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ABSTRACT 

Type 1 diabetes (T1D) is a chronic disease that affects 1.25 million people in the 

United States.  There is no known cure and patients must self-manage the disease to 

avoid complications resulting from blood glucose (BG) excursions.  Patients are more 

likely to adhere to treatments when they incorporate lifestyle preferences.  Current 

technologies that assist patients fail to consider two factors that are known to affect BG: 

exercise and alcohol.  The hypothesis is postprandial blood glucose levels of adult 

patients with T1D can be improved by providing insulin bolus or carbohydrate 

recommendations that account for meal and alcohol carbohydrates, glycemic excursion, 

and planned exercise.  I propose an evidence-based decision support tool, iDECIDE, to 

make recommendations to improve glucose control by taking into account meal and 

alcohol carbohydrates, glycemic excursion and planned exercise. iDECIDE is deployed 

as a low-cost and easy to disseminate smartphone application.   

A literature review was conducted on T1D and the state-of-the-art in diabetes 

technology.  To better understand self-management behaviors and guide the development 

of iDECIDE, several data sources were collected and analyzed: surveys, insulin pump 

paired with glucose monitoring, and self-tracking of exercise and alcohol.  The analysis 

showed variability in compensation techniques for exercise and alcohol and that patients 

made unaided decisions, suggesting a need for better decision support. 

The iDECIDE algorithm can make insulin and carbohydrate recommendations.  

Since there were no existing in-silico methods for assessing bolus calculators, like 

iDECIDE, I proposed a novel methodology to retrospectively compare insulin pump 
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bolus calculators.  Application of the methodology shows that iDECIDE outperformed 

the Medtronic insulin pump bolus calculator and could have improved glucose control. 

This work makes contributions to diabetes technology researchers, clinicians and 

patients.  The iDECIDE app provides patients easy access to a decision support tool that 

can improve glucose control. The study of behaviors from diabetes technology and self-

report patient data can inform clinicians and the design of future technologies and 

bedside tools that integrate patient’s behaviors and perceptions.  The comparison 

methodology provides a means for clinical informatics researchers to identify and 

retrospectively test promising insulin blousing algorithms using real-life data. 
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1 INTRODUCTION 

1.1 Lack of Diabetes Management Technologies that Account for Lifestyle Preferences  

Diabetes is a complex disease that affects 29.1 million US citizens and type 1 

diabetes (T1D) is a subtype that affects 1.25 million people in the US [1]. T1D is a 

chronic condition with no known cure in which a person’s pancreas does not produce 

insulin, a hormone required to regulate carbohydrate and fat metabolism in the body.  The 

lack of insulin causes hyperglycemia, also referred to as high blood glucose.  The state of 

hyperglycemia leads to long term complications, such as damage to kidneys, eyes, heart 

and nervous system, as well as increased mortality rates from heart disease [2,3].   

T1D requires that individuals self-manage blood glucose and administer insulin 

therapy to compensate for the lack of insulin produced by the pancreas.  Insulin pump 

therapy mimics a normal functioning pancreas by delivering preprandial (i.e. before 

mealtime) bolus insulin and continuous basal insulin to compensate for carbohydrate 

loads and out of target blood glucose levels.  Bolus insulin doses are calculated based on: 

carbohydrate load, insulin to carbohydrate ratio, the actual blood glucose level, the target 

blood glucose level, insulin sensitivity factor, and the insulin on board [4,5].  While self-

management of blood glucose can be empowering, the amount of data that must be 

tracked can be overwhelming [6].  Because the calculation to determine an insulin bolus 

is complex and error prone, insulin pumps and blood glucose meters often have 

embedded bolus calculators which use proprietary algorithms to lessen the cognitive 

burden on patients by automating the computation of bolus insulin doses.  Even with 

assistance from consumer health informatics applications, such as clinical decision 
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support systems, patients still fail to meet glycemic goals [7].  In addition to delivering 

insulin at mealtimes, patients on intensive insulin therapy are recommended to consume 3 

meals a day and to check blood glucose 4-10 times a day, which includes checking before 

every meal and before bedtime.  At least 150 minutes of moderate exercise spread over 

several days a week is also recommended for all types of diabetes, particularly with T2D 

in order to manage obesity [8].  Those with type 2 diabetes may have different 

pharmacologic approaches to maintain glycemic control, such as daily oral medications.  

Barriers to initiating insulin therapy in both T1D and T2D have been identified, such as 

fear of hypoglycemia and reluctance to accommodate the timing of insulin doses [9]. 

While bolus calculators have been shown to lead to better glucose control [10], 

they have limited capabilities as they currently only account for out-of-target blood 

glucose levels and planned carbohydrate loads.  Although there are many variables that 

can influence glucose levels, e.g. stress, illness, medications, etc., in this work we will 

focus on two lifestyle preferences that are known to affect blood glucose: alcohol and 

exercise [11–17].  While the immediate effects of the carbohydrates in some types of 

alcoholic beverages may increase blood glucose, the alcohol itself may cause delayed 

hypoglycemia.  Exercise generally results in lowering blood glucose levels during the 

activity and may cause delayed hypoglycemia as well.   Allowing for flexibility is 

important, as it is known that regimented, invariant self-management care is not effective 

in diabetes care [18–20], and can lead to therapeutic non-adherence in the absence of 

accounting for individual lifestyle preferences. 
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Closed-loop devices (a.k.a. artificial pancreas) are based on complex 

mathematical models that aim to improve glycemic control by automating insulin 

delivery and other hormones related to controlling blood glucose.  These closed-loop 

devices are not ready for commercial use and there are few studies that have reported 

specifics on how the proposed algorithms perform when compensating for exercise or 

alcohol.  Similarly, existing mobile applications (apps) are sub-optimal for meeting 

evidence-based guidelines for glucose control as they do not account for exercise or 

alcohol consumption.  In the US, there are few FDA-regulated mobile apps that provide 

bolus calculators. Of the apps that do provide such calculators, they do not account for 

exercise and alcohol [21].  

Clearly, better tools are needed to assist type 1 diabetes patients with insulin 

dosing, particularly when trying to account for multiple factors simultaneously that may 

impact glucose control.  The hypothesis is postprandial blood glucose levels of adult 

patients with T1D can be improved by providing insulin bolus or carbohydrate 

recommendations that account for meal and alcohol carbohydrates, glycemic excursion, 

and planned exercise. 

1.2 Research Aims 

Aim 1: Review state of the art on relevant clinical evidence and technology 

Conduct a literature review to understand how exercise and alcohol affect blood 

glucose absorption in adult T1D patients.   Review current technologies available to self-

manage glucose control, with particular emphasis on those that support patients as they 

decide how much insulin to take when consuming meals and/or alcohol and exercising.   
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Aim 2: Investigate self-management behaviors of adults on insulin pump therapy 

Describe real-life self-management behaviors in T1D adults on insulin pump 

therapy. Contrast self-reported, self-management diabetes behaviors from patients versus 

behaviors recorded by diabetes technology (insulin pumps and glucose sensors) using a 

combination of qualitative and quantitative methods. Confirm the need for decisional 

support tools to help patients incorporate personal lifestyle choices, such as planned 

exercise and alcohol consumption, into diabetes self-management. 

Aim 3: Propose iDECIDE, a novel evidence-based bolus insulin dosing decision aid that 

accounts for glycemic excursions, carbohydrates, planned exercise and alcohol 

Refine the algorithms currently used by patients to compute preprandial insulin 

boluses to develop iDECIDE, an evidence-based bolus insulin decision aid that accounts 

for glycemic excursions, meal’s carbohydrates, planned exercise and alcohol 

consumption. 

Aim 4: Propose and apply novel methods for retrospectively evaluating the accuracy of 

the proposed iDECIDE insulin bolus algorithm 

There is a lack of methods that use real-life data for evaluating the performance of 

insulin dosing algorithms.  Current methods use data from controlled clinical 

environments (e.g. clinical trials) or simulators to evaluate the performance of insulin 

dosing algorithms.  Retrospective, low-risk methods that use real life data could provide 

valuable preliminary results to inform future clinical trials. We propose a systematic 

approach to analyze the effectiveness of glycemic control interventions using real life 
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data and demonstrate the method by evaluating the performance of the iDECIDE decision 

aid. 

Aim 5: Design and deploy the smartphone app iDECIDE 

Design and deploy the proposed insulin bolus decision aid as an iOS smartphone 

application. Improve the application through usability testing. 

1.3 Outline of Dissertation 

This chapter provided a brief introduction to T1D and stated the lack of evidence-

based decision support tools that account for personal lifestyle preferences such as 

exercise and alcohol, which are known to affect blood glucose levels. Chapter 2 delves 

deeper into the motivation of this work by reviewing in more detail the state of the art of 

current evidence on how carbohydrates, insulin, alcohol and exercise affect blood 

glucose.  We also identify the current decision support systems available to help patients 

achieve better glycemic control. Chapter 3 focuses on understanding the challenges faced 

by those on insulin pump therapy and their self-management behaviors.  Chapter 4 

specifically targets self-management behaviors of patients on insulin pump therapy when 

compensating for exercise and alcohol.  Chapter 5 describes the evidence-based decision 

aid, iDECIDE, and how it compensates for carbohydrates, blood glucose, alcohol and 

exercise.  Chapter 6 introduces the novel methods that we propose for retrospectively 

comparing the efficacy of insulin bolus recommendations using real-life data.  The results 

from retrospectively comparing iDECIDE against a conventional decision comprise 

Chapter 7.  Chapter 8 addresses the steps required to design and deploy iDECIDE as an 

iOS smartphone app.  A conclusion is provided in Chapter 9.  
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2 STATE OF THE ART ON CLINICAL EVIDENCE AND DECISION SUPPORT 

SYSTEMS FOR DIABETES MANAGEMENT 

2.1 Introduction 

This chapter summarizes the results of the completed literature review on: 1) 

relevant clinical evidence related to patient’s daily lifestyle choices, including 

carbohydrates, alcohol consumption and exercise, as well as the effects of insulin on 

blood glucose, and 2) the state of the art on available technologies (decision support 

systems) to help diabetes patients compensate for everyday life preferences.  The 

outcomes of this chapter correspond to Aim 1. Preliminary results of the completed 

literature review were presented as a poster at the American Medical Informatics 

Association Annual Symposium 2014 (APPENDIX A.1) and as a conference paper at 

MEDINFO 2015 [22,23] (APPENDIX B.1). 

2.2 Background 

Type 1 diabetes (T1D) is a chronic disease in which a person’s immune system is 

involved in the destruction of insulin-producing β-cells (beta cells) in the pancreas [24].  

T1D can be diagnosed at any age, but the disease is most likely to be diagnosed during 

childhood.  There is no cure for T1D and what causes the disease is not well understood 

and there is no way to prevent the disease, but it is likely that both genetics and 

environment play a role [24].  Individuals with diabetes must engage in self-management 

to maintain glycemic control by regularly checking blood glucose levels with a meter or 

monitoring with a continuous blood glucose sensor. Patients must also deliver insulin 

with syringes, insulin pens or insulin pumps.   
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Providers are motivated to prescribe the best treatments to their patients in order 

to achieve better outcomes, but self-management behaviors have been found to have a 

greater impact on blood glucose levels than the decisions made by physicians [18].  

Failing to provide patient-centered care, i.e. care that respects the wants, needs and 

preferences of the patient, places patients in a position where they must adapt to pre-

existing treatment protocols and guidelines [25].  Patients with chronic diseases, like 

diabetes, are better motivated to make and sustain behavior changes if they receive 

patient-centered care [26].  Allowing for flexibility is important as regimented, invariant 

self-care routines are not effective and can lead to non-adherence [18–20].  One such 

self-care behavior that can empower patients with diabetes is self-monitoring of blood 

glucose.  Self-tracking blood glucose data can be overwhelming for patients, as even 

those who are knowledgeable can fail to meet glycemic goals [27].  Many decision aids 

and technologies have been developed to enable patients to better integrate blood glucose 

data into the decisions they make as they engage in self-care.  For example, Bluetooth 

technology supports data exchange between blood glucose meters and continuous glucose 

monitors with insulin pumps and smartphone apps, while patient portals allow patients to 

upload their data and grant access to their providers. 

The objective of Aim 1 is to two-fold: 1) understand the current technologies 

available that provide decisional support to patients with diabetes as they self-manage the 

disease, and 2) understand two lifestyle preferences that have an impact on glucose 

levels: exercise and alcohol.     
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2.3 Methods and Materials 

A literature search was conducted to understand the pathophysiology of diabetes 

and the effects of alcohol and exercise on postprandial blood glucose.  The literature 

review described here applies to sections 2.4.1 – 2.4.4 and 2.4.6.  PubMed, Google 

Scholar and insulin pump manufacturer manuals were used to identify articles and 

resources for inclusion.  The Medtronic MiniMed, Inc. insulin pump user manual was 

identified and included in the literature review [28]. This insulin pump manufacturer was 

identified by the Mayo Clinic endocrinology clinicians as a widely-used device amongst 

their patient population.  Google Scholar was used to identify guidelines and/or white 

papers on type 1 diabetes.  The search criteria for guidelines was “‘guideline’ OR 

‘standard of care’ AND ‘diabetes’” and the search criteria for white papers was “type 1 

diabetes pathogenesis.”  For each search criteria, the dates of inclusion were limited from 

2012 to 2016.  The top 20 results for each search strategy were included in the search for 

a total of 40 results from Google Scholar.  Two search strategies were used with PubMed 

to identify articles for the acute effects of exercise and alcohol.  For exercise articles, the 

search included articles with exercise in the title and diabetes and glucose in the title or 

abstract.  Articles were excluded if they included type 2 diabetes, risk, mortality or 

coronary in the title or abstract; the root words neuro and recommend were also excluded 

from the title or abstract.  For alcohol, the articles were included if they had alcohol and 

diabetes in the title and excluded if the title or abstract contained type 2 diabetes, 

prevalence, mortality or smoking.  Both exercise and alcohol searches were limited from 

2010 to 2016 and restricted to human only studies.   
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In addition to the literature review, we met with an endocrinologist and diabetes 

care team to further understand diabetes and to discuss current clinical challenges that 

patients with diabetes encounter.  We participated in a guided training session with a 

diabetes nurse educator at the Mayo Clinic Arizona Simulation Center that included 

hands-on experience with insulin pumps, meters and continuous glucose monitors.  We 

also reviewed existing insulin pump technologies commercially available in the United 

States (US) that are approved by regulatory entities such as the Federal Food and Drug 

Administration (FDA).   

2.4 Results 

There were 229 identified articles from the search strategies of which all of the 

titles and abstracts were screened.  Articles that described the short-term glycemic impact 

of alcohol and/or exercise were included in the review as well as guidelines and/or white 

papers about type 1 diabetes.  There were 216 articles that were excluded, see Figure 2.1: 

Flow diagram of article and resource selection for literature review. for reasons for 

exclusion.  During the full text review of the remaining 13 articles an additional 12 

articles were identified from author citations that were not found in the literature searches 

and were included in the final review for a total of 25 resources. 
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Figure 2.1: Flow diagram of article and resource selection for literature review. 

 

2.5 Discussion 

2.5.1 Effects of carbohydrates on blood glucose 

Glucose is a simple sugar that is released into the bloodstream as a result of the 

digestion of food containing carbohydrates.  When blood glucose levels are high, 

properly functioning β-cells in the pancreas secrete insulin into the bloodstream [24].  

The secretion of insulin, along with other metabolic processes within the body, maintain 

tight glycemic control in healthy individuals.  When the pancreas does not secrete insulin 

in response to increasing levels of glucose in the blood, as in the case of damaged β-cells 

in individuals with T1D, hyperglycemia, or high blood sugar, ensues.  Chronic 
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hyperglycemia can lead to organ damage and other complications [2].  The goal of 

insulin therapy for individuals with T1D is to dose insulin in such a way that it mimics as 

closely as possible the secretion of insulin from healthy β-cells in the pancreas into the 

blood stream. 

2.5.2 Effects of insulin on blood glucose 

Insulin is a hormone that regulates the metabolism of carbohydrates, proteins and 

fats and is responsible for delivering glucose found in the bloodstream into cells, 

particularly adipose, liver and muscle cells [24].  Every individual reacts differently to 

carbohydrates and insulin, and as such, the amount of insulin required to offset the 

glycemic-load from food containing carbohydrates is different for each individual and its 

value is referred to as an insulin to carbohydrate ratio (ICR) [29].  The ICR indicates how 

many carbohydrates one unit of insulin will cover, i.e. the amount of glucose that insulin 

will move from the bloodstream into cells.  This ratio can be coupled with carbohydrate 

counting, a method for estimating the carbohydrate content of foods, in order to adjust the 

amount of insulin for injection. Another important ratio to consider is the insulin 

sensitivity factor (ISF), which is also referred to as the correction factor (CF), which also 

is adjusted for each individual [29].  CF is described as how much 1 unit of fast-acting 

insulin will lower blood glucose levels over the course of 2-4 hours during a fasting or 

pre-meal state.  Patients with T1D can use the following equation from Colin, et.al. 

(Equation 2.1) [29], to compute the amount of insulin needed to adjust for a carbohydrate 

load and/or an out of range blood glucose reading. 
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Equation 2.1: Standard Insulin Dosing Equation 

 

𝑈 =
𝑐𝑎𝑟𝑏𝑠

𝐼𝐶𝑅
+

𝑐𝐵𝐺 − 𝑡𝐵𝐺

𝐶𝐹
− 𝐼𝑂𝐵 

 

In Equation 2.1, the variable U represents the units of insulin to deliver.  The first 

fraction of the equation, “carbs/ICR”, calculates the relationship between the grams of 

carbohydrates (carbs) intended to be consumed covered by insulin, or the ICR.  ICR is 

calculated as 450/TDD, where the total daily dose of insulin (TDD) = body weight (lbs.) 

x 0.23.  The second fraction in the equation calculates the difference between the actual, 

or current blood glucose (cBG) level and the target blood glucose level (tBG) and divides 

the difference by the CF.  CF is calculated as 1700 mg/dL divided by TDD.  The final 

segment of the equation subtracts the insulin on board (IOB), i.e. the theoretical amount 

of insulin remaining in the body from previous insulin boluses.  Adjusting for previous 

boluses avoids insulin stacking, or dosing more insulin than is needed, which can lead to 

hypoglycemia, or low blood sugar levels.  Hypoglycemia is an acute situation that if left 

untreated can result in neurologic damage and even death.  Hypoglycemia can be averted 

by reducing the bolus insulin, increasing food intake, or a combination of both [30].  

While hypoglycemia poses immediate danger, hyperglycemia, has delayed effects that 

can lead to cardiovascular disease and organ damage.  Hyperglycemia can be managed by 

dosing insulin [31]. 

2.5.3 Effects of exercise on blood glucose 

The American Diabetes Association (ADA) Standards of Care guidelines from 

2016 state that regular physical activity is important for maintaining health and fitness for 



 

13 

 

those diagnosed with diabetes [8].  The guidelines suggest that people with diabetes 

should participate in 150 minutes of moderate intensity (50% to 70% of maximum heart 

rate) physical activity per week.  The guidelines caution that taking insulin and engaging 

in moderate exercise may cause hypoglycemia, but in the case of intense exercise blood 

glucose levels may rise [8].   

García-García, et.al. conducted a systematic review and meta-analysis in 2015 on 

ten studies to find the rate of change of glucose during exercise [32].  The meta-analysis 

showed that continuous exercise at moderate intensities resulted in a rapid decrease in 

glucose.  Fewer studies were available for the analysis of intermittent high intensity (IHI) 

exercise and the results were conflicting showing either a rapid decrease in glucose or a 

slight increase in glucose.  Guelfi, et.al. conducted an observational study with 7 

participants with type 1 diabetes on the difference in blood glucose response between 

moderate exercise and IHI exercise [33].  Each participant was monitored at rest and 

during 30 minutes of moderate exercise and IHI exercise.  Moderate exercise decreased 

glucose levels an average of 80 mg/dL while IHI exercise decreased glucose levels 52 

mg/dL when compared to resting.  Another review was done in 2015 by Bally, et. al. 

found corollary results that high intensity exercise may lead to hyperglycemia and that 

incorporating an IHI exercise routine may produce more predictable declines in blood 

glucose [34]. 

The most common study design amongst the literature on exercise was a 

randomized crossover design with 7 to 12 participants that was often preceded by 

obtaining a baseline measurement for reference, such as rest, peak heart rate or VO2max 
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(peak oxygen uptake, an indicator or cardiorespiratory endurance) with 2 of the 6 studies 

being a specific subtype where the timing of meals and/or insulin were controlled as well 

[35–38] and [39,40].  

In a recent study in 2015, Tonoli, et. al. used an exhaustion test to obtain VO2max 

on 7 participants and a baseline of blood glucose at rest [35].  Each participant then 

exercised twice for 22 minutes, with the order of the type of exercise randomized 

between continuous moderate exercise at 70% VO2max or IHI with 1 minute of intense 

intervals at 90% VO2max.  This study found that there was a significant drop in blood 

glucose between rest and exercise, and although the moderate exercise reduced blood 

glucose an average of 50 mg/dL and IHI exercise an average of 35 mg/dL, the differences 

between the types of exercise were not found to be statistically significant.  A 

randomized crossover study by Shetty, et.al. in 2015 identified an inverse u-shape 

between exercise intensity and glucose requirements [36].  A euglycemic clamp was used 

as 9 participants engaged in exercise on four occasions randomized at various levels of 

VO2max (35, 50, 65 and 80% VO2max) and glucose requirements were recorded during the 

exercise.  Glucose infusion rates increased for exercises with intensities up to 65% of 

VO2max with statistical significance up to 50% VO2max.  This study found that glucose was 

not required at when participants engaged in exercise at 80% VO2max. 

In 2007 Guelfi, el. al. conducted a similar study in which they determined VO2max 

for 9 participants and then randomized the order of 45 minutes of rest, IHI exercise and 

moderate exercise at 40% VO2max [37].  During each type of activity blood glucose levels 

were maintained with glucose infusion delivered intravenously.  Although exercise did 
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require significant amounts of glucose infusion to maintain blood glucose, the differences 

in the amount of infused glucose were not significantly different between the two types of 

exercise.   In 2013, Yardley, et.al failed to establish a difference in the reduction of blood 

glucose between 45 minutes of continuous exercise at 60% VO2max and resistance 

training in their study that included 8 participants [38].  In their study, aerobic exercise 

reduced blood glucose by 60 mg/dL while resistance training had a reduction of 28 

mg/dL, but the differences were not significant. 

Campbell, et.al. conducted a study in 2014 where 8 participants engaged in 45 

minutes of exercise at 70% VO2max with the order of the insulin delivery 1 hour before 

exercise randomized between no change in the regular bolus to a 75% reduction in the 

regular insulin bolus accompanied with a meal [39].  This study identified a 120 mg/dL 

drop in glucose for both arms of the study, with the insulin reduction arm having a lower 

risk for hypoglycemic events.  Mauvais-Jarvis, et.al. used a relatively large cohort with 

12 participants and determined the VO2max [40].  Then 60 minutes of exercise at 70% 

VO2max was held constant while the amount of insulin delivered before mid-morning 

exercise was randomized between a regular bolus or a 90% reduction of the regular 

insulin bolus.  Sucrose was provided partway through the exercise event for 8 of the 

participants during the regular insulin bolus arm of the study while the bolus reduction 

arm did not experience any hypoglycemic events.  This study found that blood glucose 

levels fell an average of 90 mg/dL during both arms of the study. 

Although the study conducted by Mallad, et.al. focused on the use of glucose 

tracers, they recorded the glucose levels of 75 minutes of moderated exercise (estimated 
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50% VO2max) for 16 participants and found that the average drop in glucose was 120 

mg/dL [41]. 

In a review of the current literature on exercise and type 1 diabetes, Kourtoglou 

synthesizes the findings from various studies to describe the biological mechanisms at 

play that effect glucose levels during exercise [11].  Kourtoglou explains that insulin 

sensitivity increases during physical activity while glucose production from the glucagon 

stores in the liver increases as well.  While this response generally leads to hypoglycemia, 

it can produce hyperglycemia in certain types of intense exercise.  Most types of exercise, 

including light, moderate, and some types of vigorous exercise will cause blood glucose 

levels to drop, which may cause hypoglycemia during or after completion of the physical 

activity.  Exercise-induced hypoglycemia can be mitigated by consuming carbohydrates 

when engaging in exercise. 

2.5.4 Effects of alcoholic beverages on blood glucose 

The ADA guidelines suggest that for patients who drink alcohol they should do so 

in moderation, that is 2 or fewer drinks per day for men and 1 or fewer drinks per day for 

women [8].  The difficulty with alcohol and diabetes is the risk of hypoglycemia, which 

has been documented to contribute up to 6% of hypoglycemic admissions in the 

emergency department amongst patients treated with insulin [42].  Depending on the 

specific content of the drink, alcoholic beverages can be a source of carbohydrates and/or 

can cause hypoglycemia due to the metabolic effects of alcohol.  Evidence on alcohol and 

type 1 diabetes is sparse, difficult to compare due to differences in study design and 

beverage types used, and results are often contradictory.  Although most studies show 
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that consuming alcohol with a meal increases the risk of hypoglycemia the next day 

[17,43–45], the results at 2-3 hours following the ingestion of alcohol vary.  Studies by 

Koivisto et.al. and Gin et.al. show that there is no postprandial difference when 

consuming alcoholic beverages with an appreciable carbohydrate content (e.g. red wine) 

in conjunction with a meal [43,45].  Both studies had a small number of participants 

(n=10, n=5, respectively) when participants were given identical meals on two different 

occasions with one served with alcohol.  Two other studies by Turner, et. al. and 

Richardson, et.al. show that postprandial levels after consuming alcohol with little to no 

carbohydrate content (e.g. spirits) with a meal were 45-55 mg/dL lower when compared 

to an equal volume of water served as a control in combination with an identical meal 

[17,44].  Again, both studies had a small number of participants, 6 and 16, respectively.  

In addition to drinking in moderation, the ADA suggests that alcohol is consumed with a 

meal in order to lessen the potential for acute and delayed hypoglycemia [8]. 

2.5.5 Other factors that influence blood glucose 

There are various factors that can affect blood glucose levels that include food, 

medication, activity, and biology that can be found in the literature and in patient forums.  

As discussed in section 2.5.1 and 2.5.4, carbohydrates and alcoholic beverages have an 

effect on glucose levels, but to a varying degree, so does the fat and protein content of 

foods and caffeine levels of beverages.  There are various medications that can cause 

blood glucose to increase or decrease, with steroids being an example of a medication 

that can cause glucose levels to spike.  Stress, illness, hormones, lack of sleep and scar 

tissue can also cause glucose levels to rise.  The scope of this work is to focus on patient 
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preferences, and most of the factors listed here are items that patients may have very little 

control over and are difficult to measure or quantify and therefore were not chosen to be 

included in the development of the iDECIDE decision aid at this time. 

2.5.6 Decision support systems for maintaining glycemic control 

Sophisticated decision support tools that are under development are referred to as 

the artificial pancreas, or closed-loop systems.  These systems attempt to almost 

completely remove the burden of monitoring glucose and delivering insulin by 

incorporating sensor-augmented insulin pumps with predictive insulin delivery 

algorithms that account for carbohydrates and learn from historical patient dose-response 

data [46].  These systems have consistently shown increased percentage of time in target 

glucose ranges while also averting hypoglycemic events [47–50].  Currently these 

devices are not ready for commercial use, though there are ongoing initiatives between 

academia and industry that may aim to bring the technology to the marked in the coming 

years [48].  While the results from several studies demonstrate that closed-loop devices 

have the potential to improve glucose control [51–54], few studies have reported 

specifics on how the proposed algorithms performed when compensating for exercise and 

alcohol [55–58]. 

Similarly, existing mobile applications (apps) are sub-optimal for meeting glucose 

targets.  There has been a proliferation of smartphone apps for diabetes care.  In 2009 

advice from 137 mobile diabetes applications for diabetes were compared against 

evidence-based guidelines.  It was found that there were obvious gaps between the 

evidence-based recommendations and the functionality of the apps [59].  Another review 
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found that the majority of the apps available for diabetes offered only one or two 

functionalities that support self-management, such as documentation, data sharing, 

analysis, visualization, education, reminders, and therapeutic recommendations [60].  

While reviewers found that improved usability scores correlated with that apps that 

supported fewer functions, patients may result to using multiple apps to gain access to 

needed functions, thus complicating self-management even further.   

GlucoseBuddy, an app that was developed by SkyHealth LLC and released in 

2008, had over 100,000 downloads in 2013.  GlucoseBuddy allows users to log glucose 

levels, insulin doses, nutrition, and exercise.  Researchers conducted a randomized 

controlled trial with GlucoseBuddy by recruiting 72 participants with T1D over the 

course of 6 months.  For this study, data was shared with diabetes educators who 

reviewed the data and sent personalized text messages to participants in the intervention 

group on a weekly basis.  Results showed a significant improvement in glycemic control 

for participants in the intervention arm of the study [61]. 

Behavior change is an important part of diabetes self-management, and 

unfortunately there are few apps that include behavior change techniques, and those that 

do are not based on validated behavioral theories.  Even fewer apps that have been 

reviewed provide tailored support using data collected from the user to improve 

adherence to self-management [62].  Additionally, the FDA has determined that it will 

only regulate apps that qualify as medical devices, leaving patients with little more than 

app ratings to guide them as they select apps to assist with diabetes self-management.  

Further complicating the diabetes app market is that there appears to be several insulin 
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dosing calculators available as apps, a criteria that qualifies them as a medical device, 

which are not FDA approved [63].   

In 2015, 46 insulin dosing calculators were identified that perform simple 

mathematical calculations using carbohydrate intake and blood glucose [64].  From those, 

30% did not document the formulas used, and 67% carried a risk of inappropriate output 

dose recommendations that violated basic clinical assumptions.  In the US there are few 

FDA-regulated mobile apps that provide bolus calculators, and none of them take into 

account exercise and alcohol [21] 

In order to lessen the burden of manually calculating insulin boluses, bolus 

calculators have been developed and disseminated to patients.  Bolus calculators have 

been deployed as simple stand-alone sliding scales, but at present bolus calculators are 

primarily integrated into electronic medical devices [65].  For example, glucose meters 

and insulin pumps have embedded bolus calculators.  It is estimated that one million 

people use insulin pumps worldwide with Medtronic MiniMed, Inc. reporting 70% of the 

market share and approximately 400,000 pumps in use in the USA [66,67].  At the outset 

of this study many of the patients at the Arizona Mayo Clinic used Medtronic insulin 

pumps, which influenced our choice to focus on Medtronic pumps for the remainder of 

this study.  

2.5.7 Medtronic’s decision aid for calculating pre-meal insulin boluses 

Current bolus calculators embedded into insulin pumps do not account for 

exercise or alcohol.  They implement variations of Equation 2.1 when computing bolus 

insulin.  Here we describe the algorithm used by the insulin pump manufacturer, 
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Medtronic, which uses Equation 2.1 as the base equation.  In order to determine IOB, the 

insulin pump requires that a parameter called the active insulin time be set by the user or 

care provider.  The active insulin time is used to back calculate how much insulin may 

still be left in the patient’s bloodstream from previous boluses in order to prevent insulin 

stacking which can lead to hypoglycemia.  Additionally, ICR, CF and low and high target 

glucose parameters are programmed into the insulin pump bolus calculator, which values 

are generally determined by the provider. 

The Medtronic Bolus Wizard which is embedded into insulin pumps uses 4 

variations of Equation 2.1 which are based on current blood glucose levels and how they 

compare to individualized target blood glucose ranges for the patient [28]. 

1. If cBG is greater than tBG, IOB is included in the calculation as well as the 

blood glucose and food correction portions of the equation.  If the blood 

glucose correction minus IOB is a negative number, then only the food 

correction portion of Equation 2.1 is used in the calculation. 

2. If cBG is less than tBG, IOB is not included in the calculation.  The blood 

glucose correction is then added to the food correction. 

3. If cBG is at tBG, then only the food correction portion of the equation is used. 

4. If no cBG is provided, then only the food correction portion of the equation is 

used. 

These data required for calculating bolus insulin, along with data acquired via 

glucose meters or continuous glucose monitor systems, changes to pump settings, patient-
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reported carbohydrate intake, and other information generated by the insulin pump are 

recorded in tabular format as depicted in Figure 2.2. 

 

Figure 2.2: Screenshot of condensed raw insulin pump data which includes: 

timestamp, blood glucose reading received from a connected meter (BG), type of 

bolus delivered (Type), the bolus amount selected by the patient (Select) and 

actually delivered (Deliver) by the pump, the bolus suggestion (Est), insulin pump 

settings (High, Low, ICR, ISF), user-reported carbohydrates (Carbs, BG reading 

used for calculation (BG), the insulin on board (IOB), readings from a continuous 

glucose meter (not shown), changes made to insulin pump settings (not shown), and 

other information generated internally by the insulin pump (not shown).  In the 

example above, the bolus calculator made two insulin recommendations, 0 units at 

8/9/2016 18:54 and 0.9 units at 8/11/2016 23:23, both of which the user overrode and 

selected 0.1 units to be delivered.  Six additional insulin boluses were delivered by 

the participant without accessing the insulin pump bolus calculator.  Also, the 

patient checked blood glucose 6 times over the course of three days. 

 

Calculating bolus insulin using Equation 2.1 is a difficult mental task for most 

people to perform.  Bolus calculators have been incorporated into glucose meters and 

insulin pumps to lessen the cognitive burden of calculating bolus insulin.  The use of 

bolus calculators has been shown to greatly improve patient’s accuracy when calculating 
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an appropriate insulin bolus.  Despite the advantages provided by bolus calculators 

embedded in insulin pumps, these decisional aids do not account for exercise and alcohol, 

two of many variables (e.g. stress, medications, etc.)  that are known to affect glucose 

levels.  During most types of light to moderate exercise blood glucose levels will 

decrease, while sustained vigorous exercise may actually increase glucose.  The acute and 

delayed effects of alcohol conflict from one study to another.  It may be the case that 

postprandial hypoglycemia may be averted by consuming an alcoholic beverage that 

contains a high carbohydrate to alcohol ratio (e.g. beer, drinks mixed with regular soda) 

in conjunction with a meal. 

While the artificial pancreas may eventually provide a closed-loop system, this 

technology has not yet completely addressed the effects of exercise and alcohol and is 

still not ready for patient use.  Smartphone apps that support self-management of diabetes 

and provide insulin bolus calculations also fail to account for exercise and alcohol and 

very few have been approved for use by the FDA.   

The current state of decisional aids for patients with diabetes leads us to believe 

that our aim to develop a decision support system deployed as a smartphone app, 

iDECIDE, that accounts not only for meals and glycemic excursions, but also for exercise 

and alcohol would be beneficial to improve glucose control. 
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3 SELF-MANAGEMENT BEHAVIORS IN ADULTS ON INSULIN PUMP 

THERAPY: WHAT ARE PATIENTS REALLY DOING? 

3.1 Introduction 

Successful diabetes management requires behavioral changes to improve 

glycemic control and achieve better health outcomes.  While there have been many 

studies that focus on children, adolescents and emerging adults, little is known about the 

self-management behaviors of adults on insulin pump therapy.  One study that included 

all ages found that less than one third of the participants had achieved recommended 

glycemic control (HbA1c < 6.5%) and that those with excellent control were more likely 

to exercise regularly, self-monitor blood glucose more frequently and have fewer 

instances of missing an insulin dose [68].  Most studies on adherence have relied upon 

indirect methods of measurement which introduce error and bias, such as patient self-

report via interviews and surveys [69].  Some of the limitations that arise from self-report 

methodologies can be overcome by using direct methods to assess adherence by using 

objectively gathered data from diabetes technology [70].  This chapter identifies and 

quantifies self-management behaviors in adults with type 1 diabetes who employ insulin 

pump therapy (Aim 2) by using direct and indirect methods and correlates the behaviors 

with glycemic outcomes based on participant’s individual glucose targets.   

One month of raw insulin pump data in tabular format was downloaded from 19 

participants.  For each participant, there were approximately 10,000 rows of data and 30 

columns documenting user entry of carbohydrates, function overrides (e.g. adjust basal 

rates), blood glucose meter readings, continuous glucose monitoring output, calculations 
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for determining insulin bolus recommendations, and other internal pump messages and 

functions.  Computer programs were written to automatically analyze each row of data in 

order to quantify the observed frequency of expected behaviors such as insulin bolusing, 

checking blood glucose and recording carbohydrate intakes, as well as other interaction 

observed with the insulin pump based on the data collected and stored by the insulin 

pump.  The following behaviors were automatically extracted with computer programs 

based on a sample of insulin pump data in Figure 2.2: 1) the participant accessed the 

bolus calculator on two occasions, 2) the participant selected a different amount of insulin 

bolus to deliver on both occasions, 3) six additional insulin boluses were delivered by the 

participant without accessing the insulin pump bolus calculator, and 4) the patient 

checked blood glucose 6 times over the course of three days.  

Over 4,000 insulin pump interactions were analyzed from the 19 participants to 

ascertain behaviors.  There was inter-subject variability in adherence to most of the 

minimally expected behaviors for self-management and a high frequency of behaviors 

not recommended for self-care.  Additionally, there there was little use of advanced 

insulin pump features despite the participants having an average of 11 years of insulin 

pump therapy.   Adherence to delivering insulin boluses was high and consistent with 

96.8% (5.7) daily adherence.  Daily documentation of carbohydrates and blood glucose 

checks had lower rates of adherence and high variability, 76.6% (31.7) and 60.0% (32.5), 

respectively.  Bolusing without accessing the insulin pump bolus calculator, which is in 

general a not recommended behavior, occurred in 13.0% (16.9) of the delivered boluses 

while selecting a square waveform, an advanced pump feature, was used in 6.4% (10.8) 
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of delivered boluses.  Higher frequency of adherence to daily behaviors correlated with a 

higher number of glucose readings at target.  We also found that 87% of boluses 

delivered by patients resulted from accessing the insulin pump bolus calculator which 

indicates that patients generally use the bolus calculator to deliver insulin boluses.  This 

finding suggests that in many instances patients may benefit from an insulin dosing 

algorithm that accounts for additional lifestyle preferences, such as exercise and alcohol.   

Preliminary results of this work were presented as posters  at the 2015 Diabetes 

Technology Conference and at the American Diabetes Association (ADA) 76th Scientific 

Session [71,72] (APPENDIX A.2 and A.3).  The ADA poster was also selected to be part 

of a moderated poster discussion on “Insulin-related Issues and Other Topics in Diabetes 

Care.”  Chapter sections 3.2 through 3.5 represent the extended version of those posters 

which has been published in the Journal of Diabetes Science and Technology [73] 

(Appendix C.1). 

3.2 Background 

Optimizing glucose control in patients with type 1 diabetes mellitus (T1D) is 

known to reduce microvascular and macrovascular complications [2]. The intensive 

insulin therapy needed to accomplish glycemic goals can be delivered either via multiple 

daily injections or continuous subcutaneous insulin infusion devices, also referred to as 

insulin pump (IP) therapy.  However, intensive insulin therapy alone is not sufficient to 

achieve desired glycemic goals. Successful diabetes self-management requires behavioral 

changes in order to achieve glucose targets.  The 2016 ADA Standards of Care 

Guidelines outline the behaviors required for daily self-management, including 
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recommendations to monitor blood glucose (BG) 6-10 times per day, and dose prandial 

insulin 3-4 times per day as it relates to carbohydrate intake [8].  Adherence to 

recommended behaviors is difficult to achieve and maintain for a variety of reasons, with 

many barriers, such as social, contextual, psychological, educational and economic [74].  

Diabetes technology (e.g. insulin pumps and glucose meters) and other consumer health 

information technologies (e.g. telemedicine and smartphone apps) have been found to to 

improve diabetes self-management adherence and improve glycemic control [75]. 

As technology for diabetes has advanced, so have the informatics capabilities of 

IPs and BG monitors.  Devices store objectively measured data that can be downloaded 

and used to quantify behaviors and outcomes.  IPs store data such as the bolus amount 

suggested by the insulin pump bolus calculator (IPBC), the bolus amount selected by the 

patient, carbohydrates entered into the IP by the patient, and BG levels from a connected 

BG monitor and/or a continuous glucose monitoring system (CGMS). 

Adherence to self-management behaviors (SMB) such as carbohydrate intake, 

administering insulin boluses to cover meals, and monitoring of BG have been studied in 

children, youth and emerging adults (18-26 years old) with various criteria, methods and 

sources of data, including IPs [76–80].  Although IP therapy has been found to improve 

glycemic control, suboptimal adherence can result in poor glycemic control  [77,81]. 

There is a lack of studies that describe SMB in adults with T1D. The objective of this 

study was to use IP data to analyze and characterize common behaviors related to insulin 

bolus dosing, BG monitoring and carbohydrate intake observed in adults with T1D, and 

to correlate those behaviors with glycemic outcomes. 
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3.3 Methods and Materials 

3.3.1 Study recruitment 

After Institutional Review Board approval, we recruited adults with T1D from an 

outpatient academic endocrinology practice.  We identified potential participants at 

routine quarterly visits and they were contacted to set up a recruiting appointment.  After 

participant consent we remotely gathered data after 30 days of participation.  Therefore, 

data was collected after the appointment with the provider and well before the next 

quarterly appointment.  

3.3.2 Participant selection 

We adopted the following inclusion criteria: patients who had been under the care 

of the endocrinology team for at least one year, 18-70 years of age, non-pregnant, English 

speaking, and using the same IP, Medtronic MiniMed, Inc [28].  The exclusion criteria 

included: fragile health, limited life expectancy, records of mental health problems, 

advanced vascular disease or micro-vascular complications, known history of severe 

hypoglycemia or advanced atherosclerosis.  Participants were part of a larger study that 

collected additional data to compare insulin bolus algorithms [82,83]. 

3.3.3 Data collection and cleaning 

Participants’ IP data was downloaded in its source format (i.e. spreadsheet).  IP 

data included carbohydrates recorded by the participant, BG levels from CGMS or 

capillary BG monitor or both, amount of insulin suggested and delivered by the pump, 

and personalized pump settings and BG targets which may have varied over the course of 
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a 24-hour period. Computer programs were written to automate the process of 

quantifying the IP behaviors and glycemic outcomes.  

We identified over 4,000 interactions with the IP in this study. Using code, we 

removed duplicate BG readings that occurred in within 4 minutes of each other since 

CGMS sent readings every 5 minutes.  We included in the analysis values that were 

entered manually, recorded from IP connected BG meters and CGMS.  We did not 

identify any means to identify BG readings that resulted from user-error, and as such, no 

BG values recorded with the IP were excluded after the data cleaning process.   

3.3.4 Minimally expected self-management behaviors 

Following O’Connell, et.al. and Driscoll, et. al. the minimally expected daily 

SMB for glycemic control were defined as: 1) counting carbohydrates 3 or more times 

per day (assuming at least 3 meals per day), 2) delivering an insulin bolus 3 or more 

times per day to correspond to those meals, and 3) checking BG 4 or more times per day 

(once for each meal and before bedtime) [77,78].  These behaviors were quantified on a 

daily basis for each participant and two-sided, unequal t-tests were used between those 

using capillary glucose monitoring and CGMS. Fisher’s exact test was used to compare 

adherent days to non-adherent days when considering BG readings that were within 

target.  These parameters were assessed because they could be directly derived from 

IP/CGMS data. 

The correlation of the above three diabetes SMB was analyzed with BG 

outcomes.  Glycemic control was addressed on a daily basis by categorizing BG as low, 

at target or high based on each participant’s personalized BG targets. The number of BG 
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readings within the target range for the participant over the course of a 24-hour day were 

compared to the total number of BG readings.  BG readings were obtained from manual 

entry, synchronized glucose meter or CGMS. 

3.3.5 Insulin bolusing behaviors 

How often participants selected the same, smaller or larger insulin bolus that was 

suggested by IPBC was evaluated. Additionally, the number of times the IPBC was 

accessed was and this value was used to calculate the percentage of IPBC overrides. 

Finally, participants may have opted to deliver insulin boluses without consulting 

the IPBC. They may have changed the waveform (e.g. normal to square), which is 

considered an advanced IP feature. The delivered boluses for each participant were 

counted and used to calculate the percentage of delivered boluses that were self-

determined (i.e. the participant did not access the IPBC for a suggestion before delivering 

an insulin bolus) and how often the bolus waveform was changed. 

3.4 Results 

3.4.1 Participant characteristics 

There were 19 participants recruited; 7 employed CGMS and the remainder 

utilized capillary glucose monitoring (Paradigm System), with 13 participants using one 

or more BG meters that communicated with the IP.  Four IPs were used by the 

participants: 9 on MiniMed530G-551, 1 on MiniMed530G-751, 5 on ParadigmRevel-

523, and 4 on ParadigmRevel-723.  The average participant age was 48(15) years and the 

self-reported duration of T1D and duration of IP therapy was 27(13) and 11(5) years, 

respectively.  Mean HbA1c was 7.3(1.0). There was a higher percentage of recruited 
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women (63%) and most were white (95%). We analyzed an average of 32(4.8) days of 

data from each participant and a total of 4,249 interactions with the IPBC.  All data are 

reported as mean and standard deviation (SD).   

3.4.2 Daily minimally expected self-management behaviors 

Inter-subject variability to the three minimally expected daily behaviors was 

observed (Table 3.1: Observed frequency of investigator defined minimally expected 

daily behaviors, differentiating between the group of participants under capillary glucose 

monitoring and the group using CGMS.  Reported as mean (SD), range.).  Carbohydrates 

were entered into the IPBC 3 or more times per day an average of 76.6%(31.7%).  Levels 

of adherence were similar between those on CGMS and capillary glucose monitoring, 

84.0%(29.7%) and 72.3%(33.3%), respectively.  Five participants showed adherence to 

this behavior 100% of the time, while one participant showed a maximum of 2 

carbohydrate entries per day.  Carbohydrates were documented an average of 3.9(1.6) 

times per day.  

Participants delivered insulin boluses an expected 3 or more times per day an 

average 96.8%(5.7%).  There were 11 participants whose observed bolus adherence was 

100%; all but one participant achieved 90% or better adherence.  On average participants 

delivered an insulin bolus 7.5(3.6) times per day.  Although not statistically significant, 

participants on CGMS delivered an average of 9.4(4.8) boluses per day while participants 

using capillary glucose monitoring averaged 6.5(2.3) boluses per day.  

Adherence to glucose checks was similar for participants on CGMS when 

compared to those on capillary glucose monitoring even though providers at the Mayo 
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clinic advise patients on CGMS to calibrate with a capillary glucose check a minimum of 

2 times per day. On average, participants on CGMS checked BG 4.5(1.4) times per day 

and those on capillary glucose monitoring checked 4.2(2.5) times per day.  None of the 

participants were perfectly adherent to checking or recording BG and only 3 achieved 

90% or better adherence.  

When all three minimally expected behaviors were considered together 

participants were simultaneously adherent to all three investigator-defined guidelines on 

average 52.3%(34.3%) of days.  None of the participants were found to be 100% 

adherent and two individuals never engaged in the three recommendations 

simultaneously.  Adherence of all three behaviors between CGMS and capillary glucose 

monitoring was similar, 61.5%(32.9%) and 48.4%(35.5%), respectively.   
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Table 3.1: Observed frequency of investigator defined minimally expected daily 

behaviors, differentiating between the group of participants under capillary glucose 

monitoring and the group using CGMS.  Reported as mean (SD), range. 

BG Behavior 
Capillary Glucose 

Monitoring 
CGMS p-value 

Group 

Total 

Documented 

carbohydrates 3 or more 

times/day, % 

72.3 (33.3) 

0.0 – 100 

84.0 (29.7) 

17.2 – 100 
0.44 

76.6 (31.7) 

0.0 - 100 

Administered insulin 

bolus 3 or more 

times/day, % 

97.4 (5.6) 

80.6 – 100 

95.6 (6.2) 

82.8 - 100 
0.53 

96.8 (5.7) 

80.6 - 100 

Documented BG 4 or 

more times/day, % 

55.8 (36.1) 

0.0 – 94.4 

67.8 (26.4) 

37.9 – 96.4 
0.45 

60.0 (32.5) 

0.0 - 96.4 

All 3 behaviors/day, % 
48.4 (35.5) 

0.0 – 88.9 

61.5 (32.9) 

6.9 – 93.6 
0.43 

53.2 (34.3) 

0.0 - 93.5 

Documented 

carbohydrates/day, # 

3.8 (1.5) 

1.1 – 6.0 

4.2 (1.8) 

1.4 – 6.7 
0.62 

3.9 (1.6) 

1.1 – 6.7 

Administered insulin 

bolus/day, # 

6.5 (2.3) 

3.8 – 11.8 

9.4 (4.8) 

3.9 – 18.3 
0.17 

7.5 (3.6) 

3.8 – 18.3 

Documented BG/day, # 
4.2 (2.5) 

1.2 – 11.1 

4.5 (1.4) 

3.2 – 7.2 
0.72 

4.3 (2.1) 

1.2 – 11.1 

 

3.4.3 Relationship between daily minimally expected behaviors and glucose targets 

As depicted in Figure 3.1, when participants entered carbohydrates 3 or more 

times per day they achieved their individualized target BG in 4.6%(4.1%) of the recorded 

BG values during the 24-hours.  Days when that behavior was not observed the target BG 

was achieved 0.8%(1.7%).  When participants were observed bolusing 3 or more times 

per day it resulted in 5.2%(3.7%) BG readings at target, days when bolusing was less 

than 3 the target BG was recorded 0.1%(0.3%).  On days that participants checked BG 4 
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or more times per day they achieved target BG 3.5%(3.0%) versus 1.8%(3.3%) on days 

that expected behavior was not observed. When participants were adherent to all three 

minimally expected behaviors BG was at target 3.3%(3.0%), and 2.4%(3.2%) on days 

they failed to meet all three behaviors.  Although these findings were not significant 

(Fisher’s exact test), there was a high correlation between the observed frequency of 

behaviors and the percentage of BG readings that were at target.  Although not 

statistically significant, increasing the number of daily insulin boluses had the largest 

impact on increasing the number of BG readings at target for the day, r=0.93.  

Consuming carbohydrates and checking BG had correlation values of r=0.75 and r=0.53, 

respectively.  
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Figure 3.1: Comparison of blood glucose control for observed adherent/non-

adherent days based on investigator defined optimal behaviors and percentage of 

blood glucose readings at target for the day.  Along the x-axis are the behaviors of 

interest, while the y-axis the average of daily blood glucose readings at target on a 

scale of 0% to 10%. 

 

3.4.4 Daily insulin bolusing behaviors 

Table 3.2: Overview of the insulin pump bolus calculator (IPBC), insulin bolus 

decisions and additional information regarding the optimal behaviors.  Data reported as 

mean or % (SD), range. provides results for additional behaviors that were observed and 

analyzed.  Over the course of the month participants accessed the IPBC on average 
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198.7(94.3) times and insulin boluses were delivered 220.7(78.7) times during the same 

time period.  Two-thirds, 66.6%(16.1%), of the IPBC recommendations resulted from 

participants entering carbohydrates.  Correction BG readings were provided by 

participants in 74.8%(24.4%) of the IPBC recommendations.  Nine participants 

frequently entered BG corrections (>90%) while 4 participants entered BG corrections 

less than 50% of the time. 

Participants chose to deliver the same bolus amount as suggested by the IPBC in 

85.7%(12.7%) of delivered boluses (Table 3.2: Overview of the insulin pump bolus 

calculator (IPBC), insulin bolus decisions and additional information regarding the 

optimal behaviors.  Data reported as mean or % (SD), range.).  There were 8 participants 

who very often (>90%) chose the same bolus as the IPBC, while one participant chose a 

different bolus in 51% of the delivered boluses.  Participants were nearly even on their 

preference for choosing a larger or smaller bolus, 7.4%(6.1%) and 6.9%(9.3%), 

respectively.   

In 6.4%(10.8%) of the delivered boluses participants changed the waveform from 

normal to dual or square.  A majority of the participants (n=14) never or rarely (<5.0%) 

changed the bolus waveform while 3 participants changed the waveform in over 25% of 

the boluses they delivered. Participants occasionally chose to deliver an insulin bolus 

without consulting the IPBC, which constituted 13.0%(16.9%) of the delivered boluses.  

While 10 participants never or rarely (<5.0%) delivered an insulin bolus without 

consulting the IPBC, two participants delivered approximately 50% of their insulin 

boluses without accessing the IPBC.   
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Table 3.2: Overview of the insulin pump bolus calculator (IPBC), insulin bolus 

decisions and additional information regarding the optimal behaviors.  Data 

reported as mean or % (SD), range. 

Access IPBC Value 

IPBC recommendation provided, #  198.7 (94.3), 62 – 449 

BG control guidelines 

Carbohydrates entered to IPBC, %  66.6 (16.1), 38.8 – 100 

Boluses delivered, #  220.7 (78.7), 109 – 380 

BG entered to IPBC, %  74.8 (24.4), 35.8 – 100 

Bolus recommendations from IPBC 

Select same bolus suggested by IPBC, %  85.7 (12.7), 49.1 – 100 

Select larger bolus than suggested by IPBC, %   7.4 (6.1), 0.0 – 18.5 

Select smaller bolus than suggested by IPBC, %  6.9 (9.3), 0.0 – 32.7 

Other Bolus Decisions 

Select square or dual bolus waveform, %  6.4 (10.8), 0.0 – 30.4 

Bolus without consulting IPBC, %  13.0 (16.9), 0.0 - 52.7 

 

3.4.5 Monthly frequency of expected self-management behaviors 

In addition to the daily analysis of participant’s behavior (Table 3.1 & Table 3.2), 

we analyzed for each participant the monthly frequency of five distinct behaviors: 1) 

disregarding BG readings and only accounting for carbohydrates when using the IPBC, 

2) bolusing without consulting the IPBC, 3) changing the bolus waveform to dual/square, 

4) choosing insulin boluses different from those suggested by the IPBC, and 5) frequent 

bolusing: 4 or more boluses in a 5-hour time period or delivering 10 or more boluses 

during a 24-hour period.  As shown in Table 3.3: Categories of insulin compensation 

techniques observed in study participants, including: 1) disregarding BG readings and 
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only accounting for carbohydrates when using the IPBC, 2) bolusing without consulting 

the pump, 3) changing the insulin bolus delivery from waveform to square, 4) choosing 

insulin boluses different from those suggested by the IPBC, and 5) bolusing 4 or more 

times in a 5-hour period or delivering 10 or more boluses during a 24-hour period., we 

categorized each participant as never (0 events), rarely (1-4 events), occasionally (5-14 

events), regularly (15-90 events) or excessively (more than 90 events) showing a 

behavior over the course of one month.  

We observed that 15 participants occasionally or regularly chose a different 

insulin bolus than the one recommended by the IPBC and that 4 participants rarely or 

never chose a different bolus.  All the behaviors reported in Table 3.3 were automatically 

computed, except for the frequency of blousing which was manually counted on a subset 

of the participants: 7 on CGMS and 2 on capillary glucose monitoring.  Out of the subset 

of 9 participants, 3 occasionally or regularly bolused frequently while 6 rarely or never 

bloused frequently.   

Using the IPBC to adjust for meal’s carbohydrates while omitting a current BG 

reading was done regularly or excessively by 9 participants, while 9 rarely or never 

omitted a current BG reading and 1 occasionally did so.  Bolusing without consulting the 

IPBC was done regularly or excessively by 8 participants and 10 rarely or never delivered 

a bolus without the IPBC and 1 occasionally bolused without the IPBC.  There were 13 

participants that never or rarely changed the bolus waveform and 6 who regularly or 

excessively changed the bolus waveform. 
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There were some associations between insulin pump behaviors and patient 

profiles that emerged as well.  Compensating for carbohydrates without checking BG was 

negatively correlated with changing the waveform to square while selecting a different 

bolus was positively correlated with square waveform delivery.  There were four 

participants whose behaviors correlated inversely to the two patterns just mentioned, and 

these four participants had the highest frequency of delivering square waveform boluses.  

There were 10 participants that regularly or excessively omitted BG readings when using 

the insulin pump bolus calculator, and 7 of them never or rarely selected a different 

insulin bolus than suggested by the pump, while 6 of the remaining 9 participants 

occasionally or regularly selected a different bolus.  This pattern may arise from 

situations where participants are unaware of glucose trends or are unable to check 

glucose levels, and as such are less likely to override the IPBC when only compensating 

for carbohydrates. 
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Table 3.3: Categories of insulin compensation techniques observed in study 

participants, including: 1) disregarding BG readings and only accounting for 

carbohydrates when using the IPBC, 2) bolusing without consulting the pump, 3) 

changing the insulin bolus delivery from waveform to square, 4) choosing insulin 

boluses different from those suggested by the IPBC, and 5) bolusing 4 or more times 

in a 5-hour period or delivering 10 or more boluses during a 24-hour period. 

Behavior 
Never 

(0 events) 

Rarely 

(1-4 events) 

Occasionally 

(5-14 events) 

Regularly 

(15-90 

events) 

Excessively 

(90+ events) 

Compute carbs 

only (n=19) 
7 2 1 5 4 

Bolus without 

consulting pump 

(n=19) 

7 3 1 7 1 

Change waveform 

to dual/square 

(n=19) 

10 3 0 5 1 

Clinically 

different bolus 

selected (n=19) 

3 1 7 8 0 

Frequent boluses 

(n=9) 
4 2 2 1 0 

 

3.5 Discussion 

Diabetes behavior studies have mainly relied upon self-reported data gathered 

from interviews, surveys and questionnaires [76,80,84].  These methods have been used 

to gather qualitative data which contributes to the understanding of behavioral diabetes 

such as insights about the beliefs, motivations, perceptions and expectations of the patient 

which can be used to inform changes to therapy regimens that can improve adherence 

[85,86].  There are limitations to self-reported data such as recall bias (i.e. inaccurately 

remember and report behaviors) and social desirability (i.e. over-report favorable 
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behavior and under-report poor behavior).  White coat adherence may be a source of bias 

when measurement instruments are delivered during patient-provider encounters since 

patients may improve their SMB in the days or weeks leading up to the appointment 

[87,88].  In our case data was collected after the appointment with the provider and 

months before the next appointment. 

Although we were able to assess the adherence to diabetes management 

recommendations and other SMB by using device recorded data, this study was limited 

by a small sample size which lacked the power to detect differences between groups.  The 

demographics of this cohort may not be representative of the general T1D population 

based on race and HbA1c.  Another limitation of this study is that participants may have 

used one or more glucose meters that did not communicate with the IP and subsequently 

the use of those devices would not have been captured by the IP.   

Consistent with other studies, we found that there was variability of observed 

behaviors across participants and that there was a direct correlation between daily 

adherence to expected SMB and better glycemic control [76–80].  Although this cohort 

had an average of 11 years’ experience with IP therapy, advanced features, such as 

changing the bolus waveform to dual or square, were used infrequently. 

The ADA guidelines suggest that treatment regimens may be intensified if 

patients are adherent to their current regimen, or in the case of poor adherence the routine 

should be simplified in order to improve adherence [8].  Clinicians relying only on self-

reported assessments may overestimate patients’ adherence since it has been shown that 

patients who struggle with adherence are less likely to honestly report their deficiencies 
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in SMB [84,89]. While clinicians mainly rely on quantified data coming from diabetes 

technology, this type of data has limitations, too.  Actual behaviors may be different from 

what was documented in the IP.  For instance, a participant had a meal and delivered a 

bolus without entering carbohydrates and without requesting advice from the IPBC.  This 

may partially explain why the behavior with the highest frequency was delivering insulin 

boluses.  

In this study we found that increasing the frequency of insulin boluses, calculating 

carbohydrate consumption and checking BG had a positive impact on glycemic control 

with the delivery of insulin boluses having the greatest impact.  Providing real-time 

monitoring via the IP, or other appropriate device (e.g. smartphone app with wireless 

connection to IP) on these minimally expected behaviors could empower patients and 

improve daily diabetes self-management and glycemic control. 

For providers, presenting information gathered by IPs in ways that are clinically 

relevant and actionable could be empowering.  Availability of precise and complete BG 

data that is presented in a structured manner enables providers to more efficiently and 

accurately identify glucose patterns which can lead to more accurate therapeutic 

decisions [90–92].  Take for instance Table 3.3: Categories of insulin compensation 

techniques observed in study participants, including: 1) disregarding BG readings and 

only accounting for carbohydrates when using the IPBC, 2) bolusing without consulting 

the pump, 3) changing the insulin bolus delivery from waveform to square, 4) choosing 

insulin boluses different from those suggested by the IPBC, and 5) bolusing 4 or more 

times in a 5-hour period or delivering 10 or more boluses during a 24-hour period., where 
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we classified the frequency of five observed behaviors by monthly frequency (never, 

rarely, occasionally, regularly and excessively), instead of daily means and SDs (Table 

3.2). This way to visualize the data could help the clinician to better identify patients that 

behaved in a certain way more often or less often than the average patient. For instance, if 

during the last month the patient never changed the bolus waveform, the clinician could 

spend time during the next clinical encounter reviewing how to change the bolus delivery 

in the IP and discussing potential meal types that could benefit from a square insulin 

delivery to improve glycemic control. For the example of the patient who frequently 

boluses (15-90 monthly events when the patient delivers 10 insulin boluses per day or 

more than 5 boluses within 4 hours), the clinician can review the patient’s endocrine 

settings to identify if the basal rate needs to be changed to reduce frequency of insulin 

bolusing.  Even with the small number of participants we were able to identify 

associations between certain behaviors.  Identifying patient profiles based on similar 

behaviors could also be helpful in the design and implementation of interventions aimed 

at improving adherence.  It remains as an open question to understand which are the best 

ways to present patients’ diabetes SMB to providers to facilitate their decision process. 

3.6 Conclusion 

This study quantified observed SMB of adults on IP therapy by analyzing 

objectively recorded data from IPs. A limitation of our research is that we did not collect 

information on the reasons behind observed participants’ behaviors. Nevertheless, the 

results from this quantitative study show that the majority of the adult patients on insulin 

pump therapy in this study regularly seek guidance from the bolus calculator imbedded in 
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the insulin pump to dose preprandial insulin boluses as well as boluses to correct for out-

target glucose.  This study establishes that for meals and glucose excursions patients have 

adopted SMBs that incorporate technologies that provide decisional support as they self-

monitor glucose levels.   

In Chapter 2 we reviewed the Medtronic MiniMed, Inc. [28] bolus calculator and 

its intended use as specified by the manufacturer [28].  We also met with a diabetes 

education nurse to understand how patients with diabetes are trained to use the IPBC.  

This helped us to understand in theory how the IPBC has been designed to be 

incorporated in the self-management of diabetes.  In this study we were able to observe 

patients in real-life situations which helped us to understand how they actually integrate 

the IPBC into daily self-management routines.  The insight we gained from this study has 

proved to be very helpful as we have progressed with the design and development of the 

iDECIDE decision aid and incorporating it into the iDECIDE smartphone app. 

In Chapter 2 we also identified that current diabetes technologies do not 

incorporate exercise or alcohol, two lifestyle preferences known to affect glucose levels, 

into algorithms that suggest insulin bolus amounts. In the following chapter we 

conducted a study on how patients compensate for exercise and alcohol to further assess 

the need for decisional support tools that account for exercise and alcohol.   
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4 CHARACTERIZATION OF EXERCISE AND ALCOHOL SELF-

MANAGEMENT BEHAVIORS OF TYPE 1 DIABETES PATIENTS ON 

INSULIN PUMP THERAPY 

4.1 Introduction 

There is a lack of systematic ways to analyze how diabetes patient use their 

insulin pumps to self-manage blood glucose to compensate for alcohol ingestion and 

exercise.  This chapter uses qualitative and quantitative methods to better understand how 

patients on insulin pump therapy compensate for exercise and alcohol to maintain 

glycemic control (Aim 2). 

We recruited adults with type 1 diabetes (T1D) on insulin pump therapy to 

analyze “real life” insulin dosing decisions occurring in conjunction with alcohol intake 

and exercise.  Participants were asked to maintain their daily routines, including those 

related to exercising and consuming alcohol.  Participants kept a 30-day journal on the 

exercise they performed and the alcohol consumed which were later manually coded into 

tabular format.  Thirty days of corresponding insulin pump data were downloaded.  

Computer programs were written to automatically collate insulin pump and journal data.  

Each row in the journal data that contained an exercise or alcohol event was analyzed for 

its temporal relationships to participants’ actual insulin dosing behaviors as recorded by 

the insulin pump.  For example, the computer programs would scan for an exercise or 

alcohol event from the journal data and then identify if any compensation techniques (e.g. 

consume carbohydrates, check BG) occurred immediately before, during or after the 

exercise event.  In the collated data in Figure 4.1 there are two exercise events, the first 
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one was accompanied by blood glucose check, carbohydrates and an insulin bolus 21 

minutes after completion.  The participant also consumed carbohydrates and delivered an 

insulin bolus 22 minutes before consuming alcohol but did not check blood glucose 

levels. 

 

Figure 4.1: Paper logs were manually coded into tabular data and then were 

automatically merged with raw data from the insulin pump.  Each row of collated 

data was analyzed for temporal relationships between insulin pump behaviors and 

exercise and alcohol. 

 

Nineteen patients were recruited and over 4,000 interactions with the insulin 

pump were analyzed.  The analysis exposed variability in how subjects perceived the 
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effects of exercise and alcohol on their blood glucose, inconsistencies between self-

reported and observed behaviors, and higher rates of blood glucose control behaviors for 

exercise vs. alcohol.  These findings further validated the need to propose an insulin 

dosing algorithm that accounts for exercise and alcohol (Aim 3).   

The results from this research were first presented as a poster at the Diabetes 

Technology Meeting 2015 and then as a poster at the ADA 76th Scientific Session 2016 

[71,72] (APPENDIX A.2 and A.3).  Chapter sections 4.2 through 4.5 comprises the 

extended version of those posters which was published in the Journal of Diabetes Science 

and Technology [93] (APPENDIX C.2). 

4.2 Background 

While evidence shows that alcohol and exercise affect the absorption of insulin 

and increase the risk of hypoglycemia, there is a lack of evidence-based decision tools to 

allow for translation of this information into practice [11,13,15,16]. Patients with T1D 

must manage their disease by injecting insulin deliverable through syringes, insulin pens, 

or insulin pumps. Pre-meal insulin dosage compliance and accuracy is a key factor in 

achieving target postprandial glucose levels. Insulin pumps, being used in 2013 by over 

350,000 people in the US [94], incorporate proprietary mathematical algorithms called 

bolus calculators or bolus wizards to determine individualized pre-meal dosing 

[29,95,96]. The benefits achieved through the use of insulin pumps and continuous 

glucose monitors (CGM) are not necessarily a direct result of wearing the devices but 

rather due to behavioral and management changes enabled by the information provided 

by the devices to the users [95]. While bolus calculators and CGMs can lead to better 
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glucose control [7,10], bolus calculators currently cannot account for the lifestyle 

complexities of alcohol ingestion and planned exercise [12–14,17,97,98].  

Among adult T1D patients, little is known about patient self-management 

behaviors in the setting of alcohol intake and exercise.  A review of the literature 

demonstrated a lack of studies analyzing adult T1D patients’ self-reported behaviors 

against their actual behaviors documented from data collected by an insulin pump.  Better 

understanding of these behaviors could help in the design of educational programs, 

particularly as it relates to intensive insulin therapy, and aid in designing better dosing 

algorithms that account for behaviors related to alcohol consumption and exercise 

patterns. The aim of this study was to analyze adult T1D patients self-reported vs. actual 

self-management behaviors occurring in conjunction with alcohol intake and exercise. 

4.3 Methods and Materials 

4.3.1 Subject Recruitment 

After Institutional Review Board approvals 19 adult T1D patients were recruited 

from an academic outpatient endocrinology clinic. Participants were between the ages of 

18-70, non-pregnant, English speaking, who had been using an insulin pump from a 

single vendor for at least one year. Patients in fragile health, limited life expectancy, a 

history of mental health problems, advanced vascular disease or micro vascular 

complications and known history of severe hypoglycemia were excluded.  Study 

personnel identified potential subjects at the time of their scheduled outpatient visit. 

Subjects were handed a flyer that provided details on the study. 
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4.3.2 Data collection 

The study team conducted structured interviews to collect participants’ self- 

reported perceptions of how alcohol and exercise affected blood glucose levels and the 

sources of information used to learn about these interactions. Additionally, subjects were 

asked if they accounted for alcohol and exercise in their insulin dosing decisions, and 

what type of techniques they used to compensate for these behaviors (e.g. carbohydrate 

consumption, reduction in insulin bolus or basal rate, or some combination of these 

methods).   

Participants were asked to maintain their daily routine and to keep a journal on the 

time, duration and intensity of exercise performed (e.g. at 9:00 a.m. performed 20 

minutes of high intensity exercise) and the time, type and amount of alcohol consumed 

(e.g. at 10:20 p.m. drank a can of light beer) for 4 consecutive weeks. Patient’s recorded 

how they compensated for alcohol and exercise on the logs. Participants were called once 

during the study to assess progress and answer questions. At the end of the data collection 

period, patients mailed or faxed in their completed alcohol and exercise logs. 

The study team also obtained the data contained within the participants’ insulin 

pump during the same 4-week period. The patients uploaded the insulin pump data 

through a website provided by the insulin pump’s manufacturer, which was remotely 

accessed by study personnel. Once the data was downloaded the patients were 

encouraged to change their passwords. Alternatively, patients could meet in person with a 

member of the study team who could download the data from the patient’s insulin pump.  
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4.3.3 Data analysis 

Subjects’ perceptions of the effect of alcohol and exercise on glucose levels and 

their sources of information regarding alcohol and exercise were tabulated. Data from the 

paper-based diaries were electronically coded and analyzed to quantify for each study 

participant number of drinks and frequency of exercise. To report patients’ observed 

behaviors for exercise and alcohol we reviewed data downloaded from the insulin pumps 

and from the participants’ paper-based diaries to quantify how often patients used 

techniques to compensate for alcohol ingestion and exercise activity, such as adjusting 

insulin (basal rate or bolus) or taking snack within 30 minutes before exercising. 

Computer algorithms were written to associate self-reported days and times of alcohol 

consumption and exercise to the corresponding data collected by the insulin pumps. 

Using the aggregated data, the frequency of compensation techniques related to 

carbohydrate consumption, insulin boluses delivered, and blood glucose monitoring 

occurring in close temporal proximity to exercise or alcohol consumption was computed 

for each study participant. Close temporal proximity was defined as ±30 minutes of 

alcohol consumption or exercises.  

4.4 Results 

4.4.1 Demographics 

Nineteen subjects with T1D were recruited. Mean (SD) age was 48 (15) years, 12 

were women, and 18 were of white race. Mean (SD) hemoglobin A1c was 7.3 (1.0)%, 

self-reported duration of diabetes was 27 (13) years, and duration of insulin pump therapy 

was 11 (5) years. Seven participants wore a CGMS, and the remaining used capillary 
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glucose monitoring. There were 4,249 interactions between the study participants with 

the insulin pump bolus calculator analyzed. There were 347 exercise events recorded by 

17 participants and 155 alcohol events recorded by 11 participants.  

4.4.2 Perceived interactions and sources of alcohol and exercise information 

When subjects were asked about how alcohol or exercise impacted their glucose 

control, there were no consistent responses observed (Table 4.1).  There were 7 

participants who all stated that exercise lowers blood sugar, another 7 whose responses 

varied on how glucose reacted to exercise, and another 5 without responses. With respect 

to alcohol (Table 4.1), 8 participants stated that their reactions to alcohol depended on 

factors like the number of drinks (e.g. only compensating when consuming 2 or more 

drinks) or type of drinks (e.g. differentiating between drinks with high or low alcohol 

concentration), 1 who stated there was no effect on glucose, 2 who did not know, and 8 

who did not respond. 

Participants also reported deriving information on how exercise and alcohol 

affected their blood glucose from a number of different sources (Table 4.2). Most 

participants indicated they learned about the interactions from trial and error and had 

developed their own heuristics. Few participants reported having received information or 

education from providers on approaches to compensate for alcohol or exercise when self-

managing blood glucose. Two participants indicated that they would like to receive more 

information on the way alcohol affects blood glucose. 
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Table 4.1: Subject perceptions on how exercise and alcohol affect blood glucose. 

Activity 
No. of 

subjects 
Perception Sample comments 

Exercise 

7 It lowers blood glucose 
“In the past, drinking causes low 

blood glucose overnight” 

7 

 

Various effects, based on 

type of activity, intensity 

and time of day 

“Interval training elevates or lowers 

blood glucose, backpacking raises 

it” 

“The effect depends on the time of 

day and the type of exercise” 

“Exercise may not drop blood 

glucose” 

“Morning exercise raises the blood 

glucose, but evening exercise lowers 

it” 

5 No reported data  

Alcohol 

8 

Various effects, based on 

number of drinks and 

drink type  

“Alcohol raises blood glucose 

initially and lower it hours later”  

“Beer raises blood sugar” 

“I feel I have to take insulin if I 

have beer, but no insulin if I have 

hard alcohol” 

“Almost always raises it” 

“If I have more than a few drinks 

the blood glucose lowers, if I have 

hard alcohol it raises and then 

lowers” 

1 
No effect or minimal 

effect 
“I don’t see much effect” 

2 Lack of knowledge 
“I don’t know; I need more 

information” 

8 No reported data or N/A “I don’t drink” 
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Table 4.2: Subject self-reported sources of education on how exercise and alcohol 

affect their blood glucose. 

Activity No. of subjects Source of education 

Exercise 

19 Trial and error 

2 Literature/online reading 

2 Provider education 

1 Other diabetes patients 

Alcohol 

12 Trial and error 

3 Literature/online reading 

1 Provider education 

5 Other diabetes patients 

4 N/A 

 

4.4.3 Overall self-management behaviors 

Current American Diabetes Association (ADA) Standards of Care Guidelines 

suggest that patients should consider checking blood glucose prior to exercise and 

recommend that in order to avoid hypoglycemia the insulin dose and/or carbohydrate 

intake may need to be altered [8].  Many health care organizations suggest that alcohol 

should be consumed with a meal containing carbohydrates in order to avoid 

hypoglycemia [98–100]. Data entered into the subjects’ insulin pumps indicated self-

management techniques did not match current recommendations (Figure 4.1). When 

comparing self-management techniques for exercise versus alcohol, participants 

consumed carbohydrates (40.9% vs. 20.6%), delivered an insulin bolus (38.3% vs. 

26.8%), or checked their blood glucose (60.7% vs. 27.3%) more consistently with 

exercised than when consuming alcohol. 
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Similar to [76], study participants’ adherence to ADA recommendations for 

alcohol consumption and exercise were quantified [8]. According to the guidelines 

“adults with diabetes should be advised to perform at least 150 min/ week of moderate-

intensity aerobic physical activity (50–70% of maximum heart rate), spread over at least 

3 days/week with no more than 2 consecutive days without exercise”. Weekly adherence 

to this guideline by study participants was 38.4% (45.4), with 5/17 subjects reporting 

100% adherence and 10/17 subjects at 0%. The ADA also recommends “adults with 

diabetes who drink alcohol should do so in moderation (no more than one drink per day 

for adult women and no more than two drinks per day for adult men)”. Adherence to the 

ADA guidelines for daily alcohol moderation was 94.6% (9.2) within the range of 70 to 

100. 

 

Figure 4.2: A) Carbohydrate intake, B) Insulin bolusing and C) Blood glucose 

checking within ±30 minutes of exercise or alcohol consumption. For instance, as 

depicted in A) in temporal proximity of alcohol events subjects consumed carbs with 

20.6% mean, 15.3% standard deviation, and 0-42.9% range. In contrast, in 

proximity to exercise events subjects consumed carbs with 40.9% mean, 25.5% 

standard deviation and 0-93.3% range. 
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4.4.4 Observed versus actual behaviors associated with exercise and alcohol 

Next, we contrasted subjects reported self-management techniques against 

observed behaviors for exercise and alcohol, as derived from analysis of corresponding 

data contained with the subjects’ insulin pumps. Self-described compensatory self-

management techniques to compensate for exercise and alcohol consumption were 

categorized as: no compensation, adjusting insulin (reducing basal rates or boluses), 

ingesting snacks, or removing the pump. When examining behaviors related to exercise, 

discordance was seen between what subjects claimed they did versus actual behavior. For 

instance, 16 subjects reported they would adjust insulin pump settings when exercising, 

while only 7 were observed to have done so (Table 4.3). Another 2 indicated they would 

take a snack, but 5 were noted to employ this technique. While 2 study participants 

reported always adjusting basal insulin, no patients were observed always adjusting their 

basal settings.  Although 2 patients reported sometimes removing the pump during 

exercise, the pump disconnection was not explicitly recorded in the insulin pump data we 

had access to, hence we were not able to quantify this behavior.  

Similar discrepancies were noted between what subjects said they would do and 

what they actually did when reviewing self-management behaviors related to alcohol 

ingestion (Table 4.3). For example, 5 subjects indicated they would not compensate for 

alcohol use, while 8 were actually observed not making any adjustments.  There were 10 

subjects who indicated they would adjust insulin when drinking alcohol, but only 3 were 

noted to have done so. 

  



  

56 

 

Table 4.3: Patient self-reported compensation techniques and observed behaviros 

for exercise and alcohol. 

 

Activity Compensation 

technique 

Comments No. of 

subjects 

reported 

using the 

technique 

No. of 

subjects 

who used 

the 

technique 

Exercise No compensation  1 1 

Adjust insulin 

(basal rate or 

bolus) sometimes 

or always 

 

“When I perform 

strenuous exercise I 

reduce basal rate” 

“When I play hockey I 

take a bolus of 1 ½ unit, 

then I remove the pump” 

“When involved in 

anaerobic exercise I take 

insulin, if it is aerobic 

exercise I don’t take 

insulin” 

16 7 

Remove pump “Sometimes I remove 

my pump” 

2 0 

When needed, take 

snack before 

exercising 

“If my blood sugar is 

less than 200 in the 

evening I eat a snack or 

I reduce the basal rate to 

half and I get to 100.” 

2 5 

No data  2 9 

Alcohol No compensation  5 8 

Adjust insulin by 

compute drinks’ 

carbs, sometimes 

or always 

 

“I was told by my 

endocrinologist to not 

compute drinks’ carbs 

when I take 1 or 2, 

otherwise yes” 

“I feel I have to take 

insulin when I drink 

beer but no insulin when 

I drink hard alcohol”  

10 

 

3 

No data or NA “I don’t drink” 4 8 
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4.5 Discussion 

Qualitative studies of children, adolescent, and adult diabetes patients have been 

performed with the purpose of understanding behavioral diabetes care [76,77,80,85,101]. 

While in general qualitative studies are limited by small sample sizes and do not generate 

statistically significant data, their findings are crucial to give a glimpse into patients’ 

beliefs, attitudes, behaviors, culture and lifestyle. With diabetes in particular, 

understanding patients’ behaviors is very important to discover the reasons behind non-

adherence to treatment or poor glycemic control, and to identify the best ways to deliver 

effective interventions. 

With respect to self-care, qualitative studies have shown that many patients lack 

understanding of how medications, food, and exercise affect blood glucose control and 

what kind of information needs to be taken into account (carbohydrate content of food, 

activity level, etc.) to self-manage diabetes effectively [102,103]. In terms of physical 

activity, the qualitative study by Hendricks et al. interviewed forty nine emerging adults 

(18 to 26 years old) to understand their exercise habits and to determine their compliance 

with the ADA recommendations on physical activity [76]. The ADA recommends at least 

30 minutes of daily physical activity for youth. In Hendricks, et. al. study 41% of 

participants engaged in exercise at least once daily; 55% of those individuals who 

engaged in daily exercise demonstrated a mean duration of 30 minutes or more. Mean 

exercise duration was 29.56 minutes/day and ranged from 0 to 157 minutes.  

To eliminate inaccuracies from self-reported data and to obtain statistically 

significant results by increasing the sample sizes, quantitative studies are taking full 
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advantage of the data generated by diabetes technology as was conducted here. Blood 

glucose monitors, continuous glucose monitors and insulin pumps can objectively store 

data that reflects what patients actually do, as opposed to what patients say they are doing 

(self-reported data). Driscoll and Young-Hyman provide a detailed review of the use of 

such technology in assessing adherence to diabetes self-management behaviors [70]. 

Their 2014 review focused on patients’ adherence to the ADA Clinical Practice 

Recommendations with an emphasis on studies that assessed patient adherence to glucose 

monitoring, insulin administration, medical nutrition therapy, and physical activity [104]. 

The review by Driscoll and Young-Hyman did not discuss alcohol consumption. In terms 

of physical activity, their review highlighted the lack of studies that quantify physical 

activity and suggest the future use of accelerometers to objectively measure physical 

activity. 

The goal of this study was to address the lack of qualitative and quantitative 

studies to understand adult T1D patients’ self-management practices occurring in 

conjunction with alcohol intake and exercise. Results indicated that subjects did not have 

a consistent understanding of how exercise and alcohol affected their glucose control, nor 

did they report a common set of standards on how they compensated for the impact of 

these common lifestyle choices in their diabetes management. Additionally, there was no 

one means by which they obtained information on these important topics. Documented 

adjustments in carbohydrate intake, insulin doses, and glucose monitoring occurred at 

frequencies lower than what might be expected. In the case of alcohol consumption, very 

few instances of changes in self-management behavior were noted.  
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The results demonstrate the need for a revision of current educational strategies to 

help patients understand proper alcohol and exercise compensation techniques and to 

encourage consistent behaviors. A number of approaches could be utilized, such as the 

use of social media, or incorporating more consistent or complete training during diabetes 

self-management education sessions. Another approach could be the development of 

software applications that assist patients in making decisions about how to change 

carbohydrate intake or adjust insulin doses in the event of an exercise or alcohol event.  

Further research will be needed to better understand and explain the findings 

observed here and their practical implications. This study revealed that many patients 

described using a behavioral technique that was inconsistent with their actual behaviors. 

While it is clear that subjects were often acting in a manner different than that reported, it 

is unclear if these study subjects were conscious of these inconsistencies. Future work 

could aim to better understand real life insulin pump behaviors and look for explanations 

for observed behaviors from study participants by re-contacting and interviewing them 

using sets of detailed scenario-based questions that replicate the most frequently observed 

behaviors.  It would also be interesting to review patient data with the subjects to see if 

they were aware of their inconsistencies. Similar detailed scenario-based questions that 

could help to understand reasons for patients’ common self-management behaviors could 

be posted to diabetes patients online communities, like Glu (https://myglu.org) or 

PatientsLikeMe (https://www.patientslikeme.com), that are designed to accelerate 

research and amplify the collective voice of thousands of diabetes patients. 
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An important limitation of our study was the use of paper-based records for 

collecting participant’s self-reported data on exercise, alcohol and carbohydrate intake. It 

is possible that subjects were not recording all their exercise or alcohol events. There are 

methods available to improve upon the accuracy of the data collected that are currently 

being employed in a follow-up study currently underway. For instance, to achieve higher 

accuracy in the reported data on exercise wristband heart rate accelerometers are being 

provided to subjects that measure the intensity and duration of exercise. In this follow-up 

study, participants are being asked to use a smartphone app to self-report data on 

perceptions on how alcohol/exercise affect insulin absorption and sources of education, 

and food and alcohol consumed and exercise performed.  The authors expect to take 

advantage of the ubiquity of smartphones to obtain more precise records on food and 

alcohol consumed and exercise performed. Another limitation is the small sample size, 

although each subject did generate multiple behaviors that could be analyzed. 

4.6 Conclusion 

The reported analysis of real life diabetes self-management decisions provided 

insight on behaviors occurring in conjunction with alcohol intake and exercise among 

patients using insulin pump therapy. The results of this study revealed the need for 

improved individualized educational techniques and decision support systems to assist 

patients with incorporating exercise and alcohol into daily life and self-management of 

their blood glucose.  The lessons learned from this study reinforces the need for a 

decision support tool, like iDECIDE, that accounts not only for meals, but also exercise 

and alcohol when making insulin bolus suggestions.  
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5 EVIDENCE-BASED INSULIN BOLUS DOSING ALGORITHM: IDECIDE 

5.1 Introduction 

In Chapter 2 we reviewed the state of the art on clinical evidence on lifestyle 

factors that affect diabetes patients’ blood glucose control, and decision support tools 

available to help patients self-manage blood glucose control (Aim 1). Our review 

indicates that while clinical evidence shows that carbohydrates, alcohol and exercise 

affect blood glucose control, current diabetes technology only account for carbohydrates 

when recommending insulin dosing.  Chapter 3 helped us to better understand how 

patients with diabetes use insulin pumps to daily manage their blood glucose and how 

they compensate for lifestyle choices when they are away from their endocrinologist 

(Aim 2).  The results presented in Chapter 4 showed that subjects did not have a 

consistent understanding of how exercise and alcohol affected their glucose control, nor 

did they report a common set of standards on how they compensated for the impact of 

these common lifestyle choices in their diabetes management (Aim 2).  These findings 

further validated the need to propose an insulin dosing bolus decision aid that accounts 

for exercise and alcohol.  Here we propose iDECIDE, an evidence-based insulin dosing 

decision aid (Aim 3). 

5.2 Background 

Current decision aids available to diabetes patients, such as bolus calculators 

embedded into insulin pumps, consider blood glucose, active insulin, and carbohydrate 

loads when making insulin recommendations.  Exercise and alcohol are two lifestyle 

preferences known to have an effect on blood glucose.  Reference Chapter 2.4.1-2.4.4 for 
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additional information regarding the effects of carbohydrates, insulin, exercise and 

alcohol on blood glucose. Reference Chapter 2.4.5-2.4.6 for an expanded background on 

the state of the art decision support systems for diabetes management.   

The objective was to adapt the standard insulin bolus equation (Equation 2.1) to 

account for exercise and alcohol in order to make recommendations that improve glucose 

control which are based on evidence identified in the literature review conducted in 

Chapter 2 (Aim 1). 

5.3 Methods and Materials 

Evidence regarding the effects of exercise and alcohol were identified in a 

literature search, see Chapter 2.3 for literature review methods.  The results of the 

literature review with regards to exercise and alcohol were briefly presented in Chapter 

2.4.3-2.4.4 (Aim 1).  The findings from the literature review were used to expand the 

standard insulin bolus equation (Equation 2.1) in order to account for exercise and 

alcohol. 

5.4 Results 

We propose a new insulin dosing equation (Equation 5.1) that builds upon the 

standard insulin blousing equation (Equation 2.1). As we noted previously, insulin pump 

calculators do not consider exercise when calculating insulin dosage, neither do they 

factor in the effects of carbohydrates in alcoholic beverages (alcohol carbs).  The 

proposed algorithm incorporates these two additional factors to suggest the dosage of 

rapid acting insulin or the consumption of carbohydrates.  In the following subsections, 

we describe the components of the iDECIDE insulin dosing bolus calculator.  
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Equation 5.1: Proposed insulin dosing equation to account for exercise and alcohol 

carbs: 

𝑈 = (
𝑐𝑎𝑟𝑏𝑠 + 𝑎𝑙𝑐𝑜ℎ𝑜𝑙 𝑐𝑎𝑟𝑏𝑠

𝐼𝐶𝑅
+  

𝑐𝐵𝐺 − 𝑡𝐵𝐺

𝐶𝐹
− 𝐼𝑂𝐵) − 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 

If U ≤ 0 then carbs = exercise 

5.4.1 Accounting for carbohydrates in meals 

A preprandial insulin bolus is delivered in order to account for the carbohydrate 

load in meals.  The amount of carbohydrates that 1 unit of insulin will cover is the insulin 

to carbohydrate ratio (ICR).  The amount of carbohydrates to be consumed is divided by 

the ICR in order to determine the amount of insulin bolus to deliver, represented by U, 

which represents the units of insulin. 

5.4.2 Accounting of out-of-range blood glucose 

When the target blood glucose range is set (tBG), the insulin sensitivity factor 

(ISF), or correction factor (CF), is used to determine the amount of insulin to compensate 

for a current blood glucose (cBG) which may be out-of-range.  The CF is the ratio of how 

much 1 unit of fast-acting insulin will lower blood glucose over the course of 2-4 hours 

during a fasting of pre-meal state.  When a range of target blood glucose is provided, 

iDECIDE will correct to the nearest target value when the current blood glucose is out or 

range. 

5.4.3 Accounting for insulin on board 

Insulin on board (IOB) is calculated to determine the amount of insulin still 

available in the blood stream to present “insulin stacking” which can lead to 

hypoglycemia.  We adapted the insulin concentration as reported by Lindholm, et. al. as 
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free serum insulin [105].  Table 5.1 shows the functions that were extrapolated from the 

Lindholm study and Figure 5.1 depicts the resulting linear function.  The calculation of 

IOB considers the area under the linear function by integration which results in 212.52 

mU/L of free serum insulin. The calculation for IOB is aggregate, so for example if 2.5 

hours had elapsed from the injection of 3 units of insulin the area under this portion of 

curve would be 157.24 mU/L, which is (157.24/212.52) = 74% of the area, or 74% of the 

insulin would be absorbed.  The IOB would be (3 * 0.74) = 0.78 units of insulin. 

Table 5.1: Time based calculations for insulin on board, where x is the time in hours 

following the delivery of an insulin bolus and y is the insulin amount in units. 

x y 

x = 0.00 to x <= 0.33 181.82 x 

x > 0.33 to x <= 0.49 38.0 + 67.0 x 

x > 0.49 to x <= 0.65 60.5 + 21.5 x 

x > 0.65 to x <= 2.50 88.5 – 21.5 x 

x > 2.50 to x <= 4.00 65.0 – 12.0 x 

x > 4.00 to x <= 6.00 50.5 – 8.42 x 
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Figure 5.1: Linear function that results from the function shown in Table 5.1, which 

were extrapolated from Lindholm, et.al. [105]. 

 

5.4.4 Accounting for carbohydrates in alcoholic beverages 

Studies done by Koivisto, et.al. and Gin, et.al. show that alcohol does not lead to 

hypoglycemia when the alcoholic beverage served was red wine, a beverage that contains 

carbohydrates [43,45].  Richardson, et.al. and Turner et.al. served alcoholic beverages 

with little to no additional carbohydrates and found that blood glucose levels were an 

average 50 mg/dL lower than when identical meals were served with water [17,44].  This 

leads us to consider that the carbohydrates associated with the alcoholic beverage may 

play a role in blood glucose levels and we chose to account for them when calculating 

insulin boluses.  
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We reviewed the alcoholic and carbohydrate content of the standard drink size of 

various beverages and grouped the drinks into the following five categories as depicted in 

Figure 5.2: Five classes of alcoholic beverages based on the carbohydrate and alcoholic 

content of one standard serving size. 1) spirits, 2) red wine, 3) light beer, white wine or 

cocktails, 4) beer or fortified wine, and 5) hard cider or mixed drinks.  These categories 

are used to determine the amount of carbohydrates associated with alcoholic beverages 

which allows the carbohydrates to be accounted for when calculating an insulin bolus 

which is reflected in Equation 5.1 (alcohol carbs). 
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Figure 5.2: Five classes of alcoholic beverages based on the carbohydrate and 

alcoholic content of one standard serving size. 

 

5.4.5 Accounting for exercise 

In the case of exercise, the algorithm can suggest an insulin bolus or to consume 

carbohydrates.  After carbohydrates (carbs/ICR), including those from alcohol (alcohol 

carbs/ICR), out-of-target blood glucose (cBG – tBG/CF) and IOB are considered in 

Equation 5.1, the combination of intensity and duration provides a reduction of the 

insulin bolus, see Table 5.2 [30].  If the calculation results in a positive amount of insulin 
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then insulin is suggested, if the calculation results in no insulin or a negative amount of 

insulin then the body weight of the individual is considered along with the intensity and 

duration of the exercise to suggest consuming a snack with carbohydrates.  See Table 5.3 

for the carbohydrate replacement values for every 30 minute increment of exercise [30].  

In order to use the carbohydrate replacement lookup table, we specified the weight ranges 

that map to the weight categories, see Table 5.4 

Table 5.2: Insulin reduction based on exercise duration and intensity. 

Exercise Intensity 
Short Duration 

(20-40 min) 

Moderate Duration 

(40-60 min) 

Long Duration 

(>60 min) 

Light -10% -20% -30% 

Moderate -25% -33% -50% 

Vigorous -33% -50% -67% 
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Table 5.3: Carbohydrate suggestion in grams for every 30 minutes of exercise, based 

on body weight and exercise intensity. 

Exercise Intensity 23 kg 45 kg 68 kg 91 kg 114 kg 

Light 3g 5g 8g 10g 12g 

Moderate 5g 8g 10g 12g 15g 

Vigorous 8g 12g 18g 24g 30g 

 

Table 5.4: Weight ranges for using Table 5.3.  

Weight Category Weight Ranges 

23 kg Weight <= 34 kg 

45 kg 34 kg < Weight <= 56 kg 

68 kg 56 kg < Weight <= 79 kg 

91 kg 79 kg < Weight <= 102 kg 

114 kg Weight > 102 kg 

 

5.5 Discussion 

We proposed an insulin dosing bolus calculator, iDECIDE, that not only accounts 

for standard variables, such as carbohydrates from meals and current blood glucose, but 

also considers exercise and alcohol, two factors that influence glycemic outcomes (Aim 

3).  One of the limitations of the proposed algorithm is that in its current form it only 

accounts for the acute effects of exercise and alcohol, although both are known to also 

have delayed effects on glucose levels [11,44].  One of the advantages of the iDECIDE 

algorithm is that it is based on clinical evidence that can easily be accessed by clinicians 

and patients, unlike closed-loop algorithms that use proprietary formulas and techniques 

such as machine learning that hide the rationality behind proposed recommendations.  
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Also, recommendations from iDECIDE can be broken down by each component of the 

equation to provide the reasoning for the insulin of carbohydrate suggestion. As more 

studies come forward, the iDECIDE decision aid can be adjusted to account for the latest 

evidence available.  
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6 A NOVEL METHODOLOGY TO COMPARE INSULIN DOSING ALGORITHMS 

IN REAL-LIFE SETTINGS 

6.1 Introduction 

In Chapter 5 we proposed the iDECIDE evidence-based decision aid (Aim 3) to 

recommend an insulin bolus dosage or carbohydrate intake, by taking into account 

relevant input on planned carbohydrate consumption from meals and alcohol, and 

intensity and duration of exercise.  Once the decision aid was developed it became 

necessary to assess its effectiveness to achieve blood glucose control, prior to its 

implementation as part of a smartphone application and dissemination to patients and 

providers for clinical use (Aim 4). 

Typically, clinical trials are used to determine the safety and efficacy of an 

intervention.  Clinical trials are prospective studies that require a significant amount of 

resources and expose patients to risks.  We found that there was a lack of low-cost and 

risk-free methods to retrospectively assess the performance of insulin bolus algorithms in 

preparation for future clinical trials.  Therefore, in this chapter we introduce novel 

methods to retrospectively: 1) compare the appropriateness of insulin bolus suggestions 

from bolus calculator that was prospectively applied in a real-life setting against a 

retrospective recommendation from a proposed bolus calculator, and 2) determine the 

appropriateness of a proposed insulin bolus calculator in cases where there are no 

recommendations from the conventional approach to compare against. 

Later, in Chapter 7, we applied the proposed methods to assess the effectiveness 

of iDECIDE’s recommendations and share lessons learned from collecting, aggregating 
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and analyzing real-life data generated by insulin pumps and self-reported patient 

behaviors. 

Preliminary results from this research were presented as posters at the Diabetes 

Science and Technology Meeting 2015 and the American Diabetes Association 76th 

Scientific Session 2016 [83,106] (APPENDIX A.3 and A.5).  An extended version of 

those posters has been published in the Journal of Diabetes Science and Technology 

[107] (APPENDIX C.3).  Chapter sections 6.2 through 6.3 comprise the portions of the 

published manuscript that introduce the novel method.  The remaining portions of the 

published manuscript are presented in Chapter 7. 

6.2 Background 

Models exist to study insulin delivery algorithms in controlled, simulated settings. 

Before undergoing clinical trials, a common practice to facilitate the design, development 

and testing of diabetes technology is to use in-silico methods [108–113].  Recently, 

Wong et al. proposed a method to retrospectively compare insulin bolus (IB) algorithms 

using Intensive Care Unit (ICU) data [114].  They concluded that in-silico comparisons 

appear to be an efficient nonclinical method for allowing rapid and inexpensive 

identification of computer-based protocols that justify expensive and burdensome clinical 

trials.   

Although algorithms exist to study IB algorithms in controlled environments, 

there is a lack of methods capable of analyzing glucose data simultaneously with patient 

behaviors and the goals was to develop an analytic method to retrospectively compare 

prandial IB recommendations. 
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6.3 Methods and Materials 

6.3.1 Retrospective comparison of two insulin bolus algorithms 

To evaluate the performance of the PDA against conventional approaches to 

prandial insulin dosing, the authors adapted methodology from Wong et. al. [114]. For 

this study, the conventional approaches to insulin dosing were defined as either use of the 

IPBC or participant’s self-determined doses. The PDA’s recommendations were 

compared against those made by the participant’s IPBC, or against the participant when 

they either overrode or neglected to get advice from their IPBC (Figure 6.1) 

The “appropriateness” of an IB was defined as one that brings the postprandial 

glucose to the desired target [114]. The method assumes that a conventional insulin 

dosing calculator, BCa (i.e. IPBC or the participant), has made an IB recommendation. 

The point in time when BCa made the IB suggestion and when the insulin was delivered 

is referred to as the initial time, ti. The method assumes that a proposed insulin dosing 

calculator, BCp (e.g. PDA), is retrospectively executed at the same data point, ti, to 

compare at time ti+1 the effect on BG of the insulin suggestion from BCp against the 

actual suggestion that was made by BCa. We considered that one calculator 

“outperformed” another calculator if there was a major performance enhancement over 

the competitor. For instance, in the case of a low postprandial BG we consider that a 

lower insulin dose recommendation outperformed higher insulin dose advice, potentially 

avoiding a hypoglycemic event. 

Applying this methodology requires that each preprandial BG at ti can be paired 

with a corresponding postprandial BG at ti+1. For meal events and BG corrections, we 
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defined ti+1 to be the first BG reading obtained 3 hours ±15 minutes, after ti. This time 

frame was chosen considering that the majority of the carbohydrate load and the rapid 

acting insulin analog bolus would have been absorbed and BG levels would have 

stabilized [105].  The BG readings at ti+1 were broken into three categories, based on pre-

determined individual target BG levels obtained from the insulin pump settings of each 

participant. The analysis determines which algorithm provided at time ti an IB 

recommendation that would have placed the participant closer to their target BG based on 

the category of the actual BG reading at ti+1. In the case of a target postprandial BG 

reading, we considered that a smaller insulin recommendation outperforms a larger 

recommendation because it could have avoided a hypoglycemic event. 
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Figure 6.1: Method used to retrospectively compare recommendations from two 

insulin bolus dosing algorithms, BCa and BCp.  If the recommendations from BCa 

and BCp were within 10% of each other they were considered to be equivalent. If 

the BG at ti+1 was low, then the smaller of the two recommendations from BCa and 

BCp was considered appropriate; if they were equivalent then neither was 

considered appropriate. If the BG at ti+1 was at target, then the smaller of the two 

recommendations from BCa and BCp was defined as appropriate, preferring 

recommendations that could avoid hypoglycemic events; if they were equivalent 

then both were considered appropriate. If the BG at ti+1 was above target, then the 

larger of the two recommendations from BCa and BCp was deemed appropriate; if 

they were equivalent then neither was considered appropriate. We considered that 

one algorithm outperformed the other if there was a major performance 

enhancement over competitor algorithm. In the case of on target postprandial BG, 

we consider that a lower insulin dose recommendation outperformed higher insulin 

dosing advice, potentially avoiding a hypoglycemic event.   

 

The method outlined in Figure 6.1 was used to compare the appropriateness of 

two calculators, BCa and BCp, and assumes that BCa (IPBC) has made IB 

recommendations that were delivered to the patient. A variation of that method is needed 

to assess the appropriateness of recommendations from BCp (PDA) when there is no 

available data from BCa (ie, no recommendation from the IPBC).  

6.3.2 Assessing the appropriateness of an insulin bolus algorithm for alcohol and 

exercise 

Conventional IPBCs do not provide IB recommendations for alcohol.  For these 

cases the method explained in Figure 6.2 was adopted. The postprandial time frame of 

interest, ti+1, was defined as the first BG reading obtained within 3 hours ±15 minutes. 

This time-frame neglects to consider any delayed effects from alcohol induced 

hypoglycemia and primarily focuses on the carbohydrates associated with alcoholic 

beverages.  
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Figure 6.2: Method used for assessing the appropriateness of the recommendations 

from the proposed decision aid (PDA), when patients choose to consume alcohol, for 

which the IPBC does not provide insulin dosing recommendations.  If the BG at ti+1 

is low or at target and the PDA did not recommend insulin the recommendation 

from the PDA was appropriate; if the PDA recommended insulin the 

recommendation was not considered appropriate. If the BG at ti+1 is high and the 

PDA recommended insulin the recommendation from the PDA was appropriate; if 

the PDA did not recommend insulin the recommendation was not considered 

appropriate. Given that our PDA is not compared against another calculator, 

outperformance is not defined. 
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As with alcohol ingestion, when participants exercised there were no 

recommendations made by the IPBC. For those cases, we used the method in Figure 6.3. 

We modified the window of ti+1 to be the first BG reading within 15 minutes of finishing 

exercise as recorded by the participant to detect any immediate effects of exercise-

induced hypoglycemia. For example, if the participant finished exercising at 8:30 AM, we 

used the first available BG between 8:30 and 8:45 AM. In the case of exercise, the PDA’s 

recommendations could be a carbohydrate snack in addition to an IB dose. For exercise 

scenarios, the appropriateness of the IB and/or carbohydrate was defined as in Figure 6.3  
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Figure 6.3: Method used for assessing the appropriateness of the recommendations 

from the proposed decision aid (PDA) when patients choose to exercise, for which 

the insulin pump bolus calculator does not provide insulin dosing or carbohydrate 

intake recommendations. If the BG at ti+1 was low or at target and the PDA 

suggested nothing or suggested consuming carbohydrates the recommendation from 

the PDA was considered appropriate; if the PDA recommended insulin, then the 

recommendation was deemed not appropriate. If the BG at ti+1 was high and the 

PDA suggested insulin the recommendation from the PDA was considered 

appropriate; if the PDA suggested no insulin or recommended consuming 

carbohydrates, then the recommendation was not considered appropriate. Given 

that the PDA is not compared against another calculator, outperformance is not 

defined. 
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6.4 Conclusion 

Here we have proposed novel methods for assessing the performance of insulin 

bolus calculators.  This method is low-cost and low-risk as it is designed to use data 

collected from prospective studies to retrospectively compare a proposed bolus calculator 

against a conventional approach for prandial insulin dosing (i.e. gold standard).  In the 

next chapter, we will apply these techniques to assess the performance of the iDECIDE 

algorithm, presented in Chapter 5, against the Medtronic MiniMed, Inc. insulin pump 

bolus calculator [28] (Aim 4).   
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7 RETROSPECTIVE ANALYSIS OF THE IDECIDE DECISION AID VS. 

CONVENTIONAL APPROACHES TO PRANDIAL INSULIN DOSING 

7.1 Introduction 

In Chapter 6 we proposed novel methods to retrospectively compare insulin bolus 

recommendations (Aim 4).  In this chapter, we apply the methods to: 1) test the 

performance of the iDECIDE decision aid, explained in Chapter 5, against the Medtronic 

MiniMed, Inc. [28] IPBC described in Chapter 2, and 2) evaluate the performance of 

iDECIDE’s recommendations in events when the patient exercises or drinks alcohol and 

no recommendations are provided by the Medtronic IPBC.  The results from applying the 

proposed methods will help to validate the hypothesis that postprandial blood glucose 

levels can be improved by providing insulin bolus (IB) or carbohydrate recommendations 

that account for meal and alcohol carbohydrates, exercise and glycemic excursions. 

In this study, 15 patients with T1D using insulin pumps were recruited.  

Informatics capabilities inherent in their insulin pump devices were used to gather 

glucose and insulin bolus data.  Self-reported data on alcohol and exercise, along with the 

pump data, were collected for 30 days, see Tables 7.1, 7.2 and 7.3 for the tabular format, 

respectively.  The methods described in Chapter 6 were used to compare the IPBC 

against iDECIDE, a decision aid that accounts for carbohydrates, alcohol and exercise to 

make recommendations. 
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Table 7.1: Sample of self-reported alcohol consumption in tabular format.  

Participants reported the time, drink type and volume.  Carbohydrates that were 

included in the insulin bolus calculation were also reported. 

Timestamp Drink Category Carbs Volume (mL) 

03/30/2016 08:26:00 PM Beer 5 237 

03/31/2016 07:50:00 PM Wine 0 100 

04/01/2016 09:00:00 PM Wine 0 148 

 

Table 7.2: Sample of self-reported exercise in tabular format.  Participants reported 

the start time, duration and intensity of the exercise. 

Timestamp Intensity Duration 

03/30/2016 06:58:00 AM Moderate 65 

03/31/2016 08:32:00 AM Light 255 

04/01/2016 07:30:00 AM Vigorous 50 
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Table 7.3: A sample of insulin pump data paired with a continuous glucose meter.  

Two instances of accessing the insulin pump bolus calculator are shown, and the 

carbohydrates consumed are included in these data. 
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04/03/16 

19:38 
87             

04/03/16 

19:40 
    4 120 85 20 95 50 87 0  

04/03/16 

19:40 
 Normal 2.5 2.5          

04/03/16 

19:50 
            85 

04/03/16 

19:55 
            81 

04/03/16 

20:00 
            87 

04/03/16 

20:05 
            93 

04/03/16 

20:15 
            99 

04/03/16 

20:20 
            105 

04/03/16 

20:25 
            116 

04/03/16 

20:35 
            126 

04/03/16 

20:41 
135             

04/03/16 

20:45 
    0.7 120 85 20 95 40 135 1.5  

04/03/16 

20:45 
 Normal 0.5 0.5          

04/03/16 

22:35 
            165 

04/03/16 

22:40 
            161 

04/03/16 

22:45 
            154 
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When comparing iDECIDE against the IPBC, equivalent insulin 

recommendations were made in 63% cases and iDECIDE outperformed in 23% while the 

IPBC outperformed in 14%.  When comparing iDECIDE against participants’ self-

determined boluses (bolus amounts delivered by participants without consulting the IPBC 

or overriding recommendations form the IPBC), iDECIDE made equivalent 

recommendations in 36% of the events and outperformed in 37% and the participants 

outperformed in 27%.  iDECIDE made appropriate recommendations in 64% of the 

alcohol events and 75% of the exercise events. 

Preliminary results from this research were presented as posters at the Diabetes 

Science and Technology Meeting 2015 and the American Diabetes Association 76th 

Scientific Session 2016 [83,106] (APPENDIX A.4 and A.5).  An extended version of 

those posters has been published in the Journal of Diabetes Science and Technology 

[107] (APPENDIX C.3).  Chapter sections 7.2 through 7.4 comprise the portions of the 

published manuscript that deal with subject recruitment, data collection and results from 

applying the novel methodology.  The portions of the published manuscript, i.e. 

introduction of the novel methodology to compare insulin dosing algorithms, was 

presented in Chapter 6.  

7.2 Background 

Current standards of care for patients with type 1 diabetes (T1D) advocate for 

tight control of blood glucose (BG) [8]. One treatment challenge for patients with T1D is 

optimization of postprandial glucose levels [115–117]. To help patients achieve improved 

glucose regulation, continuous subcutaneous insulin infusion devices (CSII, aka “insulin 
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pumps”) sometimes coupled with continuous glucose monitoring systems (CGMs), have 

been developed. Although devices can assist patients in making insulin dosing decisions 

through the use of bolus calculators, it is unknown how accurate the bolus 

recommendations are in real-life scenarios when complex lifestyle choices, such as 

exercise and alcohol intake, have to be considered in decision making. Recent data 

suggests that patients are often confused and inconsistent when trying to factor in these 

behaviors when deciding insulin doses [73,93]. 

The aim was to apply the proposed method (Chapter 6) in a real-life setting to test 

the performance of the iDECIDE evidence-based IB algorithm against the bolus 

calculator of an insulin pump, and share lessons learned from collecting, aggregating and 

analyzing real-life data generated by insulin pumps and self-reported patient behaviors.  

7.3 Methods and Materials 

7.3.1 Description of the iDECIDE Evidence-based based Insulin Bolusing Dosing 

Decision Aid 

iDECIDE, the PDA evaluated here, is an evidence-based decision aid to 

recommend IB doses, carbohydrate intake, or both, by taking into account carbohydrates 

and alcohol consumed, and/or exercise plans [22]. The PDA was deployed as a 

smartphone app to help patients with T1D incorporate varied lifestyle choices 

simultaneously into decisions about prandial insulin dosing. The PDA is based on the 

formula proposed by Colin [29] to include alcohol [17,44], exercise [11,12,15,30] and the 

absorption rate of rapid-acting insulin [105], The PDA corrects to the nearest target 

glucose setting when the blood glucose is out of range,  but  would not account for the 
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CGMS trendline. Exercise is accounted for based on body weight and duration and 

intensity of exercise, while the alcoholic beverage type and volume consumed are 

necessary to adjust for alcoholic beverages.  

When the user launches the PDA application the first time he is prompted to set 

up a diabetes profile: weight, insulin-to-carbohydrate ratios, target BG levels, correction 

factors and active insulin time [118].  Although participants did not set up their user 

profile for the study, those that did not use paper logs interacted with the self-reporting 

module to log (1) exercise, describing duration and intensity, (2) food intake, specifying 

food type, serving size and carbohydrate content, and (3) alcohol intake, indicating 

number of drinks, size, and type of drink (Figure 7.4). In addition, when self-reporting 

plans, the user is expected to enter the BG reading. The PDA subsequently recommends 

an IB or carbohydrate intake by incorporating current evidence on the way food and 

alcohol carbohydrates and exercise influence BG, but these recommendations were 

assessed retrospectively and were not provided to the participants. 
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Figure 7.1: Screenshots of the iDECIDE mobile application: A) Self-reported 

exercise plans; B) Self-reported plans for food and alcohol consumption; C) 

Summary of relevant preprandial information; D) Advice to take 5 grams of snack 

carbohydrates to avoid exercise-induced hypoglycemia. 
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7.3.2 Participant Recruitment 

Following Institutional Review Board approval (APPENDIX E 

First round of recruitment of Mayo patients with Type 1 diabetes: Mayo Clinic 

IRB Approval #14-004649, APPENDIX F 

Second round of recruitment of Mayo patients with type 1 diabetes: Mayo Clinic 

IRB Approval #15-006155), 31 study participants were recruited from an outpatient 

academic endocrinology practice. Patients with T1D 18 years or older who had been 

under the care of the endocrinology team while on CSII therapy using a Medtronic 

MiniMed, Inc. (Minneapolis, MN) [28] insulin pump for at least one year were eligible to 

participate.  

7.3.3 Data Collection 

Participants were asked to continue their usual fitness and nutrition routine. For 

30 days, participants recorded their exercise activity and alcohol consumption via paper 

logs or the self-reporting module of the PDA, according to subject’s preferences. 

Exercise was recorded by start time, duration and intensity, and categorized as light, 

moderate or vigorous. Alcohol was recorded by tracking drink time, type, volume, and 

number (e.g. 6PM, 1 pint of beer, no carbohydrates entered).  Carbohydrate content was 

entered in the insulin pump.  After 30 days, logs were manually encoded into tables or 

downloaded from a secure cloud-based server. 

Self-reported data on exercise and alcohol was used as input for the PDA. For 

exercise, the PDA recommends an IB or carbohydrate intake by considering body weight 
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and intensity and duration of exercise [11,12,15,30]. For alcohol, the PDA accounts for 

the carbohydrates of the alcoholic drinks based on type, volume and count.  

CSII data from the corresponding 30-day timeframe was downloaded in tabular 

format. CSII device data included carbohydrates recorded by the participant, BG levels 

either from a continuous glucose monitoring system (CGMS) or capillary BG monitor or 

both, amount of insulin delivered, pump settings, and the IB suggested by the insulin 

pump bolus calculator (IPBC). 

7.3.4 Data analysis 

Computer programs were written to automate the process of collating and 

analyzing the data generated by the insulin pumps with the self-reported patient 

behaviors, see Figure 4.1. Assessing the performance of the PDA at ti+1 against the IPBC 

was automated as was the comparison of the PDA against participants’ self-dosing 

choices when the IPBC was not used as anticipated. The computer programs were able to 

identify and extract all of the information needed for the PDA to make a recommendation 

at time t, which included storing previously delivered boluses in memory in order to 

calculate IOB. The computer programs then scanned ahead in order to identify the 

postprandial glucose at time ti+1 and categorized the outcome according to participant 

glucose targets (below, at, or above target).  Example 1: depicted in Figure 7.1. B) is the 

consumption of a meal at 19:40 (time = t) of 50 grams of carbs accompanied by a blood 

glucose check.  The participant delivered the same amount of insulin as recommended by 

the pump.  The PDA would have used the information in that row to make an insulin 

bolus recommendation.  The outcome of the insulin pump recommendation was 
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identified at 22:40 (time = ti+1) where the CGMS recorded 161 mg/dL, which was 

considered above target due to the target blood glucose range of 85-120 mg/dL.  Example 

2: a meal containing 40 g of carbs was consumed at 20:45 which was also accompanied 

by a blood glucose check.  In this case the participant chose to override the 

recommendation made by the insulin pump bolus calculator.  The PDA would have made 

an insulin recommendation at this point, which included a calculation of IOB from the 

previous insulin bolus.  In this case the PDA would have been compared against the 

insulin delivered by the participant and not the recommendation from the insulin pump.  

If available, the computer program would have scanned ahead to obtain the postprandial 

glucose in order to determine which bolus amount outperformed.   

7.4 Results 

7.4.1 Participant characteristics and data 

There were 31 participants recruited for the study, with 4 withdrawals. Of the 

remaining 27 participants, a subset of 15 participants (Table 7.1) had pre-prandial glucose 

readings paired with ti+1 BG readings, with 13 of them on CGMS (9 on Minimed 530G-

551, 3 on Minimed 530G-751, and 1 on Paradigm Revel-723).  

A total of 2,104 events had postprandial glucose readings that allowed for a 

comparison between the IPBC and the PDA, and there were 419 events where the PDA 

was compared against cases where the participants did not use their IPBC, they overrode 

the IPBC recommendations, or they did not provide a prandial BG. There were 235 

exercise and 105 alcohol events that had sufficient data for analysis. Most (56%) exercise 
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events were of moderate intensity. There were few (14%) alcohol events where 

participants accounted for the carbohydrates associated with the beverage.   

IPBCs allow different settings (BG target, insulin-to-carbohydrate ratio, and 

correction factor) throughout the day and the PDA accounted for these different settings 

for each participant at each time of day.  While participants used different Medtronic 

insulin pumps, all use the same formula for computing IB recommendations, and an 

adaptation of [119] for computing active insulin. The Medtronic 530G includes a 

threshold suspend feature, that is designed to automatically stop insulin delivery when the 

CGMS value falls below a patient-specific pre-set threshold.  There were 5 insulin 

suspension events that occurred in close temporal proximity to events of interest; such 

low frequency did not warrant removing data from the analysis. 

Table 7.4: Demographics of 15 subjects with Type 1 diabetes.  Data reported as 

mean (SD) or %. 

Characteristic Value 

Age (years) 48.7 (13.9) 

% Women 73.3 

% White 93.3 

Hemoglobin A1C 7.5 (1.2) 

Diabetes duration (years) 26.9 (11.8) 

Duration on insulin pump (years) 11.5 (5.3) 

Daytime Low/High Target BG 89.9 (8.6) / 112.3 (10.8) 

# Analyzable exercise events/day 1.1 (0.34) 

# Analyzable alcohol events/day 0.2 (0.18) 
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7.4.2 Comparison of iDECIDE against the insulin pump bolus calculator or participant 

We used the algorithm described in Figure 6.1 to compare the appropriateness of 

the PDA’s recommendations against events when the patient followed the IPBC 

recommendations for BG correction doses and/or carbohydrate loads that included a 

prandial and postprandial BG.   

The first assessment was was how the PDA (i.e. iDECIDE) compared against the 

IPBC (Table 7.2).  The IPBC brought the participants to target glucose levels in 13% 

(278/2104) events, below target in 10% (207/2104) and above target in 77% (1619/2104). 

When considering very low and very high postprandial BG, the BG was below 70 mg/dl 

in 3% (55/2104) and over 180 mg/dl in 35% (737/2104).  When considering instances 

where glucose was below target, iDECIDE would have recommended an appropriately 

smaller dose in 14% (28/207), but a larger dose in 13% (27/207) and an equivalent IB in 

73% (152/207). For glucose levels at target, iDECIDE would have suggested an 

equivalent IB in 58% (162/278) compared to the subject’s IPBC, but a higher dose in 

20% (56/278) and lower in 22% (60/278). In events where post-prandial glucose was 

higher than target, iDECIDE would have suggested a higher dose in 25% (406/1619), a 

lower dose in 13% (212/1619), and an equivalent dose in 62% (1001/1619). Overall, 

iDECIDE would have recommended an equivalent dose compared to the IPBC in 63% 

(1315/2104) of IB decisions. 

We used the algorithm in Figure 6.1 to compare the appropriateness of the PDA 

against decisions made by the participant (Table 7.2).  The participants self-dosing led to 

above target postprandial glucose in 76% (319/419), below target in 13% (54/419) while 
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participants only achieved target glucose levels in 11% (46/419).  There were 3% 

(14/419) of the events with a postprandial BG below 70 mg/dl and 37% (154/419) over 

180 mg/dl. When considering instances where glucose was below target, iDECIDE 

would have recommended an appropriately smaller dose in 43% (23/54), a larger dose in 

19% (10/54), and an equivalent IB dose in 38% (21/54). For glucose levels at target, 

iDECIDE would have suggested an equivalent IB amount in 9% (4/46) compared to the 

subject’s own decision, but a higher dose 39% (18/46) and lower in 52% (24/46). In 

situations where post-prandial glucose was greater than target, iDECIDE would have 

suggested a higher dose in 34% (107/319), a lower dose in 27% (86/319), and an 

equivalent dose in 39% (126/319). Overall, iDECIDE would have recommended an 

equivalent IB in only 36% (151/419) of instances compared to when the participant made 

their own decisions. 
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Table 7.5: Results from retrospective comparison of the appropriateness of the 

recommendations from iDECIDE's algorithm against the insulin pump bolus 

calculator (IPBC), and from iDECIDE's algorithm against the participant's self-

dosing choices.1 

Event type 
Postprandial BG 

(mg/dl) 

iDECIDE insulin recommendations 

Total 
Larger 

Dose 

Smaller  

Dose 

Equivalent 

Dose 

IPBC 

 

Low  

(< target) 
27 ‡ 28 † 152 § 207 

Target  

(participant target) 
56 ‡ 60 † 162 ¶ 278 

High  

(> target) 
406 † 212 ‡ 1,001 § 1,619 

TOTAL 489 300 1,315 2,104 

Participant 

Low  

(< target) 
10 ‡ 23 † 21 § 54 

Target  

(participant target) 
18 ‡ 24 † 4 ¶ 46 

High  

(> target) 
107 † 86 ‡ 126 § 319 

TOTAL 135 133 151 419 

 

                                                 

1 † iDECIDE recommendation was appropriate and insulin pump bolus calculator (IPBC) 

(or participant) was not appropriate, iDECIDE outperformed the bolus calculator (or 

patient). When iDECIDE recommends a lower insulin dose recommendation than the 

bolus calculator (or participant) and the postprandial BG is on target, iDECIDE could 

potentially avoid a hypoglycemic event and therefore outperformed the bolus calculator 

(or participant).   

‡ Bolus calculator (or participant) was appropriate and iDECIDE recommendation was 

not appropriate, Bolus calculator (or participant) outperformed iDECIDE.  

§ Events where iDECIDE and bolus calculator (or participant) recommendations were 

not appropriate. 

¶ Events where iDECIDE and bolus calculator (or participant) recommendations were 

appropriate. 
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7.4.3 Assessment of the appropriateness of iDECIDE’s recommendations for exercise 

and alcohol 

In cases of exercise and alcohol the pump does not suggest insulin. In these cases, 

the PDA is only assessed based on the BG outcomes since it could not be compared 

against the IPBC. We used the algorithm described in Figure 6.2 to assess the 

appropriateness the PDA’s recommendations when alcohol consumption was recorded.  

As reported earlier, patients self-reported accounting for the carbohydrate content of the 

beverage in 15 of the 105 events. As indicated in Table 7.3, in 64% (67/105) of overall 

alcohol events the PDA would have provided appropriate advice.  The PDA performed 

well when the postprandial BG was high with 78% (64/82) appropriate IB 

recommendations, but had poor performance when the postprandial BG was at target 

with only 5% (1/19) recommendations deemed appropriate. 

Table 7.6: Results from assessing the appropriateness of the recommendations 

regarding insulin dosing for alcohol consumption from the iDECIDE algorithm. 

Postprandial BG 
iDECIDE recommendations 

Total 
Appropriate Not Appropriate 

Low (< target) 2 2 4 

Target (participant target) 1 18 19 

High (> target) 64 18 82 

TOTAL 67 38 105 

  

We used the algorithm described in Figure 6.3 to assess the appropriateness of the 

PDA’s recommendation before exercise (Table 7.7: Results from assessing the 
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appropriateness of the recommendations regarding insulin dosing and carbohydrate 

ingestion for exercise from the iDECIDE algorithm.4).  The PDA appropriately 

suggested insulin or to ingest carbohydrates in 75% (176/235).  Similar to the alcohol 

results, the PDA performed well when post exercise BG was high 87% (154/178), but 

only made appropriate suggestions in 37% (10/27) and 40% (12/30) when the post 

exercise BG was low or target, respectively.  There were 26 exercise events that had a 

duration of 90 minutes or longer and the PDA made appropriate recommendation in only 

27%. 

Table 7.7: Results from assessing the appropriateness of the recommendations 

regarding insulin dosing and carbohydrate ingestion for exercise from the iDECIDE 

algorithm. 

Post exercise BG 

iDECIDE insulin dose 

and carbohydrate recommendations 
Total 

Appropriate Not Appropriate 

Low (< target) 10 17 27 

Target (participant target) 12 18 30 

High (> target) 154 24 178 

TOTAL 176 59 235 

 

7.5 Discussion 

Although advances in in-silico model technology have allowed for incorporation 

of new features into existing technologies to improve BG control, these often do not 

account for variables that affect BG (e.g. exercise, stress, sleep and illness).  Decision 

aids that assist patients with T1D to make better prandial insulin dosing decisions are 
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needed, particularly when patients must account for multiple simultaneous lifestyle 

variables that may impact BG levels.  

One of the main differences between this study and others that retrospectively 

evaluated the performance of prandial insulin dosing algorithms is the source of the 

clinical data. For instance, previous studies have compared the effectiveness of insulin 

dosing algorithms in controlled environments such as in the ICU [114,120], where 

glucose control is closely monitored and tracked and lifestyle behaviors are not a factor. 

In contrast, this study focused on free-living outpatients who made their own choices 

about insulin therapy, and where individual lifestyle choices have the potential to impact 

treatment decisions and outcomes.  

One of the analytic challenges we encountered when developing, testing, and 

comparing the effectiveness of insulin dosing algorithms is the complex nature of data 

generated from free-living participants. In our study, many of the self-management and 

daily living activities recorded by the participants occurred in tight temporal succession 

and could not be assessed as isolated events. This required development of a new analytic 

approach to evaluating the data. An unexpected positive outcome of this study was 

gaining a better understanding of patients’ self-management behaviors as they interact 

with insulin pumps [73,93].  

The methodology outlined here permitted an assessment of how our PDA would 

perform when used in different scenarios. When compared to the IPBC embedded in the 

subject’s insulin pump, iDECIDE in general was non-inferior, recommending IB doses 

equivalent to the IPBC standard in 63% of decisions overall and nearly equivalent 
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number of smaller doses when glucose levels were below or at target. There were some 

instances, 23% (494/2104), where iDECIDE was superior to the IPBC, such as when it 

would have recommended larger doses in cases when glucose levels were above target.  

Initial analysis of iDECIDE in cases where the doses were too large or small, provided 

insights which were used to improve performance with continuing analysis necessary for 

further refinement of the recommendations [83,106].  For instance, we used an initial 

setting of 3 hours of active insulin time to calculate IOB.  To improve performance, this 

was later adjusted to 4 hours which reduced the number of inappropriate 

recommendations that could have led to hypoglycemia.  In the future, iDECIDE should 

be adapted to the insulin action time specified for each patient.  

Employing the analytic paradigms developed here, we also assessed the 

performance of iDECIDE when there was a lack of recommendations from the IPBC 

with exercise and alcohol events.  In these analyses the postprandial glucose was used as 

the outcome measure.  For cases involving alcohol consumption, iDECIDE may have 

offered an advantage with deciding a compensatory insulin bolus. iDECIDE could have 

improved post-exercise BG when the duration was 90 minutes or less and the iDECIDE 

should be restricted to such events until further study.  

There are limitations to the study. This study incorporated self-reported data for 

exercise, meal and alcohol behaviors. It is possible participants did not record all these 

events, or may have recorded them inaccurately. Also, participants’ insulin pump settings 

were not adjusted for the study.  Inappropriate insulin pump settings, such as basal rates, 

could have influenced the results.  Sample sizes for alcohol and exercise events were 
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small with respect to the larger comparisons involving the IPBC. The study also did not 

consider late-onset hypoglycemia that can arise from engaging in exercise, and possibly 

when consuming alcohol.  To automate the analysis, we opted against determining an 

appropriate post-exercise timeframe on a case by case basis and instead focused on the 

immediate effects of exercise by employing a standard 15-minute post-exercise time-

frame.  Considering BG levels outside of the time-frames used for analysis in this study is 

another important factor to consider in the future when assessing and calibrating IB 

calculators. 

In addition, the analysis was done retrospectively. A prospective analysis, where 

iDECIDE makes suggestions in real time, would help further delineate its capabilities, 

improve performance and assess user acceptance. A recent analysis suggests that mobile 

apps can offer advantages in diabetes management, but more rigorous studies are needed 

[121]. Finally, the analytic algorithms tested here were for a very specialized group of 

patients (T1D on insulin pumps) and we did not conduct an analysis of the outcomes in 

relation to A1c scores. Testing these methodologies in a wider selection and more diverse 

population of patients (e.g. T1D patients on multiple daily insulin injections or patients 

with type 2 diabetes) would be needed to test the generalizability of the approach. 

7.6 Conclusion 

We introduced an analytic method to use prospective real-life data to 

retrospectively compare insulin dosing recommendations (Chapter 6).  This novel 

methodology was used to assess the recommendations of iDECIDE, an evidence-based 

decision aid (Aim 4).  The analysis done with the novel methods validates the hypothesis 
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that postprandial glucose levels of adult patients with T1D can be improved by providing 

insulin bolus or carbohydrate recommendations that account for meal’s carbohydrates, 

glycemic excursion, alcohol consumption and planned exercise.  The results presented in 

this study support the case for accounting for planned exercise, while accounting for 

carbohydrates from alcohol is not definitive at this point. 
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8 DESIGN AND DEPLOYMENT OF THE IDECIDE DECISION AID AS A 

SMARTPHONE APPLICATION 

8.1 Introduction 

Exercise and alcohol have an effect on blood glucose, but as discussed in Chapter 

2, there are currently no decision aids that account for those two variables when 

suggesting insulin boluses (Aim 1), despite patients’ daily needs for adjusting for 

exercise and alcohol to improve glycemic control (Chapters 3 and 4) (Aim 2). Results 

from a completed retrospective analysis performed using proposed novel methodological 

approaches demonstrated that the iDECIDE insulin dosing algorithm could lead to 

improved glycemic control when compared against a proprietary insulin pump bolus 

calculator (Chapters 6 and 7) (Aim 4). 

In this chapter, we discuss completed and future work to deploy the proposed 

iDECIDE insulin dosing algorithm as an iOS smartphone application (app) (Aim 5).  

8.2 Background 

Mobile technology, such as smartphone apps, show promising results in their 

ability to improve health outcomes due to their low-cost and high penetration of 

smartphone ownership [122].  But researchers have yet to confirm the effectiveness of 

app-based interventions in improving glycemic control in patients with T1D, which is 

likely due to the lack of high quality controlled trials [121,123].   

Although there are over 1,000 diabetes apps available for download, unfortunately 

very few undergo usability testing and most are not evidence-based [124,125].  Currently, 

clinicians and patients rely on app ratings and reviews from other users when selecting a 
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diabetes app.  While good ratings may be indicative of the usability of the app, it is not 

possible to translate app ratings into improved health outcomes for the users [60]. 

In a systematic review of diabetes mobile apps, researchers found that a large 

number of the apps were merely digital versions of logbooks and many only provided one 

functionality out of many of the desirable tasks for self-management that are feasible to 

be implemented with mobile technology [126].  Other limitations of the reviewed apps 

were data entry issues and integration with electronic health records.  Another systematic 

review of diabetes apps found that the majority of the apps were similar to each other and 

that they typically only offered one or two functions [60].  The authors from this review 

indicated that providing multiple functionalities would be beneficial to producing an app 

for diabetes self-management and that patients and clinicians should be part of the app 

development process.   

According to Goyal, et.al. [127], diabetes apps should provide the following 

functionalities: monitor BG and objectively track medications, nutrition, exercise and 

body weight.  A recent study was only able to identify 9 apps out of 965 that were free 

and available for download from Apple [128], Google (Android) [129], or Microsoft 

(Windows) [130] app stores that provided the four functionalities [131].  These results 

indicate that there is a gap between evidence-based research and the apps available in the 

marketplace. 

There are very few apps that provide decisional support, for example, providing 

recommendations for bolus insulin.  Two such apps are “Diabeo” [132] and “”ABC4D” 

[133–135].  Diabeo uses carbohydrate loads, blood glucose and planned exercise to make 
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insulin recommendations.  Additionally, Diabeo uses an algorithm to automatically adjust 

ICR and basal rates when postprandial glucose levels do not fall within a predetermined 

target range.  A 6-month clinical trial demonstrated the app’s ability to improve HbA1c 

scores in patients with T1D [132].  The ABC4D app uses case-based reasoning to make 

insulin recommendations for meals.  Meal instances and glycemic outcomes for an 

individual are described by a set of 10 parameters which are stored and later referenced 

by ABC4D in order to make insulin recommendations by matching the current meal to a 

similar one stored in memory.  A 6-week study showed that out of the 10 possible 

parameters for the bolus calculator, participants used exercise and alcohol the most [135].  

The safety, but not efficacy, of the app was demonstrated by a decrease in the number of 

hypoglycemic events during the study period [134].   

Although there are similarities between the bolus calculator capabilities of 

Diabeo, ABC4D and iDECIDE, iDECIDE is different in that it not only makes insulin 

recommendations, but also recommends carbohydrates.  The recommendations from 

iDECIDE are transparent and can be broken down and understood by patients and 

clinicians.  Insulin recommendations from Diabeo and ABC4D use artificial intelligence 

methods when making insulin recommendations, which can make it difficult for patients 

and clinicians interpret the reasoning behind the recommendations.  Also, the iDECIDE 

app includes other functionalities beyond providing insulin and carbohydrate 

recommendations.  iDECIDE provides several features for self-tracking meals and 

assistance with carbohydrate counting, such as suggested carbohydrate content of 

alcoholic beverages, barcode and text search access to food databases, a user-specified 
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favorite foods list, and documenting meals with a photograph.  iDECIDE also provides 

links to educational material, allows users to set their iDECIDE calculation parameters 

(e.g. ICR, CF and target BG), and integrates with Apple’s HealthKit [136].  These 

functionalities are presented in more detail in this chapter.  

The objective was to design and deploy the iDECIDE decision aid as an app that 

incorporates the evidence-based bolusing algorithm in order to improve glucose control. 

8.3 Methods and Materials 

Prototypes of the iDECIDE app were developed with Proto.io [137], Justinmind 

[138], Android Studio [139] and PhoneGap [140].  For the development of the iDECIDE 

app as a clinical decision support system (CDSS) we adopted the conceptual model 

proposed by Greenes in [141], where the iDECIDE app is composed of a knowledge 

base, an information model, an execution engine and results (output generation) (Figure 

8.1). As suggested by Greenes, the modular deployment of the iDECIDE application has 

the potential to facilitate future updates and maintenance of the CDSS. In the next 

subsections, we explain the iDECIDE’s implementation modules in more details. 
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Figure 8.1: The user of the iDECIDE app input information about his endocrine 

settings and plans for meals, alcohol and/or exercise which are saved to the 

knowledge base through the results module.  The information model specifies the 

data format for the knowledge base.  The execution engine reasons over the data 

stored in the knowledge base to make recommendations for insulin and/or 

carbohydrates to maintain glycemic control.  The recommendations are output to 

the user on a smartphone via the results module. 

 

8.3.1 User 

The intended users of the iDECIDE app are adults with type 1 diabetes who self-

manage glycemic control with intensive insulin therapy which can be delivered via one of 

two treatment options: multiple daily injections (MDI) or continuous subcutaneous 

insulin injections (CSII).    The user interacts with iDECIDE by self-reporting endocrine 



  

106 

 

settings and lifestyle preferences that have an effect on blood glucose levels.  The user 

then receives recommendations from iDECIDE to maintain glycemic control.  

8.3.2 Information Model 

iDECIDE’s information model was specified as a Unified Modeling Language 

(UML) class model, see Figure 8.2.  The information model supports the three functions 

of iDECIDE:  

1. store user endocrine settings, 

2. track daily meals, alcohol and planned exercise, 

3. apply the evidence-based iDECIDE algorithm to recommend pre-meal 

bolus and/or carbohydrate intake based on current blood glucose, alcohol 

and food intake, exercise plans and endocrine settings. 

8.3.2.1 Setup user’s endocrine settings 

Upon launching the iDECIDE app for the first time the Diabetes Patients is 

prompted to self-report their diabetes profile settings: Target Glucose, correction factor 

(CF), insulin to carbohydrate ratio (ICR) and body weight.  Target Glucose, CF and ICR 

are Endocrine Test Findings; the values for these settings are advised and guided by the 

patient’s endocrinologist.  For example, ICR could be set to 10 mg/dL for the a full 24-

hours, see Figure 8.3.  iDECIDE supports the storage of multiple values for each of the 

three endocrine settings over a 24-hour period, for example, ICR could be set at 10 

mg/dL from midnight to 4:00 p.m. and a value of 15 mg/dL could cover the remainder of 

the day from 4:00 p.m. to midnight.  Target Glucose, CR and ICR, along with weight, are 

Observable Entities that belong to the Diabetes Patient. 
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8.3.2.2 Self-tracking meals, alcohol, and exercise 

iDECIDE can be used to record Plans made related to carbohydrates from meals 

(Carbs Plan), alcoholic intake (Alcohol Plan), exercise (Exercise Plan) and delivered 

insulin (Insulin Plan).  Alcohol Plans also have Carbs Plans based on the type and 

amount of alcohol consumed.  An example of a combination of a Carbs Plan along with 

an Alcohol Plan could be to consume 2 slices of pizza that contains 35 grams of carbs 

(Figure 8.3.B) while also having a 12-ounce beer that consists of 8 grams of carbs (Figure 

8.3.C).  A potential Exercise Plan could be to engage in 30 minutes of light activity at 

noon (Figure 8.3.E).  An example of a more complex Exercise Plan would be to warm up 

with 10 minutes of moderate activity at 7:00 a.m., followed by 20 minutes of intense 

activity at 7:10 a.m.  An example of an Insulin Plan is to bolus 3 units of insulin at 6:30 

p.m. 

8.3.2.3 Apply evidence-based algorithm 

iDECIDE uses an Evidence-based algorithm to generate insulin bolus (Insulin 

Plan) or carbohydrate intake (Carbs Plan) Recommendations based on endocrine settings 

(Observable Entities) and Plans for carbohydrates (Carbs Plan), alcohol (Alcohol Plan) 

and exercise (Exercise Plan).  The dosing algorithm also considers previous Insulin Plans 

that the user delivered (commits) in order to determine how much insulin is on board 

(IOB Evidence) (Table 5.1).  While the user is self-tracking carbohydrates, alcohol and 

exercise, they are also prompted to provide a current blood glucose reading (Current 

BG).  In the case when the meal that consisted of 2 slices of pizza (Carbs Plan) and a 

beer (Alcohol Plan) the current blood glucose (Current BG) was 135 mg/dL, iDECIDE 
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recommends the diabetes patient to deliver 4.8 units of insulin (Insulin Plan) (Figure 

8.3.D).  In the exercise example (Exercise Plan) of 30 minutes of light activity at noon 

with a current blood glucose of 107 mg/dL, iDECIDE recommends the diabetes patient 

consume a snack of 5 grams of carbohydrates (Carbs Plan) (Figure8.3.F). 

 

Figure 8.2: UML class diagram depicting the information model of the iDECIDE 

app.  The classes and relationships support the three functionalities of the app: 1) 

store endocrine settings; 2) self-track meals, alcohol and exercise; 3) apply relevant 

evidence to recommend insulin bolus or carbohydrates based on current blood 

glucose, carbohydrates, alcohol, planned exercise and endocrine settings. 
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Figure 8.3: Screenshots of the iDECIDE app; A) setting the endocrine setting: 

insulin to carbohydrate ratio (ICR); B) self-tracking a meal with carbohydrates; C) 

self-tracking an alcoholic beverage; D) iDECIDE’s insulin recommendation to cover 

carbs associated with a meal, alcohol and out-of-range blood glucose; E) self-

tracking exercise; F) iDECIDE’s carbohydrate recommendation to compensate for 

exercise. 
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The Alcohol Evidence breaks alcoholic beverages into five classes based on the 

carbohydrate and alcohol content of one standard serving size (Figure 5.2), which values 

are used to adjust the amount of insulin recommended.  Exercise Evidence has two 

components: reduce the insulin bolus and/or suggest taking a carbohydrate snack.  The 

reduction of insulin considers the duration and intensity of the exercise (Table 5.2) while 

suggesting carbohydrates takes into account body weight and exercise duration (Tables 

5.3 and 5.4).  A complete description of the evidence-based insulin dosing equation is 

found in Chapter 5. 

8.3.3 Knowledge Base 

As discussed in Chapter 5, relevant evidence is incorporated into the insulin 

dosing algorithm in order to provide recommendations for insulin or carbohydrates.  The 

static portion of the knowledge base includes: user’s self-reported endocrine settings 

(Target Glucose, CF, ICR), the categorizing of alcoholic beverages and the effect on 

glycemic control (Alcohol), the effects of exercise on blood glucose (Exercise), as well as 

the evidence for calculating IOB.  Dynamic portions on the knowledge base incorporate 

real-time data entry when the user engages in self-tracking of meals (Carbs Plan), 

alcohol (Alcohol Plan), exercise (Exercise Plan) and current blood glucose (Current BG). 

8.3.4 Execution Engine 

The execution engine is comprised of the proposed evidence-based insulin 

bolusing algorithm (Chapter 5).  The engine has access to the evidence (Alcohol, 

Exercise, IOB) which is encoded in a static format to the knowledge base.  The execution 

engine also accesses additional information that is user-generated which also populates 
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the knowledge base (Findings).   Real-time user input regarding current plans (Carbs, 

Alcohol and/or Exercise Plans) and the CurrentBG are required for the insulin bolus 

decision aid to make recommendations.  In short, the engine reasons over the patient’s 

stored endocrine settings and the current Plans to make suggestions for an Insulin Plan 

and/or a Carbs Plan while incorporating the appropriate Evidence based on the context of 

the situation. 

8.3.5 Input, Output and Results 

The results are related to how the CDSS presents output and elicits input from the 

user.  Interfaces have been designed that support the functionalities of iDECIDE, see 

Figure 8.3.  The interfaces and functionalities have been improved after two rounds of 

usability testing. 

8.4 Results 

In this section, we describe two usability studies of the iDECIDE app.  The 

author, Danielle Groat, conducted the first usability study under the direction of Dr. 

David Kaufman and Dr. Vimla Patel while enrolled in the course “BMI 591: Human 

Computer Interactions and Human Factors in Biomedicine.”  The second usability was 

carried out by Hiral Soni, a graduate student in the Department of Biomedical 

Informatics.  The first usability study served as a template for the follow-up study by 

influencing the content and flow of the tasks and questionnaires.  

8.4.1 Usability Testing, First Round 

For the first usability test we secured approval from the Arizona State University 

(ASU) IRB to recruit five Arizona State University (ASU) students, faculty or staff aged 
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at least 18 years. The iDECIDE app was installed as a native app to a ZTE N9130 

smartphone running the Android operating system (OS) 4.4.4 Kit Kat.  Participants were 

given a brief introduction to diabetes with a fictitious diabetes patient profile.  The 

Android smartphone with the iDECIDE app launched was then presented to the 

participant.  Participants were then given brief instructions to help them navigate the 

Android phone and then they were given instructions to think aloud as they interacted 

with the app.  Participants were given 5-minutes to explore the app and then a total of 7 

tasks were given one at a time.  The usability testing was recorded using Morae® [142] 

and real-time screenshots of the smartphone screen were simultaneously captured using 

Droid@Screen [143].  Upon completion of the tasks the participants were then given a 

usability survey which was a modified version of the System Usability Scale (SUS) as it 

was published by the Healthcare Information and Management Systems Society (HIMSS) 

[144].  The audio-video recordings were analyzed and annotated with Morae software.  

Participant errors and comments were noted and grouped into themes.  Time to complete 

tasks were measured.  

Five graduate students from ASU were recruited.  Three were female, two were 

male.  The average years of experience using a smartphone was 5.5 years. 

Table 8.1 shows the results of the average time it took to complete the tasks and 

the average number of errors associated with each task.  The exploratory task yielded the 

highest amount of errors while tasks 6 and 7 resulted in no errors from the participants.  

This suggests that users were able to learn the system over time. The average subjective 

usability rating from the System Usability Scale (SUS) questionnaire was 76.4, higher 
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than the average score of 68 for the SUS [145].  As the audio-video recordings were 

analyzed there were 7 usability issues, or themes, that emerged.   

Table 8.2 provides a brief description of each issue, the frequency of the issue 

across all the participants and the number of participants that were affected by the issue.  

The cursor issue with numeric data entry (Issue #2) had the highest number of errors.  

This was due to bug in the prototype that defaulted the cursor position to the right side of 

numeric data entry fields instead of the left side. 

Table 8.1: Quantitative results of usability evaluations.  All values are reported as 

means and standard deviation (SD). 

Task Time in minutes (SD) Number of Errors (SD) 

Exploratory 5.87 (1.80) 5.8 (4.32) 

1 0.71 (0.30) 1.0 (1.00) 

2 1.28 (0.46) 1.8 (0.84) 

3 1.95 (0.74) 2.0 (0.71) 

4 2.24 (0.76) 3.4 (1.52) 

5 0.95 (0.18) 0.2 (0.45) 

6 0.96 (0.58) 0.0 (0.00) 

7 1.20 (0.50) 0.0 (0.00) 
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Table 8.2: Usability issues and their frequency. 

#. Brief Description Frequency # Participants Affected 

1. Screen contents overwhelming 3 2 

2. Numeric data entry, cursor position 33 5 

3. Error in icon selection 12 5 

4. Unwanted functionality 7 3 

5. Desired functionality missing 7 3 

6. Slider obstructs visibility  1 1 

7. Scroll gesture interferes with time picker 2 2 

Total 65 5 

 

8.4.2 Usability Testing, Second Round 

For the second round of usability testing, received IRB approval from the Mayo 

Clinic (APPENDIX F 

Second round of recruitment of Mayo patients with type 1 diabetes: Mayo Clinic 

IRB Approval #15-006155). We recruited Mayo Clinic patients with type 1 diabetes. A 

prototype version of the iDECIDE app was built using Justinmind [138].  The usability 

study with the first participant was done by launching the iDECIDE prototype on an 

Android smartphone.  Unfortunately, this environment produced a considerable amount 

of lag and all subsequent studies with the remaining 5 participants were conducted with 

simulated smartphone screens on a laptop computer.  All the participants completed a 

total of 8 tasks, which included 5 minutes of exploration, 6 tasks specific to a fictitious 

diabetic character and 1 task to set up a personal fitness goal. The tasks included: setting 

the user’s profile, including endocrine settings, and setting up meal/alcohol/exercise plans 
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and goals. Morae® software was used to record interactive behaviors and their voiced 

thoughts during the testing.  

Table 8.3 shows the results of the average time it took to complete the tasks and 

the average number of errors associated with each task.  The number of errors remained 

fairly low across all the tasks with most problems occurring during first four tasks and 

patients gradually adapting to the app after 5 minutes of exploration. This may indicate 

that overall the app was easy to learn. 

A total of 13 issues were detected, see Table 8.4 for a brief description and 

frequency of errors.  Four of the issues did not require immediate changes. We made 

necessary changes to address the 9 remaining issues. For example, users found some 

icons confusing, therefore, we proposed new icons for carbohydrates, insulin to carb 

ratio, and insulin sensitivity. Most importantly, participants were unclear about 

differences between goals and plans, hence we replaced the notion of plans for logs.  The 

average SUS rating was 79.9, an above average SUS rating.  The interfaces depicted in 

Figure 8.3 were modified based on the results of the two usability tests. 
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Table 8.3: Quantitative results of usability evaluations.  All values are reported as 

means and standard deviation (SD). 

Task Time in minutes (SD) Number of Errors (SD) 

1 1.17 (0.58) 0.0 (0.0) 

2 4.67 (1.34) 2.0 (1.4) 

3 1.34 (0.58) 0.8 (0.4) 

4 0.36 (0.10) 0.0 (0.0) 

5 1.35 (0.74) 0.3 (0.5) 

6 2.56 (0.53) 1.3 (0.5) 

7 1.05 (0.65) 0.5 (0.5) 
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Table 8.4: Usability issues and their frequency. 

#. Brief Description 

Frequency 

during 

Exploratory task 

Frequency 

during 

Tasks 1-7 

# 

Participants 

Affected 

1. Confusion with the “+” button 1 1 1 

2. Confusion with endocrine 

settings 
3 2 3 

3. Repeat button selection 0 5 5 

4. Confusion with adding drinks 0 1 1 

5. Time slider 1 3 3 

6. Skipped task  0 4 3 

7. Felt lack of direction form app 0 1 1 

8. Confusion between goals and 

plans 
0 3 3 

9. Carbs icon meaning unclear 2 0 2 

10. Screen content overwhelming 1 2 3 

11. Lack of “no” for an option 1 0 1 

12. iDECIDE bottom bar  0 1 1 

13. Confusion with plans icons 0 1 1 

Total 9 24 6 

 

8.4.3 iDECIDE decision aid deployed for the Apple iOS iPhone 

At the conclusion of the 30-day study from the second calibration of the 

iDECIDE app (APPENDIX F: Mayo Clinic IRB #15-006155), participants were given a 

usability survey on the self-reporting module of the iDECIDE app (APPENDIX F.3).  

Nine of the participants responded to the web-based usability survey.  A Likert rating 

score from 1 to 5 was used to rate various aspects of the app with 5 being a positive 

rating.  The average rating across all questions was 3.8.  In the comments area, most of 

the responses were positive with some mention as to the areas that needed improvement.  
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The main themes that resulted from the comments was that participants desired more 

functionalities for logging meals and exercise and more flexible searching abilities for 

accessing food content. 

Here we present the interfaces and functionalities that were built for the Apple 

iOS version of the iDECIDE decision aid (Figure 8.4).  Most notably different is the 

color palate has been changed from a dark theme to a light theme.  Also, some of the 

widgets have been modified to align with the Apple’s developer’s guidelines and the built 

with the iOS platform interface kit.  As you can see in Figures 8.4.A and 8.4.B, there are 

additional functionalities for tracking meals and carbohydrates.  Using the Nutritionix 

food database [146], users can search for grocery foods with a barcode scanner while 

restaurant menu items and common foods are identified with a text search.  Nutritionix 

also provides access to the United States Department of Agriculture food composition 

databases [147].  The nutritional content of over 570,00 grocery items, 116,00 restaurant 

items and 24,700 common foods has been verified before their addition to the Nutritionix 

database.   

Additionally, users can now store a list of favorite food items that can be easily 

retrieved when reporting food intake to auto populate meal entry.  Photos of the meal can 

also be recorded with the food data entry (Figure 8.4.C).  In addition to providing an 

insulin (or snack in the case of exercise) recommendation, the user can also report any 

overrides made to the recommendation (Figure 8.4.D).  The interfaces for tracking 

exercise are relatively unchanged, Figures 8.4.E and 8.4.F.  The entry of endocrine 

settings has changed to allow up to three values over a 24-hour period, Figure 8.4.G.  
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HealthKit has been integrated into the app to allow read and write capabilities for blood 

glucose, carbohydrates, and body weight, Figure 8.4.H. 

 

Figure 8.4: iDECIDE interfaces for the iOS platform: logging meal with A) pizza, B) 

light beer, C) blood glucose and photo, D) insulin recommendation for meal, E) 

logging exercise, F) carbohydrate recommendation for exercise, G) setting insulin to 

carbohydrate ratio values for 24-hours, H) enabling read and write functionalities 

with HealthKit. 
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8.5 Discussion 

As mentioned earlier, the previous versions of the app were built with various 

prototyping software with the Android platform in mind.  The self-tracking module used 

by study participants was built as a multi-platform app with PhoneGap, again with the 

Android design guide contributing to the look and feel of the interfaces.  The final 

installment of iDECIDE is deployed on Apple’s iOS platform.  Apple has been chosen as 

the target platform for two main reasons.  According to the latest document from the 

FDA concerning mobile medical applications [148], iDECIDE falls under the regulatory 

requirements as a Class II medical device.  Although mobile medical applications can be 

deployed on any number of operating systems, currently the majority of applications that 

have been approved by the FDA have been for the iOS platform [149,150].  Most 

importantly, the demographics of diabetes patients at the Mayo clinic suggest that a 

greater number of them use Apple iPhones as opposed to other smartphones available on 

the market.  This is an important consideration as future research with the iDECIDE app 

will likely be conducted in collaboration with the Mayo Clinic and its patient population. 

One of the frameworks that has recently been released by Apple for iOS is 

HealthKit [136].  Mayo Clinic, HealthKit and Epic [151], an electronic health record 

vendor, have partnered to improve the ability of patients to share their health-related data 

with their providers via the MyChart patient portal from Epic.  At this point in time Mayo 

Clinic is preparing to transition to the Epic EHR, and when the transition is complete, the 

framework for patients to share data with providers in a timely fashion will be in place.  

Other health care institutions that are already using Epic have proven the feasibility of 
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patients with T1D using the Dexcom G5 Mobile CGMS with an insulin pump and the 

Dexcom iPhone companion app to be apple to wirelessly transfer their data in nearly real-

time to their providers through the Epic and MyChart platform interfacing with Apple’s 

HealthKit [152,153] 

In order for iDECIDE to make insulin recommendations a current glucose reading 

is necessary.  With the introduction of HealthKit, several diabetes technology device 

manufacturers have released companion apps that allow glucose meters and CGMS to 

automatically share their data with HealthKit.  The HealthKit framework stores all 

health-related data locally on the phone and allows all data, with permission from the 

user, to share data points with other apps installed on the phone.  iDECIDE takes 

advantage of the HealthKit framework and when granted permission by the user, 

iDECIDE can read and write glucose data points to and from the framework on the 

phone.  Not only are the glucose readings integrated to HealthKit, but nutrition content 

and body weight are other data points that iDECIDE contributes to the HealthKit data 

ecosystem. 

8.6 Conclusion 

The iDECIDE evidence-based algorithm for making insulin and carbohydrate 

recommendations has been deployed as an app for the iOS platform.  As a smartphone 

app, iDECIDE can easily be disseminated at a low cost to patients. The iDECIDE app as 

it is currently implemented is ready for prospective testing.  There also lies the potential 

for patient-generated data from the iDECIDE app to be connected to the Epic EHR, 

which can grant physicians more timely access to patient data.  
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9 CONCLUSION 

Type 1 diabetes is a complicated disease that requires patients to interact with 

various technologies in order to self-manage blood glucose and avoid complications that 

arise from glycemic excursions [2].  Patients are more likely to adhere to treatments when 

they incorporate personal lifestyle choices [20,26].  Two lifestyle choices that influence 

glucose control are exercise and alcohol consumption [11,13,15,17,43,45].  Current 

diabetes technologies do not account for exercise and alcohol when making insulin bolus 

suggestions [29].  The hypothesis is postprandial blood glucose levels of adult patients 

with T1D can be improved by providing insulin bolus or carbohydrate recommendations 

that account for meal and alcohol carbohydrates, glycemic excursion, and planned 

exercise. 

The solution proposed is iDECIDE, an evidence-based decision support tool that 

suggests insulin or carbohydrates to improve glucose control and it is deployed as a 

smartphone application.  This research demonstrates that the iDECIDE decision aid is not 

inferior to the Medtronic MiniMed, Inc. [28] IPBC, providing equivalent 

recommendation in 63% and outperformance in 23% of cases.  iDECIDE’s alcohol 

recommendations may have provided an advantage in 64% of cases, while 

recommendations for exercise with a duration less than 90 minutes could have improved 

post-exercise BG in 81% of cases.  

One of the limitations to this research stems from the demographics of the 

participants.  All participants were recruited from the endocrinology department at the 

Arizona Mayo Clinic.  The population was well controlled with a mean HbA1c score of 
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7.5%.  A smaller, but overlapping population, was given portions of the short test of 

functional health literacy in adults (S-TOFHLA) and all participants received a perfect 

score.  Also, almost all patients approached for participation owned smartphones, and of 

those that did participate nearly all owned an Apple smartphone.  Due to the homogeneity 

of the atypical population, the results may not be generalizable.  The iDECIDE decision 

aid was extended to include exercise and alcohol in order to incorporate lifestyle 

preferences, and other factors that influence glucose levels were not included, such as 

stress, medications and hormones. 

The results of iDECIDE’s performance in the case of alcohol consumption were 

not conclusive, which was in part due to a small sample size.  Others have assessed 

alcohol behaviors in emerging adults with T1D via questionnaires and surveys [154,155], 

but to our knowledge, ours was the first attempt to gather and analyze alcohol behaviors 

from free-living patients self-tracking with a smartphone app.  

This research has implications for various stakeholders.  For example, the 

literature review and the study of self-management behaviors (Aims 1 & 2) can inform 

diabetes technology researchers as they develop and design future diabetes technology 

and devices.  The results from the study of self-management behaviors (Aim 2), indicate 

that self-reported behaviors do not always translate into actual behaviors recorded by 

self-tracking and/or diabetes technology.  The analytical techniques we used to assess 

patients’ behaviors and compensation techniques can guide the development of bed-side 

tools for clinicians that could support shared-decision making and treatments.  Also 

ongoing is the analysis of the qualitative data regarding self-reported compensation 
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techniques for exercise and alcohol  as well as the perceptions on the effects of exercise 

and alcohol on BG control [156].  

The novel methods developed to compare and assess iDECIDE’s 

recommendations (Aim 4) can be applied more broadly in order to identify, calibrate and 

assess other bolus calculators before undergoing costly clinical trials.  It also opens the 

possibility of using non-traditional sources of data for conducting research.  The 

OpenAPS (Open Artificial Pancreas System) data repository [157], under the umbrella of 

the Open Humans project [158], has provided a means where individuals with T1D can 

upload and donate their data.  Traditional researchers can propose research studies and 

the OpenAPS community determines which projects will be granted access to the donated 

data.  Future work with real-life data from a broader population, like that of OpenAPS, 

could improve the generalizability of the results from assessing bolus calculators with the 

proposed methods. 

When the iDECIDE decision aid is deployed as a smartphone app for the Apple 

iOS platform (Aim 5) it benefits patients and clinicians.  There is the potential for 

clinicians to have more timely access to patient data, such as and receiving alerts when 

pre-determined thresholds for blood glucose are crossed.  This functionality for clinicians 

requires the integration of Apple’s HealthKit with Epic’s patient portal, MyChart, which 

has been accomplished by other healthcare institutions that already use the Epic EHR 

[152,153].  Patients can conveniently download the app to their smartphone and receive 

decision support that integrates with other HealthKit enabled apps and devices.  Currently 
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the iDECIDE app is going through the necessary requirements to receive FDA approval 

and there are plans to pursue a prospective randomized clinical trial. 

This research is an example of using novel informatics data collected by existing 

diabetes technologies and self-reported by patients to understand the burden of the 

disease and influence the design of a solution.  Multiple sources of heterogenous and 

disparate data were gathered, collated and analyzed.  Data sources included a self-report 

via interview and/or survey, real-time self-record via paper logs/smartphone app, and 

data generated by medical devices, e.g. insulin pump and glucose monitors/meters.  There 

were no existing methods to retrospectively assess iDECIDE’s recommendations and 

hence part of this research incorporated the development of a novel methodology that 

uses patient-generated data to retrospectively compare bolus calculators.   

The proposed novel decision aid and comparison methodology present practical 

solutions that can be applied to broader range of problems, such as T2D and other chronic 

diseases, and to other lines of research, such as collaboration with patient-controlled 

diabetes data repositories, including additional factors that affect glucose levels, and 

further identifying patient profiles to inform the development of personalized therapies to 

improve adherence.  The identification of correlating behaviors with respect to insulin 

pump usage and compensation for exercise and alcohol could lead to the creation of 

patient profiles that would allow clinicians to personalize treatments regimens that target 

increased adherence and result in improved glycemic control.  Furthermore, iDECIDE 

could be extended to include other factors that affect glucose control (e.g. stress, 

hormones, and medications), and user-reported or device-recorded data could be used to 
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retrospectively calibrate and assess the performance of the new parameters included in 

the decision aid using the methods described in Chapters 6 & 7.  

There are many other chronic diseases (e.g. congestive heart failure, asthma, 

hypertension), whose treatment therapies require patients to engage in self-care at home, 

that could benefit from the methodologies presented in this dissertation.  Reviews of 

mobile technology based interventions for chronic diseases management report positive 

effects, including improved provider and patient adherence to practice guidelines as well 

as health outcomes [122,159].  Many of the studies included in these reviews did not 

collate data from heterogenous sources and few had a decision support system in place.  

Most of the studies relied heavily on providers to access, gather, and analyze the data in 

order to personalize treatment therapies on the fly and initiate phone calls or text 

messaging to relay treatment changes.  These resource intensive mobile-based 

interventions could benefit from several aspects of the work presented related to 

iDECIDE.  The methods used to understand and define user needs (Chapters 2,3 and 4) 

could be used to develop a decision aid aimed at assisting providers by extending the 

framework depicted in Figure 8.2 to account for scenarios where providers adjust aspects 

of the treatment plan, e.g. changing ICR or CF settings.  The provider-specific decision 

aid could be assessed by adapting the performance assessment methods presented in 

Chapters 6 and 7 using real-life patient and provider generated data.   

Future work with iDECIDE could migrate to patients with T1D who do not use 

insulin pumps or to type 2 diabetes (T2D).  Similar to T1D, suboptimal adherence to self-

management guidelines for T2D results in poor glycemic, blood pressure and lipid 
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control, which can lead to increased morbidity and mortality rates [160].  All patients 

with T1D require insulin therapy and it is necessary for about half of patients with T2D to 

achieve glycemic control [161].  Glucose control within the United States is poor with 

about 50% of patients with T2D that achieve target HbA1c scores [162].  Currently much 

of the data generated by patients with T2D is recorded with paper logs.  The efficacy of 

changes to treatments are more difficult to assess with fewer objectively gathered data 

points, and iDECIDE could prove useful in providing a better snapshot of of patients’ 

self-care at home.  Clinicians and patients would then be able to make better informed 

decisions regarding adjustments to treatments and therapies to improve adherence and 

outcomes. 

 

  



  

128 

 

BIBLIOGRAPHY 

1.  National Center for Chronic Disease Prevention and Health Promotion, Division of 

Diabetes Translation. National Diabetes Statistics Report, 2014 [Internet]. 2014. 

Available from: http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-

report-web.pdf 

2.  Diabetes Control and Complications Trial Research Group. The effect of intensive 

treatment of diabetes on the development and progression of long-term 

complications in insulin-dependent diabetes mellitus. N Engl J Med. 

1993;329(14):977–86.  

3.  Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, Gatling W, 

Bingley PJ, Patterson CC. Mortality from heart disease in a cohort of 23,000 

patients with insulin-treated diabetes. Diabetologia. 2003 May 28;46(6):760–5.  

4.  Walsh J, Roberts R, Bailey T. Guidelines for optimal bolus calculator settings in 

adults. J Diabetes Sci Technol. 2011 Jan;5(1):129–35.  

5.  King AB. How much do I give? Reevaluation of insulin dosing estimation formulas 

using continuous glucose monitoring. Endocr Pract Off J Am Coll Endocrinol Am 

Assoc Clin Endocrinol. 2010 Jun;16(3):428–32.  

6.  Stacey D, Légaré F, Lewis K, Barry MJ, Bennett CL, Eden KB, Holmes-Rovner M, 

Llewellyn-Thomas H, Lyddiatt A, Thomson R, Trevena L. Decision aids for people 

facing health treatment or screening decisions. In: Cochrane Database of Systematic 

Reviews [Internet]. John Wiley & Sons, Ltd; 2017. Available from: 

http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD001431.pub5/abstract 

7.  Klupa T, Benbenek-Klupa T, Malecki M, Szalecki M, Sieradzki J. Clinical 

usefulness of a bolus calculator in maintaining normoglycaemia in active 

professional patients with type 1 diabetes treated with continuous subcutaneous 

insulin infusion. J Int Med Res. 2008 Oct;36(5):1112–6.  

8.  American Diabetes Association. Standards of Medical Care in Diabetes-2016. 

Diabetes Care. 2016 Jan;39(Suplement 1).  

9.  Ross SA, Tildesley HD, Ashkenas J. Barriers to effective insulin treatment: the 

persistence of poor glycemic control in type 2 diabetes. Curr Med Res Opin. 2011 

Nov 1;27(sup3):13–20.  

10.  Gross TM, Kayne D, King A, Rother C, Juth S. A bolus calculator is an effective 

means of controlling postprandial glycemia in patients on insulin pump therapy. 

Diabetes Technol Ther. 2003;5(3):365–9.  



  

129 

 

11.  Kourtoglou GI. Insulin therapy and exercise. Diabetes Res Clin Pract. 2011 Aug;93 

Supplement 1:S73-77.  

12.  Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson JL. Guidelines for premeal insulin 

dose reduction for postprandial exercise of different intensities and durations in type 

1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-

lispro). Diabetes Care. 2001 Apr;24(4):625–30.  

13.  Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release 

and its roles in glucoregulation: implications for diabetes. Diabetes. 2002 Feb;51 

Suppl 1:S271-283.  

14.  Marliss EB, Kreisman SH, Manzon A, Halter JB, Vranic M, Nessim SJ. Gender 

differences in glucoregulatory responses to intense exercise. J Appl Physiol. 2000 

Feb 1;88(2):457–66.  

15.  Toni S, Reali MF, Barni F, Lenzi L, Festini F. Managing insulin therapy during 

exercise in type 1 diabetes mellitus. Acta Bio-Medica Atenei Parm. 2006;77 Suppl 

1:34–40.  

16.  Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Chiasson J-L, Garg A, Holzmeister 

LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Purnell JQ, Wheeler M. 

Evidence-Based Nutrition Principles and Recommendations for the Treatment and 

Prevention of Diabetes and Related Complications. Diabetes Care. 2002 Jan 

1;25(1):148–98.  

17.  Turner BC, Jenkins E, Kerr D, Sherwin RS, Cavan DA. The effect of evening 

alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes 

Care. 2001 Nov;24(11):1888–93.  

18.  Funnell M, Anderson RM. The problem with compliance in diabetes. JAMA. 2000 

Oct 4;284(13):1709–1709.  

19.  Anderson RM, Funnell MM. Compliance and adherence are dysfunctional concepts 

in diabetes care. Diabetes Educ. 2000 Aug;26(4):597–604.  

20.  Glasgow RE, Anderson RM. In diabetes care, moving from compliance to 

adherence is not enough. Something entirely different is needed. Diabetes Care. 

1999 Dec 1;22(12):2090–2.  

21.  ACCU-Check. Aviva Expert [Internet]. ACCU-Chek Aviva Expert Bolus Advisor 

System. 2015 [cited 2015 Oct 26]. Available from: https://www.accu-

chek.co.uk/gb/products/metersystems/avivaexpert.html 



  

130 

 

22.  Lloyd B, Groat D, Cook CB, Kaufman D, Grando, M. A. iDECIDE: A Mobile 

Application for Insulin Dosing Using an Evidence Based Equation to Account for 

Patient Preferences. In: MEDINFO Conference 2015. Brazil;  

23.  Farhadi A, Groat D, Lloyd B, Mirkovic J, Cook CB, Grando A. iDECIDE: A 

Mobile Application for Insulin Dosing Using an Evidence Based Equation to 

Account for Patient Preferences. American Medical Informatics Association 

Conference; 2014 Nov; Washington.  

24.  Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. The Lancet. 2014 Jan 

10;383(9911):69–82.  

25.  Hurtado MP, Swift EK, Corrigan JM. Envisioning the national health care quality 

report. National Academies Press; 2001. 260 p.  

26.  Glasgow RE, Funnell MM, Bonomi AE, Davis C, Beckham V, Wagner EH. Self-

management aspects of the improving chronic illness care breakthrough series: 

implementation with diabetes and heart failure teams. Ann Behav Med Publ Soc 

Behav Med. 2002;24(2):80–7.  

27.  O’Connor AM, Bennett CL, Stacey D, Barry M, Col NF, Eden KB, Entwistle VA, 

Fiset V, Holmes-Rovner M, Khangura S, Llewellyn-Thomas H, Rovner D. Decision 

aids for people facing health treatment or screening decisions. Cochrane Database 

Syst Rev Online. 2009;(3):CD001431.  

28.  Medtronic MiniMed, Inc. MiniMed Paradigm REAL-Time Continuos Glucose 

Monitoring System: Using the Bolus Wizard Calculator [Internet]. 2012 Sep [cited 

2012 Sep 20]. Available from: https://pumpschool.minimed.com/minilink/3080.tpl 

29.  Colin IM, Paris I. Glucose Meters with Built-In Automated Bolus Calculator: 

Gadget or Real Value for Insulin-Treated Diabetic Patients? Diabetes Ther. 2013 

Jun 1;4(1):1–11.  

30.  Bolderman KM. Putting Your Patients on the Pump. Second Edition. Alexandria, 

Virginia: American Diabetes Association; 2013.  

31.  Clement S, Braithwaite SS, Magee MF, Ahmann A, Smith EP, Schafer RG, Hirsch 

IB. Management of Diabetes and Hyperglycemia in Hospitals. Diabetes Care. 2004 

Feb 1;27(2):553–91.  

32.  García-García F, Kumareswaran K, Hovorka R, Hernando ME. Quantifying the 

Acute Changes in Glucose with Exercise in Type 1 Diabetes: A Systematic Review 

and Meta-Analysis. Sports Med. 2015 Jan 24;45(4):587–99.  



  

131 

 

33.  Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with 

intermittent high-intensity compared with moderate exercise in individuals with 

type 1 diabetes. Diabetes Care. 2005 Jun;28(6):1289–94.  

34.  Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in 

individuals with type 1 diabetes mellitus: Curr Opin Clin Nutr Metab Care. 2015 

Jul;18(4):428–33.  

35.  Tonoli C, Heyman E, Roelands B, Buyse L, Piacentini F, Berthoin S, Bailey S, 

Pattyn N, Meeusen R. BDNF, IGF-I, Glucose and Insulin during Continuous and 

Interval Exercise in Type 1 Diabetes. Int J Sports Med. 2015 Jul 24;36(12):955–9.  

36.  Shetty VB, Fournier PA, Davey RJ, Retterath AJ, Paramalingam N, Roby HC, 

Cooper MN, Davis EA, Jones TW. Effect of Exercise Intensity on Glucose 

Requirements to Maintain Euglycemia During Exercise in Type 1 Diabetes. J Clin 

Endocrinol Metab. 2016 Jan 14;101(3):972–80.  

37.  Guelfi KJ, Ratnam N, Smythe GA, Jones TW, Fournier PA. Effect of intermittent 

high-intensity compared with continuous moderate exercise on glucose production 

and utilization in individuals with type 1 diabetes. Am J Physiol - Endocrinol 

Metab. 2007 Mar 1;292(3):E865–70.  

38.  Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, Boulay P, 

Khandwala F, Sigal RJ. Resistance Versus Aerobic Exercise. Diabetes Care. 2013 

Mar 1;36(3):537–42.  

39.  Campbell MD, Walker M, Trenell MI, Luzio S, Dunseath G, Tuner D, Bracken RM, 

Bain SC, Russell M, Stevenson EJ, West DJ. Metabolic Implications when 

Employing Heavy Pre- and Post-Exercise Rapid-Acting Insulin Reductions to 

Prevent Hypoglycaemia in Type 1 Diabetes Patients: A Randomised Clinical Trial. 

PLoS ONE. 2014 May;9(5):1–9.  

40.  Mauvais-Jarvis F, Sobngwi E, Porcher R, Garnier JP, Vexiau P, Duvallet A, Gautier 

J-F. Glucose Response to Intense Aerobic Exercise in Type 1 Diabetes. Diabetes 

Care. 2003 Apr 1;26(4):1316–7.  

41.  Mallad A, Hinshaw L, Schiavon M, Man CD, Dadlani V, Basu R, Lingineni R, 

Cobelli C, Johnson ML, Carter R, Kudva YC, Basu A. Exercise effects on 

postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. Am J 

Physiol - Endocrinol Metab. 2015 Jun 15;308(12):E1106–15.  

42.  Potter J, Clarke P, Gale EA, Dave SH, Tattersall RB. Insulin-induced 

hypoglycaemia in an accident and emergency department: the tip of an iceberg? Br 

Med J Clin Res Ed. 1982 Oct 23;285(6349):1180–2.  



  

132 

 

43.  Koivisto VA, Tulokas S, Toivonen M, Haapa E, Pelkonen R. Alcohol with a meal 

has no adverse effects on postprandial glucose homeostasis in diabetic patients. 

Diabetes Care. 1993 Dec;16(12):1612–4.  

44.  Richardson T, Weiss M, Thomas P, Kerr D. Day after the night before: influence of 

evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes 

Care. 2005 Jul;28(7):1801–2.  

45.  Gin H, Morlat P, Ragnaud JM, Aubertin J. Short-term effect of red wine (consumed 

during meals) on insulin requirement and glucose tolerance in diabetic patients. 

Diabetes Care. 1992 Apr;15(4):546–8.  

46.  Thabit H, Hovorka R. Coming of age: the artificial pancreas for type 1 diabetes. 

Diabetologia. 2016 Sep;59(9):1795–805.  

47.  Kowalski A. Pathway to Artificial Pancreas Systems Revisited: Moving 

Downstream. Diabetes Care. 2015 Jun 1;38(6):1036–43.  

48.  Kropff J, DeVries JH. Continuous Glucose Monitoring, Future Products, and 

Update on Worldwide Artificial Pancreas Projects. Diabetes Technol Ther. 2016 Jan 

19;18(S2):S2-53.  

49.  Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-Loop System in the Management 

of Diabetes: Past, Present, and Future. Diabetes Technol Ther. 2014 Jul 

29;16(8):477–90.  

50.  Forlenza GP, Buckingham B, Maahs DM. Progress in Diabetes Technology: 

Developments in Insulin Pumps, Continuous Glucose Monitors, and Progress 

towards the Artificial Pancreas. J Pediatr. 2016 Feb;169:13–20.  

51.  Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, Balliro 

C, Hillard MA, Nathan DM, Damiano ER. Outpatient Glycemic Control with a 

Bionic Pancreas in Type 1 Diabetes. N Engl J Med. 2014 Jul 24;371(4):313–25.  

52.  Thabit H, Lubina-Solomon A, Stadler M, Leelarathna L, Walkinshaw E, Pernet A, 

Allen JM, Iqbal A, Choudhary P, Kumareswaran K, Nodale M, Nisbet C, Wilinska 

ME, Barnard KD, Dunger DB, Heller SR, Amiel SA, Evans ML, Hovorka R. Home 

use of closed-loop insulin delivery for overnight glucose control in adults with type 

1 diabetes: a 4-week, multicentre, randomised crossover study. Lancet Diabetes 

Endocrinol. 2014 Sep;2(9):701–9.  

53.  Hovorka R, Elleri D, Thabit H, Allen JM, Leelarathna L, El-Khairi R, 

Kumareswaran K, Caldwell K, Calhoun P, Kollman C, Murphy HR, Acerini CL, 

Wilinska ME, Nodale M, Dunger DB. Overnight Closed-Loop Insulin Delivery in 

Young People With Type 1 Diabetes: A Free-Living, Randomized Clinical Trial. 

Diabetes Care. 2014 May 1;37(5):1204–11.  



  

133 

 

54.  Riddell MC, Zaharieva DP, Yavelberg L, Cinar A, Jamnik VK. Exercise and the 

Development of the Artificial Pancreas One of the More Difficult Series of Hurdles. 

J Diabetes Sci Technol. 2015 Oct 1;1932296815609370.  

55.  Jacobs PG, Resalat N, Youssef JE, Reddy R, Branigan D, Preiser N, Condon J, 

Castle J. Incorporating an Exercise Detection, Grading, and Hormone Dosing 

Algorithm Into the Artificial Pancreas Using Accelerometry and Heart Rate. J 

Diabetes Sci Technol. 2015 Oct 5;1932296815609371.  

56.  Garg S, Brazg RL, Bailey TS, Buckingham BA, Slover RH, Klonoff DC, Shin J, 

Welsh JB, Kaufman FR. Reduction in duration of hypoglycemia by automatic 

suspension of insulin delivery: the in-clinic ASPIRE study. Diabetes Technol Ther. 

2012 Mar;14(3):205–9.  

57.  Stenerson M, Cameron F, Wilson DM, Harris B, Payne S, Bequette BW, 

Buckingham BA. The Impact of Accelerometer and Heart Rate Data on 

Hypoglycemia Mitigation in Type 1 Diabetes. J Diabetes Sci Technol. 2014 Jan 

1;8(1):64–9.  

58.  Stenerson M, Cameron F, Payne SR, Payne SL, Ly TT, Wilson DM, Buckingham 

BA. The Impact of Accelerometer Use in Exercise-Associated Hypoglycemia 

Prevention in Type 1 Diabetes. J Diabetes Sci Technol. 2015 Jan 1;9(1):80–5.  

59.  Chomutare T, Fernandez-Luque L, Årsand E, Hartvigsen G. Features of Mobile 

Diabetes Applications: Review of the Literature and Analysis of Current 

Applications Compared Against Evidence-Based Guidelines. J Med Internet Res. 

2011 Sep 22;13(3):e65.  

60.  Arnhold M, Quade M, Kirch W. Mobile Applications for Diabetics: A Systematic 

Review and Expert-Based Usability Evaluation Considering the Special 

Requirements of Diabetes Patients Age 50 Years or Older. J Med Internet Res. 

2014;16(4):e104.  

61.  Kirwan M, Vandelanotte C, Fenning A, Duncan MJ. Diabetes Self-Management 

Smartphone Application for Adults With Type 1 Diabetes: Randomized Controlled 

Trial. J Med Internet Res [Internet]. 2013 Nov 13;15(11). Available from: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841374/ 

62.  Hood M, Wilson R, Corsica J, Bradley L, Chirinos D, Vivo A. What do we know 

about mobile applications for diabetes self-management? A review of reviews. J 

Behav Med. 2016;39(6):981–94.  

63.  Lee J. Hype or hope for diabetes mobile health applications? Diabetes Res Clin 

Pract. 2014;106(2):390–2.  



  

134 

 

64.  Huckvale K, Adomaviciute S, Prieto JT, Leow MK, Car J. Smartphone apps for 

calculating insulin dose: a systematic assessment. BMC Med. 2015 May 

6;13(1):106.  

65.  Schmidt S, Nørgaard K. Bolus Calculators. J Diabetes Sci Technol. 2014 

Sep;8(5):1035–41.  

66.  Medtronic 2014 Analyst Meeting – Focus on type 2 diabetes, new business models; 

new MiniMed Flex hybrid pump | Close Concerns Knowledgebase [Internet]. [cited 

2016 Aug 17]. Available from: 

https://www.closeconcerns.com/knowledgebase/r/d63bffc9 

67.  Alexandria V. Insulin Pumps Need Greater Safety Review: American Diabetes 

Association Issues Joint Statement with European Association for the Study of 

Diabetes [Internet]. American Diabetes Association. [cited 2016 Aug 17]. Available 

from: http://www.diabetes.org/newsroom/press-releases/2015/insulin-

pumps.html?referrer=https://www.google.com/ 

68.  Simmons JH, Chen V, Miller KM, McGill JB, Bergenstal RM, Goland RS, Harlan 

DM, Largay JF, Massaro EM, Beck RW, Network  for the TEC. Differences in the 

Management of Type 1 Diabetes Among Adults Under Excellent Control Compared 

With Those Under Poor Control in the T1D Exchange Clinic Registry. Diabetes 

Care. 2013 Nov 1;36(11):3573–7.  

69.  Gonzalez JS, Schneider HE. Methodological Issues in the Assessment of Diabetes 

Treatment Adherence. Curr Diab Rep. 2011 Dec 1;11(6):472.  

70.  Driscoll KA, Young-Hyman D. Use of technology when assessing adherence to 

diabetes self-management behaviors. Curr Diab Rep. 2014;14(9):521.  

71.  Groat D, Hiral S, Thompson B, Boyle ME, Bailey M, Cook CB, Grando MA. 

Understanding Self-Management Behaviors to Improve Insulin Dosing [Internet]. 

American Diabetes Association’s 76th Scientific Sessions; 2016 Jun; New Orleans. 

Available from: http://professional.diabetes.org/meeting/scientific-sessions/76th-

scientific-sessions 

72.  Groat D, Soni H, Thompson B, Cook CB, Grando A. Characterizing Self-

Management Behaviors of Type 1 Diabetes Patients on Insulin Pump Therapy. In: 

Diabetes Technology Conference. Bethesda; 2015.  

73.  Groat D, Grando MA, Soni H, Thompson B, Boyle M, Bailey M, Cook CB. Self-

Management Behaviors in Adults on Insulin Pump Therapy What Are Patients 

Really Doing? J Diabetes Sci Technol. 2017 Mar;11(2):233–9.  



  

135 

 

74.  Pyatak EA, Florindez D, Weigensberg MJ. Adherence decision making in the 

everyday lives of emerging adults with type 1 diabetes. Patient Prefer Adherence. 

2013 Jul 29;7:709–18.  

75.  Or CKL, Tao D. Does the use of consumer health information technology improve 

outcomes in the patient self-management of diabetes? A meta-analysis and narrative 

review of randomized controlled trials. Int J Med Inf. 2014 May 1;83(5):320–9.  

76.  Hendricks M, Monaghan M, Soutor S, Chen R, Holmes CS. A profile of self-care 

behaviors in emerging adults with type 1 diabetes. Diabetes Educ. 2013;39(2):195–

203.  

77.  O’Connell MA, Donath S, Cameron FJ. Poor adherence to integral daily tasks limits 

the efficacy of CSII in youth. Pediatr Diabetes. 2011 Sep;12(6):556–9.  

78.  Driscoll KA, Johnson SB, Hogan J, Gill E, Wright N, Deeb LC. Insulin bolusing 

software: the potential to optimize health outcomes in type 1 diabetes mellitus. J 

Diabetes Sci Technol. 2013;7(3):646–52.  

79.  Ziegler R, Rees C, Jacobs N, Parkin CG, Lyden MR, Petersen B, Wagner RS. 

Frequent use of an automated bolus advisor improves glycemic control in pediatric 

patients treated with insulin pump therapy: results of the Bolus Advisor Benefit 

Evaluation (BABE) study. Pediatr Diabetes. 2016 Aug 1;17(5):311–8.  

80.  Guilfoyle SM, Crimmins NA, Hood KK. Blood glucose monitoring and glycemic 

control in adolescents with type 1 diabetes: meter downloads versus self‐report. 

Pediatr Diabetes. 2011;12(6):560–6.  

81.  Weissberg-Benchell J, Antisdel-Lomaglio J, Seshadri R. Insulin Pump Therapy. 

Diabetes Care. 2003 Apr 1;26(4):1079–87.  

82.  Groat D, Soni H, Thompson B, Cook CB, Grando A. Introducing a Method to 

Retrospectively Compare Insulin Dosing Recommendations. J Diabetes Sci 

Technol. 2016 Mar;10:518.  

83.  Groat D, Grando A, Wallstrom G, Thompson B, Boyle ME, Bailey M, Cook CB. 

Retrospective Evaluation of an Evidence-based Equation for Insulin Dosing 

Accounting for Exercise and Alcohol. American Diabetes Association 76th 

Scientific Session; 2016 Jun; New Orleans, LA.  

84.  Meade LT, Rushton WE. Optimizing Insulin Pump Therapy A Quality 

Improvement Project. Diabetes Educ. 2013 Nov 1;39(6):841–7.  

85.  Olinder AL, Nyhlin KT, Smide B. Clarifying responsibility for self‐management of 

diabetes in adolescents using insulin pumps–a qualitative study. J Adv Nurs. 

2011;67(7):1547–57.  



  

136 

 

86.  Brewer-Lowry AN, Arcury TA, Bell RA, Quandt SA. Differentiating Approaches to 

Diabetes Self-Management of Multi-ethnic Rural Older Adults at the Extremes of 

Glycemic Control. The Gerontologist. 2010 Oct;50(5):657–67.  

87.  Driscoll KA, Johnson SB, Tang Y, Yang F, Deeb LC, Silverstein JH. Does Blood 

Glucose Monitoring Increase Prior to Clinic Visits in Children With Type 1 

Diabetes? Diabetes Care. 2011 Oct 1;34(10):2170–3.  

88.  Driscoll KA, Wang Y, Johnson SB, Lynch R, Stephens H, Willbur K, Gill E, 

Wright N, Deeb LC. White Coat Adherence in Pediatric Patients With Type 1 

Diabetes Who Use Insulin Pumps. J Diabetes Sci Technol. 2016 May 1;10(3):724–

9.  

89.  Beverly EA, Ganda OP, Ritholz MD, Lee Y, Brooks KM, Lewis-Schroeder NF, 

Hirose M, Weinger K. Look Who’s (Not) Talking Diabetic patients’ willingness to 

discuss self-care with physicians. Diabetes Care. 2012 Jul 1;35(7):1466–72.  

90.  Boyd-Woschinko G, Kaiser D, Diefenbach M, Tamler R. Does Availability of 

Reliable Home Blood Glucose Data at Diabetes Appointments Improve Glycemia? 

Endocr Pract. 2013 Nov 18;20(4):299–304.  

91.  Hinnen DA, Buskirk A, Lyden M, Amstutz L, Hunter T, Parkin CG, Wagner R. Use 

of Diabetes Data Management Software Reports by Health Care Providers, Patients 

With Diabetes, and Caregivers Improves Accuracy and Efficiency of Data Analysis 

and Interpretation Compared With Traditional Logbook Data: First Results of the 

Accu-Chek Connect Reports Utility and Efficiency Study (ACCRUES). J Diabetes 

Sci Technol. 2015 Mar;9(2):293–301.  

92.  Cavan DA, Ziegler R, Cranston I, Barnard K, Ryder J, Vogel C, Parkin CG, Koehler 

W, Vesper I, Petersen B, Schweitzer MA, Wagner RS. Use of an Insulin Bolus 

Advisor Facilitates Earlier and More Frequent Changes in Insulin Therapy 

Parameters in Suboptimally Controlled Patients with Diabetes Treated with Multiple 

Daily Insulin Injection Therapy: Results of the ABACUS Trial. Diabetes Technol 

Ther. 2014 Apr 9;16(5):310–6.  

93.  Grando MA, Groat D, Soni H, Boyle M, Bailey M, Thompson B, Cook CB. 

Characterization of Exercise and Alcohol Self-Management Behaviors of Type 1 

Diabetes Patients on Insulin Pump Therapy. J Diabetes Sci Technol. 2017 

Mar;11(2):240–6.  

94.  Chait J. Insulin Pumps. Not Just for Type 1 [Internet]. 2013 Apr [cited 2014 Feb 

20]. Available from: 

http://www.diabetesselfmanagement.com/articles/insulin/insulin_pumps/all/ 



  

137 

 

95.  Aye T, Block J, Buckingham B. Toward closing the loop: an update on insulin 

pumps and continuous glucose monitoring systems. Endocrinol Metab Clin North 

Am. 2010 Sep;39(3):609–24.  

96.  Zisser H, Robinson L, Bevier W, Dassau E, Ellingsen C, Doyle FJ, Jovanovic L. 

Bolus calculator: a review of four “smart” insulin pumps. Diabetes Technol Ther. 

2008 Dec;10(6):441–4.  

97.  van de Wiel A. Diabetes mellitus and alcohol. Diabetes Metab Res Rev. 2004 

Aug;20(4):263–7.  

98.  Joslin Diabetes Center. Diabetes and Alcohol [Internet]. [cited 2016 May 10]. 

Available from: http://www.joslin.org/info/Diabetes_and_Alcohol.html 

99.  Mayo Clinic. Type 1 Diabetes [Internet]. Lifestyle and Home Remedies. [cited 2016 

May 10]. Available from: http://www.mayoclinic.org/diseases-conditions/type-1-

diabetes/basics/lifestyle-home-remedies/con-20019573 

100.  American Diabetes Association. Alcohol [Internet]. American Diabetes Association. 

[cited 2016 May 10]. Available from: http://www.diabetes.org/food-and-

fitness/food/what-can-i-eat/making-healthy-food-choices/alcohol.html 

101.  Ritholz MD, Beverly EA, Weinger K. Digging Deeper: The Role of Qualitative 

Research in Behavioral Diabetes. Curr Diab Rep. 2011 Sep 20;11(6):494–502.  

102.  Lawton J, Peel E, Parry O, Douglas M. Patients’ perceptions and experiences of 

taking oral glucose-lowering agents: a longitudinal qualitative study. Diabet Med J 

Br Diabet Assoc. 2008 Apr;25(4):491–5.  

103.  Rankin D, Heller S, Lawton J. Understanding information and education gaps 

among people with type 1 diabetes: a qualitative investigation. Patient Educ Couns. 

2011 Apr;83(1):87–91.  

104.  Summary of Revisions to the 2014 Clinical Practice Recommendations. Diabetes 

Care. 2014 Jan 1;37(Supplement 1):S4–S4.  

105.  Lindholm A, McEwen J, Riis AP. Improved postprandial glycemic control with 

insulin aspart. A randomized double-blind cross-over trial in type 1 diabetes. 

Diabetes Care. 1999 May;22(5):801–5.  

106.  Groat D, Soni H, Thompson B, Cook CB, Grando A. Introducing a Method to 

Retrospectively Compare Insulin Dosing Recommendations. Diabetes Technology 

Meeting; 2015 Oct; Bethesda.  



  

138 

 

107.  Groat D, Grando MA, Thompson B, Neto P, Soni H, Boyle ME, Bailey M, Cook 

CB. A Methodology to Compare Insulin Dosing Recommendations in Real-Life 

Settings. J Diabetes Sci Technol. 2017 Apr 13;1932296817704444.  

108.  Colmegna P, Peña RS. Analysis of three T1DM simulation models for evaluating 

robust closed-loop controllers. Comput Methods Programs Biomed. 

2014;113(1):371–82.  

109.  Dalla Man C, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The 

UVA/PADOVA Type 1 Diabetes Simulator New Features. J Diabetes Sci Technol. 

2014;8(1):26–34.  

110.  Percival MW, Wang Y, Grosman B, Dassau E, Zisser H, Jovanovič L, Doyle III FJ. 

Development of a multi-parametric model predictive control algorithm for insulin 

delivery in type 1 diabetes mellitus using clinical parameters. J Process Control. 

2011 Mar;21(3):391–404.  

111.  Schiavon M, Man CD, Kudva YC, Basu A, Cobelli C. The Artificial Pancreas on 

the Threshold of Ambulatory Use: Setting the Stage for a Critical Transition: In 

Silico Optimization of Basal Insulin Infusion Rate during Exercise: Implication for 

Artificial Pancreas. J Diabetes Sci Technol. 2013 Nov;7(6):1461.  

112.  van Heusden K, Dassau E, Zisser HC, Seborg DE, Doyle FJ. Control-Relevant 

Models for Glucose Control Using A Priori Patient Characteristics. IEEE Trans 

Biomed Eng. 2012 Jul;59(7):1839–49.  

113.  Turksoy K, Samadi S, Feng J, Littlejohn E, Quinn L, Cinar A. Meal Detection in 

Patients with Type 1 Diabetes: A New Module for the Multivariable Adaptive 

Artificial Pancreas Control System. IEEE J Biomed Health Inform. 2016 

Jan;20(1):47–54.  

114.  Wong AF, Pielmeier U, Haug PJ, Andreassen S, Morris AH. An in-silico method to 

identify computer-based protocols worthy of clinical study: An insulin infusion 

protocol use case. J Am Med Inform Assoc. 2016 Mar 1;23(2):283–8.  

115.  Aiello LP, DCCT/EDIC research group. Diabetic retinopathy and other ocular 

findings in the diabetes control and complications trial/epidemiology of diabetes 

interventions and complications study. Diabetes Care. 2014;37(1):17–23.  

116.  De Boer IH, DCCT/EDIC Research Group. Kidney disease and related findings in 

the diabetes control and complications trial/epidemiology of diabetes interventions 

and complications study. Diabetes Care. 2014;37(1):24–30.  

117.  Martin CL, Albers JW, Pop-Busui R, DCCT/EDIC research group. Neuropathy and 

related findings in the diabetes control and complications trial/epidemiology of 

diabetes interventions and complications study. Diabetes Care. 2014;37(1):31–8.  



  

139 

 

118.  Diabetes Teaching Center at University of California, San Francisco. Programming 

Your Pump [Internet]. Diabetes Education Online. 2016 [cited 2016 Dec 15]. 

Available from: https://dtc.ucsf.edu/types-of-diabetes/type1/treatment-of-type-1-

diabetes/medications-and-therapies/type-1-insulin-pump-therapy/how-to-use-your-

pump/programming-your-pump/ 

119.  Mudaliar SR, Lindberg FA, Joyce M, Beerdsen P, Strange P, Lin A, Henry RR. 

Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption 

kinetics and action profile compared with regular human insulin in healthy 

nondiabetic subjects. Diabetes Care. 1999 Sep;22(9):1501–6.  

120.  Allart L, Vilhelm C, Mehdaoui H, Hubert H, Sarrazin B, Zitouni D, Lemdani M, 

Ravaux P. An architecture for online comparison and validation of processing 

methods and computerized guidelines in intensive care units. Comput Methods 

Programs Biomed. 2009;93(1):93–103.  

121.  Hou C, Carter B, Hewitt J, Francisa T, Mayor S. Do Mobile Phone Applications 

Improve Glycemic Control (HbA1c) in the Self-management of Diabetes? A 

Systematic Review, Meta-analysis, and GRADE of 14 Randomized Trials. Diabetes 

Care. 2016;39(11):2089–95.  

122.  Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, Patel V, Haines A. The 

Effectiveness of Mobile-Health Technology-Based Health Behaviour Change or 

Disease Management Interventions for Health Care Consumers: A Systematic 

Review. PLOS Med. 2013 Jan 15;10(1):e1001362.  

123.  Baron J, McBain H, Newman S. The Impact of Mobile Monitoring Technologies on 

Glycosylated Hemoglobin in Diabetes: A Systematic Review. J Diabetes Sci 

Technol. 2012 Sep 1;6(5):1185–96.  

124.  Brown III W, Yen P-Y, Rojas M, Schnall R. Assessment of the Health IT Usability 

Evaluation Model (Health-ITUEM) for evaluating mobile health (mHealth) 

technology. J Biomed Inform. 2013 Dec;46(6):1080–7.  

125.  Bastawrous A, Armstrong MJ. Mobile health use in low- and high-income 

countries: an overview of the peer-reviewed literature. J R Soc Med. 2013 

Apr;106(4):130–42.  

126.  El-Gayar O, Timsina P, Nawar N, Eid W. Mobile Applications for Diabetes Self-

Management: Status and Potential. J Diabetes Sci Technol. 2013 Jan 1;7(1):247–62.  

127.  Goyal S, Cafazzo JA. Mobile phone health apps for diabetes management: Current 

evidence and future developments. QJM Int J Med. 2013 Dec;106(12):1067–9.  

128.  Apple, Inc. App Store [Internet]. iTunes. 2017. Available from: 

https://www.apple.com/itunes/ 



  

140 

 

129.  Google. Google Play [Internet]. Apps. 2017. Available from: 

https://play.google.com/store/apps 

130.  Microsoft. Microsoft Store [Internet]. Windows Phone Apps. 2017. Available from: 

https://www.microsoft.com/en-us/store/apps/windows-

phone?icid=TopNavSoftwareWindowsPhoneApps 

131.  Brzan PP, Rotman E, Pajnkihar M, Klanjsek P. Mobile Applications for Control and 

Self-Management of Diabetes: A Systematic Review. J Med Syst. 2016 Sep 

1;40(9):210.  

132.  Charpentier G, Benhamou P-Y, Dardari D, Clergeot A, Franc S, Schaepelynck-

Belicar P, Catargi B, Melki V, Chaillous L, Farret A, Bosson J-L, Penfornis A, 

Group  on behalf of the TS. The Diabeo Software Enabling Individualized Insulin 

Dose Adjustments Combined With Telemedicine Support Improves HbA1c in 

Poorly Controlled Type 1 Diabetic Patients. Diabetes Care. 2011 Mar 1;34(3):533–

9.  

133.  Herrero P, Pesl P, Bondia J, Reddy M, Oliver N, Georgiou P, Toumazou C. Method 

for automatic adjustment of an insulin bolus calculator: In silico robustness 

evaluation under intra-day variability. Comput Methods Programs Biomed. 2015 

Apr;119(1):1–8.  

134.  Reddy M, Pesl P, Xenou M, Toumazou C, Johnston D, Georgiou P, Herrero P, 

Oliver N. Clinical Safety and Feasibility of the Advanced Bolus Calculator for Type 

1 Diabetes Based on Case-Based Reasoning: A 6-Week Nonrandomized Single-

Arm Pilot Study. Diabetes Technol Ther. 2016 May 19;18(8):487–93.  

135.  Pesl P, Herrero P, Reddy M, Oliver N, Johnston DG, Toumazou C, Georgiou P. 

Case-Based Reasoning for Insulin Bolus Advice: Evaluation of Case Parameters in 

a Six-Week Pilot Study. J Diabetes Sci Technol. 2017 Jan 1;11(1):37–42.  

136.  Apple, Inc. Apple Developer: HealthKit [Internet]. Develop health and fitness apps 

that work together. 2017 [cited 2017 Apr 26]. Available from: 

https://developer.apple.com/healthkit/ 

137.  Proto.io. Proto.io [Internet]. 2014 Mar [cited 2014 Mar 3]. Report No.: Proto.io. 

Available from: http://proto.io 

138.  Justinmind [Internet]. Prototyping platform for web and mobile apps. 2016 [cited 

2016 Jun 29]. Available from: http://www.justinmind.com/ 

139.  Android. Android Studio [Internet]. Download Android Studio and SDK Tools. 

[cited 2016 Jun 29]. Available from: 

https://developer.android.com/studio/index.html 



  

141 

 

140.  PhoneGap project. PhoneGap project [Internet]. 2014 Feb [cited 2014 Mar 3]. 

Available from: http://phonegap.com/ 

141.  Greenes RA. Clinical decision support: the road to broad adoption. Academic Press; 

2014.  

142.  TechSmith. Usability Testing Software, Morae from TechSmith [Internet]. [cited 

2015 Nov 25]. Available from: http://www.techsmith.com/morae.html 

143.  Droid@Screen [Internet]. Ribomation AB; Available from: http://droid-at-

screen.org/ 

144.  mHIMSS. Selecting a Mobile App: Evaluating the Usability of Medical 

Applications [Internet]. 2012. Available from: http://www.himss.org/selecting-

mobile-app-evaluating-usability-medical-applications-0?ItemNumber=28900 

145.  A. S. for P. Affairs, System Usability Scale (SUS) [Internet]. [cited 2015 Nov 25]. 

Available from: http://www.usability.gov/how-to-and-tools/methods/system-

usability-scale.html 

146.  Nutritionix. Nutritionix [Internet]. Largest Verified Nutrition Database. 2016 [cited 

2017 Apr 26]. Available from: https://www.nutritionix.com/ 

147.  United States Department of Agriculture Agricultural Research Service. USDA 

Food Composition Database [Internet]. 2017 [cited 2017 Apr 27]. Available from: 

https://ndb.nal.usda.gov/ndb/ 

148.  FDA. Mobile Medical Applications: Guidance for Industry and Food and Drug 

Administration Staff [Internet]. U.S. Department of Health and Human Services; 

2015. Available from: 

http://www.fda.gov/downloads/MedicalDevices/.../UCM263366.pdf 

149.  Boulos MNK, Brewer AC, Karimkhani C, Buller DB, Dellavalle RP. Mobile 

medical and health apps: state of the art, concerns, regulatory control and 

certification. Online J Public Health Inform. 2014 Feb 5;5(3):229.  

150.  Hardi A. BeckerGuides: Mobile Medicine Resources: FDA Approved Apps 

[Internet]. Bernard Becker Medical Library. [cited 2016 Jul 13]. Available from: 

http://beckerguides.wustl.edu/c.php?g=299564&p=2000997 

151.  Epic Systems Corporation. Epic [Internet]. With the patient at heart. [cited 2017 Apr 

26]. Available from: http://www.epic.com/software 

152.  Finz S. Stanford Medicine News Center [Internet]. Using Apple HealthKit to care 

for patients with Type 1 diabetes. 2015 [cited 2017 Apr 26]. Available from: 



  

142 

 

http://med.stanford.edu/news/all-news/2015/11/using-apple-healthkit-to-care-for-

patients-with-type-1-diabetes.html 

153.  Swicki B. Healthcare IT News [Internet]. Duke liberates Epic EHR data with Apple 

HealthKit and FHIR. 2016 [cited 2017 Apr 26]. Available from: 

http://www.healthcareitnews.com/news/duke-liberates-epic-ehr-data-apple-

healthkit-and-fhir 

154.  Hanna KM, Weaver MT, Stump TE, Fortenberry JD, DiMeglio LA. The 

Relationship of Worry About Hypoglycemia With Diabetes-specific and Typical 

Youth Behavior Among Emerging Adults With Type 1 Diabetes. Diabetes Educ. 

2014 Jul 1;40(4):533–42.  

155.  Hanna KM, Stupiansky NW, Weaver MT, Slaven JE, Stump TE. Alcohol Use 

Trajectories After High School Graduation Among Emerging Adults With Type 1 

Diabetes. J Adolesc Health. 2014 Aug 1;55(2):201–8.  

156.  Groat D, Soni H, Grando MA, Thompson B, Cook CB. Self-reported Compensation 

Techniques for Carbohydrate, Exercise and Alcohol Behaviors in Patients with 

Type 1 Diabetes on Insulin Pump Therapy. J Diabetes Sci Technol. In Press.  

157.  Lewis D, OpenAPS Community. OpenAPS Data Commons [Internet]. 

opneAPS.org. 2017 [cited 2017 May 11]. Available from: 

https://openaps.org/outcomes/data-commons/ 

158.  Open Humans Foundation. Open Humans [Internet]. Contribute to research & 

citizen science. 2017 [cited 2017 May 11]. Available from: 

https://www.openhumans.org/ 

159.  Wootton R. Twenty years of telemedicine in chronic disease management – an 

evidence synthesis. J Telemed Telecare. 2012 Jun 1;18(4):211–20.  

160.  Tiktin M, Celik S, Berard L. Understanding adherence to medications in type 2 

diabetes care and clinical trials to overcome barriers: a narrative review. Curr Med 

Res Opin. 2016 Feb 1;32(2):277–87.  

161.  Davies MJ, Gagliardino JJ, Gray LJ, Khunti K, Mohan V, Hughes R. Real-world 

factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 

diabetes mellitus: a systematic review. Diabet Med. 2013 May;30(5):512–24.  

162.  Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is Glycemic Control Improving in 

U.S. Adults? Diabetes Care. 2008 Jan 1;31(1):81–6.  

 



  

143 

 

APPENDIX A 

PRESENTED POSTERS  



  

144 

 

A.1   iDECIDE: A Mobile Application for Pre-Meal Insulin Dosing Using an Evidence 

Based Equation to Account for Patient Preferences 

Authors: Akram Farhadi, MS, Buffy Lloyd, B.S, Danielle Groat, B.S., Jelena Mirkovic, 

Ph.D., Curtiss B. Cook, MD, Adela Grando, Ph.D. 

Presented at: American Medical Informatics Association 2014 and Mayo Academic 

Excellence Day 2014 

 



  

145 

 

 

  



  

146 

 

A.2   Understanding Self-Management Behaviors to Improve Insulin Dosing 

Authors: Danielle Groat, M.S; Hiral Soni, B.E.; Bithika Thompson, M.D.; Mary 

E. Boyle, CNP, MSN, RN, Marilyn Bailey MS, RN, Curtiss B. Cook, M.D.; Adela 

Grando, Ph.D. 

Presented at: American Diabetes Association 76th Scientific Session 2016 and selected 

for a moderated poster session discussion. 

 

  



  

147 

 

A.3   Characterizing Self-Management Behaviors of Type 1 Diabetes Patients on Insulin 

Pump Therapy 

Authors: Danielle Groat, B.S; Hiral Soni, B.E.; Bithika Thompson, M.D.; Curtiss B. 

Cook, M.D.; Adela Grando, Ph.D. 

Presented at: Diabetes Technology Meeting 2015 

 

 

  



  

148 

 

A.4   Introducing a Method to Retrospectively Compare Insulin Dosing 

Recommendations 

Authors: Danielle Groat, B.S; Hiral Soni, B.E.; Bithika Thompson, M.D.; Curtiss B. 

Cook, M.D.; Adela Grando, Ph.D. 

Presented at: Diabetes Technology Meeting 2015 

 

  



  

149 

 

A.5   Retrospective Evaluation of an Evidence-based Equation for Insulin Dosing 

Accounting for Exercise and Alcohol 

Authors: Danielle Groat, MS, Maria Adela Grando, PhD, Garrick Wallstrom, PhD, 

Bithika Thompson, MD, Mary E. Boyle, CNP, MSN, RN, Marilyn Bailey MS, RN, 

Curtiss B. Cook, MD 

Presented at: American Diabetes Association 76th Scientific Session 2016 

 

  



  

150 

 

APPENDIX B 

CONFERENCE PAPERS 

  



  

151 

 

B.1   A Mobile Application for Insulin Dosing Using an Evidence Based Equation to 

Account for Patient Preferences 

Authors: Buffy Lloyd, B.S, Danielle Groat, B.S., Curtiss B. Cook, MD, David Kaufman, 

Ph.D., Adela Grando, Ph.D. 

Presented at: MEDINFO Conference 2015 

 



  

152 

 

 



  

153 

 

 



  

154 

 

 



  

155 

 

 



  

156 

 

APPENDIX C 

JOURNAL PAPERS 

  



  

157 

 

C.1   Characterization of Exercise and Alcohol Self-Management Behaviors of Type 1 

Diabetes Patients on Insulin Pump Therapy 

 



  

158 

 

 



  

159 

 

 



  

160 

 

 



  

161 

 

 



  

162 

 

 



  

163 

 

 



  

164 

 

C.2   Self-Management Behaviors in Adults on Insulin Pump Therapy: What Are Patients 

Really Doing? 

 



  

165 

 

 

 



  

166 

 

 

 



  

167 

 

 

 



  

168 

 

 

 



  

169 

 

 

 



  

170 

 

 

 



  

171 

 

C.3   A Methodology to Compare Insulin Dosing Recommendations in Real-Life Settings 

 



  

172 

 

 
 



  

173 

 

 
 



  

174 

 

 

 



  

175 

 

 

 



  

176 

 

 

 



  

177 

 

 

 



  

178 

 

 

 



  

179 

 

 

  



  

180 

 

APPENDIX D 

USABILITY STUDIES 

  



  

181 

 

D.1   First Study: Usability Protocol 

 



  

182 

 

 



  

183 

 

 

  



  

184 

 

D.2   First Study:  User Tasks 

 
 

  



  

185 

 

D.3   First Study: Demographics and usability questionnaire 

 
 

 



  

186 

 

 

 



  

187 

 

D.4   Second Study: User Tasks 

 



  

188 

 

 

D.5   Second Study: Demographics and usability questionnaire 

Identical to D.3. 

 

  



  

189 

 

APPENDIX E 

FIRST ROUND OF RECRUITMENT OF MAYO PATIENTS WITH TYPE 1 

DIABETES: MAYO CLINIC IRB APPROVAL #14-004649  



  

190 

 

E.1   Study Protocol 

 
 



  

191 

 

 



  

192 

 

 



  

193 

 

 



  

194 

 

 
 



  

195 

 

 
 



  

196 

 

 
 

 

 



  

197 

 

E.2   Interview Questions 

 



  

198 

 

E.3   Self-Tracking Logs 

 
 

 

 

 
 

 

 

  



  

199 

 

APPENDIX F 

SECOND ROUND OF RECRUITMENT OF MAYO PATIENTS WITH TYPE 1 

DIABETES: MAYO CLINIC IRB APPROVAL #15-006155 

  



  

200 

 

F.1   Study Protocol 

 
 

 



  

201 

 

 
 



  

202 

 

 
 

 

 



  

203 

 

 
 



  

204 

 

 



  

205 

 

 
 



  

206 

 

 



  

207 

 

 

  



  

208 

 

F.2   Compensation Techniques Survey

 



  

209 

 

 

 

 
 



  

210 

 

 

 
 

 

 



  

211 

 

 

 

 



  

212 

 

 

 

 

 

 

  



  

213 

 

F.3   Post-study Usability Survey 

 
 



  

214 

 

 

 


