs with m support points under some specific criterion.

However, in our case, we had at most 4-point designs, and at least 2-point designs

instead of 6-point designs. In the numerical results from the next two chapters, we

will see that optimal designs have n=2, 3 or 4 design points. In a sense, we found

‘supersaturated’ optimal designs that give non-singular information matrices.
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Chapter 4

NUMERICAL RESULTS 1: D-OPTIMAL DESIGNS

4.1 Optimization for the D-optimality

Based on the complete class results in the previous chapter, we will now search

for D-optimal designs using a computational approach. We use a mathematical pro-

gramming, specifically a nonlinear constrained algorithm of the fmincon solver in

MATLAB. We first formulate the D-optimality criterion and the constraints relat-

ing to our design problem in accordance with the standard form of mathematical

programming.

The D-optimality criterion was introduced in Chapter 2 as ΦD= |M−1| or Φp=

|M−1|1/6 when p=0. Also, we can consider Φ0
D=log |M−1|. Since three criteria share

the same ordering between candidate designs, best designs are the same. Moreover, it

might be desirable to use the criterion such as Φp= |M−1|1/6 or Φ0
D=log |M−1| because

it is a convex function having a minimum. We here adopt Φ0
D to have an additive form

of three block matrices of the information matrix without exponent parts. Working

with the decomposition of the information matrix as M(ξ,θ) = B(θ, σ)

(
n∑
i=1

wiC(θ, ci)

)
(B(θ, σ))ᵀ, we express the D-optimality criterion as

Φ0
D=− log |BC∗Bᵀ|=− log |B|2|C∗|=− log |C∗| − log |B1|6 − log σ4 (4.1)

where C∗=
∑n

i=1wiC(θ, ci) and B=diag(B1,
1
σB1,

1
σB1). Here, the value of |B1| is a

constant since the element of the matrix B1 is a guessed value of an unknown pa-

rameter α0 or α1, or a constant 0 or 1 as shown in (3.3). Also, the positive con-

stant σ2 does not affect the optimization procedure as long as we hold the same
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value of σ2 throughout optimizing. Therefore, the D-optimality criterion Φ0
D is in-

variant with B. We can find optimal designs by comparing values of − log |C∗|

instead of values of − log |M| among candidate designs. Consequently, when we

denote C∗=diag (C∗1,C
∗
2,C

∗
3), the original minimization problem is reduced to the

minimization of −(log |C∗1| + log |C∗2| + log |C∗3|). Within the complete class 5 iden-

tified in the previous chapter, we want to find a D-optimal design. For a design

ξ={(ci, wi), i=1, 2, 3, 4, c1 =A, c4 =B} in [A,B], a optimization problem can be for-

mulated as:

minimize
ξ0

− (log |C∗1(ξ0)|+ log |C∗2(ξ0)|+ log |C∗3(ξ0)|)

subjectto
∑

wi=1, wi≥0, for i=1, ..., 4 and A≤ci≤B for i=2, 3.

where a vector of decision variables is ξ0 =(c2, c3, w1, w2, w3, w4). We set initial values

of ξ0 as the 30th and 60th percentile points of [A,B] for c2 and c3 and a uniformly

equal weight 0.25 for w1, w2, w3, and w4. The fimincon solver requires initial values

for an iterative method and the choice of initial values can thus impact outcomes of

our search. Trying several initial values is recommended for the solver we use here.

The solver that we consider has five algorithms: interior point algorithm, se-

quential quadratic programming (SQP), sequential quadratic programming legacy

(SQP-legacy), active-set algorithm, and trust-region-reflective algorithm (TRRA). To

choose the most appropriate algorithm for solving our design problem, we compare

the efficiency of algorithms. While we need both, the TRRA does not accommodate

a bound constraint and a linear equality constraint together. The SQP-legacy al-

gorithm is similar to the SQP method. We then exclude two algorithms from the

comparison.

We set three scenarios. For each algorithm, we optimize an at most 4-point design

with two fixed points in the different design spaces including [−5, 5], [−10, 10], and

[−100, 100]. Computing time and the number of iteration are checked ten times with
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Table 4.1: Computing Time and Number of Iterations by Algorithms (sec.)

Design space Algorithm Design for c Mean of run-time Stdaof run-time # of itrnb

[−5, 5] Interiorc -5 -1.1067 1.1067 5 1.8207 0.0148 12
0.1846 0.3154 0.3154 0.1846

SQPd -5 -1.1067 1.1067 5 1.7986 0.0049 13
0.1846 0.3154 0.3154 0.1846

Active-set -5 -1.1063 1.1069 5 1.8099 0.0376 10
0.1846 0.3154 0.3153 0.1846

[−10, 10] Interior -10 -1.3218 1.3218 10 1.8481 0.106 13
0.1628 0.3372 0.3372 0.1628

SQP -10 -1.3218 1.3218 10 1.8221 0.0232 16
0.1628 0.3372 0.3372 0.1628

Active-set -10 -1.2966 1.4448 10 1.832 0.0062 19
0.1444 0.4066 0.3974 0.0516

[−100, 100] interior -100 1.5134 -1.5134 100 1.9641 0.1538 29
0.1666 0.3334 0.3334 0.1666

SQP -100 1.5134 -1.5134 100 1.8768 0.0195 26
0.1666 0.3334 0.3334 0.1666

Active-set - - - - fail - -
- - - -

a standard deviation
b iteration
c interior point algorithm
d sequential quadratic programming

an initial point ξ0
0 =(a, b, 0.25, 0.25, 0.25, 0.25) where a is the 30th quantile point and

b is the 60th quantile point in a design space of [A,B]. Table 4.1 shows that we get

the same solutions with the interior point algorithm and the SQP algorithm. Also,

for each algorithm, we observe that we have the same solution over ten instances

of simulation. In the case of the active-set algorithm, we do not have the answer

in [−100, 100] and the obtained results are different from those of the two other

algorithms in [−5, 5] and [−10, 10]. The difference does not mean a wrong answer,

but we exclude the active-set algorithm because of the failure of optimization in

[−100, 100].

The interior-point algorithm and the SQP algorithm seem comparable to our

design problem. Based on the mean of run-times in seconds, the SQP algorithm is

slightly faster than the interior point algorithm. Regarding the number of iterations,

the number of the interior point algorithm is smaller than the number of the SQP
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in [−5, 5] and [−10, 10] while it is larger in [−100, 100]. In general, they produce the

same solutions and the computation time is trivial. We choose the SQP algorithm

since the mean and standard deviation of the run-time is smaller than those of the

interior point algorithm.

We implement the search on a computer that has a 3.5 GHz 6-core processor with

4 GB of RAM. We present the ‘fval (function value)’ in some of our results, which

indicates the value of the objective function, i.e. −(log |C∗1| + log |C∗2| + log |C∗3|) at

the obtained solution ξ0. Small values are desirable since we set our optimization

problem as a minimization problem when we use the fmincon solver.

We now search for D-optimal designs using the SQP algorithm. Since the design

space is arbitrary, we study several cases with different design spaces. We set a design

space by two standards. The first one is the size of the design space, and the second

one is its central location. For cases with variable sizes of design space, we only

consider symmetric domains about zero. For cases with different central locations,

we fix the length of the space to 20. Our results are summarized in Tables 4.2 and

4.3. Note that all the designs are searched and reported in terms of the represented

design space of c, instead of the original design space of x.

Table 4.2: D-optimal Designs for c by the Size of Design Spaces

Design space fval Design # of points w2/w1

[-1, 1] 6.51 -1 1 2
0.5 0.5 1

[-2, 2] 4.78 -2 0.000 2 3
0.431 0.138 0.431 0.320

[-5, 5] 3.14 -5 -1.107 1.107 5 4
0.185 0.315 0.315 0.185 1.709

[-10, 10] 0.64 -10 -1.322 1.322 10 4
0.163 0.337 0.337 0.163 2.071

[-50, 50] -5.99 -50 1.485 -1.485 50 4
0.166 0.334 0.334 0.166 2.003

[-100, 100] -8.80 -100 1.513 -1.513 100 4
0.167 0.333 0.333 0.167 2.001
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Table 4.3: D-optimal Designs for c by the Location of Design Spaces

Design space fval Design # of points w2/w1 w3/w1

[-25,-5] 20.82 -25 -0.696 -5 3
0.164 0.408 0.428 2.48 2.61

[-20, 0] 3.60 -20 -2.311 0 3
0.165 0.435 0.400 2.65 2.43

[-15, 5] 1.80 -15 -0.591 5 3
0.166 0.498 0.336 2.99 2.02

[-10, 10] 0.64 -10 -1.322 1.322 10 4
0.163 0.337 0.337 0.163 2.07 2.07

[-5, 15] 1.80 -5 0.591 15 3
0.336 0.498 0.166 1.48 0.50

[0, 20] 3.60 0 2.311 20 3
0.400 0.435 0.165 1.09 0.41

[5, 25] 20.82 5 6.969 25 3
0.428 0.408 0.164 0.95 0.38

As shown in Table 4.2, we obtain a 2-, 3-, or 4-point design according to the

size of a design space. We set design spaces to [−1, 1], [−2, 2], [−5, 5], [−10, 10],

[−50, 50], and [−100, 100]. We note that we expect at most four design points with

the complete class that we derived. When the space is [−1, 1], there is a 2-point

design of {(−1, 0.5), (1, 0.5)}. The points are the two extreme points of the de-

sign space, and their weights are equal. In [−2, 2], the 3-point design appears as

{(−2, 0.43), (0, 0.14), (2, 0.43)}. The center and the two extreme points of the design

space are included as support points, and the three corresponding weights are not

all equal; the first and third weights are the same. For other design spaces, 4-point

designs are obtained: the two outer points and two inner points. The inner points are

symmetric about zero. The weights of the outer points are equal and so are those for

the inner points. When we move the design space from [−10, 10] to [−100, 100], the

inner points change from ±1.322 to ±1.513. It also can be seen that the ratio of the

weights between the inner and the outer points is rather consistent for the last three

designs by the values of w2/w1 in Table 4.2. The ratio of weights is close to 1 :2 :2 :1.
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Table 4.4: D-optimal Designs for c by the Size of Design Spaces (detail)

Design space a Design # of points Inner points w1 w2/w1

-1 1 -1 1 2
0.5 0.5 0.5 1

-1.5 1.5 -1.5 1.5 2
0.5 0.5 0.5 1

-1.8 1.8 -1.8 0 1.8 3 0
0.4873 0.0255 0.4873 0.49 0.052

-2 2 -2 0 2 3 0
0.431 0.138 0.431 0.43 0.320

-2.5 2.5 -2.5 0 2.5 3 0
0.347 0.306 0.347 0.35 0.882

-2.7 2.7 -2.7 0 2.7 3 0
0.327 0.346 0.327 0.33 1.058

-2.9 2.9 -2.9 0 2.9 3 0
0.312 0.376 0.312 0.31 1.206

-2.95 2.95 -2.95 -0.184 0.184 2.95 4 -0.184 0.184
0.306 0.194 0.194 0.306 0.31 0.632

-3 3 -3 -0.302 0.302 3 4 -0.302 0.302
0.3 0.200 0.200 0.3 0.30 0.666

-3.2 3.2 -3.2 -0.544 0.544 3.2 4 -0.544 0.544
0.278 0.222 0.222 0.278 0.28 0.800

-3.5 3.5 -3.5 -0.739 0.739 3.5 4 -0.739 0.739
0.25 0.250 0.250 0.25 0.25 0.999

-4 4 -4 -0.923 0.923 4 4 -0.923 0.923
0.218 0.282 0.282 0.218 0.22 1.293

-5 5 -5 -1.107 1.107 5 4 -1.107 1.107
0.185 0.315 0.315 0.185 0.185 1.709

-6 6 -6 -1.197 1.197 6 4 -1.197 1.197
0.171 0.329 0.329 0.171 0.171 1.929

-7 7 -7 -1.248 1.248 7 4 -1.248 1.248
0.165 0.335 0.335 0.165 0.165 2.030

-8 8 -8 -1.281 1.281 8 4 -1.281 1.281
0.163 0.337 0.337 0.163 0.163 2.067

-9 9 -9 -1.304 1.304 9 4 -1.304 1.304
0.163 0.337 0.337 0.163 0.163 2.075

-10 10 -10 -1.322 1.322 10 4 -1.322 1.322
0.163 0.337 0.337 0.163 0.163 2.071

-50 50 -50 -1.485 1.485 50 4 -1.485 1.485
0.167 0.334 0.334 0.167 0.167 2.003

-100 100 -100 -1.513 1.513 100 4 -1.513 1.513
0.167 0.333 0.333 0.167 0.167 2.001

-150 150 -150 -1.523 1.523 150 4 -1.533 1.533
0.1666 0.333 0.333 0.167 0.167 2.001

a From now, a design space is expressed by two endpoints.
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In Table 4.3, we change the central location of the design space. We set the

symmetric design space [−10, 10] as baseline and move it in a positive or negative

direction. Except for the case of [−10, 10], we obtain asymmetric 3-point designs

under the D-optimality criterion. For example, in the design space of [−20, 0], we

obtain the design points of -20, -2.311, and 0 with weights of 0.165, 0.435, and 0.4,

respectively. The second point -2.311 is not the midpoint of the two end points -

20 and 0. The weights are not equal as the values of w2/w1 and w3/w1 indicate.

The minimum value 0.642 of ‘fval’ is achieved when a design space is symmetric as

[−10, 10].

We now closely observe D-optimal designs in a symmetric domain with various

design spaces in Table 4.4 by considering additional symmetric design spaces from

[−1, 1] to [−150, 150].

From Table 4.4, we see that the change in the number of support points is gradual.

It also can be seen that every 2-point design has the two boundary points of the design

space as support points, each with weights of 0.5. This is observed when the design

space is [−1, 1] or [−1.5, 1.5]. Every 3-point design has zero in the middle. They also

are symmetric designs. When the design space is enlarged to [−2.95, 2.95], a 4-point

design appears. The support points are symmetric about zero. Weights are balanced

as the ratio of about 3:2:2:3. By widening the design space, we observe that the ratio

of weights moves gradually to 1:2:2:1.

If we look at the ‘inner points’ columns in Table 4.4, inner points are moving

in between ±0.184 and ±1.533 when we have a 4-point design. In addition, the

weights for the outer support points decrease as the size of the design space increases

according to the ‘w1’ column. It decreases from 0.5 to 0.167 when the design space

changes from [−1, 1] to [−50, 50].
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4.2 Verification of the D-optimality

Under the D-optimality criterion, we obtained designs using mathematical pro-

gramming in the previous section. However, it is not guaranteed that the obtained

designs are D-optimal if we completely rely on the capability of the fmincon solver

for solving minimization problems. With the general equivalence theorem described

in Chapter 2, we validate the D-optimality of the obtained designs. In Chapter 2,

we derived the basic equation for this verification as m − d(c, ξ)≥0 where m is the

number of parameters, and d(c, ξ)=tr C∗−1(ξ)C∗(ξ̄); see (2.8). Based on this, we

provide a detailed derivation of d(c, ξ) for the mixed response model.

We first specify C∗−1(ξ) and C∗(ξ̄) using a model vector f(ci). For a block diagonal

matrix, we denote C∗=diag{C∗1,C∗2,C∗3}=diag {
∑
wif(ci)

eci

(1 + eci)2
f(ci)

ᵀ,
∑
wif(ci)

eci

(1 + eci)

f(ci)
ᵀ,
∑
wif(ci)

1

(1 + eci)
f(ci)

ᵀ}. Also, for a measure ξ̄ with a unit mass at c, we have

C∗(ξ̄)=diag {f(c) ec

(1 + ec)2
f(c)ᵀ, f(c)

ec

(1 + ec)
f(c)ᵀ, f(c)

1

(1 + ec)
f(c)ᵀ}.

Then, for the D-optimality, we see that d(c, ξ)= trC∗−1
1 (ξ)C∗1(ξ̄)+trC∗−1

2 (ξ)C∗2(ξ̄)+

trC∗−1
3 (ξ)C∗3(ξ̄). From the first term, it holds that trC∗−1

1 (ξ)C∗1(ξ̄)=trC∗1(ξ̄)C∗−1
1 (ξ)=

tr f(c)π(1−π)fᵀ(c)C∗−1
1 (ξ)=π(1−π) tr[fᵀ(c)C∗−1

1 (ξ)f(c)]=π(1−π)fᵀ(c)C∗−1
1 (ξ)f(c). Then,

we get the following proposition.

Proposition 4.2.1. For a mixed responses model, we verify the D-optimality of an

obtained design ξ if it holds that

d(c, ξ)=
ec

(1 + ec)2
f(c)ᵀC∗−1

1 (ξ)f(c)ᵀ +
ec

(1 + ec)
f(c)ᵀC∗−1

2 (ξ)f(c)ᵀ +
1

(1 + ec)
f(c)ᵀC∗−1

3 (ξ)f(c)ᵀ

is equal to or less than 6 based on the general equivalence theorem for all c in [A,B].

For a D-optimal design ξ∗={(c∗i , w∗i ), i=1, ..., 4, w∗i ≥0}, we have d(c∗, ξ∗)=6.

Using Proposition 4.2.1, we check the D-optimality of an obtained design ξ.

C∗1,C
∗
2, and C∗3 are calculated by using the values of the obtained design. When we set

C∗−1
k =((c∗kij))(ij=1, 2) for k=1, 2, 3, we see that tr C∗−1

1 (ξ)C∗1(ξ̄) = tr C∗1(ξ̄)C∗−1
1 (ξ)

47



Figure 4.1: D-optimality Verification of the Obtained Design in [−10, 10] by the

General Equivalence Theorem

= π(1− π)[1 c]
[
c∗111 c

∗
112

c∗121 c
∗
122

]
[1 c]ᵀ =π(1− π)(c∗111 + (c∗112 + c∗121)c+ c∗122c

2). From here,

we know that the values of c∗kij’s determine the equation. For each design, we draw a

plot of the GET verification.

For example, for the obtained design ξ∗={(−10, 0.163), (−1.322, 0.337), (1.322,

0.337), (10, 0.163)} in [−10, 10] in the previous section, a function d(c, ξ) is de-

rived as d(c, ξ)=
ec

ec + 1

(
0.1025c2 − 0.7732c+ 3.4582

)
+

1

ec + 1
(0.1025c2 + 0.7732c + 3.4582)

+
ec

(ec + 1)2

(
5.0682c2 + 8.9206

)
, where f(c)=[1 c]ᵀ. Using the derived equation, we draw

the reference line y=6 (the blue line in Figure 4.1) and the curve y=d(c, ξ) (the

orange curve in Figure 4.1). We validate that our obtained design is D-optimal after

seeing that d(c, ξ)≤6 for all c∈ [−10, 10] in Figure 4.1. As the general equivalence

theorem tells us, we observe that the tangent points are exactly the four support

points we obtained.

Also, we draw the plots of the GET verification for selected 2-point, 3-point, and

another 4-point design in Figure 4.2. They are the obtained designs when the design

spaces are [−1, 1], [−2.5, 2.5], and [−5, 5], respectively. In the figure, we see that all

three designs are validated as D-optimal by the general equivalence theorem. Every

orange curve is below the blue reference line.
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Figure 4.2: D-optimality Verification of Three Different Designs

(a) design in [−1, 1] (b) design in [−2.5, 2.5] (c) design in [−5, 5]

Table 4.5: D-optimality Verification of Selected Designs by the General Equivalence
Theorem

Design space fval Design GET verification

-1 1 6.506 -1 1 sucess
0.500 0.500

-5 5 3.143 -5 -1.107 1.107 5 sucess
0.185 0.315 0.315 0.185

-10 10 0.642 -10 -1.322 1.322 10 sucess
0.163 0.337 0.337 0.163

-25 -5 20.823 -25 -6.969 -5 sucess
0.164 0.408 0.428

-20 0 3.604 -20 -2.311 0 sucess
0.165 0.435 0.400

-15 5 1.546 -15 -0.591 5 fail
0.166 0.498 0.336

-10 10 0.642 -10 -1.322 1.322 10 sucess
0.163 0.337 0.337 0.163

-5 15 1.798 -5 0.591 15 fail
0.336 0.498 0.166

0 20 3.604 0 2.311 20 sucess
0.400 0.435 0.165

5 25 20.823 5 6.969 25 sucess
0.428 0.408 0.164
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Furthermore, we check the optimality for additional designs as shown in Table 4.5.

The symmetric designs of 2 points, 3 points, and 4 points are verified to be D-optimal.

In asymmetric domains, the D-optimality of the obtained designs is secured except

for the two cases where the design spaces are, respectively, [−15, 5] and [−5, 15]. The

failure of the GET verification indicates that solutions from the fmincon solver are

not always D-optimal.

Figure 4.3: D-optimality Verification of an Asymmetric Design in [−15, 5]

(a) design in [−15, 5] (b) design in [−15, 5] (c) optimal design in [−15, 5]

To remedy this failure, we change the initial points of optimization based on

the obtained design. As shown in Figure 4.3, the first plot discloses the failure

of the verification of the design for which we searched in [−15, 5]. We thus find

two points, c=−2.2362 and 1.7839, that give the two local maximums of d(c, ξ)

and then use the two points as initial values for c2 and c3. Originally we used

-9 and -3 which are the 30th and 60th quantile points in [−15, 5]. After we sub-

mit the new form with a changed initial value, we obtain a new design such as

{(−15, 0.165), (−1.298, 0.383), (1.196, 0.271), (5, 0.182)}. This design is verified as D-

optimal by the GET as shown in the third plot in Figure 4.3. We use the same pro-

cedure for the case of [−5, 15]. We then obtain a D-optimal design as {(−5, 0.182),

(−1.196, 0.271), (1.298, 0.383), (15, 0.165)}. In asymmetric domains, D-optimal de-

signs are not symmetric and the weights are unequal.
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One way of comparing two designs is via the relative D-efficiency. The relative

D-efficiency Drel of ξ1 to ξ2 is

Drel=

(
|M(ξ1)|
|M(ξ2)|

)1/m

=

(
|C∗(ξ1)|
|C∗(ξ2)|

)1/m

=

(
|C∗1(ξ1)C∗2(ξ1)C∗3(ξ1)|
|C∗1(ξ2)C∗2(ξ2)C∗3(ξ2)|

)1/m

.

Using the values of fval=− log |C∗1C∗2C∗3|, we calculate Drel as

Drel=

(
exp(− fval(ξ1))

exp(− fval(ξ2))

)1/6

since m=6.

Table 4.6: Relative D-efficiency of Two Designs

Design space Case Design GET verification fval exp(−fval) Drel

-5 15 1st obtained -5 0.591 15 failure 1.798 0.166 0.882
0.336 0.498 0.166

2nd obtained -5 -1.196 1.298 15 success 1.043 0.353
0.182 0.271 0.383 0.165

We compare the two designs that we obtained in the design space [−5, 15] by this

formula. The relative D-efficiency of the design that did not pass the GET verification

to the D-optimal design is 0.822 in Table 4.6. It is clear that the first obtained design

is less efficient than the second obtained design since the relative efficiency is less

than 1.

In addition, by measuring the relative efficiency, we obtain a relative sample size

needed for the worse design to attain the same efficiency. Let us denote the design

that failed the GET verification as ξf ={(cfi, wfi), i=1, 2, 3} and the optimal design

as ξ∗={(c∗i , w∗i ), i=1, 2, 3, 4}. Also, we define a relative sample size Nr as Nr=Nf/N
∗

where Nf is the sample size of ξf and N∗ is of ξ∗. Then, we want to know Nr such that

|
∑
NrwfiC(ξf )|= |

∑
w∗iC(ξ∗)|. Since it holds that N6

r |
∑
wfiC(ξf )|= |

∑
w∗iC(ξ∗)|

and we know that |
∑
wfiC(ξf )|/|

∑
w∗iC(ξ∗)|=0.8826 from Dref =0.882, we have

N6
r =1/0.8826, that is, Nr=1.134. It means we need 1.134 times the sample size

when we use the failed design compared to the case when we use a D-optimal design.
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4.3 Discussion

In this chapter, we found D-optimal designs for both binary and continuous re-

sponses. We consider a mixed response model with a direct factorization approach

following Deng and Jin (2015). In the previous chapter, we identified a complete

class with at most 4 points for a mixed response model. Within the complete class,

we obtained D-optimal designs in each design space after using a constrained non-

linear optimization. The obtained designs were 2-point, 3-point, or 4-point designs

depending on the size and location of design spaces. The obtained designs are the

most efficient under the D-optimality criterion in each design space so that we expect

D-optimal designs to minimize the determinant of the variance-covariance matrix of

parameter estimates. The general equivalence theorem verifies the D-optimality of

the obtained designs.

Over various symmetric design regions of [−B,B], we obtain D-optimal designs in-

cluding 2-point designs of {(−B, 0.5), (B, 0.5)}, 3-point designs of {(−B,w1), (0, w2),

(B,w1)}, and 4-point designs of {(−B,w1), (−c1, w2)(c1, w2), (B,w1)}. All support

points are symmetric in terms of a value. In particular, 4-point designs have two

symmetric outer points and two symmetric inner points. The outer points are the

end points of the design region and the inner points are close to ±1.4. The stable

weight ratio is 1 :2 :2 :1 when the design space is wider than [−7, 7].

We then recommend a joint experiment of mixed responses over the simple com-

bination of two experiments, namely GLM and linear model experiments. By using

optimal designs, an experiment becomes more efficient. Above all, our approach

eliminated uncertainty in replicates ratios so that an effective allocation of inputs is

possible, which means the saving of cost. In an arbitrary combination, it is prone to

allocate resources uniformly as 1:1:1:1 due to experimenter’s perception bias.

52



It is interesting to compare our design points with known results of D-optimal de-

signs for a logistic regression model or a linear model. According to Stufken and Yang

(2012), a D-optimal design for a logistic regression is given by ξ={(−1.5434, 1/2),

(1.5434, 1/2)} when a design space [−a, a] is wider than [−1.5434, 1.5434]. Otherwise,

it is ξ={(−a, 1/2), (a, 1/2)}. It is also well known that a D-optimal design for a sim-

ple linear regression model is {(−B, 1/2), (B, 1/2)} on [−B,B]. In our case, 4-point

designs have the form of {(−B,w1), (−c1, w2)(c1, w2), (B,w1)} when a design space

is approximately between [−3, 3] and [−150, 150]. The value of c1 is close to but not

equal to 1.5434. The exact values of the inner two points are not fixed in our case.

Delicate experiments such as a dose-finding study will be affected by a different range

of a design space.

For a real setting, two scenarios are possible. Assume an experimenter is inter-

ested in estimating each parameter under the D-optimality criterion. At first, if an

experimenter plans to use a logistic regression model, we may suggest adding a linear

model to increase the utility of an experiment if it is affordable to measure a con-

tinuous response. Then, the experimenter will treat four different levels of an input

variable instead of two points. Another scenario is that if an experimenter wants to

use only a linear model, we may recommend measuring a binary response together

since it is often done at a low cost but provides crucial information.

This study concerns only D-optimal designs. Since the complete class approach

gives general results, we can use our complete class for the search of A-optimal designs.

While D-optimal designs ignored the existence of a variance σ2 of continuous responses

due to the property of a determinant function, the search for A-optimal designs

depends on the value of σ2. This observation leads the study of A-optimal designs in

the next chapter.
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Chapter 5

NUMERICAL RESULTS 2: A-OPTIMAL DESIGNS

So far we have introduced a mixed response experiment and its related model and

found D-optimal designs. After identifying a collection of candidate designs by the

complete class approach, we obtained optimal designs by a constrained nonlinear op-

timization. Our focus was on the popular D-optimality criterion, i.e. ΦD=log |M−1|.

In this chapter, we will look at what optimal designs we will obtain when we use

the A-optimality criterion, ΦA=tr M−1, which is the trace of the variance-covariance

matrix. Under this criterion, we search for an A-optimal design that minimizes the

average variance of the parameter estimates. Geometrically, tr M−1 is equal to the

square of the half-length of the diagonal of a rectangle that is circumscribed around

the confidence ellipsoid of parameters (Fedorov and Leonov, 2014; Atkinson et al.,

2007).

Moreover, recalling that our information matrix is M=diag(M1,
1
σ2M2, 1

σ2M3),

we see that A-optimal designs depend on the value of σ2 since the A-optimality

criterion contains inseparable σ2 as ΦA=tr M−1 =tr M−1
1 +σ2 tr M−1

2 +σ2 tr M−1
3 . A

parameter σ2 is the variance of continuous responses given a binary response 0 or

1. This observation partly motivates the search for A-optimal designs. We also note

that the A-optimality criterion includes other unknown parameters in addition to σ2.

In the previous case of D-optimal designs, we could not examine the effect of σ2 since

D-optimal designs are invariant to the value of σ2 as shown in (4.1).

We will first discuss the preceding study of an A-optimal design in a treatment

comparison study after mentioning the popularity of the D-optimality criterion. And

then, for comparison purposes, we review a literature of A-optimal designs for a gen-
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eralized linear model (GLM). We will then derive the A-optimality criterion function

for a mixed response model, present the scenario that we consider for searching for

A-optimal designs, and provide numerical results. There is a discussion of the results

at the end. Here, we use again the previously derived complete class as the set of

candidate designs.

5.1 A-optimal Designs in a Clinical Comparison Study

Researchers have recently favored the D-optimality criterion as a standard of find-

ing optimal designs. Pukelsheim (2006) held several reasons as to why. First, the

determinant of the covariance-variance matrix has often been used in multivariate

analysis to measure the size of a dispersion matrix. We trace it to the generalized

variance defined by Wilks (1932) who introduced the pth order determinant as the

variance of a sample from a p-variate normal population analogous to a univariate

case. In addition, Pukelsheim (2006) pointed out that the determinant is invariant

to the representation of parameters as explained in the previous chapter.

One additional reason for the popularity of the D-optimality criterion is that, as

Kiefer and Wolfowitz (1960) proved the equivalence between G-optimality and D-

optimality in the context of a continuous design theory, the explanatory power of

the D-optimality criterion has increased. In the field of a response surface design in

engineering experiments, it is a primary concern to reduce the prediction errors of

responses, which is connected to G-optimality. The G-optimality criterion is used to

seek designs that minimize the maximum variance of a predictor of a response at a

given x.

However, we have situations where D-optimal designs are not enough to meet the

purpose of experiments, and may sometimes fail to accommodate features that are

important to the scientific problem of interest. Our study of D-optimal designs in the
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previous chapter is one example. When we want to know the effect of the variance

of the continuous response variable on design for a mixed response experiment, D-

optimal designs are always the same regardless of the values of σ2.

In a clinical study setting, it was also observed that D-optimal designs were not

enough to distinguish two different situations. The first was a case where all the

pairwise comparisons of the treatment effects were of interest and the second was a

situation where the main focus lies only in the comparison of the treatments versus

a control. When we consider the latter the objective of an experiment, we cannot

fully find a ‘good’ design by using the D-optimality criterion. By contrast, A-optimal

designs seem to better fit the corresponding objective of the study as discussed in

Hedayat, Jacroux, and Majumdar (1988).

Specifically, they considered the A- and MV-optimality criteria. Denote a control

as 0, each test treatment as i for i=1, ..., k, and the effect of treatment i as ti. The

best linear unbiased estimators were notated as t̂di − ˆtd0 for the contrasts ti − t0.

A-optimal designs gave the minimum of
k∑
i=1

var(t̂di − ˆtd0) and MV- optimal designs

minimized max
1≤i≤k

var(t̂di − ˆtd0).

The reason why the authors favored these two criteria rather than the D-optimality

criterion was that D-optimal designs counted the minimization of variance of the

comparisons between the test treatments while this inclusion was not necessary when

comparing treatments versus a control. The goal of their study was to find good

designs to estimate the magnitude of contrasts between each treatment and a control

of standard as precisely as possible. A-optimal designs can be used when an experi-

menter wants to decide which treatment is effective among new test treatments after

performing an experiment.

Later, in the comments, Notz (1988) asked “what sort of criteria might be useful”

and Hedayat et al. (1988) restated in the rejoinder that the A- and MV-optimality
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criteria have “simple and statistically meaningful interpretations” in their problem.

Also, they stated that the robustness of designs over criteria might not be crucial

compared to the robustness of designs over a selection of models.

In the next section, we will look at two studies of A-optimal designs for a gen-

eralized linear model. Our model is a mixed response model that contains a logistic

regression model. It is therefore interesting to see what the A-optimal design of the

GLM is.

5.2 A-optimal Designs for a Generalized Linear Model

Mathew and Sinha (2001) obtained A-optimal designs for a logistic regression

model using two different approaches. The first one was an analytic approach fo-

cusing on a class of symmetric designs. A symmetric design here is a design with

symmetric designs points. They called weights symmetric when two points had equal

weights. They also defined a represented design space by a bijection which we use.

They initially set a symmetric two-point design with an equal weight of 0.5 as a

candidate of optimal designs. Using this design, they simplified the A-optimality

criterion and derived a lower bound. After, they searched for designs that mini-

mized the lower bound numerically. Another approach was a numerical optimiza-

tion within an entire class of designs. As the authors mentioned, the first approach

did not provide the best designs compared to the second case. They showed that

the efficiency of the first type of designs was lower than that of the second type

of designs in their table. Also, be advised that the A-optimality criterion for a lo-

gistic regression model had unknown parameters similar to our criterion. Adopting

a locally optimal design approach, they used guessed values of the two parameters

as (α, β)=(10, 5), (5, 5), (1, 5), (10, 2), (5, 2), (1, 2), (10, 0.5), (5, 0.5), (1, 0.5) where α, β

are two parameters in a simple logistic regression.
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On the other hand, Yang (2008) obtained A-optimal designs for GLMs with two

parameters using an algebraic method. He found that there existed A-optimal de-

signs where two support designs were symmetric, but their weights were not equal.

The author derived sufficient conditions for extending the result within the class of

symmetric designs to the general result within the entire class of designs based on

the min-max idea from Kunert and Stufken (2002). In the three-step approach, an

A-optimal design d∗ was firstly identified among a subclass of designs D1 that con-

tained d={(x1, ξ1), (x2, ξ2)} where two points were symmetric when the represented

design point is considered as α+x1β=−α−x2β. Then, the sufficient conditions were

derived for d∗ to satisfy the property of tr M−1
d ≥tr M−1

d∗ for any arbitrary design d.

Lastly, the author verified that the models considered in the study met the sufficient

conditions. Consequently, the identified d∗ is A-optimal over the entire class of de-

signs. As an example, he showed that, for a simple logistic regression, there existed

A-optimal designs with two symmetric design points. The theoretical results in the

study matched up with the results in Mathew and Sinha (2001).

In our case, although the mixed response model that we consider includes a simple

logistic regression, we find it challenging to directly apply the methodologies in the

two previous studies for finding A-optimal designs. This mainly is because our model

not only contains a logistic regression model but also involves two simple linear models

for the continuous response variable, given the value of the binary response variable.

However, our study embraces their main ideas about the Loewner ordering by using

the complete class approach of Yang and Stufken (2012). In the next section, we

derive the A-optimality criterion for the mixed response model that we consider. We

then explain two associated situation for the search and then obtained A-optimal

designs under certain scenarios.
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5.3 The A-optimality Criterion and Associated Conditions

With the same notation as in the previous chapters, the A-optimality criterion

ΦA for our mixed response model has the following form:

ΦA=trM−1 =trM−1
1 + σ2 trM−1

2 + σ2 trM−1
3

=tr[FᵀWP(I−P)F]−1 + σ2 tr[FᵀWPF]−1 + σ2 tr[FᵀW(I−P)F]−1

=tr[B1C
∗
1B

ᵀ
1]−1 + σ2 tr[B1C

∗
2B1

ᵀ]−1 + σ2 tr[B1C
∗
3B

ᵀ
1]−1

=tr[B−1
1 Bᵀ−1

1 C∗−1
1 ] + σ2 tr[B−1

1 Bᵀ−1
1 C∗−1

2 ] + σ2 tr[B−1
1 Bᵀ−1

1 C∗−1
3 ].

Here, the first term tr[B−1
1 Bᵀ−1

1 C∗−1
1 ] with C∗1 =

(∑
wiΨ11(c)

∑
wiΨ12(c)∑

wiΨ12(c)
∑
wiΨ22(c)

)
is:

tr[B−1
1 Bᵀ−1

1 C∗−1
1 ]=tr[

(
1 0
α0 α1

) (
1 α0
0 α1

)
C∗−1

1 ] (5.1)

=tr[
(

1 α0

α0 α
2
0+α2

1

) 1

|C∗1|

( ∑
wiΨ22 −

∑
wiΨ21

−
∑
wiΨ12

∑
wiΨ11

)
]

=
1

|C∗1|
tr[
( ∑

wiΨ22−α0
∑
wiΨ12 −

∑
wiΨ12+α0

∑
wiΨ11

α0
∑
wiΨ22−(α2

0+α2
1)

∑
wiΨ12 −α0

∑
wiΨ12+(α2

0+α2
1)

∑
wiΨ11

)
]

=
1

|C∗1|
(
∑

wiΨ22 − 2α0

∑
wiΨ12 + (α2

0 + α2
1)
∑

wiΨ11) (5.2)

=
1

|C∗1|
((α2

0 + α2
1)
∑

wiΨ11 − 2α0

∑
wiΨ12 +

∑
wiΨ22).

With similar algebra, we can show that the A-optimality criterion is

ΦA=
1

|C∗1|
((α2

0 + α2
1)
∑

wiΨ11 − 2α0

∑
wiΨ12 +

∑
wiΨ22)

+
σ2

|C∗2|
((α2

0 + α2
1)
∑

wiΨ33 − 2α0

∑
wiΨ34 +

∑
wiΨ44)

+
σ2

|C∗3|
((α2

0 + α2
1)
∑

wiΨ55 − 2α0

∑
wiΨ56 +

∑
wiΨ66)

=
1

|C∗1|
((α2
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It can be rewritten as:
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0 + α2

1)(
1

|C∗1|
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(1 + eci)2
+

σ2
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+
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1
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) (5.6)
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+
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|C∗3|
∑

wi
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) (5.7)

+ (
1
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|C∗2|
∑
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c2i e

ci
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+
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|C∗3|
∑

wi
c2i

1 + eci
). (5.8)

What follows are the issues to consider when searching for an A-optimal design.

(i) Representation of design space (x→c) We represent a design point x as a

represented point c by defining c=α0 + α1x. We used this bijection for the search

for D-optimal designs in the previous chapter. The use of represented design point c

normally simplified the design problem. This was because we only need to search once

for the optimal combination of the c’s and the corresponding weights w’s (i.e., the

optimal design in terms of c) from a simpler form of the criterion without unknown

parameters. The values of the x and w easily derived using any given values of α0

and α1.

In contrast, the search for an A-optimal design does not take full advantage of

the representation. This can be seen from the formula of the A-optimality criterion

which is a rather complex function of ci’s, wi’s and the unknown parameters α0, α1,

and σ2. Specifically, we observed in (5.6), (5.7), and (5.8) that the criterion depends

on these parameters through α2
0 + α2

1, 2α0, and σ2.

Additionally, we have another situation which is mathematically similar to, but

statistically different from the above issue regarding the unit of a covariate. If the

unit is changed, the scale of the covariate is also changed. Then, A-optimal designs

are also different depending on the unit. We represent x by defining x=ml + msu

where u is an original covariate variable, x is a standardized variable, ml is a location

parameter, and ms is a scale parameter. This representation can be expressed by
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using a transformation matrix. Yet, we oscillate only between x and c without u

since we can find new α0, and α1 for any u with given fixed values of ml and ms.

(ii) Size of a represented design space (c) In the previous chapter, we found

that the number of support points in D-optimal designs changes from two to four when

the size or location of the design space of ci changes. However, this feature is not

observed in the D- or A-optimal designs for a simple logistic regression according to

other studies such as Matthew and Sinha (2001). In a simple logistic model, optimal

points and weights are consistent in certain design spaces. With this in mind, we

investigate A-optimal designs for a mixed response model varying design spaces.

Figure 5.1: The Graph of the Logit Function (Logit(π) vs. π)

Furthermore, we consider the following facts when determining the design spaces

for numerical analysis of obtained designs. The logit function in a logistic regression

model is defined as logit(π)=log[π/(1− π)] where π is the probability for z=1 with

‘1’ corresponding to a success. Then, a logistic regression model can be expressed as

log[π/(1 − π)]=α0 + α1x. Since log[π/(1 − π)]=c, we immediately derive the range

of c by π. When π is in [0,1], the logit can take any number in (−∞,∞). The logit

function is increasing with π as in Figure 5.1. When we set π to certain intervals, c

has a finite design space. We make the following observation.
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Remark For given πmin and πmax, the range of c is (logit(πmin), logit(πmax)). For ex-

ample, assuming πmin =0.0001 and πmax =0.9999, we get the range of c as (−9.21, 9.21).

For πmin =0.00001 and πmax =0.99999, the range of c is (−11.52, 11.52). For πmin =

0.01 and πmax =0.99, the range of c is (−4.60, 4.60).

Hence, assuming that π∈ [0.0001, 0.9999], the design space of c is about [−10, 10].

In Table 4.4 in the previous chapter, we observe that when design spaces are wider

than [−10, 10], the design points and their weights of the obtained optimal designs

do not change much. Although the above remark does not provide a statistical or

mathematical meaning, we acquire a spatial cognition about the design space of c for

a simple logistic model or simple mixed response model.

Table 5.1: Possible Interpretation of α1 in a Logistic Model

α1 exp(α1) proportional increase in odds in unit change of x 1/ exp(α1)

-0.2 0.819 -18.13% 1.2214
-0.1 0.904 -9.52% 1.1052

0 1 0.00% 1
0.1 1.1052 10.52% 0.904
0.2 1.2214 22.14% 0.819
0.3 1.3499 34.99% the rest is omitted
0.4 1.4918 49.18%
0.5 1.6487 64.87%

1 2.7183 171.83%
2 7.3891 638.91%
3 20.086 1908.55%
4 54.598 5359.82%
5 148.4132 14741.32%

10 22026.4658 2202546.58%
15 3269017.372 326901637.25%

On the other hand, we also get information on a parameter α1 as can be seen

in Table 5.1. The parameter α1 plays a vital role in a logistic regression analysis

since it indicates the magnitude of an increment of the log odds of responses by one

unit increase in x. The value of exp(α1) is normally interpreted as a proportional

increase in odds corresponding to the one unit increase in x (Collett, 2002; Agresti,

2007; Hosmer, Lemeshow, and Sturdivant, 2013). In Table 5.1, we observe that the
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increasing trend of exp(α1) is exponential and if α1 is larger than 15, the proportional

increase of odds in a unit change of x starts to show extreme values.

It is possible for us to consider that α1 rarely exceeds 15 if we assume that the

proportional increase in odds is not as large as 326901637.25% in Table 5.1. We note

that a unit change of x might or might not be a huge change for x. The table helps to

guide our numerical study, although we also recognize that the value of α1 depends

on the scale of x.

As noted previously, we focus on the effect of σ2 when searching for A-optimal

designs. We will give particular attention to the effect of σ2 which is not usually

studied in the context of the D-optimality criterion or linear models. As a trade-off,

we need to consider many combinations of guessed values of unknown parameters.

When possible guessed values are far away from the real values of parameters, the

obtained A-optimal designs might not be as reliable. These are the pros and cons of

the delicacy of a search for A-optimal designs.

5.4 Verification of the A-optimality

After obtaining A-optimal designs, the A-optimality of the designs will be ver-

ified via the general equivalence theorem. As explained in Chapter 2, we verify

the condition of s(c, ξ)≤C where s(c, ξ)=tr C∗(ξ̄)(C∗(ξ)BᵀBC∗(ξ))−1 and C=tr

(BC∗(ξ)Bᵀ)−1 is a constant function calculated from the obtained design. In our

current setting with S∗(ξ)=C∗(ξ)BᵀBC∗(ξ), we have:

S∗(ξ)=C∗(ξ)BᵀBC∗(ξ)=

[
C∗1

C∗2
C∗3

][Bᵀ
1

1
σ
Bᵀ

1
1
σ
Bᵀ

1

][
B1

1
σ
B1

1
σ
B1

] [
C∗1

C∗2
C∗3

]

=

[
C∗1B

ᵀ
1B1C∗1

1
σ2

C∗2B
ᵀ
1B1C∗2

1
σ2

C∗3B
ᵀ
1B1C∗3

]
=

[
S∗1(ξ)

S∗2(ξ)

S∗3(ξ)

]
.

We will represent S∗(ξ)=diag(S∗1(ξ),S∗2(ξ),S∗3(ξ)). The verification of the A-optimality

will also depend on the guessed values of α0 α1, and σ2 that we specify in the numer-
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ical study. We denote S∗−1
k =((s∗kij))ij=1,2 for k=1, 2, 3. Hence, s(c, ξ) is expressed as

follows:

s(c, ξ)==trC∗(ξ̄)(C∗(ξ)BᵀBC∗(ξ))−1 =trC∗(ξ̄)S∗−1(ξ)

=trC∗1(ξ̄)S∗−1
1 (ξ) + trC∗2(ξ̄)S∗−1

2 (ξ) + trC∗3(ξ̄)S∗−1
3 (ξ),

where trC∗1(ξ̄)S∗−1
1 (ξ)=tr f(c)π(1−π)fᵀ(c)S∗−1

1 (ξ)=π(1−π)(s∗111 +(s∗112 +s∗121)c+s∗122c
2)

with a model vector f(c)=[1 c]ᵀ. We use the following proposition to verify the

A-optimality of an obtained design.

Proposition 5.4.1. For a mixed responses model, we verify the A-optimality of an

obtained design ξ if it holds that

s(c, ξ)=
ec

(1 + ec)2
f(c)ᵀS∗−1

1 (ξ)f(c)ᵀ +
ec

(1 + ec)
f(c)ᵀS∗−1

2 (ξ)f(c)ᵀ +
1

(1 + ec)
f(c)ᵀS∗−1

3 (ξ)f(c)ᵀ

is equal to or less than C=tr (BC∗(ξ)Bᵀ)−1 where S∗1(ξ)=C∗1(ξ)Bᵀ
1B1C

∗
1(ξ), S∗2(ξ)=

1
σ2C

∗
2(ξ)Bᵀ

1B1C
∗
2(ξ), and S∗3(ξ)= 1

σ2C
∗
3(ξ)Bᵀ

1B1C
∗
3(ξ) based on the general equivalence

theorem for all c in [A,B]. For an A-optimal design ξ∗={(c∗i , w∗i ), i=1, ..., 4, w∗i ≥0},

we have s(c∗, ξ∗)=C.

Using the values of an obtained design ξ, we calculate C∗. Guessed values of α0

and α1 are used to obtain B and B1. Then, we find the value of each element in

S∗−1
i (ξ∗), i=1, 2, 3 and a constant C. We draw the plots of y=s(c, ξ∗) and y=C.

The A-optimality of a design ξ can then be verified by seeing the plot in a similar

way as described in the D-optimality verification in Chapter 4.

5.5 Numerical Results

We make guidelines for a computational search as follows: (i) We use again the

complete class consisting of designs having at most four support points with two

points A and B of a design space [A,B] (ii) We set initial values with two design
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points located at the 30th and 60th percentile in [A,B] and weights being equally .25.

(iii) We use the sequential quadratic programming. (iv) We check the A-optimality of

all obtained designs by a general equivalence theorem at the same time. All obtained

designs are in the represented design space of c.

After conducting some preliminary simulations, we observed that there are many

scenarios we can consider. It was not easy to capture a general pattern from various

combinations of many guessed values. We, therefore, limit our purpose of analysis to

observing the effect of σ2 on the obtained A-optimal designs. To achieve this goal,

we firstly need to collect reasonable guessed values of α0, α1 and design spaces. Then,

we will find A-optimal designs by the values of σ2.

At first, we see the effect of design spaces for A-optimal designs for c. We set

design spaces from [−1, 1] to [−50, 50] as in Table 5.2. We fix other parameters to

α0 =1, α1 =1, σ2 =1 or α0 =1, α1 =0.5, σ2 =1. We use two different α1 =1 and 0.5.

As shown in the table, we obtain 4-point optimal designs when a design space is

not [−1, 1]. The noticeable thing is that two inner points are not symmetric both

in terms of their locations and their corresponding weights. Also the two boundary

outer points have unequal weights. For example, when the design space is [−10, 10]

with α0 =1, α1 =1, and σ2 =1, the two outer design points of the obtained design

are -10, and 10 with the weights 0.030 and 0.022, respectively. The two inner points

are -1.326, and 1.395 with the weights 0.282 and 0.667, respectively. The asymmetric

pattern of two inner points with unequal weights is observed across the various design

spaces that we consider. This tendency is also observed when α1 =0.5 as can be seen

in the lower part of Table 5.2.

Similar to D-optimal designs, two inner points do not significantly change when

a design space changes. The positive inner point, c3, is located somewhere between

0.996 and 1.395 for every 4-point A-optimal design. This second largest design point
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Table 5.2: A-optimal Designs for c by Design Spaces

α0 α1 σ2 Design space Design # of points

1 1 1 -1 1 -1 0.964 1 3
0.309 0.000+ 0.691

-2 2 -2 -0.849 0.996 2 4
0.172 0.099 0.404 0.326

-3 3 -3 -1.080 1.285 3 4
0.075 0.213 0.615 0.096

-5 5 -5 -1.179 1.381 5 4
0.043 0.259 0.659 0.040

-10 10 -10 -1.326 1.395 10 4
0.030 0.282 0.667 0.022

-20 20 -20 -1.479 1.387 20 4
0.019 0.295 0.674 0.012

-50 50 -50 -1.605 1.382 50 4
0.009 0.306 0.680 0.005

1 0.5 1 -1 1 -1 1 2
0.195 0.805

-2 2 -2 -0.788 1.006 2 4
0.090 0.082 0.633 0.195

-3 3 -3 -0.899 1.162 3 4
0.042 0.151 0.753 0.055

-5 5 -5 -0.961 1.216 5 4
0.025 0.180 0.772 0.023

-10 10 -10 -1.125 1.205 10 4
0.019 0.193 0.776 0.012

-20 20 -20 -1.354 1.178 20 4
0.013 0.201 0.780 0.007

-50 50 -50 -1.588 1.155 50 4
0.007 0.208 0.782 0.003

has the largest weight among the four points. When the design space is [−20, 20] or

[−50, 50], an A-optimal design keeps a similar pattern to that in [−10, 10] in terms of

the asymmetry of design points and the unequal of weights. From the observation,

we reasonably set design spaces equal or less than [−10, 10] for later analyses. Also,

the analysis of the logit function in the previous section provides some explanation

for the setting of the design space [−10, 10]. We confirm in this table that A-optimal

designs tend to vary with the values of α1 as well as the range of design spaces.
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Table 5.3: A Comparison of A-optimal Designs for c Between a Mixed Response
Model and a Logistic Model When α0 =1 and α1 =1

Design space Design for a mixed response model when σ2 =1 Design for a logistic model

Lower Upper c1 c2 c3 c4 w1 w2 w3 w4 c1 c2 w1 w2

-1 1 -1 0.964 1 0.309 0.000 0.691 -1 1 0.309 0.691
-2 2 -2 -0.849 0.996 2 0.172 0.099 0.404 0.326 -1.482 1.482 0.293 0.707
-3 3 -3 -1.080 1.285 3 0.075 0.213 0.615 0.096 -1.482 1.482 0.293 0.707
-5 5 -5 -1.179 1.381 5 0.043 0.259 0.659 0.040 -1.482 1.482 0.293 0.707
-10 10 -10 -1.326 1.395 10 0.030 0.282 0.667 0.022 -1.482 1.482 0.293 0.707
-20 20 -20 -1.479 1.387 20 0.019 0.295 0.674 0.012 -1.482 1.482 0.293 0.707
-50 50 -50 -1.605 1.382 50 0.009 0.306 0.680 0.005 -1.482 1.482 0.293 0.707

On the other hand, we obtain A-optimal designs for a logistic model as shown

in Table 5.3. Based on Yang and Stufken (2009), we use a complete class with at

most two-point designs, derive the A-optimality criterion, and implement the same

algorithm. To compare with our results in Table 5.2, we use the same guessed values

such as α0 =1, and α1 =1 for unknown parameters in the A-optimal criterion for a

logistic model.

In Table 5.3, we find that A-optimal designs for a logistic model have symmetric

points with unequal weights. When the design space is [−1, 1], design points are

located at -1 and 1. Their weights are 0.309 and 0.691, respectively. When the design

space is wider than [−1, 1], design points are constantly -1.482 and 1.482 with weights

0.293 and 0.707 regardless of a design space. In the case of a mixed response model,

design points are not fixed by design spaces.

Next, we examine the effect of a change in α0 on the obtained A-optimal designs.

Fixing the represented design space to [−10, 10], α1 to 1 or 2, and σ2 to 1, we set α0

to 0, 0.1, 0.5, 1, 2, 5, 10, 20, and 50 which includes the values of α0 as 1, 5, and 10

used in Mathew and Sinha (2001). A parameter α0 is an intercept parameter in a

linear predictor η=α0 + α1x for a logistic regression model.

As can be seen from Table 5.4, although a change of α0 values results in a change of

the obtained A-optimal design, the value change is gradual. The effect of a change in
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Table 5.4: A-optimal Designs for c by α0 Values

α0 α1 σ2 Design space Design |c3|/|c2| w3/w2

0 1 1 -10 10 -10 -1.197 1.1971 10 1.000 1.000
0.025 0.475 0.475 0.025

0.1 -10 -1.195 1.203 10 1.006 1.100
0.025 0.453 0.498 0.024

0.5 -10 -1.223 1.260 10 1.030 1.592
0.027 0.367 0.584 0.023

1 -10 -1.326 1.395 10 1.053 2.369
0.030 0.282 0.667 0.022

2 -10 -1.642 1.758 10 1.071 3.702
0.037 0.200 0.741 0.021

5 -10 -2.131 2.264 10 1.062 2.591
0.058 0.253 0.654 0.035

10 -10 -2.245 2.329 10 1.037 1.653
0.062 0.336 0.555 0.047

20 -10 -2.286 2.330 10 1.019 1.289
0.061 0.387 0.499 0.053

50 -10 -2.305 2.323 10 1.008 1.107
0.059 0.420 0.465 0.056

0 2 1 -10 10 -10 -1.580 1.580 10 1.000 1.000
0.038 0.462 0.462 0.038

0.1 -10 -1.579 1.584 10 1.003 1.050
0.038 0.451 0.474 0.037

0.5 -10 -1.585 1.612 10 1.017 1.271
0.040 0.407 0.518 0.036

1 -10 -1.624 1.676 10 1.032 1.584
0.042 0.358 0.566 0.034

2 -10 -1.768 1.860 10 1.052 2.181
0.047 0.289 0.631 0.032

5 -10 -2.125 2.244 10 1.056 2.276
0.059 0.276 0.628 0.038

10 -10 -2.245 2.327 10 1.036 1.627
0.062 0.339 0.552 0.048

20 -10 -2.286 2.330 10 1.019 1.287
0.061 0.388 0.499 0.053

50 -10 -2.305 2.323 10 1.008 1.107
0.059 0.420 0.465 0.056
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the value of α0 may not be great. We observe that, in all the cases that we studied ex-

cept for when α0 =0, the A-optimal designs are 4-point designs with two asymmetric

inner points. Weights are not equally distributed and the second largest design point

c3 tends to get the highest weights among four weights. For example, when α0 =

0.5, α1 =1, σ2 =1, the A-optimal design is ξ={(−10, 0.027), (−1.223, 0.367), (1.260,

0.584), (10, 0.023)}. The second largest design point 1.260 has the weight of 0.584.

When α0 =20 where other conditions are the same, a design is ξ={(−10, 0.061),

(−2.286, 0.387), (2.330, 0.499), (10, 0.053)}, which has a similar pattern to the previ-

ous design with α0 =0.5. When we have other α0’s between 0.5 and 20, we see a

similar pattern. Even moving to the lower part of Table 5.4 where we use a different

value of α1, we observe that the pattern is repeated from the case of the upper part

of the table.

We continue to observe that the inner design points of the obtained A-optimal

designs are asymmetric, and the corresponding weights are not equal. On the other

hand, when α0 =0, we have symmetric optimal designs with symmetric weights.

Until now, we checked the effect of design spaces and a parameter α0. We now

move on to the effect of α1 values on the obtained A-optimal designs. Based on the

two previous results, we set α0 as 1, and 5 and a represented design space as [−10, 10].

We assign α1 to 0.1, 0.5, 1, 2, 5, 10, 20, and 50. As mentioned earlier, α1 is the slope

parameter in a logistic regression model.

In Table 5.5, we see that different values of α1 give rise to different A-optimal

designs. In most cases, the two inner points are asymmetrically located with unequal

weights. For example, holding the values of α0 =1 and σ2 =1 and a design space

[−10, 10], the A-optimal design points are -10, -1.225, 1.205, and 10 with weights

0.019, 0.193, 0.776, 0.012 when α1 =0.5. The points -1.225 and 1.205 are not sym-

metric, and the weights 0.193 and 0.776 are not the same.
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Table 5.5: A-optimal Designs for c by α1 Values

α0 α1 σ2 Design space Design |c3|/|c2| w3/w2

1 0.1 1 -10 10 -10 -0.949 1.038 10 1.093 17.849
0.005 0.053 0.940 0.003

0.5 -10 -1.125 1.205 10 1.071 4.022
0.019 0.193 0.776 0.012

1 -10 -1.326 1.395 10 1.053 2.369
0.030 0.282 0.667 0.022

2 -10 -1.624 1.676 10 1.032 1.584
0.042 0.358 0.566 0.034

5 -10 -2.038 2.061 10 1.011 1.156
0.053 0.416 0.481 0.049

10 -10 -2.221 2.228 10 1.004 1.047
0.056 0.434 0.455 0.055

20 -10 -2.289 2.291 10 1.001 1.012
0.057 0.440 0.446 0.057

50 -10 -2.311 2.311 10 1.000 1.002
0.058 0.442 0.443 0.057

5 0.1 1 -10 10 -10 -2.137 2.275 10 1.065 2.743
0.058 0.243 0.666 0.034

0.5 -10 -2.135 2.272 10 1.064 2.703
0.058 0.245 0.663 0.034

1 -10 -2.131 2.264 10 1.062 2.591
0.058 0.253 0.654 0.035

2 -10 -2.125 2.244 10 1.056 2.276
0.059 0.276 0.628 0.038

5 -10 -2.158 2.231 10 1.034 1.580
0.059 0.347 0.548 0.047

10 -10 -2.233 2.265 10 1.015 1.210
0.059 0.402 0.486 0.053

20 -10 -2.287 2.297 10 1.005 1.060
0.058 0.430 0.456 0.056

50 -10 -2.310 2.312 10 1.001 1.010
0.058 0.440 0.445 0.057
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However, the designs tend to be symmetric when α1/α0 increases. This tendency

is obvious when checking the values of |c3|/|c2| and w3/w2 that are close to 1 as α1

increases in Table 5.5. When α1 =10, design points are located at -10, -2.221, 2.228,

and 10 with the weights 0.056, 0.434, 0.455, and 0.055. When α1 =50, they are at

-10, -2.311, 2.311, and 10 with the weights 0.058, 0.442, 0.443, and 0.057. The two

inner points -2.311 and 2.311 are symmetric and their weights are almost the same

for the latter case. In the previous table, we observed that we obtained symmetric

designs when α0 =0. In this table, we see that, as α1/α0 increases, the value of α0 is

relatively smaller compared to the value of α1.

An additional noticeable thing is that A-optimal designs on the second row in

Table 5.4 and on the first row 5.5 are different when we exchange the guessed values

of α0 and α1. In the represented design space [−10, 10], for the former one, we set

α0 =0.1, α1 =1, and σ2 =1 and, for the latter one, we set α0 =1, α1 =0.1, and σ2 =1.

When we exchange the values of α0 and α1, the value of α2
0 + α2

1 remains the same

as 1.01 in (5.2), but the value of −2α0 changes from -0.2 with α0 =0.1 to -2 with

α0 =1. The parameters α0 and α1 have different roles in a predictor c=α0 + α1x of

the model and it is natural that the two obtained designs are different. The value

of α1/α0 change from 100 to 0.1. We see that the former design is more close to a

symmetric design with equal weights.

Now we will look at what optimal designs are obtained if we have different values

of σ2 in Table 5.6, Table 5.7, Figure 5.3, and Figure 5.2. In Table 5.6, we set the

values of σ2 as 0.1, 0.25, 0.5, 1, 10, and 100. We used three pairs of the guessed values

for (α0, α1) including (1, 0.5), (5, 2), and (0, 1). There are three parts in Table 5.6

according to three pairs of the values of α0 and α1. The design space is [−10, 10].

In the first part of Table 5.6 when α0 =1, α1 =0.5, we found that, as σ2 increases,

there are changes in two inner points c2 and c3 and four weights w1, w2, w3, and w4.
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Table 5.6: A-optimal Designs for c by Variances in [−10, 10]

α0 α1 σ2 Design var(z1) var(z2) var(z3) var(z4)
∑
wivar(zi)

1 0.5 0.1 -10 -1.232 1.273 10 0.00 0.17 0.17 0.00 0.17
0.005 0.195 0.797 0.003

0.25 -10 -1.196 1.262 10 0.00 0.18 0.17 0.00 0.17
0.010 0.194 0.791 0.006

0.5 -10 -1.165 1.241 10 0.00 0.18 0.17 0.00 0.17
0.014 0.193 0.784 0.009

1 -10 -1.125 1.205 10 0.00 0.19 0.18 0.00 0.17
0.019 0.193 0.776 0.012

10 -10 -0.766 0.989 10 0.00 0.22 0.20 0.00 0.19
0.032 0.227 0.720 0.022

100 -10 -0.271 0.772 10 0.00 0.25 0.22 0.00 0.21
0.037 0.331 0.601 0.032

5 2 0.1 -10 -2.298 2.337 10 0.00 0.08 0.08 0.00 0.08
0.013 0.294 0.685 0.008

0.25 -10 -2.249 2.323 10 0.00 0.09 0.08 0.00 0.08
0.027 0.286 0.671 0.017

0.5 -10 -2.196 2.297 10 0.00 0.09 0.08 0.00 0.08
0.041 0.279 0.653 0.026

1 -10 -2.125 2.244 10 0.00 0.10 0.09 0.00 0.08
0.059 0.276 0.628 0.038

10 -10 -1.703 1.794 10 0.00 0.13 0.12 0.00 0.10
0.124 0.300 0.485 0.091

100 -10 -1.085 1.191 10 0.00 0.19 0.18 0.00 0.13
0.158 0.359 0.348 0.134

0 1 0.1 -10 -1.286 1.286 10 0.00 0.17 0.17 0.00 0.17
0.006 0.494 0.494 0.006

0.25 -10 -1.266 1.266 10 0.00 0.17 0.17 0.00 0.17
0.012 0.488 0.488 0.012

0.5 -10 -1.239 1.239 10 0.00 0.17 0.17 0.00 0.17
0.018 0.482 0.482 0.018

1 -10 -1.197 1.197 10 0.00 0.18 0.18 0.00 0.17
0.025 0.475 0.475 0.025

10 -10 -0.907 0.907 10 0.00 0.20 0.20 0.00 0.19
0.039 0.461 0.461 0.039

100 -10 -0.558 0.558 10 0.00 0.23 0.23 0.00 0.21
0.043 0.457 0.457 0.043

Table 5.7: The Effect of σ2 on the Obtained A-optimal Designs

α0 α1 σ2 c1 c4 w1 w4 c2 c3 |c3|/|c2| c3 − c2 w2 w3 w3/w2

1 0.5 0.1 -10 10 0.005 0.003 -1.232 1.273 1.033 2.505 0.195 0.797 4.086
0.25 -10 10 0.009 0.006 -1.196 1.262 1.055 2.457 0.194 0.791 4.082
0.5 -10 10 0.014 0.009 -1.165 1.241 1.065 2.406 0.193 0.784 4.067
1 -10 10 0.019 0.012 -1.125 1.205 1.071 2.330 0.193 0.776 4.022
10 -10 10 0.032 0.022 -0.766 0.989 1.291 1.755 0.227 0.720 3.175
100 -10 10 0.036 0.032 -0.271 0.772 2.844 1.043 0.331 0.601 1.816

5 2 0.1 -10 10 0.013 0.008 -2.298 2.337 1.017 4.635 0.294 0.685 2.328
0.25 -10 10 0.027 0.017 -2.249 2.323 1.033 4.572 0.286 0.671 2.349
0.5 -10 10 0.041 0.026 -2.196 2.297 1.046 4.492 0.279 0.653 2.339
1 -10 10 0.059 0.038 -2.125 2.244 1.056 4.369 0.276 0.628 2.276
10 -10 10 0.124 0.091 -1.703 1.794 1.054 3.497 0.300 0.485 1.618
100 -10 10 0.158 0.134 -1.085 1.191 1.097 2.277 0.359 0.348 0.970
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The case of α0 =5, α1 =2 shows similar results in Table 5.6. To see the trend, we

created Table 5.7 regarding the eight values of c1, c2, c3, c4, w1, w2, w3 and w4. When

σ2 increases to 0.1, 0.25, 0.5, 1, 10, and 100, the values of the two outer points

are always -10 and 10 and the weights of the two outer points increase. Looking

at two inner points, as σ2 increases, the negative value of c2 moves toward zero

and the positive value of c3 moves toward zero. The value of c3 − c2 is decreasing

and two inner points get closer. This trend is repeated when α0 =5, α1 =2 in the

lower part of Table 5.7. When α0 =1 and α1 =0.5, the two inner points get more

asymmetric and right-skewed when σ2 increases. We observe this from the values of

|c3|/|c2| which increase to 1.033, 1.055, 1.065, 1.071, 1.291, and 2.844. However, when

α0 =5, α1 =2, the asymmetry of the points are less significant than the previous case

where α0 =1, α1 =0.5.

In summary, as σ2 increases, c1 and c4 have the same values, w1 and w4 are

increasing, c2 and c3 get closer to zero, w2 is decreasing and increasing, and w3 is

decreasing.

When α0 =0, α1 =1 in Table 5.6, we have different designs compared to the pre-

vious two cases. In the previous table, Table 5.4, we already saw that the zero value

of α0 gives a symmetric design. Here we observe it again by using other values of σ2.

On the other hand, the variance of the binary response zi is calculated by πi(1−πi)

using the obtained ci and a formula πi=eci/(1 + eci)2. In Table 5.6, we see that if σ2

is increasing, we have larger variances of binary responses together. We see that the

variances of mixed responses are positively associated conditioning a binary response.

Using the GET, we validate the A-optimality of selected designs in Figure 5.2.

We track the effect of σ2 using these plots. From Table 5.6, we chose two cases, which

are α0 =1, α1 =0.5 and α0 =5, α1 =2. Also, we set three σ2 values. The left two plots

are for σ2 =0.1, 0.5, 1 and the right two plots are for σ2 =1, 5, 10. All designs are A-
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Figure 5.2: A-optimality Verification for Three σ2 Values

(a) α0 =1, α1 =0.5, σ2 =0.1, 0.5, 1 (b) α0 =1, α1 =0.5, σ2 =1, 5, 10

(c) α0 =5, α1 =2, σ2 =0.1, 0.5, 1 (d) α0 =5, α1 =2, σ2 =1, 5, 10

* In each plot, a red curve has the smallest value of σ2 among three values.

optimal. Since the GET verification depends on the guessed values of α0, α1, and σ2,

even the straight lines appear differently. Also, we observe the asymmetric patterns

of all curves. When σ2 increases, the GET plot is also inflated in terms of the value

of the constant function C and another function s(c, ξ).

Figure 5.3 summarizes the trend of obtained designs according to the value of σ2.

We set three intervals of σ2 and generate ten equally spaced values from each interval.

For each σ2, we obtain A-optimal designs with the GET verification. The plots in

the first column show the location of design points. As shown in the first three plots,

the two inner points get closer as σ2 increases.
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Figure 5.3: A-optimal Designs by σ2 When α0 =5 and α1 =2

(a) points by σ2∈ [0.1, 1] (b) weights by σ2∈ [0.1, 1] (c) summary of weights

(d) points by σ2∈ [1, 10] (e) weights by σ2∈ [1, 10] (f) summary of weights

(g) points by σ2∈ [10, 100] (h) weights by σ2∈ [10, 100] (i) summary of weights

* From each [a, b], ten equal-spaced σ2’s are selected.
* (a), (d), and (g): up (small σ2) → down (large σ2)
* (b), (e), and (h): back (small σ2) → front (large σ2)
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Bar charts in the second and third column explain the weights. The charts in the

second column show that the weights of the boundary points increase and the weights

of the second largest point c3 decrease as σ2 increases. When σ2 is 100, which is the

largest number in our pool of the values of σ2, we see from the chart of the third row

that the two inner points have almost equal weights and the two boundary points

have more weights compared to the case when the value of σ2 is smaller as shown in

the first row.

The charts in the third column are the elevations of weights. Through the black

horizontal lines in the green bar of w3, we observe that w3 continuously decreases

while w1, and w4, increase. When σ2 is large, the two boundary points weigh more.

It is well known that the optimal points in a linear model experiment are usually the

two boundary points that maximize the information matrix. When the variance of

the linear model inflates, in other words, σ2 increases, we assign more weights on the

boundary points to account for the variance of continuous responses when we use an

A-optimal design for an experiment.

Table 5.8: Design When α0 =0 and α1 =0 in [−10, 10]

α0 α1 σ2 Design (initial results)* var(z1) var(z2) var(z3) var(z4)
∑
wivar(zi)

0 0 0.1 -10 0.000 0.000 10 0.00 0.25 0.25 0.00 0.25
0.000 0.498 0.502 0.000

0.25 -10 0.000 0.000 10 0.00 0.25 0.25 0.00 0.25
0.000 0.500 0.500 0.000

0.5 -10 -0.062 0.065 10 0.00 0.25 0.25 0.00 0.25
0.001 0.513 0.486 0.001

1 -10 0.000 0.000 10 0.00 0.25 0.25 0.00 0.25
0.000 0.500 0.500 0.000

10 -10 0.000 0.000 10 0.00 0.25 0.25 0.00 0.25
0.000 0.485 0.515 0.000

100 -10 0.000 3.008 10 0.00 0.25 0.04 0.00 0.25
0.000 1.000 0.000 0.000

* All designs are one-point design with a weight 1.

In Table 5.8, we set α0 =0, α1 =0 to describe a unfortunate situation when we

only have one design point c=0 for all c in [−10, 10]. From the variances of binary
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responses, we check that one point design of the experiment will always produce

the largest variance of binary response, 0.25, obtained as the maximum of π(1 − π)

regardless of the value of σ2. We check that they are not optimal. It means that

in the represented design space, if an experimenter treats only one middle point of

the space, there is no chance to get precise experimental data to produce an accurate

estimator of parameters for a given model.

Table 5.9: A-optimal Designs for c When α0<0

α0 α1 σ2 Design space fval Design

1 0.5 1 -10 10 13.53 -10 -1.125 1.205 10
0.019 0.193 0.776 0.012

-1 0.5 1 -10 10 13.53 -10 -1.205 1.125 10
0.012 0.776 0.193 0.019

5 2 1 -10 10 97.17 -10 -2.125 2.244 10
0.059 0.276 0.628 0.038

-5 2 1 -10 10 97.16 -10 -2.244 2.125 10
0.038 0.628 0.276 0.059

Until now, we set α0 and α1 to positive values. We instead discuss a design

problem when α0 is negative. The sign of α1 does not affect an optimization since the

A-optimality criterion only depends on α1 through α2
0 +α2

1 as shown in (5.6). On the

other hand, we found that the sign change of α0 produces reversed optimal designs as

shown in Table 5.9. We verify the A-optimality of the selected designs when α0<0

in Figure 5.4.

We explain the reversion of the design points and weights in general using the

A-optimality criterion. To see this, we use the fact that ec
∗
i

(1+ec
∗
i )2

is even, such as

ec
∗
i

(1+ec
∗
i )2

= e−c
∗
i

(1+e−c
∗
i )2

. Also it is true that ec
∗
i

1+ec
∗
i

= 1

1+e(−c
∗
i
) . We then see that −2α0

∑
w∗i

c∗i e
c∗i

1+ec
∗
i

=

−2(−α0)
∑
w∗i

(−ci)∗·1
1+e(−ci)

∗ and |C∗2(−c)|= |C∗3(c)|.

Theorem 5.5.1. In a mixed response model, for any A-optimal design ξ∗={(c∗i , w∗i ), i=

1, ..., 4} under the A-optimality criterion Φα01
A with α0 =α01, a reflected design ξ∗r =

{(−ci, wi), i=1, ..., 4} is A-optimal with Φ−α01
A with α0 =−α01.
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Figure 5.4: A-optimality Verification for Three σ2 Values When α0<0

(a) α0 =−1, α1 =0.5, σ2 =0.1, 0.5, 1 (b) α0 =−1, α1 =0.5, σ2 =1, 5, 10

(c) α0 =−5, α1 =2, σ2 =0.1, 0.5, 1 (d) α0 =−5, α1 =2, σ2 =1, 5, 10

Proof. We assume that Φα01
A (ξ∗)≤Φα01

A (ξ) for any four-point design ξ={(ci, wi), i=

1, 2, 3, 4} . Then, an A-optimal design ξ∗ achieves the minimum value of the A-optimal

criterion Φα01
A . Also it can be shown using −c∗ as follows: Φα01

A (ξ∗(c∗i ))= 1
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1 |
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=Φ−α01

A (ξ∗(−c∗i )). The last two equations mean that an optimal design ξ∗r

achieves the minimum of the A-optimal criterion when a new α0 has −α01. There-

fore, we conclude that Φ−α01
A (ξ∗r )≤Φ−α01

A (ξr) for any other design ξr={(−ci, wi), i=

1, 2, 3, 4.}.
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Table 5.10: A-optimal Designs for c in Asymmetric Design Spaces

α0 α1 σ2 Design space Design # of points GET verification

1 0.5 1 -25 -5 -7.5616 -5 2 success
0.715 0.285

-20 0 -20 -2.888 0 3 success
0.019 0.408 0.573

-15 5 -15 -1.215 1.183 5 4 success
0.016 0.207 0.755 0.022

-10 10 -10 -1.125 1.205 10 4 success
0.019 0.193 0.776 0.012

-5 15 -5 -1.007 1.228 15 4 success
0.024 0.171 0.796 0.009

0 20 0 1.743 20 3 success
0.336 0.657 0.007

5 25 5 7.561 2 success
0.313 0.687

Figure 5.5: A-optimality Verification in Asymmetric Domains When α0 =1, α1 =0.5,
and σ2 =1

(a) [−25,−5] (b) [−20, 0] (c) [−15, 5] (d) [−10, 10]

(e) [−5, 15] (f) [0, 20] (g) [5, 25] (h) all spaces

Another interest is the existence of A-optimal designs in asymmetric domains.

We set design spaces as from [−25,−5] to [5, 25] as shown in Table 5.10. There is

a 2-, 3-, or 4-point design. Weights are not equal. It is noticeable that there exist

4-point designs in [−15, 5] and [−5, 15] which was not found in D-optimal designs.

The general equivalence theorem confirms A-optimality in Figure 5.5.
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Table 5.11: The A-optimality Criteria Used for Table 5.12

Objective A-optimility criterion

linear Model tr (FᵀWF)−1

two conditional LMs σ2 tr (FᵀWPF)−1 + σ2 tr (FᵀW(1−P)F)−1

logistic tr (FWP(1−P)F)−1

mixed response tr (FWP(1−P)F)−1 + σ2 tr (FWPF)−1 + σ2 tr (FW(1−P)F)−1

Table 5.12: A-optimal Designs for c under the Different A-optimality Criteria

Objective α0 α1 σ2 Design space fval Design

linear model none none none -10 10 1.01 -10 10
0.500 0.500

two conditional LMs 1 1 1 -10 10 5.268 -10 0.182 10
0.055 0.887 0.057

logistic model 1 1 none -10 10 10.815 -1.482 1.482
0.293 0.707

mixed response model 1 1 1 -10 10 17.945 -10 -1.326 1.395 10
0.030 0.282 0.667 0.022

Figure 5.6: A-optimality Verification of the Obtained Designs in Table 5.12

(a) Conditional linear models (b) Logistic regression model (c) Mixed response model

On the other hand, we find A-optimal designs using three different A-optimality

criteria embedded in a mixed response model. As shown in Table 5.11, the first is

for a linear model experiment, and the second is for two conditional linear model

experiments controlled by the probability of a binary response. The third one is

for a logistic regression. From three different A-optimality criterion, we obtained A-

optimal designs and compared them to A-optimal designs in a mixed response model.

The optimality of the designs were verified by the graph as shown in Figure 5.6.

One thing that we want to make a point of is that we used a complete class with

a at most 4-point designs including two fixed points as a class of candidate designs
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just as we did for a mixed response model. The complete class is intended not only

for the entire parameters but also a linear combination of the parameters. We thus

can focus on the specific parameters of interest using the same complete class. The

A-optimality criterion of a logistic regression used is not for a sole logistic regression,

but for a part of our mixed response model. We thus use a complete class that is

different from the complete class for a sole logistic regression model. In the case of a

linear model, the model is not part of a mixed response model. However, if we assume

that mixed responses are independent, we can obtain the criterion of the linear model

used here after factoring out σ2. In Table 5.12, we find A-optimal designs for each

criterion. We observe that the A-optimal designs for two conditional linear models

have three design points and the middle point is 0.1822 with the weight 0.8874.

Figure 5.7: A-optimality Verification of Symmetric Designs in Table 5.13

(a) five cases but the last (b) the third case (c) the third case (part)

Finally, we find a symmetric design under the A-optimality criterion to compare

the previously obtained asymmetric designs. We add one more constraint as c2+c3 =0

to the standard mathematical form to make c2 and c3 are symmetric. The results are

summarized in Table 5.13. For comparison, we set several guessed values of α0, α1,

and σ2 in a design space [−10, 10]. As shown in Table 5.13, we obtained symmetric

designs for every case and they are almost A-optimal since the values of fval are

almost the same. The ratio of weights in symmetric designs is slightly different from

that of original designs, but the difference is not significant.
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Table 5.13: Symmetric Designs for c in [-10, 10]

α0 α1 σ2 Case Design fval fval(sym)/fval(org)

1 0.5 1 symmetric -10 -1.190 1.190 10 13.528 100.01%
0.019 0.189 0.780 0.012

original -10 -1.125 1.205 10 13.527
0.019 0.193 0.776 0.012

1 0.5 10 symmetric -10 -0.938 0.938 10 61.92 100.04%
0.032 0.197 0.748 0.023

original -10 -0.766 0.989 10 61.893
0.032 0.227 0.720 0.022

1 0.5 100 symmetric -10 -0.630 0.630 10 520.52 100.08%
0.037 0.183 0.748 0.033

original -10 -0.271 0.772 10 520.11
0.036 0.331 0.601 0.032

1 5 1 symmetric -10 -2.050 2.050 10 98.652 100.00%
0.053 0.418 0.480 0.049

original -10 -2.038 2.061 10 98.65
0.053 0.416 0.481 0.049

10 0.5 1 symmetric -10 -2.297 2.297 10 312.85 100.04%
0.062 0.341 0.549 0.047

original -10 -2.245 2.330 10 312.74
0.062 0.335 0.556 0.047

20 10 100 symmetric -10 -1.445 1.445 10 13001 100.02%
0.217 0.316 0.266 0.200

original -10 -1.501 1.385 10 12998
0.218 0.314 0.268 0.200

The obtained designs are nearly A-optimal by the general equivalence theorem

as shown in Figure 5.7. The first plot displays the plots of five symmetric designs

obtained in Table 5.13. The plot of the last design is omitted because of its huge scale.

The second plot shows the plot of the GET verification for the third case in Table

5.13 when α0 =1, α1 =0.5, and σ2 =100. In the third plot which magnifies the part of

the second plot, we see that symmetric designs are slightly less efficient than original

designs. So a symmetric design is almost A-optimal, but not exactly A-optimal.
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5.6 Discussion

In this study, we found A-optimal designs for a mixed response model. Most de-

signs that we obtained consisted of four points although the exact number of support

points depends on the size of the represented design space and guessed values of un-

known parameters α0, α1, and σ2. The two outer points were on the boundary of the

design space and the two inner points were asymmetrically located. The weights of

the four points are unbalanced.

Since the A-optimality criterion has many unknown parameters and those param-

eters are not separable from the criterion, we considered different combinations of the

parameter values in our numerical study. We observed some change in the obtained

designs when we changed the values of α0, and α1. When α0 is small compared to

the value of α1, obtained designs were close to symmetric designs.

Our focus was on how the value of σ2 affects A-optimal designs. The parameter

σ2 is the variance of continuous responses. While the D-optimal design is invariant to

the magnitude of σ2, the A-optimal design hinges on the value of σ2. It was observed

that, when the value of σ2 was large, the weights of the two outer design points in

the obtained design increased while the weights of the two inner points decreased. It

seems that when the variance of continuous responses was large, the efficient designs

contained two boundary points more than two inner points. The weights of two

boundary points increased as σ2 increased.

Since the trend of σ2 effect was relatively smooth in a fixed design space, we have

useful information on experimental designs under a mixed response model. If an

experimenter wants to conduct an experiment considering the change in variances of

continuous responses, we recommend A-optimal designs based on our results.
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Using an analysis of the logit function, we used a design space at most [−10, 10].

The change of the design space from [−1, 1] to [−10, 10] was significant in that the

number of support points changed. From here, we observed again that the boundary

problem is still an important issue for a design problem as it was observed in the

study of D-optimal designs.
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Chapter 6

EXTENSION TO A QUADRATIC MODEL

A logistic regression model is one kind of a generalized linear model (GLM). By

using the logit function as the link function, we transform a discretized binary variable

to a continuous variable so that a logistic model can be handled in a similar way to

a linear model in some sense. For example, it is proved that the maximum likelihood

estimator of the GLM is equivalent to an iterative weighted least square of the GLM

similar to the case of a linear model (Charnes and Yu, 1976). Taking this point into

account, we continue discussion as follows.

In classical linear models, when we detect a nonlinear relationship between an

input variable and a response, we consider a sophisticated model, beyond that of a

simple model, to describe that relationship. One of the common ways is to introduce

a polynomial regression model as an approximation (Kutner, Nachtsheim, Neter, and

Li, 2004). Moreover, according to Atkinson, Donev, and Tobias (2007), “experience

indicates that in very many experiments the response can be described by polyno-

mial models of order no greater than two (in linear models).” Hence, a second-order

polynomial model is a good model to start with for investigating a curvature trend

of experimental data.

Similar to the linear model, a simple logistic regression model is occasionally not

enough to fit data. We found the applications of a quadratic logistic regression model

to be such as a carbon disulphide study with beetles, a business management study

with initial public offerings (IPOs) data, the Western Collaborative Group Study of

coronary heart disease incidence and so on (Collett, 2002; Kutner et. al, 2004; Jewell,

2003). In those examples, a quadratic logistic regression model was used to capture
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the nonlinear trend. We can, therefore, assume that there may be situations where a

quadratic model is needed when modeling binary data collected from an experiment.

For that reason, if we expand the scope of the discussion, it is worthwhile to

examine an experimental design for a mixed response model with a quadratic term.

A mixed response model consists of one logistic regression model and two conditional

linear models. We place a quadratic term in a logistic regression model for the binary

response while we set the linear models unchanged. For convenience, we call this

model a quadratic mixed response model, and the model in the previous chapters is

referred to as a simple mixed response model.

Meanwhile, when an experimenter wants to use a quadratic mixed response model,

it presents a real challenge to designing an experiment for such an extended model.

Adding one term is not merely a stretch of a simple model, but causes an almost new

creation of the covariance-variance matrix of parameter estimates. Consequently, it

changes the properties embedded in the covariance-variance matrix or the information

matrix which we studied before and this new situation affects our strategy. We need

to contemplate a more sophisticated application of a complete class approach, to

write a new standard form for a nonlinear algorithm, and to derive a new inequality

equation for verification via the general equivalence theorem (GET).

Among them, it is imperative that we examine the applicability of a complete class

approach. So far candidate designs were fenced off by a complete class approach, and

the burden of a computational search was lightened. If we have to give up such an

advantage here, countably many support points can be reduced by the Carathéodory’s

theorem for now. Then, the upper bound of the number of design points is twenty-

nine (p(p+ 1)/2 + 1=7 ∗ (8)/2 + 1=29) where p=7 is the number of parameters that

gives the length of the row or column of the symmetric square information matrix.

It is evident that computation time will increase and, in reality, twenty-nine different
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factor levels may not be easy or preferred to be treated when we have no way to

collapse design points by another method.

Yu (2011) suggested a ‘nearest neighbor exchange’ in his cocktail algorithm as

one of the solutions to apportionment between close points. This strategy was used

to increase the efficiency of the multiplicative algorithm. The cocktail algorithm

consisted of three algorithms in sequence such as vertex direction method (VDM),

nearest neighbor exchanges (NNE), and multiplicative algorithm (MA). The MA was

one of the traditional optimal design algorithms that updated weights based on the

GET (Silvey, Titterington and Torsney, 1978). For the precision of results, more

support points were recommended, and consequently, the speed of convergence could

be slow. Due to the nature of the algorithm, the MA started with much more support

points than the points found by Carathéodory’s theorem. In this algorithm, ’n’ - the

number of the support points- did not quickly decrease.

The strategy of the NNE was to exclude a non-support point xj adjacent to a

support point xi when xj was the ‘nearest neighbor’ of xi based on a certain distance

standard. In numerical examples, the neighborhood structure was specified using L1

norm as ||xi−xj|| and the author stated that the choice of metric did not make much

difference in his experience. The NNE was implemented before the MA and then

the procedure effectively reduced computing time. During the entire iterations of the

cocktail algorithm, support points x, weights w, and the number of support points n,

were adjusted together.

In the cocktail algorithm, the number of design points was mostly reduced by

the NNE based on a designated metric, and the basic updating rule relied on the

GET. In our study, we derive a sharper bound for the number of support points

based on a theoretical approach, namely the complete class approach before moving

on to a computer search. In the former approach, the grid of a design space was

87



practically considered, but in our approach we use a complete class. In his study, the

GET was used as the updating rule for the MA algorithm which is the central part

of the cocktail algorithm. In our study, we use the fmincon solver of mathematical

programming as a general solution to finding the minimum of a nonlinear objective

function given constraints that necessitate the verification procedure by the GET.

After reviewing the previous studies of quadratic models which adopted a complete

class approach, we will investigate an optimal experimental design for a quadratic

mixed response model. We will show the complete class results and the numerical

results under the D-optimality criterion.

6.1 Previous Studies of Quadratic Models

Wu and Stufken (2014) studied locally Φp-optimal designs for generalized linear

models with a single-variable quadratic polynomial predictor. They considered lo-

gistic and probit models for binary responses and a log-linear model for count data.

Using two groups of candidate designs, they derived a general pattern of Φp-optimal

designs. The first group was the class of symmetric designs. This group was detected

using an invariance property under the Φp-optimality criterion. Within a class of

symmetric designs, they identified complete classes setting subdesigns for detecting

Chebyshev systems.

In contrast to a simple logistic regression case in Yang and Stufken (2009), an

unknown parameter problem was tricky. To confront the problem, Wu and Stufken

(2014) used a vertex form of a predictor as η=θ0 + θ2(x − θ1)2 where θ0, θ1, θ2 are

parameters and x is a single independent variable. Under this model formulation,

they represented the information matrix in terms of a represented design point d. For

a quadratic logistic regression model, they obtained 3- or 4-point designs under Φp

criterion.
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Hyun (2013) also used a complete class approach to finding optimal designs for a

different quadratic model. The focus of the study was to find good designs using a

probit model with a quadratic term to describe a nonlinear dose-response relationship

in toxicology studies. After setting a model using three parameters, the author found

complete classes and then searched D- and A- optimal designs. The predictor in the

model is η=θ1 + θ2xi + θ3x
2
i where θ1, θ2, θ3 are parameters and xi is an independent

variable. The complete classes possessed 4-point designs or 5-point designs.

On the other hand, the property of symmetric support points eased the complexity

of design problems in many cases such as Wu and Stufken (2014). Mathew and Sinha

(2001), and Liski, Mandal, Shah, and Sinha (2002) also used this property for various

models. Mathew and Sinha (2001) considered a simple logistic regression. Liski,

et al. (2002) studied optimal designs for a polynomial model with a degree k≥1.

They set symmetric designs by using the operation of a reflection. For example, a

symmetric design {(−x2, w2/2), (−x1, w1/2), (x1, w1/2), (x2, w2/2)} was created from

{(x1, w1), (x2, w2)} by a reflection; −x1 is a reflected point of x1. They observed that

the value of the Φp criterion function was invariant to reflection in their models. In

Chapter 13 of Pukelsheim (2006), there was a summary of an invariance property of

some optimality criteria. Generally researchers showed that symmetric designs were

at least as good as any other designs for the model that they considered. We also use

this property in Section 6.3.

6.2 Quadratic Mixed Response Model

To formulate a quadratic mixed response model, we use a vertex form of α0 +

α2(xi − α1)2 in a logistic regression model. Then, the binary response zi (=1 with

a probability πi) has πi=E(zi)= exp(α0+α2(xi−α1)2)
1+exp(α0+α2(xi−α1)2)

. We consider conditional linear

models without a quadratic term. Then, the continuous response yi|zi has yi|zi=
1∼N(µ1, σ

2) and yi|zi=0∼N(µ2, σ
2) where µ1 =E(yi|zi=1)=β

(1)
0 +β

(1)
1 xi, and µ2 =
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E(yi|zi=0)=β
(2)
0 +β

(2)
1 xi. The parameter vector of interest is θ=(α0, α1, α2, β

(1)
0 , β

(1)
1

β
(2)
0 , β

(2)
1 ). The information matrix is

M(θ, xi)=


F1

ᵀWP(I−P)F1 0 0

0 1
σ2F2

ᵀWPF2 0

0 0 1
σ2F2

ᵀW(I−P)F2

 , where F1 =


f1(x1)ᵀ

f1(x2)ᵀ

...

f1(xn)ᵀ

 ,

and F2 =[f2(x1), f2(x2), ..., f2(xn)]ᵀ. Also, f1(xi)
ᵀ =[1,−2α2(xi−α1), (xi−α1)2], f2(xi)

ᵀ =

[1 xi], W=diag(w1, ..., wn), and P=diag(π1, ..., πn) with πi=
exp(α0+α2(xi−α1)2)

1+exp(α0+α2(xi−α1)2)
.

Following Wu and Stufken (2014), we define a represented point as di= |α2|1/2(xi−

α1). Then, the predictor η in the logistic regression model for the binary response is

expressed as ηi=α0 + sign(α2)d2
i , and the information matrix for θ is decomposed

as M(θ, di)=P(θ, σ2)

(
n∑
i=1

wiC(θ, di)

)
P(θ, σ2)ᵀ where P(θ, σ) is a 7-by-7 nonsingular

matrix that only depends on θ and σ as

P(θ, σ)=diag(P1,
1

σ
P2,

1

σ
P2),

where P1 =diag(1,−1
2 sign(α2)|α2|−1/2, |α2|), P2 =

(
1 0

−α1|α2|1/2 |α2|1/2
)−1

and C(θ, d) is

a 7-by-7 symmetric matrix as

C(θ, d)=


Ψ11(d) Ψ12(d) Ψ13(d)
Ψ12(d) Ψ22(d) Ψ23(d)
Ψ13(d) Ψ23(d) Ψ33(d)

0 0 0 Ψ44(d) Ψ45(d)
0 0 0 Ψ45(d) Ψ55(d)
0 0 0 0 0 Ψ66(d) Ψ67(d)
0 0 0 0 0 Ψ67(d) Ψ77(d)

 (6.1)

=



eη

(1+eη)2

d eη

(1+eη)2
d2 eη

(1+eη)2

d2 eη

(1+eη)2
d3 eη

(1+eη)2
d4 eη

(1+eη)2

0 0 0 eη

1+eη

0 0 0 d eη

1+eη
d2 eη

1+eη

0 0 0 0 0 1
1+eη

0 0 0 0 0 d 1
1+eη

d2 1
1+eη

 (6.2)

=diag(D1λ1,D2λ2,D2λ3),

where D1 =

 1 d d2

d d2 d3

d2 d3 d4

, D2 =
(

1 d
d d2

)
, λ1(η)= eη

(1+eη)2
, λ2(η)= eη

1+eη
, λ3(η)= 1

1+eη
and

η=α0+sign(α2)d2. We observe that it is true that λ1(−η)=λ1(η), and λ2(−η)=λ3(η)

while it holds that λi(η(−d))=λi(η(d)) for i=1, 2, 3.
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6.3 Class of Symmetric Designs

Based on Pukelsheim (2006), we will show that for a quadratic mixed response

model, a symmetrized design is at least as good as any other design under the D-

optimality criterion. In this chapter, a symmetrized, or symmetric design is defined

as ξs={(±di, wi/2), i=1, ...,m} where
m∑
i=1

wi=0.5.

We create a reflected design ξr={(−di, wi), i=1, ...,m} from any design ξ={(di, wi),

i=1, ...m} where
m∑
i=1

wi=1. We then find a transformation matrix Q to satisfy

two conditions such that (i) M(ξr)=QM(ξ)Qᵀ (ii)− log |M(ξ)|=− log |QM(ξ)Qᵀ|. If

|Q|=±1, Q satisfies two conditions. We then state that the D-optimality criterion

is invariant under the action of Q which holds that ΦD(QMQᵀ)=ΦD(M) for all

nonnegative definite matrices M (Pukelsheim, 2006).

In (6.2), we see that C(ξ(−d)) has the same element functions as C(ξ(d)) for

the diagonal elements and the components of (1,3), (3,1) where (i, j) indicates the

element of the ith row and jth column of a matrix. The elements of (1,2), (2,1), (2,3),

(3,2), (4,5), (5,4), (6,7), (7,6) in C(ξ(−d)) are obtained by changing the sign of the

corresponding elements of C(ξ(d)). From this observation, we know that M(ξs) has

zero element in the locations of (1,2), (2,1), (2,3), (3,2), (4,5), (5,4), (6,7), and (7,6)

and find a matrix Q. We have the following result.

Lemma 6.3.1. For an arbitrary design ξ={(di, wi), i=1, ...,m} in the design space

[-D, D] for some D>0, a symmetrized design ξs={(±di, wi/2), i=1, ...,m} is at least

as good as the design ξ under the D-optimality criterion.

Proof. For a matrixQ=diag(1,−1, 1, 1,−1, 1,−1), we have det(Q)=−1. Hence, it

holds that − log |C(ξr(d))|=− log |QC(ξ(d))Qᵀ|=− log |C(ξ(d))| for a reflected design

ξr={(−di, wi), i=1, ...,m} of any design ξ={(di, wi), i=1, ...m} based on Section

13.7-8 in Pukelsheim (2006). For a symmetrized design ξs={(±di, wi/2), i=1, ...,m} ,
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using the convexity of − log |· |, we see that − log |M(ξs)|=− log |1/2M(ξ)+1/2M(ξr)|≤

−1/2 log |M(ξ)|−1/2 log |M(ξr)|=−1/2 log |M(ξ)|−1/2 log |PQC(ξ)QᵀPᵀ|=−1/2 log |M(ξ))|−

1/2 log |P||C(ξ)||Pᵀ|=− log |M(ξ)|.

A simple mixed response model also has the property of D-invariance. In that case,

we have Q=

(
Q0 0 0
0 0 Q0

0 Q0 0

)
with Q0 =( 1 0

0 −1 ). This partly explains our observation that

the obtained D-optimal designs for a simple model were symmetric designs.

6.4 Complete Class Results

In this section, we identify complete classes within the class of symmetric designs

based on Lemma 6.3.1. A symmetric design is now expressed as ξs={(±di, wi), di≥

0, wi≥0, i=1, ...,m} where di is a design point, wi gives the weights for di and −di,

and
m∑
i=1

wi=0.5. When we have ±di=0, the number of design points is odd. Also,

we define a nonnegative subdesign as ξ+ ={(di, wi), di≥0, wi>0, i=1, ...,m} and a

nonpositive subdesign as ξ−={(−di, wi), di≥0, wi>0, i=1, ...,m}. Here, we follow

Wu and Stufken (2014) to relax the condition of
∑
wi=1 to

∑
wi= .5 when we call

ξ+ or ξ− a subdesign.

A reason for considering subdesigns is that, in a quadratic mixed response model,

we have fl,l(d)=0 at d=0 when we apply Theorem 2 of Yang and Stufken (2012).

Consequently, a complete class cannot be formed in the entire design space [−D,D].

We thus separately consider two subdesigns in design spaces [−D, 0] and [0, D], respec-

tively and identify the pair of two Chebyshev systems for each domain. Combining

the results in two domains, we identify a complete class for the entire design space.

Wu and Stufken (2004) used the same approach.

Based on Lemma 2.2.1 that we suggested in Chapter 2, we find Chebyshev systems

by using F (d). We first make a maximal set of necessary elements from C. We use
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the notations as follows.

C(θ, d)=


λ1(d) dλ1(d)∗ d2λ1(d) 0 0 0 0
dλ1(d)∗ d2λ1(d) dλ1(d)∗ 0 0 0 0
d2λ1(d) d3λ1(d)∗ d4λ1(d) 0 0 0 0

0 0 0 λ2(d) dλ2(d)∗ 0 0
0 0 0 dλ2(d)∗ d2λ2(d) 0 0
0 0 0 0 0 λ3(d) dλ3(d)∗

0 0 0 0 0 dλ3(d)∗ d2λ3(d)

 (6.3)

We do not consider even functions indicated by (*) in (6.3) as an element of a

maximal set since within a class of symmetric designs ξs’s, the corresponding elements

of the information matrix vanish such as
∑
widλ1(d)=

∑
wid

3λ1(d)=
∑
widλ2(d)=∑

widλ3(d)=0. We then have the equality of
∑
wkΨl(d)=

∑
w̃kΨ̃l(d) in (2.5) as

“0=0” all the time. We delete four even functions.

Therefore, we have a set of

{λ1(d), d2λ1(d), d4λ1(d), d2λ2(d), λ3(d), d2λ3(d)}. (6.4)

We already deleted λ2(d) due to the relationship of λ2(d) + λ3(d)=Ψ0(=1). The set

in (6.4) corresponds to {Ψ11,Ψ22 or Ψ13,Ψ33,Ψ55,Ψ66,Ψ77} in (6.1). The index ii of

Ψii denotes a location in C while i of Ψi will express the index of a sequence for the

search for Chebyshev systems. We started the search with a 3-by-3 matrix of C22

considering the results in Chapter 3, but unfortunately could not form a complete

class.

Table 6.1: Candidate Sequences for the Complete Class Approach

candidates Ψ1, ...,Ψ4 Ψ5

Sequence 1 1
1+eη ,

eη

(1+eη)2
, d2eη

(1+eη)2
, d2

1+eη C22 =diag(d4 eη

(1+eη)2
, d2 eη

1+eη ),

Sequence 2 1
1+eη ,

eη

(1+eη)2
, d2eη

(1+eη)2
, d

2eη

1+eη C22 =diag(d4 eη

(1+eη)2
, d2 1

1+eη )

Sequence 3 1
1+eη ,

eη

(1+eη)2
, d4eη

(1+eη)2
, d2eη

(1+eη)2
C22 =diag(d2 eη

1+eη , d
2 1

1+eη )

Sequence 4 1
1+eη ,

eη

(1+eη)2
, d2eη

(1+eη)2
, d4eη

(1+eη)2
C22 =diag(d2 eη

1+eη , d
2 1

1+eη )

We thus consider a 2-by-2 matrix C22 using two elements among d2λ1(d), d4λ1(d),

d2λ2(d), and d2λ3(d). After selecting one type of C22, we permute the remaining

elements. The number of candidate sequences is 6! × 4!( = possible ways of creating

93



Table 6.2: Calculation of F (d) for Candidate Sequences (s : sign(α2))

candidates f1,1 f2,2 f3,3 f4,4
∏
fi,i f5,5

Seq. 1 − 2deηs
(1+eη)2

4deηs
(1+eη)2

de−η (1 + eη)2 4de−ηs − 32d4s3

(1+eη)2
diag(2deη ,−4de2ηs)

Seq. 2 − 2deηs
(1+eη)2

4deηs
(1+eη)2

de−η (1 + eη)2 −4deηs 32d4e2sd
2+2as3

(1+eη)2
diag(2de−η , 4de−2ηs)

Seq. 3 − 2deηs
(1+eη)2

4deηs
(1+eη)2

2d3e−η (1 + eη)2 − 1
d3

16d2eηs2

(1+eη)2
diag(4d3eηs2, 4d3e−ηs2)

Seq. 4(*) − 2deηs
(1+eη)2

4deηs
(1+eη)2

de−η (1 + eη)2 4d − 32d4eηs2

(1+eη)2
diag(−2deηs2,−2de−ηs2)

C22 × the number of permutation of four remaining elements). Among them, we

select the four sequences of Ψ functions shown in Table 6.1 for further investigations.

Other sequences of Ψ functions tend to involve rather complex fl,l for some l,

Furthermore, from Table 6.1, we choose Sequence 4, which is Ψ1 = 1
1+eη

,Ψ2 =

eη

(1+eη)2
,Ψ3 = d2eη

(1+eη)2
,Ψ4 = d4eη

(1+eη)2
,Ψ5 =diag( d

2eη

1+eη
, d2

1+eη
), that is to say Ψ1 =λ3(d), Ψ2 =

λ1(d),Ψ3 =d2λ1(d),Ψ4 =d4λ1(d),Ψ5 =diag(d2λ2(d), d2λ3(d)). Other sequences may

perhaps be used, but Sequence 4 seems to give simple results.

Table 6.3: Sign of fl,l in Our Choice

conditions f1,1 f2,2 f3,3 f4,4
∏
f1,1 f5,5

Sequence 4 − 2deηs
(1+eη)2

4deηs
(1+eη)2

de−η (1 + eη)2 4d − 32d4eηs2

(1+eη)2
diag(−2deηs2,−2de−ηs2)

Sequence 4 − sign(d) sign(α2) sign(d) sign(α2) sign(d) sign(d) − diag(− sign(d),− sign(d))

α2>0, d>0 − + + + − diag(−,−)→f5,5<0
α2>0, d<0 + − − − − diag(+,+)→f5,5>0

α2<0, d>0 + − + + − diag(−,−)→f5,5<0
α2<0, d<0 − + − − − diag(+,+)→f5,5>0

Tables 6.2 and 6.3 provide fl,l and F (d) of Sequence 4. As it turns out, we

still need to consider some unknown parameters because η depends not only on the

represented design point d, but also unknown parameters which was not the case of

a simple mixed response model. Specifically, these unknown parameters are α0 and

α2 of η=α0 + sign(α2)d2. We need to use guessed values of these parameters when

identifying Chebyshev systems.

Fortunately, we do not need to be concerned about the value (or more precisely,

the sign) of α0. In our case, the sign of fl,l’s do not depend on α0 as shown in Table
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6.3. This is in contrast to Wu and Stufken (2014); some fl,l’s in their calculation

contained (eη − e−η) or a similar form, so that the value of α0 played a role when

determining the sign of such fl,l’s. For α2, although we still need to take the sign of

α2 into account as shown in Table 6.3, it is true that we have the same results when

α2>0 and α2<0 based on Lemma 2.2.1 since the signs of F (d) are the same in two

cases. With Table 6.3, we have the following as a result.

Lemma 6.4.1. (1) When d∈ [0,∞), for a quadratic mixed response model, up to a

change of signs of some Ψl, l=1, ..., 5, {Ψ0,Ψ1 =λ3(d),Ψ2 =λ1(d),Ψ3 =d2λ1(d),Ψ4 =

d4λ1(d)} and {Ψ0,Ψ1 =λ3(d),Ψ2 =λ1(d),Ψ3 =d2λ1(d),Ψ4 =d4λ1(d),ΨQ
5 } form Cheby-

shev systems for any non-zero vector Q. Here, Ψ0 =1 and ΨQ
5 =Qᵀ diag(d2λ2(d),

d2λ3(d))Q. (2) When d∈(−∞, 0], for a quadratic mixed response model, up to a

change of signs of some Ψl, l=1, ..., 5, {Ψ0,Ψ1 =λ3(d),Ψ2 =λ1(d),Ψ3 =d2λ1(d),Ψ4 =

d4λ1(d)} and {Ψ0,Ψ1 =λ3(d),Ψ2 =λ1(d),Ψ3 =d2λ1(d),Ψ4 =d4λ1(d),ΨQ
5 } form Cheby-

shev systems for any non-zero vector Q. Here, Ψ0 =1 and ΨQ
5 =Qᵀ diag(d2λ2(d),

d2λ3(d))Q.

Proof. (1) When we consider any of the two sets using the elements, Ψ0,Ψ1 =λ3(d),Ψ2 =

λ1(d),Ψ3 =d2λ1(d),Ψ4 =d4λ1(d),Ψ5 =diag(d2λ2(d), d2λ3(d)), we have f5,5<0 since the

(1,1) component of f5,5 is −2deη sign(α2)2<0 and the (2,2) component of f5,5 is

−2de−η sign(α2)2 <0 in d∈(0,∞). Also, we have
∏4

i=1 fi,i=−
32d4eη sign(α2)2

(1+eη)2
<0. We

then verify F (d)>0. Based on Lemma 2.2.1, we have Chebyshev systems. (2) The

proof is similar to the case of (1). We omit it.

From Lemma 6.4.1, we form a complete class in a quadratic mixed response model

as follows.

Theorem 6.4.2. For a quadratic mixed response model, in a design space [−D,D],

there exists a complete class of designs with at most 6 design points including −D
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and D. The three pairs of points located symmetrically around zero and the weights

for each pair are equal.

Proof. Based on Lemma 6.4.1 and Lemma 2 of Yang and Stufken (2012), for any

nonnegative subdesign ξ+ ={(di, wi), i=1, ...,m} when m≥3, we can find a subdesign

ξ+∗={(d∗i , w∗i ), i=1, 2, 3} including D as one of points, d∗i , that satisfies
3∑
i=1

w∗iΨl(d
∗
i )=

m∑
i=1

wiΨl(di), l=0, 1, ..., 4, and
3∑
i=1

w∗iΨ
Q
5 (d∗i )>

m∑
i=1

wiΨ
Q
5 (di) for every nonzero vector Q.

Then, we have a set S+∗ of a nonnegative subdesign ξ+∗ with at most 3 design points,

including D, in [0, D]. Similarly, for any nonpositive subdesign ξ−={(−di, wi), i=

1, ...,m} when m≥3, we have a set S−∗ of a nonpositive subdesign ξ−∗ with at

most 3 design points, including −D in [−D, 0]. Similar to the proof of Lemma

3.2.1, we have
3∑
i=1

w∗iΨ44(d∗i )=
m∑
i=1

wiΨ44(di) and
3∑
i=1

w∗iΨ44(−d∗i )=
m∑
i=1

wiΨ44(−di) by

using Ψ44 =1 − Ψ66. We then consider a combined design ξ∗={(−D, 0.5 − (w∗1 +

w∗2)), (−d∗2, w∗2), (−d∗1, w∗1), (d∗1, w
∗
1), (d∗2, w

∗
2), (D, 0.5− (w∗1 +w∗2))} in [−D,D]. Denot-

ing ξ∗={(±d∗i , w∗i ), d∗i ≥0, w∗i ≥0, i=1, 2, 3} and omitting θ from C and its partitioned

matrices for convenience, we see that
3∑
i=1

w∗iC11(d∗i ) +
3∑
i=1

w∗iC11(−d∗i )=
m∑
i=1

wiC11(di)

+
m∑
i=1

wiC11(−di),
3∑
i=1

w∗iC12(θ, d∗i )+
3∑
i=1

w∗iC12(−d∗i ) =
m∑
i=1

wiC12(di)+
m∑
i=1

wi C12(−di),

and
3∑
i=1

w∗iC22(d∗i ) +
3∑
i=1

w∗iC22(−d∗i ) ≥
m∑
i=1

wiC22(di) +
m∑
i=1

wiC22(−di). We then have

M(ξ∗)�M(ξs) and the conclusion follows.

Using this complete class, we find D-optimal designs in the next section.

6.5 Numerical Results

Based on the results in the previous section, we set a decision vector to ξ0 =

(d1, d2, w1, w2, w3) with a fixed point d3 =D in a design space [−D,D]. We use an

objective function as − log |C∗1| − log |C∗2| − log |C∗3| where C∗1 =
∑
wiD1λ1(η),C∗2 =∑

wiD2λ2(η),C∗3 =
∑
wiD2λ3(η) similar to the case in Chapter 4. However, we need
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guessed values of α0 and α2 because of ‘η=α0 + sign(α2)d2’ in an objective function.

Then, the formulation is written as “minimize
ξ0

− log |C∗1|− log |C∗2|− log |C∗3| subject

to 0≤di≤D for i=1, 2, 0≤wi≤0.5 and
∑
wi=0.5 for i=1, 2, 3.”

Table 6.4: A Comparison of Computing Time Between Two Settings of w3

Decision variables Constrains Computing time of five trials (seconds.) Mean

w1, w2, w3 0≤wi≤0.5,
∑
wi=1 7.22, 7.11, 7.16, 7.14, 7.15 7.16

w1, w2 0≤wi≤0.5 21.53, 21.37, 21.43, 21.73, 21.80 21.57

* The design space is [−10, 10]

Instead of “0.5 − w1 − w2”, we use w3 and add a constraint of
∑
wi=0.5 since

it is more efficient as shown in Table 6.4. According to Nash (2014), mathematical

programming is designed to focus on efficiently satisfying many constraints. The

results in Table 6.4 are consistent with his statement. It is worthwhile to check the

computation time since the time can be longer than in the previous study due to

calculation of the determinant of a 3-by-3 C∗1.

D-optimality verification is done by the following proposition. As mentioned in

Chapter 4, C∗1,C
∗
2, and C∗3 are determined by the values of obtained designs. The

formulation is similar to Proposition 4.2.1 in a simple mixed response model, but we

need guess values of α0 and α2 since η=α0 +sign(α2)d2 has two unknown parameters.

We previously used η=c without any unknown parameters in a simple model.

Proposition 6.5.1. For a quadratic mixed responses model, we verify the D-optimality

of an obtained design ξ if it holds that

d(d, ξ)=
eη

(1 + eη)2
f1(d)ᵀC∗−1

1 (ξ∗)f1(d)ᵀ +
eη

(1 + eη)
f2(d)ᵀC∗−1

2 (ξ∗)f2(d)ᵀ +
1

(1 + eη)
f2(d)ᵀC∗−1

3 (ξ∗)f2(d)ᵀ

is equal to or less than 7 based on the general equivalence theorem, where f1(d)=

[1 d d2]ᵀ, f2(d)=[1 d]ᵀ and η=α0 + sign(α2)d2 for all d in [A,B]. For a D-optimal

design ξ∗={(d∗i , w∗i ), i=1, ..., 6, wi≥0}, we have d(d∗, ξ∗)=7.

Now we start to find D-optimal designs for a quadratic mixed model by imple-

menting an algorithm. Firstly, we check if the guessed values of α0 and α2 affect
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Table 6.5: D-optimal Designs for d by Values of α0 and α2

α2 α0 Design space fval Design # of pts

1 1 [−1, 1] 12.94 -1 0 1 3
0.386 0.228 0.386

[−10, 10] 10.34 -10 -1.180 0 1.180 10 5
0.082 0.290 0.257 0.290 0.082

-1 -1 [−1, 1] 12.94 -1 0 1 3
0.386 0.228 0.386

[−10, 10] 10.34 -10 -1.180 0 1.180 10 5
0.082 0.290 0.257 0.290 0.082

1 -1 [−1, 1] 9.68 -1 0 1 3
0.401 0.197 0.401

[−10, 10] 5.01 -10 -1.499 -0.578 0.578 1.499 10 6
0.085 0.268 0.147 0.147 0.268 0.085

-1 1 [−1, 1] 9.68 -1 0 1 3
0.401 0.197 0.401

[−10, 10] 5.01 -10 -1.499 -0.578 0.578 1.499 10 6
0.085 0.268 0.147 0.147 0.268 0.085

Figure 6.1: D-optimality Verification for Designs in Table 6.5

(a) α2α0>0, [−1, 1] (b) α2α0>0, [−10, 10]

(c) α2α0<0, [−1, 1] (d) α2α0<0, [−10, 10]
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optimization. In this study, although we are searching for D-optimal designs, we have

an unknown parameter problem because the matrix C itself contains an unknown pa-

rameter in (6.2) regardless of the choice of a criterion where the situation is different

from the case for a simple mixed response model.

In Table 6.5, we find that the results of (α0, α2)=(1, 1) and (−1, 1) are the same

and the results of (α0, α2)=(1,−1) and (−1, 1) are the same. Hence, it is enough to

consider only two conditions α0α2>0 and α0α2<0. It can be explained as follows.

For example, when α0α2≥0, we set two types of η such as |α0|+d2 and −(|α0|+d2)

from ηi=α0 + sign(α2)d2
i . We then see that |α0|+d2 and −(|α0|+d2) share the same

objective function that produces the same results. Let us denote two predictors as

η1, and η2. Denoting an objective function that we consider as Φ0
D, we have Φ0

D(η1)=

− log
∑
wiD1λ1(η1)−log

∑
wiD2λ2(η1)−log

∑
wiD2λ3(η1)=− log

∑
wiD1λ1(−η1)−

log
∑
wiD2λ3(−η1)−log

∑
wiD2λ2(−η1)=− log

∑
wiD1λ1(η2)− log

∑
wiD2λ3(η2)−

log
∑
wiD2λ2(η2)=Φ0

D(η2) using the fact that η1 =−η2, λ1(−η1)=λ1(η1), and λ2(−η1)=

λ3(η1). Based on this result, for convenience, we continuously assume α0 is positive

and consider two cases including α2>0 and α2<0.

In addition, for α2, we only care about the sign since sign(α2) is a sole term for

α2. We use a vertex form of α0 + α2(xi − α1)2, α0 is an intercept in a predictor and

α2 is the coefficient of a quadratic term. We understand that the curve opens upward

if α2>0 and downward if α2<0.

Based on the above settings, we find D-optimal designs under the two cases of α2;

α2>0 and α2<0. In Table 6.6, when α2 is positive, D-optimal designs have three or

five points. On the other hand, when we have a negative value of α2, we have 3-, 4-,

or 6-point D-optimal designs as shown in Table 6.7.

For the former case, when the design space is narrower than [−1.4, 1.4], two bound-

ary points and one zero point form an optimal design while when the design space is
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Table 6.6: D-optimal Designs for d When α0 =1 and α2>0

α2 α0 Design space fval Design # of pts d1

positive 1 -0.1 0.1 33.68 -0.1 0.000 0.1 3 -0.1
0.400 0.200 0.400

-0.5 0.5 18.05 -0.5 0.000 0.5 3 -0.5
0.398 0.205 0.397

-1 1 12.94 -1 0.000 1 3 -1
0.386 0.228 0.386

-1.2 1.2 12.36 -1.2 0.000 -1.2 3 -1.2
0.376 0.247 0.376

-1.4 1.4 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-1.6 1.6 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-1.8 1.8 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-2 2 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-2.2 2.2 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-2.4 2.4 12.29 -1.302 0.000 1.302 3 -1.302
0.371 0.259 0.371

-2.6 2.6 12.29 -2.6 -1.295 0.000 1.295 2.6 5 -2.6
0.005 0.366 0.259 0.366 0.005

-2.8 2.8 12.27 -2.8 -1.274 0.000 1.274 2.8 5 -2.8
0.020 0.352 0.258 0.352 0.020

-3 3 12.24 -3 -1.258 0.000 1.258 3 5 -3
0.030 0.341 0.258 0.341 0.030

-3.2 3.2 12.19 -3.2 -1.246 0.000 1.246 3.2 5 -3.2
0.039 0.332 0.258 0.332 0.039

-3.4 3.4 12.13 -3.4 -1.236 0.000 1.236 3.4 5 -3.4
0.046 0.326 0.258 0.326 0.046

-3.6 3.6 12.06 -3.6 -1.228 0.000 1.228 3.6 5 -3.6
0.051 0.321 0.257 0.321 0.051

-3.8 3.8 12.00 -3.8 -1.221 0.000 1.221 3.8 5 -3.8
0.055 0.316 0.257 0.316 0.055

-4 4 11.93 -4 -1.216 0.000 1.216 4 5 -4
0.059 0.313 0.257 0.313 0.059

-4.2 4.2 11.86 -4.2 -1.211 0.000 1.211 4.2 5 -4.2
0.062 0.310 0.257 0.310 0.062

-4.4 4.4 11.79 -4.4 -1.208 0.000 1.208 4.4 5 -4.4
0.064 0.307 0.257 0.307 0.064

-4.6 4.6 11.72 -4.6 -1.204 0.000 1.204 4.6 5 -4.6
0.066 0.305 0.257 0.305 0.066

-4.8 4.8 11.66 -4.8 -1.202 0.000 1.202 4.8 5 -4.8
0.068 0.304 0.257 0.304 0.068

-5 5 11.59 -5 -1.199 0.000 1.199 5 5 -5
0.069 0.302 0.257 0.302 0.069

-10 10 10.34 -10 -1.180 0.000 1.180 10 5 -10
0.082 0.290 0.257 0.290 0.082

-12 12 9.99 -12 -1.178 0.000 1.178 12 5 -12
0.083 0.289 0.257 0.289 0.083
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Table 6.7: D-optimal Designs for d When α0 =1 and α2<0

α2 α0 Design space fval Design # of pts d1

negative 1 -0.1 0.1 33.64 -0.1 0.000 0.1 3 -0.1
0.400 0.200 0.400

-0.5 0.5 17.17 -0.5 0.000 0.5 3 -0.5
0.402 0.197 0.402

-1 1 9.68 -1.0 0.000 1.0 3 -1
0.401 0.197 0.401

-1.2 1.2 8.00 -1.2 0.000 1.2 3 -1.2
0.398 0.204 0.398

-1.4 1.4 7.04 -1.4 0.000 1.40 3 -1.4
0.392 0.216 0.392

-1.6 1.6 6.75 -1.600 -0.656 0.656 1.600 4 -1.6
0.348 0.152 0.152 0.348

-1.8 1.8 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-2 2 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-2.2 2.2 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-2.4 2.4 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-2.6 2.6 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-2.8 2.8 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

-3 3 6.74 -3 -1.618 -0.701 0.701 1.618 3 6 -3
0.008 0.332 0.160 0.160 0.332 0.008

-3.2 3.2 6.72 -3.2 -1.597 -0.680 0.680 1.597 3.2 6 -3.2
0.023 0.320 0.158 0.158 0.320 0.023

-3.4 3.4 6.69 -3.4 -1.581 -0.663 0.663 1.581 3.4 6 -3.4
0.033 0.311 0.156 0.156 0.311 0.033

-3.6 3.6 6.64 -3.6 -1.569 -0.650 0.650 1.569 3.6 6 -3.6
0.042 0.304 0.154 0.154 0.304 0.042

-3.8 3.8 6.59 -3.8 -1.559 -0.640 0.640 1.559 3.8 6 -3.8
0.048 0.299 0.153 0.153 0.299 0.048

-4 4 6.53 -4 -1.550 -0.631 0.631 1.550 4 6 -4
0.053 0.295 0.152 0.152 0.295 0.053

-4.2 4.2 6.47 -4.2 -1.544 -0.625 0.625 1.544 4.2 6 -4.2
0.058 0.291 0.151 0.151 0.291 0.058

-4.4 4.4 6.41 -4.4 -1.538 -0.619 0.619 1.538 4.4 6 -4.4
0.061 0.288 0.151 0.151 0.288 0.061

-4.6 4.6 6.35 -4.6 -1.534 -0.614 0.614 1.534 4.6 6 -4.6
0.064 0.286 0.150 0.150 0.286 0.064

-4.8 4.8 6.29 -4.8 -1.530 -0.610 0.610 1.530 4.8 6 -4.8
0.067 0.284 0.150 0.150 0.284 0.067

-5 5 6.22 -5 -1.526 -0.607 0.607 1.526 5 6 -5
0.069 0.282 0.150 0.150 0.282 0.069

-10 10 5.01 -10 -1.499 -0.578 0.578 1.499 10 6 -10
0.085 0.268 0.147 0.147 0.268 0.085

-12 12 4.66 -12 -1.497 -0.576 0.576 1.497 12 6 -12
0.087 0.267 0.147 0.147 0.267 0.087
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Figure 6.2: D-optimality Verification in Tables 6.6 and 6.7

(a) α2>0, α0 =1 (b) α2<0, α0 =1

between [−1.6, 1.6] and [−2.4, 2.4], three points including -1.302, 0, and 1.302 form a

design. When we have 5-point designs, the weights of the two outer points are small

compared to the inner three points.

For the latter case, when the space is narrower than [−1.4, 1.4], we have 3-point

designs as (−D, 0, D) in [−D,D] with the weight ratio close to 2:1:2. From [−1.8, 1.8]

to [−2.8, 2.8], we have 4-point designs with fixed points of (−1.63,−0.71, 0.71, 1.63)

where the weight ratio is close to 2:1:1:2. When the design space is wider than [−3, 3],

there are 6-point designs.

Wu and Stufken (2014) found 3-point D-optimal designs with (−1.3089, 0, 1.3089)

with 1/3 equal weights when θ0θ2>0 (in our case α0α2>0) in a quadratic logistic

model. When θ0θ2<0, they found a subclass of designs with at most four points that

are at least as good as any other designs for their model.

Verification is successful as shown in Figure 6.2. In summary, the sign of α2 and

the size of the design space are influential in finding optimal designs .

Next, we examine the effect of α0 values in Table 6.8. We set three design spaces

[−1, 1], [−2, 2], [−5, 5] where we obtained different numbers of design points as shown

in the previous Table 6.6 and 6.7. We set α0 to 0.5, 1, 2.5, 5, and 10.
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Table 6.8: D-optimal Designs for d by α0 Values

α2 Design space α0 fval Design # of pts d1

positive -1 1 0.5 11.41 -1 0 1 3 -1
0.389 0.221 0.389

1 12.94 -1 0 1 3 -1
0.386 0.228 0.386

2.5 19.11 -1 0 1 3 -1
0.380 0.240 0.380

5 31.22 -1 0 1 3 -1
0.378 0.244 0.378

10 56.18 -1 0 1 3 -1
0.378 0.245 0.378

-2 2 0.5 10.51 -1.346 0 1.346 3 -1.346
0.373 0.254 0.373

1 12.29 -1.302 0 1.302 3 -1.302
0.371 0.259 0.371

2.5 18.73 -1.238 0 1.238 3 -1.238
0.367 0.267 0.367

5 30.91 -1.218 0 1.218 3 -1.218
0.365 0.269 0.365

10 55.88 -1.216 0 1.216 3 -1.216
0.365 0.270 0.365

-5 5 0.5 9.84 -5 -1.2447 0.000 1.2447 5 5 -5
0.070 0.3044 0.252 0.3044 0.0695

1 11.59 -5 -1.1992 0.000 1.1992 5 5 -5
0.069 0.3021 0.257 0.3021 0.0692

2.5 18.00 -5 -1.1321 0.000 1.1321 5 5 -5
0.069 0.2986 0.265 0.2986 0.0688

5 30.16 -5 -1.1112 0.000 1.1112 5 5 -5
0.069 0.2975 0.268 0.2975 0.0687

10 55.13 -5 -1.1093 0.000 1.1093 5 5 -5
0.069 0.2974 0.268 0.2974 0.0687

negative -1 1 0.5 9.70 -1 0.000 1 3 -1
0.398 0.205 0.3976

1 9.68 -1 0.000 1 3 -1
0.401 0.197 0.4013

2.5 12.87 -1 0.000 1 3 -1
0.408 0.184 0.4079

5 23.79 -1 0.000 1 3 -1
0.410 0.179 0.4103

10 48.63 -1 0.000 1 3 -1
0.411 0.179 0.4105

-2 2 0.5 7.76 -1.505 -0.427 0.427 1.505 4 -1.505
0.361 0.139 0.139 0.361

1 6.75 -1.630 -0.712 0.712 1.630 4 -1.630
0.338 0.162 0.162 0.338

2.5 4.65 -2 -1.298 1.298 1.808 4 -2
0.298 0.202 0.202 0.2977

5 6.47 -2 -1.473 1.473 2 4 -2
0.388 0.112 0.112 0.388

10 28.99 -2 -1.516 1.516 2 4 -2
0.398 0.102 0.102 0.398

-5 5 0.5 7.17 -5 -1.391 -0.226 0.226 1.391 5 6 -5
0.070 0.306 0.125 0.125 0.306 0.070

1 6.22 -5 -1.526 -0.606 0.606 1.526 5 6 -5
0.069 0.282 0.150 0.150 0.282 0.069

2.5 4.34 -5 -1.926 -1.235 1.235 1.926 5 6 -5
0.062 0.246 0.192 0.192 0.246 0.062

5 2.62 -5 -2.494 -1.968 1.968 2.494 5 6 -5
0.041 0.241 0.218 0.218 0.241 0.041

10 0.67 -3.363 -2.979 2.979 3.363 4 -3.363
0.264 0.237 0.237 0.264
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Figure 6.3: D-optimality Verification When α0 =(0.5, 1, 2.5, 5, 10) in Table 6.8

(a) [−1, 1], α2>0 (b) [−2, 2], α2>0 (c) [−5, 5], α2>0

(d) [−1, 1], α2<0 (e) [−2, 2], α2<0 (f) [−5, 5], α2<0

* light blue: α0 =0.5, dark blue: α0 =10

Table 6.9: D-optimal Designs for d When α0 =10 and α2<0

α2 α0 Design space fval Design # of pts d1

negative 10 -3 3 3.92 -3 -2.672 2.672 3 4 -3
0.377 0.123 0.123 0.377

-4 4 0.67 -3.363 -2.979 2.979 3.363 4 -3.363
0.264 0.473 0.473 0.264

-5 5 0.67 -3.363 -2.979 2.979 3.363 4 -3.363
0.264 0.473 0.473 0.264

-6 6 0.64 -6 -3.350 -2.968 2.968 3.350 6 6 -6
0.026 0.241 0.233 0.233 0.241 0.026

-7 7 0.51 -7 -3.337 -2.956 2.956 3.337 7 6 -7
0.050 0.221 0.229 0.229 0.221 0.0504

-8 8 0.35 -8 -3.330 -2.949 2.949 3.330 8 6 -8
0.064 0.210 0.227 0.227 0.210 0.0635

-9 9 0.19 -9 -3.325 -2.944 2.944 3.325 9 6 -9
0.072 0.203 0.226 0.226 0.203 0.0716

-10 10 0.03 -10 -3.322 -2.941 2.941 3.322 10 6 -10
0.077 0.198 0.225 0.225 0.198 0.077
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In general, the change of α0 does not affect the number of support points in the

same design space except for [−5, 5] when α2<0. When α2>0, regardless of α0 values,

we have 3-, 3-, and 5-point designs respectively in three design spaces as can be seen

in Table 6.8. On the other hand, when α2<0, the number of design points are 3, 4,

and 6 in [−1, 1], [−2, 2], [−5, 5] respectively except for one case in [−5, 5].

To see if the case of [−5, 5] when α0 =10 is exceptional since we obtain a 4-point

design, we create Table 6.9. As shown in the table, the change of the number of

support points from four to six is gradual and the pattern is similar to the case of

Table 6.7. The case is not exceptional.

The graphs in Figure 6.3 summarize the results in Table 6.8. We draw six plots

when α2>0 and <0 with three different design spaces. In each plot, five curves are

created depending on the values of α0 including 0.1, 0.5, 1, 1.5, and 2. The straight

line indicates a constant function of seven, the number of parameters. The light

color indicates a small value of α0. In general, we see that the change of α0 does

not significantly break the general pattern in terms of the number of design points

and the location of optimal points. When α2<0, the patterns are more deviated

especially in [−2, 2] and [−5, 5]. When α2<0, a predictor is η= |α0| − d2 while, when

α2>0, a predictor is η= |α0|+d2 as the sum of two positive numbers. In the objective

function, we have many exp(η) with guessed values. We conjecture that η= |α0| − d2

causes a more complex optimization procedure than that of η= |α0|+ d2.

6.6 Discussion

In this study, we investigated D-optimal designs for a quadratic mixed response

experiment. We introduced a quadratic term in a logistic regression model for mixed

response experiments. Since the information matrix was more complex than in the

previous study, we used a different method to apply the complete class approach and
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a nonlinear optimization algorithm.

We first proved that a symmetric design was at least as good as that of any

other design under the D-optimality criterion when the design region was symmetric

about zero. Considering these designs, we effectively moved to the complete class

approach. We identified a complete class with at most 6-point designs including the

two boundary points. To identify a complete class, we found Chebyshev systems for

a nonnegative subdesign and a nonpositive subdesigns, respectively. We proved that

two results of the search for Chebyshev systems guaranteed the Loewner ordering of

the information matrices between a ‘good’ design and any other design. Then, we

formed a complete class.

Within a complete class, we searched D-optimal designs using an algorithm we

previously used. The mathematical standard form for optimization was rewritten.

Obtained designs were verified as D-optimal by the general equivalence theorem.

Since there existed an unknown parameter problem, we used guessed values of α0

and α2. When α2>0, D-optimal designs were 3- or 5-point designs with zero points.

When α2<0, there were 3-, 4-, or 6-point designs depending on design spaces. The

sign of α2 mattered since the number of the obtained optimal designs was affected by

the sign of α2. The value of α0 did not severely affect the results of optimization.

We may consider the case where the design space is not symmetric. An A-optimal

study with this model can be an of interest to further studies. Also, another extended

model such as the model where a linear model also has a quadratic term can be work

for the future.
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Chapter 7

CONCLUDING REMARKS

So far we have studied optimal designs for experiments where responses are mixed

categorical and continuous responses. Specifically the study involved responses which

consist of both binary and continuous variables. Although several statistical methods

have been proposed for modeling these types of responses, a little attention has been

paid to the design of such experiments. To fill the gap, we studied optimal designs

for such experiments. Above all, we have chosen to specifically study optimal design

of experiments since it connotes a clear objective of achieving the most reliable ex-

perimentation. We aimed to find the best design that attains minimization of the

variance-covariance of parameter estimates.

We established a mixed response model using one simple logistic regression model

and two conditional simple linear models. We derived the information matrix of

parameters and then employed it to obtain optimal designs. Especially, we used

the complete class approach to reduce the number of candidate designs and then

implement a constrained nonlinear algorithm. The optimality of the obtained design

was verified by the general equivalence theorem.

In Chapter 3, we found that at most four points were enough to construct ‘good’

designs that were no worse than any other designs by using the complete class ap-

proach. The four points include two endpoints of a design space. To apply the

complete class approach to a mixed response model, we suggested Lemma 2.2.1 in

Chapter 2 and were then able to identify the complete class. Within the class, we

efficiently searched D- and A-optimal designs in Chapters 4 and 5, respectively. In

the case of the D-optimal designs, the optimal designs were symmetric and the cor-
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responding weights were the same for symmetric points in symmetric design spaces.

In the case of the A-optimal designs, almost all of the two inner points of 4-point

designs were not symmetric and the corresponding weights were not the same even

in symmetric spaces.

The focus of the search for A-optimal designs was on the effect of σ2 on the

obtained designs. When we searched, we put guessed values of α0, α1 and σ2 into

the A-optimality criterion. As σ2 increased, the weights of the two inner points

moved to the two outer points. The two asymmetric inner points changed to being

symmetric. The results suggested that we could manage the effect of variance in

continuous responses for experiments by using A-optimal designs. This control was

not available under the D-optimality criterion.

The numerical results in two chapters showed that D- or A-optimal designs had 2,

3, or 4 points. The result of the number of support points was validated by Theorem

3.3.1 in Chapter 3 regarding the positive definiteness of the information matrix. While

we had six parameters of interest, two points were enough to make all parameters

estimable. By combining it with the complete class result, we knew that the range of

the number of support points was between two and four.

After finishing the first study with a first-order model, we considered a model

with a quadratic polynomial predictor. When a curvature trend was detected, the

second-order polynomial model was recommended by many authors. We added a

quadratic term to a logistic regression model. We first found Chebyshev systems for

two subdesigns and then formed a complete class by combining them. We also used

the property of D-invariance with a symmetric design. Obtained were 3-, 4-, 5-, or

6-point designs by the condition of guessed values of unknown parameters.

The complete class approach gave a huge reduction of candidate designs. We

extended an original complete class approach in Yang and Stufken (2012) to the
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bivariate response model. We used mathematical programming after deciding the

number of support points. Computing time was trivial and the obtained designs

were optimal. It was helpful to use the graphical interpretation based on the general

equivalence theorem.

It has been about fifty years since prevailing models for non-normal data were

unified with the name generalized linear model (GLM). For a short time, GLMs

became popular and were used in many fields of natural science and social science.

Khuri, Mukherjee, Sinha, and Ghosh (2006) mentioned the lack of studies of optimal

designs for GLMs. Since then, a few suggestions for those types of models have

emerged based on the complete class approach.

Yang and Stufken (2009) found an optimal design for a GLM with two parameters.

Yang and Stufken (2012) generalized the complete class approach that enabled us

to consider using a complete class approach for other nonlinear models including a

mixed response model. Wu and Stufken (2014) searched for optimal designs for the

GLM with a quadratic polynomial predictor. We found optimal designs for a mixed

response model combining a logistic regression model and linear models.

The results of this study can serve at least as a benchmark since there are few al-

ternatives. In conclusion, we expect that, by using optimal designs that we found, an

experimenter can collect the most informative data from experiments where responses

are bivariate variables that contain a binary variable and a continuous variable. Sev-

eral studies are expected to be future work as discussed in each chapter.
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