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ABSTRACT 

The aims of this project are to demonstrate the design and implementation of 

separations modalities for 1) in situ product recovery and 2) upstream pretreatment of 

toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) 

developed for the transportation sector are known to be integral to a sustainable future.  

Likewise, bioproduced aromatic building blocks for sustainable manufacturing such as 

phenol will be equally important. The production of these compounds is often limited by 

product toxicity at 2- 20 g/L, whereas it may desirable to produce 20-200 g/L for 

economically feasible scale up. While low-cost feedstocks are desirable for economical 

production, they contain highly cytotoxic value-added byproducts such as furfural. It is 

therefore desirable to design facile detoxification methods for lignocellulose-derived 

feedstocks to isolate and recover furfural preceding ethanol fermentation by Escherichia 

coli. Correspondingly it is desirable to design efficient facile in situ recovery modalities 

for bioalcohols and phenolic bioproducts. Accordingly, in-situ removal modalities were 

designed for simultaneous acetone, butanol, and ethanol recovery. Additionally, a furfural 

removal modality from lignocellulosic hydrolysates was designed for upstream 

pretreatment. Solid-liquid adsorption was found to serve well each of the recovery 

modalities characterized here. More hydrophobic compounds such as butanol and furfural 

are readily recovered from aqueous solutions via adsorption. The primary operational 

drawback to adsorption is adsorbent recovery and subsequent desorption of the product. 

Novel magnetically separable mesoporous carbon powders (MMCPs) were characterized 

and found to be rapidly separable from solutions at 91% recovery by mass. Thermal 

desorption of value added products was found efficient for recovery of butanol and 
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furfural. Fufural was desorbed from the MMCPs up to 57% by mass with repeated 

adsorption/thermal desorption cycles. Butanol was recovered from MMCPs up to an 

average 93% by mass via thermal desorption. As another valuable renewable 

fermentation product, phenol was also collected via in-situ adsorption onto Dowex 

Optipore L-493 resin. Phenol recovery from the resins was efficiently accomplished with 

tert-butyl methyl ether up to 77% after 3 washes.  
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CHAPTER 1 

1.0 IMPROVING N-BUTANOL PRODUCTION IN BATCH AND SEMI-

CONTINUOUS PROCESSES THROUGH INTEGRATED PRODUCT RECOVERY 

1.1.0 Preface 

 While the current global energy challenges have many proposed solutions, some 

of the most rapidly growing research generas are bioproducts and biofuels. The idea of a 

renewable bio-based alcohol energy economy is itself a recycled concept. Dating back to 

the 1820’s inventors were creating internal combustion engines to run on ethanol and by 

the 1910’s Henry Ford was producing tractors which ran on alcohol. (M. Guo, Song, & 

Buhain, 2015) With diminishing whale oil supplies, an energy crisis in the early1800’s 

led to the use of ethanol as a fuel before the discovery of petroleum in 1859 by Edwin 

Drake. (Songstad et al., 2009) Alexander Graham Bell was quoted as saying, “Alcohol 

can be manufactured from corn stalks, and in fact from almost any vegetable matter 

capable of fermentation. Our growing crops and even weeds can be used. The waste 

products of our farms are available for this purpose and even the garbage of our cities. 

We need never fear the exhaustion of our present fuel supplies so long as we can produce 

an annual crop of alcohol to any extent desired.” (Songstad et al., 2009) Alcohol taxes 

used to fund the Civil War helped make petroleum cheaper, leading to the development 

of a petroleum-based economy. (Songstad et al., 2009) Having never learned from the 

whale oil shortages, the global economy now seeks to replace the crude oil-derived 

economy of today. Surely then the renewable bioproduct research thrust is a new 

movement born from wisdom resulting from historical lessons. The Chemurgy 

movement, promoted by Henry Ford in the 1920s through the 1930s sought to promote 
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crop growth for bio-based materials such as ethanol-derived synthetic rubber. (Songstad 

et al., 2009) 

 A resurgence of research has been developing for many biomass-derived products 

and fuels. Bioproducts as a term has grown to include sustainable replacements for 

products derived from oil. This includes bioproduced commodity chemical building 

blocks such as phenol (Thompson, Machas, & Nielsen, 2016), styrene (McKenna & 

Nielsen, 2011), lactic acid (Kwan, Hu, & Lin, 2016), benzoate (Elshahed & McInerney, 

2001), terpene alkaloids (Xu, Baunach, Ding, & Hertweck, 2012) and many other organic 

acids, aromatics and polycyclic hydrocarbons. (Keum, Seo, & Li, 2006) Likewise for 

alcohols, the developing research has included not only ethanol production from highly 

engineered strains of E. coli (L.P. Yomano, York, & Ingram, 1998), but also includes 

butanol (Berezina, Zakharova, Yarotsky, & Zverlov, 2012), isobutanol (X. Chen, Nielsen, 

Borodina, Kielland-Brandt, & Karhumaa, 2011), and aromatic alcohols such as cinnamyl 

alcohol. (W. Zhou et al., 2017) Other groups have focused on development of fatty acids 

from algae to develop biodiesel(Martarella, Rittmann, Lai, Chemical Engineering, & 

Barrett, 2015) and even gold particle synthesis. (Parial, Patra, Dasgupta, & Pal, 2012) 

With such a breadth of bioproducts under development, the future of the biomaterials and 

biofuels is decidedly more expansive than what was envisioned at the turn of the last 

century. 

Bioproduction has limitations like any traditional process. As bioproduction relies 

on microorganisms to work as small chemical factories, the synthesis conditions are 

limited to the range of viable growth conditions for the microorganism. (C. Y. Chen et 
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al., 2013; Ikegami, Negishi, & Sakaki, 2011; Ikegami et al., 2007; Lau, Gunawan, Balan, 

& Dale, 2010; Patil, Veerapur, Patil, Madhusoodana, & Aminabhavi, 2007; Sasaki et al., 

2013; Vane, 2008a; Vane & Alvarez, 2013; Vane, Alvarez, Rosenblum, & 

Govindaswamy, 2013) Additionally, bioproducts are often toxic to the microorganisms 

limiting the product accumulation. (C. Y. Chen et al., 2013; Vane, 2005, 2008a; Vane & 

Alvarez, 2013; Vane et al., 2013) As the bulk of the cost associated with bioproduction is 

the cost of the feedstock, much focus has been placed on bioproduction from waste 

biomass. In particular, lignocellulosic and hemicellulosic biomass have replaced glucose 

a broad range of products.(Bioenergy et al., 2005; Dalecka, Strods, & Mezule, 2015; 

Jonsson & Martin, 2016; Machado et al., 2016) These feedstocks have toxic compounds 

present which vary in concentration depending on the method of degradation from woody 

biomass to fermentable sugars. (Jonsson & Martin, 2016) Whether product or feedstock 

toxicity is the limiting factor for bioproduction, separations can alleviate the toxicity and 

improve product titers or cell growth. Many separations strategies have been applied, 

including: liquid-liquid extraction, pervaporation, vapor permeation, gas stripping, steam 

stripping, membrane assisted vapor stripping, hybrid distillation with molecular sieves, 

and others.(Cai et al., 2013; C. Y. Chen et al., 2013; Gudena, Rangaiah, & 

Lakshminarayanan, 2013; Paradis et al., 2013; Patil et al., 2007; Shi, Chen, Jean, & 

Chung, 2013; Vane, 2008a; Vane & Alvarez, 2013) Vapor phase separations such as 

pervaporation work well for products with high vapor pressure and low boiling 

points.(Cai et al., 2013; C. Y. Chen et al., 2013; Gaykawad et al., 2013; Kittur, 

Kariduraganavar, Kulkarni, & Aralaguppi, 2005; Vane, 2005) Solid phase separations 

such as molecular sieves (Aljundi, Belovich, & Talu, 2005; Xiao Lin, Kita, & Okamoto, 
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2001) and adsorbents (e.g. activated carbon, resins, etc.) often function best to separate 

hydrophobic products and those with high boiling points and low vapor 

pressure.(Niloofar Abdehagh, Gurnani, Tezel, & Thibault, 2015; Adnadevic, Mojovic, & 

Abu Rabi, 2008; Aljundi et al., 2005; Boyang et al., 2011; Hartmann, Vinu, & 

Chandrasekar, 2005; Jia et al., 2015; T. J. Levario, M. Z. Dai, W. Yuan, B. D. Vogt, & D. 

R. Nielsen, 2012; Maddox, 1982; Parajo, Dominguez, & Dominguez, 1996; Wiehn et al., 

2013; Wiehn, Staggs, Wang, & Nielsen, 2014; Yapsaklı, Çeçen, Aktaş, & Can, 2009) 

Adsorbents are also particularly effective at recovery of analytes from low aqueous 

concentrations. (Fierro, Torné-Fernández, Montané, & Celzard, 2008; Hartmann et al., 

2005; Jia et al., 2015; Nongonierma, Cayot, Le Quere, Springett, & Voilley, 2006) Liquid 

phase separations also work well for hydrophobic products though the selection of 

solvents is limited by biocompatibility of the solvent.(Cascon et al., 2011; Cheng & 

Wang, 2010; Groot et al., 1990; Heerema et al., 2011) The focus of this work will be to 

compare the known separations method for recovery of analytes from aqueous solutions 

to highlight the strengths and weaknesses of each method. Specifically, separations of 

bioalcohols and value-added coproducts are examined here. 
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Abstract 

Although it represents a promising biofuel, n-butanol production by conventional 

batch fermentation is limited as a result of its cytotoxic effects. To address this limitation 

and facilitate semi-continuous fermentation, in situ n-butanol removal has proven to be 

an effective approach.  Exploiting the phenomena of solvent extraction, adsorption, or 

vaporization, numerous integrated bioprocess configurations have been developed to 

facilitate selective n-butanol recovery.  The objective of this review is to provide a broad 

overview of different technology options and process configurations to this end, 

highlighting notable achievements and recent developments.  In each case, relevant 

design considerations critical for improving key production metrics will be discussed, 

with particular emphasis given to studies that, as a result of relieved product toxicity, 

have successfully demonstrated further enhanced n-butanol production through semi-

continuous operation.  

 

This work was published as: 

Staggs, K. & Nielsen, D.R. Improving n-butanol production in batch and semi-continuous 

processes through integrated product recovery. Process Biochem 50(10), 1487-1498 

(2015) 
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1.2.0 Background and Motivation 

 

Produced by microbial biocatalysts from biomass-derived feedstocks, biofuels 

represent a promising solution to the growing global need for sustainable liquid 

transportation fuels (Connor & Liao, 2009; Keasling & Chou, 2008; Y. N. Zheng et al., 

2009). In light of inherent shortcomings associated with ethanol, however, which include 

its high water solubility and low energy density (attributes that collectively diminish its 

compatibility with conventional engines and fuel distribution infrastructure) (Y. N. Zheng 

et al., 2009), interest continues to shift to the alternative fermentative production of 

higher (i.e., >2-carbon) alcohol biofuels (Connor & Liao, 2009; Keasling & Chou, 2008), 

including n-butanol (Dafoe & Daugulis, 2014; Garcia, Pakkila, Ojamo, Muurinen, & 

Keiski, 2011; Tashiro, Yoshida, Noguchi, & Sonomoto, 2013). With more similar 

physical and thermodynamic properties, n-butanol represents a potential ‘drop in’ 

compatible gasoline replacement (Berezina et al., 2012). Naturally synthesized by many 

Clostridium sp. (Jones & Woods, 1986a), n-butanol is produced as the major end-product 

along with acetone and ethanol as part of the so-called ABE fermentation.  Efficient and 

commonly employed n-butanol production strains include, for example, the type strain C. 

acetobutylicum ATCC 824 and the hyper-producer C. beijerinckii (N. Qureshi & 

Blaschek, 2000). Notably, the novel and focal biosynthesis of n-butanol has also recently 

been engineered in a number of other heterologous microbes (Atsumi et al., 2008; Bond-

Watts, Bellerose, & Chang, 2011; D. R. Nielsen et al., 2009).  

Despite its promising attributes, however, several inherent limitations surround 

the n-butanol fermentation process, challenging its overall commercial prospects. Chief 
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among these is product toxicity, and the resultant feedback inhibition it causes against 

producing microbes at relative low aqueous n-butanol concentrations (Bowles & 

Ellefson, 1985; Ingram, 1990; Jones & Woods, 1986a). As with other alcohols and 

solvents, microbial activity is reduced as a result of n-butanol partitioning into the 

cytoplasmic membrane (Osborne, Leaver, Turner, & Dunnil, 1990; Vermue, Sikkema, 

Verheul, Bakker, & Tramper, 1993). As the membrane structure becomes disrupted 

(Bowles & Ellefson, 1985), increased membrane fluidity (Ingram, 1990; Ramos et al., 

1997) and diminished function of several essential cellular functions results (Bowles & 

Ellefson, 1985). Consequently, maximal n-butanol titers of only 13 g/L are typical for 

wild-type C. acetobutylicum (Jones & Woods, 1986a), whereas strains engineered or 

selected for enhanced solvent tolerance fair only slightly better (e.g., maximal titers 

reaching no more than 20-24 g/L have been reported (Niloofar Abdehagh, Tezel, & 

Thibault, 2014; C. K. Chen & Blaschek, 1999; D. Liu et al., 2013; Chuang Xue et al., 

2012)). At this output, large-scale bioreactors and high turnover rates are required to 

produce n-butanol in quantities sufficient for biofuel applications. Accordingly, there 

remains keen interest in the development of effective, process-level solutions for 

addressing n-butanol toxicity and promoting high rates of volumetric productivity.  

As with many other toxic bioproducts, in situ product recovery has been 

demonstrated as an effective strategy for improving n-butanol production by 

circumventing its inhibitory effects (Schugerl, 2000; W. Van Hecke, Kaur, & De Wever, 

2014; Chuang Xue et al., 2014; S. T. Yang & Lu, 2013). Utilizing an integrated 

bioprocess to synchronously incorporate fermentation and separation operations, n-

butanol can be selectively removed from the fermentation medium as it is produced. With 
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typical yield coefficients of up to about 0.3 g-butanol/g-glucose (Barton & Daugulis, 

1992; X. Chen et al., 2011; H.-W. Yen & Li, 2011; Y. Zhang, Ma, Yang, & Zhang, 

2009), in traditional batch cultures the n-butanol toxicity threshold is readily reached 

when Clostridium sp. are provided with as little as 60 g/L glucose, with excess amounts 

typically going unused. Alternatively, by incorporating a second, product recovery phase 

to concentrate and sequester n-butanol away from susceptible cells, greater net substrate 

utilization is then possible as is n-butanol accumulation to above would be inhibitory 

levels. However, as high sugar concentrations can themselves be inhibitory (e.g., >100 

g/L glucose (D. R. Nielsen & Prather, 2009), >250 g/L lactose (N. Qureshi & Maddox, 

2005)), this is typically best accomplished through fed-batch operation. This semi-

continuous approach to n-butanol production provides further practical benefits, 

including minimal wastewater generation, decreased frequency of culture turnover, and 

reduced between-run downtime for cleaning and sterilization. Time saved as a result of 

the latter features is often translated into rates of volumetric productivity, surpassing the 

0.2-0.6 g/L-h typically achieved under conventional batch conditions (Jones & Woods, 

1986a). 

The selective separation of n-butanol from aqueous solutions can be achieved by 

exploiting of one of several unique physicochemical attributes.Effective strategies for in 

situ n-butanol recovery, however, must also satisfy several important prerequisites: 

1. Cost: minimal energy and/or material costs to maintain favorable energetic and 

economic yields.  
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2. Biocompatibility: microbial activity and viability should not be adversely impacted 

by the conditions or materials required for the separation.  

3. High affinity: effective n-butanol separation should be possible under dilute 

concentrations.   

4. Regeneration: full regeneration possible with minimal energy input, enabling both 

facile release of recovered n-butanol and reuse of materials.  

5. Robustness: separation materials and design should be resistant against non-ideal 

interactions with medium components and/or cells, as these can result in performance 

losses due to inhibition, (bio)fouling, concentration polarization, and degradation.  

6. Modularity: important for improving implementation in retrofit applications and 

enabling different modes of operation. 

Despite these stringent design considerations, numerous effective integrated bioprocesses 

have been developed to date and applied to enhance n-butanol production through its in 

situ recovery. The objective of this review is to provide a broad overview of different 

technologies, recent applications, and novel developments to this end (note: for earlier, 

complementary reviews see also the works of Schugerl et al. (Schugerl, 2000), 

Ramaswamy et al. (Ramaswamy, Huang, & Ramarao, 2013), and Ezeji et al. (Ezeji, 

Qureshi, & Blaschek, 2007)). In each case, as appropriate, specific emphasis is also given 

to relevant design considerations. Meanwhile, in light of known challenges related to the 

development of continuous n-butanol fermentations (Antoni, Zverlov, & Schwarz, 2007), 

of particular interest will be to highlight studies which, as a result of this approach, have 

led to the successful development of semi-continuous bioprocesses with further enhanced 

n-butanol production metrics (e.g., titer, yield, and/or rate of productivity). While it is of 
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course appreciated that n-butanol is synthesized alongside both acetone and ethanol 

(minor yet important co-products) to maintain tractability and focus, descriptions and 

discussions provided here will be confined to the production of n-butanol and, in some 

cases, total solvents. As perhaps the most promising strategies, specific focus will be 

given to processes employing solvent extraction, perstraction, adsorption, gas stripping, 

vacuum stripping and pervaporation. To facilitate the discussion, the structure of this 

review has been organized on the basis of the different separation media and equilibrium 

driving forces used to affect n-butanol separation in each case, namely solvent-based, 

adsorbent-based, and vapor-based processes. As a point of reference, the major 

advantages and disadvantages of the various technology options to be discussed are 

compared in Table 1. 

Table 1.1.  

Summarizing The Major Advantages and Disadvantages of The Different Separation 

Technologies Discussed in This Review. 

Approach Configuration Advantages Disadvantages 

solvent-

based 

Direct addition 
Easily implemented, maximal phase 

contact 

High material costs, limited phase 

recovery, solvent toxicity, energy 

input required for phase dispersion  

External extractor 
Improved control over separation 

conditions, increased modularity 

Increased capital and energy costs, 

high material costs, limited phase 

recovery, solvent toxicity 

Perstraction 

Reduced solvent toxicity, greater 

solvent options (cheaper and/or more 

effective), improved phase recovery 

Solvent diffusion into media, mass 

transfer restriction (additional 

diffusion resistance, reduced surface 

area) 

adsorbent-

based 
Direct addition 

Easily implemented, maximal phase 

contact, high biocompatibility, low 

energy requirements 

High material costs, high adsorbent 

load required, difficult phase 

recovery 



 11   
 

Packed bed 

Modular design (amenable to retrofit 

applications), efficient separation 

conditions, high biocompatibility, low 

energy requirements  

High operating pressure, pre-

filtration required for cell removal 

Expanded bed 

Modular design (amenable to retrofit 

applications), low operating pressure, 

no pre-filtration required, high 

biocompatibility, low energy 

requirements 

Flow rate restrictions, larger column 

dimensions required 

vapor-based 

Gas stripping 

Easily implemented amenable to 

retrofit applications), maximal 

biocompatibility, low capital and 

operating costs (no special equipment 

and few moving parts) 

Significant co-removal of water, 

poor separation factor, must 

generate anaerobic carrier gas 

Vacuum stripping 

Easily implemented amenable to 

retrofit applications), maximal 

biocompatibility  

Significant co-removal of water, 

poor separation factor, increased 

capital and utility costs 

Pervaporation 

Modular design (amenable to retrofit 

applications), increased separation 

factor, high biocompatibility, low 

energy requirements 

Membrane fouling results in 

performance loss, higher capital 

cost 

 

1.3.0 LLE Separation Technologies 

 Among the earliest integrated bioprocesses developed for in situ n-butanol 

recovery are those that exploit solubility differences to extract n-butanol from its aqueous 

environment and concentrate it within an immiscible solvent phase (Malinowski, 2001). 

Accordingly, such processes must be coupled with a second, downstream separation 

process (typically distillation) to ultimately recover and purify n-butanol, regenerating the 

solvent in the process (Kamiński, Górak, & Kubiczek, 2014). As a relatively mature 

technology, several useful algorithms have been developed to aid in designing LLE-based 

processes (Malinowski, 2001). A key design variable is the solvent partitioning 

coefficient (K), defined as: 



 12   
 

𝐾 =  
𝐶𝑆

𝐶𝐴
          (1.1) 

Where CS and CA are the equilibrated n-butanol concentrations in the solvent and aqueous 

phases, respectively. In general, large K-values are desired to minimize material 

requirements, with several prior screening (Barton & Daugulis, 1992; Gonzalez-Penas, 

Lu-Chau, Moreira, & Lema, 2014) and modeling (Cheng & Wang, 2010; Kollerup & 

Daugulis, 1985; Y. P. Wang & Achenie, 2002) studies having identified effective solvent 

candidates for n-butanol extraction. For example, a classic screening study by Barton and 

Daugulis found that, among 63 screened solvents, 28 were found to be biocompatible, 

with 14 of those having K > 2 (Barton & Daugulis, 1992). Commonly employed solvents 

include oleyl alcohol (Bankar, Survase, Singhal, & Granström, 2012; Nasibuddin Qureshi 

& Maddox, 1995) and 1-dodecanol (Tanaka et al., 2012), whose K-values have been 

reported as 3.56  and 5.14, respectively. 

1.3.1 Direct Solvent Addition 

In the simplest configuration, solvents are added directly to the bioreactor (Figure 

1.1A). To provide sufficient capacity for n-butanol accumulation, solvent-aqueous phase 

ratios of around 0.4 and up to 2 (by vol.) have commonly been employed (Ishii, Taya, & 

Kobayashi, 1985; S. Roffler, Blanch, & Wilke, 1987b). In an early study by Roffler et al., 

for example, following an initial screening, oleyl alcohol was selected for n-butanol 

extraction from batch cultures, resulting in 25% greater glucose conversion and a 60% 

increase in volumetric n-butanol productivity (from 0.58 to 0.72 g/L-h) (S. Roffler, 

Blanch, & Wilke, 1987a). Ishizaki et al. later compared the utility of oleyl alcohol against 

that of methylated crude palm oil (K = 0.9) as solvents for n-butanol recovery from batch 
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cultures of C. saccharoperbutylacetonicum N1-4. Even despite its lower K-value, net n-

butanol and total solvent production in cultures with methylated crude palm oil were 

found to be increased by 32% (15.9 to 20.9 g/L) and 41% (21.2 to 29.8 g/L), respectively 

(Ishizaki et al., 1999). A similar result was also obtained by Li et al., who explored the 

potential of biodiesel (a mixture of oleic, palmitic, stearic, linoleic, linolenic, arachidic 

and myristic methyl esters) as the solvent phase (Q. Li et al., 2010). 

Meanwhile, building upon the successful performance of oleyl alcohol in batch 

cultures, Roffler et al. later explored its effect on n-butanol production under fed-batch 

conditions. Further improvements in volumetric n-butanol productivity were 

demonstrated, in this case reaching up to 1.5 g/L-h (a 208% increase), due largely to the 

afforded ability to convert twice as much glucose substrate (S. Roffler et al., 1987b). Fed-

batch operation was also explored by Baron and Daugulis, in this case, however, using 

poly(propylene glycol) 1200 as the solvent phase. Adding a concentrated glucose solution 

to the culture at an average frequency of every 13.5 h, it was demonstrated that the 

duration of solvent production phase could be increased from 70 to 202 h, during which 

time net glucose consumption and total solvent production both increased by ~360% 

(53.8 to 194.7 g/L and 15.9 to 58.6 g/L, respectively). 
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Figure 1.1. A Comparison of Different Solvent-Based Design Configurations Used For In 

Situ n-Butanol Recovery including: A) direct solvent addition, B) use of an external extraction 

unit, C) perstraction with culture circulation, and D) perstraction with solvent circulation. 

Legend: 1. bioreactor, 2. solvent, 3. pump, 4. extraction unit (reciprocating column shown), 5. 

tubular membrane. 

1.3.2 Re-circulation Through an External Solvent Extractor 

Despite its straightforward implementation (i.e., requiring no additional 

equipment), direct solv5ent addition presents several practical challenges, particularly 

with respect to process scale-up. Achieving rapid mass transfer, for instance, requires 

large interfacial areas and thus high energy inputs for agitating the biphasic mixture (S. 

R. Roffler, Blanch, & Wilke, 1988). Alternatively, improved separation conditions, as 

well as enhanced n-butanol production, have been realized with designs that integrate an 

external solvent extractor. In this case, the cell containing media is continuously re-

circulated between the bioreactor and external extractor. Roffler et al., for example, also 
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developed a looping process for n-butanol recovery in an external solvent extractor by 

employing a Karr reciprocating plate extraction column (Figure 1.1B) containing oleyl 

alcohol (S. R. Roffler et al., 1988). Although the per pass extraction efficiency of n-

butanol in the column was low (only 15-40%), continuous re-circulation of the culture 

through the column maintained aqueous n-butanol concentrations below 8 g/L throughout 

55 h of fed-batch fermentation. In that time, a total of 214 g/L glucose was consumed 

with 40 g/L n-butanol produced (67 g/L total solvents) at an overall productivity of 1.0 

g/L-h – a 70% increase over traditional batch cultures. 

1.3.3 Membrane-Assisted Extractive Fermentation (Perstraction)  

In addition to the risk of productivity losses due to solvent-induced toxicity 

(Cascon et al., 2011), solvent entrainment due to mutual solubility and stable emulsion 

formation commonly leads to costly material losses (Cascon et al., 2011; Vane, 2008b). 

These shortcomings have been addressed through the development of membrane 

perstraction, wherein an n-butanol-permeable membrane barrier is additionally 

incorporated to provide physical separation between the culture and solvent phases 

(Groot et al., 1990; Y. J. Jeon & Lee, 1987; Vane, 2008b). Moreover, by shielding cells 

from the solvent, better performing and/or cheaper solvents can be employed, 

independent of their potential biocompatibility. In contrast to direct addition, this 

approach further promotes facile solvent recovery and replacement with minimal 

disruption of the culture. However, as the membrane introduces an additional mass 

transfer resistance, potentially slowing rates of n-butanol uptake, the selection of 

effective membrane materials and dimensions (e.g., thickness, area) are important design 

considerations. In most case, membranes composed of polydimethylsiloxane (PDMS; i.e., 



 16   
 

silicone) have performed well in perstraction designs due to their high n-butanol 

diffusivity. Tanaka et al., meanwhile, also demonstrated enhanced n-butanol production 

metrics in a perstraction design using a polytetrafluoroethylene (PTFE) membrane 

(Tanaka et al., 2012). 

In general, membrane perstraction can be performed according to one of two 

prototypical configurations, differing with respect to the circulated phase: culture vs. 

solvent (Figures 1.1C and 1.1D, respectively). An early study by Groot et al. provided a 

comparison of both designs, using ethylene glycol or isopropyl myristate as solvents in an 

external reservoir (Groot et al., 1990). In the case of solvent circulation (Figure 1.1D), 

however, it was found that the high solvent permeability through the silicone tubing 

membrane lead to its significant accumulation in the fermentation broth. Reaching levels 

of up to 80 g/L in the case of ethylene glycol, this represents not only a significant 

material loss, but also a point of concern should more toxic solvents instead be employed. 

In this case, this limitation was addressed by modifying the process to instead circulate 

the culture through the external solvent reservoir (Figure 1.1C). As a result, n-butanol 

accumulation in the isopropyl myristate phase was found to top 20 g/L after 160 h of 

operation, with a total of 100 g/L glucose consumed in the process. 

Incorporating the lessons learned from Groot et al., subsequent studies have 

predominantly been directed towards the development of perstraction processes 

employing culture circulation. Also using silicone tubing as a membrane and oleyl 

alcohol as solvent, a perstraction process was developed by Qureshi et al. wherein the 

entire contents of the bioreactor were circulated through the extractor an average of every 
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~3.3 min (N. Qureshi & Maddox, 2005). Meanwhile, to maintain a high extraction 

driving force, solvent removal and replacement (i.e., with fresh solvent) was performed 

whenever the extracted n-butanol concentration exceeded 6.65 g/L. By producing and 

removing n-butanol from the bioreactor in this semi-continuous manner, the n-butanol 

content in the bioreactor was maintained below 3 g/L for the duration of the 391 h 

fermentation, during which time total solvent production reached 136.58 g, including 

66.4 g n-butanol. Jeon et al. demonstrated similarly impressive results under fed-batch 

conditions using oleyl alcohol and a membrane composed of silicone tubing (Y. J. Jeon & 

Lee, 1987). In this case, a total of 147.7 g/L n-butanol was produced from 601 g/L 

glucose over course of 209 h of continuous operation (Y. J. Jeon & Lee, 1987). 

1.4.0 SLE Separation Technologies 

 

As an alternative to the use of solvents, increasing focus continues to be directed 

towards the development of novel process configurations and materials for in situ n-

butanol recovery via adsorption (Ezeji, Qureshi, & Blaschek, 2004b; Garcia et al., 2011; 

M. Kumar & Gayen, 2011; Oudshoorn, van der Wielen, & Straathof, 2009b). Adsorbents 

are generally more biocompatible than solvents (promoting maximal biocatalyst activity), 

as well as fully immiscible and unsusceptible to emulsification – features that facilitate 

their separation from cultures and improve prospects for repeated regeneration and reuse 

(Rehmann, Sun, & Daugulis, 2007). As with solvents, additional downstream processing 

is required to ultimately recover the adsorbed n-butanol product, as has been achieved by 

thermal treatment (Eom et al., 2013), steam stripping (N. Qureshi, Hughes, Maddox, & 

Cotta, 2005a), gas stripping (Nongonierma et al., 2006), vacuum application (Wiehn et 
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al., 2014), or solvent elution (Eom et al., 2013). Combined thermal treatment (heating to 

100
o
C) and vacuum application, for example, proved an effective strategy for recovering 

up to 85% of adsorbed n-butanol from Dowex® Optipore L-493, a polymer resin 

adsorbent, as a condensable vapor (D. R. Nielsen & Prather, 2009). Through the same 

process, the adsorbent was also thereby regenerated for reuse without loss of separation 

performance. Several prior studies have demonstrated that successive reapplication of 

regenerated adsorbents is possible with little to no loss in separation performance (Groot 

& Luyben, 1986a; L. Nielsen, Larsson, Holst, & Mattiasson, 1988). Adsorption-based 

processes have been suggested to be among the most energy efficient for n-butanol 

recovery, with estimates of at least a 10% decrease in required energy relative to other 

approaches (specifically, conventional distillation, extraction/perstraction, gas stripping, 

pervaporation) (Oudshoorn et al., 2009b; N. Qureshi, Hughes, et al., 2005a). 

 Typically selected via ad hoc materials screening, numerous classes and types of 

adsorbents have been characterized and employed for n-butanol separations (Vane, 

2008b), in forms ranging from powders to pellets (N. Abdehagh, Tezel, & Thibault, 

2013). Particularly promising n-butanol adsorbents include silicalite and other inorganic 

zeolites (Adnadevic et al., 2008; Hashi, Tezel, & Thibault, 2010; Maddox, 1982; 

Milestone & Bibby, 1981; Oudshoorn, van der Wielen, & Straathof, 2009a; Saravanan, 

Waijers, Ziari, & Noordermeer, 2010), activated (Groot & Luyben, 1986a; Hashi et al., 

2010; Silvestre-Albero, Silvestre-Albero, Sepulveda-Escribano, & Rodriguez-Reinoso, 

2009) and mesoporous (T. J. Levario et al., 2012) carbons, as well as polymer resins 

(Groot & Luyben, 1986a; D. R. Nielsen & Prather, 2009; D. R. Nielsen, Prather, & 

Amarasiriwardena, 2010; L. Nielsen et al., 1988). Key attributes of an effective adsorbent 
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include a high capacity and affinity for n-butanol, along with biocompatibility, as well as 

chemical, thermal and mechanical robustness. Adsorption capacity and affinity are 

determined via the equilibrium isotherm, typically represented by either the Langmuir or 

Freundlich isotherm models (given by Equations 1.2 and 1.3, respectively). 

𝑞 =
𝑞𝑚𝑎𝑥𝑘𝑙𝐶𝐴

1+𝑘𝑙𝐶𝐴
            (1.2) 

𝑞 = 𝑘𝑓𝐶𝐴
1 𝑛⁄

           (1.3) 

Where q is equilibrium capacity, qmax is maximum equilibrium capacity, kl and kf are 

Langmuir and Freundlich constants, respectively, n is the Freundlich exponent, and CA is 

defined as above. In most cases, adsorbent behavior has been characterized using model 

solutions (e.g., n-butanol in water). It should be noted, however, that adsorption capacity 

is often decreased in fermentation broths as a result of competitive inhibition by other 

adsorbed species (e.g.,, broth components or co-products), with n-butanol capacity 

reductions of up to 29% having been reported (N. Abdehagh et al., 2013). Meanwhile, 

whereas whole cell biofouling of the adsorbent surface is a common concern in such 

applications, several recent studies have found such occurrences to be minimal with little 

to no impact on either separation performance or n-butanol production (Groot & Luyben, 

1986a; Wiehn et al., 2014). 

The separation performance of several previously investigated n-butanol 

adsorbents is compared in Figure 1.2. As a result of van der Waals interactions (Carey & 

Sundberg, 2000; N. Qureshi, Hughes, et al., 2005a; Regdon, Dekany, & Lagaly, 1998), 

adsorbents with hydrophobic surface chemistries display some of the highest capacities 
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and affinities (Hashi et al., 2010; D. R. Nielsen & Prather, 2009; D. R. Nielsen et al., 

2010; Oudshoorn et al., 2009a; Saravanan et al., 2010). Effective polymer adsorbents are 

those that include more hydrophobic monomer substituents (e.g., long n-alkyl acrylates 

and aromatic groups (M. H. Zhou & Cho, 2003)), whereas zeolite hydrophobicity has 

been improved by increasing the Si/Al ratio (N. Abdehagh et al., 2013; Saravanan et al., 

2010). Separation performance is also strongly influenced by adsorbent structure; high 

specific surface areas offer more adsorption sites and thus high adsorption capacity 

(Hartmann et al., 2005; D. R. Nielsen & Prather, 2009; D. R. Nielsen et al., 2010; Nunes, 

Pires, Carvalho, Calhorda, & Ferreira, 2008; Oudshoorn et al., 2009a) while regular and 

interconnected pores facilitate intraparticle transport to promote enhanced uptake rates 

(T. J. Levario et al., 2012; Xiaoqing Lin et al., 2012). 
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Figure 1.2. Comparing Equilibrium Isotherms For Various n-Butanol Adsorbents. 

Polymer resins: Dowex® Optipore L-493 (open diamonds), Dowex® Optipore SD-2 (open 

circles), Diaion HP-20 (open upright triangles), poly(4-ethylstyrene-co-divinylbenzene) (open 

squares), Dowex® M43 (open inverted triangles), all Nielsen and Prather (2009); Amberlite 

XAD-4 (solid circles), (Groot & Luyben, 1986a; L. Nielsen et al., 1988); Amberlite XAD-16 

(solid squares), Ennis et al. (1987); Amberlite XAD-8 (solid upright triangles), (Groot & Luyben, 

1986a); Amberlite XAD-2 (solid diamonds), (Groot & Luyben, 1986a); Silica aerogels: TLD302-

330 (‘+’), Wiehn et al. (2013); Zeolites: silicalite-1 (solid squares), Milestone and Bibby (1981); 

Activated carbon: AC F-400 (open left triangles), AC F-600 (solid stars), both Abdehagh et al. 

(2013).  Mesoporous carbon: FDU-16-800 (‘X’), CS-81-800 (open stars), both Levario et al. 

(2012).  Trend lines, shown for reference and indicated by dotted lines, represent the best fit 

Freundlich isotherm models for each of (in decreasing order): Dowex® Optipore L-493, Dowex® 

Optipore SD-2, Diaion HP-20, Dowex® M43, and Amberlite IRA-900.  Solid line indicates y = 

x. 

1.4.1 Direct Adsorbent Addition 
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As with solvents, the simplest adsorbent-based designs also involve their direct 

addition to cultures (Figure 1.3A). An early study by Yang et al. explored the use of a 

poly(vinyl pyridine) ion exchange resin (Reillex 425) to adsorb n-butanol in batch 

cultures, demonstrating a 56% increase in glucose consumption and 54% increase in total 

solvent production (reaching up to 29.8 g/L). Volumetric productivity was also improved 

to 0.92 g/L-h, a 130% increase over conventional batch culture. However, the low 

specific surface area of the selected adsorbent (only ~90 m
2
/g) resulted in only a modest 

n-butanol loading capacity (~52 mg/g), thus necessitating the use of a high adsorbent 

phase ratio (300 g-adsorbent/L-culture) to achieve the requisite total level of product 

removal. While adsorbent phase ratios of 50 to 400 g/L are common in such designs (L. 

Nielsen et al., 1988; N. Qureshi, Hughes, et al., 2005a), this design parameter should be 

minimized to reduce material costs. Moreover, owing to their low specificity (which can 

deplete the media of essential nutrients), excessive adsorbent addition has in some cases 

also led to reduced growth and productivity (D. R. Nielsen & Prather, 2009; L. Nielsen et 

al., 1988). A lower adsorbent phase ratios is possible when using a higher capacity 

adsorbent. As seen in Figure 1.2, among the top performing adsorbents identified to date 

are those notably capable of adsorbing n-butanol at up to ~300 mg/g (i.e., ~30% of their 

dry weight) by the time the aqueous toxicity threshold is reached (i.e., 13 g/L). This 

includes, for example, both Dowex® Optipore L-493 and SD-2 (macroporous, 

poly(styrene-co-DVB)-derived resins with specific surface areas of 1100 and 800 m
2
/g, 

respectively) (D. R. Nielsen & Prather, 2009).  Based on their high adsorption affinities 

and capacities, said resins were identified as the most promising n-butanol adsorbents 

amongst a pool of 17 candidates with different polymer chemistries and functionalities.   
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Ultimately, the in a batch culture containing just 50 g/L Dowex® Optipore SD-2, net n-

butanol production reached 22.2 g/L, nearly doubling the titers achieved in conventional 

batch culture (D. R. Nielsen & Prather, 2009).  

1.4.2 Fixed Bed Adsorption 

In contrast to their direct addition, adsorbents may also be housed in external 

adsorption beds through which the culture broth is the re-circulated (continuously or 

intermittently; Figure 1.3B). With increased accessibility external to the fermenter, 

adsorbent removal and replacement is facilitated with reduced risk for compromising the 

integrity of the culture. Early adoptions of this approach focused on the application of 

adsorbents in fixed beds (i.e., packed columns); an approach that affords efficient n-

butanol recovery. Abdehagh et al., for example, showed that packed column containing 

activated carbon F-400 could be used to recover up to 80% of n-butanol from a model 

ABE mixture (Niloofar Abdehagh et al., 2015). The approach has also been integrated 

with cultures. For example, using a poly(vinyl pyridine) resin (Reillex 425) as the 

adsorbent, Yang and Tsao developed a fixed bed process to enhance n-butanol production 

by C. acetobutylicum (X. Yang & Tsao, 1995). The contents of the 0.7 L bioreactor were 

continuously circulated through a 0.3 L cylindrical column packed with 423 g resin. 

However, due to the presence of the cells (which can become entrained in and block flow 

through the bed), the process further incorporated microfiltration to remove and recycle 

cells prior to entering the adsorbent bed (Pierce et al., 1999). Operating in a fed-batch 

manner for ~240 h, n-butanol and total solvent production reached 38.7 and 47.2 g/L, 

with total solvent productivity reaching 1.69 g/L-h. Increased modularity also enables 

facile integration of adsorbent beds with different bioreactor configurations, including 
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those poorly compatible with direct adsorbent addition (e.g., non-planktonic cultures). 

For example, Liu et al. recently coupled a fixed bed adsorption column containing 

macroporous KA-I resin with a C. acetobutylicum biofilm reactor (D. Liu et al., 2014). 

With the culture immobilized, upstream microfiltration was no longer required. Through 

repeated batch culture, n-butanol production ultimately reached 92.6 g/L at a productivity 

of 1.51 g/L-h, representing 4- and 3-fold improvements over traditional batch 

fermentation using planktonic culture, respectively. 

 

Figure 1.3. A Comparison of Different Adsorbent-Based Design Configurations Used For 

In Situ n-Butanol Recovery, including: A) Direct adsorbent addition, B) packed bed adsorption, 
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C) expanded bed adsorption, and D) simulated moving bed operation. Legend: 1. bioreactor, 2. 

adsorbent, 3. microfiltration unit, 4. regeneration media, 5. n-butanol-rich recovery stream. 

1.4.3 Expanded Bed Adsorption 

 In contrast to fixed bed operation, alternative operation of the adsorption column 

in an expanded bed mode provides sufficient void space between adsorbent particles to 

accommodate direct cell passage (Figure 1.3C). Fluidization is achieved in this case by 

circulating the culture through the bed in an up-flow manner; however, it should be noted 

that maintaining a stable bed and avoiding inversion imposes restrictions on the 

circulation rate of the media through the adsorption column. While this approach 

eliminates the requirement for upstream microfiltration, reduced separation efficiency is 

experienced relative to packed bed operation (Menkhaus & Glatz, 2005). Initially 

developed and applied to improve the fermentative production of both succinic (J. Li et 

al., 2011) and propionic acid (P. Wang, Wang, Liu, Shi, & Su, 2012) (using ion exchange 

resins as adsorbents in both cases), the authors recently applied expanded bed adsorption 

to improve n-butanol production by C. acetobutylicum ATCC 824 (Wiehn et al., 2014). 

In this case, the expanded bed consisted of 0.17 L glass column containing 75 g of 

Dowex® Optipore L-493 (thereby leaving ~55% of the column volume unoccupied to 

accommodate for bed expansion). The contents of the 1 L culture were continuously re-

circulated between the bioreactor and adsorption bed at a rate of about 100 mL/min, 

expanding the bed height by ~50%. Fed-batch operation with this design ultimately 

enabled volumetric n-butanol and total solvents production to be increased to 27.1 and 

40.7 g/L, respectively, each ~2.2-fold improvements over batch culture (Wiehn et al., 

2014). The modular nature of the adsorbent bed design was further exploited in said 
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study during the regeneration cycle, wherein direct vacuum application to the liquid-

drained column (i.e., without adsorbent transfer) was used to recover 81% of the 

produced n-butanol (Wiehn et al., 2014). By facilitating the cycle of adsorbent recovery, 

regeneration, and reuse, such increasingly modular designs will remain crucial to the 

continued optimization of semi-continuous n-butanol production. Meanwhile, through 

further process evolution, continuous n-butanol production will also likely be realized 

through the future incorporation of simulated moving bed (SMB) operation (Figure 1.3D) 

(Imamoglu, 2002). A staple of the modern biopharmaceutical industry, to facilitate the 

continuous production and recovery of proteins, SMB is an unexplored yet particularly 

promising technology for enhancing n-butanol production. 

1.5.0 VLE Separation Technologies  

 

Solvent- and adsorbent-based processes expose cultures to foreign 

chemicals/materials, a practice that, in spite of careful material selection, presents 

increased risk of phase induced toxicity while also introducing opportunities for 

biofouling. Vapor-based processes circumvent these challenges by exploiting relative 

volatility for in situ n-butanol removal by vaporization, with condensation subsequently 

used to trap the evolved vapors. Operating under dilute conditions, Henry’s Law 

describes n-butanol’s vapor-liquid equilibrium behavior (Equation 1.4), with differences 

from this equilibrium condition providing the driving force for separation. 

p = HCA          (1.4) 
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Where p is the partial pressure of n-butanol in the vapor phase, H is the Henry’s Law 

coefficient, and CA is defined as above. In general, however, vapor-based processes for n-

butanol recovery are commonly challenged by its relatively low vapor pressure relative to 

that of water (e.g., 0.0109 vs. 0.0312 atm at 25
o
C). In vapor-based processes, the ability 

of n-butanol to be selectively removed over water is determined by the separation factor: 

          (1.5) 

Where C1 and C2 are concentrations of vaporized species (i.e., n-butanol and water, 

respectively) and superscripts v and l indicate the vapor and liquid phases, respectively.  

1.5.1 Gas Stripping 

Requiring only a carrier gas to be sparged through the fermentation media (Figure 

1.4A); gas stripping is an easily implemented and effective in situ recovery technique for 

n-butanol (Niloofar Abdehagh et al., 2014; Y. Chen et al., 2014; N. Qureshi, Hughes, et 

al., 2005a). For example, with stripping rates on the order of 4-4.5 g/L-h having been 

reported (Y. Chen et al., 2014; Chuang Xue et al., 2012) – nearly an order of magnitude 

greater than typical production rates – aqueous accumulation of n-butanol to inhibitory 

levels is readily precluded. To maintain anaerobic conditions, however, an inert carrier 

gas (typically a mixture of H2 and CO2) must be utilized (Ezeji, Qureshi, & Blaschek, 

2004a, 2013), the generation of which increases capital and operating costs. Pre-

humidification of the carrier gas, meanwhile, is also typically performed to reduce culture 

volume losses (Ezeji et al., 2013).  
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Using an engineered strain of C. acetobutylicum (developed to produce 

isopropanol in lieu of acetone), Lee et al. recently demonstrated the utility of gas 

stripping for promoting solvent production under fed-batch conditions (J. Lee et al., 

2012). With 132.9 g/L glucose consumed in 45 h, 35.6 g/L total solvents were produced, 

a ~75% increase relative to batch mode operation (J. Lee et al., 2012). In earlier works, 

Ezeji et al. likewise employed continuous gas stripping under fed-batch conditions, in 

this case to improve the ABE fermentation (Ezeji et al., 2004a). Although productivity 

was continuously maintained for an initial period of over 201 h, accumulating 152 g/L n-

butanol and 233 g/L total solvent from 500 g/L glucose, production was ultimately and 

unduly halted as a result of gradually declining culture conditions. Though 

uncharacterized, it was postulated that said limitation perhaps resulted from either the 

depletion of an essential micronutrient or the accumulation of non-viable cells, acids, 

and/or other byproducts in the aqueous phase. 

As most separation strategies are selective towards only the target product, such 

productivity-limiting factors are a common challenge faced by in situ product recovery 

designs, particularly in long-term applications (e.g., fed-batch). In many cases, however, 

this problem has been effectively addressed by performing periodic exchanges of the 

culture medium, thereby replenishing nutrients while diluting byproducts. In a follow-up 

study, for example, Ezeji et al. successfully demonstrated that by adopting a medium 

exchange protocol, their semi-continuous gas stripping process could be operated under 

fed-batch conditions for an uninterrupted period of up to 504 h (Ezeji et al., 2013). 

Specifically, at an average dilution rate of 0.03 h-1, a portion of the bioreactor contents 

were continuously exchanged for a glucose-rich feed solution (containing 250-500 g/L 
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glucose). By this approach, 461 g/L total solvents were produced from 1125 g/L of 

glucose, representing a 3-fold further improvement relative to their initial gas 

stripping/fed-batch design and a 25-fold increase over traditional batch culture (Ezeji et 

al., 2013). 

The ease of implementation of gas stripping makes it an amenable approach for 

integration with a variety of bioreactor configurations. In a recent study by Chen et al., 

for example, its utility was explored in fed-batch cultures of immobilized C. 

acetobutylicum (Y. Chen et al., 2014). Following 175 h of continuous operation, 290 g/L 

glucose was consumed resulting in the production of 66 g/L n-butanol and 106 g/L total 

solvents. The approach is equally effective for use with cultures grown on complex, 

biomass-derived substrates. Lu et al., for example, demonstrated a 56% improvements in 

n-butanol production from wood pulping hydrolysate as a result of integrated gas 

stripping (Congcong Lu, Dong, & Yang, 2013). Xue et al., also studied the use of gas 

stripping in fed-batch cultures of immobilized C. acetobutylicum (Chuang Xue et al., 

2012). In this case, however, gas stripping was applied intermittently, and only when 

aqueous n-butanol concentrations exceeded >8 g/L. This approach not only maximized 

achievable separation factors, but also reduced energy input and operating costs. 

Ultimately, 113 g/L n-butanol (nearly a 6-fold increase) along with 172 g/L total solvents 

were produced from 475 g/L glucose over the course of 326 h of continuous operation. 

To further enhance their design by reducing energy requirements associated with n-

butanol purification, Xue et al. later investigated two-stage gas stripping protocol 

(Chuang Xue et al., 2014; Chuang Xue et al., 2013). While the first stage served to 

remove n-butanol from the fibrous bed bioreactor, the second served to then recover n-
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butanol at further increased purity from the initial condensate. In the final design, n-

butanol selectivity of up to 33.2 was achieved, rendering a recovered product phases 

containing 515.3 g/L n-butanol and 671.1 g/L total solvents (Chuang Xue et al., 2014).  

 

Figure 1.4. A Comparison of Different Vapor-Based Design Configurations Used For In 

Situ n-Butanol Recovery, including: A) gas stripping, B) vacuum stripping, and C) 

pervaporation. Legend: 1. bioreactor, 2. vapor condensation trap, 3. sparged carrier gas, 4. 

vacuum pump. 

1.5.2 Vacuum Stripping 
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In contrast to evolving n-butanol vapors from the culture via its displacement into 

a sparged gas, vacuum stripping renders a similar outcome by reducing pressure above 

the bioreactor headspace (Figure 1.4B). As it is not limited by poor gas solubility at 

physiological temperatures (Y. Chen et al., 2014), vacuum stripping has been reported to 

support n-butanol removal rates as much as 10-fold faster than by gas stripping (Mariano, 

Qureshi, Maciel Filho, & Ezeji, 2012). However, whereas a study by Mariano et al. 

showed that vacuum stripping can be used to increase n-butanol and total solvent 

production by as much as ~31% under batch conditions, to date, vacuum stripping has 

seen limited application with respect to semi-continuous operation (Mariano et al., 2012). 

1.5.3 Pervaporation 

Despite their proven ability to enable enhanced n-butanol production, the 

fundamental weakness of both of gas and vacuum stripping ultimately lies in their lack of 

selectivity. In vapor-based processes, low separation factors are undesirable as significant 

co-removal of water vapor results in a hydrous solvent product in need of additional 

downstream purification (Chuang Xue et al., 2012). In practice, separation factors for n-

butanol are inversely proportional to its concentration in the media (Ezeji et al., 2013), 

with typical values for gas stripping having been reported to range between 4 to 12 (Ezeji 

et al., 2013) and up to 20 for vacuum stripping (Mariano et al., 2012). One effective 

approach for improving the separation factor in vapor-based process involves the use of a 

membrane barrier to reject evolved water vapor. In pervaporation, for example, an n-

butanol permselective membrane is contacted directly with the fermentation broth while a 

sweep gas or vacuum conditions (more common due to improved mass transfer rates 

(Nasib Qureshi & Blaschek, 1999)) are applied on the permeate side to provide the 
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separation driving force. Following permeation into the membrane, n-butanol diffuses 

through it, becoming vaporized as it reaches the permeate side (Figure 1.4C) (Nasib 

Qureshi & Blaschek, 1999). The overall process requires minimal energy input, 

prompting the U.S. Department of Energy to label pervaporation is among the most 

efficient methods recovering bio-alcohols (D.O.E., 1990). 

Separation factor and flux are important measures of membrane performance and 

as such serve as key design parameters for the overall process (Vane, 2008b). Whereas 

separation factor remains as defined in Equation 1.5, flux, is determined as: 

𝐽 =
𝑚𝑝

𝐴𝑚∆𝑡
          (1.6) 

Where mp is mass of the permeate, Am is membrane area, and t is time. Higher fluxes 

support efficient pervaporation designs by minimizing the total membrane surface area 

necessary to achieve rapid n-butanol recovery. It should be appreciated, however, that, as 

with most membrane separations, an inverse relationship exists between pervaporation 

flux and separation factor (N. Qureshi, M. M. Meagher, H. J. Huang, & R. W. Hutkins, 

2001a).   

Hydrophobic, non-porous polymer membranes have been the most intently 

studied for n-butanol pervaporation, the most common being those composed of PDMS 

(Menchavez & Ha, 2013). Although high fluxes have been reported using PDMS 

membranes (ranging between 10-400 g/m
2
-h (Wouter Van Hecke et al., 2012)),  

achievable separation factors typically remain <20 (Wouter Van Hecke et al., 2012). Both 

using PDMS disk membranes, for example, Groot et al. reported an n-butanol separation 
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factor of ~11 and an average flux of 10.4 g/m
2
-h using a PDMS disk membrane (Groot & 

Luyben, 1987), while Van Hecke et al. reported values of ~14.7 and ~367 g/m
2
-h, 

respectively (Wouter Van Hecke et al., 2012). It has been suggested, however, that to 

offset the increased capital and operating cost requirements associated with pervaporation 

and achieve economically viable n-butanol recovery, a minimum separation factor of at 

least 30 should be achieved (Vane, 2008b). Thus, although it remains a commonly 

employed material in research studies, commercial prospects of PDMS membranes 

remain limited (Vane, 2008b). Accordingly, there remains keen interest in the 

development of novel pervaporation membranes with improved separation performance, 

including those composed of poly(tetrafluoroethylene) (PTFE), poly(ether-block-amide) 

(PEBA) (H.-W. Yen, Lin, & Yang, 2012), and other related tuned block copolymers 

(Niloofar Abdehagh et al., 2014; Ikegami, Negishi, Nakayama, Kobayashi, & Sakaki, 

2014; H.-W. Yen, Chen, & Yang, 2012; H.-W. Yen, Lin, et al., 2012). Meanwhile, more 

recent studies have also explored the potential of various nanoporous inorganic (e.g., 

zeolites (Wee, Tye, & Bhatia, 2008)) and ‘composite’ membranes (e.g., PDMS coated 

silicalite (Ikegami et al., 2014) and PEBA mixed with carbon nanotubes (H.-W. Yen, 

Chen, et al., 2012)), materials with improved prospects for enhanced and tunable 

separation performance (J. Li et al., 2014; N. Qureshi et al., 2001a; Wu et al., 2012). Key 

performance metrics of select polymer, inorganic, and composite membranes are 

compared in Table 1.2. It should be noted, however, that in addition to differences in 

polymer chemistry (N. Qureshi et al., 2001a), performance also varies due to membrane 

thickness (H.-W. Yen, Lin, et al., 2012), feed temperature (H.-W. Yen, Lin, et al., 2012), 
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level of vacuum (or sweep gas flow rate) (Nasib Qureshi & Blaschek, 1999), and other 

process/environmental conditions. 

A recent study by Yen et al. provided a direct comparison of the relative 

performance of two different polymer membranes, namely PDMS and PEBA, and their 

resultant impact on n-butanol separation and production (H.-W. Yen, Lin, et al., 2012). 

PEBA membranes ultimately supported the greatest separation factor and flux in model 

solutions (17.4 and 9.98 g/m
2
-h vs. 14 and 3.91 g/m

2
-h, respectively) and, when applied 

to fed-batch fermentation, enabled n-butanol and total solvent production at up to 16.6 

and 27.3 g/L, respectively (from a total of 130 g/L glucose) (H.-W. Yen, Lin, et al., 

2012). Further improvements to PEBA membrane performance were made by the same 

authors in a subsequent study, notably through the incorporation of 5%wt. multi-walled 

carbon nanotubes (CNT) (H.-W. Yen, Chen, et al., 2012). Using this composite 

membrane, flux was improved to 16.1 g/m
2
-h and the separation factor to 19.4, along 

with a 20% further increase in volumetric productivity. The efficacy of composite 

membranes for n-butanol pervaporation was similarly explored by Li et al., in this case 

using silicalite-1 filled PDMS on a poly(acrylonitrile) support (J. Li et al., 2014). Using 

model solutions, separation factors of 30-33 were demonstrated, along with fluxes 

ranging from 40 to 173 g/m
2
-h. When applied to fed-batch fermentation, after 288 h of 

continuous operation a biphasic solution was ultimately recovered in the condensed 

permeate. Owing to the high separation factor (>30), the n-butanol content in the 

condensate exceeded its solubility in water, leading an organic-rich phase with 446 g/L n-

butanol along with an aqueous phase containing 89.6 g/L n-butanol (J. Li et al., 2014). 
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Spontaneous phase separation by the condensate is advantageous as it reduces energy 

requirements associated with further downstream purification. 

One challenge commonly faced in pervaporation designs is diminished separation 

performance due to membrane fouling. Surface fouling can occur in the presence of other 

medium components, biomolecules, and/or whole cells. For example, using a tubular 

silicalite-1 membrane coated with silicone rubber, Ikegami et al. compared relative n-

butanol separation performance between both binary solutions and cell-free fermentation 

broths (Ikegami et al., 2014). Separation factor averaged 294 and 413 between model 

solutions and broths, whereas average flux was maintained at 35 and 22.3 g/m
2
-h, 

respectively (Ikegami et al., 2014). Though detrimental to performance, fouling effects 

can be addressed through additional process improvements. For example, Qureshi et al. 

used ultrafiltration to eliminate potential foulants from the fermentation broth prior to 

contacting it with a silicalite-PDMS composite membrane (N. Qureshi et al., 2001a). As a 

result, separation performance was sustained throughout the course of a 36 day fed-batch 

fermentation, enabling n-butanol separation factor and flux to be maintained at average 

values of 203 and 89 g/m
2
-h, respectively. By this approach, a total of 445 g/L glucose 

was consumed to yield 105 g/L n-butanol and 155 g/L total solvents (N. Qureshi et al., 

2001a). 

Table 1.2.  

Comparing The n-Butanol Separation Performance of Different Pervaporation Membranes 

and Under Different Test Conditions. ‘Binary’ refers to a binary mixture of n-butanol in water; 

‘ABE’ refers to a model solution of acetone, n-butanol, and ethanol in water; ‘Broth’ refers to a 

Clostridium sp. fermentation broth, typically cell-free and applied as a downstream separation. 
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Membrane Separation 

factor 

Flux (g/m
2
-h) Feed type Reference 

Polymer 

Membranes 

    

PDMS tubing 45-64 6.2-14.5 Binary  (Larrayoz & Puigjaner, 1987) 

PDMS 15-37 70-1000 Binary  (Nasib Qureshi & Blaschek, 1999) 

PTFE 2.7-4.8 35-2100 Binary  (Nasib Qureshi & Blaschek, 1999) 

PDMS 14 3.91 Binary  (H.-W. Yen, Lin, et al., 2012) 

PEBA 17.4 9.98 Binary  (H.-W. Yen, Lin, et al., 2012) 

Polypropylene 6.3 1400-1600 Fermentatio

n broth 

(Nasib Qureshi & Blaschek, 1999) 

Composite 

Membranes 

    

CNT filled 

PEBA  

19.4 16.1 Binary  (H.-W. Yen, Chen, et al., 2012) 

CNT filled 

PDMS 

32.9 244.3 Binary  (C. Xue, G. Q. Du, L. J. Chen, J. G. 

Ren, J. X. Sun, et al., 2014) 

5% ZSM-5-

PEBA 

~21.8-33.3 190-719.3  Binary   (Tan, Wu, & Li, 2013) 

Silicalite filled 

PDMS 

30-33 40-173 Binary  (J. Li et al., 2014) 

Silicalite filled 

PDMS  

10-180 12.5-240 ABE  (N. Qureshi et al., 2001a) 

PDMS-PVDF 

composite 

35.2 769.6 ABE  (C. Xue, Du, Chen, Ren, & Bai, 

2014) 

PDMS-PVDF 

composite 

14.4–21.2 93.3–108.8 Fermentatio

n broth 

(C. Xue, G. Q. Du, L. J. Chen, J. G. 

Ren, & F. W. Bai, 2014) 

Liquid 

Membranes 

    

Polymer 

supported ionic 

liquid 

11 560 Binary  (Heitmann et al., 2012) 

Inorganic     
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Membranes 

Phenyltrimethyls

iloxane 

(PhTMS)/PDMS 

Coated Alumina 

~10-30 200-900 Binary   (E. J. Jeon, Kim, & Lee, 2012) 

Methylated Silica ~0.0001 ~10-200 Binary  (Campaniello, Engelen, Haije, Pex, 

& Vente, 2004)  

 

1.6.0 Conclusion and Biofuels Outlook  

By circumventing the toxic effects associated with the in culture accumulation of 

n-butanol, in situ product recovery has emerged as an effective strategy for enhancing its 

key production metrics. Whereas multiple effective process strategies have been 

developed for this purpose, it should be appreciated that each approach carries its own 

unique pros and cons. Future advancements in terms of both materials and process 

development will ultimately enable in situ product recovery to evolve from its current 

laboratory bound incarnations into a viable strategy for enhancing commercial-scale n-

butanol production. 

Although in situ n-butanol removal has proven to be an effective approach for 

circumventing toxicity and facilitating semi-continuous fermentation, the field remains 

ripe for further innovation. Future advancements in the field will be facilitated by the 

development of novel materials and/or process configurations, the likes of which will 

continue to address some of the key inherent shortcomings identified here within. With 

respect to novel separation materials, the objective will be to develop and/or identify 

those with enhanced separation performance, including in terms selectivity, recovery rate, 

fouling resistance, and robustness, while also simultaneously reducing material costs and 
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energy requirements. Such efforts are already underway, and leading to promising new 

candidates. For example, as a departure from the traditional focus on organic solvents in 

solvent-based designs, non-ionic and liquid polymer surfactants have recently emerged as 

effective alternatives (Dhamole, Wang, Liu, Wang, & Feng, 2012). Ionic liquids, 

meanwhile, offer a wide range of physical and separation properties along with an 

unprecedented degree of tunability (Cascon et al., 2011; Fadeev & Meagher, 2001). 

Furthermore, with nearly negligible vapor pressure, volatile losses of these solvents 

during fermentation are virtually eliminated while also streamlining downstream 

processing (Kamiński et al., 2014). Tunability is a similarly attractive feature with respect 

to hybrid or composite membrane materials. Combining the processability of polymer 

membranes with the selectivity of inorganic membranes, such materials are expected to 

draw increasing interest for n-butanol pervaporation. Increased development and 

application of engineered adsorbent materials is likewise expected, in particular with 

respect to the development of increasingly hydrophobic materials with defined pore 

structures (e.g., mesoporous carbons). 

Meanwhile, the development of increasingly modular process will continue to 

provide several important benefits, including: i) improved control over the separation 

conditions (maximizing the return on material costs), ii) protection of the cells from the 

separation media (and vice versa), iii) ease of semi-continuous operation with minimal 

process disruption for phase separation/regeneration, and iv) improved prospects for 

process integration, especially in retrofit applications. (e.g., packed or expanded bed 

adsorption vs. direct addition). This trend can already be seen in the each of solvent-, 

adsorbent-, and vapor-based processes, and is likewise expected to extend into the future. 
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1.8.0 Dissertation Organization 

 

This proposal is organized into four chapters. Chapter 1 details a brief history of 

the separation of biofuels, namely butanol with its coproducts ethanol and acetone. It is 

composed of 3 separations categories, namely liquid-liquid, solid-liquid and vapor-liquid 

equilibrium. In chapter 2, the focus is in situ separation of butanol with engineered 

magnetically responsive mesoporous carbon powders (MMCPs). Butanol causes product 

toxicity to the producing organisms, necessitating separation. These MMCPS, developed 

by collaborators at the University of Ackron, were found to perform comparably to 

commercially used activated carbons while boasting 89% by mass recoverability from 

aqueous solution via magnetic retrieval. Furthermore, up to 93% by mass of adsorbed 

butanol was recovered, which is the highest recovery percentage for butanol the authors 

are aware of. This was also the first such demonstration of a magnetically separable 

carbon employed for in situ capture of butanol and its co-products, as far as the authors 

are aware. Chapter 3 employs the same MMCPs to recover furfural from simulated 

lignocellulosic hydrolysates. Furfural causes growth toxicity, preventing bacterial 

growth, necessitating furfural removal prior to fermentation. Because furfural is a value-

added byproduct, its adsorption and desorption characteristics were evaluated with 

MMCPs. Chapter 3 also describes the development of a magnetic MMCP recovery 

column which captured up to 91% MMCP mass. An efficient thermal regeneration 
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protocol was developed for furfural as it was for butanol, recovering up to 57% furfural 

by mass. The simulated hydrolysate was successfully pretreated by MMCPs and 

fermented to ethanol by E. coli LY180 up to 62.8 g/L after pretreatment. Control 

fermentation reached titers as high as 64.2 g/L ethanol, which may be the highest ethanol 

titer achieved by E. coli. Chapter 4 applies the adsorption process design principles from 

the other chapters for phenol recovery. Phenol is another important renewably producible 

bioproduct which has not been produced at more than ~33% of the toxicity limit by 

engineered strains. It was speculated that phenol caused feedback inhibition, limiting its 

production. To investigate this, adsorbents were applied as an intracellular diagnostic tool 

by reducing the aqueous concentration of phenol and thereby reduce feedback inhibition. 

The adsorption of phenol onto Dowex Optipore L-493 was found to be more efficient for 

phenol adsorption than MMCPs. The adsorption and desorption were characterized for 

phenol as for butanol and furfural. Phenol desorption by solvent recovery was found 

more efficient than thermal regeneration. This method confirmed feedback inhibition was 

not the cause of limited phenol titer. The 5
th

 chapter summarizes the findings of the 4 

preceding chapters and details the experimental plans for continuance of the work 

presented here. Specifically, this chapter details the importance of the findings of this 

work with regards to adsorption performance, especially for desorption. It also includes 

the recommendations for improving the MMCP design for improved functionality.  
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CHAPTER 2 

2.0 HIGH EFFICIENCY AND FACILE BUTANOL RECOVERY WITH 

MAGNETICALLY RESPONSIVE MESOPOROUS CARBON ADSORBENTS  

Abstract 

The in-situ recovery of n-butanol from conventional batch fermentation is an 

effective strategy to overcome cytotoxic titer limitations. Here, we demonstrate efficient 

butanol recovery using magnetically responsive micro/mesoporous carbon adsorbents. 

While large surface areas (>1400 m2/g) promote adsorption, inclusion of magnetic Ni 

nanoparticles enables direct and facile magnetic retrieval of spent adsorbents, bypassing 

the need for column configurations (e.g., packed or expanded bed). Butanol loading 

capacities of a family of mesoporous powders (4-10 wt％ Ni content) are not 

significantly impacted by Ni content, performing comparably to commercial resins and 

activated carbons (e.g., up to 0.26 g/g at 12.5 g/L equilibrated butanol). Magnetic 

recovery of the mesoporous powder is dependent on the Ni content, with up to 89 wt% 

recovery achieved in 6 min with 10 wt% Ni. Desorption studies using retrieved 

adsorbents demonstrated an average of 93% recovery of the total adsorbed butanol. 

Biocompatibility studies using an Escherichia coli model showed no discernable toxicity, 

even at high Ni content and levels of adsorbent addition. Kinetic studies indicate that 

neither the effective adsorption or desorption rates should constitute a bottleneck with 

respect to the future development of a semi-continuous butanol fermentation process 

using these novel, magnetically responsive adsorbents. 

This work was published as: 
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Staggs, K., Qiang, Z., Madathil, K., Gregson,C., Xia, Y., Vogt, B., & Nielsen, D.R. High 

Efficiency and Facile Butanol Recovery with Magnetically Responsive 

Micro/Mesoporous Carbon Adsorbents. ACS Sustainable Chem. Eng., 5(1), 885–894, 

(2017)
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2.1.0 Background and Motivation 

Biofuels produced via the microbial conversion of biomass feedstocks represent a 

promising, sustainable solution for the escalating global demand for liquid transportation 

fuels.(Connor & Liao, 2009; Keasling & Chou, 2008; Y. N. Zheng et al., 2009) As a 

potential drop-in replacement for conventional gasoline, n-butanol (butanol) is one of the 

most promising second-generation biofuel candidates.(Berezina et al., 2012; Dafoe & 

Daugulis, 2014; Garcia et al., 2011; Tashiro et al., 2013) However, butanol toxicity, 

remains an inherent challenge that limits its microbial production at economically viable 

rates.(Bowles & Ellefson, 1985; Ingram, 1990; Jones & Woods, 1986a) Moreover, due to 

its low toxicity threshold (typically just 12-13 g/L), downstream recovery of butanol from 

dilute fermentation broths (as conventionally accomplished via two-stage 

distillation(Luyben, 2008)) is low-efficiency and energy-intensive.(Pfromm, Amanor-

Boadu, Nelson, Vadlani, & Madl, 2010)  In order to address these challenges, integrated 

bioprocesses employing in situ butanol recovery have emerged as a promising alternative 

for enhancing volumetric productivity while also facilitating economical downstream 

product recovery.(Schugerl, 2000; W. Van Hecke et al., 2014; Chuang Xue et al., 2014; 

S. T. Yang & Lu, 2013)  Numerous different separation media and process configurations 

have been demonstrated for in situ butanol recovery to date, including liquid-liquid 

extraction (via direct solvent addition(Ishizaki et al., 1999; Q. Li et al., 2010; S. Roffler et 

al., 1987a) and perstraction(Groot et al., 1990; Y. J. Jeon & Lee, 1987; Oudshoorn et al., 

2009a, 2009b; Vane, 2008b)), vapor-liquid extraction (via gas stripping (Y. Chen et al., 

2014; Ezeji et al., 2004a; N. Qureshi & Blaschek, 2001; Chuang Xue et al., 2012) and 

pervaporation(Ezeji et al., 2013; Groot & Luyben, 1987; S. Y. Li, Srivastava, & Parnas, 
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2011; Mariano et al., 2012; N. Qureshi, M. M. Meagher, J. Huang, & R. W. Hutkins, 

2001b)), and solid-liquid extraction or adsorption.(Niloofar Abdehagh et al., 2015; N. 

Abdehagh et al., 2013; Faisal, Zhou, Hedlund, & Grahn, 2016; Groot & Luyben, 1986a; 

T. J. Levario, M. Dai, W. Yuan, B. D. Vogt, & D. R. Nielsen, 2012a; Xiaoqing Lin et al., 

2013; Xiaoqing Lin et al., 2015; D. Liu et al., 2014; Maddox, 1982; D. R. Nielsen & 

Prather, 2009; Oudshoorn et al., 2009a; N. Qureshi, Hughes, et al., 2005a; Wiehn et al., 

2014; X. Yang & Tsao, 1995) Among these, adsorption is often considered  among the 

lowest cost and least energy intensive method for in situ butanol recovery.(Faisal et al., 

2016; Oudshoorn et al., 2009b; N. Qureshi, Hughes, et al., 2005a)   

A wide range of adsorbent materials have been investigated for in situ butanol 

recovery, including silicalites (Milestone & Bibby, 1981; N. Qureshi, Hughes, et al., 

2005a), zeolites (Oudshoorn et al., 2009b; Oudshoorn, van der Wielen, & Straathof, 

2012), aerogels (Wiehn et al., 2013), activated carbons (Eom et al., 2015; Groot & 

Luyben, 1986b), mesoporous carbons (Thomas J. Levario et al., 2012a) and various 

polymer resins.(X. Lin et al., 2012; L. Nielsen et al., 1988; X. P. Yang, Tsai, & Tsao, 

1994)  Typically, adsorptive butanol recovery uses either a) circulation of the 

fermentation broth through an external column containing the adsorbent and operated in 

either packed or expanded bed mode (N. Abdehagh et al., 2013; Eom et al., 2015; Wiehn 

et al., 2014), or b) direct addition of the adsorbent to the fermentation broth within the 

bioreactor.(Groot & Luyben, 1986b; D. R. Nielsen & Prather, 2009; L. Nielsen et al., 

1988)  Packed bed adsorption is appealing because it typically offers higher separation 

efficiency (Menkhaus & Glatz, 2005), however, said approach requires that an additional 

upstream filtration step be performed to remove cells in order to avoid column plugging.  
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Expanded bed adsorption does not require such pre-filtration (due to increased bed void 

volumes) but suffers from slightly reduced separation efficiency compared to packed bed 

configurations.(Menkhaus & Glatz, 2005)  In both cases, meanwhile, rates of culture 

broth circulation through the column are typically responsible for controlling the overall 

butanol recovery rate.(Wiehn et al., 2013)  Both designs, however, suffer from challenges 

associated with continuous pumping requirements.  More specially, in addition to 

increased utility costs, mechanical pumping can impose sheer stress towards sensitive 

microorganisms (Groot, van der Lans, & Luyben, 1992; Saravanan et al., 2010), reducing 

cell fitness and productivity.   

Conversely, direct adsorbent addition provides significant and continuous solid-

liquid contact to enable near equilibrium adsorption thereby maximizing the degree of 

separation on a mass basis of the adsorbent. Additionally, the separation can be achieved 

without introducing additional capital costs associated with the adsorption column and 

pump, utility costs associated with pumping, and productivity limitations incurred due to 

damaging sheer stresses imposed upon the microorganisms. However, the challenge 

associated with the direct adsorbent addition approach is how to efficiently retrieve the 

adsorbent without disrupting the fermentation.  Presently, filtration is most commonly 

employed to end (Boyang et al., 2011; Faisal et al., 2016; Saravanan et al., 2010; Wiehn 

et al., 2014), however, doing so likewise requires pumping of the culture broth and, as 

such, can again impose significant stress upon the microorganism. 

To begin to address these shortcomings, here we examine the development and 

application of magnetically-responsive adsorbents that can be both directly added to and 

then easily retrieved from fermentation broths. Mesoporous carbon powders have been 
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demonstrated to be effective adsorbents for butanol (Thomas J. Levario et al., 2012a) and 

can be readily produced in bulk quantities from relatively low cost commodity precursors 

of phenolic resin and Pluronic® surfactants.(Z. Qiang et al., 2015) Here, a series of novel 

magnetically responsive microporous/mesoporous carbon powders (MMCPs) containing 

embedded Ni nanoparticles (formed in situ from nickel nitrate during carbonization) in 

the carbon framework were fabricated. With these MMCPs we systematically developed 

a model semi-continuous process for acetone, butanol, ethanol (ABE) production through 

its simulated in situ recovery (Figure 2.1).  In the process, we demonstrate that i) the Ni 

nanoparticles do not adversely impact the adsorption capacity or kinetics, ii) MMCPs are 

efficiently removed from the solution by magnet, iii) adsorbed butanol can be efficiently 

recovered by thermal treatment, and iv) re-generated MMCPs can be readily re-used 

without significant decrease in adsorption or magnetic separation performance. 

Furthermore, preliminary experiments indicate that, despite the incorporation of Ni 

nanoparticles, MMCPs maintain high biocompatibility.  Overall, the proposed approach 

represents a versatile and new strategy for in situ product recovery with the potential to 

improve the production of a range of other inhibitory biofuels and biochemicals.   
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Figure 2.1. Schematic of Semi-Continuous Adsorption and Recovery. Schematic 

illustration of the model, semi-continuous process evaluated as part of this study which 

involved assessing the absorption, magnetic retrieval, and desorption capabilities of novel 

MMCPs as adsorbents for next generation biofuels. 

2.2.0 Materials and Methods 

2.2.1 MMCP Synthesis and Characterization 
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Phenol (>99%), formaldehyde (ACS reagent, 37% in H2O, containing 10-15% 

ethanol as stabilizer), tetraethyl orthosilicate (TEOS) (>98%), Pluronic F127, nickel 

nitrate hexahydrate (>99.999%, trace metal basis), ethanol (>99%), potassium hydroxide 

(KOH, >85%) and sodium hydroxide (NaOH, >97%), and hydrochloric acid (37 %) were 

purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Thermally-

stabilized polyethylene terephthalate (PET) (125 μm thick) was purchased from Terphane 

Inc. (Bloomfield, NY) and used as the support substrate. A low-molecular weight 

phenolic resin was synthesized according to previous reports.(Yan Meng et al., 2006; Y. 

Meng et al., 2005) The synthesis of the MMCPs follows a modified procedure for the 

synthesis of mesoporous materials using a roll-to-roll process.(Zhe Qiang et al., 2016) 

Briefly, 96 g Pluronic F127 was dissolved in 80 g of H2O and 240 g of ethanol at 40°C 

under magnetic stirring. Next, 120 g of resol solution (50 wt% in ethanol), 150 g of 

TEOS, and 10-18 g of nickel nitrate hexahydrate were added to the Pluronic solution.  

After stirring for 2 h at 40°C, the solution was cast onto the PET substrate via doctor 

blade at 50 cm/min with a wet film thickness of approximately 400 μm.  The film was 

first heated at 50°C for 3 h to evaporate the solvent, followed by heating at 100°C for 3 h 

to crosslink the resol.(Yuanzhong Zhang, 2014) The crosslinked film was carefully 

peeled from the PET substrate and ground into a powder. The powder was carbonized in 

a tube furnace (SentroTech Inc., Strongsville, OH) under a N2 atmosphere.  The furnace 

was first heated to 600 °C at 1 °C/min, followed by heating at 5 °C/min to 800 °C, and 

held at 800 °C for 3 h. The sample was cooled to ambient temperature in N2 atmosphere. 

Silica was removed by etching using daily-refreshed 3M KOH in ethanol/deionized water 

(1:1 v/v) over 4 days. The MMCPs were then rinsed with deionized water 10 times and 
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dried under vacuum at 80 °C for 24 h.  For activation, a mixture of 30 g of MMCP and 60 

g of KOH was heated at 5 °C/min to 600 °C and held for 30 min.  Resultant powders 

were neutralized by dilute HCl solution (0.02M) and rinsed with deionized water 30 

times.  Powders were finally dried under vacuum at 80 °C overnight. The nickel content 

of three resulting MMCP samples was approximately 4.4%, 6.3% and 10.1% as 

determined by the thermogravimetric analysis based on 10 g, 14 g, and 18 g of nickel 

nitrate hexahydrate in the synthesis, respectively, which are accordingly named as 

MMCP-4, MMCP-6, and MMCP-10.  

To investigate pore architecture, N2 adsorption and desorption isotherms were 

obtained using a Micromeritics Tristar (Norcross, GA). The Barrett-Joyner-Halenda 

(BJH) model was used to determine the mesopore size distributions were calculated from 

the adsorption isotherm using the Barrett-Joyner-Halenda (BJH) model.(Storck, 

Bretinger, & Maier, 1998) Surface areas were determined by the Brunauner-Emmett-

Teller (BET) methodology. The nanostructure of the MMCPs was elucidated using 

transmission small-angle X-ray scattering (SAXS; Rigaku MicroMax 002+ instrument, 

The Woodlands, TX) with a 2D multiwire area detector and a sealed copper tube 

operating at 45 kV to produce 0.154 nm X-rays. The scattering vector (q) was calibrated 

using the primary reflection peak of silver behenate at q = 1.076 nm
-1

. The two-

dimensional X-ray patterns were obtained from 0.12 < q < 2 nm
-1

 and the domain 

spacing, d, of the MMCP was determined as: 

d = 2/Q
*
          (2.1) 

where Q
*
 is the primary peak position. Transmission electron microscopy (TEM) was 
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performed on the film using JEOL-1230 microscope operating with an accelerating 

voltage of 120 KV and bright field images were recorded by a digital CCD camera. 

2.2.2 Adsorption Isotherm Studies using Aqueous Binary and ABE Model Solutions 

Adsorption experiments were performed using 22 mL glass scintillation vials 

containing approximately 100 mg MMCP and 2 mL aqueous solution.  Preliminary 

studies focused on the use of binary solutions (i.e., acetone, butanol, or ethanol in water) 

at initial concentrations ranging from 0.1-34 g/L.  For model ABE solutions, samples 

were prepared at the 3:6:1 mass ratio of acetone, butanol and ethanol associated their 

native co-production by Clostridium acetobutylicum.(Jones & Woods, 1986b)  Once 

mixed, samples were equilibrated at 37 °C overnight while mixing on an orbital shaker. 

This time is confirmed to be sufficient for the adsorbents to reach equilibrium. The 

supernatant (1 mL) was then removed for analysis by high-performance liquid 

chromatography (HPLC; Agilent 1100 series; Santa Clara, CA) equipped with a 

refractive index detector. Binary solutions were separated on a Hypersil GOLD aQ Polar 

C-18 column (Thermo Scientific; Grand Island, NY) using 5 mM H2SO4 as the mobile 

phase at 0.8 mL/min.  ABE solutions were separated using an Aminex HPX-87H anion 

exchange column (Bio-Rad Laboratories; Hercules, CA) with 5mM H2SO4 as the mobile 

phase. A variable flow rate rising from 0.55-0.7 mL/min at 18 min with a 22 min final 

hold was used to reduce the elution time for butanol. External standards of known 

concentrations of butanol, acetone, and ethanol in water were used for calibration. The 

equilibrium adsorption capacity (Qi) of each solute i was calculated using a mass balance: 

𝑄𝑖 =
(𝐶𝑖,0−𝐶𝑖)𝑉

𝑚
           (2.2) 
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where Ci,0 and Ci (g/L) are initial and equilibrium aqueous concentrations of species i, V 

(L) is aqueous volume, and m (g) is mass of MMCP.  Equilibrium adsorption data were 

fit to the Freundlich isotherm models as shown in equation 3. 

𝑄𝑖 = 𝑘𝑓,𝑖𝐶𝑖
1 𝑛𝑖⁄

         (2.3) 

where Qi (g/g adsorbent) are equilibrium adsorption capacity for the adsorbed species i, 

kf,i (g/g) and ni (dimensionless) are the Freundlich constant and exponent, respectively. 

Freundlich exponent, the approximate Gibbs energy of adsorption was estimated from the 

following relation. (D. R. Nielsen et al., 2010) 

∆𝐺𝑖 = −𝑅 ∗ 𝑇 ∗ 𝑛𝑖         (2.4) 

Where ΔGi (kJ/mol) is the approximate energy of adsorption of component I, R 

(kJ/(mol·K)) is the universal gas constant, T (K) is temperature, and ni is as defined 

above. 

2.2.3 Characterizing the Kinetics of Butanol Adsorption from Aqueous Butanol 

Solutions  

Butanol adsorption kinetic experiments were performed using media bottles 

containing approximately 2.6 g MMCP and 52 mL of a 10 g/L butanol solution, sealed 

with a butyl rubber septa. After mixing at 37°C on an orbital shaker for various time (0.5, 

2, 5, 8, 10, 15, 30, 60, 120, 180, 240 min), 1 mL aqueous samples were drawn for HPLC 

analysis and characterized as described previously. The time dependent adsorption 

capacity was calculated using equation 2. The temporal dependence of the adsorption was 
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fit to both pseudo-first and pseudo-second order kinetic models(Ho & McKay, 1999), 

given by equations 2.4 and 2.5, respectively:  

𝑑𝑄𝑡

𝑑𝑡
= 𝑘1(𝑄𝑒 − 𝑄𝑡)         (2.4) 

𝑑𝑄𝑡

𝑑𝑡
= 𝑘2(𝑄𝑒 − 𝑄𝑡)2         (2.5) 

where Qt (g/g adsorbent) is the adsorption capacity at time t (min), Qe (g/g adsorbent) is 

the equilibrium adsorption capacity, and k1 (1/min) and k2 (g/g min) are the first and 

second order rate constants, respectively.   

2.2.4 Magnetic Recovery of MMCPs from Aqueous Slurries 

The MMCPs were removed from aqueous slurries using a magnetic rod (Figure 

2.12) to assess the efficacy of the Ni nanoparticle inclusions for magnetic recovery and 

provide a preliminary proof of concept.  The magnets used to construct the rod were N32 

neodymium ring magnets (0.75”/0.375” outer/inner diameter).  Approximately 1.6 g of 

MMCPs were dispersed in 300 mL deionized water and continuously stirred at 200 rpm.  

The efficacy of MMCP retrieval was assessed by immersion of the magnetic rod in the 

slurry for a period of 2 min. In this case, the recovered MMCPs were then released from 

the rod by gently rinsing with water. The MMCPs were dried at 25°C in an updraft 

drying chamber for a minimum of 24 h until no further mass loss was detected.  To assess 

the limitation for the magnetic recovery, this immersion process was repeated 3 times, 

giving a total of 6 min of immersion of the magnetic rod for each slurry.  

2.2.5 Desorption of Adsorbed Butanol from MMCPs 

MMCP samples (4.1 g) were equilibrated with 200 mL of a 16.2 g/L butanol 

solution in a sealed media bottle at 37°C.  The supernatant was removed through a 
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stainless steel solvent bottle filter with application of vacuum (Figure 2.13). The crudely 

dried MMCP in the media bottle was then immersed in a water bath at 95°C with an 

applied house vacuum (77 kPa below ambient) to evolve and remove butanol vapors that 

were subsequently collected in a cold trap submerged in an acetone/dry ice mixture.  

Vacuum application was performed in discrete intervals until the crystalized condensate 

coated the entire condenser surface area (between 30 to 60 min). The condensate was 

diluted with 10 mL of distilled water. The solution was analyzed by HPLC using methods 

described above. The vacuum recovery of the adsorbate from the MMCPs continued in 

this manner until no further condensate was observed.  This butanol adsorption-recovery 

process (equilibration, supernatant removal, heat and vacuum application, vapor 

collection, and condensate analysis) was repeated for a total of 5 consecutive ‘cycles’, in 

each case using a 16.2 g/L butanol solution and the same regenerated MMCP sample   

2.2.6 Assessing MMCP Biocompatibility 

A seed culture of Escherichia coli BW25113 was prepared by inoculating a 5 mL 

Luri-Bertani broth (LB; Thermo Fisher Scientific, Waltham, MA), incubated overnight in 

a shaking incubator at 32°C.  Seed cultures were used to inoculate 50 mL LB broth in a 

250 mL shake flask also containing either 0 (control) or 1.0 g of MMCP-10.  A third 

flask that included 1.0 g of Dowex Optipore L-493 resin (hereafter referred to as L-493) 

was also prepared as an additional control, as this poly(styrene-divinylbenzene) resin is 

known to be both an effective butanol adsorbent as well as biocompatible with E. coli.(D. 

R. Nielsen & Prather, 2009)  All cultures were incubated at 32°C while shaking for a 

total of 48 h, at which point the entire aqueous slurry was transferred to a 50 mL Falcon 

tube and centrifuged at 3000 rpm for 5 min using an Allegra X-22R centrifuge (Beckman 
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Coulter, Indianapolis, IN). The supernatant was decanted and the solid pellet (containing 

both cells and the MMCP-10 or L-493 sample) was washed 4 times with deionized (DI) 

water before then being resuspended in a minimum volume of DI water.  The 

resuspended sample was then transferred to a weigh boat and dried in an oven at 37
o
C 

until no further mass loss was detected (~48 h).  Final dry cell mass was determined by 

subtracting the initial mass of MMCP-10 from the resultant total dry mass of the 

combined sample. 

2.3.0 Results 

2.3.1 MMCP Characterization  

Figure 2.2 demonstrates the ordered mesoporous structure of the MMCPs. From 

TEM, the degree of ordering decreases and cylindrical nanostructures are ordered only 

locally with short-range correlations with increasing Ni content, which is consistent with 

previous reports.(Zhai et al., 2011) Moreover, the Ni-containing nanoparticle size 

increases approximately from 11 nm to 16 nm to 19 nm for MMCP-4 (Figure 2.2A), 

MMCP-6 (Figure 2.2B), and MMCP-10 (Figure 2.2C), respectively. The nature of the 

nanoparticles is confirmed with X-ray diffraction (XRD), as illustrated in Figure 2.14. 

The three well-resolved diffraction peaks in the XRD profile are assigned to the (111) 

and, (200) reflections of FCC metallic Ni. To better investigate the nanostructure 

ordering, small angle X-ray scattering (SAXS) was used to complement the TEM 

imaging. The primary ordering peak from SAXS in Figure 2D becomes broader with 

increasing amount of incorporated Ni nanoparticles. This change in the shape of the peak 

is suggestive of a gradual degradation of regularity in the mesostructures and agrees well 

with the observations from TEM micrographs in Figure 2.2A-C. The domain spacing of 
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MMCP-4 (4.4% Ni) is approximately 11.2 nm and the domain spacing is increased to 

12.3 nm for MMCP-6 (6.3% Ni) due to the enhanced rigidity of the framework from the 

embedded Ni nanoparticles, which reduces contraction from stress developed during the 

carbonization step. The domain spacing of MMCP-10 (10.1% Ni) is reduced to 10.1 nm, 

which may be associated with decreased thickness of the walls due to migration of Ni to 

grow nanoparticles during carbonization. No higher-order peaks are observed in the 

SAXS profiles for all three MMCPs. This behavior is consistent with prior reports for the 

loading of high Z metal nanoparticles in ordered mesoporous carbons(Dai & Vogt, 2012; 

Hao et al., 2013; Y. Meng et al., 2005; X. Wang & Dai, 2009) and is attributed to the 

heterogeneous distribution of Ni nanoparticles in the carbon walls, which leads to 

additional correlation length scales beyond the pore-pore spacing.  
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Figure 2.2. TEM Micrographs.  TEM micrographs of (A) MMCP-4; (B) MMCP-6 and 

(C) MMCP-10, and (D) SAXS profiles for all three samples. 

The N2 adsorption-desorption isotherms (Figure 2.3A) for all three MMCP 

samples show typical type-IV behavior with an H1 hysteresis loop. A well-defined step in 

the isotherms occurred at approximately p/p0=0.5-0.7 due to the capillary condensation of 

nitrogen in the mesopores. Pore size distributions (Figure 2.3B) determined from the N2 

adsorption isotherms confirm the presence of both micropores (from activation and 

removal of silica) and mesopores (from the Pluronic F127 template). The average 
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mesopore size for MMCP-4, -6, and -10 is approximately 6.6, 7.2, and 5.6 nm, 

respectively. The shift in average pore size agrees well with the change in domain-

spacing determined from SAXS. The associated specific surface areas are approximately 

2200, 1400, and 1800 m
2
/g for MMCP-4, -6, and -10, respectively. These surface areas 

are significantly higher than other magnetic porous carbon composites for biofuel 

absorbents (<1000 m
2
/g) previously reported.(Boyang et al., 2011; X. Liu, Wang, Wu, & 

Wang, 2015; Oliveira et al., 2002)  

 

 

Figure 2.3. MMCP Characterization (A) N2 adsorption-desorption isotherms of MMCP-

4, MMCP-6 and MMCP-10; The isotherms of MMCP-6 and MMCP-10 are vertically 

offset by 500 and 750 m
2
/g to improve comparison. (B) Pore size distributions derived 

from adsorption isotherms. 

2.3.2 Aqueous Butanol Adsorption 

The adsorption behavior of MMCPs for in situ butanol recovery was assessed 

using model solutions and cell-free conditions to reduce complexity and focus on 

separation performance. Figure 2.4 illustrates the equilibrium isotherms obtained using 

the MMCPs with binary aqueous solutions. As shown in Figure 2.4A, the Ni content in 
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the MMCP does not significantly impact the adsorption behavior of butanol from water. 

Surprisingly, higher Ni content in the MMCP tends to lead to a slight increase in the 

gravimetric adsorption capacity despite the lower surface area of MMCP-10 (~1800 

m
2
/g) than MMCP-4 (~2200 m

2
/g). For all three MMCPs the adsorption capacity reaches 

>0.3 g/g MMCP near butanol’s approximate inhibitory threshold (12.5 g/L).  These 

isotherms are well described by the Freundlich model (R
2
 > 0.961), which is consistent 

with prior reports for butanol adsorption by other hydrophobic materials.(Thomas J. 

Levario et al., 2012a; D. R. Nielsen & Prather, 2009; Rudling, 1988) Other isotherm 

models were applied and it was found that the Dual Site Langmuir model(Nguyen & Do, 

2000) describes the data with similar residuals to Freundlich isotherms as shown in 

Figure 2.16. Table 2.1 shows the resultant best-fit Freundlich parameters, as compared 

with similar mesoporous carbons without Ni nanoparticles and chemical activation. In 

general, the Freundlich constant is increased for the MMCPs examined here in 

comparison to FDU-15 and its analogs previously reported for the separation of 

butanol.(Thomas J. Levario et al., 2012a) Freundlich exponents, the Gibb’s energy of 

adsorption was approximated using equation 2.4. Gibb’s energy of adsorption values 

determined for MMCP-4, 6 and 10 were -4.7±0.4, -3.5±0.3 and -5.4±0.4 kJ/mol, 

respectively. These negative values suggest the adsorption process is spontaneous which 

is consistent with physisorption rather than chemisorption where energy input is required. 

Figure 2.4B shows that the equilibrium uptake for ethanol by the MMCPs is again nearly 

invariant of Ni content and the isotherms can be fit by the Freundlich model. However, 

the capacity for ethanol is significantly reduced (by nearly a factor of 3) in comparison to 

butanol, although the Freundlich constants for the MMCPs are still generally larger than 
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for previously reported mesoporous carbons.(Thomas J. Levario et al., 2012a)  Figure 

2.4C shows that the equilibrium uptake for acetone. Unlike ethanol and butanol, the 

adsorption is dependent on the Ni content in the MMCP with the adsorption on MMCP-4 

significantly greater than the other two MMCPs examined. Overall, the observation that 

adsorption of acetone and ethanol on MMCPs was less than that of butanol is consistent 

with other ABE adsorbents, including zeolites(Faisal et al., 2016; Saravanan et al., 2010) 

and polymer resins.(Niloofar Abdehagh et al., 2015; D. R. Nielsen & Prather, 2009; 

Wiehn et al., 2014) These adsorption isotherms obtained for the binary solutions 

associated with the individual ABE components derived via most Clostridium sp. 

fermentations suggest that the MMCPs exhibit sufficient capacity for use with in situ 

recovery applications. 

 

Figure 2.4. Adsorption Isotherms and Corresponding Freundlich Isotherm Model Fits for 

binary (i.e., in water) solutions of (A) butanol, (B) ethanol, and (C) acetone for each of 

MMCP-4 (squares), MMCP-6 (triangles), and MMCP-10 (circles).  

Table 2.1  

Freundlich Isotherm Model Fit Parameters Obtained For Previously Investigated 

Mesoporous Carbons and The MMCPs Developed in This Study. 

  Acetone Butanol Ethanol   

Adsorbent kf (g/g) n kf (g/g) n kf (g/g)  n Reference 

FDU-15- - - 0.027±0.006 3.7±0.5 0.005±0.001 2.4±0.2 36 
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800 

FDU-16-

800 - - 0.052±0.005 4.6±0.3 0.007±0.001 2.5±0.2 36 

CS-68-800 - - 0.018±0.004 1.9±0.1 0.003±0.001 1.8±0.1 36 

CS-81-800 - - 0.033±0.007 2.4±0.2 0.003±0.001 1.9±0.1 36 

MMCP-4 0.034±0.005 1.2±0.1 0.060±0.004 1.9±0.2 0.014±0.001 1.8±0.1 This study 

MMCP-6 0.018±0.004 1.1±0.1 0.037±0.005 1.4±0.1 0.009±0.001 1.4±0.1 This study 

MMCP-10 0.027±0.005 1.3±0.1 0.085±0.003 2.2±0.2 0.006±0.001 1.2±0.1 This study 

 

As the primary liquid biofuel of interest, butanol adsorption performance is of 

particular importance in this work. Figure 2.4 provides a comparison of the isotherm for 

MMCP-10 (highest Ni content, so most likely to be magnetically separable) with several 

previously investigated butanol adsorbents, each selected to represent among the best 

performance for their respective material classes.  MMCP-10 behaves and performs in a 

comparable manner, despite its unique, magnetically-responsive attributes. At 12.5 g/L 

(selected to represent the approximate inhibitory threshold of C. acetobutylicum), for 

example, the performance of MMCP-10 (0.26 g/g) equals that of the best commercial 

activated carbons (i.e., AC F-400), while surpassing most other carbon materials 

investigated to date, as shown in Table 2.3.  
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Figure 2.5. Comparing Butanol Adsorption Isotherms between MMCP-10 (open circles) 

and other, previously investigated butanol adsorbents, including: activated carbon (AC) 

F-400 (solid triangles), the mesoporous carbon CS-68-800 (Crosses) (T. J. Levario et al., 

2012), silicalite-1 (solid diamonds) (Milestone & Bibby, 1981), and the macroporous 

poly(styrene-co-divinylbenzene) resin Dowex Optipore L-493 (solid circles)
 

(T. J. 

Levario et al., 2012).  

2.3.3 Adsorption Behavior of ABE Solutions  

Most Clostridium sp. fermentations yield a mixture of products that includes 

acetone, butanol, and ethanol (i.e., the so-called ABE fermentation), synthesized at a 

typical mass ratio of 3:6:1 (acetone:butanol:ethanol). Accordingly, adsorption behavior 

was next investigated using a series of aqueous ABE mixtures, each initially prepared to 

represent said ratio. Figure 2.6 shows the adsorption isotherms obtained for these 
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mixtures on MMCP-10. For all species, adsorption from the ABE mixture is decreased 

relative to binary mixtures (note: lines in Figure 2.6 represent Freundlich isotherm model 

fits obtained using the data in Figure 2.4). Competition for the same adsorption sites 

reduces the overall adsorption of each species relative to the binary case.  As adsorption 

of all three components is driven by both van der Waals (Carey & Sundberg, 2000; N. 

Qureshi, Hughes, et al., 2005a; Regdon et al., 1998) and hydrophobic interactions,(Hashi 

et al., 2010; D. R. Nielsen et al., 2010; Oudshoorn et al., 2009a; Saravanan et al., 2010) 

butanol adsorption is impacted less than that of less hydrophobic acetone.(Sangster, 

1989) Adsorption of ethanol, meanwhile, is limited due to its lower concentration in the 

ABE solution as well as the lower intrinsic equilibrium capacity of the MMCPs (Figure 

2.4). These behaviors are consistent with prior studies of other ABE adsorbents. (Niloofar 

Abdehagh et al., 2015; D. R. Nielsen & Prather, 2009; Wiehn et al., 2014)  

 

 

Figure 2.6. Equilibrium Adsorption of Model ABE Solutions using MMCP-10 with 

respect to (A) butanol, (B) acetone, and (C) ethanol (solid circles). Freundlich isotherm 

model fits obtained for binary solutions are shown for comparison in each case (solid 

lines). 

2.3.4 Characterizing Butanol Adsorption Kinetics from Binary Solutions 
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In addition to total adsorption capacity, the rate of butanol uptake is furthermore 

critical for the efficacy of MMCPs as adsorbents for in situ product recovery. Figure 2.7 

illustrates the rates of butanol uptake from model binary solutions for MMCP-4, -6, and -

10. The initial butanol uptake was rapid in each case, reaching 80-90% of the equilibrium 

capacity within the first 15-30 min, with equilibrium attained in less than 1 h. Although 

faster adsorption rates have been reported for other butanol adsorbents, this performance 

is acceptable for in situ product recovery.(Thomas J. Levario et al., 2012a; Xiaoqing Lin 

et al., 2012; D. Liu et al., 2014; N. Qureshi, Hughes, Maddox, & Cotta, 2005b) For 

instance, as typical butanol production rates by Clostridium sp. have been reported as 

0.32-0.48 g/(Lh),(C. Lu, Zhao, Yang, & Wei, 2012; H. W. Yen, Li, & Ma, 2011) the 

maximum (i.e., initial) rate of butanol uptake by MMCP-10 was nearly 123 g/(Lh). The 

adsorption kinetics of all MMCPs are similar and can be well represented by a pseudo-

second order kinetic model (R
2
 > 0.994 in all cases). The pseudo-second order rate 

constants (Table 2.2) indicate that MMCPs enable almost an order of magnitude increase 

(9.3 fold) in the butanol uptake rate in comparison to commercial activated carbons, AC 

F-400 and AC F-600.(N. Abdehagh et al., 2013) Accordingly, adsorption kinetics are not 

expected to arise as a bottleneck for in situ butanol recovery applications using MMCPs. 

Table 2.2  

Kinetic Parameters Determined for Pseudo-Second Order Model. 

Adsorbent k2 (g/g min)  Reference 

AC F-400 0.8 38 

AC F-600 1.1 38 

MMCP-4 6.5 This study 

MMCP-6 3.6 This study 
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MMCP-10 7.4 This study 
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Figure 2.7. Kinetics of Butanol Adsorption by MMCP-4 (A), MMCP-6 (B), and MMCP-

10 (C), along with the corresponding best-fit predictions obtained using a pseudo-second 

order kinetic model. Inset figures show the first 10 min of each respective dataset. 

2.3.5 Magnetic MMCP Retrieval 

 The rationale for inclusion of Ni nanoparticles in the MMCPs is to enable their 

facile removal from the fermentation broth following adsorption. Model experiments 

were conducted by simply immersing a magnetic rod (Figure 2.12, Supplementary 

Information) into an aqueous suspension of MMCPs for a period of 2 min, after which 

the rod together with adhered MMCP, was then removed. Figure 2.8 illustrates the 

efficacy of this simple design and approach for MMCP removal. Here, ‘Retrieval 

Number’ refers to the number of serial attempts performed (each 2 min in duration) to 

retrieve MMCP samples from the same initial solution. The initial retrieval (Retrieval 

Number 1) always led to the highest fractional recovery of the MMCPs for a given Ni 

content in the MMCPs. As expected, increasing the Ni content results in greater initial 

MMCP recovery during the 1
st
 retrieval. This recovery was reproducible with the fraction 

of MMCP-4, MMCP-6, and MMCP-10 recovered in the initial retrieval being 0.22 ± 

0.06, 0.36 ± 0.09, and 0.77 ± 0.03, respectively. These results demonstrate that the ability 

of MMCPs to adhere to the magnetic rod is proportional to the Ni content, although there 

a significant, non-linear uptick is observed in the fraction recovered at the highest Ni 

content examined (MMCP-10). For the subsequent retrieval cycles, the amount of 

MMCP collected is a function of both the Ni content and remaining MMCP content. As 

the majority of the MMCP-10 was removed during the first cycle, the fraction (based on 

the initial concentration) removed during the 2
nd

 retrieval is only 0.1 ± 0.03, or nearly 
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50% of the remaining particles in the suspension (see Figure 2.15). For MMCP-4, the 

fraction (based on the initial concentration) removed during the 2
nd

 retrieval is 0.17 ± 

0.04, nearly the same fractional recovery (based on the remaining particles) as for 1
st
 

retrieval. This result confirms that the initial removal of MMCPs is limited by the Ni 

content and decreases with MMCP content. This decrease is also observed when re-using 

magnetically separated MMCPs, so the lack of recovery is not due to non-magnetically 

active materials from the synthesis. For the 6 min of total retrieval time examined here (3 

x 2 min cycles), half of the MMCP-4 was recovered from the suspension, while the 

fraction of MMCP-10 retrieved was 0.89 ± 0.03 overall. When applied in a semi-

continuous process, however, unrecovered MMCPs can be recovered in a subsequent 

retrieval cycle and so are not irreversibly lost. 
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Figure 2.8. Fractional Retrieval of MMCPs. Fraction of MMCP-4 (diagonal stripes), 

MMCP-6 (crosshatch) and MMCP-10 (vertical stripes) retrieved per application of the 

magnetic retrieval tool, as well as total retrieved (sum total of 3 sequential applications). 

2.3.6 Desorption and Recovery of Butanol from MMCPs and Recycling of MMCPs 

With the demonstration of efficient adsorption and magnetic retrieval, the final 

key requirements for the potential use of MMCPs are the desorption/recovery of butanol 

and regeneration of the MMCPs for subsequent reuse. For butanol recovery from 

adsorbents, thermal treatment(Sutikno & Himmelstein, 1983; Wei et al., 2014) is 

generally the most efficient method.(Wiehn et al., 2014) MMCPs were equilibrated with 

an aqueous solution initially containing 16.2 g/L butanol before then being recovered. 

Adsorbed butanol was removed from the recovered MMCP by heating (95 
°
C) under 

vacuum. The evolved vapors were collected in an integrated cold trap (Figure 2.13). 

Figure 2.9A demonstrates that a majority of the adsorbed liquid within the MMCPs (~85-

90%) was recovered within the first 90 min. Initially, the rate of butanol desorption 

reached as high as ~3.5 g/L-h which, much like rates of adsorption, also greatly exceeds 

typical rates of butanol production. Unlike for initial adsorption, however, there is a clear 

difference in the butanol recovery for the different MMCPs. In total, 92.9%, 86.4%, and 

99.7% of initially adsorbed butanol sample was recovered from MMCP-4, -6, and -10, 

respectively, by this approach. While the most butanol was evolved from the MMCP-4 

and least from MMCP-10, a significant amount of butanol can still be recovered from all 

of the MMCPs examined. For comparison, we have previously demonstrated that 83% of 

adsorbed butanol was recoverable from L-493 resin adsorbent via an analogous thermal 

processing approach.(D. R. Nielsen & Prather, 2009; Wiehn et al., 2014) 
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Figure 2.9 Desorption of Butanol from MMCPs. Recovery of vapors desorbed from 

MMCP-4 (squares), MMCP-6 (triangles), and MMCP-10 (circles) for (A) butanol and 

(B) water (note: cumulative time refers to the total duration for which vapor collection 

occurred). (C) Concentration of butanol in the collected condensate at each time point.  

The adsorbed fluid contains water in addition to butanol. Figure 2.9B illustrates 

the amount of water co-evolved from the MMCP samples. While the mass of water 

collected is an order of magnitude greater than that for butanol, an overall significant 

increase in the concentration of butanol compared to the initial solution (16.2 g/L) is still 

realized. More specifically, the total recovered products have butanol concentrations of 

76.9 g/L, 77.8 g/L and 80.8 g/L for MMCP-4, MMCP-6 and MMCP-10, respectively, 

corresponding to effective separation factors of 4.7, 4.8 and 5.0. The purity of the butanol 

collected is time dependent with higher butanol concentrations recovered initially. The 

butanol concentration of the collected product during each desorption interval (each 

lasting 30-60 min) is shown in Figure 2.9C. The maximum butanol concentration in the 

product (obtained in the first 30 min of desorption) was approximately 112 g/L for 

MMCP-4. This represents a 6.9-fold enrichment over the initial aqueous concentration 

(16.2 g/L). For the other two MMCPs, the maximum concentration of butanol in the 

product was approximately 75 g/L, still nearly a 5-fold enhancement. 
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MMCPs must also be re-usable to constitute a cost effective separation process. 

Figure 2.10 illustrates that separation performance is not degraded during subsequent 

cycles of reuse for regenerated samples of MMCP-4. As can be seen, relative changes 

with respect to the efficiency of butanol recovery and its collected purity during a total of 

five repeated adsorption-desorption cycles were minimal. The reused MMCP-4 displays 

comparable performance to that of the fresh material (Figure 2.9A). This is consistent 

with prior reports for recycled L-493 resin(D. R. Nielsen & Prather, 2009) and 

zeolite(Oudshoorn et al., 2012) adsorbents, which similarly been reported to retain 

consistent adsorption behavior when regenerated under similar process conditions. 

 

Figure 2.10. Reusability of MMCPs After Multiple Cycles. Characterizing the repeated 

reuse and performance of regenerated MMCP-4 over the course of 5 consecutive 

adsorption-desorption cycles.  For clarity, only the 1
st
 (solid circles) and 5

th
 cycle (solid 

squares) are shown. Compared are A) the cumulative evolution and collection of butanol 

and B) the instantaneous concentration of butanol in the collected condensate (i.e., per 

each 30-60 min treatment duration).  

2.3.7 Magnetic Retrieval Field Modeling 
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 To better understand the magnetic field parameters involved in the retrieval process, 

modeling was performed to approximately map magnetic flux densities used in this study. 

Understanding the magnetic flux density is prerequisite to optimization of the magnetic recovery 

strategy. Magnets were simulated as N32 neodymium with 0.5” inner diameter and 0.75” outer 

diameter on both steel and aluminum cores. The actual magnets used in the development of the 

retrieval tool were rated for a 5 lb lifting strength. The simulated lifting strength was 

approximately 4.8 lbs at the same distance, validating the material and magnet geometry used in 

the simulation. Figure 2.8 charts the field lines and magnetic flux density regions in Tesla which 

are equivalent to 10,000 Gauss. Visually the collected MMCPs were conformal to the shape of 

the yellow region of magnetic flux density seen in Figure 2.8A as would be expected. As can be 

seen in Figure 2.8B, a steel core would concentrate the magnetic flux density at the end of the 

tool, whereas an aluminum core provides regions of high magnetic flux density which extend 

more than 5 mm from the surface of the recovery tool. Also represented in Figure 2.8C-F are the 

magnetic flux densities of 1-4 magnet recovery tool configurations. The modeling results here 

showed that the main difference in the number of magnets is the increased surface area with high 

magnetic flux density. Additionally the models indicate that the magnetic flux density 

immediately adjacent to the recovery tool increases from approximately 0.3 to 0.4 T from 1 to 4 

magnet configurations. The insignificant influence of the magnetic field compared to Ni 

composition simplifies the required design parameters for scalable MMCP recovery. 
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Figure 2.11. Magnetic Flux Density Distributions For Magnetic Recovery Tools. A) T6 

aluminum core with 4 magnets demonstrating the magnetic flux density extending into the 

solution around the magnetic tool. B) 1018 steel core with 4 magnets where the magnetic flux 

density is concentrated at the base of the magnetic tool.  C) Single magnet, D) 2 magnets, E) 3 

magnets and F) 4 magnets on a T6 aluminum recovery tool. 

2.3.8 Examining MMCP Biocompatibility 

A preliminary assessment of MMCP biocompatibility was performed using E. 

coli as a model microbe and MMCP-10 (selected because it contained the highest Ni 

content and thus posed the greatest potential risk of inhibition). Dowex Optipore L-493, a 

resin adsorbent previously reported as biocompatible with E. coli, (D. R. Nielsen & 
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Prather, 2009) was also included as an additional control. While in absence of either 

adsorbent a final cell density of 53 g/L was reached, a similar final density (52 g/L) was 

also achieved in the presence of 1 g of MMCP-10. This mark was comparable to yet 

slightly better than with L-493 (50 g/L). From this cursory demonstration of 

biocompatibility it is expected that MMCPs will furthermore perform as effective 

adsorbents for in situ butanol recovery, as part of future investigations by our group. 

2.4.0 Conclusion 

In this work, we demonstrated the efficacy of a series of novel MMCPs as 

magnetically retrievable adsorbents for butanol recovery. The adsorption capacity and 

kinetics of the MMCPs are competitive with conventional butanol adsorbents studied to 

date, but the embedded Ni nanoparticles in the adsorbents enable facile separation from 

aqueous slurries via magnetic field application. Using an E. coli model, initial studies 

suggest that MMCPs further demonstrate high inherent biocompatible. By enabling key 

limitations associated with current adsorption-based designs to be effectively 

circumvented, MMCPs are promising candidate adsorbents for in situ butanol recovery 

and the development of semi-continuous butanol fermentation processes. 
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profile for all performed cycles. Figure 2.12 reveals the construction of the magnetic 

retrieval tool used to recover the MMCPs. Aluminum was chosen for its low remanence, 

meaning that the aluminum does not become magnetized like steel does, as explained in 

section 2.3.7.  

 

Figure 2.12. Magnetic Retrieval Tool. The magnetic retrieval tool used in this study was 

fabricated using aluminum hardware and most notably included a stack of 4 neodymium 

ring magnets (0.75”/0.375” outer/inner diameter) covered by aluminum tape. 

 It is important to have certain physical parameters characterized by which to 

compare adsorbents. Adsorption is very highly dependent on surface area, but the other 

factors such as the mean pore diameter can impact kinetics. For a more complete 

comparison, Table 2.3 presents additional physical properties of MMCPs from earlier 

generations to the present generation of varied Ni composition and compares them to 

commercial carbon.  
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Table 2.3  

Physical Properties of Previously Investigated Carbon Adsorbents and MMCP 

Adsorbents Examined in This Study. 

Adsorbent 

Surface Area 

(m
2
/g) 

Mean Pore 

Diameter (nm) 

Butanol Adsorption Capacity 

(g/g) at 12.5 g/L  Reference 

AC F-400 1,090 - 0.26 [38] 

AC F-600 710 - 0.15 [38] 

FDU-15-800 538 5 0.12 [36] 

FDU-16-800 671 5.8 0.15 [36] 

CS-68-800 1287 8.2 0.25 [36] 

CS-81-800 1307 7.2 0.28 [36] 

MMCP-4 2205 ± 93 6.6 0.23 ± 0.02 This study 

MMCP-6 1405 ± 73  7.2 0.22 ± 0.02 This study 

MMCP-10 1805 ± 98  5.6 0.26 ± 0.01 This study 

 

 Adsorption is a key performance metric for adsorption, but equally important for 

value-added products is desorption. This has been accomplished for ABE component 

recovery by thermal methods. The custom apparatus designed to facilitate thermal 

desorption is detailed in Figure 2.13. By heating the MMCPs under vacuum, the solvents 

are volatilized by order of boiling point following bulk phase water removal. The ABE 

components are then captured in the cold trap at higher concentrations. 
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Figure 2.13. Apparatus Used for Butanol Desorption and MMCP Regeneration. 

Following adsorption equilibration, the bottle containing the crudely dried MMCP 

sample was fitted with a chromatography cap through which nylon tubing was passed. 

Said tubing was connected to a solvent bottle filter which was then submerged into the 

aqueous slurry. A series of 3-way valves (C) were used to direct flow either through (A) a 

vacuum flask (for bulk aqueous retrieval), or (B) a glass cold trap (E) submerged in an 

acetone/dry ice mixture (for vapor condensation), both of which were connected to 

vacuum pump (D). Following removal of the bulk aqueous solution, crudely dried 

MMCP samples were heated in a water bath (F). 

 Another means of physical characterization is X-ray Diffraction (XRD), which 

provides information about crystallinity. Figure 2.14 reveals 2 peaks for crystallinity, 

which accounts for the mostly uniform carbon matrix and the disrupted carbon matrix 

loaded with Ni nanoclusters. Because the two carbon structures are distinct, there are 

only two corresponding structural peaks for the carbon. 
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Figure 2.14. XRD Profile of MMCP-10. 

 Structural details of adsorbents partially determine the recovery performance, 

however the adsorption data will conform to different equilibrium models depending on 

the most reasonable mechanism. This system conforms to physisorption (reversible 

surface attachment) rather than chemisorption (surface reaction). To verify this, 

additional equilibrium isotherm models were applied including dual site Langmuir. 

Figure 2.15 compares the dual-site Langmuir and Freundlich isotherms. While the red 

lines are seemingly a good fit, the dual-site Langmuir presumes surface features for the 

adsorbent which are not consistent with the measured adsorption performance. The dual-

site model assumes that the adsorbent has distinct surface sites with notably different 

adsorption energies and therefore loading capacities.  
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Figure 2.15. Additional Adsorption Model Fits. Comparing the Dual Site Langmuir (red 

line) and Freundlich (black line) fit for butanol adsorption onto A) MMCP-4, B) MMCP-

6 and C) MMCP-10. 

 Other environmental impacts on adsorption performance are important to consider 

in a well-rounded study. For this study, the effects of pH and temperature were examined 

and the results are represented in Figure 2.16. For the biologically relevant pH range of 4-

10, there is little effect on adsorption performance. Likewise in the narrow biologically 

relevant temperature range, there is no discernible effect on adsorption performance. 

Likely if the pH and temperature range were shifted farther outside the biologically 

relevant ranges there would be more prominent effects.  
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Figure 2.16. Other Isotherm Factors. Butanol adsorption by MMCP-10 as a function of 

A) pH: 4 (squares), 7 (triangles) and 10 (circles), and B) temperature: 25
o
C (squares), 

32
o
C (diamonds) and 37

o
C (circles). 

 Like desorption, an adsorbent’s separability from culture is an important design 

consideration when recovering a value-added product. Figure 2.17 compares the 

magnetic response of varied Ni composition within the MMCPs. The important to note 

that the total retrieved fraction for each composition is proportional to the Ni content. 

Each retrieval gathers more MMCP mass with a diminishing return such that the 5
th

 

retrieval is essentially complete recovery.  

 

Figure 2.17. Fractional Recovery of MMCP. Fraction of MMCPs retrieved versus the 

concentration remaining in suspension as determined for MMCP-4 (diamond), MMCP-6 

(square) and MMCP-10 (triangle) as obtained for a series of three sequential retrievals. 
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 The final, though important aspect of adsorbent performance is presented in 

Figure 2.18. When designing a recovery system based on adsorbents for value-added 

products, there will be a final stage where products are recovered and adsorbents are 

regenerated. Accordingly, it is important to measure the repeatability of use for the 

adsorbent. The MMCPs performed consistently for 5 regeneration/reuse cycles. 

 

Figure 2.18. Multiple Adsorption/Desorption Cycles. Characterizing the repeated reuse 

and performance of regenerated MMCP-4 over the course of 5 consecutive adsorption-

desorption cycles. Compared are A) the cumulative evolution and collection of butanol 

and B) the instantaneous concentration of butanol in the collected condensate (i.e., per 

each 30-60 min treatment duration) obtained throughout a series of 5 sequential 

adsorption-desorption cycles. The legend is as follows: cycle 1 (circles), cycle 2 

(triangle), cycle 3 (inverted triangle), cycle 4 (diamonds) and cycle 5 (squares). 
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CHAPTER 3 

3.0 LIGNOCELLULOSIC BIOMASS DERIVED ETHANOL PRODUCTION FROM 

PRETREATMENT BY MAGNETICALLY RESPONSIVE MESOPOROUS CARBON 

ADSORBENTS  

Abstract 

The selective capture and recovery of furfural from model biomass hydrolysate 

mixtures was investigated using magnetic mesoporous/microporous carbon powders 

(MMPCs), with the objective of detoxifying the feedstock and facilitating ethanol 

fermentation by Escherichia coli. The mesoporous structure and high surface area of 

these carbons promotes rapid loading of furfural (~5.1g/L-min) resulting in high 

selectivity, while magnetic functionalization of carbon adsorbents promotes their facile 

separation from media during pretreatment up to 91% within 15 minutes. E. coli ethanol 

production compared well between furfural-free (up to 64.2 g/L) and pretreated model 

hydrolysates (up to 62.8 g/L). MMCPs are retrievable by magnetic column up to 91% by 

mass. Desorption of furfural from magnetic mesoporous carbons reached ~57% by 

thermal means, facilitating their re-use. Moreover, this recovery of furfural converts an 

otherwise waste stream toxin to a valuable byproduct to the fermentation of ethanol from 

lignocellulose-derived feedstock. This approach with novel magnetic mesoporous 

carbons shows great promise in efficient treatment of real hydrolysates without stripping 

the high value fermentable sugars. 

 

Keywords: furfural; in-situ recovery; mesoporous carbon; magnetic; bioproduct 
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3.1 Introduction 

Renewable bioproducts such as ethanol can be produced from numerous biomass 

feedstocks (Gaykawad et al., 2013; Pfromm et al., 2010), which also determines the bulk 

of the production cost. (Pfromm et al., 2010) Corn-derived feedstock is composed of 

starches readily hydrolyzed to glucose with no toxic byproducts compared to 

lignocellulose-derived biomass but is more expensive. (Pfromm et al., 2010) 

Lignocelluolsic biomass has been well evaluated as the most cost effective bioproduct 

feedstock. (Garcia et al., 2011; Gaykawad et al., 2013; J. Li et al., 2011; Congcong Lu et 

al., 2013; Machado et al., 2016) Hydrolysis of lignocellulosic biomass forms cytotoxic 

feedstocks requiring extensive pretreatment before fermentation to valuable bioproducts, 

further adding to process costs and limiting the economic feasibility of biofuels.(Balan, 

2014; Dalecka et al., 2015; P. Kumar, Barrett, Delwiche, & Stroeve, 2009; J. Li et al., 

2011) Among the most cytotoxic constituents of lignocellusolic hydrolysate, furfural 

content varies widely depending on the hydrolytic protocol used (Jonsson & Martin, 

2016), e.g.: 0.5g/L (Parajo et al., 1996), 1.75 g/L (Y. Zhang et al., 2015), 0.22 g/L 

(Jonsson & Martin, 2016), and 3.8 g/L (Larsson et al., 1999). Furfural is toxic at or below 

2 g/L to E. coli. Other inhibitors are also formed from hydrolysis such as acetic acid, 

phenolics and other furans.(K. Zhang, Agrawal, Harper, Chen, & Koros, 2011) The focus 

of this work however is the capture and recovery of furfural from the model hydrolysates 

as it is often the most highly concentrated cytotoxin.  

It is known that separation of low concentration compounds relative to 

commercial production (e.g. bioalcohol at more than 100g/L) is more energy intensive 

and costly. (N. Qureshi, Hughes, et al., 2005a) Furfural at no more than 4 g/L is 
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considered a low concentration separation. Furfural has been removed from model and 

real hydrolysates by adsorption onto activated carbon (S. C. Lee & Park, 2016; Sulaymon 

& Ahmed, 2008; K. Zhang et al., 2011), charcoal (Parajo et al., 1996), XAD-4 resins 

(Weil et al., 2002), and D141 resins (Jia et al., 2015). Other furfural separation techniques 

such as distillation are not suitable due to furfural’s high boiling point. (Brownlee & 

Miner, 1948) Pervaporation of furfural by polydimethyl siloxane (Hu et al., 2015) and 

polyurethaneurea (Ghosh, Pradhan, & Adhikari, 2007, 2010) has also been evaluated. 

With furfural flux up to 3.9 g/m
2
-h pervaporation can separate 10g/L feed, concentrating 

furfural up to ~54 wt%.(Ghosh et al., 2007) While greater flux and selectivity are 

possible by pervaporation, furfural caused membrane swelling and decreased separation 

factor. As furfural is not the only phenolic compound present in a real hydrolysate, it is 

likely the separation factor would be greatly reduced compared to furfural/water feed 

from industrial waste streams. By contrast, typical adsorbents such as activated carbon 

and polymeric resins have a lesser effective separation factor (up to 0.5 g/g at 50C by 

XAD-7 resins (Weil et al., 2002), ~0.37 g/g for activated carbon (Sulaymon & Ahmed, 

2008)) and are not readily separable from aqueous slurries without the use of gravity 

settlement, filtration, or isolation in a packed column.(Sulaymon & Ahmed, 2008; K. 

Zhang et al., 2011) This is particularly challenging for bacterial cultures because of the 

toxicity of activated carbons, specifically that of carbon nanoparticles.(Karnib, Holail, 

Olama, Kabbani, & Hines, 2013)  

To address these limitations, magnetically-responsive mesoporous carbons have 

been previously fabricated and evaluated for butanol recovery (a similarly oleophilic 

compound) in Chapter 2. The promising butanol recovery performance suggests furfural 
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loading should be similarly efficient with rapid kinetics.  Importantly, furfural selectivity 

is desired for pretreatment such that the core saccharides are not stripped, decreasing the 

economic value of the feedstock. Meanwhile, although not typically removed from the 

adsorbent following its separation, if it could be efficiently recovered, furfural could itself 

serve as a value-added biochemical co-product, with uses as a precursor to resins, 

adhesives, solvents and flavoring agents (note: there is presently no known synthetic 

route for furfural production and it is exclusively produced from natural pentoses such as 

xylose).(Machado et al., 2016) It is therefore desirable to not only separate furfural 

during pretreatment, but to isolate it in higher concentration as a secondary product.. 

Accordingly, this work seeks to evaluate: A) the sorption performance of furfural, B) 

furfural pretreatment viability from model hydrolysates, C) ethanol production from 

pretreated vs untreated model hydrolysates, D) furfural recovery potential by thermal 

desorption. 

3.2 Materials and Methods 

3.2.1 MMCP Characterization 

Detailed characterization of the MMCPs has been previously reported in Chapter 

2. Virgin MMCP were mounted on carbon tape adhered to pin stubs and either gold or 

carbon sputter coated using a Technics Hummer V sputter coater (Anatech, Union City, 

CA). The sputter coating chamber was evacuated by vacuum and filled with argon gas 

with the flow rate maintained such that the chamber pressure was maintained at 100-125 

mTorr. Substrates were sputter coated for 5 minutes maintaining approximately a 7-10 
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microamp current. Imaging was performed on a JEOL JSM6300 Scanning Electron 

Microscope (Peabody, MA) at 15 kV. 

3.2.2 Adsorption Isotherm Studies of Furfural 

Adsorption performance was determined using 22 mL glass scintillation vials 

loaded with 100 mg MMCP suspended in 2 mL aqueous solution. Whereas preliminary 

isotherms were constructed for binary solutions (i.e. furfural/water) coadsorption 

isotherms with furfural and simple sugars were also constructed. Initial furfural 

concentrations ranged from 0.1-10 g/L. The exact concentration of furfural in a 

lignocellulosic hydrolysate is both batch and process condition dependent.(Machado et 

al., 2016) Model hydrolysate was composed of glucose and xylose in 50/50 ratio ranging 

from 2-50 g/L with furfural concentrations ranging from 0.4-10 g/L. 

Following overnight equilibration at 37 °C overnight while mixing on an orbital 

shaker, 1 mL aliquots were drawn for analysis by high-pressure liquid chromatography 

(HPLC; Agilent 1100 series; Santa Clara, CA) equipped with both diode array and 

refractive index detectors. Separation of binary solutions were separated on an Aminex 

HPX-87H anion exchange column External standards were developed for furfural, 

glucose, xylose as calibrations. Equilibrium adsorption capacity (Qi) of each analyte i 

was calculated from the following mass balance:  

𝑄𝑖 =
(𝐶𝑖,0−𝐶𝑖)𝑉

𝑚
           (3.1) 
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where Ci,0 and Ci are the initial and equilibrium aqueous concentrations of analyte i, V is 

volume, and m is mass of MMCP.  Adsorption data were fit by the Freundlich model as 

follows: 

𝑄𝑖 = 𝑘𝑓,𝑖𝐶𝑖
1 𝑛𝑖⁄

         (3.2) 

where Qi is the equilibrium adsorption capacity of species i, kf,i and ni are the Freundlich 

constant and exponent, respectively. 

3.2.3 Closed Loop Magnetic Retrieval of MMCPs  

Retrieval of MMCPs was accomplished by column retrieval (Figure 3.1). Two 

identical columns were prepared. A peristaltic pump was used to circulate the aqueous 

solutions through the magnetic column. Solutions were drained and the magnetic core 

was removed from the inner tube. MMCPs were rinsed off the inner tube with deionized 

water for subsequent regeneration. For 300 mL of aqueous volume, approximately 9 g of 

MMCP was suspended and magnetically stirred in a 500 mL vessel. When pretreating 

model hydrolysates, the MMCPs were added to the media from an autoclaved slurry and 

stirred to equilibration for 15 minutes. The slurry was then pumped through silicone 

tubing and a retrieval column both sterilized by autoclave. Media was drained into the 

reactor vessel and the column was recovered as described above.  
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Figure 3.1 Closed Loop Magnetic Retrieval. Column with carbon slurry (top), 

magnetic capture (middle), carbon flush with DI water (bottom).  

3.2.4 Desorption of Adsorbed Furfural from MMCPs 

Recovery of adsorbed furfural was accomplished by comparing two recovery 

modes. For each study, approximately 4 g of MMCPs were suspended in approximately 

200 mL of 10 g/L furfural and equilibrated for 3 hours at 37°C. The first recovery mode 

was solvent washes with DMSO, chosen for the high solubility of furfural compared to 

other solvents.(K. Zhang et al., 2011) Each DMSO wash was diluted by a factor of 10 

before 1 mL aliquot was drawn for analysis by HPLC as described above. For the second 

mode, thermal desorption of furfural was investigated. Supernatant was extracted by a 

stainless solvent bottle filter and the partially dried MMCPs were heated to 95°C in a 

water bath under vacuum (77 kPa below ambient). A cold trap with an acetone/dry ice 

mixture collected the evolved enriched furfural/water mixture. Within 30-60 minute 

intervals, the cold trap was occluded with solidified product, and the cold trap was 
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thawed. 1 mL aliquots were analyzed by HPLC using methods described above. For both 

modes of recovery, a total of 5 ‘cycles’ were repeated.   

3.2.5 Assessing MMCP Biocompatibility 

Seed cultures of E. coli LY180 (L.P. Yomano et al., 1998; H. Zheng, Wang, 

Yomano, Shanmugam, & Ingram, 2012) were prepared by inoculation in 5 mL of Luri-

Bertani broth (LB; Thermo Fisher Scientific, Waltham, MA), incubated overnight in a 

shaking incubator at 32°C. MMCPs were added to the culture tubes at the following 

concentrations: 0, 4, 8, 20, 40, 80, 120, and 160 g/L. From these culture tubes, 100 µL 

aliquots were added to 900 µL DI water and cell density was determined by optical 

density (OD600) at 600 nm using a DU800 spectrophotometer (Beckman Coulter, Brea, 

CA). Biocompatibility was further studied by growing LY180 with 30 g/L MMCPs in 

culture tubes. MMCPs were drawn up by pipette and deposited on carbon tape mounted 

to pin stubs for SEM imaging. After air drying, the SEM preparation was followed as 

described above. Sputter coated samples were also imaged at 15 kV. 

3.2.6 Fermentation of Pretreated Model Hydrolysates 

Seed cultures of E. coli LY180 were grown in culture tubes as described above. 

Seeds were added to a 250 mL media bottle with a 50 mL working volume at 2% 

inoculum by volume with the following media composition: ammonium phosphate 

(dibasic 26.3 g/L, monobasic 8.7 g/L) 5mL, 500 g/L Xylose 12 mL, 200 g/L Glucose 7 

mL, 1M MOPS 5 mL, trace metals 0.075 mL, 1M Mg 0.075 mL, 1M KCl 0.05 mL, 

Betaine 0.05 mL and the balance sterile DI water. Media components were filter 

sterilized rather than autoclaved. This high total sugar content was consistent with that of 
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other studies with LY strains of ~140 g/L.(L.P. Yomano et al., 1998) For cultures with 

MMCP pretreatment, furfural was added to the media to raise the aqueous concentration 

to 3g/L, above the toxicity threshold for E. coli. MMCPs were added to the media at ~50 

g/L and equilibrated for 1 hour before being passed through the magnetic retrieval 

column. With the majority of the MMCPs captured magnetically, the finer MMCPs were 

separated by sterile vacuum filtration. This served to 1) sterilize the pretreated media, 2) 

enable comparison of growth by OD600 without optical interference from the MMCPs. 

Media bottles were topped with septa caps and custom ¼” thick butyl rubber discs to 

allow syringe sampling and maintain anaerobic conditions. Cultures were grown at 37°C 

in a shaking incubator at 160 rpm with samples taken every 24 hours up to 72 hours. 

Samples were centrifuged before analysis of the 1 mL aliquots by HPLC as described 

above.  

3.3.0 Results and Discussion 

3.3.1 Aqueous Furfural Adsorption from Model Solutions  

It well known that ‘oily’ or ‘greasy’ contaminants are the most difficult to isolate 

from water (S. Kang & Choi, 2005; Pintor, Vilar, Botelho, & Boaventura, 2016) and 

furfural is an oleophilic substance with low water solubility. Adsorption behavior for 

furfural pretreatment was assessed first by adding MMCPs to cell-free, binary 

furfural/water mixtures. As seen in Figure 3.3, the specific loading of furfural on MMCP 

exceeded 0.42 g/g when equilibrated with a solution containing 2.8 g/L residual furfural. 

Below the 1 g/L where increasingly robust cell growth occurs, loading exceeds 0.18 g/g 

at 0.84 g/L residual furfural. This adsorption performance compares well to commercial 

granular activated carbon Norit-1240, whose maximal adsorption capacity was reported 
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to reach as high as 0.28 g/g at ~4g/L residual furfural.(K. Zhang et al., 2011) XAD-4 

resins have reported adsorption as high as 0.09 g/g at ~2.1 g/L residual furfural.(Weil et 

al., 2002) As a more complete comparison, Figure 3.2 further compares adsorption 

isotherms of MMCP with that of Norit-1240, as reported by Zhang et al.(K. Zhang et al., 

2011) As can be seen in Figure 3.2, at concentration below 1 g/L the adsorption 

performance of MMCPs is directly comparable to that of Norit 1240.  Some of the 

difference may be due to MMCPs surface area of ~1800 m
2
/g approximately 1.5-fold that 

of Norit-1240 (reported as 1175 m2/g).(Yapsaklı et al., 2009) 

 

Figure 3.2 Equilibrium Isotherms. Furfural adsorption from binary furfural/water 

(triangles), furfural adsorption from model hydrolysate (diamonds), furfural/water 

adsorption on Norit 1240 (squares) and furfural/ethanol/water adsorption Norit 1240 

(circles) (K. Zhang et al., 2011),  
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Meanwhile, the furfural adsorption results for MMCP were furthermore fit to 

several common isotherm models, in this case including the Langmuir, Dual-Site 

Langmuir, and Freundlich models. Langmuir was unable to fit the data reasonably well 

with a residual of ~0.65. The Dual-Site Langmuir was also a poor model for the 

adsorption behavior with a residual of ~0.72. The residual for the Freundlich model by 

contrast was ~0.997. The Freundlich fit parameters are presented in Table 3.1 along with 

previous results for butanol from Chapter 2 for comparison of a similarly hydrophobic 

analog. The Freundlich constant pertaining to loading is greater for furfural compared to 

butanol. This is consistent with the approximately 2 fold greater loading capacity for 

furfural over butanol at comparable residual concentrations. Given the log Kow ~0.47 

compared to butanol ~0.88 the adsorption behavior onto a given substrate should be 

comparable.(D. R. Nielsen et al., 2010) The predominant adsorption mechanism is 

physisorption rather than chemisorption, supported by the estimated Gibbs energy of 

adsorption presented in Table 3.1. The small negative values are known to be consistent 

with the reversible attachment of physisorption (D. R. Nielsen et al., 2010), also 

presented in Chapter 2. It is also worthy of note that ethanol does adsorb but to a far 

lesser degree as seen in Table 3.1. 

Table 3.1  

Freundlich Isotherm Model Fit Parameters. 

Compound kf (g/g) n ΔGads (kJ/mol) 

Butanol 0.085 2.20 -5.38 

Ethanol 0.006 1.19 -2.92 

Furfural 0.204 1.40 -3.45 
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3.3.2 Characterizing Adsorption Kinetics of Furfural from Binary Solutions 

Beyond initial adsorption capacity, the rate of adsorption is key performance 

metric. Whereas high adsorption loading is preferable for in situ adsorption, pretreatment 

benefits from rapid sorption kinetics. Rapid adsorption during pretreatment reduces the 

contact time for potential adsorption of valuable sugars onto the adsorbent.(S. C. Lee & 

Park, 2016) Equilibrium loading of furfural was reached within approximately 8 minutes 

compared to ~30 minutes for butanol presented in Chpater 2. Figure 3.3C illustrates the 

rapid equilibration between furfural and MMCPs compared to activated carbon Norit-

1240. (K. Zhang et al., 2011) While both reach full equilibration at approximately 8-10 

minutes, MMCPs have a greater than 80% loading fraction very rapidly at ~1 minute. 

Some of this performance may be due to the MMCPs being milled by hand using mortar 

and pestle to an average 4.8 um diameter with polydispersity index of 0.8 compared to 

the large granules of Norit-1240.(K. Zhang et al., 2011) The average MMCP pore 

diameters of 5.4 nm as discussed in Chapter 2, is greater than the ~42% of pores <2 nm 

with ~31% >50 nm of Norit 1240. The regularity of pore structure in MMCPs promotes 

rapid adsorption of furfural as it did for butanol in Chapter 2.  
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Figure 3.3 Equilibrium Kinetics from Binary Solutions. Comparison of furfural 

adsorption kinetics from this study (red squares) and Norit 1240 carbon (black 

squares),(K. Zhang et al., 2011)  

3.3.3 Competitive Adsorption of Furfural  

Adsorbents are known to have somewhat reduced loading capacity of a target 

analyte from complex media backgrounds compared to binary solutions because of 

competitive adsorption. (Staggs et al., 2017; Wiehn et al., 2014) For this study, model 

solutions included 60 g/L glucose and 25 g/L xylose with 3 g/L furfural to evaluate sugar 

effects on furfural adsorption.  An example composition of a real hydrolysate which we 

intend to utilize in a follow up study following successful implementation of MMCP 

pretreatment is given as follows (all values in g/L): 11.2 cellobiose, 5.4 glucose, 58.8 

xylose, 5.9 galactose, 7.4 arabinose, 0.7 mannose, 2.5 hydroxymethyl furan (HMF), 3.6 
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furfural. The competitive adsorption results of this can be seen in Figure 3.4 where 

residual glucose and xylose mass change by 1.8% and 3%, respectively. With glucose, 

xylose and ethanol present, there is a reduced loading capacity for furfural as seen in 

Figure 3.2 by an average of 32% across the range of the isotherm. Ethanol also reduced 

the loading capacity of Norit 1240 by approximately 24% across the range of the 

isotherm because of competitive adsorption. (K. Zhang et al., 2011)  

 

Figure 3.4 Equilibrium Kinetics from Complex Solutions. Equilibrium mass of 

residual aqueous furfural (triangles), Glucose (circles) and xylose (squares) mass vs time. 

3.3.4 MMCP Magnetic Retrieval 
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In conventional applications, activated carbon adsorbents must be removed by 

means of filtration, with its requisite low vacuum and surface area dependence.(Balan, 

2014; Dalecka et al., 2015; P. Kumar et al., 2009) Commonly activated carbons are 

isolated in a packed adsorption column, rather than added to aqueous slurry.(S. C. Lee & 

Park, 2016; Sulaymon & Ahmed, 2008; K. Zhang et al., 2011) We previously 

demonstrated the magnetic retrieval of MMCPs for retrieval from aqueous slurries, 

achieving up to 89% retrieval using a submersible magnetic device as discussed in 

Chapter 2. Compared to the previous magnetic retrieval mechanics presented in Chapter 

2 using a simplified magnetic core, column retrieval is more readily scalable to larger 

process volumes. Efficiency of MMCP retrieval by column was evaluated by circulating 

an aqueous slurry through the column depicted in Figure 3.5. The same mass and volume 

as the cultures were used to study retrieval efficiency. The retrieval column was designed 

such that the MMCPs could be captured in a concentric ring as depicted in Figure 3.5A 

by modeling the magnetic flux in a cross section of the column shown in Figure 3.5B. 

According to the model, the magnetic field strength within the observed MMCP 

collection boundary is between 0.1-0.2 Tesla. After 15 minutes of circulation, the column 

was found to be equilibrated with the slurry as indicated by solution leaving the column 

changing visibly from dark slurry to a less turbid, translucent solution. Inside the column, 

the stages of magnetic retrieval were captured from the empty column (Figure 3.5C), to 

15 minutes after circulation with the magnetic clamp in place (Figure 3.5D) and after 

release of the magnetic clamp (Figure 3.5E). The mass of air dried MMCPs retained in 

the column represented ~91% retrieval by mass; similar to the ~89% retrieval we 

obtained using the previously-developed, submersible magnetic device in Chapter 2.  
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Figure 3.5 Magnetic Retrieval Column. A) Cross section of magnetic retrieval 

column, B) Finite element analysis of magnetic flux within the column. C) Column 

before carbon slurry. D) Column after magnetic capture. E) Column immediately 

following magnetic release. 

The collection boundary modeled in Figure 3.5B corresponds to a retrieval 

surface area requirement of 0.0026 m
2
/g of MMCP. This collection boundary for the 

MMCPs is visible in (Figure 3.5D). Based on the MMCP collection results, the limiting 

factor for MMCP retrieval is the strength of the magnetic field at a given distance from 

the column’s inner wall. A longer column of the same design or one of greater diameter 

would not have an appreciably greater MMCP retrieval. The surface area required for 

retrieval is determined by the thickness of the film which is determined by the magnetic 

flux. Stronger magnetic force from stronger or thicker magnets could reduce the required 
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area for retrieval. Importantly, other geometries for magnetic retrieval were modeled 

beginning with the magnetic retrieval tool from Chapter 2. This column design with its 

removable magnetic clamp was determined to be the most efficient, given the type and 

polarization direction of the magnets. Rotation of 90 degrees in the direction of 

polarization would cease magnetic retrieval within the column, and is thus an important 

design consideration for a magnetic retrieval system. 

3.3.5 Desorption and Recovery of Furfural from MMCPs for Regeneration  

With the demonstrated adsorption and removal of furfural from aqueous 

solutions, the subsequent step for process viability was to evaluate furfural desorption 

and recovery as a potential value-added co-product. A first principles approach to product 

recovery from adsorbents often relies on the solubility of the adsorbed species in a readily 

available solvent such as short chain alcohols, or apolar alkanes. (Eom et al., 2013) Of 

several solvents studied for furfural recovery from activated carbon by Zhang et al 

DMSO was one of the most efficient, though their study ultimately used 7.5 wt% ethanol, 

resulting in a 42% recovery by mass compared to water at only 5% desorption.(K. Zhang 

et al., 2011) Accordingly, DMSO was selected as the solvent for furfural recovery for this 

study for comparison to thermal recovery. DMSO was equilibrated with the MMCPs in 

several fractions. The first DMSO/furfural fraction was visibly tinted an amber color 

indicating solubilized furfural and recovered 32% of the adsorbed furfural as seen in 

Figure 3.6A. Subsequent DMSO fractions were progressively less turbid and nearly clear 

after the 5
th

 fraction, where a meager 1.4% of furfural was recovered. In total, 66% of the 

adsorbed furfural was recovered by DMSO.  
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Figure 3.6 Solvent vs Thermal Recovery of Furfural. A) Mass fraction of furfural 

recovered by DMSO. B) Mass fraction of furfural recovered by thermal desorption. 

Other hydrophobic compounds such as butanol have previously been recovered 

from MMCPs up to 99.7%. Butanol has also been recovered from other adsorbents such 

as resins by thermal treatment. (Eom et al., 2013; Wiehn et al., 2014) Some 

implementations of thermal desorption take the form of steam or gas stripping 

(Nongonierma et al., 2006; N. Qureshi, Hughes, et al., 2005a), while others use heat and 

vacuum.(D. R. Nielsen & Prather, 2009; Wiehn et al., 2014) For this study a fresh batch 

of MMCPs were equilibrated with ~3 g/L furfural for ~30 minutes, at which point 

equilibrium has been achieved according to kinetic results. Adsorbed furfural was 

recovered by heating to 95 
°
C under vacuum while evolved vapors were captured in a 

cold trap acetone and dry ice as in Chapter 2 (apparatus depicted in Figure 2.13). Another 

20 mL aliquot of ~3 g/L furfural was added to the same powder, which was then allowed 

to equilibrate before thermal regeneration was again performed. This process was 

repeated for a total of 4 loading-regeneration cycles to demonstrate both reproducibility 

as well as the reuse potential of the MMCPs. The cycle results are presented in Figure 

3.6B where the thermal regeneration cycle numbers represent two fractions from 0.5 and 
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1 hour thermal desorption (e.g. 1 and 1.5 are the first cycle samples from 0.5 and 1 hour, 

2 and 2.5 are the 0.5 and 1 hour samples from the second cycle, etc.). Each time, the 

specific loading at equilibrium was approximately ~0.05-0.06 g/g MMCP, indicating that 

adsorption behavior was not deteriorating or otherwise changing with repeated use. 

Thermal desorption in this study followed a similar pattern to solvent recovery, reaching 

~31% and ~55%, recovery at 30 and 60 minutes, respectively. Thermal desorption results 

are displayed in Figure 3.5B wherein the accumulation of furfural reached 55 wt%. The 

recovered fraction consisted of a 3-6 g/L furfural, an up to 2-fold enrichment over the 

initial aqueous concentration and a ~49-fold enrichment over equilibrium concentration. 

This corresponds to an approximate release rate of ~4.4g/L-h. Overall, 55% of adsorbed 

furfural recovery from toxic feedstocks was observed, which does not match the 66% 

recovered by solvent extraction by DMSO. This result compares less favorably however, 

to the 83% recovery of butanol from resins by thermal means.(Wiehn et al., 2014) The 

repeatable recovery of furfural demonstrates successfully the simultaneous detoxification 

of a low-cost feedstock and its enriched recovery as a viable value-added byproduct.  

3.3.6 Examining MMCP and Furfural Growth Inhibition 

In Chapter 2, biocompatibility of MMCPs was established by growth of E. coli 

BW25113, a wild type strain, in LB media. Biocompatibility was studied here by 

growing wild type E. coli LY180 in the presence of MMCPs ranging from 4 to 160 g/L in 

culture tubes with LB media. At low concentrations (below 10 g/L) there is little effect on 

LY180 growth, as seen in Figure 3.6A. At greater than 10 g/L MMCPs, the cell density 

was reduced by ~50% while no growth is observed above 150 g/L. Some of the reduced 

growth is likely due to the adsorption of one or more key nutrients. Moreover, it is known 
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that activated carbon nanoparticles have their own toxicity against E. coli and even more 

resilient microorganisms such as Pseudomonas aeruginosa.(Karnib et al., 2013) 

Lignocellulose-derived feedstocks require nano- or ultrafiltration prior to use as culture 

media to remove particulate solids.(Balan, 2014; Dalecka et al., 2015; P. Kumar et al., 

2009) The complete removal of the ~9% non-magnetically separable MMCPs by vacuum 

filtration enabled direct comparison of culture growth by optical density measurements at 

600 nm as shown in Figure 3.7B where LY180 produces more cell mass compared to Z. 

mobilis A3.(K. Zhang et al., 2011) Also the growth inhibition of LY180 by furfural as 

seen in Figure 3.6C. Below 1 g/L aqueous furfural, the growth is slowed by up to ~50% 

while there is greatly reduced growth up to 75% at ~2 g/L and no growth at or above 3 

g/L. The ethanol production is halted at 3g/L furfural compared to furfural free media 

fermented by Z. mobilis A3 as seen in Figure 3.6D.(K. Zhang et al., 2011)  
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Figure 3.7 Biocompatibility and Toxicity. A) LY180 growth vs MMCP concentration 

(squares) at 24 hours in culture tubes. B) LY180 growth in model media (squares), 

growth of Zymomonas mobilis A3 in model media with (circles) and without (triangles) 2 

g/L furfural and growth in model media (K. Zhang et al., 2011). C) LY180 growth vs 

furfural concentration at 24 hours in culture tubes. D) Ethanol production from model 

media with (circles) and without furfural (squares) by Zhang et al. (K. Zhang et al., 2011) 

3.3.7 Ethanol Fermentation from Pretreated Media  

 From seed cultures in LB media, E. coli LY180 was grown in pretreated media 

and model lignocellulosic hydrolysate without furfural. Initial furfural concentration was 

3 g/L which was reduced to 0.88 g/L following pretreatment using MMCPs and the 

above described magnetic column retrieval apparatus. Growth observed for model 
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hydrolysate without furfural was essentially no more robust than that observed for 

pretreated model hydrolysate as seen in Figure 3.8A. Glucose and xylose consumption 

and ethanol production were approximately complete by 24 hours. Total sugar utilization 

was 82% for the pretreated fermentations and 83% for the control. The ethanol titer rose 

to a high of 64.2 g/L for the control fermentations while the pretreated group achieved 

62.8 g/L, both achieving approximately 95% yield on sugar. This was calculated from the 

theoretical yield of ethanol on sugars (glucose and xylose) at approximately 0.51g/g, 

which has given other LY strains approximately 90% yield or greater.(L.P. Yomano et 

al., 1998) By comparison to other ethanologenic strains of E. coli, the highest ethanol 

titer reported to the author’s knowledge was 63.8 g/L by LY02, with most strains 

producing just over 60 g/L.(L.P. Yomano et al., 1998) The ethanol titers achieved here 

are approximately ~10-fold greater than that of Z. mobilis A3 from pretreated model 

hydrolysate by Norit 1240 activated carbon. (K. Zhang et al., 2011) Further, this co-

utilization of xylose and glucose is one of the greatest improvements from the KO11 

strain to the LY168 strain (L. P. Yomano, York, Shanmugam, & Ingram, 2009) which 

was further engineered to produce the LY180 strain. (Jarboe et al., 2010) 
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Figure 3.8 Fermentation Results. Control titers (green) and furfural pretreated media 

titers (orange) for ethanol (squares), xylose (circles) and glucose (triangles). Error bars 

represent one standard deviation. 
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3.3.8 MMCP Characterization  

Detailed physical characterization of the MMCPs has been reported in Chapter 2. 

The emphasis of characterization for this study was scanning electron microscopy. Figure 

3.2 shows both virgin MMCPs and MMCPs cultured with E. coli LY180 in LB media for 

24 hours. Comparing the virgin MMCP column (left) and the fouled MMCP column 

(right) in Figure 3.2, it seems that there is a ‘blanket’ of extracellular polymeric substance 

(EPS) formed by LY180. This is also the case for BW25113, a wild-type strain (results 

not shown). A ‘conditioning layer’ is formed from a combination of EPS components, the 

surface charges of both cell and substrate, and fluid shear, all of which are known to 

facilitate cellular attachment and acts as a diffusion barrier to toxins, nutrients and value-

added bioproducts (Bojsen, Andersen, & Regenberg, 2012; N. Qureshi, Annous, Ezeji, 

Karcher, & Maddox, 2005). The LY180 cells studied here do not appear to attach to the 

virgin carbon surface, perhaps owing to the MMCP mesoporosity. Certain fouling factors 

have been well investigated including strain of microorganism, substrate material, 

substrate roughness, finding that increasing roughness and hydrophobicity promotes 

fouling (Ben Chaabane et al., 2006; Ciston, Lueptow, & Gray, 2008; Diaz, Schilardi, 

Salvarezza, & Fernandez Lorenzo de Mele, 2011; Dohnalkova et al., 2011; B. Li & 

Logan, 2004; Pratt, 1998) MMCPs satisfy both the roughness and hydrophobic criteria 

for being fouling prone in the presence of bacterial culture. A more extensive cellular 

fouling study on separations materials is presented in Appendix A.  
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Figure 3.9 MMCP Characterization by SEM. A) Virgin MMCP at 1500x, B) MMCP 

cultured with E. coli LY180 after 24 hours at 1500 x, C) Virgin MMCP at 500x, D) 

MMCP cultured with E. coli LY180 after 24 hours at 500x.  

3.4.0 Conclusion 

In this work, a closed-loop process was demonstrated for simultaneous 

detoxification and secondary value-added product recovery. Compared to commercial 

carbons, the furfural adsorption capacity and kinetics of the MMCPs are competitive. Up 
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to 91% of the MMCP mass was recovered via magnetic column. Upon removal of the 

remaining fraction of MMCPs by final filtration of the model hydrolysate, E. coli ethanol 

production by LY180 was insignificantly greater that of the control cultures whereas 

untreaded model hydrolysate resulted in no growth. Fermentation of the model 

hydrolysates by E. coli LY180 resulted in up to 64.2 g/L ethanol and over 62 g/L from 

pretreated model hydrolysate. Moreover, MMCPs release furfural more readily than 

activated carbon however, with up to 66 wt% recovery of the adsorbed species. This 

converts the otherwise lost toxic growth inhibitor into a highly enriched value-added 

byproduct. MMCPs can thereby bypass toxicity bottlenecks and improve the overall 

value of the fermentation products from fermentation of lignocellulose-derived 

feedstocks without appreciable change in titer or sugar co-utilization. 
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CHAPTER 4 

4.0 SELECT VALUE-ADDED BIOPRODUCT SEPARATIONS BY 

MAGNETICALLY RESPONSIVE MESOPOROUS CARBON ADSORBENTS 

 

Abstract 

Here the selective capture and recovery of phenol, an aromatic useful in resin and 

polymer manufacturing, has been evaluated. It is easily produced from renewable 

feedstocks, with a theoretical toxicity limit of 1.75 g/L. Aqueous phenol titers however 

are often less than 420 mg/L from engineered strains which suggested a possible 

feedback inhibition rather than product toxicity. To evaluate this, in situ adsorption was 

applied to reduce the aqueous phenol content via Dowex Optipore L-493 resin and 

magnetically responsive mesoporous carbon. Phenol was desorbed up to 77% by mass 

via solvent recovery with tert-methyl butyl ether. Improvements to the media over 

previous study increased the aqueous phenol titers to over 500 mg/L, a higher titer than 

previously reported from batch culture of Escherichia coli. In-situ adsorption did not 

improve titers, eliminating the possibility of feedback inhibition. This work demonstrates 

the application of adsorbents to confirm a metabolic flux limitation restricting phenol 

titers. 

Keywords: phenol; in situ product recovery; adsorption; mesoporous carbon; magnetic 

powder recovery 

This work has been in preparation as a manuscript with the following authorship: Staggs, 

K., Thompson, B., Nielsen, D.R. 
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4.1.0 Introduction 

Phenol is a commonly employed commodity chemical of great importance for 

development of polymer resins, precursors such as bisphenol A, aniline, and even 

salicylic acid. (Fierro et al., 2008) Phenol is thereby used in many industrial applications 

and found as an environmental contaminant. (Fierro et al., 2008)  Whereas phenol is 

presently produced from petrochemical feedstocks, it can be renewably produced from 

biomass-derived feedstocks. (Thompson et al., 2016) Several researchers have engineered 

biocatalysts ranging from Pseudomonas putida (Wierckx, Ballerstedt, de Bont, & Wery, 

2005) to Escherichia coli.  (Kim, Park, Na, & Lee, 2014; Thompson et al., 2016) 

The typical batch fermentations of phenol by E. coli result in titers on the order of 

0.42 g/L or less.(Kim et al., 2014) Meanwhile, the typical reported phenol toxicity for E. 

coli is 1.75 g/L which is a very dilute concentration relative to bioalcohol 

production.(Bankar et al., 2012; Ben Chaabane et al., 2006; Ezeji et al., 2004a; Hashi et 

al., 2010; Ingram, 1990; J. Li et al., 2014; Thompson et al., 2016; Chuang Xue et al., 

2012) As phenol is made from a tyrosine intermediate, batch fermentations often leaves 

unconverted tyrosine proportional to the phenol titer.(Kim et al., 2014) This unconverted 

tyrosine is detrimental to the phenol titer and results in decreased phenol yield. Fed batch 

fermentation has resulted in phenol titers as high as 1.69 g/L with a glucose yield of 

0.0026 g/g (Wierckx et al., 2005), more than 100-fold less than the reported theoretical 

maximum yield of 0.38 g/g.(Kim et al., 2014) Certain pathway limitations are caused by 

phenol inhibition on tyrosine phenol lyase (TPL), which the pathways used for this study 

are not dependent on.(Thompson et al., 2016) While the phenol titers for the strains used 

here previously reached up to 0.377 g/L (Thompson et al., 2016), it was speculated that 
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some further feedback inhibition in the alternative pathways was causing the repression 

of phenol production concurrently with high tyrosine coaccumulation. In situ product 

recovery (ISPR) should improve the phenol titers from our engineered cultures. 

Solvent recovery of the phenol from producing cultures has been employed as an 

ISPR strategy from engineered P. putida (Wierckx et al., 2005) as has membrane 

perstraction (Heerema et al., 2011) and solvent-loaded resin adsorption. (van den Berg et 

al., 2008) Each recovery mode has its own strengths and weaknesses. (Staggs & Nielsen, 

2015) Solvent addition can cause its own solvent toxicity and induce phase separation, 

limiting its applications to batch and fed-batch fermentations. (Staggs & Nielsen, 2015; 

van den Berg et al., 2008) Membrane separations are effective, though prone to fouling 

by the microorganisms in the culture. (Staggs & Nielsen, 2015) Adsorbents are often 

biocompatible and less affected by fouling during in situ recovery but require column 

isolation or filtration. (Wiehn et al., 2014) To diagnose the existence of and potentially 

eliminate an internal repression improving phenol titers, in situ adsorption has been 

employed. Accordingly, phenol adsorption performance was evaluated for both 

magnetically responsive mesoporous carbons (MMCPs) and Dowex Optipore L-493 

resins. Moreover, phenol recovery from the adsorbed phase was optimized by solvent 

desorption. 

4.2.0 Materials and Methods 

4.2.1 Bacterial Strains and Culturing 

All seeds were cultured in Luria-Bertani (LB) broth at 32°C supplemented with 

100mg/L ampicillin, 35 mg/L kanamycin, and/or 34 mg/L chloramphenicol, as required. 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO). Phenol production 
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was evaluated for strains cultured at 32°C in phosphate limited M9M media composed of 

(concentrations in parentheses, all in g/L): MgSO4_7H2O (0.5), (NH4)2SO4 (4.0), 

MOPS (24.7), KH2PO4 (0.3), K2HPO4 (0.7), (NH4)6 Mo7O24_4H2O (3.7*10-4), 

H3BO3 (2.5*10-3), CoCl2_6H2O (7.14*10-4), CuSO4 (1.6*10-4), MnCl2_4H2O (1.6* 

10-3), ZnSO4_7H2O (2.88*10-4), FeCl3 (5.0*10-5), and glucose (20), supplemented 

with required antibiotics. Phenol was also cultured in richer M9Y media with the 

following composition: glycerol (10), glucose (2.5), Na2HPO4 (6), NaCl (0.5), KH2PO4 

(3), NH4Cl (1), yeast extract (1), MOPS (2). All cloning work was performed as 

previously described.(Thompson et al., 2016)  

Control flasks of both wild type BW25113 and engineered BW25113 were grown 

in phosphate limited media. Control flasks and those incorporating 0.5 g of the 

appropriate adsorbent were autoclaved with 20 mL of deionized (DI) water before adding 

media components. Cells were induced with IPTG when the OD600 reached 

approximately 1, at ~14 hours. Flasks were pH adjusted by K2HPO4 every 12-24 hours 

as required. Following the completion of the phenol fermentation at approximately 144 

hours for M9M and ~72 hours for M9Y, 1 mL samples were drawn for quantification by 

HPLC.  

4.2.2 Adsorption Isotherms and Modeling 

 To determine the loading capacity of adsorbents, either Dowex Optipore L-493 or 

MMCPs were added to glass scintillation vials at a ratio of 0.1 g adsorbent/mL of 

solution. Phenol/water binary component solutions were added to the scintillation vials 

and allowed 24 hours for equilibration at 37°C overnight while mixing on an orbital 

shaker. Approximately 500 µL of the supernatant was aliquoted into high-pressure liquid 
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chromatography (HPLC) vials for analysis. To determine the equilibrium adsorption 

capacity (qi) of each solute i, the following mass balance was performed. 

𝑞𝑖 =
(𝐶𝑖,0−𝐶𝑖)𝑉

𝑚
           (4.1) 

Where Ci,0 and Ci are initial and equilibrium aqueous concentrations of species i, V is 

aqueous volume, and m is mass of adsorbent.  Adsorption data was fit according to the 

Langmuir and Freundlich isotherm models as shown in equations 2 and 3, respectively. 

𝑞𝑖 =
𝑞𝑖,𝑚𝑎𝑥𝑘𝑙,𝑖𝐶𝑖

1+𝑘𝑙,𝑖𝐶𝑖
          (4.2) 

𝑞𝑖 = 𝑘𝑓,𝑖𝐶𝑖
1 𝑛𝑖⁄

          (4.3) 

Where, for the adsorbed species i, Ci is as defined above, qi and qi,max are equilibrium and 

maximum equilibrium adsorption capacity, respectively and kl,i is the Langmuir constant, 

kf,i and ni are the Freundlich constant and exponent, respectively. 

4.2.3 Phenol Desorption and Recovery 

Adsorbents were first loaded with phenol by equilibrating 4 g of adsorbent with 

200 mL of approximately 2 g/L phenol in a sealed media bottle shaken overnight at 37°C. 

Equilibrium solution was sampled for analysis by HPLC before decanting the bulk 

solution. Tert-butyl methyl ether (TBME) washes of 10 mL were added to the adsorbents 

to extract the adsorbed phenol. The TBME washed adsorbents were shaken at 37°C for 6 

hours after which 1 mL of the bulk solution was transferred to an HPLC vial for analysis. 

The remaining bulk TBME solution was decanted. At this point, 200 mL of fresh 2 g/L 

phenol solution was added to the bottle containing the regenerated adsorbent and the 
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entire process repeated. In total, 5 consecutive ‘cycles’ were preformed using the same 

adsorbent sample. 

4.2.4 Extractive Fermentation 

 Seed cultures were grown as described above in 10 mL culture tubes.  From seed 

cultures, 1 mL was added to 250 mL baffled flasks containing 25 mL of 2x M9Y media, 

1 mL trace minerals, 50 uL antibiotics as needed and 20 uL IPTG with the balance sterile 

DI water for a total volume of 50 mL.  After approximately 24 hours, 5 mL of tributyl 

phthalate was added and the pH adjusted with 1 mL of 40 g/L K2HPO4. After ~72 hours, 

fermentations reached completion and 1mL of culture was centrifuged at 12,000 rpm for 

5 minutes before analysis by HPLC. 

4.2.5 Adsorptive Fermentation 

 Seed cultures were grown as described above in 10 mL culture tubes.  From seed 

cultures, 1 mL was added to 250 mL baffled flasks containing 25 mL of 2x M9Y media, 

1 mL trace minerals, 50 uL antibiotics as needed and 20 uL IPTG with the balance sterile 

DI water for a total volume of 50 mL.  After approximately 24 hours, 0.5 g of adsorbent 

was added and the pH adjusted with 1 mL of 40 g/L K2HPO4 with subsequent pH 

adjustments as needed. After 72 hours, fermentations reached completion and 1mL of 

culture was centrifuged at 12,000 rpm for 5 minutes before analysis by HPLC. 

4.2.6 Analytical Techniques 

 Aqueous concentrations were analyzed by HPLC (1100 series Agilent; Santa 

Clara, CA) equipped with a refractive index detector (RID) and a diode array detector 

(DAD).  All samples were centrifuged at 11,000 g for 3 minutes and the supernatant 

aliquoted into glass HPLC vials.  Binary solutions for adsorption studies were separated 
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on a reverse-phase Hypersil GOLD aQ Polar C-18 column (4.6 x 150 mm; Thermo 

Scientific; Grand Island, NY) using  85% 5 mM H2SO4 and 15% acetonitrile as the 

mobile phase at 45°C 0.7 mL/min.  Phenol concentration was determined by DAD at 215 

nm and 275 nm for phenol.  Glucose was analyzed using the RID detector and an Aminex 

HPX-87H column (Bio-Rad Laboratories; Hercules, CA) operated at 35°C with a 

constant flow rate of 0.55 mL/min 5mM H2SO4. External calibrations were used to 

quantify each metabolite. 

4.3.0 Results and Discussion 

4.3.1 Phenol Isotherms 

Because phenol is a hydrophobic molecule (log Kow ~1.5) it should be readily 

adsorbed on hydrophobic adsorbents.(D. R. Nielsen & Prather, 2009; D. R. Nielsen et al., 

2010; L. Nielsen et al., 1988; Staggs et al., 2017; van den Berg et al., 2008; Wiehn et al., 

2014) Many studies involving phenol adsorption are seeking its removal from wastewater 

as a toxic byproduct of many industrial processes. It has been recovered by select 

polymeric resins (Huang et al., 2007; van den Berg et al., 2008) and activated carbons. 

(Fierro et al., 2008; Khan, Suidan, & Cross, 1981) Few studies have incorporated ISPR 

with phenol fermentation. Both perstraction with 1-octanol (Heerema et al., 2011) and 

adsorption using XAD-4 with and without ionic liquid loaded pores (van den Berg et al., 

2008) have been integrated into P. putida fermentation of phenol. Ionic liquids swelled 

the adsorbents and improved the phenol loading capacity to 0.017 g/g at 0.2 g/L aqueous 

phenol, which was less than the 0.04 g/g expected from the isotherm.(van den Berg et al., 

2008) Perstraction rather than decreasing the aqueous phenol concentration, it maintained 

approximately 0.28 g/L with the phenol production and perstraction rate nearly 
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equal.(Heerema et al., 2011) For this reason, adsorbents are better suited for ISPR of 

phenol compared to other methods. (Heerema et al., 2011)  

The biocompatibility of both MMCPs and L-493 with E. coli BW25113 was 

demonstrated in Chapter 2 for butanol recovery applications. Activated carbons have 

been particularly efficient adsorbents of phenol, (Fierro et al., 2008)  though never used 

for ISPR of phenol from fermentation to the author’s knowledge. Commercial Norit 

carbons have a lesser phenol loading capacity compared to carbons activated by bases 

rather than acids. (Fierro et al., 2008) The phenol isotherms for base and acid prepared 

activated carbons are compared to the adsorption performance of phenol onto MMCPs 

and Dowex Optipore L-493 in Figure 4.1. Phenol adsorption onto the acid-prepared 

activated carbons is directly comparable to both the MMCP and L-493. The base-

prepared activated carbon has a more than 2-fold greater phenol loading capacity 

compared to the adsorbents studied here. Activated carbons and resins alike are only 

separable by filtration while the MMCPs studied here are magnetically separable. As 

phenol is a valuable fermentation product, rather than a valueless contaminant its ultimate 

retrieval from the adsorbent is an important design consideration for ISPR. 
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Figure 4.1. Phenol Adsorption Isotherm.  Phenol isotherm for adsorption onto Dowex 

Optipore L-493 (crosses), and MMCPs (squares), and NaOH prepared (diamonds) and 

Phosphoric acid prepared (circles) activated carbon. (Fierro et al., 2008) 

At the same 0.2 g/L equilibrium phenol, the MMCPs studied here are expected to 

have a loading of 0.07 g/g while L-493 resins should load up to ~0.11 g/g. These values 

are 1.7 and 2.7 fold greater than the expected phenol adsorption for XAD-4 resins, 

respectively.(Heerema et al., 2011) Adsorption behavior has been modeled by 

Freundlich, Langmuir and dual site Langmuir isotherm models to address the likelihood 

of multi-layer versus multi-site adsorption. Langmuir and dual-site Langmuir isotherm 

models were found poorly representative of either adsorbent. The Freundlich model fit 

both adsorbent isotherms more closely as seen in Figure 4.1. By multiplying the 
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Freundlich exponent by the universal gas constant and the temperature, the Gibbs energy 

of adsorption can be estimated (D. R. Nielsen et al., 2010; Staggs et al., 2017) which was 

also estimated in Chapters 2 & 3. The Gibbs energy of adsorption for phenol onto the 

MMCPs and L-493 were -4.74 and -6.08 kJ/mol which are both small negative values, 

suggesting physisorption. Taken together, the results of the data fitting suggest that multi-

layer physisorption is far more likely than monolayer physisorption or chemisorption. 

4.3.2 Phenol Desorption 

A common method for phenol recovery from an adsorbed phase is chemical 

conversion to phenolate by addition of strong base such as NaOH.(van den Berg et al., 

2008) Several different solvents have been evaluated for phenol recovery from 

adsorbents including 1-octanol.(Wierckx et al., 2005) Other alkanes evaluated for phenol 

recovery from aqueous culture (e.g. dodecane, dibutyl phthalate, isopropyl myristate, 

etc.) have been found to be low performance compared to octanol, which terminates 

growth.(Miao, Li, Diao, Zhang, & Ma, 2015) Solvents evaluated in this study include 

methanol, toluene and tert-butyl methyl ether, which was found the most effective for 

phenol recovery. Solvent recovery results are graphed in Figure 4.2 where the first 

solvent wash was methanol to aid dewatering of the adsorbents, recovering 

approximately ~43% of the adsorbed phenol. Subsequent washes were conducted with 

TBME because of greater phenol solubility allowing a total of ~77% recovered phenol by 

mass as seen in Figure 4.2. Because the phenol recovery method was not quantified in 

terms of recovered mass ratio from XAD-4 resins, (van den Berg et al., 2008) a direct 

comparison with our results is not feasible. 
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Figure 4.2. Phenol Desorption and Recovery. The total adsorbed phenol is the solid 

line, the additive solvent recovered phenol are the diamonds. 

4.3.3 Adsorptive Fermentation 

Coupled with XAD-4 resins without and with ionic liquid loaded pores, P. putida 

production of phenol improved 2.5 and 4-fold, respectively. (van den Berg et al., 2008) 

This produced a total combined phenol titer of 0.3 and 0.91 g/L for fed-batch control and 

fed-batch with solvent-loaded XAD-4 resins, respectively.(van den Berg et al., 2008) P. 

putida fermentation of phenol with in situ perstraction improved the titer from 0.38 to 

0.47 g/L.(Heerema et al., 2011) Meanwhile engineered E. coli in minimal media (M9M) 

have reported batch phenol titers up to 0.42 g/L whereas with solvent extraction in a high 

cell density fed-batch fermentation, up to 1.75g/L has been reported.(Miao et al., 2015) 
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One of the main advantages to fed batch fermenter operation examined by Miao et al. 

was the addition of yeast extract.(Miao et al., 2015) Under minimal media conditions, 

adsorbents reduced growth compared to control flasks, (van den Berg et al., 2008) a trend 

also observed in early data for this study. By adding 2 mL of a supplement containing 20 

g/L glucose and 5 g/L yeast extract to M9M, the growth of control and adsorbent loaded 

flasks was equalized as seen in Figure 4.3. Growth of our engineered E. coli BW25113 

was further improved by the transition to M9Y media. When examining the dry cell mass 

with wild type E. coli BW25113, the control flasks grew to ~1.45 g/L compared to 1.35 

g/L for MMCPs and 1.72 g/L for L-493 resins. Within the experimental error observed 

growing wild type E. coli, these cell mass results are considered essentially the same.  By 

comparison, P. putida developed approximately 4.8 g/L biomass though perhaps with a 

conversion factor different than the 0.25 g/OD600 used here. 
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Figure 4.3. Biocompatibility of Adsorbents. Biocompatibility of Control (diamonds), 

Dowex Optipore L-493 resin (triangles), and MMCP-10 (squares).  

Phenol batch titers in this study rose from 0.26 g/L in minimal media to 0.55 g/L 

in M9Y before any adsorbents were added. The comparison between batch controls and 

duplicate L-493 resin flasks can be observed from Table 4.1.  The total recovered phenol 

was calculated as the sum of the remaining aqueous phenol and the total recovered from 

the ~5 solvent washes. At 0.55 g/L aqueous phenol titer, our control fermentations were 

approximately 1.4 to 1.6-fold greater than that of P. putida.(Heerema et al., 2011; van den 

Berg et al., 2008) Additionally, when glucose utilization was examined by HPLC, it was 

found to be the same for M9Y with and without adsorbent at approximately 98.9%. This 
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would suggest a flux limitation due to carbon source consumption, but phenol titers did 

not improve under fed-batch conditions.  

Table 4.1.  

Adsorptive Fermentation by Engineered E. coli NST74. 

  Phenol (g/L) Glucose Utilization % 

M9Y Control 0.55 ± 0.05 98.9 

M9Y L-493 0.48 ± 0.04 99.0 

 

Because the L-493 total titer is ~87% of the control titer, it is reasonable to 

conclude that ISPR via adsorption does not limit the phenol titer in the richer M9Y media 

as it would in leaner media. Troubleshooting adsorptive fermentation results from this 

study follows one of three possible vectors: 1) if phenols production is feedback 

inhibited, adsorption would improve the phenol titer, 2) if the titer is flux-limited within 

or upstream from the engineered pathway, then the phenol titer would remain unchanged, 

and 3) if the limitation is product toxicity, then adsorption should improve both growth 

rates and phenol titer. Of these, clearly the second case fits the fermentation results.  

4.4.0 Conclusion and Future Work 

Taken together, the adsorptive fermentation results demonstrate complete 

biocompatibility of both MMCPs and L-493 resin at no appreciable cost to phenol titer. 

Additionally, adsorptive fermentation improved aqueous phenol titers to ~0.5 g/L from 

batch cultures, which is higher than previously reported batch cultures. Both L-493 and 

MMCPs have reduced the aqueous phenol to less than 10% the reported phenol toxicity 

limit. This has eliminated the potential bottleneck of phenol feedback inhibition. As fed-

batch fermentation did not improve the phenol titer, further engineering of the strain 
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could increase the amount of tyrosine (phenol precursor in this engineered pathway) 

produced. Increased tyrosine in this engineered strain should boost phenol production in 

adsorptive fermentation closer to or beyond the toxicity threshold. We expect the increase 

in tyrosine flux to will phenol in adsorptive fermentation to over 1 g/L in batch operation, 

which would be the highest reported batch phenol titer known to the authors. 
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CHAPTER 5 

5.0 SUMMARY AND FUTURE WORK 

Abstract 

The novel application of magnetically responsive mesoporous carbons as an 

adsorbent for: 1) in-situ product recovery, 2) upstream feedstock detoxification, and 3) 

diagnostics of potential feedback inhibition. This demonstrates contributions to the field 

of targeted separations as a tool to assist metabolic engineering. While metabolic 

engineering can improve production several-fold, many factors contribute to lesser than 

theoretical product titers. It is important to distinguish between toxicity and inhibition, 

which often cannot be known a priori. Targeted separations modalities (e.g. adsorbents) 

are particularly effective at selective removal and recovery of products and metabolites to 

improve titers. Many lessons were learned throughout the course of this work particularly 

about MMCP retrieval and specific loading. The important lessons concerning MMCP 

performance are detailed in this Chapter. Future works are described including: 1) 

pretreatment strategy for real lignocellulosic hydrolysates by MMCPs, 2) fermentation of 

MMCP pretreated real lignocellulosic hydrolysates by Escherichia coli LY180, 3) other 

bioproduct fermentation from real pretreated lignocellulosic hydrolysates, and 4) An 

idealized design for a next generation magnetically separable adsorbent leveraging newer 

separations technology such as smart polymers and ionic liquids.     
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5.1 Introduction 

 This work has demonstrated the broad application of separation technologies for 

both improving and troubleshooting bioproduct development. MMCPs have been 

demonstrated to be very effective at removing hydrophobic compounds such as butanol, 

furfural and phenol. The MMCP loading capacity for these bioproducts and feedstock 

byproducts is comparable to, or greater than commercial resins or activated carbons. 

These MMCPs are magnetically separable from aqueous solutions up to 91% by mass. 

Up to 93% of butanol, 66% of furfural and 77% of adsorbed phenol by mass have been 

recovered from the adsorbents studied here. These MMCPs are exceptionally versatile 

adsorbents with proven applications for production of many bioproducts. During this 

research, many design considerations and key limitations of MMCPs became known.  

 While the MMCPs are magnetically responsive and thus magnetically separable, 

they are not 100% retrievable from aqueous slurries. A redesign of the magnetic retrieval 

column from first principles, did improve MMCP retrieval by a small 2% compared to 

earlier methods. While this is primarily due to the polydisperse size distribution noted in 

Chapter 3, certain process steps could be improved to enhance the magnetic retrieval of 

the MMCPs. The benefits of improved monodispersity in MMCPs are discussed in this 

chapter with methods of improving the magnetic retrieval further. Following 

improvements in magnetic retrieval, there is also room for improved specific loading 

performance. 

 Whereas the MMCPs have high specific loading for certain analytes investigated 

in the previous chapters, they have ~2-fold the surface area of many common commercial 

carbons. This should enable higher than observed equilibrium loading of certain analytes. 
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Such an increased equilibrium loading has not been observed, suggesting that there are 

potentially unoccupied pore surfaces deeper in the MMCP structure. Potentially 

improved specific loading may be evaluated by increasing the equilibrium temperature of 

adsorption. Compared to commercial activated carbon with lesser surface areas and 

smaller pore volumes, it would be expected that specific loading of MMCPs would 

greatly exceed that of commercial carbons. Elevated temperatures where this 

phenomenon would likely be observed (e.g. 60-90°C), are outside of the biologically 

relevant temperature range where 37°C is often ideal for building high cell mass. To 

improve specific loading and take advantage of the seemingly unused surface area, some 

design improvements have been suggested to leverage newly developed hybrid 

separations approaches.  

5.2 Overview and Significance of Findings from MMCP Separations  

5.2.1 Magnetic Retrieval of MMCPs 

 Early designs of the magnetic retrieval tool for MMCPs were derived from a 

common magnetic stir bar retrieval tool. This design enabled magnetic retrieval of 

MMCPs from aqueous solutions with multiple dips and rinses up to 89% as reported in 

Chapter 2. The comparison of the effect of Ni content on MMCP retrievability revealed 

an interesting trend not shown in Chapter 2. Several sizes of magnetic retrieval rods with 

increased magnetic surface area were evaluated. The trend observed for MMCP retrieval 

as a function of every Ni composition demonstrated a clear dependence of retrieval on 

magnetic surface area. The retrieval of MMCPs was influenced primarily by Ni content, 

though the retrieval surface area was also a factor. To increase the overall recovery 
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surface area, a revision to the tool increased the total number of magnets to 20 and placed 

it into a glass column (interior column retrieval). The MMCP slurry was flowed through 

the column and the retrieval was essentially complete after passing through 2 columns. 

This method of recovery was less efficient than expected, requiring much greater surface 

area than would be scalable for a large volume process. MMCPs were rinsed off the 

magnetic core after its removal from the glass column. This promotes mass transfer 

losses of MMCPs and is not suitable for aseptic protocol such that it would risk 

contamination of bacterial cultures. It became clear that a fundamental redesign of a 

magnetic column was required. 

To better understand the magnetic retrieval, finite element modeling revealed that 

the magnetic field orientation in the column was parallel with the particle flow. Because 

magnetic force is a normal vector to the plane established by the flow vector and the field 

vector, the resultant force vectors would be primarily oriented in a rotational vector 

toward the column wall. This limited the effective retrieval area for a given number of 

magnets. By changing the orientation of the magnets in the models and thus the direction 

of the filed, the new direction of the force vector would be oriented toward the column 

wall without any significant rotational component. This allowed MMCP collection on the 

column wall along the path of the field lines as presented in Chapter 3. The redesigned 

column with the removable magnetic clamp improved the MMCP retrieval up to 91% 

with a single column and a single pass of the column volume. Moreover, the thickness of 

the MMCP retrieval layer compared to the interior column design was approximately 

double the thickness. The entire column could be easily sterilized and integrated with 
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aseptic protocol for bacterial fermentations. This column without the exterior clamp was 

easily rinsed with DI water and the MMCPs retrieved for thermal desorption. 

5.2.2 Adsorption Kinetics Versus Desorption from MMCPs 

 The kinetics of adsorption presented in Chapters 2 & 3 were found to be rapid for 

butanol and furfural, respectively. The nature of the rapid pore loading has been ascribed 

to the tightly controlled pore structure as detailed in Chapter 2. Meanwhile the high 

surface area of MMCPs approximately 2-fold greater than common commercial activated 

carbons promotes high specific loading. The specific loading of each analyte is different 

such that there is not a singular trend for all possible analytes. What has been consistently 

observed is that hydrophobic analytes tend to adsorb with greater specific loadings 

compared to hydrophilic analytes. For example, butanol loading of MMCPs was 

approximately 3-fold greater than that of ethanol based on the data from Chapter 2. Based 

on the equilibrium adsorption data, the Gibbs energy of adsorption was estimated. 

Comparing these adsorption energies, butanol was approximately twice the value of 

ethanol. Butanol adsorbs more strongly than ethanol does and therefore should require 

more energy to desorb. 

 When comparing the desorption of analytes from adsorbents, the physical 

properties such as vapor pressure and boiling point are important design considerations. 

Thermal desorption used for both Chapters 2 & 3, took advantage of the volatility of the 

butanol and furfural, respectively. As butanol is particularly volatile, it is thermally 

recoverable up to 99.7% whereas furfural is far less volatile with its boiling point of 

~162°C. Furfural was only thermally recovered with up to a maximum of 66% which 
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leaves some residual adsorbed furfural on the surface of the MMCPs. While there was 

not a significantly reduced specific loading of furfural observed for MMCPs, this would 

be expected with repeated adsorption/desorption cycles. It is important to note that the 

specific loading isn’t limited by surface area as discussed in Chapter 2. Without 

recovering 100% of the adsorbed furfural, that remaining percentage must accumulate 

within the mesoporous network. This will inevitably lead to a compromise in specific 

loading performance. As the boiling point of furfural is ~70°C greater than the water bath 

temperature used for thermal regeneration, its likely 66% is the maximum achievable 

recovery. At an elevated temperature closer to the boiling point of furfural, it would be 

expected that a greater percentage would be recovered. Furthermore, as the Gibbs energy 

of adsorption of furfural is less than that of butanol, it is reasonable to expect that furfural 

should be recoverable up to a similar percentage compared to butanol.  

5.3 Experimental Outlook 

5.3.1 Preatreatment of Real Lignocellulosic Hydrolysates by MMCPs 

 With the successful pretreatment of model hydrolysate, it is reasonable to infer 

that real hydrolysates could also be pretreated by MMCPs. Real hydrolysate which we 

intend to pretreat has the following composition (all values in g/L): 11.2 cellobiose, 5.4 

glucose, 58.8 xylose, 5.9 galactose, 7.4 arabinose, 0.7 mannose, 2.5 hydroxymethyl furan 

(HMF), 3.6 furfural. While furfural is toxic, HMF is a likewise cytotoxic furan. (H. 

Zheng et al., 2012) Prior to pretreating real hydrolysate, the degree of competitive 

adsorption between furfural and HMF must be determined. The first step is adding 0.1 g 

of MMCP to 2 mL of aqueous solution containing 3 g/L furfural and 3 g/L HMF and 
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following the HPLC analysis protocol from section 3.2.2 to develop the competitive 

isotherm. With the competitive sorption characteristics known, the ratio of MMCP to 

aqueous volume can be adjusted. It is expected that HMF and furfural will have similar 

adsorption characteristics, leading to a requirement to double the MMCP to aqueous ratio 

to 60-100 g/L. A post treatment sample of the real hydrolysate will be evaluated by 

HPLC using the previously described protocol for furfural to ensure furfural and HMF 

are below the toxic threshold. 

5.3.2 Fermentation of Ethanol from Real Pretreated Lignocellulosic Hydrolysate 

 With the known composition of a sample real hydrolysate, the adsorptive 

pretreatment criteria are known. MMCPs have successfully pretreated model 

hydrolysates in Chapter 3. To apply the MMCP pretreatment to the real hydrolysate, 300 

mL of the hydrolysate should be equilibrated with 30 g of MMCP rather to achieve a 100 

g/L adsorbent ratio. The real hydrolysate contains HMF which is a furan similar to 

furfural and will likely coadsorb onto MMCPs. Since the degree of coadsorption of HMF 

with furfural has not been quantified for MMCPs, the equilibrium adsorption of furfural 

could be reduced by up to half. The same protocol presented in Chapter 3 should be 

followed with magnetic retrieval and final vacuum filtration for removal of growth 

inhibiting nanoparticles. The treated, filter sterilized hydrolysate will be added to the 500 

mL reactor with a 300 mL working volume. Seed cultures of E. coli will be grown in 5 

mL aliquots of LB to ensure high initial cell density. From the seed cultures, reactors will 

be inoculated with ~2-3% by volume. It is expected such a fermentation of real 

hydrolysate would result in 40-50 g/L phenol, based on the culture results from Chapter 

3. 
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5.3.3 Fermentation of Other Bioproducts from Pretreated Real Lignocellulosic 

Hydrolysates 

 By following the same strain growth protocol presented in the previous section, 

several bioproducts could be fermented from the pretreated real lignocellulosic 

hydrolysates. Many strains are developed along the path to a final optimized metabolic 

pathway for a specific bioproduct such as ethanol. Almost invariably, one strain 

developed is a high titer producer for an intermediate metabolite such as tyrosine, 

chorismate, etc. (Thompson et al., 2016) Some of the metabolites of interest which can be 

produced from lignocellulose-derived biomass are succinic acid and lactic acid. The 

adsorption of both succinic and lactic acid has been observed for MMCPs as presented in 

Appendix B. While succinate adsorbs onto MMCPs with very low loading capacity of 

0.05 g/g or less, lactate adsorbs in a multi-layer fashion up to loading capacities 

exceeding 1 g/g. MMCPs could thereby be used for pretreatment and removal of furfural 

and regenerated before in-situ recovery of lactate from an overproducing strain. Other 

high titer bioproducts could also be produced from pretreated lignocellulosic media 

including isomers of butanol, and other aromatic metabolites. 

5.3.4 An Improvement on MMCP Design 

 From its successful implementation of MMCPs as a suitable upstream 

detoxification and in situ product recovery, the design of MMCPs leaves room for 

improvement. The simplest improvement of the design would require improved milling 

and sieving for monodisperse size distribution. Monodispersity should improve the 

magnetic retrievability because it creates a known average particle mass around which to 

design the retrieval column. The force experienced by the MMCPs from the magnetic 
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field is directly proportional to the particle mass and the field strength. As the MMCP 

mass is estimated from an average bulk density, the average particle size has a direct 

effect on the mass. Therefore, by controlling the MMCP size distribution the magnetic 

retrieval will be more consistent. The size distribution however, would be expected to 

have a minimal impact on the specific loading or kinetics of adsorption because the 

surface area and pore distribution would remain unchanged. 

 As the surface chemistry is directly comparable to activated carbon, which is 

known to be poorly selective (Khan et al., 1981; Silvestre-Albero et al., 2009; Sulaymon 

& Ahmed, 2008; Sutikno & Himmelstein, 1983; K. Zhang et al., 2011), there are 

improvements to be made in selectivity. The high surface area and pore volume of the 

MMCPs provide ample volume for solvent loading of the pores. From the research 

detailed in these chapters and from adsorption work not included in this work (Wiehn et 

al., 2013; Wiehn et al., 2014), the adsorbents with the highest specific loading for most 

hydrophobic analytes are almost always charged (e.g. ion-exchange resins such as XAD-

4, L-493, etc.). This charged surface can also promote fouling by media components and 

whole cells which causes loss of surface area to biofilm formation as discussed further in 

Appendix A. Each separations technique has pros and cons which make them far more 

suitable for specific rather than general applications as discussed in the first part of 

Chapter 1. This concept has been applied for certain resins by loading the pores with 

ionic liquids. (van den Berg et al., 2008) 

 Advances in liquid-liquid separations have discovered some applications of ionic 

liquids with partition coefficients of up to ~245 for hydrophobic analytes such as butanol. 
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(Gutowski et al., 2003) Compared to any other separation performance metric, this is 

greater than a ~20-fold improvement from the biocompatible solvents having partition 

coefficients of often less than 6 as shown in Table 5.1 for butanol. The organic phases 

listed are biocompatible, while the solvents with greater partition coefficients are often 

highly toxic to bacteria. The ionic liquids with the promise of greatly improved 

separations also are often toxic to bacteria and suffer from decreased selectivity from 

complex aqueous backgrounds. 

Table 5.1.  

Liquid-Liquid Partition Coefficients of Butanol. 

Solvent 
Partition 

coefficient 
Feed Type Notes Reference 

Organic Phases 
    

Oleyl alcohol 3.3-5.75* Quaternary 

*Calculated from 

reported data 

(Kamiński et al., 

2014; 

Malinowski, 

2001) 

Butyl Laurate 1.1 Fermentation 

 

(Barton & 

Daugulis, 1992) 

Polymer Phases 
    poly(propylene 

glycol) 1200 4.8 Fermentation 

 

(Barton & 

Daugulis, 1992) 

poly(propylene 

glycol) 4000 3 Fermentation 

 

(Barton & 

Daugulis, 1992) 

Pluronic L64 

(60% PPO 40% 

PEO) 2.70 Fermentation 

 

(Dhamole et al., 

2012) 

Ionic Liquids 
    

[Ph3t][NTF] 1.1 Fermentation 

 

(Cascon et al., 

2011) 

[THA][DHSS] 7.99 Fermentation 

 

(Cascon et al., 

2011) 

[OMA][NTF] 1.44 Fermentation 

 

(Cascon et al., 

2011) 
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[Ph3t][DCN] 7.49 Fermentation 

 

(Cascon et al., 

2011) 

[BMIM][CL] 33-245 Binary 
Addition of K3PO4 

(phase separation) 
(Gutowski et al., 

2003) 

[BMIM][PF6] 0.85 Binary 
 

(Fadeev & 

Meagher, 2001)  

[OMIM][PF6] 0.9 Binary 

 

(Fadeev & 

Meagher, 2001) 

     

 

 To address the weaknesses of each of these separations methods, it is interesting 

to envision a hybridized separations modality. The ideal separations modality based on 

the sum of this work would take advantage of the low energy input and high surface area 

contact of direct adsorbent addition. It would maintain the magnetic retrieval of the 

MMCPs studied here. It would then leverage the extremely high partition coefficients 

made possible by ionic liquids. These are likely toxic to bacteria although few have been 

studied with fermentation. An adsorbent loaded with a highly selective solvent can 

combine these specific separations benefits while canceling some of the weaknesses. 

Because of the high toxicity of the ionic liquids, a barrier is required. This barrier could 

be composed of any number of newer polymers under active research. A stimulus-

responsive polymer would be best suited for a barrier to prevent cell toxicity. Many such 

polymers have been investigated for their change in conformation resulting from pH or 

temperature changes. A thin film of one of these polymers would provide a minimal mass 

transport resistance for the target analyte. Ideally this thin film polymer would be in its 

condensed phase during in situ adsorption and expanded during the desorption phase, 

following magnetic retrieval. This should address the expected desorption limitations by 

potentially: 1) Super-concentrating the analyte from low initial aqueous concentrations, 
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2) Removing thin film’s contribution to the mass transport resistance to desorption, 3) 

Tuning the ionic phases to balance adsorption and desorption, 4) Ionically extracting the 

analyte-loaded phase with a secondary ionic solution.  

Such a follow up project would be well suited for a dissertation topic. Its scope 

would necessarily encompass its own review of all the design considerations of ionic 

liquid separations, membrane perstraction, and pervaporation. A synthesis technique 

would have to be developed for the covalent linkage of the thin film to the MMCPs while 

maintaining monodispersity. The adsorption and kinetic studies would resemble those 

studied here. New desorption protocols would have to be developed. Its viability for in 

situ adsorption would also have to be studied. Such a project is feasible and could be 

completed by a competent researcher in the time scale of a typical dissertation project.  
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PREDICTIVE FOULING MODEL OF E. COLI BW25113 ON PERVAPORATION 
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Abstract 

Here an investigation of surface fouling potential of E. coli as a function of 

substrate properties has been conducted. Certain separations modalities such as 

adsorption and membrane pervaporation are directly exposed to growing cultures. 

Fouling trends are determined in part by substrate chemistry which affects surface free 

energy. Surface free energy can enhance or detract from microbial attachment and 

subsequent fouling which undermines separation performance and overall process 

robustness. The organisms studied here include Escherichia coli (KO11 and BW25113) 

and Saccharomyces cerevisiae (BY4741, ΔYDL233W, ΔYIR019C, S288C and 

BY4743). Substrate properties were measured whereas surface properties of cells were 

drawn from literature. The extended Derjaguin Landau Verwey and Overbeek method 

was used to estimate the work of attachment for each cell type-substrate pairing. More 

hydrophobic substrates were found to be more prone to fouling than hydrophilic surfaces.  

Notably the positively charged alumina substrate was not conducive to biofilm formation.  

 

Keywords: fouling; in situ product recovery; adsorption; pervaporation; microbial 

attachment 
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A.1.0 Introduction 

Previous chapters have established the relevance of bioseparations to current 

research and some of the specific pros and cons for each modality. This chapter will 

focus on biofouling as an inevitable consequence of employing solid phase separations in 

situ with production of bioalcohols. Whereas a biofilm may be simultaneously necessary 

and advantageous for some applications such as water treatment, biofouling is hazardous 

in other applications such as medical devices (Dohnalkova et al., 2011; Drobek et al., 

2012; Flemming & Wingender, 2010; Sasaki et al., 2013; Soydaş, Dede, Çulfaz, & 

Kalıpçılar, 2010; Vane, 2008a; Vertes, Hitchins, & Phillips, 2012). Biofouling refers to 

the attachment of cells (e.g bacteria), and ‘cellular debris’ (high molecular weight 

polysaccharides, lipids, phosphates, proteins, nucleic acids, flagella, pili, and free amino 

acids) to a substrate (Dohnalkova et al., 2011; Vertes et al., 2012). These foulants are 

often grouped under the terms extended glycocalyx or extracellular polymeric substances 

(EPS). A ‘conditioning layer’ is formed from a combination of EPS components, the 

surface charges of both cell and substrate, and fluid shear all of which facilitate cellular 

attachment and acts as a diffusion barrier to toxins, nutrients and value-added bioproducts 

(Bojsen et al., 2012; N. Qureshi, Annous, et al., 2005). From these factors, fouling is a 

grand challenge in bioenergy applications such as alcohol fermentations (Aljundi et al., 

2005; Drobek et al., 2012; Gaykawad et al., 2013; Ong, Razatos, Georgiou, & Sharma, 

1999b; Sasaki et al., 2013; Xiu & Zeng, 2008). 

While conventional separation of bioalcohols relies on distillation (Vane, 2008a), 

the dilute concentrations necessitate multi-stage separation processes (C. Y. Chen et al., 

2013; Vane, 2005, 2008a; Vane & Alvarez, 2013; Vane et al., 2013). Many alternative 
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separation strategies have been explored (Cai et al., 2013; C. Y. Chen et al., 2013; 

Gudena et al., 2013; Paradis et al., 2013; Patil et al., 2007; Shi et al., 2013; Vane, 2008a; 

Vane & Alvarez, 2013) often employing economical materials such as 

polydimethylsiloxane (PDMS), zeolites (Aljundi et al., 2005; Cai et al., 2013; C. Y. Chen 

et al., 2013; Kita et al., 2003; Kittur et al., 2005; Xiao Lin et al., 2001), and carbons 

(Fierro et al., 2008; Khan et al., 1981; T. J. Levario, M. Dai, W. Yuan, B. D. Vogt, & D. 

R. Nielsen, 2012b; Silvestre-Albero et al., 2009). Commonly these separation studies use 

model broth and avoid the effects of fouling (Aljundi et al., 2005; Gaykawad et al., 2013; 

Sasaki et al., 2013; Vane, 2008a; Vane & Alvarez, 2013; Vane et al., 2013; Xiu & Zeng, 

2008).  Biofouling inevitably causes degradation of separation performance (Gaykawad 

et al., 2013) and few in situ separations studies reach beyond 20 days of continuous 

operation (C. Y. Chen et al., 2013; Sasaki et al., 2013) and most lack predictive models or 

preventive measures (C. Y. Chen et al., 2013; Hijnen et al., 2012; Subramani & Hoek, 

2010). Certain studies have attempted to map fouling trends across varied species and 

substrates (B. Li & Logan, 2004). Potential contributors to biofouling have been well 

investigated including strain of microorganism, substrate material, substrate roughness, 

finding that increasing roughness and hydrophobicity promotes fouling. (Ben Chaabane 

et al., 2006; Ciston et al., 2008; Diaz et al., 2011; Dohnalkova et al., 2011; B. Li & 

Logan, 2004; Pratt, 1998) Whereas some aim to investigate the biofouling of resuspended 

cells on static substrates (B. Li & Logan, 2004), others attempt to quantify attachment in 

flow cells (S. Kang & Choi, 2005; Seoktae Kang, Hoek, Choi, & Shin, 2006). The length 

of time used to develop cellular attachment also varies by study, ranging from to 2 hours 
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(B. Li & Logan, 2004) to 10 days (Kregiel, 2013). The variety of protocols, attachment 

substrates and organisms prevents detailed comparisons.  

The biofouling context of this study is a semi-continuous fermentation wherein 

the substrate exposure to cell-containing media occurs on the scale of days. This is meant 

to represent in situ adsorption or pervaporation of an ethanol or butanol fermentation. The 

substrates include silicalites, polydimethylsiloxane and alumina. While many types of 

organisms can foul substrates, the 2 types of microorganisms included in this study are 

Escherichia coli and Saccharomyces cerevisiae. E. coli and S. cerevisiae represent 

industrial work horse organisms and S. cerevisiae is a model eukaryote. To estimate the 

surface free energy, Gibbs energy of attachment, and better understand the cellular 

attachment, an extension of the mathematical model developed by Derjaguin Landau 

Verwey and Overbeek (DLVO) will be applied. (Verwey & Overbeek, 1948) The goals 

of this work were to: 1) Characterize the surface free energy of common separations 

substrates, 2) Evaluate the fouling potential by E. coli and S. cerevisiae via an extended 

DLVO (XDLVO) analysis which estimates the Gibbs energy of attachment, 3) Compare 

the fouling potential by media components forming a ‘conditioning layer’ and for whole 

cells, and 4) Evaluate cellular fouling by S. cerevisiae strains with deletions of the Flo11 

gene suspected to cause fouling.   

A.2.0 Materials and Methods 

A.2.1 Substrate Preparation   

Silicone (PDMS) sheet was obtained from Specialty Silicone Fabricators (Tustin, 

CA) in 12” x 12” sheets of 0.004” thickness. Silicone films were cut into approximately 



 161   
 

1” squares for placement in the base of 6 well microplates. Silicalite membranes were 

grown on supports of either alumina or yittria-supported zirconia (YSZ) by collaborators 

from Prof. Jerry Lin’s laboratory at Arizona State University. YSZ supports were 

synthesized by pressing and sintering YSZ powders of 2 µm in particle size. Silicalite 

was seeded onto the YSZ supports by dip-coating into a stable nano-sized silicalite sol 

and calcined. Multiple dip-coatings ensured improved quality of the seed layer. Synthesis 

was optimized toward ethanol selectivity by varied synthesis conditions. Silicalite 

substrates measured approximately 0.85” diameter and 0.065” thick and the support side 

was scored with a sharp knife and snapped. Alumina discs of 25 mm diameter and 2 mm 

thickness were purchased from Spectrum Chemical MFG (Gardena, CA). These alumina 

substrates were likewise scored with a sharp knife and snapped into 4 pieces. 

A.2.2 Substrate Zeta Potential 

Substrate surface charge was determined by zeta potential measurements 

performed on a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA). 

Disposable Zeta cuvettes, and zeta calibration standards were obtained from Malvern 

Instruments (Westborough, MA). PDMS particles were prepared from silicone tubing 

ground up under liquid nitrogen in a mortar and pestle. Aqueous suspension of the 

silicone particles selected the particles averaging less than 10 µm in diameter as they 

were buoyant. Some silicalite seed crystals used for synthesis were also used for zeta 

analysis. Alumina particles were obtained from Sorbent Technologies (Atlanta, GA) to be 

used as a positively charged fouling surface control. Sample powders were suspended in 

DI water, 10 mM and 100 mM NaCl solutions for zeta measurement. 1 mL of powder 

suspension was deposited into the zeta cuvettes by 1 mL syringe with several aspiration 
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cycles to displace air bubbles. Each sample material was measured to determine average 

particle diameter and zeta potential. Zeta potential was averaged from 30 cycles. 

Conductivity of the aqueous solutions ranged from 0.35- 0.02 mS/cm for 0- 100 mM 

NaCl solutions, respectively.  

A.2.3 Substrate Characterization by Goniometry 

A Kruss Easy Drop DSA14 goniometer (Matthews, NC) was used for receding 

contact angle measurements on the substrates. Droplet volumes of 1-2 μL were applied to 

the surface in 3-5 sites for 3 replicates such that the reported values were averaged over at 

least 11 measurements. For PDMS substrates, solvent triads were selected based on 

swelling parameters studied for microfluidic applications (J. N. Lee, Park, & Whitesides, 

2003). A common liquid triad used for goniometry is water, glycerol and an apolar alkane 

such as hexane, or hexadecane. Ethanol and butanol were used as well as glycerol and 

dimethylformamide based on their small swelling coefficients with PDMS compared to 

(Chaudhury & Whitesides, 1991). 

A.2.4 Microorganisms and Growth Conditions 

E. coli KO11, which was developed by the Ingram Lab at the University of 

Florida, was obtained from the American Type Culture Collection (ATCC, Manassas, 

VA).  E. coli BW25113 was obtained from the Coli Genetic Stock Center (CGSC) at 

Yale University.  S. cerevisiae BY4741, BY4743, ΔYDL233W, ΔYIR019C, and S288C 

were obtained from (Prather Lab, MIT). All bacterial and yeast seeds were grown in 12 

mL culture tubes overnight at 37°C in 5 mL Nutrient Broth (NB) plus glucose in a 

shaking incubator at 200 rpm. All substrates were added to 6 well plates and sterilized 
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with 200 proof ethanol for 20 minutes. Residual ethanol was removed from the wells by 

pipette. All seed cultures were centrifuged at 3000 rpm for 5 minutes and cells were 

resuspended in 5 mL of fresh NB glucose media before being added to the microplate 

wells. Bacterial and yeast cultures were added to the 6 well plates and cultured at 37 °C 

in a shaking incubator at 120 rpm with NB glucose media exchanged every 2 days for 4 

weeks.   

A.2.5 SEM Preparation 

Spent media was decanted from each microplate well and gently rinsed twice with 

1 mL of double deionized water. Cellular function was ceased by adding 2 mL of a 2.5% 

gluteraldehyde solution. After 1.5 hours, wells were washed 5 times each with 2 mL of 

double deionized water and the remaining wash solution decanted. Cellular fixation was 

performed by adding 2 mL of 1% osmium tetroxide (OsO4) solution and allowed a 1.5 

hour equilibration time. Wells were washed 5 times each with double deionized water 

and the solutions decanted. Water was then exchanged with 2 mL of ethanol/water 

solutions of increasing concentration to ensure substrate dehydration (10% ethanol, 20%, 

40%, 60%, 80% and three exchanges with 100% ethanol). Critical point drying was then 

performed on a Balzers CPD020 (Brunswick, OH). Substrates were placed into a 

stainless basket and placed into the chamber submerged in 100% ethanol. Liquid CO2 

was added to the chamber, mixed with the ethanol, ~60% of the solution was evacuated 

and refilled with liquid CO2. Full ethanol removal required ~9 CO2 exchanges at 5°C and 

mixed for 2 minutes. Following 9 exchanges, substrates were dried at 45°C and 

approximately 73 bar which is above the critical point for CO2. Substrates were mounted 

on carbon tape adhered to pin stubs and either gold or carbon sputter coated using a 
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Technics Hummer V sputter coater (Anatech, Union City, CA). The sputter coating 

chamber was held between 100-125 mTorr with argon gas flow under partial vacuum. 

Substrates were sputter coated for 5 minutes maintaining approximately a 7-10 microamp 

current. Imaging was performed on a JEOL JSM6300 Scanning Electron Microscope 

(Peabody, MA). Virgin and fouled substrates were imaged at 15 kV for optimum contrast 

and clarity with minimum charging. 

A.2.6 Atomic Force Microscopy 

Substrates were prepared for atomic force microscopy (AFM) by ethanol rinse 

and air drying, substrates from cultures in well plates were simply rinsed with deionized 

water and air dried for 24 hours. Silicon nitride cantilevers were used on a Digital 

Instruments Dimension 3000 surface probe microscope (Bruker, Satna Barbara, CA). All 

images were taken in tapping mode with frequencies near 270 kHz and driving 

amplitudes of approximately 1.1 Volts. Amplitude and height data were imported into 

Gwyddion software and overlaid in the 3D visualization mode to export images for 

figures. 

A.2.7 Bradford Total Protein Assay 

Bovine serum albumin (BSA) was obtained from New England BioLabs 

(Ipswich, MA). BSA was mixed with DI water to give concentrations ranging from 0.2 to 

1 mg/mL for initial controls. Higher ionic strength BSA solutions were prepared in 100 

mM NaCl potassium phosphate buffered at pH 4.7 (the isoelectric point for BSA). The 

aqueous BSA controls, silicalite and PDMS samples were mixed thoroughly in 4 mL 

glass vials and allowed 24 hour equilibration. From the supernatant, 100 μL aliquots were 
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mixed with 0.9 mL of ¼ diluted coomasie blue (R form) dye from Bio-Rad (Hercules, 

CA) and placed into in cuvettes. BSA concentrations were measured on a Beckman 

Coulter DU600 spectrophotometer (Indianapolis, IN) at 595 nm.   

A.2.8 XDLVO Theory and Its Biofouling Application 

Traditional surface energy analysis attempts to capture the components of surface 

free energy as follows. 

𝑈𝑆
𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑆

𝐿𝑊 + 𝑈𝑆
𝐴𝐵         (A.1) 

Where the total free energy of a surface is determined by the sum of the Lifschitz-van der 

Waals (LW) and Lewis acid-base (AB) interactions. Equation A.1 describes the overall 

energy as being composed of acid-base interactions and short-range interactions. This 

premise results in the following equation for surface tension, a term often interchanged 

with surface energy. 

𝛾𝑖 = 𝛾𝑖
𝐿𝑊 + 𝛾𝑖

𝐴𝐵         (A.2) 

Where γi is the surface tension for component i, γi
LW

 and γi
AB

 are the Lifshitz van der 

Waals and Lewis acid-base components of the surface tension also known as Fowke’s 

equation. (Fowkes, 1964) Equation A.2 describes surface tension as a function of the 2 

classically assumed surface tension contributions. These cannot be measured directly and 

therefore must be estimated. Often a liquid solvent is used to interrogate the properties of 

a solid substrate via goniometry by the following relation. 

𝛾𝑠 = 𝛾𝑖 cos 𝜃𝑖 + 𝛾𝑠𝑙         (A.3) 
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Where γi is defined as above, γs is the energy of the substrate, and γsl is the substrate-

solvent interaction energy and θ is the contact angle of solvent i. Equation A.3 is known 

as the Young’s equation which relates the surface energy to the contact angles with 

solvents. This replaces the indirectly measurable quantity with a measurable correlation. 

In general, the interfacial free energy between two phases (namely the substrate-solvent 

interface) can be defined as follows. 

𝛾12 = 𝛾1 + 𝛾2 −  𝑊𝑎         (A.4) 

Where γ1 and γ2 are the interfacial surface tension components and Wa is the work of 

adhesion to a substrate. The work of adhesion has been expressed as equation A.5 also 

termed the Young-Dupré equation (Chaudhury & Whitesides, 1991). 

𝑊𝑎 = 𝛾1(1 + cos 𝜃𝑎)         (A.5) 

Where Wa is as defined above, θa is the contact angle of solvent 1, and γ1 is the total 

surface tension of solvent 1.  When combined, Equations A.3 and A.4 express the work 

of adhesion as a function of contact angle as follows in Equation A.6.  Also, Equations 

A.5 and A.6 can be combined into Equation A.7 which can be used in a traditional  3 

solvent system to solve for the substrate surface energy components. 

𝑊𝑎 = 2 [(𝛾1
𝐿𝑊𝛾2

𝐿𝑊)
1

2⁄ + (𝛾1
+𝛾2

−)
1

2⁄ + (𝛾1
−𝛾2

+)
1

2⁄ ]     (A.6) 

𝛾1(1 + cos 𝜃𝑎) = 2 [(𝛾1
𝐿𝑊𝛾2

𝐿𝑊)
1

2⁄ + (𝛾1
+𝛾2

−)
1

2⁄ + (𝛾1
−𝛾2

+)
1

2⁄ ]   (A.7) 

Where Wa, γi
LW

, and θa are as defined above, γ
+
 is the electron acceptor component γ

-
 is 

the electron donor component and γ1 is the total surface tension of the solvent.  It is 
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important to note that the subscripts 1 and 2 designate the known and unknown 

properties, respectively. Equation A.6 is known as the van Oss-Chaudhury-Good (OCG) 

thermodynamic approach for surface free energy determination using 3 solvents with 

known properties. (Fowkes, 1964) As the work of adhesion cannot be measured directly, 

Equation A.7 uses the measured contact angles and known solvent properties to solve for 

the unknown substrate properties. This method does not account for electrostatic 

contributions to surface energy however, prompting development of the extended DLVO 

model (XDLVO) with the following energy contributions. 

𝑈𝑆
𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑆

𝐿𝑊 + 𝑈𝑆
𝐸𝐿 + 𝑈𝑆

𝐴𝐵        (A.8) 

Where U is the total interaction energy, AB and LW are as defined above and EL is the 

electrostatic free energy component. In conjunction with Equation A.7, Gibbs free energy 

per unit area for each interaction type can be determined as follows (S. Kang & Choi, 

2005).  

∆𝐺0
𝐿𝑊 = 2 ∗ [√𝛾𝑏

𝐿𝑊 − √𝛾𝑤
𝐿𝑊] ∗ [√𝛾𝑤

𝐿𝑊 − √𝛾𝑠
𝐿𝑊]     (A.9) 

∆𝐺0
𝐴𝐵 = 2 ∗ [√𝛾𝑤

+(√𝛾𝑏
− + √𝛾𝑠

− − √𝛾𝑤
−) + √𝛾𝑤

− (√𝛾𝑏
+ + √𝛾𝑠

+ − √𝛾𝑤
+) − (√𝛾𝑏

+𝛾𝑠
− +

√𝛾𝑏
−𝛾𝑠

+)]          (A.10) 

∆𝐺0
𝐸𝐿 =

𝜀0𝜀𝑟𝜅

2
(Ψ2

𝑏 + Ψ2
𝑠) [1 − coth(𝜅ℎ0)  + 

2Ψ𝑏Ψ𝑠

Ψ2
𝑏+Ψ2

𝑠
csch(𝜅ℎ0)]  (A.11) 

Where γ, LW, AB, and EL are as defined above, ε0 and εr are the dielectric permittivity of 

free space and water, respectively, Ψ is the zeta potential, κ is the inverse Debye length, 
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h0 is the minimum approach distance, ∆G0 is the Gibbs free energy of adhesion per unit 

area, and the subscripts are w for water, s for substrate and b for bacteria. From the above 

adhesion energies, the interaction energies as a function of separation distance may be 

calculated for each component as listed below (S. Kang & Choi, 2005).  Sphere and plate 

geometry are typically used for AB and LW components whereas infinite plate-infinite 

plate geometry is typically used for EL components (Bhattacharjee, Chen, & Elimelech, 

2000b) as follows.  

𝑈𝑠
𝐿𝑊 =

2𝜋ℎ0
2∗∆𝐺0

𝐿𝑊∗𝑎

ℎ(1+14ℎ
𝜆⁄ )

         (A.12) 

𝑈𝑠
𝐴𝐵 = 2𝜋𝜆1 ∗ ∆𝐺0

𝐴𝐵 ∗ 𝑒

(ℎ0−ℎ)
𝜆1

⁄

       (A.13) 

𝑈𝑠
𝐸𝐿 = 𝜋𝜀𝜀0𝑎 [2Ψ𝑏Ψ𝑠𝑙𝑛 (

1+𝑒−𝜅ℎ

1−𝑒−𝜅ℎ) + (Ψ𝑏
2 + Ψ𝑠

2)𝑙𝑛(1 − 𝑒−2𝜅ℎ)]   (A.14) 

Where γ, LW, AB, EL, ε0, εr, Ψ, κ, h0, ∆G0, and U are as defined above, a is the cell 

radius, h is the separation distance, λ is the characterstic wavelength of interaction 

(assumed to be 100 nm) (B. Li & Logan, 2004), and the subscripts are w for water, s for 

substrate and b for bacteria.   

A.2.9 XDLVO Predictions from Experimental Data 

 Goniometry data was input to a Matlab script to determine the roots of Equation 

A.7 from 3 distinct liquid triads for each substrate. Following simple algebraic 

manipulation, the right side of equation A.7 was factored to form a 3 x 3 matrix (A) of 

known solution properties multiplied by a 3 x 1 vector (X) of substrate unknowns. The 
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left side of equation A.7 formed a 3 x 1 vector (B). The unknown vector X was solved for 

by simple matrix division for efficient, rapid calculation. From the roots of Equation A.7, 

the Gibbs free energy of adhesion was calculated for both microorganisms. The cell 

surface tension components required for estimating Gibbs free energy of adhesion were 

used from tabulated data for E. coli (B. Li & Logan, 2004), and S. cerevisiae (S. Kang & 

Choi, 2005).  Other factors such as Debye length, 5 nm separation and a minimum 

separation distance of 0.164 nm were used with Equations A.9-A.11. The Gibbs energies 

of adhesion were used to estimate the total interaction energies of attachment for each of 

the 2 organisms on each of the 3 substrate materials by Equations A.12-A.14. 

A.3.0 Results and Discussion 

A.3.1 Substrate and Cell Characterization by Zeta Potential 

As bacteria approach the surface of a separations substrate such as a membrane or 

adsorbent, the charge interaction between the cell and surface occurs first. Attractive and 

repulsive forces are most simply characterized by the differences in surface charge. 

Surface charge can be directly measured by determining the electrophoretic mobility of a 

particle, which can be converted back to a zeta potential. This is done automatically in 

modern instruments designed for quantifying zeta potential. Zeta potentials were 

determined for particles of 3 type of substrate common to separations processes (alumina, 

silicalite, and PDMS). Zeta potential of a charged particle varies with the ionic 

environment however. Ionic strength of media is important not only for cellular growth 

but also for its implications on fouling. For example, addition of NaCl has been observed 

to reduce the repulsion between E. coli and mica because of the phenomenon of charge 

screening (Ong et al., 1999b). This occurs as suspended ions in aqueous solutions are 
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attracted to the opposing charge on a submerged surface. Fewer of the surface charges are 

‘experienced’ by the remaining aqueous solution, reducing the effective surface charge as 

ionic strength increases.  

Surface charges of bacteria tend to primarily be negative, so both positively and 

negatively charged substrates were evaluated in this study. The first step of 

characterization was to determine particle size distributions. Alumina, silicalite and 

PDMS particles were found to have average diameters of 0.53 µm, 0.2 µm and 3 µm, 

respectively. The zeta potential for each substrate was then evaluated for 0, 10 and 100 

mM NaCl aqueous suspensions. The resultant zeta potentials are presented in Table A.1. 

Of the substrates studied here, silicalite had the most electronegative surface charge at -

45.6 mV in deionized water. At low ionic strength and pH range of 7-8 others have also 

observed zeta potentials of silicalite colloids to range from approximately -40 mV (Y. 

Wang et al., 2001) down to -50 mV. (Nikolakis, Kokkoli, Tirrell, Tsapatsis, & Vlachos, 

2000) At higher ionic strength and pH 7-8, the reported silicalite zeta potential rises to -

20 mV because of ionic screening (Y. Wang et al., 2001) which compares well with the -

19.4 mV observed at 100 mM NaCl for silicalite in this study. Zeta potentials of other 

substrates decreased in absolute value with increasing ionic strength as seen in Table A.1.   

Table A.1.  

Substrate Zeta Potential vs Ionic Strength. 

Zeta Potentials 

(mV) PDMS Silicalite Alumina 

0 mM ‐ 30.7 ± 7.0 ‐45.6 ± 5.4 30.6 ± 4.5 

1 mM ‐18.2  ± 4.0 ‐49.1 ± 6.2 13.9 ± 4.2 

10 mM ‐ 16.7 ± 5.3 ‐42.9 ± 4.8  12.1 ± 3.8 

100 mM ‐ 6.3 ± 4.6 ‐19.4 ± 5.1 ‐ 5.33 ± 4.2 
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Cellular surface charges fluctuate with changes in the pH of the aqueous 

background as the plasma membrane tends to be polarized and protonated differently as a 

function of pH (S. Kang & Choi, 2005). S. cerevisiae surface properties used in this study 

were measured by Kang et al. (S. Kang & Choi, 2005) while the E. coli properties were 

determined from adhesion studies on coated glass surfaces (B. Li & Logan, 2004). The 

zeta potentials used for this study are reported in Table A.2. As with the substrates, zeta 

potential decreases in absolute value with increasing ionic strength. Notably, the zeta 

potentials of both cells and substrate are directly comparable in magnitude. In an 

ionically complex media, it might be expected that some cellular repulsion from 

substrates would exist. High osmolarity and high ionic strength of the aqueous 

background increase microbial adhesion even robust biofilm formers such as P. 

fluorescens on polymer substrates (O'Toole & Kolter, 1998). Other correlations between 

ionic strength and increased cell-surface adhesion are very linear, though ionic strength 

alone is not an accurate predictor of cellular adhesion compared to surface free energy. 

(B. Li & Logan, 2004) Meanwhile bulk cell growth is largely unaffected by ionic strength 

of the media ranging from 0-0.4 M. (O'Toole & Kolter, 1998)  

Table A.2.  

Cellular Zeta Potential vs Ionic Strength. 

Zeta 

Potentials 

(mV) 

S. 

cerevisiae E. coli Reference 

1 mM — −53 ± 5 (B. Li & Logan, 2004) 

10 mM −8.7 ± 1.5 — (S. Kang & Choi, 2005) 

100 mM — −32 ± 6 (B. Li & Logan, 2004) 
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150 mM −9.4 — (S. Kang & Choi, 2005) 

 

A.3.2 Substrate and Cell Characterization by Goniometry 

Increasing hydrophobicity of the substrate has also been correlated with increased 

cellular adhesion but cannot be determined by zeta potential, rather the contact angle is 

the only reliable indicator of relative hydrophobicity. (B. Li & Logan, 2004; Sano, 

Yanagishita, Kiyozumi, Mizukami, & Haraya, 1994) The susceptibility of a substrate to 

cellular fouling has also been studied with respect to surface roughness and 

hydrophobicity with lesser and greater effects, respectively. (Park, Kwon, Kim, & Cho, 

2005) The high swelling coefficient of many alkanes and organic solvents, determining 

the free surface energy of polymers such as PDMS are challenging by sessile drop 

methods. (Chaudhury & Whitesides, 1991) Among the substrates studied here, the most 

hydrophobic (having the greatest water contact angle) was the PDMS whereas the most 

hydrophilic was silicalite as seen in Figure A.1B and C&D, respectively. The contact 

angles for both virgin and fouled substrates have been collected in Table A.3. Both virgin 

and fouled substrates were compared via the attachment energies before and after cellular 

attachment. Figure A.1A & F show electron micrographs of PDMS before and after 

exposure to E. coli KO11, while Figure A.1 E & J show the same electron micrographs 

for silicalite. The fouled substrate contact angles are presented in Figure A.1G, H&I for 

PDMS and silicalite. Silicalite has a far lesser water contact angle compared to alumina 

and PDMS and is therefore least hydrophobic of the substrates. The alumina substrate 

had consistent contact angles before and after growth in the well plates. Following 

cellular attachment, the contact angles for all substrates decreased, reflecting the changes 
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in surface properties and a transition from hydrophobic to hydrophilic properties. This 

difference is most pronounced for PDMS with its 80% decrease in water contact angle 

compared to a 15% decrease for silicalite.  Silicalite contact angle for water decreased 

slightly whereas the contact angles for other solvents increased with DMSO contact 

angles remaining essentially constant as seen in Table A.3. 

 

Figure A.1. Goniometry Before and After Cellular Fouling.  A) Electron micrograph 

of virgin PDMS, water contact angle of B) virgin PDMS, C) alumina and D) yittria-

supported zirconia substrates coated in silicalite, E) virgin silicalite, F) electron 

micrograph of fouled PDMS, water contact angles on G) fouled PDMS, fouled H) 

alumina and I) Yittria-supported zirconia substrates coated in silicalite, J) electron 

micrograph of fouled silicalite. 

Table A.3.  

Substrate Contact Angle. 

 

Virgin Substrate Fouled Substrates 

Contact Angle (degrees) PDMS Silicalite Alumina PDMS Silicalite Alumina 

Water 113 ± 3 54 ± 6 85 ± 7 22 ± 2 41 ± 3  85 ± 7 

Glycerol 106 ± 3 75 ± 5 — — — — 

Hexadecane 47 ± 5 Wetting — 8 ± 1 13 ± 1 — 

Dodecane 50 ± 3 Wetting — — — — 
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Ethylene Glycol 101 ± 3 33 ± 4 57 ± 5 59 ± 4 51 ± 6 57 ± 5 

Dimethyl Formamide 93 ± 2 20 ± 3 — — — — 

Diiodomethane 86  ± 8 44 ± 4 65 ± 2 52 ± 1 50 ± 3 65 ± 2 

DMSO 93  ±  2 24 ± 3 46 ± 9 31 ± 4 24 ± 2 46 ± 9 

 

Such large change in apparent surface properties of PDMS was likely the result of 

the extra-cellular matrix (ECM) formed between cells, which is also contextually referred 

to as EPS, or the glycocalyx, and often forms as a stress response (Popielarska-

Konieczna, Bohdanowicz, & Starnawska, 2010). EPS is composed of high MW 

polysaccharides, lipids, phosphates, proteins, nucleic acids, flagella, pili, cellular debris 

all up to 95% water by mass (Dohnalkova et al., 2011; Vertes et al., 2012). Each of these 

components has distinct physical chemical properties and together are responsible for the 

majority of cellular attachment forces measured by AFM at cell-substrate separation 

distances less than 20 nm (Ong, Razatos, Georgiou, & Sharma, 1999a). EPS is 

approximately 10-fold greater mass in biofilm compared to cells. (Lorite et al., 2013; 

Vertes et al., 2012) The cellular contact angles used for this study are listed in Table A.4. 

It is interesting to note that the cellular contact angles for E. coli compared closely to 

those of fouled PDMS for water (19° and 22°, respectively) and diiodomethane (43° and 

52°, respectively). While not identical, the substrate surface clearly becomes more 

hydrophilic after cellular attachment begins. This is likely to promote further and more 

rapid fouling of the substrates. In the case of an adsorbent or pervaporation membrane, 

this fouling would inhibit separations performance. It is therefore important to understand 

how substrate and cell properties effect the mechanism of the substrate fouling. 

Table A.4.  
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Cellular Contact Angles. 

Contact Angle (degrees) E. coli JM109   S. cerevisiae  

Water 19 ± 2 25 ± 2   

Glycerol 40 ± 4  — 

Ethylene Glycol — 32 ± 2 

Diiodomethane 43 ± 2 64 ± 3 

Reference (B. Li & Logan, 2004) (S. Kang & Choi, 2005) 

 

A.3.3Modeling Bacteria-Substrate Attachment Energies 

The most effective means of estimating the likelihood of a substrate to foul in the 

presence of any given microorganism is to first estimate the energy of attachment 

between substrate and cell. These analytical methods rely on surface characterization of 

both cells and substrates.  Substrate properties are readily determined from contact angle 

goniometry with judicious choice of an apolar alkane (having neither electron donor, nor 

electron acceptor component energies) in the liquid triad. The substrate’s Lifschitz-van 

der Waals component energy is easily determined from Equation A.7 when the alkane is 

not swelling or solvating the substrate. Substrate swelling is a particular challenge with 

polymeric substrates such as PDMS. (Chaudhury & Whitesides, 1991; J. N. Lee et al., 

2003) Many solvent properties have been tabulated (Fowkes, 1964) for a number of 

liquid triads. Depending on the liquid triad chosen, the calculated surface energies will 

differ often due to the degree of surface adsorption of one or more of the solvents, which 

is difficult to quantify. (Chibowski & Perea-Carpio, 2002) This can also result in 

overestimation of the surface tension components when ‘negative’ values result from 

solving the roots of Equation A.7 (Hwang, Yang, Lee, Ahn, & Mhin, 2011; Kwok, Li, & 

Neumann, 1994). Accordingly, it is best to estimate the surface energies by using a 
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multiple solvent triads since there is no direct method to measure the surface free energy 

of a substrate. (Chibowski & Perea-Carpio, 2002) 

Substrates were interrogated by surface chemistry analytical techniques including 

contact angle goniometry and zeta potential determination. Using the XDLVO method 

rooted in the earlier DLVO method (Verwey & Overbeek, 1948) for cell-substrate 

attachment energy from analytical chemistry data is a common practice. (Bhattacharjee, 

Chen, & Elimelech, 2000a; Bhattacharjee, Sharma, & Bhattacharya, 1996; B. Li & 

Logan, 2004; Ong et al., 1999a). For this study substrates were interrogated using the 

following solvents: water, glycerol, hexane, hexadecane, dimethylformamide, 

dimethylsulfoxide and diiodomethane. The first substantive energetic analysis by which 

to compare substrates is the OCG method calculated by Equation A.6, as presented in 

Table A.5. Whereas for PDMS the work of attachment decreases by ~17% after fouling, 

it decreases for silicalite by ~88 % and is unchanged for alumina which remained 

unchanged after exposure to culture. This indicates that once fouling of a separations 

surface begins, the cells attach more readily. Also clear from this initial estimate is that 

silicalite has ~4-fold greater work of attachment than alumina and ~1.7-fold greater than 

that of PDMS. From these results, it seems that the alumina, PDMS and silicalite should 

undergo cellular attachment in the order of the work of attachment. This parameter 

doesn’t account for cellular or electrostatic contributions to attachment and therefore 

doesn’t provide an accurate fouling prediction. 

Table A.5.  

Estimated Work of Attachment. 
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OCG Work of Attachment PDMS (mJ/m^2) 

Silicalite 

(mJ/m^2) Alumina (mJ/m^2) 

Virgin substrates 78.2 129.1 32.1 

Fouled substrates 64.7 16.0 — 

 

By including the contact angles of not only the substrate but also E. coli and S. 

cerevisiae, a more complete comparison can be made. The virgin substrate energies for 

each of the 3 separations materials are presented in Table A.6 as calculated from the 

DLVO method. It would seem from this estimation that alumina and PDMS would foul 

similarly. From the energy of attachment calculated by the XDLVO method in Table A.6 

for E. coli attachment, it becomes clear that attachment to PDMS requires only ~36% of 

the energy required to attach to alumina and silicalite. It would therefore be expected that 

the cellular attachment to PDMS would be significantly greater than for silicalite or 

alumina. The attached E. coli KO11 cells counted from several scanning electron 

micrographs are also presented in Table A.6. There were ~5.7-fold more cells attached to 

PDMS compared to silicalite and none observed for alumina. For the attachment of E.coli 

then, the results expected from the XDLVO model are consistent with the experimental 

observations. Energy of attachment for S. cerevisiae to the substrates was also estimated 

in Table A.6. From these values, it would be expected that cellular attachment of yeast 

should be comparable between PDMS and silicalite. While S. cerevisiae was observed to 

attach to PDMS, no attachment was observed for alumina or silicalite as shown in Table 

A.6. A closer examination of the energy of attachment contributions calculated from 

Equations A.12-A.14 shows the acid-base interactions are dominant. Specifically, the 

acid-base contributions to the energy of attachment are 10-fold larger than the other 
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contributions at ~5nm approach distance. The calculated acid-base contributions to 

energy of attachment for PDMS and silicalite are approximately 2-fold that of the 

Polyethersulfone membranes studied by Bhattacharjee et al. (Bhattacharjee et al., 1996) 

This is likely due to differences in both the polymer chemistries and the liquid triads used 

for characterization, but demonstrates the calculated values are reasonable. The 

dominance of the acid-base interactions often leads to the conclusion that hydrophobicity 

has the strongest correlation between substrate properties and cellular attachment. (B. Li 

& Logan, 2004) This is important to understand for judicious choice of adsorbents in 

particular where longer contact times with culture will allow cellular attachment to begin. 

(Wiehn et al., 2014) 

Table A.6.  

XDLVO Attachment Energies and Attached Cell Counts. 

 

 An important factor to consider for separations, specifically bioalcohol adsorption 

is the influence of the product (e.g. ethanol) on the energy of attachment to substrates. 

For in situ recovery by adsorbents such as L-493 resins (Wiehn et al., 2014) or activated 

carbons (Sulaymon & Ahmed, 2008) it is common to start product adsorption after ~12-

24 hours. (Ezeji et al., 2013; Xiaoqing Lin et al., 2013) This means that a model cellular 

attachment environment would necessarily include the effects of ethanol, though such an 

XDLVO analysis of separations materials has not been investigated to the author’s 

XDLVO

Virgin substrate 

energies (mJ/m^2)

E. coli attachment 

energy (J)

E. coli KO11 

(cells/μm2)

S. cerevisiae BY4741 

attachment energy (J)

S. cerevisiae 

BY4741 (cells/μm2)

PDMS 24.6 1.8E-13 4.00E+07 2.94E-13 6.49E+06

Silicalite 87.3 6.5E-14 7.13E+06 2.88E-13 —

Alumina 32.3 5.9E-14 — — —

E. coli JM109 surface 

energy (mJ/m^2) 215.4
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knowledge. The same characterizations were carried out with ethanol/water contact 

angles used to solve for ethanol-dependent roots of Equation A.7. The ethanol contact 

angles change compared to deionized water because of changes in the surface tension. 

The energy of attachment for both E. coli and S. cerevisiae on silicalite and PDMS were 

calculated by XDLVO with the results presented in Table A.7. As the ethanol 

concentration increases, the energy of attachment of E.coli decreased for both silicalite 

and PDMS. At 5% ethanol the energy of attachment of E. coli to PDMS becomes a 

negative value, which would be expected to promote biofilm formation on the surface. 

This would be coincident with the ethanol stress on E. coli which would further promote 

biofilm formation as a stress response. Interestingly the energy of attachment increases 

for S. cerevisiae, which implies that lesser attachment should be observed for increased 

ethanol concentration. Also presented in Table A.7, the fouled substrate attachment 

energy for E. coli is nearly the same for both substrates and the attachment energy for 5% 

ethanol on silicalite. It would therefore be expected that cellular attachment leading to 

biofilm formation becomes much greater once cellular attachment is established on a 

substrate. As the XDLVO method does not entirely capture the fouling potential of a 

substrate for all organisms, another important factor to consider is the contributions to 

forming the ‘conditioning layer’ on the substrates. 

Table A.7.  

XDLVO Attachment Energy on Substrates. 

Energy of Attachment PDMS (J) Silicalite (J) 

Virgin Substrate & E. coli JM109 1.8E-13 2.7E-13 

3% EtOH & E. coli JM109 1.8E-13 2.8E-13 

5% EtOH & E. coli JM109 -1.5E-14 5.1E-14 
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Fouled Substrate & E. coli JM109 4.7E-14 5.0E-14 

Virgin Substrate & S. cerevisiae BY4741 6.5E-14 5.1E-14 

5% EtOH & S. cerevisiae BY4741 2.9E-13 2.9E-13 

 

A.3.4 Conditioning Layer Formation by Media Components 

 There are many organic components present in aqueous media capable of 

initiating formation of a ‘conditioning layer’. A diagram of a generalized fouling 

mechanism is presented in Figure A.2 where the conditioning layer promotes early 

cellular attachment, leading to biofilm formation. One significant contributor to 

conditioning the substrate for cellular attachment are the lipopolysaccharides (LPS) from 

E. coli, for example, which have a negative surface charge (Hardy, Kamphuis, Japaridze, 

Wilschut, & Winterhalter, 2012). LPS-substrate adhesion is known to be inversely 

proportional to LPS length (B. Li & Logan, 2004), meaning that as cell-substrate 

separation distance decreases, the LPS-substrate adhesion increases. The attachment of 

robust biofilm formers such as P. aeruginosa to surfaces increased with increasing LPS 

length at low ionic strength, though not at high ionic strength (B. Li & Logan, 2004). 

This is of particular interest to adsorbents with the long contact times for in situ product 

recovery. 
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Figure A.2. General Biofouling Development. A) Conditioning film of proteins, lipids 

and cellular debris, B) Cellular attachment to the conditioning layer, C) Early biofilm. 

As this supposed ‘conditioning layer’ has not been rigorously characterized to the 

author’s knowledge, an experiment was devised. To evaluate the effect of media 

components on ‘conditioning layer’ formation, substrates were ethanol sterilized and 

submerged in sterile cell-free Luria-Bertani media for 24 hours in a shaking incubator at 

37°C and 120 rpm. AFM was performed on the substrates following media exposure to 

determine changes in the surface roughness caused by the formation of a ‘conditioning 

layer’ which would otherwise not be directly observable. The AFM results are displayed 

in Figure A.3 for both silicalite and PDMS. The roughness measured by AFM increased 

for PDMS while it decreased for silicalite. As these substrates were rinsed by deionized 

water, the changes in roughness were the result of substrate fouling rather than particle 

sedimentation. In the case of silicalite the high initial roughness leaves troughs and 

valleys of the crystalline surface which become partially occluded by adsorbed material.  

While this method shows qualitative fouling by media components, it provides no 

quantitative insights about what media components adsorbed. It is thought the adsorbed 

media components include primarily proteins and polysaccharides (Ras et al., 2013) 

perhaps from yeast extract present in LB media.  
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Figure A.3. Biofouling of Media Components. A) Conditioning film of proteins, 

lipids and cellular debris, B) Cellular attachment to the conditioning layer, C) Early 

biofilm. 

To evaluate the likelihood of protein fouling of substrates, Bovine Serum 

Albumin was chosen as a model protein for an adhesion study. Substrates were immersed 

in varied concentrations of BSA in glass vials and the aqueous solution dyed with 

coomasie blue dye before being quantified by optical density at 595 nm. The adsorption 

isotherms for BSA onto PDMS and silicalite are displayed in Figure A.4. It is clear that 

BSA adhered to both silicalite and PDMS, with PDMS having the greater BSA 

adsorption. Adhesion of BSA to silicalite seemingly reaches equilibrium at ~0.003 g/g 

whereas the PDMS substrate accumulates what may be multiple BSA layers. Langmuir-

type isotherm behavior is often observed for protein adsorption onto silicalites whereas 

multilayer adsorption profiles have been observed for other substrates (Noisuwan, 

Hemar, Wilkinson, & Bronlund, 2011; Oudshoorn et al., 2009a). These adsorption 

studies were conducted at 100 mM ionic strength where foulant-foulant interactions are 

often more energetically favorable than foulant-substrate interactions (Ang & Elimelech, 
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2007). Electrostatic interactions between BSA molecules were not a factor for this study 

as the isoelectric point for BSA was used. Silica materials are known to have primarily 

repulsive interactions with proteins which can slow protein adsorption. (van Oss, 1993) It 

is also known that proteins tend to adhere to substrates with higher energy surfaces such 

as hydrophobic polymers (van Oss, 1993) which is consistent with the BSA isotherm 

behavior for PDMS. While BSA adsorption is more quantitative than the AFM results 

above, it does not characterize a complete fouling mechanism. Other factors such as 

surface roughness are also important to consider. 

 

Figure A.4. Bovine Serum Albumin Isotherm. Isotherm for bovine serum albumin 

adsorption onto silicalite (diamonds) and polydimethyl siloxane (squares) 

A.3.5 Effects of Roughness on Whole-Cell Fouling 

 Substrate roughness does effect fouling by microorganisms, but to a lesser degree 

than other factors for bacteria. (B. Li & Logan, 2004) Both virgin substrates and cell 

fouled substrates were examined after being rinsed with deionized water and air dried 
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overnight. Virgin silicalite samples had roughness values approximately 10-fold greater 

than PDMS. Fouled silicalite membranes increased in roughness due to the presence of 

cells as seen in Figure A.5. It is clear that the substrate roughness of the silicalite did not 

prevent cellular attachment. The effects of ethanol on cellular attachment were also 

qualified with this study where increasing ethanol content reduced the cellular attachment 

to silicalite. 

 

Figure A.5. AFM of Virgin and Fouled Alumina-Supported Silicalite Effects of 

Ethanol. Top row: Virgin and E. coli KO11 biofouled alumina supported silicalite with 

0% ethanol. Bottom Row: Biofilm grown on alumina supported silicalite with 2 and 5 

wt% ethanol content. 

Similarly to alumina supported silicalite, the YSZ-supported silicalite membranes 

increased in overall roughness with fouling as seen in Figure A.6. Likewise with the 
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increase in ethanol concentration, the cellular attachment decreased qualitatively. Also 

similar to the alumina-supported silicalite, the surface roughness did not prevent cellular 

attachment. 

 

Figure A.6. AFM of Virgin and Fouled YSZ-Supported Silicalite Effects of 

Ethanol. Top row: Virgin and E. coli KO11 biofouled YSZ supported silicalite with 0% 

ethanol. Bottom Row: Biofilm grown on YSZ supported silicalite with 2 and 5 wt% 

ethanol content. 

PDMS roughness was found to increase by approximately 200-fold following 

fouling. AFM results taken alone suggest that the less rough surface of the PDMS was 

somehow more favorable for cellular attachment than the silicalite. The effects of ethanol 

on cellular attachment to PDMS are presented in Figure A.7. The increased roughness 
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from cellular attachment was consistent across ethanol concentrations, but qualitatively 

cell fouling at 5% ethanol was greater than for any other case studied. 

 

Figure A.7. AFM of Fouled PDMS Effect of Ethanol. PDMS fouling as influenced 

by ethanol concentration from 0% (left) to 5% (right). 

The most significant changes in the substrates quantified by AFM investigation 

occurs for PDMS. This study does not quantify the changes in energy of interaction 

between the AFM probe and the virgin or fouled substrates. Other groups have studied 

substrate roughness often with no conclusive correlation to cellular attachment (Cao et 

al., 2006; Ciston et al., 2008; B. Li & Logan, 2004; Q. Lu, Wang, Faghihnejad, Zeng, & 

Liu, 2011). Substrate roughness between 0.04 and 1.24 µm have been observed to 

promote biofilm formation while more roughened surfaces are more resistant to biofilm 

formation given the same chemistry. (Hou, Gu, Smith, & Ren, 2011) Taken together, the 

XDLVO results and the AFM characterizations show that once the conditioning layer 

begins to form, the substrates become increasingly similar both physically and in surface 

energy. Once E. coli attachment has occurred, the substrates are not distinguishable by 

roughness and are nearly identical in the required energy of attachment. Aside from 

alumina, these results suggest that it is expected most substrates will undergo cellular 

attachment. Since substrate material alone can only slow attachment, extended 
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applications of in situ product recovery by adsorption or pervaporation could greatly 

benefit from reduction of the ability of the organism to attach to substrates. 

A.3.6 Effect of Gene Deletion on S. cerevisiae Attachment 

Several strains of S. cerevisiae were obtained with and without the Flo11 gene 

thought to be responsible for the flocculation of yeast. (Bauer, Govender, & Bester, 2010; 

B. Guo, Styles, Feng, & Fink, 2000) Substrates were ethanol sterilized and added to 6 

well plates with NB glucose media as with the previous attachment studies. The 

substrates were cultured for 48 hours to allow sufficient growth of the yeast strains. 

Substrates were then chemically fixed for SEM imaging using the protocol previously 

described. The electron micrographs are presented in Figure A.8 where the top row 

represents silicalite substrates and the bottom row represents PDMS attachment. Yeast 

attachment to silicalite was generally poor, with only some cellular attachment observed. 

PDMS was observed to have significant attachment of yeast strains, particularly by 

BY4741 as seen in Figure A.8. This is consistent with the energy of attachment 

predictions from the XDLVO method. When the primary flocculation gene was deleted 

from BY4741, the cellular attachment decreased approximately 94%. S288C is a yeast 

strain known for its high flocculation and low substrate adhesion. Without Flo11, the 

S288C strain reduced cellular attachment to PDMS by ~51%. While there was no 

significant quantitative difference between S. cerevisiae attachment to silicalite with and 

without Flo11, the results for PDMS are significant. While not an all-inclusive gene 

deletion study, it is clear that some clever genetic engineering of the organism in 

combination with judicious substrate choice, the cellular attachment may be well 

controlled. More extensive studies would likely develop a strategy for the prevention of 
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cellular attachment on the separations substrates leading to improved performance for 

longer duration in situ product recovery. This is of particular interest for a process where 

semi-continuous operation with in situ product recovery is the objective. 

 

Figure A.8. Electron Micrographs of Yeast Attachment to Substrates.  Top row: 

Electron micrographs from SEM of a few S. cerevisiae strains grown on silicalite 

membranes. BY4741 and its child strain ΔYDL233W missing Flo11 followed by 

ATCC96581 and  BY4741 with and without Flo11. Bottom row: Electron micrographs of 

the same S. cerevisiae strains grown on PDMS membranes. 

A.4.0 Conclusion and Future Work 

 It is clear that polymeric substrates (e.g. pervaporation membranes) will foul, not 

only from media components, but undergo whole cell fouling. E. coli attachment to both 

PDMS and silicalite substrates can be reasonably predicted from XDLVO estimation of 

the energy of attachment. The formation of a conditioning layer by media components, 

particularly proteins prior to cellular attachment has been established for both PDMS and 

silicalite substrates. While the substrate roughness did not provide a meaningful 

correlation with cellular attachment, the relative hydrophobicity defined by contact 
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angles did. The more hydrophobic substrate was prone to increased fouling not only by 

model proteins but also whole cells. Even within 48 hours in rich media, dense cell layers 

were observed to form by all organisms on PDMS, with only moderate attachment to 

silicalite. By deleting certain genes involved in cellular attachment, cell fouling can be 

reduced, though not eliminated. In combination, both judicious strain engineering and 

substrate choice could greatly reduce the impact of fouling on separations substrates for 

in situ product recovery. 

This study would greatly benefit from the inclusion of B. subtilis and P. 

aeruginosa for the XDLVO modeling and attachment studies. B. subtilis is a model 

Gram-positive bacteria which can often be found in biofilms, while P. aeruginosa is a 

well-known infectious microorganism and a robust biofilm former. (B. Li & Logan, 

2004) These microorganisms along with the current study of E. coli and S. cerevisiae 

would represent a broad cross section of bioprocesses, giving this study greater relevance 

across many industrial applications. The cellular attachment could perhaps also be 

characterized with techniques such as environmental SEM to capture the cellular 

attachment before the harsh chemical actions of cell fixation. This study would also be 

further enhanced by the inclusion of more substrate materials such as activated carbon 

and glass as both materials are industrially ubiquitous for bioprocessing. 
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APPENDIX B 

ADSORPTION OF OTHER METABOLITES ONTO MMCPS 
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B.1.0 Adsorption of Other Bioproducts 

 Adsorption studied were conducted as described in the chapters with 100 g/L ratio 

of adsorbents to aqueous phase. The adsorption of xylose, glucose, succinate and lactate 

were evaluated. Figure B.1 shows the limited adsorption of select sugars from 

lignocellulosic feedstocks and select bioproducts. Xylose in Figure B.1A does not 

appreciably adsorb onto MMCPs, nor does glucose as seen in Figure B.1B. Sodium 

succinate adsorbs onto MMCPs up to ~0.05g/g which may be considered low adsorbent 

loading as can be seen in Figure B.1C. Lactate does adsorb onto MMCPs likely, multi-

layer adsorption given its linearity as seen in Figure B.1D. 

 

Figure B.1. Adsorption of Other Bioproducts. Equilibrium adsorption of A) xylose, 

B) glucose, C) Succinate, D) Lactate.  

 


