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ABSTRACT 

 

Time-to-event analysis or equivalently, survival analysis deals with two variables 

simultaneously: when (time information) an event occurs and whether an event 

occurrence is observed or not during the observation period (censoring information).  In 

behavioral and social sciences, the event of interest usually does not lead to a terminal 

state such as death.  Other outcomes after the event can be collected and thus, the survival 

variable can be considered as a predictor as well as an outcome in a study.  One example 

of a case where the survival variable serves as a predictor as well as an outcome is a 

survival-mediator model.  In a single survival-mediator model an independent variable, X 

predicts a survival variable, M which in turn, predicts a continuous outcome, Y.  The 

survival-mediator model consists of two regression equations: X predicting M (M-

regression), and M and X simultaneously predicting Y (Y-regression).  To estimate the 

regression coefficients of the survival-mediator model, Cox regression is used for the M-

regression.  Ordinary least squares regression is used for the Y-regression using complete 

case analysis assuming censored data in M are missing completely at random so that the 

Y-regression is unbiased.  In this dissertation research, different measures for the indirect 

effect were proposed and a simulation study was conducted to compare performance of 

different indirect effect test methods.  Bias-corrected bootstrapping produced high Type I 

error rates as well as low parameter coverage rates in some conditions.  In contrast, the 

Sobel test produced low Type I error rates as well as high parameter coverage rates in 

some conditions.  The bootstrap of the natural indirect effect produced low Type I error 

and low statistical power when the censoring proportion was non-zero.  Percentile 
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bootstrapping, distribution of the product and the joint-significance test showed best 

performance.  Statistical analysis of the survival-mediator model is discussed.  Two 

indirect effect measures, the ab-product and the natural indirect effect are compared and 

discussed.  Limitations and future directions of the simulation study are discussed.  Last, 

interpretation of the survival-mediator model for a made-up empirical data set is provided 

to clarify the meaning of the quantities in the survival-mediator model.   
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INTRODUCTION 

Survival analysis is a statistical method that focuses on the timing of an event.  

Survival analysis was first developed in biomedical and engineering research and 

traditionally focused on events such as death or failure of a system or a machine.  

Naturally, the timing variable is a dependent variable and researchers have developed 

models to predict the event timing with a set of variables.  The most widely used survival 

model is the Cox proportional hazards model (Cox, 1972) where the log of the hazard 

rate is modeled as a linear combination of a set of predictors.  More recently, the 

application of survival models has broadened to social science (e.g., economics, 

sociology and psychology) research where the event of interest is not necessary a 

terminal state, such as, reemployment (Kiefer, 1998; Lancaster & Nickell, 1979; 

Lancaster, 1980), recidivism (Sherman & Berk, 1984) and gazing behavior in couples 

(Gardner & Griffin, 1989; Gardner, 1993).  However, in spite of the various types of 

events, survival analyses are still associated with research where the timing variable is an 

outcome.  This paper investigates a situation where the timing variable can both be a 

predictor as well as an outcome in a mediation model.   

Mediation analysis is a crucial research methodology in psychology and many 

other social science areas.  Mediation represents a hypothetical relationship where one 

variable (independent variable) affects a second variable (mediator variable) and in turn, 

affects a third variable (dependent variable).  Statistical methods for mediation analysis 

have been actively developed and widely used in substantive research throughout the last 

three decades.  Various combinations of a predictor-mediator-outcome single mediator 

model have been studied where the three variables in the model can be a combination of 
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categorical variables or continuous variables (Lacobucci, 2012; MacKinnon, 2008).  

Single mediator models including a survival outcome has also been studied including 

recent statistical developments on causal mediation analysis (Lange & Hansen, 2011; 

VanderWeele, 2011).  In other applications, the survival variable can be used as a 

mediator in the mediation model.  However, less investigation has been made on 

mediation models with a survival variable as the mediator.  This dissertation investigates 

different methods to evaluate mediated effects for a single survival mediator model, 

through a simulation study. 

The first chapter is a literature review chapter and consists of three sections, 1) 

survival analysis, 2) mediation analysis, and 3) survival mediation analysis.  The first 

section (survival analysis) focuses on the review of traditional survival analysis literature.  

The basic concepts in survival analysis are explained and different statistical models that 

include or do not include covariates for survival data are reviewed.  The Cox model is 

discussed in depth since not only is the Cox model the most widely used model in the 

survival analysis literature but it is also the model used in this study for the survival 

mediator model.  The second section (mediation analysis) gives a brief review of 

mediation analysis.  This section focuses on a single mediator model and explains 

different methods to test the mediated effect.  The third section (survival mediation 

analysis) discusses single mediator models with survival outcomes and with survival 

mediators.  The focus of this section is to discuss the survival mediator model and 

identify the challenges of estimating and testing the model parameters and the mediated 

effect.  In the second chapter, a simulation study to investigate the performance of 

different methods to test the mediated effect is introduced.  The third chapter presents the 
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results of the simulation study.  The last chapter discusses about the statistical model of 

the survival mediator model, the different measures of the indirect effect, the simulation 

study results and provide general guidelines for analysis of survival mediator models. 
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I. LITERATURE REVIEW 

1. Survival Analysis 

Survival analysis is a branch of statistical methods that deal with time-to-event 

variables (Allison, 2010).  Traditionally, survival analysis emerged from biomedical and 

engineering research.  The wording “survival” comes from biomedical research where the 

event of interest is the death of biological organisms (e.g., Cox, 1972; Klein & 

Moeschberger, 2003).  Survival analysis has been applied to other fields with different 

terms such as failure time analysis (or ‘reliability analysis’ to match with the more 

positive term ‘survival analysis’ rather than ‘death analysis’) in engineering, duration 

analysis in economics, and event history analysis in sociology research.  For example, 

engineers are interested in when a machine (also could be a product or controller) starts 

to malfunction in order to predict and prevent any accidents and minimize the risk of loss 

(e.g., Beason, & Morgan, 1984; Kalbfleisch & Prentice, 2002; Zhai & Lin, 2004).  One of 

the problems that economists are interested in is the duration of unemployment; such that 

duration analysis was used to identify explanatory variables related to unemployment 

interval (e.g., Kiefer, 1998; Lancaster & Nickell, 1979; Lancaster, 1980).   

The history of survival analysis in psychology has been relatively shorter (it 

began in the early 1970s) than other fields but it is rapidly growing and recently 

innovative methods have been proposed.  Singer and Willett (1991, 1993, 2003) provide 

a good overview of survival analysis in psychology with various examples.  Some of the 

examples in psychology are related to investigating the effectiveness of a smoking 

relapse prevention program (Stevens, & Hollis, 1989), studying the relapse time of 

affective disorders (Lavori, Keller, & Klerman, 1984), examining the age at first onset of 
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an affective illness (Rice et al., 1987), modeling the instantaneous rate of absence at work 

(Finchman, 1989), and studying factors that influence the age at first placement of non-

parental child care (Singer, Fuller, Keiley & Wolf, 1998).  Another rapidly growing area 

of application of survival models in psychology is with observational data.  Early studies 

of parallel streams of observational data by Gardner and Griffin had used continuous-

time sequential analysis to study gazing behavior between married couples (Gardner & 

Griffin, 1989).  In another study, a survival regression model was used to study the 

interaction between mother and child (Griffin & Gardner, 1989).  More recent 

applications use observed parent-child interaction data to model the duration time in a 

particular behavioral or emotional state (Dagne & Snyder, 2011; Stoolmiller & Snyder, 

2006; Stoolmiller & Snyder, 2013).  

Although there are many applications and related methods across different 

literatures, a common fact in survival analysis is interest in a well-defined discrete event.  

That is, the event may occur or not at a certain time point.  The event can be death, failure 

of a system, unemployment, or observation of a specific behavior.  If we were just 

interested in the occurrence of these events, we can quantify these events into “0” (non-

occurrence) or “1” (occurrence) and use statistical methods to analyze binary data such as 

logistic regression (Hosmer, Lemeshow, & Sturdivant, 2013).  However, the event 

occurrence itself is not the only thing that is considered in survival analysis.  Survival 

analysis also focuses on the timing of an event.  For example, the time until the moment 

of death or failure of a system can be studied.  In other studies, the duration of an 

unemployment spell or the time interval of showing a particular behavior can be studied.  
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As suggested above, there are two variables that are of interest in survival analysis: event 

occurrence and timing.  The next two sections explain the two variables.  

 

A. Event Occurrence and Censoring 

In survival analysis, an event of interest should be a discrete event that is clearly 

defined by the researcher.  For example, if the event of interest is death, the organism 

must be dead or alive.  There cannot be a state such as “mostly dead” or “barely alive”.  

One of the two main variables in survival analysis is an event occurrence indicator.  An 

interesting feature of the event occurrence indicator in survival analysis is that an event 

can either have occurred or not observed.  That is, rather than establishing that an event 

has occurred or not, the event is coded as occurred if the event clearly has happened 

during the observation period and coded as “censored” if the event has not been observed 

during the observation period.   

There are two ways of categorizing censoring types.  First, the censoring type can 

be categorized by considering whether the investigator can control or cannot control the 

determinant of censoring, and what is controlled by the investigator (Allison, 2010).  

Accordingly, there are three types of censoring: Type I, Type II and random censoring.  

Type I censoring is caused by the investigator’s pre-specified research period.  Every 

study has a finite timeframe and usually the investigator determines when the study ends.  

The end time naturally draws a line for censoring.  If the event of interest did not occur 

before the end of the research period, the data are censored.  Type II censoring is another 

situation where the investigator plays a role in determining the criterion for censoring.  

Type II censoring occurs when the investigator controls the total number of events rather 
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than controlling the research period.  For example, if there were 100 patients and the 

investigator ended the research when 10% of the patients (i.e., 10 patients) died, the rest 

of the patient’s data will be censored.  Last, random censoring occurs when the 

investigator cannot control the censoring factor.  For example, participants can suddenly 

drop out of the study because of personal reasons and thus, their data will be censored.  In 

other cases, random censoring occurs because of other competing events than the event of 

interest.  For example, say that we are interested in death caused by lung cancer.  If a 

participant died because of an illness (e.g., ebola virus) other than lung cancer, the 

survival time should be treated as censored in this study.  Allison (2010) describes that 

while statistical methods (i.e., maximum likelihood and partial likelihood) can handle the 

Type I and Type II censoring to produce unbiased survival estimates, they cannot handle 

random censoring.  Random censoring can cause severe biases.  It is difficult to know the 

magnitude or direction of the bias will be.  Therefore, the best solution to minimize the 

bias is to reduce random censoring as much as possible with careful study design and by 

including all the covariates that can possibly account for censoring to lessen the bias.     

Another way to categorize censoring types is when the censoring occurs.  There 

are three types of censoring that are considered in the conventional survival analysis 

context (Klein & Moeschberger, 2003).  Left censoring occurs when the event of interest 

has already happened before the research has started.  For example, in unemployment 

spell studies (Kiefer, 1998; Lancaster & Nickell, 1979; Lancaster, 1980), the event of 

interest is observing the end of unemployment (i.e., reemployment).  To be reemployed, 

one must be unemployed.  There might be a person who already has been reemployed 

before the study.  This person’s reemployment data is censored since it occurred before 
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the study.  Left censoring is conceptually different from truncation where for truncation 

we do not have data on subjects because the research is restricted to a fixed observational 

time window.  In contrast to censoring, data truncation is deliberate and caused by study 

design.  For example, in the reemployment study, the researchers might only want to 

consider participant’s data that are during an economic depression period.  Before the 

depression, people’s employment status is not considered and thus the data is left 

truncated for these people.   

Right censoring occurs when the event happens after a certain time point but we 

do not observe the event.  Usually, right censoring occurs because of the end of the study 

and therefore the event is not observed during the study.  In the unemployment example, 

this can be the people that remained unemployed during the study but they might have 

been reemployed sometime after the study.  Right censoring is the most usual and most 

frequent type of censoring encountered in research.  Another type of censoring is interval 

censoring which concerns censoring during a study.  Sometimes the occurrence of an 

event may not be observed since the study participant has been lost from the study for a 

period.  In the unemployment example, some people may refuse to answer whether they 

were reemployed or not for a particular period.  In this case, we do not know whether 

they have or have not been reemployed and perhaps unemployed again for that particular 

period.   

More recently, another type of censoring has been proposed named competing 

risk censoring (Stoolmiller, 2014).  In some studies, there can be competing events that 

are present at the same time.  Say that if someone wins the lottery, he/she will not be 

looking for a job again and thus winning the lottery can be a competing event to 
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reemployment.  In this case, winning the lottery suppresses the occurrence of 

reemployment and thus the reemployment event is censored.  Figure I-1 depicts the four 

different types of censoring available.  The filled dot represents an observed event and 

the hollow dot represents a censored event.       

The importance of recognizing a censored event instead of ignoring it allows the 

censoring information to be used to correct the bias of the estimates in a survival model.  

If we say that the event did not occur and ignore it, the probability of the event occurring 

is zero.  However, if we say that the event is censored which means that the event did not 

happen until a certain point (usually the end of observation), the probability of the event 

occurring is not zero but in fact the probability would (usually) get higher as time goes 

by.  More statistical details about the consideration of censored data in survival model 

estimations will be presented later in this chapter.     

 

B. Timing, Survival Function, Hazard Rate and Mean Residual Life 

The other important variable in survival analysis is the timing variable.  The 

“timing” here indicates the time to the occurrence of the event (time-to-event).  The time-

to-event can indicate different timings based on the research question.  The most common 

example would be the time to death.  Since the state before death is being alive or 

surviving, here the time-to-event is literally the survival time.  In the unemployment spell 

studies, the event of interest is the end of unemployment or reemployment.  Therefore, 

the time-to-event captures the duration of unemployment.  In recidivism studies the event 

of interest is a person’s relapse into criminal behavior and the time-to-event is the interval 
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between the unlawful behaviors.  In observational studies of parent-child interaction, the 

time-to-event can be the duration in a particular dyadic state.   

The timing variable can either be a discrete or a continuous measure (Masyn, 

2014).  Discrete timing variables can be either 1) chunks of continuous time: 1-10 years, 

11-20 years, etc. or 2) naturally discrete time-points like measurement occasion (e.g., 

baseline, immediate follow-up, second follow-up, etc.) or grade (e.g., first grade, second 

grade, etc.).  Continuous timing variables measure the exact physical time in years, 

months, days, hours, minutes or seconds.  As the following section will show, different 

models can be used depending on the metric that is used for the timing variable.  That 

said, if the exact time information is available, it is preferable to use continuous time 

models rather than discrete time models (Allison, 2010).  Arbitrary discrete intervals may 

cause loss in information that could be acquired from a continuous variable and further 

lead to spurious conclusions.  In this paper, only continuous time models will be 

discussed.  

In survival analysis, the times at which an event happens is a stochastic process.  

That is, T is a random variable that has a nonnegative probability distribution.  Here, T 

denotes the timing of an event to occur.  There are four different functions to characterize 

the distribution of T (Klein & Moeschberger, 2003).  Namely, they are 1) the probability 

density (or probability mass) function, 2) survival function, 3) hazard rate (function), and 

4) the mean residual life function.  The four different functions for continuous time 

analyses are introduced below.  

To understand the survival function, we first take a look at the probability 

distribution of T.  Suppose that the event of interest was death.  Then T is the time-to-
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death or the survival time.  The random variable, T can have a cumulative distribution 

function (c.d.f.), F (t) which is defined as  

 𝐹 (𝑡) =  𝑃𝑟  (𝑇 ≤  𝑡) (I.1.1) 

As Equation I.1.1 shows, F (t) is the probability that the event will occur (i.e., death) at a 

time equal or less than t.  If T is a continuous variable, the probability distribution 

function (p.d.f.) of T, f (t) is defined as the derivative of F (t), 

 𝑓 (𝑡) = lim
∆𝑡→0

Pr(𝑡 ≤  𝑇 ≤  𝑡 + ∆𝑡)

∆𝑡
=  

𝑑𝐹 (𝑡)

𝑑𝑡
  (I.1.2) 

The c.d.f. is the integral of the p.d.f. over the range of 0 ≤ 𝑡 ≤  ∞.  That is,  

 𝐹 (𝑡) =  ∫ 𝑓 (𝑥)𝑑𝑥
𝑡

0

 (I.1.3) 

The survival function is the probability of a study unit (usually individual 

participants in psychological research) to have experienced the event of interest (e.g., 

death) beyond time t.  A formal statistical definition can be expressed as 

 𝑆 (𝑡) =  𝑃𝑟 (𝑇 >  𝑡) = 1 − 𝑃𝑟  (𝑇 ≤ 𝑡) (I.1.4) 

Equation I.1.4 implies that the survival function is the complement of the c.d.f. of T.  

That is,  

 𝑆 (𝑡) = 1 − 𝐹(𝑡) =  1 −  ∫ 𝑓 (𝑥) 𝑑𝑥
𝑡

0

=  ∫ 𝑓 (𝑥) 𝑑𝑥
∞

𝑡

 (I.1.5) 

Equation I.1.5 implies that the survival function is a nonnegative (greater or equal to 

zero), monotonically decreasing (non-increasing) function of t since the c.d.f.s or 

probabilities (by the definition) are bound to [0, 1].  Other than this restriction, the 

survival function can take any shape but there are some distribution shapes that are more 
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often used than others.  Some of the frequently used distributions are shown in the next 

section.   

Another basic function that is fundamental in survival analysis is the hazard rate 

or the hazard function.  Klein and Moeschberger (2003) list the different terms for hazard 

rate in different areas of study, “The hazard rate is also known as the conditional failure 

rate in failure-time analysis, the force of mortality in demography, the intensity function 

in stochastic processes, the age-specific failure rate in epidemiology, and the inverse of 

the Mills ratio1 in economics.” (p.27).   

The hazard rate is the event rate at time t conditional that the event did not happen 

until time t (Allison, 2010).  If T is continuous, the hazard rate, h (t) can be defined as  

 ℎ (𝑡) =  lim
∆𝑡→0

Pr(𝑡 ≤  𝑇 ≤ 𝑡 +  ∆𝑡 |𝑇 ≥ 𝑡)

∆𝑡
 (I.1.6) 

There are two things to note in Equation I.1.6.  First, the limit of ∆t approaching to zero 

implies that the hazard rate is an instantaneous rate of an event to occur at time t.  

Equation I.1.6 is very similar to the p.d.f. Equation 1.2.  The p.d.f. is the derivative 

(instantaneous change) of the probability of observing the event to occur at time t.  

However, the expression of conditional probability when 𝑇 ≥ 𝑡, differentiates Equation 

I.1.6 from Equation I.1.2.  The hazard rate is conditional that the event of interest has not 

occurred before time t.  The conditional probability makes sense since if the event has 

already occurred there would be no more risk of the event happening.  For example, if 

someone is already dead from lung cancer, we cannot talk about the risk of dying from 

                                                           
1 The Mills ratio is defined as the ratio of the complementary cumulative distribution function (1-F(x); also 

known as the survival function) to the probability density function (f(x)). The inverse of the Mills function 

is known to be the hazard function.  
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lung cancer for that person.  Note that even though the numerator of Equation I.1.6 is a 

probability, the hazard rate itself is not a probability.  It can have a value larger than 1.0.  

The only restriction of the hazard rate is that it is a nonnegative function and there is no 

upper bound, 0 ≤ ℎ (𝑡) ≤  ∞.    

The survival function, S (t), the p.d.f., f (t), and the hazard function h (t) are all 

closely related.  If we know one of them, the other two can also be calculated.  In the 

continuous T case, we can derive the following equation from Equation I.1.5, 

 𝐹 (𝑡) = 1 − 𝑆 (𝑡) (I.1.7) 

If we take the derivatives of both sides of Equation I.1.7,  

 𝑓 (𝑡) = −𝑠 (𝑡), where 𝑠 (𝑡) is the derivative of 𝑆 (𝑡) (I.1.8) 

Therefore, the negative derivative of the survival function equals the p.d.f. of T.  Also, by 

definition, an alternative expression of the hazard function is  

 ℎ (𝑡) =  
𝑓 (𝑡)

𝑆 (𝑡)
 (I.1.9) 

After some algebra (Allison, 2010; Klein & Moeschberger, 2003), it can be shown that  

 ℎ (𝑡) =  
− 𝑑 ln 𝑆 (𝑡)

𝑑𝑡
 (I.1.10) 

 
𝑆 (t) = 𝑒𝑥𝑝 (− ∫ ℎ (𝑥)𝑑𝑥

𝑡

0

) 
(I.1.11) 

 
𝑓 (𝑡) = ℎ (𝑡)𝑒𝑥𝑝 (− ∫ ℎ (𝑥)𝑑𝑥

𝑡

0

) 
(I.1.12) 

Klein and Moeschberger (2003) describe another function that characterizes the 

distribution of T.  The mean residual life function at time t is the expected remaining life 
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given that the individual survived until time t (Hall & Wellner, 1981).  A statistical 

definition of the mean residual life at time t, mrl (t) is given as 

 𝑚𝑟𝑙 (𝑡) =  𝐸 (𝑇 − 𝑡 | 𝑇 > 𝑡),   𝑡 > 0 (I.1.13) 

Given by the definition it follows that the mrl (t) of a continuous variable T is  

 𝑚𝑟𝑙 (𝑡) =  
∫ 𝑆 (𝑥) 𝑑𝑥

∞

𝑡

𝑆 (𝑡)
 (I.1.14) 

That is, the mrl (t) is the area under the survival curve after time t divided by S (t).  One 

of the useful derivations of the mrl (t) is that the mean life, 𝜇 = 𝑚𝑙𝑟 (0).  That is, the 

mean life is the integral (or summation) of the survival function over the whole range of 

T.  

Among the four different (but closely related) expressions of the distribution of T, 

the most useful (in terms of interpretation) and thus widely utilized expression is the 

hazard rate or function (Allison, 2010; Klein & Moeschberger, 2003).  The hazard 

function in particular provides the simplest expression in models with covariates.  

Therefore, the hazard function will be discussed more frequently throughout the rest of 

the paper, although the other functions will also be mentioned.  To understand more 

about the functions of the random variable T, some of the frequently used distributions 

for T and simple parametric models will be reviewed.   

 

C. Survival Models without Covariates 

This section will focus on models that specify the hazard or survival function 

without considering any covariates in the model.  Mainly, there are two types of models: 

parametric survival models and nonparametric survival models.  In the parametric 
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survival models, the functional form of a hazard rate or survival function is assumed.  

That is, the survival variables are assumed to have some particular distribution.  In 

contrast, nonparametric survival models do not have any distributional assumptions on 

the survival variables and instead, use the data to estimate the survival function.  We first 

take a look at the parametric survival models. 

C.1. Parametric Survival Models 

In survival analysis, many different distributions can be used to describe the 

distribution of T.  Survival models with specific underlying distributions are sometimes 

classified as parametric models (Allison, 1984).  Klein and Moeschberger (2003) show 

the hazard rate, survival function, p.d.f. and mean life function for 11 different commonly 

used distributions.  These include: the exponential, Weibull, gamma, log-normal, log-

logistic, normal, exponential power, Gompertz, inverse Gaussian, Pareto, and generalized 

gamma distribution.  Among these, the exponential, Gompertz, and Weibull distributions 

are more widely used and will be reviewed in depth.  The reason why these three 

distributions are widely used is that the functions are relatively easily to express in a 

mathematical form and provide a deeper understanding of the hazard, survival, and p.d.f. 

function (Klein & Moeschberger, 2003).   

C.1.a. Exponential Distribution 

We can start from thinking about the simplest hazard function.  That is, the hazard 

function being a constant, ℎ (𝑡) =  𝜆, where 𝜆 > 0.  From Equations I.1.11 and I.1.12, 

the survival function and p.d.f. become 

 𝑆 (𝑡) = exp(−𝜆𝑡)  (I.1.15) 
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 𝑓 (𝑡) = λexp(−𝜆𝑡) (I.1.16) 

Figure I-2 shows an example of the survival function of an exponential model.  Note that 

as lambda (𝜆) increases, the survival function decreases more quickly.  In other words, 

the higher the hazard function is, lower the survival function is at time t.    

Although the exponential model is often too strict to fit to data and unrealistic to 

apply to real data applications, it does have an interesting statistical property called the 

“lack of memory property”.  The lack of memory property is saying that T is independent 

from past history.  Because of this property, the mean residual life function can be 

derived to be the reciprocal of the hazard function which is a constant.  That is, 

𝑚𝑟𝑙 (𝑡) = 𝐸 (𝑇 − 𝑡 |𝑇 > 𝑡) = 𝐸 (𝑇) = 1/𝜆.  

C.1.b. Gompertz Distribution 

From the exponential model (where the hazard function is a constant), the next 

complexity is to consider a linear function of time to model the (natural) logarithm of the 

hazard function.  That is, log[ℎ (𝑡)] =  𝑏0 + 𝑏1𝑡.  If we take the exponential value at both 

sides of the equation, we get ℎ (𝑡) =  𝑒𝑏0𝑒𝑏1𝑡.  By Equations I.1.11 and I.1.12, the 

survival function and p.d.f. become 

 𝑆 (𝑡) = exp (
𝑒𝑏0

𝑏1
) exp( −

𝑒𝑏0

𝑏1
𝑒𝑏1𝑡)  (I.1.17) 

 
𝑓 (𝑡) = e𝑏0𝑒𝑏1𝑡 exp (

𝑒𝑏0

𝑏1
) exp( −

𝑒𝑏0

𝑏1
𝑒𝑏1𝑡) 

(I.1.18) 

The parameters in the Gompertz function p.d.f. are often denoted as 𝜃 (shape parameter) 

and 𝛼 (scale parameter), where 𝛼 =  𝑏1 and  𝜃 = 𝑒𝑏0.  The parameters are restricted to 

𝛼 > 0 and 𝜃 > 0.  Figure I-3 shows the effect of each of the parameters on the survival 
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function after fixing the other parameter to a specific value.  The upper panel shows the 

survival function as 𝑏0 = -2, 0 and 2 while 𝑏1 = 0.5 and the lower panel shows the 

survival function as 𝑏1 = 0.1, 0.5 and 1 while 𝑏0 = 0.  The shape of the curve changes as 

𝑏0 changes.  As 𝑏0 becomes more negative, the survival function becomes more like a 

linear line parallel to the horizontal axis.  The 𝑏1 parameter represents the rapidness of 

the declining survival function.  As 𝑏1 increases, the slope gets steeper and the survival 

function reaches the lower asymptote (in this case, 0) quicker.  Note that the exponential 

distribution is a special case of a Gompertz function when 𝑏1 = 0.  

C.1.c. Weibull Distribution 

Another widely used distribution is the Weibull distribution.  Again, we start with 

the logarithm of the hazard function modeled to be a linear (linear in the parameters) 

function of t.  In particular, log ℎ (𝑡) =  𝑏0 + 𝑏1 log 𝑡.  After imposing the exponential 

function on both sides of the equation it becomes ℎ (𝑡) = 𝑒𝑏0𝑒𝑏1 log 𝑡 =  𝑒𝑏0𝑒log 𝑡𝑏1
=

 𝑒𝑏0𝑡𝑏1.  The hazard function is still a non-negative function, but now the slope 

parameter, 𝑏1 can be a negative value.  If 𝑏1 is negative, the hazard function will show a 

decreasing curve and if 𝑏1 is positive, the hazard function will show an increasing curve.  

Figure I-4 shows how the 𝑏0 and 𝑏1 parameters affect the hazard function.  The upper 

panel shows how different values of 𝑏0 affect the hazard function while fixing 𝑏1 at 0.5.  

As 𝑏0 increases, the upper asymptote gets higher.  The lower panel shows how different 

values of 𝑏1 affect the hazard function while fixing 𝑏0 at 0.  When 𝑏1 = 0, the hazard 

function is a straight line parallel to the horizontal axis.  Thus, it reduces to the 

exponential distribution.  When 𝑏1 > 0, the hazard function has a positive relationship 
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with time.  However, when 𝑏1 < 0, the hazard function has a negative relationship (think 

of an inverse square root function) with time.  

One feature of the Weibull models that is distinguished from the Gompertz 

models is the intercept of the hazard function at t = 0.  The intercept is always zero for a 

Gompertz model (except the special exponential case).  However, the intercept can be 

zero or positive infinite depending on the sign of the 𝑏1 parameter for a Weibull model.  

If 𝑏1 is positive, the intercept is always zero, but when 𝑏1 is negative, the intercept 

approaches a positive infinite number.   

Another way to express the Weibull hazard function is to use the Weibull 

distribution parameters, 𝜆 (shape parameter) and 𝛼 (scale parameter).  Then, the hazard 

function, ℎ (𝑡) =  𝜆𝛼𝑡𝛼−1, where 𝜆 > 0 and 𝛼 > 0.  Also, from Equations I.1.11 and 

I.1.12, 

 𝑆 (𝑡) = exp(−𝜆𝑡𝛼)  (I.1.19) 

 𝑓 (𝑡) = αλ𝑡𝛼−1exp(−𝜆𝑡𝛼) (I.1.20) 

Figure I-5 depicts how the 𝜆 and 𝛼 affect the survival function at different values.  The 

lower asymptote gets lower as 𝜆 gets larger and the slope gets steeper (or in other words, 

the survival function reaches zero quicker) as 𝛼 increases. 

Hougaard (2000) and Mills (2011) both mention some advantages and 

disadvantages of the parametric survival models.  The advantage of the parametric 

survival models is that the hazard function and survival function can be estimated by a 

predetermined smooth curve function of t.  This is a major advantage over the 

nonparametric methods (e.g., Kaplan-Meier estimator) since the nonparametric methods 

only focuses on the survival function (and not the hazard function) and also the survival 
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function is not a smooth curve but a discrete step function as it will be shown in next 

section.  However, the disadvantage of parametric models also comes from fitting a 

particular smooth curve to the data.  We do not necessarily know the true model that 

shapes the phenomenon that we observe and we are fitting a hypothetical model to the 

observed data.  Even though we knew the true model to fit, we obtain less good model fit 

relative to the fit of a nonparametric method which does not require a hypothetical model.   

In the next section, a simple nonparametric model will be reviewed.  The model is 

called “nonparametric” because it does not assume any form of the distribution of T.  

C.2. Nonparametric Survival Model 

Nonparametric survival models do not assume any functional form for the 

survival or hazard function but use the data to estimate the survival curves.  In order to 

estimate the survival curves, life tables are constructed and examined.  A life table (also 

called a mortality table or actuarial table) includes the most basic descriptive statistics in 

survival analysis (Klein & Moeschberger, 2003).  The life table discretizes time into 

certain intervals and can show the number of survivors, the number of deaths, and the 

probability of (cumulative) survival in a particular time interval.  Another version of the 

life table uses the actual time of death.  Whenever someone dies, the number of survivors, 

the number of deaths, and the probability of cumulative survival probability can be 

computed. 

 The Kaplan-Meier (K-M) estimator (Kaplan & Meier, 1958) is one of the most 

widely utilized non-parametric methods that is used for estimating the cumulative 

survival probability in a life table.  The K-M estimator is the nonparametric maximum 
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likelihood estimate of a cumulative survival probability.  The (cumulative) survival 

function using the K-M estimator can be expressed as,  

 �̂� (𝑡) =  ∏
𝑁𝑡𝑖

− 𝐸𝑡𝑖

𝑁𝑡𝑖

 

𝑡𝑖≤𝑡

 (I.1.21) 

where 𝑁𝑡𝑖
 is the number of people at risk of an event (e.g., death) at 𝑡𝑖, 𝐸𝑡𝑖

 is the number 

of people who experienced the event at time 𝑡𝑖.  The number of people at risk, 𝑁𝑡𝑖+1
=

 𝑁𝑡𝑖
− 𝐸𝑡𝑖

−  𝐶𝑡𝑖
, where 𝐶𝑡𝑖

 is the number of censored observations between 𝑡𝑖 and 𝑡𝑖+1.  

For example, consider the numbers in Table I-1.  Based on Equation I.1.21, the K-M 

estimate at time 2, 10 and 15 are respectively, �̂� (2) =  
100−1

100
 = 0.99, �̂� (10) =

 
100−1

100
 × 

99−8

99
 = 0.91 , and  �̂� (15) =  

100−1

100
 × 

99−8

99
 × 

90−30

90
= 0.61.  The K-M 

estimator takes advantage of all of the data including the censored data.  To understand 

how the K-M estimator is accounting for the censored data, consider the observations at 

𝑡2 and 𝑡3.  There was 1 censored observation between 𝑡2 and 𝑡3.  If we were to omit the 

one censored observation in calculating the survival function, we are throwing away the 

valuable information that the person had lived until time 𝑡2.  To avoid the loss of 

information, the K-M estimator computes the survival function by multiplying the 

probabilities including the censored observation up to time 𝑡2.  Then, only at time 𝑡3 the 

probability is computed without the censored observation and then multiplied with 

probability up to time 𝑡2.  This requires the assumptions that the event observations are 

independent of each other and also that the censoring information is independent of the 

event observations.  Another important feature of the K-M estimator is that at time 𝑡0 the 

survival function is 1.0 and it assumes that the event occurs at specified exact times.  In 
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between the specified times, the survival function is constant.  Therefore, the K-M plot 

shows a decreasing step function.  See Figure I-6 for a K-M plot of Table 1.  

Hougaard (2000) and Mill (2011) mention that while nonparametric survival 

analysis may fit the data well, sometimes it is hard to interpret or even present the results.  

A disadvantage of nonparametric methods is that it does not have a single (or perhaps a 

few) statistic (e.g., shape parameter) that summarizes the study findings.  A table or 

figure must be shown to represent the results of a nonparametric analysis.  This can 

sometimes be overwhelming information that prevents readers or researchers to arrive at 

a clear and concrete conclusion.  

Until now, this section has only concentrated in reviewing basic survival models 

that do not include any covariates or predictors in the model.  The terms covariates and 

predictors will be used interchangeably in this paper to indicate basically the regressors in 

a regression model.  Often the focus of a research is to study predictors of a hazard 

function (or survival function).  Survival models with covariates have been studied a lot 

in both applied and quantitative studies and an introduction to some of the most utilized 

models will be given in the next section.  In particular, the accelerated failure time model 

which is representative of the parametric models and the Cox proportional hazards model 

which is often classified as a semiparametric model will be reviewed.  

 

D. Survival Models with Covariates 

This section provides a review of statistical methods to incorporate covariate 

effects in the survival models.  Before illustrating relatively more complicated regression 

type models, a simple method to compare survival curves for different groups is briefly 
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introduced.   An option to statistically test whether the non-parametric survival curves are 

different for the different values of a categorical variable (e.g., treatment status) is using 

the log-rank test (Peto & Peto, 1972).  The log-rank test is similar to the Mantel-Haenszel 

test (Mantel & Haenszel, 1959) where the stratum variable is the k time-points of when 

an event occurs, and the qx2 table between a categorical variable with q categories (e.g., 

q=2 for a treatment status variable) and an event occurrence variable is examined.  The 

null hypothesis is the survival function for all categories are equivalent to each other for 

all k time points.  This test is equivalent to testing whether the qx2 tables for k time-

points show similar frequency distribution or not.  However, this method is restricted to 

categorical variables and does not provide any estimates representing the magnitude of 

the categorical variable effect on the survival function.  The more widely used survival 

models with covariates are the accelerated failure time (AFT) model and the Cox 

proportional hazards model (Cox model).  The AFT and Cox models are in a regression 

format.  Therefore, as for regression models, continuous or categorical variables can be 

used as covariates and the actual covariate effects are estimated as regression parameters 

in a model.  

Before going into the details of the AFT model and the Cox model, Table I-2 

compares some of the characteristics of the two models.  First of all, the AFT model 

models the survival function while assuming a distributional form (parametric model), 

whereas, the Cox model models the hazard function without assuming any distributional 

form (semi-parametric model).  The estimator used in the AFT model is the full 

maximum likelihood but the Cox model uses a special form of maximum likelihood 

estimation called the “partial maximum likelihood” (see below for details).  The 
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advantage of the AFT model is that the interpretation is easy and straightforward.  The 

most appealing feature of the Cox model is that there is no need to specify a baseline 

hazard function which leads to the proportional hazards assumption (to be explained 

below).  One disadvantage of the AFT model is that the model is sensitive to the 

specification of the survival distribution.  The semi-parametric Cox model circumvents 

this problem by not having to specify a distribution form for the hazard function, but the 

proportional hazards assumption can be violated and cause bias in the parameter 

estimates.  

D.1. Accelerated failure time model 

The accelerated failure time (AFT) model assumes that a set of covariates affect 

the event time scale by accelerating or decelerating it by a constant (to be estimated).  

The AFT model is a parametric model where the baseline function is specified by the 

researcher.  In AFT models, the relationship between two individual’s survival function is 

usually expressed as  

 𝑆 (𝑡|𝑿) =  𝑆0{exp[−(𝜷′𝑿)] 𝑡} =  𝑆0{𝜃𝑡} (I.1.22) 

where X is a set of covariates, 𝜷 is the corresponding set of coefficients and 𝑆0[ ] denotes 

the baseline survival function where all X values are zero.  Equation I.1.22 is saying that 

an individual’s survival function is accelerated or decelerated by a constant (𝜃) which is a 

function of the covariates (𝜃 = exp[−(𝜷′𝑿)]).  Therefore, if we say that an individual 

with some specific covariate value, X = x has an acceleration factor of 𝜃 = 2, it means 

that the individual with X = x has a two-times-faster time scale than an individual at 

baseline (or X = 0).  Allison (2010) gives an intuitive example comparing the survival 

probability of a dog and a human (p.72).  Conventionally, a dog’s aging is known to be 7 
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times faster than a human aging.  That is, 𝜃 = 7.  If we think of X as an identifier of 

being a dog or a human (0 = dog and 1 = human), then a dog’s survival probability is 

𝑆0(𝑡) whereas, by theory a human’s survival probability is 𝑆0(7𝑡).  While a dog ages 1 

year, a human is aging 7 years.  Therefore, we can say that the human’s time scale is 7 

times slower than a dog’s time scale or that a dog’s time scale is 7 times faster than a 

human’s time scale.   

From equation I.1.22 and I.1.10 the hazard function can be derived to be 

 ℎ (𝑡|𝑿) =
−𝑑𝑙𝑛𝑆0[θ𝑡]

𝑑𝑡
= 𝜃ℎ0[𝜃𝑡] (I.1.23) 

where 𝜃 = exp[−(𝜷′𝑿)].  Another important relationship expressed in the AFT model is 

the relationship between the natural logarithm (ln) of T and a set of covariates, X: 

 ln(𝑇𝑖) =  𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 +  𝜎휀𝑖 (I.1.24) 

where 휀𝑖 is a random residual term which has a distribution with a variance of 1 and 𝜎 is 

a parameter to estimate which determines the variance of the 휀𝑖 distribution.  Note that 

Equation I.1.24 is an expression for the natural logarithm of T.  Therefore, the 

distribution of T is different from the distribution of 휀𝑖.  When 휀𝑖 follows an extreme 

value distribution (1 parameter), extreme value distribution (2 parameter), or a logistic 

distribution, T follows an exponential, Weibull or a log-logistic distribution, respectively.  

Other kinds of possible distributions for 𝑇 are well documented in Table 6.1 in Mills 

(2011).  Namely, they are the Gompertz, log-normal, log-logistic and generalized gamma 

(three different versions depending on the parameter value) distributions.  The purpose of 

this paper does not cover parametric regression models in depth, however, descriptions of 
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the AFT models with different distributions are given in Mills (2011, pp. 117-125), 

Allison (2010, pp. 77-86) and Klein and Moeschberger (2003, pp. 375 – 388). 

The most common estimation method of these AFT models is maximum 

likelihood (ML) accounting for censored data.  The ML estimator has good statistical 

properties such as being consistent, asymptotically efficient and asymptotically normal 

when the sample size is large (Allison, 2010).  The ML estimator is especially useful in 

survival analysis because the handling of censored data is straightforward.  Not 

considering covariates and assuming that the data are uncensored, the likelihood function 

of the data, L is 

 𝐿 =  ∏ 𝑓𝑖  (𝑡𝑖)

𝑛

𝑖=1

 (I.1.25) 

where i denotes the individuals, and for each individual, 𝑓𝑖  (𝑡𝑖) denotes the p.d.f. for time 

of event, 𝑡𝑖.  Thus, the likelihood function, L, is telling us the joint probability of an event 

across all the individuals.  If we further think of censored data, the likelihood function, L 

can be divided into two parts: the uncensored observations and the censored observations.  

Then, the L can be expressed as  

 𝐿 =  ∏[𝑓𝑖  (𝑡𝑖)]𝛿𝑖[𝑆𝑖 (𝑡𝑖)]1−𝛿𝑖

𝑛

𝑖=1

 (I.1.26) 

where 𝛿𝑖 is a censoring indicator where 0 = censored and 1 = uncensored.  Note that for 

the censored data part in Equation I.1.26, [𝑆𝑖 (𝑡𝑖)]1−𝛿𝑖 includes the survival function 

which is the cumulative survival probability at time 𝑡𝑖.  That is, when an individual is 

censored at time 𝑡𝑖, we can estimate the probability of an event to occur after time 𝑡𝑖 by 

its survival function at time 𝑡𝑖.  Once we choose a model (e.g., an exponential AFT 
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model), the p.d.f. and survival function can be substituted in Equation I.1.26.  Then, using 

the maximization process of the L function includes iterative methods like the Newton-

Raphson algorithm (see Allison, 2010, pp. 92-93 for more details) and as a product of the 

maximization process we can get estimates of 𝜷.   

An advantage of the AFT model is that the model parameters are easily 

interpreted.  The regression coefficients can be interpreted in their absolute terms (e.g., 

number of years).  From Equation I.1.24., the regression parameters directly increase (or 

decrease) the total ln(T) for a given X value.  This is not true for the proportional hazard 

model where the regression parameters are interpreted as hazard ratios (more to be 

explained in next section).  Also, the acceleration (or deceleration) factor, 𝜃 can be seen 

as a ‘stretching’ or ‘contracting’ the coefficient of survival time when comparing two 

groups with different covariate values.  However, a limitation of the AFT model is that 

we often do not know what the true model that underlines T is.  If the underlying T 

distribution is incorrectly specified, the researchers are at risk of reaching incorrect 

substantive conclusions (Mills, 2011).  Also, it is difficult to include time-varying 

covariates in an AFT model, although it is not impossible (see Hougaard, 2000).  

Next, we look at the Cox proportional hazards model which has properties that 

can overcome some of the problems that the parametric models have.  

D.2. The Cox proportional hazards model 

One of the most widely used survival models is the Cox proportional hazards 

model (from now on abbreviated as the Cox model; Cox, 1972).  One of the reasons for 

the popularity of the Cox model is that the Cox model does not assume any of the 

complicated distributions we have looked at in the parametric models.  Furthermore, the 
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regression coefficients are interpretable and including time-varying or time-invariant 

covariates in the model is relatively easy compared to the AFT model (Allison, 2010).  

For simplicity, a Cox model only including time-invariant covariates is presented first 

and extensions to include time-variant covariates are presented later in this chapter.   

In a Cox model, the hazard rate is regressed on a set of predictors through a 

nonlinear function.   

 ℎ𝑖  (𝑡) =  ℎ0 (𝑡) exp(𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝) (I.1.27) 

where ℎ0 (𝑡) denotes the baseline hazard function (when all covariate values are zero) at 

time t, and 𝑥𝑖𝑝 denotes the pth time-invariant covariate for individual i.  Taking the 

natural logarithm on both sides of Equation I.1.27 becomes 

 ln[ ℎ𝑖  (𝑡)] = ln[ℎ0 (𝑡)] + 𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 (I.1.28) 

Equation I.1.28 shows that the logarithm of the hazard rate can be expressed as a linear 

combination of the covariates.  If the logarithm of the baseline hazard function, ln[ℎ0 (𝑡)] 

is chosen to have a particular functional form (e.g., the hazard function for a Weibull 

model), Equation I.1.28 becomes a representation for the parametric PH model.  Unlike 

the parametric PH model, the Cox model does not need to assume any distribution of 

ln[ ℎ𝑖  (𝑡)] which is a function of the event time.  That is, the baseline hazard function 

does not need to have a particular form and there are no parameters to estimate for the 

baseline hazard function.  Therefore, the Cox model is often termed a semi-parametric 

model (Klein & Moeschberger, 2003).  The only parameters estimated are the regression 

coefficients, the 𝛽s.  Before explaining how the Cox model can estimate the regression 

coefficients without having to specify the baseline hazard, the reason why the Cox model 

is called as a “proportional hazards” model is illustrated.   
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An interesting fact about Equation I.1.27 is that the hazard rate for any given 

individual divided by another individual’s hazard rate is a fixed proportion.  This can be 

shown by calculating the hazard ratio for persons i and j:  

 

ℎ𝑖  (𝑡)

ℎ𝑗  (𝑡)
=  

ℎ0 (𝑡) exp(𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝)

ℎ0 (𝑡) exp(𝛽1𝑥𝑗1 + ⋯ +  𝛽𝑝𝑥𝑗𝑝)

= exp[𝛽1(𝑥𝑖1 − 𝑥𝑗1) + ⋯ +  𝛽𝑝(𝑥𝑖𝑝 − 𝑥𝑗𝑝)] 

 

 

(I.1.29) 

Note that the baseline hazard, ℎ𝑜 (𝑡) cancels out because it is in the numerator and 

denominator of the second equality of Equation I.1.29.  Thus, the ratio of two individuals 

becomes a constant value over time t.  This ratio is called the proportional hazards (PH) 

property.  The PH property is particularly important because we can say that the hazard 

rate only differs by the covariate values.  This allows the Cox model to produce clear 

interpretations when the PH assumption is met.  If the hazard rates for two people are 

actually different as a function of time as well as the covariate values, then the Cox 

model can produce severe biased results (Allison, 2010; Hosmer, Lemeshow, & May, 

2008).  

D.2.a. Estimation of the Cox model  

In this section, the partial likelihood estimation method and a Bayesian method 

for estimating the parameters of the Cox model are discussed.  In particular, the widely 

used partial likelihood estimation method is illustrated in detail.  In contrast to the full 

likelihood method, the partial likelihood method allows estimation of the regression 

parameters without having to specify or estimate the baseline hazard function.  Suppose 

we have observed J events in total during the observation period and each event occurred 
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to individual i at time 𝑡𝑖.  Here we assume that there were no ties2.  That is, for event j, 

only one individual experiences the event.  The data are arranged in the order of time 𝑡𝑖.  

Table I-3 shows made-up data to illustrate how the partial likelihood works.  The first 

column shows a numbering of the events that occurs during the observation and a dot 

represents that the event did not happen to that particular individual.  The second column 

shows the individual IDs in the study, the third column contains the timing information of 

when the event happens and finally, the last right column shows the censoring 

information where, 0 = censored and 1 = event occurred.   

The likelihood for event j can be computed by the hazard rate of when the event 

happened at 𝑡𝑖 over the sum of this individual’s hazard rate and all the individual’s hazard 

rates who did not experience the event before 𝑡𝑖.  That is, the likelihood for event 1, 𝐿1 is 

 𝐿1 =  
ℎ79(5)

ℎ79(5) +  ℎ25(5) + ℎ67(5) + ℎ43(5) +  ℎ8(5) +  ℎ17(5) + ⋯
 (I.1.30) 

where ℎ𝑖  (𝑡) denotes the hazard rate at time t for individual i.  Note that in the 

denominator of 𝐿1 everyone’s hazard rate is included because it is the first event (we do 

not consider events before the observation started).  The likelihood for event 2, 𝐿2, is 

 𝐿2 =  
ℎ67(7)

ℎ67(7) + ℎ43(7) + ℎ8(7) + ℎ17(7) + ⋯
  (I.1.31) 

Note that the hazard rates for the deceased and censored prior to this event time are 

excluded in the denominator of 𝐿2. That is, ℎ79(7) is not included because individual 79 

                                                           
2 This may or not be a valid assumption and there are existing methods to deal with tied data. Allison 

(2010) provides a good overview of the different estimation methods for tied data. Namely, there are two 

exact methods (one for continuous-time model and one for discrete-time model) and two approximate 

methods (Breslow, 1974 and Efron, 1977). The exact methods calculate the likelihood based on all possible 

combination of orderings for tied data. The two approximate methods are used to reduce the computational 

burden of exact methods and both of them work fairly well when there are not too many ties existing at a 

time point.  
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had already died at year 5, and ℎ25(7) is not included because individual 25 dropped out 

of the study at year 6 making it impossible to calculate the hazard rate at year 7.  The 

hazard rate of individual 43 at year 7 is included in the denominator, although individual 

43’s data was censored, we know that individual lived until year 7.  Similarly, we can 

compute the likelihood for event 3, 𝐿3 as 

 𝐿3 =  
ℎ8(11)

ℎ8(11) +  ℎ17(11) + ⋯
 (I.1.32) 

Then the partial likelihood estimator can be expressed as multiplying all the likelihoods 

for event j.  If we substitute the hazard rate, ℎ𝑖  (𝑡) using Equation 1.27 and then rewrite 

the likelihood in terms of multiplying all the individual likelihoods (i = 1 to n), a general 

expression of the partial likelihood estimator, PL becomes 

 𝑃𝐿 =  ∏ [
ℎ0(𝑡) exp(𝜷𝒙𝒊)

∑ 𝑌𝑖𝑗ℎ0(𝑡) exp(𝜷𝒙𝒋)𝑛
𝑗=1

]
𝛿𝑖

𝑛
𝑖=1 where {

𝑌𝑖𝑗 = 1 𝑖𝑓 𝑡𝑗 ≥  𝑡𝑖

𝑌𝑖𝑗 = 0, 𝑒𝑙𝑠𝑒
 (I.1.33) 

𝑌𝑖𝑗 is an indicator to exclude individuals who already had experienced the event from the 

denominator and 𝛿𝑖 is the censoring indicator which has a value of 0 when censored and a 

value of 1 when data are present.  The censoring indicator, 𝛿𝑖 allows consideration of 

only the likelihoods when an event had actually occurred.  The baseline hazard, ℎ0(𝑡) in 

the numerator and denominator can be canceled out of Equation I.1.33 which leaves the 

PL to be independent of any specification of the baseline hazard, ℎ0(𝑡).  Once the PL 

function is determined, the procedure remaining is the same as the ML estimation method 

we have looked at above.  We usually take the logarithm of the PL (take the logarithm of 

the PL in Equation I.1.33) and then find the parameter estimates that maximize the log 

(PL) function.  An iterative procedure (e.g., Newton-Raphson method) can be used to 

maximize the function to acquire parameter estimates, 𝜷.    
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Another estimation method employs the Bayesian framework.  Bayesian methods 

are more flexible than the frequentist method (i.e., MLE), especially when many 

unknown parameters are in the model (e.g., Dagne & Snyder, 2009).  In Bayesian 

estimation, the parameters are treated as random variables and thus can be expressed as 

having a distribution (i.e., posterior distribution) rather than characterizing the parameter 

as a fixed population value.  The posterior distribution can be approximated by a 

multiplicative function of a given prior distribution and the likelihood function.  A prior 

distribution incorporates any previous beliefs or knowledge about each of the parameters.  

The prior distribution can be derived from an earlier study or pilot study, or a non-

informative prior (e.g., uniform distribution) can be given if the researcher is unsure 

which prior to use (this will give more weight to the likelihood function based on the 

data).  Although the basic idea of Bayesian estimation is simple and appealing, the 

realization of the method was not so easy until the development of Markov chain Monte 

Carlo (MCMC) methods conducted with computers to do large amount of computations.  

The core of MCMC is to update parameter estimates based on their previous set of 

estimates (using the memoryless property of the Markov chain) until satisfactory 

convergence is reached.  Note that convergence of the posterior distribution is evaluated 

rather than a point estimate.  Further discussions of the Bayesian method are omitted due 

to the scope of this dissertation.  Gelman et al. (2014) provide a good introduction of 

general Bayesian analysis and Ibrahim, Chen and Sinha (2001) provide a general 

discussion of Bayesian survival analysis.   
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D.2.b. Statistical testing of model parameters 

After fitting the model of interest, a researcher may be interested in performing 

statistical tests to evaluate parameter estimate(s) or to do model comparisons between 

nested models: the Wald test, the likelihood ratio test (LRT) and the score test.  The three 

tests are asymptotically equivalent (when the sample size is large).  The tests use 

different statistics; all three statistics approximately follow the chi-square distribution 

when the null hypothesis is true.  All three tests can be used to test a single parameter 

(univariate test) and also can be extended to test multiple parameters (multivariate test).  

The Wald statistic is computed by taking the squared difference between the ML estimate 

and the value under the null hypothesis (usually 𝐻0: 𝜷 = 𝟎), and dividing it by the 

estimated variance of the ML estimate.  The Wald statistic approximately follows a chi-

square distribution with p (number of parameters tested) degrees of freedom.  The LRT 

can be used in comparing nested models by subtracting the -2LL from the larger model 

(with more parameters including the parameters of interest) from the -2LL from the more 

restricted model (with fewer parameters, often, the model that satisfies the null 

hypothesis).  Then the -2LL difference between the larger and smaller model 

approximately follows a chi-square distribution with p (the parameter number difference 

between the two models) degrees of freedom.  Lastly, the score test (or the “Lagrange 

multiplier test”) is computed by dividing the squared score function term by the variance 

of the ML estimate evaluated at the parameter under the null hypothesis.  The score 

function is defined by taking the derivative of the log likelihood function in respect to the 

parameter(s).  The resulting statistic approximately follows a chi-square distribution with 

p (number of constraints the null hypothesis imposes) degrees of freedom. 
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D.2.c. Proportional hazards assumption checking 

The Cox PH model works only when the PH assumption has met.  The PH 

assumption is saying that the effect of each covariate in the model is the same at all time-

points.  When the PH assumption is clearly violated, there are two methods to extend the 

Cox model to allow nonproportional hazards.  One is to explicitly include the interaction 

between the covariate and time in the model.  For example, we can have the following 

Cox model including an interaction effect between x and t.  

 ln ℎ (𝑡) = ln[ℎ0 (𝑡)] +  (𝛽1 +  𝛽2𝑡)𝑥 (I.1.34) 

In Equation I.1.34, 𝛽1 is the effect of covariate X when t = 0 and 𝛽2 is the linearly 

additive (or subtractive) effect of X as a function of t, thus the effect of X increases 

linearly with time if 𝛽2 is positive and decreases linearly with time if 𝛽2 is negative.   

The other approach is to use a stratified Cox model.  The stratification method is 

most useful when there is a categorical variable that interacts with time but is not of main 

interest.  The categorical variable serves as a stratification variable in the model.  The 

stratified Cox model can be expressed as 

 ln ℎ (𝑡) = ln[ℎ𝑆 (𝑡)] +  𝛽𝑥 (I.1.35) 

where ℎ𝑆  (𝑡) denotes the arbitrary baseline hazard for a stratification variable, S (e.g., 

school ID, gender or age).  Note that while the effect of X is fixed (𝛽) to be the same 

across s (levels of S), the baseline hazard function is allowed to be different across s.  The 

𝛽 parameter is estimated by first constructing separate PLs for each of the s levels, then 

multiplying the PLs together and at last choosing the 𝛽 estimate that maximizes the 

multiplied PL function.  The stratified method has disadvantages such that we cannot 

specify a main effect for the stratification variable in the model as a parameter nor we can 
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specify an interaction effect between the stratification variable and time in the model as a 

parameter.  However, the stratified method can be useful when different levels of the 

stratification variable are expected or known to have different functions of time.  The 

effect of a variable can only increase or decrease linearly with time in the interaction 

model.  However, the stratification method allows that the stratification effect can be 

reversed (once or multiple times) in relation to time.  It is recommended that the 

stratification variable is not a variable of interest but a nuisance variable (e.g., a 

clustering variable such as school ID) whose effect should be controlled (Allison, 2010).  

Allison (2010) argues that some crucial questions about the Cox model might be 

ignored while researchers focus on testing the PH assumption.  Researchers are 

sometimes overly sensitive to nonproportional hazards only because the model is called 

the “proportional hazards” model.   However, this assumption is just like any other 

assumption that we make in a statistical model.  For example, in many cases, the 2-way 

(or even higher order) interaction effects are ignored in an ordinary least squares multiple 

regression model.  The interaction effect is included in a regression model when only the 

researcher has an interest in it.  This is the same situation as for a PH model.  If a 

researcher believes that the hazard ratio for a covariate will not change with time, they 

are relying that PH assumption holds and estimates the model.  If the researcher believes 

that the hazard ratio is a function of time, then the researchers can use one of the two 

methods (the stratification method or the interaction model) that are introduced above.  

Allison argues that there are more important considerations that a researcher must not 

neglect are: 1) are there any other confounding variable(s)?, 2) is the censoring 

mechanism noninformative?, and 3) is the measurement error in the covariates acceptably 
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low?.  If these basic assumptions are not met, the parameter estimates can be severely 

biased. 

D.2.d. Time-dependent covariates 

A researcher may incorporate time-dependent covariates expecting that a 

covariate effect would change with time (i.e., the PH assumption is violated).  By 

including time-dependent covariates, the basic Cox PH model in Equation I.1.27 becomes 

 ℎ𝑖  (𝑡) =  ℎ0 (𝑡) exp(𝛽1𝑥𝑖1(𝑡) + ⋯ + 𝛽𝑝𝑥𝑖𝑝(𝑡)) (I.1.36) 

The only difference in Equation I.1.36 from Equation I.1.27 is that now 𝑥𝑖𝑝 is replaced 

with 𝑥𝑖𝑝(𝑡) with implies that the covariate values are allowed to vary over time, t.  Here 

we might assume that the covariate values are known at an instant just before time t, so 

that we can say that the hazard rate is predictable based on the covariate values.  

However, as Allison (2010) and Mills (2010) have recommended, it is often useful to 

create lagged variables to ensure that changes in the time-dependent variable precede the 

event at time t thus allowing for a causal interpretation.  

 

Conclusion of the Survival Analysis Section 

Survival analysis involves statistical analysis of “whether” an event occurs and 

“when” the event occurs.  Survival and hazard functions are used to accommodate both 

whether and when information together.  Researchers can be interested in different type 

of questions: 1) what does the survival/hazard function look like as a function of time?; 

2) what are the relationships between the survival/hazard function and covariates?  For 

the former question, parametric or non-parametric survival/hazard functions can be 

drawn from a pre-existing known distribution (parametric) or from purely from the data 
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(non-parametric).  For the latter question, the most popular choice of model is the Cox 

proportional hazards model where the hazard rate is expressed as a function of the 

baseline hazard rate and a non-linear (exponential) function of the covariates.  The 

strength of the Cox model is that a function of the baseline hazard rate (which can be 

complicated sometimes) needs not to be estimated while estimating the regression 

coefficients of the covariates.  Because of this property, the Cox model is used for 

statistical analysis of a mediation model with a survival mediator in this dissertation.  

Before introducing details of the survival-mediator model, in the next section, statistical 

mediation analysis with continuous variables is discussed.   
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2. Mediation Analysis 

Mediation analysis is a crucial research methodology in psychology and many 

other social science areas.  Mediation represents a hypothetical relationship where one 

variable (independent variable) affects a second variable (mediator variable) and in turn, 

affects a third variable (dependent variable).  The mediator variable explains “how” an 

independent variable affects a dependent variable.  For example, in an intervention study, 

a randomized intervention trial is given to each family to reduce a child’s behavior 

problems.  Hopefully, the intervention trial compared to a control trial reduces child’s 

behavior problems.  To investigate further “how” the intervention reduces child’s 

behavior problems, the investigators might measure parenting practices during the trials 

and use this variable as a mediator and conduct a mediation analysis.  The goal of this 

chapter is to provide a brief introduction to mediation analysis.  The single mediator 

model with a continuous mediator and continuous outcome is introduced and different 

methods testing the mediated effect are reviewed.    

 

A. The Single Mediator Model 

The single mediator model represents the inter-relationships among three 

variables, the independent variable, X, the mediator, M, and the dependent variable, Y.  

The single mediator model with continuous M and Y variables (X can be either a 

continuous or a discrete variable) can be expressed as three regression equations, one 

regression equation for the mediator, M, and two regression equations for the outcome Y,  

 𝑀 = 𝑖1 +  𝑎𝑋 +  𝑒1 (I.2.1) 
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 𝑌 =  𝑖2 + 𝑐′𝑋 + 𝑏𝑀 +  𝑒2 (I.2.2) 

 𝑌 =  𝑖3 +  𝑐𝑋 +  𝑒3 (I.2.3) 

where 𝑖1, 𝑖2 and 𝑖3 are intercepts for each regression equation, a is the coefficient for M 

regressed on X, c’ is the coefficient for Y regressed on X after controlling for M, b is the 

coefficient for Y regressed on M controlling for X, c is the coefficient for Y regressed only 

on X, and 𝑒1, 𝑒2 and 𝑒3 are residuals following independent normal distributions, 

𝑒1~𝑁(0, 𝜎1
2), 𝑒2~𝑁(0, 𝜎2

2), and 𝑒3~𝑁(0, 𝜎3
2).  Figure I-7 depicts the relationships 

represented in the above equations.  

Different methods can be used to estimate the parameters in the single mediator 

model.  The first method is to use the ordinary least squares (OLS) estimator.  The goal 

of the OLS estimator is to find the regression coefficient estimates that minimize the sum 

of squares of the residuals.  Mathematically the OLS estimator provides a closed form 

solution to estimate the regression parameters.  The OLS estimator can be used when M 

and Y are both continuous variables (X can be a continuous or a categorical variable).  

However, the OLS estimator cannot be used in situations where the M and/or Y variable 

is a categorical variable or other type of variables (e.g., count).  If either M or Y, or both 

M and Y are categorical variables, logistic regression or probit regression is used to 

estimate the parameters in the mediation model (MacKinnon, 2008).  In this case, the 

maximum likelihood (ML) estimator is used instead of the OLS estimator (the ML 

estimator can also be used for continuous mediators and outcomes).  The likelihood 

function is a function that describes how well a certain set of parameter estimates would 

fit the given data.  The goal of the ML estimator is to find regression coefficient estimates 

that maximizes the likelihood function.  Usually, the ML is found using an iterative 
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process such as, the expectation-maximization (E-M) algorithm.  The E-step calculates 

the expectation of the likelihood function given the current estimates of the regression 

parameters. Then, the M-step updates the regression estimates which maximizes the 

expected likelihood value in the E-step.  The updated regression estimates are used in the 

next E-M step until a certain criterion (e.g., the estimate difference between two iterations 

is smaller than some criterion value, δ) is met. 

 

B. Tests of the Indirect Effect 

The mediated effect is the effect of X on Y contributed by the mediator, M (the 

effect of X on Y through M).  Since, X indirectly affects Y through M (the a and b path in 

Figure I-7), the mediated effect is also called the indirect effect.  There is also an effect in 

which X directly affects Y in the model (the c’ path in Figure I-7) and this is called the 

direct effect.  In the case in which both M and Y are continuous variables, the sum of the 

indirect effect and the direct effect is the total effect (the c path in Figure I-7).  There are 

two different ways the indirect effect can be quantified, 1) the product of coefficients 

estimate: 𝑎×𝑏 (or ab), and 2) the difference in coefficients estimate: 𝑐 − 𝑐′.   The two 

quantities equal (𝑎𝑏 = 𝑐 − 𝑐′) only when M and Y are both continuous variables and the 

sample size for estimating the parameters in regression equations for M and Y are the 

same (MacKinnon, 2008).  If the mediator and/or the outcome are non-continuous 

variables (e.g., a categorical variable, a survival variable), 𝑎𝑏 ≠ 𝑐 − 𝑐′.  In this paper, the 

product of coefficients (ab) estimate is chosen over the difference in coefficient (𝑐 − 𝑐′) 

estimate because of two reasons: 1) For mediation models with binary outcomes, 

simulation studies (MacKinnon & Dwyer, 1993; MacKinnon, et al., 2007) have shown 
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that the 𝑐 − 𝑐′ estimate did not change (or even decreased) as the true mediated effect 

increased, whereas the ab estimate properly reflected increasing of the true mediated 

effect, and 2) In general, the statistical tests of the ab estimate performed better than the 

tests of the 𝑐 − 𝑐′ estimate in terms of Type I error rates (MacKinnon et al., 2002).  In the 

following Section B.2., several different statistical tests for the ab estimate is explained.      

There are three different ways to test the indirect effect.  The first group of 

methods evaluates separate parameters in the mediation model and arrives at a conclusion 

of whether the mediated effect is significant or not.  Namely, the tests in this group are 

the causal steps approach (also known as the “Baron and Kenny” approach) and the “joint 

significance test”.  The second group evaluates the indirect effect estimate (e.g., ab) 

whether it is significant or not.  As mentioned above, the focus will be testing the ab 

estimate instead of the 𝑐 − 𝑐′ estimate.  Several different methods would be considered in 

the second group including the Sobel test, bootstap methods, and the distribution of 

product method.  The third group is a relatively new area in mediation analysis termed 

“causal mediation”.  Using the counterfactual approach of causal effects, the natural 

indirect effects are derived using conditional probabilities for the potential outcomes.  

The next sections explain these different methods to evaluate the indirect effect of a 

single mediator model.  

B.1. Separate Evaluation of the Mediation Parameters 

In this first group of methods, each relationship between the variables in a 

mediation model is tested and the mediated effect is evaluated as a collection of the 

separate significant results.  
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B.1.a. The Baron and Kenny Approach 

The causal steps approach or “Baron and Kenny” approach is one of the most 

widely used methods to evaluate a mediated effect.  In the initial statement of this 

approach, Judd and Kenny (1981) proposed the following tests were necessary to 

conclude that mediation exists: 1) The effect of X on Y (c-path in Figure I-7) is 

significant, 2) The effect of X on M (a-path in Figure I-7) is significant, 3) The effect of 

M on Y controlling for X (b-path in Figure I-7) is significant, and 4) the effect of X on Y 

controlling for M (c’-path in Figure I-7) is zero.  Baron and Kenny (1986) argued for a set 

of similar tests with the major difference from Judd and Kenny being in the fourth 

condition.  If all the other conditions are true and the fourth condition, c’ = 0 is also true, 

then, the effect of X on Y is fully mediated through M.  Although Judd and Kenny argue 

for a complete mediation scenario, Baron and Kenny relaxes the fourth condition so that 

the c’-path can have a value different than zero meaning that there can be partial 

mediation.   

The Baron and Kenny approach should be credited for providing statistical tests to 

demonstrate that there is mediation by laying out the logical relationships among the X, 

M, and Y.  However, there are some limitations with the Baron and Kenny approach.  

First of all, the Baron and Kenny approach cannot explain some particular cases of 

mediation such as an “inconsistent” mediation model where the indirect effect (ab) 

cancels out the direct effect (c’), ab + c’ = c = 0.  This is a violation of the first condition 

saying that the c coefficient must be significant.  Another limitation is that the Baron and 

Kenny approach does not provide a statistic that represents the indirect effect and 

therefore, it is also difficult to quantify the size of the indirect effect.   
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B.1.b. The Joint-Significance Test 

The joint-significance test can also be seen as a variant of the causal steps 

approach focusing on just the X to M and M to Y relationship.  The joint-significance test 

consists of two independent statistical tests: 1) A test of the effect of X on M (a-path in 

Figure I-7), and 2) A test of the effect of M on Y (b-path in Figure I-7).  The mediated 

effect is claimed to be significant only if the two tests are jointly significant.  The joint-

significance test also has a limitation that there is no direct estimate of the indirect effect.  

Nonetheless, the joint-significance test is simple to conduct and also evidence from 

simulation studies has revealed that the joint-significance test performs better than the 

Baron and Kenny approach in terms of Type I error and statistical power (MacKinnon, et 

al., 2002).  

B.2. Evaluation of the ab Product Estimate 

The indirect effect is often estimated by the product term of the a and b 

coefficients, ab.  The following methods describe different statistical tests used to 

evaluate the ab estimate. 

B.2.a. The Sobel Test 

Sobel (1982) derives the standard error for ab using the multivariate delta method.  

Given that a vector of random variables is normally distributed, any function (such as ab 

indirect effect) of the random variables is asymptotically (as sample size approaches 

infinity) normally distributed by the multivariate delta theorem.  The variance of the 

normal distribution of the new function (e.g., the ab coefficient) of random variables are 

given as 𝛻ℎ(∙)𝑇𝜮𝛻ℎ(∙) where, 𝛻ℎ(∙) is the gradient (first derivative) of a given function, 

ℎ(∙), 𝛻ℎ(∙)𝑇 is the transpose of 𝛻ℎ(∙), and 𝜮 is the variance-covariance matrix of the 
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original random variables.  In the mediation model, we are interested in the function ab, 

which denotes the mediated effect thus, ℎ(∙) = 𝑎𝑏.  Applying the multivariate delta 

theorem the following standard errors of ab are derived as, 

  𝑆𝐸(𝑎𝑏) = √𝑎2𝜎𝑏
2 +  𝑏2𝜎𝑎

2  (I.2.4) 

where 𝜎𝑎
2 and 𝜎𝑏

2 are the standard errors for the a and b estimates, respectively.  Once 

SE(ab) is estimated, a z-statistic can be computed as 𝑧𝑎𝑏 =  
𝑎𝑏

𝑆𝐸(𝑎𝑏)
.  Then, a critical value 

(e.g., |𝑧𝑐𝑟𝑖𝑡.|=1.96 for a two-tailed test) given a Type-I error rate (e.g., α = .05) is 

compared to the 𝑧𝑎𝑏 statistic to conclude whether the mediated effect, ab, is significant 

(e.g., significant if 𝑧𝑎𝑏  >  |𝑧𝑐𝑟𝑖𝑡.|).  Since the Sobel test is based on an approximation 

(the Taylor series approximation is used to prove the multivariate delta theorem) and is 

asymptotically true with large sample size, the test may not be accurate especially at 

small sample sizes.  Also, as explained further in the next section, the distribution of the 

product (ab) is not normally distributed even though the sample size is large.  In the 

simulations of MacKinnon et al. (2002) comparing different statistical tests for ab, the 

Sobel test had low Type-I errors overall and very low statistical power especially when 

the sample size was small as 50 and the mediated effect was small-medium.   

B.2.b. Distribution of the Products Test 

MacKinnon, Lockwood, and Hoffman (1998) introduced a method to test the 

indirect effect based on the actual distribution of the product of two normally distributed 

random variables.  The distribution of the products test assumes that the a and b estimates 

are normally distributed, however the product term, ab, is not normally distributed.  The 

distribution of ab is usually not normal such that the kurtosis and skewness indices depart 
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from those of a normal distribution (MacKinnon, Lockwood, & Williams, 2007).  Since 

the distribution of the products is usually skewed, the confidence limits for ab are 

asymmetric.   

The procedure for the distribution of the products method is as the following 

(Tofighi & MacKinnon, 2011): 

1) Compute the standardized values for a and b, 𝑧𝑎 =
𝑎

𝜎𝑎
 and 𝑧𝑏 =

𝑏

𝜎𝑏
. 

2) Compute the cumulative distribution function of 𝑤𝑎𝑏 =  𝑧𝑎𝑧𝑏 using the 

method provided by Meeker and Escobar (1994) 

3) Compute asymmetric confidence limits using the distribution from step 2. 

The complicated evaluation of the 𝑤𝑎𝑏 distribution and the confidence limits can be 

obtained using statistical programs such as “PRODCLIN” (MacKinnon et al., 2007) and 

“RMediation” (Tofighi & MacKinnon, 2011).   

MacKinnon et al. (2002) show that the distribution of the products test performed 

better (accurate Type I error rates and high statistical power) than most of the other 

methods (e.g., Baron and Kenny test, Sobel test) proposed in the study.  

B.2.c. Bootstrap Methods 

The statistical tests of the ab effect discussed above all assume some kind of 

distribution (usually a normal distribution except for the distribution of the products 

method) and evaluate the indirect effect from the presumed distribution.  However, in 

some cases, the presumed distribution might not represent the population of the ab effect 

accurately.  Another field of inferential statistics evaluates the population distribution 

from an empirical basis using resampling methods.  The basic idea of bootstrapping a 

statistic (e.g., the ab effect) involves resampling a sample dataset (with replacement) P 
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times and compute the ab effect for each resampled dataset.  Then, an empirical 

distribution can be drawn based of the P number of ab effects.  The estimate, ab is 

evaluated using confidence limits from the empirical distribution.  If the confidence limit 

does not contain zero, the ab estimate is significant, otherwise, the ab estimate is not 

significant. 

The percentile bootstrap confidence limits are obtained using the method 

introduced by Efron and Tibshirani (1993).  With a given Type I error rate, 𝛼, the (1- 𝛼) 

confidence limit is evaluated at 𝛼 2⁄  (lower limit) and 1 − 𝛼/2 (upper limit) percentile 

from the bootstrap distribution.  For example, for a 95% confidence limit, the 2.5 

percentile and 97.5 percentile values from the bootstrap distribution are used.   

Another widely used bootstrap method in the mediation analysis literature is the 

bias-corrected bootstrap method.  The bias-corrected bootstrap method corrects for the 

bias that is produced by estimating ab (usually the average value from the bootstrap 

distribution) instead of using the true population value of ab.  In other words, the bias 

comes from using a sample to estimate the ab parameter instead of using the population 

values which we cannot always obtain.  If the average bootstrap estimate is 𝑎�̂�𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 

and the true population value is 𝑎�̂�, the bias is 𝑏𝑖𝑎𝑠[𝑎�̂�] =  𝑎�̂�𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 −  𝑎�̂� (Efron, 

1987).  MacKinnon et al. (2004) incorporate a correction for the bias expressed by 𝑧0̂, 

which is the z percentile score of the observed sample indirect effect.  Then, the 

confidence limit is computed by [2𝑧0  ̂ + 𝑧𝛼
2⁄ , 2𝑧0  ̂ + 𝑧1− 𝛼 2⁄  ].  MacKinnon et al. (2004) 

argue that the bias corrected bootstrap method performed better than other bootstrap 

methods.  However, Fritz, Taylor, and MacKinnon (2012) argue that while the bias 
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corrected bootstrap method has high statistical power, it might be an effect of the 

increased-than-normal Type I error rate.     

B.3. Causal Mediation Analysis using the Potential Outcomes Framework 

Causal mediation analysis using the potential outcomes approach is an emerging 

area of research in mediation analysis.  The potential outcomes approach (Rubin, 1974) 

can be explained by first focusing on an individual’s observation.  Suppose that a 

randomized trial (X) was conducted to a person where X=1 denotes that the person 

received the treatment and X=0 denotes the person received a control condition.  Then, a 

measure of an outcome, Y can be expressed as Y(X=1) if Y were measured after the 

person received the treatment condition and Y(X=0) if Y were measured after the person 

received the control condition.  The individual’s causal effect is computed by taking the 

difference between the two potential outcomes, Y(X=1) – Y(X=0).  However, this 

comparison is not possible because a person cannot receive the treatment and control 

condition at the same time.  Instead, the average causal effect is computed averaging 

across the individuals, E[Y(X=1) – Y(X=0)], assuming that the treatment and control 

condition were randomly assigned to people.  The potential outcomes framework applied 

to mediation analysis is important in two ways: 1) It clarifies the underlying assumptions 

of traditional mediated effects and 2) It provides a framework to estimate mediated 

effects in complex models including non-linear relationships between variables and also 

models with confounding variables.  

Causal mediation analysis involves estimation of several different effects (Pearl, 

2001; VanderWeele & Vansteelandt, 2009): 1) Controlled direct effects, 2) Natural direct 
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effects, and 3) Natural indirect effects.  The average controlled direct effect (CDE) is the 

effect of X on Y controlling for M at a specific value.   

 𝐶𝐷𝐸 = 𝐸[𝑌(𝑋 = 1, 𝑀 = 𝑚)] − 𝐸[𝑌(𝑋 = 0, 𝑀 = 𝑚)]  (I.2.5) 

The average natural direct effect (NDE) is different from the CDE such that instead of Y 

evaluated at a specific value of M, M can have different values conditional on X. 

  𝑁𝐷𝐸 = 𝐸[𝑌(𝑋 = 1, 𝑀(𝑋 = 𝑥))] − 𝐸[𝑌(𝑋 = 0, 𝑀(𝑋 = 𝑥))]  (I.2.6) 

Based on values of X, the NDE is further distinguished into the average pure natural 

direct effect (PNDE) when X=0 and the average total natural direct effect (TNDE) when 

X=1.  

 𝑃𝑁𝐷𝐸 = 𝐸[𝑌(𝑋 = 1, 𝑀(𝑋 = 0))] − 𝐸[𝑌(𝑋 = 0, 𝑀(𝑋 = 0))]  (I.2.7) 

 𝑇𝑁𝐷𝐸 = 𝐸[𝑌(𝑋 = 1, 𝑀(𝑋 = 1))] − 𝐸[𝑌(𝑋 = 0, 𝑀(𝑋 = 1))] (I.2.8) 

To understand Equations I.2.5 – I.2.8, note that the X value changes but the M value is 

fixed in the first and second expectations.  Qualitatively, this is the definition of a 

“direct” effect where we are looking at the effect of X on Y without any influence of the 

M value since we are controlling M at a constant.  Then, the difference between the 

controlled and natural direct effect is whether the M value is controlled at a fixed value 

not considering X (CDE) or M is a value conditional on X (NDE).  Finally, the distinction 

between the PNDE and TNDE is that the PNDE evaluates the M value at X=0 (absence of 

treatment) and the TNDE evaluates the M value at X=1 (existence of treatment).   

The natural indirect effect (NIE) is the effect of X on Y only through M.  The 

following equation shows how the average NIE is quantified.  

 𝑁𝐼𝐸 = 𝐸[𝑌(𝑋 = 𝑥, 𝑀(𝑋 = 1))] − 𝐸[𝑌(𝑋 = 𝑥, 𝑀(𝑋 = 0))]  (I.2.9) 
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Since X is equal at a fixed value of x in both expectations in Equation I.2.9, the only 

difference in the expectations of Y are determined by the M values that are conditional on 

the X values (X=1 or X=0).  Equation I.2.9 follows the qualitative definition of the 

indirect effect.  That is, the indirect effect is the effect of X on Y that only operates 

through the conditional values of M.  With similar logic shown in the PNDE and TNDE, 

the average pure natural indirect effect (PNIE) and the average total natural indirect 

effect (TNIE) can be quantified as the following. 

 𝑃𝑁𝐼𝐸 = 𝐸[𝑌(𝑋 = 0, 𝑀(𝑋 = 1))] − 𝐸[𝑌(𝑋 = 0, 𝑀(𝑋 = 0))]  (I.2.10) 

 𝑇𝑁𝐼𝐸 = 𝐸[𝑌(𝑋 = 1, 𝑀(𝑋 = 1))] − 𝐸[𝑌(𝑋 = 1, 𝑀(𝑋 = 0))] (I.2.11) 

The only thing that changes in Equation I.2.10 and Equation I.2.11 is the first argument 

in the Y expectations.  The PNIE is the NIE when X=0 (absence of treatment) and the 

TNIE is the NIE when X=1 (existence of treatment).  In other words, the PNIE expresses 

how much on average Y changes as M changes from M (X=1) to M (X=0) when X is 

controlled at X=0 and the TNIE is the average change of Y as M changes from M (X=1) to 

M (X=0) when X=1.  As other studies do, the TNIE will be the focus of this study 

(Muthén & Asparouhov, 2014).  

It is important to think about the assumptions related to the causal mediation with 

potential outcomes framework in order to obtain the estimated effects described above.  

The first basic assumption that applies to any potential outcomes causal model is the 

stable unit treatment value assumption (SUTVA).  The SUTVA assumes that a person’s 

outcome relies only on the treatment that the person was assigned and must not be 

affected by any other’s treatment assignment.  Other than the SUTVA, there are four 
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additional assumptions made for causal mediation (Pearl, 2001; VanderWeele & 

Vansteelandt, 2009).  

1) There are no unmeasured variables that confound the relationship between X 

and Y.  

2) There are no unmeasured variables that confound the relationship between M 

and Y.  

3) There are no unmeasured variables that confound the relationship between X 

and M. 

4) There are no unmeasured M to Y confounders that are affected by X.  

Assumptions 1 and 2 are essential to estimate the CDE.  Also, additional to the first two 

assumptions, assumptions 3 and 4 are essential to estimate the NDEs and NIEs.  

Assumptions 1 and 3 is satisfied if X is a treatment indicator and the treatment is 

randomly assigned.  However, assumptions 2 and 4 are more difficult to meet since, 

although X is randomized, M is usually not randomized but rather, the values of M are 

presumably reflections of the individual’s characteristics.  Therefore, it is inevitable to 

have some degree of confounding effect between M and Y.  In this paper, sequential 

ignorability (Imai, Keele, Tingley, & Yamamoto, 2011) is assumed.  Sequential 

ignorability has two parts: 1) There are no unmeasured confounders that affect the X to M 

and X to Y relationship, and 2) There are no unmeasured confounders that affect the M to 

Y relationship after controlling for treatment and baseline (before treatment) measures of 

the mediator.  This assumption is a strong assumption that is in fact, used in the single 

mediator model of Figure I-7.  In other words, this paper assumes that there are no 
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confounders of any part of the single mediator model and the model in Figure I-7 is the 

true model. 

The evaluation of the TNIE can be done by applying bootstrapping methods as 

described in the previous Section B.2.c.  The bootstrapping methods are useful for the 

causal mediation models since it could be applied to nonlinear models where the 

mediator and/or outcome is non-normal (e.g., categorical, survival).  Trying to use the 

normal distribution assumptions for the TNIE can be inappropriate because the 

distributional assumptions will not hold for models with non-normal mediators and/or 

outcomes.   

 

C. Comparison of the Methods 

MacKinnon and his colleagues (2002, 2004, 2007) have compared the 

performance (in terms of Type I error, statistical power, and required sample size) of 

different statistical methods through simulation studies.  For mediation models with a 

continuous mediator and a continuous outcome, among the various methods, the joint 

significant test, distribution of the products test, and bias-corrected bootstrap had superior 

performance to the other proposed methods (Fritz and MacKinnon, 2007).  The Baron 

and Kenny approach resulted in low Type I error rate and low statistical power 

(MacKinnon et al., 2002), requiring a large sample size to achieve .8 power with small 

effect sizes (Fritz & MacKinnon, 2007).  The Sobel test produced lower than the stated 

normal Type I error rate and low statistical power for small sample size and small to 

medium effect sizes (MacKinnon et al., 2002); the required sample size was larger than 

the recommended methods (Fritz & MacKinnon, 2007).  In general, bootstrap methods 
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performed better than methods based on distributional assumptions (i.e., the distribution 

of the products method) and the bias corrected bootstrap performed a little bit better than 

the percentile bootstrap method (MacKinnon et al., 2004) in terms of statistical power.  

However, it is noted that the bias corrected bootstrap may produce spuriously high 

statistical power because of the increased Type I error rate (Fritz et al., 2012).  There is 

not yet a study comparing the performance of testing the natural indirect effects with the 

other traditional statistical methods to test the indirect effect.  This is probably due to the 

fact that the causal mediation analysis is a relatively new area of research and papers 

have been more focused on methods of estimating the natural indirect effects in various 

different conditions (e.g., introducing different types of confounders, non-linear 

relationship between variables).    

 

Conclusion of the Mediation Analysis Section 

Statistical mediation analysis can answer questions about “how” (the process or 

mechanism) an independent variable affects a dependent variable via a mediator variable.  

The mediated effect is the effect of an independent variable, X, on a dependent variable, 

Y, attributable to the mediator variable, M.  Among the various ways to evaluate the 

mediated effect, six of them will be considered in this dissertation for the methods to 

evaluate the mediated effect for the survival-mediator model: 1) The Sobel test, 2) The 

distribution of the products test, 3) Percentile bootstrap, 4) Bias-corrected bootstrap, 5) 

The joint-significance test, and 6) Causal mediation using the potential outcomes 

framework (using bootstrapping).  In this section, the different mediated effect evaluation 

methods were discussed and performance of these methods were illustrated in the case of 



52 
 

a single mediator model with a continuous mediator and a continuous outcome.  In the 

next section, mediation models with survival variables as a dependent variable or as a 

mediator will be discussed.   
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3. Survival Mediation Analysis 

In this chapter, mediation analysis with survival variables is reviewed.  Survival 

variables can be an outcome, a mediator or both in the mediation model.  The survival 

events that are studied in biomedical and engineering research usually lead the subjects 

(participants or other physical objects) to a terminal state (i.e., death, failure of a system 

or machine).  If the event of interest brings an end to the research subject, then the 

survival variable (the time to event and whether that event occurred to a subject) is often 

used as a dependent variable (outcome) and a set of covariates is used to predict the 

survival variable.  However, the event of interest in psychology can be a non-terminal 

state, such as smoking relapse.  If the event of interest does not mean eternal termination 

of a subject (a participant or a part of a machine), there is a chance that the survival 

variable can be used as a predictor of another outcome (e.g., lung cancer) as well as being 

used as an outcome to regress on a predictor (e.g., participation or not in a prevention 

program to cease smoking).   

First, research on mediation models where the outcome is a survival variable is 

reviewed.  Then, a mediation model where the mediator is a survival variable is 

illustrated.  When a survival variable is used as a predictor, the censored values cause 

bias in the estimation of some parameters in the mediation model.  Methods of treating 

the censored data will be discussed.  Finally, the causal mediation framework reviewed in 

the previous chapter (see Chapter 2 Section B.3.) will be applied to the case when the 

mediator is a survival variable.  The derivation of the natural effects will be shown in 

depth for the survival-mediator case.   
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A. Mediation with a Survival Outcome 

If the event of interest is a terminal state such as death, the survival variable is 

usually the outcome of a mediation model.  There might be exceptions in a prospective 

study where time-to-death is a predictor of a future outcome (e.g., time-to-death since 

debut as a singer predicting post-death album sales).  Nonetheless, the common case is 

that a survival variable concerning a terminal state is used as an outcome.  Mediation 

analysis of a survival outcome has been an active area of research especially in 

epidemiology.  Epidemiologists investigate the effect of predictors on the survival rate 

(or hazard rate) and are interested in identifying mediators of the predictor-survival 

outcome relationship.  For example, Jung et al. (2012) studied the effect of age on 

survival after metastatic breast cancer being mediated by a comorbidity measure (the 

Charlson comorbidity score (CCS) plus hypertension).  In their study, a Cox regression 

was used to study the relationship between age and hazard rate of death controlling for 

comorbidity.  The Baron and Kenny method and the hazard rates with and without the 

mediator were examined to evaluate mediation.  They concluded that age was no longer a 

significant predictor of the hazard rate after controlling for comorbidity, especially 

including hypertension.  

Another active area of research in mediation with survival outcomes is causal 

mediation using the counterfactual approach.  Lange and Hansen (2011) argue that the 

traditional method in epidemiology comparing the hazard rates between a Cox model 

with a mediator and without a mediator cannot be given a causal interpretation and is 

mathematically inaccurate to compare the two models.  Instead, Lange and Hansen use 

the counterfactual approach and formulate the potential outcomes to estimate the natural 
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direct and natural indirect effect in a model that has a survival outcome.  They also 

provide standard errors of the estimates in order to conduct statistical tests.  As an 

illustration of their proposed method, Lange and Hansen reanalyzed data from 

Christensen, Labriola, Lund, and Kivimäki (2008).  The effect of socioeconomic position 

(SEP-5 groups: executive manager and/or academics, middle managers and/or 3-4 years 

of further education, other white-collar workers, skilled blue-collar workers, and semi-

skilled or unskilled workers) on onset of a long term sickness absence in workplace was 

mediated by work environment (physical and psychosocial factors).  VanderWeele 

(2011) derived natural direct and indirect effects for survival models that are widely used 

in the survival literature, that is the Cox model and the accelerated failure time (AFT) 

model.  VanderWeele gave a proof in the online Appendix that the test of the product 

method (ab) provides a valid test so that the mediated effect can be evaluated although 

the value itself does not provide an accurate measure of the indirect effect.  Fulcher, 

Tchetgen and Williams (2016) examined the AFT model and provided empirical 

evidence that the difference in coefficients (c-c’) method would fail even when the 

product of coefficients (ab) method is unbiased, especially when there is censoring and 

an other-than-normal (e.g., Weilbull) distribution is specified in the AFT model.  

Gelfand, MacKinnon, DeRubeis, and Baraldi (2016) compared the performance of the 

AFT model with the Cox model.  In general, the AFT model outperformed the Cox 

model in terms of Type I error rate and statistical power of the natural indirect effects.   

A.1. The Single Mediator Model with a Survival Outcome 

Formally, the single mediator model with a survival outcome can be expressed 

with two regression equations: the M-regression and the Y-regression.  Here, the mediator 
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is assumed to be a continuous variable and thus, the M-regression can be expressed as a 

normal regression equivalent to Equation I.2.1.  The Y-regression is the regression 

analogous to Equation I.2.2 where X and M are both included as predictors of Y.  

However, since the outcome is a survival variable, the Y-regression requires the use of 

other than OLS regression to avoid biased estimates.  One possible choice for the Y-

regression is the Cox model since it does not require assumptions about the baseline 

hazard rate.  In other words, Equation I.1.27. can be used as the following: 

 ℎ(𝑡) =  ℎ0(𝑡) exp(𝑐′𝑋 +  𝑏𝑀) (I.3.1) 

where h(t) is the hazard rate at time t, ℎ0(𝑡) is the baseline hazard rate at time t, c’ and b 

are the corresponding hazard rates for X and M. 

The Y-regression with only X as a predictor (analogous to Equation I.2.3) is 

omitted because the difference in coefficients method (c-c’) is less accurate than the 

product of coefficients method (ab) when a non-normal variable (e.g., categorical, 

survival) is included in the model.  A non-normal variable used as an outcome causes 

issues that some of the parameters in the model are fixed at a particular value to identify 

the model.  For example, the residual variance of a binomial logistic regression is fixed at 

𝜋2

3
 in order to estimate the threshold and slope.  This constraint causes problems that the 

scales are not the same across different models.  The same kind of issue is pertinent with 

a survival outcome where the specified error hazard function is not normally distributed 

in an AFT model (Fulcher et al., 2016).   
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B. Mediation with a Survival Mediator 

In social science, the survival event is not always a terminal event.  Some 

examples of events in social science are reemployment (Kiefer, 1998; Lancaster & 

Nickell, 1979; Lancaster, 1980), recidivism (Sherman & Berk, 1984), smoking relapse 

(Stevens, & Hollis, 1989), relapse of affective disorders (Lavori, Keller, & Klermaet al., 

1984), first onset of an affective illness (Rice et al., 1987), and absence at work 

(Finchman, 1989).  The duration of time before the occurrence of these events can be an 

outcome that may be regressed on a set of predictors (e.g., treatment); however, the 

duration of time before occurrence of the events can be a used as a predictor of future 

outcomes.  For example, the duration of being unemployed can predict work competence 

upon reemployment, the time after quitting smoking until relapse can predict health 

outcomes, and the incubation period of an affective illness can predict future conflicts 

with family members.  

If a survival variable is used simultaneously as an outcome and as a predictor in a 

model, the proposed model can be called as a survival mediator model.  In the following 

sections, a single survival mediator model is formally introduced and some of the issues 

with a survival mediator model are discussed.  Of importance, the censored predictor 

issue in the Y-regression is discussed and the natural direct and indirect effects are 

derived using the potential outcomes approach in causal mediation.      

B.1. The Single Survival-Mediator Model 

Similar to the mediation model with a survival outcome, the single survival 

mediator model consists of two regressions: the M-regression which regresses the M 

variable on X and the Y-regression which regresses the Y variable on both X and M 
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simultaneously.  In case of a mediation model where M is a survival variable and Y is a 

continuous variable, a Cox model can be used for the M-regression.  Using the notation 

used in Equation I.1.27 for the M-regression,  

 ℎ(𝑡) =  ℎ0(𝑡) exp(𝑎𝑋) (I.3.2) 

where exp(a) denotes the hazard ratio between the treatment group (X=1) and the control 

group (X=0) when X is a treatment indicator.  The Cox model for the M-regression 

correctly controls for the probability of the censored cases while estimating the hazard 

ratios (see Chapter I, 1. Survival Analysis for details).   

The remaining part of the survival mediator model is the Y-regression.  If Y is a 

continuous variable, the Y-regression is an OLS-regression (analogous to Equation I.2.2) 

with the complication that M is a censored predictor in the model.  A problem that arises 

with a censored predictor in the Y-regression is explained in the next section.  

B.2. Censored Predictor in the Y-regression 

The censored values for predictor M in the Y-regression can cause bias in 

estimating the regression coefficients.  When there is a right-censored predictor in the 

model, the regression coefficient can be inflated, either positively or negatively, 

compared to what the coefficient would be with known values of the predictor.  Figure I-

8 shows a hypothetical example of what may happen with a censored predictor in a 

model.  In Figure I-8, the solid dots represent the data points with true M and Y values, 

the hollow dots are the Y values at censored M values (e.g., time at the end of 

observation), line-A depicts the regression line when the known true values of M are used 

in the Y-regression, and line-B represents the regression line when the censored values 

are used for M.  The slope of line-B is greater than line-A because of the high Y-values at 
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censoring time of M.  Therefore, the regression is biased in line-B when the censored 

values of M is used in the Y-regression.  

B.2.a. Treating Censored Values as a Missing Data Problem 

In practice, we do not know the true value of M after a certain time point (e.g., 

time at the end of study).  One approach is to use the last known observed time (e.g., time 

at the end of the study).  As demonstrated in Figure I-8, the regression coefficient can be 

biased using the last known observed time.  Another approach is to treat M as having a 

missing value instead of the last known observed time value.  Then, the censored 

predictor issue can be viewed as a missing data problem.  Schafer and Graham (2002) 

introduced three different mechanisms of missing data (also see Enders, 2010 for details): 

missing completely at random (MCAR); missing at random (MAR); and not missing at 

random (NMAR).  The MCAR mechanism assumes that the missingness is totally 

independent of any other possible variables in a dataset.  The MAR mechanism assumes 

that the missingness is random only after controlling for a set of variables.  In other 

words, the missing values of a variable can be predicted by other variables in a dataset 

and after the prediction, the error would be random.  The NMAR mechanism assumes 

that the missingness of a variable is attributable to the values of the variable itself.  For 

example, a person who drinks a lot may be too drunk to answer a questionnaire about 

drinking problems.   

Different missing data techniques can be used depending on the missing 

mechanism (see Enders, 2010 and Schafer & Graham, 2002 for more details).  If the 

MCAR assumption is true, listwise deletion (a.k.a. complete case analysis) can be used.  

Listwise deletion uses only data with non-missing values for all the variables in the 
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model.  By definition of the MCAR assumption, the distribution of the missing values is 

equivalent to the distribution of the non-missing values and therefore, the model 

estimates using only non-missing observations are consistent to have using the full data.  

If the MAR assumption is true, modern missing data techniques such as multiple 

imputation (MI) and (full information) maximum likelihood (FIML; or just ML) are 

recommended.  Both methods can include auxiliary variables that help predict the 

missing values and model estimates are consistent after controlling for auxiliary variables 

and variables in the model.  The FIML missing data method is widely used in research 

because its implementation in statistical software such as Mplus (Muthén & Muthén, 

1998-2015).  In Mplus, the FIML is the default estimator and therefore researchers do not 

need to make an extra effort to deal with missing data.  MI is also widely used and 

implemented in statistical software (e.g., SPSS, SAS and Mplus) but multiple steps (1. 

generate multiple imputed datasets, 2. run statistical analysis for each of the datasets, and 

3. merge the results from each dataset) are needed.  At last, if the NMAR assumption is 

true, the missing data mechanism model needs to be included into the main analysis.  

However, since we do not know the true missing data model, a sensitivity analysis is 

recommended. 

B.2.b. A Simulation Study Addressing the Censoring Predictor Issue 

In this section, I report the results of a small simulation study conducted to 

examine the performance of different methods to deal with the censoring predictor issue 

in the Y-regression (Equation I.2.2) of a survival mediation model.  The different methods 

that are compared are 1) OLS regression using true values of M, 2) OLS regression using 

censored values of M, 3) treating censored M values as missing and using FIML for the 
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Y-regression, and 4) treating censored M values as missing and OLS regression with non-

missing observations only (Complete Case).  Method 1 is expected to produce unbiased 

Y-regression estimates (i.e., b and c’) since the exact values are known that generated the 

data.  That is, the correct M-values that generated the Y-values based on the Y-regression 

model are used for model estimation and thus the model estimates are expected to 

resemble the true parameter values within statistical error.  On the other hand, method 2 

using the censored M-values would be expected to produce biased estimates because of 

the shift of Y-values at the censoring M-value (see Figure I-1).  The most interesting part 

of this simulation study is the comparison of the two missing-data approaches.  It would 

be helpful to see which of the two methods would produce statistically better (in terms of 

Type I error and statistical power) results and resemble the estimates derived from 

Method 1.  Theoretically, method 3 using FIML would not lose any observations in the 

data analysis and thus is expected to display more statistical power than method 4 using 

only complete cases.    

For the true population model, a single survival-mediator model with small effect 

size path coefficients for the a-path and b-path (both .14) and a zero c’-path was 

specified.  Predictor X was assumed to be a continuous variable following a normal 

distribution with a mean of zero and a standard deviation of one.  The true M-values were 

generated from an exponential hazard (𝜆 = .1) baseline Cox model with X as a predictor 

(a = .14).  Under the MCAR assumption, the censoring values were generated from an 

independent (random) censoring process following an exponential function (𝜆 = .043).  

Then, the censored M-values were evaluated at the true timing value when the true timing 

value was smaller than the censoring value and evaluated at the censoring value when the 
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true timing value was equal or larger than the censoring value.  The censored 

observations were adjusted to be approximately 30% of the sample.  Finally, the Y-values 

were generated from the true regression model with X (c’ = 0) and M (b = .14) as 

predictors.  The true M-values were used in generating the Y-values.  Therefore, the 

generated Y-values are the values assuming we knew all the true M-values (without any 

censoring) and the X values.  One thousand replication datasets were generated with a 

sample size of 300 for each of the datasets.  Generation of data and all analyses were 

done in SAS 9.4 (SAS Institute Inc, 2014).  Using a Type I error rate of .05 for the 

analyses, the statistical power of the b-coefficient and the Type I error rate of the c’-

coefficient was evaluated from the 1,000 replications as well as the average estimate.  

Since the true b-value was .14, b should be statistically significant (different from zero) in 

the replicated analyses.  Statistical power was determined as the percentage of significant 

bs out of 1,000 replications.  On the other hand, the true value of c’ in the population 

model was zero.  Therefore, Type-I error was determined as the percentage of significant 

c’s (false alarms) out of 1,000 replications.   

Table I-4 summarizes the results from the simulation study using the four 

different methods.  First of all, as expected, using the true M values (method 1) produced 

accurate estimates of b (mean = 0.14) and c’ (mean = -0.001) with 100% statistical power 

and 5% Type I error, respectively.  The censored M values (method 2) produced 

problems with the c’ parameter; biased estimates of c’ (mean = -0.11) were obtained and 

the Type I error was 24.5% compared to the nominal 𝛼 = .05.  However, the estimates for 

b were unbiased (mean = -.001) and the statistical power for b was 100%.  Among the 

missing data techniques, the complete case method (method 4) worked better than the 
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FIML method (method 3).  Method 4 worked as well as method 1; average b = 0.14 with 

statistical power of 100% and average c’ = -0.001 with 5% Type I error.  However, 

method 3 produced a relatively more biased estimate of b (mean = 0.17) and the 

statistical power drastically dropped to 12.6%.  Also, there was relatively more bias in the 

c’ estimate (mean = -0.02) and the Type I error was smaller than expected (should be 5%) 

at 0%.   

In conclusion, given MCAR, the small simulation study suggested that the 

complete case method (or equivalently, the listwise deletion method) can produce 

unbiased estimates for b and c’ for the Y-regression.  This was expected since listwise 

deletion produces unbiased estimates when the MCAR assumption is satisfied (Enders, 

2010).  However, unexpectedly, FIML produced biased estimates in the small simulation 

study where MCAR was assumed.  Normally, FIML is known to produce unbiased 

estimates when the missing data mechanism is MCAR or MAR (Enders, 2010).  The 

unexpected result seems to be an artifact of the simulation where the only variables that 

help estimation of the missing M values are the X and Y variables.  Although these 

variables should not have any relationship with the missingness of M under the MCAR 

assumption, they seem to have pulled the missing values of M towards their favor since 

they are the only variables that are in the model and thus causing bias in the Y-regression.  

The results also supports Paul Allison’s argument that the listwise deletion method is 

robust to the missing data mechanism assumptions (MCAR or MAR) when there is only 

missing data in the independent variable (a.k.a. predictor) in a linear regression (2001).  

Therefore, in the main simulation proposed in the next chapter, complete case analysis 

will be used for the Y-regression assuming that the missing data mechanism is MCAR.  
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B.3. The Natural Indirect Effect of a Single Survival Mediator Model 

In this section, causal mediation using the counterfactual approach (see Chapter I, 

2. Mediation Analysis, Section B.3.) is applied to the situation where the mediator is a 

survival variable and the outcome is a continuous variable.  In particular, derivation of 

the natural indirect effect (derivations of other effects can be done using similar logic) is 

shown using the “law of iterated expectations” (VanderWeele, 2011) and the “Darth 

Vader rule” (Muldowney, Ostaszewski, & Wojdowski, 2012).  First, the law of iterated 

expectations is described in the following equation, 

 𝐸[𝑌] =  ∫ 𝐸(𝑌|𝑋)𝑃(𝑋)d𝑥
𝑥

 (I.3.3) 

Intuitively, Equation I.3.3 integrates across all X values to compute the marginal 

expectation of Y.  Equation I.3.3 applied to the single mediator model becomes,  

 𝐸[𝑌|𝑀, 𝑋 = 𝑥] =  ∫ 𝐸(𝑌|𝑀(𝑋 = 𝑥))𝑃(𝑀(𝑋 = 𝑥))𝑑𝑚
𝑚

 (I.3.4) 

In Equation I.3.4, the expectation of Y is computed by integrating through all possible 

values of M given a fixed value of X=x.  Next, the Darth Vader rule is expressed as, 

 𝐸[𝑀] =  ∫ 𝑆(𝑀)
∞

0

𝑑𝑚 (I.3.5) 

where S(M) is the survival function of M (see Equation I.1.5 for definition of the survival 

function).  In other words, the expected value of a survival variable is computed by 

integrating the survival function across all possible values of M.  

The following derivations are based on a strong set of assumptions: 1) No 

confounders in the single mediator model (Figure I-7), and 2) Sequential ignorability (see 

Chapter I, 2. Mediation Analysis, Section B.3) is true.  Starting from the definition of the 
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NIE given in Equation I.2.9, using Equation I.2.2 for the Y-regression along with the law 

of iterated expectations and the Darth Vader rule provides,   

 𝑁𝐼𝐸 = 𝐸[𝑌(𝑋 = 𝑥, 𝑀(𝑋 = 1))] − 𝐸[𝑌(𝑋 = 𝑥, 𝑀(𝑋 = 0))]  
From Equation 

I.2.9 

 

=  ∫ 𝐸[𝑌|𝑋 = 𝑥, 𝑀 = 𝑚]𝑃(𝑀|𝑋 = 1)
𝑚

−  ∫ 𝐸[𝑌|𝑋 = 𝑥, 𝑀 = 𝑚]𝑃(𝑀|𝑋 = 0)
𝑚

 

 

 = ∫ (𝑏𝑚 + 𝑐′𝑥)𝑃(𝑀|𝑋 = 1)
𝑚

−  ∫ (𝑏𝑚 + 𝑐′𝑥)𝑃(𝑀|𝑋 = 0)
𝑚

  

 = ∫ 𝑏𝑚𝑃(𝑀|𝑋 = 1) + 𝑐′𝑥
𝑚

− ∫ 𝑏𝑚𝑃(𝑀|𝑋 = 0) + 𝑐′𝑥
𝑚

  

 = 𝑏{𝐸[𝑀|𝑋 = 1] − 𝐸[𝑀|𝑋 = 0]}  

 = 𝑏 {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚
∞

0

− ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚
∞

0

} (I.3.6) 

The equation in the second step is the direct application of the law of iterated 

expectations.  In the third step, Equation I.2.2 is applied for the Y-regression (the 

expected value for Y).  The fourth step is rearrangement of the third step.  From step four, 

note that only the first part in the integrals are relevant to the integral function.  The latter 

part of the integrals, c’x is a constant value and thus is eliminated in the fifth step.  Note 

that because of the elimination of c’x, the estimates of the TNIE and the PNIE do not 

depend on the X value and thus, the two estimates are equivalent.  Also, using the 

definition of expectations, 𝐸(𝑋) =  ∫ 𝑥𝑓(𝑥)𝑑𝑥, the equation in step 4 reduces to the 

equation in step 5.  Finally, the Darth Vader rule is applied and gives the result of 

Equation I.3.6.  After substituting the survival functions in Equation I.3.6 with a given 
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model (e.g., Cox model), further computation of the integrals is mathematically 

extremely difficult if not impossible (involves integration of double exponential 

functions).  From Equation I.1.11, the survival functions are expressed as an exponential 

function of the negative integral of the hazard function.  Substituting the hazard function 

(i.e., Equation I.3.2) in the survival function results in a complicated function that 

includes integrals of an exponential function of another exponential function.  Although, 

a simple form of the NIE is difficult to derive, the NIE can be empirically evaluated 

through Equation I.3.6.  Equation I.3.6. involves two major steps, 1) Estimation of the b 

parameter from the Y-regression using the complete case method described in Chapter I, 

3. Survival Mediation Analysis, Section B.2, and 2) Compute the difference of the 

summed survival functions for a given X value (X=1 and X=0).  For a given X value, the 

second step involves: estimation of the survival functions at each time point and then 

calculating the area under the curve3 across the time points.  After completing the two 

major steps, the estimates from the two steps are multiplied to get an estimate of the NIE.   

Since the NIE estimate itself is a complicated function already, the standard error 

of the NIE would be a complicated or else an intractable solution.  Therefore, instead of 

trying to estimate a test statistic (t or z statistic) and evaluate the NIE using the test 

statistic under certain known distributions (t or z distribution), a bootstrap method is 

employed to evaluate the NIE.  An empirical distribution is generated by bootstrapping 

the NIEs.  Then, a (1-𝛼) confidence limit is computed for the empirical distribution.  If 

                                                           
3 In this study, the area under the survival curves were estimated by a numerical integration approach using 

the trapezoidal rule.  For a given small time interval (a, b), the area under the curve can be estimated by 

calculating the area of a small trapezoid.  The time difference, (b - a) is multiplied by the average survival 

function evaluated at the two time points, (S(a)+S(b))/2.  Then, the whole area under the curve is computed 

by adding up all the trapezoids over all possible time intervals in the data.  
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the confidence limit contains zero, the NIE is not significant, otherwise, the confidence 

limit does not contain zero, the NIE is significant.  

    

Conclusion of the Survival Mediation Analysis Section 

In a mediation model, the mediator or the outcome can be a survival variable.  

The focus of this dissertation is a mediation model with a survival mediator.  A Cox 

model can be used for the M-regression which gives an unbiased estimate of the X on M 

effect without having to specify a baseline hazard function.  However, biased estimates 

can be obtained in the Y-regression because of the censored M predictor in the Y-

regression.  One method to correct this problem is to treat the censored M values as 

missing and use modern missing data techniques.  A small simulation study showed 

evidence that complete case analysis produced unbiased estimates for the Y-regression 

assuming the censoring data mechanism is MCAR.  This section has also shown 

derivation of the NIE for the single survival-mediator model.  In contrast to the ab 

estimate of the mediated effect, the NIE provides an accurate estimate of the indirect 

effect for the survival-mediator model.  More about the ab mediated effect and the NIE 

will be discussed in the Discussion chapter.  

In the next chapter, a simulation study is proposed to evaluate performance of 

different mediated effect testing methods for the single survival-mediator model.   
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  II. METHOD 

1. Purpose of the Simulation Study  

The purpose of this Monte-Carlo simulation study was to compare the 

performance of different methods of evaluating a mediation effect (i.e., indirect effect) in 

a single survival mediator model.  There are various methods to evaluate the indirect 

effect such as the joint-significance test (evaluating the a and b coefficients separately; 

MacKinnon et al., 2002), the Sobel test (Sobel, 1982), distribution of the products test 

(MacKinnon, Lockwood, & Hoffman, 1998), bootstrapping methods (MacKinnon, 

Lockwood, & Williams, 2004; MacKinnon, 2008), and causal mediation methods using 

the counterfactual approach (Muthén, 2011; Pearl, 2001; VanderWeele & Vansteelandt, 

2009).  Most of this work has focused on mediation models with continuous mediators 

and outcomes.  However, less research has been done investigating a survival mediation 

model and comparing performance of different methods to evaluate the indirect effect for 

a single survival mediator model.  The current study is important in two ways: 1) 

providing accurate statistical methods for estimating a single survival mediator model 

and 2) providing empirical comparison of different methods evaluating the indirect effect 

for a single survival mediator model.  

Figure II-1 shows the single-mediator model where X is a binary variable 

(0=control and 1=treatment), M is a survival variable, and Y is a continuous variable.  

Fitting the single-mediator model in Figure II-1 consists of fitting two regressions: the M-

regression and Y-regression.  The a-path coefficient is estimated from the M-regression 

and the b-path and c’-path coefficients are estimated from the Y-regression.  If the M-

variable is a timing variable, the M-regression is a typical survival analysis model using 
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for example a Cox regression.  In case of censored values for the M variable, it is crucial 

to use a Cox regression instead of an OLS regression because the Cox regression 

appropriately adjusts for bias in the regression estimates, whereas OLS regression would 

not be free from bias.   

Since the Y-variable is a continuous variable in the model in Figure II-1, the Y-

regression can be appropriately estimated with OLS regression using the X and M 

variables as predictors.  One of the complications of a survival mediator is that the b-path 

or/and c’-path can be biased when using the original M-variable with censored values in 

the Y-regression.  As a fix to this issue, using only the uncensored cases for the Y-

regression is proposed.  As discussed in the previous chapter (Chapter I, 3. Survival 

Mediation Analysis, Section B.2.b), using only the uncensored cases for the Y-regression 

works well assuming the MCAR assumption holds for censoring values of M.   

After fitting the appropriate statistical models for the single survival mediator 

model, the indirect effect can be evaluated using different methods.  Namely, the 

different methods of interest are the joint-significance test, Sobel test, distribution of the 

products test, percentile bootstrap of ab, bias-corrected bootstrap of ab, and percentile 

bootstrap of the natural indirect effect (NIE).  Simulation studies comparing different 

indirect effect test methods for a mediation model with a continuous mediator and a 

continuous outcome has shown that: 1) the Sobel test produces very low statistical power 

with a small effect size and small sample size, 2) the bias-corrected bootstrap of ab 

produces higher than nominal level (𝛼 = .05) Type I errors and inflated statistical power 

in some cases, and 3) the distribution of the product test, joint-significance test, and 

percentile bootstrapping perform best among the methods.  Performance of the causal 
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mediation approach is unclear because previous simulation studies did not include this 

approach.  Although performance of the different indirect effect tests for a continuous 

mediator and outcome model is revealed from previous simulation studies, less is known 

about how these different methods work in a single survival mediator model.  The 

following proposed simulation study provides empirical evidence of how well these 

approaches would perform under certain conditions.   

 

2. Overview of the Simulation Procedure 

The basic model structure used for the simulation study is a single-mediator 

model where the mediator is a survival variable and the outcome is a continuous variable.  

Figure II-1 shows the basic mediation model used for the simulation study.  Five different 

factors were manipulated for data generation.  The five factors were 1) the size of the a-

path (0, 0.21, or 0.52), 2) the size of the b-path (0, 0.14, or 0.39), 3) the size of the c’-path 

(0 or 0.39), 4) the censoring proportion of the survival variable (0% or 30%), and 5) the 

sample size (150 or 300).  Details of these factors are given in the next section.  

Manipulation of the first five factors yield 72 (3x3x2x2x2) different combinations of true 

population values of the proposed model.  One thousand datasets were created under each 

of these different combinations.  Then, for each of the datasets, the model in Figure II-1 

was fitted to each generated dataset.  The single-mediator model consists of fitting two 

regression models: the M-regression and the Y-regression.  The Cox model was used for 

the M-regression and OLS regression was used for the Y-regression.  To obtain unbiased 

estimates for the Y-regression, the censored values of M were treated as missing.  Then, 

assuming the missing mechanism is MCAR, only the complete cases (uncensored 
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observations) were used in the OLS Y-regression.  After fitting the mediation model, the 

performance of six different indirect test methods (Sobel test, the distribution of the 

product test, the percentile bootstrap, the bias-corrected bootstrap, the joint-significance 

test, and the bootstrap test of the total natural indirect effect) were compared.  The 

performance was evaluated with 1) empirical Type I error rate, 2) empirical statistical 

power, 3) parameter coverage rate, 4) average raw bias, 5) average relative bias, 6) sign 

of the bias (whether it is a negative or positive bias) and 7) mean squared error (MSE).  

There were 6 factors in total, 3 (a path size) x 3 (b path size) x 2 (c’ path size) x 2 

(censoring proportion) x 2 (sample size) x 6 (indirect effect test method) = 432 

conditions.  Based on the metric of the outcomes, logistic regression or analysis of 

variance (ANOVA) was employed to examine the effects of the factors.  Interaction 

terms up to 3-way interactions were included in the logistic regression or ANOVA model 

(discussed later).  A flow chart of the simulation study procedure is given in Figure II-2.  

 

3. Factors of the Simulation Study 

In this section, the six factors in the simulation study are discussed in detail.  The 

first five factors determine the true parameter values of the data-generating model and the 

sample size of the datasets.  Namely they are, 1) the size of the a-path, 2) the size of the 

b-path, 3) the size of the c’-path, 4) the censoring proportion of the M-variable, and 5) the 

sample size.  These five factors were included in the simulation study to control for their 

effects and to examine whether there were conditions where one indirect test method 

performs better than another method.   
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The sixth factor and the main interest in this simulation study is the method used 

to evaluate the indirect effect.  Once each dataset was created and the proposed survival-

mediator model was fitted to each of the datasets, six different methods were used to 

evaluate the indirect effect.  Namely they are, 1) the Sobel test, 2) the distribution of the 

products test, 3) percentile bootstrap, 4) bias-corrected bootstrap, 5) joint-significance 

test, and 6) percentile bootstrap of the NIE.  

A. Size of the Regression Coefficients (a, b, and c’) 

The magnitude of the regression coefficients a, b and c’ was manipulated in the 

simulation study to see whether the results changed as the magnitude of the indirect effect 

(ab) changed.   

The Y-regression is an OLS regression with X and M as predictors in the model. 

Coefficient b is the regression of Y on M controlling for X and coefficient c’ is the 

regression of Y on X controlling for M.  The magnitude of the b-path was manipulated to 

have values of 0, 0.14 or 0.39 in the population to approximately match Cohen’s 

recommendations of zero, small (2% of explained variance in the outcome) and medium 

(14% of explained variance in the outcome) effect sizes, respectively (MacKinnon et al., 

2002).  For the c’-parameter, two levels, 0 and 0.39 were selected to each represent a 

situation when there was zero direct effect (fully mediated model) and when there was a 

direct effect with a medium effect size.  

The a-parameter is the regression coefficient in the M-regression.  In this study, 

the true model for M-regression was a Cox regression with X as a predictor.  The a-

coefficient in a Cox regression is interpreted as a log hazard ratio and the exponential 

value of a is the hazard ratio.  The a-values used for the current simulation study were 0, 
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0.21, or 0.52 (corresponding hazard ratios, exp(a) = 1, 1.23, or 1.69) which correspond to 

Cohen’s guidelines of zero, small, and medium effect sizes.  The following procedure 

was used to determine the effect sizes for a.  These effects were estimated based on Hsieh 

and Lavori (2000) formula of calculating sample size required for a Cox regression 

model.  

From Hsiesh and Lavori (2000), the number of event occurrences (i.e., number of 

deaths in their example), D, for a Cox regression model is: 

 𝐷 = (𝑍1−𝛼 +  𝑍1−𝛽)2[𝜎𝑥
2𝑎2]−1  (II.1) 

where,  𝑍1−𝛼 is the standard normal deviate at the desired one-sided significance level 𝛼, 

𝑍1−𝛽 is the standard normal deviate at the desired power 1 −  𝛽, 𝜎𝑥
2 is the variance of a 

predictor variable X, and 𝑎 is the regression coefficient related to a unit increase in X.  

Once D is computed for a given 𝛼-level, 1 −  𝛽 level and effect size, 𝑎, then, the required 

total sample size is D/P, where P is the overall death rate.  The overall death rate, P is the 

number of deaths in proportion to the total sample.   

From Equation II.1, the equation can be rearranged relative to 𝑎, 

 𝑎 =  √
(𝑍1−𝛼 + 𝑍1−𝛽)2

𝐷𝜎𝑥
2

 (II.2) 

In Equation II.2, we can use 𝑍1−𝛼/2 instead of 𝑍1−𝛼 to evaluate a based on a two-

tailed test instead of a one-tailed test. 

Meanwhile, for a two-sided test to detect a regression estimate with an effect size 

of Cohen’s d = 0.2 and 0.5 (small and medium) with 𝛼 = .05, 1 −  𝛽 = .80, the required 

sample size is respectively, n = 788 and 128 using a sample size software, GPower 3.1 

(Faul, Erdfelder, Buchner, & Lang, 2009).  Taking these sample sizes into a survival data 
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and assuming 10%4 of data are right-censored, the number of event occurrences is 

respectively, D = 709.2 and 115.2.  

X is a binary variable in which 50% of the cases have a value of 0 (control group) 

and 50% of the cases have a value of 1 (treatment group).  The variance of the binary 

predictor, 𝜎𝑥
2 = 0.5(1-0.5) = 0.25.  The required effect size for 𝛼 = .05, 1 −  𝛽 = .80 and 

respective D values (709.2 and 115.2) can be calculated by plugging in these numbers in 

Equation II.2.  This results in 𝑎 = 0.2104 and 0.5221, corresponding to the D values of 

709.2 and 115.2, respectively.  These numbers translate into respective hazard ratios of 

exp(a) = 1.2342 and 1.6856. 

B. Censoring Proportion of the M Variable 

In this study, the mediator variable is a survival variable.  One important aspect of 

a survival variable is that censoring may exist in the data.  Right-censoring is the most 

frequently observed type of censoring in real data and therefore, only right-censoring is 

considered in this study.  Right-censoring typically occurs when the observation period 

has reached its end but also it can occur for other reasons such as attrition.  Therefore, 

rather than using a fixed time point that indicates the end of observation, the censoring 

time is assumed to follow a specific distribution.  In this study, the censoring time was 

assumed to follow an exponential distribution with a parameter of 𝜆𝐶.  That is, the hazard 

rate of censoring in this study is a constant value of 𝜆𝐶 over the entire time interval.   

The censoring proportion which is the ratio of the number of censored 

observations to the total observations is manipulated to have about 0% or 30% censoring 

                                                           
4 Ten percentage of censoring was arbitrary decided based on the author’s experience with survival data as 

a mediator. Higher percentage of censoring will require larger effect size of a to achieve a specific value of 

statistical power (e.g., power=.80) with a given Type I error rate (e.g., 𝛼=.05).  
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in this study.  To illustrate how the censoring proportion is manipulated in this study, the 

distribution of the M-variable’s time-to-event needs to be explained first.  For this study, 

the time-to-event (T) for the M-variable was assumed to follow an exponential 

distribution with a parameter of 𝜆𝑇 = 0.1.  That is, the hazard rate is a constant (= 0.1) 

throughout the time interval and the average time-to-event is 1/𝜆𝑇 = 10.  As seen in the 

parametric survival models in Chapter I, the time-to-event can follow various kinds of 

distributions such as the exponential distribution, the Gompertz distribution and the 

Weibull distribution.  Among the many different distributions, the exponential 

distribution was chosen because of mathematical simplicity to calculate the censoring 

proportion.   

Consider two independent exponential random variables T (time-to-event) and C 

(censoring) with parameters 𝜆𝑇 and 𝜆𝐶, respectively.  By independence, the joint 

probability density function of T and C is   

 𝑓𝑇,𝐶(t, c) = 𝜆𝑇𝜆𝐶 exp(−𝜆𝑇𝑡) exp (−𝜆𝐶𝑐)         t > 0, c > 0 (II.3) 

Also, consider a new random variable, Y = C – T.  The censoring proportion can be 

calculated by deriving the cumulative function 𝐹𝑌(𝑦) of Y for the range of  𝑦 ≤ 0, which 

follows to be  

 

𝐹𝑌(y) = P(Y ≤ 𝑦)   

           = 𝑃(𝐶 − 𝑇 ≤ 𝑦) 

           = 𝑃(𝑇 ≥ C −  𝑦) 

           = ∫ ∫ 𝑓𝑇,𝐶(t, c)𝑑𝑡𝑑𝑐
∞

𝑐−𝑦

∞

0
 

           = ∫ ∫ 𝜆𝑇𝜆𝐶 exp(−𝜆𝑇𝑡) exp (−𝜆𝐶𝑐)𝑑𝑡𝑑𝑐
∞

𝑐−𝑦

∞

0
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           =  
𝜆𝐶

𝜆𝑇+ 𝜆𝐶
exp (𝜆𝐶𝑦)                                           𝑦 ≤ 0 (II.4) 

If 𝑦 = 0, this implies that 𝑐 ≤ 𝑡, which indicates that the time-to-event is greater than the 

censoring time meaning that the timing value would be censored at the censoring time in 

this case.  From Equation II.4, the censoring proportion is P(Y ≤ 0) = 𝐹𝑌(0) =  
𝜆𝐶

𝜆𝑇+ 𝜆𝐶
.  

Therefore, 𝜆𝐶 = 0 for 0% censoring and 𝜆𝐶 = 0.0430 for 30% censoring.  

An infinite number of 𝜆𝑇 values (with restriction, 𝜆𝑇 ≥ 0) can be used and there 

can be different underlying distributions (e.g., Weibull distribution) for the time-to-event 

other than the exponential distribution.  However, neither the type of distribution nor the 

shape or location of the distribution affects the regression parameter estimates in the 

mediation model because of the utilization of the Cox regression in this study.  One of the 

greatest advantages of using Cox regression is that it does not need to specify an 

underlying function of the time-to-event while estimating the regression parameters. 

C. Sample Size 

Sample size is an important factor in simulation studies.  With larger sample 

sizes, the parameter estimates have smaller standard errors and thus higher statistical 

power.  In contrast, if the sample size is small, the parameter estimates have larger 

standard errors and thus lower statistical power.  In some cases, the fitted model might 

fail to converge due to small sample sizes.  In this study, sample sizes of 150 or 300 were 

used that are comparable to common sample sizes used in social science.  

D. Different Methods to Evaluate the Indirect Effect  

In this study, six different modern methods to evaluate the indirect effect were 

compared.  The six methods can be classified into three groups.  Four out of the six 
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methods are in the first group which is related to evaluation of the product term, ab.  

Namely, they are the Sobel test, percentile bootstrap, bias-corrected bootstrap, and 

distribution of the product method (see Chapter I, 2. Mediation Analysis, Section B for 

details).  The joint-significance test alone is in the second group of testing indirect effects 

and is done by looking at the significance of the a and b coefficients separately and the 

indirect effect is only significant when both of the regression coefficients are significantly 

different from zero.  The last method is bootstrapping the NIE derived from using the 

counterfactual framework in causal mediation (see Chapter I, 3. Survival Mediation 

Analysis, Section B.3 for details).  In summary, the NIE for the survival-mediator model 

can be computed by b multiplied by the difference between the integral of a survival 

function given an x-value (e.g., x = 1) and the integral of a survival function given an x’-

value (e.g., x’ = 0).  The true parameter NIE value is unknown because it is not just a 

function of the model parameters.  The NIE can only be estimated by the data. 

 

4. Data Generation and Estimation 

The data generation process for the simulation study is given as a flow chart in 

Figure II-3.  First of all, data for X was generated.  The X-values for a continuous X, 𝑋𝑐𝑜𝑛, 

was randomly picked from a standard normal distribution.  Then, the X-values for a 

binary X, 𝑋𝑏𝑖𝑛, was determined as 0 when 𝑋𝑐𝑜𝑛 < 0 and 1, otherwise.  The other 

variables, T, M and Y all depend on the binary values of 𝑋𝑏𝑖𝑛 in the following data 

generation process.  

In the second data generation step, values for variable T (time-to-event) were 

generated by the method proposed by Bender, Augustin, and Blettner (2005).  Their 
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method uses a uniformly distributed random variable to generate the values of time-to-

event assuming a Cox regression (inverse transform method).  The method can be 

explained in four major steps.  First, from the Cox model representation and the 

relationship between the hazard function and cumulative distribution function from 

Chapter I (see Equations I.1.7 and I.1.11), the distribution function of the Cox model is  

 𝐹(𝑇|𝑥) = 1 − exp [−𝐻0(𝑇) exp(𝑎𝑥)] (II.5) 

where 𝐻0(𝑡) =  ∫ ℎ0(𝑢)
𝑡

0
𝑑𝑢 denotes the cumulative baseline hazard function and 𝑎 is the 

regression coefficient for the X on M effect.  Then, from the fact that the cumulative 

function for a random variable always follow a uniform distribution on the interval [0, 1], 

U ~ Uni[0, 1], and also the fact that (1-U) ~ Uni[0, 1], Equation II.5 becomes 

 𝑈 = exp[−𝐻0(𝑇) 𝑒𝑥𝑝(𝑎𝑥)] ~ 𝑈𝑛𝑖[0, 1] (II.6) 

In the third step, 𝐻0 can be inverted and the time-to-event, T, can be expressed as 

 𝑇 = 𝐻0
−1[−log (𝑈) 𝑒𝑥𝑝(−𝑎𝑥)]  (II.7) 

In the last step, the inverse of the cumulative baseline hazard function, 𝐻0
−1 is substituted 

into Equation II.7.  In the case of an exponential baseline hazard function, 𝐻0
−1(𝑡) =

 𝜆𝑇
−1𝑡 and therefore inserting this into Equation II.7 results in 

  𝑇 = 𝜆𝑇
−1[−log (𝑈) 𝑒𝑥𝑝(−𝑎𝑥)]  (II.8) 

In summary, Equation II.8 is used to generate the time-to-event values.  In this study, the 

𝜆 value was fixed to .1 and the magnitude of a was a manipulated factor (a = 0, .21 or 

.52) of the study.  Using Equation II.7, T can be generated using different cumulative 

baseline hazard functions, 𝐻0
−1(𝑡), but again, the 𝑎-estimate is not affected by the 

different functions of the baseline hazard since Cox regression is used when estimating 

the regression parameters.  
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  In the third data generation step, the censoring timing values (C) were randomly 

generated from an independent exponential distribution with 𝜆𝐶 parameter.  Then, the M-

variable values were determined as T if the time-to-event value was smaller than the 

censoring time and C, otherwise.  Note that 𝜆𝐶 can have different values (𝜆𝐶 = 0 and 𝜆𝐶 = 

0.043) as a product of the censoring proportion manipulation (0% or 30%) as seen in 

details in Section 3.2 above.  The MCAR assumption is satisfied in the current simulation 

study since the time-to-event (T) was generated independently of the censoring time (C).   

In the last data generation step (Step 4), the Y-values were generated based on the 

Y-regression equation.  Note that the time-to-event variable, T was used in this equation 

instead of M.  The main difference between T and M is that T is an uncensored variable 

and M is a censored variable.  That is, T assumes that all the time-to-event values are 

known and M is a censored version of T where all values above C are censored.  

Therefore, the Y-values in this simulation were based on the uncensored true values of T.  

In reality, we cannot observe T but only M because of the right censoring.  The b (b = 0, 

0.14, or 0.39) and c’ (c’ = 0 or 0.39) coefficients were manipulated factors in this study.  

Finally, a residual term, r was added to the Y-regression.  The residual term was assumed 

to follow a standard normal distribution (𝑟 ~ 𝑁 (0, 1)) for mathematical simplicity.  

SAS 9.4 was used to generate all data for this simulation study.  A macro was 

created to generate data based on specific values of the study factors.  Inside the DATA 

step in SAS, the RANNOR and RANUNI command were used to randomly generate 

values from the standard normal distribution and the standard uniform distribution, 

respectively.  The RAND(“EXPONENTIAL”) command was used multiplied by a 

quantity defined as the inverse of the 𝜆𝐶 parameter to generate values from an 
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exponential distribution with 𝜆𝐶.  All the other commands in the DATA step follow the 

specifications in Figure II-3.  

Once 1,000 replication samples were generated based on the specific factor levels, 

the estimation procedure is straightforward.  There are two regressions that were fitted for 

the survival-mediator model: the M-regression and the Y-regression.  For the M-

regression, the Cox model was fitted.  For the Y-regression, the censored values in the M-

variable were treated as missing values and only the complete cases were used in the Y-

regression.  Since the data generation process satisfies the MCAR assumption, using only 

the complete cases of M in the Y-regression would recover the parameter values better 

than using the original M-variable with censored values (as shown in the small simulation 

study in Chapter I, 3. Survival Mediation Analysis, Section B.2.b). 

  The entire estimation procedure was done in SAS 9.4.  PROC PHREG was used 

for the Cox regression of the M-variable and PROC REG was used for the OLS 

regression of the M-variable and the Y-variable.  For bootstrapping procedures, PROC 

SURVEYSELECT was used. 

  

5. Dependent Variables (Outcomes) 

Seven dependent variables were used to measure the performance of different test 

methods for the indirect effect.  Namely, they are the empirical Type I error rate, 

empirical statistical power, parameter coverage rate, average raw bias, average relative 

bias, sign (negative or positive) of the bias, and mean squared error (MSE).  Among the 

seven outcomes, the first three outcomes (Type I error rate, statistical power, and 

parameter coverage rate) were used to compare performance of the different indirect 
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effect tests.  The latter four outcomes (average raw bias, average relative bias, sign of the 

bias, and MSE) were used to check whether the proposed statistical methods retrieved the 

true parameter values accurately under different conditions.   

First, the empirical Type I error rate was measured by the number of error 

decisions out of the 1,000 replications saying that the indirect effect was significantly 

different from zero when the true indirect effect was actually zero, a = 0, b = 0, or a = b = 

0.  Out of the 9 interaction levels of a and b (3 levels of a and 3 levels of b), there were 5 

conditions that satisfied ab = 0.  In this study, the 5% level of significance was used.  

Therefore, the indirect effect was expected to be statistically significant in 50 (5%) of the 

1,000 replication samples when the true indirect effect equals zero.  If the Type I error 

rate is largely different from 5% using a particular indirect effect testing method, the 

performance of that method is not preferable.   

The empirical statistical power was measured as the proportion of times out of the 

1,000 replications that the indirect effect to be significantly different from zero given that 

the true indirect effect was actually not a zero value, a ≠ 0 and b ≠ 0.  There were 4 out 

of 9 conditions that satisfied a*b ≠ 0.  Higher values of the statistical power indicate 

better performance of an evaluation method of the indirect effect.  

For each of the replications, parameter coverage was marked by an indicator that 

has a value of 1 when the confidence interval (or confidence limit for the bootstrapping 

methods) of the indirect effect includes the true parameter and a value of 0 when the 

confidence interval does not include the true indirect effect.  The parameter coverage rate 

was quantified by the number of replications with successful parameter coverage out of 

1,000 replications.  Ideally, the parameter coverage rate would be close to .95 (the 
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interval coverages the true parameter value 950 times out of 1,000 replications) given 𝛼 = 

.05.  The parameter coverage rate was only computed for the ab-product methods (Sobel 

test, distribution of the product test, percentile bootstrap and bias-corrected bootstrap).  

The parameter coverage rate could be different for the four different ab-product methods 

because they all estimated the confidence intervals using different methods.  The joint-

significance test does not estimate an indirect effect and confidence intervals and the true 

parameter value for the NIE is unknown.  Therefore, the parameter coverage rate was 

limited to compare performance of the four ab-product test methods.     

The raw bias was calculated using the difference between the true indirect effect 

(𝜃) and the estimated indirect effect (𝜃) in a replication sample using a particular method.  

The average of 1,000 replications was computed.  A relatively small average raw bias 

indicates a good performance of a method.  Since the joint-significance test does not 

evaluate an indirect value and the true NIE is unknown, the average raw bias is only 

relevant to the ab-product methods.  Furthermore, the four ab-product methods (Sobel 

test, distribution of the product test, percentile bootstrap, and bias-corrected bootstrap) 

did not produce different raw biases because the same point estimate of the indirect 

effect, ab, was used for these methods.  Therefore, the raw bias could not be used as an 

outcome to compare performance of the different indirect effect tests.   

Since the raw bias depends on the metric of the coefficient, the relative bias was 

also reported for this study.  The relative bias was computed by 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
𝜃 −  𝜃 

𝜃
  (II.9) 
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Note that the relative bias cannot be calculated when 𝜃 = 0.  The relative bias was 

computed first for each of the replications and then averaged across the 1,000 

replications.  A relatively small average relative bias indicates a good performance of a 

method.  Similar as the average raw mean bias, the relative bias is irrelevant to 

comparing performance of the different indirect effect tests because the ab estimates are 

identical for all tests. 

The average raw and relative bias show how accurately the model parameters 

recover the true values for a given condition.  However, it does not reveal whether the 

parameter estimate is lower or higher than the true parameter value.  The sign of the raw 

bias was investigated to see if there was a systematic tendency of a specific condition of 

the study.  If the estimate was higher than the true parameter value, the raw bias was a 

positive value and if the estimate was lower than the true parameter value, the raw bias 

was a negative value.  The raw bias was zero when the estimate was equal to the 

parameter value.  Again, the sign of the raw bias is not applicable to compare 

performance of the different indirect effect tests because the ab estimates are identical for 

all tests.   

Finally, the MSE was examined.  The MSE was computed as 

 𝑀𝑆𝐸 =  
∑(𝜃 −  𝜃)

2
 

𝑅
  (II.10) 

where R is the number of replications (R = 1,000 for this study).  The MSE can also be 

expressed as the sum of the variance of 𝜃 and the bias of 𝜃 squared: MSE = Var(𝜃) +

Bias(𝜃)2.  Therefore, the MSE captures the variance as well as the bias of an estimate.  A 

relatively smaller MSE indicates good performance of a method.  Again, the MSE is 
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irrelevant to compare performance of the different indirect effect tests because the ab 

estimates are identical for all tests.   

 

6. Logistic Regression and Analysis of Variance 

Logistic regression or ANOVA was conducted for the relevant conditions based 

on the different dependent variables.  Logistic regression analyses were conducted for 

Type I error rate, the statistical power, the parameter coverage rate, and the sign of the 

raw bias.  ANOVAs were conducted for the average raw bias, the average relative bias, 

and the MSE.  

The simulation design of the current study is a 3x3x2x2x2x6 factorial design with 

each of the cells having 1,000 observations of the outcomes.  The six factors are in order 

of: the size of a (factor “A”), the size of b (factor “B”), the size of c’ (factor “C”), the 

censoring proportion (factor “CP”), the sample size (factor “SS”), and the different 

testing methods of the indirect effect (factor “IE”).  Although factor IE is technically a 

within-replication factor (all six of the indirect effect tests were conducted “within” a 

replication sample), it was treated as a between-replication factor in the analyses for ease 

of analysis5.    

Different cells were compared for different outcomes.  For Type I error rate, 

(5)x2x2x2x6 = 240 cells were compared because only 5 (a=0, b=0.14; a=0, b=0.39; 

a=0.21, b=0; a=0.52, b=0; and a=b=0) out of the 9 conditions created by the (AxB) 

                                                           
5 The standard error of the estimates will be larger without considering the dependencies that can arise by 

testing the indirect effects with different methods within a replication sample.  Factor IE is treated as a 

between-replication factor although the standard errors might be larger than normal.  A conservative 

approach (less Type I errors rather than high statistical power) is taken in this study and also, statistical 

significance of the effects is not of primary importance in this study.    
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interaction were related with the Type I error.  Similarly, (4)x2x2x2x6 = 192 cells were 

compared for the Statistical Power because 4 (a=0.21, b=0.14; a=0.21, b=0.39; a=0.52, 

b=0.14; a=0.52, b=0.39) out of the 9 (AxB) conditions were relevant.  For the parameter 

coverage rate, 3x3x2x2x2x4 = 288 cell comparisons were made since the IE factor only 

had four levels (ab-product term: Sobel test, distribution of the product test, percentile 

bootstrap, and bias-corrected bootstrap) that were relevant.  For the average raw bias, 

sign of the raw bias, and the MSE, 3x3x2x2x2 = 72 cell comparisons were made using 

the ab-product method.   For the average relative bias, the true ab parameter value cannot 

be zero.  Therefore, only (4)x2x2x2 = 32 cell comparisons were made.  

The focal variable of this study is the IE factor.  The main effects of the other five 

factors were included in the logistic regression or ANOVA model to control for their 

effects.  Also, interactions related to the IE factor were of interest and included in the 

logistic regression or ANOVA model.  There can be up to a 6-way interaction between 

the 6 factors, but since it is practically too complicated to interpret the interactions that 

are higher than 3-way interactions, only the 2-way and 3-way interactions were included 

in the logistic regression and ANOVA models.  All possible 2-way and 3-way 

interactions were included in the ANOVA or logistic regression model.  However, only 

the 2-way and 3-way interactions that include the IE factor were interpreted.  Other 2-

way and 3-way interactions were included to control for their effects.  

Statistical significance of the main and interaction effects was examined from the 

ANOVA and logistic regression analyses.  Then, for a significant main or interaction 

effect, the marginal means were further examined both numerically and graphically.  This 
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strategy was taken since there was no a priori hypothesis for the simple effects especially, 

for effects related to the six different indirect effect test methods.   

Since there were a large number of observations (i.e., 1,000 replications) in each 

cell of the ANOVA, even diminutive effects could be statistically significant.  

Interpretation of the ANOVA results was focused on effects that have a partial omega 

square (𝜔2̂) over .01 which is a small effect size based on Cohen’s recommendations 

(Cohen, 1988).  For logistic regression, effect coding was used for the binary or 

categorical predictors in the model.  Although, the interpretation of each regression 

coefficient can be less clear for effect coding rather than dummy coding6, effect coding 

was used because the individual regression coefficients were not the focus of this study.  

Instead, the main and interaction effects for each categorical variable or combination of 

the categorical variables were of interest.  In SAS PROC LOGISTIC, joint tests using the 

Wald chi-square statistic (𝜒2) were conducted for each of the main and interaction 

effects.  The joint test can be a multiple degrees of freedom test (more than 1 degree of 

freedom) that tests a collection of tests that add up to a main effect or interaction effect.  

For example, for the main effect of factor A, there can be two simple effects (setting a=0 

as the reference): 1) the difference between the mean when a=0.21 and the mean of 

a=0.21 and a=0, and 2) the difference between the mean when a=0.52 and the mean of 

a=0.52 and a=0.  Since it is difficult to get an appropriate effect size measure for each 

                                                           
6 Using dummy coding, the regression coefficient can be interpreted as the mean difference between the 

target group (e.g., males) and the reference group (e.g., females).  Using effect coding, the regression 

coefficient is the difference between the target group’s mean (e.g., males) and the target and reference 

groups’ mean (e.g., average of the males and females).  The interpretation of the regression coefficient is 

clear using dummy coding but, less clear when effect coding is used.  
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joint test in logistic regression, only main or interaction effects that had p < .01 were 

focused. 

 

7. Expected of Results  

The performance across the different indirect effect test methods is of most 

interest.  Based on results from previous simulation studies, the distribution of the 

product test, joint-significance test and the percentile bootstrap would performance best 

in terms of Type I error rate, statistical power and parameter coverage rate.  Also, 

bootstrapping of the NIE effect would work as well as the three best performing methods.  

In contrast, Sobel test would produce too low Type I error rate with small effect size and 

small sample size.  The biased-corrected bootstrap would produce higher than nominal (𝛼 

= .05) Type I error rates in some conditions which also produces bogus high statistical 

power rate and lower than .95 parameter coverage rate. 

The 2-way and 3-way interactions related to the IE factor show whether the 

indirect tests perform differently in different conditions of this study.  Since this is the 

first study to investigate the survival-mediator model, the directions of the 2-way and 3-

way interactions are exploratory in this study.    

Although they are of less importance in this study, the following main effects 

were expected for the other factors in the study:  

(1) Magnitude of the a-path and b-path: Both the magnitude of the a-path and the b-

path were expected to have similar effects on the outcomes.  The raw bias and the 

MSE were expected to be larger as the magnitude of the true path coefficients 

were larger.  Relative bias and the sign of the raw bias were expected not to differ 
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as a function of the size of the path coefficients.  Statistical power would be 

higher as the path coefficients had a larger effect size.  The Type I error rate and 

parameter coverage rate would not be affected by the magnitude of the path 

coefficients.     

(2) Magnitude of the c’-path: There would be no noticeable difference in all seven 

outcomes as a function of the c’-path size.  

(3) Censoring proportion of the M variable: As the proposed survival-mediator model 

handles the censored data appropriately, no noticeable difference in all seven 

outcomes were expected. 

(4) Sample size: Generally, the sample size affects both the accuracy (bias) of the 

estimate and the standard errors.  Larger the sample size, smaller the bias and 

standard errors of the estimate.  The raw bias, relative bias and MSE would be 

smaller as the sample size increased.  Statistical power would increase with larger 

sample size.  Type I error rate, parameter coverage rate and the sign of raw bias 

would be less affected by sample size.   
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III. RESULTS 

The proposed single survival-mediator model converged in all conditions.  There 

were no non-convergence or improper solutions while fitting the model to the datasets.  

The estimates of a, b, and c’ were all in a reasonable range.  The mean raw bias of all 

replications (72,000 replications) were 0.002 for the a-estimate, -0.000 for the b-estimate 

and 0.001 for the c’-estimate.  None of the mean raw biases were over 0.020 in 

magnitude for any of the 72 study conditions.  The maximum (in magnitude) mean raw 

bias for all three estimates was 0.018 for the a-estimate, -0.001 for the b-estimate and   

-0.012 for the c’-estimate7.  The reasonable range of estimates of the a, b and c’ 

parameters and convergence in all conditions validated data generation and that the 

proposed model worked as expected.   

The following sections show the results for the average raw bias, average relative 

bias, sign of the raw bias, mean square error (MSE), Type I error rate, statistical power, 

and the parameter coverage rate, respectively.  The first four outcomes show how the true 

parameter values are recovered by fitting the proposed single survival-mediator model.  

The last three outcomes show performance of the different indirect effect test methods.  

Since outcomes are not expected to change significantly with different values of the c’-

path size and the censoring proportion, each of the tables and figures are presented with a 

specific fixed value of c’-path and/or censoring proportion. 

  

                                                           
7 The condition that produced the maximum (in magnitude) raw bias was when a=0.52, b=0.39, c’=0.39, 

censoring proportion=0.3, and n=150 for the a-estimate; a=0.52, b=0.39, c’=0, censoring proportion=0.3, 

and n=150 for the b-estimate; and a=0, b=0, c’=0.39, censoring proportion=0, and n=150 for the c’-

estimate.   
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1. Recovery of the True Parameter Values 

The average raw bias, average relative bias, sign of the raw bias and the MSE are 

all related to how well the ab-product point estimate recovered the true parameter value.  

There were four indirect effect test methods that used the ab point estimate: Sobel test, 

distribution of the product test, percentile bootstrapping and bias-corrected bootstrapping.  

These methods differ in the way to evaluate whether the effect is significant or not, 

however the ab point estimate itself does not differ across the different methods.  

Therefore, the four methods produce the same values for the average raw bias, average 

relative bias, sign of the raw bias, and the MSE. 

A. Average Raw Bias of the ab Estimate 

 Table III-1 and Figure III-1 show the average raw bias of the ab estimate when c’ 

= 0.  Table III-2 and Figure III-2 show the average raw bias when c’ = 0.39.  The average 

raw bias of all 72,000 observations was 0.000 with a standard deviation of 0.039.  The 

ANOVA results for the average raw bias are shown in Table III-3.  The ANOVA 

revealed that none of the main and interaction effects had an effect that exceeds partial 

𝜔2̂=.01.   

B. Average Relative Bias of the ab Estimate 

 The average relative bias was only computed for conditions when the true a and b 

parameter values were non-zero.  Table III-4 and Figure III-3 show the average relative 

bias of the ab estimate when c’ = 0.  Table III-5 and Figure III-4 show the average 

relative bias when c’ = 0.39.  The average relative bias of all 32,000 observations was 

0.008 with a standard deviation of 0.580.  As displayed in Tables III-4 and III-5, the 

minimum cell mean relative bias was -0.036 (a=0.21, b=0.14, c’=0, n=300 and censoring 
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proportion=0) and the maximum cell mean relative bias was 0.037 (a=0.52, b=0.39, 

c’=0.39, n=300 and censoring proportion=0).  The minimum and maximum average 

relative biases were generally low, never exceeding 4% of the parameter value.  Table 

III-6 shows the ANOVA results for the average relative bias.  None of the main or 

interaction effects had a partial 𝜔2̂ above .1.   

C. Sign of the ab Raw Bias 

Table III-7 and Figure III-5 show the sign of the ab raw bias when c’ = 0.  Table 

III-8 and Figure III-6 show the sign of the ab raw bias when c’ = 0.39.  Out of the 72,000 

replications (1,000 replications for 72 (3x3x2x2x2) conditions), there were 59 datasets 

that produced estimates that were the same as the true population ab parameter.  For a 

given condition, the maximum number of datasets that the estimate was equal to the true 

parameter value was 6 out of 1,000 replication datasets (this occurred for the following 

condition: a=0, b=0.39, c’=0.39, n=300, censoring proportion=0).  Except of those 59 

datasets, there was around a half and half split of the negative (36,020 or 50.07%) and 

positive (35,921 or 49.93%) raw biases.  That is, almost half of the time the parameter 

estimate was smaller than the true parameter value and half of time the parameter 

estimate was larger than the true parameter value.  Table III-9 shows the results of the 

logistic regression for the sign of the ab raw bias.  A Wald statistic with p < .01 was 

considered as a meaningful effect.  Logistic regression revealed that all of the effects had 

a p-value higher than .01.  
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D. Mean Squared Error  

 Table III-10 and Figure III-7 show the MSE of the ab estimate when c’ = 0.  

Table III-11 and Figure III-8 show the MSE of the ab estimate when c’ = 0.39.  The 

average MSE across the 72,000 observations was 0.002 with a standard deviation of 

0.004.  As displayed in Tables III-10 and III-11, the maximum cell mean MSE was 0.006 

(a=0, b=0.39, c’=0, n=150, censoring proportion=0.3) and there were multiple conditions 

(when either a or b or both a and b were zero) where the cell mean MSE was below 

0.0001.  Table III-12 shows the ANOVA result for the MSE.  Effects that had a partial 

𝜔2̂ above .1 are meaningful.  The ANOVA revealed that the size of the b-path had a 

significant effect on the MSE after controlling for all other effects (main effect of B: F = 

9024.83, p < .001, partial 𝜔2̂ = .20).  The MSE was essentially zero for conditions where 

b was zero.  The MSE was smaller than 0.001 for small b (b=.14) and the MSE was 

above 0.002 for medium b (b=.39).  MSE is a function of bias and the standard error of 

an estimate.  The effect of factor B was very small for the average raw and relative 

biases.  Therefore, the significant MSE difference between the different magnitudes of b 

originates from the standard errors of the ab indirect effect.  A higher effect of the b-path 

introduced significant increase in the standard errors of the ab indirect effect.   

 

2. Performance of the Six Indirect Effect Test Methods 

 Performance of the six different test methods (Sobel test, distribution of the 

product test, percentile bootstrapping, bias-corrected bootstrapping, joint-significance 
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test, and the bootstrap of the NIE) were evaluated by the Type I error rate, statistical 

power rate and parameter coverage rate.   

A. Type I Error Rate 

Separate tables and figures of Type I error rates are given for each combination of 

factor C (size of c’) and factor CP (censoring proportion).  Table III-13 and Figure III-9 

(c’ = 0 and zero censoring); Table III-14 and Figure III-10 (c’ = 0 and 0.3 censoring); 

Table III-15 and Figure III-11 (c’ = 0.39 and zero censoring); and Table III-16 and Figure 

III-12 (c’ = 0.39 and 0.3 censoring) show the Type I error rate for each of the indirect test 

methods.  In each of the figures, the different indirect effect tests are represented by 

separate lines.   

Results of the logistic regression of the Type I error rate are shown in Table III-

17.  Effects that are related to the IE factor and had a p-value lower than .01 are 

interpreted below.  Logistic regression revealed that the AxIE (size of a x indirect effect 

test method) interaction was significant after controlling for all other effects, 𝜒2(10) = 

46.86, p < .001.  The Type I error rate did not significantly differ across the six indirect 

effect test methods when the true value of a was zero.  However, there was a significant 

difference in the Type I error rate when a was a small effect (a=0.21) or a medium effect 

(a=0.52).  The Type I error rate difference between the bias corrected bootstrap method 

and the Sobel test was particularly large when a was a medium effect (a=0.52).  While 

the distribution of the product method, percentile bootstrapping, joint significance test 

and the bootstrapping of the NIE produced a Type I error around the nominal level (𝛼 = 

.05) with small fluctuation across the other conditions, the Type I error rate for the bias 
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corrected bootstrap was high around .075 and the Type I error rate for the Sobel test was 

less than .025.  This result supports the argument made by MacKinnon and his colleagues 

that the Type I error can be higher than the nominal level using the bias-corrected 

bootstrap method (Fritz et al., 2012) and also that the Sobel test produces lower than the 

nominal level Type I error (MacKinnon et al., 2002).  Importantly, the results hold not 

only for continuous mediators and outcomes, but for the survival-mediator model 

proposed here, especially when the a-path gets larger.   

Another significant effect was the BxIE (size of b x indirect effect test method) 

interaction after controlling for all other effects, 𝜒2(10) = 29.63, p < .01.  All of the 

indirect effect test methods produced a Type I error rate close to zero when b was a zero 

effect. However, when b was a small (b=0.14) or a medium (b=0.39) effect, the Type I 

error rate using the bootstrap method for the NIE was lower than the nominal level while 

the other methods produced around the nominal level Type I error rate.  This result was 

prominently observed when the censoring proportion was 0.3.  The bootstrap for the NIE 

displayed less than .025 Type I error rate while the other methods showed around .05 

Type I error rate.  The calculation of the NIE involves numerical integration across the 

time points available in the data.  The high rate of censoring might cause less accurate 

computation of the NIE and thus cause low Type I error rates.  More about calculation of 

the NIE will be described in the Discussion section below.      

Other than the logistic regression results relevant to the IE factor, there was a 

main effect of the A factor (size of a) after controlling for all other effects, 𝜒2(2) = 

546.08, p < .001.  The average Type I error rate was higher when a was a medium effect 
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(a=0.52; Type I error rate=.05) than when a was a zero effect (a=0; Type I error 

rate=.04) and when a was a small effect (a=0.21; Type I error rate=.01).  Other 

significant 2-way interactions (BxSS) and 3-way interactions (BxCPxSS) are not 

discussed here since they were not focal variables of the study.    

B. Statistical Power 

Separate tables and figures of statistical power are given for each combination of 

factor C (size of c’) and factor CP (censoring proportion).  Table III-18 and Figure III-13 

(c’ = 0 and zero censoring); Table III-19 and Figure III-14 (c’ = 0 and 0.3 censoring); 

Table III-20 and Figure III-15 (c’ = 0.39 and zero censoring); and Table III-21 and Figure 

III-16 (c’ = 0.39 and 0.3 censoring) show the statistical power for each of the indirect test 

methods.  In each of the figures, the different indirect effect tests are represented by 

separate lines.  Note that the statistical power for the bias-corrected bootstrap method 

might be inflated because of the inflated Type I error rate.   

Results of the logistic regression for statistical power are shown in Table III-22.  

Effects that are related to the IE factor and had a p-value lower than .01 are interpreted 

below.  Logistic regression revealed that the CPxIE (censoring proportion x indirect test 

methods) interaction had a significant effect on statistical power while controlling for all 

other effects, 𝜒2(5) = 149.09, p < .001.  Comparing the Figures III-13 with III-14 and III-

15 with III-16, the statistical power for the bootstrap of the NIE was constantly lower 

than the other methods when the censoring proportion was 0.3.  There was somewhat less 

difference between the bootstrap of the NIE method and the other methods when the 

censoring proportion was zero.  The lower statistical power for the bootstrap of the NIE 
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might be a function of the lower Type I error rate when the censoring proportion was 0.3.  

Again, this has to do with the numerical integration for computing the NIE and will be 

further discussed in the Discussion section below.   

There was a significant main effect of factor A (size of a), 𝜒2(1) = 23236.06, p < 

.001; significant main effect of factor CP (censoring proportion), 𝜒2(1) = 1259.79, p < 

.001; a significant main effect of factor SS (sample size), 𝜒2(1) = 5396.18, p < .001; and 

a significant main effect of factor IE (indirect effect test method), 𝜒2(5) = 450.38, p < 

.001.  The average statistical power was higher when the parameter value of a was 

medium (statistical power = .89) than small (statistical power = .29).  The average 

statistical power was larger for the zero censoring condition (statistical power = .63) than 

the .3 censoring proportion condition (statistical power = .55).  The average statistical 

power was higher for the 300 sample size condition (statistical power = .68) than the 150 

sample size condition (statistical power = .50).  Also, the average statistical power was 

lower for the bootstrap of the NIE method (statistical power = .53) than the other five 

methods which were similar to each other (statistical power = .60).  Other significant 2-

way interactions (AxCP; AxSS; BxCP; CPxSS) or 3-way interactions (AxBxCP; 

AxCPxSS; BxCPxSS) that are irrelevant with the IE factor is not discussed further since 

they were not focal variables of the study. 

C. Parameter Coverage Rate 

Separate tables and figures of parameter coverage rates for each combination of 

factor C (size of c’) and factor CP (censoring proportion) are presented.  Table III-23 and 

Figure III-17 (c’ = 0 and zero censoring); Table III-24 and Figure III-18 (c’ = 0 and 0.3 
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censoring); Table III-25 and Figure III-19 (c’ = 0.39 and zero censoring); and Table III-

26 and Figure III-20 (c’ = 0.39 and 0.3 censoring).  In each of the figures, separate lines 

represent the different indirect effect tests.  Note that only four lines (Sobel test, 

distribution of the product test, percentile bootstrapping and bias-corrected bootstrapping) 

are depicted in the figures.  Parameter coverage rate is irrelevant for the joint-significant 

test because it does not quantify the indirect effect when testing the indirect effect.  Also, 

parameter coverage rate was not computed for the bootstrap of the NIE method in this 

study because the true parameter value of the NIE is unknown.  

Results of the logistic regression of the parameter coverage is shown in Table III-

27.  Effects that are related to the IE factor and had a p-value lower than .01 are 

interpreted below.   Logistic regression revealed that there was a significant 3-way 

interaction among factor A (size of a), factor B (size of b) and factor IE (indirect effect 

test methods) after controlling for all other effects, 𝜒2(12) = 29.81, p < .01.  The 

difference among the four different indirect effect test methods was prominent when a 

was a medium effect (a=0.52) while b was a zero effect.  The Sobel test produced a 

higher than nominal level (=.95) parameter coverage rate around .975 and the biased-

corrected bootstrap method produced a lower than nominal level parameter coverage rate 

around .925 while the distribution of the product method and the percentile bootstrap 

methods on average produced about .95 parameter coverage rate.  This supports the 

conclusion from the Type I error rates where the bias-corrected bootstrap method showed 

higher than nominal level Type I error rates and the Sobel test showed lower than 

nominal level Type I error rates.  The difference among the different indirect effect test 

methods was smaller when a was a small effect (a=0.21) while holding b at a zero effect 
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and there was an even smaller difference between the methods when a and b were both 

zero effects.  The difference between the indirect test methods were negligible when b 

was a small (b=0.14) or medium (b=0.39) effect regardless the size of a (a=0, a=0.21 or 

a=0.52).   Moreover, the AxIE (size of a x indirect effect test method) interaction and the 

BxIE (size of b x indirect effect test method) interaction were both significant after 

controlling for all the other effects, 𝜒2(6) = 23.85, p < .01 and 𝜒2(6) = 155.23, p < .001, 

respectively.  The maximum difference of the parameter coverage rate between the four 

indirect effect test methods became larger as the size of a increased.  On average, while 

the order of the average parameter coverage rate did not change (Sobel test > distribution 

of the product test > percentile bootstrap > biased-corrected bootstrap) across the values 

of the a-coefficient, the maximum difference (Sobel test – biased corrected bootstrap) 

was 0.004, 0.011, and 0.022, respectively for a zero (a=0), small (a=0.21) and medium 

(a=0.52) sized a.  Also, there was a noticeable difference in the parameter coverage rates 

between the four indirect effect test methods when b was a zero effect but, the difference 

between the indirect effect test methods were negligible when b was a small (b=0.14) or 

medium (b=0.39) effect.  Again, across the values of b, the order of the average 

parameter coverage rate did not change (Sobel test > distribution of the product test > 

percentile bootstrap > biased-corrected bootstrap) but, on average, the maximum 

difference in the average parameter coverage rate between the Sobel test method and the 

biased-corrected bootstrap was 0.031 when b was a zero effect, 0.005 when b was a small 

effect (b=0.14) and 0.002 when b was a medium effect (b=0.39).         

Logistic regression also revealed a significant interaction between the SS factor 

(sample size) and the IE factor (indirect effect test method) after controlling for all other 
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effects, 𝜒2(3) = 15.55, p < .01.  The maximum difference in the average parameter 

coverage rate between the four indirect effect test methods was between the Sobel test 

and the bias-corrected bootstrap (Sobel test > bias-corrected bootstrap) in both the 150 

and 300 sample size conditions.  The difference was slightly larger for the 150 sample 

size condition (Sobel test – bias-corrected bootstrap = 0.0133) than the 300 sample size 

condition (Sobel test – bias-corrected bootstrap = 0.0116). 

Other than the logistic regression results related to the IE factor, the following 

main effects were significant after controlling for all other effects in the model: effect of 

the A factor (size of a), 𝜒2(2) = 472.50, p < .001; effect of the B factor (size of b), 𝜒2(2) 

= 635.41, p < .001; effect of the CP factor (censoring proportion). 𝜒2(1) = 8.55, p < .01; 

effect of the SS factor (sample size), 𝜒2(1) = 36.58, p < .001; and effect of the IE factor 

(indirect effect test methods), 𝜒2(3) = 160.41, p < .001.  The average parameter coverage 

rate decreased as a larger a was used, 0.966, 0.961, and 0.950 for a=0, a=0.21 (small) and 

a=0.52 (medium), respectively.  The average parameter coverage rate was inflated when 

b was a zero effect (parameter coverage rate=.98) whereas, the average parameter 

coverage rate was equal at the nominal level of .95 when b was a small (b=0.14) or a 

medium (b=0.39) effect.  The average parameter coverage rate was slightly higher when 

the censoring proportion was 0.3 (parameter coverage rate=0.960) than when the 

censoring proportion was zero (parameter coverage rate=0.958).  The average parameter 

coverage rate was slightly higher when the sample size was 150 (parameter coverage 

rate=0.961) than when the sample size was 300 (parameter coverage rate=0.957).  

Finally, the average parameter coverage rate was 0.965 for the Sobel test, 0.960 for the 
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distribution of the product test, 0.958 for the percentile bootstrap method and 0.953 for 

the bias-corrected bootstrap method. 

Other significant 2-way interactions (AxB; AxSS; BxSS; CxCP) or 3-way 

interactions (AxBxCP; AxCxCP; AxCPxSS; BxCxCP; BxCxSS) that are not relevant for 

the IE factor are not discussed further since they were not focal variables of the study. 
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IV. DISCUSSION 

In psychological and health intervention studies, the duration of being in a 

specific state might be a short-term objective for which an intervention program aims.  

For example, the goal of a smoking cessation program is to keep the participants 

abstinent of tobacco as long as possible.  The amount of time staying away from smoking 

can promote lung health measured by a spirometer (an instrument to measure the lung’s 

air capacity) at a later time point.  Survival mediation analysis can be used to answer 

research questions with these types of survival variables.  In the smoking cessation 

program example, the mediator is a survival variable targeted by the intervention 

program to promote lung health in the future.   

This dissertation focused on a single survival-mediator model (see Figure II-1) 

where the independent variable is a randomized treatment indicator, the outcome is a 

continuous variable and the mediator is a survival variable which measures both when the 

event had occurred and whether the event had been observed or not within the 

observation period.  In this dissertation, a statistical model for the survival-mediator 

model was proposed.  Also, a statistical issue (biased estimates in the Y-regression) of the 

model was discussed and a solution for the issue was proposed.  Different methods to 

evaluate the mediated effect or in other words, the indirect effect were discussed and a 

mathematical derivation of the natural indirect effect (NIE) was shown.  Finally, a 

simulation study was conducted to evaluate the performance of the different indirect 

effect test methods.   

In the following sections, first, the statistical model for the survival-mediator 

model will be revisited with discussion about the underlying assumptions of the model 
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and the solution that was proposed for the Y-regression.  Second, the indirect effect 

measures, the product of a and b (ab) and the NIE will be discussed focusing on the 

interpretation and statistical testing of the effects.  Third, the results from the simulation 

study will be summarized and recommendations will be made for researchers.  Also, 

limitations and future directions of the study will be discussed.  Fourth, a made-up data 

example will be introduced to help interpret the estimates of the survival-mediator model.  

Last, final comments will be made about survival mediation analysis.  

   

1. Statistical Model for the Survival-Mediator Model 

The single survival-mediator model consists of two regression equations.  The 

first one is the M-regression where the independent variable X predicts the survival 

variable, M.  The Cox proportional hazards model (Cox, 1972) was proposed as the M-

regression in this study.  The Cox model is a widely used survival model where the 

hazard rate is modeled as a function of a baseline hazard rate (the hazard rate when all 

predictors in the model are zero) and an exponential function of a linear combination of a 

set of predictors (see Equation I.3.2 in Chapter I).  The Cox model can be biased with 

violation of the proportional hazards assumption which means that there is no interaction 

between time and the predictors of the model.  Figure IV-1 depicts the proportional 

hazards assumption.  The proportion of two different hazard rates with different X-values 

becomes a subtractive function when the logarithm of the proportion is taken: 

log [
ℎ(𝑡|𝑋=0)

ℎ(𝑡|𝑋=1)
] = log[ℎ(𝑡|𝑋 = 0)] −  log[ℎ(𝑡|𝑋 = 1)] .  In Figure IV-1, the logarithm of the 

proportion of the hazard rate of a person with X=1 to the hazard rate of a person with X=0 

is a constant (a) across all time points.  Although the proportional hazards assumption 
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can be stringent for some data, there are methods to relax the assumption by including the 

interaction term between time and the predictors in the model or using a stratified model 

(see Chapter I, 1. Survival Analysis, Section D.2.c for more details).  Also, the advantage 

of using the Cox model is large enough to overcome its need of the stringent proportional 

hazards assumption.  Even though the baseline hazard function is specified in the Cox 

model, the baseline hazard does not need to be estimated while estimating the regression 

parameters (a-parameter in the survival-mediator model). 

Another interesting model that can be used as the M-regression in a survival-

mediator model is the accelerated failure time (AFT) model.  The AFT model 

parametrizes the acceleration factor which shows how fast (or slow) the time scale is for 

a specific group of observations compared to another group of observations.  The AFT 

model has its own advantages such that interpretation of the regression coefficients is 

straightforward, but one of the major difficulties with the AFT model is that the 

researcher has to specify a baseline survival function which can be complicated and 

might or might not fit the data well.  See Chapter I, 1. Survival Analysis, Section D.1. for 

more details about the AFT model.    

The other regression of the survival-mediator model is the Y-regression.  In the 

proposed survival-mediator model of this dissertation, the Y variable is a continuous 

variable.  Therefore, a conventional multiple regression where X and M are 

simultaneously predicting the Y variable can be used (see Equation I.2.2 in Chapter I, 2. 

Mediation Analysis).  However, if the censored data in M is not treated adequately, the Y-

regression estimates b (M predicting Y controlling for X) and c’ (X predicting Y 

controlling for M) can be biased.  Without any treatment, the last observed time point for 
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the censored data is used and it causes bias in the regression coefficients.  See Chapter I, 

3. Survival Mediation Analysis, Section B.2. for more details.  This is an important issue 

especially because all conventional statistical packages such as SAS, SPSS or Mplus 

would easily fit the Y-regression to the data.  The statistical programs do not know 

whether there are censored values in M and instead, the program would just treat the last 

available time point as a valid value of M and thus, introduce bias in the Y-regression.  

This was shown in the small simulation study conducted in Chapter I, 3. Survival 

Mediation Analysis, Section B.2.b.  When the censored M values (the last available time) 

were used for the Y-regression, the c’ estimate was biased and the Type I error rate of c’ 

was inflated (see Table I-4 for results).       

 A proposed solution for the bias issue in the Y-regression is to treat the censored 

M-values as missing values.  Then, assuming that the missing data mechanism is missing 

completely at random (MCAR), complete case analysis (a.k.a., listwise deletion) of the Y-

regression produces unbiased estimates.  This solution seems to work well, even better 

than the full information maximum likelihood (FIML) method which usually gives 

unbiased estimates as well as higher power than the listwise deletion method because it 

does not exclude observations from the analysis.  Allison (2001) argued that the listwise 

deletion method is a robust method with violations of the MCAR assumption and even 

under the missing at random (MAR) assumption when only the predictor is missing but 

not the outcome missing in a regression analysis.  In reality, the MAR assumption is 

more likely to be true than the MCAR assumption.  Therefore, careful further 

investigation is needed to see how the missing data techniques (listwise deletion versus 

FIML) work under different assumptions (MAR or MCAR assumption) for the survival-
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mediator model.  Furthermore, in many cases, censoring may occur because the timing 

value itself is the cause of the censoring.  That is, censoring may occur because the true 

time exceeds a specific given time point (i.e., the end of the observation).  This missing 

data mechanism where the missingness is dependent on the variable’s value itself is 

called not missing at random (NMAR).  Future studies need to examine missing data 

techniques under the NMAR assumption.   

 

2. Measures of the Indirect Effect  

In mediation analysis with a single continuous mediator and a continuous 

outcome, the indirect effect is quantified as the product of a and b, ab or equivalently, c – 

c’.  The equivalence of ab = c – c’ only holds for specific conditions: 1) when both the 

mediator and outcome are continuous variables and 2) the sample size for estimating the 

parameters in the M- and Y-regression are the same (MacKinnon, 2008).  The 

equivalence between the two indirect effect measures does not hold for a survival-

mediator model.  The reason of the nonequivalence is related to the different uses of the 

survival mediator in the M- and Y-regression.  For the M-regression, the outcome is the 

hazard rate.  The a-coefficient, which is the log hazard rate change for a one-unit increase 

in the X variable (the difference between the treatment and control), is in the natural 

logarithm unit (refer to Equation I.1.28 of Chapter I).  The exponent of a represents the 

hazard ratio which is a ratio of the hazard rate when X=1 to the hazard rate when X=0.  In 

contrast, M is used as a continuous time variable in the Y-regression.  The b-coefficient is 

the change in Y for a one-unit increase in M controlling for X.  The discrepancy in the use 

of M in the M- and Y-regression no longer makes the a and b coefficients comparable in 
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units.  A one-unit change of the hazard rate does not directly match on to a one-unit 

change in time.  Therefore, the ab-product for the survival-mediator model is difficult to 

interpret.  Nonetheless, the test of the ab effect is still effective as a test for the indirect 

effect.  VanderWeele (2011) discusses a mediation model where the outcome variable is 

a survival variable and has mathematically proven that the test of the ab effect for the 

survival mediation model is a valid test for the indirect effect.  The same principles apply 

to the survival-mediator model and therefore, although the estimate of the ab effect does 

not have a clearly meaningful interpretation, the test of it is still valid.   

The c – c’ estimate for the indirect effect has not been discussed in this 

dissertation.  The main reason why this estimate was not discussed was because previous 

research on mediation with binary variables have shown that the c – c’ estimate was not a 

good measure of the indirect effect and also the tests for the c – c’ estimate showed poor 

performance (MacKinnon & Dwyer, 1993; MacKinnon et al., 2002; MacKinnon et al., 

2007).  There are not many studies done on the c – c’ estimate with survival mediation 

models.  Tein and MacKinnon (2003) showed that the ab estimate does not equal the c – 

c’ estimate for a mediation model with a survival outcome.  However, it might be the 

case that for the survival-mediator model the c – c’ estimate performs differently than the 

previous studies.  Future studies on the c – c’ estimate and on the relationship with the ab 

estimate for the survival-mediator model is needed.   

Another estimate of the indirect effect that was also introduced in this dissertation 

for the survival-mediator model is the NIE.  Following the mathematical derivation in 

Equation I.3.6 in Chapter I, the NIE for the survival-mediator model can be expressed as 

𝑏 ∗ {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚}.  If there is no exposure-mediator (XM) 
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interaction and no other confounders in the model, the NIE should be directly related to 

the ab estimate.  Since b is both multiplied by the remaining part of the ab and NIE 

estimates, the corresponding part of a in the NIE is the term in the curly brackets.  If we 

go one step above from the final result of Equation I.3.6, the mathematical expression 

inside the curly brackets is {𝐸[𝑀|𝑋 = 1] − 𝐸[𝑀|𝑋 = 0]}.  Therefore, it is the mean time 

difference between the treatment and control group.  One might question why not just 

calculate the mean time for the treatment and control group separately and take their 

difference instead of doing complicated calculations for the integrals?  The answer to the 

question is that the expected value will be biased with censored data in M.  The final 

mathematical expression of Equation I.3.6 gives unbiased estimates of the NIE because 

the survival function handles the censored data appropriately.   

Unfortunately, the conditional survival functions in the final expression of the 

NIE is mathematically too complex to integrate across time.  Instead, a numerical 

integration approach is used to approximate the integrals.  Once given data, numerical 

integration using the trapezoidal rule8 can be used to calculate the integrals of the survival 

functions.  Also, the standard error of the NIE would be mathematically too complicated 

to derive and thus, a bootstrap approach was used to estimate confidence intervals for the 

NIE.  As mentioned above, the corresponding part of the a-coefficient in the NIE is 

{𝐸[𝑀|𝑋 = 1] − 𝐸[𝑀|𝑋 = 0]}.  Although the actual quantity is estimated by 

{∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚} using a numerical integration method, 

mathematically this value equals to the mean time difference between the treatment and 

                                                           
8 The area under the curve can be estimated by calculating the area of a trapezoid for an interval. To 

increase accuracy of the estimate, multiple intervals are divided for the X-axis and the area of the 

trapezoids for each of the intervals are added up.   
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control group.  Therefore, in contrast to the ab estimate, the parts in the NIE (b and the 

expression in curly brackets) are comparable in units (both are in time units).  The NIE 

can be interpreted as the average change in Y between the treatment and the control group 

that is mediated by the time-to-event.  An empirical example interpreting the NIE will be 

given in Section 4 of this chapter.   

Last, the relationship between the a-parameter and the corresponding part in the 

NIE, {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚} is examined.  Here, the comparison 

between the two quantities is empirical since we do not know the true value of the NIE 

and the NIE can only be calculated from the data.  Data were generated following the 

steps described in Chapter II.  One major difference was that only one replication for 

each condition was generated with a huge sample size of n = 1,000,000 to resemble the 

population.  To be consistent, the other parameter values were fixed (b = 0.39, c’ = 0.39, 

n = 1,000,000, and censoring proportion = 0.3)9 while manipulating the values of the a-

parameter at -0.82, -0.52, -0.21, 0, 0.21, 0.52, and 0.82.  Figure IV-2 shows the empirical 

relationship between the a-estimate and the {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚}.  The 

relationship seems to be a nonlinear but it was unknown what the underlying true 

relationship would be.  Further research on this subject is needed.   

In conclusion, the NIE is the best measure of the indirect effect in a survival-

mediator model.  However, since the NIE is a complicated function, conventional 

statistical tests (z or t tests) are difficult to conduct.  Bootstrapping of the NIE estimate is 

available but, as shown in the simulation study in this dissertation, the Type I error rate is 

                                                           
9 There was a negligible difference in the estimates of a and {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚} when 

the b, c’ or censoring proportion was modified to other values. Only the value of the a-parameter affected 

the estimates of {∫ 𝑆(𝑀|𝑋 = 1)𝑑𝑚 − ∫ 𝑆(𝑀|𝑋 = 0)𝑑𝑚}. 
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lower than the nominal level in some conditions and also bootstrapping of the NIE is 

statistically underpowered relative to the other indirect effect test methods especially 

when there is non-zero censoring in M.  In contrast, the ab-estimate is difficult to 

interpret due to the incomparable units of the a and b parameters but, the advantage is 

that several tests are available and valid to evaluate the indirect effect.  More research on 

the c – c’ estimate and its relationship with the other indirect effect measures for the 

survival-mediator model is needed.  

 

3. Conclusions of the Simulation Study 

A simulation study was conducted to assess performance of the different indirect 

effect test methods in the survival-mediator model.  Following the model depicted in 

Figure II-1, 1,000 replication datasets were generated.  The main factor of the simulation 

study was the six different indirect effect test methods and other data generating related 

factors that were manipulated were the magnitude of a, b, c’, the censoring proportion in 

M, and the sample size.  For each of the 1,000 generated datasets, the Cox model for the 

M-regression was fitted to the data.  For the Y-regression, an ordinary least squares (OLS) 

regression while treating the censoring in M as missing was fitted to the data.  Type I 

error rate, statistical power, parameter coverage rate, raw bias, relative bias, negative or 

positive bias, and the mean squared error (MSE) were examined to see whether the 

proposed model fitted well to the data and to compare the performance of the different 

indirect effect test methods.  ANOVA and logistic regression depending on the outcome 

(ANOVA for continuous outcomes and logistic regression for binary outcomes) were 

conducted to help interpret the results.   
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A. Summary of the Results 

The results for the raw bias, relative bias and the sign of the raw bias consistently 

showed that the proposed survival-mediator model fitted the data well without major 

issues.  For the three aforementioned outcomes, there were no substantial effects of the 

model generating factors by themselves or any of the 2- and 3-way interactions of the 

factors.  This result supports that the proposed statistical model works well for the 

survival-mediator model across different conditions.   

As the size of b increased, the MSE of the ab estimate increased substantially.  

The MSE captures two components: the bias of an estimate and the standard error of an 

estimate.  The increased MSE as b increased came from the standard error of the ab 

estimate and not from the bias because the raw and relative bias showed no substantial 

difference as b increased.  

Paralleling previous research (Fritz et al., 2012; MacKinnon et al., 2002) using a 

mediation model with a continuous mediator and outcome, the Type I error rate for the 

survival-mediator model was higher than the nominal level for the bias-corrected 

bootstrap method and lower than the nominal level for the Sobel test.  In this simulation, 

this result was most clearly found when a=0.52 and b=0.  Also, the Type I error rate 

using the bootstrap of the NIE method was lower than the nominal level, especially when 

a=0, b was either 0.14 or 0.39 and the censoring proportion was 0.3.  The NIE was 

approximated using a numerical integration method.  The accuracy of the numerical 

integration depends on how many time points are available in the data.  The accuracy of 

the NIE increases if there are many time points and the accuracy of the NIE estimate 

decreases if there are fewer time points in the data.  In Equation I.3.6, although the range 
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of the integrals is from zero to infinity, the area under the curve is only calculated for a 

finite range of time from zero to the maximum time in the data.  Since the survival 

function is a decreasing function that converges to zero, the area under the curve after 

some time point becomes very small and thus it will make negligible difference in 

calculating the NIE.  However, as the censoring proportion increases, the number of time 

points for the integration decreases and thus, the accuracy of the NIE estimate decreases.  

Inaccuracy in the NIE estimate might have caused the low Type I error rate.  Another 

related result was that the bootstrap of the NIE method produced lower statistical power 

than the other methods, especially when the censoring proportion was 0.3.  Again, the 

NIE estimate can be biased with censored data and this might have caused a low 

statistical power.   

Finally, in some of the conditions, the parameter coverage rate was over the 

nominal level (=.95) for the Sobel test and under the nominal level for the bias-corrected 

bootstrap of ab.  This was true only when b=0; the difference in the parameter coverage 

rate was most prominent when a=0.52.  The difference between the methods was smaller 

when the size of a was smaller or when b was a non-zero effect regardless of the size of 

a.  This result reflects the results from the Type I error rate.  The bias-corrected bootstrap 

rejects the null hypothesis (ab=0) too often.  This result is also reflected in the 95% 

confidence intervals that include the true parameter value (ab=0) than at lower than the 

expected 95% value.  In contrast, the Sobel test accepts the null hypothesis too often 

which is also reflected in the 95% confidence intervals including the zero value too often.    
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B. Recommendations 

Based on the simulation results and some other considerations that were 

previously mentioned, below are several recommendations when fitting a survival-

mediator model. 

1. The Cox model for the M-regression and the OLS regression with listwise 

deletion for the Y-regression are recommended statistical models to achieve unbiased 

estimates of the survival-mediator model.  The simulation results support that these 

statistical models fit the data well except that the standard error of ab increased as an 

increase in the b-coefficient.  Nonetheless, the estimates of the survival-mediator model 

were unbiased.  There are limitations of the proposed statistical models which will be 

presented in the next section.  

2. Cautions should be taken in making decisions about the indirect effect based on 

just the bias-corrected bootstrap method or the Sobel test.  Both are statistical tests for the 

ab effect.  As mentioned in Section 2 in the Discussion, the tests on the ab effect are valid 

tests of the indirect effect, although the ab estimate itself is difficult to interpret.  

However, as the simulation study showed and also as previous literature has shown, the 

bias-corrected bootstrap produces higher than nominal level Type I error rates and the 

Sobel test produces lower than nominal level Type I error rates.  The recommended way 

to test the indirect effect would be to use multiple methods and then, compare the results.  

Researchers can make statistical decisions confidently if the multiple methods all agree. 

3. Caution should be taken in making decisions about the indirect effect based on 

the bootstrap of the NIE method, especially when the censoring proportion is high.  With 

highly censored data, the number of time points in the data might not be enough to 
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calculate an accurate estimate of the NIE.  More importantly, there are no other statistical 

tests that can be conducted on the NIE except for bootstrapping methods.  This restricts 

researchers in making statistical conclusions about the NIE for the survival-mediator 

model.   

4. The NIE estimate should be reported and statistical tests conducted on the ab 

effect.  The NIE for the survival-mediator model is interpretable but lacks a theoretically 

derived statistical testing method.  On the other hand, the ab estimate is hard to interpret 

but a number of valid statistical tests are available.  An example of the interpretation of 

the NIE estimate will be given in the next section for an empirical data example.  Then, 

researchers can make statistical decisions by comparing conclusions from multiple 

statistical tests of the ab effect.    

C. Limitations and Suggestions for Future Research 

There has been some previous research on mediation analysis with a survival 

variable as an outcome (Tein & MacKinnon, 2003; VanderWeele, 2011).  However, this 

is one of the first theoretical studies on mediation analysis with a survival variable as a 

mediator.  In this dissertation, a statistical model that provides unbiased estimates of the 

survival-mediator was proposed.  In addition, a clearly interpretable measure of the 

indirect effect, the NIE, was mathematically derived.  Finally, a simulation study was 

conducted to examine the performance of the different indirect effect tests.  This 

dissertation makes important contributions to the literature of survival mediation analysis.  

Nevertheless, there are several limitations of the dissertation and much more to be 

understood about the analysis of the survival-mediator model.  



114 
 

1. The MCAR assumption of the censored data:  One of the important 

characteristics of survival data is censoring.  Survival analysis where the outcome 

variable is a survival variable has been studied extensively over the past 40 years.  In a 

model where the survival variable is used as an outcome (e.g., Cox model), appropriate 

estimators (e.g., maximum likelihood) have been developed to handle the censored data.  

However, little is known how the censored data should be handled when the survival 

variable is used as a predictor in the mediation model.   

In this dissertation, the censoring in M was treated as missing values and 

assuming that the underlying missing data mechanism is MCAR, complete case analysis 

was utilized in the Y-regression.  There might be a question whether the MCAR 

assumption actually holds for the simulation study conducted.  The method that was used 

to generate the censoring data resembles how Mplus generates censored data (Muthén & 

Muthén, 1998-2012).  In Mplus, the censoring process follows a random exponential 

distribution.  Since an individual’s censoring time is independently and randomly picked 

from the exponential distribution, the MCAR assumption is satisfied.  The more 

interesting question is whether the MCAR assumption is reasonable for real data.  In the 

real world, it is difficult to believe that the censoring process would be completely 

independent of all other variables in the study.  Then, the MAR assumption seems more 

plausible for the censoring.  Under the MAR assumption, the complete case analysis for 

the Y-regression might not be the best strategy to deal with the censoring data (Enders, 

2010).  On the other hand, Allison (2001) argued that the complete case analysis works 

well for regression analysis when only the predictor has missing data.  It is yet unclear 

whether the complete case analysis will work well for the Y-regression of the survival-
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mediator model even when MAR is the underlying missing data mechanism.  Based on 

the small simulation study in Chapter 1, 3. Survival Mediation Analysis, Section B.2.b, 

the FIML method did not work well assuming MCAR.  Theoretically, FIML should work 

as least as well as the complete case analysis assuming MCAR and FIML should work 

better than the complete case analysis assuming MAR as the underlying missing data 

mechanism.  Future studies need to compare the complete case analysis versus the FIML 

method assuming either the MCAR censoring or the MAR censoring.      

2. The relationship between the ab and NIE estimates:  If the mathematical 

relationship between ab and the NIE were known, then we would be able to convert one 

estimate to another.  The mathematical relationship will be challenging to determine 

because the function for the NIE is complex.  Even using the simplest mathematical form 

for the survival function, the integral of the survival function is intractable.  Instead, a 

numerical integration method was used to approximate the NIE.  At this moment, the 

only way to investigate the relationship between the ab effect and the NIE is by inferring 

the relationship from empirical data.  Figure IV-2 is one of the first attempts to infer the 

relationship between a and the corresponding part in the NIE.  The relationship seems 

like a nonlinear function, but the actual nonlinear function is unknown.  A more 

comprehensive study is needed to further investigate the nonlinear relationship.   

3. More detailed or extreme levels of the data generation parameters:  The data 

generation parameters that were manipulated in this dissertation were the size of a, b, c’, 

the censoring proportion of M, and the sample size.  The size of the a and b parameters 

were manipulated to reflect zero, small and medium effect sizes and the size of c’ was 

manipulated to reflect zero and medium effect sizes.  Type I error rates were substantially 



116 
 

high for the bias-corrected bootstrap method and substantially low for the Sobel test 

when a was a medium effect and b was zero.  There might be more interesting results 

with larger effects of the a, b and c’ parameters.  The censoring proportion was 

manipulated to be zero percent and 30%.  With 30% censoring, the bootstrap of the NIE 

method started to show substantially lower statistical power than the other indirect effect 

test methods.  Censoring proportions between zero and 30% need to be studied more 

carefully to see how robust the statistical power is for the bootstrap of the NIE method.  

Also, it might be intriguing to see the performance of the indirect effect test methods 

when the censoring proportion is higher than 30%.  The sample sizes used for this study 

were 150 and 300.  Sample sizes less than n=150 or greater than n=300 might be worth 

investigating (especially, n < 150) to assess how sample size affects the results.  In sum, 

the conclusions made from the simulation studies are restricted to the levels that were 

used to generate the datasets.  Therefore, a more thorough investigation is needed to 

generalize the results found from this study.   

4. Other survival models for the M-regression:  The Cox regression model was 

considered as the M-regression.  The advantage of using the Cox model is that, although 

the baseline hazard rate is included in the mathematical expression of the Cox model, it 

need not to be specified or estimated when estimating the regression parameter that is the 

main interest of the mediation model.  An alternative for the M-regression could be the 

AFT model.  In contrast to the Cox model, the baseline survival function would need to 

be specified in order to estimate the regression parameter in the AFT model.  The 

regression estimate can be biased if the baseline survival function is misspecified.  
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Nonetheless, the acceleration parameter of the AFT model offers an interesting 

interpretation and could be an estimand in which the researcher is particularly interested. 

5. More work on interpreting empirical data:  Much of this dissertation focused on 

theoretical issues for analysis of the survival-mediator model.  An appropriate statistical 

model for the survival-mediator model was proposed and a new measure of the indirect 

effect was developed.  A simulation study was conducted to examine the performance of 

the proposed method and to compare different statistical testing methods.  However, no 

context was given to the model or the parameter estimates.  Without a context, the 

estimates are less meaningful and the interpretation of the survival-mediator model is less 

clear.  Much more work is needed to apply the proposed model to real data to fully 

understand the meaning of the survival-mediator model and its parameter estimates.  To 

broaden the understanding of the survival-mediator model, I fit the model to a made-up 

data example and interpret its parameter estimates in the following section. 

 

4. Constructed Empirical Example 

To understand the meaning of the estimates of the survival-mediator model, I 

generated a random sample using the survival-mediator model (see Figure II-1).  The 

parameter values that were selected are a=0.52, b=0.39, c’=0.39, 𝜆𝑇=0.1, 𝜆𝐶=0.043 

(which generates a censoring proportion of approximately 0.3) and a sample size of 150.  

The survival-mediator model was fitted to the data and the results were interpreted.  For 

meaningful interpretations, here is the description of the data.   
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A preventive intervention targeted to prevent child problem behaviors was 

randomly assigned to 150 families. Out of the 150 families, 74 people received the 

intervention and 76 received the control.  One of the mediators that was of interest was 

the duration of coercive interactions between the parent and child.  Prior literature has 

focused on the detrimental effects of coercive parent-child relations (Patterson, 1982). 

The intervention targets reducing the duration of coercive interactions.  In turn, reduced 

coercive interactions are expected to reduce the child’s future problem behaviors.  To 

assess coercive interactions, a five-minute interaction task was given to parent-child 

dyads and the duration of a coercive interaction bout was measured in seconds.  23.33% 

(n=35) of the observations were censored because the participant’s data were randomly 

lost after a certain time point.  For example, the end time of the coercive interaction bout 

is unknown because the stopwatch malfunctioned after a certain time point.  The child 

behavior checklist (CBCL) externalizing scale was used to measure child’s problem 

behaviors one year after the interaction task. 

 

The single survival-mediator model fitted to data produced parameter estimates of 

�̂� = 0.44 (SE=0.20), �̂� = 0.38 (SE=0.01), and 𝑐′̂ = 0.53 (SE=0.03).  The hazard rate of 

ending the coercive bout was about 1.6 times (exp(.44)=1.56) more likely for the 

treatment group compared to the control group so there is evidence that the intervention 

reduced the time in coercive bouts.  Furthermore, a one second increase in the duration of 

coercive interaction predicted an average of 0.38 points increase in the CBCL 

externalizing score after controlling for the treatment indicator.  The predicted CBCL 
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internalizing score was 0.53 points larger on average for the treatment group than the 

control group while controlling for the coercive interaction duration.  

   The estimate of the indirect effect was 𝑎�̂� = .17 (SE=.01), p < .001, with 95% 

CI=(.02, .32) using the distribution of the product method. One thousand bootstraps of 

the ab estimate resulted in a 95% confidence interval of (.03, .31).  Since the intervention 

indicator predicted the hazard rate of ending the coercive bout (z=2.24 , p=.01), and the 

coercive bout duration predicted externalizing scores, controlling for the intervention 

indicator (z=26.32, p<.001), the joint-significance test was significant.  

   Finally, the natural indirect effect (NIE) was estimated as -1.38 for this dataset.  

The NIE is the difference in the average externalizing score between the treatment group 

and the control group that is produced through the mediator.  On average, the treatment 

group had a 1.38 point lower externalizing score than the control group that was mediated 

by the duration in the coercive bout.  For 1,000 bootstrap samples, the average NIE was -

1.02 with a 95% bootstrap confidence interval of (-1.99, -0.09).  The corresponding 𝑎 

estimate in the NIE (∫ 𝑆(𝑀|𝑋 = 1) − 𝑆(𝑀|𝑋 = 0)𝑑𝑚
∞

0
) which shows the average 

coercive interaction duration difference between the treatment and control group was       

-3.11. Thus, on average, the treatment group ended the coercive interaction 3.11 seconds 

earlier than the control group.  

 

5. Final Conclusions 

Survival analysis integrates information from two variables: when the event 

occurs and whether the event occurs or not.  If the event does not occur within the 

observation period, the event is termed a censored event.  Censoring means that the event 
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did not occur yet, but there is a probability that the event will happen at some later time.  

The benefit of survival analysis is that the censoring probability is always considered and 

used in the analysis rather than being ignored.  Events that occur in social sciences do not 

always lead to a terminal state (e.g., death) as in traditional survival analysis in medicine.  

Therefore, the survival variable can be used as a predictor of another outcome and/or as 

an outcome of another predictor.  The current study examines such a model where the 

independent variable is a binary variable (e.g, intervention indicator) that predicts a 

survival mediator, which, in turn, predicts a continuous outcome.  

A statistical model for the survival-mediator model was proposed in this study.  

The Cox model was used for the M-regression where the survival variable was used as an 

outcome and OLS regression was used for the Y-regression where the survival variable 

was used as a predictor.  To deal with the censored observations in the M predictor in the 

Y-regression, the censored observations were treated as missing data and complete case 

analysis was used, assuming that the censoring mechanism was MCAR.  Two different 

quantities for measuring the indirect effect were discussed.  The NIE is the better 

measure of the indirect effect because it is clearly interpretable.  However, due to its 

complex function the NIE does not have a theoretically derived statistical test.  In 

contrast, the ab effect is difficult to interpret because of the inconsistent units of the a and 

b coefficients, but the statistical tests for the ab effect are valid tests of the indirect effect.  

A simulation study was conducted comparing different indirect effect test methods.  The 

results showed that the Type I error rate was too high and parameter coverage was too 

low using the bias-corrected bootstrap method.  In contrast, the Type I error rate was too 

low and the parameter coverage rate was too high using the Sobel test.  Additionally, as 
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the censoring proportion in the data increased, the NIE estimate became inaccurate in 

some cases and the percentile bootstrap of the NIE method displayed low Type I error 

and low statistical power.  Despite its limitations, this is the first study investigating the 

survival-mediator model.  Much more work is required, but the proposed survival-

mediator framework is a promising area of research that can answer unique research 

questions.  
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Table I-1. 

Example of Calculating the Kaplan-Meier Estimate 

Time to death 

(𝑡𝑖) 

Number survived 

(𝑁𝑡𝑖
) 

Number died 

(𝐸𝑡𝑖
) 

Number censored 

(𝐶𝑡𝑖
) 

Kaplan-Meier  

estimate (�̂� (𝑡)) 

𝑡0 = 0 100 0 0 1.00 

𝑡1 = 2 100 1 0 0.99 

𝑡2 = 10 99 8 1 0.91 

𝑡3 = 15 90 30 5 0.61 
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Table I-2. 

Comparison of the Accelerated Failure Time Model and Cox Proportional Hazards 

Model 

 Accelerated failure time 

model 

Cox proportional hazards 

model 

Focused dependent variable Survival function Hazard function 

Functional form Parametric Semi-parametric 

Assumption Distribution of the survival 

function 

Proportional hazards 

assumption 

Estimator Maximum likelihood Partial maximum likelihood 

Advantages Easy interpretation No need to specify a baseline 

hazard function 

Disadvantages 
True distribution of the 

survival function can be 

misspecified 

The proportional hazards 

assumption can be violated.  
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Table I-3. 

Made-up Example to Illustrate Partial Likelihood 

Event j Individual i Time (years) 𝑡𝑖 Event (death) 𝛿𝑖 

1 79 5 1 

. 25 6 0 

2 67 7 1 

. 43 7 0 

3 8 11 1 

. 17 11 0 

… … … … 
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Table I-4.  

Simulation Results Using Four Different Methods to Deal with the Censoring Predictor 

Issue in the Y-regression 

Method 

Average b 

(S.E.) 

Statistical Power of b 

Average c’ 

(S.E.) 

Type-I error of c’ 

1. True M .14 (.01) 100% -.001 (.06) 5% 

2. Censored M .14 (.14) 100% -.11 (.08) 24.5% 

3. FIML .17 (.10) 12.6% -.02 (.27) 0% 

4. Complete Case .14 (.01) 100% -.001 (.07) 5% 

Note. b is the regression coefficient for M and c’ is the regression coefficient for X in the Y-regression. 

FIML = Full Information Maximum Likelihood.  
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Table III-2.  

Average Raw Bias of the ab Estimate when c’ = 0  

a b Censoring Proportion Sample Size Average Raw Bias 

0 0 0 150  0.0000 
0 0.14 0 150 -0.0001 
0 0.39 0 150  0.0047 

0.21 0 0 150  0.0000 
0.21 0.14 0 150  0.0000 
0.21 0.39 0 150  0.0029 
0.52 0 0 150 -0.0001 
0.52 0.14 0 150  0.0005 
0.52 0.39 0 150  0.0009 

0 0 .3 150  0.0000 
0 0.14 .3 150 -0.0009 
0 0.39 .3 150  0.0011 

0.21 0 .3 150  0.0001 
0.21 0.14 .3 150  0.0009 
0.21 0.39 .3 150 - 0.0029 
0.52 0 .3 150 -0.0004 
0.52 0.14 .3 150  0.0000 
0.52 0.39 .3 150 -0.0014 

0 0 0 300  0.0000 
0 0.14 0 300 -0.0001 
0 0.39 0 300  0.0004 

0.21 0 0 300  0.0000 
0.21 0.14 0 300 -0.0003 
0.21 0.39 0 300  0.0006 
0.52 0 0 300  0.0002 
0.52 0.14 0 300  0.0010 
0.52 0.39 0 300 -0.0011 

0 0 .3 300  0.0000 
0 0.14 .3 300 -0.0007 
0 0.39 .3 300 -0.0030 

0.21 0 .3 300 -0.0001 
0.21 0.14 .3 300  0.0005 
0.21 0.39 .3 300 -0.0001 
0.52 0 .3 300  0.0000 
0.52 0.14 .3 300 -0.0004 
0.52 0.39 .3 300  0.0002 
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Table III-3.  

Average Raw Bias of the ab Estimate when c’ = 0.39  

a b Censoring Proportion Sample Size Average Raw Bias 

0 0 0 150  0.0000 
0 0.14 0 150 -0.0012 
0 0.39 0 150  0.0011 

0.21 0 0 150  0.0000 
0.21 0.14 0 150 -0.0006 
0.21 0.39 0 150  0.0019 
0.52 0 0 150 -0.0002 
0.52 0.14 0 150  0.0014 
0.52 0.39 0 150  0.0039 

0 0 .3 150  0.0000 
0 0.14 .3 150 -0.0003 
0 0.39 .3 150  0.0049 

0.21 0 .3 150 -0.0001 
0.21 0.14 .3 150 -0.0001 
0.21 0.39 .3 150  0.0013 
0.52 0 .3 150 -0.0006 
0.52 0.14 .3 150 -0.0010 
0.52 0.39 .3 150  0.0074 

0 0 0 300  0.0000 
0 0.14 0 300 -0.0005 
0 0.39 0 300 -0.0029 

0.21 0 0 300  0.0000 
0.21 0.14 0 300  0.0007 
0.21 0.39 0 300  0.0008 
0.52 0 0 300  0.0000 
0.52 0.14 0 300  0.0007 
0.52 0.39 0 300  0.0039 

0 0 .3 300 -0.0001 
0 0.14 .3 300  0.0003 
0 0.39 .3 300  0.0025 

0.21 0 .3 300  0.0001 
0.21 0.14 .3 300  0.0004 
0.21 0.39 .3 300  0.0009 
0.52 0 .3 300  0.0004 
0.52 0.14 .3 300  0.0007 
0.52 0.39 .3 300  0.0040 
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Table III-3.  

Analysis of Variance Results for the Average Raw Bias of the ab Estimate  

Source DF Type III SS Mean Square F Value Pr > F Partial ω2̂ 

A 2 0.0055 0.0027 1.86 0.16 0.0000 

B 2 0.0282 0.0141 9.61 <.0001 0.0002 

C 1 0.0108 0.0108 7.38 0.01 0.0001 

CP 1 0.0003 0.0003 0.18 0.67 0.0000 

SS 1 0.0030 0.0030 2.03 0.15 0.0000 

AxB 4 0.0076 0.0019 1.30 0.27 0.0000 

AxC 2 0.0091 0.0045 3.09 0.05 0.0001 

AxCP 2 0.0012 0.0006 0.42 0.66 0.0000 

AxSS 2 0.0048 0.0024 1.63 0.20 0.0000 

BxC 2 0.0208 0.0104 7.09 0.00 0.0002 

BxCP 2 0.0001 0.0000 0.03 0.97 0.0000 

BxSS 2 0.0137 0.0068 4.67 0.01 0.0001 

CxCP 1 0.0115 0.0115 7.83 0.01 0.0001 

CxSS 1 0.0001 0.0001 0.04 0.84 0.0000 

CPxSS 1 0.0012 0.0012 0.80 0.37 0.0000 

AxBxC 4 0.0159 0.0040 2.71 0.03 0.0001 

AxBxCP 4 0.0091 0.0023 1.55 0.19 0.0000 

AxBxSS 4 0.0089 0.0022 1.51 0.20 0.0000 

AxCxCP 2 0.0061 0.0031 2.09 0.12 0.0000 

AxCxSS 2 0.0005 0.0002 0.17 0.85 0.0000 

AxCPxSS 2 0.0002 0.0001 0.08 0.93 0.0000 

BxCxCP 2 0.0188 0.0094 6.41 0.00 0.0002 

BxCxSS 2 0.0012 0.0006 0.42 0.66 0.0000 

BxCPxSS 2 0.0013 0.0006 0.43 0.65 0.0000 

CxCPxSS 1 0.0007 0.0007 0.45 0.50 0.0000 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size.  
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Table III-4.  

Average Relative Bias of the ab Estimate when c’ = 0  

a b Sample Size Censoring Proportion Relative Bias 

0.21 0.14 150 0  0.0351 
0.21 0.39 150 0  0.0074 
0.52 0.14 150 0  0.0042 
0.52 0.39 150 0  0.0298 
0.21 0.14 300 0 -0.0356 
0.21 0.39 300 0 -0.0003 
0.52 0.14 300 0 -0.0069 
0.52 0.39 300 0 -0.0102 
0.21 0.14 150 .3  0.0075 
0.21 0.39 150 .3  0.0135 
0.52 0.14 150 .3 - 0.0056 
0.52 0.39 150 .3  0.0178 
0.21 0.14 300 .3 -0.0016 
0.21 0.39 300 .3 -0.0059 
0.52 0.14 300 .3  0.0011 
0.52 0.39 300 .3  0.0351 
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Table III-5.  

Average Relative Bias of the ab Estimate when c’ = 0.39 

a b Sample Size Censoring Proportion Relative Bias 

0.21 0.14 150 0 -0.0189 
0.21 0.39 150 0  0.0232 
0.52 0.14 150 0  0.0197 
0.52 0.39 150 0  0.0192 
0.21 0.14 300 0 -0.0019 
0.21 0.39 300 0  0.0165 
0.52 0.14 300 0 -0.0133 
0.52 0.39 300 0  0.0367 
0.21 0.14 150 .3  0.0225 
0.21 0.39 150 .3  0.0101 
0.52 0.14 150 .3  0.0093 
0.52 0.39 150 .3  0.0191 
0.21 0.14 300 .3  0.0146 
0.21 0.39 300 .3  0.0111 
0.52 0.14 300 .3  0.0094 
0.52 0.39 300 .3  0.0196 
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Table III-6.  

Analysis of Variance Results for the Average Relative Bias of the ab Estimate  

Source DF Type III SS Mean Square F Value Pr > F Partial ω2̂ 

A 1 0.0015 0.0015 0.00 0.95 0.0000 

B 1 0.1122 0.1122 0.33 0.56 0.0000 

C 1 0.6679 0.6679 1.99 0.16 0.0000 

CP 1 0.1331 0.1331 0.40 0.53 0.0000 

SS 1 0.0090 0.0090 0.03 0.87 0.0000 

AxB 1 0.0395 0.0395 0.12 0.73 0.0000 

AxC 1 0.1908 0.1908 0.57 0.45 0.0000 

AxCP 1 0.0233 0.0233 0.07 0.79 0.0000 

AxSS 1 0.0272 0.0272 0.08 0.78 0.0000 

BxC 1 0.8837 0.8837 2.63 0.10 0.0001 

BxCP 1 0.1919 0.1919 0.57 0.45 0.0000 

BxSS 1 0.1968 0.1968 0.59 0.44 0.0000 

CxCP 1 0.0561 0.0561 0.17 0.68 0.0000 

CxSS 1 0.0844 0.0844 0.25 0.62 0.0000 

CPxSS 1 0.1326 0.1326 0.39 0.53 0.0000 

AxBxC 1 0.0064 0.0064 0.02 0.89 0.0000 

AxBxCP 1 1.5902 1.5902 4.73 0.03 0.0001 

AxBxSS 1 0.0080 0.0080 0.02 0.88 0.0000 

AxCxCP 1 0.0026 0.0026 0.01 0.93 0.0000 

AxCxSS 1 0.1093 0.1093 0.33 0.57 0.0000 

AxCPxSS 1 0.0134 0.0134 0.04 0.84 0.0000 

BxCxCP 1 0.7067 0.7067 2.10 0.15 0.0000 

BxCxSS 1 0.5482 0.5482 1.63 0.20 0.0000 

BxCPxSS 1 0.1757 0.1757 0.52 0.47 0.0000 

CxCPxSS 1 0.1410 0.1410 0.42 0.52 0.0000 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size.  
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Table III-7.  

Sign of the ab Raw Bias when c’ = 0  

a b Censoring 
Proportion 

Sample Size Negative sign 

(𝑎�̂� < 𝑎𝑏) 

Exact recover 

(𝑎�̂� = 𝑎𝑏) 

0 0 0 150 0.484 0.001 
0 0.14 0 150 0.500 0.001 
0 0.39 0 150 0.473 0.002 

0.21 0 0 150 0.498 0.002 
0.21 0.14 0 150 0.503 0.000 
0.21 0.39 0 150 0.484 0.000 
0.52 0 0 150 0.510 0.000 
0.52 0.14 0 150 0.504 0.000 
0.52 0.39 0 150 0.505 0.000 

0 0 .3 150 0.497 0.000 
0 0.14 .3 150 0.526 0.002 
0 0.39 .3 150 0.506 0.001 

0.21 0 .3 150 0.477 0.001 
0.21 0.14 .3 150 0.492 0.000 
0.21 0.39 .3 150 0.520 0.000 
0.52 0 .3 150 0.497 0.001 
0.52 0.14 .3 150 0.508 0.000 
0.52 0.39 .3 150 0.504 0.000 

0 0 0 300 0.499 0.002 
0 0.14 0 300 0.517 0.003 
0 0.39 0 300 0.481 0.003 

0.21 0 0 300 0.511 0.000 
0.21 0.14 0 300 0.494 0.000 
0.21 0.39 0 300 0.508 0.000 
0.52 0 0 300 0.502 0.000 
0.52 0.14 0 300 0.473 0.000 
0.52 0.39 0 300 0.520 0.000 

0 0 .3 300 0.517 0.002 
0 0.14 .3 300 0.519 0.003 
0 0.39 .3 300 0.514 0.001 

0.21 0 .3 300 0.522 0.000 
0.21 0.14 .3 300 0.512 0.000 
0.21 0.39 .3 300 0.509 0.000 
0.52 0 .3 300 0.505 0.000 
0.52 0.14 .3 300 0.516 0.000 
0.52 0.39 .3 300 0.500 0.000 
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Table III-8.  

Sign of the ab Raw Bias when c’ = 0.39 

a b Censoring 
Proportion 

Sample Size Negative sign 

(𝑎�̂� < 𝑎𝑏) 

Exact recover 

(𝑎�̂� = 𝑎𝑏) 

0 0 0 150 0.518 0.000 
0 0.14 0 150 0.521 0.001 
0 0.39 0 150 0.483 0.004 

0.21 0 0 150 0.512 0.000 
0.21 0.14 0 150 0.503 0.000 
0.21 0.39 0 150 0.487 0.000 
0.52 0 0 150 0.514 0.000 
0.52 0.14 0 150 0.485 0.000 
0.52 0.39 0 150 0.484 0.000 

0 0 .3 150 0.506 0.001 
0 0.14 .3 150 0.501 0.000 
0 0.39 .3 150 0.476 0.002 

0.21 0 .3 150 0.496 0.001 
0.21 0.14 .3 150 0.525 0.000 
0.21 0.39 .3 150 0.496 0.000 
0.52 0 .3 150 0.536 0.000 
0.52 0.14 .3 150 0.522 0.000 
0.52 0.39 .3 150 0.463 0.000 

0 0 0 300 0.543 0.005 
0 0.14 0 300 0.522 0.000 
0 0.39 0 300 0.523 0.006 

0.21 0 0 300 0.480 0.001 
0.21 0.14 0 300 0.479 0.000 
0.21 0.39 0 300 0.501 0.000 
0.52 0 0 300 0.508 0.000 
0.52 0.14 0 300 0.481 0.000 
0.52 0.39 0 300 0.469 0.000 

0 0 .3 300 0.513 0.003 
0 0.14 .3 300 0.484 0.004 
0 0.39 .3 300 0.491 0.004 

0.21 0 .3 300 0.488 0.002 
0.21 0.14 .3 300 0.481 0.000 
0.21 0.39 .3 300 0.486 0.000 
0.52 0 .3 300 0.467 0.000 
0.52 0.14 .3 300 0.497 0.000 
0.52 0.39 .3 300 0.472 0.000 
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Table III-9.  

Logistic Regression Results for the Sign of the ab Raw Bias  

Effect DF Wald 𝜒2 Pr > 𝜒2 

A 2 3.84 0.15 

B 2 5.75 0.06 

C 1 1.99 0.16 

CP 1 0.20 0.65 

SS 1 0.00 0.99 

AxB 4 3.88 0.42 

AxC 2 3.56 0.17 

AxCP 2 0.35 0.84 

AxSS 2 5.98 0.05 

BxC 2 5.31 0.07 

BxCP 2 2.17 0.34 

BxSS 2 3.65 0.16 

CxCP 1 4.57 0.03 

CxSS 1 3.96 0.05 

CPxSS 1 0.53 0.47 

AxBxC 4 5.41 0.25 

AxBxCP 4 5.29 0.26 

AxBxSS 4 1.82 0.77 

AxCxCP 2 7.11 0.03 

AxCxSS 2 3.26 0.20 

AxCPxSS 2 0.64 0.73 

BxCxCP 2 0.65 0.72 

BxCxSS 2 2.99 0.22 

BxCPxSS 2 0.56 0.76 

CxCPxSS 1 1.86 0.17 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size. 
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Table III-10.  

Mean Squared Error of the ab Estimate when c’ = 0  

a b Censoring Proportion Sample Size Mean Squared Error 

0 0 0 150 0.0000 
0 0.14 0 150 0.0005 
0 0.39 0 150 0.0040 

0.21 0 0 150 0.0000 
0.21 0.14 0 150 0.0006 
0.21 0.39 0 150 0.0044 
0.52 0 0 150 0.0000 
0.52 0.14 0 150 0.0006 
0.52 0.39 0 150 0.0048 

0 0 .3 150 0.0000 
0 0.14 .3 150 0.0008 
0 0.39 .3 150 0.0063 

0.21 0 .3 150 0.0000 
0.21 0.14 .3 150 0.0008 
0.21 0.39 .3 150 0.0059 
0.52 0 .3 150 0.0001 
0.52 0.14 .3 150 0.0008 
0.52 0.39 .3 150 0.0057 

0 0 0 300 0.0000 
0 0.14 0 300 0.0003 
0 0.39 0 300 0.0022 

0.21 0 0 300 0.0000 
0.21 0.14 0 300 0.0003 
0.21 0.39 0 300 0.0020 
0.52 0 0 300 0.0000 
0.52 0.14 0 300 0.0003 
0.52 0.39 0 300 0.0023 

0 0 .3 300 0.0000 
0 0.14 .3 300 0.0004 
0 0.39 .3 300 0.0031 

0.21 0 .3 300 0.0000 
0.21 0.14 .3 300 0.0004 
0.21 0.39 .3 300 0.0031 
0.52 0 .3 300 0.0000 
0.52 0.14 .3 300 0.0004 
0.52 0.39 .3 300 0.0028 
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Table III-11.  

Mean Squared Error of the ab Estimate when c’ = 0.39  

a b Censoring Proportion Sample Size Mean Squared Error 

0 0 0 150 0.0000 
0 0.14 0 150 0.0006 
0 0.39 0 150 0.0041 

0.21 0 0 150 0.0000 
0.21 0.14 0 150 0.0006 
0.21 0.39 0 150 0.0043 
0.52 0 0 150 0.0000 
0.52 0.14 0 150 0.0006 
0.52 0.39 0 150 0.0051 

0 0 .3 150 0.0000 
0 0.14 .3 150 0.0009 
0 0.39 .3 150 0.0060 

0.21 0 .3 150 0.0000 
0.21 0.14 .3 150 0.0008 
0.21 0.39 .3 150 0.0052 
0.52 0 .3 150 0.0001 
0.52 0.14 .3 150 0.0008 
0.52 0.39 .3 150 0.0060 

0 0 0 300 0.0000 
0 0.14 0 300 0.0003 
0 0.39 0 300 0.0022 

0.21 0 0 300 0.0000 
0.21 0.14 0 300 0.0003 
0.21 0.39 0 300 0.0022 
0.52 0 0 300 0.0000 
0.52 0.14 0 300 0.0003 
0.52 0.39 0 300 0.0025 

0 0 .3 300 0.0000 
0 0.14 .3 300 0.0004 
0 0.39 .3 300 0.0029 

0.21 0 .3 300 0.0000 
0.21 0.14 .3 300 0.0004 
0.21 0.39 .3 300 0.0029 
0.52 0 .3 300 0.0000 
0.52 0.14 .3 300 0.0004 
0.52 0.39 .3 300 0.0029 
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Table III-12.  

Analysis of Variance Results for the Mean Squared Error of the ab Estimate  

Source DF Type III SS Mean Square F Value Pr > F Partial ω2̂ 

A 2 0.0001 0.0001      5.57 0.00 0.00 

B 2 0.2102 0.1051 9024.83 <.0001 0.20 

C 1 0.0000 0.0000       0.02 0.89 0.00 

CP 1 0.0031 0.0031   266.00 <.0001 0.00 

SS 1 0.0169 0.0169 1447.27 <.0001 0.02 

AxB 4 0.0001 0.0000       3.01 0.02 0.00 

AxC 2 0.0001 0.0000      3.09 0.05 0.00 

AxCP 2 0.0002 0.0001      8.41 0.00 0.00 

AxSS 2 0.0001 0.0000      2.54 0.08 0.00 

BxC 2 0.0000 0.0000      0.06 0.94 0.00 

BxCP 2 0.0038 0.0019  161.39 <.0001 0.00 

BxSS 2 0.0223 0.0111  956.22 <.0001 0.03 

CxCP 1 0.0000 0.0000       3.20 0.07 0.00 

CxSS 1 0.0000 0.0000       0.15 0.70 0.00 

CPxSS 1 0.0003 0.0003     28.12 <.0001 0.00 

AxBxC 4 0.0001 0.0000       3.00 0.02 0.00 

AxBxCP 4 0.0004 0.0001       8.03 <.0001 0.00 

AxBxSS 4 0.0001 0.0000       2.06 0.08 0.00 

AxCxCP 2 0.0000 0.0000       0.79 0.45 0.00 

AxCxSS 2 0.0000 0.0000       1.06 0.34 0.00 

AxCPxSS 2 0.0001 0.0001       4.77 0.01 0.00 

BxCxCP 2 0.0001 0.0000       3.81 0.02 0.00 

BxCxSS 2 0.0000 0.0000       0.57 0.57 0.00 

BxCPxSS 2 0.0003 0.0002     14.87 <.0001 0.00 

CxCPxSS 1 0.0000 0.0000       0.39 0.53 0.00 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size. 
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Table III-13.  

Type I Error Rate when c’ = 0 and Censoring Proportion = 0 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0 0 150 0.000 0.000 0.001 0.005 0.001 0.000 
0 0.14 150 0.045 0.045 0.050 0.049 0.045 0.032 
0 0.39 150 0.033 0.034 0.034 0.034 0.034 0.020 

0.21 0 150 0.001 0.008 0.011 0.029 0.015 0.008 
0.52 0 150 0.016 0.047 0.055 0.089 0.048 0.051 

0 0 300 0.001 0.004 0.003 0.009 0.006 0.002 
0 0.14 300 0.052 0.054 0.055 0.055 0.054 0.043 
0 0.39 300 0.058 0.058 0.058 0.057 0.058 0.048 

0.21 0 300 0.006 0.018 0.021 0.035 0.021 0.020 
0.52 0 300 0.028 0.053 0.057 0.082 0.053 0.057 

*NIE=natural indirect effect. 
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Table III-14.  

Type I Error Rate when c’ = 0 and Censoring Proportion = 0.3 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0 0 150 0.000 0.004 0.005 0.008 0.004 0.000 
0 0.14 150 0.045 0.053 0.056 0.059 0.053 0.013 
0 0.39 150 0.053 0.053 0.056 0.054 0.053 0.015 

0.21 0 150 0.003 0.004 0.008 0.021 0.006 0.006 
0.52 0 150 0.015 0.042 0.046 0.084 0.045 0.034 

0 0 300 0.000 0.001 0.001 0.004 0.001 0.001 
0 0.14 300 0.052 0.052 0.052 0.056 0.052 0.023 
0 0.39 300 0.065 0.065 0.061 0.061 0.065 0.025 

0.21 0 300 0.002 0.008 0.011 0.024 0.016 0.008 
0.52 0 300 0.014 0.046 0.055 0.082 0.049 0.051 

*NIE=natural indirect effect 
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Table III-15.  

Type I Error Rate when c’ = 0.39 and Censoring Proportion = 0 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0 0 150 0.000 0.001 0.001 0.004 0.003 0.001 
0 0.14 150 0.054 0.056 0.054 0.060 0.056 0.045 
0 0.39 150 0.042 0.042 0.046 0.045 0.042 0.035 

0.21 0 150 0.000 0.005 0.013 0.027 0.009 0.009 
0.52 0 150 0.011 0.034 0.044 0.070 0.042 0.043 

0 0 300 0.001 0.001 0.001 0.005 0.002 0.001 
0 0.14 300 0.044 0.048 0.046 0.047 0.048 0.035 
0 0.39 300 0.059 0.059 0.060 0.064 0.059 0.047 

0.21 0 300 0.003 0.015 0.016 0.040 0.021 0.015 
0.52 0 300 0.028 0.057 0.057 0.073 0.057 0.057 

*NIE=natural indirect effect 
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Table III-16.  

Type I Error Rate when c’ = 0.39 and Censoring Proportion = 0.3 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0 0 150 0.000 0.000 0.001 0.002 0.000 0.000 
0 0.14 150 0.044 0.050 0.056 0.059 0.050 0.022 
0 0.39 150 0.046 0.048 0.050 0.047 0.048 0.019 

0.21 0 150 0.001 0.005 0.006 0.019 0.007 0.003 
0.52 0 150 0.004 0.030 0.041 0.065 0.040 0.025 

0 0 300 0.000 0.003 0.004 0.008 0.004 0.001 
0 0.14 300 0.045 0.046 0.045 0.043 0.046 0.019 
0 0.39 300 0.041 0.041 0.043 0.040 0.041 0.015 

0.21 0 300 0.003 0.009 0.009 0.030 0.016 0.005 
0.52 0 300 0.025 0.052 0.059 0.082 0.057 0.054 

*NIE=natural indirect effect 
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Table III-17.  

Logistic Regression Results for Type I Error Rate  

Effect DF Wald 𝜒2 Pr > 𝜒2 
A 2 546.0848 <.0001 
B 2     0.5476 0.76 
C 1     0.4554 0.50 
CP 1     0.0022 0.96 
SS 1     0.0066 0.94 
IE 5     8.4081 0.14 
AxC 2     2.2963 0.32 
AxCP 2     5.6643 0.06 
AxSS 2     4.0955 0.13 
AxIE 10    46.8555 <.0001 
BxC 2     2.6681 0.26 
BxCP 2     1.5908 0.45 
BxSS 2    14.5291 0.00 
BxIE 10    29.6309 0.00 
CxCP 1     2.3466 0.13 
CxSS 1     3.3801 0.07 
CxIE 5     1.7475 0.88 
CPxSS 1     0.2705 0.60 
CPxIE 5     4.6687 0.46 
SSxIE 5     1.9774 0.85 
AxCxCP 2     0.4145 0.81 
AxCxSS 2     2.6942 0.26 
AxCxIE 10     5.4494 0.86 
AxCPxSS 2     2.8557 0.24 
AxCPxIE 10     5.7113 0.84 
AxSSxIE 10     2.8513 0.98 
BxCxCP 2     7.5859 0.02 
BxCxSS 2     5.6407 0.06 
BxCxIE 10     2.2371 0.99 
BxCPxSS 2    10.8727 0.00 
BxCPxIE 10     2.4670 0.99 
BxSSxIE 10      3.9207 0.95 
CxCPxSS 1     1.8862 0.17 
CxCPxIE 5     0.1564 1.00 
CxSSxIE 5     4.0367 0.54 
CPxSSxIE 5     1.5944 0.90 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size; IE=indirect effect 

test method. 
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Table III-18.  

Statistical Power when c’ = 0 and Censoring Proportion = 0 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0.21 0.14 150 0.238 0.243 0.245 0.253 0.243 0.192 
0.21 0.39 150 0.250 0.251 0.252 0.251 0.251 0.212 
0.52 0.14 150 0.874 0.884 0.880 0.877 0.884 0.844 
0.52 0.39 150 0.871 0.871 0.867 0.862 0.871 0.831 
0.21 0.14 300 0.443 0.450 0.441 0.447 0.450 0.397 
0.21 0.39 300 0.428 0.428 0.440 0.432 0.428 0.398 
0.52 0.14 300 0.992 0.992 0.992 0.992 0.992 0.992 
0.52 0.39 300 0.997 0.997 0.996 0.996 0.997 0.992 

*NIE=natural indirect effect 
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Table III-19.  

Statistical power when c’ = 0 and Censoring Proportion = 0.3 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0.21 0.14 150 0.181 0.202 0.207 0.217 0.202 0.091 
0.21 0.39 150 0.165 0.165 0.178 0.173 0.165 0.086 
0.52 0.14 150 0.742 0.761 0.758 0.775 0.761 0.583 
0.52 0.39 150 0.752 0.754 0.762 0.758 0.754 0.587 
0.21 0.14 300 0.326 0.333 0.333 0.345 0.333 0.215 
0.21 0.39 300 0.336 0.336 0.337 0.340 0.336 0.231 
0.52 0.14 300 0.968 0.971 0.969 0.972 0.971 0.939 
0.52 0.39 300 0.971 0.971 0.976 0.976 0.971 0.936 

*NIE=natural indirect effect 
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Table III-20.  

Statistical Power when c’ = 0.39 and Censoring Proportion = 0 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0.21 0.14 150 0.228 0.237 0.249 0.240 0.237 0.185 
0.21 0.39 150 0.251 0.251 0.246 0.246 0.251 0.199 
0.52 0.14 150 0.878 0.884 0.881 0.888 0.884 0.850 
0.52 0.39 150 0.865 0.865 0.861 0.859 0.865 0.822 
0.21 0.14 300 0.452 0.457 0.457 0.448 0.457 0.414 
0.21 0.39 300 0.430 0.430 0.439 0.431 0.430 0.407 
0.52 0.14 300 0.994 0.995 0.994 0.995 0.995 0.991 
0.52 0.39 300 0.995 0.995 0.995 0.995 0.995 0.991 

*NIE=natural indirect effect 
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Table III-21.  

Statistical Power when c’ = 0.39 and Censoring Proportion = 0.3 

a b Sample 
Size 

Sobel Distribution 
of the 

product 

Percentile 
Bootstrap 

Bias 
Corrected 
Bootstrap 

Joint 
Significance 

Percentile 
Bootstrap 

of NIE* 

0.21 0.14 150 0.171 0.195 0.209 0.217 0.195 0.088 
0.21 0.39 150 0.171 0.172 0.166 0.168 0.172 0.078 
0.52 0.14 150 0.725 0.750 0.759 0.771 0.750 0.581 
0.52 0.39 150 0.793 0.795 0.793 0.787 0.795 0.624 
0.21 0.14 300 0.320 0.329 0.341 0.345 0.329 0.226 
0.21 0.39 300 0.339 0.341 0.333 0.339 0.341 0.224 
0.52 0.14 300 0.966 0.969 0.970 0.968 0.969 0.942 
0.52 0.39 300 0.976 0.976 0.974 0.974 0.976 0.937 

*NIE=natural indirect effect 
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Table III-22.  

Logistic Regression Results for Statistical Power  

Effect DF Wald 𝜒2 Pr > 𝜒2 
A 1 23236.06 <.0001 
B 1         1.18 0.28 
C 1         0.11 0.74 
CP 1    1259.79 <.0001 
SS 1     5396.18 <.0001 
IE 5       450.38 <.0001 
AxB 1           0.67 0.41 
AxC 1           0.34 0.56 
AxCP 1       254.24 <.0001 
AxSS 1     1472.86 <.0001 
AxIE 5           7.53 0.18 
BxC 1           1.73 0.19 
BxCP 1         19.56 <.0001 
BxSS 1           0.37 0.54 
BxIE 5           4.46 0.49 
CxCP 1           1.10 0.29 
CxSS 1           0.00 0.96 
CxIE 5           0.06 1.00 
CPxSS 1         90.24 <.0001 
CPxIE 5       149.09 <.0001 
SSxIE 5           2.11 0.83 
AxBxC 1           1.02 0.31 
AxBxCP 1         38.66 <.0001 
AxBxSS 1           0.07 0.79 
AxBxIE 5           3.67 0.60 
AxCxCP 1           1.29 0.26 
AxCxSS 1           0.73 0.39 
AxCxIE 5           0.15 1.00 
AxCPxSS 1         72.42 <.0001 
AxCPxIE 5           1.00 0.96 
AxSSxIE 5         10.58 0.06 
BxCxCP 1           4.66 0.03 
BxCxSS 1           0.93 0.33 
BxCxIE 5           2.99 0.70 
BxCPxSS 1         19.18 <.0001 
BxCPxIE 5           1.98 0.85 
BxSSxIE 5           3.82 0.58 
CxCPxSS 1           0.44 0.51 
CxCPxIE 5           0.13 1.00 
CxSSxIE 5           0.53 0.99 
CPxSSxIE 5           4.99 0.42 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size; IE=indirect effect 

test method. 
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Table 23.  

Parameter ab Coverage Rate when c’ = 0 and Censoring Proportion = 0  

a b Sample 
Size 

Sobel Test Distribution of 
the product 

Percentile 
Bootstrapping 

Bias Corrected 
Bootstrapping 

0 0 150 1.000 1.000 0.999 0.995 
0 0.14 150 0.955 0.955 0.950 0.951 
0 0.39 150 0.967 0.966 0.966 0.966 

0.21 0 150 0.999 0.992 0.989 0.971 
0.21 0.14 150 0.950 0.947 0.947 0.947 
0.21 0.39 150 0.957 0.954 0.956 0.956 
0.52 0 150 0.984 0.953 0.945 0.911 
0.52 0.14 150 0.956 0.955 0.950 0.948 
0.52 0.39 150 0.939 0.939 0.942 0.947 

0 0 300 0.999 0.996 0.997 0.991 
0 0.14 300 0.948 0.946 0.945 0.945 
0 0.39 300 0.942 0.942 0.942 0.943 

0.21 0 300 0.994 0.982 0.979 0.965 
0.21 0.14 300 0.948 0.947 0.942 0.945 
0.21 0.39 300 0.954 0.953 0.956 0.954 
0.52 0 300 0.972 0.947 0.943 0.918 
0.52 0.14 300 0.949 0.948 0.947 0.947 
0.52 0.39 300 0.949 0.948 0.948 0.947 
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Table 44.  

Parameter ab Coverage Rate when c’ = 0 and Censoring Proportion = 0.3  

a b Sample 
Size 

Sobel Test Distribution of 
the product 

Percentile 
Bootstrapping 

Bias Corrected 
Bootstrapping 

0 0 150 1.000 0.996 0.995 0.992 
0 0.14 150 0.955 0.947 0.944 0.941 
0 0.39 150 0.947 0.947 0.944 0.946 

0.21 0 150 0.997 0.996 0.992 0.979 
0.21 0.14 150 0.949 0.946 0.943 0.935 
0.21 0.39 150 0.949 0.949 0.951 0.945 
0.52 0 150 0.985 0.958 0.954 0.916 
0.52 0.14 150 0.960 0.956 0.959 0.955 
0.52 0.39 150 0.962 0.961 0.957 0.958 

0 0 300 1.000 0.999 0.999 0.996 
0 0.14 300 0.948 0.948 0.948 0.944 
0 0.39 300 0.935 0.935 0.939 0.939 

0.21 0 300 0.998 0.992 0.989 0.976 
0.21 0.14 300 0.948 0.946 0.940 0.942 
0.21 0.39 300 0.942 0.941 0.940 0.935 
0.52 0 300 0.986 0.954 0.945 0.918 
0.52 0.14 300 0.952 0.953 0.954 0.952 
0.52 0.39 300 0.957 0.957 0.951 0.958 
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Table 25.  

Parameter ab Coverage Rate when c’ = 0.39 and Censoring Proportion = 0  

a b Sample 
Size 

Sobel Test Distribution of 
the product 

Percentile 
Bootstrapping 

Bias Corrected 
Bootstrapping 

0 0 150 1.000 0.999 0.999 0.996 
0 0.14 150 0.946 0.944 0.946 0.940 
0 0.39 150 0.958 0.958 0.954 0.955 

0.21 0 150 1.000 0.995 0.987 0.973 
0.21 0.14 150 0.950 0.949 0.943 0.946 
0.21 0.39 150 0.946 0.946 0.951 0.945 
0.52 0 150 0.989 0.966 0.956 0.930 
0.52 0.14 150 0.950 0.948 0.941 0.946 
0.52 0.39 150 0.939 0.937 0.935 0.937 

0 0 300 0.999 0.999 0.999 0.995 
0 0.14 300 0.956 0.952 0.954 0.953 
0 0.39 300 0.941 0.941 0.940 0.936 

0.21 0 300 0.997 0.985 0.984 0.960 
0.21 0.14 300 0.946 0.946 0.946 0.946 
0.21 0.39 300 0.943 0.943 0.945 0.941 
0.52 0 300 0.972 0.943 0.943 0.927 
0.52 0.14 300 0.955 0.956 0.955 0.951 
0.52 0.39 300 0.938 0.938 0.935 0.935 
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Table 26.  

Parameter ab Coverage Rate when c’ = 0.39 and Censoring Proportion = 0.3  

a b Sample 
Size 

Sobel Test Distribution of 
the product 

Percentile 
Bootstrapping 

Bias Corrected 
Bootstrapping 

0 0 150 1.000 1.000 0.999 0.998 
0 0.14 150 0.956 0.950 0.944 0.941 
0 0.39 150 0.954 0.952 0.950 0.953 

0.21 0 150 0.999 0.995 0.994 0.981 
0.21 0.14 150 0.957 0.951 0.950 0.943 
0.21 0.39 150 0.964 0.964 0.965 0.965 
0.52 0 150 0.996 0.970 0.959 0.935 
0.52 0.14 150 0.949 0.952 0.956 0.951 
0.52 0.39 150 0.951 0.949 0.950 0.944 

0 0 300 1.000 0.997 0.996 0.992 
0 0.14 300 0.955 0.954 0.955 0.957 
0 0.39 300 0.959 0.959 0.957 0.960 

0.21 0 300 0.997 0.991 0.991 0.970 
0.21 0.14 300 0.946 0.946 0.942 0.942 
0.21 0.39 300 0.958 0.957 0.953 0.951 
0.52 0 300 0.975 0.948 0.941 0.918 
0.52 0.14 300 0.958 0.953 0.953 0.952 
0.52 0.39 300 0.954 0.954 0.950 0.951 
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Table III-27.  

Logistic Regression Results for Parameter ab Coverage Rate  

Effect DF Wald 𝜒2 Pr > 𝜒2 
A 2 472.50 <.0001 
B 2 635.41 <.0001 
C 1     4.91 0.03 
CP 1     8.55 0.00 
SS 1   36.58 <.0001 
IE 3 160.41 <.0001 
AxB 4 622.19 <.0001 
AxC 2     5.87 0.05 
AxCP 2     6.12 0.05 
AxSS 2   11.33 0.00 
AxIE 6   23.85 0.00 
BxC 2     4.98 0.08 
BxCP 2     4.15 0.13 
BxSS 2   30.98 <.0001 
BxIE 6 155.23 <.0001 
CxCP 1     9.42 0.00 
CxSS 1     0.49 0.48 
CxIE 3     0.30 0.96 
CPxSS 1     1.28 0.26 
CPxIE 3     3.57 0.31 
SSxIE 3    15.55 0.00 
AxBxC 4     4.45 0.35 
AxBxCP 4    24.12 <.0001 
AxBxSS 4    11.85 0.02 
AxBxIE 12    29.81 0.00 
AxCxCP 2    11.59 0.00 
AxCxSS 2      6.69 0.04 
AxCxIE 6      0.27 1.00 
AxCPxSS 2    14.20 0.00 
AxCPxIE 6     1.19 0.98 
AxSSxIE 6     1.27 0.97 
BxCxCP 2   13.22 0.00 
BxCxSS 2   13.34 0.00 
BxCxIE 6     0.62 1.00 
BxCPxSS 2     1.38 0.50 
BxCPxIE 6     2.36 0.88 
BxSSxIE 6   15.68 0.02 
CxCPxSS 1     0.73 0.39 
CxCPxIE 3     0.11 0.99 
CxSSxIE 3     0.27 0.97 
CPxSSxIE 3     0.40 0.94 

A=size of a; B=size of b; C=size of c’; CP=censoring proportion; SS=sample size; IE=indirect effect 

test method. 
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Normal observation without censoring 

Left censoring  

Right censoring  

Interval censoring  

Observation start  Observation end  

Competing risk censoring  

Figure I-1. Four Different Types of Censoring. The single solid line represents time 

within the observation period for an event of interest, the dashed line represents the 

time outside the observation for an event of interest, and the double solid line 

represents the time of a competing event. Filled dots represent an event that has been 

observed and the hollow dots represent unobserved (censored) events. 



164 
 

 

Figure I-2. An Example of the Exponential Survival Function when 𝜆= .5, 1.0 and 2. 
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Figure I-3. An Example of the Gompertz Survival Function Varying Parameters Values 

One at a Time 
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Figure I-4. An Example of the Weibull Hazard Function Varying Parameter Values One 

at a Time 
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Figure I-5. An Example of the Weibull Survival Function Varying Parameter Values One 

at a Time 
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Figure I-6. An Example of the Kaplan-Meier Estimator. The numbers used to plot this 

figure are from Table I-1. 
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Figure I-7. The Single Mediator Model. 
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Figure I-8. A Hypothetical Example of the Regression Bias when Censored 

Values are Used for M. The solid dots represent the data with true values. The 

hollow dots are Y values at censored M values. Line-A represents the regression 

line when the true values of M are used in the Y-regression and line-B represents 

the regression line when M is censored.  
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Figure II-1. Single Survival-Mediator Model Used in the Simulation Study 
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The size of a-path: 0, .21, or .52 

The size of b-path: 0, .14, or .39 

The size of c’-path: 0 or .39 

The censoring proportion: 0 or 30% 

The sample size: 150 or 300 

1,000 replications 

Data generation: 3 x 3 x 2 x 2 x 2 = 72 conditions 

Within each replication dataset 

Evaluate indirect effect with six different methods 

Sobel test, the distribution of the product test, the percentile bootstrap, the 

bias-corrected bootstrap, the joint-significance test, or the percentile 

bootstrap of the natural indirect effect 

Empirical Type I error rate, empirical statistical power, parameter 

coverage rate, average raw bias, average relative bias, sign (negative or 

positive) of the bias & mean squared error 

Figure II-2. Flow Chart of the Simulation Study Procedure 

Compare performance of the different methods 



173 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure II-3. Flow Chart of the Data Generation Process 

𝑋𝑐𝑜𝑛 ~ 𝑁 (0, 1) 

𝑋𝑏𝑖𝑛 ቄ
0 𝑖𝑓 𝑋𝑐𝑜𝑛 < 0  
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 

𝑇 =  
−log(𝑈)

𝜆𝑇exp(𝑎𝑋𝑏𝑖𝑛)
, 

where 𝑈 ~ 𝑢𝑛𝑖(0,1),          

 𝜆𝑇 = .1 

𝑀 ቄ
𝑇 𝑖𝑓 𝑇 < 𝐶   
𝐶 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝐶 ~ exp(𝜆𝐶) 

𝑌 = 𝑏𝑇 + 𝑐′𝑋𝑏𝑖𝑛 + 𝑟 

where 𝑟 ~ 𝑁 (0, 1) 

STEP 1 

STEP 2 

STEP 3 

STEP 4 
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Figure III-1. Average Raw Bias of the ab Estimate when c’ = 0. “Bias” on the y-axis 

denotes the average raw bias, “SS” on the x-axis denotes sample size and “CP” on the 

legend denotes censoring proportion.  
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Figure III-2. Average Raw Bias of the ab Estimate when c’ = 0.39. “Bias” on the y-axis 

denotes the average raw bias, “SS” on the x-axis denotes sample size and “CP” on the 

legend denotes censoring proportion. 
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Figure III-3. Average Relative Bias of the ab Estimate when c’=0. “Rel_Bias” on the y-

axis denotes the average relative bias, “SS” on the x-axis denotes sample size and “CP” 

on the legend denotes censoring proportion. 
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Figure III-4. Average Relative Bias of the ab Estimate when c’ = 0.39. “Rel_Bias” on the 

y-axis denotes the average relative bias, “SS” on the x-axis denotes sample size and “CP” 

on the legend denotes censoring proportion. 
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Figure III-5.  Sign of the ab Raw Bias when c’=0.  “Negative” on the y-axis denotes the 

proportion of negative raw biases (estimate of ab < true ab), “SS” on the x-axis denotes 

sample size and “CP” on the legend denotes censoring proportion. 
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Figure III-6. Sign of the ab Raw Bias when c’ = 0.39.  “Negative” on the y-axis denotes 

the proportion of negative raw biases (estimate of ab < true ab), “SS” on the x-axis 

denotes sample size and “CP” on the legend denotes censoring proportion. 
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Figure III-7. The Mean Squared Error of the ab Estimate when c’=0.  “MSE” on the y-

axis denotes the mean squared error, “SS” on the x-axis denotes sample size and “CP” on 

the legend denotes censoring proportion. 
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Figure III-8.  The Mean Squared Error of the ab Estimate when c’ = 0.39.  “MSE” on the 

y-axis denotes the mean squared error, “SS” on the x-axis denotes sample size and “CP” 

on the legend denotes censoring proportion. 
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Figure III-9. Type I Error Rate when c’ = 0 and Censoring Proportion = 0.  “Type1Error” 

on the y-axis denotes the Type I error rate, “SS” on the x-axis denotes sample size and 

“method” on the legend title denotes the different indirect effect test methods: 

“Sobel”=the Sobel test; “DOP”=distribution of the product test; “PB”=percentile 

bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-estimate; 

“Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the natural 

indirect effect.  
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Figure III-10. Type I Error Rate when c’ = 0 and Censoring Proportion = 0.3.  

“Type1Error” on the y-axis denotes the Type I error rate, “SS” on the x-axis denotes 

sample size and “method” on the legend title denotes the different indirect effect test 

methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-

estimate; “Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the 

natural indirect effect.  
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Figure III-11. Type I Error Rate when c’ = 0.39 and Censoring Proportion = 0.  

“Type1Error” on the y-axis denotes the Type I error rate, “SS” on the x-axis denotes 

sample size and “method” on the legend title denotes the different indirect effect test 

methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-

estimate; “Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the 

natural indirect effect.  
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Figure III-12. Type I Error Rate when c’ = 0.39 and Censoring Proportion = 0.3.  

“Type1Error” on the y-axis denotes the Type I error rate, “SS” on the x-axis denotes 

sample size and “method” on the legend title denotes the different indirect effect test 

methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-

estimate; “Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the 

natural indirect effect.  
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Figure III-13. Statistical Power when c’ = 0 and Censoring Proportion = 0.  “Power” on 

the y-axis denotes the statistical power, “SS” on the x-axis denotes sample size and 

“Method” on the legend title denotes the different indirect effect test methods: 

“Sobel”=the Sobel test; “DOP”=distribution of the product test; “PB”=percentile 

bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-estimate; 

“Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the natural 

indirect effect.  
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Figure III-14. Statistical Power when c’ = 0 and Censoring Proportion = 0.3.  “Power” on 

the y-axis denotes the statistical power, “SS” on the x-axis denotes sample size and 

“Method” on the legend title denotes the different indirect effect test methods: 

“Sobel”=the Sobel test; “DOP”=distribution of the product test; “PB”=percentile 

bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-estimate; 

“Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the natural 

indirect effect.  
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Figure III-15. Statistical Power when c’ = 0.39 and Censoring Proportion = 0.  “Power” 

on the y-axis denotes the statistical power, “SS” on the x-axis denotes sample size and 

“Method” on the legend title denotes the different indirect effect test methods: 

“Sobel”=the Sobel test; “DOP”=distribution of the product test; “PB”=percentile 

bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-estimate; 

“Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the natural 

indirect effect.  
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Figure III-16. Statistical Power when c’ = 0.39 and Censoring Proportion = 0.3.  “Power” 

on the y-axis denotes the statistical power, “SS” on the x-axis denotes sample size and 

“Method” on the legend title denotes the different indirect effect test methods: 

“Sobel”=the Sobel test; “DOP”=distribution of the product test; “PB”=percentile 

bootstrap of the ab-estimate; “BCB”=bias-corrected bootstrap of the ab-estimate; 

“Joint”=the joint significance test; and “NIEboot”=percentile bootstrap of the natural 

indirect effect.  
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Figure III-17. Parameter ab Coverage Rate when c’ = 0 and Censoring Proportion = 0.  

“Parm_Cover” on the y-axis denotes the parameter coverage rate, “SS” on the x-axis 

denotes sample size and “Method” on the legend title denotes the different indirect effect 

test methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; and “BCB”=bias-corrected bootstrap of the 

ab-estimate.  
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Figure III-18. Parameter ab Coverage Rate when c’ = 0 and Censoring Proportion = 0.3.  

“Parm_Cover” on the y-axis denotes the parameter coverage rate, “SS” on the x-axis 

denotes sample size and “Method” on the legend title denotes the different indirect effect 

test methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; and “BCB”=bias-corrected bootstrap of the 

ab-estimate.  
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Figure III-19. Parameter ab Coverage Rate when c’ = 0.39 and Censoring Proportion = 0.  

“Parm_Cover” on the y-axis denotes the parameter coverage rate, “SS” on the x-axis 

denotes sample size and “Method” on the legend title denotes the different indirect effect 

test methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; and “BCB”=bias-corrected bootstrap of the 

ab-estimate.  
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Figure III-20. Parameter ab Coverage Rate when c’ = 0.39 and Censoring Proportion = 

0.3.  “Parm_Cover” on the y-axis denotes the parameter coverage rate, “SS” on the x-axis 

denotes sample size and “Method” on the legend title denotes the different indirect effect 

test methods: “Sobel”=the Sobel test; “DOP”=distribution of the product test; 

“PB”=percentile bootstrap of the ab-estimate; and “BCB”=bias-corrected bootstrap of the 

ab-estimate.  
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Figure IV-1. An Illustration of the Proportional Hazards Assumption of the Cox Model. 

The logarithm of the hazard rate is given at the Y-axis and time is given at the X-axis. 

The black regression line represents the regression when X=0 and the red line represents 

the regression when X=1. The proportional hazards assumption is shown by the 

difference between the two regression lines is a constant (a) across all time points.  
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Figure IV-2. The Empirical Relationship Between the a Estimate and the Corresponding 

Part, {∫ 𝑆(𝑀|𝑋 = 1) −  ∫ 𝑆(𝑀|𝑋 = 0)} in the Natural Indirect Effect.  All other 

parameter values were fixed the same (b=0.39, c’=0.39, n=1,000,000, and censoring 

proportion=0.3) while only the a-parameter values were manipulated at -0.82, -0.52, -

0.21, 0, 0.21, 0.52 and 0.82.  There was a (hard to define) nonlinear relationship between 

the a-estimate and {∫ 𝑆(𝑀|𝑋 = 1) −  ∫ 𝑆(𝑀|𝑋 = 0)}.   
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