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ABSTRACT

This thesis proposes a policy to control the heating, ventilation and air conditioning

(HVAC) systems in an industrial building. The policy designed in this thesis aims to

minimize the electricity cost of a building while maintaining human comfort. Occu-

pancy prediction and building thermal dynamics are utilized in the policy. Because

every building has a power constraint, the policy balances different rooms’ electricity

needs and electricity price to allocate AC unit power for each room. In particular,

energy costs are saved by reducing the system’s power for times when the occupancy

is low. Human comfort is preserved by restricting the temperature to a given range

when the room occupancy is above a preset threshold. This thesis proposes a greedy

policy, with provably good performance bound, to reduce costs for a building while

maintaining overall comfort levels. The approximation ratio of the policy is devel-

oped and analyzed, demonstrating the effectiveness of this approach as compared to

an ideal optimal policy.
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Chapter 1

INTRODUCTION

According to U.S. Energy Information Administration, the electricity consumption

in the commercial and residential sectors will be increasing by 0.5% to 0.8% per year

from 2013 through 2040 [9]. Additionally, energy prices have been increasing over the

last 10 years. Hence, it is of interest for both individuals and industry to consume

energy more cost-efficiently for both saving energy and reducing electricity cost. Ac-

cording to U.S. Energy Information Administration, Energy consumption of buildings

corresponds to 41% (or 40 quadrillion btu) of the total US energy consumption in

2014 and HVAC systems caused 43% of the energy consumption for commercial and

residential buildings [9]. Notably, Google Nest designed a thermostat to optimize res-

idential energy utility. The Nest thermostat learns the temperature people like and

the pattern of occupancy in the room to save the energy by turning off the AC unit

when there is no occupancy. It can also turn on the AC unit to pre-cool or pre-heat

the room when the energy price is low and there is no occupancy. An independent

study show that it saved people an average of 10% to 12% on heating bills and 15%

on cooling bills.

In this thesis, optimal control of an industrial building HVAC system is considered.

The goal is to maintain human comfort and reduce the electricity cost as much as pos-

sible. There are four issues related to this optimization problem: 1). The prediction

model of occupancy, weather and electricity price. 2). The model used to capture the

room’s physical thermal dynamics. 3). The model used to meter the human thermal

discomfort level. 4). The balance between human discomfort and electricity cost.

Recent work [3] developed a model predictive control technique for HVAC systems
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to reduce energy consumption while maintaining occupant comfort. However, they

didn’t take into consideration the discomfort value (temperature deviation from the

comfort temperature) in their optimization formulation. [7] presented a similar model

predictive control algorithm, which adaptively balances energy consumption and hu-

man comfort. Additional constraints are added on the accumulated discomfort due

to occupancy mis-predictions. [9] also aimed to reduce the energy consumption in a

HVAC system while maintaining the human comfort, and proposed a technique to

predict zone’s temperature and occupancy based on a deterministic subspace identi-

fication method and mobility model, respectively.

A greedy control policy is introduced and its approximation ratio is quantified in this

thesis. Both occupancy threshold and restricted temperature set are introduced in

the optimization constraint in our control policy, which results in better performance

than [3]. The new terms defined in this thesis help compensate for large differences

between desired future temperature range and current temperature when the system’s

prediction model is constrained to few future time steps. This prevents a system with

a slow response time from violating the desired temperature bounds, when occupancy

abruptly changes from low to high and the temperature between current or desired

room temperature is too different so that the AC unit does not have the ability to cool

down the room fast. The condition of many rooms in a large building is considered

by using discrete optimization (cf., [2], [9] and [7]).

The occupancy prediction model and human discomfort model used in this thesis fol-

low [3]. A Markov state transition matrix is trained by using on-line Bayesian learning

in the occupancy prediction model. The human discomfort model is captured by the

(occupancy weighted) square of the temperature deviation from the set point. The

thermal dynamic model in this thesis is based on [5] and [6]. The optimization for-

mulation for balancing of human discomfort and electricity cost, is inspired by [3]
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and [9]. The cost function, aiming to minimize the sum of human discomfort and

energy consumption, is used in both [3] and [9]. All the models and control policy

are presented in details in the following chapters.
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Chapter 2

AC UNITS CONTROL IN SMART BUILDING

2.1 Problem Description

Consider a discrete-time optimization problem, where the power modes for the

central system of many AC units can be dynamically adapted at the beginning of

each time slot of duration Ts. Also assume the electricity price is approximately un-

changed within one time-slot. We assume that there are N rooms and there is one

AC unit for each room.

The goal is to make AC mode decisions at each time-slot, in order to save the elec-

tricity cost while maintaining the human comfort. The objective of the optimization

problem is to maximize the negative sum of the total electricity cost of AC units and

the total discomfort value of people of all rooms in the building, which is given as:

Vi(k) = −(Vi dis(k) + Vi ec(k)) (2.1)

where i denotes the index of room/AC unit; k denotes the index of time slots; Vi(k)

denotes the value obtained by room i at time slot k; Vi dis(k) denotes the human

discomfort in room i at time slot k; Vi ec(k) denotes the electricity cost of room i

at time slot k. The human discomfort in a given room during time-slot k can be

captured by the following:

Vi dis(k) = f(Ti(k), Tsp, p(k), Ui(k), I(oi(k) = 1)) (2.2)

where f(.) is the discomfort function that quantizes the human thermal perception

discomfort in room i during time slot k; Ti(k) is the temperature of room i during
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time-slot k; Ui(k) is the power load of the AC unit in room i during time-slot k;

p(k) is the electricity price during time-slot k and it is assumed as unchanged within

any time slot; Tsp is the comfort temperature set point, I(.) is an indicator function;

oi(k) = 1 indicates that room i is occupied within time-slot k and oi(k) = 0 otherwise.

It is assumed that the temperature of zone i is deterministic and unchanged during

the time-slot, and satisfies the equation:

Ti(k) = g(Ti(k − 1), Tw(k), Ui(k)) (2.3)

where g(.) is the thermal-dynamic function that captures the temperature of each

room at a given time slot; Tw(k − 1) is the outdoor temperature during time-slot

k − 1.

In the above model, all rooms are outfitted with the same AC unit. Each AC unit

has different power mode choices, which are 0,∆U , 2∆U , ..., Umax. At the beginning of

each time slot, a control policy is applied and the discomfort/cost value of each room

is calculated.

2.2 Control Policy

It is clear that, the control decision will not only affect the current time slot, but

also future time slots. At each slot, the decision is made by aiming to strike a good

balance between human comfort and electricity cost. Next, we define two policies as

follows:

Definition 1 (Finite-horizon policy) A Finite horizon policy is a policy that the

power mode at each time slot is determined by optimizing the value over finite time-

slots.

Definition 2 (Greedy policy) A greedy policy is a policy that the power mode at each

time slot is determined by optimizing the value over one time-slot.
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The following optimization is inspired by the study in [3].

max
U(k0), U(k0 + 1), ...., U(T )

− E

[
T∑

k=k0

N∑
i=1

(Vi dis(k) + Vi cs(k))

]
(2.4a)

subject to Vi dis(k) = f(Ti(k), Tsp, I(oi(k) = 1)) (2.4b)

Vi cs(k) = p(k)Ui(k) (2.4c)

Ti(k) = g(Ti(k − 1), Tw(k), Ui(k)) (2.4d)

p(k) = hp(p(1), ...., p(k − 1)) (2.4e)

I(oi(k) = 1) = ho(o1(1), ...., oi(k − 1)) (2.4f)

Ui(k) ∈ {0,∆U , 2∆U , ...., Umax} (2.4g)

N∑
i=1

Ui(k) ≤ c, ∀ k ∈ {k0, ...., T} (2.4h)

where U(k) is a vector which captures power load decision at k for all rooms; c is

the power constraint of the building; hq(.) and ho(.) are the price and occupancy

estimation function, respectively. We assume that the weather can be perfectly fore-

cast in this thesis. At each time slot, the future electricity price and occupancy are

predicted. The prediction depth is dictated by the policy. The forecast is based on

historical data. Γi(k) is denoted as the fractional occupancy term to capture the true

time that people stay in room i within time slot k. Because the goal is to balance

human discomfort and electricity cost, a preset constraint is made to guarantee the

humans’ thermal perception requirement. Here Γh is introduced as follows:

Condition 1: If Γi(k) > Γh, then Ti(k) ∈ [τ − δ, τ + δ].

In the above, τ is Tsp and δ is a temperature restriction. The definition of Γh can

be interpreted as follows. When Γi(k) ≤ Γh, there is no restriction of the balance of

human discomfort and electricity cost. When Γi(k) > Γh, the balance should satisfy a

temperature constraint to ensure the human thermal satisfaction. Consider the finite
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horizon policy aiming to solve the following optimization at each time slot:

max
U(k0), U(k0 + 1), ...U(T )

− E

[
T∑

k=k0

N∑
i=1

(Vi dis(k) + Vi cs(k))

]
(2.5a)

subject to Vi dis(k) = f(Ti(k), Tsp,Γi(k)) (2.5b)

Vi cs(k) = p(k)Ui(k) (2.5c)

Ti(k) = g(Ti(k − 1), Tw(k), Ui(k)) (2.5d)

Ui(k) ∈ {0,∆U , 2∆U , ...., Umax} (2.5e)

N∑
i=1

Ui(k) ≤ c (2.5f)

Ti(k)1(Γi(t)>Γh) ∈ [τ − δ, τ + δ] (2.5g)

Ti(k) ∈ T (T−k0+1), ∀ k ∈ {k0, ..., T} (2.5h)

The constraint (2.5g) is introduced to satisfy condition 1. Further, T (n) in constraint

(2.5h) is defined by:

Condition 2: For any Tw(k), Tw(k + 1), ..., Tw(m), if Ti(k − 1) ∈ T (m−k+1), there is

{Ui(k), Ui(k + 1), ..., Ui(m)} such that Ti(m) ∈ T (0) where T (0) = [τ − δ, τ + δ].

When T − k0 is big enough, the constraint (2.5h) can be discarded. The system

model is shown in Fig 2.1. In this thesis, the performances of both greedy policy and

finite-horizon policy will be analyzed.
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Figure 2.1: System Model
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Chapter 3

PREDICTION MODEL FOR OCCUPANCY

One of the key challenges in the optimal control for the HVAC system is occupancy

prediction. We report to the stochastic occupancy model in [2], which is a prediction

model based on a two-state Markov chain.

3.1 Occupancy Transition Probability

In the model, there are two possibilities, namely the room is either occupied or

unoccupied at a given time. In this chapter, γ(t) denotes the occupancy statement

at time t. γ(t) = 1 means the room is occupied and γ(t) = 0 otherwise. Because only

the occupancy state within a time-slot matters in our model, we use Γk to capture

the occupancy state within a time-slot:

Γ(k) =
1

Ts

∫ (k+1)Ts

kTs

γ(t)dt (3.1)

where Γ(k) represents the fractional occupancy and Γ(k) ∈ [0, 1]. Γ(k) = 1 means the

room is occupied for the whole time-slot k and Γ(k) = 0 means the room is unoccupied

for the time-slot k. The following equation holds by the law of large numbers (LLN):

Γ(k) = E[o(k)] = P{o(k) = 1} (3.2)

In what follows, we use o(k) = 1 (occupied) and o(k) = 0 (unoccupied) for two

states in the occupancy Markov chain model. At each time slot, we determine the
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Figure 3.1: Time-varying Periodic Markov Chain Structure

probability of future occupancy. We want to predict the probabilities:

pk = P{o(k + 1) = 1|o(k) = 1} (3.3)

qk = P{o(k + 1) = 1|o(k) = 0} (3.4)

where pk is the transition probability from an occupied state within time-slot k to

an occupied state within time-slot k + 1; qk is the transition probability from an

unoccupied state within time-slot k to an occupied stage within time-slot k + 1.

The transition probabilities of this time-varying Markov chain are periodic; with the

period being 24 hours. To visualize the periodicity, we unroll the Markov chain into

2M states, where M = 24 hours
Ts

(Fig.3.1). If the current time-slot is the last one for

a day, namely k = M , the next time-slot returns to the first time-slot, which means

pM = P{o(1) = 1|o(M) = 1} and qM = P{o(1) = 1|o(M) = 0}.

At any given time slot, there are two possible states, so we need to maintain two

distributions per time slot:

p̄k = P{o(k + 1) = 1|o(k) = 1} = E[fk(pk)] (3.5)

q̄k = P{o(k + 1) = 1|o(k) = 0} = E[gk(qk)] (3.6)
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we denote fk(pk) and gk(qk) as the density functions, respectively. p̄k and q̄k are the

expectations, which is the prediction of the occupancy of the next time slot.

3.2 Bayesian Learning of Occupancy Transition Probability

A online Bayesian learning algorithm is used in training of the occupancy tran-

sition probability. To get the occupancy transition probabilities, we need to train

pk and qk respectively for all k ∈ {1, ...,M}. Because of the definition of the tran-

sition probability, only one probability density function, either fk(pk) or gk(qk), will

be updated using both adjacent time-slots training data. Additionally, fk(pk) will be

updated if we observe o(k) = 1 and gk(qk) will be updated if we observe o(k) = 0.

Observe when data d has an occupied state within time-slot k, the new updated

fk,d(pk) and gk,d(qk) using training data d are:

fk,d(pk|od(k + 1) , od(k) = 1) =
fk,d−1(pk)Φ[od(k + 1) , pk]∫ 1

0
fk,d−1(pk)Φ[od(k + 1) , pk] dpk

(3.7)

gk,d(qk|od(k + 1) , od(k) = 1) = gk,d−1(qk) (3.8)

and if we observe data d has an unoccupied state within time-slot k, we will get:

gk,d(qk|od(k + 1) , od(k) = 0) =
gk,d−1(qk)Φ[od(k + 1) , qk]∫ 1

0
gk,d−1(qk)Φ[od(k + 1) , qk] dqk

(3.9)

fk,d(pk|od(k + 1) , od(k) = 0) = fk,d−1(pk) (3.10)

where fk,d−1(pk) and gk,d−1(qk) are the probability density functions trained by data

0,1,...,d-1. Φ[.] is a likelihood function, which satisfies:

Φ[od(k + 1) , pk] = p
I(od(k+1)=1)
k (1− pk)I(od(k+1)=0) (3.11)

Φ[od(k + 1) , qk] = q
I(od(k+1)=1)
k (1− qk)I(od(k+1)=0) (3.12)
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As we know from above, either fk(pk) or gk(qk) will be updated if the room is occupied

or unoccupied within the time-slot k. Note that:

fk,d(pk) =fk,d(pk|od(k) = 1)P{od(k) = 1}

+ fk,d(pk|od(k) = 0)P{od(k) = 0} (3.13a)

=[fk,d(pk|od(k + 1) = 1, od(k) = 1)P{od(k + 1) = 1}

+ fk,d(pk|od(k + 1) = 0, od(k))P{od(k + 1) = 0}]P{od(k) = 1}

+ fk,d(pk|od(k) = 0)P{od(k) = 0} (3.13b)

gk,d(qk) =gk,d(qk|od(k) = 1)P{od(k) = 1}

+ gk,d(qk|od(k) = 0)P{od(k) = 0} (3.14a)

=[gk,d(qk|od(k + 1) = 1, od(k) = 0)P{od(k + 1) = 1}

+ gk,d(qk|od(k + 1) = 0, od(k) = 0)P{od(k + 1) = 0}]P{od(k) = 0}

+ gk,d(qk|od(k) = 1)P{od(k) = 1} (3.14b)

it follows that fk,d(pk) and gk,d(qk) can be updated for each observation using equa-

tions (3.1)-(3.2) and (3.5)-(3.12).

3.3 Occupancy Prediction

Note that the Markov chain in our model has 2M states totally for each AC unit

i, which are oi(k) = 1 and oi(k) = 0 for all k ∈ {1, ...,M}. We denote πi(k) ∈ R1×2M

as the occupancy probability of zone i within time-slot k. The first M elements in

πi(k) represents for P{oi(k) = 1} in M time slots and the last M elements in πi(k)

represents for P{oi(k) = 0} in M time slots. It is obvious that only two elements,

the kth and (M + k)th elements, can be non-zeros in vector πi,k, because πi(k) can

only capture the kth time slot’s occupancy, where πi(k) is represented as:

πi(k) = [Γi(k)1k1×M (1− Γi(k))1k1×M ] (3.15)
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where 1k1×N is a M elements row vector with all zeros except the kth element is 1. If

πi,k is available, Γi(k) can be obtained by:

Γi(k) = πi(k)[11×M 01×M ]T (3.16)

where 11×M is a M elements row vector with all 1s and 01×M is a M elements row

vector with all 0s.

At time slot k+1, the observation of time-slot k and fk,d(pk) and gk,d(qk) are available,

and we can use the following equation to compute the occupancy state prediction:

p[o(k + 1) = 1] =P{o(k) = 0}P[o(k + 1)|o(k) = 0]

+ P{o(k) = 1}P[o(k + 1) = 1|o(k) = 1] (3.17a)

=[1− Γ(k)]q̄k + Γ(k)p̄k (3.17b)

The transition matrix is defined by Pi ∈ R2M×2M . The kth row of Pi means what the

occupancy probability will be within time-slot k + 1 of zone i if the zone is occupied

within time-slot k. We can generate Pi by the following steps:

P
(1,1)
i,st =


p̄s if t = s+ 1 mod M

0 otherwise

(3.18)

P
(1,2)
i,st =


1− p̄s if t = s+ 1 mod M

0 otherwise

(3.19)

P
(2,1)
i,st =


q̄s if t = s+ 1 mod M

0 otherwise

(3.20)

P
(2,2)
i,st =


1− q̄s if t = s+ 1 mod M

0 otherwise

(3.21)
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Pi =

P (1,1)
i P

(1,2)
i

P
(2,1)
i P

(2,2)
i

 (3.22)

where s and t are the row and column indices of Pi respectively.

To get the occupancy probability prediction of time-slot k + j based on the zone i’s

occupancy probability state πi,k, we can use the following equations:

E[oi(k + j)] =P[oi(k + j) = 1] (3.23a)

=Γi(k + j) (3.23b)

=πi(k + j)[11×M 01×M ]T (3.23c)

=πi(k)P j
i [11×M 01×M ]T (3.23d)
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Chapter 4

SMART BUILDING AC UNITS CONTROL:A KNAPSACK APPROACH

4.1 Thermal Dynamics Model

Consider the air conditioner thermal dynamic model captured by the following

equation, which has been used in [1], [5] and [6].

Ti(k + 1) = Ti(k) + (1− α)[Tw(k + 1)− βUi(k)− Ti(k)] (4.1)

where Ti(k) is the indoor temperature of room i at time slot k. All the other rooms’

temperature effect on room i is ignored in the above equation. α is dictated by the

time slot duration Ts and satisfies the equation α = e−Ts/Tc , where Tc is a time con-

stant. β is determined by the performance of heat exchange of the building material

and air conditioner.

Based on thermal dynamics function and Condition 1, the following lemma is ob-

tained:

Lemma 1: if Ti(k + 1) = Ti(k) + (1 − α)[Tw(k + 1) − βUi(k) − Ti(k)], then δ ≥
1
2
β(1− α)∆U .

Proof : δ = 1
2
β(1 − α)∆U − ε (0 ≤ ε < 1

2
β(1 − α)∆U) is invalid when Ti(t − 1) =

τ+ 1
2
β(1−α)∆U and Tw(t) = τ+ 1

2
β(1−α)∆U , because Ti(t) = τ+ 1

2
β(1−α)∆U−β(1−

α)Ui(t) /∈ [τ − δ, τ + δ]. If δ ≥ 1
2
β(1−α)∆U , assume αTi(k) + (1−α)Tw(k+ 1) ∈ [τ +

1
2
nβ(1−α)∆U , τ+ 1

2
(n+1)β(1−α)∆U ], then we can always choose Ui(k) = (n+1)∆U .

The result next time slot temperature is Ti(k) ∈ [τ − 1
2
β(1−α)∆U , τ + 1

2
β(1−α)∆U ],

which means Ti(t) ∈ [τ − δ, τ + δ].

According to equation (4.1), it can be observed that the temperature deviation be-

tween two time slots is determined by Tw(k+1)−βUi(k)−Ti(k). It is difficult to cool
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the room, when the room’s temperature is low, meanwhile, the weather temperature

is high. We define a parameter ∆τ to capture the air conditioner’s cooling ability.

Condition 3: τ −∆τ = Tmax
w − βUmax.

where ∆τ is a parameter that measures the air conditioner cooling ability during the

hottest weather and ∆τ ≥ 0 is assumed to hold, which means the AC unit can at least

keep the comfort temperature during the hottest weather. According to Condition 2,

the following lemma can be developed:

Lemma 2: T (1) = {T |τ − δ
α
≤ T ≤ τ + δ

α
+ ( 1

α
− 1)∆τ}

Proof : T
(1)
min and T

(1)
max are denoted as the min and max value in set T (1). T

(1)
min occurs

when T (k) = τ − δ, Tw(k) = τ and U(k) = 0, namely, T (k) = f(T
(1)
min, τ, 0) = τ − δ,

which leads to T
(1)
min = τ − δ

α
. T

(1)
max occurs when T (k) = τ + δ, Tw(k) = Tmax

w

and U(k) = Umax. Hence, T (k) = f(T
(1)
max, Tmax

w , Umax) = τ + δ, which leads to

T
(1)
max = τ + δ

α
+ ( 1

α
− 1)∆τ by Condition 3.

4.2 Knapsack Value Function

The value of each AC unit’s power mode consists of two important parts, which

are human discomfort and electricity cost of the AC unit. The value of the AC unit

in room i within time-slot k is captured by equation (2.1). Electricity cost of ac unit

i within time-slot k can be calculated by equation 2.4(c). We have defined human

discomfort function f(.) as the penalty function of deviation from the set point. To

capture f(.), we use the cost function developed by [3]:

f(Ti(k), Tsp,Γi(k))) = µΓi(k)[Ti(k)− Tsp]2 (4.2)

where µ is the penalty on discomfort during occupancy and may depend on the

number of the occupants in the room by [9]. We assume µ is a constant and it can be

eliminated by shrinking p(k) in the optimization. Above all, the value of each item i
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within time-slot k is:

Vi(k) = Γi(k)[Ti(k)− Tsp]2 + p(k)Ui(k) (4.3)

4.3 Multiple Choice Knapsack Problem Formulation

The building’s AC units control is modeled as a knapsack problem within each

time-slot. In this knapsack problem, the knapsack capacity is the building’s power

load capacity. For each room, one of AC unit’s power mode will be selected to run

within a given time-slot, which is modeled by choosing a weight for each item to

insert into the knapsack. We denote Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} as the weight set

of item i. The negative sum of the human discomfort value for room i and electricity

cost of AC unit i, corresponding to the choice of power mode of AC unit i, is modeled

as the value for the selected item’s weight. According to equations (4.1) and (4.3),

the corresponding value to the selected item weight Ui(k) is:

Vi(k) =Γi(k)[αTi(k − 1) + (1− α)Tw(k)− β(1− α)Ui(k)− Tsp]2

+ p(k)Ui(k) (4.4a)

Based on the above, this is a stochastic multiple choice knapsack problem with deter-

ministic weight and stochastic value. Different from a deterministic knapsack prob-

lem, the stochastic knapsack problem aims to find a preference distribution of the

knapsack value (see, e.g., [8]). [4] designed a dynamic programming algorithm to

select items sequentially depending on the realizations of their stochastic values. Un-

fortunately, the true value of each selected item cannot be observed immediately after

its selection, because the random variables within the time slot may change during

the time slot. In this thesis, we optimize the expectation of the total value in a knap-

sack. The greedy policy for the underlying optimization formulation is the solution
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to the following problem:

max
Ui(k)

− E[
N∑
i=1

Vi(k)] (4.5a)

subject to Ti(k)1(Γi(k)>Γh) ∈ T (0) (4.5b)

Ti(k) ∈ T (1) (4.5c)

Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} (4.5d)

N∑
i=1

Ui(k) ≤ c (4.5e)

It can be shown that:

E[Vi(k)] =E[Γi(k)][αTi(k − 1) + (1− α)Tw(k)

− β(1− α)Ui(k)− Tset point]2 + TsE[p(k)]Ui(k) (4.6a)

where

E[Γi(k)] = πi,k−1P [11×N 01×N ]T (4.7)

E[p(k)] = p(k − 1) (4.8)

4.4 A Solution Based on Recursion

The greedy policy can be obtained based on the following two steps:

• Step 1: Use recursion to solve the stochastic multiple choice knapsack problem

at each given time-slot, based on the input of the control system, the observa-

tions of the last time-slot.

• Step 2: Adapt the power mode for AC units based on the solution in step 1 for

the next time-slot, and use the occupancy and temperature state as the input

to the control problem.
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We denote ρmax[i, c] as the optimal knapsack value; V [Ui(k)] is the value of the

objective function accordingly. We have the following recursion rule:

ρmax[i, c] = max
Ui(k)

ρmax[i− 1, c− Ui(k)] + V [Ui(k)] (4.9a)

subject to ρmax[0, c] = 0 for c ≥ 0 (4.9b)

ρmax[i, c] = −∞ for c < 0

or Ti(k)1(Γi(k)≥Γh) 6∈ T (0) or Ti(k) 6∈ T (1) (4.9c)

Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} (4.9d)

Based on the above optimization, the solution of ρmax[N, c] is obtained at each time

slot.
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Chapter 5

PERFORMANCE ANALYSIS

In this chapter, the performance of the greedy policy is analyzed by computing its

approximation ratio. The approximation ratio is upper bounded by calculating the

ratio of the lower bound value of greedy policy and the upper bound value of finite-

horizon policy.

5.1 Greedy Policy

Consider the following problem:

maximize
Ui(k) ∀i

−
N∑
i=1

[Ui(k)p(k) + Γi(k)(Ti(k)− τ)2] (5.1a)

subject to Ti(k) = αTi(k − 1)− β(1− α)Ui(k) + (1− α)Tw(k) (5.1b)

1(Γi(k)>Γh)(Ti(k)− τ) ∈ [−δ, δ] (5.1c)

Ti(k) ∈ T (1) (5.1d)

Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} (5.1e)

N∑
i=1

Ui(k) ≤ c (5.1f)

The constraint (5.1d) is necessary, because Tw(k + 1) and Γi(k + 1) are independent

with the determination of Ui(k) at time slot k. If (5.1d) doesn’t exist, the temperature

of a lower occupancy room can go unbounded.

When the constraint (5.1b-f) cannot be satisfied together, we let the objective value

be negative infinity for that case. That’s mainly due to the minimum of the total

power satisfying (5.1b-e), has exceeded the building capacity. We assume that the
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capacity meets the requirement, namely the optimization objective function value

always be finite.

Lemma 3: If c ≥ maxk{
∑4

j=1 Nj(k)cj(Tw(k))} holds, then the optimal value of

objective function at any time slot is finite, when greedy policy is applied.

Proof : When the greedy policy is applied, the temperature of a given room must

either be in T (0) or T (1) during a given time slot, where T (0) = {T |τ−δ ≤ T ≤ τ +δ}.

Consider room i at time slot k, there are four possibilities, which are determined by

Γi(k − 1) and Γi(k):

1). Ti(k − 1) ∈ T (1) and Ti(k) ∈ T (1).

2). Ti(k − 1) ∈ T (1) and Ti(k) ∈ T (0).

3). Ti(k − 1) ∈ T (0) and Ti(k) ∈ T (0).

4). Ti(k − 1) ∈ T (0) and Ti(k) ∈ T (1).

We denote N1(k), N2(k), N3(k) and N4(k) as the number of rooms in the above four

situations at time slot k, respectively. Let U?
i (k) be the minimum power for AC unit

i at time slot k, satisfying the temperature constraints (5.1b-e). The upper bound of

U?
i (k) is analyzed as follows:

In situation 1, the possible largest Ui(k) occurs when Ti(k − 1) = T 1
max. It is clear

that U?
i (k) = min{Ui(k)|T (1)

min ≤ αT
(1)
max − β(1 − α)Ui(k) + Tw(k) ≤ T

(1)
max}. Hence,

U?
i (k) ≤ max{0, Tw(k)−T 1

max

β
+ ∆U}.

In situation 2, the possible largest Ui(k) occurs when Ti(k − 1) = T
(1)
max. It is clear

that U?
i (k) = min{Ui(k)|T (0)

min ≤ αT
(1)
max − β(1 − α)Ui(k) + Tw(k) ≤ T

(0)
max}. Hence,

U?
i (k) < Tw(k)−τ+∆τ

β
+ ∆U .

In situation 3, the possible largest Ui(k) occurs when Ti(k − 1) = T
(0)
max. It is clear

that U?
i (k) = min{Ui(k)|T (0)

min ≤ αT
(0)
max − β(1 − α)Ui(k) + Tw(k) ≤ T

(0)
max}. Hence

U?
i (k) ≤ max{0, Tw(k)−T (0)

max

β
+ ∆U}.

In situation 4, the possible largest Ui(k) happens when Ti(k − 1) = T
(0)
max. It is clear
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that U?
i (k) = min{Ui(k)|T (1)

min ≤ αT
(1)
max − β(1 − α)Ui(k) + Tw(k) ≤ T

(1)
max}. Hence,

U?
i (k) < max{0, Tw(k)−τ−∆τ−δ(1+α)

αβ
+ ∆U}.

We denote c1(Tw(k)), c2(Tw(k)), c3(Tw(k)) and c4(Tw(k)) as follows:

1). c1(Tw(k)) = min{Umax,max{0, Tw(k)−T 1
max

β
+ ∆U}}.

2). c2(Tw(k)) = min{Umax,
Tw(k)−τ+∆τ

β
+ ∆U}.

3). c3(Tw(k)) = min{Umax,max{0, Tw(k)−T (0)
max

β
+ ∆U}}.

4). c4(Tw(k)) = min{Umax,max{0, Tw(k)−τ−∆τ−δ(1+α)
αβ

+ ∆U}}.

Based on the above, the minimum total power of a building must satisfy
∑N

i=1 U
?
i (k) ≤∑4

j=1 Nj(k)cj(Tw(k)). Hence, Lemma 1 is obtained. Lemma 1 can be used, based

on the historical weather and occupancy data, to simulate a power constraint of a

building. We denote UGP
i (k) as the power decision when greedy policy is applied, and

TGP
i (k) is the corresponding temperature.

Theorem 1: When greedy policy is applied, the following inequality holds:

−
N∑
i=1

[UGP
i (k)p(k) + Γi(k)(TGP

i (k)− τ)2]

≥ −cp(k)−Nmax{Γh[
δ

α
+ (

1

α
− 1)∆τ ]

2, δ2} (5.2a)

Proof : For the electricity cost, the following inequality is obtained:

−
N∑
i=1

UGP
i (k)p(k)

=− p(k)
N∑
i=1

UGP
i (k) (5.3a)

≥− cp(k) (5.3b)
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For the human discomfort value, the following inequality is obtained:

−
N∑
i=1

Γi(k)(TGP
i (k)− τ)2

≥− ΓhN(Γi(k)≤Γh)[
δ

α
+ (

1

α
− 1)∆τ ]

2 −N(Γi(k)>Γh)δ
2 (5.4a)

≥−Nmax{Γh[
δ

α
+ (

1

α
− 1)∆τ ]

2, δ2} (5.4b)

where N(Γi(k)≤Γh) and N(Γi(k)>Γh) denote the total number of rooms with occupancy

Γi(k) ≤ Γh and Γi(k) > Γh at time slot k, respectively.

5.2 Finite Horizon Policy

maximize
Ui(0), ...Ui(N) ∀i

−
T∑
k=1

N∑
i=1

[Ui(k)p(k) + Γi(k)(Ti(k)− τ)2] (5.5a)

subject to Ti(k) = αTi(k − 1)− β(1− α)Ui(k) + (1− α)Tw(k) (5.5b)

1Γi(k)>Γh(Ti(k)− τ) ∈ [−δ, δ] (5.5c)

Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} (5.5d)

N∑
i=1

Ui(k) ≤ C ∀ k ∈ {1, ..., T} (5.5e)

Consider the above optimization when T − k is big enough. If all Tw(1), ...., Tw(T )

and p(1), ...., p(T ) remain static, the upper-bound of (5.4a-e) can be calculated by the

following analysis.

If a room with occupancy Γi(k) > Γh, the temperature should be restricted in the

range of [τ − δ, τ + δ]. Otherwise, the room’s temperature should be controlled so

that it can satisfy Tw(k′) ∈ [τ − δ, τ + δ], where k′ is the first approaching time slot

with Γi(k
′) > Γh.
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Based on the above analysis, the optimization can be reformulated by introducing

∆i(k), ai,j and bi. ∆i(k) denotes the deviation of the temperature of room i from the

desired temperature τ at time slot k, namely ∆i(k) = Ti(k)− τ ; ai,j denotes the jth

time slot with Γi > Γh from the starting time slot; bi is the the total number of time

slots which satisfy Γi > Γh from the starting time slot. Then the above optimization

can be reformulated as follows:

maximize
Ui(1), ...Ui(T ) ∀i

−
N∑
i=1

bi∑
j=1

ai,j∑
k=ai,j−1+1

[Ui(k)p(k) + Γi(k)∆i(k)2] (5.6a)

subject to ∆i(ai,j) = (1− α)

ai,j∑
k=ai,j−1+1

αai,j−k[∆w(k)− βUi(k)]

+ ∆i(ai,j−1)αai,j−ai,j−1 (5.6b)

∆i,ai,j ∈ [−δ, δ] (5.6c)

Ui(k) ∈ {0,∆U , 2∆U , ..., Umax} (5.6d)

N∑
i=1

Ui(k) ≤ c ∀ k ∈ {1, ..., T} (5.6e)

where ∆w(k) = Tw(k)−τ . The temperature of any room is assumed within desirability

at the starting time slot, namely ∆i(0) ∈ [−δ, δ]. From (5.4b), the following equation

can be obtained:

∆i(k) = α∆i(k − 1)− β(1− α)Ui(k) + (1− α)∆w(k) (5.7)

(5.7) can be interpreted as that, the decision Ui(k) is made to cool the heat caused

by ∆i,k−1 and ∆w(k). Based on (5.7), the following equation is obtained:

α−k∆i(k) = ∆i(0) + (1− α)
k∑
s=0

α−s[∆w(s)− βUi(s)] (5.8)

(5.8) can be interpreted as the relationship between the temperature of a given time

slot k and the starting time slot. If k is assigned as ∆i(ai,j) and ∆i(ai,j−1), respectively,
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we have:

α−ai,j∆i(ai,j) = ∆i(0) + (1− α)

ai,j∑
s=0

α−s[∆w(s)− βUi(s)] (5.9a)

α−ai,j−1∆i(ai,j−1) = ∆i(0) + (1− α)

ai,j−1∑
s=0

α−s[∆w(s)− βUi(s)] (5.9b)

Thus, (5.6b) is obtained, based on (5.9a) and (5.9b).

The optimization (5.5a-e) is upper bounded by (5.6a-e), because (5.6a-e) doesn’t in-

clude the electricity cost and human discomfort at time slot larger than ai,bi . Equality

holds when the occupancy is 0 after time slot bi, namely Γi(k) = 0 when k > bi.

maximize
Ui(1), ...Ui(T ) ∀i

−
N∑
i=1

bi∑
j=1

ai,j∑
k=ai,j−1+1

Ui(k)p(k) (5.10a)

subject to ∆i(ai,j) = (1− α)

ai,j∑
t=ai,j−1+1

αai,j−k[∆w(k)− βUi(k)]

+ ∆i(ai,j−1)αai,j−ai,j−1 (5.10b)

∆i,ai,j ∈ [−δ, δ] (5.10c)

Ui(k) ≥ 0 ∀ k ∈ {1, ..., T} (5.10d)

The optimization (5.6a-e) is upper bounded by (5.10a-d), because:

1) Discomfort value in objective function is discarded in (5.10a).

2) A relaxation of Ui(k) is made and its supremum is discarded in (5.10d).

3) The power constraint is discarded.

Hence, the optimization (5.5a-e) is upper bounded by (5.10a-d). We denote UFHP
i (k)

as the power decision when finite horizon policy is applied, and TFHP
i (k) is the corre-

sponding temperature.
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Theorem 2: When finite horizon policy is applied, the following inequality holds:

−
T∑
k=1

N∑
i=1

[UFHP
i (k)p(k) + Γi(k)(TFHP

i (k)− τ)2]

≤ −
T ′∑
k=1

N∑
i=1

[
αdi(k)∆w(k)mink{p(k)}

βli(k)
− δ(1 + αli(k))α−di(k)p(k)

(li(k))2β(1− α)
] (5.11a)

where T ′ is the minimum of the time slot index among all rooms’ last high occupancy

time slots.

Proof : Based on (5.10a-d), we have:

N∑
i=1

bi∑
j=1

ai,j∑
t=ai,j−1+1

Ui(k)p(k)

1○
≥

N∑
i=1

bi∑
j=1

[∑ai,j
k=ai,j−1+1

√
αai,j−kUi(k)

]2

∑ai,j
k=ai,j−1+1 α

ai,j−kp(k)−1
(5.12a)

2○
>

N∑
i=1

bi∑
j=1

∑ai,j
k=ai,j−1+1 α

ai,j−kUi(k)∑ai,j
k=ai,j−1+1 α

ai,j−kp(k)−1
(5.12b)

3○
=

N∑
i=1

bi∑
j=1

1
β

∑ai,j
k=ai,j−1+1 α

ai,j−k∆w(k)− ∆i(ai,j−1)αai,j−ai,j−1−∆i(ai,j)

β(1−α)∑ai,j
k=ai,j−1+1 α

ai,j−kp(k)−1
(5.12c)

4○
>

N∑
i=1

bi∑
j=1

[

1
β

∑ai,j
k=ai,j−1+1 α

ai,j−k∆w(k)∑ai,j
k=ai,j−1+1 α

ai,j−tp(k)−1
−

δ(1+αai,j−ai,j−1 )
β(1−α)∑ai,j

k=ai,j−1+1 α
ai,j−kp(k)−1

] (5.12d)

5○
>

N∑
i=1

bi∑
j=1

[

1
β

∑ai,j
k=ai,j−1+1 α

ai,j−k∆w(k)∑ai,j
k=ai,j−1+1 α

ai,j−kp(k)−1

− δ(1 + αai,j−ai,j−1)

(ai,j − ai,j−1)2β(1− α)

ai,j∑
k=ai,j−1+1

αk−ai,jp(k)] (5.12e)

6○
>

N∑
i=1

bi∑
j=1

ai,j∑
k=ai,j−1+1

[
αai,j−k∆w(k)mink{p(k)}

β(ai,j − ai,j−1)

− δ(1 + αai,j−ai,j−1)αk−ai,jp(k)

(ai,j − ai,j−1)2β(1− α)
] (5.12f)

7○
>

T ′∑
k=1

N∑
i=1

[
αdi(k)∆w(k)mink{p(k)}

βli(k)
− δ(1 + αli(k))α−di(k)p(k)

(li(k))2β(1− α)
] (5.12g)
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The inequality of 1○ is proved by CauchySchwarz inequality, which is (
∑n2

k=n1
ukvk)

2

≤
∑n2

k=n1
u2
k

∑n2

k=n1
v2
k. Let vk =

√
Ui(k)p(k), ukvk =

√
αai,j−kUi(k), n1 = ai,j−1 + 1

and n2 = ai,j, then 1○ can be obtained.

The inequality of 2○ is obtained by abandoning some positive numbers.

The equality of 3○ is obtained by the substitution of equation (5.8b).

The inequality of 4○ is got by substitution of ∆i(ai,j−1) = −δ and ∆i(ai,j) = δ, be-

cause of ∆i(ai,j−1) ∈ [−δ, δ] and ∆i(ai,j) ∈ [−δ, δ].

The inequality of 5○ is proved by Arithmetic Mean - Harmonic Mean Inequality,

which is
∑n2
k=n1

xk

n2−n1
≥ n2−n1∑n2

k=n1
x−1
k

when xk ≥ 0. Let xk = αk−ai,jp(k), n1 = ai,j−1 + 1 and

n2 = ai,j, then 5○ can be obtained.

The inequality of 6○ can be proved by using the following inequality:

ai,j∑
k=ai,j−1+1

αai,j−kp(k)−1

≤
ai,j∑

k=ai,j−1+1

αai,j−kmink{p(k)−1} (5.13a)

< (ai,j − ai,j−1)mink{p(k)−1} (5.13b)

The inequality of 7○ is done by substitution of li(k) = ai,j − ai,j−1, di(k) = ai,j − k,

T ′ = mini{ai,bi}. We obtain the inequality by discarding the electricity cost and hu-

man discomfort after T ′.

The upper-bound in Theorem 2 has two parts, here are the interpretations:

1). The first part is
∑T ′

k=1

∑N
i=1

αdi(k)∆w(k)mink{p(k)}
βli(k)

, which captures the lower bound

of the electricity cost in order to maintain the human comfort.
∆w(k)

β(1−α)
captures the

power needs to be used in order to make every room satisfy the human comfort

requirement. (1−α)αdi(k)

li(k)
captures a parameter how the power at different time slot
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affects the human comfort, because only the high occupancy room has a temperature

restriction. mink{p(k)} means the minimum electricity price. Based on above, we

can conclude that this part tells us the lower bound of the electricity cost we need to

pay to maintain the human comfort in the room with high occupancy rate.

2). The second part is
∑T ′

k=1

∑N
i=1

δ(1+αli(k))α−di(k)p(k)

l2i (k)β(1−α)
, which captures the electricity

cost saved by the policy. δ
β(1−α)

means the power saved to cool the next high occu-

pancy room, when the beginning high occupancy room’s temperature deviation from

set point is −δ. 1+αli(k)α−di(k)

l2i (k)
captures how this starting temperature help the follow-

ing rooms’ power saving. Based on above, we can conclude that this part tells us the

upper-bound of the electricity cost saving by the policy.

5.3 Approximation Ratio of Greedy Policy

In the above sections 5.1 and 5.2, we have calculated the lower bound value of the

greedy policy and the upper bound value of the finite horizon policy. The approxi-

mation ratio of greedy policy is upper bounded as follows:

Electricity Cost(GP) + discomfort(GP)

Electricity Cost(FHP) + discomfort(FHP)

= lim
T→∞

∑T
k=1

∑N
i=1 U

GP
i (k)p(k) +

∑T
k=1

∑N
i=1 Γi(k)[TGP

i (k)− τ ]2∑T
k=1

∑N
i=1 U

FHP
i (k)p(k) +

∑T
k=1

∑N
i=1 Γi(k)[TFHP

i (k)− τ ]2
(5.14a)

< lim
T→∞

∑T
k=1 cp(k) +NTmax{Γh[ δα + ( 1

α
− 1)∆τ ]

2, δ2}∑T
k=1

∑N
i=1[α

di(k)∆w(k)mink{p(k)}
βli(k)

− δ(1+αli(k))α−di(k)p(k)
(li(k))2β(1−α)

]
(5.14b)

=
cE[p(k)]
N

+ max{Γh[ δα + ( 1
α
− 1)∆τ ]

2, δ2}
min{p(k)}

βN
E[∆w(k)]

∑N
i=1 E[α

di(k)

li(k)
]− δ

β(1−α)N
E[p(k)]

∑N
i=1 E[ (1+αli(k))α−di(k)

l2i (k)
]

(5.14c)

The equation above is deduced by large number theory (LLN). It is assumed that the

electricity price, outdoor weather and occupancy are independent with each other.
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We can draw a conclusion that the greedy policy’s approximation ratio is upper

bounded by the ratio in (5.14c). This ratio can be positive by carefully picking up

the parameters α, δ, Γh.
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Chapter 6

SIMULATION RESULTS AND CONCLUSION

6.1 Simulation Setting

A building with five rooms is considered for the simulation. We assume each

room is equipped with one AC unit and occupancy sensor. We simulate the building

AC units control of cooling injection during summer time. For simplicity, each room

contain 1 occupants (µ = 1). For the building thermal dynamic model, a synthetic

model is used.

For occupancy prediction algorithm simulation, we used the occupancy data from

Mitsubishi Electric Research Laboratory, [10]. Five sensors (sensors index: 214, 309,

310, 338, 356) in the data set are selected to act as the occupancy historical data of

the five rooms. Those five sensors’ data from July 14, 2006 to October 10, 2006 and

October 11, 2006 to January 13, 2007 are chosen to be the testing and training data

for the occupancy transition matrix, respectively.

For price data, we use the PJM hourly price data set for September 9, 2016.

For weather data, we get the hourly weather temperature data of Tempe on June,

2016 from the open-source website ’http://weathersource.com/past-weather/weather-

history-reports/free’.

6.2 Simulation Results

In the simulation, we compare the electricity cost and human discomfort value of

the greedy policy and a benchmark control policy. The difference between the two

policies is that the benchmark control policy always regard all rooms occupied. We
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chose an arbitrary date of testing data for the occupancy data to simulate Fig 6.1 -

Fig 6.4.

From Fig 6.1, we can see that the predicted occupancy line fits the real occupancy

star point well, which means that the Markov chain based occupancy model has a

good prediction performance.

From Fig 6.2, we can see that the room’s temperature when we use the benchmark

policy is very close to the set point all day. By comparison, We can see that the

room’s temperature when we use the greedy control policy is not always close to

the set temperature. The most serious temperature deviation occurs from 02:00 to

14:00 due to a low occupancy prediction which is lower than Γh. When occupancy

prediction is relatively high, for instance during the night, the temperature for each

zone still has a small deviation from set point, mainly due to the balance of high price

of electricity and electricity needs.

From Fig 6.3, we can see that the discomfort value is bounded around 1 during one

day, which means if a room is occupied within a time slot, the temperature deviation

from the set point is less than 1◦C. The peak of discomfort happens during the night,

which is mainly because the price and occupancy prediction are both relatively high

at that time and we sacrifice a comfort for a lower electricity cost.

From Fig 6.4, We can also find that the hourly electricity cost is always below the

benchmark electricity cost. The most serious difference occurs at the time from

02:00 to 14:00, which is mainly because the occupancy predictions at those time are

relatively low. Additionally, the electricity cost is saved around 20:00, which is mainly

because we sacrifice the comfort due to a high electricity price.

From Fig 6.5, we can see that the the hourly accumulative electricity cost is always

under the benchmark accumulative electricity cost and we can calculate the total

electricity cost saving rate is 20.83% for this arbitrary chosen date.
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Figure 6.1: Five Zone’s Hourly Predicted Occupancy and Real Occupancy within 24

Hours

6.3 Conclusion

We designed a knapsack problem-based control policy, which uses a building ther-

mal dynamic model and occupancy prediction to lower the operating cost of building

while maintaining the human comfort levels. Our results show that our system saves

the electricity cost when the occupancy is low or when both occupancy and electricity

is high, while maintaining the human comfort well. The performance increase stems

from tight control of the AC unit and its power level based on reliable occupancy

data and predictions.
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Figure 6.2: Five Zone’s Hourly Temperature within 24 Hours by Using Greedy Policy

and Benchmark Policy

Figure 6.3: The Hourly Discomfort Value within 24 Hours

33



Figure 6.4: The Hourly Electricity Cost within 24 Hours

Figure 6.5: The Hourly Accumulative Electricity Cost within 24 Hours
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