
FinFET Cell Library Design and Characterization

by

Manoj Vangala

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2017 by the

Graduate Supervisory Committee:

Lawrence Clark, Chair

John Brunhaver

David Allee

ARIZONA STATE UNIVERSITY

August 2017

 i

ABSTRACT

Modern-day integrated circuits are very capable, often containing more than a

billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion

transistors on a 160 mm2 die. Designing such complex circuits requires automation.

Therefore, these designs are made with the help of computer aided design (CAD) tools. A

major part of this custom design flow for application specific integrated circuits (ASIC) is

the design of standard cell libraries. Standard cell libraries are a collection of primitives

from which the automatic place and route (APR) tools can choose a collection of cells and

implement the design that is being put together. To operate efficiently, the CAD tools

require multiple views of each cell in the standard cell library. This data is obtained by

characterizing the standard cell libraries and compiling the results in formats that the tools

can easily understand and utilize.

My thesis focusses on the design and characterization of one such standard cell

library in the ASAP7 7 nm predictive design kit (PDK). The complete design flow, starting

from the choice of the cell architecture, design of the cell layouts and the various decisions

made in that process to obtain optimum results, to the characterization of those cells using

the Liberate tool provided by Cadence design systems Inc., is discussed in this thesis. The

end results of the characterized library are used in the APR of a few open source register-

transfer logic (RTL) projects and the efficiency of the library is demonstrated.

 ii

ACKNOWLEDGMENTS

Foremost, I would like to sincerely thank my advisor Dr. Lawrence T. Clark for all

the guidance and inspiration throughout the course of my masters’ thesis. I really appreciate

everything he has done for my graduate study during my masters’ program. I would also

like to extend my gratitude to my committee members Dr. John Brunhaver and Dr. David

Allee for their help and guidance.

I would also like to express my special thanks to the members of the Clark-Allee

lab, Vinay Vashishtha, Chandrasekaran Ramamurthy, Anant Mithal, Sai Bharadwaj

Medapuram, Ankita Dosi, Lovish Masand and Parshant Rana for their help and support

throughout my course. This work would not have been possible without their support.

 iii

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES .. vii

CHAPTER

1. INTRODUCTION TO STANDARD CELL LIBRARIES .. 1

1.1 Introduction ... 1

1.2 Design Flow Using Standard Cell Libraries ... 2

1.3 Introduction To 7 nm PDK ... 2

1.4 Components of A Standard Cell Library .. 3

1.4.1 Schematic Views of The Cells ... 3

1.4.2 Layout Views of The Cells ... 4

1.4.3 Symbol Views of The Cells .. 5

1.4.4 Abstract Data/View of The Cells ... 5

1.4.5 Verilog Definition of The Cells .. 5

1.4.6 Functionality, Timing, Power and Signal Integrity Data of The Cell 6

1.5 Required Cells in A Standard Cell Library .. 6

1.5.1 Combinational Logic Cells ... 6

1.5.2 Sequential Cells .. 7

1.5.3 Buffers and Inverters .. 7

1.5.4 Integrated Clock Gaters .. 7

1.5.5 Filler and De-Cap Cells .. 8

1.6 Characterization of Standard Cell Libraries ... 8

2. BACKGROUND AND LITERATURE SURVEY ... 10

Page

 iv

CHAPTER Page

2.1 Introduction to FinFETs .. 10

2.2 Library Architecture .. 11

2.3 Cell Design .. 13

2.4 Characterization ... 14

2.5 Library Validation ... 17

3. STANDARD CELL DESIGN .. 22

3.1 Number of Cells in A Standard Cell Library .. 22

3.2 Library Architecture .. 24

3.2.1 Layers ... 24

3.2.2 Cell Height, Gear Ratio and Metal Pitches .. 24

3.3 Layout Design Implications .. 26

3.3.1 General Rules for Layout ... 26

3.3.2. Fin Cut Implications .. 28

3.3.3 M1 Template Usage and M2 Pitch ... 29

3.3.4 Dummy-Gate Cuts And TDDB .. 30

3.3.5 Analysis of Stack Nodes ... 32

3.3.6 General Structure of Schematic .. 34

3.3.7 General Structure of a Symbol ... 35

3.4 Layout View Design Decisions .. 35

3.4.1 D-Flip Flop ... 36

3.4.2 Full Adder ... 37

3.4.3 Half Adder .. 39

 v

CHAPTER Page

3.4.4 Integrated Clock-Gater ... 40

3.4.5 Scan-D-Flip Flop .. 42

4. LIBRARY CHARACTERIZATION .. 44

4.1 Outline of Library Characterization Flow .. 44

4.2 CDL And GDS Extraction .. 46

4.3 Design Rule Check (DRC) .. 48

4.4 Layout Vs Schematic Check (Lvs) ... 50

4.5 Abstract Generation ... 51

4.5.1 Significance of LEF File in APR Flow .. 52

4.5.2 LEF File Generation ... 53

4.5.3 Scaling the LEF File ... 60

4.5.4 Area Attributes Extraction .. 60

4.5.5 LEF Vt Conversion ... 61

4.6 PEX Extraction .. 61

4.7 Liberate Characterization Flow ... 63

4.7.1 Liberate Views and Models .. 64

4.7.1.1 Delay Models ... 65

4.7.1.2 Pin Capacitance .. 66

4.7.1.3 Constraints .. 67

4.7.1.4 Power Models ... 68

4.7.2 Process Corners .. 68

4.7.3 Characterization Indices ... 69

 vi

CHAPTER Page

4.7.4 Liberate Perl Script ... 71

5. CONCLUSION .. 77

REFERENCES .. 80

APPENDIX

A LIST OF CELLS IN THE STANDARD CELL LIBRARY 83

 vii

LIST OF TABLES

Table Page

 2.1. Number of Cells in Industrial Libraries at Various Nodes 18

 3.1. Pitch and Width of Layers in Standard Cell Library 26

 3.2. Rise and Fall Delays of NAND5 Obtained from Test Structure 33

 5.1. Cell Delay of Cells at Various Corners ... 77

 viii

LIST OF FIGURES

Figure Page

1.1. ASIC Design Flow Using Standard Cells ... 2

1.2. Schematic of a 2-Input NAND Gate .. 3

1.3. Layout View of a 2-Input NAND Gate. .. 4

1.4. Symbol View of a 2-Input NAND Gate .. 5

2.1. Planar Transistor and a Tri-Gate FinFET Transistor [Bohr11] 10

2.2 TEM Image of Planar MOSFET And FinFET [Bohr11] 11

2.3. FEOL And MOL Layers Of (b) [Sherazi16] And (b) [Clark16] 12

2.4. Example of A Current Source Model [Gupta12] .. 16

2.5. Three Schemes of Comparison of Single Paths [Seo08] 19

2.6. Energy Vs Delay Comparison of The Three Paths in Figure 2.5. [Seo08] 20

2.7. Critical Path Delay Comparison of IWLS Benchmarks. [Seo08] 20

3.1. List of Cells Present in The Standard Cell Library ... 23

3.2. Cell Height and Gear Ratio of Standard Cells ... 25

3.3. Layout of A Minimum Sized Inverter ... 27

3.4. Post-Cut FEOL And MOL Layers of AO21 Standard Cell 28

3.5. M1 Layout Template .. 30

3.6. Occurrence of TDDB In Post-Cut Fins ... 30

3.7. With Continuous Dummy Gate (a), Without Continuous Dummy Gate (b).. 31

3.8. NAND5 Schematic (a), Layout with LISD And SDT (b),

 Layout with Only SDT (c), Layout with No SDT And LISD (d)................... 32

 ix

Figure Page

3.9. Schematic of A Minimum Sized Inverter .. 34

3.10. Symbol View of a Minimum Sized Inverter ... 35

3.11. D-Flip Flop (DFFHQNx1) Layout .. 36

3.12. Symmetry of Mirror Adder .. 37

3.13. Four Bit Adder Using Full Adder .. 38

3.14. Full Adder (Fax1) Layout (a), Schematic (b) .. 38

3.15. Logic Level Schematic and Transistor Level Schematic of Half Adder 39

3.16. Layout of Half Adder (HAp5) ... 40

3.17. Integrated Clock Gater Logic Level Schematic .. 40

3.18. NAND Gate Implementation Inside the ICGx1 .. 41

3.19. Logic Level Schematic of Scan Flip Flop ... 42

3.20. Input Stage of a Scan D Flip Flop .. 43

4.1. Outline of Library Characterization Process ... 45

4.2. Flow Chart Showing of CDL And GDS Extraction Script 47

4.3. Pseudo Code of The DRC Script ... 49

4.4. Pseudo Code of The LVS Check Script .. 51

4.5 Layout (a) Vs Abstract View (b) Of A Minimum Sized Inverter 52

4.6.1. Opening Library for Abstract Generation ... 53

4.6.2. Opening Library for Abstract Generation ... 53

4.6.3. Pin Options Menu ... 54

4.6.4. Pins Menu of Abstract .. 55

4.6.5. Boundary Tab ... 55

 x

Figure Page

4.6.6. Extract Menu .. 56

4.6.7. Signal Layer Extraction .. 56

4.6.8. Power Layer Extraction .. 57

4.6.9. Layer Connectivity Settings ... 57

4.6.10 Abstract Settings ... 58

4.6.11. Power Rail Adjustment .. 58

4.6.12. Blockage Generation Settings .. 59

4.6.13. LEF Export Window .. 59

4.7. Macro Template of a Minimum Sized Inverter ... 60

4.8. Pseudo Code of PEX Extraction Perl Script .. 62

4.9. Input and Output Files for Liberate Characterization 64

4.10. NLDM Model (a), CCS Model (b), ECSM Model (c).................................... 66

4.11. Setup Time Calculation (a), Hold Time Calculation (b) 67

4.12 Ids Vs Vds Curve of a Transistor at Different Temperatures 69

4.13. Simulation Setup to Find Nominal Slew ... 70

4.14. Structure of The Library Characterization Script .. 72

4.15 Pseudo Code of The Perl Script to Create the Template File 73

5.1. AES Core Placed and Routed Using The 7 nm Standard Cell Library 78

5.2. EDAC Design Placed and Routed Using The 7 nm Standard Cell Library ... 78

 1

CHAPTER 1

INTRODUCTION TO STANDARD CELL LIBRARIES

1.1 Introduction

In general, large circuits are behaviorally designed and tested (on-the-whole or

block wise) at a high level of abstraction using a hardware description language (HDL) like

Verilog. Hereupon, the behavioral description of the design is synthesized into a logic

netlist using synthesis tools. Then this logic netlist is translated into a geometric netlist

which is placed, routed and optimized using automatic place and route (APR) tools. The

synthesis of behavioral description into logic netlist requires a design environment which

contains descriptions for all the structural logic primitives. These primitives comprise a

base to realize all the required logic functions in the design. The logic netlist generated by

the synthesis tool comprises of a definition of the digital circuit in terms of these structural

units. These units or cells are called the Standard Cells and their collection is called a

Standard Cell Library.

For example, the most basic standard cells are the definitions of NAND, NOR and

INVERTER gates, using which all the combinational circuits can be implemented. Hence

the synthesis tool takes the behavioral description of a combinational circuit and creates a

logic netlist which realizes that behavior using the NAND, NOR and INVERTER cells.

Then these cells can be used as the building blocks to physically create the whole layout

of the combinational circuit.

The quality of any high-level digital design banks on the quality and versatility of

the standard cell libraries used to construct it, hence there is an ongoing need for good cell

libraries in each technology.

 2

1.2 Design Flow Using Standard Cell Libraries

The basic ASIC design flow that is followed in a Standard Cell Library based

design is shown in the figure 1.1.

Figure 1.1. ASIC design flow using standard cells.

1.3 Introduction To 7 nm PDK

In this thesis, I used a 7 nm predictive process design kit (PDK) called the ASAP7

PDK, developed in collaboration with ARM Ltd. for academic use. This is a FinFET based

predictive process design kit, which allows both circuit level and device level analyses at

7 nm technology node. It supports four threshold voltages and three process corners. The

 3

detailed design decisions and process assumptions as well as electrical behavior are

described in [Clark16].

1.4 Components of A Standard Cell Library

The information that a library must contain to be able to implement any ASIC

design completely is:

1.4.1 Schematic Views of The Cells

The schematic view of a standard cell gives the transistor level connections inside

the cell. These are used to generate the transistor level netlists of the standard cell (CDL

file).

Figure 1.2. Schematic of a 2-input NAND gate

The schematic views are used for simulating the functionality of the cell and check to see

if the logic implementation is right. Figure 1.2 shows an example of a schematic view of a

standard cell, namely a 2-input NAND gate.

 4

1.4.2 Layout Views of The Cells

The Layout views are the physical implementation of the schematic with transistors

and metal routing. The layout of cells follows the cell architecture and the design rules for

a technology. These are used to extract parasitic netlists of a cell which give the

capacitances and resistances of the physical cell. The parasitic netlist is used to generate

the timing, power and signal integrity data of the cell at a later stage. Figure 1.3 shows the

layout of a 2-input NAND gate in the ASAP7 7 nm PDK.

Figure 1.3. Layout view of a 2-input NAND gate.

 5

1.4.3 Symbol Views of The Cells

The symbol view gives a simplified symbol for the cell which can be used to make

the schematics of a larger circuit using the cell as a functional block. Figure 1.4 shows the

symbol view of a 2-input NAND gate in ASAP7 7 nm PDK.

Figure 1.4. Symbol view of a 2-input NAND gate.

1.4.4 Abstract Data/View of The Cells

Abstract data is the geometric data extracted from the cell library which defines

each cell as a macro and defines the positions of metal layers and pins. This greatly reduces

the load on the APR tool since it does not need to go through the whole layout of a cell to

find out where the pins and metals are located inside of the cell. This data is in the form of

library exchange format (LEF) files. This file format is used to define the elements of an

integrated circuit (IC) process technology and associated library of cell models [Lefdef09].

1.4.5 Verilog Definition of The Cells

The Verilog definition of the cell is the Verilog module with a behavioral

description of the cell. This is the description which is read in by the synthesis tool to

understand the detailed functionality of each cell in the library. This definition is a bit more

elaborate than the general behavioral Verilog that is hand written for any standard cell.

 6

This is due to the breakdown of the function of the cell into various states to make it easy

for the synthesis tool to understand the functionality of the cell precisely.

1.4.6 Functionality, Timing, Power and Signal Integrity Data of The Cell

The functionality, area, timing, power and signal integrity data at a given operating

conditions of the cells are defined in the Synopsys liberty file format. Usually one liberty

file is made for each corner and operating conditions of the library. These files give a

comprehensive view of the performance of each cell, which gives the APR, the tool data

the required to choose between various cells to optimize the performance of the circuit

being designed.

As mentioned above, there are various views of a cell that need to be designed to

make a useful standard cell library. On the other hand, the number of cells and the type of

cells that a standard cell library contains may change depending on the primary purpose of

the library.

1.5 Required Cells in A Standard Cell Library

The cells that are required to make a good standard cell library are described in this

chapter.

1.5.1 Combinational Logic Cells

A standard cell library must be able to realize any logical expression that is

encountered in the synthesis of a design. To accomplish this, combinational logic gates

must be present in the library. Most basic combinational functions like AND, NAND, OR,

NOR and INVERTER must be present in the library since all the logic expressions can be

implemented using these. A versatile standard cell library has various versions of these

cells with different delay, drive strengths, and power consumption parameters. The

 7

diversity in terms of these parameters aids in the optimization of the synthesized logic,

since the synthesis tool does this by using the standard cells which fit the exact tradeoff

specification between the cell size and its drive strength. In designs which are optimized

for area, standard cells with smaller size and reasonable drive strength are used at the

expense of higher delay whereas in designs which are optimized for delay, cells with high

drive strength are used at the expense of cell area. Hence by creating various versions of

the same combinational cell, a more efficient design can be achieved.

1.5.2 Sequential Cells

It is mandatory to have sequential cells in a standard cell library which are required

in the synthesis of various synchronous elements of an ASIC design like registers, counters,

queues etc. The most basic sequential cells that are present in any library are D-Latches

and D-Flipflops.

1.5.3 Buffers and Inverters

A cell library must contain various sizes of buffers and inverters so that the delay

elements can be synthesized and to correct various fan out and fan in issues in the design.

The clock tree is synthesized with buffers and inverters; hence they are the cells which are

usually made in a wide range of drive strengths and delay values.

1.5.4 Integrated Clock Gaters

To design any circuits which implement some form of clock gating scheme,

wherein the clock signal is selectively shut off to modules in the design using a clock enable

signal to save power, the standard cell library must contain integrated clock gater cells

since the clock gaters implemented by the synthesis tool from the basic cells have a lot of

delay and area overhead compared to the integrated cells.

 8

1.5.5 Filler and De-Cap Cells

Fillers and De-Coupling Capacitance cells (Decap cells) are placed in the empty

space left after the placement and routing of the cells. These cells absorb any glitches and

spikes in the power rails due to their coupling to the signals. They also provide current to

charge the cells in their immediate vicinity when the power rails are farther away and the

speed of circuit operation is very high.

1.6 Characterization of Standard Cell Libraries

In this section, we will discuss the characterization of the standard cells and

generation of the liberty file. The main objective of characterizing a standard cell library is

to obtain the following parameters of each cell in the library:

i. Logic function of the cell

ii. Load capacitances on the inputs and outputs of the cell

iii. Speed of the cell under different input and output conditions (slews and loads)

iv. Power consumption of the cells.

Cell characterization is the process of simulating a standard cell with an analog simulator

or an automated characterization tool to extract this information and convert into a format

that other tools can utilize. Characterization requires; adequate logic, timing, power

consumption for each cell in the library. Cell characterization can be completed by analog

simulation using Spectre/HSPICE simulator, whose output can be evaluated to generate

the timing characterization data or by using an automated tool to tabulate this data.

However, using an automated tool like Cadence Liberate [Lib14] makes the process clean,

easy and error free when setup properly. The tool uses an analog simulator to simulate the

 9

design, and wraps up a nice interface to automate the process and give the results in the

standard Synopsys liberty file format.

The characterization of standard cells in Liberate is done by defining timing arcs

and simulating the behavior of the cells in those conditions. A timing arc defines the

propagation of signals through standard cells and defines a timing relationship between

two related pins. These can be divided into delay arcs and constrain arcs. Delay arcs are

used to calculate the parameters like cell delay and clock to Q delay of the standard cells

whereas constraint arcs are used to calculate the parameters like setup time, hold time,

recovery time and removal time. In this thesis, delay is calculated for all cells in the library,

whereas constraints are calculated only for sequential cells because it is quite uncommon

that constraints related to combinational cells, such as minimal pulse width, need to be

characterized.

In further chapters of this thesis, various decisions taken while designing the above-

mentioned components of the standard cell library and the process followed to create the

LEF and liberty files together with the process to automate the flow of extracting the cell

parasitics and to create the collateral for various corners and operating points will be

discussed in detail.

 10

CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Introduction to FinFETs

Prior to 2007, in technology nodes higher than 22 nm planar devices were effective

in delivering the required performance while maintaining the leakage power and constant

VDD scaling trend. However, as the devices shrank below 28 nm, the short channel effects

became more and more dominant decreasing the channel control.

FinFET devices have replaced planar devices mainly because they alleviated short

channel effects in technology nodes below 14 nm and allowed further VDD scaling. They

also exhibit various salient features like improved channel controllability, high ON/OFF

current ratio and relative immunity to gate line-edge roughness. A FinFET was first

fabricated and tested back in 1998 by researchers from U. C. Berkeley [Hisam98]. Since

then, lot of work has been done during the next few years on FinFETs [Yang01] [Yu02]

[Doyle03] [Woon05]. This led to the commercial introduction of FinFET devices in 2012

[Bohr11] [Auth12]. Intel launched their first 22 nm FinFET (Tri-Gate) processor in 2012

namely the Ivy Bridge series of processors [James12]. The structural difference between

Figure 2.1. Planar transistor and a Tri-Gate FinFET transistor [Bohr11]

 11

FinFET and planar MOSFET is shown in the figures 2.1 and 2.2. In FinFETs, as shown in

the figures, the gate wraps around the fin and hence the channel is controlled from all three

sides. The channel of a FinFET is fully depleted hence offering better control. The FinFETs

modelled in ASAP7 predictive PDK are 32 nm in height and 6.5 nm thick placed on a 27

nm pitch. To allow a grid of 1 nm, fin width is rounded to 7 nm [Clark16].

2.2 Library Architecture

FinFETs have become ubiquitous in the technology nodes below 20 nm. Due to the

introduction of FinFET devices, we see significant changes in the FEOL (Front-End-Of-

Line) and MOL (Middle-Of-Line) layers of the technology node. These changes are also

made keeping the various trade-offs between density, power and drive strength in mind. In

[Sherazi16], the authors have outlined two types of library architectures for the standard

cell libraries at 7 nm and beyond. They present a 9-track architecture and a 7.5 track

architecture with unidirectional metal layers. The 7.5 track architecture is quite like the

architecture of ASAP7 Predictive PDK. Like the MINT (metal-int.) and VINT (via-int.)

Figure 2.2. Transmission Electron Microscope image of (a) 32 nm Planar MOSFET and

(b) 22 nm FinFET [Bohr11]

(a) (b)

 12

layers used in [Sherazi16], ASAP7 consists of LIG and LISD layers together with a

bidirectional M1 layer. Since the less number of available metal tracks makes it difficult

for routing the signals inside a standard cell, addition of MINT, VINT layers combined

with M0A (M0-Active) and M0G (M0-Gate) facilitate this intra-cell signal routing. ASAP7

has bidirectional M1 due to the assumed EVU lithography of the layer, and by using the

LIG (Local-Interconnect-Gate) and LISD (Local-Interconnect-Source/Drain) layers along

with the M1, intracell routing is done. The architectural cross section of the layers can be

seen in the figure 2.3.

(a) (b)

Figure 2.3. FEOL and MOL layers of (a) [Sherazi16] and (b) [Clark16]

In [Kaushik12], the authors have presented a comparison between two types of 9-

track library architectures for the 14 nm technology node, one with a unidirectional M1

and one with a bidirectional M1. They benchmarked both the libraries using a 32-bit

multiplier design and based on factors including but not limited to routability, power rail

robustness, colour safe boundary conditions, concluded that the unidirectional library has

lower manufacturing cost and 20% better design efficiency compared to the bidirectional

library, they further stated that by tuning the process specifically for a unidirectional BEOL

(Back-End-Of-Line) layers, unidirectional architecture can be made even more favourable.

On the contrary, at the 14 nm and lower nodes, nine track libraries increase the area of the

 13

designs without any significant gain in the speed. This is because of the high drive current

capability of the transistors in these nodes. Hence the logical approach would be to decrease

the number of tracks in standard cells thereby decreasing the device sizes. In such a case,

the aforementioned 20% better design efficiency of the unidirectional library over a bi-

directional library will no longer be valid. Furthermore, in [Kaushik17] the

manufacturability and design efficiency comparison is made against LE3 which demands

very high accuracy in mask positioning and is not preferred due to the high practical

tolerance values.

2.3 Cell Design

The design of cells in a standard cell library involves important decisions and trade-

offs regarding the power, delay and area optimizations. There are many algorithms

available to select the device parameters of a standard cell so that the cell is optimized for

a metric. One such algorithm is outlined in [Singhal06]. Here the authors define a size ratio

for a geometrically sized library assuming that the cells in the library are sized up by a

factor ‘s’ at every step to produce the next larger cell of the same logic. Then, the size ratio

is derived by minimizing the path delays over a test circuit using logical effort. From this,

an upper bound of ‘s’ is derived and for each value of ‘s’ below that value, a library size is

projected and a trade-off is made between library size and loss of speed and performance.

In [Abbas16] the authors have defined an application of mathematical optimization to the

design of standard cells. Here they defined vectors containing various types of parameters,

namely, design parameters (Xd), process parameters (Xs), operating parameters (Xr). These

parameters are mathematically optimized in two parts for decreasing the cost of numerical

simulations: nominal optimization and yield optimization. Here nominal optimization aims

 14

at optimally sizing the circuit in nominal process conditions and worst case operating

conditions whereas the yield optimization aims at statistical variation-aware optimal sizing

of circuits in worst-case operating conditions. The problem with the first approach is that

it only optimizes the library for delay and not power consumption and area. Both these

methods are valid mainly for continuously sized standard cell libraries which cannot be

applied for sizing the cells in FinFET libraries where the sizing is discretised. Alongside

the techniques that optimize the library as-a-whole, further optimization techniques are

used in cell libraries with a predetermined use case, as noted from [Golan15] and

[Kaimehr15]. [Golan15] deals with optimizing the flip flops under process variations like

random dopant fluctuation (RDF) and line edge roughness (LER) and run time variations

like bias temperature instability (BTI) by modelling the aging and process variation using

models defined in [Bhardwaj06], [Kuhn11] and using sequential quadratic programming

to increase the reliability of the flip-flop, whereas [Kaimehr15] defines a cell library

optimization technique which predictively sizes the circuits based on the aging factor and

expected lifetime of the cell.

2.4 Characterization

The reliability and accuracy of any design that has been implemented using a

standard cell library is highly dependent on the accuracy with which the standard cells are

characterized, which in-turn depends on the accuracy of estimation of electrical

characteristics of the circuit under realistic nodal voltages and loads. Modelling all the

parameters that affect the operation of a cell and its behaviour is a quite cumbersome task,

undertaking such a task for each individual cell in a standard cell library which at times

may contain several hundreds to thousands of cells is a very resource intensive process. All

 15

the past works on library characterization have emphasised proposing ingenious ways to

decrease the computational burden of characterizing the library with little or no

compromise on the accuracy of the results.

The authors of [Cirit91] designed a characterization system using standard UNIX

facilities like sh, awk, ed, sed, cpp etc... It takes the GDSII stream of cells in the library and

a stimuli file as inputs. The stimuli file is processed by cpp before it is handed over to

SPICE. The system measures the parameters like pin capacitances, cell delays, setup and

hold times, current sourcing and sinking capability, logic thresholds, hysteresis of Schmitt

triggers etc. All these measurements can be easily modified as per the requirement of the

characterization. Setup and hold times are calculated using a binary search algorithm which

substantially speeds up the calculation and maintains accuracy. These calculated

parameters are inserted into datasheets using cpp and printed using troff. While primitive,

the basic idea of this kind of characterization system has become the basis of many modern

library characterizers like Cadence Liberate and Cadence Encounter library characterizer

(ELC).

[Lin94] introduces a power dissipation model for a cell based on the

charging/discharging of capacitances at the output node as well as the internal nodes and

capacitance feedthrough effect. This is done by constructing a state transition graph for the

cell to model its behaviour. Then based on the activity factor of the input signals and the

size of transistors, an activity number is derived and assigned to each edge in the graph.

The activity number gives the energy consumption at each edge, whose total sum gives the

total energy consumption of the logic circuit. This method of calculating the power

dissipation is proved to be more than two orders of magnitude faster than the spice

 16

simulation and the accuracy is within 10% of it. [Abbas14] defines an accurate and fast

method of calculating the leakage current of a logic cell which iteratively considers the

internal node voltages in the cell. This method is proven to simplify the calculation of

leakage current when variations in supply voltages, loading of output and other complex

effects are added to the system. Because of the technology scaling, the interconnects have

become more and more complicated leading to complex input signal and output load

possibilities for gates. Hence the conventional method of library characterization based on

look-up tables is replaced by current source based models which are based on the trans-

conductance of MOSFETs. The figure 2.4 gives an example of one such current source

model which is formulated to represent the behaviour of the NAND gate. The output is

modelled as a non-linear voltage controlled current source dependent on all input port

voltages in parallel with non-linear capacitance.

Figure 2.4. Example of a Current source model [Gupta12]

[Gupta12], [Ameli08] and [Goel08] outline various types of current source models

which are optimized to enhance the accuracy of characterization under the influence of

variations like multiple input switching, stack effect, load variation, interconnect coupling

within the cell, temperature, body bias etc. These use various complex algorithms to

 17

decrease the overall SPICE simulations required for complete characterization of the

standard cell.

In standard cell libraries, which have a higher percentage of a certain kind of cells,

usage of algorithms and models which make the characterization of those kind of cells

relatively faster and accurate can be a good approach to decrease the overall computational

effort required to characterize the library. [Sharma15] can be viewed as a good example of

such an approach. The authors propose a model for characterizing static D-Latches in the

library which decreases the required SPICE simulations by 67% while losing only an

average accuracy of 1.5%. This model relates the setup time of a latch linearly to the input

transition time and load capacitance. They analyse the effect of variations in process,

voltage and temperature and establish the reliability of the model.

While interesting, since all the modern tools rely on spice-like simulators for

accuracy, the various methods outlined above simplify the process of characterization and

decrease the computational load significantly when the standard cell library consists of

several hundreds or thousands of cells. For ASAP7 standard cell library, the

aforementioned special models and simulators have not been used. The characterization

has been done using HSPICE simulator and composite current models present in Cadence

Liberate. This resulted in very accurate characterization of the standard cells.

2.5 Library Validation

Standard cell libraries in the industry typically contain close to 5000 cells, with

older technologies nodes like 65 nm contain more than 10000 cells.

 18

Libraries are designed to have such high number of cells so that when they are used

to place and route a custom design, the synthesis tool can have a very fine grade of control

on the choice of gates it can make depending on the optimization that is being target in the

design. Hence a well-known quality metric of a standard cell library is the performance of

the design which has been placed and routed using that library. It is usually seen that the

cell libraries are benchmarked by using them to place and route well known open source

designs and compared against each other via the speed, power and leakage current values

as demonstrated by the authors of [Xie15]. In custom designs, further optimization can be

achieved by using multiple Vt libraries together to APR (Automatic Place and Route) the

design. [Ghan15] shows one such implementation of a high-level synthesis algorithm. Here

the authors formulated an algorithm which synthesises the given design by assigning all

the paths in the design to high Vt cells initially and then optimizes, by reassigning to low

Vt cells, the individual paths which have timing violations until all the existing slacks in

the design are utilized, leakage power is minimized and the latency constraints are met.

The authors have shown an average improvement of close to 65% in the synthesis run time

and an average improvement of close to 40% in the leakage power consumption compared

to the original designs.

While placing and routing any design using a standard cell library, the synthesis

can be optimized against various metrics like latency, power consumption, signal integrity

etc. This optimization criteria must be given as input to the synthesis tool so that the

Table 2.1 Number of cells in industrial libraries at various nodes [Bittle10]

 19

algorithm can choose the suitable standard cells from the single-Vt or multi-Vt library

provided which meet the required specification to achieve those global optimizations. The

authors of [Seo08] have demonstrated that the presence of large standard cells which have

high number of inputs in the library has become counterproductive since the bulk of critical

path delay in the circuit has shifted from cell delay to interconnect delay. Hence by having

larger cells, the wire length is increased which in-turn increased the delay. The authors

have analysed three single paths and characterized them to demonstrate this effect. The

paths can be seen illustrated in the figure 2.5 and the results of the analysis can be seen in

figure 2.6.

Furthermore, the analysis is extended to the benchmarking designs from [IWLS05]

and the critical path delay is compared between the designs placed and routed by two

versions of the libraries at 130 nm, 90 nm, 65 nm and 45 nm technology nodes. The two

Figure 2.5. Three schemes of comparison of single paths [Seo08]

 20

versions of library are, namely, the ‘Original’ library containing all the standard cells and

the ‘No Large Cells’ library which has only the cells with one or two inputs. Figure 2.7

shows the plot of the delay from the ‘No Large Cells’ library normalized to that from the

‘Original’ library.

Figure 2.7. Critical path delay comparison of IWLS benchmarks. [Seo08]

Figure 2.6. Energy Vs Delay comparison of the three paths in figure 2.5. [Seo08]

 21

This plot also shows that the normalized delay decreases for the ‘No Large Cells’

library as the technology node becomes smaller and the interconnect starts to dominate the

critical path delay. The notable argument against this analysis is that the delay optimization

has not been carried out properly in the synthesis phase of the ‘Original’ library APR run.

Because, when we consider the 45 nm technology node, while synthesizing the design for

optimized delay, the synthesis algorithm would be able to abstain the use of large cells in

the design if the delay is pushed harder, since the cells required to achieve the delay target

are present in the ‘Original’ library. The algorithm should technically be able to synthesize

the design to match the delay spec of the ‘No Large Cells’ APR run.

 22

CHAPTER 3

STANDARD CELL DESIGN

3.1 Number of Cells in A Standard Cell Library

As mentioned in section 1.5, there are various type of cells that a cell library needs

to contain to be able to implement an ASIC design efficiently. But the overall library size

is largely dependent on the design tolerances for delay and power consumption. For the

ASIC designer to be able to optimize the worst-case delay and power consumption of the

design, a standard cell library should contain many different sizes, speeds and drive

strengths of the combinational, sequential or miscellaneous cells to be used in APR of the

design. The authors of [Nguy00] have shown that the improvement in delay between a

standard cell library with 11 cells and a library with 400 cells is just 5% and between a

standard cell library with 20 cells and 400 cells is 2%. On the other hand, the average

increase in area and power when using 11-cell library instead of the 400-cell library is 35%

and 58% respectively and similarly, it is 5% and 17% respectively with a 20-cell library.

This shows that the use of large libraries with more than 10000 cells does not significantly

improve the quality of the design when considering a simple design. Granted that the large

cell libraries can be helpful when carrying out the APR of complex designs with a very

fine requirement on delay, power and area metrics. For simple designs however, using

smaller standard cell libraries not only reduces the cost and time for library generation and

maintenance but also decreases the synthesis time and APR time. Hence the standard cell

library designed using ASAP7 7 nm predictive PDK has 136 standard cells which does not

lead to a great loss in control over the delay, area and power as in the case with 20 cells.

These 136 cells include various drive strengths of sequential cells, combinational cells and

 23

capacitance cells. A condensed list of standard cells is presented in the figure 3.1. A

detailed list of the standard cells in the library is available as Appendix-A.

Figure 3.1. List of cells present in the standard cell library.

 24

3.2 Library Architecture

A brief introduction to the Library architecture has been given in section 2.2, this

section and the following sections deal with further details of layout architecture of ASAP7

PDK and how they affect the various design decisions taken while creating layout views

for the cells in the library.

3.2.1 Layers

The MOL and FEOL layers of the ASAP7 predictive technology are shown in the

figure 2.3 (b). From this, it can be observed that the metal layers in MOL are divided into

two types, namely local interconnect gate (LIG) and local interconnect source/drain

(LISD). These two metal layers can effectively be used to differentiate the gate and active

connections in standard cells. LISD can cross over the gate layer, hence decreasing the

congestion in the M1 layer for making the important connections within the standard cell.

The BEOL layers of ASAP7 PDK consist of metal layers M1 through M9. Among which,

M1, M2 and M3 allow 2-D routing. Hence M1 can be used for routing inside the standard

cell. While designing the standard cells, utmost care has been taken to use only M1 layer

for intra cell routing. M2 has been used in a few of larger sequential cells but it has been

kept one dimensional with a foresight to make it easy to develop smaller cell height

standard cell libraries with one dimensional M1 and M2, as well as to avoid blocking M2

routing tracks.

3.2.2 Cell Height, Gear Ratio and Metal Pitches

The cell height chosen for the standard cell library is highly dependent on the

applications for which the library would be used. It comes down to the tradeoff between

low power and high performance. Cell height is directly related to the number of fins that

 25

a transistor can have in a single device within that height. For libraries requiring higher

drive currents, more fins per device is desirable. The cell height also dictates the number

of metal tracks that can be laid down in the given standard cell height. When this number

is insufficient, complex cells which need more intra cell connections may not be possible

in that standard cell library. The significance of number of metal tracks available for

routing in the standard cell can be quantized using the ratio between the M2 pitch and the

fin pitch. This ratio is called the gear ratio of the library. In this thesis, a gear ratio of 3/4

is used for the standard cell library. Which facilitates various combinations of number of

M2 tracks and fins that can be used, among them, the decision has been made to create the

Figure 3.2. Cell height and Gear ratio of standard

cells.

 26

library with 7.5 tracks and hence 10 fins. Here the M2 pitch is chosen as per the lithographic

patterning assumptions as 36 nm and the fin pitch is chosen to be 27 nm. Hence the

effective cell height is 270 nm. The non-integer number of M2 tracks per cell height can

be taken advantage for creating wider M2 rails for the power supplies at the APR stage.

The general architecture of a standard cell in this library is shown in the figure 3.2. Table

3.1 shows the various pitch and width assumptions based on the lithographic patterning

choices and assumptions.

Layer Pitch Width

Gate 54 nm 21 nm

Fin 27 nm 7 nm

M1 – M3 36 nm 18 nm

M4 – M5 48 nm 24 nm

M6 – M7 64 nm 32 nm

Table 3.1. Pitch and Width of layers in standard cell library

3.3 Layout Design Implications

3.3.1 General Rules for Layout

The layout of a minimum sized inverter is shown in the figure 3.3. This gives a

good idea about the placement of various layers in the layout and their interconnection.

Here, as mentioned earlier, LISD is used for making connections to active region and LIG

is used for making connections to gate. The gate is cut at the power rails using the gate cut

layer which is not shown in the figure because it is black in color. Both the LIG and LISD

layers are taken up to M1 using the via V0. The power rails are made using M1 with a layer

of LIG running beneath and connected to it at regular intervals using V0. This is done to

 27

ease the routing while making the power supply connections to active region in the standard

cells. In this case, these connections can be made by simply extending the LISD on the

active region to connect with the LIG running along the VDD and VSS rails. The M1 layers

on both the input and output are marked with the respective pin name to designate the

connection to the input node and the output node. In this PDK, there are two layers provided

namely well pin and PSUB pin, these are added to the well layer and substrate area of the

Figure 3.3. Layout of a minimum sized inverter.

 28

standard cell. Their purpose is to simplify the LVS and PEX extraction of the cell by

eliminating the need for adding a well tap in the layout.

3.3.2. Fin Cut Implications

In the ASAP7 predictive PDK, the fins are drawn completely across the standard

cell for making it easy to make the layouts, but while manufacturing, they are etched away

wherever the active is not present. Figure 3.4 shows the actual length of the fins that is

retained while manufacturing.

Figure 3.4. Post-Cut FEOL and MOL layers of AO21 standard cell.

From this figure, it can be seen, that the fins are cut half way into the adjacent gate.

Hence when two source/drain regions must be placed beside each other, a diffusion break

must be given to make sure the fins from both the devices do not meet and create a transistor

at that location (as seen from the figure). This double diffusion break is also enforced

 29

between one standard cell to another, hence a single gate is placed at both the ends of the

cell called as dummy gate. When two standard cells are abutted, these gates make up the

double diffusion break between them.

3.3.3 M1 Template Usage and M2 Pitch

An important aspect that must be kept in mind while designing the input and output

pins of a standard cell is that for the APR tool to be able to use the cell in any ASIC design,

the input and output pins must be accessible by the higher metal levels so that the tool can

connect the input and output signals to that cell easily. This is quantified in terms of how

many tracks of higher metal layers can reach the pin metal layers without any design rule

violation, also called as pin access. More pin access i.e. more number of higher metal tracks

able to reach the pin metals is desirable in a cell because generally the higher layers pose

congestion and some tracks of these layers could be occupied by signals that are not related

to the standard cell. In this standard cell library, all the input and output pins are on M1

metal layer, hence pin access is calculated with respect to M2 layer. High amount of effort

has been put into each cell to maximize the number of M2 tracks that can connect to M1

pins at the input and output of the cells. This process is sped up by a great degree using a

pre-defined layout template called M1 template seen in figure 3.5. This template is made

using TEXT layer of the PDK which does not interact with any other layer and has no real

purpose in the circuit except for the annotations of the layout. During the design of every

standard cell, the M1 template is instantiated over the layout area and the M1 tracks and

connections are made as per the template. This template is made from a combination of

all the possible tracks the M1 can use without causing any design rule violations when the

M2 layer is placed over the cell and a via V1 is dropped from M2 to connect to M1.

 30

Figure 3.5. M1 layout template.

3.3.4 Dummy-Gate Cuts And TDDB

Time-dependent dielectric breakdown (TDDB) is the phenomenon where a

dielectric undergoes breakdown due to the prolonged exposure of the layer to relatively

low electric field as opposed to immediate breakdown which is caused due to high electric

field. Figure 3.4 shows the extension of fins under the gate. For the fins that are extended

under the gate, if the adjacent active is connected to a VDD signal, the probability of TDDB

occurrence goes high significantly. This is further acerbated in the case of manufacturing

errors like the one shown in the figure 3.6.

Figure 3.6. Occurrence of TDDB in post-cut fins.

 31

Due to the manufacturing error, an edge with a high angle is created which

increased the electric field significantly leading to breakdown. This breakdown contributes

to increased gate leakage and reduced life time of the device. Furthermore, when one fin

in the PMOS breaks down, it increased the probability of breakdown of another fin

significantly due to the increased potential on gate. This is shown in the schematic diagram

in figure 3.7.

(a) (b)

Figure 3.7. With continuous dummy gate (a), without continuous dummy gate (b)

To decease the probability of TDDB and to increase the life time of the device, the

dummy gates are cut at the center to disconnect the PMOS and NMOS regions of the date.

This is done using the GCUT layer that is used to cut the gates at the power supplies. Hence

by cutting the dummy gates, the cells in this library provide a longer life time and a lower

susceptibility to TDDB between gate and fin layers.

 32

3.3.5 Analysis of Stack Nodes

In standard cells which have multiple stack nodes, these nodes can be laid out

simply by extending the active region across the source/drain region making an electrical

connection effectively. In such nodes, the LISD and SDT at the intermediate nodes is not

connected to any other metal layer, hence it adds up to the cell parasitic capacitance. This

increase in parasitic capacitance can be avoided by removing the LISD and SDT layers

from the intermediate nodes.

A test structure has been designed to measure the impact of these intermediate node

capacitances. It simulates a 5 input NAND gate with PEX extracted netlists for 3 cases,

namely, with both LISD and SDT on the intermediate nodes, with only SDT on the

Figure 3.8. NAND5 schematic (a), Layout with LISD and SDT (b), Layout with

only SDT (c), Layout with no SDT and LISD (d).

 33

intermediate nodes and with no LISD and SDT on the intermediate nodes. The rise and fall

times at the intermediate nodes is then tabulated under these three cases. The figure 3.8.,

shows the schematic and layout of the 5 input NAND gate.

Table 3.2. Rise and fall delays of NAND5 obtained from the test structure.

The table 3.2. shows the measured delay values from the simulation. It shows the

percentage increase of delay between the schematic and layout under the three cases

mentioned earlier. From this table, it is clear to see that the percentage change in delay for

the slowest input, i.e., input E on the NAND gate is just 9.68% for rise and 6.86% for delay.

Also, the difference between this metric among the case 1 and case 3 is negligible. Hence,

for standard cell circuits with longer stacks, avoiding the LISD and SDT layer on the

intermediate nodes will result in a small but significant improvement in the delay. Since

the current standard cell library does not have cells with complex stack structures, this

technique is not adopted.

 34

3.3.6 General Structure of Schematic

As discussed in section 1.4, schematic view of the standard cell is used to represent

the circuit level connections among the transistors and pins in a more understandable

fashion. A generic schematic of a standard cell consists of power supply pins, PMOS and

NMOS transistors, input pins, output pins, in-out pins and wires connecting the circuit.

Here, power supplies are created as pins instead of global signals because when designing

a power gated circuit using the standard cell library, there arise cases where the power

supplies must be connected to various differently named supply voltages, this cannot be

done if the supplies are made global at the standard cell level. A general structure of a

schematic is illustrated in the figure 3.9.

Figure 3.9. Schematic of a minimum sized inverter.

 35

3.3.7 General Structure of a Symbol

As it has been pointed out in section 1.4.3. a symbol view of a standard cell is used

to denote an instance of the standard cell in a schematic of a larger circuit. This is helpful

in simplifying the schematics of larger circuits since the internal schematics of smaller

circuits can be abstracted. A symbol view contains the input and output pin connections to

which the connections can be made, and has a cell name and shape to identify the type of

cell. A symbol view of a generic standard cell is illustrated in figure 3.10.

Figure 3.10. Symbol view of a minimum sized inverter.

Here the cell name is added to the symbol view as [@cellName], which is a skill language

construct that displays the cell name in the circuit that it is being used.

3.4 Layout View Design Decisions

This section discusses the various design decisions, trade-offs and optimizations

made during the design of a few standard cell layouts. These optimizations are made to

increase the area efficiency of the standard cell, increase the pin access of the cell or

decrease the cell parasitic capacitances.

 36

3.4.1 D-Flip Flop

The layout of a minimum size D- Flip flop from the standard cell library can be

seen from the figure 3.11. There are various optimizations that are done to the layout and

schematic to make it more immune to noise and area efficient. As illustrated in the figure,

it can be observed that the inverters from the clock input stage and the output inverter can

be merged with little effort. This would decrease one double diffusion break in the layout

and bring the total number of gates down from 20 to 18. But this technique is not adapted

because that layout would lead to routing the internal storage node through M2 alongside

the CLKB and CLKN M2 routes, seen in the figure. This would lead to increased noise on

the storage node because of the cross talk and hence decrease the noise immunity of the

flip flop. Consequently, in this library the larger size is used.

Figure 3.11. D-Flip Flop (DFFHQNx1) layout

Another important optimization done in this cell is that all the transistors between the input

and output stages are sized down to one fin transistors because they don’t have much load

to drive, hence decreasing the congestion in the layout and allowing the CLKB signal to

be routed using the LISD metal as shown in the figure. Furthermore, the output of the flip

flop is QN, which is the inverted version of the flopped input. This is done because the Q

node in the flip flop is driven by weak transistors and cannot handle higher loads, also by

 37

isolating this node from the output using an inverter, the noise on the output node is blocked

from disturbing the feedback loop at the Q node.

3.4.2 Full Adder

The full adder designed in this standard cell library is an implementation of mirror

adder. This adder is optimized to be used when avoiding extra inversions in the logic. It

generates inverted outputs and since the layout is symmetric, it can be used for the

complement circuit. While creating a multi bit adder circuit using this full adder, the

alternating circuits are complemented to create the right output.

(a) (b)

Figure 3.12. Symmetry of mirror adder.

As shown in the figure 3.12 the mirror adder produces the same output even with

its complementary layout, i.e., PMOS and NMOS are interchanged, therefore the adders

shown in 3.12 (a) and 3.12 (b) are equivalent. Hence a multi bit full adder can be made

from this mirror adder as shown in figure 3.13. Here A0-3 and B0-3 are the inputs to the 4-

bit adder, S0-3 are the outputs of the adder and Ci, 0 is the carry input and Co, 3 is the carry

 38

output. To obtain the output with proper polarity, alternate, full adder and its complement

are used.

Figure 3.13. Four Bit adder using Full adder.

Here the full adder producing the bits S0 and S2 are the standard cells and the full adder

producing S1 and S3 are the complemented versions. In case of mirror adder, both the adder

and its complement have the same layout. The layout and transistor level schematic are

shown in the figure 3.14.

Figure 3.14. Full adder (FAx1) Layout (a), Schematic (b).

(a)

(b)

 39

3.4.3 Half Adder

In this standard cell library, half adder is a simplified circuit designed by modifying

an XNOR gate. The output of the first stage is the carry out signal and the output of the

XNOR gate is the sum. Both these outputs are inverted. The schematic of the half adder

can be seen from the figure 3.15.

By choosing this circuit implementation, it is possible to make the layout of the half

adder in a very area efficient way. The gate cut for the dummy gates in the cell can be

efficiently used to route an internal node using the LIG layer without connecting it to the

dummy gates. The layout of the half adder cell is shown in the figure 3.16. Here it can be

seen that the intermediate node is marked as an output pin, since the pin access of that

metal layer is inherently large, it makes a good output pin without any tweaking.

Figure 3.15. Logic level schematic and transistor level schematic of half adder (HAxp5).

 40

3.4.4 Integrated Clock-Gater

The figure 3.17 shows the logic level schematic of the integrated clock gater

implemented in the standard cell library. In this cell, the NAND gate at the output stage of

the clock gating is implemented as shown in the figure 3.18.

Figure 3.17. Integrated clock gater logic level schematic.

Figure 3.16. Layout of Half Adder (HAxp5).

 41

Here the NAND gate is skewed by increasing the PMOS fins from 3 fins to 4 fins. This

way, the even numbered fins can be split into two devices and hence the fin spade can be

used to include two LIG layers in staggered fashion without violating any design rules.

This essentially pushes the supply connected drain/source terminals to both the ends of the

NAND gate hence providing an opportunity to merge those nodes with the supply

connected drain/source nodes of other devices, here, the input and output inverters. By

using this optimization, two diffusion breaks are eliminated from the design making in

compact. On the other hand, the decrease in rise time of the output of NAND gate, is

rectified to an extent by the output inverter and hence does not affect the output by a large

degree.

Figure 3.18. NAND gate implementation inside the ICGx1

 42

3.4.5 Scan-D-Flip Flop

Since the scan flip flop is a variation of a D flip flop, it has all the optimizations

that are implemented in the D flip flop, like the skewed gates and routing using LISD. The

logic level schematic of the scan D flip flop in the standard cell library is shown in the

figure 3.19. This is further optimized and simplified to decrease the area of the cell.

Figure 3.19. Logic level schematic of Scan Flip Flop.

In this standard cell library, the input stage of the D flip flop is a tri state inverter,

hence for increasing the area efficiency of the cell, the multiplexer is combined with the tri

state inverter. The multiplexer which is made using an XOR gate with complementary scan

enable signals (SE). This is further modified into a tri state XNOR gate hence simplifying

the layout of the flip flop. The schematic of the input stage of the Scan D flip flop cell is

shown in the figure 3.20.

 43

Figure 3.20. Input stage of a Scan D Flip Flop.

 44

CHAPTER 4

LIBRARY CHARACTERIZATION

Once a standard cell library has been designed, i.e., the layout, schematic and

symbol views of the cells are made, for it to be used in the development of an ASIC design,

certain collateral must be created from the cells. The extraction of required collateral from

the library is called library characterization. In a standard cell based design flow, the APR

is done by EDA applications which go through the properties of all the cells in the library

and make decisions like which cell must be used for a certain logic path in the design, since

the libraries contain large number of cells, calculating the properties of the cells in the APR

stage can be time consuming, hence the library is characterized and the required data is

provided to the EDA tools in the form of standard file formats. Before characterizing a

library, it must be first checked for design rule violations and layout vs schematic matching,

to ensure that there are no errors in the layouts of the library. The following section

discusses about the overall flow of a library characterization process and each one of it will

be dealt with in detail later in the chapter.

4.1 Outline of Library Characterization Flow

The collateral required for proper usage of the library is mainly the LEF files,

liberty files and the schematic netlists (.cdl) and parasitic extracted netlists of the library.

Figure 4.1 shows the whole process of creating these files along with design rule

verification and layout vs schematic matching. This figure does not give a clear idea of the

time line that must be followed for a proper library characterization process. There are

various process decisions involved, which are not shown, for example, PEX extraction and

 45

abstract generation are not done for the library until the layout validation and verification

are successful for the whole library.

Figure 4.1. Outline of library characterization process.

 46

In this thesis, the above process is implemented over the complete library using

Perl scripting. The flow is broken into various sub sections and each sub section is

automated over the complete library using Perl scripts.

4.2 CDL And GDS Extraction

A circuit design language (CDL) netlist gives the description of the circuit of a

standard cell. It is generated from the schematic of the cell and contains the transistor

device definitions and the connections between them. This netlist is used to verify the

layout of the cell against the schematic and to test the functionality of the cell. On the other

hand, GDS stands for graphic database system, which is a file format used to control

integrated circuit photomask plotting. It is a universal exchange format for layout data

between design tools. The standard cell layouts are converted to individual GDS files and

they are used for further processing like PEX extraction or DRC verification.

For a single standard cell, the CDL and GDS can be extracted using the command

interpreter window of virtuoso application, but this is quiet time consuming for a standard

cell library, furthermore, when changes are made for the cell layouts or schematics,

extracting all of them separately adds up exponentially to the design effort, hence to avoid

this, I have written a Perl script which takes in the standard cell library folder and extracts

the CDL and GDS of all the cells in the library. The flow chart depicting the functioning

of the script is shown in the figure 4.2. This script must be run from inside the ASAP run

directory and the .cshrc file must be sourced before running the script because Perl cannot

source the .cshrc file internally. The CDL and GDS extraction script takes the library name

as the argument and has a user input prompt, hence cannot be run in the background. The

general syntax of running the script is “<CDL_GDS_extract.pl> <Library_name>”. It is

 47

required that all the scripts for DRC, LVS and PEX extractions be run from the asap run

directory and due to their interdependency, must be present in the directory for any run.

Figure 4.2. Flow chart showing of CDL and GDS extraction script.

 48

This script generates the schematic level netlists and GDS files of individual cells

in the form of <cell_name>. sp and <cell_name>. gds, these can be found inside the

CDL_DIR folder. The overall library netlist which is a concatenation of all the individual

cell netlists is also created in the form of <Library_name>. cdl, furthermore, this netlist is

generated for all the Vt values. The script displays the total number of cells in the library

and total number of cells passing and failing extraction. The celllist.txt file generated by

this script containing the names of all the characterizable cells in the library can be used

for the Liberate characterization run at a later stage to designate which cells among the

library must be characterized.

4.3 Design Rule Check (DRC)

Design rule checking is an important part of library design, it determines whether

the physical layout of the standard cell satisfies a series of design rules which are provided

by manufacturers. These design rules specify the geometric and connectivity restrictions

on the various layers in the layout to account for the process variability of the

semiconductor design process. Similar to the process of CDL and GDS extract, DRC

checking is usually done on individual cells for small libraries, but this approach increased

the design time by a lot, so a Perl script has been written to take advantage of the batch

mode in calibre nmDRC tool by mentor graphics and run the DRC on the complete library

in a single run. The pseudo code of the DRC checking script is shown in the figure 4.3.

Prior to running the script, the .cshrc file has to be sourced and also the variable for the

DRC rule file path has to be updated to point to the latest rule file. This script takes the

name of the library as the input command line argument. In this setup, the latch up errors

in individual standard cells are bound to arise since they are caused due to the lack of a

 49

well tap connection in the layout of the cell and they can be safely ignored for the DRC

part of the standard cell verification.

Figure 4.3. Pseudo code of the DRC script.

 50

This script creates the directory DRC_DIR which consists of individual sub

directories for each cell containing the DRC rule file, log file and summary file. The

complete summary of the DRC errors is found in DRC_Error.log file in DRC_DIR.

4.4 Layout Vs Schematic Check (Lvs)

While a successful DRC signifies the conformance of the layout with the

fabrication design rules, it does not guarantee that the layout represents a circuit same as

the schematic. Since schematics are simulated beforehand and verified functionally, they

are used as the golden model for validating the layouts. This is done through a process

called layout versus schematic (LVS) check. A successful LVS check ensures that the

drawn layout of the standard cell has all the devices and their connections matching that of

the cell’s schematic. This is run using the calibre nmLVS tool provided by mentor graphics.

For a cell to be LVS clean, it is mandatory that the well tap connection be made in the

layout, but while running the LVS on the whole library in batch mode, adding the well tap

connection for each cell and removing it after the LVS check can become a cumbersome

task for large libraries, hence in ASAP7 predictive PDK, two layers are provided, namely,

well pin and PSUB pin, using which the well tap connections can be made without adding

any FEOL or MOL layers to the layout. This tremendously simplifies the task of LVS

checking. The figure 4.4 shows the pseudo code of the Perl script written to run LVS check

on the whole library in batch mode. Similar to DRC check, it takes the name of the standard

cell library as command line argument and prior to running the script, .cshrc file must be

sourced and the variable in the script pertaining to the location of the lvs rule file must be

updated to point to the latest rule file.

 51

Figure 4.4. Pseudo code of the LVS check script.

This script generates a directory LVS_DIR which consists of individual sub directories for

each standard cell of the library containing the LVS run log, lvs report, .sp and .gds of the

standard cell.

4.5 Abstract Generation

Abstract view of a standard cell is the simplified layout view of the cell containing

only the data relevant to enable the APR tool to place the cell in a design and connect its

inputs and outputs using higher metal layers at the right point. It does not contain any

device or parasitic data. These views must be generated once the whole library is DRC and

LVS checked and all the layouts are finalized.

 52

4.5.1 Significance of LEF File in APR Flow

LEF stands for library exchange format, this file is used to transfer the abstract view

data from the standard cell library to the APR tool. This data is used by the APR tool to

place the cells in the ASIC design, the primary purpose of LEF file is to save valuable

resources of the APR tool by providing only an abstract view of the layout which consumes

less memory and significantly speeds up the process. A generic LEF file is divided into

two parts, a header, which contains the design data and the defining parameters of the

technology, called the techlef and the reminder which contains the ASCII definitions of the

abstract physical layouts of the standard cells. Figure 4.5 shows the difference between the

layout of a minimum sized inverter and its abstract view.

Figure 4.5. Layout (a) vs Abstract view (b) of a minimum sized inverter.

 53

4.5.2 LEF File Generation

For a standard cell library, LEF file can be created using virtuoso abstract generator. A

detailed run through of the process is illustrated in this section.

• From the asap run directory invoke abstract generator by using the command,

“abstract &”.

• In the open window use File > Library > Open, and select the required library to

open a standard cell library.

Figure 4.6.1. Opening library for abstract generation.

Figure 4.6.2. Opening library for abstract generation.

• Initially all the cells are in the ‘Core’ bin, select the cells that are not required and

move them to ‘Ignore’ bin using Cells > Move… option.

 54

• Use the mouse to control+ select all the cells in the core bin to run abstract

generation on.

• Use the Pins option to specify the pin settings.

Figure 4.6.3. Pin options menu.

• Specify the pin associations and layer mappings in the subsequent menu as shown

in figure 4.6.4. In this library, it has been agreed upon that all the standard cells will

only contain metal layers lower than M2, hence there are just two text layers that

must be bound to the metal layers, M1 pin and M2 pin, If the library contains

standard cells that use higher metals and that have pins on those metals, they must

be specified in this field. In the boundary tab, as shown in figure 4.6.5, specify the

‘BOUNDARY’ layer to be the confining layer of the standard cells. Do not change

any other options at this stage and click on ‘Run’ to run the pin options.

 55

Figure 4.6.4. Pins menu of abstract.

Figure 4.6.5. Boundary tab.

 56

• Use the ‘Extract’ menu to set the options for pin extraction.

Figure 4.6.6. Extract Menu

• Use the ‘Signal’ and ‘Power’ tabs to set the layer assignment for extraction. Use

M1, M2, V1 and V2 layers in the menu to specify connectivity of these layers. If

the library contains cells with higher metals, include those layers and vias in this

menu.

Figure 4.6.7. Signal layer extraction.

 57

Figure 4.6.8. Power layer extraction.

• Enter the layer connectivity as shown in figure 4.6.9 in the general tab and click

‘Run’ to run the pin extraction.

Figure 4.6.9. Layer connectivity settings.

• Use the abstract menu to set the pitch and offset of the supply rails depending on

the cell height of the library in the abstract tab as shown in the figure 4.6.11.

 58

Figure 4.6.10. Abstract settings.

Figure 4.6.11. Power rail adjustment.

• In the ‘Blockage’ tab, set the option for detailed blockage for metal M1, M2 and

via V1 and V2 and run the abstract extraction by clicking ‘Run’ option.

 59

Figure 4.6.12. Blockage generation settings.

• After running the abstract step, the abstract views are added to the standard cell

library to each cell. Now using the File > Export > LEF option, the LEF file and

TechLEF file can be exported.

Figure 4.6.13. LEF export window.

• The LEF file and TechLEF file can be opened in a text editor and the macro

definitions can be read in ASCII format.

 60

4.5.3 Scaling the LEF File

The LEF file exported from the above process has the layer definitions in a 1 nm

scale, this is scaled up by a factor of four to be used for APR. This is a work around for the

unavailability of support for sub 20 nm features in academic licenses of cadence innovus.

Hence the LEF file and the related collateral are scaled up by a factor of four and used in

APR and they are scaled back while importing the design back to virtuoso after the layout

placement. This change is compensated by scaling the interconnect resistivity and down

scaling the dielectric constants.

4.5.4 Area Attributes Extraction

For characterization of the library in Liberate, the area of each cell has to be

specified as an input to the Liberate flow so as to include the area of the cell in its output

liberty file. This attribute is useful when doing area driven optimizations in the synthesis

and APR stage. This attribute of each cell is extracted from the unscaled LEF file

Figure 4.7. Macro template of a minimum sized inverter.

 61

containing the layout macros of the standard cells. A Perl script has been written for parsing

the macro LEF file, calculate the area of each cell and create the area_attributes.tcl file

ready to be used as an input to the Liberate characterization application. The general syntax

of a macro in the LEF file is shown in figure 4.7, here the SIZE variable gives the X and Y

coordinates of the diagonally opposite vertex to origin of the standard cell. The area of the

cell is calculated by parsing these values of X and Y and multiplying them. The resultant

area in nm2 is included in the area_attributes.tcl file.

4.5.5 LEF Vt Conversion

The LEF file obtained from this section contains the macro definitions of only the

standard cell library with RVT cells, but for the APR purpose, other Vt’s are also required

to be defined as abstract views. This can be achieved inside the LEF file by replacing the

Vt identifier in the name of the standard cell to reflect the other Vt’s. This is possible

because, the macro definitions do not have any device specific data except the name

identifier and all the standard cells of different Vt’s essentially have the same metal routing.

4.6 PEX Extraction

The CDL netlist extracted according to section 4.2 contains in it, all the device

definitions and connections between them in the cell, but it does not capture the complete

behavior of the cell because it does not contain the parasitic capacitances that a circuit has

in the physical device. This data is required for the accurate characterization of the cell.

Hence, parasitic extraction (PEX) is the process of estimating all the parasitics that a layout

may contain and creating the netlist with these capacitances added as devices. The output

netlist is called a parasitic netlist or PEX extracted netlist. In this library calibre xRC tool

is used to run parasitic extraction on the standard cells. For this thesis, a Perl script has

 62

been written which used the command line calibre xRC to run the extraction on the

complete library in a single run. The pseudo code of the Perl script is shown in the figure

4.8. This script takes the name of the library as the command line input and like the DRC

and LVS runs, the .cshrc must be sourced before running this script and the path to the PEX

rule file must be updated to point to the most current file.

Figure 4.8. Pseudo code of PEX extraction Perl script.

This script creates the PEX_DIR directory with a sub directory called

Extracted_netlists which contains all parasitic netlists of all the cells in the library and can

be used directly with the Liberate characterization flow to characterize the cells. For

convenience, the options in the PEX script have been set to combine all the spice data into

 63

one netlist file with the extension .pex.sp, but it can also be extracted separately into .pxi

files and .pex files by changing the ‘SINGLEFILE’ option in the pex rule file.

4.7 Liberate Characterization Flow

The main objectives of characterizing a standard cell library is to estimate the

following parameters,

➢ Logic function of the cell

➢ Delay of each cell under a series of input slew and output load conditions

➢ Power consumption of each cell under various signal conditions

➢ Leakage of each cell.

➢ Setup and hold times of the sequential cells

Hence, characterization is the process of simulating each standard cell for the above

parameters using an analog simulator and documenting them in a standardized file format

for other tools to utilize. This process takes up a big portion of library design time since

many combinations of the above data must be simulated and tabulated to create a complete

profile of the cell behavior. Therefore, an automated tool like Liberate by Cadence design

systems, Inc., is a very useful utility for the characterization of large standard cell libraries.

This tool uses an analog simulator to simulate the cell and gives the results in the standard

synopsys liberty file format. It can also generate other collateral like the Verilog

descriptions of the cells and datasheets for the cell libraries. Using Liberate, the library can

be quickly and easily characterized for all the four types of Vt values and under all the three

operating corners. The figure 4.9 gives the various files required for the Liberate run and

the output files of the run.

 64

Figure 4.9. Input and output files for Liberate characterization.

4.7.1 Liberate Views and Models

Liberate essentially generates various electrical views, namely, timing views,

power views and signal integrity views, which are then tabulated into a standard synopsys

liberty file format. Each condition on the standard cell with a defined state of the inputs

and the outputs is called an arc, and Liberate writes the output liberty file organized in

terms of the arcs applied on each standard cell. For this purpose, it simulates the cell under

various input and output conditions. Out of the many things that Liberate can characterize

the cell library on, only a few (like cell delay, pin capacitance, timing constraints) are

required for obtaining a liberty file with high precision, the remaining constructs (like

steady state current, power subtraction, minimum pulse width) form a very small part of

 65

the characterization flow and hence a lot of run time can be saved by avoiding calculating

them as a tradeoff for a small amount of loss in library completeness and accuracy.

This section details on the various constructs that are calculated using Liberate for

our current standard cell library. These are mainly divided into three types based on the

kind of model they are written out to in the liberty file. They are non-linear delay model

(NLDM), composite current source model (CCS) and effective current source model

(ECSM). All the constructs that Liberate can characterize can be done in one of the above

thee models and this can be controlled by issuing various different commands to the

characterization run. This model decision has to be made based on the accuracy

requirement and run time tradeoff of the characterization flow. In the Perl script written for

the characterization of the library in this thesis, a command line menu is provided to choose

between these three types of models. The various constructs that are characterized in the

current standard cell library are discussed in this section.

4.7.1.1 Delay Models

Liberate characterizes delay using NLDM, CCS and ECSM models. The NLDM

model is characterized by measuring the delay and output transition when simulating a

given range of different combinations of input transitions and output loads. In this mode,

the input transitions to this simulation are set to be ramp signals with various slew rates.

The CCS model defines transitions as a waveform instead of a single transition time, it

stores current waveforms for each point in liberty transition tables. CCS model is

characterized by attaching a voltage source to the output node before the load capacitance

and measuring the current flowing out of the output pin. This current characteristic is

tabulated in the liberty file in a current vs delay model. The ECSM model characterizes the

 66

output voltage with respect to the delay measures. The circuit used for simulation is same

as that of the NLDM model but the simulator captures many more points during the output

transition. These voltage values are tabulated in the liberty file in a voltage vs delay model.

The circuits used for these three models are shown in the figure 4.10.

Figure 4.10. NLDM model (a), CCS model (b), ECSM model (c)

4.7.1.2 Pin Capacitance

The capacitance of the input pin is a very important parameter which strongly

affects the selection of the cell in the synthesis of a design, Liberate capacitance depends

on the model used for the delay characterization. The NLDM model capacitance is

calculated by measuring the current injected into the input pin over a fixed time-period.

This is measured in the same simulation as the delay and transition measurements. In the

CCS models, capacitance is measured in the same way as the NLDM model but it is

calculated multiple times and the waveform is registered, the capacitance can be found by

integrating the current over the range of the curve and dividing that by the change in

 67

voltage. This gives a less concise but more accurate picture of the pin capacitance behavior.

For ECSM model, the pin capacitance is measured along with the ECSM delay and

transition measurements. The capacitance is measured by capturing the net current flow

into the input pin over a period of time and dividing it by the change in voltage. These

measurements are made using the hspice simulator and depending on the model used, the

simulation time varies.

4.7.1.3 Constraints

To model sequential cells accurately, alongside the delay and capacitance, the setup time

and hold time also need to be determined. These are the only type of constraints measured

in this standard cell library. Liberate recognizes the sequential cells in the library and

automatically calculates the setup and hold times for these cells. The setup and hold time

measurements involve sweeping the data pin transition with respect to the clock pin

transition and observing the output waveform. When the degradation in the output delay

waveform increases beyond a set value, it is considered the failure criteria and setup and

hold time are measured. This method is valid for flip flops whereas for latches, the setup

time is measured using the output delay degradation method and the hold time is measured

Figure 4.11. Setup time calculation (a), hold time calculation (b).

 68

by observing the glitch peak in the output. The figure 4.11 illustrates these two ways of

calculating the constraints in Liberate.

4.7.1.4 Power Models

Liberate calculates three kinds of power in a circuit, the leakage power, hidden

power and active power. While calculating the leakage power, all combinations of inputs

are considered and both the channel leakage and gate leakage are calculated for a certain

combination of inputs. This power is reported in the liberty file grouped by the input

combination. Switching or active power is calculated by measuring the energy dissipated

by the cell when one or more input switches which causes one or mode outputs to change.

It includes short circuit power and the internal switching power consumed during the

charging and discharging of internal capacitive nodes. The energy contributed by the non-

switching inputs is also added to the switching power calculation. Hidden power is

calculated by measuring the energy consumed by the cell when inputs are switched but do

not cause any switching in the output. This is reported in the liberty file as the internal

power of the cell. All the power measurements are dependent on the inputs and the

switching of input states, as the number of inputs to a standard cell increase, the number of

combinations increase and the characterization time explodes.

4.7.2 Process Corners

In this standard cell library, characterization has been done at three process corners,

TT, FF and SS. Here, as the supply voltage increases the speed of the transistors increase,

hence the SS corner has a supply voltage 10% less than that of TT corner and the FF corner

has a supply voltage 10% more than that of TT corner. And it is well known that the speed

of transistor decreased as the temperature increases since the current through the channel

 69

decreases, this is verified to be true for the current finFETs using a test structure and

measuring the drain current at three different temperatures 0o C, 25o C and 100o C and as

seen from the figure 4.12 the device has higher drain currents at 0o C than at any other

temperatures, hence the FF corner is run at 0o C, the TT corner is run at 25o C and the SS

corner is run at 100o C.

4.7.3 Characterization Indices

All the various constructs mentioned in the previous sections need the indices of

the characterization table to be input into Liberate. These indices are the input slew rates

and the output loads. The values of these indices must be carefully chosen to encompass

all the operating conditions that the cell could encounter in an ASIC design. The synthesis

and placement tool uses these tables and interpolates the required values of delay for the

circuit configuration before deciding to use the standard cell in the design. Hence the whole

spectrum must be characterized and provided to the tool. In cases where the circuit

Figure 4.12. Ids Vs Vds curve of a transistor at different temperatures.

 70

conditions in the design are out of the bounds of the liberty file indices, the tool tries to

extrapolate the available data, which is deemed illegal as it can cause erroneous

estimations. The index values of the input slew rate and the output load are unique for the

technology and are estimated by constructing a test circuit and simulating it to find the

nominal slew rate and output load. The logic level representation of the test circuit to

calculate nominal slew rate is shown in the figure 4.13. It consists of a chain of 6 buffers

loaded per their drive capacity. The fan out of the technology is assumed to be 4 and hence

the stages are sized up according to it.

Figure 4.13. Simulation setup to find nominal slew.

Here the buffer chain models the average path in any ASIC design and hence the

slew rate at the output can be taken to be approximately equal to that encountered in an

ASIC chip fabricated with the technology. For the ASAP7 predictive PDK, this slew rate

is calculated to be in the range of 16 ps to 20 ps. Hence this value is the central index of

the input slew rate indices. For the load capacitance calculation, an inverter is simulated

with an arbitrary pulsed input in hspice and the capacitance tables are extracted from the

simulation. The capacitance at the input of the gate is the load capacitance for one inverter.

Taking this as a standard, the FO4 load becomes four times the input capacitance of one

inverter. This FO4 load becomes the mean of the load capacitance indices. The indices are

halved to the left of the mean and doubled to the right of the mean. As the number of indices

increases the characterization run time increased rapidly since the tool must simulate the

 71

standard cells in an increasing number of input slew and output load conditions, hence the

indices are limited to 5 slew rates and 7 load capacitance values. The FO4 load capacitance

is calculated to be 0.11143 fF.

4.7.4 Liberate Perl Script

A Perl script has been written which prepares all the required files for the library

characterization and runs Liberate at FF, TT and SS corners for RVT, LVT, SLVT and

SRAM Vt devices. The structure of the script is shown in the figure 4.14. It takes in the

name of the library and the date stamp as input. This library name given as the command

line input will be reflected in the generated liberty file. This script needs the cellist.txt file

to designate the various drive strengths of cells to various indices of the characterization

table. In the cell list file, the cells that are not required to be characterized can be

commented out. The script prompts the user to select which models to use for the library

characterization, when all the three models are selected, it runs the characterization three

times using one model in each run. The liberty files are named with the model used to

differentiate between them. The location to the foundry models for the NMOS and PMOS

devices must be specified in the Netlists/models_<corner>.sp file. And the PEX extracted

netlists of all the cells in the library must be placed in the folder Netlists/Extracted_netlists/.

The cellist.txt and PEX extracted netlists folder can be directly copied from the PEX

extraction phase described in section 4.6., and the area_attributes.tcl file can be copied

from the LEF extraction phase described in section 4.5.4. This script calls three other Perl

scripts internally, one to clean up the log files and temporary files from the previous runs,

one to condition the netlists and translate the files to all the required Vt flavors and another

script to create the template tcl files that must be given as input for the Liberate containing

 72

all the required options depending on the cells to be characterized and the models to be

used.

Figure 4.14. Structure of the library characterization script.

 73

From the above figure, it can be seen that the netlists, area attribute file and the cell

list file are conditioned in common to all the three types of Liberate runs. This script calls

another Perl program to create the template tcl files for the characterization, the figure 4.15.

shows the pseudo code of this script.

Figure 4.15. Pseudo code of the Perl script to create the template file.

 74

This script creates the template.tcl files at three corners for the given Vt value input.

These files are then used by the original Perl script to run Liberate tasks. The contents of

the template file with the various commands used for characterization are:

• Set the threshold values for slew rate measurements

• Set max transition value

• Set the directories for temporary files and simulation files

• Set the variable to control the maximum number of leakage vectors calculated.

• Set the variable to control the maximum number of hidden vectors calculated.

• Set the message limit per cell

• Create variables $inputs, $outputs, $clocks, $asyncs with the names of the input,

output, clock and asynchronous pins in the complete library.

• Set the node and value of ground and vdd.

• Set the input and output voltage levels to expect.

• Read the spice netlists for device models and cell descriptions.

• Segregate the cells based on their drive strengths into variables of the form $cellsx1,

$cellsx2, $cellsxp5 and so on.

• Define cell and pin attributed for special cells like integrated clock gaters and tie-

hi and tie-low cells.

• Source the area_attributes.tcl file to set the area variable for each cell.

• Define the delay template for all the drive strength categories. Here the drive

strengths can be approximated to the closest two’s power value. The first index of

the delay template is the input slew rate and the second index is the output pin

capacitance values.

 75

• Define the power template for all the drive strengths, like the delay template, the

drive strengths can be approximated to the closest two’s power value. Here too, the

first index is the input slew rate and the second index is the output load capacitance.

• Define the constraints template to calculate the setup and hold times of the

sequential cells. Both the indices of this template are the input slew rates, the first

index is applied to the signal and the second index is applied to the clock signal.

• Set operating conditions in accordance with the corner the characterization is being

run

• Allot the various delay, power and constraint templates to the $cells variables

defined earlier. They are characterized according to the drive strength of the

template applied. The command “define_cell” is used to define these cell groups.

• Characterize the library with the required models and the available external analog

simulator

• Check the monotonicity of the delay values obtained from the characterization and

in case of discrepancies re run the characterization for that arc.

• Set the units to follow while writing out the liberty file.

• Write the liberty file of the library at the corner the characterization has been done.

• Write the Verilog descriptions of the cells.

• Write the datasheets in text and html formats.

• Save the temporary database folder as a compressed file for future usage.

This is the general flow of operations carried out by the Liberate tool for the

characterization of a library. For the purpose of this thesis, the characterization has been

done for all the cells in the library and with highest accuracy settings, hence on an average,

 76

a single run of characterization which runs all the 4 Vt flavors at all three corners, i.e., 12

runs, takes about 10 to 12 hours of wall clock time. Hence a mechanism to send email

notifications when the task is completed has been written into the script file. The output

liberty file is generated in the Library folder and it contains all the 12 lib files per model

that is set to be used, i.e., 12 lib files each for the NLDM models, CCS models and ECSM

models. The datasheets and Verilog files obtained from Liberate can be directly used in the

analysis and synthesis of designs using the standard cell library.

 77

CHAPTER 5

CONCLUSION

 A standard cell library with 136 cells has been designed using the ASAP7 7 nm

predictive PDK. All the collateral required for the use of this library in the APR of an ASIC

design are created from the library and the flow for any further addition or changes into the

library have been automated by means of various Perl scripts. The library has been

characterized at three corners, FF, SS and TT with four Vt flavors, RVT, LVT, SLVT and

SRAM Vt. The table 5.1 shows the characterized delay values of a few basic standard cells

across the 12 combinations of liberty files.

Table 5.1 Cell delay of cells at various corners.

 From the above, it can be seen that the delay values are consistent with the corner

and threshold values that they are calculated at, and also with the delay of one inversion

estimated for the technology. The designed standard cell library has been used successfully

in APR of some of the benchmark designs like the AES core and EDAC circuit. The

screenshots of the designs can be seen from figures 5.1 and 5.2.

 78

Figure 5.1. AES core placed and routed using the 7 nm standard cell library.

Figure 5.2. EDAC design placed and routed using the 7 nm standard cell library.

 79

 These APR benchmarks and experiments have been carried out iteratively using the

standard cell library fixing the various minor errors in the layouts and using the automatic

flow scripts to generate a new version of the library with the changes incorporated. The

library has been successfully used in placing and routing the control circuit in the SRAM

designed using the ASAP7 PDK outlined in [Vashish17].

 Further research has been carried out using the ASAP7 PDK in the design of a 6-

track standard cell library. The resources and scripts outlined in this thesis can be used to

generate the collateral for the new library since they are based on the same PDK.

 80

REFERENCES

[Abbas14] Z. Abbas, A. Mastrandrea and M. Olivieri, "A Voltage-Based Leakage Current

Calculation Scheme and its Application to Nanoscale MOSFET and FinFET Standard-Cell

Designs," in IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 22,

no. 12, pp. 2549-2560, Dec. 2014.

[Abbas16] Abbas, Z., and Olivieri, M., “Optimal transistor sizing for maximum yield in

variation-aware standard cell design”, Int. J. Circ. Theory. Appl.,2016, 44: 1400–1424.

[Ameli08] B. Amelifard, S. Hatami, H. Fatemi and M. Pedram, "A Current Source Model

for CMOS Logic Cells Considering Multiple Input Switching and Stack Effect," 2008

Design, Automation and Test in Europe, Munich, 2008, pp. 568-573.

[Auth12] C. Auth, "22 nm fully-depleted tri-gate CMOS transistors," Proceedings of the

IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, 2012, pp. 1-6.

[Bhardwaj06] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao and S. Vrudhula, "Predictive

Modeling of the NBTI Effect for Reliable Design," IEEE Custom Integrated Circuits

Conference 2006, San Jose, CA, 2006, pp. 189-192.

[Bittle10] C. Bittlestone, M. Clinton, Girishankar G., Viet le, Vinod M., Kayvan Sadra,

“15 nm Design Technology Interaction”, Texas Instruments Dallas, TX, Dec 5th 2010.

[Bohr11] Bohr M, Mistry K, “Intel’s revolutionary 22 nm transistor technology”, Intel

website, 2011.

[Cirit91] M. A. Cirit, "Characterizing a VLSI standard cell library," Proceedings of the

IEEE 1991 Custom Integrated Circuits Conference, San Diego, CA, 1991, pp. 25.7/1-

25.7/4.

[Clark16] Clark L. T., Vashishtha V., Shifren L., et al., “ASAP7: A 7 nm finFET predictive

process design kit”, Microelectronics Journal, 53,2016, pp. 105-115.

[Doyle03] B. S. Doyle et al., "High performance fully-depleted tri-gate CMOS transistors,"

in IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265, April 2003.

[Ghan15] S. Ghandali, B. Alizadeh and Z. Navabi, "Low power scheduling in high-level

synthesis using dual-Vth library," Sixteenth International Symposium on Quality

Electronic Design, Santa Clara, CA, 2015, pp. 507-511.

[Goel08] A. Goel and S. Vrudhula, "Current source based standard cell model for accurate

signal integrity and timing analysis," 2008 Design, Automation and Test in Europe,

Munich, 2008, pp. 574-579.

 81

[Golan15] M. S. Golanbari, S. Kiamehr, M. B. Tahoori and S. Nassif, "Analysis and

optimization of flip-flops under process and runtime variations," Sixteenth International

Symposium on Quality Electronic Design, Santa Clara, CA, 2015, pp. 191-196.

[Gupta12] S. Gupta and S. S. Sapatnekar, "Compact Current Source Models for Timing

Analysis Under Temperature and Body Bias Variations," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp. 2104-2117, Nov. 2012.

[Hisam98] D. Hisamoto et al., "A folded-channel MOSFET for deep-sub-tenth micron

era," International Electron Devices Meeting 1998. Technical Digest (Cat.

No.98CH36217), San Francisco, CA, USA, 1998, pp. 1032-1034.

[IWLS05] IWLS 2005 benchmarks, http://iwls.org/iwls2005/benchmarks.html.

[James12] D. James, "Intel Ivy Bridge unveiled — The first commercial tri-gate, high-k,

metal-gateCPU," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference,

San Jose, CA, 2012, pp. 1-4.

[Kaimehr15] S. Kiamehr, M. Ebrahimi, F. Firouzi and M. B. Tahoori, "Extending standard

cell library for aging mitigation," in IET Computers & Digital Techniques, vol. 9, no. 4,

pp. 206-212, 7 2015.

[Kaushik12] Kaushik Vaidyanathan et al., "Design and manufacturability tradeoffs in

unidirectional and bidirectional standard cell layouts in 14 nm node", Proc. SPIE 8327,

Design for Manufacturability through Design-Process Integration VI, March 29, 2012.

[Kuhn11] K. J. Kuhn et al., "Process Technology Variation," in IEEE Transactions on

Electron Devices, vol. 58, no. 8, pp. 2197-2208, Aug. 2011.

[Lefdef09] Cadence Design Systems, Inc., “LEF/DEF Language Reference” 2009

http://www.ispd.cc/contests/14/web/doc/lefdefref.pdf

[Lib14] Cadence.com, (2014). Cadence Virtuoso Liberate Characterization Solution.

Available at: http://www.cadence.com/products/cic/liberate/pages/default.aspx

[Lin94] Jiing-Yuan Lin, Tai-Chien Liu and Wen-Zen Shen, "A Cell-based Power

Estimation in Cmos Combinational Circuits," IEEE/ACM International Conference on

Computer-Aided Design, 1994, pp. 304-309.

[Nguy00] Nguyen Minh Duc and T. Sakurai, "Compact yet high-performance (CyHP)

library for short time-to-market with new technologies," Proceedings 2000. Design

Automation Conference. (IEEE Cat. No.00CH37106), Yokohama, Japan, 2000, pp. 475-

480.

 82

[Seo08] J. s. Seo, I. L. Markov, D. Sylvester and D. Blaauw, "On the decreasing

significance of large standard cells in technology mapping," 2008 IEEE/ACM

International Conference on Computer-Aided Design, San Jose, CA, 2008, pp. 116-121.

[Sharma15] A. Sharma, Y. Sharma, S. Dasgupta and B. Anand, "Efficient static D-latch

standard cell characterization using a novel setup time model," Sixteenth International

Symposium on Quality Electronic Design, Santa Clara, CA, 2015, pp. 371-378.

[Sherazi16] Sherazi S, Chava B, Debacker P, et al., "Architectural strategies in standard-

cell design for the 7 nm and beyond technology node", J. Micro/Nanolith. MEMS MOEMS,

Feb 25, 2016, 15(1).

[Singhal06] V. Singhal and G. Girishankar, "Optimal Gate Size Selection for Standard

Cells in a Library," 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration

and Software, Richardson, TX, 2006, pp. 47-50.

[Vashish17] V. Vashishtha, M. Vangala, P. Sharma, and L. T. Clark, “Robust 7 nm SRAM

Design on a Predictive PDK,” to be presented at ISCAS, 2017.

[Woon05] Ji-Woon Yang and J. G. Fossum, "On the feasibility of nanoscale triple-gate

CMOS transistors," in IEEE Transactions on Electron Devices, vol. 52, no. 6, pp. 1159-

1164, June 2005.

[Xie15] Q. Xie, X. Lin, Y. Wang, S. Chen, M. J. Dousti and M. Pedram, "Performance

Comparisons Between 7 nm FinFET and Conventional Bulk CMOS Standard Cell

Libraries," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no.

8, pp. 761-765, Aug. 2015.

[Yang01] Yang-Kyu Choi et al., "Sub-20 nm CMOS FinFET technologies," International

Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC,

USA, 2001, pp. 19.1.1-19.1.4.

[Yu02] Bin Yu et al., "FinFET scaling to 10 nm gate length," Digest. International Electron

Devices Meeting, San Francisco, CA, USA, 2002, pp. 251-254.

 83

APPENDIX A

LIST OF CELLS IN THE STANDARD CELL LIBRARY

 84

The naming convention of the cells denotes the Vt value and the drive strength of

the cells. The 75t in the cell name denotes the 7.5 track library specification.

*X=R for RVT, L for LVT, SL for SLVT and SRAM for SRAM VT

S.NO CELLNAME DESCRIPTION

1 INVxp33_ASAP7_75t_X INVERTER (x0.33 Drive)

2 INVxp67_ASAP7_75t_X INVERTER (x0.67 Drive)

3 INVx1_ASAP7_75t_X INVERTER (x1 Drive)

4 INVx2_ASAP7_75t_X INVERTER (x2 Drive)

5 INVx3_ASAP7_75t_X INVERTER (x3 Drive)

6 INVx4_ASAP7_75t_X INVERTER (x4 Drive)

7 INVx5_ASAP7_75t_X INVERTER (x5 Drive)

8 INVx6_ASAP7_75t_X INVERTER (x6 Drive)

9 INVx8_ASAP7_75t_X INVERTER (x8 Drive)

10 INVx11_ASAP7_75t_X INVERTER (x11 Drive)

11 INVx13_ASAP7_75t_X INVERTER (x13 Drive)

12 BUFx2_ASAP7_75t_X BUFFER (x2 Drive)

13 BUFx3_ASAP7_75t_X BUFFER (x3 Drive)

14 BUFx4_ASAP7_75t_X BUFFER (x4 Drive)

15 BUFX4f_ASAP7_75t_X BUFFER (x4 Drive)

16 BUFx5_ASAP7_75t_X BUFFER (x5 Drive)

17 BUFx6f_ASAP7_75t_X BUFFER (x6 Drive)

18 BUFx8_ASAP7_75t_X BUFFER (x8 Drive)

19 BUFx10_ASAP7_75t_X BUFFER (x10 Drive)

20 BUFx12f_ASAP7_75t_X BUFFER (x12 Drive)

21 BUFx12_ASAP7_75t_X BUFFER (x12 Drive)

22 BUFx16f_ASAP7_75t_X BUFFER (x16 Drive)

23 BUFx24_ASAP7_75t_X BUFFER (x24 Drive)

24 NAND2xp33_ASAP7_75t_X 2 INPUT NAND (x0.33 Drive)

25 NAND2xp5_ASAP7_75t_X 2 INPUT NAND (x0.5 Drive)

26 NAND2xp67_ASAP7_75t_X 2 INPUT NAND (x0.67 Drive)

27 NAND2x1_ASAP7_75t_X 2 INPUT NAND (x1 Drive)

28 NAND2x1p5_ASAP7_75t_X 2 INPUT NAND (x1.5 Drive)

29 NAND3x1_ASAP7_75t_X 3 INPUT NAND (x1 Drive)

30 NAND4xp25_ASAP7_75t_X 4 INPUT NAND (x0.25 Drive)

31 NAND5xp2_ASAP7_75t_X 5 INPUT NAND (x0.2 Drive)

32 AND2x2_ASAP7_75t_X 2 INPUT AND (x2 Drive)

 85

33 AND2x4_ASAP7_75t_X 2 INPUT AND (x4 Drive)

34 AND2x6_ASAP7_75t_X 2 INPUT AND (x6 Drive)

35 AND3x2_ASAP7_75t_X 3 INPUT AND (x2 Drive)

36 AND3x4_ASAP7_75t_X 3 INPUT AND (x4 Drive)

37 AND4x1_ASAP7_75t_X 4 INPUT AND (x1 Drive)

38 AND4x2_ASAP7_75t_X 4 INPUT AND (x2 Drive)

39 AND5x2_ASAP7_75t_X 5 INPUT AND (x2 Drive)

40 NOR2xp33_ASAP7_75t_X 2 INPUT NOR (x0.33 Drive)

41 NOR2x67_ASAP7_75t_X 2 INPUT NOR (x0.67 Drive)

42 NOR2x1_ASAP7_75t_X 2 INPUT NOR (x1 Drive)

43 NOR3x1_ASAP7_75t_X 3 INPUT NOR (x1 Drive)

44 NOR4xp25_ASAP7_75t_X 4 INPUT NOR (x0.25 Drive)

45 NOR5xp2_ASAP7_75t_X 5 INPUT NOR (x0.2 Drive)

46 OR2x2_ASAP7_75t_X 2 INPUT OR (x2 Drive)

47 OR2x4_ASAP7_75t_X 2 INPUT OR (x4 Drive)

48 OR2x6_ASAP7_75t_X 2 INPUT OR (x6 Drive)

49 OR3x2_ASAP7_75t_X 3 INPUT OR (x2 Drive)

50 OR3x4_ASAP7_75t_X 3 INPUT OR (x4 Drive)

51 OR4x1_ASAP7_75t_X 4 INPUT OR (x1 Drive)

52 OR4x2_ASAP7_75t_X 4 INPUT OR (x2 Drive)

53 AOI21xp5_ASAP7_75t_X 2-1 AOI (x0.5 Drive)

54 AOI22xp33_ASAP7_75t_X 2-2 AOI (x0.33 Drive)

55 AOI31xp67_ASAP7_75t_X 3-1 AOI (x0.67 Drive)

56 AOI32xp33_ASAP7_75t_X 3-2 AOI (x0.33 Drive)

57 AOI33xp33_ASAP7_75t_X 3-3 AOI (x0.33 Drive)

58 AOI211xp5_ASAP7_75t_X 2-1-1 AOI (x0.5 Drive)

59 AOI221xp5_ASAP7_75t_X 2-2-1 AOI (x0.5 Drive)

60 AOI332xp67_ASAP7_75t_X 3-3-2 AOI (x0.67 Drive)

61 AOI333xp67_ASAP7_75t_X 3-3-3 AOI (x0.67 Drive)

62 OAI21xp5_ASAP7_75t_X 2-1 OAI (x0.5 Drive)

63 OAI22xp5_ASAP7_75t_X 2-2 OAI (x0.5 Drive)

64 OAI31xp67_ASAP7_75t_X 3-1 OAI (x0.67 Drive)

65 OAI32xp33_ASAP7_75t_X 3-2 OAI (x0.33 Drive)

66 OAI33xp33_ASAP7_75t_X 3-3 OAI (x0.33 Drive)

67 AO21x2_ASAP7_75t_X 2-1 AO (x2 Drive)

68 AO22x2_ASAP7_75t_X 2-2 AO (x2 Drive)

69 AO31x2_ASAP7_75t_X 3-1 AO (x2 Drive)

70 AO32x2_ASAP7_75t_X 3-2 AO (x2 Drive)

 86

71 AO33x2_ASAP7_75t_X 3-3 AO (x2 Drive)

72 AO211x2_ASAP7_75t_X 2-1-1 AO (x2 Drive)

73 AO221x2_ASAP7_75t_X 2-2-1 AO (x2 Drive)

74 AO222x2_ASAP7_75t_X 2-2-2 AO (x2 Drive)

75 AO322x2_ASAP7_75t_X 3-2-2 AO (x2 Drive)

76 AO331x2_ASAP7_75t_X 3-3-1 AO (x2 Drive)

77 AO333x2_ASAP7_75t_X 3-3-3 AO (x2 Drive)

78 OA21x2_ASAP7_75t_X 2-1 OA (x2 Drive)

79 OA22x2_ASAP7_75t_X 2-2 OA (x2 Drive)

80 OA31x2_ASAP7_75t_X 3-1 OA (x2 Drive)

81 OA33x2_ASAP7_75t_X 3-3 OA (x2 Drive)

82 OA211x2_ASAP7_75t_X 2-1-1 OA (x2 Drive)

83 OA221x2_ASAP7_75t_X 2-2-1 OA (x2 Drive)

84 OA222x2_ASAP7_75t_X 2-2-2 OA (x2 Drive)

85 MAJIxp5_ASAP7_75t_X 3 INPUT MAJORITY (x0.5 Drive)

86 O2A1Ixp5_ASAP7_75t_X O2-A1-I (x0.5 Drive)

87 A2O1A1Ixp33_ASAP7_75t_X A2-O1-A1-I (x0.33 Drive)

88 O2A1O1Ixp5_ASAP7_75t_X O2-A1-O1-I (x0.5 Drive)

89 A2O1A1O1Ixp25_ASAP7_75t_X A2-O1-A1-O1-I (x0.25 Drive)

90 HB1xp67_ASAP7_75t_X HOLD BUFFER-1 (x0.67 Drive)

91 HB2xp67_ASAP7_75t_X HOLD BUFFER-2 (x0.67 Drive)

92 HB3xp67_ASAP7_75t_X HOLD BUFFER-3 (x0.67 Drive)

93 HB4xp67_ASAP7_75t_X HOLD BUFFER-4 (x0.67 Drive)

94 DHLx1_ASAP7_75t_X CLOCK HIGH LATCH (x1 Drive)

95 DHLx2_ASAP7_75t_X CLOCK HIGH LATCH (x2 Drive)

96 DHLx3_ASAP7_75t_X CLOCK HIGH LATCH (x3 Drive)

97 DLLx1_ASAP7_75t_X CLOCK LOW LATCH (x1 Drive)

98 DLLx2_ASAP7_75t_X CLOCK LOW LATCH (x2 Drive)

99 DLLx3_ASAP7_75t_X CLOCK LOW LATCH (x3 Drive)

100 DFFHQNx1_ASAP7_75t_X POS EDGE TRIGGERED DFF (x1

Drive)

101 DFFHQNx2_ASAP7_75t_X POS EDGE TRIGGERED DFF (x2

Drive)

102 DFFHQNx3_ASAP7_75t_X POS EDGE TRIGGERED DFF (x3

Drive)

103 DFFHQx4_ASAP7_75t_X POS EDGE TRIGGERED DFF, Q

OUTPUT (x4 Drive)

104 DFFLQNx1_ASAP7_75t_X NEG EDGE TRIGGERED DFF (x1

Drive)

 87

105 DFFLQNx2_ASAP7_75t_X NEG EDGE TRIGGERED DFF (x2

Drive)

106 DFFLQNx3_ASAP7_75t_X NEG EDGE TRIGGERED DFF (x3

Drive)

107 DFFLQx4_ASAP7_75t_X NEG EDGE TRIGGERED DFF, Q

OUTPUT (x4 Drive)

108 ASYNC_DFFHx1_ASAP7_75t_X ASYNCHRONOUS SET-RESET FF

(x1 Drive)

109 SDFHx1_ASAP7_75t_X POS EDGE TRIGGERED SCAN FF

(x1 Drive)

110 SDFHx2_ASAP7_75t_X POS EDGE TRIGGERED SCAN FF

(x2 Drive)

111 SDFHx3_ASAP7_75t_X POS EDGE TRIGGERED SCAN FF

(x3 Drive)

112 SDFHx4_ASAP7_75t_X POS EDGE TRIGGERED SCAN FF

(x4 Drive)

113 SDFLx1_ASAP7_75t_X NEG EDGE TRIGGERED SCAN FF

(x1 Drive)

114 SDFLx2_ASAP7_75t_X NEG EDGE TRIGGERED SCAN FF

(x2 Drive)

115 SDFLx3_ASAP7_75t_X NEG EDGE TRIGGERED SCAN FF

(x3 Drive)

116 SDFLx4_ASAP7_75t_X NEG EDGE TRIGGERED SCAN FF

(x4 Drive)

117 FAx1_ASAP7_75t_X 1- BIT FULL ADDER (x1 Drive)

118 HAxp5_ASAP7_75t_X 1- BIT HALF ADDER (x1 Drive)

119 XOR2xp5_ASAP7_75t_X 2 INPUT XOR (x0.5 Drive)

120 XOR2x1_ASAP7_75t_X 2 INPUT XOR (x1 Drive)

121 XNOR2xp5_ASAP7_75t_X 2 INPUT XNOR (x0.5 Drive)

122 XNOR2x1_ASAP7_75t_X 2 INPUT XNOR (x1 Drive)

123 ICGx1_ASAP7_75t_X INTEGRATED CLOCK GATER (x1

Drive)

124 ICGx2_ASAP7_75t_X INTEGRATED CLOCK GATER (x2

Drive)

125 ICGx3_ASAP7_75t_X INTEGRATED CLOCK GATER (x3

Drive)

126 TIELOx1_ASAP7_75t_X TIE LOW CELL (x1 Drive)

127 TIEHIx1_ASAP7_75t_X TIE HIGH CELL (x1 Drive)

128 TAPCELL_ASAP7_75t_X TAP CELL

129 TAPCELL_WITH_FILLER_ASAP7

_75t_X

TAPCELL WITH FILLER

130 FILLER_ASAP7_75t_X FILLER CELL

131 FILLERxp5_ASAP7_75t_X FILLER CELL

 88

132 DECAPx1_ASAP7_75t_X DECAP (x1 Drive)

133 DECAPx2_ASAP7_75t_X DECAP (x2 Drive)

134 DECAPx4_ASAP7_75t_X DECAP (x4 Drive)

135 DECAPx6_ASAP7_75t_X DECAP (x6 Drive)

136 DECAPx10_ASAP7_75t_X DECAP (x10 Drive)

	Fig1_1
	Fig1_2
	Fig1_3
	Fig1_4
	Fig2_1
	Fig2_2
	Fig2_3
	Fig2_4
	Tab2_1
	Fig2_5
	Fig2_7
	Fig2_6
	Fig3_1
	Fig3_2
	Tab3_1
	Fig3_3
	Fig3_4
	Fig3_5
	Fig3_6
	Fig3_7
	Fig3_8
	Tab3_2
	Fig3_9
	Fig3_10
	Fig3_11
	Fig3_12
	Fig3_13
	Fig3_14
	Fig3_15
	Fig3_17
	Fig3_16
	Fig3_18
	Fig3_19
	Fig3_20
	Fig4_1
	Fig4_2
	Fig4_3
	Fig4_4
	Fig4_5
	Fig4_6_1
	Fig4_6_2
	Fig4_6_3
	Fig4_6_4
	Fig4_6_5
	Fig4_6_6
	Fig4_6_7
	Fig4_6_8
	Fig4_6_9
	Fig4_6_10
	Fig4_6_11
	Fig4_6_12
	Fig4_6_13
	Fig4_7
	Fig4_8
	Fig4_9
	Fig4_10
	Fig4_11
	Fig4_12
	Fig4_13
	Fig4_14
	Fig4_15
	Tab5_1
	Fig5_1
	Fig5_2
	Abbas14
	Abbas16
	Ameli08
	Auth12
	Bhardwaj06
	Bittle10
	Bohr11
	Cirit91
	Clark16
	Doyle03
	Ghan15
	Goel08
	Golan15
	Gupta12
	Hisam98
	IWLS05
	James12
	Kaimehr15
	Kaushik12
	Kuhn11
	Lefdef09
	Lib14
	Lin94
	Nguy00
	Seo08
	Sharma15
	Sherazi16
	Singhal06
	Vashish17
	Woon05
	Xie15
	Yang01
	Yu02

