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ABSTRACT  
   

Across primates, molar-emergence age is strongly correlated to life-history 

variables, such as age-at-first-reproduction and longevity. This relationship allows for the 

reconstruction of life-history parameters in fossil primates. The mechanism responsible 

for modulating molar-emergence age is unknown, however. This dissertation uses a 

biomechanical model that accurately predicts the position of molars in adults to 

determine whether molar emergence is constrained by chewing biomechanics throughout 

ontogeny. A key aspect of chewing system configuration in adults is the position of 

molars: the distal-most molar is constrained to avoid tensile forces at the 

temporomandibular joint (TMJ). Using three-dimensional data from growth samples of 

1258 skulls, representing 21 primate species, this research tested the hypothesis that the 

location and timing of molar emergence is constrained to avoid high and potentially 

dangerous tensile forces at the TMJ throughout growth. Results indicate that molars 

emerge in a predictable position to safeguard the TMJ during chewing. Factors related to 

the size of the buffer zone, a safety feature that creates greater stability at the TMJ during 

biting, account for a large portion of both ontogenetic and interspecific variation in the 

position of emergence. Furthermore, the rate at which space is made available in the jaws 

and the duration of jaw growth both determine the timing of molar emergence. Overall, 

this dissertation provides a mechanical and developmental model for explaining temporal 

and spatial variation in molar emergence and a framework for understanding how 

variation in the timing of molar emergence has evolved among primates. The findings 

suggest that life history is related to ages at molar emergence through its influence on the 

rate and duration of jaw growth. This dissertation provides support for the functionally 
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integrated nature of craniofacial growth and has implications for the study of primate life 

history evolution and masticatory morphology in the fossil record.  
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CHAPTER 1 

INTRODUCTION 
 

It has long been recognized that one of the unique aspects of human biology is our 

relatively slow life history (Schultz 1960b). A species’ life history is the schedule of its 

allocation of energetic resources to growth, maintenance, and reproduction. Life history 

can be described by a series of variables, such as gestation length, weaning age, age-at-

first-reproduction, litter size, and inter-birth interval, among many others ( Harvey and 

Clutton-Brock 1985; Stearns 1992; Charnov 1993). Together, these variables describe 

how a species apportions energy to maximize individual fitness. Overall, humans reach 

reproductive maturity later, have longer periods of nutritionally independent growth 

between weaning and maturity, and have longer maximum lifespans than other apes 

(Hawkes 2006; Robson, van Schaik, and Hawkes 2006). But not all aspects of human life 

history are slower than those of other great apes. Strikingly, humans have shorter inter-

birth intervals and wean relatively early, both in absolute time and relative to body and 

brain size (Wood 1990; Galdikas and Wood 1990; Kennedy 2005; Robson, van Schaik, 

and Hawkes 2006; Humphrey 2010). Early weaning in humans is associated with faster 

reproductive rates ( Lee 1996; Blurton Jones, Hawkes, and O’Connell 1999) and an 

extended period of cognitive development (Bogin 1999; Kennedy 2005), both facilitated 

by cooperative breeding and the presence of post-menopausal females, older males, and 

siblings, who aid in child rearing (Hawkes et al. 1998; Peccei 2001; Robson, van Schaik, 

and Hawkes 2006; Madrigal and Meléndez-Obando 2008). 

One of the more interesting questions in paleoanthropology is when the modern 

human pattern of life history emerged in our evolutionary history. This human pattern of 
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life history is associated with a slew of other human-like traits, such as cooperative 

breeding, the evolution of childhood (i.e., the extended period of growth in humans that 

provides the time required for complex cognitive development (Bogin 1999; Kennedy 

2005)), and menopause (Hawkes et al. 1998), to name a few. Knowing when the earliest 

appearance of a modern humanlike life history occurred thus allows inferences to be 

made regarding these other aspects of fossil human biology.  

A species’ schedule of allocation of energetic resources to growth, maintenance, 

and reproduction does not fossilize, but skeletal proxies for life history can be used to 

reconstruct its evolution in the hominin1 lineage. Evidence for growth (increase in size) 

and development (progress towards maturity) in fossil hominins can be found by studying 

their fossilized skeletal remains. In order to understand patterns of skeletal growth in 

fossil hominins, they must first be understood in extant taxa (Schultz 1924; Wood 1996). 

The approach to reconstructing life history in the fossil record has been to identify how 

skeletal growth covaries with life history among extant taxa (Smith 1989; Kelley and 

Schwartz 2010), and then, once such patterns are identified, to use them to retrodict in 

extinct relatives life-history profiles—the particular scheduling of important 

developmental milestones of hominins (e.g., Smith and Tompkins 1995; Kelley and 

Schwartz 2012; Schwartz 2012).  

                                                
1 The following taxonomic terminology is used here: Hominoidea (hominoids) = 
Hylobatidae (hylobatids) + Hominidae (hominids); Hominidae = Ponginae (pongines) + 
Homininae (hominines); Ponginae (pongines) =Pongo (orangutan); Homininae= African 
apes (Pan + Gorilla) + Hominini (hominins); Hominini= humans and closest relatives 
after the divergence from Pan. 
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The fossil record preserves skeletons of both adult and subadult individuals, from 

which growth patterns (e.g., rates of growth, ages at growth cessation, growth-related 

shape changes) can be inferred, but the taphonomic bias towards preserving large bones 

(Behrensmeyer, Western, and Dechant Boaz 1979; Behrensmeyer 1981) means that 

juvenile skeletal elements are less likely to be preserved in the fossil record. 

Consequently, juvenile fossilized remains are rare relative to adult remains. Although 

burials have increased the chances of juvenile and infant bone preservation (e.g., Rak, 

Kimbel, and Hovers 1994), this practice has only been identified in Neandertals and 

modern humans (but see Dirks et al. 2015, for an argument for burial practices in Homo 

naledi, ca. 250-350 ka). Among older hominin species, only a handful of specimens 

preserve both skull and postcranial remains (e.g., Homo erectus, KNM-WT 15000 

(Brown et al. 1985); Australopithecus sediba, MH-1 (Berger et al. 2010); A. afarensis, 

DIK-1-1 (Alemseged et al. 2006)). A recent discovery of at least 18 individuals attributed 

to the species Homo naledi (Berger et al. 2015; Hawks et al. 2017), several of which are 

subadults, augments this sample substantially.  

In contrast to bone, teeth are readily fossilized at all stages of development 

because enamel and dentine are highly mineralized tissues even before the process of 

fossilization begins (Robinson et al. 1995). Teeth can be used to determine the age-at-

death of individuals who died while the dentition was still forming (e.g., Boyde 1964; 

Beynon, Dean, and Reid 1991a, b; Dean and Beynon 1991a; Dirks 1998; Kelley and 

Smith 2003; Dean 2006; Schwartz et al. 2006; Smith et al. 2007a; Kelley and Schwartz 

2010; Smith 2016). Ageing methods for modern human skeletons have been developed 

based on collections of known-age skeletons (e.g., Scheuer and Black 2000). Although 
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recent efforts are producing primate skeletal collections of know-age individuals (e.g., 

McFarlin et al. 2009), only a handful of such collections currently exist for most non-

human primates. Therefore, the information preserved by the microstructure of primate 

teeth provides the most reliable ageing method (Boyde 1963, 1990).  

 

Molar Emergence and Life History  

Predicated on the work of Schultz (1935, 1960a), Sacher (1959, 1975), and 

Harvey and Clutton-Brock (1985), B. Holly Smith (Smith 1989) showed that the absolute 

timing of molar emergence in primates is a critical indicator of life history. She 

demonstrated that ages at molar emergence correlate strongly with brain size and body 

size, and also many key life-history variables: gestation length, age-at-weaning, inter-

birth interval, age-at-sexual-maturity, age-at-first-breeding, and lifespan (Smith 1989, 

1991b, 1992; Smith, Crummett, and Brandt 1994). The emergence of the first permanent 

molar (M1) is a particularly good predictor of life-history variables among primates; the 

strongest correlations with M1 emergence were found with both brain size and age-at-

weaning. Smith (1989, 1992) argued that the link between brain size, age-at-weaning, and 

M1 emergence exists because adult brain size is attained around the time of weaning, 

which is also the time when the M1 emerges in most primates (because the weanling 

must have the proper dental “equipment” to process an adult diet). She argued further that 

M1 emergence may be pleiotropically tied to brain growth. While it is true that smaller-

brained primates tend to wean their offspring earlier and have more precocial dental 

development (Smith, Crummett, and Brandt 1994; Godfrey et al. 2001), the M1 does not 

always emerge at or near the age-at-weaning, especially among strepsirrhines (Godfrey et 
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al. 2001b, 2003). Therefore, the reason for the strong association between M1 emergence 

and adult brain size might be indirectly related to weaning, but the mechanism for such a 

relationship remain unknown.  

Life-history variables are all strongly correlated with one another (Smith 1989). 

This strong relationship is likely why M1 emergence is strongly correlated to all life-

history variables, and not just weaning age. Similarly, M3 emergence is a skeletal marker 

of adulthood and thus the onset of reproduction ( Smith 1989; Smith and Tompkins 

1995). The strong interspecific link between molar-emergence ages and life history is 

indisputable. This aspect of skeletal development has, thus far, proven to be the most 

reliable predictor of life-history variables for extant primates. Not only does it predict the 

uniquely slow life history of modern humans (except for the unusually early weaning age 

in humans (Kennedy 2005; Humphrey 2010)), but it also predicts the fast life history of 

many lemurs and small-bodied monkeys. Furthermore, the relationships demonstrated by 

Smith (1989) still hold even when shared phylogenetic history is incorporated into the 

analysis ( Smith 2013).  

The mechanism underlying the relationship between age-at-M1-emergence and 

life history remains unknown. Two unanswered questions stand in the way of a more 

complete understanding of the timing of molar emergence in primates: (1) What factors 

influence variation in ages at M1 emergence among primates? and (2) Why is age at M1 

emergence so closely associated with fundamental aspects of a species’ life history?  This 

dissertation provides a mechanical and developmental model for explaining temporal and 

spatial variation in molar-emergence ages among primates and a framework for 

understanding how variation in the timing of molar emergence evolves among primates. 
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Intraspecific Variation in Molar Emergence, a Cautionary Tale?  

Few data exist on intraspecific variation in M1 emergence, and it is unclear 

whether variation in M1-emergence age coincides with variation in weaning age. 

Machanda et al. (2015a) reported substantial variation in tooth-emergence ages within 

populations of wild Kanyawara and captive chimpanzees, much of which is only weakly 

associated with life-history variables that have been reported as being strongly associated 

with emergence ages at an interspecific level (e.g., inter-birth interval and age-at-first-

reproduction). Similarly, in a study of wild chimpanzees from Kanyawara, the timing of 

M1 emergence was compared to the onset and duration of weaning behavior to determine 

if these variables were strongly associated across individuals (Smith et al. 2013).  It was 

found that chimpanzees continued to nurse long past the emergence of their M1s, but 

they began consuming the same percentage of fibrous foods as adults even before M1 

emergence (Smith et al. 2013).  

Based on the results of their studies, Smith et al. (2013) and Machanda et al. 

(2015a) warned against using molar-emergence age to reconstruct life history in the fossil 

record because the association between the two is not strong at the intraspecific level. 

This conclusion may be premature, however. The small number of individuals studied (n 

= 6 between the Smith et al. (2013) and Machanda et al. (2015a) studies) may not 

represent a random sample of the Kanyawara chimpanzee population. Furthermore, 

dental development is part of overall somatic development, and so molar-emergence ages 

at the individual level should, at least to some extent, depend on individual somatic 

growth rates. Variation in molar emergence is to be expected within a population, as is 

variation in somatic growth rates. Furthermore, weaning age is variable within primate 
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populations. Smith et al. (2013) report weaning age as the age of last nipple contact, yet it 

is unclear when nutritional transfer between infant and mother ceases, as this may occur 

much earlier than last nipple contact (Lee 1996; Cameron 1998). The process of weaning 

is largely controlled by the mother, and its variability depends on many factors, including 

maternal condition, parity, age, and local ecology (Lee 1996). Social factors may also 

play an important role in weaning age. In olive and yellow baboons, for example, female 

rank influences weaning age, with lower ranking mothers weaning their infants at 

significantly younger ages than high ranking mothers (Altmann and Alberts 2003; 

Johnson 2003). Given the variability in both M1 emergence and weaning age and the 

small sample size of Smith et al.'s (2013) study (n=5), their finding is perhaps 

unsurprising. As such, dismissing the strong interspecific association between age-at-

weaning and M1 emergence may not be warranted at present. Further studies replicating 

Smith et al.'s (2013) study with larger sample sizes and in more primate populations 

would help resolve this issue. As the sample size increases, however, it should begin to 

represent the population means, which should be similar given the strong interspecific 

association between age-at-M1-emergence and weaning age. The predictive power of this 

strong interspecific association, should not be discarded based on current evidence. The 

Smith et al. (2013) and Machanda et al. (2015a) studies highlight the fact that little is 

known regarding the process that modulates molar emergence and therefore how 

variation in emergence age can arise both within and between populations. The process 

modulating molar emergence should be investigated in order to confidently use this 

skeletal proxy to reconstruct fossil life history. 

 



  8 

Fossil Primate M1 Emergence and Life-History Reconstructions 

The timing of molar emergence is one of the most accurate clues to the life 

history of extinct taxa. Determining the age at molar emergence can be accomplished by 

using the microstructures of dental tissues to establish the age-at-death of an individual 

that died during molar eruption.  

An age-at-M1-emergence of ~1.45 years for Anapithecus hernyaki, is not 

unexpected for a catarrhine of its size, and indicates that a somewhat prolonged life 

history existed in stem catarrhines (Nargolwalla et al. 2005). Similarly, apelike ages at 

M1 emergence were found in the middle Miocene hominoid Afropithecus turkanensis 

(Kelley 1997; Kelley and Smith 2003) and the late Miocene hominid Sivapithecus 

parvada (Kelley 1997), suggesting that a prolongation in life history is a hominoid 

synapomorphy (Kelley 1997, 2002).  

The role of M1 emergence in the reconstruction of hominin life history is 

contentious. Robson and Wood (2008) noted that among extant hominids there is poor 

correspondence between ages at M1 emergence and various life-history variables, 

suggesting that M1 emergence is not a robust predictor of life history for fossil hominins. 

Some of the data sources used by Robson and Wood were anecdotal and M1 emergence 

data and life-history data were often drawn from different populations (Kelley and 

Schwartz 2010, 2012), and different species in some cases (e.g., molar emergence data 

for Gorilla gorilla, but life history data for G. beringei). Robson and Wood (2008) did 

not perform any statistical analyses of the correspondence between molar-emergence age 

and life history, making their conclusions difficult to evaluate (Kelley and Schwartz 

2012). An analysis of the correlation between M1-emergence ages and life-history 
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variables among hominoids using only wild-shot ape individuals, with life-history data 

from corresponding populations, yielded a strong relationship between M1-emergence 

age and life-history variables (Kelley and Schwartz 2010).  

Estimates of ages at M1 emergence for australopiths (Australopithecus and 

Paranthropus) based on information preserved by the incremental nature of dental hard 

tissue deposition has yielded a range of 2.7-3.9 years (Dean et al. 1993; Kelley and 

Schwartz 2012).  Although this range overlaps with the range of M1-emergence ages 

known for wild-shot apes (2.5-4.6 y: Kelley and Schwartz 2012; Smith et al. 2013; 

Machanda et al. 2015a), it falls at the lower end of the extant ape range. This result may 

indicate that australopiths had a somewhat accelerated life history relative to the extant 

great apes, which would be surprising given the absolutely and relatively larger brain 

sizes of australopiths compared to the extant great apes (Kimbel and Villmoare 2016). 

This conclusion does not consider M1-emergence age of mountain gorillas, which have 

an accelerated life history compared to western lowland gorillas (Breuer et al. 2009; 

Stoinski et al. 2013). If age-at-M1-emergence is correspondingly earlier than that 

reported for other great apes, then australopiths may have had a life-history that was more 

similar to mountain gorillas than to any other great ape (Kelley and Schwartz 2012).  

Paranthropus presents an interesting test case for how age-at-M1-emergence can 

help to inform other aspect of an extinct species’ biology. Ages-at-M1-emergence have 

been estimated for two Paranthropus species using several methods. These include (1) 

the relationship between cranial capacity and molar emergence and (2) incremental lines 

in dental tissues to establish age-at-death of an individual that died around M1 

emergence. The reported age-at-M1-emergence for P. robustus ranges between 2.9 and 
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3.9 years (Bromage and Dean 1985; Beynon and Dean 1988; Conroy and Vannier 1991; 

Dean et al. 1993; Kelley and Schwartz 2012), while that for P. boisei ranges between 2.7 

and 3.3 years (Dean 1987; Beynon and Dean 1988; Kelley and Schwartz 2012). The P. 

boisei M1 emergence estimates are generally younger than those for P. robustus, 

suggesting a faster life history for P. boisei. These data fit well with the dietary 

reconstructions for the two taxa. The finding that P. boisei bears a strong C4 signature 

has led to the suggestion that this hominin consumed a highly specialized diet of grasses 

and/or sedges (Cerling et al. 2011; Ungar and Sponheimer 2011). Dietary reconstructions 

for P. robustus, on the other hand, indicate a mixed C3-C4 diet that changed seasonally 

and interannually (Sponheimer et al. 2006) and consisted of hard and brittle foods (Scott 

et al. 2005), such as fruit and seeds (Lee-Thorp, van der Merwe, and Brain 1994). 

Primates that consume low quality, non-frugivorous diets generally have faster life 

histories than closely related primates that consume higher quality, frugivorous diets 

(Harvey, Martin, and Clutton-Brock 1987; Godfrey et al. 2001b; Dirks 2003; Leigh 2004; 

see section on diet in "Proposed Influences on Molar Emergence" below). Although there 

is still much debate regarding the diets of early hominins, the dietary reconstructions 

described above align with the expectations of the earlier ages at M1 emergence reported 

for P. boisei and point to a faster life history for this species.  

Modern humans grow slower than any other hominid but a short inter-birth 

interval coupled with accelerated weaning and cooperative care allows for fast 

reproductive rates, which in turn, allows mothers to have several offspring that overlap in 

life-history stages. The energetic burden of multiple offspring is offset by the aid of 

fathers, older relatives (i.e., older offspring and grandparents), as well as nonkin members 
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of the community (Hawkes 2006). It is of particular interest to paleoanthropologists to 

reconstruct how and when human life history first evolved, and whether it evolved as a 

package or in a more piecemeal manner.   

Reconstruction of australopith life history via ages at M1 emergence has helped to 

clarify the fact that early hominins had life-history profiles that were more similar to 

those of the great apes than to those of modern humans (Bromage and Dean 1985; Dean 

1987; Beynon and Dean 1988). Studies of M1 emergence have also helped shed light on 

the evolution of life history in our own genus. The earliest species of the genus Homo for 

which M1 emergence data are available is H. erectus (KNM-WT 15000, 1.55 Ma). At 

~4.5 y (Dean et al. 2001), its M1-emergence age falls just above those reported for the 

great apes and below the range reported for modern humans (4.7-7.0 y: Liversidge 2003). 

The relatively young age-at-M1-emergence for H. erectus (compared to modern humans) 

suggests that the extended period of growth present in modern humans was not yet a part 

of the life-history profile of extinct hominin species. Similarly, evidence suggests that M1 

emergence in the sister taxon to modern humans, H. neanderthalensis, occurred at the 

lower end of the distribution of M1 emergence in modern humans (Smith et al. 2010b) 

indicating that a modern humanlike life history had still not evolved before the split 

between Neanderthals and modern humans (but see Austin et al. (2013) for isotopic 

evidence of early weaning in Neanderthals). This idea is supported by the work of 

Ramirez Rozzi and Bermudez de Castro (2004) who showed that the rate of dental 

development was faster in Neandertals than in modern humans, but not by the work of 

Macchiarelli et al. (2006) who reported an M1-emergence age at the top range of human 
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variation (~6.7 years) for one Neandertal specimen. The question of whether Neandertals 

grew at the same, faster, or slower rate than modern humans remains unresolved.  

 

Proposed Influences on Molar Emergence  

Molar emergence is but one part of dental development, which itself is a 

component of overall somatic growth. As such, factors known to influence somatic 

growth rates, such as diet and body/brain size, have generally been invoked to explain 

variation in molar emergence schedules among primates. 

Life-history theory posits that adult body mass is influenced by mortality rates 

and that selection optimizes adult body mass and the age of its attainment to maximize 

fitness (Stearns 1992; Charnov 1993; Charnov and Berrigan 1993). Large-bodied animals 

tend to grow at slower rates than small-bodied animals (Taylor 1965; Western 1979) and 

should thus exhibit later molar-emergence ages. Indeed, in primates there is a strong 

positive correlation between molar-emergence age and adult body mass (Smith 1989). 

Many primate species exhibit a decoupling of somatic growth rates, ages at molar 

emergence, and adult body mass, however (e.g., Schwartz et al. 2002; Dirks 2003; Dirks 

and Bowman 2007). For example, among strepsirrhines, Propithecus verreauxi and 

Eulemur fulvus possess similar adult body masses yet differ dramatically in rates of 

dental and somatic development. At birth, P. verreauxi is far more dentally precocious 

than E. fulvus (Schwartz et al. 2002; Godfrey et al. 2004), yet a comparison of somatic 

growth rates indicates that E. fulvus grows at a faster rate than P. verreauxi (Godfrey et 

al. 2004). Similarly, adaptive (grade) shifts in life history between hominoids and 

cercopithecoids are reflected in slower rates of dental development and emergence in 
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hominoids than in similar-sized cercopithecoids (Dirks and Bowman 2007). These 

examples illustrate that body mass alone cannot explain variation in dental development 

and molar emergence schedules among primates.  

Adult brain size is also positively related to molar-emergence age (Smith 1989, 

1991b; Smith, Crummett, and Brandt 1994; Godfrey et al. 2001b, 2003). This 

relationship may exist because adult brain size is attained at around the time of weaning 

(Smith 1989, 1992; Martin 1983) and weanlings might require their M1s to process an 

adult diet (Smith 1989). Yet, while it is true that smaller-brained primates tend to wean 

their offspring earlier and have more precocious dental development (Smith, Crummett, 

and Brandt 1994; Godfrey et al. 2001), the M1 does not always emerge at or near the 

time of weaning (Godfrey et al. 2001; Godfrey et al. 2003; Smith et al. 2013). As a result, 

the biological basis of the strong relationship among brain size, age-at-weaning, and age-

at-M1-emergence remains unclear. 

The idea that diet influences molar emergence schedules stems from the 

ecological-risk-aversion hypothesis, which posits that populations experiencing high food 

competition should exhibit slow somatic growth rates to reduce the risk of death due to 

starvation (Janson and van Schaik 1993). Species that feed on high-quality resources 

(e.g., frugivores), for which food competition is high, should exhibit slow somatic growth 

and, as a result, late ages at molar emergence. This prediction is borne out in several 

anthropoid species (e.g., Gorilla gorilla, which includes more fruit in its diet than G. 

beringei, has later ages at M1 emergence than G. beringei (Watts 1984; Rogers et al. 

2004; Masi 2007; Kelley and Schwartz 2010; Vakiener et al. 2016)). There are several 

exceptions to this rule among primates, however (e.g., Godfrey et al. 2004; Bolter 2011; 
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Borries et al. 2011). Bolter (2011) investigated skeletal growth between two 

cercopithecids (the folivorous Trachypithecus cristatus and the omnivorous 

Cercopithecus aethiops) and found that, skeletally, C. aethiops grew faster than T. 

cristatus. These results are contradictory to the predictions of the ecological-risk-aversion 

hypothesis and suggest that dietary category alone is insufficient to explain growth 

variation in many primate taxa. Further work has undermined the idea that feeding 

competition is low in folivores (Koenig 2000; Snaith and Chapman 2007; Robbins 2008) 

and indicated that leaf availability can be highly seasonal (Koenig et al. 1997; Harris, 

Chapman, and Monfort 2010). These findings suggest that the folivore-frugivore 

dichotomy may be too simplistic to tease apart the effects of diet (food abundance, food 

quality, and resulting competition) on growth and development. This is further illustrated 

by a comparison two strepssirhine taxa. The highly folivorous species of Indriidae grow 

and mature more slowly than similar-sized frugivorous species of Lemuridae (Godfrey et 

al. 2004). In contrast to somatic growth, dental development in indriids is faster than in 

lemurids (Godfrey et al. 2004). These results indicate that the mechanisms coordinating 

dental growth and somatic growth are not similarly influenced by diet.  

It has been suggested that available space in the jaws influences the initiation of 

molar formation (Bradley 1961; Osborn 1978; Dean and Beynon 1991b; Tompkins 

1996). According to this view, variation in molar-emergence ages could simply be a 

function of the age at which molars initiate development. This hypothesis was tested by 

Boughner and Dean (2004), who found little support for the role of space in regulating or 

constraining the timing of molar development, and thus molar emergence. Their study 

focused on the degree of temporal overlap between the completion of one molar crown 
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(e.g., M1), and the initiation of crown formation in a subsequent molar (e.g., M2).  

Comparative dental developmental research shows that cercopithecoid monkeys do not 

exhibit any temporal overlap in molar formation (e.g., Swindler and Gavin 1962; 

Swindler 1985; Dirks et al. 2002; Dirks and Bowman 2007), whereas apes exhibit some 

temporal overlap in molar formation, especially between M1 and M2 (Anemone, Watts, 

and Swindler 1991; Beynon, Dean, and Reid 1991a; Dirks 1998; Dirks and Bowman 

2007). Thus, Boughner and Dean (2004) expected cercopithecoids to be more constrained 

(relative to hominoids) by available space in the jaw. They compared the amount of space 

available in the jaw at the same relative times in Pan and Papio. At no time during molar 

development was the space between adjacent molars different between these two taxa, 

indicating that spatial availability in the jaws does not constrain dental development. 

While Boughner and Dean (2004) determined that space is not a limiting factor in molar 

initiation and growth, they did not test whether space constrains the position and timing 

of molar emergence. The position of tooth initiation and crown growth can differ from 

the position of tooth emergence. Mandibular molars, for example, initiate and grow much 

of their crown within the root of the mandibular ramus, but emerge from within the 

mandibular corpus. The spatial relationship between the tooth crown and alveolar bone 

changes throughout a tooth’s ontogeny and it is therefore possible that the space required 

to initiate and grow a tooth may be independent from the space required for tooth 

emergence.  

Despite considerable attention, not one of the several research streams discussed 

above has adequately explained what governs variation in molar emergence times across 

primates.  In the end, most primate paleobiologists (including paleoanthropologists) 
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continue to retrodict aspects of life history based on significant correlations between the 

timing of tooth emergence and life-history variables, without a clear understanding of the 

mechanism that produces this relationship.  

 

Growth and Functional Integration of the Masticatory System 

Growth is a general term applied to the incremental changes in size (i.e., mass) 

and morphology that occur throughout the development of the individual. Bones of the 

skull grow in concert with one another as well as with numerous organs and spaces. The 

interaction between parts of the growing face can be understood through the use of 

Melvin Moss’s “functional matrices theory” (Moss and Young 1960; Moss and Salentijn 

1969a, b; Moss 1997a, b, c, d) or Donald Enlow’s “counterpart principle” (Enlow et al. 

1969; Enlow and Hans 1996).  

Functional matrices theory (FMT) posits that the head is a collection of functional 

matrices, made up of soft tissues and the spaces that they occupy. The bone that contains 

a functional matrix is called its skeletal capsule and together they make up a functional 

cranial component. Such functional cranial components include aspects of the head 

involved in vision, olfaction, the central nervous system, and mastication, to name a few. 

According to the FMT, the size, shape, and position of soft tissues that make up a 

functional matrix, which is enclosed or supported by a skeletal capsule, determines the 

size, shape, and position of the skeletal capsule. Therefore, changes in skeletal 

morphology during growth are driven by changes in the growth of soft tissues that are 

part of the same functional matrix and, accordingly, the morphology and position of 

bones relative to one another during growth is determined entirely by their functional 
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matrices. The idea that bone growth is not genetically determined has been challenged. A 

more recent evaluation of the FMT by Moss allows for more genetic control of bone 

growth (Moss 1997a, b, c, d) and elaborates on the notion that each functional matrix 

influences the growth of adjacent functional matrices, as most parts of the skull 

contribute to more than one functional matrix. For example, the floor of the nasal cavity 

(composed of the maxillae and palatine bones) is also the roof of the oral cavity. 

Similarly, the floor of the anterior cranial fossa is also the roof of the orbits. The FMT 

remains heuristically useful especially if distinction is made between primary interactions 

(between a functional matrix and its skeletal capsule) and secondary interactions 

(between a functional matrix and other skeletal capsules that it might influence) 

(McCarthy 2004; Lieberman 2011).  

The counterpart principle (Enlow et al. 1969; Enlow and Hans 1996) was an 

amendment to the work of Moss, and suggested that the growth and development of 

different parts of the skull influence the growth and development of structural 

counterparts, thus maintaining a structural equilibrium (Enlow and Moyers 1971). One 

example of such counterparts is the mandibular and maxillary arches, which must 

maintain similar growth so as to maintain functional occlusion of the teeth throughout 

growth. Similarly, the mandibular corpus can be divided into different counterparts that 

grow in conjunction with one another. Although structures superior to the inferior 

alveolar nerve canal (i.e., alveolar bone) differ in the pattern of bone remodeling to those 

inferior to the alveolar nerve canal (e.g., in humans the superior unit is externally 

resorptive while the inferior unit is externally depository: Duterloo and Enlow 1970), 

these two counterparts grow together in order to maintain functionality (Enlow and Hans 
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1996). 

The FMT and the counterpart principle state that growth of the craniofacial 

skeleton results from the complex interactions among their different components. Both 

are therefore useful and complementary frameworks for describing the growth of the 

skull because both focus on how growth and development relates to function and both 

recognize the relevance of biomechanical factors in the ultimate determination of 

morphology (Daegling 2010). That the masticatory apparatus as a whole can be 

considered a functional cranial component has been supported by several workers 

(Pucciarelli, Dressino, and Niveiro 1990; Kiliaridis 1995). Most researchers, however, 

describe the alveolar bone, mandibular corpus, and ramus as parts of separate functional 

cranial components (Enlow and Hans 1996; Klingenberg, Mebus, and Auffray 2003; 

Sardi and Ramirez Rozzi 2005), and these parts interact during development to produce a 

functional system during growth (Klingenberg, Mebus, and Auffray 2003).  

The interactions among different parts of the masticatory apparatus are influenced 

by intrinsic factors (i.e., hormones and genes) and extrinsic stimuli (i.e., soft tissue 

growth, dental development, biomechanical forces of mastication) (Moss and Young 

1960; Enlow and Hans 1996; Moss 1997a, b, c, d; Lieberman, McBratney, and Krovitz 

2002; Lieberman 2011). The mandible and maxilla, for example, are functionally 

integrated due to the demands of functional occlusion (Lieberman 2011) and the role of 

mastication is important in stimulating growth of the jaws and proper maxillary and 

mandibular integration (Lieberman et al. 2004).  

In her original publication reporting the relationship between molar emergence 

and life history, B. Holly Smith noted that molar emergence should be completely 
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integrated into the growth of the skull (Smith 1989). This follows from the idea that the 

components of an integrated masticatory system must grow together in order to stay 

functional during development. Smith’s insight generated the idea that molar emergence 

schedules are related to the biomechanics of the masticatory system (Spencer and 

Schwartz 2008; Schwartz 2012). Molars function with the jaws and chewing muscles to 

break down food. Developmental coordination among these parts of the chewing system 

is critical for food ingestion throughout life. In adult primates, the configuration of the 

chewing system constrains the position of molars to avoid damage to the 

temporomandibular joint (TMJ) during chewing (e.g., Spencer 1999) and so it is logical 

to assume that the same biomechanical constraint operating in adults also operates at all 

stages of ontogeny. 

 

Biomechanical Constraints on Molar Position 

Research on jaw biomechanics and kinematics has been used to understand 

feeding adaptations of extant (e.g., Bramble 1978; Smith 1978; Hylander 1985a; Spencer 

1995; Daegling and Hylander 2000; Ravosa et al. 2000; Williams et al. 2002; Daegling 

2004; Wright 2005; Ross et al. 2007, 2012; Hylander et al. 2011; Perry, Hartstone-Rose, 

and Logan 2011; McGraw and Daegling 2012) and fossil primates (e.g., Du Brul 1976; 

Demes and Creel 1988; Daegling and Grine 1991; Spencer and Demes 1993; Antón 

1996; Wood and Lieberman 2001; Rak and Hylander 2008; Strait et al. 2012). Since the 

1970s, the Constrained Lever Model (CLM) has been used to show that in order to 

prevent injury at the jaw joint during chewing, the position of teeth in the jaws is 

constrained (Greaves 1978, 1982, 1983, 1988; Spencer and Demes 1993; Spencer 1995, 
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1999). More recently, Spencer and Schwartz (2008) and Schwartz (2012) suggested the 

existence of similar constraints on the position of molar emergence.  

The CLM was developed as a way of understanding variation in overall 

masticatory system configuration and the relative position of different tooth types, in 

particular (Greaves 1978, 1982, 1983). The model hinges on the assumption that the 

morphology of the masticatory system is constrained so that the TMJ is not loaded in a 

way that regularly or forcefully pulls the mandibular condyle away from the articular 

eminence. Such distractive forces are avoided by changing the activity of the masticatory 

muscles at different bite points and by limitations on the configuration that the 

masticatory components might assume through evolution (Spencer 1999). Both of these 

expectations have been tested; Spencer (1998) showed that during maximum bite force 

production on different bite points, masticatory muscles change their activation in a 

manner consistent with the expectations of the model. Furthermore, Spencer (1999) and 

Perry, Hartstone-Rose, and Logan (2011) reported that the position of molars in adult 

primates is also consistent with the expectations of the model. The CLM has been used to 

compare masticatory configurations among mammals (e.g., Spencer and Demes 1993; 

Spencer 1995, 1999), to investigate how bite forces change along the dental arcade in 

taxa with different masticatory configurations (Greaves 1988; Spencer and Demes 1993; 

Lucas 2012), and to explain diet-driven morphological differences among extant and 

fossil primates (Wright 2005; Koyabu and Endo 2009; Strait et al. 2009; Smith et al. 

2015; Ledogar et al. 2016b). Most important for the purposes of this dissertation, the 

CLM predicts where molars should be located within the jaws if distraction of the TMJ is 

to be avoided (Spencer 1995, 1999). To understand how the CLM may modulate the 
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position and timing of molar emergence across primates, it is first necessary to explore 

the biomechanical boundaries of the CLM that are requisite for evaluating masticatory 

configuration, namely, the anteroposterior (AP) and mediolateral (ML) positions of the 

jaw-adductor muscle resultant relative to the triangle of support. 

 

Constrained Lever Model Description and Predictions for Molar Position 

Forces applied to the mandible by the masticatory adductor muscles are resisted at 

three points: the bite point, the working-side TMJ, and the balancing-side TMJ (Gysi 

1921; Walker 1976; Greaves 1978; Smith 1978; Hylander 1985b; Spencer 1998). These 

three points make up the corners of the triangle of support, a theoretical area through 

which the masticatory adductor muscle resultant vector must pass to ensure TMJ stability 

(Fig. 1A; Greaves 1978, 1982, 1983, 1988). The key parameter for rendering an intact 

CLM is the position of the adductor muscles’ resultant, in both the AP and ML 

dimensions relative to the three principle resistance points of the triangle of support.  

When the working-side and balancing-side adductor muscles are equally active, 

the resultant lies on the midsagittal plane (Fig. 1A). During anterior biting, when the 

triangle of support is large and can easily encompass the resultant, the working-side and 

balancing-side TMJs can resist most of the load. As the bite point moves posteriorly 

along the postcanine row, however, the triangle of support gets increasingly smaller and, 

ultimately, a midline muscle resultant will fall outside of the triangle of support (Fig. 1B; 

Spencer 1995, 1999), loading the TMJ in tension and causing TMJ distraction. To avoid 

loading the TMJ in tension during posterior molar biting, the muscle resultant migrates 

laterally away from the midline and towards the working side, a movement enabled by 
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Figure 1. Occlusal view of mandible showing (A) the triangle of support with the muscle 
resultant (red square) falling within it. The triangle of support is bounded by the working-
side and balancing-side TMJs and the bite (red diamond). When biting in anterior bite 
points, the resultant falls within the midline (black sashed line) because both balancing- 
and working-side adductor muscles are used with equal force. (B) As the bite point 
moves posteriorly, the triangle of support gets smaller and the muscle resultant must shift 
laterally towards the working side from its midline position in order to stay within the 
triangle of support. This lateral movement is achieved by reducing the balancing-side 
adductor force. (C) The spatial relationship among the resultant and working-side TMJ in 
conjunction with the midline sagittal plane are used to define three regions of the 
mandible: Regions I and II are separated by an oblique line passing though the working-
side TMJ and the resultant’s intersection with the triangle of support; Regions II and III 
are separated by a transverse (dashed) line passing thought the muscle resultant. See text 
for the biomechanical definitions of Regions I, II, and III.  Bite points are only located in 
Regions I and II (i.e., anterior to the resultant), but never in Region III as they would 
distract the TMJ at the working-side TMJ. 

 

reducing balancing-side muscle force (Fig. 1B; Greaves 1978). Based on the AP position 

at which the resultant crosses the triangle of support and its ML movements, the 

mandible has been divided into three regions (Fig. 1C). Region I contains bite points at 

which the muscle resultant can stay in the midline. Region II contains bite points that 

cause the resultant to shift laterally in order to stay within the triangle of support. Regions 

I and II contain teeth because biting in these regions will not result in TMJ distraction. 
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On the other hand, biting in Region III, in which the muscle resultant fails to pass within 

the triangle of support, would distract the TMJ. Thus, teeth should only be positioned 

anterior to the muscle resultant and within Regions I and II. Importantly, the boundary 

between Region II and Region III is determined by the AP position of the resultant. This 

boundary represents the most posterior possible position of bite points that will not cause 

distractive forces to the TMJ.  

The CLM was developed using the artiodactyl masticatory system (Greaves 

1978), with the assumption that the TMJ is positioned at the level of the occlusal plane, 

as is the case for many artiodactyls. This general configuration results in the muscle 

resultant vector being aligned perpendicular to the occlusal plane (Greaves 1978). A TMJ 

positioned at the level of the occlusal plane produces a triangle of support that falls along 

the occlusal plane. Recall that the distal boundary of Region II occurs where the muscle 

resultant vector crosses the triangle of support. In artiodactyls and many other mammals 

that have TMJs at the level of the occlusal plane (e.g., many carnivores, rodents, 

strepsirrhines), the point at which the muscle resultant crosses the triangle support is the 

same as the point at which the resultant vector crosses the occlusal plane (i.e., points 1 

and 2 in Fig. 2A are coincident in space). In anthropoid primates, however, the TMJ is 

raised above the occlusal plane, which yields a triangle of support that is inclined to the 

occlusal plane (Fig. 2B). In such a configuration, unless the muscle resultant vector is 

perpendicular to the occlusal plane, the AP position at which the vector crosses the 

triangle of support will differ from the position that it crosses the occlusal plane (i.e., 

points 1 and 2 in Fig. 2B are not coincident in space). This affects the distribution of 

Region II. Primates tend to have anteriorly inclined muscle resultant vectors (Perry, 
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Hartstone-Rose, and Logan 2011). An anteriorly inclined resultant vector will cross the 

triangle of support at a more anterior location (point 2 in Fig. 2B) than the point at which 

it crosses the occlusal plane (point 1 in Fig. 2B), resulting in a more anteriorly positioned 

boundary between Region II and Region III.  

 

 

 

 
Figure 2. Lateral views of lemur (A) and macaque (B) skulls illustrating the effects of 
moving the TMJ above the occlusal plane and inclining the muscle resultant force vector. 
A TMJ at the occlusal plane (as in A) produces a triangle of support that falls along the 
occlusal plane. In this scenario, the point at which a resultant vector crosses the occlusal 
plane (Point 1) will coincide with the point at which that vector crosses the plane of the 
triangle of support (Point 2), even if the vector is inclined anteriorly. When the TMJ is 
raised above the occlusal plane (B) the plane of the triangle of support becomes inclined 
to the occlusal plane. If the muscle resultant vector is inclined anteriorly then at any bite 
point, the vector will cross the occlusal plane more posteriorly (Point 1) than it does the 
plane of the triangle of support (Point 2). Skulls not to scale. Figure modified from 
Spencer (1999). 
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Introduction to Hypothesis 

The utility of the CLM in describing the configuration of the masticatory system 

in infant and juvenile primates has not been explored systematically across primates, 

though it would seem logical that the same biomechanical constraint operating in adults 

must also operate at all stages throughout ontogeny. Indeed, in modern humans, 

chimpanzees, and papionin primates, molars emerge at a constant position, anterior to the 

TMJ (Spencer and Schwartz 2008; Schwartz 2012; Singleton 2015), a finding consistent 

with the expectations of the CLM.  

This dissertation explores molar emergence as part of a masticatory system that is 

coordinated in its growth and provides an explicit causal model explaining variation in 

the emergence time of molars across primates. Extending the CLM into ontogeny 

suggests that molars should always emerge anterior to the muscle resultant. The 

availability of space anterior to the muscle resultant should be a constraint on where 

molars emerge. The rate at which this space is made available should, therefore, 

determine when molars emerge (i.e., the schedule of molar emergence).  

The subsequent three chapters of this dissertation test the hypothesis that the 

location and timing of molar emergence is constrained to avoid TMJ distraction 

throughout ontogeny. The hypothesis is tested from three perspectives. Chapter 2 

investigates the position of molar emergence and considers whether molars emerge 

directly anterior to the point at which the muscle resultant intersects the triangle of 

support, as per the original formulation of the CLM by Greaves (1978), or whether 

molars emerge significantly anterior to this point, which would be consistent with the 

finding that the last molar is positioned significantly anterior to the muscle resultant in 
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adult primates (Spencer 1995, 1999; Perry, Hartstone-Rose, and Logan 2011).  Chapter 3 

considers potential factors that influence ontogenetic and interspecific variation in the 

position of molar emergence and determines whether the position of emerging molars is 

influenced by factors related to the size of the buffer zone, a safety factor that creates 

greater stability at the TMJ during biting. Specifically, Chapter 3 investigates four factors 

that may contribute to ontogenetic and interspecific variation in the distance between the 

muscle resultant’s intersection with the triangle of support and the position of emerging 

molars: food material properties, skull size, jaw gape, and the length of the next emerging 

molar. Finally, Chapter 4 investigates whether the rate at which space is made available 

in the jaw (anterior to the point at which the muscle resultant intersects the triangle of 

support) and the duration of jaw growth determine the timing of molar emergence. 

Overall, this dissertation is aimed at providing a mechanical and developmental model 

for explaining temporal and spatial variation in molar-emergence ages among primates.  
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CHAPTER 2 

BIOMECHANICAL CONSTRAINTS ON THE POSITION OF MOLAR EMERGENCE 
IN PRIMATES  
 

Abstract 

Molar-emergence age serves as a skeletal proxy for life history in the fossil 

record. Knowledge of how variation in molar-emergence age arises and why it is closely 

associated with life history is lacking, however. Understanding the mechanism that 

produces variation in molar-emergence age is critical to evaluating why molar emergence 

tracks life history. Molars are part of an integrated system in which they function to 

comminute food. Developmental coordination among parts of this system is critical for 

proper food ingestion throughout life. In adult primates, the biomechanics of masticatory 

system configuration constrain where molars can be situated to avoid damage to the 

temporomandibular joint (TMJ) during chewing. This research tested the hypothesis that 

the location of molar emergence is constrained to avoid damage to the TMJ throughout 

ontogeny. Two predictions were tested: that molars emerge directly anterior to the 

adductor resultant and that molars emerge significantly anterior to the adductor resultant. 

3D coordinate data were collected from cross-sectional ontogenetic samples of primate 

skulls (n = 21 species, 1258 specimens). The position of the resultant was estimated using 

two methods: (1) the average position of the three adductor muscle lines of action 

(MLAs) and (2) the most anterior MLA. Results indicate that molars emerge significantly 

anterior to the resultant throughout ontogeny; however, when the most anterior MLA is 

used to approximate the position of the resultant, the last molar is posterior to the MLA in 

later ontogenetic stages and adults of some taxa. This latter result contradicts previous 
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findings for adult primates and possible reasons for this are discussed. Overall, the study 

supports the idea that molar emergence is constrained by the biomechanics of 

mastication, especially early in ontogeny.  

 

Introduction 

The age at which the permanent first molar (M1) emerges into the oral cavity is 

strongly correlated with life-history variables across primates (Smith 1989; Smith, 

Crummett, and Brandt 1994; Kelley and Schwartz 2010), and has been used to 

reconstruct the life history of fossil primates (e.g., Kelley 1997; Kelley and Smith 2003; 

Zihlman et al. 2004; Kelley and Schwartz 2012). The underlying mechanism driving this 

strong correlation remains unknown. Molar emergence should be completely integrated 

into the growth of the skull and part of an integrated masticatory system (Smith 1989; 

Spencer and Schwartz 2008). This study therefore examines molar emergence in the 

context of masticatory ontogeny.  

The adult masticatory system of mammals is configured to avoid distraction of the 

temporomandibular joint (TMJ) (i.e., when the mandibular condyle is pulled away from 

the articular eminence) during biting and chewing (Greaves 1978, 1982, 1983, 1991, 

2000; Spencer and Demes 1993; Spencer 1995, 1999; Thompson et al. 2003; Perry, 

Hartstone-Rose, and Logan 2011). According to the Constrained Lever Model (CLM), 

three points of resistance occur during unilateral biting (one at each TMJ and one at the 

bite point), and define the edges of the triangle of support. During unilateral biting, the 

adductor muscle resultant vector must pass through the triangle of support. If the resultant 

passes outside of the triangle of support, the bite point and balancing-side TMJ 
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experience rotation while the working-side TMJ experiences tension (i.e., TMJ 

distraction, Greaves 1978;  Spencer 1999). Given this limitation, a key aspect of 

masticatory system configuration is the position of molars along the maxillary and 

mandibular arches in relation to the adductor muscle resultant vector. As per the CLM, 

the distal-most molar’s position is constrained so that it is located anterior to the point at 

which the jaw adductor muscle resultant crosses the triangle of support because biting 

posterior to this point produces distractive forces at the working-side TMJ (Greaves 

1978; Spencer 1999). Molars should, therefore, always be positioned along the 

mandibular and maxillary arches such that TMJ distraction is mitigated during 

mastication. The original CLM, as described by Greaves (1978, 1982, 1983, 1988), 

predicts that the distal-most molar lies immediately anterior to the muscle resultant 

(Greaves 1978). Several studies have found, however, that the molar’s position is more 

anterior than predicted by the original CLM (Spencer 1999; Perry, Hartstone-Rose, and 

Logan 2011; Lucas, 2012). Extending the CLM model into ontogeny will require a test of 

these two scenarios.  

Extending the CLM to ontogenetic stages suggests that molars should emerge 

anterior to the muscle resultant. The availability of space between the muscle resultant 

and the distal-most tooth present in the tooth row should be a constraint on where molars 

emerge. Most tests of the CLM in primates have been performed on adult primates and 

the utility of the CLM in describing the configuration of the masticatory system in infant 

and juvenile primates has not been explored systematically across primates, though it 

would seem logical that the same biomechanical constraint operating in adults should 

also operate at all stages throughout ontogeny. Indeed, in humans, chimpanzees, and 
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papionins, molars emerge at a constant distance to the TMJ (Spencer and Schwartz 2008; 

Schwartz 2012; Singleton, 2015), a finding consistent with the expectations of the CLM. 

Therefore, despite there being substantial variation in craniofacial configuration among 

these taxa, there appears to be a common constraint on the position of molar emergence 

that operates during ontogeny.  

 

Hypothesis 

This research tests the hypothesis that the location of molar emergence is 

constrained to avoid TMJ distraction throughout ontogeny. Based on the CLM and 

previous research on adult primates, the hypothesis has two predictions. Prediction 1 

states that as primates grow, molars emerge directly anterior to the point at which the 

muscle resultant intersects the triangle of support. This prediction tests the assumption of 

the CLM made by Greaves (1978), who stated that the last molar is situated directly 

anterior to the muscle resultant. Prediction 2, on the other hand, states that across 

primates, molars emerge significantly anterior to the point at which the muscle resultant 

intersects the triangle of support. This prediction is consistent with the finding that the 

last molar is positioned significantly anterior to the muscle resultant in adult primates 

(Spencer 1995, 1999; Perry, Hartstone-Rose, and Logan 2011).   
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Material and Methods 

Data Collection 

Following the methods of Spencer (1995) and Lucas (2012), data were collected 

on the spatial configuration of the masticatory system throughout primate ontogeny by 

digitizing 32 homologous landmarks (Table 1, Figure 3) characterizing overall skull size 

and masticatory configuration, including the position of teeth and the origins and 

insertions of the masticatory muscles. The data were obtained using a Microscribe G3X 

digitizer (Immersion Corp., San Jose, CA). To collect landmark data, primate crania were 

positioned on a ring, secured with dental wax. The ring was supported by a ring stand. 

The crania were inverted, with the basicranium positioned superior to the neurocranium. 

Landmarks were first collected from the inferior and lateral aspects of the cranium 

(landmarks 1-12) and the occlusal portions of maxillary teeth (landmarks 13-22). 

Mandibular landmarks (landmarks 23-32) were collected after the mandible was 

articulated with the cranium so that maxillary and mandibular teeth were in occlusion. 

Because infant and juvenile primates do not possess a full complement of adult teeth, the 

number of landmarks varied depending on the molar emergence category (see below) of 

each skull.  

 

Sample 

The data were collected from cross-sectional ontogenetic samples of primate 

skulls representing 21 species across the primate order (see Table 2 for species list and 

sample sizes). The sample was aimed at capturing a wide range of taxonomic and 

morphological variation and species were selected based on the richness of skeletal  
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Table 1. List of landmarks collected for study. 

Landmark # Landmark description 
1 Left center of articular eminence 
2 Left inferior edge of zygomatic arch at the zygomaticotemporal suture 

3 Left inferior edge of zygomatic arch at the anterior-most point of origin of the 
superficial masseter 

4 Left intersection of temporal line and frontozygomatic suture 
5 Left pterion  
6 Left center of medial surface of lateral pterygoid plate 
7 Right center of medial surface of lateral pterygoid plate 
8 Right pterion  
9 Right intersection of temporal line and frontozygomatic suture 

10 Right inferior edge of zygomatic arch at the anterior-most point of origin of 
the superficial masseter 

11 Right inferior edge of zygomatic arch at the zygomaticotemporal suture 
12 Right center of articular eminence 
13 Left center of trigon basin of M3 
14 Left center of trigon basin of M2 
15 Left center of trigon basin of M1 
16 Left center of trigon basin of P4/dp4  
17 Left center of trigon basin of P3/dp3 
18 Right center of trigon basin of P3/dp3 
19 Right center of trigon basin of P4/dp4 
20 Right center of trigon basin of M1 
21 Right center of trigon basin of M2 
22 Right center of trigon basin of M3 
23 Left coronion  
24 Left centroid of insertion of superficial masseter on lateral ramus 
25 Left centroid of insertion of medial pterygoid on medial angle of mandible 
26 Right centroid of insertion of medial pterygoid on medial angle of mandible 
27 Right centroid of insertion of superficial masseter on lateral ramus 
28 Right coronion 
29 Left distal to P4/dp4 alveolar border  
30 Left distal to M1 alveolar border  
31 Left distal to M2 alveolar border  
32 Left distal to M3 alveolar border  
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Figure 3. Lateral (left) and inferior (right) views of an adult female macaque skull 
illustrating the landmarks used in this study. Circles filled in with a solid color indicate 
landmarks that are on the surface, while circles with lines indicate landmarks that are 
obstructed from view.  

 
 
 

 

ontogenetic samples available for study worldwide. Although every effort was made to 

maintain taxonomic diversity and equal sample sizes, the samples for catarrhine species 

tend to be larger due to the greater availability of ontogenetic material while the sample 

sizes for strepsirrhine species are smaller due to the relative paucity of ontogenetic 

skeletal material.   
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Table 2. List of species examined in this study, including sample sizes listed according to 
molar emergence category. 

Taxon Sample size for molar emergence category Institution 
dp4 M1 M2 M3  

Platyrrhini      
Alouatta palliata 10 10 10 20 1 
Ateles geoffroyi 7 10 10 20 1,2,3 
Cebus (Sapajus) apella 10 10 6 30 1,4 
Saimiri sciureus 4 9 10 19 1,4 
Cercopithecidae      
Colobus angolensis 10 9 10 19 2,5 
Colobus polykomos 3 5 8 20 1,3,4 
Procolobus verus - 6 7 19 5 
Macaca mulatta 28 33 31 58 1,6 
Macaca fascicularis 10 10 8 16 1,2,3,4 
Papio anubis 10 10 10 28 5,7 
Papio cynocephalus 12 10 17 34 1,3,5,7 
Hominidae      
Gorilla beringei 16 14 9 57 1,5, 8 
Gorilla gorilla 7 10 5 29 1,2,3,4,5 
Homo sapiens 25 22 31 50 1,9 
Pan paniscus 10 10 12 21 5 
Pan troglodytes 16 21 21 69 1,5,10,11 
Pongo pygmaeus 9 11 12 19 1,2,3,4 
Strepsirrhini      
Eulemur mongoz - 2 - 13 1,2,4 
Lemur catta 3 - 5 18 1,2,3,4 
Perodicticus potto 2 8 8 20 1,2, 3,4 
Otolemur monteiri 3 3 - 31 2,5 

(1) National Museum of Natural History, Washington, DC; (2) American Museum of 

Natural History, New York, NY; (3) Museum of Comparative Zoology, Harvard 

University, Cambridge, MA; (4) Vienna Museum of Natural History Museum, Vienna, 

Austria; (5) Royal Museum for Central Africa, Tervuren, Belgium; (6) Caribbean Primate 

Research Center, Laboratory of Primate Morphology and Genetics at the University of 

Puerto Rico, Puerto Rico; (7) Amboseli Baboon Research Project, Skeletal Collection, 

National Museums Kenya; Nairobi, Kenya; (8) Mountain Gorilla Skeletal Project, 

Musanze, Rwanda; (9) Spencer Atkinson Collection, University of the Pacific School of 

Dentistry, San Francisco, CA; (10) Max Planck Institute, Leipzig, Germany; (11) 

Department of Anthropology, University of Minnesota, Minneapolis, MN. 
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Masticatory System Measurements 

The coordinate data were used to calculate the following two parameters: (1) the 

distance between the TMJ and the point at which each of the adductor muscles’ line of 

action (MLA) intersects the triangle of support, projected onto the occlusal plane 

(dTMJ_MLA_Occlusal), and (2) the distance between the TMJ and the last molar, projected onto 

the occlusal plane (dTMJ_Molar_Occlusal) (described in further detail below). All landmark 

data were analyzed using customized code written in R 3.0.2 (R Core Team 2013) by 

HG.  

 

 
Figure 4. Lateral view of adult female macaque skull illustrating the occlusal plane and 
the plane of the triangle of support (i.e., the triangle plane). 

 

Because the TMJ is raised above the occlusal plane in many primate species, the 

triangle of support is inclined to the occlusal plane. This, along with an anteriorly 

inclined muscle resultant, found in most primates (Perry, Hartstone-Rose, and Logan 

2011), yields an intersection point between the resultant and the triangle of support that is 

more anterior than the intersection between the resultant and the occlusal plane (see 
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Chapter 1, Fig. 2). To accommodate the influence of a raised TMJ on the intersection of 

the resultant vector and the triangle of support, this study investigated the anteroposterior 

position at which the resultant vector crosses the triangle of support, which was then 

projected onto the occlusal plane and compared to the position of the last molar in that 

same occlusal plane. Landmark data were used to determine the points at which MLAs of 

the masseter muscle, the anterior temporalis muscle, and the medial pterygoid muscle 

cross the triangle of support.  

 

Table 3. Landmarks used to establish planes. 
Plane Molar emergence category Landmarks  
Triangle of support plane M3 emerged Left: 1, 12, 13, Right: 1, 12, 22 

M2 emerged Left: 1, 12, 14, Right: 1, 12, 21 
M1 emerged Left: 1, 12, 15, Right: 1, 12, 20 
dp4 emerged Left: 1, 12, 16, Right: 1, 12, 19 

   
Occlusal plane M3 emerged Left: 13, 22, 17, Right: 13, 22, 18 

M2 emerged Left: 14, 21, 17, Right: 14, 21, 18 
M1 emerged Left: 15, 20, 17, Right: 15, 20, 18 
dp4 emerged Left: 16, 19, 17, Right: 16, 19, 18 

 
 

Two planes were defined for the purposes of data collection. The plane of the 

triangle of support (from here on referred to as the triangle plane, Fig. 4)) was defined 

using three points: two points for the centers of the right and left articular eminences and 

the trigon basin of the last molar (Table 3). The occlusal plane (Fig. 4) was defined using 

the trigon basin of the right and left last two molars and the P3/dp3 (Table 3). A plane is 

defined by any three points that lie in that plane. For a hypothetical plane that contains 

the points P1(x1,y1,z1), P2(x2,y2,z2), and P3(x3,y3,z3), two vectors can be defined as:  
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Equation 1: !1!2 = %2, '2, (2 − %1, '1, (1 = *%, *', *( 

Equation 2: !1!3 = %3, '3, (3 − %1, '1, (1 = ,%, ,', ,( 

The cross product of these two vectors will be a vector that is orthogonal to the 

hypothetical plane:   

Equation 3:	!1!2	×	!1!3 =
0 1 2
*% *' *(
,% ,' ,(

= 3 *',( − *(,' + 5 *(,% − *%,( +

2 *%,' − *',%  

 

If *',( − *(,' 	is	represented	by	@, 

if *(,% − *%,( 	is	represented	by	A, 

if *%,' − *',% 	is	represented	by	B, 

 

then,  

Equation 4: !1!2	×	!1!3 = @3 + A5 + B2 

The scalar equation of the plane is therefore:  

Equation 5: @% + A' + B( + C = 0 

where D is a constant, found by plugging a point into the equation that is in the plane 

(P1[x1,x2,x3]): 

Equation 6: @ % − %1 + A ' − '1 + B ( − (1 + C = 0 
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Figure 5. Lateral views of adult female macaque skulls illustrating the points of 
intersection between each of the MLAs and the triangle plane for (A) the masseter muscle 
(PointMLA_Tri_Masseter), (B) the anterior temporalis muscle (PointMLA_Tri_Temporalis), and (C) 
the medial pterygoid muscle (PointMLA_Tri_Med. Pterygoid). In each case, the point of 
intersection is shown by the red dot.  

 
 
Once the planes were established, the points of intersection between each of the MLAs 

and the triangle plane were determined (PointMLA_Tri, Fig. 5). To do this, the equation of 

the plane (Equation 5) and the equation of the MLAs, which are lines, are needed. The 

equation of a line in the form:  

Equation 7: E = EF + GH 

can be decomposed into 

Equation 8: % = %F + GIH 

Equation 9: ' = 'F + GJH 

Equation 10: ( = (F + GKH 

 
Equations 8, 9, and 10 were used in the triangle plane equation (Equation 5) to solve for t. 

The values of t were then plugged back into equations 8, 9, and 10 to determine the x-, y-, 
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and z-coordinates of the intersection of an MLA and the triangle plane (PointMLA_Tri). 

Next, the distance from PointMLA_Tri and the occlusal plane (dMLA_Occlusal, Fig. 4) was 

measured using Equation 11.  

Equation 11: LMNO_QRRSTUVS =
WIXYZ_[\]^_JXYZ_[\]^`KXYZ_[\]^a

Wb^	_b^	`b
 

Where, E, F, G, and D are components from equation 5, in this case for the occlusal 

plane. Similarly, the distance from the TMJ to the occlusal plane (dTMJ_Occlusal, Fig. 6) was 

measured using Equation 12.  

Equation 12: LcMdeffghijg =
WI[Xk^_J[Xk^`K[Xk^a

Wb^	_b^	`b
 

The Euclidean distance between the TMJ and PointMLA_Tri (dTMJ_MLA, Fig. 6) was then 

measured using Equation 13.  

Equation 13: LcMd_MNO =

(%MNO_cmn − %cMd)p + ('MNO_cmn − 'cMd)p + ((MNO_cmn − (cMd)p 

DTMJ_MLA  represents the hypotenuse of a right triangle (Fig. 6), the opposite distance of 

which was determined using Equation 14.  

Equation 14: LQqqrUnst_cMd = LcMd_QRRSTUVS − LMNO_QRRSTUVS 

The distance from the TMJ to the intersection of the MLA with the triangle plane, 

projected onto the occlusal plane (dTMJ_MLA_Occlusal, Fig. 6) is therefore defined as: 

Equation 15: LcMd_MNO_QRRSTUVS = LQqqrUnst_cMd
p − LcMd_MNO

p  
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Figure 6. Lateral view of adult female macaque skull showing measurements used to 
determine the distance between the TMJ and the MLA, projected onto the occlusal plane. 
Image shows the occlusal plane (short-dashed black line), the triangle plane (long-dashed 
black line), and an MLA (thick solid black line). Red line represents the projected 
distance between the MLA’s intersection with the triangle plane to the occlusal plane 
(dMLA_Occlusal) and the blue line represents the distance between the TMJ and the occlusal 
plane (dTMJ_Occlusal). Enlarged portion of the skull illustrates variables that were measured 
to determine the distance between the TMJ and the MLA, projected onto the occlusal 
plane (dTMJ_MLA_Occlusal). See text for definitions of other variables and details of their 
calculations.  

 

Finally, it was necessary to determine the distance from the TMJ to the last 

emerged molar, projected onto the occlusal plane. The point on the alveolar margin, just 

distal to the last mandibular molar was projected onto the occlusal plane using Equation 

16.  

Equation 16: LMrSVmeffghijg =
WIXugj\^_JXugj\^`KXugj\^a

Wb^	_b^	`b
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Figure 7. Lateral view of adult female macaque skull showing measurements used to 
determine the distance between the TMJ and the last molar, projected onto the occlusal 
plane. Image shows the occlusal plane (short-dashed black line), the triangle plane (long-
dashed black line), and an MLA (thick solid black line). Red line represents the projected 
distance between the last molar and the occlusal plane (dMolar_Occlusal) and the blue line 
represents the distance between the TMJ and the occlusal plane (dTMJ_Occlusal). Enlarged 
portion of the skull illustrates variables that were measured to determine the distance 
between the TMJ and the last molar, projected onto the occlusal plane (dTMJ_Molar_Occlusal). 
See text for definitions of other variables and details of their calculations.  

 

The distance from the TMJ to the occlusal plane (dTMJ_Occlusal) was previously determined. 

The Euclidean distance between the TMJ and the point distal to the last molar (dTMJ_Molar, 

Fig. 5) was measured using Equation 17.  

 

Equation 17: LcMd_MrSVm = (%cMd + %MrSVm)p + ('cMd + 'MrSVm)p + ((cMd + (MrSVm)p 

 
The sum of the distances dTMJ_Occlusal and dMolar_Occlusal formed the hypotenuse of a right 

triangle (Fig. 7). The opposite of this right triangle was equal to dTMJ_Occlusal (Fig. 7) and 
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so the distance from the TMJ to the last erupted molar, projected onto the occlusal plane 

(dTMJ_Molar_Occlusal, Fig. 7), is calculated using Equation 18.  

Equation 18: LcMd_MrSVm_QRRSTUVS = LcMd_QRRSTUVS
p − LcMd_MrSVm

p  

The variable Resultant-Molar (Fig. 8) represents the distance between the resultant and 

the last molar, along the occlusal plane. Resultant-Molar was calculated by taking the 

difference between dTMJ_Molar_Occlusal and dTMJ_MLA_Occlusal, using the formula: 

Equation 19: vwxyzH{|H − }~z{E	 = LcMd_MrSVm_QRRSTUVS 		− 	LcMd_MNO_QRRSTUVS 

Resultant-Molar was calculated using two different methods of estimating the position of 

the resultant (see below).  

Finally, the variable MLA-Molar was calculated. This variable is similar to 

Resultant-Molar but represents the distance between a specific MLA and the last molar, 

rather than the resultant and the last molar, along the occlusal plane. MLA-Molar was 

calculated by taking the difference between dTMJ_Molar_Occlusal and dTMJ_MLA_Occlusal, using 

the formula: 

Equation 20: }�* −}~z{E	 = LcMd_MrSVm_QRRSTUVS 		− 	LcMd_MNO_QRRSTUVS 

but only using data for specific MLAs (e.g., only the masseter).  
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Figure 8. Lateral view of adult female macaque skull showing measurements used to 
measure the distance between the resultant and the last molar. Image shows the occlusal 
plane (short-dashed black line), the triangle plane (long-dashed black line), and an MLA 
(thick solid black line). Red and blue lines as in Figs. 6 and 7. Enlarged portion of the 
skull illustrates variables that were used to measure the distance between the resultant 
and the last molar (Resultant-Molar). See text for definitions of other variables and 
details of their calculations.  

 

Several landmarks were used for the attachment points of the temporalis and 

masseter muscles. Two landmarks were used to estimate masseter origin (landmarks 2 

and 3 on the left side and landmarks 10 and 11 on the right side, Table 1) and one to 

estimate masseter insertion (landmark 24 on the left side and 27 on the right side, Table 

1). The anterior temporalis muscle fibers run vertically and act in jaw adduction. This 

portion of the temporalis muscle is continuous with the posterior temporalis, which has 

muscle fibers that are positioned more horizontally and act in retrusion of the mandible. 

The anterior temporalis was defined here as that portion of the temporalis muscle that 

originates lateral and distal to the orbit and in the pterion region. Two landmarks were 
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used to estimate anterior temporalis origin (landmarks 4 and 5 on the left side and 

landmarks 8 and 9 on the right side, Table 1) and one landmark for its insertion 

(landmark 23 on the left side and landmark 28 on the right side, Table 1). These multiple 

landmarks were used to capture variation in the attachment sites of these muscles and the 

effect that this variation has on estimating the resultant. Only one landmark was used to 

represent the origin (landmark 6 on the right side and landmark 7 on the left side, Table 

1) and insertion (landmark 25 on the right side and landmark 26 on the left side, Table 1) 

of the medial pterygoid muscle.  

The position of the muscle resultant vector was estimated using skeletal 

landmarks. This was done in two ways. The first was by calculating the average 

dTMJ_MLA_Occlusal value for each of the three adductor muscles’ MLAs using all 

combinations of landmarks as described above, and then calculating the average 

dTMJ_MLA_Occlusal of these three to yield an overall mean dTMJ_MLA_Occlusal value. This 

assumes that each muscle contributes equal force during isometric maximum bite force 

production, the implications of which are addressed in the “Discussion” section below.  

The second method used to estimate resultant position was more conservative. 

The position of the muscle resultant vector can be bracketed by examining the position of 

its component forces (i.e., the three adductor muscles). Because the resultant of the three 

vectors is a combination of the positions, orientations, and magnitudes of the three 

adductor vectors, it has to cross the triangle plane at a point that is bracketed by the MLA 

points of intersection (Spencer 1999). Therefore, the MLA that crosses the triangle plane 

at the most anterior position can represent the most anterior point that the resultant can 

cross the triangle plane. For each specimen, it was determined which MLA crossed the 
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triangle plane at the most anterior position (i.e., the greatest value for dTMJ_MLA_Occlusal) 

and this value was used to represent the most anterior position of the resultant.  

The above two methods were used to determine the variables ResultantMean-Molar 

and ResultantMax-Molar, which represented Resultant-Molar (described above as the 

distance between the resultant and the last molar, and herein used to refer to 

ResultantMean-Molar and ResultantMax-Molar together) calculated using the first (i.e., 

mean MLA) and second (i.e., max MLA) method to estimate the position of the resultant, 

respectively.  

 

Analyses 

For each species, specimens were divided into four molar emergence categories: 

(1) dp4 emerged, (2) M1 emerged, (3) M2 emerged, and (4) M3 emerged. A molar was 

scored as emerged if its occlusal surface was in the occlusal plane.  

To determine the position of molar emergence relative to the resultant, the length 

Resultant-Molar (i.e., the distance from the resultant to the last molar, along the occlusal 

plane, see Fig. 8) was used. A positive Resultant-Molar value indicated that the last 

molar lies anterior to the resultant, zero indicated that the last molar is positioned at the 

resultant, and a negative Resultant-Molar value indicated that the last molar is posterior 

to the resultant.  

Species-samples and developmental categories were analyzed separately. A 

power analysis on pilot data, with a significance level of 0.05 and power of 0.8, 

determined that a sample of size of at least seven individuals was needed to detect a 

significant difference in the position of the muscle resultant in relation to the last molar. 
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Tests were not performed on samples that contained less than seven individuals. To test 

both predictions, the length of Resultant-Molar was compared to zero. The first 

prediction stated that molars emerge directly anterior to the point at which the muscle 

resultant intersects the triangle of support. To test this, Resultant-Molar was compared to 

zero using two-sided one sample t-tests. Resultant-Molar was not expected to differ 

significantly from zero. The second prediction stated that molars emerge significantly 

anterior to the point at which the muscle resultant intersects the triangle of support. To 

test this Resultant-Molar was compared to zero using one-sided two sample t-tests. 

According to this prediction Resultant-Molar was expected to be significantly greater 

than zero. Analyses were performed for both methods of determining resultant position 

(i.e., using ResultantMean-Molar and ResultantMax-Molar). Due to the high number of t-

tests performed, a Bonferroni correction was used to ensure that any significant results 

were not due to chance. A total of 264 t-tests were performed, resulting in an adjusted 

alpha value of 0.000189. 

Previous research on the biomechanical constraints on molar emergence identified 

that the distance between the TMJ and the last molar remains constant in humans and 

chimpanzees throughout ontogeny (Spencer and Schwartz 2008; Schwartz, 2012) and 

increases only late in ontogeny for some papionins (Singleton 2015). The current 

research attempted to replicate these results by determining whether there are 

intraspecific differences (among molar emergence categories) within species in 

dTMJ_Molar_Occlusal using one-way analyses of variance (ANOVAs) with Tukey’s post-hoc 

tests for significant results. 
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In previous analyses (Spencer and Schwartz 2008; Schwartz 2012; Singleton 

2015), the distance between the TMJ and the last molar was used as a surrogate for the 

distance between the resultant and the last molar. In addition to duplicating the analyses 

of these researchers, the research here also tested whether there are ontogenetic changes 

(among molar emergence categories) in the distance between the last molar and the 

resultant (i.e., Resultant-Molar) using one-way analyses of variance (ANOVAs) with 

Tukey’s post-hoc tests for significant results.  

 

Results 

The distal-most molar was anterior to the masseter MLA in all specimens with 

erupted dp4s (n = 195) and M1s (n = 223), and all but one specimen with erupted M2s (n 

= 230) (Figure 9). For individuals with erupted M3s (n = 610), the M3 was anterior to the 

masseter MLA in all cercopithecoids and strepsirrhines, but not in all specimens of some 

hominids (G. beringei, G. gorilla, P. pygmaeus, and H. sapiens) and platyrrhines (A. 

palliata) (Fig. 9).  

The distal-most molar was anterior to the anterior temporalis MLA in all but one 

specimen with erupted dp4s (one M. mulatta specimen) and in all specimens with erupted 

M1s (Fig. 10). For individuals with erupted M2s, all cercopithecoids, strepsirrhines, and 

platyrrhines possessed M2s that were anterior to anterior temporalis MLA.  Similarly, 

most hominid specimens with M2s emerged, with the exception of one P. pygmaeus and 

four H. sapiens individuals, had distal-most molars that were anterior to anterior 

temporalis MLAs (Fig. 8). All cercopithecoid and most platyrrhine, and strepsirrhine 
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Figure 9. Distance between the MLA and the last molar, projected onto the occlusal plane 
(MLA-Molar) for the masseter muscle for each molar emergence category. Red dashed 
line represents the position that the MLA crosses the triangle of support, projected onto 
the occlusal plane. Positive MLA-Molar values indicate that the last molar is anterior to 
the MLA and negative values indicate that the last molar is posterior to the MLA. 
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Figure 10. Distance between the MLA and the last molar, projected onto the occlusal 
plane (MLA-Molar) for the anterior temporalis muscle for each molar emergence 
category. Red dashed line represents the position that the MLA crosses the triangle of 
support, projected onto the occlusal plane. Positive MLA-Molar values indicate that the 
last molar is anterior to the MLA and negative values indicate that the last molar is 
posterior to the MLA. 
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Figure 11. Distance between the MLA and the last molar, projected onto the occlusal 
plane (MLA-Molar) for the medial pterygoid muscle for each molar emergence 
category. Red dashed line represents the position that the MLA crosses the triangle of 
support, projected onto the occlusal plane. Positive MLA-Molar values indicate that the 
last molar is anterior to the MLA and negative values indicate that the last molar is 
posterior to the MLA. 
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individuals with M3s emerged possessed M3s that were anterior to anterior temporalis 

MLAs. The exceptions among platyrrhines were three specimens of C. apella and the 

exceptions among strepsirrhines were two specimens of O. monteiri and three specimens 

of P. potto (Fig. 10). Among hominids, several species (G. beringei, G. gorilla, H. 

sapiens, P. troglodytes, and P. pygmaeus) have at least one specimen with an M3 that 

was posterior to the anterior temporalis MLA (Fig. 10). 

All specimens in all molar emergence categories, except for one P. pygmaeus 

individual with M3s emerged, had distal-most molars that were anterior to medial 

pterygoid MLAs (Fig. 11).  

Results of t-tests comparing ResultantMean-Molar to zero indicate that, for all 

species and developmental categories, ResultantMean-Molar was both significantly 

different from and greater than zero (Fig. 12, SM 1). All mean, maximum and minimum 

ResultantMean-Molar values for each species and molar emergence category were positive, 

except for two minimum ResultantMean-Molar values (SM 1). These two values are based 

on two individuals that have average ResultantMean-Molar estimates just below zero. 

These two individuals are both adults (molar emergence category: M3 emerged) and 

represent one specimen of H. sapiens, and one specimen of C. apella (Fig. 12). Beyond 

these exceptions, all other specimens, regardless of species designation and molar 

emergence category, possessed ResultantMean-Molar estimates that were greater than zero 

(Fig. 12).  
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Figure 12. Boxplots of the distance between the resultant and the last molar, projected 
onto the occlusal plane (ResultantMean-Molar) using the first method of determining 
resultant position (average MLA; see text for details). Red dashed line represents the 
position that the resultant crosses the triangle of support, projected onto the occlusal 
plane. Positive ResultantMean-Molar values indicate that the last molar is anterior to the 
resultant and negative values indicate that the last molar is posterior to the resultant. 
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The second method for determining the position of the resultant (i.e., the position 

of the most anterior MLA) indicates that the masseter and temporalis crossed the triangle 

of support at more anterior positions than the medial pterygoid in almost all cases (Fig. 

13). In cercopithecoids, platyrrhines, and strepsirrhines, the masseter tended to cross the 

triangle of support more anteriorly than the other MLAs, in specimen with dp4s emerged. 

This was also true in hominids, except for in P. troglodytes, for which the most anterior 

MLA was a mix of masseter and temporalis (Fig. 13), and in P. paniscus, where the 

medial pterygoid tended to cross the triangle of support most anteriorly (Fig. 13). These 

general patterns tended hold for individuals with M1s emerged (Fig. 13). For specimens 

with M2s emerged, the masseter continued to cross the triangle of support at the most 

anterior point in platyrrhines, cercopithecoids, and most strepsirrhines. In hominids with 

M2s emerged, the masseter crossed the triangle of support more anteriorly in G. beringei, 

G. gorilla, and P. troglodytes, the temporalis tended to cross more anteriorly in P. 

pygmaeus and H. sapiens, while the medial pterygoid tended to cross the triangle most 

anteriorly in P. paniscus (Fig. 13), with some variation within species. At M3 emergence, 

most cercopithecoid and platyrrhine specimens, with the exception of a few C. apella 

specimens had masseter muscles that crossed the triangle of support most anteriorly. 

Among most hominids and strepsirrhines, the masseter and temporalis muscles both 

crossed the triangle of support at the most anterior point at similar frequencies, with the 

exception of P. paniscus specimens which were a combination of individuals that had the 

masseter, temporalis, and medial pterygoid crossing the triangle most anteriorly (Fig. 13).   
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Figure 13. Distance between the resultant and the last molar, projected onto the occlusal 
plane (ResultantMax-Molar) using the second method of determining resultant position 
(most anterior MLA; see text for details). Color and shape indicate the MLA that 
represents the resultant (i.e., the most anterior MLA). Red dashed line represents the 
position that the resultant crosses the triangle of support, projected onto the occlusal 
plane. 
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Figure 14. Boxplots of the distance between the resultant and the last molar, projected 
onto the occlusal plane (ResultantMax-Molar) using the second method of determining 
resultant position (most anterior MLA; see text for details). Red dashed line represents 
the position that the resultant crosses the triangle of support, projected onto the occlusal 
plane. Positive ResultantMax-Molar values indicate that the last molar is anterior to the 
resultant and negative values indicate that the last molar is posterior to the resultant. 
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Results of t-tests comparing ResultantMax-Molar to zero indicated that for all 

species and all dp4 and most M1 and M2 molar emergence categories, ResultantMax-

Molar was both significantly different from and greater than zero indicating that these 

teeth tend to emerge significantly anterior to the most anterior MLA (i.e., the most 

anterior estimate of the resultant) (Fig. 14, SM 2). Within the M1 emerged category, one 

P. potto ResultantMax-Molar value was close to zero, which appears to be driving the 

result that P. potto ResultantMax-Molar values do not differ significantly from zero (Fig. 

14, SM 2). Within the M2 emerged category, P. pygmaeus had a similar distribution of 

ResultantMax-Molar values to H. sapiens, that possessed values significantly different and 

greater than zero. The values for P. pygmaeus, on the other hand, did not differ 

significantly from zero and were not significantly greater than zero. This difference may 

be driven by the fact that for H. sapiens, there was a greater concentration of data points 

with more positive values. Finally, within the M3 emerged category, there were several 

non-significant results: A. palliata, C. apella, G. beringei, G. gorilla, H. sapiens, P. potto, 

and P. pygmaeus, exhibited ResultantMax-Molar values that were not significantly 

different from zero and not significantly greater than zero (Fig. 14, SM 2).  

Results of ANOVAs comparing the distance between the TMJ and the last molar 

(dTMJ_Molar_Occlusal) among molar emergence categories indicated that throughout 

ontogeny, significant differences exist in dTMJ_Molar_Occlusal among most species (Table 4). 

The species that did not exhibit significant differences throughout ontogeny are: A. 

palliata, E. mongoz, G. gorilla, L. catta, and P. verus. Based on the mean values for each 

molar emergence category, the general pattern among species was that the distance 

between the TMJ and the last molar increases throughout ontogeny. Post-hoc Tukey’s 
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tests indicated that significant differences were manifested throughout all the emergence 

categories measured here, although variation exists among taxa (Table 4). 

 
Table 4. Mean dTMJ_Molar_Occlusal values for molar emergence categories and results of 
ANOVAs comparing dTMJ_Molar_Occlusal within species. 

  
Taxon 

Mean for molar emergence 
category       

dp4 M1 M2 M3 
F-

statistic 
p-

value 
Significant Tukey 
comparison  

Platyrrhini        
Alouatta palliata 25.77 27.35 28.90 29.10 2.43 0.077 - 

Ateles geoffroyi 23.07 24.43 23.67 30.03 37.93 <0.001 dp4-M3; M1-M3; M2-
M3 

Cebus apella 25.60 21.95 21.90 35.29 4.45 0.007 M1-M3 
Saimiri sciureus 14.30 13.44 12.09 14.63 9.94 <0.001 dp4-M2; M2-M3 
Cercopithecidae        

Colobus angolensis 21.34 26.78 29.24 33.61 34.22 <0.001 dp4-M1; dp4-M2; dp4-
M3; M1-M3; M2-M3 

Colobus polykomos 23.25 24.92 29.87 32.59 21.68 <0.001 dp4-M2; dp4-M3; M1-
M2; M1-M3 

Procolobus verus - 23.92 22.86 24.38 1.01 0.377 - 
Macaca 
fascicularis 22.88 25.84 30.37 29.47 10.49 <0.001 dp4-M2; dp4-M3; M1-

M2 

Macaca mulatta 26.55 30.53 35.40 34.47 31.77 <0.001 dp4-M1; dp4-M2; dp4-
M3; M1-M2; M1-M3 

Papio anubis 39.05 43.86 50.03 62.14 30.09 <0.001 dp4-M2; dp4-M3; M1-
M3; M2-M3 

Papio 
cynocephalus 32.32 40.56 45.41 48.53 14.09 <0.001 dp4-M2; dp4-M3; M1-

M3 
Hominidae        
Gorilla beringei 57.84 62.56 64.89 68.15 3.91 0.011 dp4-M3 
Gorilla gorilla 55.53 67.05 65.85 63.18 1.66 0.189 - 

Homo sapiens 41.86 46.19 46.95 45.35 7.70 <0.001 dp4-M1; dp4-M2; dp4-
M3 

Pan paniscus 35.11 37.04 41.35 42.86 12.66 <0.001 dp4-M2; dp4-M3; M1-
M2; M1-M3 

Pan troglodytes 40.77 47.20 52.03 51.24 24.78 <0.001 dp4-M1; dp4-M2; dp4-
M3; M1-M2; M1-M3 

Pongo pygmaeus 41.91 53.12 55.04 60.00 9.01 <0.001 dp4-M2; dp4-M3 
Strepsirrhini        
Eulemur mongoz - 22.51 - 22.12 0.04 0.843 - 
Lemur catta 18.51 - 23.69 21.41 2.94 0.073 - 
Otolemur monteiri 12.86 19.06 - 20.40 12.97 <0.001 dp4-M1; dp4-M3 
Perodicticus potto 15.04 16.14 16.19 18.44 6.35 0.002 M1-M3; M2-M3 

Where ANOVAs indicated significant differences within species, results of significant 

pairwise Tukey comparisons are listed. Significant ANOVA results indicated in bold. 
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Table 5. Mean ResultantMean-Molar values for molar emergence categories and results of 
ANOVAs comparing ResultantMean-Molar within species. 

Taxon 

Mean for molar emergence 
category    

dp4 M1 M2 M3 
F-

statistic 
p-

value 
Significant Tukey 

comparison 
Platyrrhini               

Alouatta palliata 15.48 15.01 13.54 9.34 23.09 <0.001 dp4-M3; M1-M3; 
M2-M3 

Ateles geoffroyi 17.73 17.68 15.78 15.94 4.61 0.007 M1-M3  
Cebus apella 16.95 14.14 12.30 19.83 1.49 0.228 - 
Saimiri sciureus 9.09 8.36 8.61 7.94 1.46 0.242 - 
Cercopithecidae              
Colobus angolensis 16.15 17.57 17.40 18.05 1.62 0.199 - 
Colobus polykomos 15.22 15.12 16.40 15.24 0.96 0.426 - 
Procolobus verus - 15.21 12.69 12.05 8.92 0.001 M1-M2; M1-M3 
Macaca fascicularis 14.67 15.87 17.22 15.20 1.70 0.183 - 
Macaca mulatta 15.90 17.61 19.06 16.60 7.46 <0.001 dp4-M2; M2-M3 
Papio anubis 26.46 28.89 32.91 37.71 11.84 <0.001 dp4-M3; M1-M3 
Papio cynocephalus 21.67 26.17 27.47 27.49 3.62 0.017 dp4-M2; dp4-M3 
Hominidae              
Gorilla beringei 36.47 36.17 32.37 27.59 5.86 0.001 dp4-M3; M1-M3  
Gorilla gorilla 35.04 37.34 29.96 22.60 8.42 <0.001 dp4-M3; M1-M3  

Homo sapiens 22.49 21.06 16.13 11.38 82.91 <0.001 
dp4-M2; dp4-M3; 
M1-M2; M1-M3; 
M2-M3  

Pan paniscus 20.23 18.93 17.10 14.53 11.04 <0.001 dp4-M3; M1-M3 

Pan troglodytes 25.46 25.02 23.60 19.26 22.62 <0.001 dp4-M3; M1-M3; 
M2-M3 

Pongo pygmaeus 22.29 26.47 19.70 16.00 5.74 0.002 M1-M3 
Strepsirrhini        
Eulemur mongoz - 17.98 - 15.47 1.89 0.193 - 
Lemur catta 11.95 - 19.19 16.28 5.38 0.012 dp4-M2 
Otolemur monteiri 6.82 14.27 - 13.24 6.72 0.003 dp4-M1; dp4-M3 
Perodicticus potto 10.10 11.23 13.20 11.91 0.93 0.439 - 

Where ANOVAs indicated significant differences within species, results of significant 

pairwise Tukey comparisons are listed. Significant ANOVA results indicated in bold. 
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Table 6. Mean ResultantMax-Molar values for molar emergence categories and results of 
ANOVAs comparing ResultantMax-Molar within species. 

  
Mean for molar emergence 

category       

Taxon dp4 M1 M2 M3 
F-

statistic 
p-

value 

Significant 
Tukey 
comparison  

Platyrrhini        

Alouatta palliata 10.36 7.27 5.88 -1.89 84.09 <0.001 
dp4-M1; dp4-M2; 
dp4-M3; M1-M3; 
M2-M3 

Ateles geoffroyi 15.75 15.37 13.40 9.74 23.09 <0.001 dp4-M3; M1-M3; 
M2-M3 

Cebus apella 11.81 10.52 7.98 8.06 0.31 0.820 - 
Saimiri sciureus 5.67 6.36 7.23 5.18 4.43 0.009 M2-M3 
Cercopithecidae        
Colobus angolensis 14.34 13.80 13.28 10.99 4.86 0.005 dp4-M3; M1-M3 
Colobus polykomos 12.12 11.34 9.03 8.64 5.72 0.003 dp4-M3; M1-M3 
Procolobus verus - 12.13 9.38 8.93 9.90 0.001 M1-M2; M1-M3 
Macaca fascicularis 11.31 12.47 11.85 10.13 1.89 0.147 - 
Macaca mulatta 10.77 12.57 12.33 9.58 9.62 <0.001 M1-M3; M2-M3 
Papio anubis 21.72 22.20 25.30 27.36 3.56 0.020 dp4-M3 
Papio cynocephalus 17.54 20.71 20.41 18.70 1.09 0.358 - 
Hominidae        
Gorilla beringei 24.46 21.91 13.66 5.30 21.75 <0.001 dp4-M3; M1-M3 

Gorilla gorilla 23.88 23.69 14.51 3.70 31.56 <0.001 dp4-M3; M1-M3; 
M2-M3 

Homo sapiens 18.90 16.58 7.76 1.07 57.62 <0.001 
dp4-M2; dp4-M3; 
M1-M2; M1-M3; 
M2-M3 

Pan paniscus 17.45 14.62 13.07 9.72 18.10 <0.001 dp4-M2; dp4-M3; 
M1-M3; M2-M3 

Pan troglodytes 21.42 19.66 15.66 10.53 59.99 <0.001 
dp4-M2; dp4-M3; 
M1-M2; M1-M3; 
M2-M3 

Pongo pygmaeus 15.74 17.07 7.37 1.69 18.86 <0.001 dp4-M2; dp4-M3; 
M1-M2; M1-M3 

Strepsirrhini        
Eulemur mongoz - 13.92 - 11.57 0.61 0.451 - 
Lemur catta 7.30 - 17.04 14.07 7.12 0.004 dp4-M2; dp4-M3 
Otolemur monteiri 2.98 12.38 - 9.47 3.53 0.041 dp4-M1 
Perodicticus potto 7.31 9.04 11.88 5.69 0.99 0.409 - 

Where ANOVAs indicated significant differences within species, results of significant 

pairwise Tukey comparisons are listed. Significant ANOVA results indicated in bold. 
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Results of ANOVAs comparing Resultant-Molar among molar emergence 

categories indicated that throughout ontogeny, significant differences exist in the distance 

between the resultant and the last molar (ResultantMean-Molar: Table 5 and ResultantMax-

Molar: Table 6) among most species. The species that did not exhibit significant 

differences throughout ontogeny in ResultantMean-Molar are: C. apella, S. sciureus, C. 

angolensis, C. polykomos, M. fascicularis, E. mongoz, and P. potto (Table 5). Similarly, 

the species that did not exhibit significant differences throughout ontogeny in 

ResultantMax-Molar are: C. apella, M. fascicularis, P. cynocephalus, E. mongoz, and P. 

potto (Table 6). For the species that exhibited significant differences throughout ontogeny 

in the distance between the resultant and the last molar, the general pattern among species 

is that this distance decreases throughout ontogeny (Tables 5 and 6). There were several 

exceptions to this pattern, however, especially among strepsirrhines and papionins, which 

tended to exhibit the opposite pattern (Tables 5 and 6). Post-hoc Tukey’s tests indicated 

that significant differences were manifested throughout all the emergence categories 

measured here, although variation existed among taxa, and differences occurred most 

frequently between the dp4 and M3 emergence categories (Tables 5 and 6).  

 

Discussion 

 This study examined the position of molar emergence in relation to the position of 

the adductor muscle resultant. The CLM predicts that the last molar should be positioned 

anterior to the resultant so that biting on this molar will not produce distractive forces at 

the TMJ (Greaves 1978, 1982, 1983, 1988; Spencer and Demes 1993; Spencer 1995, 

1999). Following this model, this chapter determined if molars emerge anterior to the 
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resultant to maintain an intact masticatory system throughout ontogeny. Two specific 

predictions were tested: (1) molars emerge directly anterior to the resultant (following the 

predictions of the original formulation of the CLM (Greaves 1978)) and (2) molars 

emerge significantly anterior to the resultant (based on findings in adult primates 

(Spencer 1995, 1999; Perry, Hartstone-Rose, and Logan 2011; Lucas, 2012)). The first 

prediction was not supported by this research; in almost all cases, the last molar was not 

positioned directly anterior to the resultant. Results indicate that when the assumption is 

made that all muscles contribute equally to maximum bite force then the second 

prediction is supported in almost all cases. In this case, molars emerge in a position that is 

significantly anterior to the resultant. When the assumption is made that the most anterior 

MLA represents the most anterior position of the resultant then the second prediction is 

partially supported, especially at earlier points in ontogeny.  

Previous research on adult primates has shown that molars are positioned 

significantly anterior to the resultant (Spencer 1995, 1998; Perry, Hartstone-Rose, and 

Logan 2011; Lucas 2012). This previous research calculated the position of the resultant 

in a variety of ways.  Spencer (1995, 1998) reported the positions at which MLAs crossed 

the occlusal plane in adult primates, all of which were posterior to the last molar. Like the 

second method used in this chapter to determine the position of the resultant, Spencer’s 

(1995, 1998) method was intended to approximate the most anterior possible position of 

the resultant. It differs from the methodology employed here, however, because it does 

not account for the fact that most primates possess TMJs that are raised above the 

occlusal plane, which results in triangles of support that are inclined to the occlusal plane. 

Measuring the position at which an MLA crosses the occlusal plane will therefore 
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underestimate the position at which the resultant crosses the triangle of support (assuming 

an anteriorly inclined resultant, which has been shown for primates by  Perry, Hartstone-

Rose, and Logan (2011)). This is the likely reason for the discrepancy between the results 

of Spencer (1995, 1998) and those reported here (discussed further below).  

Lucas (2012) estimated the position of the resultant in a similar way as the first 

method used here, by averaging the position of the three adductor MLAs, and reported 

that in adult primates, the last molar is positioned anterior to the resultant. Similar to the 

studies of Spencer (1995, 1998), however, Lucas (2012) calculated the position that the 

resultant crossed the occlusal plane and not where it crossed the triangle of support.  

The assumption made by Lucas (2012), and the first method used to determine 

resultant position in this study, that all adductor muscles contribute equally to maximum 

bite force is not realistic. Data on muscle physiological cross-sectional area (PCSA) are 

necessary to determine the maximum magnitude of each of the adductor muscles, and 

thus each muscle’s relative contribution to maximum bite force. Research by Perry, 

Hartstone-Rose, and Logan (2011) is, currently, the only study to have used data on 

muscle anatomy in addition to skeletal anatomy to calculate the position of the jaw 

adductor resultant in adult primates. Data on PCSA were used to determine the 

magnitude of force that each muscle can produce and then vector addition was used to 

determine the position of the resultant (Perry, Hartstone-Rose, and Logan 2011). This 

method is superior to the previous two because information on the anatomy of the 

adductor muscles allows for a more accurate determination of the positon of the resultant 

during maximum force production. Like the previous research described above, however, 

the study by Perry, Hartstone-Rose, and Logan (2011) only considered the position of the 
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resultant as it crossed the occlusal plane rather than the triangle of support, potentially 

underestimating the anterior position of the resultant. Despite this limitation, the Perry, 

Hartstone-Rose, and Logan (2011) study confirmed that estimating the position of the 

resultant by including information on muscle anatomy in addition to skeletal anatomy, 

yields a similar result to estimating the position of the resultant using skeletal anatomy 

alone.  

 Data on PCSA are available for adult individuals from several of the species 

examined in this study (Table 7). Most studies report PCSA values for the masseter and 

temporalis muscles, while comparable data for the medial pterygoid are only available for 

two strepsirrhine and two macaque species (Table 7; Antón 2000; Perry, Hartstone-Rose, 

and Logan 2011). Available data indicate that the medial pterygoid is the muscle with the 

smallest PCSA, suggesting that it contributes the smallest magnitude to bite force and 

thus has the least influence on the position of the resultant. Its contribution is not 

insignificant, however. Although smaller, the medial pterygoid is often similar in PCSA 

to the masseter. The muscle’s line of action is also similar to that of the masseter and thus 

the two muscles together, contribute force in a similar direction. Due to the paucity of 

data on the medial pterygoid, it is impossible to draw conclusions regarding its relative 

size in other taxa. Information in Table 7 suggests that in most taxa, the temporalis 

muscle has a larger PCSA than the masseter muscle and can therefore contribute a greater 

magnitude to maximum bite force. The position of the resultant in most taxa should 

therefore be most strongly influenced by the temporalis muscle. There are a few caveats 

to this statement, however. The available PCSA data for the temporalis represent the  
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Table 7. Adductor muscle physiological cross-sectional area (PCSA) data (cm2). 
Species Superficial 

masseter m. 
Temporalis 

m. 
Med. 

pterygoid m. Source 

Alouatta palliata  6.55 5.1 - Taylor et al. (2015) 
Ateles geoffroyi 2.02 3.18 - Taylor et al. (2015) 
Cebus apella 5.54 10.2 - Taylor et al. (2015) 
Gorilla gorilla 31.94 47.24 - Taylor and Vinyard (2013) 

Homo sapiens 4.96 10.39 - 

van Eijden et al. (1997) as 
reported in Taylor and 
Vinyard (2013) 

Lemur catta 1.56 2.67* 1.18 Perry et al. (2011) 

Macaca mulatta 3.36 - 2.12 
Antón (1999, 2000) as 
reported in Ross et al. (2005) 

Macaca fascicularis 1.56 - 1.45 
Antón (1999, 2000) as 
reported in Ross et al. (2005) 

Macaca fascicularis 4.42** 12.18**  Terhune et al. (2015) 
Macaca 5.07 12.26 - Vinyard and Taylor (2010) 
Pan paniscus 12.79 - - Taylor and Vinyard (2013) 
Pan troglodytes 16.78 19.95 - Taylor and Vinyard (2013) 
Papiob anubis 23.87 21.91 - Vinyard and Taylor (2010) 
Perodicticus potto 0.81 1.52* 0.71 Perry et al. (2011) 
Pongo 14.88 - - Taylor and Vinyard (2013) 
Saimiri sciureus 0.8 2.41 - Taylor et al. (2015) 

*Sum of superficial and deep temporalis. 

**Average of reported male and female PCSA. 
 

 

PCSA of the entire muscle. It is known, however, that anterior temporalis muscle fibers 

contribute to jaw adduction, while posterior muscle fibers act in jaw retraction (e.g., 

Hylander et al. 2005). The only available data on the PCSA of the anterior temporalis 

suggest that it is smaller than the PCSA of the masseter, at least in one species of 

macaque (M. fuscata, Anton 1993). It is unknown whether this is the case in other 

macaques or other species of primates, but if true, then the masseter would influence the 

position of the resultant most strongly. A further complication is that all available data 

are for adult specimens. Cachel's (1984) report that the masticatory muscles grow 

isometrically was based on very small sample sizes (often one specimen per species) and 

on an interspecific scale. Richer intraspecific ontogenetic data are necessary to confirm 
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this assertion, but given the shape changes in the bony masticatory apparatus that occur 

during growth (e.g., Krogman 1931a, b; Corner and Richtsmeier 1991, 1992, 1993; 

Richtsmeier et al. 1993; Cobb and O’Higgins 2004; Strand Vioarsdóttir and Cobb 2004; 

Ackermann 2005; Hens 2005; Leigh 2006a; Martinez-Maza, Rosas, and Nieto-Díaz 

2013; Singleton 2015), isometric growth seems unlikely.   

A further caveat is that PCSA data only provide information on maximum 

muscular effort and do not speak to how many motor units (i.e., collections of muscle 

fibers innervated by one motor neuron’s axonal terminals) are recruited (i.e., how much 

of the muscle is used) during submaximal biting (Spencer 1998), or the timing of muscle 

activation (i.e., whether all adductors are active at the same time). The CLM predicts that 

the resultant moves mediolaterally to accommodate a shifting size of the triangle of 

support as the bite point changes. Because the model assumes maximum bite force, the 

resultant is static in the anteroposterior direction. The resultant is not static in the 

anteroposterior direction during submaximum bite force production, although single 

muscles can produce forces of variable position through heterogeneous activity (Herring, 

Grimm, and Grimm 1979; Tonndorf, Sasaki, and Hannam 1989; Blanksma and van 

Eijden 1990; Blanksma, van Eijden, and Weijs 1992) and many combinations of muscle 

activity are adequate for the generation of a bite force with a given magnitude (Koolstra 

et al. 1988; van Eijden et al. 1988, 1990, 1991). The anteroposterior position of the 

resultant can therefore change if only some of the adductors are recruited to produce bite 

force or if some muscles are recruited to a greater degree than others (Spencer 1999). 

 The second method of calculating resultant position was aimed at capturing 

variation in resultant position by determining the most anterior possible position of the 
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resultant (i.e., the position of the most anterior MLA), which would only occur if the 

muscle with the MLA that crosses the triangle of support at the most anterior position is 

the only muscle active during biting. This is a “worst-case scenario” in terms of the most 

anterior possible migration of the resultant. The results of this method indicate that earlier 

in ontogeny (during dp4 and M1 emergence), molars emerge anterior to even the most 

anterior MLA. Later in ontogeny and in adulthood, however, the most anterior MLA is 

positioned anterior to the last molar in some species, especially in gorillas, humans, and 

orangutans as well as some platyrrhines and strepsirrhines.  

 The finding that in the adults of some species the last molar is not positioned 

anterior to the most anterior MLA differs from the results of Spencer (1995, 1999), who 

showed that the last molar is positioned anterior to even the most anterior MLA. As 

discussed above, however, Spencer calculated the point at which the MLAs crossed the 

occlusal plane rather than where they crossed the triangle of support, potentially 

underestimating the distance between the MLA and the last molar. If the TMJs are 

situated near the occlusal plane, then the angle between the triangle of support and the 

occlusal plane is close to zero. As the height of the TMS above the occlusal plane 

increases, so should the angle between the triangle and the plane, all other things being 

equal. Conversely, as the distance from the last molar to the TMJ along the occlusal plane 

increases, the angle between the plane and the triangle of support should decrease. Unlike 

previous research, which showed that the distance between the TMJ and the last molar 

does not change throughout most of ontogeny (Spencer and Schwartz 2008; Schwartz 

2012; Singleton 2015), the results of this study indicate that this distance increases 

significantly thorough all of ontogeny in most taxa (Table 4). Similarly, in most of the 
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sample used in this study, the angle between the triangle of support and the occlusal plane 

also increases during ontogeny, with the smallest angles appearing in the youngest molar 

emergence category (dp4 emerged) and the greatest angles in the oldest emergence 

category (M3 emerged) (Table 8). Because in most primate species included in this study 

the distance between the TMJ and the last molar increases during ontogeny, the growth in 

height of the TMJ above the occlusal plane must occur at a faster rate than the increase in 

length between the TMJ and the last molar in order for the angle between the triangle of 

support and the occlusal plane to increase during ontogeny. The exception to this occurs 

in all of the strepsirrhine species, which exhibit the highest angles between the triangle of 

support and the occlusal plane early in ontogeny followed by a decrease in this angle 

throughout growth (Table 8). In these taxa, the distance between the TMJ and the last 

molar does not increase throughout growth or does so only very slightly (Table 4). The 

height of the TMJ above the occlusal plane must also not increase throughout growth in 

these taxa in order for the angle between the TMJ and the triangle of support to remain 

constant with age.  

The species that did not possess posterior-most molars that are significantly 

anterior to the most anterior MLA as adults (i.e., those that did not follow the expected 

pattern) are: A. palliata, C. apella, G. beringei, G. gorilla, H. sapiens, P. potto, and P. 

pygmaeus. With the exception of P. potto, these are also the species with some of the 

most obtuse angles between the occlusal plane and the triangle of support as adults (Table 

8). This supports the idea that the difference between the results of this study and 

previously reported results (Spencer 1995, 1999; Perry, Hartstone-Rose, and Logan 2011; 

Lucas 2012) is due to the fact that previous studies measured the point at which the 
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resultant crossed the occlusal plane and not the triangle of support.  

 

Table 8. Average angle (degrees) between the occlusal plane and the triangle plane for all 
molar emergence categories and species examined. 

	 dp4 emerged M1 emerged M2 emerged M3 emerged 
Taxon Mean SD Mean SD Mean SD Mean SD 
Platyrrhini         
Alouatta palliata 20.14 4.01 29.59 3.52 28.76 6.91 39.99 3.85 
Ateles geoffroyi 6.40 5.83 6.80 3.29 8.04 4.45 19.59 3.20 
Cebus apella 20.19 5.18 15.52 6.08 18.36 6.35 23.09 8.97 
Saimiri sciureus 22.82 6.15 14.36 3.84 9.14 8.07 19.20 3.71 
Cercopithecidae         
Colobus 
angolensis 5.62 4.47 12.24 4.15 13.86 5.33 21.55 4.25 

Colobus 
polykomos 12.72 4.65 15.88 3.26 21.91 2.99 23.56 2.67 

Procolobus verus - - 12.96 3.94 19.75 6.67 19.49 3.03 
Macaca 
fascicularis 14.00 4.18 13.79 3.23 20.90 3.84 22.05 4.55 

Macaca mulatta 18.05 4.58 19.61 2.87 25.04 4.80 27.73 3.69 
Papio anubis 11.68 3.14 14.65 5.27 14.51 5.27 17.47 4.62 
Papio 
cynocephalus 11.97 5.01 14.30 3.72 19.18 4.53 21.47 4.03 

Hominidae         
Gorilla beringei 29.13 7.04 36.04 4.65 48.61 12.55 47.89 5.86 
Gorilla gorilla 29.38 5.85 35.83 4.89 39.27 3.23 47.57 3.63 
Homo sapiens 15.59 5.73 21.84 6.69 32.58 4.79 35.80 5.60 
Pan paniscus 15.66 4.50 23.11 3.71 28.43 4.58 31.49 6.54 
Pan troglodytes 14.40 4.20 23.19 6.86 31.44 4.38 35.13 4.47 
Pongo pygmaeus 23.50 5.84 29.05 5.12 41.11 6.06 41.07 3.24 
Strepsirrhini         
Eulemur mongoz - - 3.40 3.50 - - 8.14 4.63 
Lemur catta 21.89 3.34 - - 3.19 1.38 4.35 3.15 
Otolemur 
monteiri 14.01 4.08 5.88 2.55 - - 5.76 3.98 

Perodicticus potto 14.69 15.86 7.44 4.12 3.74 2.06 5.72 3.27 
 

 

The fact that many adult specimens possess MLAs that cross the triangle of 

support anterior to the last molar has implications for understanding their masticatory 

systems. In these individuals, if bite force is produced using solely the most anterior 

MLA then distractive forces will be produced at the TMJ. It is possible that bite forces 

produced using only one adductor muscle are not high enough to cause damage to the 
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joint over time. It is also possible that this situation never occurs and that these 

individuals do not produce bite forces using only one muscle. To this end, data on muscle 

activation patterns are necessary to determine which muscles are used when biting on the 

most posterior molar. Electromyography (EMG) has been used on humans and a handful 

of nonhuman primates to show that jaw-muscle activity changes with the location of the 

bite point (Manns, Miralles, and Palazzi 1979; Pruim, de Jongh, and ten Bosch 1980; 

Hylander and Johnson 1985; Spencer 1998), but a systematic, ontogenetic, and cross-

taxonomic evaluation of muscle activation patterns is necessary to understand how it 

influences the position of the resultant, at various bite points, both throughout ontogeny 

and in adulthood. In at least some of these species that are exceptions (H. sapiens and C. 

apella) the M3s are reduced in size and may not function in mastication. Therefore it may 

not matter that their molars are not positioned anterior to the resultant. Furthermore, the 

species that exhibit exceptions to the model may be employing behavioral modifications 

when feeding, such as preparing large of mechanically challenging foods pre-orally and 

only biting with their molars once food has been reduced. For example, capuchin 

monkeys are known to crack nuts with stones prior to ingestion (Boinski, Quatrone, 

Swartz 2001) and humans cook food in order to aid in its breakdown prior to mastication 

(Zink and Lieberman 2016).  

Some of the greatest variability in Resultant-Molar was exhibited by the hominids 

as well as the papionins. Because Resultant-Molar is an absolute value, this increased 

variability may be due to the absolutely larger size of these taxa. It may also be related to 

the degree of sexual dimorphism in these species. For example, gorillas, orangutans, and 

papionins exhibit the largest variation in Resultant-Molar and also a large amount of 
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sexual dimorphism. This does not explain the reason for the variability observed within 

humans, however, and this issue should be explored in future research.   

The present study found support for the hypothesis that the location of molar 

emergence is constrained to avoid TMJ distraction throughout ontogeny, but only if 

certain assumptions are made regarding the contribution of muscles to bite force. It 

appears that earlier in ontogeny (prior to M2 eruption) the masticatory system is 

safeguarded from distractive forces more so than later in ontogeny and in adulthood. 

Future research must focus on determining how PCSA changes throughout ontogeny and 

on charting muscle activation patters when biting on the last molar throughout ontogeny. 

Such data will provide a more complete picture of how the masticatory system 

accommodates a growing dentition while maintaining function.
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CHAPTER 3 

FACTORS AFFECTING THE POSITION OF MOLAR EMERGENCE IN PRIMATES 
 

Abstract 

A model for understanding the position of molar emergence among primates is 

critical to the study of how variation in molar-emergence age evolves and, ultimately, to 

unraveling the link between molar emergence schedules and life history. A previous 

analysis identified substantial variation in the position of molar emergence relative to the 

adductor muscle resultant. This chapter tested whether this variation is related to the size 

of the buffer zone, a safety factor that creates greater stability at the temporomandibular 

joints during biting. Specifically, this chapter investigated four factors that may 

contribute to ontogenetic and interspecific variation in the distance between the muscle 

resultant’s intersection with the triangle of support and the position of molar emergence 

(i.e., the anterior section of the buffer zone): food mechanical properties, skull size, jaw 

gape, and the length of the next erupting molar. 3D coordinate data were collected from 

cross-sectional ontogenetic samples of primate skulls (n = 21 species; 1,258 specimens). 

These data were used to determine skull geometric mean and projected jaw gape. In 

addition, data on canine overlap and mesiodistal length of each molar were collected on 

the same specimens. General Linear Models (GMLs) were used to investigate 

ontogenetic variation in the distance from the distal-most molar to the resultant for each 

species and Phylogenetic Generalized Least-Squares (PGLS) models were used to 

investigate interspecific variation in the distance from that molar to the resultant. GLM 

and PGLS results indicate that more resistant foods, larger skulls, longer molars, and 
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longer jaws produce a larger buffer zone, but greater canine overlap produces a smaller 

buffer zone. These factors account for a large portion of both ontogenetic and 

interspecific variation in the distance between the distal-most molar and the resultant and 

reinforce the notion that the buffer zone is part of an important mechanism acting to 

modulate the position of molar emergence across primates.  

 

Introduction 

Reconstructing the timing of molar emergence is a powerful tool for probing life 

history in the fossil record. The predictive power of molar-emergence ages is based on its 

strong correlation with a suite of life-history variables. The underlying process that leads 

to varying molar-emergence ages in primates remains elusive, however. One avenue for 

understanding the mechanism that produces variation in molar-emergence age is 

investigating the biomechanical constraints on the position of molar emergence. Research 

on the ontogeny of the masticatory system identified that the distance between the 

temporomandibular joint (TMJ) and the last molar to have emerged remains similar in 

humans and chimpanzees throughout ontogeny (Spencer and Schwartz 2008; Schwartz 

2012), and increases only late in ontogeny in some papionins (Singleton 2015), 

suggesting that molars emerge at a constant position relative to the TMJ throughout 

growth. A more detailed analysis of the biomechanical constraints on the position of 

molar emergence revealed that (1) molars emerge significantly anterior to the adductor 

muscle resultant throughout all or most of ontogeny, depending on the method used to 

determine the position of the resultant, and that (2) the distance between the last molar 

and the resultant decreases throughout ontogeny in most taxa (Chapter 2).  



  73 

The analysis in Chapter 2 was based on the Constrained Lever Model (CLM), a 

biomechanical model developed to understand variation in masticatory system 

morphology and  the relative position of different tooth types (Greaves 1978, 1982, 

1983). The CLM, as described by Greaves (1978, 1982, 1983, 1988), predicts that the 

posterior-most molar lies immediately anterior to the jaw adductor muscle resultant. 

Subsequent to the work of Greaves, several studies on adult primates found that the last 

molar’s position is more anterior than predicted by the CLM ( Spencer 1999; Perry, 

Hartstone-Rose, and Logan 2011; Lucas 2012), a finding consistent with the results 

reported in Chapter 2 of this dissertation. Analyses of masticatory configuration in adult 

and subadult primates have indicated that substantial interspecific variation exists in the 

distance from the muscle resultant to the last molar (Spencer 1999; Chapter 2). Similarly, 

variation exists intraspecifically among molar emergence categories, particularly between 

individuals with emerged M2s and adults, on the one hand, and individuals at all earlier 

molar emergence categories (Chapter 2), on the other. The aim of this dissertation chapter 

is to determine what factor(s) contribute to this intra- and interspecific variation.  

As described in Chapter 1, the triangle of support, bounded by the bite point and 

the working- and balancing-side temporomandibular joints (TMJs), must contain the 

muscle resultant in order to avoid distractive forces at the working-side TMJ (Greaves 

1978, 1982, 1983, 1988). Spencer (1999) hypothesised that if the resultant moved freely 

within the triangle of support during the dynamic chewing process, then it would often 

come close to, or potentially drop outside of, its boundary. During force production, the 

resultant should therefore avoid the edges of the triangle of support (Spencer 1999). A 

buffer zone, first proposed by Greaves (1978), but refined by Spencer (1999), is 



  74 

hypothesized to exists along the edges of the triangle where the resultant can migrate 

during submaximum force production (Fig. 15). The resultant should stay within the 

inner portion of the triangle of support, which Spencer (1999) termed the sweet spot (Fig. 

15), during maximum force production because the resultant’s position within the sweet 

spot produces the most stable loading scenario by avoiding the edges of the triangle of 

support.  

 

 
Figure 15. Occlusal view of the mandible showing the triangle of support with the buffer 
zone and the sweet spot, as described by Spencer (1999). The distance between the last 
molar (red diamond) and the muscle resultant (red square) represents the theoretical 
anterior portion of the buffer zone. See text for details.  
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In the CLM, the resultant’s position is calculated based on the assumption of the 

simple loading condition of static isometric biting near centric occlusion. Further, the 

CLM assumes an anteroposteriorly fixed muscle resultant position based on maximum 

magnitude force vectors of each adductor muscle (i.e., maximum force production). 

During submaximum force production, however, the position of the muscle resultant can 

shift both anteriorly and posteriorly, depending on the relative contribution of each 

adductor muscle. Single muscles can produce forces of variable position (i.e., force 

vectors that vary in orientation and magnitude) through heterogeneous activity (Herring, 

Grimm, and Grimm 1979; Tonndorf, Sasaki, and Hannam 1989; Blanksma and van 

Eijden 1990; Blanksma, van Eijden, and Weijs 1992) and many combinations of muscle 

activity are adequate for the generation of a bite force with a given magnitude (Koolstra 

et al. 1988; van Eijden et al. 1988, 1990, 1991). Spencer (1999) noted that the resultant’s 

position must change during different types of loading scenarios and thus masticatory 

systems should be configured to avoid distractive joint forces during behaviors other than 

isometric maximum bite force production. He proposed that selection may act to prevent 

TMJ distraction during both maximal and submaximal biting, creating a buffer zone for 

movement of the muscle resultant during submaximum force production. While the 

resultant should stay within the sweet spot during maximum bite force production, it can 

migrate into the buffer zone during periods of submaximum force production. The 

distance between the last molar and the muscle resultant represents the theoretical 

anterior portion of the buffer zone (Fig. 15). The purpose of this chapter is to determine 

what contributes to both intra- and interspecific variation in the distance between the last 

molar and the resultant (i.e., the anterior portion of the buffer zone).  
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Hypothesis and Predictions 

This research tests the hypothesis that the location of molar emergence is 

constrained to avoid TMJ distraction throughout ontogeny by determining if the location 

of emergence is influenced by factors related to the size of the buffer zone. Specifically, 

this chapter investigates four factors that may contribute to intra- and inter-specific 

variation in the distance between the muscle resultant’s intersection with the triangle of 

support and the position of molar emergence: food mechanical properties, skull size, jaw 

gape, and the length of the next erupting molar.  

Calculations based on the CLM of muscle force vector (and thus muscle resultant) 

position are performed with the mandible in a fully adducted position. Biting at more 

posterior points, especially on large items, prevents full adduction, however. In this case, 

the muscle force vectors intersect the triangle of support at different points than when the 

mandible is adducted and this can change the position at which the resultant intersects the 

triangle of support. With the mandible in abduction, the muscle line of action (MLA) of 

the anterior temporalis intersects the triangle of support at a more anterior location while 

the MLAs of the masseter and medial pterygoid muscles intersect the triangle of support 

at more posterior locations (Fig 16; Spencer 1999). Based on this observation, it has been 

proposed that selection may act to avoid TMJ distraction while biting on posterior bite 

points with large gapes (Spencer 1999; Perry, Hartstone-Rose, and Logan 2011). 

Therefore, species and individuals that possess larger gapes should have larger distances 

between the last molar and the resultant (i.e., larger buffer zones).  
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Figure 16. Effects on abducting the mandible on the position at which muscle lines of 
action cross the triangle of support. When the mandible is adducted (left) the anterior 
temporalis line of action crosses the triangle of support at a more posterior point than 
when the mandible is abducted (right). Conversely, the masseter line of action crosses the 
triangle of support at a more anterior point when the mandible is adducted (left) than 
when it is abducted (right). 	

 

Hard and tough foods require high-magnitude bite forces (Lucas 2004) and bite 

force magnitudes typically increase with decreasing distance to the muscle resultant 

(Spencer and Demes 1993; Lucas 2012). Food mechanical properties may, therefore, be 

related to the position of molar emergence relative to the resultant such that primates that 

feed on more mechanically challenging foods may possess shorter distances between the 

last molar and the resultant.  

Overall skull size may explain variation in the distance between the last molar and 

the resultant. This distance may be longer in large individuals and shorter in small 

individuals simply as a function of variation in overall skull size.  

The length of an erupting molar may also be an important factor in determining 

the distance between the last molar and the resultant. Molars vary in mesiodistal length 
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both intraspecifically (e.g., variation along the tooth row and among individuals) as well 

as among species. In papionins, for example, the M3 is the longest tooth, mesiodistally, 

while in humans the M3 tends to be the shortest of the three molars (Swindler 2002). 

Variation in length along the molar row is produced by varying activator-inhibitor signals 

during tooth formation (Kavanagh, Evans, and Jernvall 2007; Evans et al. 2016), while 

interspecific variation in molar length is related to overall size and diet (e.g., Kay 1975; 

Strait 1993; Lucas 2004). Individuals with mesiodistally longer molars may require more 

room to be available, anterior to the muscle resultant, before such a longer molar can 

emerge. These individuals may therefore possess longer distances between the resultant 

and the last molar. In other words, there should be a positive relationship between the 

distance between the resultant and the last molar and the mesiodistal length of the next 

molar to emerge.  

 

Material and Methods 

Data Collection 

This research investigated four factors that may contribute to interspecific 

variation in the distance between the muscle resultant’s intersection with the triangle of 

support and the position of molar emergence: jaw gape, food mechanical properties, skull 

size, and the mesiodistal length of the next molar to emerge. The landmark data 

collection methods and sample composition follow those described in Chapter 2. In 

addition to the landmark data collected to for the analysis in Chapter 2 (landmarks listed 

in Table 1: Chapter 2), several additional landmarks and data types were collected for the 

purpose of this study. Landmarks were collected to establish cranial breadth and length, 
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and facial breadth, height, and length (Table 9; Fig 17). These measurements were used 

to calculate skull geometric mean (GM) of each skull using the formula:  

Equation 21: Ä2yzz	B} =

ÅE{|3{z	ÇEw{LHℎ + ÅE{|3{z	zw|ÑHℎ + A{Ö3{z	ÇEw{LHℎ + A{Ö3{z	ℎw3ÑℎH + A{Ö3{z	zw|ÑHℎÜ  

 

 
Figure 17. Measurements taken to calculate skull geometric mean.	

 
 
 
 
Table 9. List of measurements taken on skulls to determine skull geometric mean. 

Name of measurement Description of measurement 
Cranial breadth Left porion – right porion 
Cranial length Lambda – glabella 

Facial breadth Left inferior aspect of zygomaticotemporal suture – right inferior 
aspect of zygomaticotemporal suture 

Facial height Intersection of intermaxillary and maxillopalatine sutures – glabella 
Facial length Intersection of intermaxillary and maxillopalatine sutures – alveolare 
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 Hylander (2013) showed that jaw length, projected onto the mid-sagittal plane 

(which he called projected jaw length, a name that is also used here), and canine overlap 

together are excellent predictors of maximum jaw gape in anthropoid primates. These 

two variables were measured in the skeletal sample and used as a proxy for jaw gape. 

Projected jaw length was measured by determining the Euclidean distance between the 

center of the articular eminence and infradentale (i.e., a point between the two central 

mandibular incisors) along alveolar bone (the distance is jaw length in Fig. 18). Secondly, 

the Euclidean distance between landmarks at the centers of the right and left articular 

eminences was measured (bicondylar breadth in Fig. 18). Finally, jaw length and half of 

bicondylar breadth made up two sides of a right triangle (Fig. 18), projected jaw length 

was therefore determined using the equation:  

Equation 22: !E~5wÖHwL	5{á	zw|ÑHℎ = 	 à{á	zw|ÑHℎp − (â
p
,3Ö~|L'z{E	ÇEw{LHℎ)p 

Canine overlap was measured directly from specimens using sliding calipers (Fig. 

18). As described in Hylander (2013, 2017), the mandibular and maxillary dentition was 

placed in full occlusion and the calipers were positioned at the tips of the maxillary and 

mandibular canine. This distance was measured while the calipers were held parallel to 

the occlusal plane. Canine overlap was only measured in anthropoid primates. When 

canines are in full occlusion in strepsirrhine primates, the tip of the mandibular canine 

sits posterior to the maxillary canine and is obscured by the maxillary alveolar bone so a 

tip-to-tip measurement is impossible to take using sliding calipers.  
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Figure 18. Measurements taken to calculate the variables projected jaw length and canine 
overlap. Jaw length is the Euclidean distance between the landmarks on the articular 
eminence (here shown on the mandibular condyle on the left and in lateral view on the 
right) and the point between the mandibular incisors (both landmarks marked by red 
circles). Bicondylar breadth is the distance between the left and right articular eminence 
(here also shown on the mandibular condyles). Jaw length is the hypotenuse of a right 
triangle with ½ bicondylar breadth and projected jaw length as the other sides. Canine 
overlap (right) was measured as the distance between the tips of the maxillary and 
mandibular canine when the teeth are in occlusion. The dashed lines indicate the position 
of the calipers, which were held parallel to the occlusal plane.  

 

The mesiodistal length of all erupted mandibular M1s, M2s, and M3s were 

measured using sliding calipers. These data were used to determine the average 

mesiodistal length of each molar position in each species, a variable called length of next 

molar in this analysis. For the ontogenetic category where dp4 had emerged, the length of 

next molar was therefore the mean M1 mesiodistal length, and so forth. The “M3-

emerged” category did not have a length of next molar associated with it because M3s are 

typically the last molars to erupt.   
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Data on food mechanical properties were collected from the literature. Toughness, 

R (in J m-2), is the energy required to extend a unit area of a crack (Vincent 1992; Lucas 

et al. 2000). Young’s modulus, E (in MPa), is the ratio of stress to strain throughout 

elastic deformation and defines an object’s ability to resist elastic deformation ( Gordon 

1978; Williams et al. 2005). Traditionally, in the absence of toughness and Young’s 

modulus data, dietary categories (e.g., folivore, frugivore) and dietary composition (e.g., 

bark, leaves, fruit) are used as proxies of a species’ dietary mechanical properties based 

on assumptions that leaves are tough and fruit is low in Young’s modulus. Folivorous 

primates are therefore thought to have tough diets and frugivorous primates are thought 

to have diets that are not mechanically resistant (i.e., low in toughness and Young’s 

modulus) (e.g., Ravosa 1996; Taylor 2006). A recent comparative study on the 

mechanical properties of primate diets indicates that such traditional dietary categories do 

not map onto the toughness and Young’s modulus of primate foods (Coiner-Collier et al. 

2016).  These dietary categories fail to represent the variation in mechanical properties 

that exists within and between food items. Data on food mechanical properties are not 

available for all of the species included in this study. Despite this, and based on the 

results of the Coiner-Collier et al. (2016) study, it was important to use actual mechanical 

properties data to characterize the forces that primates produce when chewing food, 

rather than using dietary categories. The mechanical properties data used in this study are 

presented in Table 10. The variables collected, MeanR and MeanE, represent the average 

toughness and Young’s modulus of the foods that these primates consume, respectively. 

Additionally, MaxR represents the toughest food in each species’ diet. The majority of 

Pongo pygmaeus specimens included in this study are from the National Museum of 
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Natural History. The collection records of this institution list Borneo as the most common 

collection locality. Toughness and Young’s modulus data are available for two 

subspecies of Pongo pygmaeus, P. p. wurmbii and P. p. morio. It is not possible to 

determine which subspecies is represented in the skeletal collection used in this study; the 

mechanical properties data were therefore averaged for the two subspecies.  

 

Table 10. List of food mechanical properties from the literature used in this analysis. 
Species MeanR MaxR MeanE Source  
Alouatta palliata 529.20 1419.48 - Coiner-Collier et al. (2016) 
Cebus apella 666.47 2308.60 91.87 Coiner-Collier et al. (2016) 
Colobus angolensis 183.40 388.50 - Dunham et al. (2016) 
Gorilla beringei 1018.81 2869.07 - Coiner-Collier et al. (2016) 
Lemur catta 466.54 3148.42 681.03 Coiner-Collier et al. (2016) 
Pan troglodytes 505.83 4223.00 1.03 Coiner-Collier et al. (2016) 
Pongo pygmaeus 1108.2* 5418.20* 7.77** Coiner-Collier et al. (2016) 

*Average of P. p. morio and P. p. wurmbii data 

**Data for P. p. wurmbii 

 

Two variables that were measured in Chapter 2 were also used in this study. Two 

methods were used to determine the position at which the muscle resultant crosses the 

triangle of support, which was then projected onto the occlusal plane and the distance 

between this point and the last molar measured. The first method involved averaging the 

positions of the three adductor MLAs. The resulting distance is called ResultantMean-

Molar. The second method used the most anterior MLA to represent the position of the 

resultant. The variable produced by this method is called ResultantMax-Molar (see 

Chapter 2 for details). 
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Analytical Methods 

The analyses in this study are divided into two portions. The first set of analyses 

was aimed at determining the factors that contribute to ontogenetically-based 

intraspecific variation in the distance between the last molar and the resultant. The 

second set of analyses was used to determine the factors that contribute to interspecific 

variation in the distance between the last molar and the resultant. 

 

Intraspecific Analyses 

First, to determine what factors contribute to intraspecific variation in the distance 

between the last molar and the resultant, general linear models (GLMs) were used with 

the distance between the last molar and the resultant as the response variable (both 

ResultantMean-Molar and ResultantMax-Molar, together referred as Resultant-Molar, were 

used as response variables in separate analyses) and molar emergence category, projected 

jaw length, canine overlap, and skull GM as predictor variables. Interaction terms were 

included among all predictor variables. If interactions were not significant, they were 

removed from the model. These analyses were performed on individual data and separate 

models were run for each species. The length of the next molar to emerge (i.e., the 

variable length of next molar) was not included in these models because these data are 

not available for each individual specimen (i.e., without possessing microCT scans of 

each specimen, the size of the forming molar in its crypt cannot be measured). Akaike’s 

Information Criterion, with a correction for small sample size (AICc), was used to 

determine the best-fit model(s) and predictor variables(s) that explain intraspecific 

variation in Resultant-Molar. Models were selected based on their delta (Δ) AICc score, 
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which indicates the difference in AICc between the best model (i.e., the one with the 

lowest AICc) and other models. In addition to the model with the lowest AICc score, any 

models with delta AICc scores that were equal to or less than two (Δ AICc	≤ 2) were also 

reported, as these are generally considered equally good as the model with the lowest 

AICc score (Burnham and Anderson 2002).  

 

Interspecific Analyses 

To determine what factors contribute to interspecific variation in the length of the 

distance between the last molar and the resultant (i.e., Resultant-Molar), Phylogenetic 

Generalized Least-Squares (PGLS) models were used, with Resultant-Molar as a 

continuous response variable, projected jaw length, canine overlap, skull GM, and length 

of next molar as continuous predictor variables. Interaction terms among the predictor 

variables were included in the model and removed if they were not significant. Separate 

models were performed for the response variables ResultantMean-Molar and ResultantMax-

Molar. A Type 1 model (i.e., least-squares) was used rather than a Type II model (e.g., 

reduced major axis) because the hypothesized relationships between Resultant-Molar and 

the predictor variables are causal (e.g., a larger projected jaw length and  skull GM are 

expected to result in a longer Resultant-Molar distance) and therefore asymmetric, 

making Type I regression the appropriate method (Smith 2009). PGLS was used to 

determine which, if any, of these dependent variables explain a significant amount of 

interspecific variation in Resultant-Molar, while accounting for the influence of shared 

ancestry. The PGLS approach was taken here to remove potential statistical non-

independence among the observations due to shared ancestry (Grafen 1989; Garland, 
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Theodore and Ives 2000; Freckleton, Harvey, and Pagel 2002; Nunn 2011). A maximum 

likelihood (ML) Pagel’s l (Pagel 1999; Freckleton, Harvey, and Pagel 2002) was 

estimated with the PGLS model, and was used to transform the variance-covariance 

matrix of the data and phylogentic tree according to the degree of phylogenetic signal. 

The power of using PGLS rather than Ordinary Least-Squares (OLS) regression is that in 

the former, the regression model is scaled according to how much phylogentic signal is 

present in the error of the model (Revell 2010). If the ML l value is determined to be 

zero, for example, PGLS regression becomes statistically identical to OLS regression 

because the covariation due to shared ancestry is scaled by zero, fully removing its 

influence on the model. PGLS can therefore be used for all regression, because the degree 

to which phylogeny influences the data is accounted for. A phylogenetic tree for the 

analysis was downloaded from 10K Trees (Arnold, Matthews, and Nunn  2010). Separate 

analyses were performed on each molar emergence category. Analyses were performed 

on species means of all variables. Means included both males and females. 

As in the intraspecific analyses, AICc was used to determine the best-fit model(s) 

and predictor variables(s) that explain interspecific variation in Resultant-Molar 

(Burnham and Anderson 2002). Models were selected based on their Δ AICc	score, 

which represent the difference in AICc between the best model (i.e., the one with the 

lowest AICc) and each model. Models with Δ AICc	≤ 2 are considered equally good as 

the model with the lowest AICc score (Burnham and Anderson 2002).  

A second set of the same interspecific analyses as above were performed on a 

subset of species. These included the seven species for which data on dietary toughness 

are available in the literature (Table 10). Data on dietary stiffness are only available for 
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four species included in this study, a sample size too small to be used in statistical 

analyses. Analyses with dietary stiffness as a response variable were therefore not 

performed, but data on dietary stiffness are reported for the four species (Table 10). 

Using data on the seven species for which dietary toughness data are available, PGLS 

models were evaluated with Resultant-Molar as the response variable and mean 

toughness (MeanR), max toughness (MaxR), projected jaw length, canine overlap, and 

skull GM as predictor variables. As above, separate models were performed for the 

response variables ResultantMean-Molar and ResultantMax-Molar. Also, because the 

number of predictors was high and the number of species was low, separate models were 

performed with MeanR and MaxR as predictors. The majority of mechanical properties 

data reported in the literature are for adult diets and it is currently unknown for most 

species whether juvenile diets are mechanically similar to adult diets (but see 

Venkataraman et al. 2014; Chalk et al. 2016; Chalk-Wilayto et al. 2016 for mechanical 

properties data for juvenile primates). Therefore, for the purposes of this study, toughness 

data from the literature was used for adult specimens only (i.e., the M3 emerged 

category) and no analyses were performed with sub-adult skeletal data.  

 

Results 

Summary data for all measurements can be found in SM 3.  
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Intraspecific Models 

Results listing intraspecific GLMs using ResultantMean-Molar as the response 

variable are presented in Table 11 and those using ResultantMax-Molar as the response 

variable are presented in Table 12. These tables list all models with a ΔAICc	≤ 2.  

With ResultantMean-Molar as the response variable, all models, except for one 

Lemur catta model, were significant. There are taxonomic differences in how well the 

models explain variation in the distance between the last molar and the resultant. Among 

platyrrhines, the adjusted R2 values ranged between 0.52 and 0.96 (Table 11). Similarly, 

among catarrhines, the adjusted R2 values ranged between 0.81 and 0.92 (Table 11). The 

adjusted R2 values were much lower among strepsirrhine models, where they ranged 

between 0.09 and 0.31.  

With ResultantMax-Molar as the response variable, all platyrrhine and catarrhine 

models were significant. Five out of the 10 strepsirrhine models were not significant, 

however. As above, there were taxonomic differences in how well the models explain 

variation in ResultantMax-Molar. Among platyrrhines, the adjusted R2 values ranged 

between 0.33 and 0.97 (Table 12) while among catarrhines, the adjusted R2 values ranged 

between 0.69 and 0.97 (Table 12). As in the above set of analyses, the adjusted R2 values 

for the significant strepsirrhine models were much lower, ranging from 0.11 and 0.29.  

Overall, all predictor variables were included in at least some models. Projected 

jaw length was the most frequently included variable, included in 29 out of 34 models 

where ResultantMean-Molar was the response variable (Table 11) and in 30 out of 36 

models where ResultantMax-Molar was the response variable (Table 12). The slope for 

projected jaw length was almost always positive indicating a positive relationship with  
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Table 11. Results of intraspecific GLMs using ResultantMean-Molar as the response 
variable. 

Taxon 
Molar 

emergence 
category 

Projected 
jaw 

length 

Canine 
overlap 

Skull 
GM AICc Δ 

AICc 

Model 
Adj. 
R2 

p-
value 

Platyrrhini         
Alouatta palliata + 0.4 -0.2  117.1 0.00 0.96 *** 
Ateles geoffroyi + 0.3  0.6 185.1 0.00 0.87 *** 
Cebus apella  0.1 0.6 0.2 293.2 0.00 0.52 *** 
Saimiri sciureus model 1 + 0.3 -0.1  141.2 0.00 0.56 *** 
Saimiri sciureus model 2 +  0.1  141.6 0.44 0.53 *** 
Saimiri sciureus model 3 + 0.3   142.3 1.11 0.55 *** 
Saimiri sciureus model 4 +  0.0 0.3 142.4 1.18 0.54 *** 
Saimiri sciureus model 5 +   0.3 143.0 1.75 0.54 *** 
         
Cercopithecidae         
Colobus angolensis  0.3 0.0  168.2 0.00 0.87 *** 
Colobus polykomos model 1 0.3 0.0  111.2 0.00 0.90 *** 
Colobus polykomos model 2 0.2 -0.1 0.2 112.4 1.26 0.90 *** 
Procolobus verus model 1 0.3 0.0  80.9 0.00 0.81 *** 
Procolobus verus model 2 + 0.3 0.0  82.6 1.77 0.82 *** 
Macaca fascicularis model 1 0.3 -0.1  120.9 0.00 0.89 *** 
Macaca fascicularis model 2 + 0.3 -0.1  122.8 1.98 0.90 *** 
Macaca mulatta model 1 + 0.3 -0.1  420.7 0.00 0.89 *** 
Macaca mulatta model 2 + 0.3 -0.1 0.1 422.5 1.81 0.89 *** 
Papio anubis  0.2 -0.1  181.8 0.00 0.92 *** 
Papio cynocephalus model 1 0.2 -0.1  270.8 0.00 0.81 *** 
Papio cynocephalus model 2  -0.1 0.4 271.1 0.23 0.81 *** 
Papio cynocephalus model 3 0.1 -0.1 0.2 272.2 1.38 0.81 *** 
Papio cynocephalus model 4 + 0.2 -0.1  272.5 1.69 0.81 *** 

         
Hominidae         
Gorilla beringei  0.2 0.1  401.3 0.00 0.84 *** 
Gorilla gorilla  0.3 -0.1  229.2 0.00 0.82 *** 
Homo sapiens a + 0.8 -0.4 0.2 451.6 0.00 0.89 *** 
Pan paniscus  0.4 -0.2  182.0 0.00 0.88 *** 
Pan troglodytes  0.5 0.0 -0.3 483.6 0.00 0.82 *** 
Pongo pygmaeus model 1 + 0.6 0.0 -0.7 200.2 0.00 0.91 *** 
Pongo pygmaeus model 2 0.6 -0.2 -0.5 201.0 0.80 0.90 *** 

         
Strepsirrhini         
Lemur catta  -0.1   112.0 0.00 0.00 NS 
Eulemur mongoz  0.3   70.9 0.00 0.31 * 
Otolemur monteiri + 0.5   171.9 0.00 0.22 * 
Perodicticus potto model 1 +    184.0 0.00 0.20 * 
Perodicticus potto model 2 0.2   185.9 1.92 0.09 * 

+Categorical predictor variable (i.e., molar emergence category) included in the model 

* p≤0.05, ** p≤0.01, *** p≤0.001 

aModel includes interaction between molar emergence category and projected jaw length 
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Table 12. Results of intraspecific GLMs using ResultantMax-Molar as the response 
variable. 

Taxon 
Molar 

emergence 
category 

Projected 
jaw 

length 

Canine 
overlap 

Skull 
GM AICc Δ 

AICc 

Model 
Adj. 
R2 

p-
value 

Platyrrhini         
Alouatta palliata model 1 + 0.56 -0.11 0.30 150.4 0.00 0.97 *** 
Alouatta palliata model 2 + 0.67 -0.01  151.3 0.95 0.97 *** 
Ateles geoffroyi + 0.50  0.85 217.3 0.00 0.88 *** 
Cebus apella + 0.50  0.85 217.3 0.00 0.33 *** 
Saimiri sciureus model 1 + 0.48 -0.08  170.0 0.00 0.57 *** 
Saimiri sciureus model 2 +  0.14  171.7 1.76 0.53 *** 

         
Cercopithecidae         
Colobus angolensis a + -0.05 0.11  191.8 0.00 0.92 *** 
Colobus polykomos model 1  0.36 -0.04  131.0 0.00 0.93 *** 
Colobus polykomos model 2  0.24 -0.08 0.30 131.6 0.59 0.92 *** 
Procolobus verus + 0.52 -0.06  94.0 0.00 0.81 *** 
Macaca fascicularis model 1 + 0.37 -0.26  163.8 0.00 0.86 *** 
Macaca fascicularis model 2  0.36 -0.20  165.0 1.20 0.84 *** 
Macaca fascicularis model 3 + 0.27 -0.29 0.24 165.4 1.65 0.86 *** 
Macaca mulatta model 1 + 0.42 -0.12  590.5 0.00 0.78 *** 
Macaca mulatta model 2 + 0.34 -0.12 0.14 591.9 1.46 0.78 *** 
Papio anubis  0.31 -0.20  238.1 0.00 0.88 *** 
Papio cynocephalus b  0.50 -0.03 0.64 295.3 0.00 0.86 *** 

         
Hominidae         
Gorilla beringei  0.39 0.11  507.5 0.00 0.74 *** 
Gorilla gorilla  0.40 0.04  247.0 0.00 0.87 *** 
Homo sapiens model 1  0.36 -0.84 0.48 637.1 0.00 0.70 *** 
Homo sapiens model 2 +  -1.77 0.74 637.5 0.31 0.70 *** 
Homo sapiens model 3 + 0.23 -1.50 0.50 638.1 0.91 0.71 *** 
Homo sapiens model 4  0.67 -0.40  639.0 1.81 0.69 *** 
Pan paniscus  0.40 -0.28  194.1 0.00 0.87 *** 
Pan troglodytes  0.42 -0.04  492.6 0.00 0.87 *** 
Pongo pygmaeus   0.49 -0.34  175.9 0.00 0.97 *** 

         
Strepsirrhini         
Eulemur mongoz model 1  0.53   93.0 0.00 0.21 * 
Eulemur mongoz model 2 + 0.93   94.0 0.96 0.29 * 
Lemur catta model 1  -0.16   132.3 0.00 0.11 * 
Lemur catta model 2 +    133.3 0.95 0.14 NS 
Lemur catta model 3    -0.23 133.9 1.62 0.05 NS 
Otolemur monteiri model 1 + 0.90   219.8 0.00 0.18 * 
Otolemur monteiri model 2 +   1.66 220.4 0.59 0.17 * 
Otolemur monteiri model 3  0.22   221.7 1.94 0.06 NS 
Perodicticus potto model 1  0.56   278.9 0.00 0.06 NS 
Perodicticus potto model 2    0.95 279.0 0.14 0.06 NS 

+Categorical predictor variable (i.e., molar emergence category) included in the model 

* p≤0.05, ** p≤0.01, *** p≤0.001 

aModel includes interaction between molar emergence category and projected jaw length 

bModel includes interaction between skull GM and projected jaw length 
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both ResultantMean-Molar and ResultantMax-Molar. Similarly, canine overlap was 

frequently included as a predictor variable, appearing in 26 out of 34 models where 

ResultantMean-Molar was the response variable (Table 11) and in 24 out of 36 models 

overlap was almost always negative indicating a negative relationship with both 

ResultantMean-Molar and ResultantMax-Molar. Molar emergence category was included as 

a predictor in fewer models than the above two predictors; it was included in 16 out of 

the 34 models where ResultantMean-Molar was the response variable (Table 11) and in 18 

out of the 36 models where ResultantMax-Molar was the response variable (Table 12). 

Most of these were platyrrhine and macaque models. Similarly, skull GM was included in 

only 12 out of the 34 models where ResultantMean-Molar was the response variable (Table 

11) and in 13 out of the 36 models where ResultantMax-Molar was the response variable 

(Table 12). The slope for skull GM was almost always positive, with the exception of a 

few strepsirrhine and hominid models, indicating a positive relationship with both 

ResultantMean-Molar and ResultantMax-Molar. 

 

Interspecific Models 

Results listing interspecific PGLS models using ResultantMean-Molar as the 

response variable are presented in Table 13 and those using ResultantMax-Molar as the 

response variable are presented in Table 14. These tables list all models with a ΔAICc	≤ 

2.  

With ResultantMean-Molar as the response variable, all models were significant 

and explained a large amount of variation in the distance between the last molar and the 

resultant (R2 range: 0.79-0.95: Table 13). In the model looking at all species at the dp4-
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emerged category, skull GM was included as a predictor variable with a positive slope, 

whereas in the models looking at all species at the M1-emerged category, skull GM, and 

length of next molar were included as predictor variables with positive slopes and 

projected jaw length was included as a predictor variable with a negative slope. In the 

next molar emergence category (i.e., M2-emerged), all predictor variables were included 

in at least one of the best-fit models. Length of next molar and canine overlap had 

negative slopes while projected jaw length and skull GM had positive slopes. In the final 

M3-emerged category, only skull GM was included as a predictor variable and it had a 

positive slope (Table 13). 

 

 

Table 13. Results of interspecific PGLS models using ResultantMean-Molar as the 
response variable. 

Molar 
emergence 
category 

Length 
of next 
molar 

Projected 
jaw 

length 

Canine 
overlap 

Skull 
GM AICc Δ 

AICc 

Model 
Adj. 
R2 

p-
value 

ML 
lambda 

dp4 emergeda    0.03 -5.3 0.00 0.85 *** 0.00 
M1 emergeda,b 0.39   0.02 -14.9 0.00 0.93 *** 0.00 
M1 emergeda,b 0.56 -0.01  0.02 -13.8 1.13 0.94 *** 0.00 
M2 emerged  0.18 -1.07 0.28 83.8 0.00 0.95 *** 0.00 
M2 emerged   -0.62 0.47 84.5 0.66 0.94 *** 0.00 
M2 emerged  0.33 -1.12  85.1 1.34 0.80 *** 1.00 
M2 emerged -0.50 0.26 -0.97 0.24 85.5 1.72 0.95 *** 0.00 
M3 emerged NA   0.33 88.7 0.00 0.79 *** 1.00 

aResponse variable log-transformed 

bLength of next molar log-transformed 

* p≤0.05 

** p≤0.01 

*** p≤0.001 
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Table 14. Results of interspecific PGLS models using ResultantMax-Molar as the response 
variable. 

Molar 
emergence 
category 

Length 
of next 
molar 

Projected 
jaw 

length 

Canine 
overlap 

Skull 
GM AICc Δ 

AICc 

Model 
Adj. 
R2 

p-
value 

ML 
lambda 

dp4 emerged a  0.02   -2.6 0.00 0.81 *** 0.00 
M1 emerged  a,b 0.56   0.01 -13.0 0.00 0.93 *** 0.00 
M1 emerged  a,b 0.99    -13.6 0.20 0.83 *** 0.94 
M2 emerged  0.55 -1.68  95.0 0.00 0.94 *** 0.00 
M2 emerged  0.41 -1.41 0.17 96.9 1.96 0.94 *** 0.00 
M3 emerged    0.58 102.9 0.00 0.83 *** 0.99 
M3 emerged NA  -0.28 0.65 104.2 1.27 0.84 *** 1.00 

aResponse variable log-transformed 

bLength of next molar log-transformed 

* p≤0.05 

** p≤0.01 

*** p≤0.001 

 

Similarly, with ResultantMax-Molar as the response variable, all models were 

significant and also explained a large amount of variation in the distance between the last 

molar and the resultant (R2 range: 0.81-0.94: Table 14). The dp4-emerged model included 

only one variable, projected jaw length, as a predictor and it had a positive slope. The 

M1-emerged models included both length of next molar and skull GM as predictor 

variables and both had positive slopes (Table 14). M2-emerged models included all 

predictor variables except length of next molar, and all slopes were positive except the 

negative slopes of canine overlap. M3-emerged models only included canine overlap, 

which had a negative slope, and skull GM, which had a positive slope, as predictor 

variables (Table 14).  
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Table 15. Results of interspecific PGLS models with either ResultantMean-Molar or 
ResultantMax-Molar as response variables and including either MeanR or MaxR as 
predictor variables. 

Response 
Variable 

Mean
R 

Max
R 

Projected 
jaw 

length 
Canine 
overlap 

Skull 
GM 

  Model 

AICc 
Δ 

AICc 
Adj. 
R2 

p-
value 

ML 
lambda 

ResultantMean-
Molar model 1  NA 0.26   40.20 0 0.88 ** 0.00 

ResultantMean-
Molar model 2 NA 0.00 0.20   38.50 0 0.98 ** 0.00 

ResultantMean-
Molar model 3  NA   0.39 41.40 1.22 0.86 ** 0.00 

ResultantMean-
Molar model 4 NA  0.26   40.20 1.76 0.88 ** 0.00 

ResultantMax-
Molar model 1 0.02 NA 0.23   25.10 0 1.00 *** 0.00 

ResultantMax-
Molar model 2 NA    0.52 44.00 0 0.68 NS 0.00 

ResultantMax-
Molar model 3 NA  0.34   44.30 0.33 0.87 ** 0.00 

* p≤0.05 

** p≤0.01 

*** p≤0.001 

 

MaxR was included in one of the best-fit models predicting ResultantMean-Molar 

and it had a positive slope (Table 15). The best-fit models also included projected jaw 

length and skull GM, which also had positive slopes. Similarly, MeanR was included in 

one of the best-fit models predicting ResultantMax-Molar and also had a positive slope 

(Table 15). The best-fit models predicting ResultantMax-Molar also included projected 

jaw length and skull GM and these variables also had positive slopes. Canine overlap was 

not included as a predictor in any of the models. The adjusted R2 values were high for 

both sets of models, explaining 86-98% of the variation in ResultantMean-Molar and 68-

100% of the variation in ResultantMax-Molar (Table 15).  
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Discussion 

This study examined factors that may contribute to variation in the distance from 

the last molar to the adductor muscle resultant. The analysis in Chapter 2 identified that 

there are differences in the position of molar emergence both intraspecifically (i.e., 

among molar emergence categories) and interspecifically. This variation may be related 

to a variety of factors including the size of the animal and its feeding behavior. This 

chapter tested the hypothesis that the position of molar emergence is influenced by 

factors related to the size of the buffer zone. Specifically, this chapter investigated 

whether food mechanical properties, skull size, jaw gape, and the length of the next molar 

to emerge contribute to intra- and interspecific variation in the distance between the 

muscle resultant’s intersection with the triangle of support and the position of molar 

emergence.  

Results indicated that among platyrrhines and catarrhines, canine overlap and 

projected jaw length, as well as skull GM and molar emergence category are important 

variables explaining intraspecific variation in the distance between the last molar and the 

resultant, although the latter two variables were included in fewer models than the former 

two. Among strepsirrhines, not all models significantly explained variation in the 

distance between the last molar and the resultant, but of the models that were significant, 

most included projected jaw length as a predictor variable. A high amount of interspecific 

variation in the distance between the last molar and the resultant is explained by various 

combinations of the predictor variables: skull GM, canine overlap, projected jaw length, 

length of next molar, and MeanR and MaxR. Depending on whether the response variable 

was ResultantMean-Molar or ResultantMax-Molar and the molar-emergence category of the 
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analysis, some of the predictors appeared in more models than others, but no clear pattern 

was present.  

The two predictors of gape, canine overlap and projected jaw length, were 

important factors in explaining variation in the distance between the resultant and the last 

molar. In both intra- and inter-specific models, canine overlap was included as a 

predictor variable less frequently than projected jaw length. In both types of models, 

increases in projected jaw length corresponded to increases in Resultant-Molar, while 

increases in canine overlap corresponded to decreases in Resultant-Molar. While the 

pattern found for projected jaw length fit the expectations of this chapter, the pattern 

found for canine overlap was opposite to what was expected. Both variables are thought 

to be proxies for jaw gape (Hylander 2013, 2017) and this chapter tested the expectation 

that as jaw gape increased, so should the distance between the last molar and the 

resultant, as a means to accommodate anterior migration of the resultant with a larger 

buffer zone. Gape is hypothesized to influence the size of the buffer zone because at least 

one of the adductor muscles crosses the triangle of support at a more anterior point when 

the jaws are abducted (Fig. 16). The size of the buffer zone should accommodate anterior 

migration of the resultant due to jaw abduction, which may occur when biting on large 

items, particularly at posterior bite points (Spencer 1999; Perry, Hartstone-Rose, and 

Logan 2011). The predictive relationship between canine overlap and gape was based on 

an interspecific analysis of adult anthropoid primates (Hylander 2013, 2017) and it is 

unknown whether canine overlap also predicts gape throughout ontogeny. One 

consideration is the dynamic nature of canine overlap throughout ontogeny. Deciduous 

canines are ultimately replaced by permanent canines and while permanent canines are 
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erupting, the degree of canine overlap changes. Furthermore, there is variation in the 

position of the canine in the emergence sequence both among anthropoid species and 

between the sexes (e.g., Smith 1994; Harvati 2000; Setchell and Wickings 2004). 

Similarly, the rates of canine growth and eruption differ both within (i.e., between the 

sexes) and among taxa (e.g., Schwartz, Reid, and Dean 2001; Leigh, Setchell, and 

Buchanan 2005). Therefore, the effect of canine overlap may be variable across ontogeny 

and the effect that this has on the relationship between canine overlap and gape is 

unknown.  

In this chapter, maximum gape, itself estimated from canine overlap and 

projected jaw length, was used as a proxy for the maximum size of food items that 

primates ingest. This chapter therefore assumes that primates will ingest the largest 

possible food item permitted by their gape. Perry and Hartstone-Rose (2010) examined 

maximum ingested food size (which they called Vb) in strepsirrhines and found that this 

variable is positively related to mandible length, their proxy for gape, suggesting that 

strepsirrhines with larger gapes consume larger food items, especially if those food items 

are not mechanically resistant (Perry and Hartstone-Rose 2010). The analysis here, which 

showed that intraspecific variation in Resultant-Molar is explained by projected jaw 

length in all but one species of strepsirrhine, suggests that the relationship between gape 

and maximum ingested food size holds throughout ontogeny in strepsirrhines and 

influences the size of the buffer zone. It is unknown, however, whether primates place 

items that are large on their posterior molars or if these large items are first processed 

with the anterior dentition where bite force is lower but large items can be accommodated 

more easily. To determine this as well as Vb for strepsirrhines throughout ontogeny, it 
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will be necessary to perform similar experiments on subadult strepsirrhines while noting 

the location of where food is placed along the tooth row.   

Unfortunately, a similar analysis looking at the relationship between mandibular 

length and Vb has not been performed on anthropoids primates, but there is reason to 

expect that these primates would not exhibit the same pattern. Perry and Hartstone-Rose 

(2010) found that the scaling relationship between Vb and mandible length and Vb and 

body mass was very similar, both in slope and explanatory power. In studies that included 

both strepsirrhines and anthropoid primates, it was determined that while Vb increases 

with body mass in strepsirrhines, it decreases with body mass in anthropoids (Perry and 

Hartstone-Rose 2010; Perry et al. 2015). If the same relationship between mandible 

length and body mass holds for anthropoids as it does for strepsirrhines then it is 

expected that anthropoid primates with longer mandibles (i.e., larger gapes) should 

consume smaller food items than those with shorter mandibles (i.e., smaller gapes). 

Indeed, the analyses here indicated that one predictor of gape, canine overlap, was 

negatively related to the distance between the last molar and the resultant, both 

throughout ontogeny and interspecifically. On the other hand, the analysis here suggests 

that throughout ontogeny and interspecifically, there is a positive relationship between 

projected jaw length and the distance between the last molar and the resultant. More 

work is necessary to determine how the size of food items is related to gape and how 

these relate to the size of the buffer zone both intra- and interspecifically, but the results 

here suggest that projected jaw length and canine overlap have antagonistic effects on the 

size of the buffer zone.  
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Another factor that may be related to the size of food items that primates can 

ingest and the size of the buffer zone is the food’s mechanical properties. Strepsirrhines 

have higher Vb values for foods that are less mechanically resistant (i.e., do not require 

high bite forces to induce/propagate a fracture) and thus the largest food items are 

consumed by the largest strepsirrhines when eating fruit (Perry and Hartstone-Rose 2010; 

Perry et al. 2015). Anthropoids, on the other hand, exhibit no relationship between food 

mechanical properties and food size (Perry et al. 2015). Based on these results, it is 

expected that there should be an interaction between gape and food mechanical properties 

(i.e., as gape increases, food mechanical properties should decrease). This is opposite to 

the results of this study, however, as there was no significant interaction between either 

of the predictors of gape and food toughness. In fact, projected jaw length, MeanR, and 

MaxR are both positive predictors of Resultant-Molar. The positive relationship between 

food toughness and Resultant-Molar is contrary to what was expected in this chapter. The 

expectation was that primates that feed on tougher foods would possess shorter distances 

between the last molar and the resultant. Based on the results, it is possible that since 

tough food require repetitive mastication, a large buffer zone is more important to create 

a more stable loading environment during cyclical loading. The sample size for these 

analyses is very small, however, and consists of almost all anthropoids except for L. 

catta. Strepsirrhines consume some of the most resistant foods among primates (e.g., 

Yamashita 2002; Teaford et al. 2006; Quyet et al. 2007; Vogel et al. 2008; Yamashita et 

al. 2009, 2016; Venkataraman et al. 2014; Chalk-Wilayto et al. 2016; Coiner-Collier et al. 

2016; Glowacka et al. 2017) and an analysis that includes more strepsirrhine species 

might be more revealing regarding these patterns. 
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The sample size was too low to perform any analyses of the Young’s modulus 

data for the 4 species for which data are available (Table 10). The species that consume 

foods with higher Young’s modulus (C. apella and L. catta) are much smaller-bodied 

than the species that consume foods with lower Young’s modulus (P. troglodytes and P. 

pygmaeus) (Table 10). Despite this difference in size, the distance between the last molar 

and the resultant in these species is very similar (Chapter 2) suggesting that, similar to the 

results for food toughness, the size of the buffer zone is relatively greater in species that 

consume stiffer foods. Although there was little overlap in the species used in this study 

and those for which food mechanical properties data are available, based on the data that 

are available, the results of this chapter suggest that primates that feed on more resistant 

foods possess larger buffer zones. The reason for this is still unclear but it is possible that 

more resistant diets simply require greater safety mechanisms for the TMJs than less 

resistant diets.  

Of the published food mechanical properties studies, many do not report how 

food is consumed (e.g., whether food is prepared extra-orally, what part of the dentition is 

used to prepare food prior to mastication, etc.). The assumption in this chapter is that 

primates are biting foods of given mechanical properties on their last molar. We know, 

however, that foods can be orally processed with the anterior dentition (i.e., incisors, 

canines) prior to mastication with the postcanine dentition and so the mechanical 

properties that are reported in most studies do not necessarily reflect the mechanical 

properties of the foods that are ultimately masticated by the molars (Ross, Iriarte-Diaz, 

and Nunn 2012; McGraw et al. 2016). Similarly, because there are no data for the species 

examined here on the mechanical properties of the diet throughout ontogeny, the 
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influence that food has on the size of the buffer zone throughout growth remains 

unexplored. The handful of studies that have looked at the mechanical differences 

between adult and juvenile diets report mixed results. Two studies report no significant 

differences between the mechanical properties of adult and juvenile diets of both Sapajus 

libidinosus and Trachypithecus phayrei crepusculus (Chalk et al. 2016; Chalk-Wilayto, 

Ossi-Lupo, and Raguet-Schofield 2016), while one study reports that infant and juvenile 

geladas eat foods that are less tough, on average, than adult foods (Venkataraman et al. 

2014). The present study found supports for the idea that the position of molar emergence 

is influenced by factors related to the size of the buffer zone and provided new insight 

into the factors that contribute to the size of the buffer zone, both throughout ontogeny 

and interspecifically. More data are clearly needed on the mechanical properties of 

juvenile and adult diets and associated feeding behaviors for those foods. Similarly, the 

relationship between food size and gape requires further investigation, especially in 

anthropoid primates, before more can be said about its effects on the size of the buffer 

zone and the ontogeny of masticatory system configuration.  
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CHAPTER 4 

MOLAR-EMERGENCE AGE, MANDIBULAR ARCH GROWTH RATE, AND LIFE 
HISTORY IN PRIMATES 
 

Abstract 

The strong relationship between age-at-M1-emergence and life history across 

primates provides a powerful means of reconstructing life history of fossil primates. 

However, the underlying process that leads to varying molar-emergence ages in primates 

remains elusive. Previous research has determined that the position of molar emergence 

is constrained by the biomechanics of mastication. To elucidate the mechanism by which 

variation in molar emergence schedules is achieved in primates, this study determined 

whether the biomechanics of the growing masticatory system constrain the timing of 

molar emergence by examining mandibular arch growth rates and durations. Data on 

mandibular arch length were collected on known-age skeletons of 5 primate species 

(Homo sapiens, Pan troglodytes, Gorilla beringei, Macaca mulatta, and Papio 

cynocephalus). Based on adult mandibular arch lengths and ages at molar emergence, 

predictions were generated for pairwise comparisons of mandibular arch length growth 

rates and durations for the five species. For each species, mandibular arch length growth 

curves were constructed and the age-at-growth-cessation was determined using 

segmented regression. These and the slopes of the first part of the regressions (i.e., 

growth rates) were compared between species. All predictions were supported by the 

results with the exception for the P. troglodytes and G. beringei comparison. The results 

suggest that molar-emergence ages are more similar between P. troglodytes and G. 

beringei than the current data suggest. To explore the relationship between life history 
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and molar-emergence age, Phylogenetic Generalized Least-Squares analysis was 

performed using life-history variables as predictors and mandibular arch growth rate and 

duration as response variables. Results indicate that life-history variables are significantly 

positively related to age-at-mandibular-arch-growth-cessation, but sample sizes were too 

small to detect a relationship with mandibular arch length growth rate. Overall, results 

suggest that molar emergence schedules result from the availability of space anterior to 

the muscle resultant, and the rate at which this space is made available. Comparisons of 

mandibular growth rates between species generally explain differences in the timing of 

molar emergence. This study provides a framework for understanding how variation in 

the timing of molar emergence evolves and suggests that life history is related to ages-at-

molar-emergence through its influence on the duration of mandibular arch length growth.  

 

Introduction 

A species’ life history is the schedule of its allocation of energy to growth, 

maintenance, and reproduction and is best characterized a series of variables including 

gestation length, weaning age, age-at-first-reproduction, litter size, inter-birth interval, 

and lifespan, among others (Charnov 1993; Stearns 1992). The pace of dental 

development, especially the age at which the permanent first molar (M1) emerges into the 

oral cavity, is commonly used as a skeletal indicator of life history in fossil taxa (e.g., 

Kelley 1997; Kelley and Smith 2003; Nargolwalla et al. 2005; Kelley and Schwartz 

2012), as age-at-M1-emergence is strongly correlated with life-history variables across 

primates (Smith 1989; Smith, Crummett, and Brandt 1994; Kelley and Schwartz 2010). 

Molar emergence should be completely integrated into the growth of the skull and part of 
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an integrated masticatory system (Smith 1989; Spencer and Schwartz 2008), but the exact 

mechanism underlying the relationship between age-at-M1-emergence and life history 

remains unknown.  Two unanswered questions stand in the way of a more complete 

understanding of the timing of molar emergence in primates: (1) Why is age-at-M1-

emergence so closely associated with fundamental aspects of a species’ life history? and 

(2) What factors influence variation in age-at-M1-emergence among primates? This 

research attempts to answer these questions by exploring the relationships among life 

history, the timing of molar emergence, the biomechanical constraints on the position of 

molar emergence, and the rate and duration of jaw growth.  

Previous research identified biomechanical constrains on the position of molar 

emergence in primates (Spencer and Schwartz 2008; Schwartz 2012; Singleton 2015; 

Chapter 2; Chapter 3). The masticatory system is configured to avoid distraction of the 

temporomandibular joint (TMJ) (i.e., when the mandibular condyle is pulled away from 

the articular eminence) during biting and chewing ( Greaves 1978; Spencer 1995, 1999). 

One key aspect of masticatory system configuration is the position of molars in the 

maxillary and mandibular arches: given the theoretical assumptions articulated in Chapter 

2, the distal-most molar’s position is constrained so that it is almost always anterior to the 

jaw adductor muscle resultant. Biting posterior to this point leads to TMJ distraction. 

This is the basis of the Constrained Lever Model (CLM) of chewing biomechanics 

(Greaves 1978, 1982; Spencer 1999). The study in Chapter 2 used the assumptions of the 

CLM to examine the position of molar emergence in relation to the position of the 

adductor muscle resultant and found that, across primates, molars emerge significantly 

anterior to the resultant throughout ontogeny. The analysis in Chapter 2 identified that 
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although molars emerge anterior to the resultant, there are intraspecific (i.e., among molar 

emergence categories) and interspecific differences in the position of molar emergence. 

Chapter 3 tested whether this intra- and interspecific variation is related to the size of the 

buffer zone, a safety factor that creates greater stability at the TMJs during biting. The 

results of the study in Chapter 3 indicated that more resistant foods, larger skulls, longer 

molars, and longer jaws produce a larger buffer zone, but greater canine overlap produces 

a smaller buffer zone. These factors account for a large portion of both ontogenetic and 

interspecific variation in the distance between the last molar and the resultant and suggest 

that the buffer zone is an important part of the mechanism acting to modulate the position 

of molar emergence in primates. Collectively, these studies have integrated 

biomechanical, comparative, and ontogenetic perspectives to the study of molar 

emergence in primates. This integrative approach has illuminated the mechanism that acts 

during ontogeny to constrain the position of molar emergence and can be used to further 

elucidate how variation in molar emergence schedules arises among primates. Under the 

assumption that the position of molar emergence is constrained by the biomechanics of 

the masticatory system, the research here investigates whether the rate and duration of 

growth of the mandibular arch determines the timing of molar emergence and, in turn, 

whether mandibular arch growth rate and duration are related to primate life history.  

 

Hypothesis and Model 

This research tests the hypothesis that the timing of molar emergence is 

constrained to avoid TMJ distraction throughout ontogeny by determining if the rate at 

which space is made available in the jaw (anterior to the point at which the muscle 
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resultant intersects the triangle of support) and the duration of jaw growth determine the 

timing of molar emergence. 

 

Model 

Applying the CLM to molar emergence predicts that molars emerge anterior to 

the adductor muscle resultant. This prediction was confirmed (with some exceptions) by 

the study in Chapter 2, suggesting that the timing of molar emergence depends on the rate 

at which space is made available anterior to the resultant. All things being equal, a 

species with a mandibular arch2 that grows at a faster rate should exhibit younger ages-at-

molar-emergence than a species with a mandibular arch that grow at a slower rate.  

Species can be compared in this manner to determine if their rates of jaw growth explain 

differences in ages-at-molar-emergence.  A complicating factor is that differences exist 

among species in the length of adult mandibular arches and in the duration of mandibular 

arch growth. Therefore, a species can grow its mandibular arch at a faster rate than 

another species but if its target mandibular arch length is greater, this species might attain 

later ages-at-molar-emergence. A model describing expectations of the relative timing of 

molar emergence in pairwise comparisons of a species with a shorter adult mandibular 

arch and one with a longer adult mandibular arch are described below and in Figure 19.  

 

 

                                                
2 The term mandibular arch here refers to the distance from the point between the two central mandibular 
incisors, along the buccal/labial aspect of the alveolar bone, to the resultant’s intersection with the triangle 
of support, projected onto the occlusal plane (see Material and Methods section for details). Although this 
study refers to mandibular arches only, the model also applies to maxillary arches.  
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Figure 19. Schematic of mandibular arch length growth curves comparing taxa with 
longer and shorter adult mandibles. Boxes along y-axis indicate the mandibular arch 
length at which enough space has been vacated anterior to the muscle resultant for a 
molar to emerge. Relatively early molar emergence is attained either through a shorter 
mandibular arch that grows at the same (red line in a), faster (red line in b), or slower rate 
(red line in c), but for a shorter duration or through a longer mandibular arch that grows 
at a faster rate for a shorter duration (blue line in d). Relatively later molar emergence is 
attained either through a longer mandibular arch that grows at the same (blue line in a), 
faster (blue line in c), or slower rate (blue line in b), but for a longer duration or by a 
shorter mandibular arch that grows at a slower rate and for a longer duration (red line in 
d). Similar ages at molar emergence are attained through a longer mandibular arch that 
grows at a faster rate but for the same duration (blue line in e), through a shorter 
mandibular arch that grows at a slower rate and for the same duration (red line in e), or 
through similar mandibular arch lengths that grow at similar rates and for similar 
durations (not shown).  
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Earlier molar emergence occurs either in a shorter mandibular arch that grows at 

the same, faster, or slower rate, but for a shorter duration (Fig. 19a-c) or in a longer 

mandibular arch that grows at a faster rate and for a longer duration (Fig. 19d).  

Later molar emergence occurs either in a longer mandibular arch that grows at the 

same, faster, or slower rate, and for a longer duration (Fig. 19a-c) or in a shorter 

mandible that grows at a slower rate and for a longer duration (Fig. 19d).  

Similar ages at molar emergence occur in a longer mandibular arch that grows at a 

faster rate and for the same duration (Fig. 19e), in a shorter mandibular arch that grows at 

a slower rate and for the same duration (Fig. 19e), or in mandibular arches of similar 

length that grow at similar rates and for similar durations (in which case the trajectories 

in Fig. 19 would be identical).  

An alternative way to compare species that differ in adult jaw lengths is by 

comparing relative jaw growth rates (i.e., the proportion of the adult value that has been 

reached by a given age). In this scenario, the following predictions can be made: earlier 

molar emergence occurs in a mandibular arch that grows at a relatively faster rate and for 

a shorter duration (Fig. 20); later molar emergence occurs in a mandibular arch that 

grows at a relatively slower rate and for a longer duration (Fig. 20); similar ages at molar 

emergence occur in mandibular arches that grow that grow at similar rates and for similar 

durations.  
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Figure 20. Schematic of mandibular arch length growth curves expressed as a percentage 
of adult mandibular arch length. Boxes along y-axis indicate the mandibular arch length 
at which enough space has been vacated anterior to the muscle resultant for a molar to 
emerge. Relatively early molar emergence occurs in a mandible that grows at a relatively 
faster rate and for a shorter duration (red line) while relatively late molar emergence 
occurs in a mandible that grows at a relatively slower rate and for a longer duration (blue 
line).  

 

This model provides a mechanical and developmental context for explaining 

temporal and spatial variation in molar-emergence ages. As such, it predicts that the age 

at which a molar emerges results directly from the rate and duration of growth in the 

mandibular arch. In turn, mandibular arch growth rate and duration should be tightly 

integrated into the overall package of somatic and neural growth and should therefore be 

highly correlated to life history parameters that track overall growth and development. In 

addition to testing the above model, this research also investigates whether life-history 

variables are associated with mandibular arch growth rate and duration. Other factors that 

are related to life history, such as brain size, and body size, may also influence growth 
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schedules (Taylor 1965; Western 1979; Barrickman et al. 2008). The potential influence 

of these variables on mandibular arch growth is also considered.  

 

Material and Methods 

Data Collection and Sample 

The landmark data collection methods follow those described in Chapter 2. In 

addition to the landmarks collected for that analysis (see landmarks listed in Table 1: 

Chapter 2), several other landmarks were collected along the labial/buccal aspect of the 

alveolar bone, distal to each tooth position (Table 16; Fig 21). The distances between the 

landmarks were summed and added to the distance between the last molar and the 

resultant to equal the variable mandibular arch length (i.e., the distance from the point 

between the two central mandibular incisors (infradentale) to the intersection of the 

resultant with the triangle of support, projected onto the occlusal plane, Fig. 22). 

Landmarks were obtained using a Microscribe G3X digitizer (Immersion Corp., San Jose, 

CA). Two variables that were measured in chapter 2 were also used here. Chapter 2 used 

two methods to determine the position at which the muscle resultant crosses the triangle 

of support, which was then projected onto the occlusal plane and the distance between 

this point and the last molar was measured. The first method involved averaging the 

positions of the three adductor muscles’ lines of actions. The resulting distance was 

called ResultantMean-Molar. The second method used the most anterior muscle line of 

action to represent the position of the resultant. The variable produced by this method 

was called ResultantMax-Molar (see chapter 2 for details). Both of these variables were 

used to represent the distance between the resultant and the last molar when calculating 



  111 

mandibular arch length, yielding the variables mandibular arch lengthmean and 

mandibular arch lengthmax, respectively (together referred to as mandibular arch length).  

 

Table 16. List of landmarks collected for study. 
Landmark # Landmark description 

1 Infradentale (midline point at apex of septum 
between central mandibular incisors) 

2 Left distal to I1/i1 alveolar border  
3 Left distal to I2/i2 alveolar border  
4 Left distal to C/c alveolar border  
5 Left distal to P3/dp3 alveolar border  
6 Left distal to P4/dp4 alveolar border  
7 Left distal to M1 alveolar border  
8 Left distal to M2 alveolar border  
9 Left distal to M3 alveolar border  

 

Data were collected from cross-sectional ontogenetic samples of primate skulls 

representing 5 primate species (Homo sapiens, Gorilla beringei, Pan troglodytes, Papio 

cynocephalus, and Macaca mulatta; see SM 4 for sample specimen list). The samples 

consisted of individuals with known ages at death. These non-human skeletal collections 

derive from long-term primatological field sites where individuals are observed on a 

regular basis and deceased individuals are skeletonized and curated for scientific study. 

The modern human skeletal sample (n=94; SM 4A) was a combination of two 

skeletal collection. The majority of subadults were from the Atkinson Collection, a 

collection of human skulls from Mexico, India, Europe, Peru, Asia, and Australia/New 

Zealand amassed in the 1930s and housed at the Arthur A. Dugoni School of Dentistry at 

the University of the Pacific. These skulls were aged based on dental radiographs using 

standard dental ageing methods (Richards 2007). The Robert J. Terry Anatomical 

Skeletal Collection of modern human skeletons was also used in this study. This 

cadaveric collection is housed at the National Museum of Natural History and consists of 
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known-age individuals. Individuals with craniofacial malformations, missing teeth with 

bone resorption, or tooth agenesis were excluded for the purposes of this study.  

 

 

 
Figure 21. Landmarks collected for the purposes of this study. Landmarks were taken 
along the labial/buccal aspect of the alveolar bone, distal to each tooth position. Red dots 
indicate landmarks on visible bone surface whereas dashed red and white dots indicate 
landmarks that are obstructed in the specific view. Landmark definitions can be found in 
table 16.  
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Figure 22. The variable mandibular arch length was calculated by summing the distances 
between landmarks. Landmarks as in Figure 21. 

 
 

The mountain gorilla (G. beringei) sample (n=24; SM 4B) is a cross-sectional 

ontogenetic series of known-age wild mountain gorillas recovered from Volcanoes 

National Park, Rwanda. These mountain gorilla skeletons are part of a growing collection 

curated by the Mountain Gorilla Skeletal Project, in partnership with the Rwanda 

Development Board’s Department of Tourism and Conservation, Dian Fossey Gorilla 

Fund International, Mountain Gorilla Veterinary Project, and other Rwandan and U.S. 

institutions (McFarlin et al. 2009, 2013). Age determination and attribution for the 

skeletons is described in further detail in McFarlin et al. (2013) and Galbany et al. (2016).  

The chimpanzee sample (n=37; SM 4C) consisted of two skeletal populations. 

The first is of Taï chimpanzees (P. troglodytes verus) housed at the Max Planck Institute 

for Evolutionary Anthropology in Leipzig, Germany. Behavioral data have been collected 
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continuously on this community since 1989 and skeletal remains have been recovered 

since 1995 (Smith et al. 2010a). The second, smaller addition to the chimpanzee sample 

was that of western chimpanzees (P. t. schweinfurthii) from Gombe Stream National 

Park. Remains of deceased individuals have been collected, skeletonized, and curated at 

Gombe since the late 1970s (Jurmain 1997). While most of the skeletal collection from 

Gombe remains in Tanzania, some of the collection, including the individuals used in this 

study, is currently housed at the University of Minnesota, in the Evolutionary 

Anthropology Laboratory. Despite belonging to separate subspecies, the data from these 

two populations were combined to yield one chimpanzee sample in order to boost sample 

size.  

The skeletal sample of yellow baboon (P. cynocephalus) individuals (n=18; SM 

4D) is from a newly-established collection by the Amboseli Baboon Research Project 

(ABRP). The skeletal remains are from Amboseli National Park, Kenya, and represent 

individuals of known life history who were monitored in life by the ABRP (S. McFarlin, 

pers. comm.).  The collection is curated at the National Museums of Kenya.   

The final skeletal collection examined in this study was of rhesus macaques (M. 

mulatta) from the Cayo Santiago colony (n=104; SM 4E), established in 1938 and now 

part of the Caribbean Primate Research Center. Individuals here are provisioned and 

monitored on a daily basis. Deceased individuals are macerated and included in an 

extensive skeletal collection of known-age individuals. Details of the skeletal collection, 

including how it is amassed and curated can be found in  Rothschild, Hong, and 

Turnquist (1999).  
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Specific Predictions 

Based on the model described in the “Hypothesis and Model” section, specific 

predictions can be made for how mandibular growth rates and durations map onto molar-

emergence ages. Table 17 lists reported molar-emergence ages in the literature for the 

species examined in this study. Based on these data and adult mandibular arch lengths 

data (Table 18; Table 22A), predictions were made for pairwise comparisons of 

mandibular arch length growth rate and growth duration (Table 22B).  

 

Table 17. Molar-emergence ages reported in the literature for the species included in this 
study. 

Species 
M1 

emergence 
age (yrs) 

M2 
emergence 
age (yrs) 

M3 
emergence 
age (yrs) 

Notes Source 

P. troglodytes 

2.7-3.8 5.6-7.3 9.0-13.1 

Mandibular gingival 
emergence for 
Kanyawara chimps 
 

Machanda 
et al. 2015 

  9.8-13.6 

Maxillary gingival 
emergence for 
Kanyawara chimps 
 

Machanda 
et al. 2015 

>3.8 6.4  
Maxillary gingival 
emergence for Taï 
chimps 

Smith et 
al. 2010 

G. beringei 2.45- 3.16  Max 10.69 
Mandibular gingival 
emergence for 
Virunga gorillas 

Vakiener 
et al. 2016 

H. sapiens 6.15-6.4 10.52-12 19.8-20.5 

Gingival emergence 
mean ranges for 
males and females, 
and maxillary and 
mandibular molars 

Smith et 
al. 1994 

P. cynocephalus 1.58-2 3.75-3.92 6.17-7.08 

Gingival emergence 
mean ranges for 
males and females, 
and maxillary and 
mandibular molars 

Smith et 
al. 1994 

M. mulatta 1.32-1.49 3.15-3.36 5.4-6.43 

Gingival emergence 
mean ranges for 
males and females, 
and maxillary and 
mandibular molars 

Smith et 
al. 1994 
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Table 18. Summary statistics for adult male and female mandibular arch lengthmean and 
mandibular arch lengthmax values, and t-tests comparing sexes. 

A. Mandibular arch lengthmean  

Species 
Adult male Adult female   Adult 

average 

n Mean 
(mm) SD n Mean 

(mm) SD t p-
value 

Mean  
(mm) 

G. beringei 23 154.68 9.83 34 126.85 10.44 10.23 0.00 140.77 
H. sapiens 14 81.71 4.95 12 77.31 4.81 2.30 0.05 79.51 
P. troglodytes 29 102.40 5.05 38 97.78 3.80 4.12 0.00 100.09 
M. mulatta 28 77.58 4.76 30 68.26 4.12 7.95 0.00 72.92 
P. cynocephalus 17 118.99 14.20 17 91.42 8.30 6.91 0.00 105.21 

          
B. Mandibular arch lengthmax 

Species 
Adult male Adult female   Adult 

average 

n Mean 
(mm) SD n Mean 

(mm) SD t p-
value 

Mean  
(mm) 

G. beringei 23 128.92 10.67 34 106.91 12.39 7.15 0.00 117.92 
H. sapiens 14 71.82 7.62 12 69.39 5.53 0.94 0.36 70.61 
P. troglodytes 29 93.38 5.51 38 89.27 3.63 3.48 0.00 91.33 
M. mulatta 28 70.35 4.28 30 61.45 3.72 8.43 0.00 65.90 
P. cynocephalus 17 110.10 14.22 17 82.74 7.27 7.06 0.00 96.42 

Adult mandibular arch length data were calculated using the larger species samples, 

described in Chapter 2.  

Significant results (p≤0.05) listen in bold.  
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Table 19. Predictions of mandibular arch growth rate and duration for the species in this 
study based on the model. 

A. Comparisons of mandibular arch lengths and molar-emergence ages between 
species  

Species comparison  
Mandibular 

arch 
length* 

Molar 
emergence 

ages** 
 

 
G. beringei vs. H. sapiens > <   
G. beringei vs. P. troglodytes > <   
H. sapiens vs. P. troglodytes < >   
H. sapiens vs. M. mulatta > >   
P. troglodytes vs. M. mulatta > >   
G. beringei vs. M. mulatta > >   
P. cynocephalus vs. M. mulatta > >   
P. cynocephalus vs. G. beringei < <   
P. cynocephalus vs. P. troglodytes > <   
P. cynocephalus vs. H. sapiens > <   
     
B. Predictions based on model      

Species comparison  

Absolute mandibular 
arch length 

Relative mandibular 
arch length 

Growth 
Rate 

Prediction 

Growth 
Duration 

Prediction 

Growth 
Rate 

Prediction 

Growth 
Duration 

Prediction 
G. beringei vs. H. sapiens > < > < 
G. beringei vs. P. troglodytes <,=,> < > < 
H. sapiens vs. P. troglodytes < > < > 
H. sapiens vs. M. mulatta <,=,> > < > 
P. troglodytes vs. M. mulatta <,=,> > < > 
G. beringei vs. M. mulatta <,=,> > < > 
P. cynocephalus vs. M. mulatta <,=,> > < > 
P. cynocephalus vs. G. beringei  <,=,> < > < 
P. cynocephalus vs. P. troglodytes <,=,> < > < 
P. cynocephalus vs. H. sapiens  > < > < 

*Comparisons based on adult average data in Table 17. 

**Comparisons based on data in Table 18. 
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Analytical Methods 

Two-sided t-tests were used to determine whether there are significant differences 

between adult male and female mandibular arch lengths. These tests were performed on a 

larger sample of adult individuals than the remainder of the analyses, regardless of 

whether age information was available or not (Table 18). It was determined that in all 

species except H. sapiens, there are significant sex differences in mandibular arch length 

(Table 18). Despite this, data for males and females were combined in the analyses below 

because data on sex attribution were not available for some of the subadult specimens and 

separating the sexes resulted in very small sample sizes for most of the species.  

 To determine whether the rate at which space is made available, anterior to the 

point at which the muscle resultant intersects the triangle of support, along with the 

duration of growth, determine the timing of molar emergence, pairwise comparisons of 

mandibular arch length growth trajectories were performed between taxa that differ in 

adult mandibular arch length and/or molar emergence timing. Mandibular arch length 

growth rate was determined using segmented (i.e., piecewise ) regressions, which 

described species-specific mandibular arch length growth curves (Neter, Wasserman, 

and Kutner 1985), with age as the independent variable and mandibular arch length (i.e., 

mandibular arch lengthmean and mandibular arch lengthmax) as the dependent variable. 

Segmented regressions were fit to the data using the segmented package (Muggeo 2008) 

in R (version 3.3.1). This package uses maximum likelihood to iteratively fit curves to 

the data and find breakpoints (Muggeo 2008). Growth data should be defined by two 

curves separated by one breakpoint; the first curve representing the growth phase and its 

positive slope representing growth rate, the breakpoint representing the age-at-growth-
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cessation, and the second curve and its slope of zero representing the asymptotic phase 

(i.e., the adult phase). The segmented regression fit to the data was compared to an 

Ordinary Least-Squares (OLS) fit using Akaike’s Information Criterion (AIC). If a 

segmented regression was a better fit to the data then it should possess lower AIC scores. 

Segmented regression is widely used to study growth and has been used to study growth 

rate and growth cessation in body mass in both captive and wild primates (Leigh 1994; 

Altmann and Alberts 2004) and the ontogeny of primate brain mass (McFarlin et al. 

2013). Identified breakpoints were extracted as the variables mandibular arch length 

growth cessationmean and mandibular arch length growth cessationmax (together referred 

to as mandibular arch length growth cessation) and were used to represent the endpoint 

of growth, and thus growth duration, for each species. After breakpoints were identified, 

data points from the growth phase of the curve were extracted. These data were then used 

in an OLS regression with age as the predictor variable and mandibular arch length as the 

response variable, and the resulting slopes (extracted as the variables mandibular arch 

length growth ratemean and mandibular arch length growth ratemax, together mandibular 

arch length growth rate) were compared between sets of taxa using an analysis of 

covariance (ANCOVA) to determine if the interaction between species and age is 

significantly different from zero; in other words, if the slopes of the two species are 

significantly different from each other. This was done to test the first set of predictions 

(Fig. 19 and Table 19B’s “Absolute mandibular arch length: Growth rate predictions”).  

 OLS regression was also performed with relative mandibular arch length as the 

response variable and age as the predictor variable. Relative mandibular arch lengthmean 

and relative mandibular arch lengthmax (together, relative mandibular arch length) were 
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calculated for each specimen as the ratio of that specimen’s mandibular arch length to 

the adult average for its species (adult means listed in Table 18). The resulting slopes 

were extracted as variables relative mandibular arch length growth ratemean and relative 

mandibular arch length growth ratemax (together, relative mandibular arch length growth 

rate) and compared using ANCOVA to test the second set of predictions (Fig. 20 and 

Table 19B’s “Relative mandibular arch length: Growth rate predictions”).  

The final set of analyses was aimed at determining if brain size, body size, and 

life-history variables have significant effects on mandibular arch growth rate and 

mandibular arch growth cessation, and thus on molar-emergence age in primates. Brain 

size, body size, and life history data (i.e., age-at-first-reproduction and gestation length) 

were collected from the literature (see Table 20). Wherever possible, the data collected 

were from the same populations as the skeletal collections included in this study (Table 

20). Because this study considered mandibular arch length growth rate and mandibular 

arch length growth cessation for only five species, the number of predictor variables had 

to be reduced. Dimensionality reduction was performed through a phylogenetic Principal 

Components Analysis (PCA) (Revell 2009), implemented using the phytools package 

(Revell 2012) for R (version 3.3.1). Resulting principal components that explained at 

least 90% of the variance in the data were then used as predictor variables in several 

Phylogenetic Generalized Least-Squares (PGLS) analyses. Separate PGLS analyses were 

ran with (i) mandibular arch length growth ratemean, (ii) relative mandibular arch length 

growth ratemean, (iii) mandibular arch length growth ratemax, (iv) relative mandibular 

arch length growth ratemax, (v) mandibular arch length growth cessationmean, and (vi) 

mandibular arch length growth cessationmax as response variables and the principal 
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components as predictor variables. A phylogenetic tree for the analysis was downloaded 

from 10K Trees (Arnold, Matthews, and Nunn 2010). Data were log10-transformed if 

they did not meet the assumption of normality.  

 

Table 20. Life-history data collected from the literature for the species included in this 
study. 

Species 
BM 
(kg) Source 

BW 
(g) Source 

AFR 
(yrs) Source 

GL 
(days) Source 

Gorilla beringei 95 1 457.3 1 9.5ƒ ** 4 258ƒ 2 
Homo sapiens¶ 54.4 1 1228 1 14.5 1 537 1 
Pan troglodytes 31.3§ 2 380 1 13.6* 5 225§ 2 
Macaca mulatta 9.6† 3 84.7 1 4.27† 6 164.5 1 
Papio cynocephalus 12.8‡ 2 164 1 5.82‡ 7 178‡ 2 

Body mass (BM), brain weight (BW), ag at first reproduction (AFR), gestation length 

(GL), and inter-birth interval (IBI). 

1: Kappeler and Pereira, (2003); 2: Bronikowski et al., (2011); 3: Turnquist and Kessler 

(1989); 4: Alberts et al., (2013); 5: Thompson (2013); 6: Blomquist (2009); 7: 

Charpentier et al., (2008).  

*Data averaged for Gombe and Taï chimpanzees.  

** AFR datum for mountain gorillas is the midpoint of the range provided in citation (9-

10 yrs.) 

ƒ Data for Karisoke mountain gorillas. 

§ Data for Gombe chimpanzees.  

† Data for Cayo Santiago rhesus macaques.  

‡ Data for Amboseli baboons.  

¶ Data for humans are means from several populations, as reported in 1.  
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Results 

Segmented Regression 

Segmented regression models all identified one breakpoint in each model, 

separating each mandibular arch length curve into a growth component and an adult 

component. The estimated breakpoint (i.e., mandibular arch length growth cessationmean 

and mandibular arch length growth cessationmax) values for each species are listed in 

Table 21 and are illustrated in Figures 23-27. With the exclusion of the Papio 

cynocephalus models (Table 21, Fig. 27), all breakpoint regression models had AIC 

values that were lower for the segmented regression models than in OLS regression 

models by at least a value of two, indicating that the breakpoint models fit the data better 

than OLS models (Table 21). In the segmented models, a large amount of variation in 

mandibular arch lengthmean was explained by age (R2=0.58-0.90; Table 21A). Similarly, 

a large amount of variation in mandibular arch lengthmax was explained by age (R2=0.48-

0.89; Table 21B).  

 

Mandibular Arch Length Growth Rate 

Results of OLS regressions using growth data (i.e., individuals that were younger 

than the breakpoints identified in the above analysis) indicate that in all but the P. 

cynocephalus model slopes for mandibular arch lengthmean were positive (Table 22A). 

The 95% slope confidence intervals did not include zero, and the slopes were 

significantly different from zero (Table22A). In these significant models, age explained a 

large portion of the variation in mandibular arch lengthmean (R2=0.75-0.89; Table 22A). 

Similarly, in all but the P. cynocephalus model, slopes for relative mandibular arch 
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lengthmean were positive, the 95% slope confidence intervals did not include zero, and the 

slopes were significantly different from zero. In these significant models, age explained a 

large portion of the variation in relative mandibular arch lengthmean (R2=0.75-0.89; Table 

22B). Slopes from the above analyses were extracted for future analysis and renamed as: 

mandibular arch length growth ratemean and relative mandibular arch length growth 

ratemean.  

 

Table 21. Segmented regression results. 
A. Mandibular arch lengthmean    

 Species R2 Breakpoint 
St. 
Err 

AIC 
(Breakpoint 

model) 

AIC 
(OLS 

model) 
G. beringei 0.76 18.47 4.21 202.82 211.06 
H. sapiens 0.75 21.98 1.04 553.15 586.87 
P. troglodytes 0.88 12.54 0.92 231.19 277.66 
M. mulatta 0.90 6.74 0.30 597.48 708.95 
P. cynocephalus 0.58 7.48 6.05 161.22 161.35 

      
B. Mandibular arch lengthmax    

Species  R2 Breakpoint 
St. 
Err 

AIC 
(Breakpoint 

model) 

AIC 
(OLS 

model) 
G. beringei 0.77 18.58 3.58 194.11 201.39 
H. sapiens 0.48 22.72 1.60 600.02 614.96 
P. troglodytes 0.87 12.00 0.93 224.92 267.65 
M. mulatta 0.89 6.75 0.30 585.28 697.40 
P. cynocephalus 0.54 7.71 2.45 161.50 160.48 

Breakpoint = mandibular arch length growth cessation 

 

 Slopes for mandibular arch lengthmax were positive, the 95% slope confidence 

intervals did not include zero, and the slopes were significantly different from zero in all 

species (Table 22C). Age explained a large portion of the variation in mandibular arch 

lengthmax (R2=0.75-0.89; Table 22C). Similarly, slopes for relative mandibular arch 

lengthmax were positive, the 95% slope confidence intervals did not include zero, and the  
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Figure 23. Gorilla beringei growth of mandibular arch length: mandibular arch 
lengthmean (a) and mandibular arch lengthmax (b) plotted with the results of breakpoint 
analyses.  

 
 
 

 

 
Figure 24. Homo sapiens growth of mandibular arch length: mandibular arch lengthmean 
(a) and mandibular arch lengthmax (b) plotted with the results of breakpoint analyses. 
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Figure 25. Pan troglodytes growth of mandibular arch length: mandibular arch 
lengthmean (a) and mandibular arch lengthmax (b) plotted with the results of breakpoint 
analyses. 

 
 
 

 
Figure 26. Macaca mulatta growth of mandibular arch length: mandibular arch 
lengthmean (a) and mandibular arch lengthmax (b) plotted with the results of breakpoint 
analyses. 
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Figure 27. Papio cynocephalus growth of mandibular arch length: mandibular arch 
lengthmean (a) and mandibular arch lengthmax (b) plotted with the results of breakpoint 
analyses. 

 
 
 

slopes were significantly different from zero in all species (Table 22D). Age explained a 

large portion of the variation in relative mandibular arch lengthmax (R2=0.75-0.89; Table 

22D). Slopes from the above analyses were extracted for future analysis and renamed as 

variables: mandibular arch length growth ratemax and relative mandibular arch length 

growth ratemax. 
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Table 22. OLS regression results. 

A. Mandibular arch lengthmean    

 Species Slope 
95 % CI slope 
(lower bound) 

95 % CI slope 
(upper bound) R2 p-value 

G. beringei 3.555 2.635 4.475 0.88 <0.000 
H. sapiens 1.203 1.048 1.358 0.75 <0.000 
P. troglodytes 3.470 2.722 4.218 0.88 <0.000 
M. mulatta 5.916 5.407 6.424 0.89 <0.000 
P. cynocephalus 8.592 -2.807 19.991 0.40 0.105 

      
B. Relative mandibular arch lengthmean   

Species Slope 
95 % CI slope 
(lower bound) 

95 % CI slope 
(upper bound) R2 p-value 

G. beringei 0.025 0.019 0.032 0.88 <0.000 
H. sapiens 0.015 0.013 0.017 0.75 <0.000 
P. troglodytes 0.035 0.027 0.042 0.88 <0.000 
M. mulatta 0.081 0.074 0.088 0.89 <0.000 
P. cynocephalus 0.082 -0.027 0.190 0.40 0.105 

      
C. Mandibular arch lengthmax    

 Species Slope 
95 % CI slope 
(lower bound) 

95 % CI slope 
(upper bound) R2 p-value 

G. beringei 3.051 2.315 3.787 0.90 <0.000 
H. sapiens 0.858 0.659 1.057 0.48 <0.000 
P. troglodytes 3.163 2.443 3.883 0.86 <0.000 
M. mulatta 5.463 4.963 5.964 0.87 <0.000 
P. cynocephalus 5.022 2.175 7.869 0.77 0.006 

      
D. Relative mandibular arch lengthmax   

 Species Slope 
95 % CI slope 
(lower bound) 

95 % CI slope 
(upper bound) R2 p-value 

G. beringei 0.026 0.020 0.032 0.90 <0.000 
H. sapiens 0.012 0.009 0.015 0.48 <0.000 
P. troglodytes 0.035 0.027 0.043 0.86 <0.000 
M. mulatta 0.083 0.075 0.090 0.87 <0.000 
P. cynocephalus 0.052 0.023 0.082 0.77 0.006 

Significant results (p≤0.05) listen in bold.  
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Growth Rate Comparisons 

ANCOVA results indicated that in both the mandibular arch length growth 

ratemean and relative mandibular arch length growth ratemean models, G. beringei, P. 

troglodytes, and M. mulatta had significantly steeper slopes (i.e., growth rates) than H. 

sapiens (Table 23A, B; Figs. 28, 29). The mandibular arch length growth ratemean for G. 

beringei was not significantly different from that of the P. troglodytes, but the relative 

mandibular arch length growth ratemean for G. beringei was significantly steeper, 

although just barely, than that for P. troglodytes (Table 23A, B; Figs. 28, 29). Gorilla 

beringei and P. troglodytes had significantly greater values for mandibular arch length 

growth ratemean and relative mandibular arch length growth ratemean than M. mulatta 

(Table 23A, B; Figs. 28, 29). Mandibular arch length growth ratemean and relative 

mandibular arch length growth ratemean values for P. cynocephalus were not compared to 

other species because the models were not significant (see above). 

Gorilla beringei, P. troglodytes, M. mulatta and P. cynocephalus had significantly 

greater mandibular arch length growth ratemax and relative mandibular arch length 

growth ratemax values than H. sapiens (Table 23C, D; Figs. 30, 31). Neither the 

mandibular arch length growth ratemax nor the relative mandibular arch length growth 

ratemax values for G. beringei were significantly different from those for P. troglodytes 

(Table 23C, D; Figs. 30, 31). Macaca mulatta had a significantly greater mandibular 

arch length growth ratemax value than G. beringei and P. troglodytes while in relative 

mandibular arch length growth ratemax, M. mulatta had greater value than G. beringei, P. 

troglodytes, and P. cynocephalus (Table 23C, D; Figs. 30, 31).  
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Table 23. ANCOVA results comparing slopes between species. 
A. Mandibular arch lengthmean  
 Species comparison F-value p-value 
G. beringei vs. H. sapiens 79.680 0.000 
G. beringei vs. P. troglodytes 0.024 0.879 
H. sapiens vs. P. troglodytes 50.390 0.000 
H. sapiens vs. M. mulatta 285.760 0.000 
P. troglodytes vs. M. mulatta 38.780 0.000 
G. beringei vs. M. mulatta 38.670 0.000 
   
B. Relative mandibular arch lengthmean 
 Species comparison F-value p-value 
G. beringei vs. H. sapiens 11.490 0.001 
G. beringei vs. P. troglodytes 4.304 0.050 
H. sapiens vs. P. troglodytes 25.338 0.000 
H. sapiens vs. M. mulatta 328.510 0.000 
P. troglodytes vs. M. mulatta 83.610 0.000 
G. beringei vs. M. mulatta 154.700 0.000 
   
C. Mandibular arch lengthmax  
 Species comparison F-value p-value 
G. beringei vs. H. sapiens 50.540 0.000 
G. beringei vs. P. troglodytes 0.056 0.815 
H. sapiens vs. P. troglodytes 34.250 0.000 
H. sapiens vs. M. mulatta 199.736 0.000 
P. troglodytes vs. M. mulatta 35.840 0.000 
G. beringei vs. M. mulatta 47.340 0.000 
P. cynocephalus vs. M. mulatta 0.250 0.619 
P. cynocephalus vs. G. beringei  2.317 0.150 
P. cynocephalus vs. P. troglodytes 2.896 0.106 
P. cynocephalus vs. H. sapiens  12.490 0.001 
   
D. Relative mandibular arch lengthmax 
 Species comparison F-value p-value 
G. beringei vs. H. sapiens 10.760 0.001 
G. beringei vs. P. troglodytes 3.658 0.069 
H. sapiens vs. P. troglodytes 16.989 0.000 
H. sapiens vs. M. mulatta 225.221 0.000 
P. troglodytes vs. M. mulatta 76.880 0.000 
G. beringei vs. M. mulatta 140.150 0.000 
P. cynocephalus vs. M. mulatta 5.652 0.020 
P. cynocephalus vs. G. beringei  5.010 0.042 
P. cynocephalus vs. P. troglodytes 2.201 0.155 
P. cynocephalus vs. H. sapiens  5.874 0.018 

Significant results (p≤0.05) listen in bold.  
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Figure 28. Pairwise comparisons of mandibular arch lengthmean growth rates. 
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Figure 29. Pairwise comparisons of relative mandibular arch lengthmean growth rates. 
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Figure 30. Pairwise comparisons of mandibular arch lengthmax growth rates. 
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Figure 31. Pairwise comparisons of relative mandibular arch lengthmax growth rates. 
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Phylogenetic PCA 

The phylogenetic PCA model yielded a lambda value of zero indicating that there 

was no phylogenetic signal in the error structure of the model (Table 24A), with the first 

component explaining 99.49% of variance in the data, and the remaining three 

components together explaining less than 0.5% of variance (Table 24B). Given the high 

amount of variance explained by PC1, this sole component was used as a variable in the 

analyses below to represent the cumulative effect of brain and body size, and life-history 

variables. Eigenvector loadings for PC1 were all positive and all contributed substantially 

to the component, with brain weight and gestation length having the strongest 

contributions (Table 24C). Loadings for PC1-4 are listed in Table 24C.  

 

 

Table 24. Phylogenetic PCA results. 
A. Lambda     
Lambda = 0.00     
     
B. Variance explained     
		 PC1 PC2 PC3 PC4 
		 0.9949 0.0045 0.0006 0.0000 

     
C. Eigenvector loadings     
Variable  PC1 PC2 PC3 PC4 
Body mass 0.4819 -0.8699 -0.1045 -0.0008 
Brain weight 1.0000 -0.0046 0.0081 0.0001 
Age-at-first-reproduction 0.7894 -0.1612 0.5765 -0.1360 
Gestation length 0.9955 0.0639 -0.0695 -0.0008 
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PGLS  

There was a negative relationship between PC1 and mandibular arch length 

growth ratemean, and between PC1 and mandibular arch length growth ratemax but the 

slopes were not significantly different from zero (Table 25; Fig. 32). PC1 explained 45% 

of the variation in mandibular arch length growth ratemean and 41 % of the variation in 

mandibular arch length growth ratemax (Table 25). The slopes for relative mandibular 

arch length growth ratemean and relative mandibular arch length growth ratemax were also 

negative and the former was significantly different from zero (Table 25; Fig. 33). PC1 

explained 93% and 53% of the variation in relative mandibular arch length growth 

ratemean and relative mandibular arch length growth ratemax, respectively (Table 25). 

Unlike the growth rate data, data on age-at-growth-cessation (i.e., mandibular arch 

length growth cessationmean and mandibular arch length growth cessationmax) yielded 

significant positive relationships with PC1, and PC1 explained 73% and 76% of the 

variation in mandibular arch length growth cessationmean and mandibular arch length 

growth cessationmax respectively (Table 25; Fig. 34).  

 

Table 25. PGLS results. 
Response variable  ML lambda Slope R2 p-value 
Mandibular arch length growth ratemean 1.00 -0.00293 0.45 0.132 
Mandibular arch length growth ratemax 1.00 -0.00003 0.41 0.148 
Relative mandibular arch length growth ratemean 1.00 -0.00279 0.93 0.006 
Relative mandibular arch length growth ratemax 1.00 -0.00003 0.53 0.144 
Mandibular arch length growth cessationmean 0.00 0.01245 0.73 0.041 
Mandibular arch length growth cessationmax 0.00 0.01312 0.76 0.034 

Significant results (p≤0.05) listen in bold.  
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Figure 32. PGLS results for interspecific relationships between mandibular arch length 
and PC1. Results shown for the response variables: mandibular arch length growth 
ratemean (left) and mandibular arch length growth ratemax (right), and the predictor 
variable PC1, a variable representing brain and body size as well as life-history variables.  

 
 
 
 

 
Figure 33. PGLS results for interspecific relationships between mandibular arch length 
growth rate and PC1. Results shown for the response variables: relative mandibular arch 
length growth ratemean (left) and relative mandibular arch length growth ratemax (right), 
and the predictor variable PC1, a variable representing brain and body size as well as life-
history variables. 
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Figure 34. PGLS results for interspecific relationships between mandibular arch length 
growth cessation and PC1. Results shown for the response variables: mandibular arch 
length growth cessationmean (left) and mandibular arch length growth cessationmax (right), 
and the predictor variable PC1, a variable representing brain and body size as well as life-
history variables.	

 

Discussion 

Reconstructing the timing of molar emergence is a powerful tool for probing life 

history in the fossil record. The predictive power of molar-emergence ages is based on 

strong correlations with certain key life-history variables (e.g., Smith 1989; Smith, 

Crummett, and Brandt 1994; Kelley and Schwartz 2010, 2012). However, the underlying 

process that leads to varying molar-emergence ages in primates remains elusive. To help 

unravel the mechanism by which variation in molar emergence schedules is achieved in 

primates, this study examined whether the biomechanics of the growing masticatory 

system constrain the timing of molar emergence. Based on the expectations of the CLM 

on the position of molar emergence, adult mandibular arch lengths, and ages at molar 

emergence, predictions were generated for the rate and duration of mandibular arch 
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length growth for the five taxa included in this study (Table 19). All predictions were 

supported by the results of the study with one notable exception (Table 26). The 

comparison between mountain gorillas and chimpanzees did not conform to the 

predictions of the model. Based on reported molar-emergence ages and adult mandibular 

arch lengths in these two species, it was predicted that the mountain gorilla mandibular 

arch would grow at the same, faster, or slower rate, but for a shorter duration than the 

chimpanzee mandibular arch and that on a relative scale, the mountain gorilla mandibular 

arch would grow at a faster rate and shorter duration than the chimpanzee mandibular 

arch (Table 19). Results indicate that the rate of absolute mandibular arch length growth 

in mountain gorillas is statistically indistinguishable from that of chimpanzees, which is 

consistent with the predictions, but that mountain gorillas grow their mandibular arches 

for longer durations than chimpanzees (Table 26), a finding that is inconsistent with the 

model. The results are more consistent with mountain gorillas either possessing similar or 

later ages at molar emergence than chimpanzees. The only study on mountain gorilla 

molar-emergence ages is a preliminary one and although the data are from sample of 56 

individuals, only a handful of these individuals died at the critical points of molar 

emergence (Vakiener et al. 2016); thus, it is possible that mean molar-emergence ages for 

this population will change as more data become available. This idea is further supported 

by a recent radiographic study on molar development in the same Virunga mountain 

gorilla population, which found that this population is not accelerated in molar formation 

stages compared to chimpanzees (Kralick et al. 2017). Some of the most robust data on 

molar-emergence ages in great apes are from the Kanyawara chimpanzee population  
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Table 26. Evaluation of whether results conform to predictions. 
A. Mandibular arch lengthmean     

 Species comparison Slope 
comparison 

Consistent 
with 

prediction? 

Growth 
cessation 

comparison 

Consistent 
with 

prediction? 
G. beringei vs. H. sapiens >  Yes < Yes 
G. beringei vs. P. troglodytes = Yes > No 
H. sapiens vs. P. troglodytes <  Yes > Yes 
H. sapiens vs. M. mulatta <  Yes > Yes 
P. troglodytes vs. M. mulatta <  Yes > Yes 
G. beringei vs. M. mulatta <  Yes > Yes 

B. Relative mandibular arch lengthmean 
  
  

  Species comparison Slope 
comparison 

Consistent 
with 

prediction? 

Growth 
cessation 

comparison 

Consistent 
with 

prediction? 
G. beringei vs. H. sapiens >  Yes < Yes 
G. beringei vs. P. troglodytes <  No > No 
H. sapiens vs. P. troglodytes <  Yes > Yes 
H. sapiens vs. M. mulatta <  Yes > Yes 
P. troglodytes vs. M. mulatta <  Yes > Yes 
G. beringei vs. M. mulatta <  Yes > Yes 

    
C. Mandibular arch lengthmax    

  Species comparison Slope 
comparison 

Consistent 
with 

prediction? 

Growth 
cessation 

comparison 

Consistent 
with 

prediction? 
G. beringei vs. H. sapiens >  Yes < Yes 
G. beringei vs. P. troglodytes = Yes > No 
H. sapiens vs. P. troglodytes <  Yes > Yes 
H. sapiens vs. M. mulatta <  Yes > Yes 
P. troglodytes vs. M. mulatta <  Yes > Yes 
G. beringei vs. M. mulatta = Yes > Yes 
P. cynocephalus vs. M. mulatta = Yes > Yes 
P. cynocephalus vs. G. beringei  = Yes < Yes 
P. cynocephalus vs. P. troglodytes = Yes < Yes 
P. cynocephalus vs. H. sapiens  >  Yes < Yes 
  
D. Relative mandibular arch lengthmax 

  
  

  Species comparison Slope 
comparison 

Consistent 
with 

prediction? 

Growth 
cessation 

comparison 

Consistent 
with 

prediction? 
G. beringei vs. H. sapiens >  Yes < Yes 
G. beringei vs. P. troglodytes = No > No 
H. sapiens vs. P. troglodytes <  Yes > Yes 
H. sapiens vs. M. mulatta <  Yes > Yes 
P. troglodytes vs. M. mulatta <  Yes > Yes 
G. beringei vs. M. mulatta <  Yes > Yes 
P. cynocephalus vs. M. mulatta <  Yes > Yes 
P. cynocephalus vs. G. beringei  >  Yes < Yes 
P. cynocephalus vs. P. troglodytes = Yes < Yes 
P. cynocephalus vs. H. sapiens  >  Yes < Yes 
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(Smith et al. 2013; Machanda et al. 2015a). These mixed-longitudinal data were collected 

opportunistically by taking oral photographs of subadult known-age individuals and 

scoring them for the presence and absence of teeth. Such an approach should be 

undertaken to collect comparable data on Virunga mountain gorillas, which would yield 

larger sample sizes and thus more reliable ages at molar emergence for this population.  

Molar-emergence ages for several of the other species in this study were acquired 

from a compendium on primate tooth emergence (Smith, Crummett, and Brandt 1994). 

Although the study provided some of the original sources used to compile the data, many 

of these sources are based on unknown sample sizes and are based on captive individuals. 

These data may not be problematic for the current study for several reasons, however. 

The skeletal data in the current study for M. mulatta are from the Cayo Santiago 

provisioned population, which may exhibit faster growth rates that are comparable to 

captive macaques. Further, as part of the resus macaque sample, Smith, Crummett, and 

Brandt (1994) included data from the Cayo Santiago population (Turnquist and Kessler 

1990). Similarly, the reported data for P. cynocephalus from Smith, Crummett, and 

Brandt (1994) are from a wild population of this species, reported by (Phillips-Conroy 

and Jolly 1988).  

Diet, a potentially influential factor on growth rates, was omitted from the 

analysis in this study. The ecological-risk-aversion hypothesis posits that populations 

experiencing high food competition should exhibit slow somatic growth rates to reduce 

the risk of death due to starvation (Janson and van Schaik 1993). Species feeding on 

high-quality resources (e.g., frugivores) should exhibit slow somatic growth and when the 

hypothesis is applied to molar emergence schedules, frugivores should exhibit later ages 
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at molar emergence than folivores. Despite some exceptions to the expectations of the 

ecological-risk-aversion hypothesis among primates (e.g., Godfrey et al. 2004; Bolter 

2011; Borries et al. 2011), notably the mismatch between dental and somatic growth rates 

among indriids and lemurids (Godfrey et al. 2004), diet remains a potentially important 

factor influencing dental growth and emergence schedules. In the case of strepsirrhines, 

for example, the exceptionally fast dental development observed in indriids is timed to 

the availability of their highly folivorous diet (Eaglen 1985; Godfrey et al. 2004). The 

idea that the timing of dental development is tied to variation in the behavioral ontogeny 

of food processing has not been tested across primates (but see Dirks (2003) and Godfrey 

et al. (2004) for studies on the relationship between dental development and diet in a 

handful of primates). The ontogeny of food processing may be related to the material 

properties of food (e.g., Venkataraman et al. 2014) and/or to the amount of time required 

to learn the motor coordination and dexterity required to access adult foods (e.g., Chalk et 

al. 2016; Chalk-Wilayto et al. 2016). Such factors were not included in the present study 

as these types of data are not available for all five species included in this study. Further, 

due to the small sample size in this study, the number of predictor variables had to be 

kept to a minimum. It is possible that once aspects of diet, such as food availability and 

its nutritional content as well as mechanical properties, are included in the model, more 

variation in mandibular arch length growth rate and growth cessation would be explained, 

although the type of pattern that might emerge from this kind of analysis is unclear given 

the current sample. Once more skeletal collections of known-age individuals become 

available yielding larger sample sizes, diet should be taken into consideration as an 

influential variable.   
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Research on somatic growth rates in wild primates is in its infancy. While several 

studies have reported on growth rates in wild populations (Pusey et al. 2005; Zihlman, 

Bolter, and Boesch 2007; Breuer et al. 2009; Machanda et al. 2015b; Emery Thompson et 

al. 2016), methods tend to differ among these studies (e.g., skeletal growth, body mass 

growth, linear growth of body segments) making direct comparisons difficult. Although it 

would be valuable to determine how mandibular arch growth rates compare to overall 

somatic growth rates, such comparisons are not currently possible. Insight can be gained, 

however, by comparing data on ages at somatic growth cessation to the data on growth 

cessation from the current study.  

Rhesus macaques from Cayo Santiago reach adult weight between the ages of six 

and seven years (Leigh and Bernstein 2006), which coincides with the age-at-mandibular-

arch-length-growth-cessation estimated for this population here (~6.7 years; Table 21). 

Data on captive baboons, however, suggest that adult body mass is also reached at similar 

ages to Rhesus macaques (~6-7 years: Leigh 2006b; Leigh and Bernstein 2006). This is 

slightly younger than the ages at mandibular arch growth cessation identified by the 

present research (7.5-7.7; Table 21). This is not surprising, however, given that animals 

in captivity tend to exhibit accelerated development compared to wild conspecifics, a 

possible result of differences in food availability, maternal energetics, predators, and 

disease (e.g., Altmann and Alberts 1987; Phillips-Conroy and Jolly 1988; Stoinski et al. 

2013). It is expected that yellow baboons living in the wild would exhibit slightly older 

ages at somatic growth cessation, perhaps similar to the ages at mandibular arch length 

growth cessation reported here.  

Data on somatic growth are available for Kanyawara chimpanzees, which is a 
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different population than the two chimpanzee populations used in this study. These data 

indicate that in males, body lengths reach adult values at around age 10, but body area 

continues to grow until the ages of 15-17 (Machanda et al. 2015b). The present study 

identified ages at mandibular arch growth cessation of ~12 years for chimpanzees (Table 

21), which falls between the body length and body area growth cessation ages identified 

for the Kanyawara chimpanzees and close to the ages reported for M3 emergence in the 

sample used for this study (Table 17). The age-at-mandibular-arch-growth-cessation 

identified for mountain gorillas (~18 years; Table 21), on the other hand, is much later 

than their age-at-M3-emergence (~10 years; Table 17). While this discrepancy in age 

may be due to the small sample size for this species, the growth cessation estimates are 

consistent with data on somatic growth rates for the same population. Although most 

Virunga mountain gorilla adult body proportions are variably reached between the ages 

of 11 and 16 years, head proportions are the last to reach adult values, especially in males 

where adult size is not reached until 16.7-18.1 years of age (Galbany et al. 2017). This 

late age at adult head proportion attainment may be related to the overall maturation of 

the masticatory system, including the attainment of secondary sexual characteristics, such 

as the late eruption of the permanent canines, the growth of the sagittal crest, which 

continues late into adulthood in gorillas (Balolia, Soligo, and Wood 2017), and related 

size increases of the masticatory muscles (Taylor 2003). In mountain gorillas, male 

dispersal occurs at around the same time as when adult size is reached (Harcourt 1978; 

Robbins 1995; Stoinski et al. 2009), and should coincide with these final stages of 

growth.  

Adult sexual size dimorphism is achieved through ontogenetic shifts in growth 
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rate and/or duration (Shea 1986; Leigh, Shah, and Buchanan 2003). To boost sample 

sizes in this study, sexes were combined in all analyses, but doing so may have 

obstructed potential differences between the sexes that arise during ontogeny. Sexual 

dimorphism in mandibular arch length can be visualized in the more sexually dimorphic 

species in this study (G. gorilla: Fig 23; P. cynocephalus, Fig. 27) as two concentrations 

of data points in the adult phases of mandibular arch length curves, males with greater y-

values and females with lower y-values. The males in these species may attain longer 

mandibular arches by having later ages at growth cessation and/or faster rates of 

mandibular arch growth than females. While it is possible that important information on 

sex-specific growth rates and ages at growth cessation are masked in this analysis, these 

data are being compared to data on molar emergence, which are also not sex-specific. 

The effect that sex-specific growth rates/cessations have on molar-emergence ages can 

only be evaluated when larger sample sizes and sex-specific data on molar-emergence 

ages become available.  

The current research sought to determine the underlying cause for the close 

association between molar-emergence age and two key life-history variables that relate to 

reproductive scheduling. This was done in the context of the relationship between molar-

emergence age and mandibular arch length growth rate and duration. Specifically, this 

analysis was aimed at determining if brain size, body size, and life history have 

significant effects on mandibular growth rate and duration, and thus on molar-emergence 

age in primates. These predictor variables were reduced to one variable using PCA. 

Interspecific analyses indicated that the principal component is significantly positively 

related to age-at-mandibular-arch-growth-cessation, but most relationships between the 
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component and growth rates, which were all negative, were not statistically significant.  

The positive relationship between PC1 and mandibular arch length growth 

cessation indicates that life history and body/brain size are related to the duration of 

mandibular arch length growth. This is perhaps not surprising given the fact that many 

life-history variables are strongly correlated with one another (Smith 1989) and that 

mandibular arch length growth cessation occurs at similar ages as M3 emergence and 

somatic growth rate cessation (discussed above) and M3 emergence is a skeletal marker 

of adulthood and thus the onset of reproduction ( Smith 1989; Smith and Tompkins 

1995). Overall, these results suggest that mandibular arch growth is closely tied to the 

overall plan of growth and development, both of the skull as well as somatic growth in 

general, and molar emergence schedules reflect this close relationship (Smith 1989).  
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CHAPTER 5 

DISCUSSION 
 

Summary of Findings  

This dissertation explored molar emergence as part of a growing coordinated 

masticatory system to provide a biomechanical model that explained variation in the 

position and timing of molar emergence and yielded an understanding for the close 

association between molar-emergence age and life history among primates. Specifically, 

this dissertation tested the hypothesis that the location and timing of molar emergence is 

constrained to avoid TMJ distraction throughout ontogeny. This hypothesis was tested in 

Chapters 2-4 from three related perspectives that built upon one another.  

 Chapter 2 tested the spatial model of molar emergence based on the expectations 

of the Constrained Lever Model (CLM); it investigated whether molars emerge directly 

anterior to the point at which the muscle resultant intersects the triangle of support, as per 

the original formulation of the CLM by Greaves (1978), or significantly anterior to this 

point, which would be consistent with the finding that the last molar is positioned 

significantly anterior to the muscle resultant in adult primates (Spencer 1995, 1999; 

Perry, Hartstone-Rose, and Logan 2011). Overall, the study in Chapter 2 supported the 

hypothesis and found that molars emerge significantly anterior to the resultant; however, 

when the most anterior MLA was used to approximate the position of the resultant, the 

last molar was posterior to the MLA in later ontogenetic stages and adults of some taxa. 

Chapter 3 was aimed at understanding what factors influence ontogenetic and 

interspecific variation in the position of molar emergence given different craniofacial 
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configurations, diets, and feeding behaviors that primates exhibit. It was determined that 

more resistant foods, larger skulls, longer molars, and longer jaws produce larger buffer 

zones, but greater canine overlap produces smaller buffer zones. These factors account 

for a large portion of both ontogenetic and interspecific variation in the distance between 

the distal-most molar and the resultant. These results suggest that the buffer zone is part 

of a mechanism modulating the position of molar emergence across primates to prevent 

TMJ distraction throughout ontogeny and in adulthood.  

Chapter 4 looked at how shifting certain parameters in the model might produce 

variation in the timing of molar emergence. The chapter investigated whether the rate at 

which space is made available in the jaws, anterior to the resultant, and the duration of 

jaw growth determine the timing of molar emergence and whether these growth 

parameters are influenced by life-history variables. Comparisons of mandibular growth 

rates between species generally supported the hypothesis. The model proposed in the 

chapter explained differences in the timing of molar emergence between primate species. 

Furthermore, life-history variables were positively related to jaw growth duration, and 

suggested a positive relationship with mandibular arch length growth rate, suggesting that 

life-history variables are related to molar-emergence ages vis-à-vis their influence on jaw 

growth rate and duration. 

Overall, this dissertation provides a mechanical and developmental model for 

explaining temporal and spatial variation in molar-emergence ages among primates and a 

framework for understanding how variation in the timing of molar emergence evolves 

among primates. The findings suggest that life history is related to ages at molar 

emergence through its influence on the duration and rate of mandibular arch length 
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growth in the overall context of masticatroy growth. Furthermore, this dissertation 

provides support for the integrated nature of craniofacial growth and has implications for 

the study of primate life history and masticatory morphology (discussed below).  

 

Life-History Reconstructions  

Currently, life-history reconstructions based on molar-emergence ages rely on the 

discovery of fossil individuals that died at or near the age of M1 emergence (e.g., Kelley 

1997; Kelley and Smith 2003; Smith et al. 2007b). Taphonomic bias towards preserving 

large bones (Behrensmeyer, Western, and Dechant Boaz 1979; Behrensmeyer 1981) 

means that subadult skeletal elements are less likely to be preserved in the fossil record. 

Consequently, juvenile fossilized remains tend to be more rare relative to adult remains 

reducing the chances of discovering individuals that died and became fossilized at or 

around the age of M1 emergence.  

This dissertation offers a new way of reconstructing life history in the fossil 

record that does not rely on the discovery of individuals that died at the point of M1 

emergence. Results indicate that there is a link between life history and age-at-

mandibular-arch-length-growth-cessation as well as mandibular arch growth rate 

(Chapter 4). Based on the data in Chapter 4, faster life histories are linked with earlier 

ages-at-mandibular-arch-length-growth-cessation and faster mandibular arch growth 

rates. The sample size for the interspecific analyses in Chapter 4 was very small and not 

all of these relationships were statistically significant, but the link between life history 

and mandibular arch growth rate/cessation is intriguing and may offer a new method for 

determining the life histories for fossil primates.   
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Figure 35. Variables mandibular arch length and mandibular dental arch length. 
Landmarks were taken along the labial/buccal aspect of the alveolar bone, distal to each 
tooth position. Red dots indicate landmarks on visible bone surface whereas dashed red 
and white dots indicate landmarks that are obstructed in the specific view. Red square 
indicates the position of the adductor muscle resultant as it intersects the triangle of 
support, projected onto the occlusal plane. Mandibular arch length (left), as measured in 
Chapter 4, describes the distance along the mandibular arch from the point between the 
two central mandibular incisors (infradentale) to the intersection of the resultant with the 
triangle of support, projected onto the occlusal plane (see Chapter 4 for description of 
calculation). Mandibular dental arch length (right) describes the distance along the 
mandibular arch from infradentale to the point distal to the last molar. This measurement 
is strongly correlated with mandibular arch length (Table 27) and its calculation does not 
require the presence of the entire skull.   
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A proxy for the variable mandibular arch length, which is necessary to measure 

for ontogenetic samples of fossil primates to use this method for reconstructing life 

history, can be easily measured using only mandibular or maxillary remains. The 

approach described in this dissertation of measuring mandibular arch length requires 

relatively complete skulls that preserve the attachment sites of the adductor muscles as 

well as the positions of all teeth. A preliminary analysis of the relationship between 

mandibular arch length, as defined in Chapter 4 (also shown in Fig. 35), and mandibular 

dental arch length (the distance along the mandibular arch from infradentale to the point 

distal to the last molar: Fig. 35) indicates that these two variables are highly correlated at 

all molar emergence categories (r = 0.96 - 0.98; Table 27). Mandibular dental arch 

length can therefore be used as a surrogate for mandibular arch length and the former’s 

calculation does not require the presence of the entire skull, only the mandibular or 

maxillary dental arch. Alternatively, mandibular arch length can be predicted from 

mandibular dental arch length, given the high coefficients of determination in an 

ordinary least-squares (OLS) regression analysis between the two variables (Table 27; 

Fig. 36). By describing mandibular arch length/mandibular dental arch length growth 

rates and ages at growth cessation, a fossil taxon for which ontogenetic samples are 

relatively rich can be compared to modern primate mandibular growth rates to determine 

if the fossil taxon possessed a faster or slower life history profile than extant taxa. One 

particular case where such an approach could be informative is the life-history 

reconstruction of Neandertals. As described in the Chapter 1, the dental evidence for life 

history in this hominin species is conflicting, with some researchers reporting earlier ages 

at tooth formation and emergence than modern humans (Ramirez Rozzi and Bermudez de 
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Castro 2004; Smith et al. 2010), while others report late ages at molar emergence 

(Macchiarelli et al. 2006).  

Another case where such an approach may be informative is the life-history 

reconstructions of australopith species. As discussed in Chapter 1, estimates of M1-

emergence ages for Australopithecus and Paranthropus, based on enamel and dentine 

microstructure, has yielded a range of 2.7-3.9 years ( Dean et al. 1993; Kelley and 

Schwartz 2012).  Although this range overlaps with the range of M1-emergence ages 

known for wild-shot apes (2.5-4.6 y: Kelley and Schwartz 2012; Smith et al. 2013; 

Machanda et al. 2015a), it falls at the lower end of the extant ape range suggesting that 

australopiths had an accelerated life history relative to the extant great apes, or 

alternatively, that there was selection for fast dental development in these taxa (Kelley 

and Schwartz 2012). Given the relatively larger brain sizes of australopiths compared to 

the extant great apes (Kimbel and Villmoare 2016), a faster life history would be 

surprising. Although rich ontogenetic series of australopith species do not exist, 

mandibular ontogenetic series are available for A. afarensis (Glowacka, Kimbel, and 

Johanson 2017) and P. robustus (Cofran 2014). Once the ages at death for the individuals 

in these samples are established, which can be performed using non-destructive X-ray 

synchrotron microtomography methods (e.g., Tafforeau et al. 2006; Smith et al. 2010; Le 

Cabec, Dean, and Begun 2017), their mandibular arch growth rates can be determined 

and compared to one another as well as to extant great apes and humans as an alternative 

means of determining the pace of life history.  
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Table 27. Results of OLS regressions and Pearson correlation coefficients (r) for the 
relationship between mandibular dental arch length and mandibular arch length for 
molar emergence categories. 

A. Mandibular arch lengthmean   
Molar emergence category slope R2 r p-value 
dp4 emerged 0.562 0.93 0.97 <0.001 
M1 emerged 0.648 0.96 0.98 <0.001 
M2 emerged 0.761 0.95 0.98 <0.001 
M3 emerged 0.794 0.96 0.98 <0.001 

     
B. Mandibular arch lengthmax   
Molar emergence category slope R2 r p-value 
dp4 emerged 0.627 0.92 0.96 <0.001 
M1 emerged 0.741 0.96 0.98 <0.001 
M2 emerged 0.855 0.92 0.96 <0.001 
M3 emerged 0.902 0.93 0.96 <0.001 

Relationship between (A) mandibular dental arch length (predictor variable) and 

mandibular arch lengthmean (response variable) and (B) mandibular dental arch length 

(predictor variable) and mandibular arch lengthmax (response variable), for molar 

emergence categories. 
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Figure 36. Relationship between mandibular dental arch length and mandibular arch 
lengthmean and mandibular dental arch length and mandibular arch lengthmax, for molar 
emergence categories. The former is shown at the top and the latter at the bottom. OLS 
regression slopes as in Table 27.   
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Changes in Masticatory Morphology Throughout Ontogeny 

Although it was determined that molars emerge significantly anterior to the 

resultant in primates, the exact distance between the distal-most molar and the resultant 

depended on taxonomic group as well as ontogenetic stage (Chapter 2). One novel 

finding of this dissertation is that the distance between the last molar and the resultant 

decreases as ontogeny progresses in most primates (Chapter 2). This phenomenon is also 

illustrated in Figure 36, where the slope between dental arch length and mandibular 

length is steeper at each progressive molar emergence category. This result can be 

interpreted in several ways.  

Firstly, on a biomechanical basis, an increase in the distance between the distal-

most molar and the resultant throughout ontogeny may be a result of the changing 

geometry of the masticatory system throughout ontogeny. Chapter 2 suggested that the 

angle between the tringle of support produced when biting on the last molar and the 

occlusal plane influences the point at which the resultant crosses the triangle of support. 

This angle is a result of two factors, the height of the TMJ above the occlusal plane and 

the distance between the last molar and the TMJ (Fig. 37). Larger angles and thus short 

distances between the distal-most molar and the TMJ are produced by increasing the 

height of the TMJ, decreasing the distance of the last molar to the TMJ, or both (Fig. 37 

B, E). Conversely, small angles and long distances between the distal-most molar and the 

TMJ (i.e., the morphology found in subadult primates) are produced by decreasing the 

height of the TMJ, increasing the distance of the last molar to the TMJ, or both (Fig. 37 

C, D, F). The height of the TMJ increases throughout growth (e.g., Ravosa and Ross 

1994; Taylor 2002, 2003) and the last molar is positioned closer to the resultant with  
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Figure 37. Effects of changing TMJ height above the occlusal plane and the distance of 
the distal-most molar to the TMJ on (1) the angle (blue) between the occlusal plane and 
the triangle of support and (2) the point at which the resultant intersects the triangle of 
support, projected onto the occlusal plane (red dashed line). The following comparisons 
are relative to the morphology in A. Raising the TMJ (B) results in a larger angle and 
brings the resultant’s intersection with the triangle of support closer to the distal-most 
molar, lowering the TMJ (C) reduces the angle and brings the resultant’s intersection 
with the triangle of support further from the distal-most molar. Moving the distal-most 
molar anteriorly (D) reduces the angle and brings the resultant’s intersection with the 
triangle of support further from the distal-most molar. Moving the distal-most molar 
anteriorly and raising the TMJ (E) maintains the angle and maintains the resultant’s 
intersection with the triangle of support. Moving the distal-most molar anteriorly and 
lowering the TMJ (F) reduces the angle and brings the resultant’s intersection with the 
triangle of support further from the distal-most molar. 

 

increasing age (Chapter 2), thus the angle between the triangle of support and the 

occlusal plane increases throughout growth (Fig 37; Chapter 2) explaining the 

phenomenon of decreasing distance from the last molar to the resultant as primates 

mature.  

The decreasing distance between the distal-most molar and the resultant 

throughout ontogeny may also be a result of the fact that the number of molars that are 

yet to erupt decrease throughout ontogeny (i.e., at the dp4 emerged category, there are 

three molars yet to erupt, while at the M2 emerged category there is only one molar 

remaining). Among cercopithecoids, there is little or no temporal overlap in the 

completion of crown formation of the M1 and the initiation of the M2, nor between 

completion of the M2 and the initiation of the M3 (e.g., Swindler and Gavin 1962; 

Swindler 1985; Swindler and Meekins 1991; Dirks et al. 2002; Dirks and Bowman 2007). 

Apes and strepsirrhines, on the other hand, exhibit temporal overlap in molar formation, 

(Anemone, Watts, and Swindler 1991; Beynon, Dean, and Reid 1991a; Dirks 1998; 

Schwartz et al. 2005; Godfrey et al. 2006; Dirks and Bowman 2007). If the number of 
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forming molars distal to the distal-most emerged molar influences the distance between 

that molar and the resultant then this pattern should only be present in cercopithecoids 

and not in apes or strepsirrhines, however, the results here indicate that the distance 

between the last molar and the resultant increases throughout ontogeny in both 

cercopithecoids and apes, but not in strepsirrhines (Chapter 2). Furthermore, Boughner 

and Dean (2004) found that that spatial availability in the jaws does not constrain molar 

development in both cercopithecoids and apes (discussed in Chapter 1).  

A further possible reason for the decreasing distance between the distal-most 

molar and the resultant throughout ontogeny is related to the acquisition of adult 

masticatory function. While some primate studies report little evidence of differences in 

diet between adults and subadults  (Watts 1985; Stone 2006; Nowell and Fletcher 2008), 

many field-based studies suggest at least some age-driven changes in dietary 

composition, pre-oral processing behavior, feeding or processing time (e.g., Post, 

Hausfater, and McCuskey 1980; Boinski and Fragaszy 1989; Corp and Byrne 2002; 

Gunst et al. 2010; Venkataraman et al. 2014; O’Mara 2015; Chalk et al. 2016; Chalk-

Wilayto et al. 2016). The masticatory system undergoes substantial shape changes 

throughout ontogeny. Growth differs across jaw muscles (Cachel 1984; Dickson, Fitton, 

and Kupczik 2017) and muscle mechanical advantage increases throughout ontogeny 

(Dechow and Carlson 1990; Glowacka and Schwartz 2017), suggesting that subadults 

and adults may engage in disparate jaw muscle recruitment patterns (Herring 1985), and 

that subadults produce lower bite forces during feeding (Thompson, Biknevicius, and 

German 2003; La Croix et al. 2011; Edmonds and Glowacka 2014). As a result, subadults 

are likely to be at a disadvantage especially when feeding on tough, hard, or large food 
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items and subadult primates may require a larger buffer zone to safeguard their TMJs 

when developing the skills and morphology necessary to feed on an adult diet. In 

particular, it may be critical for subadults to have larger buffer zones as an extra safety 

mechanism in order to safeguard their TMJ while they are learning how to extract and 

process the foods necessary to fuel their growth. This hypothesis is difficult to test, 

however, and would require studies of how chewing kinematics and muscle activation 

patterns change during ontogeny in primates. Available data on the ontogeny of the 

mammalian chewing system suggest that subadults chew foods at slower rates, possibly 

due to the changes that occur to muscle activation patterns and muscle’s lines of action 

throughout ontogeny and suggest that ontogenetic changes in feeding behavior reflect a 

learning process accompanied by feedback relationships to anatomical development of 

the masticatory system (Herring 1985).  

 

Hominin Masticatory Ontogeny and Morphology 

In addition to providing a model that tests similarities/differences in life history 

among fossil and extant primate species, the CLM and the results of this dissertation can 

also shed light on the evolution and function of unusual hominin craniofacial anatomy.  

 

Neandertals 

Neandertal masticatory morphology differs markedly from that of modern 

humans, with Neandertals exhibiting striking midfacial projection and humans exhibiting 

short orthognathic faces that are situated inferior to the anterior cranial fossa, Neandertals 

having a more posterior zygomatic root, and a retromolar space between the last molar 
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and the root of the mandibular ramus (Brace 1962; Smith 1983; Rak 1986; Trinkaus 

1987; Lieberman, McBratney, and Krovitz 2002). In Neanderthals, mandibular ontogeny 

proceeds mainly in the forward and downward direction, with anterior displacement of 

the molar region of the alveolar process, whereas in humans, growth is characterized by a 

strong vertical component of facial ontogenetic shape change, with increasing height of 

the ramus and projection of the chin (Bastir, O’Higgins, and Rosas 2007). These 

differences in adult masticatory morphology therefore arise early in ontogeny and are 

maintained throughout growth (e.g., Ponce de León and Zollikofer 2001; Krovitz 2003; 

Bastir, O’Higgins, and Rosas 2007; Williams and Cofran 2016). The masticatory 

configuration of Neandertals is also unique among primates and it would appear that 

adaptations for efficient bite forces across the dental arcade can explain some of the 

unique features of Neandertal craniofacial morphology (Spencer and Demes 1993).  

In their biomechanical analysis of the masticatory system, Spencer and Demes 

(1993) reported that the masticatory configuration of Neandertals is consistent with an 

adaptation for high/repetitive bite forces at the anterior dentition without compromising 

bite forces at the posterior dentition. This is achieved through an anterior migration of the 

dental arch coupled with an anterior migration of the adductor resultant, resulting in 

increased mechanical advantage at all bite points as well as adductor muscles (Spencer 

and Demes 1993). This configuration differs from that of extant primate taxa that have 

adaptations for efficient bite forces at the anterior dentition. For example, among 

platyrrhines, Cebus apella has more anteriorly positioned masseter and temporalis 

muscles, which increase mechanical advantage at the incisors and canines, as it consumes 

very tough food items with its anterior dentition, but compromises bite forces on the M3s, 
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which are reduced in size (Wright 2005). It is the combination of an anteriorly migrated 

dental arch, coupled with an anterior resultant that produces the midfacial projection 

typical of Neandertal faces (Spencer and Demes 1993).  

The retromolar gap, another unique feature of Neandertals, may be the outcome of 

facial projection in relation to a fixed ramus position, selection for a large buffer zone, or 

both. The results of Chapter 2 indicate that species that violated the model as adults (i.e., 

those that possessed distal-most molars that are posterior to the resultant) are also the 

species with some of the most obtuse angles between the occlusal plane and the triangle 

of support (Chapter 2: Table 10). This angle is a function of both TMJ height and the 

position of the last molar relative to the TMJ (discussed above in Changes in Masticatory 

Morphology Throughout Ontogeny section). Neandertal TMJs are positioned absolutely 

closer to the occlusal plane than it other hominoids, including humans (Rak, Ginzburg, 

and Geffen 2002), but the more anterior position of the last molar would produce a more 

acute angle between the triangle of support and the occlusal plane, and thus a longer 

distance between the resultant and the last molar. Chapter 3 defined this distance as the 

anterior portion of the buffer zone and indicated that a large buffer zone may be a result 

of processing more resistant foods, which is consistent with the hypothesis of extensive 

oral processing and high bite force production with the anterior dentition (Smith 1983; 

Rak 1986; Trinkaus 1983; Demes 1987) as well as the posterior dentition (Spencer and 

Demes 1993) in Neandertals. 
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Australopiths 

Researchers have long used the gross morphology of the masticatory system to 

make inferences about dietary adaptations of fossil taxa (e.g., Robinson 1954, 1963; Bock 

and von Wahlert 1965). Microwear and isotopic analyses have made dietary 

reconstructions more contentious as results using different methods often do not yield the 

same dietary signal (e.g., Ungar, Grine, and Teaford 2008; Cerling et al. 2011; Ungar and 

Sponheimer 2011). One persistent mystery has been the dietary reconstruction of 

Paranthropus boisei, which possessed an overall masticatory morphology that suggests a 

hard-object eating adaptation with large and anteriorly placed attachment sites for the 

muscles of mastication, large, flat, and thickly enameled premolars and molars, and a 

deep and wide mandible with a tall ramus (Tobias 1967; Rak 1983), yet its microwear 

signature is that of a tough-food consumer, (e.g., Ungar, Grine, and Teaford 2008). A 

recent analysis of the biomechanics of P. boisei mastication found that despite the fact 

that the masticatory morphology of the species (a combination of distally positioned 

molar teeth with an anteriorly positioned masseter) suggested that TMJ distraction should 

be an important constraint on this species’ masticatory system, the TMJ did not 

experience distractive forces when biting on M2 even when the working and balancing 

side adductor muscles were used equally to produce maximum bite force (Smith et al. 

2015). This surprising finding suggests that despite molars being positioned close to the 

resultant, and thus the buffer zone being very small, P. boisei could produce very high 

bite forces without producing distraction at the TMJ, which the authors interpreted as an 

adaptation to a hard-food diet (Smith et al. 2015). This is unlike other hominins that have 

been examined thus far (A. africanus and A. sediba), which exhibit distractive forces at 
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the TMJ when biting on molars with working and balancing side adductor muscles 

activated equally (Ledogar et al. 2016b).  The P. boisei result also suggests that the 

premolars and molars of P. boisei, at least the P3 and M2, are positioned within Region I, 

defined by the CLM. This finding is surprising in the context of the expectations of the 

CLM, and unusual among primates. In studies of bite force and CLM region distributions 

in extant anthropoids, it was found that molars, and often premolars are positioned within 

Region II ( Spencer 1999; Lucas 2012). That the M2 is positioned within Region I may 

only be possible due to the species’ very widely spaced TMJs (Tobias 1967; Picq 1990), 

which would act to increase the size of Region I and thus decrease the size of Region II 

(Spencer 1995). Widely spaced TMJs are not a specialization of P. boisei, however, as 

they are found among all australopiths (Kimbel et al. 2014), therefore this feature alone 

cannot explain the unusual distribution of Region I in P. boisei.   

The interpretation that P. boisei was feeding on a hard diet is somewhat 

inconsistent with the results of this dissertation, which found that the size of the buffer 

zone is positively related to dietary toughness, and a positive relationship is also 

suggested with Young’s modulus (Chapter 3). With a very high TMJ and anteriorly 

positioned and inclined masseter muscles, it is expected that the muscle resultant would 

cross the triangle of support at an anterior location and thus produce a small buffer zone 

between the resultant and the distal-most tooth. Based on the current understanding of 

primate masticatory morphology, the morphology of P. boisei is unique among primates.  

 Ledogar et al. (2016b) applied the CLM to the MH1 A. sediba specimen to test 

whether this species possessed adaptations for high bite force production. These authors 

found that the MH1 cranium experienced tensile forces at the TMJ when biting on the 
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M2 with equal force using the working and balancing size adductor muscles, indicating 

that that the balancing side muscle force had to be reduced when biting on this molar in 

order to keep the resultant inside the triangle of support. MH1 is a subadult, with erupted 

M2s but unerupted M3s and growth simulations indicate that significant size and shape 

changes would take place between its ontogenetic stage and adulthood (Kimbel and Rak 

2017). In this vein, the results of this dissertation suggest that the distance between the 

last erupted molar and the resultant decrease throughout ontogeny, with the smallest 

distance occurring in adulthood. This has implications for understanding the masticatory 

biomechanics of the MH1 specimen. The results of this dissertation indicate that as an 

adult, the M3 would be positioned closer to the resultant then in a subadult. The 

conclusions of Ledogard et al. (2016b) that A. sediba was not adapted to produce high 

bite forces on its molars are therefore strengthened by the results of this dissertation and 

indicate that when biting on M3, A. sediba would be required to reduce balancing side 

force to an even greater degree than previously thought, causing a further reduction in 

bite force.   

 

Modern Humans 

 Modern human masticatory morphology is unique among primates; humans 

exhibit small and short maxillae (Fleagle, Gilbert, and Baden 2010), orthognathic 

faces (Lieberman, McBratney, and Krovitz 2002), and small postcanine dentition and 

masticatory muscles (e.g., Robinson 1954; Rak 1983; Demes and Creel 1988).  This 

study, as have others (Spencer and Demes 1993; Spencer 1999), found that the modern 

human masticatory system is capable of producing efficient bite forces due to the 
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proximity of the molars to the TMJ; however, this proximity also puts humans at risk of 

distractive forces at the TMJ (Ledogar et al. 2016a). In fact, in this study humans (adult 

humans, specifically) were one of the few species that violated the CLM. It is therefore 

unlikely that a reduction of the human masticatory system was a byproduct of selection 

for increased bite forces at the molars (but see evidence for selection for increased bite 

forces at the anterior dentition in Inuit populations in Spencer and Demes 1993) (Ledogar 

et al. 2016a). However, the model tested here suggests that selection for shorter faces 

(Lieberman, McBratney, and Krovitz 2002) and a prolonged growth schedule (Schultz 

1960b) in the lineage leading to modern humans would have had the concomitant effect 

of delaying molar emergence. 

 

Study of Masticatory Morphology and Future Research 

A Cautionary Note on Using Models  

To understand systematically how masticatory configuration is coordinated 

throughout ontogeny to avoid TMJ distraction, a mathematical model was used that treats 

the jaw as if it were a Class III lever (Gysi 1921; Greaves 1978; Smith 1978; Spencer 

1995). This model of feeding mechanics is crucial to the study of the ontogeny and 

evolution of masticatory system function, but it is important to note that, it is a 

simplification of a complex system and is therefore incomplete to some extent. A 

fundamental assumption of the hypothesis tested in this dissertation is that the 

masticatory system grows and functions in accordance with the CLM. While the 

simplifications of models may obscure the finer details of any mechanical structure, they 

are necessary in order to answer simple questions that would otherwise go unanswered 
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due to complex interactions within the system. While the dissertation found support for 

the hypothesis that the position and timing of molar emergence is constrained by the 

biomechanics of mastication, there were some exceptions to this finding, particularly 

among adults. In the future, it will be critical to evaluate the these ‘exceptions’ in order to 

gain further insight into the system, which may aid in refining the model. To this end, 

future studies of the feeding behavior of wild and captive primates, including studies on 

how chewing kinematics and muscle activation patterns change during ontogeny may 

provide insight into how subadults and adults may differ in how they use their 

masticatory systems.  

 

Evolution of the Masticatory System  

Understanding the proximate and ultimate factors that produce changes in skull 

morphology is important for reconstructing the lifeways of fossil taxa. Throughout 

human evolution, for example, large brains and bipedal locomotion have reshaped the 

neurocranium and the base of the skull (Bastir et al. 2010; Lieberman 2011; Kimbel et al. 

2014), while the ability to cook and use tools to prepare food have caused a drastic 

reduction in the modern human facial skeletons and teeth (Organ et al. 2011; Zink and 

Lieberman 2016). Understanding the causes of these morphological changes and the 

sequence of their evolution allows for the formulation of evolutionary scenarios. The 

morphology of the masticatory system is a compromise among many interrelated factors, 

including behavior, diet, ontogeny, and phylogeny (Fig. 38) and studying these factors 

both independently as well as holistically across a wide range of taxa can provide a more 

nuanced understanding of the selective forces that have shaped the primate skull.  
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Figure 38. Schematic representing the complex relationship among the factors that 
contribute to adult masticatory morphology. See text for details.  

 

Diet, and the material properties of food items specifically, are a primary factor 

that shape masticatory morphology, although the details of how differences in diet affect 

different species remains unknown, largely due to the complex interactions among factors 

that produce adult masticatory morphology (e.g., feeding behavior, food mechanical and 

geometric properties, and loading regimes: Ross et al. 2012). The muscles of mastication 

must be able to generate enough forces so that mastication can occur and the jaws must 

be able to withstand the forces produced by these muscles (e.g., Daegling and Hylander 
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2000; Taylor and Vinyard 2013). Similarly, the chewing surfaces of teeth must be 

designed to help break down food in an efficient way (Kay 1975; Sheine and Kay 1977). 

Not trivial are the changes that occur to the chewing surfaces as teeth wear with use. An 

important feature of teeth is that they should stay functional even as their shapes change 

with wear as teeth interact with food particles as well as with one another (Janis and 

Fortelius 1988; Ungar and M’Kirera 2003; King et al. 2005; Glowacka et al. 2016; 

Pampush et al. 2016).  

Behavior also influences the masticatory system. For example, social organization 

is related to canine size sexual dimorphism in primates such that large, sexually 

dimorphic canines occur in species where competition for females is high (Plavcan and 

van Schaik 1992; Plavcan, van Schaik, and Kappeler 1995). Large canines influence the 

shape of the jaws through their large roots (Plavcan and Daegling 2006; Glowacka, 

Kimbel, and Johanson 2017), and cause repositioning of the masticatory muscles due to 

the demand for larger gapes (Hylander 2013). Feeding behavior, at the interface between 

diet and behavior, is important in producing morphological changes. Primates that 

perform oral preparation of food with their anterior dentition, for example, exhibit 

adaptations for this behavior in the masticatory system (e.g., Wright 2005). Feeding 

behavior is expected to change during ontogeny, as animals begin to consume adult foods 

(Chalk 2011). The masticatory system changes drastically throughout ontogeny. The 

eruption of new teeth and the demands of a more adult diet produce growth-related shape 

changes to the system (Krogman 1930, 1931a, 1931b; Schultz 1960a, 1962; Enlow 1964, 

1966; Enlow and Bang 1965; Corner and Richtsmeier 1991, 1992, 1993; Richtsmeier et 

al. 1993; Humphrey, Dean, and Stringer 1999). Because diet is such an important factor 
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in producing adult morphology, it is critical to assess how growth-related shifts in the 

types of food or the frequency of their consumption affect the ontogeny of the 

masticatory system in primates that vary in masticatory morphology, diet, and growth 

schedules (e.g., Venkataraman et al. 2014). 

All of the above factors are influenced by phylogeny. Behavior, diet, and 

ontogenetic patterns can be similar in two species simply due to shared ancestry as 

opposed to independent instances of adaptation (Harvey, Martin, and Clutton-Brock 

1987; Harvey and Pagel 1991). Life history is strongly influenced by phylogeny (Kamilar 

and Cooper 2013). Life history, in turn, affects some of the factors that contribute to adult 

masticatory morphology, such as the timing of permanent molar and emergence, 

described in this dissertation, and permanent canine emergence, both of which  have 

consequences for jaw growth (Smith 1989; Schwartz and Dean 2001; Glowacka, Kimbel, 

and Johanson 2017; Chapter 4).  

Much current research focuses on how diet influences adult masticatory form 

(e.g., Ravosa 2000; Taylor 2006; Vogel et al. 2008, 2014; Strait et al. 2012; Ross and 

Iriarte-Diaz 2014; Scott et al. 2014; Ravosa et al. 2015), but as discussed above, diet is 

just one of the many interrelated factors that contribute to adult masticatory morphology. 

While diet and feeding behavior are key in producing adult masticatory morphology, it is 

shifts in the rate and timing of growth processes, which are influenced by life history, that 

ultimately produce evolutionary changes to masticatory morphology (Gould 1977; 

Alberch et al. 1979; Ravosa and Ross 1994; Leigh, Shah, and Buchanan 2003; 

Mitteroecker, Gunz, and Bookstein 2005; Leigh 2006a). This dissertation offers one 

component of the larger group of factors that contribute to masticatory form and function 
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across primates. By relating the biomechanics of mastication to the position and timing of 

molar emergence, this dissertation has provided the mechanism that acts during ontogeny 

to produce variation in molar-emergence ages across primates. Knowing this mechanism 

not only allows paleoanthropologists to confidently use molar-emergence ages to 

reconstruct life history in the fossil record, but also offers a biomechanical perspective for 

understanding craniofacial growth and how it contributes to the diversity of skull form 

across primates. Future studies should take a holistic approach to understanding the 

evolution of masticatory diversity by looking at masticatory morphology across a 

taxonomically wide variety of primate species that vary in life history, diet, and behavior. 

Relating data on chewing behavior to the mechanical properties of food, the morphology 

of their masticatory system, both in juvenile and adult primates, including the shape of 

teeth and a measure of chewing performance will yield a powerful model for 

understanding the evolution of the chewing system. These types of data will help 

paleoanthropologists use teeth and masticatory morphology to make more informed 

dietary and ecological reconstructions of extinct primate species and will ultimately guide 

a deeper understanding of the forces that have shaped primate skull evolution.   
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SM 1. Results of t-tests comparing ResultantMean-Molar to zero.  

Taxon 
Molar 

emergence 
category 

Mean Min. Max. t- 
statistic df 

p-value 
(two-
sided) 

p-value 
(one-
sided) 

Platyrrhini         

Alouatta palliata 

dp4 15.48 12.27 18.54 23.19 9 *** *** 
M1 15.01 12.50 18.16 27.33 9 *** *** 
M2 13.54 11.00 15.25 28.87 9 *** *** 
M3 9.34 4.28 14.19 14.67 19 *** *** 

         

Ateles geoffroyi 

dp4 17.73 16.00 19.54 42.80 6 *** *** 
M1 17.68 15.00 19.88 36.84 9 *** *** 
M2 15.78 13.41 20.73 21.55 9 *** *** 
M3 15.94 14.02 18.41 51.74 19 *** *** 

         

Cebus apella 

dp4 16.95 13.08 29.80 10.06 9 ** ** 
M1 14.14 10.50 26.89 9.55 9 ** ** 
M2 12.30 6.71 17.97 8.23 - - - 
M3 19.83 -5.70 44.23 8.62 29 *** *** 

         

Saimiri sciureus 

dp4 9.09 7.71 10.09 18.21 - - - 
M1 8.36 7.54 9.46 31.81 8 *** *** 
M2 8.61 6.31 11.56 15.95 9 *** *** 
M3 7.94 6.44 11.19 34.59 18 *** *** 

         
Cercopithecidae         

Colobus 
angolensis 

dp4 16.15 10.53 19.85 16.87 9 *** *** 
M1 17.57 15.31 19.29 31.94 8 *** *** 
M2 17.40 13.97 20.00 32.94 9 *** *** 
M3 18.05 12.75 22.90 36.09 18 *** *** 

         

Colobus 
polykomos 

dp4 15.22 14.84 15.81 51.49 - - - 
M1 15.12 13.82 17.16 22.98 - - - 
M2 16.40 13.62 19.00 24.58 7 *** *** 
M3 15.24 11.55 18.82 37.24 19 *** *** 

         

Procolobus 
verus 

M1 15.21 12.90 17.56 19.52 - - - 
M2 12.69 10.67 15.02 22.00 6 ** *** 
M3 12.05 10.20 15.00 34.41 18 *** *** 

         

Macaca 
fascicularis 

dp4 14.67 11.10 19.59 19.87 9 *** *** 
M1 15.87 11.26 18.92 24.76 9 *** *** 
M2 17.22 14.08 20.01 23.63 7 *** *** 
M3 15.20 11.36 20.76 19.70 15 *** *** 

         

Macaca mulatta 

dp4 15.90 11.81 21.34 37.51 27 *** *** 
M1 17.61 13.37 22.76 37.35 32 *** *** 
M2 19.06 13.11 26.10 30.89 30 *** *** 
M3 16.60 11.42 21.28 44.64 57 *** *** 

         

Papio anubis 

dp4 26.46 20.28 32.02 22.66 9 *** *** 
M1 28.89 20.36 38.51 17.46 9 *** *** 
M2 32.91 23.45 44.20 15.05 9 *** *** 
M3 37.71 26.18 50.27 32.19 27 *** *** 
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Papio 
cynocephalus 

dp4 21.67 15.37 24.56 27.63 11 *** *** 
M1 26.17 21.22 36.56 15.72 9 *** *** 
M2 27.47 19.38 38.77 20.21 16 *** *** 
M3 27.49 16.02 38.14 25.98 33 *** *** 

         
Hominidae         

Gorilla beringei 

dp4 36.47 30.82 43.86 33.35 15 *** *** 
M1 36.17 30.70 50.93 20.93 13 *** *** 
M2 32.37 24.62 39.57 19.64 8 *** *** 
M3 27.59 0.43 56.28 18.66 56 *** *** 

         

Gorilla gorilla 

dp4 35.04 22.06 43.69 11.66 6 * * 
M1 37.34 28.63 46.46 22.14 9 *** *** 
M2 29.96 22.93 38.09 12.24 - - - 
M3 22.60 7.69 44.57 11.54 28 *** *** 

         

Homo sapiens 

dp4 22.49 18.31 26.40 62.82 24 *** *** 
M1 21.06 16.95 28.28 35.01 21 *** *** 
M2 16.13 10.11 21.13 30.89 30 *** *** 
M3 11.38 -1.73 17.27 19.54 49 *** *** 

         

Pan paniscus 

dp4 20.23 16.28 23.10 33.06 9 *** *** 
M1 18.93 13.82 25.69 18.96 9 *** *** 
M2 17.10 13.64 22.69 24.71 11 *** *** 
M3 14.53 6.44 20.24 20.44 20 *** *** 

         

Pan troglodytes 

dp4 25.46 19.72 35.18 28.21 15 *** *** 
M1 25.02 17.95 38.08 27.32 20 *** *** 
M2 23.60 17.89 31.75 28.47 20 *** *** 
M3 19.26 10.61 29.16 44.54 68 *** *** 

         

Pongo pygmaeus 

dp4 22.29 16.20 26.70 20.17 8 *** *** 
M1 26.47 20.54 36.76 15.37 10 *** *** 
M2 19.70 12.26 30.44 11.40 11 *** *** 
M3 16.00 3.96 38.68 7.89 18 *** *** 

         
Strepsirrhini         

Eulemur mongoz M1 17.98 17.01 18.95 18.54 - - - 
M3 15.47 11.86 19.25 22.52 12 *** *** 

         

Lemur catta 
dp4 11.95 7.70 15.74 5.12 - - - 
M2 19.19 14.03 22.86 11.15 - - - 
M3 16.28 12.92 20.47 26.10 17 *** *** 

         

Otolemur 
monteiri 

dp4 6.82 5.49 8.06 9.18 - - - 
M1 14.27 12.75 15.07 18.76 - - - 
M3 13.24 5.55 20.29 23.46 30 *** *** 

         

Perodicticus 
potto 

dp4 10.10 9.25 10.95 11.86 - - - 
M1 11.23 5.84 13.90 12.16 7 ** ** 
M2 13.20 10.10 16.86 18.40 7 *** *** 
M3 11.91 4.90 18.69 16.01 19 *** *** 

* p<0.000189, ** p<0.00001, *** p<0.000001 
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SM 2. Results of t-tests comparing ResultantMax-Molar to zero. 

Taxon 
Molar 

emergence 
category 

Mean Min. Max. t-
statistic df 

p-value 
(two-
sided) 

p-value 
(one-
sided) 

Platyrrhini         

Alouatta palliata 

dp4 10.36 8.77 11.58 31.40 9 *** *** 
M1 7.27 4.83 8.82 19.65 9 *** *** 
M2 5.88 2.07 9.32 7.53 9 * * 
M3 -1.89 -9.83 3.36 -3.02 19 NS NS 

         

Ateles geoffroyi 

dp4 15.75 12.61 17.71 22.71 6 *** *** 
M1 15.37 12.36 19.24 22.83 9 *** *** 
M2 13.40 10.87 20.25 14.44 9 *** *** 
M3 9.74 7.43 13.94 24.97 19 *** *** 

         

Cebus apella 

dp4 11.81 7.11 25.44 7.19 9 * * 
M1 10.52 5.95 24.57 6.27 9 * * 
M2 7.98 4.05 14.53 5.35 - - - 
M3 8.06 -56.94 36.86 2.85 29 NS NS 

         

Saimiri sciureus 

dp4 5.67 4.09 6.93 8.48 - - - 
M1 6.36 5.28 7.94 19.86 8 *** *** 
M2 7.23 4.48 11.35 8.93 9 ** ** 
M3 5.18 3.98 7.51 27.00 18 *** *** 

         
Cercopithecidae         

Colobus 
angolensis 

dp4 14.34 7.45 19.49 12.58 9 ** *** 
M1 13.80 11.60 16.40 29.09 8 ** *** 
M2 13.28 10.26 16.75 21.51 9 *** *** 
M3 10.99 5.55 17.19 18.20 18 *** *** 

         

Colobus 
polykomos 

dp4 12.12 10.20 13.19 12.60 - - - 
M1 11.34 10.02 13.05 22.83 - - - 
M2 9.03 5.60 11.32 12.41 7 ** ** 
M3 8.64 6.25 12.13 21.82 19 *** *** 

         

Procolobus 
verus 

M1 12.13 10.28 14.02 23.10 - - - 
M2 9.38 5.61 11.98 12.17 6 * ** 
M3 8.93 6.47 11.31 27.45 18 *** *** 

         

Macaca 
fascicularis 

dp4 11.31 8.89 13.58 23.86 9 *** *** 
M1 12.47 8.22 14.93 20.47 9 *** *** 
M2 11.85 6.35 14.83 12.05 7 ** ** 
M3 10.13 6.06 16.33 12.36 15 *** *** 

         

Macaca mulatta 

dp4 10.77 -7.09 14.39 14.92 27 *** *** 
M1 12.57 7.10 17.69 29.43 32 *** *** 
M2 12.33 6.11 19.15 19.06 30 *** *** 
M3 9.58 5.76 14.82 30.98 57 *** *** 

         

Papio anubis 

dp4 21.72 17.30 25.67 24.79 9 *** *** 
M1 22.20 17.19 28.52 18.69 9 *** *** 
M2 25.30 12.97 35.99 11.78 9 ** *** 
M3 27.36 16.53 38.43 22.56 27 *** *** 
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Papio 
cynocephalus 

dp4 17.54 12.94 21.89 28.36 11 *** *** 
M1 20.71 15.80 30.90 13.21 9 *** *** 
M2 20.41 12.26 31.20 17.19 16 *** *** 
M3 18.70 8.56 33.65 17.94 33 *** *** 

         
Hominidae         

Gorilla beringei 

dp4 24.45 19.04 33.04 27.55 15 *** *** 
M1 21.91 14.94 32.05 17.20 13 *** *** 
M2 13.66 7.45 21.70 8.70 8 * * 
M3 5.30 -49.63 27.47 3.27 56 NS NS 

         

Gorilla gorilla 

dp4 23.88 14.99 29.48 13.65 6 * ** 
M1 23.69 17.89 28.86 21.30 9 *** *** 
M2 14.51 6.88 27.76 4.08 - - - 
M3 3.70 -14.85 21.08 2.58 28 NS NS 

         

Homo sapiens 

dp4 18.90 13.65 25.30 36.80 24 *** *** 
M1 16.58 11.12 21.00 30.21 21 *** *** 
M2 7.76 -4.03 15.18 7.89 30 *** *** 
M3 1.07 -41.79 12.80 0.86 49 NS NS 

         

Pan paniscus 

dp4 17.45 12.75 20.74 25.30 9 *** *** 
M1 14.62 11.17 19.29 20.51 9 *** *** 
M2 13.07 11.06 17.25 24.37 11 *** *** 
M3 9.72 1.77 17.38 11.95 20 *** *** 

         

Pan troglodytes 

dp4 21.42 14.55 31.16 23.36 15 *** *** 
M1 19.66 13.16 37.25 18.25 20 *** *** 
M2 15.66 11.57 22.25 26.28 20 *** *** 
M3 10.53 -2.01 17.09 25.13 68 *** *** 

         

Pongo pygmaeus 

dp4 15.74 11.65 20.00 16.70 8 *** *** 
M1 17.07 11.22 24.61 13.31 10 *** *** 
M2 7.37 -3.73 22.02 3.55 11 NS NS 
M3 1.69 -13.36 13.92 1.00 18 NS NS 

         
Strepsirrhini         

Eulemur mongoz M1 13.92 9.63 18.22 3.24 - - - 
M3 11.57 7.47 18.36 11.11 12 *** *** 

         

Lemur catta 
dp4 7.30 2.59 12.48 2.55 - - - 
M2 17.04 10.93 21.94 8.48 - - - 
M3 14.07 10.06 20.05 19.34 17 *** *** 

         

Otolemur 
monteiri 

dp4 2.98 1.00 5.49 2.25 - - - 
M1 12.38 10.54 13.45 13.35 - - - 
M3 9.47 -3.86 17.24 10.90 30 *** *** 

         

Perodicticus 
potto 

dp4 7.31 5.25 9.38 3.54 - - - 
M1 9.04 0.32 12.68 6.49 7 NS * 
M2 11.88 9.39 16.36 14.36 7 ** *** 
M3 5.69 -37.39 14.76 2.21 19 NS NS 

* p<0.000189, ** p<0.00001, *** p<0.000001, NS: not significant 
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SM 4. Specimen list for five species included in the study. 
A. Specimen list for Homo sapiens     

Species Age 
(yrs) Specimen # Sex 

Molar 
emergence 
category 

Mand. 
arch 

lengthmean 

Mand. 
arch 

lengthmax 
H. sapiens 2.3 AC A73  - dp4 58.04 55.48 
H. sapiens 2.8 AC 64  - dp4 57.62 53.79 
H. sapiens 2.8 AC A69  - dp4 55.17 53.94 
H. sapiens 2.8 AC A75  - dp4 55.88 53.33 
H. sapiens 2.9 AC A67  - dp4 55.07 51.27 
H. sapiens 2.9 AC A76  - dp4 56.20 51.92 
H. sapiens 3.0 AC D41  - dp4 59.09 55.69 
H. sapiens 3.0 AC D51  - dp4 55.61 51.68 
H. sapiens 3.2 AC A206  - dp4 57.89 55.28 
H. sapiens 3.3 AC A68  - dp4 55.62 50.34 
H. sapiens 3.3 AC D38  - dp4 59.29 55.08 
H. sapiens 3.7 AC A65  - dp4 58.88 55.72 
H. sapiens 4.0 AC D42  - dp4 58.48 55.37 
H. sapiens 4.1 AC A62  - dp4 57.56 53.08 
H. sapiens 4.1 AC D39  - dp4 58.12 54.85 
H. sapiens 4.2 AC D47  - dp4 52.07 47.40 
H. sapiens 4.3 AC D270  - dp4 55.16 51.32 
H. sapiens 5.0 AC A105  - dp4 55.79 52.45 
H. sapiens 5.0 AC A131  - dp4 57.39 51.50 
H. sapiens 5.3 AC A140  - dp4 57.31 53.21 
H. sapiens 6.4 AC D299  - M1 62.57 58.64 
H. sapiens 6.5 AC A145  - M1 70.62 66.44 
H. sapiens 6.6 AC A144  - M1 66.75 61.53 
H. sapiens 6.6 AC D263  - M1 67.72 65.42 
H. sapiens 6.7 AC D53 - M1 60.96 58.93 
H. sapiens 6.8 AC A147  - M1 65.69 61.77 
H. sapiens 7.0 AC A101  - M1 67.84 64.41 
H. sapiens 7.1 AC A181  - M1 67.18 63.23 
H. sapiens 7.2 AC A116  - M1 69.75 66.96 
H. sapiens 7.5 AC A115  - M1 69.38 66.08 
H. sapiens 7.9 AC A193  - M1 69.37 63.56 
H. sapiens 8.0 AC A55 - M1 61.98 57.93 
H. sapiens 8.1 AC 102  - M1 69.48 65.69 
H. sapiens 8.3 AC A183  - M1 66.13 61.28 
H. sapiens 8.9 AC A151  - M1 69.27 66.11 
H. sapiens 8.9 AC A191  - M1 67.89 63.12 
H. sapiens 9.1 AC A153  - M1 65.59 61.95 
H. sapiens 9.5 AC D294  - M1 62.67 56.12 
H. sapiens 10.0 AC D43  - M2 61.46 57.14 
H. sapiens 10.2 AC A152  - M1 66.62 60.79 
H. sapiens 10.6 AC A157  - M1 74.59 62.18 
H. sapiens 10.8 AC A158  - M1 68.53 62.64 
H. sapiens 11.8 AC C196  - M2 68.69 61.19 
H. sapiens 13.0 AC A228  - M2 68.16 54.88 
H. sapiens 13.0 AC B195  - M2 75.91 69.62 
H. sapiens 13.0 AC B219  - M2 69.29 50.14 
H. sapiens 13.0 AC B220  - M2 73.08 59.97 
H. sapiens 13.0 AC B221  - M2 72.21 66.28 
H. sapiens 13.0 AC B65  - M2 71.41 58.81 
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H. sapiens 13.0 AC B66 - M2 70.53 65.58 
H. sapiens 13.0 AC C112  - M2 68.43 51.91 
H. sapiens 13.0 AC C134  - M2 67.16 56.84 
H. sapiens 13.0 AC C152  - M2 76.97 69.34 
H. sapiens 13.5 AC A215 - M2 74.19 68.25 
H. sapiens 14.0 NMNH 1363 F M3 72.02 66.38 
H. sapiens 15.0 AC 194  - M2 71.52 66.35 
H. sapiens 15.0 AC A192  - M2 71.72 66.97 
H. sapiens 15.0 AC D268  - M2 69.29 64.32 
H. sapiens 15.0 AC D275  - M2 64.87 59.46 
H. sapiens 15.0 AC D297  - M2 62.54 56.88 
H. sapiens 15.0 AC D56  - M2 66.69 61.64 
H. sapiens 16.0 NMNH 822 F M2 76.71 68.54 
H. sapiens 17.0 NMNH 306  F M2 61.86 47.58 
H. sapiens 17.0 NMNH 329  M M2 71.06 58.88 
H. sapiens 17.0 NMNH 562  F M3 80.85 75.94 
H. sapiens 18.0 AC D223  - M2 73.96 67.27 
H. sapiens 18.0 NMNH 800R  F M2 75.29 69.34 
H. sapiens 19.0 NMNH 567  F M2 71.72 63.19 
H. sapiens 19.0 NMNH 129  M M3 83.43 77.08 
H. sapiens 19.0 NMNH 1434R  F M3 77.80 68.17 
H. sapiens 19.0 NMNH 760  M M3 79.77 72.82 
H. sapiens 20.0 NMNH 1183  M M2 75.58 65.40 
H. sapiens 20.0 NMNH 210  M M3 77.90 63.90 
H. sapiens 21.0 NMNH 1187  M M3 89.71 83.80 
H. sapiens 21.0 NMNH 970  F M3 77.29 71.21 
H. sapiens 22.0 NMNH 1503  M M3 79.39 71.12 
H. sapiens 22.0 NMNH 39  F M3 81.76 70.92 
H. sapiens 22.0 NMNH 477  M M3 86.01 71.53 
H. sapiens 22.0 NMNH 594 M M3 77.17 70.20 
H. sapiens 22.0 NMNH 723  F M3 81.49 74.94 
H. sapiens 23.0 NMNH 1507  F M2 77.71 71.25 
H. sapiens 23.0 NMNH 1544  F M2 75.64 65.61 
H. sapiens 23.0 NMNH 1539  M M3 88.34 82.19 
H. sapiens 23.0 NMNH 850  M M3 88.07 79.10 
H. sapiens 23.0 NMNH 859  M M3 77.77 66.35 
H. sapiens 23.0 NMNH 886  F M3 77.57 69.58 
H. sapiens 25.0 NMNH 1206  F M3 80.56 73.96 
H. sapiens 27.0 NMNH 49R  M M3 78.91 71.63 
H. sapiens 27.0 NMNH 880 F M3 70.56 58.83 
H. sapiens 28.0 NMNH 645  M M3 74.57 54.25 
H. sapiens 30.0 NMNH 235  M M3 85.36 73.56 
H. sapiens 31.0 NMNH 125  M M3 77.58 67.93 
H. sapiens 32.0 NMNH 815  F M3 68.23 62.05 
H. sapiens 36.0 NMNH 920 F M3 76.20 64.97 
N=94             

       
       

B. Specimen list for Gorilla beringei     

Species Age 
(yrs) Specimen # Sex 

Molar 
emergence 
category 

Mand. 
arch 

lengthmean 

Mand. 
arch 

lengthmax 
G. beringei 1.2 GP 012 M dp4 73.06 64.20 
G. beringei 1.3 GP 171 M dp4 77.46 65.72 
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G. beringei 2.0 GP 182 M dp4 79.11 67.88 
G. beringei 2.9 GP 151 M dp4 81.14 69.60 
G. beringei 3.4 GP 169 M M1 92.00 78.16 
G. beringei 3.6 GP 183 F M1 90.61 76.54 
G. beringei 3.6 GP 165 F M1 97.12 86.06 
G. beringei 8.6 GP 147 F M2 109.50 93.37 
G. beringei 9.5 GP 196 F M2 117.38 98.23 
G. beringei 15.7 GP 167 F M3 116.25 101.67 
G. beringei 18.5 GP 161 M M3 147.16 126.05 
G. beringei 19.8 GP 148 F M3 129.73 115.54 
G. beringei 21.6 GP 176 M M3 153.22 127.17 
G. beringei 22.3 GP  069 M M3 155.65 129.40 
G. beringei 24.8 GP 150 M M3 159.98 131.38 
G. beringei 25.2 GP 020 F M3 117.55 99.29 
G. beringei 30.1 GP 153 F M3 119.61 100.31 
G. beringei 31.2 GP 149 F M3 117.45 100.33 
G. beringei 33.0 GP 127 M M3 132.16 117.71 
G. beringei 33.7 GP 143 F M3 126.07 105.22 
G. beringei 34.5 GP 065 M M3 164.52 143.27 
G. beringei 36.9 GP 117 F M3 136.69 123.60 
G. beringei 38.3 GP 131 F M3 147.20 125.61 
G. beringei 42.1 GP 134 F M3 140.88 120.19 
N=24             

       
       
C. Specimen list for Pan troglodytes     

Species Age 
(yrs) Specimen # Sex 

Molar 
emergence 
category 

Mand. 
arch 

lengthmean 

Mand. 
arch 

lengthmax 
P. t. verus 1.0 MPI 06 55 F dp4 55.30 53.26 
P. t. verus 2.0 MPI 06 15 M dp4 64.81 60.77 
P. t. verus 2.0 MPI 06 45 M dp4 62.83 58.05 
P. t. schweinfurthii 2.6 UM PT M dp4 56.94 51.77 
P. t. verus 3.0 MPI 06 37  - M1 70.92 67.26 
P. t. verus 6.0 MPI 06 10  M M1 78.30 70.42 
P. t. verus 6.0 MPI 06 57  M M1 69.07 63.96 
P. t. verus 7.0 MPI 06 64  M M1 75.77 69.69 
P. t. verus 8.0 MPI 06 46  M M2 88.16 79.52 
P. t. schweinfurthii 8.5 UM FT M M2 82.30 77.64 
P. t. verus 9.0 MPI 06 29  F M2 90.64 80.90 
P. t. verus 10.0 MPI 08 64 F M2 85.01 77.93 
P. t. verus 11.0 MPI 06 15  F M2 91.44 85.29 
P. t. verus 11.0 MPI 06 50  F M2 86.83 80.54 
P. t. verus 12.0 MPI 06 31 F M3 101.69 96.47 
P. t. schweinfurthii 13.0 UM MM  M M3 98.62 90.41 
P. t. verus 13.0 MPI 06 18  M M3 97.76 88.00 
P. t. schweinfurthii 13.5 UM MCD  M M3 97.83 85.67 
P. t. verus 16.0 MPI 06 14  F M3 96.13 88.90 
P. t. schweinfurthii 18.9 UM GK  F M3 98.24 88.65 
P. t. verus 19.0 MPI 06 17  F M3 98.40 91.21 
P. t. verus 19.0 MPI 06 65  M M3 105.50 94.44 
P. t. verus 20.0 MPI 06 40  M M3 99.34 89.45 
P. t. verus 22.0 MPI 06 52  F M3 92.01 85.20 
P. t. verus 23.0 MPI 06 39  F M3 91.39 86.15 
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P. t. verus 25.0 MPI 06 19 F M3 104.59 94.73 
P. t. verus 25.0 MPI 15 04  M M3 105.28 95.95 
P. t. schweinfurthii 25.9 UM CH  M M3 104.00 98.31 
P. t. verus 27.0 MPI 06 47  F M3 99.75 91.42 
P. t. verus 28.0 MPI 06 09 F M3 95.90 84.76 
P. t. schweinfurthii 29.2 UM PL F M3 94.14 89.48 
P. t. schweinfurthii 30.2 UM MB F M3 94.15 88.40 
P. t. schweinfurthii 30.6 UM PS F M3 92.78 86.53 
P. t. schweinfurthii 30.9 UM MF F M3 96.22 88.78 
P. t. schweinfurthii 36.3 UM ML F M3 94.82 86.64 
P. t. verus 39.0 MPI 06 25 F M3 96.07 88.89 
P. t. verus 40.0 MPI 06 48  M M3 110.54 102.54 
N=37             

       
       

D. Specimen list for Papio cynocephalus     

Species Age 
(yrs) Specimen # Sex 

Molar 
emergence 
category 

Mand. 
arch 

lengthmean 

Mand. 
arch 

lengthmax 
P. cynocephalus 1.7 OM 8713 M dp4 57.13 53.30 
P. cynocephalus 3.0 OM 9017 F dp4 57.30 52.18 
P. cynocephalus 3.1 OM 8588 F M1 72.86 65.79 
P. cynocephalus 3.3 OM 8585 F M1 71.10 64.44 
P. cynocephalus 3.3 OM 8590 F M1 74.17 67.97 
P. cynocephalus 3.4 OM 8589 F M1 69.36 64.13 
P. cynocephalus 7.7 OM 8598 F M2 93.54 83.81 
P. cynocephalus 7.7 OM 8591 M M3 121.30 111.83 
P. cynocephalus 8.1 OM 8599 M M3 133.08 125.68 
P. cynocephalus 9.2 OM 8594 F M3 92.30 84.51 
P. cynocephalus 10.7 OM 8597 F M3 92.60 84.54 
P. cynocephalus 13.1 OM 8504 F M3 93.74 86.40 
P. cynocephalus 14.1 OM 8592 F M3 96.10 88.18 
P. cynocephalus 14.6 OM 8582 M M3 129.26 120.02 
P. cynocephalus 15.6 OM 8711 F M3 93.60 87.03 
P. cynocephalus 16.8 OM 8595 M M3 123.51 119.01 
P. cynocephalus 17.2 OM 8600 F M3 89.57 79.52 
P. cynocephalus 18.7 OM 8596 M M3 126.74 117.67 
N=18             

       
       
E. Specimen list for Macaca mulatta     

Species Age 
(yrs) Specimen # Sex 

Molar 
emergence 
category 

Mand. 
arch 

lengthmean 

Mand. 
arch 

lengthmax 
M. mulatta 0.5 CPRCMUS-00484 F dp4 36.42 31.80 
M. mulatta 0.6 CPRCMUS-00449 F dp4 39.55 36.57 
M. mulatta 0.6 CPRCMUS-00474 F dp4 37.90 35.25 
M. mulatta 0.6 CPRCMUS-00461 F dp4 39.59 36.45 
M. mulatta 0.6 CPRCMUS-00516 F dp4 38.28 34.33 
M. mulatta 0.7 CPRCMUS-00527 F dp4 39.70 37.05 
M. mulatta 0.7 CPRCMUS-00491 M dp4 38.92 36.03 
M. mulatta 0.8 CPRCMUS-00475 M dp4 41.21 38.34 
M. mulatta 0.9 CPRCMUS-00011 F dp4 42.31 37.63 
M. mulatta 0.9 CPRCMUS-00473 M dp4 42.12 38.53 
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M. mulatta 0.9 CPRCMUS-00340 M dp4 41.48 35.32 
M. mulatta 1.0 CPRCMUS-00464 M dp4 43.18 36.83 
M. mulatta 1.0 CPRCMUS-00477 F dp4 39.94 35.71 
M. mulatta 1.0 CPRCMUS-00549 M dp4 44.16 39.14 
M. mulatta 1.1 CPRCMUS-00479 M dp4 40.05 36.13 
M. mulatta 1.1 CPRCMUS-00339 M dp4 43.51 37.94 
M. mulatta 1.1 CPRCMUS-00481 F dp4 41.85 36.82 
M. mulatta 1.2 CPRCMUS-00104 M dp4 46.23 40.19 
M. mulatta 1.2 CPRCMUS-00366 F dp4 42.73 36.77 
M. mulatta 1.5 CPRCMUS-00148 M M1 47.54 43.86 
M. mulatta 1.6 CPRCMUS-00072 F M1 48.05 42.97 
M. mulatta 1.6 CPRCMUS-00140 F M1 49.40 42.37 
M. mulatta 1.6 CPRCMUS-00052 F M1 46.62 43.77 
M. mulatta 1.7 CPRCMUS-00084 F M1 46.73 42.66 
M. mulatta 1.7 CPRCMUS-00096 F M1 50.04 45.69 
M. mulatta 1.7 CPRCMUS-00592 M M1 49.23 44.55 
M. mulatta 1.9 CPRCMUS-00311 F M1 47.00 42.76 
M. mulatta 1.9 CPRCMUS-03018 M M1 48.35 44.94 
M. mulatta 2.2 CPRCMUS-00116 M M1 51.19 46.21 
M. mulatta 2.5 CPRCMUS-00676 M M1 55.04 50.07 
M. mulatta 2.5 CPRCMUS-00054 F M1 51.89 44.80 
M. mulatta 2.5 CPRCMUS-00794 M M1 48.93 43.09 
M. mulatta 2.8 CPRCMUS-00079 F M1 48.23 44.09 
M. mulatta 2.8 CPRCMUS-00178 F M1 54.13 48.62 
M. mulatta 2.9 CPRCMUS-00059 M M1 53.08 48.31 
M. mulatta 3.0 CPRCMUS-00190 M M1 55.68 50.03 
M. mulatta 3.0 CPRCMUS-00831 M M1 57.16 50.22 
M. mulatta 3.1 CPRCMUS-00088 F M1 58.27 50.29 
M. mulatta 3.1 CPRCMUS-00427 M M2 57.15 49.32 
M. mulatta 3.1 CPRCMUS-00346 F M1 53.15 48.00 
M. mulatta 3.3 CPRCMUS-00350 F M2 57.84 53.30 
M. mulatta 3.4 CPRCMUS-00352 F M1 50.20 46.85 
M. mulatta 3.4 CPRCMUS-00349 F M1 54.26 49.19 
M. mulatta 3.7 CPRCMUS-00600 M M1 58.53 53.63 
M. mulatta 3.8 CPRCMUS-00118 M M2 70.09 65.68 
M. mulatta 3.9 CPRCMUS-00254 M M2 62.51 56.98 
M. mulatta 4.0 CPRCMUS-00160 F M2 56.64 53.25 
M. mulatta 4.0 CPRCMUS-00333 M M2 65.04 58.41 
M. mulatta 4.0 CPRCMUS-00062 F M2 58.45 52.11 
M. mulatta 4.1 CPRCMUS-00353 F M2 60.43 56.38 
M. mulatta 4.2 CPRCMUS-00130 F M2 62.06 52.64 
M. mulatta 4.7 CPRCMUS-00150 M M2 70.80 63.74 
M. mulatta 4.7 CPRCMUS-00314 M M2 65.66 60.64 
M. mulatta 4.8 CPRCMUS-00324 M M2 67.59 59.94 
M. mulatta 4.9 CPRCMUS-00068 M M2 67.35 58.23 
M. mulatta 5.0 CPRCMUS-00404 F M2 61.43 52.84 
M. mulatta 5.1 CPRCMUS-00258  M M2 69.83 63.59 
M. mulatta 5.2 CPRCMUS-00397 F M2 60.31 55.07 
M. mulatta 5.3 CPRCMUS-00044 M M3 75.89 70.17 
M. mulatta 5.5 CPRCMUS-00371 M M3 73.37 69.55 
M. mulatta 5.5 CPRCMUS-00131 M M2 73.31 67.07 
M. mulatta 5.5 CPRCMUS-00120 F M3 66.53 60.98 
M. mulatta 5.7 CPRCMUS-00145 F M3 61.75 58.25 
M. mulatta 5.7 CPRCMUS-00154 M M2 74.35 67.40 
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M. mulatta 5.7 CPRCMUS-00321 M M3 75.25 67.29 
M. mulatta 6.0 CPRCMUS-00259 F M2 65.18 60.64 
M. mulatta 6.0 CPRCMUS-00391 F M3 65.77 58.91 
M. mulatta 6.5 CPRCMUS-00060 M M3 81.50 74.76 
M. mulatta 6.5 CPRCMUS-00032 F M2 64.55 56.48 
M. mulatta 6.8 CPRCMUS-00394 M M3 85.42 78.56 
M. mulatta 7.1 CPRCMUS-00040 F M3 67.74 62.97 
M. mulatta 7.9 CPRCMUS-00031 M M3 77.92 69.94 
M. mulatta 7.9 CPRCMUS-00163 M M3 79.60 73.12 
M. mulatta 8.4 CPRCMUS-00361 M M3 79.72 73.27 
M. mulatta 8.5 CPRCMUS-00379 M M3 77.07 68.41 
M. mulatta 8.5 CPRCMUS-00380 M M3 79.00 71.23 
M. mulatta 8.5 CPRCMUS-00478 F M3 73.25 67.17 
M. mulatta 8.6 CPRCMUS-00051 F M3 66.43 62.27 
M. mulatta 8.6 CPRCMUS-00047 F M3 65.92 59.88 
M. mulatta 8.6 CPRCMUS-00323 M M3 83.09 74.11 
M. mulatta 8.8 CPRCMUS-00320 M M3 83.45 74.46 
M. mulatta 9.4 CPRCMUS-00337 M M3 79.13 72.08 
M. mulatta 9.5 CPRCMUS-00406 F M3 70.99 63.09 
M. mulatta 9.6 CPRCMUS-00381 M M3 80.62 75.42 
M. mulatta 9.7 CPRCMUS-00360 M M3 85.00 72.64 
M. mulatta 10.0 CPRCMUS-00038 F M3 70.64 61.81 
M. mulatta 10.4 CPRCMUS-00374 F M3 69.03 62.24 
M. mulatta 10.5 CPRCMUS-00383 F M3 68.51 62.85 
M. mulatta 10.6 CPRCMUS-00637 F M3 71.91 63.76 
M. mulatta 11.0 CPRCMUS-00596 F M3 70.36 63.50 
M. mulatta 11.1 CPRCMUS-00597 F M3 73.71 63.76 
M. mulatta 11.4 CPRCMUS-00598 F M3 72.45 67.18 
M. mulatta 11.6 CPRCMUS-00382 M M3 83.09 74.95 
M. mulatta 12.0 CPRCMUS-00440 F M3 71.00 64.05 
M. mulatta 12.2 CPRCMUS-00300 M M3 77.41 69.47 
M. mulatta 12.6 CPRCMUS-00326 F M3 70.16 63.70 
M. mulatta 12.7 CPRCMUS-00156 M M3 80.60 75.34 
M. mulatta 14.2 CPRCMUS-00672 F M3 73.80 65.06 
M. mulatta 14.5 CPRCMUS-00364 M M3 75.34 67.84 
M. mulatta 16.9 CPRCMUS-00620 F M3 78.12 69.02 
M. mulatta 17.0 CPRCMUS-00617 F M3 69.47 62.12 
N=104             

 
 
 
 
 


