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ABSTRACT

Visual Question Answering (VQA) is a new research area involving technologies rang-

ing from computer vision, natural language processing, to other sub-fields of artificial in-

telligence such as knowledge representation. The fundamental task is to take as input one

image and one question (in text) related to the given image, and to generate a textual answer

to the input question. There are two key research problems in VQA: image understanding

and the question answering. My research mainly focuses on developing solutions to sup-

port solving these two problems.

In image understanding, one important research area is semantic segmentation, which

takes images as input and output the label of each pixel. As much manual work is needed

to label a useful training set, typical training sets for such supervised approaches are al-

ways small. There are also approaches with relaxed labeling requirement, called weakly

supervised semantic segmentation, where only image-level labels are needed. With the

development of social media, there are more and more user-uploaded images available on-

line. Such user-generated content often comes with labels like tags and may be coarsely

labelled by various tools. To use these information for computer vision tasks, I propose a

new graphic model by considering the neighborhood information and their interactions to

obtain the pixel-level labels of the images with only incomplete image-level labels. The

method was evaluated on both synthetic and real images.

In question answering, my research centers on best answer prediction, which addressed

two main research topics: feature design and model construction. In the feature design

part, most existing work discussed how to design effective features for answer quality /

best answer prediction. However, little work mentioned how to design features by consid-

ering the relationship between answers of one given question. To fill this research gap, I

designed new features to help improve the prediction performance. In the modeling part, to

employ the structure of the feature space, I proposed an innovative learning-to-rank model
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by considering the hierarchical lasso. Experiments with comparison with the state-of-the-

art in the best answer prediction literature have confirmed that the proposed methods are

effective and suitable for solving the research task.
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Chapter 1

INTRODUCTION

Vision is one important function we have to access our world, however there are a lot of

people who are visually impaired. According the statistics from National Health Interview

Survey (NHIS) 2015, in U.S., there are 23.7 million adult reported vision loss, while in the

world, there are about 285 million people who are visually impaired. To help them live

independently, there is a lot of existing research in this regard. Baker et al. (2016) proposes

a new tactile system which substitutes QR codes for text and can help blind students who

are not familiar with Braille. In Fusco and Morash (2015), Giovanni Fusco et al. proposes

one computer-vision based approach to help individuals with visual impairments to read the

tactile graphics by tracking their fingers. Nevertheless most of these research on the tactile

graphics cannot give the semantic information to the individuals with visual impairment

directly. For example, given one image, it is difficult to get the semantic information from

the transformed tactile graphics for the blind. To deal with this problem, visual question

answering becomes a new and promising research topic. In Bigham et al. (2010), authors

propose one system (VizWiz) to answer the questions related with given image. The system

works as follows: one user takes one picture using his or her phone and then asks one

question about this image; then the remote workers receiving this particular question will

send the answer back. But these research requires lots of manual work. In order to automate

the entire system, another new field came into being, which is visual question answering.

As shown in Antol et al. (2015), visual question answering (VQA) is a combination of

Computer Vision, Natural Language Processing and Reasoning. The input of VQA is one

image and one content related natural language question while the output is an text-based

answer to the given question. The input question can be very simple with yes or no answers.

1



It can also be one complex question requiring reasoning and detailed content information

from the input image, for example, “How many balls are there?” and “what kind of store is

this?”

So far there are two main strands of research on VQA. One is charactered by the fact

that output answers are open-ended. A demo is shown in Figure 1.1 which is from VQA

Dataset 1 . The other one takes more information as multiple answer choices as input and

outputs which one is correct (see Fig. 1.2).
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Figure 1.1: This figure shows how visual QA works where the output is open ended.

To support the applications in VQA, my dissertation focuses on two main topics. The

first is to understand the content of a given image, which involves techniques from image

understanding (e.g., semantic segmentation). The second is to answer given questions.

In the area of image understanding, one important research area is semantic segmenta-

tion, which takes images as input and outputs the label of each pixel. In the existing liter-

ature, many research works concentrate on the supervised semantic segmentation. These

works assume that training images have all pixel-level labels. For existing research related

with weakly supervised semantic segmentation, it requires dataset containing images with

complete image-level labels, which needs much manual work to generate training dataset.
1VQA data: http://www.visualqa.org/download.html

2
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Q: What is the color of freebee?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) brick (l) peach (m) hill (n) vitamin c

(o) brown (p) christleton (q) bonsai tree (r) black

Q: How old is the child?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 6 (l) 12 (m) 10 (n) mechanics 

(o) 5 (p) wait here (q) mad (r) recording studio

Q: Where is the kid pointing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white           (h) red (i) blue (j) green

(k) park (l) up (m) floor mat  (n) so people don't get wet

(o) down           (p) mom      (q) pharos (r) ketchup pickle relish mustard

Q: How many people are in the picture on side of refrigerator?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white           (h) red (i) blue (j) green

(k) 108 mph      (l) banana, apple  (m) 7 (n) 10 many

(o) fruit salad    (p) full swing         (q) 5   (r) vattenfall strom fur gewinner

Q: How many of the deer are sleeping?

(a) yes (b) no

(c) 1 (d) 2 (e) 3              (f) 4

(g) white (h) red (i) blue (j) yellow

(k) 5 (l) left of pond (m) 13          (n) plants and cat

(o) tree base (p) cement (q) 0 (r) green, blue and yellow

Q: What type of wildlife is this park overrun with?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) eating (l) deer (m) mosquitoes (n) soup

(o) birds (p) ants (q) girl’s (r) woman on right

Q: Is the girl standing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) yes! (l) standing (m) hiding (n) sitting

(o) to sleep (p) bird nest (q) slide (r) park ranger

Q: Does the girl have a lot of toys?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) fork (l) deer (m) rock (n) y

(o) slide (p) yes 3 of them (q) no image (r) children and toys

Q: What sport are they playing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) tennis (l) bodily functions  (m) scissors (n) mississippi and meade

(o) baseball (p) frisbee (q) soccer (r) its advertising object        

Q: What is the man in gray pant's job?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) cop (l) umpire (m) snowflake (n) banker

(o) chef (p) speedboat (q) 10: 32 (r) males

Q: Is this person's face painted?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 4498 (l) not (m) camera film          (n) keyboard, mouse, booklet

(o) stairs (p) n200       (q) public storage       (r) pasta, sauce, meat

Q: How many umbrellas are in the photo?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 20 (l) 54 (m) max payne (n) 62

(o) 12 (p) dresses (q) 3 to 5 (r) two way traffic

Q: Where is the blanket?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) fat (l) lying down (m) bed (n) utensils

(o) on bed (p) grass (q) ground (r) watching child

Q: What is for dessert?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) cake (l) pie (m) a (n) doll and dollhouse

(o) ice cream (p) yellow book (q) cheesecake (r) there are no fish

Q: Why does the little girl not look happy?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white        (h) red (i) blue (j) yellow

(k) indian (l) upset (m) dog left (n) smiling at it

(o) corner      (p) to be pet (q) she fell (r) boy is playing with her toys

Q: Why is the boy playing with his sister's toys?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) he likes them (l) parking it (m) dogs (n) shelf

(o) he feeds them (p) lonely (q) bored (r) likes them

Q: Why are they standing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) playing game (l) sheepskin (m) waiting (n) no where to sit

(o) firestone (p) rugby (q) forks                (r) waiting for train

Q: Is the TV on?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) shag (l) jeopardy (m) sports (n) between big elephants

(o) edinburgh (p) strawberries (q) tv show (r) white streak on face

Q: How many legs does the dog have?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white        (h) red (i) blue (j) yellow

(k) outdoors  (l) hiding (m) 45 (n) sitting in grass

(o) owls         (p) 8 (q) 12 (r) arm of sofa

Q: Is the boy at the top of the ladder?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) not sure (l) yellow dog (m) bottom (n) behind trees

(o) a (p) girl on right (q) top (r) she's in middle

Fig. 29: Random examples of multiple-choice questions for numerous representative examples of the real and abstract scene dataset.

Figure 1.2: One demo demonstrates the multiple-choice questions for VQA. It consists of

one image, two questions and answer candidates.

As social media develops, there are more and more user-uploaded images available on-line

(e.g., Flickr). However, as one kind of user-generated content, it is difficult to get the pixel-

level labels, even the complete image-level labels. It is inefficient to label these images

manually, but the incomplete image-level labels are easy to obtain. To generate pixel-level

labels of images with only incomplete image-level labels, I propose a new graphic model

by utilizing the pixel neighborhood information. Several experiments are conducted on dif-

ferent commonly used datasets to demonstrate the performance of the proposed algorithm.

In question answering, my research centered on best answer prediction. At the feature

design part, most existing work discussed how to design effective features for answer qual-

ity / best answer prediction from different aspects. However, little research mentions how

to design features by considering the relationship between possible answers of one given

question. To fill this research blank, I designed new features to help improve the model

performance for the research problem of best answer prediction. Experiments show the

effectiveness of proposed features. Some research on Twitter also shows how to design ef-

fective features for data from community sites. In the data modeling part, I propose a new
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learning-to-rank model by considering the hierarchical lasso showing the influence of the

structure of feature space. In this model, I assume that there exists one hierarchical struc-

ture in the feature space. Comparison with the state of the art in the best answer prediction

confirms my assumption and demonstrates that the proposed learning-to-rank technique is

suitable for solving the research problem.

1.1 Weakly Semantic Segmentation via Generalized Conditional Random Field

Semantic segmentation, by which an image is decomposed into regions with their re-

spective semantic labels, is often the first step towards image understanding (Figure 1.3

shows clearly what semantic segmentation is 2 ). Existing research in this regard is mainly

Figure 1.3: Illustration of semantic segmentation. The left one is the input image, while

the right one is the output which has the label of each pixel (this figure is from CVPR 2013

tutorial).

performed under two conditions: the fully-supervised setting that relies on a set of images

with pixel-level labels and the weakly-supervised one that uses image-level labels. In both

cases, the labeling task is time-consuming and laborious, and thus training data are always

limited. In practice, there are voluminous on-line images, which unfortunately often have
2http://cvn.ecp.fr/tutorials/cvpr2013/
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only incomplete image-level labels (tags) but would otherwise be potentially useful for a

learning-based algorithm. Only limited efforts have been attempted on using such coarsely

and incompletely labelled data for semantic segmentation. For this piece of work, I propose

a new approach to semantic segmentation of a set of partially-labelled images, using a for-

mulation considering information from multiple visual similar images. Details are shown

in Chapter 3.

1.2 New Feature Design Method for Best Answer Prediction

Community-based question-answering (CQA) services contribute to solving many dif-

ficult questions we have. For each question in such services, one best answer can be des-

ignated, among all answers, often by the asker. However, many questions on typical CQA

sites are left without a best answer even if when good candidates are available. In this

part, we attempt to address the problem of predicting if an answer may be selected as the

best answer, based on learning from labeled data. The key tasks include designing features

measuring important aspects of an answer and identifying the most importance features.

Experiments with a Stack Overflow dataset show that the contextual information among

the answers should be the most important factor to consider. Details are shown in Chapter

4.

1.3 New Learning-to-rank Approach to Best Answer Prediction

In community question and answering sites, pairs of questions and their high-quality

answers (like best answers selected by askers) can be valuable knowledge available to oth-

ers. However lots of questions receive multiple answers but askers do not label either one

as the accepted or best one even when some replies answer their questions. To solve this

problem, high-quality answer prediction or best answer prediction has been one of impor-

tant topics in social media. These user-generated answers often consist of multiple “views”,
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each capturing different (albeit related) information (e.g., expertise of the asker, length of

the answer, etc.). Such views interact with each other in complex manners that should

carry a lot of information for distinguishing a potential best answer from others. Little ex-

isting work has explored such interactions for better prediction. To explicitly model these

information, we propose a new learning-to-rank method, ranking support vector machine

(RankSVM) with weakly hierarchical lasso in this section. The evaluation of the approach

was done using data from Stack Overflow. Experimental results demonstrate that the pro-

posed approach has superior performance compared with approaches in state-of-the-art.

Details are shown in Chapter 5.
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Chapter 2

FOUNDATIONS AND PRELIMINARIES

In this chapter, some preliminary knowledge is introduced including graphical models

and learning to rank techniques.

2.1 Graphical Model

There are two important and popular graphical models which are commonly used in

the computer vision area: one is Markov Random Field and the other one is Conditional

Random Field. One of the main assumptions that underlie these random field models is that

the input variables are not totally independent to each other but there are some structural

interactions between them.

2.1.1 Markov Random Field

This model is used in low-level image processing tasks for example image de-noising.

Let us assume that there are several variables which are annotated as X = {xi, i ∈

{1, 2, ..., n}}. These variables are not independent and identically distributed. One vari-

able’s value is dependent on other variables. Let us denote that one variable xi is related

with variables in one subset Ni but is independent with the others except Ni. Here each

variable is usually named as one site while the corresponding Ni is named as neighorhood.

Then we can have this probability equation for Markov Random Field models (see Eqn.2.1)

P (X) = ΠP (xi|Ni) (2.1)

We can draw these variables as nodes in a undirected graph. If two nodes are neighbors to

each other, then we draw one edge between them. Then we obtain the graph representation
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of a given Markov Random Field. In order to reduce the computation cost, it is common

to consider first order and second order neighborhood without high-order information. Ac-

cording to Hammersley Clifford Theorem Besag (1975), the cost function has been split

into two parts: unary potentials and the pairwise potentials. Unary potentials are cost in-

curred by the first order neighborhood only. This cost measures the mismatch between the

groundtruth and predicted values. In Markov Random Field models, one important con-

straint is that variables insides one neighborhood are likely to have same values (labels).

This constraint is shown as pairwise potentials in the cost function. For example, in the

Ising model in image restoration Geman and Geman (1984), we can see that the pairwise

potentials are measured as follows: if two pixels have the same values, pairwise potentials

are zeros, while if they have different values, then the potentials are set to be large val-

ues. The cost function for Markov Random Field with the first order and the second order

neighborhood are shows as follows:

f(X) =
n∑
i=1

φ(xi) +
n∑
i

∑
j∈Ni

ψ(xi, xj) (2.2)

2.1.2 Conditional Random Field

Compared with Markov Random Field, conditional random field model Lafferty et al.

(2001) is commonly used in high-level computer vision tasks, for example, image labeling

He et al. (2004)Triggs and Verbeek (2008), image segmentation Plath et al. (2009)Wang

et al. (2006)Zheng et al. (2015)Vemulapalli et al. (2016), object detection Quattoni et al.

(2005)Shu et al. (2013) and so on. The main difference between Markov Random Field

and Conditional Random Field is on the unary potentials. For Markov Random Field,

the unary potential part is a generative module where all variables are unknown, while

for Conditional Random Field, the unary potential is a discriminative module where two

kinds of variables are involved: input unknown variables and output known variables. So

for the latter model, the unary potential part can easily be replaced by using any existing
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classification framework, for example, support vector machine Noble (2006); Suykens and

Vandewalle (1999), random forest Liaw and Wiener (2002); Breiman (2001), logistic re-

gression Hosmer Jr et al. (2013); Press and Wilson (1978) and so on. This allows the final

model to be more flexible.

2.2 Learning to Rank

This set of models focuses on modeling the difference between different data points.

The main task is to learn the score function in the data space. With a higher score, the

data point is more preferable to others with lower scores. One common ranking model is

RankSVM Joachims (2002)Chapelle and Keerthi (2010). Let us take one simple version

as an example. There is one dataset {xi, i ∈ {1, 2, ..., n}}. The i-th data is xi. If xi1 has a

higher score than that of xi2 , then (i1, i2) is one ranking pair. All the ranking pairs consist

of one ranking set. I denote it as P . Then the cost function for the RankSVM is as Eqn.2.3.

min
1

2
‖ω‖2 + C

∑
ξi1,i2 (2.3)

s.t. ωTxi1 ≥ ωxi2 + 1− ξi1,i2 ∀(i1, i2) ∈ P

∀ξi1,i2 ≥ 0

In this model (Eqn.2.3), the cost function is to learn the pre-defined cost function which is

ωTx+ b where b is a constant.
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Chapter 3

SIMULTANEOUS SEMANTIC SEGMENTATION OF A SET OF PARTIALLY

LABELED IMAGES

3.1 Introduction

In the era of Internet and social media, there are more and more images posted on-

line. Often, such on-line data lack sufficient textual annotation desired by learning-based

algorithms. To make such data more useful, efforts have been devoted towards tasks like

image taggingChen et al. (2013)He et al. (2014)Saito et al. (2013) and image classifica-

tion Lapin et al. (2014)Zhang et al. (2014c)Voravuthikunchai et al. (2014), targeting at

producing labels for the images. The finest granularity one could achieve in this labeling

effort is to perform semantic segmentation Arbeláez et al. (2012), which may classify each

pixel in one image into a proper class/label. Both fully-supervised and weakly-supervised

approaches exist.

In the fully-supervised setting, a set of images with pixel-level labels are available.

In Tighe and Lazebnik (2013b), all pixels in one superpixel are assumed to have the same

label and Markov Random Field (MRF) was used to capture the context information to help

improve the local superpixel-level labeling. Limited availability of fully-labeled data is a

practical constraint for such approach. In Tighe and Lazebnik (2013a)Tighe and Lazebnik

(2013b), region-based cues are used to build exemplar-SVMs to gain the final labeling.

However, there is one obvious disadvantage: users have to label each pixel in the dataset,

which is time-consuming and involves a lot of manual work. In the weakly-supervised

setting, data with only image-level labels are assumed. Most existing work further assumes

that the labels are “complete” in the sense that the image-level label set for a given image

10



contains all possible labels we may assign to any pixel in that image. This setting has been

used in Xie et al. (2014a)Liu et al. (2013)Vezhnevets et al. (2012b).
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Figure 3.1: Two images with partially and fully image-level labels.

The abundance of images with tags on social media platforms provides the opportunity

for obtaining large-scale training sets without laborious manual labelling. However, in

reality, even if we may be able to obtain a lot of images with a desired set of semantic tags

(and use the tags as semantic labels for simplicity), the majority of on-line images would

still have only incomplete image-level labels, especially for user-generated images. That is,

it is unrealistic to expect tags associated with an on-line image would happen to cover all

semantic concepts we need to employ for segmentation. Therefore, in order to utilize the

vast on-line images, we face the task of how to label each pixel in each image (i.e., semantic

segmentation), given a set of images with partial image-level labels. Figure shows a demo

of one image with partially image-level labels, while our task is illustrated in Figure 3.2.

One similar work is Zhang et al. (2015), which only considers using information from one

image only and does not consider the fact that visually similar superpixels across different

images also are likely to have the same labels. In this chapter, I work on this problem from

one new aspect by proposing an approach based on conditional random fields (CRFs),
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Figure 3.2: Illustrating the problem studied in this chapter: the left panel represents the

input to our algorithm, which are a set of images with partial image-level labels (one demo

shown in Figure 3.1), and the right panel is the output of segmented images with labeled

pixels. A formal problem definition is shown in Section 3.3.

which attempts to employ all possible sources of information in the dataset to deal with the

challenge of incomplete labels.

Contributions of this chapter are as follows. First, I propose a novel formulation for a

new problem of semantic segmentation with partial image-level labels. Second, under the

proposed multi-image model, I propose an efficient solution and demonstrate with compar-

ative experiments its effectiveness.

The organization of the remainder of the chapter is as follows. I first give a brief litera-

ture review on related works in Section 3.2. Then, a detailed description of the problem and

our proposed approach are provided in Section 3.3. To show the performance of our pro-

posed method, experiments are reported in Section 3.4. We conclude our work and present
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our future work in Section 3.5.

3.2 Related Works

We briefly review below two classes of related research on semantic segmentation:

those relying on fully-supervised learning and those utilizing only weakly-supervised learn-

ing. As is evident from the following discussion, the distinction between these two classes

of approaches is mainly on the granularity of labelling for the training data.

3.2.1 Fully-supervised Semantic Segmentation

As described in Section 3.1, in fully-supervised semantic segmentation, labels of each

pixel or superpixel in the training set are known. There are a lot of existing efforts on this

regard. In Shotton et al. (2009), Jamie Shotton et al. proposed semantic texton forests

to do semantic segmentation using a bag-of-semantic-textons model, where only simple

features of superpixels were used. To improve the performance, some other approaches

attempt to consider neighboring information of different superpixels. In Kohli et al. (2009),

Pushmeet Kohli et al. proposed to use higher order CRFs to capture such information of a

set of pixels. Since high-order CRF models do not model the relevance of semantic labels,

in Myeong and Lee (2013), Heesoo Myeong et al. proposed to use high-order semantic

relations to capture the context information in images and then transfer semantic labels

from a labeled image to another unlabeled image. Besides tree-structure algorithms and

graphical models (like CRF, MRF), active learning and deep learning are also applied to

semantic segmentation recently. In Roig et al. (2013), Gemma Roig et al. proposed a

MAP inference method based on active learning, which is in fact one semi-supervised

method. In Sharma et al. (2015), to improve the Recursive Context Propagation Network

(RCPN), two revisions were made: one is to solve the potential problem because of the

special structure of RCPN, which can help reduce the complexity of the network structure;
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the other is to consider the context information by building a Markov Random Field on

the modified structure. This is one recent work on applying deep network to capture the

context information of different superpixels for semantic segmentation.

Obviously, one key limitation of the fully-supervised approaches is the requirement of

a set of images with pixel-level (or superpixel-level) labels. Due to the cost associated

labeling, generally speaking one cannot assume the availability of high-quality and large-

scale training data.

3.2.2 Weakly-supervised Semantic Segmentation

Because of the strong requirement of fully-supervised semantic segmentation, research

on finding new techniques to solve weakly semantic segmentation becomes popular. Liu

et al. worked on dual clustering for semantic segmentation by constructing two clusterings

on smoothness and also the relation between image features and superpixel-level labels

Liu et al. (2013). Besides the dual clustering method, many other approaches are also

proposed to solve weakly supervised semantic segmentation. For example, Vezhnevets et

al proposed to use active learning in Vezhnevets et al. (2012a), and multiple instance multi-

task learning to solve weakly semantic segmentation in Vezhnevets and Buhmann (2010).

It may be difficult to learn superpixel-level labels from only one image. In Vezhnevets et al.

(2011), a multi-image model was proposed, which builds a graphical model on the entire

dataset. More recently, a graphical model was also proposed in Chang et al. (2014), where

multiple instance learning and CRF are combined. Besides CRF-based methods, structural

information from different superpixels was also considered in Zhang et al. (2013)Zhang

et al. (2014b)Zhang et al. (2014a), using the concept of graphlets. Recently, semantic

relevance has also been studied in the weakly-supervised cases. For example, in Xie et al.

(2014b), hypergraphs were used to capture the high-order semantic relevance, instead of

only the second-order relevance in Xie et al. (2014a), and in Pinheiro and Collobert (2015),
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deep learning techniques are used to find the pixel-level labeling. In Zhang et al. (2015),

Wei Zhang et al. studied one new practical case in which each image is assumed to have

part of image-level labels and also maybe some incorrect labels.

While apparently less stringent than the fully-supervised cases, the image-level labels

in existing methods of weakly-supervised semantic segmentation are still assumed to be

complete, i.e., the set of labels of a given image captures all possible semantic labels that

can be assigned to pixels of that image. As discussed previously, this limitation makes it

difficult to utilize vast amount of on-line pictures that would otherwise be useful for the

learning task. Our study in this chapter is intended to address this issue by considering

using information from the entire dataset instead of only one image. We will formally

define the problem and present our solution in the next section.

3.3 Proposed Approach

Based on the previous discussion, I formally define the following problem of this study:

Given a set of images with incomplete image-level labels, to predict all pixel-level labels

for each image in the set. The image-level labels indicate possible objects in one image,

while the pixel-level labels are the final desired segmentation and classification. The incom-

pleteness of labels for an image means that this image may contain some objects/regions

which cannot be assigned to any of the given classes in its label set. For example, an image

with four objects, car, street, sky, and grass, may have only a set of image-level labels,

say car and sky. Still, in the final segmentation, the correct results should properly label

those regions corresponding to the missing labels (street and grass). Apparently, the miss-

ing information needs to be figured out by considering the entire set of images. This is

schematically illustrated in Figure 3.2. In this work, I employ the concept of superpixel

Ren and Malik (2003), and assume that pixels within the same superpixel share the same

label. This helps simplify the problem to some extent for better tractability.
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I use the following notations in the rest of the presentation. Denote one image set

with N images by A = {Ii, i ∈ {1, · · · , N}}, which has corresponding partial image-

level labels L = {Li, i ∈ {1, · · · , N}}. Pixels are denoted by pi,j, j ∈ {1, · · · ,Mi}, i ∈

{1, · · · , N}where pi,j is the jth pixel in the image Ii which hasMi pixels in total. Similarly,

superpixels of the image Ii are denoted by xi = {xi,j, j ∈ {1, · · · , ni}} where xi,j is the

jth superpixel in the image Ii which has ni superpixels in total. Also I use Li,j to denote

the label of the jth superpixel’s label in the image Ii.

3.3.1 Formulating the Problem

In our problem, the input images do not have superpixel-level labels. Further, the im-

ages do not have a complete set of semantic labels. Evidently, in general the full informa-

tion needed for labelling an image needs to be inferred from other images. The multi-image

model introduced in Vezhnevets et al. (2011) may be employed except that complete la-

belling was assumed therein. Our basic strategy in modeling the problem with incomplete

labels is to construct a conditional random field (CRF) for capturing these types of proba-

bilistic associations: visually-similar superpixels are likely to have the same labels (but two

similar superpixels may have different likelihoods belonging to the same label, depending

on if they are from the same image or from different images), nearby superpixels tend to

share labels, and the final label set of an image is a superset of the given (incomplete) label

set. Graphically, a basic component of the overall CRF model may be illustrated by Figure

3.3.

In Figure 3.3, xi,j is the jth superpixel of the image Ii in the dataset. Si,j is the set

of spatial neighbors of xi,j , defined as the superpixels which are located next to xi,j in

the image Ii. Mi,j is the set of visually-similar neighbors of xi,j , defined as superpixels

which are located in those images sharing common image-level labels as Ii. Vi,j is the

set of visually-similar neighbors of xi,j , defined as superpixels which are located in the
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Figure 3.3: Illustrating the basic component of the proposed CRF model. Each superpixel

is related to others via the shown connections. See text for definitions of the symbols. The

entire set of image forms an overall CRF by combining all the basic components corre-

sponding all superpixels.

images without common image-level labels with Ii. To help illustrate how the nodes and

connections on the final CRF link the entire image set together, we depict in Figure 3.4 a

visual example with exemplar images and their superpixels explicitly shown.

Based on the structure described above, we can have the complete energy function for
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Figure 3.4: Illustrating basic components of the proposed CRF model with sample images.

Shown are some superpixels of three images I1, I2, I3. These superpixels are separated by

red boundaries and their positions in their corresponding images are marked by the black

rectangles. I1 and I2 have one common image-level label, while I1 and I3 have no common

image-level labels. A basic CRF component is shown in light green color and is built on

xi,j . Each circle represents one node in CRF. In this example, we only set Mi,j = {mi,j}

and Vi,j = {vi,j} and their size is one. It is easy to see there are six elements in Si,j , which

is {ski,j, k ∈ {1, 2, · · · , 6}}.

our CRF-based model as given in Eqn.3.1:

E({Li,j,j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N}}, θ, α) =∑
xi,j ,∀i,j

(φ(xi,j, Li,j, θ) + λ(Li,j, Ii))+

α1

∑
(xi,j ,x

′
i,j)∈Si,j ,∀i,j

ϕ(Li,j, L
′

i,j)+

α2

∑
(xi,j ,x

′
i,j)∈Mi,j ,∀i,j

ϕ(Li,j, L
′

i,j)+

α3

∑
(xi,j ,x

′
i,j)∈Vi,j ,∀i,j

ϕ(Li,j, L
′

i,j) (3.1)
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where α = [α1, α2, α3] controls the contributions of each potential terms, φ(xi,j, Li,j, θ) is

the unary potential which gives the energy caused by the fact that the label Li,j is assigned

to the superpixel xi,j . λ(Li,j, Ii) relates to how likely Ii has the label Li,j . It can be the

negative of the possibility that the image Ii has the label Li,j , computed by Chen et al.

(2013). For the pairwise potential, we use the Potts model, where the function ϕ(·) is given

as Eqn.3.2.

ϕ(Li,j, L
′

i,j) =


1 if Li,j 6= L

′
i,j

0 otherwise
(3.2)

3.3.2 An Inference Algorithm

Exact solutions for achieving the extrema of Eqn.3.1 would require exponential com-

plexity and thus cannot be obtained unless it is for datasets of trivial complexity. Approx-

imate approaches to inference under similar graphical models have been developed over

the years. Examples include Loopy Belief Propagation Murphy et al. (1999), Graph cut

Delong et al. (2012), Simulated Annealing AARTS/KORST. (1990), and etc. In this work,

we adopt Iterated Conditional Modes (ICM) Kittler and Föglein (1984) in developing an

inference algorithm, owing to its simplicity and in turn efficiency in dealing with a large

model like ours. The key idea of the ICM-based algorithm is based on the iterative update:

when computing the label of one superpixel, labels of the others are assumed to be fixed.
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For each superpixel xi,j , its label Li,j is computed by (Eqn.3.3):

Li,j = arg min
l
φ(xi,j, l, θ) + λ(l, Ii)+

α1

∑
(xi,j ,x

′
i,j)∈Si,j

ϕ(l, L
′

i,j)+

α2

∑
(xi,j ,x

′
i,j)∈Mi,j

ϕ(l, L
′

i,j)+

α3

∑
(xi,j ,x

′
i,j)∈Vi,j

ϕ(l, L
′

i,j) (3.3)

The entire algorithm based on the above core ICM iteration is given in Algorithm 1.

3.3.3 Key Implementation Details

We now present a few key technical details that are necessary to fully implement the

proposed solution. We use the SLIC algorithm proposed in Achanta et al. (2012) to obtain

superpixels for images in our experiments and also compute the histogram-based features

for superpixels and images, following the method of Tighe and Lazebnik (2013b). Before

constructing the entire energy function of Eqn.3.1, we first train one SVM classifier using

a very small image set. In this small image set, there are about two images per label and

full pixel-level labels of each image are provided. Labeling this subset requires less manual

work. More details are shown in Section 3.4. This pre-trained SVM classifier supplies a

measurement for the unary potential in the proposed model, i.e., the function φ(·) given in

Eqn. 3.4.

φ(xi,j, Li,j, θ) =


ρ if Li,j 6= L

′
i,j(θ)

0 otherwise
(3.4)

where L′i,j(θ) is the predicted label of xi,j by the pre-trained SVM with model parameters

θ, and ρ is the penalty.
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Algorithm 1 An Algorithm Based On ICM

1: Input: Energy function (Eqn.3.1), one potential label set L̃ of each superpixel xi,j

2: Output: the label Li,j of each superpixel xi,j , j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N}

3: BEGIN:

4: initialize each xi,j using random element from L̃ and store initialized labels of each

superpixel in Y1, Y2.

5: while check the stop-condition do

6: for each superpixel xi,j , j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N} do

7: tmp = ∅ and Consider Si,j , Mi,j and Vi,j of xi,j .

8: for each l in L do

9: compute the local energy (denoted as e) by assuming each superpixel has

the label as that in Y1 except that xi,j has the label Li,j = l

10: tmp = tmp ∪e.

11: end for

12: Set the label of xi,j in Y2 as l′ which has the smallest local energy.

13: end for

14: Y1 = Y2.

15: end while

For the term λ(Li,j, Ii), we compute it using the method proposed in Chen et al. (2013),

which does image-tagging and can provide a ranked list of all possible image-level labels

which are likely to be shown in the corresponding image. λ(Li,j, Ii) is the negative value

of the likelihood that the image Ii has the label Li,j .

For pairwise potentials, we need to consider different neighboring relations. For one

superpixel xi,j , there are three sets of neighbors we need to compute: Si,j , Mi,j and Vi,j .

For one given superpixel xi,j , the spatial neighbor set Si,j can be estimated using image

21



erosion/dilation (note that typically superpixels are irregular in shape). This is illustrated

in Figure 3.5. For the other two sets of neighbors, we can obtain them by Algorithm

2, in which the normalized Euclidean distance is used to compute the similarity between

different images and superpixels, based on the image/superpixel features defined above. We

emphasize that such neighboring relations are defined based on the proposed CRF model

and thus they reflect physical constraints imposed by the given labels (and their interaction)

and geometrical proximity, in addition to visual similarity.

Algorithm 2 Algorithm to compute Mi,j and Vi,j
1: Input: {Ii, Li}, {xi,j}, j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N}, D1(·) which is the func-

tion to compute the distance between two images and D2(·) which is to compute the

distance between two superpixels.

2: Output: Mi,j , Vi,j , j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N}

3: BEGIN:

4: // To compute SMi, SVi.

5: for i = 1,· · · , N do

6: for j = 1, · · · , N, i 6= j and Li ∩ Lj 6= ∅ do

7: Compute the similarity D1(Ii, Ij).

8: end for

9: Find the top q most similar images, denoted as SMi.

10: for j = 1, · · · , N, i 6= j and Li ∩ Lj == ∅ do

11: Compute the similarity D1(Ii, Ij).

12: end for

13: Find the top q most similar images to Ii, denoted as SVi.

14: end for
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Algorithm 2 Algorithm to compute Mi,j and Vi,j (continued)

15: for each superpixel xi,j , j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N} do

16: // we have SMi and SVi of Ii

17: // and will construct SPMi,j and SPVi,j

18: SPMi,j = ∅, MSSi,j = ∅, ∀i, j.

19: for each superpixel x′i,j in each image I ′ ∈ SMi do

20: Find the top p most similar superpixels to xi,j based on D2(xi,j, x
′
i,j)

21: Denote these p superpixels as MSSi,j and also we set SPMi,j = SPMi,j ∪MSSi,j

22: end for

23: Find top k most similar superpixels to xi,j from SPMi,j , which are Mi,j of xi,j .

24: SPVi,j = ∅, MSSi,j = ∅, ∀i, j.

25: for each superpixel x′i,j in each image I ′ ∈ SVi do

26: Find the top p most similar superpixels to xi,j based on D2(xi,j, x
′
i,j)

27: Denote these p superpixels as MSSi,j and SPVi,j = SPVi,j ∪MSSi,j

28: end for

29: Find top k most similar superpixels to xi,j from SPVi,j , which are Vi,j of xi,j

30: end for

3.3.4 Comparison With MIM

The proposed method bears some similarity to the Multi-Image Model (MIM) of Vezh-

nevets et al. (2011), since both consider a set of images simultaneously. To appreciate the
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key difference easily, we provide the energy function of the MIM below (Eqn.3.5):

E({Li,j, j ∈ {1, · · · ,Mi}, i ∈ {1, · · · , N}}, θ) =∑
xi,j ,∀i,j

(ψ1(xi,j, Li,j, θ) + π(Li,j, Ii))+

∑
(xi,j ,x

′
i,j)∈Si,j ,∀i,j

ϕ1(Li,j, L
′

i,j, xi,j, x
′

i,j)+

∑
(xi,j ,x

′
i,j)∈Mi,j ,∀i,j

ϕ1(Li,j, L
′

i,j, xi,j, x
′

i,j) (3.5)

where π(Li,j, Ii) is zero if the label Li,j is one image-level label of the image Ii and it is set

to infinity otherwise. Moreover, ϕ1(·) is given as follows:

ϕ1(Li,j, L
′

i,j, xi,j, x
′

i,j) =
1−D(xi,j, x

′
i,j) if xi,j, x

′
i,jare different

0 otherwise
(3.6)

where D(·) is one similarity metric.

Eqn.3.5 clearly indicates one strong requirement on the labels, imposed by the choice

of π(·). Because of that function, MIM cannot be used to solve the general problem de-

fined in this chapter. In our formulation, to solve the more general and practical problem,

we relaxed the strong requirement in MIM by introducing a new π(·) function plus one

additional pairwise potential to better capture visual similarity of superfixels (those across

images and do not have common image-level labels). These resulted in the new model

of Eqn.3.1. In fact, compared with both formulations, we can see that MIM is one special

case of our approach, which is used to deal with the less challenging situation where images

have completely image-level labels.
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3.4 Experiments

In this section, we demonstrate the effectiveness of the proposed approach based on

comparative experiments using the following three datasets: one synthetic dataset, the

MSRC-21 dataset Shotton et al. (2009) and the Siftflow dataset Tighe and Lazebnik (2013b).

For the synthetic dataset and the MSRC-21 dataset, we make comparison with the approach

in Vezhnevets et al. (2011), which is among the state-of-art methods in the literature. For

the Siftflow dataset, we provide our experimental results and compare with existing ap-

proaches in the fully-supervised case and the ordinary weakly-supervised case. The com-

parison is based on two metrics: per-pixel accuracy (denoted as pp and shown in Eqn.3.7)

and average per-class accuracy (denoted as p̄c and shown in Eqn.3.9). To compute these

measures, we need the size of each superpixel xi,j , which is denoted by size(xi,j).

pp =

∑
i,j δ(Li,j − L

′
i,j)size(xi,j)∑

i,j size(xi,j)
(3.7)

pcl =

∑
i,j δ(Li,j − l)δ(Li,j − L

′
i,j)size(xi,j)∑

i,j δ(Li,j − l)size(xi,j)
(3.8)

p̄c =
1

|
⋃
Li|

∑
l

pcl (3.9)

In the above definitions, L′i,j is the predicted label and Li,j is the ground truth of the label

of xi,j , and pcl is the pixel-level accuracy for all the pixels whose label is l. Also |
⋃
Li| is

the total number of potential labels .

3.4.1 Synthetic Dataset

The simulation is designed as follows. First, we generate one synthetic dataset that has

30 pairs of observation images and labelmaps. An observation image is a 200×200 gray-

scale image while its labelmap is a 200×200 image whose pixel values are the labels of its

corresponding observation. For each observation image, we split it into 20×20 superpixels,

each of which has 10×10 pixels. Moreover, we assume that all pixels in one superpixel
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have the same label and labels are from this set: {1, 2, 3, 4, 5}.

To generate each pair of one observation image and its labelmap, we run the following

procedure:

1. We first generate one labelmap randomly and make sure that labels of pixels in the

same superpixel are the same.

2. The corresponding observation image is generated based on the new labelmap.

3. The inference algorithm runs for 200 iterations to obtain the final pair of observation

image and labelmap.

(a) For each iteration, we use the current labelmap and the observation image to

generate a better labelmap whose energy is smaller. Then based on the new

generated labelmap, we generate the new observation image.

During the above procedure, we set the total number of iterations to be 200 since at this

iteration the observation-labelmap pair is already stable. Besides the number of iterations,

we set the relationship between one observation image and its labelmap as the Gaussian

distribution whose standard variation is set to be 10. Samples of the constructed dataset are

shown in Figure 3.6. The average size of the complete image-level labels is 3.46. To gen-

erate partial image-level labels, we randomly remove one label from the complete image-

level labels. The parameters k, q and p we set in this simulation are 21, 3, 5, respectively.

The synthetic dataset was then used to compare the performance of the proposed ap-

proach and the MIM method. The MIM method would simply assume whatever labels

given for an image is complete. The final results are summarized in Table 3.1. From these

results, it is obvious that the MIM method lags the proposed approach by a large margin.

We also note the difficulty of the task (even if the dataset is synthetic), since a lot of source
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of uncertainties were introduced in the process of creating the data. This explains why the

overall accuracy numbers are not very high for either approach.

Table 3.1: Comparing with the MIM model on the synthetic dataset.

pp p̄c

MIM Vezhnevets et al. (2011) 51.15% 29.81%

Proposed 76.74% 42.72%

3.4.2 MSRC-21 Dataset

In this dataset, there are 591 images and 21 objects 1 in total. We split the dataset into

two parts: Set one and Set two, both are the same as those used in Shotton et al. (2009). As

a result, there are 276 images in Set one, 256 in Set two. Also we call the union of Set one

and Set two as the Entire Set. To get the pre-trained SVM classifier, we randomly choose

42 images out of 59 images which consist of the validation set as in Shotton et al. (2009).

The average numbers of the complete image-level labels for Set one, Set two and the Entire

Set are 2.4710, 2.4492 and 2.4605, respectively. To generate partial image-level labels, we

randomly remove one label from each complete image-level label set. So the average sizes

of Set one, Set two and Entire Set decrease by 40.4 %, 40.8% and 40.6%, respectively. In

this experiment, parameters k, p and q are set to be 10, 3 and 8, respectively.

The per-class accuracies from the proposed and the MIM method for Set one, Set two,

and the Entire Set are plotted respectively in Figure 3.7, Figure 3.8 and Figure 3.9. Overall,

the performance gains of the proposed method over MIM are 5%, 3% and 2% respectively

for Set one, Set two, and the Entire Set.
1 There are 23 objects in total, but 2 of them are not considered by Microsoft research.

So we only use 21 objects. Details are shown in the dataset which is available on Microsoft
research.
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In addition to per-class accuracy, we also provide the per-pixel accuracy in Table 3.2,

where it is clear that the proposed approach was able to outperform MIM by large margins

on all the sets of data.

Table 3.2: The per-pixel accuracies pp of our approach and MIM in Vezhnevets et al.

(2011).

Set one Set two Entire Set

MIM in Vezhnevets et al. (2011) 43.33% 39.44% 41.82%

Proposed 56.69% 52.80% 53.08%

The above results demonstrated the effectiveness of the proposed approach in dealing

with incomplete image-level labels. It is worth pointing out that the MIM method reported

higher performance numbers in Vezhnevets et al. (2011), where it was studied as an ordi-

nary weakly-supervised approach with complete image-level labels for training. Our exper-

imental setting is more realistic for simulating the scenario of learning with Web images.

In this experiment, considering the dropped label per image, the label set suffers a loss

of around 40% labeling information compared with the case where images have complete

image-level labels. The proposed approach, even if with only a very simple ICM-based

inference algorithm, was shown to be able to better deal with the incomplete label data.

3.4.3 Siftflow Dataset

In this experiment, we show the performance of our algorithm on the Siftflow dataset

Tighe and Lazebnik (2013b). This dataset consists of 2688 images and 33 labels. We use

the entire training set which has 2488 images, as defined in Russell et al. (2008). The av-

erage number of image-level labels for each image in the entire Siftflow dataset is 4.4297

and for the part we use, on average, there are 4.3881 labels per image. To simulate incom-
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plete image-level labeling, we create partial image-level labels for each image by randomly

removing one label from the original label set. This means we remove 22.79% label in-

formation on average for each image. During the experiment, parameters k, p and q are

set to be 10, 3 and 8, respectively. Our results are: pp = 57.09% and p̄c = 22.34%.

Since the related work do not report the per-pixel accuracy (pp) on this dataset, we only

report the per-class accuracy (by quoting) in Table 3.3, including the results from some

fully-supervised methods (Shotton et al. (2009)Liu et al. (2009)) and weakly-supervised

methods assuming complete image-level labels (Vezhnevets et al. (2011)Vezhnevets et al.

(2012b)Liu et al. (2013)Zhang et al. (2014a)). From the table, we see that our approach

was able to deliver nearly comparable performance, although we subject our approach to

the heavy loss of information, while the competing methods either utilize pixel-level labels

or assume and use complete image-level labels.

Table 3.3: Average per-class accuracy p̄c from our approach and those from a set of com-

peting approaches, either fully-supervised or weakly-supervised with complete image-level

labels. The results above are in percentage.

Vezhnevets et al. (2011) Vezhnevets et al. (2012b) Shotton et al. (2009)

p̄c 14% 21% 24%

Liu et al. (2009) Liu et al. (2013) Zhang et al. (2014a) Ours

p̄c 24% 26% 27.73% 22.34%

3.5 Conclusion & Future Work

We identified a key limitation in existing methods for semantic segmentation and pro-

posed a new multi-image formulation for addressing the limitation. An inference algorithm

was designed for finding a solution under the proposed multi-image model. To demonstrate
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the effectiveness of our algorithm, we performed experiments on both synthetic data and

real datasets including MSRC-21 and Siftflow. While current results have shown advan-

tages of the proposed method, there are still a few leads for future exploration. In particular,

current results indict that some classes have low per-class accuracy, possibly due to their

rare presence in the images. Such information (some classes being rare), if known a priori,

may be explicitly factored into the formulation so that rare classes do not get overshadowed

by other more common classes.
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Figure 3.5: Illustrating how to find the spatial neighbors of one given superpixel xi,j shown

in (a). First we need to get the image (b) which is the mask of xi,j . Then we can apply

the image dilation to (b) to get the image (c). By computing the difference of images (b)

and (c), the final mask (d) is obtained. Comparing (d) and the original image (a), we can

easily get Si,j which consists of super-pixels which overlap with the final mask (d).
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Figure 3.6: This figure shows some pairs of the observation and the labelmap generated in

the synthetic dataset. The first row consists of labelmaps while the second one consists of

observation images. For each column, it is a pair of one labelmap and its observation.
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Figure 3.7: Comparison of per-class accuracies for Set one. The first column is the average

performance of two algorithms. The left 21 columns are for each object.
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Figure 3.8: Comparison of per-class accuracies for Set two. The first column is the average

performance of two algorithms. The left 21 columns are for each object.
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Figure 3.9: Comparison of per-class accuracies for the Entire Set. The first column is the

average performance of two algorithms. The left 21 columns are for each object.
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Chapter 4

FEATURE DESIGN FOR TEXT BASED DATA ON SOCIAL NETWORK SITES

This chapter describes how to design features for text based data on social networks.

There are two pieces of research involved: one is the feature design for answer quality

prediction on community-based question answering, and another one is a classification

problem on Twitter website.

4.1 Best Answers Prediction in Community-based Question-Answering Services

4.1.1 Introduction

Community-based question-answering (CQA) services help people solve many difficult

questions. The importance and huge societal impact of such services are evidenced by the

heavy traffic observed on popular CQA sites like Yahoo Answers (answers.yahoo.com),

Baidu Zhidao (zhidao.baidu.com), and Stack Overflow (stackoverflow.com). On a CQA

site, a person (the asker) posts a question and waits for answers from other users (the an-

swerers). If multiple answers are provided, the asker can select the most suitable one, which

is called the accepted answer or the best answer. Questions that do not have a designated

best answer are stamped as ”not-answered”. Not every asker always selects the best answer

for his/her question. This could be simply due to lack of action, or due to the difficulties in

deciding on the best answer. As a result, many questions are left as ”not-answered” (e.g.,

see Yang et al. (2011)). Not-answered questions do not facilitate knowledge exchange,

as other users would hesitate to rely on them for information, given their ”not-answered”

labels, even if in reality there may be many good candidate answers posted. Some sites

also delete such not-answered questions after certain time of their posting, resulting in lost

knowledge if there is indeed a suitable answer posted already. Towards addressing these
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problems, this chapter focuses on learning from labeled data to predict whether an answer

should be selected as the best answer. The study on best answer prediction can also con-

tribute to the understanding of answer quality and help users improve their answers.

For a candidate answer Ac to be considered as the best answer, in general three factors

need to be assessed: (1) the quality of the answer content (e.g., its readability); (2) whether

the answer contributes to solving the given question Q; and (3) how it competes with other

answers Ai. These are schematically illustrated in Figure 4.1). We call the third factor

contextual information since it is relative in nature. While there have been some reported

studies (Adamic et al. (2008); Shah and Pomerantz (2010); Blooma et al. (2010), to be

detailed in the next section) on predicting the best answer, it remains to be fully explored

to consider all these factors coherently and to evaluate the importance of the contextual

information in solving the problem. This is the objective of this study.

The major contribution of the work is twofold. Firstly, based on the analysis of a large

CQA dataset, we designed features to measure the three key factors in selecting the best

answer, especially contextual information. Secondly, through designing and evaluating a

learning approach using these features to predict whether an answer may be selected as the

best answer, we studied the importance of the factors based on their contribution to making

the correct prediction.

4.1.2 Related Work

There are a few related studies in the literature. Liu et al. worked on predicting the

asker’s satisfaction with the answers Liu et al. (2008). The features used do not measure

contextual information among the answers. Harper et al. studied answer quality by an-

swering two research questions: how the answer quality in different CQA sites is different

from each other and how askers receive better answers Harper et al. (2008). They found

that fee-based CQA sites are more likely to receive high quality answers. Jeon et al. con-
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Figure 4.1: It illustrates three factors in assessing the likelihood of an answer Ac under

consideration as the best answer: the dash-lined rectangle indicates the answer set to the

question Q. fA↔Q is the set of features measuring relevance of Ac to Q, fA is the set of

features measuring the inherent quality of Ac, and fA↔A is the set of features measuring

the competition between Ac and the other answers A0, · · · , AN .

tinued to work on the further effect of price on answer quality in fee-based CQA sites Jeon

et al. (2010). For the answer quality in different CQA sites, Fichman also made a detailed

comparison Fichman (2011). Shah et al. worked on the best answer prediction Shah and

Pomerantz (2010). In their work, they extracted features which contain information from

the questions, the answers, and the users. But there is no consideration on the relationship

between the answers and the questions, or relationship among the answers. This is the same

case with the work in Blooma et al. (2010). Yang et al. worked on predicting whether a

question will receive the best answer and analyzed which factors contribute to solving the

problem Yang et al. (2011). Adamic et al. studied activity characteristics and mentioned

how to predict whether one answer is the best answer given the question with its answers
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Adamic et al. (2008), using content feature proposed in Agichtein et al. (2008). In both

cases, not all the factors were considered and especially the contextual information among

the answers was not explicitly employed.

4.1.3 Stack Overflow Description

This study is based on Stack Overflow, a CQA site for computer programming, which

was selected for its good quality control on the questions (and accordingly the answers)

since any post unrelated to programming will be deleted automatically or via voting by

senior users. Each question has three main parts: title, body and tags. In the body part,

askers can describe their problems in detail. They may use figures or URL links etc. For

tags, they may choose at most five existing terms that are most related to the question, or

they can create new tags. Each question may receive multiple answers. For each question

or answer, users can add comments to further discuss it. If one comment is good for solving

the problem, it will be awarded with a score which shows in front of the comment. For each

post (a question or an answer), it will have upvotes or downvotes from senior users and the

corresponding askers or answerers will earn or lose reputation correspondingly. For a ques-

tion, after it receives multiple answers, the asker can select one which in his or her opinion

is most suitable for his or her question. The selected answer is called Accepted Answer,

which is used in this study interchangeably as the best answer. Figure 4.2 illustrates one

sample on Stack Overflow.

The dataset we used in this chapter was downloaded from Stack Overflow for ques-

tions and answers posted before August 2012. The original dataset has contains 3,453,742

questions and 6,858,133 answers. In our experiment, we first select questions posted in

June 2011 and then track all the answers or comments until August 2012. That is, each

question was posted for more than one full years before the answers were collected. In this

way, we may assume that all the questions were given enough time to gather good answers.
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Figure 4.2: This is a sample to show the questions and answers on Stack Overflow site.

This resulted in a subset of 103,793 questions and 196,145 answers, on which the later

experimental results were based.

4.1.4 Features Description

As described above, our goal is to predict whether an answer will be selected as the best

answer. We now design features for a given answer (with its corresponding question and

other answers). The questions and answers are first preprocessed via standard procedures

as illustrated in Figure 4.3, where the original text streams (sentences) are represented by

the vector-space unigram model with TF-IDF weights Shtok et al. (2012). In subsequent

discussion, this pre-process result will contribute to the extraction of the following features
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(Table 4.1, 4.2, 4.3), corresponding to the three factors (Figure 4.1) discussed previously.

Features Extracted from Answer Context

To describe the context information, we use three features fA↔A: similarity between the

answer Ac under consideration and other answers Ai to the same question, the number of

Ai, and the orderAc was created ans index (e.g. by sorting the creation time, we know that

Ac is the 4th answer to its question). The similarity feature has three dimensions: average,

minimum and maximum similarity between Ac and Ai as defined below:

ave Ans sim =

∑
i 6=c

sim(Ac, Ai)

num(Ai 6=c)
(4.1)

min Ans sim = min
i 6=c

sim(Ac, Ai) (4.2)

max Ans sim = max
i 6=c

sim(Ac, Ai) (4.3)

where sim(·, ·) is the cosine similarity as in Figure 4.3 and num(Ai 6=c) is the total number

of other answers Ai.

Features Extracted from Question-Answer Relationship

This group of features fA↔Q are based on the similarity between Ac and Q, which is

sim(Ac, Q), and also the time lag between the postings of the question and the answer,

which is timeSlot(Ac, Q). Since each question consists of a title and a body, to compute

the similarity, we combine the title and the body before calculating the cosine similarity.

Because the question can receive an answer at any time if it is not locked or closed, the

time lapse between question and answer varies dramatically (e.g., from a few seconds to

one year in our data). Thus, we represent this lag using logarithm scale.

QA sim = sim(Ac, Q) (4.4)

timeSlot = timeSlot(Ac, Q) (4.5)
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Figure 4.3: This figure shows the process to compute the similarity between two sentences.

Part A is the pre-process module which is used in Part B. Part B is the flow chart to show

how to compute the similarity.

Features Extracted from Answer Content

To describe the content quality of an answer, multiple features fA are defined below:

• Features from the answer body: the length of answer body, whether it has illustration

pictures/codes, whether it refers to other web pages using URL, etc. Moreover, if

one answer has a clear paragraph structure instead of messing everything up into one

paragraph, it will be easy to read and then likely to be selected as a best answer.

Thus, the readability of the answer also affects whether the answer will be selected

as best answer and we define it as features related with paragraph length (Eq.4.6).

readability = [max
i

(Li),
1

M

M∑
i=1

Li] (4.6)
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where Li is the length of ith paragraph of the answer and M is the total number of

paragraphs.

• Features from an answer’s comments: The features are the number and average score

of the comments and the variance of the scores.

Table 4.1, 4.3, 4.2 summarizes the above three types of features. Together, we compute

a 16-dimensional feature vector for a candidate answer under consideration.

4.1.5 Prediction via Classification

With the features extracted for a candidate answer, we predict if it may be selected as the

best answer through learning a classifier using labelled data: feature vectors corresponding

to best answers and non-best-answers according to the ground-truth are used to learn a

2-class classifier. The classifier we used is based on the random forest algorithmBreiman

(2001). Random forest is an efficient algorithm to classify large dataset. It also provides an

efficient approach to computing feature importance, which is useful for us to analyze the

importance of each feature Table 4.1, 4.3, 4.2.

4.1.6 Experimental Results

The experiments were based on the Stack Overflow dataset described earlier. Among

the 103,793 questions and 196,145 answers used, there are 4,950 questions that do not

have any answer and 45,715 questions with only one answers. For questions with only

one, 16,986 of them have no best answers while 28,729 having the best answers. We used

all 196,145 answers in our experiment, with the best answers as positive samples and the

negative samples being the answers that are not best answers.

We use random forest classifier to do classification and twofold cross-validation. The

average accuracy is shown in Table 4.4. We emphasize that the focus of this study is

43



Table 4.1: Features designed for an answer Ac to a question Q. Ai are other answers to Q.

This table shows features extracted based on the answer only.

group index symbol feature description

0,1 ave comment,

var comment

they are the average and

variance of the scores of

the comments to Ac.

2 comment num Ac’s comments number.

fA 3, 4, 5 URL tag, pic,

code

they show whether Ac has

a URL tag, illustration fig-

ures, or codes.

6 ans len it is the length of Ac.

7, 8 readability they show whether Ac is

easy to read, see Eq.4.6

on analyzing only features extracted from the questions and answers without using user-

specific information. User-specific information, when available, can be used to further

improve the performance as done in (Yang et al. 2011).

The distribution of the feature importance is shown in Figure 4.4. Both Figure 4.4

and Table 4.4 indicate that features from the answer context fA↔A contribute the most. We

also compute the average feature importance from the three groups of features. For features

from the answer context, the average feature importance is 0.1202. For the features from the

question-answer relationship, the average feature importance is 0.05871. For the features

from the answer content, the average feature importance is 0.03128. This also shows the

importance of fA↔A. In the following, we discuss feature importances based on Figure 4.4,

respectively.
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Table 4.2: Features designed for an answer Ac to a question Q. Ai are other answers to

Q. This table shows features extracted based on the information from both question and

answer.

group index symbol feature description

9 QA sim the similarity between Ac

and Q. (Figure 4.3).

fA↔Q 10 timeSlot the difference between

Ac’s creation time and

Q’s.

In the group fA↔A, the most important feature is competitor num. This suggests that the

more competitors the answer Ac has, the less likely is may be selected as the best answer.

The feature min Ans sim has slightly less but comparable importance as competitor num.

This shows that the best answer is usually most different from the others. However it does

not mean the best answer and the competitors should be totally different. Since all the

answers aim at answering the same questions, they also should have similarity. We can see

this from the importance of ave Ans sim.

In the group fA↔Q, the feature timeSlot contributes more than the feature QA sim.

This shows that earlier answers have a higher chance to be selected as the best answer.

Within the group fA, comment num and ans len contribute more than the others. This

suggests that the best answer is usually the one with more details and comments. This is

reasonable and intuitive. The readability feature also contributes significantly, suggesting

that answers that are easy to read are likely to be selected.
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Table 4.3: Features designed for an answer Ac to a question Q. Ai are other answers to Q.

This table shows features extracted based on the information from the interaction between

answers.

group index symbol feature description

11, 12, 13 ave Ans sim,

min Ans sim,

max Ans sim

the average, minimum,

maximum of similarities

between Ac and Ai.

fA↔A 14 competitor num the number of Ai.

15 ans index the order that Ac was cre-

ated. E.g. it is the 2nd an-

swer to the question.

Table 4.4: Prediction accuracy for different feature groups. fA↔A, fA↔Q, fA are three

groups of features we described in the previous sections.

Features fA↔A fA↔Q fA all

Accuracy 70.71% 60.27% 65.59% 72.27%

4.1.7 Conclusion and Future work

We studied the problem of predicting the best answer on CQA sites. Our experiments

and analysis with a reasonably large dataset have shown that some features, and in particu-

lar those reflecting the contextual information among the answers, are more important for

the task. The results also suggest that the features designed in the chapter appear to be able

to do the job reasonably well. In the future, we plan to study the importance of user-centric

information (e.g., usage history, location etc.) for the prediction problem.
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Figure 4.4: The distribution of feature importances. The bars correspond to 16 features

defined in Table 4.1, 4.3, 4.2, respectively.

4.2 Finding Needles of Interested Tweets in the Haystack of Twitter Network

Drug use and abuse is a serious societal problem. The fast development and adoption

of social media and smart mobile devices in recent years bring about new opportunities for

advancing computer-based strategies for understanding and intervention of drug-related

behaviors. However, the existing literature still lacks principled ways of building computa-

tional models for supporting effective analysis of large-scale, often unstructured social me-

dia data. Part of the challenge stems from the difficulty of obtaining so-called ground-truth

data that are typically required for training computational models. This chapter presents

a progressive semi-supervised learning approach to identifying Twitter tweets that are re-
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lated to personal and recreational use of marijuana. Based on a small, labeled dataset,

the proposed approach first learns optimal mapping of raw features from the tweets for

classification, using a method of weakly hierarchical lasso. The learned feature model is

then used to support unsupervised clustering of Web-scale data. Experiments with realistic

data crawled from Twitter are used to validate the proposed approach, demonstrating its

effectiveness.

4.2.1 Introduction

Drug use/abuse is among the serious societal problems in the modern age. According

to a 2011 report Center (2011), in the United States alone, illicit drug use costs the so-

ciety more than $193 billion annually and the number is increasing. The impact is also

widespread: In 2013, about 24.6 million Americans 12 years old or older were illicit drug

users Abuse and Administration (2014). Accordingly, a lot of research efforts have been

devoted to understanding drug-use-related behaviors and the analysis of potential bene-

fits and limitations of various intervention strategies. A key step in such drug-use-related

research is the collection of user behavior data.

Most contentional approaches to user data collection are based on recruitment of partic-

ipants who would provide inputs to a drug-use-related study, e.g., by answering question-

naires carefully designed to gather various types of behavioral and/or demographical data.

For example, to study the relationship between reproductive strategy and views on recre-

ational drug use, Katinka Quintelier et al. recruited students from Belgium, Netherland and

Japan to fill out paper surveys for data collection. The total number of participants is 476

Quintelier et al. (2013). In Lacson et al. (2012), John Charles Lacson et al. evaluated the

association between marijuana use and nonseminoma study. They collected data from 163

patients. There are some well-known limitations in such efforts. For example, the sample

size is typically small, as it is in general very costly to involve a large population in such
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studies. More importantly, such questionnaires in general rely on a participant’s explicit

recall of his/her drug-use behavior, which could be a limiting factor on its own (e.g., issues

like incorrect memory or intentional omission of some facts). (

The phenomenal growth of social media and smart mobile devices has led to more and

more drug-use-related data appearing online. For example, there are many drug-related

discussion groups on Facebook 1 , many drug-use-related questions asked and answered on

Yahoo!Answers 2 , as well as many drug-related tweets on Twitter 3 (see Figure 4.5). )

Figure 4.5: The left one illustrates related tweets on Twitter, the middle one shows an

example of one question and its answer related with marijuana on Yahoo! Answers, and

the right one shows several groups related with marijuana on Facebook.

Such user-generated social media may be collected at a much larger scale (than an ex-

plicit user survey) and thus have the potential of offering realistic insights into understand-

ing of substance-use behaviors, their situational factors, and social contexts. A few recent

efforts illustrate this nicely. In Lee (2014), Christine Lee et al. found that the substance-

use related behaviors have similar patterns in data from traditional survey-based approaches

and those from social media. In Whitehill et al. (2015), Jennifer Whitehill et al. studied the

relationship between mobile usage of social networking sites (e.g. Facebook and Twitter)

and the alcohol use in a large street festival. In van Hoof et al. (2014), Joris Hoof et al.
1https://www.facebook.com/
2https://answers.yahoo.com/
3https://twitter.com/
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conducted one study on analyzing Facebook profiles to show that some Facebook profile

elements can be the indicators of real-life behaviors. In Stoddard et al. (2012), Sarah Stod-

dard et al. examined the influence of young people’s social networking behaviors on their

alcohol and other drug use. They found that peer influence is an important factor in alcohol

and marijuana use not only in person but also on-line.

While having demonstrated to some extent the potential of using social media for

substance-use research, these existing efforts also revealed the challenges of building com-

putational models for analyzing largely-unstructured social-media. For example, some user

attributes that may be readily available from an explicit survey now need complex infer-

ence strategies to figure them out. Further, any approach that relies on training from some

labelled dataset cannot be easily extended to large-scale analysis. In this chapter, we ad-

dress some of these challenges in the context of illicit marijuana use and its manifestation

on Twitter. Specifically, we propose one semi-supervised approach to studying the user

behaviors of the illicit marijuana use using noisy, unstructured and large-scale Twitter data.

We first study the feature selection scheme via one classification task, which is to predict

whether one Twitter tweet is related to personal and recreational marijuana use based on

a small labeled dataset. Building on top of the results from the small labelled dataset, we

then develop an unsupervised clustering scheme for processing Web-scale data to further

improve the analysis. To our knowledge, this is the first work to study marijuana use behav-

iors using large-scale Twitter data, and the proposed semi-supervised approach is shown to

be effective and efficient. We will make the dataset public for other researchers to further

evaluate.

The rest of the chapter is organized as follows. A brief review of related work is given

in Section 4.2.2. In Section 4.2.3, the research problem of our effort is defined and the

features we use are also described. We show how to learn the feature selection scheme in

Section 4.2.4 and how to use the learned scheme to improve the clustering of the large-
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scale dataset in Section 4.2.5. Finally, we show the experimental results in Section 4.2.6

and conclude this chapter and present some limitations of our study in Section 4.2.7.

4.2.2 Related Works

In this section, we briefly review some related work on study of use of marijuana and

other substance, including both traditional methods of recruiting participants and more

recent approaches using social media data.

Participant-recruitment Based Research

In Bachman et al. (1991), Bachman et al. used questionnaires to study the racial/ethnic

differences in smoking, alcohol use and drug use in American high school seniors from

1976 to 1989. The data collection lasted for many years. Johnston et al. conducted

follow-up surveys on young adults regarding their behaviors related to drug use in John-

ston (2010). They discussed several trends in use patterns of typical drugs, alcohol, and

cigarette smoking among young people and also the difference of drug use between the

college and non-college populations, male and female and so on. Schuster et al. recruited

9th and 10th graders from sixteen Chicago high schools to study the gender specific asso-

ciations between marijuana use and risky sexual behaviors and other depressive symptoms

in Schuster et al. (2013). Marijuana use may also affect the development of intelligence.

To show this, a longitudinal study of 614 families for several years by Jackson et al. was

reported in Jackson et al. (2016). The result shows that there is little direct evidence that

marijuana use in adolescent has a negative effect on IQ.

As noted earlier, these population-survey-based efforts are usually very time-consuming

merely for the stage of data collection. Another point to note is that the above-mentioned

efforts focused more on finding features or trends from the data rather than developing

computational approaches for modeling user behaviors.
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Research Using Social Media

Social media and mobile Internet use in teens and young adults was studied by Lenhart et

al. in Lenhart et al. (2010). They found that 47% online adults and 72% online 18-29-year-

olds use social networking websites. Ramo et al. found that it is useful and cost-effective to

use Facebook as recruitment source to do research on substance use Ramo and Prochaska

(2012). More than 200 online forums or websites in 7 European countries were monitored

to identify emerging trends in recreational drug use by Deluca et al. Deluca et al. (2012).

The non-medical use of Adderall (one psychostimulant drug) among college students using

Twitter were studied in Hanson et al. (2013), where the frequencies, percentages and means

were analyzed, and the experiments showed that their findings were similar to traditional

survey-based methods. To study the smoking behavior on Twitter, Myslin et al. collected

tweets from Twitter and performed content and sentiment analysis Myslı́n et al. (2013).

Cavazos-Rehg et al. also performed content analysis of tweets but with a pro-marijuana

Twitter handle (@stillblazingtho) plus the demographics of the handle’s followers Cavazos-

Rehg et al. (2014). Volkow et al. reported risks of the recreational use of marijuana like

the risk of addiction, effect on brain development, relation to mental illness and so on

in Volkow et al. (2014). They also showed that there are about 12% of people who use

marijuana as non-medical drug, especially among the young people. Krauss et al. studied

the hookah smoking behavior on Twitter in Krauss et al. (2015). They coded each tweet

using a Likert scale from 1 to 5, and relied on collecting the crowd-sourcing results. Leah

et al. reported their research on how posts on Twitter changed after legalizing recreational

use of marijuana in two states Thompson et al. (2015). Katsuki et al. studied the youth

non-medical use of prescription medications (NUPM) on Twitter in order to model the

frequency of NUPM-related tweets and identified the illegal access to drug abuse via online

pharmacies in Katsuki et al. (2015). They labeled the tweets to see if they are related with
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NUPM behavior and also whether a user has positive or negative attitudes towards NUPM.

Then a Support Vector Machine (SVM) was used to do classification on the tweets.

While demonstrating the great potential of using social media for substance-use-related

analysis, these existing efforts have yet to be extended to Web-scale data. In particular,

we have not seen specific computational models for analyzing Web-scale Twitter data for

understanding marijuana-use-related behaviors. As noted earlier, part of the challenge lies

in the difficult of obtaining labeled training data. To address these issues is among the

motivations for our work in this chapter.

4.2.3 Problem Definition

Twitter is one popular social networking service by which people can post photos,

videos and up to 140 characters of text. These posts are called tweets. To study the be-

havior of marijuana users on Twitter, a fundamental problem is to identify tweets that are

related to some underlying users who use marijuana. This problem is more subtle than it

appears. For example, one cannot simply rely on using the keyword “marijuana” to search

the tweets for solving the problem. There are several complicating factors. First, many

“street names” are used to describe marijuana and in fact most recreational marijuana users

never use the term “marijuana” explicitly. Second, there may be many tweets that involve

medical or research-oriented references to marijuana but they are not at all useful for a

study on illicit marijuana use. Considering these factors, we propose to classify a tweet

into one of following three categories:

• Class One: Tweets in this class are related to personal recreational use of marijuana.

They are posted by individual users instead of some official accounts (for example,

those for newspaper, companies, or medical institutes).

• Class Two: In this class, all tweets are related to marijuana but not in the sense of
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recreational use. For instance, they may discuss the medical or prescription use of

marijuana, or report some news involving marijuana.

• Class Three: This is for those tweets having no identifiable relationship with mari-

juana use.

Figure 4.6 illustrates several real examples for each of the three classes defined above.

Various text-based features may be extracted for the task of classifying the tweets. Also,

as evident from the related work, it is important to consider social interactions among the

underlying users. Furthermore, all these features are not mutually independent, and their

intricate correlation may provide additional evidence for improved classification. Consid-

ering these, and with the goal of classifying large-scale tweets in mind, we now discuss our

overall approach, which is illustrated in Figure 4.7. In the approach, we first extract a set

of basic features from each tweet. Then, utilizing a small labelled training set, we learn a

good feature mapping that takes into consideration both some basic features and their in-

teractions, based on weakly-hierarchical lasso. The learned feature mapping model is used

to process the large-scale data and perform clustering. As the features are optimized for

classifying the tweets into the predefined three classes, the hypothesis is that the unsuper-

vised clustering results give arise to clusters corresponding to the three classes (which will

be evaluated in the Experiments section). 4.7.

In the following, we first present the basic set of features designed for our task. These

features are extracted from either the content of the underlying tweets or the social interac-

tions among the corresponding users, as elaborated below.

Content-based Features

• The length of the tweet: For each tweet, its length can be one useful feature. For

example, the tweets from ordinary users may be generally shorter than those from
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Figure 4.6: Demos to show three classes: (a) is for Class One, (b) is for Class Two and (c)

is for Class Three.
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Figure 4.7: It shows the entire framework of our methodology.

official accounts.

• Favorite Count & Retweeted Count: It shows how many people think the tweet is

favorite and the number people who retweet this post. This is in general useful for

measuring how influential the tweet is.

• The number of Hash-Tags: This calculates how many trends one tweet mentions. Our

original dataset were obtained by crawling using selected street names of marijuana.

The tweets with more trends are likely to be classified as Class Three or Two, instead

of Class One.

• TF-IDF on Unigram: Unigram is one common feature used to capture characteristics

of one tweet. We build TF-IDF for unigrams of each tweet and use it as one feature.

User-based Features

• Number of followings and followers: Each user on Twitter can follow others or be

followed. However for some official accounts or famous people, they are likely to
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have a smaller number of followings but a large number of followers. These users

are unlikely to post tweets related to personal and recreational use of marijuana.

• Number of Tweets: This records how many tweets one user has already posted, cap-

turing the level of Twitter activity of the user.

4.2.4 Learning Feature Mapping From A Small Dataset

Considering the computational efficiency needed for processing Web-scale data, we

may employ a linear classifier as the baseline for doing the classification, as given by

Eqn.4.7.

yi = f(xiw) (4.7)

where the ith data point is xi ∈ R1×d, i ∈ {1, · · · , N} which is normalized, and its label

is yi ∈ {1, 2, 3} and the coefficient to learn is w ∈ Rd×1. In this chapter, the discriminant

function is chosen to be one-vs-one linear SVM. The implementation details are provided

as follows. We first train one linear regression model by optimizing Eqn.4.8.

min
w

‖Xw − y‖22 +
1

2
‖w‖22 (4.8)

where X ∈ RN×d and y ∈ RN×1. Then we apply one-vs-one linear SVM to s = Xw ∈

RN×1 to find the label for each tweet.

min
v

‖v‖22 + C
N∑
i=1

ξi (4.9)

s.t. yi(si ∗ v + b) ≥ 1− ξi ∀i (4.10)

where ξ is non-negative.

However, in practice, the linear model is inadequate for capturing the high degree of

non-linearity that typically exists in our problem, which has been shown in our experi-

ments. To allow some level of nonlinearity while maintaining computational efficiency, we
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introduce to the problem 2nd-order interaction terms with a weakly hierarchical structure,

as described in Bien et al. (2013)Liu et al. (2014). The resultant model is given in Eqn.4.11.

y = f(z) (4.11)

z = xw +
1

2

d∑
i

d∑
j

xixjQi,j

where z is called the z-term of x (for simplicity) and the discriminant function f(·) is given

in Eqn.4.9 (one-vs-one linear SVM in this chapter) and xi is the ith dimension of the data

point x and Qi,j ∈ R is the coefficient for the interaction between ith and jth dimensions

of the feature space.

To solve the classification problem under this new model, we formulate the following

optimization problem in Eqn.4.12.

min
w,v,Q

1

2

∑
i

(f(zi, v)− yi)2 + λ1‖w‖1 +
λ3
2
‖Q‖1 (4.12)

s.t. ‖Q.,j‖1 ≤ |wj| for j = {1, · · · , d}

where zi is the z-term of xi as defined in Eqn.4.11, ‖Q‖1 =
∑

i,j |Qi,j| and v is the model

parameter of the discriminant function (the one-vs-one linear SVM).

Solving the Optimization Problem

Solving Eqn.4.12) directly is difficult. Hence we simplify this optimization problem by a

two-step process: We first learn parameters w and Q and then learn the model parameter v

of the discriminant function.

For parameters w and Q, we model them as one regression model as Eqn.4.13 when we

do not consider the discriminant function.

min
w,Q

1

2

∑
i

(zi − yi)2 + λ1‖w‖1 +
λ3
2
‖Q‖1 (4.13)

s.t. ‖Q.,j‖1 ≤ |wj| for j = {1, · · · , d}
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where zi is the z-term of xi as defined in Eqn.4.11. Then after w and Q are obtained, we

learn v of the discriminant function by optimizing Eqn.4.9.

Converting Eqn.4.12 into Eqn.4.13 and Eqn.4.9 allows us to solve the original opti-

mization problem. By solving Eqn.4.13 and Eqn.4.9, we can obtain the model parameters

v, w and Q which satisfy the original problem (Eqn.4.12) as well. However, since we add

more constraints on these parameters in the process of simplification, the obtained v, w and

Q are only the local optima of Eqn.4.12.

While the details for solving Eqn.4.13 can be found in Bien et al. (2013), a brief de-

scription is given below. From Eqn.4.13, we can see that this optimization problem is

non-convex because of the existence of constraints, and as a result, we cannot solve it us-

ing convex optimization approaches. Thus in Bien et al. (2013), one convex relaxation by

setting w = w+ − w− is given, where w+ and w− are nonnegative. The convex relaxation

version is given as Eqn.4.14.

min
w+,w−,Q

1

2

∑
i

(ẑi − yi)2 + λ1(w
+ + w−) +

λ3
2
‖Q‖1 (4.14)

s.t. ‖Q.,j‖1 ≤ w+
j + w−j for j = {1, · · · , d}

w+
j , w

−
j ≥ 0 for j = {1, · · · , d} (4.15)

where ẑi = xi ·(w+−w−)+ 1
2

∑d
j

∑d
k xi,jxi,kQi,j . A lot of convex optimization approaches

can be used to solve Eqn.4.14, such as FISTA Beck and Teboulle (2009).

After we obtain the parameters w and Q, we can learn the parameter v of the discrimi-

nant function, which is given by Eqn.4.16.

min
v

1

2
‖v‖22 + C

N∑
i=1

ξi (4.16)

s.t. yi(zi ∗ v + b) ≥ 1− ξi ∀i (4.17)

where ξ is non-negative. This can be solved by working on its duality problem as in
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Eqn.4.18, using sequential minimal optimization Platt et al. (1998).

max
α

∑
i

αi −
1

2

∑
i,j

yiyjαiαjzizj (4.18)

s.t. 0 ≤ αi ≤ C ∀i (4.19)∑
i

yiαi = 0 (4.20)

4.2.5 Clustering with The Learned Feature Mapping

A supervised approach cannot be directly applied to Web-scale datasets as manually-

labeled data are in general in a much smaller scale. A semi-supervised approach would

rely on unsupervised clustering to first identify the structures of the data and then employ

a small amount of labeled data to annotate the structures. For example, using K-means

clustering, we can group a dataset into different clusters. For data points in each cluster,

if we assume that they have the same labels, we can randomly select a small number of

data points for labeling and then use the labels to annotate the clusters. Assuming k groups

in a dataset, a basic K-means algorithm is equivalent to solving the following problem

(Eqn.4.21):

min
πj ,j∈{1,··· ,k}

k∑
j=1

∑
v∈πj

‖xv − cj‖22 (4.21)

where cj is the jth centroid and πj is the jth cluster.

As we have presumably found a feature mapping scheme in the previous section by

maximizing classification accuracy for the labelled data, it is natural to use the learned

feature mapping for the clustering stage. Denote the dataset as {xi, i ∈ {1, · · · , N}}. Con-

sider the influence of the 2-order feature interaction, the dataset representation is converted

as {x̃i, i ∈ {1, · · · , N}} where x̃i is given by Eqn.4.22.

x̃i = (xi, vec(Si)) (4.22)
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where the element at (j, k) in the matrix Si is the product of the jth and kth dimension which

is xi,jxi,k. It is easy to see x̃i ∈ R1×(d+d2). For the new representation, the interaction of

the feature dimension is captured by parameters w and Q which are learned from the small

labeled dataset (see Section 4.2.4). By treating the learned parameters as a kernel, we can

have the new clustering as Eqn.4.23.

min
πj ,j∈{1,··· ,k}

k∑
j=1

∑
v∈πj

(x̃v − cj)M(x̃v − cj)T (4.23)

where the learned metric matrix M = diag((w; vec(Q))) ∈ R(d+d2)×(d+d2).

4.2.6 Experiments

In this section, we evaluate the performance of our approach with comparison with

several typical existing methods. We report two main experiments: the first one evaluate

the the feature mapping scheme learned from the small labeled dataset, and the other one

is about how to apply the learned scheme to the large-scale data.

Dataset Construction

For constructing a small labelled dataset, instead of crawling random tweets online, we first

use a list of keywords as one filter to remove unrelated tweets. These keywords are defined

based on several Web sources and some government documents. The overall process for

crawling tweets to form the evaluation datasets is summarized below:

• Obtain a list of street names for marijuana based on some marijuana-related research

and government Websites; Rank the street names based on their frequency of occur-

rences on the list of Websites.

• Choose top k1 names and then for each one, we can crawl n tweets.

• Label these tweets and compute class distribution.
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• Based on the class distribution, we can choose top k2 names as the final keywords.

In this chapter, we use one famous Drug Rehabs online treatment center as the online-

forum 4 to find a list of street names for the marijuana. Meanwhile, we also use one

official document from a government source as another guideline 5 . It is worth noting that,

since some of the street names for marijuana are common words (e.g., weed, pot), crawling

tweets based on the above list of street names inevitably results in all three classes of tweets

(not only class 1 and class 2). Hence the last step is to estimate a more proper list for getting

a good distribution for the three classes. We used parameters k1 = 30, k2 = 10 and n = 50.

The final keyword list was determined to be: marijuana, weed, blunt, cannabis, pot, reefer,

buds, 420, mary jane, blaze.

With the final list, the Twitter API 6 is utilized to crawl data. The time period we

crawled is from January 09 to January 15 in 2016 and all tweets are in English. We crawled

a total of 1,166,441 tweets. Among these we randomly labeled 10,000 with comparable

proportion for each class (see Table 1 for exact composition in terms of class labels). This

small labelled dataset was annotated by two people reading the tweets to decide their labels,

using the interface shown in Figure 4.8.

Experiment Settings

Two experiments are performed to show the effectiveness and efficiency of our approach.

In the first one, based on the small labeled dataset, we learn the optimal feature structure

based on weakly hierarchical lasso and then compare with commonly used approaches like

linear classifier (Eqn.4.7) and linear SVM. These two baselines are chosen because in the

large-scale dataset, linear algorithms are commonly used. Moreover, random guess also is
4www.rehabs.com
5http://www.vva.org/documents/VAD_Materials/Supplemental%

20Materials/street_terms.pdf
6https://dev.twitter.com/rest/public
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Figure 4.8: The simple interface for manual labelling of crawled tweets.

chosen as one baseline. In the second experiment, the learned feature mapping is applied

to the large-scale dataset for clustering.

Learning the Feature Mapping

In this part, to compare with the baselines, we split the 10,000 tweets randomly into two

parts: training set of 8,000 tweets and testing set with 2,000 tweets. The distributions of

each class in both sets are shown as Table.4.5. All the feature vectors are normalized. Since

in the our approach, we need to compute the feature interaction terms which is defined as

the z-term in Eqn.4.11, we have to reduce the dimension of the original feature vectors.

In this experiment, we use LDA Gu et al. (2011) to do dimension reduction of TF-IDF of

Unigram in the feature sets for our approach. For random guess, we randomly assign one
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Table 4.5: The statistics of training set and the testing set. C1: Class One, C2: Class Two,

C3: Class Three.

C1 C2 C3 all

training 3,061 2,017 2,922 8,000

testing 769 500 731 2,000

label to every data point and then compute the accuracy based on Eqn.4.24.

e =

∑Nt

i=1 I(yi == ŷi)

Nt

(4.24)

where yi is the ground-truth label of the tweet xi and ŷi is the predicted label and

I(x) =


1 if x is true

0 otherwise
(4.25)

Table 4.6: The confusion matrix for LC

C1 C2 C3

C1 0.4616 0.3108 0.2276

C2 0.3820 0.3920 0.2260

C3 0.1751 0.3146 0.5103

The experiment results are shown in Table 4.9 and The confusion matrix of our ap-

proach is shown in Table 4.6, 4.7, 4.8.

From Table. 4.9, we can easily see that our algorithm stands out. Compared with

the modified linear classifier (Eqn. 4.7 and Eqn. 4.9) with our algorithm, the difference

is that we consider the interaction terms (the z-term) defined in Eqn.4.11. Thus these

results also show that it is necessary to consider feature selection scheme using weakly

hierarchical lasso. Furthermore, our approach performs better than linear SVM. This is
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Table 4.7: The confusion matrix for the algorithm SVM.

C1 C2 C3

C1 0.6060 0.1508 0.2432

C2 0.1820 0.6120 0.2060

C3 0.1259 0.0780 0.7962

Table 4.8: The confusion matrix for the algorithm Ours.

C1 C2 C3

C1 0.9831 0.0130 0.0039

C2 0.0020 0.9920 0.0060

C3 0.0014 0.0410 0.9576

Table 4.9: The table shows the performance of each baseline and our method. RG: random

guess; LC: linear classifier; SVM: linear SVM.

RG LC SVM Ours

0.326 0.462 0.677 0.976

also easy to understand because of the nonlinearity introduced in our formulation (Eqn.

4.11). Nonlinearity comes from the z-term.

To further show the performance of each algorithm, the confusion matrices are shown

in Table. 4.6, 4.7, 4.8. It shows that our approach performs best in all of the three classes.

From Table 4.6, we can see that LC cannot distinguish Class 1 and Class 2. For example,

for Class 2, almost the same number of tweets are classified into Class 1 and Class 2. The

baseline with SVM performs better than LC, but the error is still significant.

Our approach effectively solves the problem of how to fuse features and provides the
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optimal feature selection/combination scheme. It is possible to analyze which features (or

their interactions) are most influential. Table 4.10 shows the top three main factors which

affect the classification performance and their corresponding coefficients. From this table,

Table 4.10: Illustration of top-3 main factors. The second one and the third one are from

TF-IDF of Unigram.

retweet num TF-IDF1 TF-IDF2

4.41e-05 4.53e-01 3.62e-01

it can be seen that the number of retweets and also the TF-IDF of Unigram play important

roles in distinguish these three classes. We can also see that the content of the tweets is

most important for classification. Based on the results of Table 4.10, the top interactions

are from the two TF-IDF feature dimensions. This is also demonstrated by the experiment

results (see Table 4.11).

Table 4.11: This table shows top-3 interaction factors and their corresponding coefficients.

TF-IDF1 * TF-IDF1 TF-ID2 * TF-ID2 TF-ID1 * TF-IDF2

-2.258e-1 1.844e-1 7.884e-2

Clustering Structure on the Web-Scale Data

In this part, we apply the learned feature mapping scheme to the large dataset, which con-

tains not only the labeled data points but also unlabeled ones. To show the clustering

structure of the partially labeled dataset, we perform two experiments: one using one base-

line which is KMeans and the other one is our method based on Eqn. 4.23. For a good

clustering outcome, we assume in each cluster, a majority of data points belong to the same

class. To evaluate the performance of the results, we present two metrics (Eqn. 4.26) to
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show whether any class is dominant in a given cluster. In each cluster, there may be three

classes with sizes n0, n1 and n2 (in non-increasing order) respectively. If one class does

not exist, it means its size is zero.

m1 =
n2

n0

m2 =
n1

n0

(4.26)

In our experiment, the large dataset is partially labeled and thus when we compute m1 and

m2, we only consider the labeled data in each cluster. Then the average is computed for the

entire dataset. These two metrics are presented to measure what is the difference between

the dominant class and the others. If the values of these metrics are small, then they shows

that compared with the size of the dominant class, the others are small.

In our experiment, the number of clusters is chosen from a pre-defined set which is

k ∈ {10, 100, 200, 300, 400, 500, 1000}. In this way, we can learn the effect of the number

of clusters on the clustering performance. The experiment results are shown in Table 4.12.

From Table 4.12, we can see that our clustering approach by employing the learned

feature mapping scheme performs better than the baseline. As the number of clusters goes

up, m̄1 and m̄2 of KMeans and our approach become small, which means that the percent-

age of the dominant class becomes large. Compared with the baseline, the percentage of

the dominant class is much larger since the corresponding metrics’ values are smaller. The

average percentage of the dominant class is shown in Fig.4.9.

4.2.7 Conclusion and Future Work

In this chapter, we presented one semi-supervised approach to analysis of Twitter data

related to marijuana use, using web-scale data. The entire approach has two steps: learn-

ing the optimal feature mapping scheme and grouping the entire data using an improved

clustering algorithm. In the first step, we proposed a new linear classifier with weakly hi-

erarchical lasso and solved it by relaxing the objective function to an easier form. In the
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Table 4.12: Experiment results on studying the clustering structure of partially labeled

dataset. (a) for the baseline and (b) for ours. They show the size of the other class compared

with the dominant one.

(a) The baseline

k m̄1 m̄2

10 0.411 0.647

100 0.320 0.594

200 0.333 0.594

300 0.318 0.602

400 0.291 0.542

500 0.282 0.542

1000 0.239 0.495

(b) our approach

k m̄1 m̄2

10 0.381 0.555

100 0.280 0.487

200 0.240 0.436

300 0.263 0.485

400 0.243 0.423

500 0.228 0.427

1000 0.116 0.320

second step, we showed how to apply the learned feature mapping scheme to the cluster-

ing algorithm. Finally, we carried out experiments on large-scale data from Twitter. The

experimental results demonstrated the effectiveness and efficiency of our approach.

There are still some limitations we need to work on. For example, when we learn the

feature mapping scheme, we relax the problem to be one easier one, and thus the learned

parameters are only locally optimal. Another problem is that the dataset could still be big-

ger, possibly covering a longer period than the one-week period used in our data collection.

Furthermore, how to incorporate features reflecting temporal patterns of user behaviors is

worth studying.
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Figure 4.9: It shows the average percentages of the dominant class plotted based on the

experiment result at each k ∈ {10, 100, 200, 300, 400, 500, 1000}
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Chapter 5

WEAKLY HIERARCHICAL LASSO BASED LEARNING TO RANK IN BEST

ANSWER PREDICTION

As one form of user-generated content, posts on community question and answering (CQA)

sites are often very noisy. One way of extracting useful knowledge from these CQA sites

is to identify pairs of questions and their best answers. In reality, this is not a trivial task as

many askers eventually do not mark the best answers even if some answers have perfectly

solved their problems. To solve this problem, research on best answer prediction appeared

and has been working on for a long time. User-generated answers often consist of multiple

“views”, each capturing different (albeit related) information (e.g., expertise of the asker,

length of the answer, etc.). Such views interact with each other in complex manners that

should carry a lot of information for distinguishing a potential best answer from others.

Little existing work has exploited such interaction for better prediction. In this chapter, we

propose a new learning-to-rank method, ranking support vector machine (RankSVM) with

weakly hierarchical lasso, to explicitly model view interaction in best answer prediction.

The key idea is to treat each feature dimension as one view of the task and then involve the

second-order view interactions via constructing weakly hierarchical structure for predicting

best answers. To find a solution under the proposed model, we apply an iterative shrinkage

and thresholding algorithm for solving the non-convex problem. The evaluation of the

approach was done using two datasets: MQ2007 and Stack Overflow. Experimental results

demonstrate that the proposed approach has superior performance compared with current

state-of-the-art methods.
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5.1 Introduction

In the era of Internet and social media, community question and answering (CQA)

sites, like Baidu Zhidao 1 , Yahoo! Answers 2 and StackOverflow 3 , are seeing phenomenal

growth. As one form of user-generate content, data from CQA sites are typically very noisy,

which does not lead to ready usage either by humans or by computers. Consequently, how

to extract useful information from the noisy CQA data to form valuable knowledge base

has become an important research task Anderson et al. (2012). One popular task on this

regard is best answer prediction, on which our chapter focuses.

Given a question with multiple answers, one way to solve best answer prediction is to

reformulate it into a binary classification problem which is whether, in a question-answer

pair, the answer is the best one or not. There have been some research efforts in this set-

ting like Agichtein et al. (2008), Shah and Pomerantz (2010). In these efforts, features

were extracted from different views of the data to generate a good representation for the

question-answer pairs, and the final feature vector was formed by concatenating them to-

gether. As a result, each feature dimension carries some information of the CQA data. But

there are a couple of limitations inherent to these existing techniques. First, a binary clas-

sifier is not natural to this research problem, which often involves multiple answers for one

given question. It is possible for a trained classifier to declare many or even all answers

are the best ones (if they happen to lead to feature vectors lying on the positive side of the

decision boundary). Also it is counter-intuitive as a human user would normally compare

all received answers and decide on a single best one. The binary classification does not

model directly on the difference of multiple answers, compared with learning-to-rank tech-

niques. Second, the interaction between features from different views may carry a lot of
1http://zhidao.baidu.com/
2https://answers.yahoo.com/
3http://stackoverflow.com/
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information for distinguishing a potential best answer from others, however current exist-

ing methods do not readily support incorporation of such interactions, which by itself is a

challenging task.

In anther setting, best answer prediction is modeled as one ranking problem, which

is conceptually more intuitive. This kind of modeling results from the fact that the best

answer to one question is defined/discovered relatively by comparing it with all the other

given answers. A ranking-based setting may benefit even more from considering the latent

interactions between features designed from different views of the CQA data. Unfortu-

nately, similar to the binary-classification cases, the existing learning-to-rank techniques

have not attempted to explicitly to model such interactions among different views of the

data Dalip et al. (2013)Cai and Chakravarthy (2013)Chapelle and Keerthi (2010).

In this chapter, we focus on how to incorporate the interaction structure of features into

one existing algorithm framework to improve the performance of best answer prediction.

Similar to Cai and Chakravarthy (2013)Hieber and Riezler (2011), we adopt the learning-

to-rank formulation for its natural match to the prediction problem. Considering the in-

teraction structure (or the hierarchical structure of feature dimensions in our study) and

the ranking framework, we propose a new learning-to-rank formulation based on weakly

hierarchical lasso.

The contributions of our work are summarized as follows: Firstly, we propose a new

RankSVM model by constructing the weakly hierarchical structure between features from

different views. Secondly, to solve the new formulation, we propose an efficient algorithm

and evaluate via experiments its efficiency and effectiveness with comparisons with other

existing methods.

72



5.2 Related Work

In this section, we review briefly related research on community question and answer-

ing, and discuss the difference between the reviewed work and our proposed method.

5.2.1 Content Quality Analysis

Compared with traditional on-line search, as one supplementary approach to solving

our daily problems, CQA sites contain a lot of valuable knowledge. Thus, since the first

CQA site was launched, finding high quality content from these sites has become impor-

tant. For example some early work was done in Jeon et al. (2006) where Jiwoon Jeon et al.

crawled data from Naver Q&A site and manually labeled each pair of questions and their

corresponding answers as bad, medium, good. They proposed to use non-textual features to

represent each question-answer pair and used kernel density estimation and the maximum

entropy approach to model the problem of answer quality. To have a better representa-

tion of questions and answers on CQA sites, more sources of information were used to

extract new features like interactions between questions and answers and users, as studied

in Agichtein et al. (2008), where Eugene Agichtein et al. proposed to use non-content

information to model question and answer pairs on CQA sites including the interaction

features. Then different classifiers like support vector machine, log-linear classifier and

stochastic gradient boosted trees were applied to learn the prediction model, whose effi-

ciency and effectiveness were evaluated using data from Yahoo! Answers. The importance

of social information for predicting answer quality was studied in Shah and Pomerantz

(2010), where Chirag Shah et al. found the importance of user information by studying the

quality labeled manually. Besides research on the answer quality, question quality is also

studied. In Li et al. (2012), Baichuan Li et al. worked on the question quality prediction

problem. They first studied what factors may affect question quality and then proposed a
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model termed Mutual Reinforcement-based Label Propagation to predict question quality.

In Yao et al. (2015), it was found that the voting scores of questions have a strong positive

correlation with that of the corresponding answers and they proposed a set of co-prediction

algorithms to predict the voting scores of questions and answers.

The above work focused on content quality prediction (question quality and answer

quality), which is modeled as one classification problem. These existing efforts mainly

focused on finding a better representation of the data by introducing various features to

facilitate the prediction problem.

5.2.2 Best Answer Prediction and Answer Ranking

Pairs of questions and their best answers can be easily used to answer similar questions,

as the research in Shtok et al. (2012) shows. With the fast growth of CQA sites, there are

a lot of questions which have high quality answers but no best ones eventually marked. To

this end, a lot of research efforts have been devoted to best answer prediction and answer

ranking. In Adamic et al. (2008), Lada Adamic et al. analyzed Yahoo! Answers for best

answer prediction. They used simple four-dimensional features and reported that the length

of answers is the most important factor of answer quality. The problem they are worked

on is to predict whether a given answer is the best one of the given question. They did

not consider interaction information like relationship between questions and answers and

users. It is not natural to model best answer prediction as a classification problem since

the best answer is relatively defined. Thus there have been a lot of efforts on modeling

best answer prediction as a ranking problem. In Surdeanu et al. (2008), Mihar Surdeanu

et al. proposed a ranking model for non-factoid questions and studied whether ranking

algorithms can be used to rank answers for given questions. They also showed the impor-

tance of different features in the answer ranking problem. This work was further extended

in Surdeanu et al. (2011). Instead of simply applying learning to rank algorithms, some
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researchers worked on improving the performance by using piggybacking and ranking ag-

gregation techniques. In Hieber and Riezler (2011), Felix Hieber et al. applied RankSVM

algorithms to best answer prediction with piggybacking being used to improve the perfor-

mance. In their work, interaction features were used, like the similarity between questions

and answers. Piggybacking is used to for obtaining a better representation of the questions

so that similarity between the questions and answers can help improve the ranking per-

formance of RankSVM. One example work to use ranking aggregation is Agarwal et al.

(2012), where Arvind Agarwal et al. made a comparison between different learning to rank

algorithms and proposed to use ranking aggregation techniques to improve them. But that

work focused on the factoid question and answers instead of CQA. In contrast, our work

employs hierarchical interactions in the feature space.

There are also some efforts on studying the influence of different combinations of fea-

tures on the prediction accuracy and also comparison across different CQA sites Burel et al.

(2012). Point-wise ranking techniques were also used to rank answers to each question. In

Dalip et al. (2013), Daniel Dalip et al. assumed that the voting scores to be the quality

scores of answers. Then random forest was used to model the relationship between the

scores and features. The final predicted rating scores were used to rank each questions.

To evaluate the performance, normalized discounted cumulative gain at top k (NDCG@K)

is used. However, there is noise in the rating scores as shown in Ravi et al. (2014), and

thus in our work we do not use this assumption. The information between answers to each

question may help capture the relative information for better prediction, as shown in Tian

et al. (2013), where Tian et al. proposed to extract features from the context information

between answers to each question. There are many other efforts on finding/defining new

features for best answer prediction. For example, temporal features are proposed in Cai

and Chakravarthy (2013).

One common observation in the most of the existing work is that, when new features
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are derived, all of them are concatenated to one vector to be the final feature vector. For

example, in Adamic et al. (2008), these features are used: reply length, thread length, the

total number of best answers of one user, the total number of replies one user has. They can

be denoted as x1, x2, x3, x4. Then the final feature vectors are the simple concatenation of

these features which are (x1, x2, x3, x4). In our work, we focus on proposing a new model

which can capture the feature interactions based on hierarchical lasso.

5.3 Problem Description and Formulation

The research problem in this chapter is formally defined as follows: given a question

with all of its received answers, to predict which one is the best one. To select the best

answer, one has to compare it with the others, so that the best answer is relatively defined.

Thus instead of using the classification framework, we employ the learning-to-rank strat-

egy. The basis of our proposed approach is RankSVM Chapelle and Keerthi (2010). While

existing work focuses on designing new features, we study this prediction problem from

the following angle: modeling the interaction of features from different views of data be-

yond simple concatenation of them. To achieve this goal, we employ weakly hierarchical

lasso Bien et al. (2013) in constructing a new ranking model.

Notations of this chapter are described in the following. Denote a dataset with N ques-

tions as {qi, i ∈ {1, · · · , N}}. For each question qi, it receives a group of answers which

are {Ai,j, j ∈ {1, · · · ,Mi}} where Mi is the total number of answers to qi. The feature

vector xi,j ∈ R1×d is used to represent the jth answer to the ith question. Moreover, the

kth dimension of one feature vector xi,j is defined as xi,j,k where k ∈ {1, · · · , d}. xi,j is

the simple concatenation of features extracted from different views of our problem, as done

in the existing work. It is named as the main effect. Then for each xi,j , we compute the

second-order interaction which is denoted as zi,j ∈ R1×d2 , which is called the second-order

interaction term. The final feature vector by considering the main effect and the interac-
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tion term is denoted as x̂(i, j) = [xi,j, zi,j] ∈ R1×(d+d2). The interaction term is defined as

follows (see Eqn.5.1):

zi,j = [z
(1)
i,j , z

(2)
i,j , · · · , z

(d)
i,j ] (5.1)

z
(m)
i,j = [xi,j,m · xi,j,1, xi,j,m · xi,j,2, · · · , xi,j,m · xi,j,d]

where i ∈ {1, · · · , N}, j ∈ {1, · · · ,Mi} and m ∈ {1, · · · , d}.

In our work, instead of classification methods, learning-to-rank techniques are used to

model the relativeness of the best answers. Each relatively ranked pair is represented as

(qi, Ai,j1 , Ai,j2) where the quality of Ai,j1 is higher than that of Ai,j2 . For simplicity, we

may use (i, j1, j2) as the short version of (qi, Ai,j1 , Ai,j2) in the following equations. The

set Pi contains all these pairs of answers to the question qi. Furthermore, the entire set of

these relatively ranked pairs is denoted as P in Eqn.5.2.

P =
⋃

i∈{1,··· ,N}

Pi (5.2)

RankSVM, as one state-of-the-art pair-wise learning-to-rank algorithm used in best answer

prediction Cai and Chakravarthy (2013)Hieber and Riezler (2011), is used as the basic

building block of our new ranking model.

The RankSVM formulation is given below (Eqn. 5.3):

min
w∈Rd×1

1

2
‖w‖22 + C

∑
ξi,j1,j2 (5.3)

s.t. S1(i, j1) ≥ S1(i, j2) + 1− ξi,j1,j2 , ∀(i, j1, j2)

ξi,j1,j2 ≥ 0, ∀(i, j1, j2)

where (i, j1, j2) is one ranked QA pair in P and S(i, j) is the quality score function of the

jth answer to qi and defined in Eqn.5.4.

S1(i, j) = xi,j w + w0 (5.4)
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where w0 ∈ R.

To improve the performance of RankSVM, our model involves the second-order in-

teractions via constructing one weakly hierarchical structure in the feature space. The

formulation of the new ranking model is shown in Eqn.5.5. Compared with the existing

work, we model the latent interaction structure between features from different views of

the data, instead of simple concatenation. The hierarchical structure of the feature space is

constructed through the first group of constraints (a.k.a ‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d}) in

Eqn.5.5.

min
w∈Rd×1,
Q∈Rd×d

‖w‖1 +
1

2
‖Q‖1 + C

∑
(i,j1,j2)∈P

ξi,j1,j2 (5.5)

s.t. ‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d}

ξi,j1,j2 ≥ 0, ∀(i, j1, j2) ∈ P

S(i, j1) > S(i, j2) + 1− ξi,j1,j2 , ∀(i, j1, j2) ∈ P

where Q.,j is the jth column of Q, ‖Q‖1 =
∑

i

∑
j |Qi,j| and S(·, ·) is the ranking score for

each answer to one question defined in Eqn.5.6. For example S(i, j) is the ranking score

for answer Ai,j to qi.

S(i, j) = xi,jw +
1

2
zi,j vec(Q) + w0 (5.6)

where vec(Q) is the vectorized version of Q and zi,j is shown in Eqn.5.1 and w0 ∈ R.

To help illustrating the proposed model, we depict the hierarchical structure based on

one example shown in Figure 5.1, in which we only show three features: the length of the

answer (Alen), the number of URLs in the answer (Nurl), the number of pictures used in the

answer (Npic). In this illustration, we can see that the upper layer contains all main effects

(a.k.a xi,j ) while the second layer shows the interaction terms (a.k.a zi,j in Eqn.5.1) exclud-

ing the square values of themselves. When one term contributes to the objective function,
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no matter it belongs to main effects or interaction terms, its corresponding coefficient is

set to be non-zero. For each interaction term, if it contributes to the objective function,

then at least one of its corresponding main effects contributes to the objective function.

Satisfying these hierarchical constraints, it is easy for us to conclude that the interaction

terms contribute less than their corresponding main effects. Specifically, in this figure, if

the coefficient of Alen ·Nurl is non-zero, then the coefficient of Alen is non-zero but that of

Nurl can be zero.

From Eqn. 5.5, the weakly hierarchical lasso is involved via the first group of con-

straints (a.k.a ‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d}).
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Figure 5.1: One illustration to show hierarchical structure in the feature space, where “·”

represents the scalar multiplication. The first layer contains the main effect, while the

second layer consists of the 2nd order of interaction.

5.4 Solving the Proposed Model

To develop a solution to our proposed model in Eqn. 5.5, we first reformulate the

problem as follows. Consider this group of constraints (Eqn.5.7) in the proposed model in

Eqn. 5.5.

Si,j1 > Si,j2 + 1− ξi,j1,j2 (5.7)
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Together with Eqn.5.6, we have the following computation:

Si,j1 > Si,j2 + 1− ξi,j1,j2 (5.8)

Si,j1 = xi,j1w +
1

2
zi,j1 vec(Q) + w0

Si,j2 = xi,j2w +
1

2
zi,j2 vec(Q) + w0

If we assume the relatively ranked pair (qi, Ai,j1 , Ai,j2) is the mth element in the set P of

Eqn.5.2, then Eqn.5.8 can be simplified and the following is obtained:

x̃mw +
1

2
z̃m · vec(Q) > 1− ξ̃m (5.9)

where x̃m, z̃m should satisfy the following constraints in Eqn.5.10.

x̃m = xi,j1 − xi,j2 (5.10)

z̃m = zi,j1 − zi,j2

As a result, Eqn.5.5 is converted to the following:

min
w,Q

‖w‖1 +
1

2
‖Q‖1 + C

∑
m∈{1,··· ,|P |}

ξ̃m (5.11)

s.t. x̃mw +
1

2
z̃m · vec(Q) > 1− ξ̃m, m ∈ {1, · · · , |P |}

‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d}

ξ̃m ≥ 0, m ∈ {1, · · · , |P |}

where |P | is the size of the set P .

Now we can reformulate Eqn.5.11 into Eqn.5.12:

min
w,Q

‖w‖1 +
1

2
‖Q‖1 + C · L(w,Q) (5.12)

s.t. ‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d}
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where L(w,Q) is given in the following:

L(w,Q) =

|P |∑
m=1

max(0, 1− (x̃mw +
1

2
z̃m vec(Q)))2 (5.13)

Set λ = 1
C

, the final model is obtain as given in Eqn.5.14

min
w,Q

L(w,Q) + λ · ‖w‖1 +
λ

2
‖Q‖1

s.t. ‖Q.,j‖1 ≤ |wj|, j ∈ {1, · · · , d} (5.14)

To this point, our objective function has been reformulated into the standard form as in the

weakly hierarchical lasso problem defined in Bien et al. (2013) and Liu et al. (2014).

To solve Eqn. 5.14, the scheme in Liu et al. (2014) can be applied since it can directly

solve the weakly hierarchical lasso without adding more penalty compared with approach

in Bien et al. (2013). Since the optimization process in Liu et al. (2014) is based on a

general iterative shrinkage and thresholding algorithm (GIST) in Gong et al. (2013), before

we use the method in Liu et al. (2014), we need to prove that L(w,Q) in Eqn. 5.14 is

continuously differentiable with Lipschitz continuous gradient.

Before proceeding with the proof, we introduce following notations:

x̂ = (x̃, z̃)

ŵ =

 w

1
2
vec(Q)

 (5.15)

As a consequence, x̂ ∈ R1×(d+d·d) and ŵ ∈ R(d+d·d)×1. L(w,Q) is converted from Eqn.5.13

as Eqn.5.16.

L̂(ŵ) =
∑

m∈{1,··· ,|P |}

max(0, 1− x̂m · ŵ)2 (5.16)

To show L̂(ŵ) is differentiable with Lipschitz continuous gradient, this requirement needs

to be satisfied: there exists a positive constant β such that

‖dL̂
dŵ

(w1)−
dL̂

dŵ
(w2)‖2 ≤ β‖w1 − w2‖2 (5.17)
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Let us first consider one additive component of L̂(ŵ). The point-wise maximum func-

tion can be written as Eqn.5.18.

l(ŵ) = max(0, 1− x̂m · ŵ)2

=


0 if 1− x̂m · ŵ < 0

(1− x̂m · ŵ)2 if 1− x̂m · ŵ ≥ 0

(5.18)

It is easy to see that when w1, w2 ∈ {w|1− x̂m ·w < 0} and w1, w2 ∈ {w|1− x̂m ·w ≥ 0},

Eqn.5.17 is satisfied. Now considering w1 ∈ {w|1−x̂m ·w < 0}, w2 ∈ {w|1−x̂m ·w > 0},

it is easy to see that the left part of Eqn.5.17 becomes ‖(1− x̂ · w2)x̂m‖. Moreover, define

ŵ∗ as 1 − x̂m · w∗ = 0 and this inequality is satisfied: ‖w1 − w2‖ ≥ ‖w∗ − w2‖. Now to

obtain the constant β, the following induction is performed:

‖(1− x̂m · w2)x̂m‖ ≤ β‖w1 − w2‖

⇐‖(1− x̂m · w2)x̂m‖
‖w1 − w2‖

≤ β

⇐‖(1− x̂m · w2)‖‖x̂m‖
‖w∗ − w2‖

≤ β

⇐‖(1− x̂m · w2)‖‖x̂m‖2

‖w∗ − w2‖‖x̂m‖
≤ β

⇐‖(1− x̂m · w2)‖‖x̂m‖2

‖1− x̂m · w2‖
≤ β

⇐β ≥ ‖x̂m‖2 (5.19)

Similarly, it is easy to obtain that β ≥ ‖x̂m‖2 also satisfies the case where w2 ∈ {w|1− x̂m ·

w < 0}, w1 ∈ {w|1− x̂m · w > 0}. Thus, there exists a proper positive constant β so that

l(ŵ) meets the requirement Eqn. 5.17. In conclusion, l(ŵ) is continuously differentiable

with Lipschitz continuous gradient. With this result, we will further introduce and prove

the following lemma, together with which we will able to show the desired property for

L(w,Q) is satisfied.
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Lemma 5.4.1. For each function f(w)i, i ∈ {1, · · · , N} which is continuously differen-

tiable with Lipschitz continuous gradient, their summation f(w) =
∑N

i=1 fi(w) is continu-

ously differentiable with Lipschitz continuous gradient.

Proof.

‖ d
dw

f(w1)−
d

dw
f(w2)‖

= ‖
N∑
i=1

d

dw
fi(w1)−

N∑
i=1

d

dw
fi(w2)‖

= ‖
N∑
i=1

(
d

dw
fi(w1)−

d

dw
fi(w2))‖

≤
N∑
i=1

‖ d
dw

fi(w1)−
d

dw
fi(w2)‖

≤ β‖w1 − w2‖ (5.20)

Denote that there exists positive constant βi such that fi(w) satisfies Eqn.5.17 where i ∈

{1, · · · , N}. Thus Eqn.5.20 is valid when β meets this requirement:

β = max
i
βi (5.21)

Since max(0, 1− x̂m ·ŵ)2 satisfies Eqn. 5.17 and L̂(ŵ) =
∑

m∈{1,··· ,|P |}max(0, 1− x̂m ·

ŵ)2, according to Lemma 5.4.1, L̂(ŵ) satisfies Eqn. 5.17, same as L(w,Q) defined in Eqn.

5.13. Thus, L(w,Q) is continuously differentiable with Lipschitz continuous gradient.

Now it is feasible to apply the algorithm in Liu et al. (2014) to solve Eqn.5.14 which is

equivalent to solving this proximal operator problem of Eqn.5.22.

(w(k+1), Q(k+1)) = arg min
w,Q

1

2
‖w − v(k)‖22 +

1

2
‖Q− U (k)‖22

+
1

t(k)
(λ‖w‖1 +

λ

2
‖Q‖1)

s.t. ‖Q.,j‖1 ≤ |wj| ∀j ∈ {1, · · · , d} (5.22)
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where v(k), U (k) are defined as follows:

v(k) = w(k) − 1

t(k)
· 5wL(w(k), Q(k)) (5.23)

U (k) = U (k) − 1

t(k)
· 5QL(w(k), Q(k)) (5.24)

where t(k) > 0 which is the step size.

Considering w,Q are products of their signs and also absolute values, Eqn.5.22 can be

re-written into Eqn.5.25.

(w(k+1), Q(k+1)) = arg min
w,Q

1

2
‖w − v(k)‖22 +

1

2
‖Q− U (k)‖22

+
1

t(k)
(λ‖w‖1 +

λ

2
‖Q‖1)

s.t. Q̃.,j ≤ w̃j ∀j (5.25)

where Q.,j = sign(Q.,j) Q̃.,j and wj = sign(wj) w̃j . The above equation can be solved

in a closed form as proved in Liu et al. (2014). The pseudocode of our entire algorithm is

shown in the following. which is summarized in Algorithm 3.

5.5 Experiments

In this section, we present experimental results based on MQ2007 and StackOverflow

to show the performance of our proposed model and the comparison with existing state-of-

the-arts.

5.5.1 MQ2007 Dataset

Our proposed method is derived from RankSVM which is one ranking algorithm used

in the state-of-the-art of the best answer prediction Surdeanu et al. (2008)Surdeanu et al.

(2011)Hieber and Riezler (2011)Cai and Chakravarthy (2013). To show the importance of

the weakly hierarchical lasso, we compare our proposed model and RankSVM using one

benchmark dataset for learning to rank: MQ2007.
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Algorithm 3 The pseudo-code to solve our model
1: INPUT: data matrix X and ranking information of all data

2: OUTPUT: model parameters w and Q

3: BEGIN:

4: compute the set P based on Eqn.5.2.

5: compute the data difference {x̃m,m ∈ {1, · · · , |P |}} and {z̃m,m ∈

{1, · · · , |P |}} as Eqn.5.10.

6: provide initial values for w and Q.

7: choose one t via BB Rule Barzilai and Borwein (1988).

8: while w, Q satisfy the stop criteria do

9: while tk does not satisfy the stop criteria do

10: update vk according to Eqn.5.23.

11: update Uk according to Eqn.5.24.

12: obtain new w(k+1) and Q(k+1) based on Eqn.5.25, which can be in the closed

form as Liu et al. (2014).

13: update the step size t(k) = α ∗ t(k) where α is the constant update ratio.

14: end while

15: k = k + 1;

16: end while

This dataset is one part of LETOR4.0 released by Microsoft Research Qin and Liu

(2013). It was constructed based on the Gov2 web page collection using one query dataset

from TREC 2007 4 . This data set uses five-fold cross-evaluation so that five folds are

provided. We only use the training set to train models and testing set to test them. The

statistics of these five folds are shows in two tables: Table 5.1 for all training sets and Table
4http://trec.nist.gov/data/million.query07.html
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5.2 for all testing sets.

Table 5.1: The statistics of training sets in MQ2007.

fold 1 fold 2 fold 3 fold 4 fold 5

number of queries 1017 1017 1014 1014 1014

average number of retrieved documents 41.453 41.257 40.750 40.905 41.376

Table 5.2: The statistics of testing sets in MQ2007.

fold 1 fold 2 fold 3 fold 4 fold 5

number of queries 336 339 339 339 339

average number of retrieved documents 40.631 41.336 42.153 40.870 40.746

For each query in MQ2007, relevant documents are provided and labeled with relevant

scores. Moreover features are extracted for each document. Thus in MQ2007, each data

has such information: query ID, ranking order and the 46-dimensional feature vector which

contains information like term frequency, inverse document frequency, Document length,

BM25 Robertson et al. (1995) as described in Qin and Liu (2013). Before conducting this

experiment on this dataset, we compute z-scores for each data dimension and re-construct

training files and testing files based on z-scores. To use MQ2007, we exact relatively ranked

pairs from each retrieved ranking lists and then apply pairwise-ranking algorithms to these

pairs. Similarly to P in Eqn. 5.2, all relatively ranked pairs together form one set R shown

in Eqn. 5.26:

R = {(Ri,1, Ri,2), i ∈ {1, · · · , L}} (5.26)

where L is the total number of relatively ranked pairs in MQ2007, (Ri,1, Ri,2) is the ith one

in R and the retrieved document Ri,1 is more relevant to its query than Ri,2. To evaluate the
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performance, we use the following evaluation measure defined in Eqn. 5.27.

e0 =

∑
∀(Ri,1,Ri,2)∈R I(si,1 > si,2)

L
(5.27)

where si,1, si,2 are predicted ranking scores of Ri,1 and Ri,2 respectively, and I(· · · ) is

defined in the following: Essentially, this metric measurement is to compute how many

ranking pairs are correctly predicted.

Experiment results based on the evaluation Eqn.5.27 are shown in Table. 5.3. Five-

cross evaluation is performed and for each fold, it is one cross-evaluation. The average

performance of both models is also listed. From Table. 5.3, it is easy to see that our

Table 5.3: The results of RankSVM and our proposed model on MQ2007 are shown.

Fold1 Fold2 Fold3 Fold4 Fold5 mean

RankSVM 0.551 0.469 0.526 0.513 0.473 0.505

Ours 0.699 0.682 0.704 0.686 0.688 0.692

proposed RankSVM with weakly hierarchical lasso stands out. On average, our proposed

model is 18.67% better than that of RankSVM. In other words, this experiment also shows

the second-order feature interactions from different views can play an important role in

learning to rank on the application of the web document retrieval.

5.5.2 Stack Overflow

In the first experiment, we showed that the weakly hierarchical lasso really can improve

the ranking ability of the framework of RankSVM. In this section, the performance of our

model on the problem of best answer prediction is presented. The dataset we use is one

active and popular CQA site on computer programming. All information about this site is

87



available to download 5 . The description of StackOverflow is shown as follows.

Data Description

Founded in 2008, StackOverflow is active and well maintained. On this site, users can post

questions and everyone can provide answers even including the askers. For each question

and each answer, users can comment on it. For one question or answer, users can vote up

or down based on its quality except the user who posts it. For one comment, users can only

vote up if they think the comment is useful, but cannot vote down. Same as one question

or one answer, the one cannot vote up his or her own comments. For one question or one

answer, it can receive up-votes and also down-votes. Then the number of up-votes minus

the number of down-votes is the vote score. It is easy to see that the vote score are integers

and can be negative.

Each question can receive multiple answers and only the asker can decide which one

can be marked as the accepted answer which we call the best answer. This choice is not

permanent, which means the asker can change his or her mind at any time and mark another

answer as the best answer. There is one fact we need to point out. One question may receive

multiple correct answers but only one of them can be marked as the best answer. So the best

answer has the relatively best quality instead of absolutely best one. This is the reason why

we use the learning to rank techniques instead of the classification methods. For users, they

can earn reputations if their posts (e.g. questions ,answers, and comments) obtain upvotes

or answers are accepted or suggestions on editing others’ posts are accepted. Otherwise,

they lose reputations if their posts receive downvotes or are reported as spam or offensive.

Figure 5.2 shows one sample of one question with its answers from StackOverflow. Till

May 8, 2015, the statistics of this site are as in Table. 5.4.
5http://blog.stackoverflow.com/2009/06/

stack-overflow-creative-commons-data-dump/
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Figure 5.2: Illustration of one sample question from Stack Overflow.

Table 5.4: The information of Stack Overflow till May 8, 2015.

number of users 4,232,639

number of votes 62,357,544

number of comments 44,557,809

number of questions 9,365,722

number of answers 15,632,696

Experiment Settings

In our experiment, part of StackOverflow dataset is used. We downloaded all questions

posted from October 1, 2012 to December 31, 2012 and all related information like answers

was tracked until January 2014. This time period was chosen because of these reasons:

First, questions and answers in this time period are not very out-dated; Second, few user
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activities on posts in this period are active. Thus, we assume that the best answer to one

question is the final one. The dataset we use was dumped on January 2014 6 . Before

feature extraction, posts without users’ IDs are removed. Then, only questions which have

best answers and at least two more answers are considered. The final processed dataset has

52,104 questions and 190,165 answers. On average, there are 3.65 answers per question.

During the experiments, our data set is randomly split into two parts evenly: training and

testing.

To be specific, details as follows show how to generate relatively ranked pairs. For each

question, only its best answer is considered as the high quality answer while others are

treated as low-quality answers. Then each pair is generated in this way: one best answer and

one of other answers to the same question. After all pairs are generated, feature extraction

is performed based on information from three main aspects of each pair of questions and

answers: content, interactions, users. These are briefly described below.

The First group of features are extracted based on the content of the answer in each

pair of questions and answers. Part of these features are based on comments to the answers

like average score of comments, variance of the comments’ scores, number of comments.

Comment-based features at least show that the corresponding answer is interesting and

incur a good discussion towards problem solving. Besides these, whether one answer has

pictures, URL or codes are also factors to show that the current answer has a high quality,

since these components are able to show more information than text. Moreover, the length

of answers Adamic et al. (2008)Agichtein et al. (2008) and its readability Tian et al. (2013)

also play an important role on answer quality.

Apart from the content information, features based on interaction are also considered,

for example, the interaction between questions and answers, and that between different

answers to one question. The first one is easy to understand since one answer has to be
6http://blog.stackoverflow.com/category/cc-wiki-dump/
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similar to its corresponding question, and thus the similarity between questions and answers

is used as one feature. The second one is designed based on the assumption that users prefer

the answers which is easy to understand. Computation of these features are shown in Tian

et al. (2013). This is different from the feature interaction in our model. This one is on the

feature-design level which focuses on exploring new information sources to design new

features, while our case focuses on the model-design level.

User information also has an impact on the quality of answers. One answer is likely to

have a high quality if the answerer is one expert. To represent the expertise of one user,

these features are extracted based on users’ previous activities, for example the number of

answers one provides, how many questions one asks, the number of best answers he or she

posts.

Our experiment is conducted by considering different groups of features and then re-

sults are presented respectively. In this way, it is easy to see the performance of differ-

ent algorithms when we only consider informations from different aspects of our research

problem (i.e. different groups of features). Finally, the experiment is conducted on the

entire feature set we have. The three groups of features we consider in this experiment are:

content, interactions and user information.

Experiment Results & Discussion

To show the performance of our proposed algorithm, we compare our model with ap-

proaches used in state-of-the-art. As mentioned in Section Introduction, there are two main

trends in best answer prediction: one is to use classification techniques and then decision

values are used as quality scores while the other one is to use ranking approaches directly.

For the former case, linear support Vector Machine (SVM) is common used because data

in social media is in large scale so that nonlinear algorithms are not computational effi-

cient. In our experiment, linear SVM is the first baseline we choose. For the latter case,
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RankSVM Chapelle and Keerthi (2010) is used which is one main ranking algorithm used

in the area of best answer prediction Cai and Chakravarthy (2013). The code for RankSVM

is from Microsoft Research 7 . On CQA sites, there are no direct information we can use

as the metric to measure answer quality without manually labeling. For example, scores

of each answer might be one proper metric. But this metric is not accurate. It is easy to

see that it is easy for the answer which is posted early to have the high score. In fact, on

Stack Overflow, there are a lot of answers having the higher scores than the corresponding

best answers 8 . Thus in our experiments, we only treat the best answers as the high-quality

ones and others as low-quality. As a result, in our experiment, it is the pairwise ranking

problem so we do not compare with listwise ranking algorithms.

To make comparison between different models, two evaluation metrics are used: one is

defined in Eqn. 5.28 and the other one is defined in Eqn. 5.29.

e1 =

∑
∀(qi,Ai,j1

,Ai,j2
)∈P I(si,j1 > si,j2)

|P |
(5.28)

where si,j1 , si,j2 are predicted scores of Ai,j1 , Ai,j2 respectively. The relatively ranking set

P is defined in Eqn. 5.2 and the function I(·) is shown in Eqn. 5.30.

g(i) = arg max
j
{si,j, j ∈ {1, · · · ,Mi}}

e2 =

∑
i I(ji,0 == g(i))

N
(5.29)

where ji,0 is the index of the best answer of the ith question, si,j is the predicted score of

the jth answer of the ith question and the function g(·) returns the index of the best answer
7http://research.microsoft.com/en-us/um/beijing/projects/letor/baselines/ ranksvm-

primal.html
8https://data.stackexchange.com/stackoverflow/query/380215/where-accepted-answer-

does-not-have-the-highest-score
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of one given question and the function I(·) is given by Eqn.5.30.

I(x) =


1 if x is true

0 otherwise
(5.30)

From the definitions, it is easy to see this fact: e1 shows how good one algorithm is

when it considers the pairwise ranking regardless of whether one algorithm can find the

best answer to one question or not, while e2 shows the performance of each algorithm

when applied to best answer prediction. In other words, e1 measures what percentage of

relatively ranked pairs are predicted correctly, which focuses on the answer-level compar-

ison. However e2 measures what percentage of questions have the correctly predicted best

answers.

To show the performance of different models on the pairwise ranking in best answer

prediction, experiments were conducted to collect the metric e1. The experimental results

are shown in Table. 5.5. Table. 5.5 presents the performance of algorithms used as learning

Table 5.5: This table shows the results of different algorithms on Stack Overflow when con-

sidering the measurement metric e1. Three groups of features: fc content, fi interactions,

fu user information.

fc fi fu all

SVM 0.671 0.541 0.480 0.544

RankSVM 0.411 0.534 0.543 0.476

Ours 0.689 0.552 0.570 0.693

to rank. From the results, we can see that our model performs best not only when only indi-

vidual feature groups are considered but also when all features are considered. This shows

that our model can be one good pairwise ranking algorithm in the area of community ques-

tion and answering. From the results of SVM, we can see that when only fc is considered,
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the performance is best. However, when simple concatenation of all features from different

views is applied, the final one gives worse performance instead of better one. Similarly, for

RankSVM, its performance is best when only fu is considered. However after considering

all features, the performance drops. For our approach, because we consider the interaction

structure of features from different views, the final performance is best. This shows that

there exists on latent interaction structure in the feature space. Incorporating weakly hier-

archical lasso, we can capture this interaction structure. This shows the effectiveness of our

proposed model.

To show comparison of performance on best answer prediction, experiments were run

to collect metric e2. Table. 5.6 presents the performance of different models. From the re-

Table 5.6: Experiment results (e2) of different algorithms’ performance. Three groups of

features: fc content, fi interactions, fu user information.

fc fi fu all

SVM 0.479 0.331 0.294 0.349

RankSVM 0.223 0.321 0.361 0.286

Ours 0.494 0.334 0.377 0.498

sults, it is easy to see that our model performs best in the problem of best answer prediction

not only when considering different groups of features independently but also when con-

sidering all features jointly. Similar to Table.5.5, the performance of SVM and RankSVM

drop a lot when all features are considered by simple concatenation. For our model, it

does not have this problem because of the fact that we incorporate the information from the

latent interaction of features from different views.

Consequently, we conclude that the proposed models perform better than those in the

state-of-the-art. Performance of experiments using both metrics shows the effectiveness of
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hierarchical interactions between different views in the problem of best answer prediction.

5.6 Conclusion & Future Work

We present a new learning-to-rank approach to best answer prediction on CQA sites.

Incorporating the weakly hierarchical lasso, our proposed model is able to effectively ex-

ploit the interactions of features from different views of the data. To find a solution under

this new model, we reformulate it into one existing optimization framework. Experiments

on Stack overflow are used to evaluate the proposed approach, with comparison to other

methods in state-of-the-art. The experimental results demonstrate the effectiveness and su-

perior performance of our approach. Although our algorithm is designed originally for best

answer prediction, it can be treated as one ranking algorithm and used in most ranking sit-

uations. Thus the application of our algorithm in different areas can be one piece of future

work. Moreover, in our algorithm, one limitation is that we study the interaction structure

of different feature dimensions, instead of different groups of feature dimensions. Another

interesting future work is to extending our algorithm by considering the hierarchical struc-

ture of different groups of feature dimensions.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter, I summarize my major contributions of this dissertation work and also

suggest directions for future research work to support visual question answering.

6.1 Major Contributions

Visual Question Answering, as an important and promising emerging field, is primar-

ily established on research involving Computer Vision, Natural Language Processing and

Reasoning. To support this research area, I work on dealing with two main related re-

search problems: one is weakly supervised semantic segmentation, and the other one is

best answer prediction. The contributions of this dissertation are summarized as follows.

Best answer prediction in community based question answering sites Contributions

of this dissertation to best answer prediction in community based question answering sites

involves two dimensions. Firstly, I design a new way to measure the answer quality based

on the analysis of large-scale dataset. As one type of user-generated content, community

based question answering sites contain a large number of questions without best answers.

Pairs of questions and their best answers can be good re-usable resources to help other

people solve similar problems. So this fact that a lot of best answers are missing results

in a lot of waste. My findings can help have a better representation for the data collected

for best answer prediction problem. It can be treated as a measurement to help generated

community based knowledge. Furthermore, I also propose a new research method to pre-

dict which answer is the best one. This new ranking model not only can capture the nature

of best answer prediction problem but also can be applied to other ranking problems. With
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the help of the weakly hierarchical lasso, the proposed method is able to model the hidden

structure of the input data’s feature space. To support my conclusion, I conduct experi-

ments on large-scale datasets. One important dataset I use is from the StackOverFlow site,

which is a question-answering site for programmers.

Image Understanding via Graphical Model Visual question answering cannot be solved

in a good way without the help of image understanding. Thus, another research topic I con-

centrate on is image understanding. I have a thoroughly literature review and identify that

it is meaningful to study the weakly semantic segmentation problem, in which I need to

predict the label for each pixel of each image given images with only partially image-level

labels. Solving this new weakly semantic segmentation problem, I can provide a large-

scale images with pixel-level labels to help existing supervised learning problems in image

recognition area like object detection, human detection, supervised semantic segmentation

and et al. To solve this new problem, the overlapping information of image-level label sets

from different images contributes a lot. This dissertation employs a popular framework of

graphic model (conditional random field) to capture the underlying neighborhood informa-

tion existing in the input image space. This new graphic model considers the neighborhood

information inside one image and that between different image across the entire dataset.

To support the theoretic findings, several experiments are performed on different common

used datasets.

6.2 Preliminary Exploration into a Deep Learning Approach

One of my current project is about deep learning and weakly semantic segmentation.

This is the extended work for Chapter 3. In this project, the deep learning technique is used

to learn the feature representation for the super-pixels in images. The baseline method

takes as inputs images and also their corresponding super-pixel maps (Kwak et al., 2017).
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In the training part, only image-level labels are considered. Using a large training set, the

training network is able to learn the best feature representation for the superpixels. In the

testing part, the trained features are sent to a fully connected layer to generate a labelmap

for the testing images.

This baseline only considers the constraint of pixels in one superpixel, which assumes

that all pixels in a superpixel have the same label. However, the neighbor information

between different superpixels is not considered. To solve this problem, I add a conditional

random field model as one post-processing step to help capture the neighbor information.

In the training part, the model is as Fig. 6.1. Different training modules in the training

Figure 6.1: This is the framework for the training stage (this figure is from Kwak et al.

(2017)).

networks are as follows. fenc is the encoder which is the VGG16 1 networks. This encoder

is pre-trained on the ImageNet dataset. fups is the module which converts the feature map

z to become the same size as the input images. The upsampling layer is based on the

research from (Zeiler and Fergus, 2014). Then the most important layer is the superpixel

pooling layer, which considers all pixel-level features from upsampled feature map in the

same superpixel, and then average these feature vectors. This layer is corresponding to the

assumption that all pixels in one same superpixel should have the same labels.

After adding the CRF smoothing module, the testing part becomes as Fig. 6.2. In
1http://www.robots.ox.ac.uk/˜vgg/research/very_deep/
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Figure 6.2: This is the framework for the new testing stage.

testing part, the trained network is the similar to the training network which consists of

fenc, z map and fups, ẑ and the superpixel pooling layer.

In the new model mentioned above, the CRF module in the testing part is treated as

the post-processing, which needs to be trained separately. To automate the entire process,

I include CRF into the network module. In this way, it can be trained together with the

training process of the network part. New framework is shown in Fig.6.3. It has two main

parts: network channel and CRF channel. In the former one, it has three modules from

Kwak et al. (2017): fenc, fups and superpixel pooling layer, which are used to involve the

superpixel information into model training process. The output of the superpixel pooling

layer goes to the SegmentNet module (Pinheiro and Collobert (2015)) to generate response

maps, which are merged with the output of CRF channel to obtain merged response maps.

These maps go through aggregation layer to generate the loss which is used to do back-

propagation, and meanwhile, are used to update the CRF channel’s output. Segment-Net

module and the aggregation layer are from Pinheiro and Collobert (2015). The first one is

one 4-layer network which needs to be learned from training process and the second one

is to map the response maps to be image-level labels, which is Log-Sum-Exp layer from

Boyd and Vandenberghe (2004). There are several technical challenges existing in this new

framework. First, feature maps after fenc have different sizes from those of input images,
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Figure 6.3: New framework with CRF feedback loop.
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as a result it is unable to involve superpixel information and also hard to merge outputs of

network channel and the CRF one. To solve this, fups module is used. Second, images in

the dataset do not have pixel-level labels but only have partial image-level ones. Because of

this fact, it is difficult to start CRF module. To deal with this difficulty, I first label a small

dataset which contains images with all pixel-level labels. For each label, it only has about

two images so that in total there are around two hundred ones. Using this dataset, I generate

the initial labelmaps for CRF module. Third, the output of CRF channel is discrete, which

makes the final loss be not differentiable.

To test the new algorithm, a simulation experiment is designed. For each image in the

simulated dataset, it is generated in the following process.

1, Randomly generate the size of image-level labels.

2, Randomly generate image-level labels with the pre-defined size from Step 1.

3, The dimension of the labelmap is 224×224 and each superpixel’s size is 14×14.

4, For each pixel, its observation is generated according to Gaussian distribution with

its label related mean value.

5, Finally, the superpixel map is generated, whose index starts from 0 instead of 1. For

all pixels in the same superpixel, their indexes are the same.

For all images, their labels are from this set {0, 1, 2, 3, 4, 5} and the corresponding mean

values for the Gaussian distribution is from {5, 10, 15, 20, 25, 30}. One demo for this

dataset is shown in Fig.6.4. Training set has 1500 images and testing set has 300 im-

ages. In our real image case, training images only have partial image-level labels so during

the simulation, I randomly drop several image-level labels. The preliminary exploration for

the deep learning based approach shows that the network can be learned from the simulated

data.
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Figure 6.4: Three images from the simulated dataset. Each row is information for one

image. Left column is the labelmap, middle one is the observation and right one is the

superpixel map.

6.3 Future Directions

Research on visual question answering is at a very early stage, and is important to be

explored in future. It is a multi-discipline area which involves at least two main research:

image understanding and question answering in natural language processing. In this part, I

point out several promising research topics for future research.

First, in the area of image understanding, one might combine the existing semantic seg-
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mentation results with natural language techniques, so that one intelligent audio description

system can be constructed. Visual-impaired people can use this system to “see” colorful

world. Moreover, one can apply the semantic segmentation to videos. Then combined with

the natural language techniques, a wearable device with camera can be constructed to the

blind.

Second, for the question answering research, my work focuses on solving how to de-

termine the best answer where there is one question and multiple received answers. Then

my approach can obtain which answer is the best one. However in the real life, there can

be a large number of other situations, for example, users may want to search for subjective

questions immediately, instead of waiting for a long time period for answer choice. In these

cases, research needs to focus on generating best answers for one given question.
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