
A Comparative Analysis of Graph Vs Relational Database

For Instructional Module Development System

by

Abir Lal Saha

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2017 by the

Graduate Supervisory Committee:

Srividya Bansal, Chair

Ajay Bansal

Javier Gonzalez Sanchez

ARIZONA STATE UNIVERSITY

August 2017

 i

ABSTRACT

In today's data-driven world, every datum is connected to a large amount of data.

Relational databases have been proving itself a pioneer in the field of data storage and

manipulation since 1970s. But more recently they have been challenged by NoSQL graph

databases in handling data models which have an inherent graphical representation.

Graph databases with the ability to store physical relationships between two nodes and

native graph processing technique have been doing exceptionally well in graph data

storage and management for applications like recommendation engines, biological

modeling, network modeling, social media applications, etc.

Instructional Module Development System (IMODS) is a web-based software

system that guides STEM instructors through the complex task of curriculum design,

ensures tight alignment between various components of a course (i.e., learning objectives,

content, assessments), and provides relevant information about research-based

pedagogical and assessment strategies. The data model of IMODS is highly connected

and has an inherent graphical representation between all its entities with numerous

relationships between them. This thesis focuses on developing an algorithm to determine

completeness of course design developed using IMODS. As part of this research

objective, the study also analyzes the data model for best fit database to run these

algorithms. As part of this thesis, two separate applications abstracting the data model of

IMODS have been developed - one with Neo4j (graph database) and another with

PostgreSQL (relational database). The research objectives of the thesis are as follows: (i)

evaluate the performance of Neo4j and PostgreSQL in handling complex queries that will

be fired throughout the life cycle of the course design process; (ii) devise an algorithm to

 ii

determine the completeness of a course design developed using IMODS. This thesis

presents the process of creating data model for PostgreSQL and converting it into a graph

data model to be abstracted by Neo4j, creating SQL and CYPHER scripts for undertaking

experiments on both platforms, testing and elaborate analysis of the results and

evaluation of the databases in the context of IMODS.

 iii

DEDICATION

This thesis work is dedicated to my parents who have tirelessly worked

throughout the prime of their lives to make the highest possible education available to

me. They have always supported me in every thick and thin of my life. I dedicate this

research work to my Dad & Mom without whose unconditional support and constant

guidance, it would not have been possible.

 iv

 ACKNOWLEDGMENTS

I am extremely grateful to my advisor Dr. Srividya Bansal for her valuable

guidance throughout the thesis as well as my Master’s program as a whole. There have

been situations where she has uplifted my morale and helped me breeze through the task

of achieving all my objectives and completing this research work. Also, I would like to

mention my gratitude for the support shown by Dr. Ajay Bansal and Dr. Javier Gonzalez-

Sanchez during my research and for serving on my thesis committee.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

LIST OF FIGURES ..x

CHAPTER

1 INTRODUCTION .. 1

1.1 Motivation...1

1.2 Research Statement ...3

1.3 Research Hypothesis ...3

1.4 Need for Graph Database ..4

2 BACKGROUND .. 6

2.1 Instructional Module Development System6

2.2 Database Paradigm ..12

 2.2.1 The Relational Model ... 12

 2.2.2 The Graph Model ...13

2.3 NoSQL Database ..14

 2.3.1 Graph Database ...15

3 RELATED WORK ..16

4 DATA MODELING ..19

4.1 Nature of Data ...19

 4.1.1 Overview of course .. 19

 4.1.2 Learning Objective ...19

 vi

CHAPTER Page

 4.1.3 Content ... 22

 4.1.4 Assessment Strategies .. 23

4.2 Analysis of IMODS Relational Database Design25

4.3 Graph Data Modelling ..29

5 DATA GENERATION ...33

5.1 Data Creation & Loading into RDBMS ..33

5.2 Loading Data into Graph Database ...34

5.3 Database Statistics... 37

5.4 Challenges...42

 5.4.1 Alternatives/Solutions ..42

 5.4.2 Explanation of Cypher MERGE Command45

 5.4.3 Performance Issue ..45

6 COURSE DESIGN COMPLETENESS ..46

6.1 Progress Bar Feature ...46

6.2 Color Codes ..47

6.3 Algorithm for Completeness ..47

 6.3.1 Course Completion Overview Percentage Allocation 48

 6.3.2 Percentage Buffer Calculation ..49

 6.3.3 Learning Objective (LO) Completion Calculation49

 6.3.4 Content Percent Calculation ...50

 6.3.5 Assessment Percentage Calculation..50

 6.3.6 Pedagogy Percent Calculation ..51

 vii

 CHAPTER Page

 6.3.7 Total Calculation ...51

 6.3.8 Stages of Course Design..53

 6.3.9 Correctness of Course Design Completion Calculation

 Algorithm..57

7 EXPERIMENTS FOR COMPARATIVE ANALYSIS OF DATABASES............. 59

7.1 Experiment Setup ..59

 7.1.1 Machine Configuration... 59

7.2 Experiment .. 60

 7.2.1 Queries ...60

8 RESULTS & CONCLUSION .. 68

8.1 Experiment Results ...68

8.2 Analysis .. 72

8.3 Conclusion & Future Work ...74

REFERENCES ... 76

APPENDIX

A CYPHER SCRIPT FOR CREATING GRAPH DATA & RELATIONSHIPS 79

 viii

LIST OF TABLES

Table Page

1. Learning Objectives – Software Enterprise-I ... 21

2. Content Topic – Software Enterprise-I .. 23

3. Assessment Techniques – Software Enterprise-I ... 24

4. Relationships In IMODS Graphical Data Model ... 31

5. Neo4j Databse YDB5k .. 37

6. Neo4j Databse YDB5k Relationships ... 37

7. Neo4j Databse YDB10k .. 39

8. Neo4j Databse YDB10k Relationships .. 39

9. Neo4j Databse YDB20k .. 40

10. Neo4j Databse YDB20k Relationships .. 40

11. Pseudo Code – UniqueId(1) ... 42

12. Pseudo Code – UniqueId(2) ... 43

13. Pseudo Code – Course Overview .. 48

14. Pseudo Code – Percentage Buffer .. 49

15. Pseudo Code – Learning Objective .. 49

16. Pseudo Code – Content .. 50

17. Pseudo Code – Assessment Technique .. 51

18. Pseudo Code – Pedagogy Technique ... 51

19. Pseudo Code – Final Progress Percentage Calculation .. 52

20. Completion Measure of Instructional Modules – Evaluation Results 58

21. Response Time For 5k Dataset .. 68

 ix

Table Page

22. Response Time For 10k Dataset .. 70

23. Response Time For 20k Dataset ... 71

 x

LIST OF FIGURES

Figure Page

1. Data Structure Diagram I - IMODS Framework .. 10

2. Data Structure Diagram II - IMODS Framework .. 11

3. Learning Domains and Domain Categories based on Bloom’s Taxonomy......... 11

4. Relational Model .. 12

5. Property Graph Model ... 14

6. Conceptual Level Diagram of IMODS ... 26

7. Complete IMODS E-R Diagram .. 27

8. E-R Diagram – Part I .. 28

9. E-R Diagram – Part II .. 28

10. E-R Diagram – Part III ... 29

11. Graphical Data Model for sample course Software Enterprise-I........................ 30

12. Cypher Script To Load ImodUser Data In To Neo4j .. 35

13. Cypher Script To Load Imod Data In To Neo4j ... 35

14. Cypher Script To Create Relationship Between Imod & ImodUser 36

15. Sub-graph Showing Relationship Between Imod & ImodUser 36

16. Output Showing Ids Of Different Imod Objects .. 44

17. UniqueId Node .. 44

18. Color Codes Of Progress Bar .. 47

19. Graphical Picture Of Progress Bar Algorithm ... 47

20. IMODS Progress Bar-Stage 0 .. 53

21. IMODS Progress Bar-Stage 1 .. 54

 i

Figure Page

22. IMODS Progress Bar-Stage 2 .. 54

23. IMODS Progress Bar-Stage 3 .. 55

24. IMODS Progress Bar-Stage 4 .. 56

25. Comparison Of Neo4j & PostgreSQL Mean Response Time (5k Dataset) 69

26. Comparison Of Neo4j & PostgreSQL Mean Response Time (10k Dataset) 70

27. Comparison Of Neo4j & PostgreSQL Mean Response Time (20k Dataset) 71

 1

 CHAPTER 1

INTRODUCTION

1.1 Motivation

Relational databases have been considered as the primary data store house for

enterprise software applications and solutions since 1970. They have been instrumental

and successful in storing and organizing data owing to their high performance and strong

atomicity, consistency, isolation and durability (ACID) compliance. Initially, relational

databases came to the picture for abstracting information from offline forms and putting

them together in tabular structures [1]. Having done that exceptionally well and with the

increasing demand in IT world, relational databases have been widely accepted and put to

use for software product development involving high amount of create, read, update and

delete (CRUD) operations such as banking, health care applications. But off late, with the

emergence of social media, data has been generating in leaps and bounds in the range of

zeta bytes in a day. In relational databases, all tabular structures and constraints need to

be identified before storing the data in the database [1]. But in today’s world, with

increasing social media data, millions of logs, and financial transaction logs, it is

extremely difficult to identify the proper structure or schema of the data as most of the

data are semi-structured or unstructured [2]. In today’s data-driven world, there has been

abundance of relationships in data models. Entities are connected to other entities and

have numerous relationships between them. Abstracting all these relationships and

constantly updating the connections with emergence of newer nodes has been a challenge

 2

for relational databases [3]. Traditionally, developers are trained to store in rows and

columns of a relational model. But in real life data does not always exist in tabular row

and column structure; it exists as objects and the relationships between those different

objects. The influx of these types of complex, real-world data are increasing in volume,

velocity and variety day by day. This is the reason due to which data relationships are

increasing at a faster rate and are even more important than the data itself.

Instructional Module Development System [4] is a web-based tool that guides

STEM instructors through the complex task of curriculum design, ensures tight alignment

between various components of a course (i.e., learning objectives, content, assessments),

and provides relevant information about research-based pedagogical and assessment

strategies. The course components should be tightly connected and aligned as per the

outcome based education model [5]. Hence, the tightly connected components of IMODS

makes the data model graphical in nature. There is a huge scope in gathering insights

from the data relationships present in IMODS data model and improve the performance

of the system.

 3

1.2 Research Statement

Instructional Module Development System (IMODS) guides STEM instructors

through the complex task of course design. While designing the courses, it is crucial to

find out inconsistencies in the relationships between different components of the course

design. Complex queries are run throughout the different stages of course design keeping

the course components tightly aligned as per PC3 framework [6]. The primary focus of

the thesis is

I. To evaluate the performance of graph databases with highly connected data

against traditional relational databases. Experiments will be performed using

queries involving different level of joins in a highly connected data model. The

performance of graph database(Neo4j) on answering queries for varying depth of

relationships in Instructional Module Development System (IMODS) would be

compared with a relational database(PostgreSQL) and analyze results.

II. To design an algorithm and implement a visualization technique for dynamically

calculating the progress of course design completeness in IMODS application.

1.3 Research Hypothesis

Graph database owing to their graph data model performs better in storing and

retrieving highly connected data. Graph database (Neo4j) performs better in answering

queries having higher depth of relationships between nodes in comparison to relational

database (PostgreSQL) with increasing size of data. Also, in order to calculate the

completeness of the course design process, it is better to use graph based data store or

 4

graph database that can give inferences and retrieve results faster to dynamically

calculate the completeness percentage.

1.4 Need for Graph Database

Due to the ever-increasing size of datasets having connected data, even with faster

processor and high-speed networks, the performance of relational database is going

down. The main reason that can be attributed to this fact is the performance lag in

relational databases while dealing with queries involving connected data or data

relationships. In recommendation applications or fraud detection systems, relational

databases fail to perform well while handling deeper relationships. For any relationship

intensive applications, relational databases need to perform complex join operations

which may even lead to deeper level join operations for answering queries. These join

operations degrade the performance of the databases which is also termed as SQL strain

[2]. Join operations are computed during query time matching corresponding primary key

and foreign key of join tables which is quite expensive and compute intensive as the size

and level of joins increase. Also, with the increase in size of overall database, for

answering join queries, relational databases scan the entire tables for finding the

referential integrity constraints to determine the data relationships. This has serious

implications on the performance of the database. With more and more connected data

thriving in relationship intensive applications like social media application,

recommendation engine, fraud detection or shortest path finding systems, increasing

number and level of join operations lead to a phenomenon called join bomb in relational

databases. Consequently, storing and modeling of connected data in relational databases

 5

involves a lot of complex operations involving slower performance and eventually

cutting down the revenue generation from those applications. This is where role of graph

database comes into play. With the inherent design of storing entities as nodes and

capturing relationships between them if exists as explicit relationship between the two

nodes, graph database has been exceptional in handling queries involving higher degree

of connectedness among data as they can directly infer from the pre-materialized

relationships using constant time graph traversal operations. As part of the thesis, an

instructional module development system (IMODS) that focuses on creating a framework

for designing courses has been used as a case study application. This application has

higher degree of relationships between its different components and gives enough

opportunities for verifying the performance of graph database against relational database.

 6

 CHAPTER 2

BACKGROUND

2.1 Instructional Module Development System (IMODS)

As per the GOALS 2000: Educate America Act signed in March 1994, every student

after the successful completion of a course or subject, must achieve some goals or

outcomes in accordance to the outcome based education model [5].This particular

concept is also followed in STEM education where instructors, faculty and trainers

collaborate to design a course in such a way that it has specific outcomes for each student

to meet at the end of the curriculum. Instructional Module Development System or

IMODS is such a tool which guides STEM instructors through the complex task of

curriculum design, ensures tight alignment between various components of a course (i.e.,

learning objectives, content, assessments, and pedagogy), and provides relevant

information about research-based pedagogical and assessment strategies. IMODS

provide professional development with facilitation embedded in its design [4]. The

application has been designed based on the research in instructional design area of STEM

discipline. IMODS framework [7] has been built to provide the following objectives:

I. To identify omissions of key components like content, assessments etc. in a

course design

II. To identify inconsistencies or non-alignment of relationships between different

components like learning objective’s learning domain and assessment’s learning

domain etc. as per PC3 framework [6].

 7

III. To provide guidance to the user in the design process

IV. To identify related strategies for instruction and assessment

Learning objective forms the backbone of IMODS framework. According to

Robert Mager (1984) [8] , the definition of a course or learning objective can be defined

by three characteristics- Performance – description of what the learner is expected to do,

Conditions- description of the conditions under which the performance will occur,

Criteria- Description of the level of expertise the learner is expected to attain. Every

learning objective has one tightly connected action word which in turn are also connected

to domain category which belongs to a learning domain [9] that helps to clearly define

the learning objective. But in education domain, it has been experienced that learning

objectives are in most of the times not well-defined. It makes it hard for new instructors

who have disciplinary training but not necessarily education training to design a well-

defined course. According to Blooms’ Taxonomy, learning domains have been classified

in to three categories namely cognitive(mental), affective (emotional) and

psychomotor(physical) [9]. Each of the learning domains are categorized or sub-divided

into other categories as shown in Figure 3. Each category is sub-divided into a set of

verbs that describes what the learners should can do. For example: Cognitive Domain is

divided into six categories as Remembering, Understanding, Applying, Analyzing,

Evaluating & Creating (Figure 3). A second dimension is added to the course design

which identifies the type of knowledge to be imparted to learners. It is known as

Knowledge Dimension [10]. Knowledge Dimension is again classified into four

categories namely Factual, Conceptual, Procedural, and Metacognitive. [10]. Therefore,

learning objective can be defined by simply combining the subject (the learner), the verb

 8

from the cognitive process dimension (what learners must know how to do), and the

object from the knowledge dimension (the knowledge they need to acquire).

As part of development of this framework, an additional characteristic is added which

is Content that essentially means the description of the knowledge, skills, and behavior to

be attained [5]. Thus, the underlying framework of Instructional Module Development

System is built using PC3 model [6] as shown in Figure 1. Additional components like

Assessment Technique is also incorporated in the framework as shown in Figure 2.

Course-Content is linked to the content and condition components of the objective. This

component along with content is used to validate the list of course topics. Similarly,

Content-Pedagogy is linked to performance and content components of the objective.

Instructional approaches or techniques should correspond to the level of learning

expected and knowledge skill set to be learned. Content and performance are used to

validate pedagogical techniques. Course -Assessment techniques correspond to

performance and criteria components. This effectively validates the suitability of

assessment strategies whether it determines the performance of the learner is equivalent

to the competency level expected.

In IMODS application [7], an instructional module or course belongs to an owner and

provides many learning objective which are defined by the owner himself. Learning

objective is defined using the PC3 model [6] where performance, content, criteria, and

condition are considered for creating the definition of learning objective as shown in

Figure 1. Every learning objective belongs to a certain action word category. Action word

category in turn has a specific domain category which belongs to one of the three

learning domains-cognitive, affective, and psychomotor [7]. Thus, we can see a lot of

 9

relationships are present between the different components of course design. Each of

them are highly interconnected with varying degree of mappings such as one to one, one

to many, many to many. The contents that are present in a specific course has different

knowledge dimensions. Also, assessment techniques that are being assigned to learning

objectives to gauge the competence level of a learner has knowledge dimensions. These

dimensions are matched against the applied contents to make sure course design strategy

is consistent or not. In order to clearly define the learning objectives, it is imperative that

the key components like learning objective and assessments assigned to them are tightly

aligned which means that the learning domain of learning objectives must match with the

assessment’s learning domain. Similarly, content’s knowledge dimension must be similar

to assessment’s knowledge dimension. If these alignments are not properly done, the

course design will be inconsistent.

 10

 Figure 1: Data Structure Diagram I- IMODS framework

 11

Figure 2: Data Structure Diagram II- IMODS framework

 Figure 3: Learning Domains and Domain Categories based on Bloom’s Taxonomy [11]

 (Blue boxes indicate Learning Domains and Green Boxes indicate Domain Categories)

 12

2.2 Database Paradigm

2.2.1 The Relational Model

Relational Databases came in to existence during 1970 based on the relational

model proposed by Edgar Codd [1]. Since then for majority of enterprise applications and

software solutions, it has been the predominant paradigm. Initially, it was developed to

abstract information from forms and organize them into tabular structure [1]. But

gradually it has turned out to be the most popular way of storing, organizing, and

managing data because of its well-defined structure and robust data integrity. Data is

organized in relational format as attribute and value as shown in Figure 4.

 Figure 4: Relational Model

 13

2.2.2 The Graph Model

Graph databases which is a part of NoSQL group of databases is based on the

property graph model. The property graph as shown in Figure 5 contains connected

entities (nodes) which can hold any number of attributes (key-value-pairs). Nodes can be

tagged with labels representing their different roles in your domain. In addition to

contextualizing node and relationship properties, labels may also serve to attach

metadata—index or constraint information—to certain nodes. Relationships provide

directed, named semantically relevant connections between two node-entities. A

relationship always has a direction, a type, a start node, and an end node. Like nodes,

relationships can have any properties. In most cases, relationships have quantitative

properties, such as weights, costs, distances, ratings, time intervals, or strengths [2] .As

relationships are stored efficiently, two nodes can share any number or type of

relationships without sacrificing performance. In graph model, nodes physical points to

all the nodes that it has any connection with. So, in order to perform queries with greater

depth of relationships, graph databases need not scan the entire table but can hop from the

starting node following the relationships using index free adjacency technique. Instead of

using foreign keys to represent a relationship, graph databases use arcs that directly

connect two nodes. Operations on this model can be performed through a graph query

language. Queries are performed using graph query languages which works on the

principle of pattern matching. In case of transactions, graph databases follow a relatively

less strict approach than ACID that is known as BASE – Basically Available, Soft state,

Eventual Consistency [12].

 14

 Figure 5: Property Graph Model [2]

2.3 NoSQL Database

With the increasing customer base and data flow in today’s data driven world, the

need for scalability is the primary concern for every enterprise class software. In order to

attain this objective, the phenomenon cloud computing arrived which means provisioning

of scalable and elastic IT resources on demand in order to achieve higher scalability,

availability and fault –tolerant systems [13]. In cloud aware applications, data is either

semi-structured or unstructured owing to the variety, velocity and volume of the data

flux. In order to consume this amount of data without any well-defined structure,

relational databases were not enough. That is how the birth of NoSQL databases

happened by industry stalwarts like Google, Amazon etc. NoSQL databases are available

 15

in many forms such as key-value stores (Redis, Voldemort), document-

oriented(MongoDB), columnar store (Cassandra, HBase), graph (Neo4j, Allegro

GraphDB).

2.3.1 Graph Databases

Graph Database Management System is a database management system with CRUD

operations based on property graph data model. Graph database stores entities as nodes

and data relationships are considered as priority citizens. In graph database, there is no

need to determine relationships by inferring from foreign key relationships or using map

reduce jobs. Since all the nodes physical point to each other, relationships are stored

explicitly in the data store. Graph database technology is composed of two important

components:

I. Graph Storage – Graph databases uses native graph storage to store nodes and

relationships in disks. Some graph database uses underlying relational database to

store graph data. Native graph storage performs better while operating on the

graph data rather than non-native graph storage with increasing query complexity

and data volume [2].

II. Graph Processing – Native graph processing using index-free adjacency is the

most efficient way of operating on graph data as nodes physically point to other

nodes with an underlying relationship [2].

 16

CHAPTER 3

RELATED WORK

Throughout last decade, lot of work has been done in regard to successfully

ascertain the effectiveness of graph databases in software industry. With the emergence

of Linked Open Data (LOD) [14], companies and institutions felt the need to share

information on the web using Resource Description Format (RDF). According to Linked

Data Community, this information previously stored in relational format needed to be

converted into graphical model. Several contributions [15], [16], [17] have been made

where specifications are given as to how to convert columns(attributes) and their values

into key-value pairs as RDF attribute and literals respectively. They focused on mapping

the source schema into an ontology using naive transformation technique in which every

relational attribute becomes an RDF predicate and every relational value becomes an

RDF literal. It was imperative that comparisons should be done between NoSQL graph

databases and relational database to understand the need and their efficiency. Some

studies have been conducted to compare graph database and relational database from data

provenance perspective [18] as well. In this research, Neo4j has been compared with

relational databases like MySQL based on parameters like system maturity, ease of

coding and security features. The results were varied for various data types as

performance of Neo4j came out well for string data but not for integer data [18]. The

author concluded that from data provenance perspective it is premature to use graph

database in production environment where queries will be on parameters stored in a semi-

structured way and less security features in Neo4j contributes to the rejection of graph

 17

database. The version of Neo4j v1.0 database used for comparison was not as mature as

MySQL 5.1.42 and the test data used was not realistic [18]. In 2012, another comparison

[19] with comparatively smaller dataset of 100 data objects concluded with a result of

Neo4j being 2 to 5 times lower in performance than MySQL. The performance of a

database also depends on how the query is written and the query language used. In this

regard, research [13]has been done to compare the different graph query language like

Cypher, Gremlin, and also native access in Neo4j. The performance of Cypher is found

out to be slower than Gremlin in FOAF queries and other recommendation queries. In

comparison to native object access, Cypher does not perform that well and is about two

times slower. But given the readability and easiness of writing queries in Cypher, it

proves to be a great choice for using in graph database as query language. Another

important aspect is to find the applications or domains where graph databases would be

effective. Basically, it has been touted that applications or domains where there is a

chance of higher number of relationships or greater depth of relationships, graph

databases perform exceedingly well [2]. Work has been done where performances have

been measured based on query response time for Neo4j and MySQL databases in the

context of cancer treatment application [12]. This research work deals with different

categories of datasets and evaluates the performance of different sets of queries under

each dataset category [12]. The author concluded that for 1k entries MySQL performance

has been far better than Neo4j. But as the dataset increases from 10k to 100k, Neo4j

performance improved for queries having greater depth of relationship which would

require two or more than two level of JOIN operations in relational database MySQL

[12].

 18

There are many e-learning tools like Content Automated Design and

Development Integrated Editor (CADDIE) and Intelligent Web Teacher (IWT) available

that provides personalized learning services for their users with an ontology based

framework using semantic web technologies and RDF data stores [20]. The ontology

framework is used to align learning content with teaching strategies. These tools initiates

by profiling the learner and suggesting appropriate strategies for providing learning

resources to them [20]. They also provide feedback to the instructors for improvements in

content and course structure [20]. But they hardly focus on learning objectives or

assessment techniques. In IMODS [21] tool, main focus has been given to improve the

process of curriculum design by instructors rather than managing the course contents and

resources. The existing implementation of IMODS application uses PostgreSQL as

database because of better licensing (Open Source- MIT), better performance with sub-

queries and better data integrity over other relational databases like MySQL [22]. Given

the research objectives, graph database with its explicit storage of relationship feature can

prove beneficial and a great fit for IMODS application. But to the best of my knowledge,

no research work has been done to evaluate the performance of graph database on a

highly connected education tool for course design like IMODS [4]and also no significant

amount of work has been done for determining the completeness of course design based

on outcome-based education process.

 19

CHAPTER 4

DATA MODELING

4.1. Nature of IMODS Data

In this section, an effort has been made to understand the nature of IMODS data.

For this purpose, data from a sample IMOD has been taken and analyzed to understand

the structure, complexity and relationships present in the data model. For understanding,

sample data as shown in Table 1, 2 and 3 from the software engineering course “Software

Enterprise-I: Personal Software Process” in B.S in Software Engineering program at

Arizona State University has been taken [5].

4.1.1 Overview of course

 Software Enterprise-I: Personal Software Process is a sophomore level

course in Software Engineering program. As part of the coursework, students are

introduced to object-oriented software design principles using programming languages

like Java, software life cycle models, personal software process, process estimation,

effort tracking, defect estimation and tracking. A project based pedagogical model is used

for delivery of the course [5].

4.1.2 Learning Objective

 Software Enterprise-I provides six learning objectives [5] to be accomplished by

the students after the completion of the course. The learning objectives are designed

 20

based on the PC3 framework as shown in Figure 1 and is categorized under Performance,

Condition, Criteria, and Content which can be seen in Table 1. The six objectives are

enumerated below:

I. LO1: Design a software solution using Object-Oriented Design principles of

encapsulation, information hiding, abstraction, inheritance, and polymorphism

II. LO2: Develop a software solution in an object-oriented programming language

employing standard naming conventions and making appropriate use of advanced

features such as exception handling, I/O operations, and simple GUI

III. LO3: Use object-oriented design tools such as UML class diagrams to model

problem solutions and express classes and relationships such as inheritance,

association, aggregation, and composition

IV. LO4: Use personal software process for individual development productivity

through time estimation and tracking

V. LO5: Use personal software process for individual development quality through

defect estimation and tracking

VI. LO6: Demonstrate teamwork

 21

O
b

je
c
ti

v
e

L
e
a
r
n

in
g

D
o
m

a
in

D
o
m

a
in

C
a
te

g
o
r
y

A
c
ti

o
n

C
a
te

g
o
r
y

A
c
ti

o
n

 W
o
r
d

P
e
r
fo

r
m

a
n

c
e

C
o
n

te
n

t

C
r
it

e
r
ia

C
o
n

d
it

io
n

LO1 Cognitive Create Plan Design Software

Solution,

Object-

oriented

Design

Principles,

Encapsulation,

Information

Hiding,

Abstraction,

Inheritance,

Polymorphism

Quality At the

completion

of this

course,

student

will be

able

LO2 Cognitive Create Produce Develop Software

Solution,

Object-

oriented

Programming

Language,

Standard

Naming

Convention,

Exception

Handling, I/O

Operations,

Simple GUI

Quality,

Speed

At the

completion

of this

course,

student

will be

able

LO3 Cognitive Apply Implement Use Object-

oriented

Design Tools,

UML Class

Diagrams,

Modelling

problem

Solutions,

Classes,

Relationship

between

classes,

Inheritance,

Association,

Aggregation,

Composition

Quality,

Speed

At the

completion

of this

course,

student

will be

able

LO4 Cognitive Apply Implement Use Personal

Software

Process,

Individual

Development

Productivity,

Time

Accuracy

(85%)

At the

completion

of this

course,

student

will be

able

 22

Estimation,

Time Tracking

LO5 Cognitive Apply Implement Use Personal

Software

Process,

Individual

Development,

Quality, Defect

Estimation,

Defect

tracking

Accuracy

(85%)

At the

completion

of this

course,

student

will be

able

LO6 Cognitive Apply Implement Demonstrate Teamwork Quality At the

completion

of this

course,

student

will be

able

 Table 1: Learning Objectives – Software Enterprise-I [5]

4.1.3 Content

In Table 2, all contents for Software Enterprise-I are listed along with sub-

contents, priority, and knowledge dimension. This information is crucial for

finding out correct assessment and pedagogical techniques that would be

beneficial for delivering the content.

 23

Content Topic

Content

Sub-Topic

Knowledge Dimension Priority

Object-Oriented Design

Principles

Encapsulation Factual(F), Conceptual(C) Critical (3)

Information Hiding Factual(F), Conceptual(C) Critical (3)

Abstraction Factual(F), Conceptual(C) Critical (3)

Inheritance Factual(F), Conceptual(C) Critical (3)

Polymorphism Factual(F), Conceptual(C) Critical (3)

Software Solution Conceptual(C),

Metacognitive(M)

Critical (3)

Object- Oriented

Design Tools

Modelling Problem

Solution

Procedural(P),

Metacognitive(M)

Critical (3)

UML Class Diagram Procedural(P) Critical (3)

UML Use Case

Diagram

Procedural(P) Important (2)

Object-Oriented

Programming

Language

Exception Handling Factual(F), Conceptual(C) Important (2)

I/O Operations Factual(F), Conceptual(C) Important (2)

Simple GUI Factual(F), Conceptual(C) Important (2)

Standard Naming

Conventions

Factual(F), Conceptual(C) Good to know (1)

Personal Software

Process

Time Tracking Factual(F), Conceptual(C) Critical (3)

Time Estimation Factual(F), Conceptual(C) Critical (3)

Defect Tracking Factual(F), Conceptual(C) Critical (3)

Defect Estimation Factual(F), Conceptual(C) Critical (3)

Teamwork - Metacognitive(M) Important (2)

 Table 2: Content Topic– Software Enterprise-I [5]

4.1.4 Assessment Strategies

Both formative and summative assessments [5] have been selected for this course.

The underlying PC3 framework of IMODS aligns all the assignments by ensuring

compatibility of learning domains, performance, and criteria. Table 3 enlist all the

assessment strategies for this course along with their type, knowledge dimension, criteria

etc.

 24

Assessment Type Domain

Category

Knowledge

Dimension

Criteria

Programming

Exercise (Write

Formal Code)

Formative Understand,

Apply,

Analyze,

Evaluate,

Create

Conceptual,

Procedural

Speed,

Quality,

Accuracy

Partially

Guided

Programming

Exercise

Formative Understand,

Apply,

Analyze,

Evaluate

Conceptual,

Procedural

Quality,

Accuracy

Guided Lab

Exercise

Formative Understand,

Apply,

Analyze,

Evaluate

Conceptual,

Procedural

Quality,

Accuracy

Quiz Formative Remember,

Understand

Conceptual,

Factual

Accuracy,

Speed

Project Summative Understand,

Apply,

Analyze,

Evaluate,

Create

Conceptual,

Procedural

Quality,

Accuracy

Exam Summative Understand,

Apply,

Analyze,

Evaluate

Conceptual,

Procedural

Quality,

Accuracy

Table 3: Assessment Techniques – Software Enterprise-I [5]

 25

4.2 Analysis of IMODS Relational Database Design

 In IMODS, an instructional module can have different learning objectives and

for each connection there is a foreign key relationship between imod table and

learning_objective table. Each learning objective will have its own action word category

which is again connected to domain_category table with foreign key. Domain category

belongs to learning domain. Again, for each learning objective, several assessments will

be assigned. These assessments can have their own domain category and learning domain

as shown in Figure 8. These components should match with learning objective’s learning

domain in order to justify the alignment of course design components. Similarly, contents

will have their own knowledge dimension which must consistent with assessment’s

knowledge dimension for a correct course design as shown in Figure 9. Instructors can

create contents for imods directly and also after creating learning objectives specific

contents can be created and added to them as shown in Figure 10. This is the reason

circular references between imod, content and learning objective are found in the E-R

diagram shown in Figure 10. These types of circular references are intentional in order to

give more flexibility to the instructor in adding contents and assessments to the course.

Content also show a hierarchical design structure as contents can have sub contents and

can be referenced by parent content id. This justifies the presence of a self-loop in

Content table as shown in Figure 10. Imod users can create assessments which is stored

in imod_user_assessment_technique table without assigning them to learning objectives.

These references are again intentional in order to give flexibility to the instructor in

designing the course. All these references can be verified from the conceptual diagram of

IMODS as shown in Figure 6. The database has been designed conforming to the

 26

requirements of 3NF and have been normalized to an extent. From the E-R diagram of

IMODS shown in Figure 7, it can be verified that there is no column in any table that is

not dependent on the primary key of that table. All subsets of data that may apply to

multiple rows in a table are kept in a separate table. These dependent data have been

referenced using foreign keys maintaining referential integrity constraint. For each group

of related data, separate tables are created like Imod, Imod_user, Learning objective etc.

Indexes have been created on primary keys which are the ids in the tables so that tuples

data can be retrieved faster. There was no specific need of output data formatting in

IMODS application for security concern and all the attributes of a table can be accessed

by the instructor and hence no views have been created.

Figure 6: Conceptual Level Diagram of IMODS

 27

 Figure 7: Complete IMODS E-R Diagram

 28

 Figure 8: E-R Diagram – Part I

Figure 9: E-R Diagram – Part II

 29

Figure 10: E-R Diagram – Part III

4.3 Graph Data Modelling

 On performing data modelling using the Software Enterprise - I course data [5] in

alignment with the PC3 framework, the following graph model as depicted in Figure 11 is

generated when implemented in graph database. The key components of the course like

learning objectives, content, learning domain, assessment techniques etc. are stored as

nodes and related nodes are connected using explicit relationships between them. For this

course, six learning objectives are created which are connected to their concerned

learning domain, action word category, assessment strategies assigned etc.

 30

 Figure 11: Graphical Data Model for sample course Software Enterprise-I

In the graph model, for the course Software Enterprise-I, the course content Objected

Oriented Design has knowledge dimension “Conceptual” which is also connected to the

assigned assessment technique “Programming Exercise”. This technique is related to the

learning objective “LO1”. Similarly, learning objective has action word “Plan” which

belongs to domain category “Create”. The assessment technique belongs to the same

domain category “Create” and hence assessment technique’s domain category is

consistent with the learning objective’s domain category. From all these relationships

shown in Figure 11, we can infer that most of the data are interrelated and connected.

 31

While implementing the IMOD data model in relational database, we need to

have several intermediate join tables which helps to create logical relationships between

various entities. In a query, which retrieves the relationship between two components,

relational databases must find out the logical relationships using the foreign key

constraint in the tables. Thus, with increasing volume of dataset, it becomes extremely

costly to find out relationships with total table scan. But in graph database, relationships

are considered as first-class citizens [2]. Graph database contains entities and explicitly

stores relationship between them. If there exists any relationship, then graph database will

store it in the disk. It makes it extremely faster to perform graph traversals hopping on to

the relationships and moving on to the next connected node. In Table 4, all relationships

present in the graphical data model of IMODS is listed.

SL

No

Node(P) Relationship(R) Node(Q)

1 AssessmentTechnique ASSESSTECHHASDC DomainCategory

2 LearningObjective ACTIONWORD

CATEGORY

ActionWordCategory

3 DomainCategory DOMAINCATEGORY ActionWordCategory

4 LearningDomain LDHASDC DomainCategory

5 DomainCategory LEARNINGDOMAIN LearningDomain

6 AssessmentTechnique KNOWLEDGE

DIMENSION

KnowledgeDimension

7 DomainCategory AWCHASDC ActionWordCategory

8 AssessmentTechnique ASSIGNEDASSESS

TECH

LearningObjective

9 LearningObjective CONTENTS Content

10 DomainCategory LDHASDC LearningDomain

11 KnowledgeDimension KNOWLEDGE

DIMENSION

AssessmentTechnique

12 ImodUser OWNS Imod

13 Content HASCONTENT Imod

 32

 Table 4: Relationships in IMODS graphical data model

14 ActionWordCategory AWCHASDC DomainCategory

15 ActionWordCategory ACTIONWORD

CATEGORY

LearningObjective

16 AssessmentTechnique ASSESSTECHHAS

LDOMAIN

LearningDomain

17 Imod HASCONTENT Content

18 Imod IMOD LearningObjective

19 LearningDomain LEARNINGDOMAIN DomainCategory

20 Content CONTENTS LearningObjective

21 Imod OWNS ImodUser

22 KnowledgeDimension CONHASKD Content

23 DomainCategory ASESSTECHHASDC AssessmentTechnique

24 LearningObjective IMOD Imod

25 ActionWordCategory DOMAINCATEGORY DomainCategory

26 Content CONHASKD KnowledgeDimension

27 LearningObjective PROVIDES Imod

 33

CHAPTER 5

DATA GENERATION

5.1 Data Creation & Loading into RDBMS

Test data has been generated using python scripts for testing the performance of

the databases. Industry standards and research papers have been read thoroughly before

creating the datasets to avoid any sort of bias or inconsistency. Artificial data has been

generated imitating the data model of IMODS application including all constraints,

relationships, and index. Three different datasets have been generated for 5k,10k and 20k

imod users. For a single imod user,0 to 15 imods have been created and assigned

randomly. For each imod, 0 to 10 learning objectives and around 0 to 20 contents have

been created. Similarly, 0 to 10 assessment strategies have assigned to each learning

objectives in a randomized way. The total number of entities and relationships generated

for each dataset can be found in tables in section 5.3 Database Statistics below. Python

packages like faker and random has been used to generate the artificial data. For tables

like action_word_catgory, learning_domain, domain_category, care has been taken so

that the generated data represents data according to the Bloom’s taxonomy. For every

other table, it has been made sure that data is properly distributed and should not be an

outlier. Random functions have been used quite often in order to bring uniqueness to the

dataset. These datasets have been directly imported in to PostgreSQL Database engine in

three different database xDb5k, xDb10k and xDb20k using SQL client pgAdmin. For

importing data into graph database Neo4j, Cypher scripts have been used to load the data

 34

in to three different Neo4j database instances YDB5k, YDB10k & YDB20k. After

loading the data, cypher scripts are run on the web client of Neo4j for creating specific

relationships between different nodes.

5.2 Loading Data into Graph Database

Now for transporting the data from PostgreSQL databases, we have exported the data

in to csv format using COPY TO command and for bulk loading the csv files into

graphical nodes and relationships in Neo4j, we used LOAD CSV command [2]. This

command is a great Extraction-Transform-Load (ETL) tool because of the reasons

mentioned below.

I. It supports loading and consuming of data from an URI

II. It directly maps the data into complex graphical/domain structure

III. It has functionality to convert the data types on the fly i.e. data transformation

IV. It supports complex processing and computation

V. It creates and merge data and relationship

VI. It works best for medium to large sized dataset

In conjunction with LOAD CSV, we have used the global query hint USING

PERIODIC COMMIT to prevent OutOfMemoryError. Sometimes, while loading large

amount of CSV data using LOAD CSV, a single query may fail due to memory

 35

constraint. In such type of situation, we may use PERIODIC COMMIT with a predefined

value which gives a hint to the query processor to process only that amount of row in

single transaction. Once processed, a new transaction will begin for another transaction

for the remaining amount of data. This query hint proves a boon while dealing with 20k

users in IMODS application. As we must process relationships in the range of 20000,

PERIODIC COMMIT helps to create those relationships without manipulating the

configuration of the database engine. Cypher script for creating IMOD user data is

shown in Figure 12 and for IMOD data is shown in Figure 13.

 Figure 12: Cypher script for loading ImodUser data into Neo4j

 Figure 13: Cypher script for loading Imod data into Neo4j

 36

We know that every imod(course) belongs to an owner or imod user. So, there is a

relationship between each imod node with an imod_user node. This relationship is

created using the MERGE/ CREATE command of Cypher queries as shown in Figure 14.

 Figure 14: Cypher script to create relationship between Imod and ImodUser

After running this script, relationships between all imod and imod users in the

dataset have been created. On running a cypher query to return all those relationships, it

returns a sub graph showing relationship between Imod and Imod user as shown in Figure

15.

Figure 15: Sub-graph showing relationship between Imod and ImodUser

 37

5.3 Database Statistics

In this section, node and relationship counts are listed for 5k dataset in Table 5

and 6, for 10k dataset in Table 7 and 8 and for 20k dataset in Table 9 and 10 respectively.

Table 5: Neo4j Database YDB5k

SL No. Dataset Node Type Count

1 5k Imod 5000

2 5k ImodUser 5000

3 5k LearningObjective 5028

4 5k Content 5000

5 5k AssessmentTechnique 5000

6 5k ActionWordCategory 59

7 5k DomainCategory 18

8 5k KnowledgeDimension 4

9 5k LearningDomain 3

10 5k UniqueId 9

SL

No

Node(P) Relationship(R) Node(Q) Count

1 AssessmentTechnique ASSESSTECH

HASDC

DomainCategory 5000

2 LearningObjective ACTIONWORD

CATEGORY

ActionWordCategory 5028

3 DomainCategory DOMAIN

CATEGORY

ActionWordCategory 58

4 LearningDomain LDHASDC DomainCategory 18

5 DomainCategory LEARNING

DOMAIN

LearningDomain 18

6 AssessmentTechnique KNOWLEDGE

DIMENSION

KnowledgeDimension 5000

7 DomainCategory AWCHASDC ActionWordCategory 58

8 AssessmentTechnique ASSIGNED LearningObjective 4999

 38

Table 6: Neo4j Database YDB5k Relationships

ASSESTECH

9 LearningObjective CONTENTS Content 4932

10 DomainCategory LDHASDC LearningDomain 18

11 KnowledgeDimension KNOWLEDGE

DIMENSION

AssessmentTechnique 5000

12 ImodUser OWNS Imod 5000

13 Content HASCONTENT Imod 5000

14 ActionWordCategory AWCHASDC DomainCategory 58

15 ActionWordCategory ACTIONWORD

CATEGORY

LearningObjective 5028

16 AssessmentTechnique ASSESSTECH

HASLDOMAIN

LearningDomain 5000

17 Imod HASCONTENT Content 5000

18 Imod IMOD LearningObjective 5028

19 LearningDomain LEARNING

DOMAIN

DomainCategory 18

20 Content CONTENTS LearningObjective 4932

21 Imod OWNS ImodUser 5000

22 KnowledgeDimension CONHASKD Content 5000

23 DomainCategory ASESSTECH

HASDC

AssessmentTechnique 5000

24 LearningObjective IMOD Imod 5028

25 ActionWordCategory DOMAIN

CATEGORY

DomainCategory 58

26 Content CONHASKD KnowledgeDimension 5000

27 LearningObjective PROVIDES Imod 5028

 39

Table 7: Neo4j Database YDB10k

SL Node(P) Relationship(R) Node(Q) Count

1 AssessmentTechnique ASSESSTECHH

ASDC

DomainCategory 10000

2 LearningObjective ACTIONWORD

CATEGORY

ActionWordCategory 10068

3 DomainCategory DOMAIN

CATEGORY

ActionWordCategory 58

4 LearningDomain LDHASDC DomainCategory 18

5 DomainCategory LEARNING

DOMAIN

LearningDomain 18

6 AssessmentTechnique KNOWLEDGE

DIMENSION

KnowledgeDimension 10000

7 DomainCategory AWCHASDC ActionWordCategory 58

8 AssessmentTechnique ASSIGNED

ASSESTECH

LearningObjective 9998

9 LearningObjective CONTENTS Content 10668

10 DomainCategory LDHASDC LearningDomain 18

11 KnowledgeDimension KNOWLEDGE

DIMENSION

AssessmentTechnique 10000

12 ImodUser OWNS Imod 10000

13 Content HASCONTENT Imod 10001

14 ActionWordCategory AWCHASDC DomainCategory 58

15 ActionWordCategory ACTIONWORD LearningObjective 10068

SL No. Dataset Node Type Count

1 10k Imod 10000

2 10k ImodUser 10000

3 10k LearningObjective 10068

4 10k Content 10001

5 10k AssessmentTechnique 10000

6 10k ActionWordCategory 59

7 10k DomainCategory 18

8 10k KnowledgeDimension 4

9 10k LearningDomain 3

10 10k UniqueId 9

 40

CATEGORY

16 AssessmentTechnique ASSESSTECH

HASLDOMAIN

LearningDomain 10000

17 Imod HASCONTENT Content 10001

18 Imod IMOD LearningObjective 10068

19 LearningDomain LEARNING

DOMAIN

DomainCategory 18

20 Content CONTENTS LearningObjective 10068

21 Imod OWNS ImodUser 10000

22 KnowledgeDimension CONHASKD Content 10001

23 DomainCategory ASESSTECH

HASDC

AssessmentTechnique 10000

24 LearningObjective IMOD Imod 10068

25 ActionWordCategory DOMAIN

CATEGORY

DomainCategory 58

26 Content CONHASKD KnowledgeDimension 10001

27 LearningObjective PROVIDES Imod 10068

Table 8: Neo4j Database YDB10k Relationships

SL No. Dataset Node Type Count

1 20k Imod 20000

2 20k ImodUser 20000

3 20k LearningObjective 20148

4 20k Content 20001

5 20k AssessmentTechnique 20000

6 20k ActionWordCategory 59

7 20k DomainCategory 18

8 20k KnowledgeDimension 4

9 20k LearningDomain 3

10 20k UniqueId 9

Table 9: Neo4j Database YDB20k

SL

No

Node(P) Relationship(R) Node(Q) Count

1 AssessmentTechnique ASSESSTECH

HASDC

DomainCategory 20000

2 LearningObjective ACTIONWORD

CATEGORY

ActionWordCategory 20148

3 DomainCategory DOMAIN

CATEGORY

ActionWordCategory 58

 41

4 LearningDomain LDHASDC DomainCategory 18

5 DomainCategory LEARNING

DOMAIN

LearningDomain 18

6 AssessmentTechnique KNOWLEDGE

DIMENSION

KnowledgeDimension 20000

7 DomainCategory AWCHASDC ActionWordCategory 58

8 AssessmentTechnique ASSIGNED

ASSESTECH

LearningObjective 20000

9 LearningObjective CONTENTS Content 19440

10 DomainCategory LDHASDC LearningDomain 18

11 KnowledgeDimension KNOWLEDGE

DIMENSION

AssessmentTechnique 20000

12 ImodUser OWNS Imod 20000

13 Content HASCONTENT Imod 20001

14 ActionWordCategory AWCHASDC DomainCategory 58

15 ActionWordCategory ACTIONWORD

CATEGORY

LearningObjective 20148

16 AssessmentTechnique ASSESSTECH

HASLDOMAIN

LearningDomain 20000

17 Imod HASCONTENT Content 20001

18 Imod IMOD LearningObjective 20148

19 LearningDomain LEARNING

DOMAIN

DomainCategory 18

20 Content CONTENTS LearningObjective 19440

21 Imod OWNS ImodUser 20000

22 KnowledgeDimension CONHASKD Content 20001

23 DomainCategory ASESSTECH

HASDC

AssessmentTechnique 20000

24 LearningObjective IMOD Imod 20148

25 ActionWordCategory DOMAIN

CATEGORY

DomainCategory 58

26 Content CONHASKD KnowledgeDimension 20001

27 LearningObjective PROVIDES Imod 20148

Table 10: Neo4j Database YDB20k Relationships

 42

5.4 Challenges

While loading the data in to graph database Neo4j, one of the major challenges

faced apart from memory constraints is to set a unique id for all the nodes created.

All the traditional RDBMS like Oracle, PostgreSQL and MySQL comes with the feature

of auto generating unique id for every row in a table. So, whenever a developer is

creating an object and trying to save the object in the table with all the attributes, he does

not need to worry about the uniqueness. But neo4j fails to do that. Neo4j does not have

any tabular structure. It stores the data as a graph data model. It does generate unique ids

but whenever we try to compact the database store, it might lose the ids generated against

an object. There have been instances when Neo4j created ids have been re-used and

developers have ended getting similar ids for two objects. These ids are non-incremental

system generated and could not be used for assuring uniqueness property of the data

model.

5.4.1 Alternatives/ Solutions:

In Table 11, pseudo code for creating a unique id for a Imod Object called Graph

Database leveraging MERGE Command in Cypher is shown.

// get unique id

MERGE (id:UniqueId{name:'Imod'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

WITH id.count AS uid

 43

// create Imod/Course node

CREATE (p:Imod{id:uid,imodName:'Graph Database',noOfSeats:60})

RETURN p AS Imod

Table 11: Psuedo code- UniqueId(1)

Next, another Imod Object with imodName as Computer Security has been

created. The pseudo code is written in Table 12.

MERGE (id:UniqueId{name:'Imod'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

WITH id.count AS uid

// create Imod/Course node

CREATE (p:Imod{id:uid,imodName:'Computer Security',noOfSeats:60})

RETURN p AS Imod

This time the ON CREATE line will not be executed as we already have that

UniqueID singleton node. On retrieving all the Imod object, it is shown Figure 16 in that

different imods have incremental ids as per the sequence of creation.

Table 12: Psuedo code- UniqueId(2)

 44

 Figure 16: Output showing ids of different Imod Object

Similarly, unique ids for different domains can be generated leveraging the Singleton

UniqueID node that we have created. For each of the domains, this UniqueID node will

have different counters which is shown in Figure 17. Count for Imod is 2 as two Imod

objects have been created.

 Figure 17: UniqueId node

 45

 5.4.2 Explanation of Cypher MERGE Command

Merge acts as combination of MATCH and CREATE. It will try to find the

pattern in the graph and if it does, nothing is created. If the pattern cannot be matched,

only then will it be created. MERGE (u1:User {name: "u1"}) will try to find a User node

with name=u1. If such a node cannot be found, it is created. Once created, re-executing

this MERGE statement has no effect on the graph.

5.4.3 Performance Issue

Since we are calling the MERGE command every time we are creating an object

and referring to that Singleton Node, so practically for each create statement we are

running another query to get the count value of that node. It might have significant

performance issues while dealing with large number of datasets. But to solve the problem

of uniqueness, I think MERGE helps us a lot. Also, we can create non-numeric unique ids

with MERGE command and use Neo4j indexes while querying thereby significantly

reducing the query execution time for other cases.

 46

 CHAPTER 6

COURSE DESIGN COMPLETENESS

6.1 Progress Bar Feature

The progress bar feature allows the instructor to get a visual idea about the current

status of the course design. The course design is based on completion of several key

features. Upon successful implementation of every factor, the progress bar meter

gradually reaches the course completion stage. The main features that determines the

completion of a course design are enumerated below:

I. Course Overview Details- (Course Description, Schedule, Policy, Instructor etc.)

II. Learning Objectives

III. Content

IV. Assigned Pedagogy Techniques

V. Assigned Assessment Technique

Specific weightage has been given to each of the factors mentioned above. The

progress meter algorithm works on the basic assumption that the activities are done in a

pipelining fashion. It means that only after the completion of a few basic required details

in the course overview tab, the user can move forward to the other tabs. The progress bar

is dynamic in nature and re-calculates if any activity has been done on the existing

IMOD. We have provided various color codes which effectively represents the

completion stage of the course design.

 47

6.2 Color Codes

 Figure 18: Color codes of Progress Bar

6.3 Algorithm of Completeness

Figure 19: Graphical Picture of Progress Bar Algorithm

 48

6.3.1 Course Completion Overview Percentage Allocation:

 Initially, profile buffer is kept at 100 and profile percent at 0. If required fields

completed, then 15% towards total profile percent is allocated. If instructor information is

filled, then 5 % to the total calculation is allocated. The pseudo code for this calculation

is presented in Table 13 below

isReqCODone = boolean flag for maintaining the status of required field inputs in

Course Overview Tool

isCDDone = boolean flag showing whether all required fields are filled or not

 isSchedComplete = boolean flag

 isCDescGiven = boolean flag

 isCPolicyPresent = boolean flag

 isInstrDetailsFed = boolean flag

if(isCDDone && isSchedComplete && isCDescGiven && isCPolicyPresent &&

isInstrDetailsFed):

 isReqCODone = true;

 else:

 isReqCODone = false;

Table 13: Psuedo code- Course Overview

 49

6.3.2 Percentage Buffer Calculation

If required course overview details are fed, buffer is reduced to 80. Also, the

actual profile buffer is determined by the count of learning objectives(LO). The pseudo

code for this calculation is presented in Table 14 below.

isReqCODone:

 percentageBuffer = 100-20

 int getLONum() = returns number of learning objective added.

 if getLONum() > 2:

 Allocate percentage buffer = 80

 else:

 allocate percentageBuffer = getLONum() * 40

6.3.3 Learning Objective (LO) Completion Calculation

If learning objective count is greater than 2, LO percentage is allocated to be100%

of the predefined profile buffer. The pseudo code for this calculation is presented in

Table 15 below.

isPerfPresent = boolean flag showing if all mandatory fields are filled

isContentpresent = boolean flag

Table 14: Psuedo code- Percentage Buffer

 50

isConditionGiven = boolean flag

isCriteriaGiven = boolean flag

LO percentage = 0

If all of the variables above are true & LO count > 2:

 Return LO percentage as 100

6.3.4 Content Percent Calculation

If number of contents added to an imod course is less than 5, then 80% of content

percentage is added. Otherwise, full 100% of allocated buffer is added. The pseudo code

for this calculation is presented in Table 16 below.

If getContentCount () > 5:

 Return content Percent as 100

 else if getContentCount() >= 2:

 Return ContentPercent as 80

else:

Return ContentPercent as 0

6.3.5 Assessment Percentage Calculation

If assessment techniques are assigned to an imod, 100% assessment percentage is

allocated. The pseudo code for this calculation is presented in Table 17 below.

Table 15: Psuedo code- Learning Objective

Table 16: Psuedo code- Content

 51

int getAssignedTechniques = returns number of assigned techniques to imod

if getAssignedTechniques > 0

 Return assessment percentage as 100

else :

 Return assessment percentage as 0

6.3.6 Pedagogy Percent Calculation

If pedagogy techniques are assigned to an imod, 100% pedagogy percentage is

allocated. The pseudo code for this calculation is presented in Table 18 below.

int getAssignedTechniques = returns number of assigned techniques to imod

if getAssignedTechniques > 0

Return pedagogy percentage as 100

else :

 Return pedagogy percentage as 0

6.3.7 Total Calculation

After calculating the required percentage of each of the components using

different queries, total profile percent is calculated by adding proportionate weight from

Table 17: Psuedo code- Assessment Technique

Table 18: Psuedo code- Pedagogy Technique

 52

the profile buffer towards the calculation of total profile percent. The pseudo code for this

calculation is presented in Table 19 below.

profileBuffer = 100

profilePercent = 0

if(ReqCODone):

 if(instructorDetailsFed)

 profilePercent = 20

 profileBuffer -= 20

 Else:

 profilePercent = 15

 profileBuffer -=20

profilePercent += (getLOpercent + getAssessmentPercent + getContentPercent +

getPedagogyPercentage)/400 * profilebuffer

Return profilePercent

Table 19: Psuedo code- Final Progress Percentage Calculation

 53

6.3.8 Stages of Course Design

This section describes in detail about the various stages of course design. Initially,

while creating a new instructional module (IMOD), no details are saved. Hence, as per

the algorithm depicted in Figure 19, the course design completion percentage will be 0%

as shown in Figure 20.

 Figure 20: IMODS Progress Bar-Stage 0

In the next stage, as the instructor fed in all the course overview details like

course number, title, course policy, course description etc., as per the algorithm in Figure

19, the percentage reaches up to 15% as shown in Figure 21 in stage 1 of course design

 54

 Figure 21: IMODS Progress Bar-Stage 1

Figure 22: IMODS Progress Bar-Stage 2

 55

In the above Figure 22, the stage 2 of course design process is shown. Learning

objectives are being created in this stage by systematically adding performance, condition

and criteria features of learning objectives. If less than 2 learning objectives has been

created, remaining profile buffer will be learning objective count* 20. Otherwise, the

profile buffer will be 100-(course overview + instructor information) i.e. 100 -15 -5 = 80.

 Figure 23: IMODS Progress Bar-Stage 3

In stage 3, content or topics are being created and added to the instructional

module(imod) shown in Figure 23. If the number of content exceeds 5, the total

percentage of content share is added to the final calculation is 100% of the weighted

share of content in profile buffer. If the number remains between 2 and 5, 80% of

weighted share in profile buffer is added to the total calculation.

 56

 Figure 24: IMODS Progress Bar-Stage 4

 In stage 4, assessment techniques are created and being assigned to particular

learning objectives on the left-side column in Figure 24. Instructional modules are being

assessed against these strategies and the ultimate performance measure of the student is

dependent on these strategies. Assigned of a strategy in a learning objective contributes

100% of the weighted share in the final calculation. Similarly, pedagogy techniques are

also created and assigned to learning objectives as well. This summarizes the entire

instructional module design process.

 57

6.3.9 Correctness of Course Design Completion Calculation Algorithm

In this section, experiments are conducted for proving the correctness of the

algorithm. 10 instructional modules or courses are created with different degree of

completeness. Queries are fired dynamically after each stage of course design to calculate

the final measure of course design completion. In the first stage, each of the newly

created instructional modules are provided course overview details and instructor’s

information (column 2 in Table 20). Then different learning objectives are created for this

instructional module based on PC3 framework [6]. In this experiment, queries are fired to

calculate the number of learning objectives created for a course and based on the count

(column 3 in Table 20), percentage towards final completion measure is allocated. Then

contents are created for an instructional module and added to each of the learning

objectives. Dynamic queries fetching the total number of content (column 4 in Table 20)

also contributes towards the final measure. After this stage, assessment strategies and

pedagogy techniques are created and assigned to each learning objective. Based on the

total number of assigned assessment strategies (column 5) and pedagogy techniques

(column 6), percentage towards the final measure of course design is allocated.

In Table 20, a comparative scenario is presented to show the actual completion

percentage vs the calculated completion percentage by the algorithm for different

instructional modules at different stages of completion. Comparisons are performed

between Actual Completion (column 7) and Calculated Completion (column 8) and it is

evident that for every instructional module at different stages of completion, the values of

these two columns are same. This proves the correctness of the algorithm. This algorithm

 58

helps the instructors in visualizing their course design progress and hence improves the

usability of the Instructional Module Development System (IMODS) [21].

SL

No.

Course

&

Instructor

Info

Learning

Objective

Count

Content

/ Topic

 Total

Count

Assigned

Assessment

Technique

Total Count

Assigned

Pedagogy

Technique

Total Count

Actual

Completion

(%)

Calculated

Completion

(%)

1 YES 1 1 6 5 40 40

2 YES 10 4 3 3 96 96

3 YES 6 6 5 3 100 100

4 NO 0 0 0 0 0 0

5 YES 1 4 6 8 48 48

6 YES 3 6 2 2 100 100

7 YES 1 6 7 6 50 50

8 YES 2 4 0 1 56 56

9 YES 1 7 0 0 30 30

10 YES 3 2 1 0 76 76

 Table 20: Completion Measure of Instructional Modules –Evaluation Results

 59

CHAPTER 7

 EXPERIMENTS FOR COMPARATIVE ANALYSIS OF DATABASES

7.1.1 Experiment Setup

As per the research statement, the first research question is to evaluate the

performance of graph database (Neo4j) and relational database (PostgreSQL) on

Instructional Module Development System based on the response time of different

complex queries. For the purpose of experiment, three different instances of Neo4j v3.2.1

databases YDB5k, YDB10k and YDB10k have been created. Similarly, three different

PostgreSQL v9.4 database instances xDB5k, xDB10k & xDB20k have been created.

These databases have been loaded with corresponding 5k,10k and 20k datasets. Two

different instances of IMODS application has been implemented- one with PostgreSQL

as primary data store called ProjectX and another with Neo4j as primary data store called

ProjectY. These applications have been developed using Grails 3.2.2 framework and

implemented abstracting the domain structure of IMODS.

7.1 Machine Configuration

For the purpose of this experiment, a Mac machine with 1.6 GHz Intel Core i5

processor, 4 GB 1600 MHz DDR3 RAM memory and 128 GB Hard Disk Space is used.

The operating system installed in the machine was OS X El Capitan v10.11.2. For

developing the IMODS application, Grails 3.2.2 framework has been installed. Neo4j

 60

v3.2.2 as well as PostgreSQL v9.4 servers have been installed. pgAdmin client has been

used to interact with PostgreSQL.

7.2 Experiment

In this experiment, we have run several queries as listed in section 7.2.1 on both

Neo4j server and PostgreSQL server and compared the mean response time. These

queries have varying degree and depth of relationships in them. Before actually, looking

at the queries, let us look at the graph database statistics for different datasets.

7.2.1 Queries

Seven different queries which runs through different stages of course design in

IMODS have been evaluated. Each of the queries have been fired 5 times for each

database and finally the mean response time has been counted. Multiple times execution

has been carried out to remove any kind of caching effect or any other biased behavior of

the system. Care has been taken that the system will have no other process running while

executing these queries so that maximum CPU memory is available. No performance

tuning or database tuning has been done to either of Neo4j and PostgreSQL servers to

maintain transparency and fairness to the experiments. In PostgreSQL, these queries were

implemented using SQL while in Neo4j, these queries were implemented with Cypher.

Below each of the queries are listed with their Cypher and SQL equivalent code.

 61

1. Find all Imods with learning objective’s (LO) that do not have at least 1

assessment assigned.

Cypher:

Match (lo:LearningObjective) where NOT (lo)-[:assignedLearningObjective]->()

return distinct lo.imod

SQL:

Select distinct(lo.imod_id) from learning_objective lo LEFT OUTER JOIN

learning_objective_assessment_techniques at ON lo.id = at.learning_objective_id

where at.assessment_technique_id IS NULL ORDER BY lo.imod_id

2. For a given IMOD, identify learning objective’s (LO) whose assigned

assessments are not consistent with LO’s LearningDomain(LD) i.e. LO.LD !=

Assigned Assessment.LearningDomain(LD)

Cypher:

Match(ld:LearningDomain)<-[:ASSESSTECHHASLDOMAIN]-

(at:AssessmentTechnique)<-[:assignedLearningObjective]-

(lo:LearningObjective)-[:actionWordCategory]->(awc:ActionWordCategory)-

[:AWCHASDC]->()-[:LEARNINGDOMAIN]->(ldom:LearningDomain) where

lo.imod=513 and ld.__id__ <> ldom.__id__ Return

lo.imod,lo.__id__,lo.awc,ldom.__id__,at.__id__,ld.__id__ ORDER BY lo.__id__

SQL:

 62

Select A.imod_id AS Imod,A.id AS LO,A.action_word_category_id AS

AWC,E.learning_domain_id,B.assessment_technique_id AS

AssesTech,C.learning_domain_id from learning_objective A INNER JOIN

learning_objective_assessment_techniques B ON A.id = B.learning_objective_id

INNER JOIN assessment_technique_learning_domain C ON

B.assessment_technique_id = C.assessment_technique_learning_domain_id

INNER JOIN action_word_category D ON A.action_word_category_id = D.id

INNER JOIN domain_category E ON D.domain_category_id = E.id

where A.imod_id = 513 and C.learning_domain_id != E.learning_domain_id

3. For a given IMOD, identify learning objective’s(LO) whose assigned assessments

are not consistent with LO’s domain category(DC) i.e. LO.DC != Assigned

Assessment.DC

Cypher:

Match(dc:DomainCategory)<-[:ASSESSTECHHASDC]-

(at:AssessmentTechnique)<-[:assignedLearningObjective]-

(lo:LearningObjective)-[:actionWordCategory]->(awc:ActionWordCategory)

where lo.imod=513 and dc.__id__ <> awc.dc Return

lo.imod,lo.__id__,lo.awc,awc.dc,at.__id__,dc.__id__ ORDER BY lo.__id__

 63

SQL:

Select A.imod_id AS Imod,A.id AS LO,A.action_word_category_id AS

AWC,D.domain_category_id,B.assessment_technique_id AS

AssesTech,C.domain_category_id from

learning_objective A INNER JOIN learning_objective_assessment_techniques B

ON A.id = B.learning_objective_id

INNER JOIN assessment_technique_domain_category C ON

B.assessment_technique_id = C.assessment_technique_domain_category_id

INNER JOIN action_word_category D ON A.action_word_category_id = D.id

where A.imod_id = 513 and C.domain_category_id != D.domain_category_id

4. For a given IMOD, identify LO’s whose assigned assessments are not consistent

with LO’s content’s knowledge dimension(KD) i.e. LO.Content.KD != Assigned

Assessment.KD

Cypher:

Match(kd:KnowledgeDimension)<-[:KNOWLEDGEDIMENSION]-

(at:AssessmentTechnique)<-[:assignedLearningObjective]-

(lo:LearningObjective)-[:CONTENTS]->(con:Content)-[:conHasKD]-

>(conKd:KnowledgeDimension) where lo.imod=513 and kd.__id__ <>

 64

conKd.__id__ Return

lo.imod,lo.__id__,con.__id__,conKd.__id__,at.__id__,kd.__id__ ORDER BY

lo.__id__

SQL:

Select A.imod_id AS Imod,A.id AS LO,D.content_id AS

Content,E.knowledge_dimension_id,B.assessment_technique_id AS

AssesTech,C.knowledge_dimension_id from

learning_objective A INNER JOIN learning_objective_assessment_techniques B

ON A.id = B.learning_objective_id

INNER JOIN assessment_technique_knowledge_dimension C ON

B.assessment_technique_id = C.assessment_technique_knowledge_dimension_id

INNER JOIN learning_objective_contents D ON A.id = D.learning_objective_id

INNER JOIN content_knowledge_dimension E ON D.content_id =

E.content_content_dimensions_id

where A.imod_id = 513 and C.knowledge_dimension_id !=

E.knowledge_dimension_id Order By A.id

5. Identify all LO’s with content having Critical priority and no assessment

technique assigned.

 65

Cypher:

Match (at:AssessmentTechnique)<-[:assignedLearningObjective]-

(lo:LearningObjective)-[:CONTENTS]->(con:Content{priority:'Critical'}) WITH

count(at.__id__) as CNT,lo where CNT = 0 return lo.__id__, CNT

SQL:

Select distinct loat.learning_objective_id, count(loat.assessment_technique_id)

from learning_objective_assessment_techniques loat INNER JOIN

learning_objective_contents loc ON loat.learning_objective_id =

loc.learning_objective_id INNER JOIN content con ON con.id =

loc.content_id where con.priority='Critical' GROUP BY

loat.learning_objective_id HAVING count(loat.assessment_technique_id) = 0

6. Identify all LO’s with content having ‘Critical’ priority and less than 2 assessment

technique assigned.

Cypher:

Match (at:AssessmentTechnique)<-[:assignedLearningObjective]-

(lo:LearningObjective)-[:CONTENTS]->(con:Content{priority:'Critical'}) WITH

count(at.__id__) as CNT,lo where CNT < 2 return lo.__id__, CNT

 66

SQL:

Select distinct loat.learning_objective_id, count(loat.assessment_technique_id)

from learning_objective_assessment_techniques loat INNER JOIN

learning_objective_contents loc ON loat.learning_objective_id =

loc.learning_objective_id INNER JOIN content con ON con.id =

loc.content_id where con.priority='Critical' GROUP BY

loat.learning_objective_id HAVING count(loat.assessment_technique_id) < 2

7. For a given IMOD, identify all ‘In-class’ assessments.

Cypher:

Match(lo:LearningObjective{imod:513})-[:assignedLearningObjective]-

>(at:AssessmentTechnique) where at.whereToCarryOut = 'In-class' Return

at.__id__

SQL:

Select * from assessment_technique ast INNER JOIN

learning_objective_assessment_techniques loat ON ast.id =

loat.assessment_technique_id INNER JOIN learning_objective lo ON lo.id =

loat.learning_objective_id where ast.where_to_carry_out = 'In-class' and

lo.imod_id = 513

 67

The above listed queries are fired at different stages of course design in

Instructional Module Development System(IMODS) [21]. These queries help in guiding

the instructor to find out inconsistencies in relationships among various course

components. The queries are designed such that they are useful to evaluate of

performance of graph database and relational database. Queries 1 will help to find out all

the instructional modules that do not have any assessment strategy assigned to their

learning objectives. Queries 2, 3 and 4 helps to find out all erroneous instructional

modules designed that have inconsistent learning domains between learning objectives

and assigned assessment strategies, inconsistent knowledge dimensions of contents and

assigned assessment techniques etc. Query 5 finds out all learning objectives with critical

priority contents and no assessments assigned. This query checks how databases behave

with NULL comparisons. Similarly, query 6 finds all critical priority content with less

than two assessments. This query evaluates the numeric value matching performance of

both Neo4j and PostgreSQL. Query 7 finds all assessments that can be conducted in class

and is a perfect query for evaluating string matching. These queries help the instructor to

design the course effectively with highly connected and tightly aligned components as

per PC3 framework [6]. In the next chapter, results of response time for each of the above

queries have been compared for both Neo4j and PostgreSQL. Also, effort has been made

to analyze the different query response time as the dataset grows and the possible reasons

for such results.

 68

CHAPTER 8

RESULTS & CONCLUSION

8.1 Experiment Results

In this section, the results of the experiments obtained from our experiments

performed on Neo4j and PostgreSQL are shown. The mean response time for all the

seven queries by Neo4j and PostgreSQL for each of the 5k, 10k and 20k dataset are

considered. Each of the queries is fired 5 times to avoid any effect of caching and to

prevent the experiments from any bias. Columns starting from N1 to N5 represents the

response time for all the 5 times whenever a query is fired in Neo4j. Similarly, columns

starting from P1 to P5 represents the response time for all the 5 times whenever a query is

fired in PostgreSQL. Columns Mean_neo4j and Mean_postgres represents the mean

response time of each query.

SL

No.

N1 N2 N3 N4 N5 Mean_

neo4j

(in ms)

P1 P2 P3 P4 P5 Mean_

postgres

(in ms)

1 37 29 44 18 26 30.8 37 27 31 28 37 32

2 44 58 32 56 39 46.6 45 34 34 28 18 31.8

3 52 34 24 20 26 31.2 33 38 24 20 22 27.4

4 50 48 34 39 42 42.6 40 37 36 32 38 36.6

5 43 38 47 44 39 42.2 33 31 33 30 29 31.2

6 66 78 59 72 68 68.6 34 33 30 31 34 32.4

7 27 21 28 23 19 23.6 19 20 13 11 16 15.8

 Table 21: Response Time for 5k Imod User Dataset

 69

 Figure 25: Comparison of Neo4j and PostgreSQL Mean Response Time (5k dataset)

After the completion of experiments on 5k dataset, it has been concluded from the

results shown in Figure 25 that for most of the queries PostgreSQL performance is better

than Neo4j. However, for queries 3 and 4 the mean response time in Table 21 is similar

for both PostgreSQL and Neo4j. On inspecting the query 3 and 4 structure mentioned in

Chapter 7.2.1, it has been found that these queries have 3 levels of connections and their

performance might vary by increasing the size of the dataset. Based on this information,

it has been decided the next round of experiments should be conducted with at least 10k

dataset.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Query 1-7

5K Dataset

Mean-Neo4j Mean-Postgres

 70

SL

No.

N1 N2 N3 N4 N5 Mean_

neo4j

(in ms)

P1 P2 P3 P4 P5 Mean_

postgres

(in ms)

1 77 78 70 58 52 67 48 45 60 57 62 54.4

2 46 64 58 44 42 50.8 48 50 45 37 52 46.4

3 15 12 7 8 10 10.4 44 35 30 37 28 34.8

4 16 12 8 10 16 12.4 66 57 38 48 52 52.2

5 90 78 88 82 66 80.8 68 56 55 76 70 65

6 87 100 78 88 72 85 67 56 56 51 66 59.2

7 37 28 32 25 29 30.2 44 28 32 32 34 34

Table 22: Response Time for 10k Imod User Dataset

 Figure 26: Comparison of Neo4j and PostgreSQL Mean Response Time (10k dataset)

After completion of experiments in this phase with 10k dataset, there has been

improvement in query performance in query 3 and query 4 as shown in Figure 26 which

can be attributed to the fact that with increase in size of dataset, pre-materialized

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Query 1-7

10K Dataset

Mean-Neo4j Mean-Postgres

 71

relationships in Neo4j contributed in faster access than PostgreSQL. But even then, query

5 and query 6 having NULL comparison and numeric value matching patterns

performances have not improved from the last experiment. To justify their behavior

properly, it has been decided to conduct another round of experiments further increasing

the dataset size to 20k.

SL

No.

N1 N2 N3 N4 N5 Mean_

neo4j

(in ms)

P1 P2 P3 P4 P5 Mean_

postgres

(in ms)

1 87 88 98 85 71 85.8 83 81 82 83 83 82.4

2 40 45 50 44 48 45.4 37 54 54 71 40 51.2

3 24 24 20 24 18 22 66 36 54 55 55 53.2

4 9 6 8 9 6 7.6 49 50 32 44 48 44.6

5 128 96 86 87 88 97 115 86 66 85 88 88

6 109 98 110 107 104 105.6 117 116 99 117 116 113

7 10 8 7 9 8 8.4 31 32 38 36 38 35

Table 23: Response Time for 20k Imod User Dataset

 Figure 27: Comparison of Neo4j and PostgreSQL Mean Response Time (20k dataset)

0

20

40

60

80

100

120

1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Query 1 - 7

20K Dataset

Mean-Neo4j Mean-Postgres

 72

After conducting this experiment with 20k dataset, the performance of query 2, 3,

4 and 7 have improved in Neo4j as shown in Figure 27. The initial hypothesis has been

proven correct as performance of queries with greater number of connections and

traversals have improved. Query 7 which involves string matching also improved as

Neo4j uses Lucene based indexing [2] which is optimized for string which makes string

value searches faster in Neo4j and hence the improvement is justified.

8.2 Analysis

The analysis of the results brought out key insights to the experiments conducted

which are enumerated below:

i) From the above Table 21, we can observe that in 5k dataset for most of the

queries the mean response time of PostgreSQL is better or similar than Neo4j. If the

queries are similar with lesser complexity, the response time is similar or close like query

1. But if the query becomes complex having greater depth of relationships like query 3

and query 4, the performance varies. For smaller 5k dataset, the performance of

PostgreSQL is better as look up operation is not much because of less number of rows

and with indexing it becomes even more faster.

ii) From Table 22, it can be observed that in 10k dataset for query 3 and query 4

the performance of Neo4j improves exceptionally. The mean response time is more than

50% lower than the response time of PostgreSQL. It can be attributed to the fact that

query 3 and query 4 involves traversing up to 3 to 4 level of connection depths. In these

queries, the key focus is to find out inconsistencies in different instructional modules

where the learning objective domain category is not like the assigned assessment

 73

technique domain category and to find inconsistencies where content’s knowledge

dimension is different from assigned assessment technique’s knowledge dimension. For

query 7 which is a string matching query, the performance of Neo4j is almost 4 times

better than PostgreSQL.

iii) From Table 23, it is observed that for 20k dataset, the performance of Neo4j

further improves and the mean response time is much lower than PostgreSQL. For query

3 and 4, the mean response time is 50 to 70% better than PostgreSQL and same for query

7. But for query 5 and 6, even with large dataset of 20k, the performance of PostgreSQL

is better than Neo4j. It makes it a better choice if we are dealing with larger dataset in our

application with deeply connected nodes to choose Neo4j over PostgreSQL.

iv) From Table 22 & 23, we can observe that for query 5 which matches all

learning objectives with Critical content that do not have any assignment, the

performance of Neo4j is not that great even with larger dataset like 10k and 20k in size.

Neo4j cypher queries struggle with NULL comparisons.

v) From the above tables, for query 6, which involves numeric value matching,

the performance of Neo4j is not good in all the datasets. But for query 7 which involves

string matching the performance of Neo4j is exceptionally better than PostgreSQL.

Since Neo4j explicitly stores relationships, they pre-materialize all relationships

in to database structures. With indexed attributes, graph database performance increases

order of several magnitudes in JOIN heavy queries because of this relationship pre-

materializing ability. Neo4j using the index free adjacency graph processing technique

avoids the need of lookup and directly hops onto connected edges to find the target nodes

[2].

 74

8.3 Conclusion & Future Work

In this thesis, the performance of Neo4j and PostgreSQL in IMODS have been

evaluated for 7 different queries each requiring 1 to 4 levels of JOIN operations for

traversing relationships between connected course components and also involving

matching of string literals and numeric values. It has been observed that for an

instructional course design application like IMODS, Neo4j is a good option when the

dataset reaches 10k size or more. For any smaller dataset, PostgreSQL with its robust

ACID conformance is more useful. The comparison between the two database servers

encompassed 6 different databases and three data size configurations. For most of the

seven queries in 5k dataset, performance of PostgreSQL and Neo4j is similar. But for

datasets of size 10k and more, Neo4j outperforms PostgreSQL which involves 3 or 4

level of JOIN operations (in relational model). For IMODS, we can expect greater data

sizes as number of courses will increase and greater depth of relationships will be added.

Neo4j can be effective under those scenarios where key insights need to be retrieved to

infer valuable information so instructors can make their course design more effective and

intuitive. Frequent graph traversal operations need to be performed that would make the

incorporation of Neo4j as the primary data store justified. One of the key limitations of

this research work is that all the comparisons have been made on a single server and not

in a distributed environment. Comparison of graph database and relational database on a

distributed environment can be conducted as future work of this thesis. If data

relationships stored in Neo4j servers are scattered geographically, it would take a toll on

the performance due to network latency. This can be a great topic for research that will

 75

help us in better understanding the effectiveness of graph database. Another area which

can be a potential future work is development of an automated tool that can translate all

foreign key relationships found in intermediate join tables in relational databases in to

explicit data relationships in graph database. From the context of IMODS application,

future research can be carried out in designing an alert system or a feedback mechanism

to instructors which would help them to visualize all the inconsistencies present in their

course design and where immediate action is required based on priority to achieve

completeness in course design.

 76

REFERENCES

[1] E. F. Codd, "Relational database: a practical foundation for productivity,"

Communications of the ACM, vol. 25, no. 2, pp. 109-117 , February 1982.

[2] M. Hunger, R. Boyd and W. Lyon, "The Definitive Guide to Graph Databases for

the RDBMS Developer," Neo4j, 2016. [Online]. Available:

https://info.neo4j.com/rs/773-GON-065/images/Definitive-Guide-Graph-Databases-

for-RDBMS-Developer.pdf. [Accessed 2017].

[3] R. Barker, "Relational is not enough," in Relational Databases: State of the Art

Report 14:5, D. A. Bell, Ed., 1986, pp. 15-23.

[4] S. Bansal, O. Dalrymple and A. Gaffar, "Design, Development, and Implementation

of the Instructional Module Development System (IMODS)," in American Society

for Engineering Education Conference(ASEE), Seattle, 2015.

[5] S. Bansal, A. Gaffar and O. Dalrymple, "Building Faculty Expertise in Outcome-

based Education Curriculum Design," in Frontiers in Education Conference (FIE),

El Paso,TX,USA, 2015.

[6] K. Andhare, O. Dalrymple and S. Bansal, "Learning Objectives Feature for the

Instructional Module Development System," in Proceedings of the 2012 ASEE PSW

Section Conference, San Luis Obispo.

[7] S. Bansal and O. Dalrymple, "Instructional Module Development System

(IMODS)," in 21st ACM Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE), Peru, 2016.

[8] R. Mager, Preparing Instructional Objectives, 2nd ed., Belmont, CA: David S. Lake

Publishers, 1984.

[9] D. Clark, "Bloom's Taxonomy of Learning Domains," 1999. [Online]. Available:

http://www.nwlink.com/~donclark/hrd/bloom.html. [Accessed July 2017].

[10] A. LaMotte, "An Introduction to Bloom's Taxonomy for Instructional Designers,"

2017. [Online]. Available: https://community.articulate.com/articles/blooms-

taxonomy-elearning-instructional-design. [Accessed July 2017].

[11] O. Dalrymple and S. Bansal, "Repository of Instructional and Assessment

Techniques for OBE-based Instructional Module Development system," Journal of

Engineering Education Transformations, 2015.

 77

[12] A. Martinez, R. Mora, D. Alvarado, G. L`opez and S. Quir`os, "A Comparison

between a Relational Database and a Graph Database in the context of a

Personalized Cancer Treatment Application," in CEUR Workshop Proceedings,

2016.

[13] F. Holzschuher and R. Peinl, "Performance of graph query languages: Comparison

of cypher, gremlin and native access in Neo4j," in Joint EDBT/ICDT 2013

Workshop GraphQ, Genoa, Italy, 2013.

[14] T. Heath, "Linked Data - Connect Distributed Data across the Web," 2009. [Online].

Available: http://linkeddata.org/faq. [Accessed July 2017].

[15] F. Cerbah, "Learning highly structured semantic repositories from relational

databases," in European Semantic Web Conference, 2008.

[16] J. F. Sequeda, M. Arenas and D. P. Miranker, "On directly mapping relational

databases to rdf and owl," in Proceedings of the 21st international conference on

World Wide Web, Lyon, france, 2012.

[17] W. Hu and Y. Qu, "Discovering simple mappings between relational database

schemas and ontologies.," in Proceedings of the 6th international The semantic web

and 2nd Asian conference on Asian semantic web conference, 2007.

[18] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. CHen and D. Wilkins, "A Comparison

of a Graph Database and a Relational Database - A Data Provenance Perspective," in

48th Annual Southeast Regional Conference (ACM SE '10), Oxford, Mississippi,

2010.

[19] S. Batra and C. Tyagi, "Comparative analysis of relational and graph databases,"

International Journal of Soft Computing and Engineering(IJSCE), vol. 2, no. 2, May

2012.

[20] G. Adorni, S. Battigelli, D. Brondo, N. Capuano, M. Coccoli, S. Miranda, F.

Orciuoli, L. Stanganelli, A. M. Sugliano and . G. Vivanet, "CADDIE and IWT: two

different ontology-based approaches to Anytime, Anywhere and Anybody

Learning," Journal of e- Learning and Knowledge Society-English Version, vol. 6,

no. 2, 2010.

[21] IMOD System, "IMOD Framework," [Online]. Available:

http://imod.poly.asu.edu/theoretical-framework.html. [Accessed January 2017].

[22] D. Bolton, "Why I Choose PostgreSQL Over MySQL/MariaDB," March 2015.

[Online]. Available: http://insights.dice.com/2015/03/19/why-i-choose-postgresql-

 78

over-mysqlmariadb/. [Accessed July 2017].

 79

APPENDIX A

 CYPHER SCRIPT FOR CREATING GRAPH DATA & RELATIONSHIPS

 80

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///imod.csv" AS row

MERGE (id:UniqueId{name:'Imod'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:Imod

{__id__:id.count,version:row.version,courseLocation:row.course_location,courseSemest

er:row.course_semester,creditHours:row.credit_hours,imodNumber:row.imod_number,na

me:row.name,numberOfSeats:row.number_of_seats,overview:row.overview,owner:row.o

wner_id,saved:row.saved,subjectArea:row.subject_area,url:row.url})

MATCH (n:Imod)

SET n.saved = (case n.saved when 't' then true else false end)

RETURN n

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///imod.csv" AS row

MATCH (imod:Imod {__id__: toInt(row.id)})

MATCH (user:ImodUser {__id__: toInt(row.owner_id)})

MERGE (user)-[:OWNS]->(imod);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///imod_user.csv" AS row

MERGE (id:UniqueId{name:'ImodUser'})

ON CREATE SET id.count = 1 ON MATCH SET id.count = id.count + 1

CREATE(:ImodUser{__id__:id.count,version:row.version,email:row.email,firstName:ro

w.first_name,lastName:row.last_name,location:row.location,officeHours:row.office_hour

s,password:row.password,phoneNumber:row.phone_number,username:row.username,we

bPage:row.web_page})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///kd.csv" AS row

MERGE (id:UniqueId{name:'KnowledgeDimension'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:KnowledgeDimension

{__id__:id.count,description:row.description,info:row.info})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///dc.csv" AS row

 81

MERGE (id:UniqueId{name:'DomainCategory'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:DomainCategory {__id__:id.count,name:row.name,priority:row.priority})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///ld.csv" AS row

MERGE (id:UniqueId{name:'LearningDomain'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:LearningDomain {__id__:id.count,version:row.version,name:row.name})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///awcf.csv" AS row

MERGE (id:UniqueId{name:'ActionWordCategory'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:ActionWordCategory

{__id__:id.count,actionwordcategory:row.action_word_category,dc:toInt(row.domain_ca

tegory_id)})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///dc.csv" AS row

MATCH (dc:DomainCategory {__id__: toInt(row.id)})

MATCH (ld:LearningDomain {__id__: toInt(row.learning_domain_id)})

MERGE (dc)-[:LEARNINGDOMAIN]->(ld)

MERGE (ld)-[:LDHASDC]->(dc)

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///awc.csv" AS row

MATCH (awc:ActionWordCategory {__id__: toInt(row.id)})

MATCH (dc:DomainCategory {__id__: toInt(row.domain_category_id)})

MERGE (awc)-[:AWCHASDC]->(dc)

MERGE (dc)-[:DOMAINCATEGORY]->(awc)

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///learningobjective.csv" AS row

MERGE (id:UniqueId{name:'LearningObjective'})

ON CREATE SET id.count = 1

 82

ON MATCH SET id.count = id.count + 1

CREATE (:LearningObjective {__id__:id.count,actionWord :row.action_word

,awc:toInt(row.action_word_category_id),condition:row.condition,criteriaAccuracy:row.

criteria_accuracy,criteriaQuality:row.criteria_quality,

criteriaQuantity:row.criteria_quantity,criteriaSpeed:row.criteria_speed,criteriaTypeId:toI

nt(row.criteria_type_id),custom_condition:row.custom_condition,definition:row.definitio

n,hideFromLearningObjectiveCondition:row.

hide_from_learning_objective_condition,imod:toInt(row.imod_id),indicator

:row.indicator,performance:row.performance})

MATCH (n:LearningObjective)

SET n.awc = (case n.awc when n.awc then toInt(n.awc) else toInt(n.awc) end)

RETURN n

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///learningobjective.csv" AS row

MATCH (lo:LearningObjective {awc: toInt(row.action_word_category_id)})

MATCH (awc:ActionWordCategory {__id__: toInt(row.action_word_category_id)})

MERGE (lo)-[:actionWordCategory]->(awc);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///learningobjective.csv" AS row

MATCH (lo:LearningObjective {imod: toInt(row.imod_id)})

MATCH (imod:Imod {__id__: toInt(row.imod_id)})

MERGE (lo)-[:imod]->(imod);

MATCH (p:ImodUser{__id__:1})<-[:OWNER]-(n:Imod)-[:provides]-

>(lo:LearningObjective)-[rel:actionWordCategory]-

>(awc:ActionWordCategory{actionwordcategory:'Recognize'})-

[dec:DOMAINCATEGORY]->(dc:DomainCategory)-[led:LEARNINGDOMAIN]-

>(ld:LearningDomain{name:'Cognitive'}) RETURN n, awc, dec,led

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///lo_con_joinnew.csv" AS row

MATCH (lo:LearningObjective {__id__: toInt(row.learning_objective_id)})

MATCH (con:Content {__id__: toInt(row.content_id)})

MERGE (lo)-[:CONTENTS]->(con);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///contentg.csv" AS row

MERGE (id:UniqueId{name:'Content'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

 83

CREATE (:Content

{__id__:id.count,imod:row.imod_id,priority:row.priority,preReq:row.preReq,parentCont

entId:row.parent_content_id,topicTitle:row.topic_title})

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///contentg.csv" AS row

MATCH (con:Content {imod: toInt(row.imod_id)})

MATCH (imod:Imod {__id__: toInt(row.imod_id)})

MERGE (imod)-[:HASCONTENT]->(con);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///assessmentTechniquef.csv" AS row

MERGE (id:UniqueId{name:'AssessmentTechnique'})

ON CREATE SET id.count = 1

ON MATCH SET id.count = id.count + 1

CREATE (:AssessmentTechnique {__id__:id.count,assesmentype :row.assesmentype

,assessmentFeedbackId:toInt(row.assessment_feedback_id),assigncheck:row.assigncheck

,description:row.description,difficulty:row.difficulty,

duration:row.duration,favcheck:row.favcheck,is_admin:row.is_admin,procedure:row.pro

cedure,reference:row.reference,title:row. title,type:row.type,whenToCarryOut

:row.when_to_carry_out,whereToCarryOut:row.where_to_carry_out})

MATCH (n:AssessmentTechnique)

SET n.is_admin = (case n.saved when 'true' then true else false end)

RETURN n

MATCH (n:AssessmentTechnique)

SET n.assigncheck = (case n.saved when 'true' then true else false end)

RETURN n

MATCH (n:AssessmentTechnique)

SET n.favcheck = (case n.saved when 'true' then true else false end)

RETURN n

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///con_kd.csv" AS row

MATCH (con:Content {__id__: toInt(row.content_content_dimensions_id

)})

MATCH (kd:KnowledgeDimension {__id__: toInt(row.knowledge_dimension_id

)})

MERGE (con)-[:conHasKD]->(kd);

 84

Match(kd:KnowledgeDimension)<-[:KNOWLEDGEDIMENSION]-

(at:AssessmentTechnique)<-[:assignedLearningObjective]-(lo:LearningObjective)-

[:CONTENTS]->(con:Content)-[:conHasKD]->(conKd:KnowledgeDimension) where

lo.imod=1 and kd.__id__ <> conKd.__id__ Return

lo.imod,lo.__id__,con.__id__,conKd.__id__,at.__id__,kd.__id__ ORDER BY lo.__id__

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///at_kd.csv" AS row

MATCH (at:AssessmentTechnique {__id__:

toInt(row.assessment_technique_knowledge_dimension_id

)})

MATCH (kd:KnowledgeDimension {__id__: toInt(row.knowledge_dimension_id

)})

MERGE (at)-[:KNOWLEDGEDIMENSION]->(kd);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///at_ld.csv" AS row

MATCH (at:AssessmentTechnique {__id__:

toInt(row.assessment_technique_learning_domain_id

)})

MATCH (ld:LearningDomain {__id__: toInt(row.learning_domain_id

)})

MERGE (at)-[:ASSESSTECHHASLDOMAIN]->(ld);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///at_dc.csv" AS row

MATCH (at:AssessmentTechnique {__id__:

toInt(row.assessment_technique_domain_category_id

)})

MATCH (dc:DomainCategory {__id__: toInt(row.domain_category_id

)})

MERGE (at)-[:ASSESSTECHHASDC]->(dc);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///at_lo.csv" AS row

MATCH (lo:LearningObjective {__id__: toInt(row.learning_objective_id

)})

MATCH (at:AssessmentTechnique {__id__: toInt(row.assessment_technique_id

)})

MERGE (lo)-[:assignedLearningObjective]->(at);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///awc.csv" AS row

 85

MATCH (awc:ActionWordCategory {__id__: toInt(row.id)})

MATCH (dc:DomainCategory {__id__: toInt(row.domain_category_id)})

MERGE (awc)-[:AWCHASDC]->(dc)

MERGE (dc)-[:DOMAINCATEGORY]->(awc)

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:///dc.csv" AS row

MATCH (dc:DomainCategory {__id__: toInt(row.id)})

MATCH (ld:LearningDomain {__id__: toInt(row.learning_domain_id)})

MERGE (dc)-[:LEARNINGDOMAIN]->(ld)

MERGE (ld)-[:LDHASDC]->(dc)

	A Comparative Analysis of Graph Vs Relational Database
	A Thesis Presented in Partial Fulfillment
	Master of Science
	ARIZONA STATE UNIVERSITY
	Abstract
	Dedication
	Table of Contents
	Page
	Chapter
	Chapter Page
	Chapter Page
	Appendix
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	BACKGROUND
	CHAPTER 3
	RELATED WORK
	CHAPTER 4
	DATA MODELING
	CHAPTER 5
	DATA GENERATION
	COURSE DESIGN COMPLETENESS
	In stage 4, assessment techniques are created and being assigned to particular learning objectives on the left-side column in Figure 24. Instructional modules are being assessed against these strategies and the ultimate performance measure of the st...
	6.3.9 Correctness of Course Design Completion Calculation Algorithm
	In this section, experiments are conducted for proving the correctness of the algorithm. 10 instructional modules or courses are created with different degree of completeness. Queries are fired dynamically after each stage of course design to calculat...
	In Table 20, a comparative scenario is presented to show the actual completion percentage vs the calculated completion percentage by the algorithm for different instructional modules at different stages of completion. Comparisons are performed between...
	Table 20: Completion Measure of Instructional Modules –Evaluation Results
	CHAPTER 7
	The above listed queries are fired at different stages of course design in Instructional Module Development System(IMODS) [21]. These queries help in guiding the instructor to find out inconsistencies in relationships among various course components. ...
	CHAPTER 8
	RESULTS & CONCLUSION
	APPENDIX A

