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ABSTRACT 

 

This thesis addresses two problems in digital baseband design of wireless communication 

systems, namely, those in Internet of Things (IoT) terminals that support long range 

communications and those in full-duplex systems that are designed for high spectral 

efficiency. 

 

IoT terminals for long range communications are typically based on Orthogonal 

Frequency-Division Multiple Access (OFDMA) and spread spectrum technologies. In 

order to design an efficient baseband architecture for such terminals, the workload profiles 

of both systems are analyzed. Since frame detection unit has by far the highest 

computational load, a simple architecture that uses only a scalar datapath is proposed. To 

optimize for low energy consumption, application-specific instructions that minimize 

register accesses and address generation units for streamlined memory access are 

introduced. Two parameters, namely, correlation window size and threshold value, affect 

the detection probability, the false alarm probability and hence energy consumption. Next, 

energy-optimal operation settings for correlation window size and threshold value are 

derived for different channel conditions. For both good and bad channel conditions, if 

target signal detection probability is greater than 0.9, the baseband processor has the lowest 

energy when the frame detection algorithm uses the longest correlation window and the 

highest threshold value. 
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A full-duplex system has high spectral efficiency but suffers from self-interference. Part of 

the interference can be cancelled digitally using equalization techniques. The cancellation 

performance and computation complexity of the competing equalization algorithms, 

namely, Least Mean Square (LMS), Normalized LMS (NLMS), Recursive Least Square 

(RLS) and feedback equalizers based on LMS, NLMS and RLS are analyzed, and a trade-

off between performance and complexity established. NLMS linear equalizer is found to 

be suitable for resource-constrained mobile devices and NLMS decision feedback 

equalizer is more appropriate for base stations that are not energy constrained.
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CHAPTER 1. INTRODUCTION 

In the very near future, we anticipate that machine to machine (M2M) communication will 

dominate internet traffic [1]. Smart sensing devices in autonomous cars, surveillance 

cameras, smart meters, health monitors, etc. will talk to other sensing devices without 

human intervention. This is the new era of Internet of Things (IoT) [2], [3]. In many 

scenarios, the IoT devices will have to communicate with each other or with a central 

station in places that lack proper network connection and even power sources. Current 

systems, like LTE, are complex and not energy efficient. In this thesis, we address the 

problem of long range communication in remote areas by designing a low energy digital 

baseband processor that is optimized for such scenarios. 

 

Another important problem in wireless communication systems is achieving high spectrum 

efficiency. A full duplex system achieves high spectrum efficiency by transmitting and 

receiving in the same bandwidth simultaneously. This technology has tremendous 

implications in network design, for example, cellular networks can cut their spectrum needs 

by half. However, these systems have self-interference caused by their own transmitted 

signal through direct path and reflected paths. Self-interference can be reduced at the 

antenna end, at the analog end and at the digital end. In this thesis we study the performance 

of several equalization algorithms with different levels of complexity to reduce noise due 

to self-interference at the digital end.  
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1.1 Long Range Wireless Communication Baseband Processor Design 

1.1.1 Motivation 

To support IoT communications, there are short range systems such as WiFi, Bluetooth, 

Zigbee, and z-wave, and long range systems such as LoRa, Sigfox, and LTE-M [4]. While 

short range systems are good for indoor applications, long range systems are designed for 

monitoring water, gas or infrastructure health without power and backbone network 

connectivity [5]. Legacy cellular networks, such as those based on LTE, are too expensive 

in terms of power and operation cost, and not applicable for long range systems. 

 

Several architectures have been proposed for IoT terminals for short range communications. 

There are commercial designs such as those from CEVA which consists of DSP with SIMD 

units [6], DSP with two VLIW slots from Tensilica [7], ARM core-based ARTIK series 

from Samsung [8]. There are also designs from academia such as the custom SIMD 

architecture with flexible bit-width [9] and CISC processor with reconfigurable microcode 

[10]. For long range IoT applications, there are a number of commercial solutions from 

Silicon Lab, Semtech, and TI. These are all low power versions of conventional RISC 

processors. 

1.1.2 Contribution 

In this thesis, we present a baseband processor architecture for long range IoT systems 

based on OFDMA and spread spectrum technologies [11]. Since an IoT terminal spends 

most of its time in the idle mode, we design an architecture which is optimized for idle 

mode. We perform detailed workload analysis of the two technologies and find that frame 
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detection is by far the most dominant workload. Since frame detection implemented using 

sliding window is essentially a scalar operation, we propose a scalar processor based 

architecture. Reducing energy consumption is extremely important, and so we introduce (i) 

application-specific instructions that help reduce power in register files through instruction 

chaining (where instructions are executed one after one without storing intermediate 

results), and (ii) streamline data access in memories through address generating units which 

hide the overhead of address calculations. The proposed architecture was synthesized using 

Cadence in 65 nm technology node. Preliminary synthesis results show that the area of this 

architecture is 0.204μm2 and that it consumes only 2.41 nJ/cycle when clocked at 3MHz 

with supply voltage of 1.08V. It is different from previous idle mode works [9] [12]in that 

it is designed for long range IoT terminals and is based on a scalar datapath. 

 

Since the baseband processor spends 97%-99% of its time in frame detection, next we 

derive a set of energy-optimal frame detection algorithm settings for different channel 

conditions. The derivation is based on design space exploration that considers both 

algorithm performance and processor energy consumption. In contrast, previous works 

consider only detection algorithm design [13] or only implementation [14]. We 

implemented two versions of coarse-grain frame detection algorithm that have different 

detection capabilities. Since the energy consumption depends on detection performance 

and the detection performance of the algorithm depends on the effect of correlation window 

size and threshold value, we analyzed the effects of these parameters on the energy 

consumption of the baseband processor. When the frame detection probability is larger 
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than 0.9, we find that a simplified version is more energy-efficient for good channel 

conditions. But for bad channel condition (SNR < -9dB), we have to lower the frame 

detection probability to adapt the situation, in this scenario, the baseline algorithm is better 

in energy consumption. In addition, we showed that in both cases, longer correlation 

window size and higher threshold is more energy-efficient. 

1.2 Full Duplex Systems 

1.2.1 Motivation 

Earlier it was believed that a radio cannot both transmit and receive in the same bandwidth 

simultaneously [15]. Communication systems deployed either time-division or frequency-

division approach instead of bidirectional communication [16]. In recent years, full duplex 

systems that can transmit and receiver at the same bandwidth, have been proposed. These 

systems achieve high spectrum efficiency and have the potential to change our current 

wireless network with respect to cellular, antenna arrangement [17]. 

 

The basic challenge of full-duplex systems is handling of self-interference. Figure 1.1 

describes the key blocks of a full duplex terminal. The self-interference is due to 

transmitted signal from direct path and reflected paths. To mitigate the effect of self-

interference, in the antenna part, an architecture called balun which uses two transmit 

antennas with different path lengths, has been used in  [15]. At the analog end, tuning 

algorithms have been developed in [18] based on copying the analog signal at the 

transmitter side and using parallel fixed lines of varying delays and tunable attenuators to 

cancel the self-interference. For the digital cancellation part, Least Mean Square (LMS) 
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[19], Least Square (LS) [20], and Maximum Likelihood Sequence Estimation (MLSE) [18] 

algorithms have been used. 

1.2.2 Contribution 

As outlined in [18], since the total cancellation for self-interference is about 110dB, the 

analog part should reduce about 60dB of noise and the digital part should eliminate the 

remaining 50dB of noise. To reduce the linear and non-linear noise, a strong equalization 

algorithm should be used. Unfortunately a strong algorithm has higher complexity and so 

the choice of the algorithm depends on the application requirement. 

 

In this thesis, we studied the performance of different equalizer algorithms based on Least 

Mean Square (LMS), Normalized LMS (NLMS), and Recursive Least Square (RLS) for 

three different channel models, namely AWGN channel, Rayleigh Fading channel and real 

Coding,
Modulation

Demodulation,
Decoding

DAC X

H
PA

LN
A

XADC

Analog 
Cancellation

Digital 
Cancellation

Transmit
Bits

Receive
Bits

Digital 
Domain

Analog 
Domain

Propagation
Domain

Nearby
Scatterers

Total self-interference

Direct paths

Transmit signal

Desired receive signal

 

Figure 1.1 In-band Full-Duplex Terminal 
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indoor measured channel. We also studied the performance of feedback equalizers based 

on LMS, NLMS and RLS.  

 

To study the effect of channel, we fixed the equalization algorithm to RLS and NLMS. We 

found that the RLS and NLMS performance for different channel models was similar. The 

performance for Rayleigh Fading channel was slightly worse and the performance for 

AWGN slightly better compared to the performance for real indoor channel.  

 

Next we fixed the channel model to that of the real indoor channel, and studied the 

performance of the different algorithms. We found that the performance using NLMS 

decision feedback equalizer is the best. It achieves about 45dB noise cancellation. NLMS 

linear equalizer and RLS linear equalizer are next in performance. While both equalizers 

had noise cancellation of about 35dB, NLMS linear equalizer has lower computation 

complexity compared to RLS linear equalizer.  

 

We also found that in indoor channel, equalizer with decision feedback can cancel 10 dB 

more non-linear noise due to the feedback loop. Due to the high noise floor in the input 

signal, normalization helps in improving the performance by limiting the scaling of input 

signal. Unfortunately, equalizers with decision feedback have higher complexity and may 

not be suitable for resource-constrained devices. Thus we conclude that NLMS decision 

feedback equalizer is suitable for base stations which are not resource constrained and 
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where cancellation performance is very important, and NLMS linear equalizer is suitable 

for terminals which are resource constrained. 

1.3 Organization 

The rest of thesis is organized as follows. Chapter 2 presents background information on 

long range wireless communication processor and full duplex systems.  Chapter 3 presents 

the workload of different long range wireless communication protocols, the scalar 

baseband processor architecture for IoT terminal and design space exploration for deriving 

the energy optimal setting. Chapter 4 presents different equalizer algorithms for digital 

cancellation in full duplex systems and an analysis of their performance. Chapter 5 

summarizes the thesis.
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CHAPTER 2. BACKGROUND 

In this chapter, we briefly describe some of the existing protocols for long range wireless 

communications (Section 2.1) followed by basics of full duplex operation, and techniques 

to address interference related problems (Section 2.2). 

2.1 Long Range Baseband Processor 

Long range wireless communication protocols for IoT systems are designed to support 

communications between small sensor nodes and a network server with minimum power. 

LTE-M [21], LoRa [22], and Sigfox [23] are representative long range protocols. LTE-M 

[21] is a narrow band version of LTE protocol that is used for M2M communication. 

Narrow band allows it to achieve higher signal to noise ratio (SNR) while sacrificing data 

rate. LTE-M is based on OFDMA technology. LoRa is a new technology based on spread 

spectrum that targets low power long range (tens of kilometers) IoT terminals [22]. This 

technology is different from code division multiple access (CDMA) due to the use of 

relatively narrow band and chirp modulation scheme which is robust to frequency offset 

error. While the exact details of Sigfox are not known, we expect it to have characteristics 

similar to other narrow band protocols such as long idle mode and preamble based frame 

structure. 

2.1.1 OFDMA-based IoT Terminal 

Fig. 2.1 shows the receiver structure of an OFDMA-based IoT terminal. Frame detection 

consists of two operations: coarse-grain detection and fine-grain detection. Coarse-grain 

detection makes a decision on the existence of a predefined preamble pattern with minimal 
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computation cost. Fine-grain detection reconfirms the result of coarse-grain detection by 

using a computationally more expensive but more accurate algorithm, such as matched 

filtering. Thus, the fine-grain detection algorithm is conditionally called when a frame is 

detected by the coarse-grain algorithm. 

 

The computations in coarse-grain detection consist of auto-correlation of the received 

signal and its normalization with the signal energy. By exploiting the overlap in the 

computations of two adjacent autocorrelation values, 𝑐𝑛  can be implemented as 𝑐𝑛 =

𝑐𝑛−1 + 𝑝𝑛 − 𝑝𝑛−𝐿  where  𝑝𝑛 = 𝑟𝑛 ∙ 𝑟𝑛−𝑁
∗ . This is referred to as the sliding window 

operation. Similarly the signal energy 𝑒𝑛 also can be implemented as 

𝑒𝑛 = 𝑒𝑛−1 + 𝑞𝑛 − 𝑞𝑛−𝐿, where 𝑞𝑛 = |𝑟𝑛|2. Thus by using the sliding window approach, 

the computation overhead of each of these operations can be reduced from 𝐿 

multiplications and 𝐿 − 1 additions to one multiplication and two additions. 

 

 

Figure 2.1 OFDMA-based IoT receiver 
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An OFDMA receiver generates a coarse-grain detection signal if the normalized auto-

correlation value, referred to as 𝑚𝑛, is greater than a pre-defined threshold value, 𝑇ℎ. This 

step is followed by fine-grain detection which is essentially matched filter computation. 

Matched filter is based on cross-correlation between reference preamble sequence and 

received signal, followed by selection of maximum value point. Although cross correlation 

requires many expensive multiplications, it is implemented on a small range. 

 

The next step is payload extraction followed by OFDMA demodulation using FFT. The 

user data placed on sub-carriers is extracted and fed to the channel estimator/equalizer. For 

the estimator, least mean square (LMS) algorithm is selected because of its mid-range 

channel equalization performance without high computation load [24]. After pilot removal, 

N-QAM is used for demodulation. The data is then de-interleaved in order to achieve time 

diversity. 

 

For forward error correction, convolutional code is used and decoding is done using the 

Viterbi algorithm. This algorithm can be represented by a set of vector operations, such as 

branch metric computation (BMC) and add compare select (ACS) operations [25]. 

Descrambler operation consists of bit-wise exclusive OR operations between the channels 

decoded data with a pseudo random sequence. Because bit wise operations can be 

performed independently, the descrambler operation can be computed using a bit vector 

operation. 
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2.1.2 Spread Spectrum-based IoT Terminal 

Fig. 2.2 show the structure of spread spectrum-based IoT receiver. It consists of frame 

detection, searcher, Rake receiver, despreader, deinterleaver, channel decoder, and 

descrambler. The spread spectrum system uses a high frequency waveform to transmit 

information bits over the air. Its operation is similar to a CDMA system except that it uses 

chirp sequences. Using chirp sequence in modulation is advantageous for IoT terminals 

because it is robust to frequency offset error and does not require precise synchronization 

at base station. The searcher and Rake receiver are selected in order to get lower Bit Error 

Rate although they require additional computations. 

 

 

After frame detection, the searcher estimates delay spread of received signal caused by 

multipath fading. The delay spread is estimated by continuous computation of correlations 

between received signal and chirp sequence. The high correlation peaks correspond to the 

location of the received signals. Rake receiver implements multiple demodulation paths 

with different delays. Each demodulation path (so called finger) performs matched filtering 

 

Figure 2.2 Spread Spectrum-based IoT receiver 
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and its computation pattern is similar to vector inner product. Chirp sequence with varied 

frequency is used for chirp despreading. Channel code used in the spread spectrum-based 

system is typically Reed-Solomon (RS) code which shows good correction performance 

for burst errors. The decoding consists of four blocks, namely, syndrome computation, 

Berlekamp-Messy algorithm, Chien Search algorithm, and Forney algorithm. Of these, 

syndrome computation and Chien search algorithm can be parallelized [26]. Other modules 

such as frame detection, deinterleaving, and descrambling are similar to those in the 

OFDMA-based IoT terminals, and are not described here. In Chapter 3, we present an 

analysis of the workload characteristics of the two protocols, followed by derivation of 

optimized algorithms and configuration of the parameters of the systems to minimize 

power consumption.  

2.2  Full Duplex Systems 

Traditionally, spectrum efficiency has been increased through advances in modulation, 

coding schemes, and Multiple Input Multiple Output (MIMO) technologies. The gains 

achieved by these methods have now saturated [27] and so researchers have turned to full 

duplex systems. In a full duplex system, receive and transmit signals occupy the same 

frequency band, thereby doubling the throughput.  

 

Unfortunately a full-duplex network system suffers from all types of interference. When 

the interference is caused by the node’s own transmissions, it is labeled self-interference. 

For short-range wireless systems, such as WiFi and small-cell systems, the path loss is not 

large, making self-interference reduction easier to achieve. When the interference to 
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reception is caused by a different node, it is labeled as inter-node interference. Inter-node 

interference can be within a cell (intra-cell) or across cells (inter-cell). In traditional half-

duplex networks, intra-cell interference is either not an issue (e.g. in FDD networks) or a 

small part of an overall design challenge (e.g. in TDD networks like WiFi). With full-

duplex transmissions, intra-cell interference is the dominant component, simply because 

uplink and downlink are simultaneously active. 

2.2.1 Self-interference  

A detailed spectral analysis of tones when transmitting and receiving was presented in [18]. 

Figure 2.3 borrowed from [18] shows that there are three main components. First is the 

linear component, caused by the reflection of the transmitted signal. Second is the non-

linear component that mainly consists of harmonics. The third is transmitter noise, which 

is extremely high, about 50dBm, and caused by radio transmitter such as power amplifier. 

Local oscillators can also generate additional phase noise. 
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Figure 2.3 Signal spectrum of transmitter side and receiver side [18] 
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2.2.2 Requirements for Self-Interference Cancellation 

In the experiments presented in [18], OFDM-wideband signals are used to quantify the 

power levels of different distortions. Using 80MHz bandwidth Wi-Fi radio, [18] showed 

that the noise floor in receiver side is -90dBm. First, for the main signal, 110dB of linear 

self-interference cancellation is required to achieve the -90dBm receiver noise floor. 

Second, since there are 80 dB harmonics above the noise floor, the full duplex technique 

has to provide at least 80dB non-linear self-interference cancellation. Third, transmitter 

noise is 50dB higher than the noise floor, which has to be addressed by analog noise 

cancellation. In summary, any full duplex technique should provide 110dB linear 

cancellation, 80dB non-linear cancellation, 60dB of analog cancellation and 50dB for 

digital cancellation. In this thesis, we focus on digital cancellation. 
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Figure 2.4 Power level requirements for full duplex system [18] 
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2.2.3 Current Full Duplex Systems 

There are three well-known architectures for full duplex systems. The Stanford architecture 

[18], the Rice architecture [20] and the Tampere University of Technology (TUT) 

architecture [19].  

A. The Stanford architecture 

The Stanford architecture uses both analog and digital cancellation methods to suppress 

self-interference with analog cancellation playing a dominant role. There is a circulator 

connected to the antenna, which is a three port device to provide limited isolation between 

transmitted and received signals. It transforms a copy of the analog RF signal using analog 

components to cancel the self-interference signal at receiver side. It then uses MLSE to 

cancel the remaining noise. The Stanford architecture has good performance, but its analog 

circuitry is expensive. For MIMO systems, its performance and cost is likely to be quite 

high [28]. 

 

B. The Rice architecture 

Figure 2.5 describes the full-duplex OFDM transceiver from Rice [20]. At the transmitter 

side, the base-band signal is modulated using an OFDM modulator, then up-converted to 

the carrier frequency fc and then amplified using a power amplifier. The oscillator at the 

transmitter side is assumed to have a random phase error represented by φt (t). At the 

receiver side, the amplitude of the received signal is properly adjusted using a low noise 

amplifier (LNA). The signal is then down-converted from the carrier frequency to the base-
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band. The down-conversion mixer is assumed to have a random phase error represented by 

φr(t). The base-band signal is then quantized and converted to the frequency domain using 

Fourier transform. The Rice architecture, uses Least Square (LS) estimator to cancel self-

interference. This architecture is able to suppress about 48dB self-interference. So its 

performance is not as good as the Stanford architecture. 

C. TUT architecture 

The TUT architecture uses a combination of techniques to reduce self-interference by 

100dB [19]. It describes a novel antenna design to provide about 70dB cancellation. In 

addition, it uses multitap analog cancellation and LMS equalization algorithm for digital 

cancellation. 

 

 

QAM
Modulation

Demodulation,
Decoding

DAC X

H
P

A

LN
A

XADC

Self-interference  
equalization

Nearby
Scatterers

Total self-interference

Direct paths

Transmit signal

Desired receive signal

IFFT
CP

Insertion

CP
Removal

FFT
Self-Interference 

Cancellation

Equalization

t

r
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CHAPTER 3. LONG RANGE IOT DIGITAL BASEBAND PROCESSOR 

We propose a new baseband architecture for Internet of Things (IoT) terminals that support 

long range communications such as those based on Orthogonal Frequency-Division 

Multiple Access (OFDMA) and spread spectrum technologies. We analyze the workload 

profiles of both systems (Section 3.1). We introduce our baseband processor that optimized 

for frame detection in Section 3.2 and find that the frame detection unit has by far the 

highest computational load. We elaborate on the frame detection algorithm in Section 3.3 

and derive energy-optimal operation settings for the frame detection unit for different 

channel conditions in Section 3.4.  

3.1 Block Level Workload Characteristics 

We analyzed the workload characteristics of major computation kernels of OFDMA-based 

(Figure 2.1) and spread spectrum-based IoT terminals (Figure 2.2) described in Chapter 2. 

Table 3.1 summarizes the computational characteristics of the two types of terminals. We 

see that while frame detection and deinterleaver are scalar, most of the other kernels are 

suitable for vector processing. The choice of the architecture--scalar vs vector--would 

depend on whether the system spends most of its time on the scalar kernels or on the vector 

kernels. 
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Tables 3.2 and 3.3 present the workload profiles of OFDMA and spread spectrum-based 

IoT terminals respectively. To obtain the profiles, we built MATLAB models of the two 

IoT terminals and executed them on an X86 machine. We measured the cycle count of each 

algorithm, and computed the percentile contributions. In addition, to see the impact of long 

idle periods, we changed the ratio of operation time between idle state and active state from 

10:1 to 100:1, though the ratio of idle to active state, in reality, is much longer. 

Table 3.1 Computational Characteristics of IoT Terminals 

Algorithm Vector Scalar Short Vect. 

Frame detection  √  

Matched filter √   

FFT √   

Channel estimation √   

Equalization √   

Demodulation   √ 

Deinterleaver  √  

Viterbi decoder √ √  

Descrambler √   

Searcher √   

Rake receiver √   

RS decoder √ √ √ 
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In the OFDMA-based terminals, for ratio 10:1, frame detection is the dominant workload 

(>97%) followed by channel decoding. Consider a scenario where 1 out of 10 frames 

contains information. If each frame has 4,000 symbols, then the frame detection unit 

operates on 10×4,000 symbols. In contrast, the matched filter only operates on 100 

symbols. After changing the idle to active ratio to 100:1, the frame detection block accounts 

for 99% of the workload. 

 

Table 3.2 Workload Profile of OFDMA Terminal 

Block Idle: Active=10:1 Idle: Active=100:1 

Frame detection 97.4763% 99.1896% 

Matched filter 0.5408% 0.0603% 

Payload extraction 0.4507% 0.1206% 

OFDM demodulation 0.0451% 0.0100% 

Equalization 0.1352% 0.0502% 

Pilot removal 0.0901% 0.0134% 

QAM demodulation 0.2253% 0.0167% 

Deinterleaving 0.0451% 0.0033% 

Channel decoding 0.9013% 0.5291% 

Descrambling 0.0901% 0.0067% 
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In the spread spectrum-based terminals, frame detection is more than 99% of the workload 

even when the ratio is 10:1. This is because in spectrum spread systems, the frame size is 

much larger and so there are more calculations per frame. Note that in the active mode, our 

workload profile for OFDMA protocol is almost identical compared to that in [9]. 

 

From Tables 3.2 and 3.3, it is clear that for both systems frame detection is, by far, the most 

dominant workload. Since it can be implemented efficiently using low cost sliding window 

algorithm, the baseband processor has to be optimized for scalar processing. 

3.2 Processor Architecture 

Figure 3.1 shows the architecture of the proposed baseband processor designed for 

OFDMA and spread spectrum-based IoT terminals [11]. It is essentially a 32bit scalar 

processor which consists of arithmetic and logic unit, an accumulator, register file of size 

Table 3.3 Workload Profile of Spread Spectrum Terminal 

Block Idle: Active=10:1 Idle: Active=100:1 

Frame detection 99.4264% 99.8456% 

Searcher 0.1941% 0.1261% 

Rake receiver 0.0131% 0.0004% 

Chirp despreading 0.0174% 0.0008% 

Deinterleaving 0.0044% 0.0002% 

RS decoding 0.3402% 0.0264% 

Descrambling 0.0044% 0.0004% 
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32bit×16, and two data memories each of size 8Kbytes. Each data memory has two read 

ports and one write port and can be programmed to read two entries and write one entry in 

one cycle. Each read or write port has a dedicated address generation unit (AGU) to access 

memory with minimal address calculation overhead. The ALU can operate on data from 

the register files or data memories. Alternately, the data memories can load data from the 

ALU and the RF unit. The control path consists of instruction memory and instruction 

decoder which are not shown in this figure for simplicity. 

 

The choice of scalar processor was derived from the workload analysis results which 

showed that even when idle to active period ratio is 10:1, frame detection (which is a 

sequential algorithm) accounts for 97%-99% of the workload. Apart from frame detection, 

 

Figure 3.1 Architecture of processor for long range IoT terminal 
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the other baseband signal processing algorithms can be represented by vector inner 

products and implemented by a SIMD style architecture. However, in reality, idle period 

is much longer than active period and thus the power saving and throughput enhancement 

that we can expect from using SIMD datapath, is almost negligible. 

3.3 Frame Detection Algorithm 

In Section 3.1, we observed that the frame detection block dominates the total workload of 

IoT terminals in both the spread spectrum-based and OFDMA-based IoT terminals. Here 

we discuss in detail the frame detection algorithm. 

 

Frame detection estimates whether a frame was transmitted from a basestation or not. It is 

implemented as a binary hypothesis test. Let mn be the auto-correlation value cn of received 

data, normalized by its energy as shown in Eqn. (1). 

                                            𝑚𝑛 =
|𝑐𝑛|2

𝑒𝑛,0⋅𝑒𝑛,1
                                           (1) 

Here cn is implemented as the inner product of two vectors, 𝑐𝑛  = ∑ 𝑟𝑛−𝑖𝑟𝑛−𝑖−𝑁
∗𝐿−1

𝑖=0  where 

rn represents the received signal, L is the correlation window length, and N is the spacing 

between two correlation windows. Signal energy 𝑒𝑛,0 is computed as ∑ |𝑟𝑛−𝑖|
2𝐿−1

𝑖=0 and 𝑒𝑛,1 

is computed as ∑ |𝑟𝑛−𝑖−𝐿|2𝐿−1
𝑖=0 . Let H0 be the case for frame not detected and H1 be the case 

for frame detected. Then the actual test is to check whether the normalized correlation value 

mn is bigger than a predefined threshold Th. 

 

The performance of frame detection is based on two probabilities: probability of detection, 

PD, and probability of false alarm, PFA. PD is the probability of detecting a packet that has 
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been transmitted from a basestation, and PFA is the probability that the binary test 

incorrectly decides the presence of frames, when actually no frames were transmitted. Let 

Ftx and Fntx represent the event that a basestation transmits a frame or not. Then PD and PFA 

can be defined in terms of conditional probabilities as shown below. 

                                                  𝑃𝐷 = 𝑃(𝑚𝑛 ≥ 𝑇ℎ|𝐹𝑡𝑥)                                                   (2) 

                                                 𝑃𝐹𝐴 = 𝑃(𝑚𝑛 ≥ 𝑇ℎ|𝐹𝑛𝑡𝑥)                                                 (3) 

Although high PD is desirable, it requires a complex algorithm and hence higher energy 

consumption. High PFA results in unnecessary activation of full receiver chain, and so 

increases idle mode energy consumption. Thus PFA should be as small as possible for 

energy-efficient operation, as will be illustrated in next subsection. 

 

Coarse and Fine-Grain Detection: As shown in Figure 2.1 and Figure 2.2, the frame 

detection block consists of two parts, coarse-grain detection and fine-grain detection. 

Because fine-grain detection algorithm is conditionally called when a frame is detected by 

the coarse-grain detection algorithm, the impact of coarse-grain algorithm on energy 

consumption is more substantial. The coarse-grain detection algorithm can be implemented 

using sliding window. Let 𝑝𝑛 = 𝑟𝑛 ∙ 𝑟𝑛−𝑁
∗  be the intermediate parameter for sliding window. 

Then the auto-corelation value 𝑐𝑛 = 𝑐𝑛−1 + 𝑝𝑛 − 𝑝𝑛−𝐿. For more details, please refer to 

Section 2.1. 

 

Algorithm 1 describes the sliding window algorithm for coarse-grain detection. Here Th is 

the threshold value, r is the receiver sequence, n is index of signal, N is correlation length, 
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L is window size. It minimizes the number of computations by reusing previous 

multiplication results stored in arrays pc and pe. 

Algorithm 1 Sliding Window Algorithm 

1: procedure COARSE_GRAIN_DETECTION(Th, r, n, N, L) 

2:  pc[n] = r[n] * complex_conj(r[n-N]) 

3:  pe[n] = r[n] * complex_conj(r[n]) 

4:  c[n] = c[n-1] + pc[n] - pc[n-L+1] 

5:  e1[n] = e1[n-1] + pe[n] - pe[n-L+1] 

6:  e2[n] = e2[n-1] + pe[n-N+1] - pe[n-N-L+1] 

7:  m[n] = c[n] * c[n] / (e1[n] * e2[n]) 

8:  if(Th < m[n] ) return FRAME_DET 

9:  else return FRAME_NO_DET 

 

The implementation of the baseline coarse-grain detection algorithm, Algorithm 1, is 

shown in Eqn. (1). In order to reduce the number of computations in computing the energy 

terms used for normalization, we propose Algorithm 2 which implements 𝑚𝑛 =  |𝑐𝑛|2 ∕

𝑒𝑛,0
2 . Thus, while Algorithm 1 uses energy terms corresponding to current correlation 

window, 𝑒𝑛,0, and previous correlation window, 𝑒𝑛,1 for normalization, Algorithm 2 just 

uses signal energy corresponding to only the current correlation window for normalization. 

In the pseudo code shown above, Algorithm 2 does not require address computation, 

addition, and subtraction in line 6 and simplifies computations in line 7 by converting 

complex multiplication to two real multiplications. In Section 3.4.3, we will compare the 

energy cost of these two algorithms. 

3.4 Finding Energy-optimal Parameters 

In this section, we find the most energy-optimal operation parameters for frame detection. 

We assume that the frame detection algorithm has been implemented on the proposed IoT 
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processor. We first present the channel model in Section 3.4.1. Then we derive an energy 

model of the baseband processor for frame detection in Section 3.4.2. This is followed by 

design space exploration in Section 3.4.3. 

3.4.1 Channel Model 

We consider Rayleigh fading as our channel model because there is no line of sight in long 

range communication. Our Rayleigh fading channel model has 10 Hz Doppler shift and 

channel length 16 with frequency offset 2 KHz. We add AWGN noise to Rayleigh fading 

channel.  

 

Figure 3.2 describes how detection probability PD varies with different SNR, where SNR 

is the ratio of the average signal power to average noise power. The blue curve (Figure 3.2) 

corresponds to the case when threshold = 0.3 and correlation window size of 24. For the 

 

Figure 3.2 Detection probability as a function of SNR for Rayleigh fading channels 

with different parameter settings 
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same window size (W = 24), if the threshold increases to 0.5, the curve moves to the right 

implying that the channel SNR has to be very good to achieve the same detection 

probability. If the threshold value stays the same (at 0.3), an increase in the window size 

shifts the curve to the right only slightly. Thus detection probability is very sensitive to 

threshold value. We found that this trend is similar for other fading channels and so here 

we only consider the Rayleigh fading channel model. 

3.4.2 Energy Model 

The total energy consumption of the baseband processor in the idle mode is the sum of its 

energy when it computes frame detection (and is on) and the energy when it is off. Let Poff 

and Pon represent the probability of the processor being in off-state and on-state, 

respectively, and let Eoff and Eon be the corresponding off-state and on-state energy. Then 

the total idle mode energy ET is given as follows 

                                                  𝐸𝑇 = 𝑃𝑜𝑓𝑓 ⋅ 𝐸𝑜𝑓𝑓 + 𝑃𝑜𝑛 ⋅ 𝐸𝑜𝑛                                       (4) 

A more precise energy consumption model is given by 

𝐸𝑜𝑛 = 𝐸𝑐 + 𝑃(𝑚𝑛,𝑐 > 𝑇ℎ𝑐) ⋅ 𝐸𝑓 + 𝑃 ((𝑚𝑛,𝑐 > 𝑇ℎ𝑐) ∩ (𝑚𝑛,𝑓 > 𝑇ℎ𝑓)) ⋅ 𝐸𝑟𝑒𝑠𝑡            (5) 

In the above equation, Ec and Ef  represent energy consumption for coarse-grain detection 

and fine-grain detection respectively, mn,c and Thc are the normalized correlation value and 

threshold value for coarse-grain detection, and mn,f and Thf are the normalized correlation 

value and threshold value for fine-grain detection. Erest is the energy consumption of blocks 

that are activated in the receiver chain after fine-grain detection. We keep Thf constant at 

0.4 and vary Thc, to derive the energy-efficient configuration. We refer to Thc as Th in the 

rest of this section. 
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We implemented the coarse-grain and fine-grain frame detection algorithms and evaluated 

their energy consumption by accumulating the energy consumption of all blocks in the 

digital baseband processor (Section 3.2) that were activated during the execution of these 

algorithms. We found that the energy cost of coarse-grain detection, 𝐸𝑐 , is 41.73 nJ for 

Algorithm 1 and 38.97 nJ for Algorithm 2. The energy cost of the fine-grain detection 

algorithm, 𝐸𝑓 , is 27.4 × 16 × L nJ, where L is the correlation length. Thus, the energy cost 

of fine-grain detection is higher than that of coarse-grain detection, as expected. However, 

fine-grain detection is activated only when the normalized correlation value due to coarse-

grain frame detection is greater than a threshold value. 

 

Figure 3.3 False alarm probability using Algorithm 1 when PD > 0.9 and SNR = 5dB  
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3.4.3 Design Space Exploration 

We study the effect of the following three operation parameters on the processor energy 

consumption: i) type of coarse grain detection algorithm (Algorithm 1 or Algorithm 2), ii) 

coarse-grain detection threshold Th and iii) correlation window size. 

 

The frame detection probability PD and the false alarm probability PFA, both affect the on-

state energy, Eon. While PD can be improved by using a more complex algorithm, PD value 

gets saturated and increasing the complexity of the algorithm does not help. At the network 

level, low PD increases average packet transmission time but higher PD increases Eon. The 

tolerable packet delay range is determined by the network service provider. This typically 

corresponds to PD > 0.9, however, when channel condition is bad, we may lower the PD 

requirement to 0.8 temporarily. So in this paper, we performed analysis for PD > 0.9 in 

 

Figure 3.4 False alarm probability using Algorithm 2 when PD > 0.9 and SNR = 5dB  
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good channel condition (SNR > 0dB) and PD > 0.8 for bad channel condition (SNR < -

5dB). 

 

In the energy consumption equation, eqn. (5), the first term 𝐸𝑐  is affected by detection 

probability and the second term is a function of the false alarm probability. When the 

system satisfies the detection probability requirement, the first term 𝐸𝑐 just depends on the 

algorithm type (Algorithm 1 or Algorithm 2). If we fix the algorithm type, then the energy 

consumption depends on second term. Since 𝐸𝑓 is constant, the energy consumption 

depends on the false alarm probability.  

 

Figures 3.3 and 3.4 plot the false alarm probability as a function of threshold value and 

window size for Algorithm 1 and 2, respectively. From Figure 3.3, we see that for 

Algorithm 1, false alarm probability is low when threshold value is between 0.3 and 0.5 

 

Figure 3.5 Energy consumption of Algorithm 1 when PD > 0.9 and SNR = 5dB 
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with window size from 20 to 38. For this set of settings, the false alarm probability is less 

than 0.021. Similarly from Figure 3.4, we see that for Algorithm 2, the low false alarm 

probability points correspond to threshold values ranging from 0.3 to 0.5 and window size 

ranging from 26 to 38. So in the rest of the section, we restrict the threshold value and 

window size range in order to guarantee that the false alarm probability is low. 

 

Fig. 3.5 and Fig. 3.6 show energy consumption for different algorithms, window sizes, and 

threshold values for good channel conditions (SNR = 5dB). For the same window size, as 

threshold becomes higher, the energy consumption gets lower. However when the window 

size is larger than 16, and the threshold is larger than 0.5, the detection probability is less 

than 0.9 and is not shown in this figure. The lowest energy configuration of Algorithm 1 

(Figure 3.5) corresponds to window size 38 and threshold 0.5 and the lowest energy 

 

Figure 3.6 Energy consumption of Algorithm 2 when PD > 0.9 and SNR = 5dB 
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configuration of Algorithm 2 (Figure 3.6) corresponds to window size 32 and threshold 

0.5. 

 

Effect of choice of algorithm: 

We investigate the energy performance of Algorithms 1 and 2 for good and bad channel 

conditions. As window size gets larger, the energy consumption reduces. This is because 

as window size increases, the false alarm probability becomes smaller in both algorithms. 

For the good channel case, shown in Figure 3.7, Algorithm 2 has lower energy than 

Algorithm 1. In contrast, for a very bad channel (SNR < -9dB), shown in Figure 3.8, we 

find that Algorithm 1 has lower energy than Algorithm 2. Thus when the channel is very 

poor, Algorithm 1 can be used. Once the base station reacts to the poor channel condition 

by increasing the signal strength, the receiver can switch to Algorithm 2.  

 

 

Figure 3.7 Energy consumption comparison of both algorithms when PD > 0.9, SNR = 

5dB and Threshold = 0.5 
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We focus on Algorithm 2. Since the two factors (window size and threshold) contribute to 

the energy consumption, next, we provide a detailed analysis of the effect of these two 

parameters for Algorithm 2. 

 

Figure 3.9 Energy consumption of Algorithm 2 when PD > 0.9 and SNR = 5dB 

 

Figure 3.8 Energy consumption comparison of both algorithms when PD > 0.8  
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Effect of threshold values: 

For the good channel condition case (SNR = 5dB), as threshold gets larger, the energy 

consumption reduces. This is shown in Figure 3.9 for Algorithm 2. When threshold 

changes from 0.3 to 0.4, the energy consumption decreases for small window size (W = 

16). The reduction is not as dramatic for large window sizes. However when threshold 

value is larger than 0.4, for all window sizes, the energy consumption barely changes. 

 

Recall that since threshold is the value that is compared with mn (see Eqn. (1)), it affects 

both detection probability and false alarm probability. For window sizes 32 or lower, the 

reason why energy consumption decreases sharply at first is that low threshold may cause 

a high false alarm detection. Since average noise level is near 0.2, if threshold is set close 

to 0.2, false alarm probability is very high. Every time there is a false alarm, the fine-grain 

detection block is activated. Since fine-grain detection is based on matched filter which is 

more complex, the energy overhead is high. 

 

The false alarm probability is quite low when threshold is high. The false alarm probability 

is also low when the window size is large, and so the value of threshold has little effect on 

further reducing false alarm probability. This is why for large window size, the threshold 

value has little effect on energy consumption. 
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Threshold value also affects the detection probability and its effect is evident when the 

window size is large. This is why when the threshold is higher than 0.5, only one case 

(window size = 16) can satisfy the detection probability requirement. 

 

Effect of window size: 

The effect of window size on energy consumption is illustrated in Figure 3.10. For the good 

channel condition shown in Figure 3.10, when window size increases, energy consumption 

decreases significantly at the beginning if threshold value is small. However when window 

size is larger than 36, the energy consumption is almost flat. 

 

When window size gets larger, we use more samples to calculate the value mn. Because the 

algorithm uses energy normalization, each time window size is increased, the value of 

signal energy term used for normalization gets bigger, but the correlation value does not 

 

Figure 3.10 Energy consumption of Algorithm 2 when PD > 0.9 and SNR = 5dB 
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grow as fast. Thus the mn value becomes smaller with larger window size. While increasing 

window size can reduce false alarm probability, it can also affect the detection probability. 

For small threshold values, the reason why energy consumption decreases at first is because 

increasing window size decreases false alarm probability. As illustrated in previous 

subsection, false alarm probability affects energy consumption significantly. As window 

size increases, false alarm probability decreases to a point. After that there is no reduction 

in false alarm rate and the energy consumption does not change with large window sizes. 

 

Summary: 

We conclude that Algorithm 2 is the more energy-efficient choice for a wide range of 

channel conditions (up to SNR = -9dB) when PD > 0.8 ( For low SNR, we need to lower 

detection probability requirement a little bit in order to receive the signal). For a certain 

detection probability, increasing window size and threshold can both reduce energy 

consumption, however, changing window size on the fly involves change in buffer size, 

addressing etc. In contrast, changing threshold value on the fly is trivial. So we propose to 

change threshold value based on the channel conditions for energy efficiency. 
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CHAPTER 4. REDUCING SELF-INTERFERENCE THROUGH EQUALIZATION IN 

FULL DUPLEX SYSTEMS 

In Chapter 2, we described how a full duplex system suffers from self-interference. We 

found that if the analog part can reduce 60dB noise, then the digital part should remove 

50dB noise due to linear components and 20dB noise due to non-linear components. The 

linear noise components are due to the main transmitted signal which is received by itself 

and the reflected signal through the communication channel. After removing the linear 

components, the digital part still has to remove the non-linear components. It is not easy to 

model the non-linear noise, thus more complex equalization such as decision feedback may 

have to be used for this part. In this thesis, we focus on linear noise cancellation. 

 

In this chapter, we first introduce the equalization algorithms in Sections 4.1 and 4.2. We 

present the channel models in Section 4.3 followed by performance results for different 

channel models in Section 4.4. 

4.1 Algorithms for Equalization 

4.1.1 Least Mean Square (LMS) 

The LMS algorithm can be classified as an adaptive filter that mimics a desired filter by 

finding the filter coefficients that produce the least mean square of the error signal 

(difference between the desired and the actual signals) [29]. This equalizer uses stochastic 

gradient descent method. 

 



 

 

 

37 

Let 𝒉(𝑛) be the unknown system that we are trying to model, 𝒙(𝑛) be the input with the 

number of the current input sample being 𝑛, and 𝒉̂(𝑛) be the estimated filter. Both 𝒉(𝑛) 

and 𝒉̂(𝑛) are filters with 𝑝  taps. Define {. }𝑇  as matrix transpose and  {. }∗ as conjugate 

operation. In each iteration, 𝒉̂(𝑛)  is updated to minimize the error. The algorithm is 

described below: 

Algorithm LMS  

Parameters: µ = step size    

Initialization: 𝒉̂(𝟎) = 𝑧𝑒𝑟𝑜𝑠(𝑝) 

Computation: for n=0, 1, 2 … 

 𝒙(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑝 + 1)]𝑇 

 𝑒(𝑛) = 𝑑(𝑛) − 𝒉̂𝑇(𝑛)𝒙(𝑛) 

 𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝑒∗(𝑛)𝒙(𝑛) 
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Figure 4.1 LMS block diagram 
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LMS has very low complexity and is easy to implement. Unfortunately, it has some 

stability problems. 

4.1.2 Normalized Least Mean Square (NLMS) 

The main disadvantage of LMS algorithm is that it is sensitive to the scaling of input 𝒙(𝑛), 

which makes it hard to choose step size 𝜇 to guarantee the accuracy of the algorithm. 

Normalizing the power of the input signal 𝒙(𝑛)  can solve this problem [30]. The 

corresponding algorithm is referred to as NLMS. Define {. }𝐻 as Hermitian Transpose.  

Algorithm NLMS  

Parameters: 𝑝 =filter order; µ = step size 

Initialization: 𝒉̂(𝟎) = 𝑧𝑒𝑟𝑜𝑠(𝑝) 

Computation: for n=0, 1, 2 … 

 𝒙(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑝 + 1)]𝑇 

 𝑒(𝑛) = 𝑑(𝑛) − 𝒉̂𝑇(𝑛)𝒙(𝑛) 

 
𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) +

𝜇𝑒∗(𝑛)𝒙(𝑛)

𝒙𝐻(𝑛)𝒙(𝑛)
 

 

Normalization of the input signal power introduces more matrix multiplication and division 

operations. But the algorithm is more stable compared to LMS. 

4.1.3 Recursive Least Square (RLS) 

The Recursive Least Squares (RLS) is an adaptive algorithm which recursively finds the 

coefficients that minimize a weighted linear least squares cost function [31]. This is in 

contrast to other algorithms such as LMS that aim to reduce the mean square error. In the 
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derivation of RLS, the input signals are considered deterministic, while for LMS and 

similar algorithms they are considered stochastic. Compared to most of its competitors, 

RLS exhibits extremely fast convergence. However, this benefit comes at the cost of high 

computational complexity. 

 

The idea behind RLS filters is to minimize a cost function C by appropriately selecting the 

filter coefficients wn in each iteration n. The error signal e(n) and desired signal d(n) are 

defined in the negative feedback path shown in Figure 4.2. The error depends on the 

difference of estimated signal 𝑑̂(𝑛) and desired signal 𝑑(𝑛) : 

𝑒(𝑛) = 𝑑(𝑛) − 𝑑̂(𝑛) 

The weighted function C is a function of 𝑒(𝑛) : 

𝐶(𝒘𝑛) = ∑ 𝜆𝑛−𝑖𝑒2(𝑖)

𝑛

𝑖=0

 

Here 0 < 𝜆 ≤ 1 is the "forgetting factor" which gives exponentially less weight to previous 

error samples. The algorithm is shown below: 

 

 

 

 

Figure 4.2 RLS block diagram 
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Algorithm RLS  

Parameters: 𝒑 = filter order; 𝝀 = forgetting factor; 𝜹 = value to initialize P(0) 

Initialization: 𝒘(𝑛) = 0 , 

 𝑥(𝑘) = 0, 𝑘 =  −𝑝, … , −1. 

 𝑑(𝑘) = 0, 𝑘 =  −𝑝, … , −1. 

 𝑷(0) =  𝛿−1𝐼 where 𝐼 is the identity matrix of rank 𝒑 + 1 

Computation: For 𝑛 = 1,2, … 

 

𝒙(𝑛) =  [

𝑥(𝑛)
𝑥(𝑛 − 1)

⋮
𝑥(𝑛 − 𝑝)

] 

 𝛼(𝑛) = 𝑑(𝑛) − 𝒙𝑻(𝑛)𝒘(𝑛 − 1) 

 𝒈(𝑛) =  𝑷(𝑛 − 1)𝒙(𝑛){𝜆 + 𝒙𝑻(𝑛)𝑷(𝑛 − 1)𝒙(𝒏)}−1 

 𝑷(𝑛) =  𝜆−1𝑷(𝑛 − 1) − 𝒈(𝑛)𝒙𝑻(𝑛)𝜆−1𝑷(𝑛 − 1) 

 𝒘(𝑛) = 𝒘(𝑛 − 1) +  𝛼(𝑛)𝒈(𝑛) 

 

RLS has very fast convergence but it is significantly more complex compared to LMS. 

4.2 Decision Feedback Equalizer 

A decision feedback equalizer (DFE) uses feedback of detected symbols to produce an 

estimate of the channel output. It cancels inter-symbol interference (ISI) while minimizing 

noise enhancement caused by inverting the channel frequency response [32]. Note that 

noise enhancement is a typical problem of the linear equalizers described earlier. 
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The block diagram of decision feedback equalizer is shown in Figure 4.3. The upper dashed 

box in the diagram is the forward filter, which is a delay line that outputs the weighted sum 

value of the delay signal. The order of the forward filter is L. The delay is given by T/K 

where T is symbol period, and K is an integer. Thus this equalizer receives K input samples 

before it produces one output sample and updates the weights. In our system, we set K = 

1. 

 

The lower dashed box is the feedback filter which contains a tapped delay line whose inputs 

are the decisions made on the equalized signal. The order of feedback filter is N. The weight 

setting block is an existing equalizer such as LMS, RLS, or NLMS. The error calculation 

block calculates error 𝑒 = 𝑑 − 𝑦 and uses 𝑒 to update the settings in the equalizer.  

 

+

Decision
Device

T

Error
Calculation

TTT

WL+2 WL+1WN

T/K T/K T/K

Weight
Setting

Input
Rate K/T

WLW3W2W1

Output
Rate 1/T

yd

d

Training

e

y

uN uL+2 uL+1

uLu3u2u1
T/K

Forward Filter

Feedback Filter

 

Figure 4.3 Decision Feedback Block Diagram 
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There are two operation modes for the equalizer: training mode and the other is decision-

directed mode. In training mode, the reference is the known transmitted sequence; in 

decision-directed mode, the reference signal is signal generated by decision device, which 

is denoted as yd in the diagram. In a typical application, the equalizer begins in training 

mode to gather information about the channel, and then switches to decision directed mode. 

4.2.1 Least Mean Square Decision Feedback Equalizer 

The LMS Decision Feedback Equalizer is a decision feedback equalizer that uses the LMS 

algorithm to equalize a linearly modulated baseband signal through a dispersive channel. 

Basically, the weight setting block (see Figure 4.3) uses the LMS algorithm to update the 

weights, once per symbol.  

4.2.2 Normalized Least Mean Square Decision Feedback Equalizer 

The Normalized LMS Decision Feedback Equalizer is a decision feedback equalizer that 

uses the NLMS algorithm for equalization. The weight setting block now uses the NLMS 

algorithm (described in Section 4.1.2) to update the weights, once per symbol.  

 

The advantage of NLMS feedback decision feedback equalizer compared to LMS decision 

feedback equalizer is that it can solve the scaling input problem. The LMS algorithm is 

sensitive to scaling of the input, and thus by using normalized operation in NLMS, the 

performance is stable. Compared to NLMS linear equalizer (Section 4.1.2), it has a 

feedback loop, which makes the performance more accurate, though it takes more 

calculations. 
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4.2.3 RLS Decision Feedback Equalizer 

The RLS Decision Feedback Equalizer is a decision feedback equalizer that uses the RLS 

algorithm for equalization. The weight setting block uses the RLS algorithm (described in 

Section 4.1.3) to update the weights, once per symbol. 

4.2.4 Summary 

Table 4.1 compares the complexity and stability of the different equalization algorithms. 

The first three algorithms (LMS, NLMS and RLS) have no feedback loop, and thus the 

complexity is relatively low. The three equalizers with feedback loop are more stable and 

better suited for reducing the non-linear noise in the receiver signal.  

4.3 Channel Models 

We studied the performance of the different equalization algorithms for three different 

types of channels. 

Table 4.1 Comparison of Equalization Algorithms 

Algorithm Complexity Stability 

LMS Low Less stable 

NLMS Low Stable 

RLS Medium Stable 

LMS Decision Feedback High Highly stable 

NLMS Decision Feedback High Highly stable 

RLS Decision Feedback Very high Highly stable 
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4.3.1 AWGN Channel 

Additive White Gaussian Noise (AWGN) is the basic noise model used in communication 

systems. Additive means it is added to any noise that might be intrinsic to the 

communication system, white refers to the idea that it has uniform power across the 

frequency band, Gaussian means it has a normal distribution in the time domain with an 

average time domain value zero. The AWGN channel is modeled by adding white Gaussian 

noise to input signal. There is no phase shift or frequency offset in this channel. In our 

simulations, we use AWGN channel with SNR = 10dB; the Gaussian has mean of 0 and 

variance of 1. 

4.3.2 Rayleigh Fading Channel 

Rayleigh fading models assume that the magnitude of a signal that has passed through such 

a transmission medium will vary randomly, or fade, according to a Rayleigh distribution 

— the radial component of the sum of two uncorrelated Gaussian random variables. 

 

Rayleigh fading is a reasonable model when there are many objects in the environment that 

scatter the radio signal before it arrives at the receiver. The central limit theorem indicates 

that, if there is enough scatter, the channel impulse response will be well-modelled as a 

Gaussian process irrespective of the distribution of the individual components. If there is 

no dominant component to the scatter, then such a process will have zero mean and phase 

evenly distributed between 0 and 2π radians. The envelope of the channel response will 

therefore be Rayleigh distributed.  
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In our simulation, the Rayleigh fading channel has 2 paths with path gains of 0dB and -

3dB and 10 Hz Doppler shift. 

4.3.3 Indoor Real Channel 

Real indoor channel is measured in a large room with many instruments. The distance 

between transmitter antenna and receiver antenna is 20cm. A known sine wave is 

transmitted and received, and the parameters calculated by using RF tools in Matlab.  

4.4 Simulation Results and Analysis 

We built a simple full-duplex system model based on the Rice architecture (see Figure 2.5). 

In this section we present simulation results to illustrate the performance of the different 

equalization algorithms for different channel models. We conduct three experiments. First, 

 

Figure 4.4 Signal before equalizer through AWGN Channel 
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we fix the algorithm and change the channel to see the effect of channel. Next we fix the 

channel model and evaluate the performance of the three linear equalizers. Finally, we 

compare the performance of the different decision feedback equalizers. 

 

Figure 4.6 RLS Linear Equalizer in Indoor Channel 

 

Figure 4.5 RLS Linear Equalizer in AWGN Channel 
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Experiment 1: Performance of linear equalizers for different channels 

To illustrate the need for equalization, we present Figure 4.4 which shows the signal before 

equalization. Figures 4.5, 4.6 and 4.7, show the performance of the RLS algorithm for 

 

Figure 4.7 RLS Linear Equalizer in Rayleigh Fading Channel 

 

Figure 4.8 NLMS Linear Equalizer in AWGN Channel 
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AWGN, Rayleigh and indoor channel, respectively. The highest peaks (which lay in 0Hz) 

are all around 45dBm, and the side peaks are 41.5dBm at 2.5MHz and -2.5MHz. There is 

significant reduction when the frequency is larger than ±4.6MHz. This shows that RLS 

 

Figure 4.9 NLMS Linear Equalizer in Indoor Channel 

 

Figure 4.10 NLMS Linear Equalizer in Rayleigh Fading Channel 
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algorithm acts like a low pass filter and can reduce the harmonics outside ±4.6MHz. 

Figures 4.8, 4.9 and 4.10 show performance of the NLMS algorithm using AWGN, indoor 

and Rayleigh fading channels, respectively. The results for NLMS are almost the same as 

that of RLS with 45dBm for highest peak and 41.5dBm for side peaks at ±2.5 MHz. 

 

After equalization, for both RLS and NLMS, the noise is 5dBm for AWGN, 11dBm for 

indoor channel and 12dBm for Rayleigh fading channel. Thus for AWGN channel, the 

highest peak is almost 40dB higher than noise, compared to indoor channel where the 

difference is about 35dB, and Rayleigh Fading channel where the difference is 32dB.  

 

Thus we conclude that both RLS and NLMS algorithms have comparable results for 

different channel models. Since the real indoor channel has performance that is between 

AWGN and Rayleigh Fading channel and so the next set of experiments is conducted for 

the real indoor channel.   

 

Figure 4.11 LMS Linear Equalizer in Indoor Channel 
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Experiment 2: Performance of linear equalizers for indoor channel 

First we compare the performance of LMS (Figure 4.11) and NLMS (Figure 4.9) linear 

equalizers. The LMS linear equalizer has the worst performance; its noise floor is very high 

 

Figure 4.12 LMS Decision Feedback Equalizer in Indoor Channel 

 

Figure 4.13 RLS Decision Feedback Equalizer in Indoor Channel 
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at almost 30dBm. In contrast, NLMS linear equalizer reduces the noise floor to 10dBm. 

Thus we can clearly see that with normalization, the performance can be improved a lot. 

In fact the performance of NLMS linear algorithm is compared to RLS linear algorithm 

(Figure 4.6), but with less computations. Also its low pass filter property is better than 

RLS.  

 

Experiment 3: Performance of decision feedback equalizers for indoor channel 

We compare the performance of the decision feedback equalizers. A comparison of LMS 

linear equalizer (Figure 4.11) and LMS decision feedback equalizer (Figure 4.12) shows 

that the noise is reduced about 30dB by using feedback path. Similarly, a comparison 

between NLMS linear equalizer (Figure 4.9) and NLMS decision feedback (Figure 4.13) 

shows that the feedback path can reduce about 10dB more noise. Finally, a comparison of 

 

Figure 4.14 NLMS Decision Feedback Equalizer in Indoor Channel 
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RLS linear equalizer (Figure 4.6) and RLS decision feedback equalizer (Figure 4.13) also 

shows that feedback path can lower an additional 8 dB noise.  

 

Of all the equalizers, the performance of NLMS decision feedback is the best, it cancels 

about 47dB of noise. Using normalization can minimize the input noise to some level, and 

using feedback loop can help increase the desired signal. 

4.5 Summary 

Table 4.2 summarizes the performance and noise floor reduction of the different 

equalization algorithm. We can see that NLMS decision feedback equalizer has the best 

performance and LMS linear equalizer has the worst performance. Thus NLMS decision 

feedback algorithm can be applied to base station, where cancellation performance is very 

important. For mobile terminals, we choose NLMS linear equalizer. It has good 

performance and lower complexity compared to RLS linear equalizer. 

Table 4.2 Performance of Equalization Algorithms using Indoor Channel 

Algorithm Performance(dB) Noise floor(dBm) 

LMS 9 29 

NLMS 34 11 

RLS 34 11 

LMS Decision Feedback 24 3 

NLMS Decision Feedback 47 1 

RLS Decision Feedback 45 2 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

This chapter summarizes the main contributions of this thesis and suggests possible future 

work. 

5.1 Contributions 

5.1.1 Long Range Wireless Communication Baseband Processor  

In this thesis we proposed a baseband processor for long range wireless communication 

IoT terminals based on OFDMA and spread spectrum technologies. We first characterized 

the computation pattern of baseband processing operations in the two types of terminals 

and found that frame detection is, by far, the dominant workload. So we developed a scalar 

processor that is optimized for frame detection. It uses specialized chained instructions to 

reduce power overhead caused by register file accessing and address generation units to 

minimize address calculation overhead. Preliminary synthesis results in 65nm show that 

our processor architecture consumes 2.41nJ/cycle when running at 3MHz with 1.08V 

supply voltage and has an area of 0.204μm2. Based on our energy analysis, we find that for 

a good channel (SNR = 5dB), the simplified frame detection can be used and that the 

optimal setting corresponds to high threshold of 0.7, and window size of 16. For a bad 

channel (SNR = -11dB), the choices are limited, and it is better to choose the baseline 

algorithm with threshold of 0.2 and window size of 16 for energy efficiency. 

5.1.2 Self-interference Mitigation in Full Duplex System 

In this thesis we explore several equalization algorithms for digital noise cancellation in 

full duplex systems. Our goal is to achieve 50 dB noise reduction in the digital part. We 
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investigate the performance of RLS and NLMS linear equalizers for AWGN, Rayleigh 

fading and indoor channel models. We find that both algorithms have comparable 

performance for all three channel models. Since the real indoor (measured) channel has 

performance in between AWGN and Rayleigh fading, we run the remaining simulations 

on the indoor channel model. We find that the NLMS decision feedback equalizer can 

cancel 45dB of noise followed by NLMS and RLS linear equalizers which can cancel 35dB 

noise. NLMS linear equalizer has the lowest complexity of these three, and so we conclude 

that NLMS linear equalizer is suitable for resource-constrained mobile devices. NLMS 

decision feedback equalizer has the highest complexity and the best noise cancellation 

performance, so we conclude that it can be used in full duplex systems employed in base 

stations. 

5.2 Future Work 

 The following items summarize possible research directions based on the work presented 

in this thesis. First, we plan to implement a more complex equalizer such as Maximum-

Likelihood Sequence Estimation (MLSE) and analyze its performance and complexity. 

Since we had only considered linear noise components, next we plan to model the non-

linear noise components due to harmonics. We will then derive noise cancellation 

algorithms in the digital domain to mitigate them. 
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