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ABSTRACT

Functional magnetic resonance imaging (fMRI) is one of the popular tools to study hu-

man brain functions. High-quality experimental designs are crucial to the success of fMRI

experiments as they allow the collection of informative data for making precise and valid

inference with minimum cost. The primary goal of this study is on identifying the best

sequence of mental stimuli (i.e. fMRI design) with respect to some statistically meaningful

optimality criteria. This work focuses on two related topics in this research field. The first

topic is on finding optimal designs for fMRI when the design matrix is uncertain. This

challenging design issue occurs in many modern fMRI experiments, in which the design

matrix of the statistical model depends on both the selected design and the experimental

subject’s uncertain behavior during the experiment. As a result, the design matrix cannot

be fully determined at the design stage that makes it difficult to select a good design. For

the commonly used linear model with autoregressive errors, this study proposes a very effi-

cient approach for obtaining high-quality fMRI designs for such experiments. The proposed

approach is built upon an analytical result, and an efficient computer algorithm. It is shown

through case studies that our proposed approach can outperform the existing method in

terms of computing time, and the quality of the obtained designs. The second topic of the

research is to find optimal designs for fMRI when a wavelet-based technique is considered

in the fMRI data analysis. An efficient computer algorithm to search for optimal fMRI

designs for such cases is developed. This algorithm is inspired by simulated annealing and

a recently proposed algorithm by Saleh et al. (2017). As demonstrated in the case studies,

the proposed approach makes it possible to efficiently obtain high-quality designs for fMRI

studies, and is practically useful.
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Chapter 1

INTRODUCTION

Humans have explored and discovered our world and acquired tremendous accomplish-

ments, yet the human brain remains a mystery. Recent surveys show that brain diseases

affect more people than ever before, and deaths from such diseases increase year by year

(Pritchard et al., 2013). Understanding the brain disorders and how our brain works is

arguably a crucial task of our time. The importance of this task is also highlighted in

the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a

multimillion-dollar research project announced by the White House in 2013, and also in the

Europe’s Human Brain Project that was launched in the same year. The development of

functional magnetic resonance imaging (fMRI) technology has led to a better understand-

ing of brain function and disease. It is a relatively inexpensive and completely noninvasive

brain mapping technology (Kwong and Chesler, 1995), and is one of the most popular

techniques that helps to provide insights into the way brain works. With equipment like

fMRI, functional neuroimaging experiments are widely conducted in various research fields

such as psychology, neuroscience, and education for studying brain activity in response to

mental stimuli; other than non-clinical applications, physicians also use fMRI as a tool for

clinical diagnosis, surgery planning and evaluation, etc., see also Lindquist et al. (2008),

and a special issue on clinical applications of fMRI in Neuropsychology Review, Vol. 17

et al. (2007). The use of fMRI is arguably an important advance in neuroscience, and it

has many practical applications.

In an fMRI experiment, the investigator may present a sequence of tens or thousands of

mental stimuli (e.g., images or sounds) to the experimental subject. Each stimulus evokes

neuronal activity at some regions of the subject’s brain. The neuronal activity leads to

a change in the concentrations of the oxygenated and deoxygenated blood in the cerebral
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vessels. It is measured as the blood oxygenation level dependent (BOLD) signals by an

fMRI scanner, which repeatedly scans each of the brain voxels (three-dimensional image

elements) every, say, 2 seconds. The BOLD signals collected over time form an fMRI time

series. In particular, there will be, say 64 × 64 × 30 voxels, each having a size of, say

3 × 3 × 5mm3 (Lazar, 2008, Section 2.1.1). An fMRI time series is acquired from each of

these brain voxels. These time series are then analyzed by some statistical methods to make

inference about the brain activity. In such an analysis, neuroscientists may be interested in

studying the hemodynamic response function (HRF) whose characteristics such as the peak,

time-to-peak, time-to-onset or shape help to provide some insights into the underlying brain

activity evoked by the stimulus (see Section 2.2 for further discussions). Unfortunately, the

fMRI data almost always contain high amount of noises, making it impossible to identify

the HRFs by visual inspections. Statistical methods allowing researcher to extract useful

information from the noisy fMRI data are thus crucial. As an integral part of the statistical

process, selecting a high-quality fMRI experimental design, which determines the onset

times and the order of stimuli to be presented to an experimental subject, is essential to

allow researchers to effectively utilize the limited resource to collect informative data for

making a precise and valid inference about the HRF and/or efficiently achieving other study

objectives of interest. It is one of the key steps to the success of fMRI studies.

In this work, we study two related topics on optimal fMRI experimental designs for pop-

ular linear models with autocorrelated errors. The first topic is on finding optimal designs

where the focus is on fMRI experiments with an uncertain design matrix. In traditional

fMRI studies, the design matrix of the statistical model for analyzing fMRI data normally

can be completely determined by the selected design. However, this no longer holds true for

some modern fMRI experiments that aim at investigating the brain activity evoked by the

subject’s reactions to the stimuli (e.g., the subject’s answers to the presented questions).

Cordes et al. (2012) reported an experiment of this sort. For such experiments, the design

matrices will depend not only on the selected design, but also on the subject’s reaction. As
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the subject’s reactions are uncertain at the design stage (before the experiment starts), it

is unlikely to have an accurate evaluation of the quality of the designs. This makes it very

challenging to select good designs suited to this type of modern experiments. Following

Cordes et al. (2012), we consider linear regression models with first order autoregressive

errors (an AR(1) error model). The goal is to develop an efficient and effective approach for

finding high-quality designs to improve the quality of fMRI experiments when the design

matrix is uncertain. To that end, we build our design selection approach on an analytical

result and an efficient computer algorithm. Specifically, we analytically derive a closed-

form expression for our design selection criterion that allows us to evaluate the quality of

designs without much computational effort. We then adapt the genetic algorithm (GA)

put forward by Kao et al. (2009) to search for an fMRI design optimizing the criterion. As

demonstrated in our case studies in Chapter 3, our criterion can serve as an inexpensive,

but effective surrogate of the design selection criterion proposed by Cordes et al. (2012).

More importantly, our approach is much faster than that of Cordes et al. (2012).

In the past years, research in fMRI grew rapidly, a variety of statistical models have

been developed for analyzing fMRI data. One of these models is the wavelet-based model.

Another topic of interest in this study is to find a fast algorithm to obtain optimal fMRI

designs for such models. Jeong et al. (2013) recently proposed a wavelet-based approach

for regression models with long memory processes. They show that the discrete wavelet

transforms (DWTs) can serve as whitening filter for such processes by simplifying the dense

covariance matrix into a sparse form. They also demonstrate that their method is useful

for analyzing some fMRI data. Although wavelet-based models are not uncommon in fMRI

data analysis, to our knowledge, there is no research article on optimal design studies based

on these models. Due to the complexity of the information matrix, which is used to evaluate

the quality of designs, it is very challenging to find an optimal design even for simple AR(1)

model; see also Kao et al. (2009). Thus, an efficient computational algorithm for searching

for optimal design from a vast design space is necessary. The need for an efficient compu-
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tational approach for obtaining optimal fMRI designs is even greater when the model is as

complex as that of Jeong et al. (2013). To develop such an efficient approach, we first con-

sider to adapt the approach of Saleh et al. (2017) that is a heuristic algorithm for obtaining

D-optimal fMRI experimental designs under the traditional, simple models. This approach

was inspired by the widely used coordinate-exchange algorithm; see Gotwalt et al. (2009);

Jones and Goos (2007); Meyer and Nachtsheim (1995). Saleh et al. (2017)’s algorithm is

shown to be superior than the genetic algorithm of Kao et al. (2009). To help alleviating

this drawback, we propose another algorithm by incorporating simulated annealing (SA).

In Chapter 4, we demonstrate the performance of the new algorithm through case stud-

ies. Our results show that the new algorithm can quickly obtain similar D-optimal designs

comparing with Saleh et al. (2017)’s algorithm. In addition, the newly proposed algorithm

is suitable for other optimality criteria, such as A-optimality.

The following chapters are organized as follows. In Chapter 2, we provide background

information about fMRI time series and fMRI designs; we then present our methodology

for finding fMRI experiments with an uncertain design matrix based on general linear

models with AR(1) errors in Chapter 3 and illustrate some case studies to demonstrate

the usefulness of our approach. In Chapter 4, we shift our attention to a traditional fMRI

experimental setting that the design matrix depends only on the selected design, and can

be fully specified at the design stage. But, in contrast to the existing studies on optimal

fMRI designs, we consider the advanced wavelet-based models. A fast computer algorithm

for obtaining optimal fMRI designs for such a case is proposed. We then present some

numerical simulations to show the performance of new algorithm. We note that there

exist several different statistical methods for analyzing fMRI data. A comparison of these

methods might be of interest, but is beyond the scope of this study. Interested readers are

referred to, e.g. Lazar (2008) and Lindquist et al. (2008) for an overview of some of these

statistical analysis methods. Here, our main focus is on studying optimal experimental

designs for two challenging, commonly encountered situations.
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Chapter 2

BACKGROUND

2.1 fMRI Experimental Design

In an fMRI study, there might be tens to hundreds of brief stimuli of one or more types

presented to the subject at different time points. Each stimulus may last several milliseconds

to a few seconds, immediately followed by a period of ‘control’ such as a rest period. For

example, an experiment might involve 1-second pictures of familiar faces, which form the

first stimulus type, and 1-second pictures of unfamiliar faces that form the second stimulus

type. Each stimulus can possibly appear every τISI seconds, where τISI is a pre-specified

time (e.g., 4 seconds); τISI is sometimes called the inter-stimulus-interval. During the period

from the offset of a stimulus to the onset of the next one, the subject is exposed to the control

(e.g., rest or visual fixation). An experiment can have a duration of several minutes (e.g.,

10 minutes). A design for such an experiment is often represented as an ordered sequence of

N elements; i.e. d = {d1, ..., dN}, where N is typically tens or hundreds, and is determined

by τISI and the duration of the experiment. With Q stimulus types, each element dn in

a design is an integer between 0 and Q. For example, a design with Q = 2 may look like

d = {1, 0, 2, 1, ..., 0}. The nth position of d corresponds to time (n − 1)τISI , n = 1, ..., N .

Time 0 is typically set to the time point when the first valid fMRI measurement is acquired

by the fMRI scanner. When dn = q > 0, there is an onset of the qth-type stimulus at the

nth time point. When dn = 0, there is no stimulus onset at that time point. For example,

a ‘1’ in d may indicate an appearance of a familiar face, a ‘2’ is for an unfamiliar face, and

a ‘0’ means that none of these pictures occurs.
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2.2 Hemodynamic Response Function (HRF)

When a selected design is presented to the subject, some voxels of the subject’s brain

may be activated by the stimuli. Such neuronal activity leads to several physiological

changes in cerebral blood vessels. Among different fMRI techniques, the BOLD (blood-

oxygenation-level-dependent) fMRI is the most common form of fMRI (Barbee et al., 2012).

This technique detects neural activity using the oxygen level in the blood as a marker, and

the fMRI scanner picks up a functional signal based on a rise or fall in the concentration of

the oxygenated blood in the cerebral blood vessels. This leads to a change in the strength

of the local magnetic field around the activated brain regions. The fMRI scanner collects

the BOLD signal at regular time points from each of the brain voxels. These signals reflect

the fluctuation in the strength of the local magnetic field that help to infer the underlying

brain activity. In particular, from each brain voxel, an fMRI measurement is collected

every τTR seconds (e.g., τTR = 2 seconds) to form an fMRI time series. τTR is sometimes

referred to as time-to-repetition. These collected time series are then analyzed for making

inference about the brain activity in response to the stimuli. The changes in the blood flow

upon stimulus can be described via the hemodynamic response function, HRF, which is a

function of time modeling the stimulus-induced change in the concentrations of the oxy- and

deoxy-blood in the cerebral blood vessels at a voxel. The HRF typically has a long duration

(e.g., 30 seconds) relative to τISI and τTR. It may look like the green curve presented in

the top plot of Figure 2.1. It is commonly assumed that, at each voxel, the stimuli of the

same type have the same HRF, whereas stimuli of different types may have different HRFs.

Consequently, there will be Q possibly different HRFs in cases with Q stimulus types. It is

also assumed that overlapping HRFs add up linearly. Figure 2.1 presents an example with

two onsets of stimulus of the same type. They give rise to two HRFs (solid green curve

and broken red curve in the top plot) of a certain voxel. Since the two stimuli are of the

same type, the shapes of the HRFs are the same; furthermore, these two HRFs accumulate

linearly to form the solid blue curve as shown in the bottom plot of Figure 2.1.
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Figure 2.1: Illustration of the Hemodynamic Response Function (HRF): (Top) Two stimuli

(bars) with same stimulus type are presented to an subject with 5 s apart; the responses of

certain voxel to first stimulus (green solid curve) and second stimulus (red broken curve);

(Bottom) the accumulated HRFs (blue curve) is formed by these two HRFs.

To understand the neural-BOLD relationship, there are two major objectives. One

study objective of interests is to estimate these Q HRFs, and the other study objective is to

detect the regions of brain corresponding to the neural activity in response to the stimulus.

The former problem is sometimes referred to as the estimation problem, whereas the latter

one is sometimes termed as the detection problem. For the detection problem, the HRF is

commonly approximated by the product of an assumed basis function of the HRF and an

unknown amplitude. One of the popular basis function for the HRF is the double gamma

function which has the following form and is similar to the one proposed in Glover (1999):

h∗(t) =
t5e−t

5!
− 1

6
· t

15e−t

15!
. (2.1)
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Typically, h∗(t) is (nearly) zero after 32 s. It is also noteworthy that, with given τISI and

τTR, the HRF heights that could possibly contribute to an observed BOLD signal will occur

at 0 s and every ∆T seconds after the stimulus onset. Here, the discretization interval ∆T is

defined as the greatest time making both τ̃ISI = (τISI/∆T ) and τ̃TR = (τTR/∆T ) integers.

2.3 Temporal Autocorrelations in fMRI Time Series

General linear models (GLMs) are commonly used in fMRI data analysis. It was first

introduced into neuroimaging by Friston et al. (1994). In fMRI time series, researchers

observed temporally autocorrelated noises in data due to low-frequency physiological fluc-

tuation (Weisskoff et al., 1993). When there are correlated errors in the model, statistical

inferences can be made, e.g., using generalized least squares. Bullmore et al. (1996) pro-

posed a pre-whitening approach, assuming the errors follow a first order autoregressive

model, or AR(1). Other than AR(1), there are variety of ways to model the noise, such as

mth order autoregressive, or AR(m) (Worsley et al., 2002), first order autoregressive (AR)

plus white noise model (Purdon and Weisskoff, 1998), first order autoregressive moving-

average, ARMA(1,1) model (Purdon et al., 2001), also Zarahn et al. (1997) first suggested

that temporal autocorrelation in fMRI can be well modeled by 1/f process, or long mem-

ory process. Among these models, the most commonly used model is probably the general

linear model with AR(1) noise. In the next section, we will introduce such a model. Similar

models will be considered in the first part of our study. A general linear model with a long

memory process that we consider in the second part of the study will also be introduced.

2.4 General Linear Models

The general linear model is commonly used in fMRI data analysis (Worsley and Friston,

1995; Friston et al., 1995; Dale, 1999). In the subsequent subsections, we present some

very popular general linear models. Based on these models, we would like to develop some

optimal designs.
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2.4.1 The First Order Autoregressive Model

When analyzing the fMRI data, it is not uncommon to assume that the noise follows

a first order autoregressive process; see also Bullmore et al. (1996). Depending on the

objective, either the estimation of the HRFs or the detection of brain activated regions, the

following linear models are commonly considered (e.g., Liu and Frank, 2004):

y =
K∑
k=1

Q∑
q=1

xq,khq,k + Sγ + ε = Xζ + Sγ + ε, and (2.2)

y =
K∑
k=1

Q∑
q=1

xq,kh
∗
kθq + Sγ + η = XHθ + Sγ + η. (2.3)

Here, Model (2.2) is used for estimating HRFs, vector y = [y1, ..., yT ]′ represents the fMRI

measurements obtained from a voxel every τTR seconds. The unknown parameter vector is

ζ = [ζ′1, . . . , ζ
′
K ]′, ζk = [h1,k, ..., hQ,k]

′. The hq,k represents the height of the HRF evoked

by qth-type stimulus at the kth time point that contribute to y. The pre-specified integer

K is sufficiently large so that the height of the HRF is negligible after K time points. In

particular, with function (2.1), the length is set to K = b1+(32/∆T )c, see Kao et al. (2009),

where ∆T is the discretization interval as defined previously; bac is the integer part of a.

The T ×QK matrix X = [X1, . . . ,XK ], Xk = [x1,k, . . . ,xQ,k] is the 0-1 design matrix. Sγ

is a nuisance term modeling the possible drift/trend of y with S being a specified matrix

and γ being the corresponding parameter vector. The vector ε consists of the T correlated

error terms that are assumed to follow an AR(1) process. Model (2.3) is for detecting

brain activation, h∗k is the kth height of the assumed HRF basis, θq represents the response

amplitude for the qth-type stimulus. The vector η is correlated errors that also are assumed

to follow an AR(1) process. The remaining terms are as in Model (2.2).

We note that X is determined by design d. An example for construction of design

matrix for cases where τISI = τTR can be found in Zhou (2014). Here, we present a case

where τISI 6= τTR in Example 1.
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Example 1 Let the design d = {1, 2, 1, 0, 2, . . . , 0}, where Q = 2, τISI = 3 s, τTR = 1.5 s,

and ∆T = 1.5 s. To construct Xk, where k = 1, . . . ,K; K = b1 + (32/∆T )c = 22, we

first construct two indicator vectors δ1 and δ2. The lengths of these indicator vectors are

the same as the length of d. The nth element of δq is δq,n = 1 when dn = q, where dn

denotes the nth entry of the design d, n = 1, . . . , N . Thus we have δ1 = {1, 0, 1, 0, 0, . . . , 0}

and δ2 = {0, 1, 0, 0, 1, . . . , 0} respectively. We then represent the onset times of the stimuli

in terms of ∆T , that is ωq = δq ⊗ [1,0
′
τ̃ISI−1]

′
, where ⊗ is the Kronecker product, 0a is

a zero vector of length a and τ̃ISI = (τISI/∆T ) = 2; q = 1, 2. Its length is adjusted to

N × τ̃TR by adding zeros or leaving out the last few elements. The design matrix is then

Xk = (IT ⊗ [1,0
′
τ̃TR−1])Lk−1[ω1, . . . ,ωQ], where Ia is an a × a identity matrix and L is

a lower shift matrix, i.e., L =

[
0
′

0

I 0

]
. In particular, Xk can be obtained from shifting

the elements of Xk−1 downward by one position, with zeros appearing in the top row; as

illustration, we present X1ζ1 to X3ζ3 for Model (2.2), note that the first column of Xk is

for stimulus type q = 1, and the second column is for stimulus type q = 2:

X1ζ1 =



1 0

0 0

0 1

0 0

1 0

0 0

0 0

0 0

0 1

...
...

0 0



h1,1

h2,1

 ,X2ζ2 =



0 0

1 0

0 0

0 1

0 0

1 0

0 0

0 0

0 0

...
...

0 0



h1,2

h2,2

 ,X3ζ3 =



0 0

0 0

1 0

0 0

0 1

0 0

1 0

0 0

0 0

...
...

0 0



h1,3

h2,3

 .

�

For Model (2.2), one important design goal is to select an fMRI design d that yields

the most precise generalized least square estimate (GLSE) of ζ. For detection problem,

the main concern is on studying the strength of brain activation for each stimulus type,

10



typically through obtaining the GLSE of θ with Model (2.3). Our target is to identify a d

that optimizes some statistically meaningful function of the information matrix of ζ or θ.

Note that the information matrixM is inversely proportional to the covariance of the GLSE

of ζ or θ, and it depends on the design d through the design matrixX. Ideally, we would like

to find a d that ‘maximizes’ the numerical value of a real-valued function (e.g. determinant,

trace etc.) of the information matrix. However, this goal is often not achievable. A common

strategy is thus to find a d that optimizes φ(M) for some real function φ; see Chapter 3

for a further discussion of the information matrix M and popularly used φ in fMRI. With

a selected φ, one may utilize a computer algorithm such as the genetic algorithm (GA) of

Kao et al. (2009) to search for an optimal d. A description of an adapted genetic algorithm

that we use can be found in Section 2.7.

Another fMRI data analysis method that also draws some attention is to consider a

long memory process. In the second part of our study, we consider such a model. In what

follows, we provide some background knowledge about this modeling technique.

2.4.2 The Long Memory Processes Model

Long memory processes have been widely observed in nature, Zarahn et al. (1997)

indicated that the temporal autocorrelation in a BOLD fMRI time series can be well modeled

by long memory processes. Specifically, one may consider the following linear models for

modeling a BOLD time series:

y = Xζ + ε, ε ∼ (0,Σε); (2.4)

y = XHθ + η, η ∼ (0,Ση). (2.5)

Here, Model (2.4) is for estimating HRFs, the design matrix X, the observations y and the

unknown vector ζ are the same as in Model (2.2); the highly correlated error terms ε are

modeled as a long memory process with mean 0 and covariance matrix Σε. Model (2.5)

is used for detecting brain activation, the vector η is the correlated errors and is assumed

to follow a long memory process with mean 0 and covariance matrix Ση, the remaining
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terms are the same as in Model (2.3). In both models, the long-range correlation feature of

long memory processes give rise to dense covariance matrices that make existing methods of

statistical inference computationally expensive. The wavelet-based method with Model (2.4)

proposed by Jeong et al. (2013) simplifies the dense variance-covariance matrix by employing

discrete wavelet transforms (DWTs) as whitening filter, it is shown to be suitable for fMRI

time series.

Wavelets have been recognized as an useful method for fMRI data analysis, see Rutti-

mann et al. (1998); Brammer (1998) among others. Thus, having knowledge for selecting

a good design to obtain the most informative data for such models is necessary. As for

fMRI time series, the most important property of DWTs is that the strongly correlated

long memory process can be transformed into wavelet coefficients, which are approximately

uncorrelated. Specifically, after wavelet transform, the dense covariance matrix can be

approximated as a diagonal matrix in wavelet domain. More details can be found in Sec-

tion 2.6.2. Based on such property, for Models (2.4) and (2.5), we will focus on developing

an efficient and effective algorithm for obtaining optimal designs for cases where such a

wavelet-based method is applied in fMRI data analysis.

In the next section, we will provide more details about long memory process and the

decorrelation property that discrete wavelet transforms have.

2.5 Long Memory Process

Long memory, or long range dependence is a phenomenon that has broadly been ob-

served in many research fields, such as civil engineering (e.g. Hurst (1951)), econometrics

(e.g. Baillie (1996)), weather forecasting (e.g. Caporin et al. (2009)) among others. In time

series data, it refers to the rate of decay of statistical dependence between two time points

as we increase the time interval, long memory is the situation when the dependence decays

more slowly than an exponential decay. Some well-known long memory processes include

fractional Brownian motion (fBm), fractional Gaussian noise (fGn) and autoregressive frac-

tionally integrated moving average (ARFIMA) processes. In the second topic of this work,
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we focus on wavelet-based linear models with long memory processes. Here, we provide

some background on long memory processes.

Continuous-Time Stochastic Process

Standard fractional Brownian motion (fBm) is a continuous-time Gaussian process BH(t)

on [0, T ], which starts at 0, has mean 0 for all t, and has the covariance function (Taqqu

et al., 1995):

Cov(BH(t), BH(s)) = E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H). (2.6)

The variance of BH(t) is,

Var(BH(t), BH(t)) = |t|2H . (2.7)

It is self-similar and characterized by Hurst parameter H assuming any value in the in-

terval [0, 1]. The self-similarity means that the process is invariant in distribution under

a suitable change of scale. Mathematically, BH(t) has normal distribution with mean 0,

and Cov(BH(at), BH(as)) = |a|2H Cov(BH(t), BH(s)). Its special case, when H = 1
2 , is

standard Brownian motion or Wiener process, denoted by B(t). It is a continuous-time

stochastic process with independent Gaussian increments. When H > 1
2 , the process has

long-range dependence or long memory.

There are many ways to define fractional Brownian motion. Mandelbrot and Ness (1968)

defined fractional Brownian motion as the (1
2 −H)th fractional derivative or integral (in the

sense of Weyl (1917)) of Brownian motion. The integral representation for fBm is:

BH(t)−BH(0) (2.8)

=
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− u)H−

1
2 − (−u)H−

1
2

]
dB(u) +

∫ t

0
(t− u)H−

1
2 dB(u)

}
,

whereBH(0) is the starting value at time 0, Γ is the Gamma function Γ(α) =
∫∞

0 xα−1e−xdx,

B(t) is Brownian motion, and 0 < H < 1 is the Hurst parameter.

By definition, the formal derivative of Brownian motion B′(t) is the continuous-time

white noise. By analogy, we define the fractional Gaussian noise (fGn) as the derivative of

13



fractional Brownian motion. It may also be thought of as the (H− 1
2)th fractional derivative

of continuous-time white noise. Note that the fractional Gaussian noise reduces to white

noise when H = 1
2 .

Fractional Brownian motion and its increments fractional Gaussian noise are both

continuous-time stochastic processes. However, some data set such as fMRI time series

are discrete data, Hosking (1981) proposed a model for discrete-time version of fGn, named

fractionally differenced Gaussian noise, we will call it discrete fractional Gaussian noise

(dfGn) hereafter.

Discrete-Time Stochastic Process

Discrete fractional Gaussian noise (dfGn) can be used to model discrete time series that

has long-range dependence and self-similarity. Here, we will describe the derivation of such

noise that is proposed by Hosking (1981). It is also known as ARFIMA processes.

The discrete time analogue of Brownian motion, {xt}, can be defined as Oxt = (1 −

B)xt = εt, where B is the backward shift operator defined by Bxt = xt−1 and εt are

independent identically distributed random variables. The first difference of {xt} is the

discrete-time white noise process {εt}.

By analogy with the above definition of continuous-time white noise, we defined the

discrete fractional Gaussian noise with parameter H to be the (H− 1
2)th fractional difference

of discrete-time white noise. The fractional difference operator Od
∗

is defined by a binomial

series:

Od
∗

= (1− B)d
∗

=
∞∑
k=0

(
d∗

k

)
(−B)k = 1− d∗B − 1

2
d∗(1− d∗)B2 − . . . . (2.9)

Since
(
n
j

)
= (−1)j

(
j−n−1

j

)
and

(
n
j

)
= Γ(n+1)

Γ(j+1)Γ(n−j+1) , then we have

(1− B)d
∗

=
∞∑
k=0

(−1)k
(
d∗

k

)
Bk =

∞∑
k=0

(
k − d∗ − 1

k

)
Bk =

∞∑
k=0

Γ(k − d∗)
Γ(k + 1)Γ(−d∗)

Bk,

where the difference parameter d∗ = H− 1
2 , so that the continuous-time fractional Gaussian

noise has as its discrete-time analogue the process Od
∗
xt = εt, where {εt} is a white noise

process.
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Thus, discrete fractional Gaussian noise process {xt} is defined as

Odxt = εt, where εt ∼ (0, σ2
ε ).

The spectral density of {xt} is s(ω) = σ2
ε (2 sin(1

2ω))−2d∗ for 0 < ω ≤ π, ω = 2πf (Hosking,

1981). Note that {εt} is a white noise, we have σ2
ε = 1.

Discrete fractional Gaussian noise can also be defined as the increments of fractional

Brownian motion, by

xt = BH(t+ 1)−BH(t),

then the covariance of dfGn is

Cov(xt, xs) = Cov(BH(t+ 1)−BH(t), BH(s+ 1)−BH(s))

= E[(BH(t+ 1)−BH(t))(BH(s+ 1)−BH(s))]

= E[BH(t+ 1)BH(s+ 1)−BH(t+ 1)BH(s)−BH(t)BH(s+ 1) +BH(t)BH(s)]

=
1

2
(|t+ 1− s|2H + |t− s− 1|2H − 2 |t− s|2H).

Now, let t− s = k, the autocovariance function is

γ(k) = Cov(xt, xs)

=
1

2
(|k + 1|2H + |k − 1|2H − 2k2H ] (2.10)

=
1

2
k2H

(∣∣∣∣k + 1

k

∣∣∣∣2H +

∣∣∣∣k − 1

k

∣∣∣∣2H − 2

)

=
1

2
k2H

(∣∣∣∣1 +
1

k

∣∣∣∣2H +

∣∣∣∣1− 1

k

∣∣∣∣2H − 2

)
, (2.11)

by writing down the Taylor series for |1 + 1/k|2H + |1− 1/k|2H − 2, (2.11) becomes

γ(k) ≈ 1

2
k2H [2H(2H − 1)k−2]

= [H(2H − 1)]k2H−2. (2.12)

2.5.1 Simulation of Discrete Fractional Gaussian Noise (dfGn)

Jeong et al. (2013) considered a linear regression model with long memory, more specifi-

cally, error term was modeled as discrete fractional Gaussian noise. Additionally, Bullmore
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et al. (2001); Fadili and Bullmore (2002); Bullmore et al. (2004) also consider long memory

errors in fMRI using discrete fractional Gaussian noise (dfGn). There are many methods for

simulating dfGn, Jean-Francois (2007) describe several popular methods to simulate dfGn

and fBm. Circulant embedding method (Wood and Chan, 1994; Dietrich and Newsam,

1997) is an efficient way to simulate discrete fractional Gaussian noise. In the second part

of the work, we use this method to simulate dfGn. This method extracts the square root

of the autocovariance matrix of the discrete fractional Gaussian noise as in (2.10), denoted

by G. To generate a vector with N random variables with mean 0 and covariance ma-

trix G, Wood and Chan (1994) proposed to embed G in an M ×M circulant matrix C,

where M = 2g for some integer g, and M ≥ 2(N − 1). By generating a random vector

y = (y0, y1, . . . , ym−1)′ ∼ Nm(0,C), then, with appropriate construction of C, we have

y = (y0, y1, . . . , yn−1)′ ∼ Nn(0,G).

The circulant matrix C can be constructed as

C =



c0 c1 c2 · · · cm−1

cm−1 c0 c1 · · · cm−2

...
...

...
. . .

...

c1 c2 c3 · · · c0


,

where c0 = 0 and

cm =

 γ(m), m = 1, 2, . . . , N − 1

γ(M −m), m = N − 1, . . . ,M − 1
,

γ(·) is defined in (2.10). Note that the top left corner of C is equal toG. We can construct a

nonnegative definite matrix C by choosing an appropriate value of M , see Wood and Chan

(1994). C can be decomposed as C = QΛQ∗, where Q is defined as an unitary matrix

Q = (qjk)
M−1
j,k=0:

qjk =
1√
M
exp

{
−2πi

jk

M

}
,

with i =
√
−1; Q∗ is the conjugate transpose of Q. Λ = diag(λ0, λ1, · · · , λM−1), λk =∑M−1

j=0 cjexp
{
−2πi jkM

}
, it is the diagonal matrix of eigenvectors of C. To generate random
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vector y with mean 0 and covariance C, given Q is unitary, we can define y = QΛ1/2Q∗z

with z ∼ N(0, I), and (y0, . . . , yN − 1) ∼ N(0,G). More details can be found in Wood

and Chan (1994); Jean-Francois (2007). From (2.12), the covariances of discrete fractional

Gaussian noise are positive for H > 0.5, negative for H < 0.5 and zero for H = 0.5.

Figure 2.2 gives simulated dfGn for four different values of the Hurst parameter. For

H = 0.25, the negative correlation sample has high variability, for H = 0.95, there are

clearly periods and less variability.

0H =0.25

0H =0.5

0H =0.75

time points (N=1024)

0

H =0.95

Figure 2.2: Samples of discrete fractional Gaussian noise (dfGn) with N = 1024 for H =

0.25, H = 0.5, H = 0.75, H = 0.95.

2.5.2 Simulation of fMRI Data with Long Memory Errors

To have a better understanding of fMRI experiment and fMRI time series, we simulate a

simple fMRI design with random stimulus onsets. Specifically, we simulate a random design

with one stimulus type, the length of the design is set to 512. In Figure 2.3, the blue sticks

in the top plot shows the onset times of the stimuli in second (s), the inter-stimulus interval

τISI is set to 0.5 s, that is, there are two stimulus onsets per second. The other two plots of
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Figure 2.3 present the simulated fMRI signal (middle) and the simulated fMRI signal with

long memory errors (bottom). fMRI time series is simulated with the general linear model

(Friston et al., 1994), y(t) = X(t)β + ε(t), where the error term follows a long memory

process (dfGn), with the Hurst parameter H = 0.75. We set β = 2, X(t) is obtained by the

convolution of the onset stimuli with an HRF, where HRF is a double Gamma function as

in (2.1).
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Figure 2.3: Simulation of fMRI data with long memory: simulated fMRI time series with

N = 512, τISI = 0.5 s, Q = 1. Top plot shows the random generated onset times for

each stimulus (time (s)), middle plot shows the convolved signals, bottom plot shows the

response signal with added long memory errors with H = 0.75.

2.5.3 Hurst Parameter and Estimation

Hurst parameter H provides a measurement of a random process with an underlying

trend has some degree of autocorrelation. For H = 0.5, the increments of the process are

uncorrelated white noise. There exist plenty of methods to measure the Hurst parameter

described in various literatures. A good guide about measuring the Hurst parameter can
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be found in Clegg (2006). The methods described below are some well-known techniques

which have been used to estimate Hurst parameter for some time.

2.5.3.1 R/S Statistics (Rescaled Range Method)

R/S statistics is the original method that Hurst (1951) proposed to measure the long mem-

ory, it is used by Mandelbrot and Wallis (1969); Mandelbrot and Taqqu (1979).

Let x1, . . . , xN be a time series with partial sum Y (n) =
∑n

j=1 xj , n = 1, . . . , N and

Q0 = 0, next, let Sk,n = Y (k) − k
nY (n), k = 0, 1, . . . , n be the adjusted partial sums. The

adjusted range is defined as

Rn = max
0≤k≤n

Sk,n − min
0≤k≤n

Sk,n.

In order to study the properties that are independent of the scale, Rn is standardized by

its standard deviation:

Sn =

√√√√ 1

n

n∑
j=1

(xj − x̄)2,

where x̄ = 1
n

∑n
j=1 xj is the sample mean. For fGn and ARFIMA processes, the observations

appeared to be well represented by the relation:

[R/S] = E(Rn/Sn) = CnH as n→∞,

it is called the rescaled adjusted range or R/S-statistic. Thus, the Hurst parameter can be

estimated by

log(R/S) = log(C) +H(log(n)).

We thus can estimate the Hurst parameter H by least square method.

2.5.3.2 Aggregated Variance Method

Aggregated variance method is described in Beran (1994), it aggregates the time series over

blocks of size m, and calculates the variance of the aggregated dataset. For example, for a

19



fBm process {BH(t), t ≥ 0}, i.e., for dfGn, X(n) = BH(n+ 1)−BH(n), the variance of the

increment process is denoted by σ2
X . Now, let s < t, and t− s = k we have

Var(BH(t)−BH(s)) = E[(BH(t)−BH(s))2]− E[BH(t)−BH(s)]2

= E[BH(t− s)]

= |k|2H σ2
X .

The m-averaged process X(m) = (X(m)(1), X(m)(2), . . . ) of a given series is

X(m)(i) =
1

m

im∑
n=(i−1)m+1

X(n),

where i = 1, 2, . . . , N/m, m and i are positive integers. The variance of this aggregated

process is

Var(X(m)) =
1

N/m

N/m∑
i=1

(X(m)(i)− X̄)2.

For large N
m and m, the variance of the sample mean Var(X(m)) ∝ m2H−2. Thus, the log-log

plot of sample variance have a slope of 2H − 2.

We use Matlab functions to estimate the Hurst exponents with both R/S statistics

method and aggregated variance method. The complete code can be found in Appendix.

We generate dfGn with H = 0.75 of length 2x, where x = 8, . . . , 24, and estimate the Hurst

parameter with both methods. The results are shown in Figure 2.4. As mentioned in Clegg

(2006), R/S statistics usually underestimates the Hurst parameter. These methods usually

perform better with the simulated data than real data.

2.6 Wavelet Transform

Wavelet, meaning ‘little’ wave, is a mathematical function that used to represent data

(signal or image). It has been proven as a powerful tool for analysis long memory processes,

see Wornell and Oppenheim (1992), McCoy and Walden (1996). In fMRI research, different

wavelet-based methods have proposed for fMRI data analysis (Ruttimann et al., 1998;

Brammer, 1998; Costafreda et al., 2009), a good review of wavelets and fMRI can be found
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Figure 2.4: Estimators of Hurst parameter with R/S statistics and aggregated variance

method, dfGn were generated with length 2x, where x = 8, . . . , 24, and Hurst parameter

H = 0.75.

in Bullmore et al. (2004). In the present study, following Jeong et al. (2013)’s model, we are

interested in Discrete Wavelet Transform (DWT) which simplify the variance-covariance

matrix of the data with long memory. There are many literature on wavelets and their

properties. Here we give a brief introduction of Discrete Wavelet Transform with a simple

example on how to construct the wavelet matrix and some useful properties that are relevant

to our problem.

2.6.1 Discrete Wavelet Transform

In wavelet analysis, time series signal can be represented as a set of orthogonal wavelet

basis functions, so-called ‘mother’ wavelet and ‘father’ wavelet (or scaling function). Haar
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wavelets and Daubechies wavelets are two commonly used DWTs. In this section, we

describe the procedure for computing Discrete Wavelet Transform.

Let the initial data sequence denoted by {y1, y2, . . . , yN} = {y0,1, y0,2, . . . , y0,N} =

{ym,n}, where n = 1, . . . , N , and N = 2J , it is said to be at level m = 0 and scale

2m = 20 = 1, m = 0, . . . , J − 1. The following description explains the standard DWT. At

each level or scale, the sequence {ym,n} is filtered with a low-pass filter (scaling filter) {gl}

and high-pass filter (wavelet filter) {hl}, l = 0, . . . L− 1 respectively, where L is the length

of the filter. That is

{ym,n} →



low-pass downsample approximation

um+1,i =
∑L−1

l=0 glym,l+2i−1 → ↓ 2 → {um+1,i}

vm+1,i =
∑L−1

l=0 hlym,l+2i−1 → ↓ 2 → {vm+1,i}

high-pass downsample detail

. (2.13)

The sequence {ym,n} is then ‘downsampled’ by a factor of 2, as {um+1,i} and {vm+1,i} with

length N
2m+1 respectively, where i = 1, . . . , 2J−m−1. Sequence {um+1,i} is known as ‘scaling’

coefficients, it provides an approximation of the sequence; {vm+1,i} is a sequence of wavelet

coefficients, providing detail information of the sequence. The scaling coefficients {um+1,i}

then pass to the next level as input to obtain a vector of scaling coefficients and wavelet

coefficient by repeating the operation (2.13). The process continues until we obtain one

scaling coefficient and one wavelet coefficient at level J , that is uJ,1 and vJ,1. Together

with the other wavelet coefficients obtained from the previous J−1 steps, which are vm+1,i,

where m = 1, . . . , J − 2 and i is as defined earlier. Thus, after J steps,

y : {y1, y2, . . . , yN} → {uJ,1, vJ,1, vJ−1,1, vJ−1,2, . . . , v1,1, . . . , v1,2J−1} = z. (2.14)

Example 2 describe the procedure of applying Harr wavelet transform to the data up to the

maximum scale.

Example 2 Let N = 2J = 4, thus J = 2. We use ‘Haar wavelets’ to illustrate the process.

In particular, the scaling function (gl) and wavelet function (hl) coefficients are defined as:
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
Scaling function coefficients: h0 = 0.5; h1 = 0.5

Wavelet function coefficients: g0 = 0.5; g1 = −0.5

. (2.15)

In matrix form: 

h0 h1 0 0 · · ·

0 0 h0 h1 · · ·

g0 g1 0 0 · · ·

0 0 g0 g1 · · ·
...

...
...

...
. . .


.

Then the discrete wavelet transform (DWT) can be described as follows:

Let the initial data vector be [y0,n] = [y0,1, y0,2, y0,3, y0,4]′. The first step of the forward

Haar transform for [y0,t] is

w0[y0,n] =



1
2

1
2 0 0

0 0 1
2

1
2

1
2 −1

2 0 0

0 0 1
2 −1

2





y0,1

y0,2

y0,3

y0,4


=



(y0,1 + y0,2)/2

(y0,3 + y0,4)/2

(y0,1 − y0,2)/2

(y0,3 − y0,4)/2


=



u1,1

u1,2

v1,1

v1,2


: [y1,n];

thus, at level m = 0, we obtain {y1,i} and {d1,i} with each length J
2m+1 = 2. Next step, we

multiple the y1,n values by a 4× 4 transform matrix:

w1[y1,n] =



1
2

1
2 0 0

1
2 −1

2 0 0

0 0 1 0

0 0 0 1





u1,1

u1,2

v1,1

v1,2


=



(u1,1 + u1,2)/2

(u1,1 − u1,2)/2

v1,1

v1,2


=



u2,1

v2,1

v1,1

v1,2


.

This complete the wavelet process by generating single average u2,1 and detail v2,1 at level

J = 2.

�
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We can define wavelet transform matrix

W = wmwm−1 . . . w0, (2.16)

where wm is wavelet transform matrix at level m. where uJ,1 is the scaling coefficient, and

the rest are called wavelet coefficients.

2.6.2 Discrete Wavelet Transform and Long Memory Process

The highly correlated long memory processes lead a dense variance-covariance matrix

of the data. As whitening filters, discrete wavelet transforms allow to simplify the variance-

covariance matrix. In this section, we provide some details about covariance structure after

applying wavelet transform to the data with long memory processes.

Discrete wavelet transform can represent in matrix form as

z = Wy, (2.17)

where vector z,y are given in (2.14), and wavelet transform matrix W was defined in (2.16).

So with a given covariance matrix of y, Σy, the covariance matrix of z, can be written as:

Σz = WΣyW
′. (2.18)

As reported in McCoy and Walden (1996), the DWT coefficients of long memory pro-

cesses (dfGn) can approximately uncorrelated. So the covariance matrix in (2.18) can be

written as a diagonal matrix

Sp+1

Sp Sp−1

Sp−1


. . . 

S1

. . .

S1





. (2.19)
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Here Sp+1 and Sp, where p = 1, . . . , J are the variance of the scaling coefficient and wavelet

coefficients as in (2.14):

Sp = Var{vm+1,i} for p = 1, . . . , J ; Sp+1 = Var{uJ,1},

where m, i are same as in (2.14).

2.6.2.1 Variance of Wavelet Coefficients

Recall that in Section 2.5, the power spectral density function of discrete fractional Gaussian

noise is s(ω) = (2 sin(1
2ω))−2d∗ , that is,

S(f) = (2 sinπf)−2d∗ ,

where d∗ = 1−H and 0 < d∗ < 0.5, the signal is stationary and has long memory. We have

S(f) ∼ f−2d∗ as f → 0, since sin−2d∗(πf) ≈ πf−2d∗ when f → 0.

At level m, the bandpass variance Bm in the frequency octaves
[
−2−m,−2−m−1

]
∪[

2−m−1, 2−m
]

can be written as

Bm = 2

∫ 2−m

2−m−1

(2 sin(πf))−2d∗df

= 2× 2−2d∗
∫ 2−m

2−m−1

sin−2d∗(πf)df

≈ 2× 2−2d∗
∫ 2−m

2−m−1

(πf)−2d∗df

= 2× (2π)−2d∗
∫ 2−m

2−m−1

f−2d∗df

= 2× (2π)−2d∗2−m(1−2d∗) 1− 22d∗−1

1− 2d∗
.

Suppose over each such frequency octave, we wish to replace by a constant power spec-

trum, with value Sm, then the bandpass variance is∫ 2−m

2−m−1

Smdf = Sm2−m−1.
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In order to get equal bandpass variance 2× Sm2−m−1 = Bm, thus,

Sm = 2mBm

= 2× (2π)−2d∗22md∗ 1− 22d∗−1

1− 2d∗

= 2(2π)−2d∗ 1− 22d∗−1

1− 2d∗
× 22md∗

= C22md∗ , (2.20)

where C is a constant.

Follow Jeong et al. (2013) approach, we omit the variance of scaling coefficient Sp+1

and will not discuss the details here, some information can be found in McCoy and Walden

(1996).

2.7 Existing Algorithms for Obtaining fMRI Designs

In this section, we present a brief review on some popular algorithms or methods for

finding fMRI designs that optimize a given optimality criterion. To search for a good design

over the large space of fMRI designs, Wager and Nichols (2003) proposed to use a genetic

algorithm (GA). Later, based on the knowledge of the performance of some fMRI designs

and the features of genetic algorithms, Kao et al. (2009) proposed an improved algorithm

that not only is fast, but also can effectively obtain high-quality fMRI designs. Following

these works, genetic algorithms have been applied in obtaining fMRI designs for many real

experiments, see Maus et al. (2010); Cordes et al. (2012); Delzell et al. (2012) and Zhou

(2014) among others.

Besides GAs, some other computationally efficient algorithms have been proposed in

recent years. For example, Kao and Mittelmann (2011) proposed a fast algorithm by com-

bining hill climbing algorithm with cyclic permutation method for constructing high-quality

fMRI designs. Saleh et al. (2017) proposed another algorithm for optimizing D-optimal

fMRI designs; their algorithm is built upon the coordinate-exchange algorithm of Meyer

and Nachtsheim (1995) and hill climbing algorithm. Both algorithms can outperform GAs
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under certain experimental settings.

In this study, we adapt Kao et al. (2009)’s genetic algorithm for our first research topic.

Here, we give a brief description of our adapted GA in Algorithm 1:

Algorithm 1 Adapted genetic algorithm

Step 1. Generate 20 designs as parents, which include block designs of various block sizes,

random designs, m-sequence based designs and mixed designs. Obtain their design

efficiencies.

Step 2. With probability proportional to the value of design efficiency, randomly draw 10

pairs of distinct designs with replacement from the 20 parent designs.

Step 3. For each design pair, randomly select a cut-point and exchange the corresponding

fractions before the cut-point of the two designs to obtain a pair of offspring designs.

Step 4. Randomly select a portion (1%) of elements of the offspring designs, and randomly

perturb these elements by replacing them with integers randomly generated from the

discrete uniform distribution over 0, 1, 2, . . . , Q.

Step 5. Randomly generate 4 immigrant designs from mixed designs.

Step 6. Obtain the design efficiencies for the offspring and immigrant designs.

Step 7. In the current pool of the parent, offspring and immigrant designs, select the best

20 designs to form the parents of the next generation.

Step 8. Repeat Steps 2-7 until no significant improvement in the design efficiency can be

expected; i.e. use the second stopping rule of Kao (2009). Keep track of the best

design over generations.

Note that a mixed design in Steps 1 and 5 is formed by a fraction of a 16 s-on-16 s-off

block design followed by a fraction of an m-sequence (or a random design if the m-sequence
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is unavailable). To obtain such a design, we randomly select a cut-point and replace all

the elements of the block design after the cut-point by the corresponding elements of an

m-sequence (or a random design).

We then shift our focus to the development of an efficient algorithm for a wavelet-based

model as the second topic. Inspired by Saleh et al. (2017), we proposed an algorithm by

combining a simulated annealing algorithm with an exchange algorithm. We now give a

brief introduction about a simulated annealing algorithm in the next subsection.

2.7.1 Simulated Annealing Algorithm

Simulated annealing is a popular algorithm in stochastic optimization, it is proposed by

Kirkpatrick et al. (1983), Černỳ (1985) independently. It has been applied to many areas

since then, such as very-large-scale integrated (VLSI) circuit computer chips, communica-

tion technology, network design, a review of the algorithm and its application can be found

in Tan and Raghavan (2008).

Simulated annealing algorithms mimic the process of heating a material to melt and then

carefully control the cooling scheme to reduce its defects and increase the size of crystals.

Starting at a high temperature (melted state), the physical process of annealing reducing

the temperature gradually to reach its minimum energy state (thermal equilibrium) at each

temperature. Mathematically, Let U(x) be the objective function that we would like to

optimize (maximize or minimize). Let the starting temperature T0 be large, the cooling

scheme of simulated annealing is presented in Algorithm 2, where i is the initial solution of

the problem, j is a candidate solution. At each temperature T , the solid reaches to thermal

equilibrium which is determined by the Boltzmann distribution:

Prob(E) =
1

Z(T )
exp(−E/(kBT )), (2.21)

where E is the energy of the current state, kB is the Boltzmann constant, Z is the partition

function. As T decreases, the Boltzmann distribution concentrates on the state with lowest

energy.
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Algorithm 2 Pseudocode for simulated annealing algorithm

1 Initialization:
2 T0, R (Reduction factor), i
3 T = T0;
4 while stop criteria not met do
5 pick a neighbor j
6 Calculate ∆E = E(j)− E(i)
7 if ∆E > 0 then
8 i = j . accept the improvement
9 else

10 p = exp(−∆E
T )

11 if p > rand(0, 1) then
12 i = j . accept the worsening
13 end if
14 end if
15 T = R * T
16 end while

In a simulated annealing algorithm, the constant kB is normally omitted. At a high

T , the algorithm performs a coarse search over the entire space and identifies a ‘subspace’

where a good solution might be found. As T becomes increasingly small, the algorithm

focuses on the ‘subspace’, aiming at the best solution in that subspace. The probability of

accepting a worse solution, which is usually set to exp(−∆E
T ) for minimization problem. The

temperature T is started with a relatively high value such that the probability of acceptance

is high at the beginning of the search to avoid being trapped in a local optimum. As T

decreases, the probability becomes smaller until it reaches to zero. We consider an algorithm

of this type in our second topic to be presented in Chapter 4.

29



Chapter 3

DESIGNS OF FMRI EXPERIMENTS WITH AN UNCERTAIN DESIGN MATRIX

3.1 A Motivating Example

In most of the traditional fMRI experimental settings, the design matrix such as the X

matrix in (2.2) and (2.3) can be determined at the design stage. But, this might not be

the case for some modern fMRI experiments. Here, our focus is on a case where the design

matrix X in the model is uncertain before data collection. A study of this sort is reported

by Cordes et al. (2012). Specifically, Cordes et al. (2012) reported an fMRI experiment for

studying brain activity evoked by the mental stimuli (pictures) presented to her/him, and

the subject’s reaction to each of these pictures. In their pilot study, the subjects were asked

to study a list of pictures that presented asymmetrically on a vertical axis before an fMRI

experiment. During the experiment, some of the pictures were presented with the same or

opposite left/right orientation, interlaced with new pictures. Consequently, there are three

stimulus types, namely (1) studied pictures with the ‘same’ orientation; (2) studied pictures

with the ‘different’ orientation; and (3) ‘new’ pictures. The subjects were asked to select

an answer among ‘same’, ‘different’ and ‘new’ for each picture. During the experiments,

the subject’s answers are recorded along with the BOLD signals of the subject’s brain

collected by the fMRI scanner. The main objective of Cordes et al. (2012)’s experiments is

to study the brain activity with respect to the stimulus-response pairs. Since the subject’s

reactions are uncertain at the design stage (before the experiment starts), it is unlikely

to have an accurate evaluation of the quality of designs. More precisely, the uncertainty

of the design matrix X will give an unknown information matrix M . The value of the

optimality criterion φ(M) for evaluating the quality of designs is thus unavailable. Note

that these terms will depend on the subject’s probabilistic behavior in selecting the answers

during the experiment and are thus unknown at the design stage (see also Section 3.2).
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This uncertainty makes it very challenging to select good designs for this type of modern

experiments.

To tackle this design issue, Cordes et al. (2012) first approximate the probabilities of

the subject’s answers to each type of pictures. For each candidate design d, they then

simulate, say, 100 realizations of the subject’s answers to obtain 100 realizations of the

design matrix. This results in 100 realizations of the φ-values for d. A summary statistic

such as the median or mean of these 100 φ-values is obtained to evaluate the goodness of

d. Conceptually, this is similar to use E[φ(M)|d] to evaluate the goodness of d, where the

expectation E[·|d] is taken over the conditional probability of the subject’s answer to each

given stimulus type. Since a closed form of E[φ(M)|d] is in general unavailable, a Monte

Carlo simulation is considered to approximate this criterion. Unfortunately, the Monte

Carlo simulation is time consuming, and it needs to be repeated for every candidate design.

The procedure thus requires much computational effort as reported in Cordes et al. (2012).

An efficient approach is called for.

3.2 Methodology

3.2.1 The General Linear Models

Following Cordes et al. (2012), extensions of Models (2.2) and (2.3) are considered for

modeling the data collected from experiments having the above mentioned settings. For

simplicity, we assume that the subject can have R possible responses for every stimulus.

We now describe the statistical models for the estimation and detection problems.

3.2.1.1 A Linear Model for Estimation

For estimating the HRFs, the model that we consider is

y =

K∑
k=1

Q∑
q=1

R∑
r=1

xr,q,khr,q,k + Sγ + ε = Xζ + Sγ + ε. (3.1)
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This is a extension of Model (2.2). In particular, the T × RQK design matrix X consists

of column vectors xr,q,k’s with all elements either 0 or 1, and X = [X1, . . . ,XK ], Xk =

[X1,k, . . . ,XQ,k], Xq,k = [x1,q,k, . . . ,xR,q,k]. The tth element of xr,q,k is ((xr,q,k))t = 1 if

hr,q,k contributes to yt. Here, each unknown parameter hr,q,k represents the HRF of the

event that the subject selects the rth answer to a stimulus of the qth type evaluated at

the stimulus onset time hr,q,1 and the subsequent, regularly spaced (K − 1) time points

[hr,q,2, . . . , hr,q,K ]. ζ is a vector of hr,q,k with ζ = [ζ′1, . . . , ζ
′
K ]′, ζk = [ζ′1,k, . . . , ζ

′
Q,k]

′ and

ζq,k = [h1,q,k, . . . , hR,q,k]
′. The remaining terms are the same as in Model (2.2). With

Model (3.1), parametric functions of interest would be Chζ for a coefficient matrix Ch. For

illustration purposes, we will consider Ch = IRQK , the estimation of the heights in ζ. Our

proposed method can be easily adopted to accommodate other Ch.

3.2.1.2 A Linear Model for Detection

The model that we consider for detection is

y =
K∑
k=1

Q∑
q=1

R∑
r=1

xr,q,kh
∗
kθr,q + Sγ + η = XHθ + Sγ + η. (3.2)

Here, H = h∗ ⊗ IRQ, the K × 1 vector h∗ is the assumed basis function of HRF, which

may be determined by function (2.1). The corresponding coefficient θ = [θ1, . . . ,θQ]′;

θq = [θ1,q, . . . , θR,q]
′ with θr,q represents the response amplitude for qth-type stimulus with

rth answer. The vector η is the correlated error terms that are assumed to follow an AR(1)

process. All remaining terms of Model (3.2) are as in Model (3.1).

3.2.2 Design Criterion

We would like to find a design that gives the most precise generalized least squares

estimator (GLSE) of the parametric function of interest. The goodness of a design will

be evaluated by a functional φ of the information matrix M of the parametric function of

interest. We defer the details of the information matrix to the next subsection. Here we

describe the design selection criteria that we consider.
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We apply two commonly used criteria in fMRI design studies, namely the A- and D-

optimality criteria (Dale, 1999; Wager and Nichols, 2003; Liu and Frank, 2004; Kao et al.,

2009; Maus et al., 2010). Extending our method to other optimality criteria should be

straightforward. These two criteria are defined as follows:

φ(M) =


R/tr(M−1), for A-optimality;

det(M)1/R, for D-optimality.

(3.3)

where M is nonsingular. We set φ(M) = 0 when M is singular, R is set to RQK for

Model (3.1) and RQ for Model (3.2), which corresponds to the number of the parameters

of interest.

We now provide some additional discussions on the information matrix M .

3.2.3 Information Matrices and the Expectations

The information matrices M are:
M(ζ) = X ′V ′(IT − PV S)V X, for estimation Model (3.1);

M(θ) = H ′X ′V ′(IT − PV S)V XH, for detection Model (3.2).

(3.4)

PV S = V S(S′V ′V S)−S′V ′ is the orthogonal projection on the vector space spanned by

the column vectors of V S, with B− denoting a generalized inverse of a matrix B. V is a

whitening matrix so that Cov(V ε) = σ2
1IT , Cov(V η) = σ2

2IT for Models (3.1) and (3.2)

respectively. All the remaining terms are as described in Models (3.1) and (3.2). The infor-

mation matrix M depends on the selected design d. But, in contrast to the traditional set-

tings, this M will also depend on the subject’s answers α. In particular, α = {α1, . . . , αN}

with αn ∈ {0, 1, 2, . . . , R}, and n = 1, . . . , N . Here, αn represents the subject’s answer to

dn. We set αn = 0 when dn = 0; i.e. when there is no stimulus presentation, the sub-

ject does not respond. In addition, we set αn can be 1, 2, ..., or R when dn 6= 0. Since

the subject’s responses are not available at the design stage, the design matrix X and the

information matrices of equation (3.4) cannot be determined at that stage. Consequently,

φ(M) is unavailable at the design stage.
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3.2.4 The Proposed Approach

As previously mentioned, the method used by Cordes et al. (2012) for obtaining optimal

designs for the current setting is very time consuming. Zhou (2014) proposed a very efficient

alternative method. But the application of her method is only restricted to the estimation

problems with τISI = τTR. Further developments are needed for other practical situations.

We now briefly describe the method of Zhou (2014) and provide useful extensions to other

cases, including both estimation and detection problems with or without τISI = τTR.

The key idea of Zhou (2014) is by utilizing the φ-value of the expected information ma-

trix, namely φ(E[M |d]), instead of E[φ(M)|d]; note that the latter criterion is essentially

the one considered by Cordes et al. (2012). The expectation is taken over the conditional

probability of the subject’s answer αn’s to the presented stimulus given the design d. Fol-

lowing Cordes et al. (2012), we consider αn’s as independent random variables, and the

expectation of the information matrix E[M |d] is taken over p(αn = r|dn = q) = p(r|q),

which can be viewed as the prior conditional probability of α given design d. In other

words, p(r|q) is the probability that the subject selects the rth answer for a qth-type stim-

ulus. The prior probability can be approximated from, say, a pilot study. We then obtain

a design that maximizes φ1 ≡ φ(E[M |d]) for given p(r|q). Here, φ is a specified optimality

criterion, in our case, it refers to one of the criteria in equation (4.7). Another possibility

is to consider a criterion similar to that of Cordes et al. (2012), namely φ2 ≡ E[φ(M)|d].

A major advantage of using φ1 is that a closed form of E[M |d] can be derived. The

main idea for deriving this closed form expression is by making use of the formula for the

expectation of a quadratic form of a random variable. We now present the expressions of

our analytical results in Theorem 3.2.1 and Corollary 3.2.2. Note that, when τISI = τTR,

these results reduce to those of Zhou (2014). Our results are thus more general than Zhou

(2014).
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Theorem 3.2.1 For Model (3.1), define the partitioned matrix

((((E[X ′p,iAXq,j |d]))p,q=1,...,Q))i,j=1,...,K = E[X ′AX|d] = E[M |d];

we have E[X ′p,iAXq,j ] = Tq ×[diag(πq) − πqπ′q] + πqπ
′
qU q,q where q = 1, . . . , Q; and

E[X ′p,iAXq,j ] = πqπ
′
qUp,q where p 6= q; p, q = 1, . . . , Q.

In Theorem 3.2.1, A = V ′(IT − PV S)V ; diag(πq) is a diagonal matrix whose diagonal

elements are those in πq = [p(1|q), . . . , p(R|q)]′; Tq = trace{Ai,jdiag(ωq)}, and Up,q =

ω
′
pAi,jωq where Ai,j = D′iADj and Dk = IT ⊗ [1,0

′
τ̃TR−1]UL̃

k−1
, L̃ is a lower shifting

matrix, more details for U and L̃ can be found in (3.6) and (3.7); ωq is as in Example 1.

For detection of the brain activation, the expectation of the information matrix can be

obtained by replacing the design matrix X with XH where H is defined in Model (3.2).

Corollary 3.2.2 We have E[H ′X ′AXH|d] = H ′ E[X ′AX|d]H for Model (3.2), where

E[X ′AX|d] can be obtained from Theorem 3.2.1.

We now explain how these two results were obtained in the next subsection.

3.2.5 Evaluating the Expected Information Matrix

3.2.5.1 Expected Information Matrix for Estimation

Without loss of generality, we assume that X in Model (3.1) have the form of X =

[X1, . . . ,XK ], where for k = 1, ...,K, and for q = 1, ..., Q, Xk = [X1,k, . . . ,XQ,k] with

dimension N × RQ, and Xq,k = (x1,q,k, . . . ,xR,q,k). The vector xr,q,k is defined as in

Models (3.1) and (3.2). Since most optimality criteria φ are invariant to a simultaneous

permutation of rows and columns, a rearrangement of the columns of X will not change

the value of φ(E[M |d]). We have also derived a closed form for the expected information

matrix by setting X = [X1, . . . ,XQ], where Xq contains all the RK vectors xr,q,k of the

same q, for r = 1, . . . , R and k = 1, . . . ,K. We omit this latter result because, compared

with the former arrangement of X, it tends to take more CPU time when the closed form
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derived by the latter choice of X is considered. Results for cases τISI = τTR can be found

in Zhou (2014), here we extend to the cases with τISI 6= τTR.

We now derive the expectation of the information matrix E[M |d]. The expectation

is taken over p(r|q), the conditional probability when subject selects the rth answer for

a stimulus of the qth type. Here, we assume that p(r|q) remains the same throughout

the experiment, and the subject’s answer only depends on the current stimulus, and is

independent of his/her answers to the previous stimuli; we also assume that, for each

stimulus, the subject selects one answer from the R possible answers, and if there is no

stimulus, the subject does not respond, and p(r = 0|q = 0) = 1. Our results can easily be

extended to a more general case such as p(r|0) > 0 for r = 1, . . . , R, and/or p(0|q) > 0 for

q = 1, . . . , Q. For convenience, we also use A to represent V ′(I − P V S)V . Consequently,

M = X ′AX. The main idea is then to make use of the formula for the expectation of a

quadratic form as presented in Ch.5 of Rencher and Schaalje (2008). We now present some

details of our derivations of E[M |d]. We note that all the expectations (and covariances)

are conditional on the design d. For simplicity, we write E[·] (and Cov(·)) instead of E[·|d]

(and Cov(·|d)) in this subsection.

First, we define δq as the 0-1 indicator vector for the qth-type stimulus. Specifically, the

nth element (δq)n of δq is 1 if the corresponding dn in the design d = {d1, . . . , dN} is qth

stimulus type; otherwise, (δq)n = 0. Similarly, we define δr,q as the 0-1 indicator vector for

the subject selects the rth answer to the qth-type stimulus.

Then, for τISI 6= τTR, we define ωq as the onset times of the qth-type stimulus in terms

of ∆T , that is,

ωq = δq ⊗ [1,0
′
τ̃ISI−1]

′
,

and we have

ωr,q = δr,q ⊗ [1,0
′
τ̃ISI−1]

′
. (3.5)

Note that the dimension of both ωq and ωr,q are Nτ̃ISI × 1 (Recall that N is the length of

the design). τ̃ISI and τ̃TR are as defined in Section 2.2.
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Now, take τ̃TR into consideration, we can write

Xk = (IT ⊗ [1,0
′
τ̃TR−1])UL̃

k−1
[ω1,1, . . . ,ωR,1, . . . ,ω1,Q, . . . ,ωR,Q],

where

L̃ =

 0′Nτ̃ISI−1 0

INτ̃ISI−1 0Nτ̃ISI−1

 ; (3.6)

U =



[IT τ̃TR
,OT τ̃TR,(Nτ̃ISI−T τ̃TR)], T τ̃TR < Nτ̃ISI ; INτ̃ISI

O(T τ̃TR−Nτ̃ISI),Nτ̃ISI ,

 , T τ̃TR > Nτ̃ISI ;

IT τ̃TR
, T τ̃TR = Nτ̃ISI ;

(3.7)

and Oa,b is the a-by-b zero matrix; see also Saleh et al. (2017). The dimension of Xk

is T × RQ where T is the number of MR scans. Let IT ⊗ [1,0
′
τ̃TR−1]UL̃

k−1
= Dk, the

dimension of Dk is T ×Nτ̃ISI , so that

xr,q,k = Dkωr,q. (3.8)

Then, for X = [X1, . . . ,XK ], the expectation of M for Model (3.1) can be written as:

E[M ] = E[X ′AX]

= E[(X ′1, ...,X
′
K)′A(X1, ...,XK)]

=


E[X ′1AX1] · · · E[X ′1AXK ]

...
. . .

...

E[X ′KAX1] · · · E[X ′KAXK ]


= ((E[X ′iAXj ]))i,j=1,...,K . (3.9)
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We then write down the RQ×RQ submatrix E[X ′iAXj ], that is

E[X ′iAXj ] = E[(X ′1,i, ...,X
′
Q,i)
′A(X1,j , ...,XQ,j)]

=


E[X ′1,iAX1,j ] · · · E[X ′1,iAXQ,j ]

...
. . .

...

E[X ′Q,iAX1,j ] · · · E[X ′Q,iAXQ,j ]

 (3.10)

= ((E[Xp,iAXq,j ]))p,q=1,...,Q, (3.11)

where the dimension of each submatrix E[Xp,iAXq,j ] is R×R. In addition, E[Xp,iAXq,j ]

can be written as:

x′1,p,iAx1,q,j x′1,p,iAx2,q,j · · · x′1,p,iAxR,q,j

x′2,p,iAx1,q,j x′2,p,iAx2,q,j · · · x′2,p,iAxR,q,j
...

...
. . .

...

x′R,p,iAx1,q,j x′R,p,iAx2,q,j · · · x′r,p,iAxR,q,j


R×R

. (3.12)

We then substitute (3.8) into the element in (3.12),

E[x′r,q,iAxu,p,j ] = E[(Diωr,q)
′A(Djωu,p)]

= E[ω
′
r,qD

′
iADjωu,p].

Define Ai,j = D′iADj , we have

E[x′r,q,kAxu,p,k] = E[ω
′
r,qAi,jωu,p]. (3.13)

We now present the expectation of quadratic forms E[Xp,iAXq,j ] in (3.10):

1. For p = q:

Case 1: u = r,

E[xr,q,1] = E[xr,p,1] = E[xu,q,1] = E[xu,p,1] = p(r|q)ωq;

Cov(xu,p,1,xr,q,1) = Cov(xr,q,1,xr,q,1) = p(r|q)(1− p(r|q))diag(ωq);
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tr[Ai,j Cov(xu,p,1,xr,q,1)] = tr[Ai,j Cov(xr,q,1,xr,q,1)]

= tr[Ai,jp(r|q)(1− p(r|q))diag(ωq)]

= p(r|q)(1− p(r|q)) tr[Ai,jdiag(ωq)]

= (p(r|q)− p(r|q)p(r|q)) tr[Ai,jdiag(ωq)];

E[x′u,p,1Axr,q,1]

= tr[Ai,j Cov(xu,p,1,xr,q,1)] + E[x′u,p,1]Ai,j E[xr,q,1]

= tr[Ai,j Cov(xr,q,1,xr,q,1)] + E[x′r,q,1]Ai,j E[xr,q,1]

= (p(r|q)− p(r|q)2) tr[Ai,jdiag(ωq)] + p(r|q)2ω
′
qAi,jωq.

Case 2: u 6= r,  E[xu,q,1] = p(u|q)ωq

E[xr,q,1] = p(r|q)ωq
;

Cov(xu,p,1,xr,q,1) = Cov(xu,q,1,xr,q,1) = −p(u|q)p(r|q)diag(ωq);

tr[Ai,j Cov(xu,p,1,xr,q,1)] = tr[Ai,j Cov(xu,q,1,xr,q,1)]

= tr[−p(u|q)p(r|q)diag(ωq)]

= − p(u|q)p(r|q) tr[Ai,jdiag(ωq)]

= − p(u|q)p(r|q) tr[Ai,jdiag(ωq)];

E[x′u,p,1Axr,q,1]

= tr[Ai,j Cov(xu,p,1,xr,q,1)] + E[x′u,p,1]Ai,j E[xr,q,1]

= tr[Ai,j Cov(xu,q,1,xr,q,1)] + E[x′u,q,1]Ai,j E[xr,q,1]

= − p(u|q)p(r|q) tr[Ai,jdiag(ωq)] + p(r|q)p(u|q)δ′qAi,jωq.

We combine Case 1 and Case 2 to obtain the R×R partition matrices in the diagonal
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of (3.10):

E[X ′q,iAXq,j ]

= tr[Ai,jdiag(ωq)][diag(π(q))− π(q)π(q)′] + π(q)π(q)′ω
′
qAi,jωq,

where π(q) is an R × 1 vector of p(r|q), r = 1, . . . , R for q = 1, . . . , Q, i.e., if q=1,

R=2, we have π(1) = [p(1|1), p(2|1)]′.

2. For p 6= q:  E[xu,p,1] = p(u|p)ωp

E[xr,q,1] = p(r|q)ωq
;

Cov(xu,p,1,xr,q,1) = 0;

tr[Ai,j Cov(xu,p,1,xr,q,1)] = 0;

E[x′u,p,1Axr,q,1]

= tr[Ai,j Cov(xu,p,1,xr,q,1)] + E(x′u,p,1)Ai,j E(xr,q,1)

= 0 + p(u|p)δ′pAi,jp(r|q)ωq

= p(u|p)p(r|q)δ′pAi,jωq.

Hence, the R×R partition matrices for the off-diagonal of (3.10) where p 6= q is

E[X ′p,iAXq,j ] = π(q)π(p)′ω
′
pAi,jωq.

We thus have the following formula, which can be easily built in a computer program

to calculate the elements in E[M |d]. In particular, the partitioned matrix E[X ′p,iAXq,j ]

in (3.10):  Tq[diag(πq)− π(q)π(q)′] + π(q)π(q)′U q,q,

π(q)π(p)′Up,q, p 6= q.

Where Up,q = ω
′
pAi,jωq, Tq = trace{Ai,jdiag(ωq)}.
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3.2.5.2 Expected Information Matrix for Detection

For detection, we have ID(ζ) = E(H ′X ′AXH) = H ′ E(X ′AX)H, where H is as defined

in Model 3.2. Note that E(X ′AX) can be obtained from the ‘estimation problem’.

We make use of this analytical result to conduct some case studies in the next Chapter

to demonstrate the usefulness of our proposed approach.

3.2.6 Properties of D-Optimal Designs

Through the case studies, we notice that for D-optimal criterion, the optimal designs

do not depend on the conditional probability that the subject selects rth answer for the qth-

type stimulus. We can further show that D-optimal design is invariant to the conditional

probability p(r|q).

Theorem 3.2.3 The design optimizing φD{E[M |d]} is invariant to the selection of condi-

tional probability p(r|q) whenever p(r|q) > 0 for all r = 1, . . . , R and q = 1, . . . , Q.

We now give the proof of Theorem 3.2.3 for estimation problem with E[M |d] when

τISI = τTR. Results and proofs for the other situations discussed in this work are similar

and are thus omitted.

Suppose X = [X1, . . . ,XQ], Xq = [Xq,1, . . . ,Xq,K ], and Xq,k = [X1,q,k, . . . ,XR,q,k].

The expected information matrix can be written as:

E[M |d] = E[X ′AX|d]

= E[(X1, ...,XQ)′A(X1, ...,XQ)|d]

=


E[X ′1AX1|d] · · · E[X ′1AXQ|d]

...
. . .

...

E[X ′QAX1|d] · · · E[X ′QAXQ|d]

 . (3.14)

The partition matrix E[X ′1AX1|d] in (3.14) when τISI = τTR is [diag(πq)− π(q)π(q)′]⊗ T q + π(q)π(q)′ ⊗ V q,q,

π(q)π(p)′ ⊗ V p,q, p 6= q.

41



where the (i, j)th element of T q is ((T q))ij = trace{(L′)i−1ALj−1diag(δq)}, and the (i, j)th

element of V pq is ((V pq))ij = δ′p(L
′)i−1Σ−1Lj−1δq; i, j = 1, ...,K, p, q = 1, ..., Q; L and δq

are same as in Example 1; The remaining parts are same as in Theorem 3.2.1.

When finding D-optimal designs, we only need to focus on designs yielding a positive

determinant |E[M |d]| with a non-singular E[M |d]. As indicated in the next result, these

designs will also make all the T q’s non-singular.

Lemma 3.2.4 Suppose p(r|q) > 0 for all r = 1, ..., R, and q = 1, ..., Q, and E[M |d] is

non-singular. Then, all the T q’s, q = 1, ..., Q are non-singular.

To prove this result, we first note that E[M |d] = E[X ′AX|d], and A can be written

as A = C ′C for some matrix C; see, e.g., Theorem 2.6c of Rencher and Schaalje (2008).

Thus, for any given vector z of an appropriate dimension, we have

z′ E[M |d]z = E[z′X ′AXz|d]

= E[z′X ′C ′CXz|d] = E[||CXz||2|d] ≥ 0.

Here, ||a||2 = a′a is the squared length of the vector a, and is always non-negative. By

definition, this indicates that E[M |d] is a non-negative definite matrix. With this observa-

tion and the assumption that p(r|q) > 0 for all r, q, we now prove Lemma 3.2.4 by showing

that E[M |d] is not positive definite (and is thus singular) whenever T q is a singular matrix

for some q. To this end, we will construct a non-zero vector z̃ that makes z̃′ E[M |d]z̃ = 0.

Without loss of generality, we suppose that T 1 is a singular matrix. The z̃ that we con-

struct will then have the form of z̃′ = (z̃′1 ⊗ z̃′2,0′). Here, z̃′1 is any non-zero vector that

is orthogonal to π1 (i.e., z̃′1π1 = 0), and z̃′2 is an eigenvector of T 1 with z̃′2T 1z̃2 = 0.

Consequently, z̃ is a non-zero vector with

z̃′ E[M |d]z̃ = (z̃′1 ⊗ z̃′2)E[X ′1AX1|d](z̃1 ⊗ z̃2)

= z̃′1[diag(π1)− π1π
′
1]z̃1 ⊗ z̃′2T 1z̃2 + z̃′1[π1π

′
1]z̃1 ⊗ z̃′2V 11z̃2 = 0.
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The first equality follows from (3.14). This then proves our claim. With this lemma, we

only need to consider cases where all the T q’s are non-singular. We now rewrite E[M |d] as

E[M |d] =



diag(π1)⊗ T 1 O · · · O

O diag(π2)⊗ T 2
...

...

...
...

. . . O

O · · · O diag(πQ)⊗ TQ


+



π1π
′
1 ⊗ [V 11 − T 1] π1π

′
2 ⊗ V 12 · · · π1π

′
Q ⊗ V 1Q

π2π
′
1 ⊗ V 21 π2π

′
2 ⊗ [V 22 − T 2] · · · π2π

′
Q ⊗ V 2Q

...
...

. . .
...

πQπ
′
1 ⊗ V Q1 πQπ

′
2 ⊗ V Q2 · · · πQπ′Q ⊗ [V QQ − TQ]


.

We note that the first matrix on the right hand side is non-singular. With, e.g., a QR

decomposition, and the fact that (C1C2) ⊗ (D1D2) = (C1 ⊗D1)(C2 ⊗D2), the second

matrix can be expressed as

π1 ⊗A1

π2 ⊗A2

...

πQ ⊗AQ


[π′1 ⊗B1,π

′
2 ⊗B2, · · · ,π′Q ⊗BQ]

for some A1, ...,AQ and B1, ...,BQ. We then obtain |E[M |d]| by applying the following

result which can be found in Theorem 18.1.1 of Harville (1997):

Lemma 3.2.5 Let R be a non-singular matrix, Im be the identity matrix of size m, S be

an n-by-m matrix and U be an m-by-n matrix. We have |R+ SU | = |R||Im +UR−1S|.

With some algebra, |E[M |d]| is then

Q∏
q=1

|diag(πq)|K ×
Q∏
q=1

|T q|Rq ×

∣∣∣∣∣∣IK +

Q∑
q=1

BqT
−1
q Aq

∣∣∣∣∣∣ .
For given πq’s whose elements are all positive,

∏Q
q=1 |diag(πq)|K = c is a positive constant.

The value of c is the same for all competing designs, and thus does not change the ranking
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of the designs under the D-criterion. Consequently, a design that maximizes |E[M |d]| for

a given c will remains to be D-optimal for another value of c (i.e. another specific set of

πq’s) whenever c > 0. The D-optimal design is thus invariant to the selection of p(r|q).

3.3 Case Studies

In this section, we apply our proposed approach to optimize φ1. For comparison, we

follow the design selection criterion considered by Cordes et al. (2012) that is linked to

φ2. The goodness of d’s using φ2 is evaluated by conducting a Monte Carlo simulation

to generate κ, say 100, realizations of φ(M), and then approximate φ2 by a summary

statistic such as the mean/median of the κ realizations of the φ-value. Here, we use the

mean for all cases. Both criteria, φ1 and φ2, which are sometimes viewed as the pseudo-

Bayesian versions of the optimality criteria, have been considered in the design literature;

see Ch.18 of Atkinson et al. (2007). However, finding optimal designs with respect to the

latter criterion is very time consuming as also indicated in Cordes et al. (2012). As we

demonstrate below, with our analytical results presented in the previous section, obtaining

an optimal design based on φ1 is computationally much simpler than the use of φ2; while φ1

can itself serve as the design selection criterion, it also gives a very good surrogate criterion

if the experimenter would like to find φ2-optimal designs.

We now demonstrate the usefulness of our proposed approach where φ1 is used as the

optimality criterion. Both study objectives, namely the estimation of the HRFs and the

detection of brain activity, are considered along with: (1) Model (3.1) with τISI 6= τTR; (2)

Model (3.2) with τISI = τTR; (3) Model (3.2) with τISI 6= τTR. Note that the case where

Model (3.1) is used with τISI = τTR has been studied in Zhou (2014). Selected results will

be presented in the next section.

We consider two (Q,N) combinations: (1, 255), (2, 242) with R = 2, also we set

τISI/τTR = 2 s/2 s and τISI/τTR = 3 s/1.5 s as in Cordes et al. (2012), so that ∆T is

equal to 2 and 1.5, respectively. The drift of the time series, Sγ is assumed to be a second

order Legendre polynomial. We also assume that the noise follows an stationary AR(1)
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process with an autocorrelation coefficient of 0.3; other correlation coefficients can also be

considered.

To compare with Cordes et al. (2012), we further consider a case follows their exper-

imental settings, that is Model (3.2) with τISI 6= τTR for (Q,N) = (3, 402) with specific

contrasts of the effects of the stimuli, specifically, θ = (θ1|1, θ2,1, . . . , θ1|3, θ2,3)′; i.e. the

unknown coefficients in Model (3.2), in Cordes et al. (2012), the contracts are defined by

1. recollection contract:
[
(θ1|1 + θ2|2)− (θ1|2 + θ2|1)

]
/2;

2. familiarity contract: (θ1|2 + θ2|1)/2− θ1|3.

The noise follows an AR(1) process, the autocorrelation coefficient is set to 0.2.

Table 3.1: The conditional probability matrices: we define P
(c)
Q as the probability matrix

for Q stimulus types for case c, where c can be I, II or III.

Q Probability matrices for different cases

1 P
(I)
1 =

0.5

0.5

 P
(II)
1 =

0.2

0.8



2 P
(I)
2 =

0.5 0.5

0.5 0.5

 P
(II)
2 =

0.5 0.2

0.5 0.8

 P
(III)
2 =

0.7 0.2

0.3 0.8



3 P
(I)
3 =

0.88 0.28 0.93

0.12 0.72 0.07



In addition, for calculating the expectations E[M |d] and E[φ(M)|d], we define the

matrix of conditional probabilities P
(c)
Q with P

(c)
Q = [π1, . . . ,πQ], where Q is the number of

stimulus type, and the superscript c is the index for different cases that we considered. We

consider six cases as listed in Table 3.1, including the case with P I
3 of Cordes et al. (2012).

Note that for E[φ(M)|d], the conditional probabilities are used to generate κ realizations

of M for each given d. These realizations are then used to calculate the approximation

φ2(d;κ) of φ2. In what follows, we will first adapt the genetic algorithm of Kao et al.
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(2009) to obtain a design, dGA, that maximizes φ1. With this optimality criterion, for

case (1), (2) and (3), we compare our obtained designs with some traditional designs that

are popular in practice (for different purposes). These traditional designs include random

designs, m-sequences, and block designs:

Random designs. For random designs drand, each element of a design is generated from a

discrete uniform distribution over {0, 1, ..., Q}, forming 100 random designs, the mean

and standard deviation of the φ1-value over these 100 random designs are calculated.

M-sequences. These designs are to be denoted as dmseq. They are also known as maximum-

length shift register sequences, and are introduced into fMRI by Buracas and Boynton

(2002). These designs are known to perform well for estimating the HRF, and can be

easily generated by the MATLAB program of Liu and Frank (2004).

Block designs. We consider block design dblock having a 16 s-on-16 s-off pattern. For ex-

ample, when Q = 1, the first 16 seconds is the off-period, and no stimulus is shown to

the subject. In the next 16 seconds, stimuli of the same type is shown to the subject

every τISI seconds. This is repeated for several cycles until the end of the experiment.

In particular, a dblock may look like {000000001111111100000000 · · · 0} when Q = 1.

They are known to be useful for the detection of activated brain voxels. But they do

not perform well when the focus is on the estimation of the HRF, and may give rise

to confounding psychological effects such as subject habituation or anticipation.

For all these traditional designs, we compare their φ1-values to that of dGA. In addition,

for case (1), (2) and (3), we use the genetic algorithm to obtain a design dr100 that maximizes

φ2(d; 100). The resulting designs is compared with dGA in terms of φ1. To demonstrate

that φ1 provides a good surrogate for φ2, we also compare the φ2-values of dr100, and

dGA as well as the CPU times needed for generating these two types of designs. For this

latter comparison, φ2 is approximated by φ2(d; κ = 1000) even though dr100 is obtained

with φ2(d; κ = 100). We note that φ2(d; 1000) is expected to have a higher precision than
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φ2(d; 100) for approximating φ2. However, the calculation of φ2(d; 1000) is computationally

very expensive, and is thus difficult, if not infeasible, to be considered for obtaining dr100.

For the case similar to Cordes et al. (2012), we compare three methods for obtaining

A-optimal designs. In addition to dGA, dr100 that maximizes φ1 and φ2(d;κ = 100) respec-

tively, we use GA of Cordes et al. (2012) for optimizing φ2(d;κ = 1000) in the search of an

A-optimal design. The results are presented in Section 3.4.3.

All the computations are conducted on a desktop computer with a 3.4 GHz Intel Core

i7-2600 quad-core processor.

3.4 Results

We have evaluated our proposed approach with all the cases described in the previ-

ous section. In this section, we present the simulation results under A-optimality and

D-optimality in Section 3.4.1 and 3.4.2, respectively. Section 3.4.3 provides the results of

the case similar to Cordes et al. (2012)’s study.

3.4.1 Evaluation Under the A-Optimality Criterion

3.4.1.1 Estimation Problem: Model (3.1) with τISI 6= τTR

We evaluate the design approaches described in Section 3.3 with A-optimality criterion for

Model (3.1) when τISI = 3 s and τTR = 1.5 s.

Design Comparisons in Terms of φ1

Table 3.2 presents the results for cases with one and two stimulus types under the A-

optimality criterion. The efficiency ratio φ1(d)/φ1(dGA) of these traditional fMRI designs

and φ1(dr100) to our φ1(dGA) are shown in Figure 3.1. The good performance of dGA is

consistently demonstrated in Table 3.2 in all the cases that we studied. In addition, in

Figure 3.1, it is clear that no design has a higher φ1-value than dGA among the designs

we considered since the ratios φ1(d)/φ1(dGA) are all less than 1 for any other design d.

47



Table 3.2: The φ1-values for different designs with Q = 1, 2 evaluated by the A-optimality

criterion for estimation when τISI 6= τTR.

Case dGA drand (mean±std) dblock dmseq dr100

P
(I)
1 40.6974 37.8775 ± 0.0025 0.5333 38.8668 40.6526

P
(II)
1 30.8022 27.4689 ± 0.0031 0.5305 27.9125 30.6294

P
(I)
2 24.8050 23.0556 ± 0.0018 0 24.6212 24.6802

P
(II)
2 21.0975 19.4582 ± 0.0022 0 20.6775 20.8126

P
(III)
2 19.9094 18.4382 ± 0.0022 0 19.5695 19.7783

It is noteworthy that the block designs perform poorly in terms of the φ1 criterion for the

estimation problem. These designs are not recommended when the study objective lies in

the estimation of the HRF.
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Figure 3.1: Relative design efficiencies with the A-optimality criterion for estimation when

τISI 6= τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1, 2 for five different cases corresponding to P
(c)
Q with the A-optimality criterion.
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Design Comparisons in Terms of φ2(d; 1000)

In this subsection, we compare dGA, dr100 in terms of φ2(d; 1000) and the corresponding

CPU time required for obtaining them. Specifically, for dGA and dr100, we generate κ = 1000

corresponding vectors r of the subject’s answers for the calculation of φ2(dGA; 1000), and

φ2(dr100; 1000).

The results in Table 3.3 for the A-optimality criterion suggest that dGA and dr100 have

similar performance with respect to φ2(d; 1000). It is even clear as presented in Figure 3.2,

where the bars correspond to φ2(dGA; 1000)/φ2(dr100; 1000). While dGA is obtained by con-

sidering φ1-value, it slightly outperforms dr100 in some cases, when φ2(d; 1000) is considered

for design evaluations. Some ratios of φ2(dGA; 1000)/φ2(dr100; 1000) are greater than 1 in

Figure 3.2. This might be because that the two criteria lead to similar designs as well as

the randomness of the search algorithm.
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Figure 3.2: Relative design efficiencies with the A-optimality criterion for estimation when

τISI 6= τTR: this plot provides the relative efficiency φ2(dGA; 1000)/φ2(dr100; 1000) with

Q = 1, 2 for five different cases corresponding to P
(c)
Q with the A-optimality.
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Table 3.3: The φ2(d; 1000)-values of dGA and dr100 with Q = 1, 2 under the A-optimality

criterion for estimation (τISI 6= τTR).

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

dGA 36.1399 26.7289 17.8997 14.8367 14.0760

dr100 36.3982 26.9994 17.7174 14.1778 13.8087

Comparisons of CPU Time

The current results show that designs optimizing φ1 can also perform well with respect

to φ2. One major advantage for considering the former criterion for obtaining designs is

further evident in Table 3.4 that present the CPU times needed for obtaining dGA under φ1

and dr100 under φ2(·; 100), it takes much less CPU time to obtain a dGA than dr100. The

use of the former design is thus recommended.

Table 3.4: CPU times (hours) for obtaining A-optimal designs that optimize φ1(dGA) and

φ2(dr100; 100) respectively for Q = 1, 2 for estimation when τISI 6= τTR.

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

Tφ1(dGA) 1.6167 1.5896 1.8103 3.1092 1.7774

Tφ2(dr100;100) 287.4444 272.0000 310.6389 128.7833 192.1833

Robustness of Design Against Misspecification

The optimal designs are obtained based on the pre-specified conditional probabilities, usu-

ally obtained from a pilot study is not necessary the one to be occurred during the fMRI

scanning. In terms of φ1, we study the performance of our obtained designs when these prob-

abilities are misspecified at the design stage, the optimal design obtained with a specified

set of probabilities is evaluated by using φ1 under the case when another set of probabilities

is true. The φ1-values are listed in Table 3.5 for Q = 1 and Table 3.6 for Q = 2. The results
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show that the φ1-values of misspecified designs are very close to the optimal design for each

case. We obtained similar results for other cases we studied for the A-optimality designs,

thus we will omit these results in the following subsections.

Table 3.5: Robustness of the A-optimal designs for estimation when τISI 6= τTR: d∗GA(P
(c)
Q )

is the optimal design obtained based on probability P
(c)
Q with Q = 1.

Optimal design P
(I)
1 P

(II)
1

φ1(misspecified)
φ1(optimal)

d∗GA(P
(I)
1 ) 40.6974 40.2521 0.989

d∗GA(P
(II)
1 ) 30.4563 30.8022 0.989

Table 3.6: Robustness of the A-optimal designs for estimation when τISI 6= τTR: d∗GA(P
(c)
Q )

is the optimal design obtained based on probability P
(c)
Q with Q = 2.

Optimal design P
(I)
2 P

(II)
2 P

(III)
2

φ1(misspecified)
φ1(optimal)

d∗GA(P
(I)
2 ) 24.8050 24.5688 24.6094 0.990-0.992

d∗GA(P
(II)
2 ) 20.8226 21.0975 21.0238 0.987-0.997

d∗GA(P
(III)
2 ) 19.7573 19.9174 19.9094 0.992-1.000

The Obtained Optimal Designs

Table 3.7 presents the stimulus frequencies of the obtained A-optimal designs for estimation

problem when τISI 6= τTR based on φ1 and φ2. Among all cases, the frequency of the

occurrences for the qth stimulus type are similar to each other, and it tends to depend on

the probability P
(c)
Q . For example, in Table 3.7, the stimulus frequency for equal probability

P
(I)
1 is smaller than that of unequal probability P

(II)
1 , similar trend is observed in Q = 2.
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Table 3.7: Stimulus frequencies of A-optimal designs for estimation when τISI 6= τTR: the

designs are obtained by optimizing φ1(dGA) and φ2(dr100; 100) with P
(c)
Q for Q = 1, 2.

φ1 φ2

Stimulus type (q) 1 2 1 2

Q = 1, P
(I)
1 59% - 59% -

Q = 1, P
(II)
1 64% - 65% -

Q = 2, P
(I)
2 34% 33% 35% 34%

Q = 2, P
(II)
2 31% 39% 33% 37%

Q = 2, P
(III)
2 34% 38% 35% 36%

3.4.1.2 Detection Problem: Model 3.2 with τISI = τTR

In this section, we work with Model (3.2) for detecting brain activations under the A-

optimality criterion, τISI and τTR are both set to 2 s. Same design approaches described in

Section 3.3 are compared here.

Design Comparisons in Terms of φ1

Table 3.8 and Figure 3.3 provide the results for Q = 1, 2. They all demonstrate the good

performance of the designs, dGA, obtained by our approach. More clearly, from Figure 3.3,

we can see that dr100 performs similarly to dGA. The block designs dblock also perform

relatively well, which are as stated in the literature that block design are powerful term for

signal detection Wager and Nichols (2003). Moreover, random designs and m-sequence do

not perform well in terms of the φ1 criterion. Hence, these designs are not recommended

for signal detection study when τISI = τTR.
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Table 3.8: The φ1-values for different designs with Q = 1, 2 evaluated by the A-optimality

criterion for detection when τISI = τTR.

Case dGA drand (mean±std) dblock dmseq dr100

P
(I)
1 50.2272 26.9807 ± 0.0037 45.3967 26.9543 49.8770

P
(II)
1 33.0788 19.2655 ± 0.0030 27.3789 19.3592 31.4719

P
(I)
2 29.2910 16.7620 ± 0.0032 28.4515 17.1499 28.9776

P
(II)
2 22.9827 14.0640 ± 0.0031 21.4885 14.3970 22.4312

P
(III)
2 21.1488 13.3584 ± 0.0026 19.8565 13.6304 20.7085
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Figure 3.3: Relative design efficiencies with the A-optimality criterion for detection when

τISI = τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1 and Q = 2 for five different cases corresponding to p(r|q) with the A-optimality

criterion.
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Design Comparisons in Terms of φ2(d; 1000)

Now, we compare dGA, dr100 in terms of φ2(d; 1000). We adopt the same method in Sec-

tion 3.4.1.1. The results in Table 3.9 suggest that under the A-Optimality, both methods

have similar performance in terms of φ2(d; 1000). Based on the efficiency ratio in Fig-

ure 3.4, we conclude that dGA obtained from φ1 still perform reasonably well evaluated by

φ2(d; 1000).

Table 3.9: The φ2(d; 1000)-values of dGA and dr100 with Q = 1, 2 under the A-optimality

criterion for detection When τISI = τTR.

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

dGA 13.7983 10.4764 4.7104 4.8410 5.6410

dr100 14.7420 11.2888 5.3076 5.8229 5.2825
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Figure 3.4: Relative design efficiencies with the A-optimality criterion for detection when

τISI = τTR: this plot provides the relative efficiency φ2(dGA; 1000)/φ2(dr100; 1000) with

Q = 1, 2 for five different cases corresponding to P
(c)
Q with the A-optimality.
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Comparisons of CPU Time

Results in Table 3.10 show that the CPU time needed for obtaining d100 under φ2(·; 100)

is much longer than obtaining dGA under φ1. The results in previous subsection show that

optimal designs obtained under φ1 can also have good performance with respect to φ2.

Thus, our method for finding optimal design is recommended.

Table 3.10: CPU times (hours) for obtaining A-optimal designs that optimize φ1(dGA) and

φ2(dr100; 100) respectively for Q = 1, 2 for detection when τISI = τTR.

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

Tφ1(dGA) 0.3557 0.3522 0.6212 0.5114 0.6172

Tφ2(dr100;100) 30.97 27.68 14.88 26.60 29.16

The Obtained Optimal Designs

The stimulus frequencies of A-optimal designs that optimize φ1 and φ2 for detection problem

when τISI = τTR are presented in Table 3.11.

Table 3.11: Stimulus frequencies of A-optimal designs for detection when τISI = τTR: the

designs are obtained by optimizing φ1(dGA) and φ2(dr100; 100) with P
(c)
Q for Q = 1, 2.

φ1 φ2

Stimulus type (q) 1 2 1 2

Q = 1, P
(I)
1 65% - 62% -

Q = 1, P
(II)
1 71% - 66% -

Q = 2, P
(I)
2 36% 37% 35% 35%

Q = 2, P
(II)
2 32% 43% 33% 41%

Q = 2, P
(III)
2 35% 41% 35% 38%
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From the obtained optimal designs of both approaches, the frequency of the occurrences

for the qth stimulus type are different but quite close to each other. The results are similar

to estimation problem when τISI 6= τTR.

3.4.1.3 Detection Problem: Model 3.2 with τISI 6= τTR

Lastly, we investigate the design performance with Model (3.2) under the A-optimality

criterion when τISI = 3 s and τTR = 1.5 s. Again, we compare the same design approaches

as previously demonstrated.

Design Comparisons in Terms of φ1

Table 3.12 present the φ1-values of optimal design obtained from our proposed approach

dGA, Cordes et al. (2012)’s approach dr100 and some previously mentioned tradition designs.

We omit the cases for Q = 2 using Cordes et al. (2012)’s approach due to time constraints.

All the available results in Table 3.12 show that dGA perform well among all the studied

cases. Looking at Figure 3.5, we would have a similar conclusion as in Section 3.4.1.1. That

is, under the φ1 criterion, dGA perform slightly better than dr100, block designs is showed

to be a comparatively good design for detecting brain activity, but the poorly performed

random designs and m-sequence are not recommended for the detection of brain activity.

Table 3.12: The φ1-values for different designs with Q = 1, 2 evaluated by the A-optimality

criterion for detection when τISI 6= τTR.

Case dGA drand (mean±std) dblock dmseq dr100

P
(I)
1 66.1678 42.6625 ± 0.0030 61.9083 42.4686 65.8431

P
(II)
1 45.5662 30.6979 ± 0.0028 39.6666 30.7261 44.5149

P
(I)
2 39.3002 26.5765 ± 0.0027 38.8411 26.9238 NA

P
(II)
2 31.6220 22.2833 ± 0.0027 30.4432 22.6544 NA

P
(III)
2 29.3871 21.2107 ± 0.0023 28.3712 21.4715 NA
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Figure 3.5: Relative design efficiencies with the A-optimality criterion for detection when

τISI 6= τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1 and Q = 2 for five different cases corresponding to p(r|q) with the A-optimality

criterion (note: ‘*’ indicates ‘no result’).

Design Comparisons in Terms of φ2

The comparison of dGA and dr100 in terms of φ2(d; 1000) under the A-optimality is presented

in Table 3.13. It shows that dGA and dr100 perform similarly under φ2(d; 1000). Again, we

omit cases with Q = 2 due to time constraints.

Table 3.13: The φ2(d; 1000)-values of dGA and dr100 with Q = 1 under the A-optimality

criterion for detection when τISI 6= τTR.

Case P
(I)
1 P

(II)
1

dGA 65.7330 45.1494

dr100 65.3080 43.8917
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Comparisons of CPU Time

Table 3.14 provides the CPU time needed for obtaining dGA and dr100 when Q = 1. The

results consistently show that the CPU time needed for obtaining dGA under φ1 is much

less than obtaining dr100.

Table 3.14: CPU times (hours) for obtaining A-optimal designs that optimize φ1(dGA) and

φ2(dr100; 100) respectively for Q = 1 for detection when τISI 6= τTR.

Case P
(I)
1 P

(II)
1

Tφ1(dGA) 1.1097 2.1089

Tφ2(dr100;100) 350.7778 287.8889

The Obtained Optimal Designs

The frequency of the occurrences of the optimal designs for the qth stimulus type are shown

in Table 3.15, for different cases when Q = 1 or Q = 2. The frequencies are similar to each

other, and they tend to depend on the probability P
(c)
Q .

Table 3.15: Stimulus frequencies of A-optimal designs for detection when τISI 6= τTR: the

designs are obtained by optimizing φ1(dGA) for Q = 1, 2 and φ2(dr100; 100) for Q = 1 with

P
(c)
Q .

φ1 φ2

Stimulus type (q) 1 2 1

Q = 1, P
(I)
1 62% - 61%

Q = 1, P
(II)
1 67% - 64%

Q = 2, P
(I)
2 36% 35% -

Q = 2, P
(II)
2 32% 41% -

Q = 2, P
(III)
2 34% 40% -
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3.4.2 Evaluation Under the D-Optimality Criterion

3.4.2.1 Estimation Problem: Model 3.1 with τISI 6= τTR

The design approaches described in Section 3.3 are studied here with Model 3.1 when

τISI = 3 s and τTR = 1.5 s under the D-optimality criterion.

Design Comparisons in Terms of φ1

Table 3.16 and Figure 3.6 provide the performance of different designs that we studied for

estimation problem when τISI 6= τTR. These designs are evaluated by φ1 under the D-

optimality criterion. We omit the designs of dr100 when Q = 2 since the running time for

cases with Q = 1 was already very long, and the CPU time for Q = 2 is expected to be

much longer.

Table 3.16: The φ1-values for different designs with Q = 1, 2 evaluated by the D-optimality

criterion for estimation when τISI 6= τTR.

Case dGA drand (mean±std) dblock dmseq dr100

P
(I)
1 53.0559 46.1990 ± 0.0031 14.7006 46.7666 52.9894

P
(II)
1 42.4447 37.1987 ± 0.0031 11.7605 37.4133 42.2007

P
(I)
2 33.7808 30.4724 ± 0.0027 0 31.1633 NA

P
(II)
2 30.2144 27.2447 ± 0.0027 0 27.8733 NA

P
(III)
2 28.9257 26.0840 ± 0.0027 0 26.6845 NA

Designs obtained from our approach dGA perform relatively well among all the designs

that we considered as shown in Figure 3.6. Again, block designs are not recommended for

estimating HRF.
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Figure 3.6: Relative design efficiencies with the D-optimality criterion for setimation when

τISI 6= τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1, 2 for five different cases corresponding to p(r|q) with the D-optimality (note:

‘*’ indicates ‘no result’).

Design Comparisons in Terms of φ2

The comparisons of dGA and dr100 in terms of φ2(d; 1000) under the D-optimality criterion

are presented in Table 3.17. It shows that dGA performs slightly better than dr100 in terms

of φ2(d; 1000) for Q = 1. We omit the simulations for obtaining optimal designs dr100 for

Q = 2 since the computing time will be too long.

Table 3.17: The φ2(d; 1000)-values of dGA with Q = 1, 2 and dr100 with Q = 1 under the

D-optimality criterion for estimation when τISI 6= τTR.

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

dGA 47.4467 37.9723 27.4013 24.4574 23.4402

dr100 47.0518 37.6103 NA NA NA
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Comparisons of CPU Time

Table 3.18 provides the CPU times for the two design approaches. For Q = 1, the CPU

time needed for obtaining dGA under φ1 is significantly less than obtaining dr100 under

φ2(·; 100). For Q = 2 cases, our approach only need a little bit longer time comparing with

the Q = 1 cases.

Table 3.18: CPU times (hours) for obtaining D-optimal designs that optimize φ1(dGA) with

Q = 1, 2 and φ2(dr100; 100) with Q = 1 for estimation when τISI 6= τTR.

Case P
(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

Tφ1(dGA) 2.0790 1.6150 3.1581 2.4001 2.3906

Tφ2(dr100;100) 350.7778 287.8889 NA NA NA

The Obtained Optimal Designs

Table 3.19 gives the stimulus frequencies of the obtained D-optimal designs, we observe

that the frequency of the occurrences for the qth type stimulus does not depend on the

conditional probability P
(c)
Q . For example, in Table 3.19, the frequencies for Q = 2 are

the same for all three cases, where the occurrence of stimulus type 1 is 40%, and 41% for

stimulus type 2.

3.4.2.2 Detection Problem: Model 3.2 with τISI = τTR

In this subsection, we work with Model (3.2) where the study objective is on the detection

of brain activations. We set both τISI and τTR to 2 s. We consider same design approaches

as in Section 3.3 under the D-optimality criterion.

Design Comparisons in Terms of φ1

Table 3.20 and Figure 3.7 present the comparison results in terms of φ1. All the results

in Table 3.20 suggest a good performance of the designs (dGA) obtained by our proposed
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Table 3.19: Stimulus frequencies of D-optimal designs for estimation when τISI 6= τTR: the

designs are obtained by optimizing φ1(dGA) for Q = 1, 2 and φ2(dr100; 100) for Q = 1 with

P
(c)
Q .

φ1 φ2

Stimulus type (q) 1 2 1

Q = 1, P
(I)
1 68% - 68%

Q = 1, P
(II)
1 68% - 66%

Q = 2, P
(I)
2 40% 41% -

Q = 2, P
(II)
2 40% 41% -

Q = 2, P
(III)
2 40% 41% -

approach, compared with tradition designs and dr100. We notice that the block designs

also perform well for detection problem under the D-optimality criterion. However, we do

not recommend to use random designs or m-sequence for detecting brain activations due to

their poor performance.

Table 3.20: The φ1-values for different designs with Q = 1, 2 evaluated by the D-optimality

criterion for detection when τISI = τTR.

Case dGA drand (mean±std) dblock dmseq dr100

P
(I)
1 1.0658 1.0307 ± 3.1996 ×10−4 1.0604 1.0304 1.0653

P
(II)
1 1.0519 1.0166 ± 2.9705 ×10−4 1.0466 1.0169 1.0514

P
(I)
2 1.0394 1.0064 ± 2.6804×10−4 1.0358 1.0071 1.0382

P
(II)
2 1.0326 1.0000 ± 2.7801×10−4 1.0290 1.0005 1.0318

P
(III)
2 1.0300 0.9975 ± 2.2762×10−4 1.0264 0.9980 1.0287
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Figure 3.7: Relative design efficiencies with the D-optimality criterion for detection when

τISI = τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1 and Q = 2 for five different cases corresponding to p(r|q) with the D-optimality

criterion.

Design Comparisons in Terms of φ2(d; 1000)

Table 3.21 gives the results for comparisons between dGA and dr100 in terms of φ2(d; 1000).

All the results show that both approaches have similar performance. From Figure 3.8, we

can clearly see that the optimal designs dGA obtained by considering φ1 slightly outperform

dr100 when evaluated by φ2(d; 1000) for some cases.

Comparisons of CPU Time

Results in Table 3.22 show that the CPU time spent for obtaining dGA under φ1 is much

less than that for obtaining d100 under φ2(·; 100), while the previous results showed that the

optimal designs obtained under φ1 can have good performance with respect to φ2. Thus,

our method for finding optimal design is recommended.
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Table 3.21: The φ2(d; 1000)-values of dGA and dr100 with Q = 1, 2 under the D-optimality

criterion for detection when τISI = τTR.

P
(c)
Q P

(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

dGA 27.4802 21.9573 14.8979 13.2862 12.7324

dr100 27.4964 21.2327 14.9453 12.7286 12.6729
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Figure 3.8: Relative design efficiencies with the D-optimality criterion for detection when

τISI = τTR: this plot provides the relative efficiency φ2(dGA; 1000)/φ2(dr100; 1000) with

Q = 1, 2 for five different cases corresponding to P
(c)
Q with the A-optimality.

Table 3.22: CPU times (hours) for obtaining D-optimal designs that optimize φ1(dGA) and

φ2(dr100; 100) respectively for Q = 1, 2 for detection when τISI = τTR.

Case P
(I)
1 P

(II)
1 P

(I)
2 P

(II)
2 P

(III)
2

Tφ1(dGA) 0.2654 0.2642 1.2479 0.9897 1.0489

Tφ2(dr100;100) 29.6694 45.8917 48.4972 15.8506 18.9706
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The Obtained Optimal Designs

The frequency of the occurrences of the qth stimulus type for the obtained optimal designs

are given in Table 3.23. The results indicate that the frequency of the occurrence was not

affected by the conditional probability P
(c)
Q . The frequencies of optimal designs dGA and

dr100 are slightly different from each other.

Table 3.23: Stimulus frequencies of D-optimal designs for detection when τISI = τTR: the

designs are obtained by optimizing φ1(dGA) and φ2(dr100; 100) with P
(c)
Q for Q = 1, 2.

φ1 φ2

Stimulus type (q) 1 2 1 2

Q = 1, P
(I)
1 66% - 61% -

Q = 1, P
(II)
1 66% - 61% -

Q = 2, P
(I)
2 39% 39% 37% 38%

Q = 2, P
(II)
2 39% 39% 38% 37%

Q = 2, P
(III)
2 39% 39% 39% 38%

3.4.2.3 Detection Problem: Model 3.2 with τISI 6= τTR

We evaluate the design performance with Model (3.2) for detection problem when τISI = 3 s

and τTR = 1.5 s. Similarly to the previous sections, we study performance of different design

approaches.

Design Comparisons in Terms of φ1

Results in Table 3.24 show that dGA’s perform well in all the studied cases. From Figure 3.9,

we get similar results as those in Section 3.4.2.2. In terms of the φ1 criterion, dGA and dr100

perform similarly. For detecting brain activations, block designs are shown to be a relatively

good designs, but the random designs and m-sequence do not perform as well as the others.
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Table 3.24: The φ1-values for different designs with Q = 1, 2 evaluated by D-optimality

criterion for detection when τISI 6= τTR.

Case dGA drand (mean±std) dBlock dmseq dr100

P
(I)
1 1.0519 1.0327± 2.2129× 10−4 1.0482 1.0330 1.0515

P
(II)
1 1.0413 1.0220± 2.0949× 10−4 1.0376 1.0226 1.0411

P
(I)
2 1.0321 1.0146± 1.6161× 10−4 1.0295 1.0148 NA

P
(II)
2 1.0269 1.0095± 1.3856× 10−4 1.0243 1.0097 NA

P
(III)
2 1.0249 1.0073± 1.4866× 10−4 1.0223 1.0077 NA
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Figure 3.9: Relative design efficiencies with the D-optimality criterion for detection when

τISI 6= τTR: this plot provides the relative efficiency φ1(d)/φ1(dGA) of different designs d

with Q = 1 and Q = 2 for five different cases corresponding to p(r|q) with the D-optimality

criterion (note: ‘*’ indicates no result).
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Design Comparisons in Terms of φ2(d; 1000)

For detection problem when τISI 6= τTR, the comparisons of dGA and dr100 in terms of

φ2(d; 1000) under the D-optimality criterion are presented in Table 3.25. It shows that

dGA and dr100 have similar performance in terms of φ2(d; 1000). Again, simulations for

designs with Q = 2 are omitted due to the time constraints.

Table 3.25: The φ2(d; 1000)-values of dGA and dr100 with Q = 1 under the D-optimality

criterion for detection when τISI 6= τTR.

Case P
(I)
1 P

(II)
1

dGA 30.7438 24.5210

dr100 31.8376 23.1844

Comparisons of CPU Time

Table 3.26 provides CPU times for obtaining dGA and dr100 when Q = 1. Our approach

uses significantly less CPU time. Moreover, for obtaining dr100 under φ2(·; 100), the time

needed for P
(II)
1 is almost doubled comparing to the time needed for P

(I)
1 , on the other

hand, our approach spent similar amount of time for both cases.

Table 3.26: CPU times (hours) for obtaining D-optimal designs that optimize φ1(dGA) and

φ2(dr100; 100) respectively for Q = 1 for detection when τISI 6= τTR.

Case P
(I)
1 P

(II)
1

Tφ1(dGA) 2.1381 1.7047

Tφ2(dr100;100) 148.7556 290.5277
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The Obtained Optimal Designs

Again, the frequencies of the occurrences of the qth stimulus type are similar for dGA and

dr100 as shown in Table 3.27. The available results for Q = 2 indicate that the frequency of

the occurrence does not depend on the conditional probability P
(c)
Q under the D-optimality.

Table 3.27: Stimulus frequencies of D-optimal designs for detection when τISI 6= τTR: the

designs are obtained by optimizing φ1(dGA) and φ2(dr100; 100) with P
(c)
Q for Q = 1, 2.

φ1 φ2

Stimulus type (q) 1 2 1

Q = 1, P
(I)
1 64% - 63%

Q = 1, P
(II)
1 64% - 67%

Q = 2, P
(I)
2 40% 40% -

Q = 2, P
(II)
2 40% 40% -

Q = 2, P
(III)
2 40% 40% -

3.4.3 An Example Similar to Cordes et al. (2012)’s Study

In this subsection, we present the results for the case similar to Cordes et al. (2012)’s

Study. We provide the comparison results for in Table 3.28. The results suggest a high

performance of the propose approach that optimizes φ1(d) among the three methods. Our

method requires less time comparing with the other two methods. Moreover, Cordes et al.

(2012)’s approach does not lead to a much better design for a longer running time. For

example, the designs obtained by φ2(d; 100) and φ2(d; 1000) has very close φ2(d; 1000)-

values, however, the design obtained by φ2(d; 1000) spent much longer computing time

than that of φ2(d; 100); see Table 3.28.
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Table 3.28: The performance of the obtained designs for the Q = 3 case, evaluated by

φ2(·;κ = 10, 000) and the φ1, and the computing time (minutes) for obtaining the designs.

Optimality Criterion φ2(d; 10000) φ1 Time

φ1(dGA) 42.64 44.88 106.54

φ2(d; 100) 39.82 41.72 237.73

φ2(d; 1000) 39.88 41.77 2041.64

3.5 Conclusion and Discussion

We propose an efficient approach to obtain robust designs for fMRI experiments when

the design matrices depend not only on the selected designs, but also on the subject’s prob-

abilistic behavior during the experiments. The main idea is by considering the optimality

criterion φ1 ≡ φ(E[M |d]). Given a design d and the conditional probability p(r|q), we can

view the expected information matrix as a measure of the expected amount of information

about the parameters of interest in the data to be collected. A computer algorithm such as

the genetic algorithm techniques can then be considered to find a design d that optimizes

φ1.

We demonstrate our method with both estimation and detection problems for τISI = τTR

and τISI 6= τTR under the A- and D-optimality criteria, and an example similar to Cordes

et al. (2012) through case studies. We find that our obtained designs outperform some

traditional fMRI designs in all cases. We also observe that φ1 provides a very good surrogate

for φ2 ≡ E[φ(M |d)], which is also not uncommon in practice. The value of φ2 is normally

unavailable and needs to be approximated. One possible way is to conduct a Monte Carlo

simulation to generate κ realizations ofM for each d, and calculate the mean of the resulting

κ realizations of φ(M) as an approximation of φ2. Such an approach has recently been

considered by Cordes et al. (2012) for tackling the same design issues. We show that, with

a much less CPU time than this latter approach, our method can obtain designs that perform
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very well in terms of the φ2-value. Our observation of cases with one or two stimulus types

and two possible responses consistently show the usefulness of our proposed method. Thus,

we infer further that our method will provide optimal designs for experiments with more

complicated settings, such as more stimulus types and possible responses.

For the optimal designs we obtained, we observe that the frequency of the occurrences

for the qth-type stimulus for the A-optimal designs tend to depend on the conditional

probability p(r|q), that is, the frequency tends to increase when the conditional probability

p(r|q) moves away from the balanced case with p(r|q) = 1/R, where R is the number of

stimulus types; on the other hand, We observe the same frequencies for cases with different

p(r|q) for the D-optimal designs. We further prove that the D-optimal designs remain the

same regardless the value of p(r|q).
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Chapter 4

WAVELET-BASED LINEAR REGRESSION MODEL WITH LONG MEMORY

4.1 fMRI Time Series in Wavelet Domain

Research in fMRI is a fast growing field, new models are introduced and applied to fMRI

data analysis constantly. Zarahn et al. (1997) suggested using long memory processes in

the analysis of fMRI time series to deal with temporal autocorrelation in the error terms.

Wavelet-based modeling is an advanced statistical method that has been used in the analy-

sis of fMRI data (Ruttimann et al., 1998; Brammer, 1998; Bullmore et al., 2004; Costafreda

et al., 2009). Bullmore et al. (2001) suggested that resampling fMRI data in a wavelet

domain is a valid alternative to autoregressive models in time domain. They observed the

superiority of wavelet denoising over autoregressive (AR(1) and AR(3)) models in whitening

the fMRI noise when models with the form of (2.4) are considered. Recently, Jeong et al.

(2013) proposed a wavelet-based approach to linear regression model. They showed that

discrete wavelet transforms (DWTs) can serve as whitening filters by simplifying the dense

covariance matrix into a sparse one, and their approach is shown to be suitable for appli-

cations to fMRI data. Although wavelet-based models are now widely used in fMRI data

analysis, there is apparently no research article on optimal design studies based on these

models. Without much knowledge in choosing an optimal design for the statistical model,

researchers may not be able to obtain informative data, which may render an fMRI experi-

ment useless. The purpose of this work is to provide some guidance on optimal designs for

wavelet-based models. Specifically, develop a computer algorithm to obtain optimal designs

with wavelet-based linear regression models for traditional fMRI studies (without consider-

ing the subject’s probabilistic behavior during the experiment). In particular, our algorithm

incorporates simulated annealing and co-ordinate exchange algorithms. The main purpose

of this work is to develop an algorithm that is suitable for the fMRI design problem based
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on wavelet-based models. We would like to investigate the effect of several parameters in

the new algorithm, and provide guidance on the selection of these parameters for a good

performance.

One of the advantages of wavelet transform for fMRI data analysis is the decorrelation

of the time series, which can help improve the linear model parameter estimation. Thus,

understanding how wavelet transforms work is helpful in solving fMRI experimental design

problems. We apply wavelet transform to epoch data set (‘attention to visual motion’ fMRI

dataset in NIfTI file format), which is available at http://www.fil.ion.ucl.ac.uk/spm/

data/attention/. The dataset was collected by Büchel and Friston (1997). The archive

contains the smoothed, spatially normalized, realigned, slice-time corrected images. We

give a brief description of the experiment as follows.

4.1.1 Data Description and Experimental Design

4.1.1.1 Image Acquisition

The experiment was performed on a 2 Tesla Magnetom VISION (Siemens, Erlangen) whole-

body MRI system equipped with a head volume coil. T ∗2 − weighted fMRI images (TE =

40 ms, TR = 3.22 s, and 64 × 64 pixels [19.2 × 19.2 cm]) were obtained with echo-planar

imaging (EPI) using an axial slice orientation, with 32 contiguous slices covering the brain

(slice thickness 3 mm, giving 9.6 cm vertical field of view).

Subjects were scanned during four runs of scanning periods, each lasting 5 min and 22 s.

A total of 100 image volumes were acquired during each run. In each run, the first 10 scans

were discarded in order to eliminate magnetic saturation effects. Thus, the length of the

dataset is 360.

4.1.1.2 Attention to Visual Motion Experiment

The experiment was performed with 4 conditions, ‘F’: fixation, ‘A’: attention, ‘N’: no at-

tention, ‘S’: stationary. A central fixation point was shown to the experimental subject as
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the ‘fixation’ condition. For the ‘attention’ and ‘no attention’ conditions, 250 white dots

emerged from central fixation point and moved towards the edge of the screen. The subjects

were asked to ‘detect changes’ and ‘just look’ for the ‘attention’ and ‘no attention’ condi-

tions, respectively. For the ‘stationary’ condition, the fixation point and 250 stationary dots

were shown to the subject. The experimental design d for each run is [FAFNAFNS], same

design was repeated for 4 times to complete the experiment. More details can be found in

Büchel and Friston (1997).

4.1.2 Data Analysis

We import the ‘attention to visual motion’ dataset using MATLAB function from Sta-

tistical Parametric Mapping (SPM), the dimensions of the data is 53 × 63 × 46, the first

dimension is the MRI x-direction: ear-to-ear; the second dimension is the MRI y-direction:

back-to-front, the third dimension is the MRI z-direction: bottom-to-top. That is, for one

single slice of the brain, the image is 53× 63, and we have 46 slices. The length of the data

is 360. For simplicity and for the demonstration purposes only, we consider the first 256

time points in our analysis below.

We fit a linear model (Fadili and Bullmore, 2002) to a single voxel,

y = Xβ + ε, ε ∼ N(0,Σ), (4.1)

where X is the design matrix, which is given by the design d previously described. We as-

sume ε to be fractional Gaussian noise characterized by the Hurst parameter H as described

in section 2.5. Thus, the covariance matrix Σ will not be a diagonal matrix.

To analyze the data, we randomly pick one slice of the brain from the dataset and

estimate the Hurst parameters of every signal voxel. Figures 4.1 and 4.2 plot the Hurst

estimators (H) of each voxel on slice = 18 and slice = 35, the Hurst parameters were esti-

mated by the aggregated variance method as described in Section 2.5.3.2 from the original

fMRI time series.
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Figure 4.1: Original fMRI time series, estimation of Hurst parameters with aggregated

variance method (slice 18).
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Figure 4.2: Original fMRI time series, estimation of Hurst parameters with aggregated

variance method (slice 35).
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We follow the tutorial from Raizada lab for detecting the edges of the brain image.

Specifically, we set a threshold value to detect the brain edge. Note that this method might

not be the best way for detecting the edge to our data set, but this is not our main focus

in this work. From the plot, we can see that most of the values of H are between 0.5 and

1, which indicate long memory behavior.

Additionally, we fit the same fMRI time series to Model 4.1 and estimate the Hurst

parameters of the error terms using aggregated variance method. The results of slice 18

and 35 of the brain are given in Figures 4.3 and 4.4. Similar to the original data, the values

of Hurst parameters in Figures 4.3 and 4.4 mostly fall between 0.5 and 1.
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Figure 4.3: Fit the data to Model 4.1, estimation of Hurst parameters of the errors with

aggregated variance method (slice 18).

75



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Fit the data to Model 4.1, estimation of Hurst parameters of the errors with

aggregated variance method (slice 35).

4.1.3 Data Analysis in Wavelet Domain

Looking at the Hurst parameters estimated from the above fMRI data ‘attention to

visual motion’, we indeed observed long memory, and the data are highly correlated, as a

result, if we fit the data to a linear model, we will have a dense variance-covariance matrix.

Now, we would like to check the variance-covariance structure of data contain long memory

in wavelet domain. Because of the limited data in the experiment described above, we

consider simulated random sets with specified Hurst parameter.

4.1.3.1 Simulated fMRI Data

We simulate ER-fMRI data as in Section 2.5.2. We randomly generate 100 time series, each

time series has length N = 32, and the calculate the variance-covariance matrix of the data

as shown in Figure 4.5. Next, we apply DWTs with both Haar wavelet and Daubechies 4

(db4) wavelet. Again, we calculate the variance-covariance matrix of the transformed data,
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also called scaling and wavelet coefficients. Note that we omit the scaling coefficient. The

results are presented in Figures 4.6 and 4.7.

Figure 4.5: Variance-covariance matrix of simulated fMRI data by model 4.1 with long

memory error (dfGn (H = 0.75)).

The obtained variance-covariance matrix is divided by the largest element of the matrix.

From these simulated fMRI data, we can see that wavelet transforms serve as a whitening

matrix, where the dense variance-covariance matrix is simplified into a sparse form. The

off-diagonal elements of both variance-covariance matrices of wavelet transformed data on

Figure 4.6 and 4.7 are approximately zeros. The variance-covariance matrices of wavelet

coefficients are similar to the results in McCoy and Walden (1996).
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Figure 4.6: Variance-covariance matrix of wavelet coefficients from the simulated fMRI data

with DWT (Haar).

Figure 4.7: Variance-covariance matrix of wavelet coefficients from the simulated fMRI data

with DWT (db4).
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4.2 Methodology

The strongly correlated noise in fMRI time series can be approximately uncorrelated in

wavelet domain. A closed form of the variance-covariance matrix of DWT transform data

can be found in Section 2.6.2 (2.19). We now present the regression models in Section 2.5.2

in wavelet domain.

4.2.1 Wavelet-Based Linear Models

4.2.1.1 A Linear Model for Estimation

For estimating the HRF, first, the model in (2.4) can be written in centered form,

y = jµ+Xζ + ε, (4.2)

where j is a vector of 1’s, µ is the average of the observations, and the rest are as given in

(2.4).

Next, the linear model in wavelet domain is obtained by taking the DWT of Model (4.2):

yw = jwµ+Xwζ + εw, εw ∼ N(0,Σεw), (4.3)

where T × 1 vector yw = Wy, y represents the fMRI measurements obtained from a voxel

every τTR. For convenience, we set T = 2J ; jw = Wj; ζ is the unknown parameter vector.

Xw = WX, the T × QK matrix X = [X1, . . . ,XQ], Xq = [xq,1, . . . ,xq,K ] is the 0 − 1

design matrix; εw = Wε, ε consists of T highly correlated errors terms that are assumed to

follow a long memory process; W is the specified wavelet matrix that applies the column-

wise DWT to the data. The approximated covariance matrix Σεw is as described in (2.19).

Define the whitening matrix

Ω = Σ
−1/2
εw = (WΣεW

′)−1/2 (4.4)

so that the covariance matrix of Ωεw is a diagonal matrix, Cov(Ωεw) = σ2I.
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4.2.1.2 A Linear Model for Detection

For the detection problem, we consider

y = jµ+XHθ + η, (4.5)

where H = IQ ⊗ h∗, h∗ is defined by function (2.1). The corresponding coefficient θ =

[θ1, θ2, . . . , θQ], where θq is defined in Model (2.3). The vector η is the correlated error

terms that are assumed to be long memory. All the remaining terms of (4.5) are as in (4.3).

After DWT, we can write (4.5) in wavelet domain, that is

yw = jwµ+XwHθ + ηw, ηw ∼ N(0,Σηw
), (4.6)

where H is as in Model (4.5), ηw = Wη, and the variance-covariance matrix Σηw
is

approximately a diagonal matrix as in (2.19). All remaining terms are as described in (4.3).

4.2.2 Information Matrix

Again, we would like to find a design that gives the most precise least square esti-

mates of the parametric functions of interest. The goodness of designs is evaluated by

a real-valued function of the information matrix M . Now, for Model (4.3), we approx-

imately have Var((yw)t) = C2md with a constant C, m and d are given in (2.20), and

Cov((yw)i, (yw)j) ≈ 0 for i 6= j, where (yw)t is the tth wavelet coefficient of the observation

of the fMRI measurement. The approximate covariance matrix for ζ̂ is proportional to:

Cov(ζ̂)/σ2 = (X ′wΩ
′
(I − PΩjw

)ΩXw)−1

= (X ′W ′Ω
′
(I − PΩWj)ΩWX)−1.

where projection matrix PΩWj = ΩWj(j′W ′Ω′ΩWj)−1j′W ′Ω′, Ω is whitening matrix

defined in (4.4).

Thus, we have the information matrix,

Mw = X ′W ′Ω
′
(I − PΩWj)ΩWX.
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Let Aw = W ′Ω
′
(I − PΩWj)ΩW , then we have Mw = X ′AwX. We would like to find a

d that optimizes φ(M) for some φ as described in Chapter 3.

For the detection problem, the information matrix for Model (4.6) is

Mw = H ′X ′W ′Ω
′
(I − PΩWj)ΩWXH,

where H is as defined in (4.5).

4.2.3 Design Selection Criterion

To compare with Saleh et al. (2017), we apply the same criterion, D-optimality criteria

φ:

φ(M) = det(M)1/R, (4.7)

where M is nonsingular. We set φ(M) = 0 when M is singular, R is set to QK for

Model (4.3), and Q for Model (4.5) which corresponds to the number of the parameters of

interest.

4.3 Searching Algorithm

Saleh et al. (2017) proposed an algorithm for finding D-optimal design for fMRI exper-

iment by combining hill climbing algorithm and exchange algorithm. Compared to genetic

algorithm, their algorithms are superior in terms of computing time and design efficiency.

Inspired by their work, we consider an algorithm that incorporates concepts of simulated

annealing and the exchange algorithms for wavelet-based linear models.

To find a D-optimal design, the algorithm of Saleh et al. (2017) starts with a random

design d = {d1, d2, . . . , dN}. It then sequentially perturbs one element at a time of the

design, which is dn, where n = 1, . . . , N . Specifically, with Q stimulus types, dn is replaced

by an integer from {0, 1, . . . , Q} − {dn}. At each step, there are Q candidate designs,

and the integer that yields the highest design efficiency is used to update the design. The

pseudocode for exchange algorithm is shown in Algorithm 3. Hill climbing algorithm is then
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applied to obtain a optimal design, that is, the updated design is accepted if the change

improves the value of φ.

The process is repeated until no further improvement can be achieved. To find the

optimal design, this algorithm requires to have certain number of initial designs. This is

sometimes viewed as a disadvantage of such a hill climbing algorithm, in which a candidate

design is only accepted if it is better than the current design. It may thus be easily trapped

in a local optimum solution, and the quality of the obtained design will depend on the initial

design. One of the methods to avoid trapping in local optimum is to repeat algorithm many

times with different initials. On the other hand, simulated annealing algorithms, which allow

to accept a worse design with certain probability during the search, can escape the local

optimum and reach a global optimum.

Algorithm 3 Exchange algorithm (Saleh et al., 2017)

1 d← random design of length N
2 for n = 1 to N do
3 q = d(n) . nth element of design d
4 for j = 0 to Q except for q do
5 dcandidate ← d : d(n) = j . change the nth element of d into j
6 Calculate φ(dcandidate)
7 end for
8 Find max or min of φ-values and obtain the updated design dtry
9 end for

We now present some details about our proposed algorithm for wavelet-based linear

model. To maximize the optimality criterion over the design space, the algorithm begins

with an initial design d, which can be any design such as a sequence of zeros, or a randomly

generated sequence. Based on d, we calculate its design matrix X and the value of the D-

optimality criterion φ. We adapt Algorithm 3 to define our candidate designs, and denote

the ‘better’ candidate (i.e. the one with the larger φ) by dtry. This design is accepted when

it improves the value of φ. When dtry is worse than the current design d, we may still

accept it with probability

p = exp(∆φ/T ), (4.8)
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where ∆φ = φ(dtry) − φ(d), and T is a parameter of the algorithm called ‘temperature’.

When T is large, the probability of accepting a worse design is high (close to 1). Along

the search, we gradually decrease the value of T , the probability of accepting a worse

design is thus lower and lower. The algorithm keeps track of the best design during the

search, it is denoted by dbest. After a fixed number of iterations, if design d is updated,

we lower the temperature by multiplying a constant reduction factor R and continue the

search, otherwise, the algorithm is terminated to give the current best design dbest. An

pseudocode can be found in Algorithm 4. Next, we run several simulations to demonstrate

the performance of the proposed algorithm and provide some guideline on the selection of

parameter values.

4.4 Stimulation Studies

For comparison purposes, we also adapt the algorithm of Saleh et al. (2017) to search

for optimal D-optimal designs with wavelet-based linear models for both estimation and

detection problems. We consider cases with Q = 1, 2, 3. The length of designs are all set

to 28 = 256. The inter-stimulus-interval and the time-to-repetition (τISI , τTR) are set to

(2 s, 2 s) for τISI = τTR, and (3 s, 1.5 s) for τISI 6= τTR. We assume that the noise follows

a long memory process; specifically, we consider a discrete fractional Gaussian noise with

Hurst parameter H = 0.75. For all the cases, both the previously described algorithm and

that of Saleh et al. (2017) are employed for obtaining optimal designs. Originally, Saleh et al.

(2017)’s approach is designed for another model that involves an AR(1) noise. We modify

the corresponding part in their code to suit our problem. To model the variance-covariance

matrix, we choose Daubechies wavelet with 4 vanish moments (db4) (Daubechies, 1992) as

wavelet matrix which is considered in Jeong et al. (2013).

In addition, we compare our obtained designs with two traditional designs, they are

16 s-on-16 s-off block design dblock, as described in Chapter 3; and m-sequence based design

dmseq. With N = 256, we generate m-sequence based designs as follows,
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Algorithm 4 Our proposed algorithm

1 Initialization:
2 T0: starting temperature (T0 = 1);
3 R: reduction factor for temperature T ;
4 dini: a random design of length N ;
5 T = T0; d = dini;
6 dbest = dini; φbest = φ(dbest);
7 while STOP = False do
8 STOP = True
9 for i = 1 to N do

10 calculate φ(d)
11 adapt Algorithm 3, find dtry such that φmax = argmax(φ(dcandidate))
12 ∆φ = φmax − φ(d) = φ(dtry)− φ(d)
13 if φmax 6= 0 then
14 if ∆φ ≥ 0 then
15 d = dtry . accept the improvement
16 STOP = False
17 else
18 p = exp(∆φ

T )
19 if p > rand(0, 1) then
20 d = dtry . accept the worsening
21 STOP = False
22 end if
23 end if
24 else
25 p = exp(− 1

T )
26 if p > rand(0, 1) then
27 d = dtry . accept the singular
28 STOP = False
29 end if
30 end if
31 if φmax 6= 0 and φmax > φbest then
32 φbest = φmax
33 dbest = dtry . keep track of best design dbest
34 end if
35 end for
36 if STOP == False then
37 T = T ×R
38 end if
39 end while
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Case 1: For Q = 1, 3, first, we generate m-sequence with length 28 − 1 for Q = 1, and

length 44 − 1 with Q = 3, then we find the longest run of zeros, and add one more

zero to obtain a m-sequence design with N = 28.

Case 2: For Q = 2, first, we generate m-sequence with length 35 − 1, then we repeat the

same sequence once to form a sequence with length 484, we select first 256 elements

as a m-sequence based design.

As mentioned before, to avoid being caught at a local optimum, Saleh et al. (2017)’s

algorithm needs to have a sufficient number of initial designs. With more initial designs,

their algorithm will have a higher chance to give a better design. As for the newly proposed

algorithm, it is crucial to pick an appropriate value for reduction factor R. To investigate

the trade offs between computing time and design efficiency of both algorithms, we run the

simulations with different number of initial designs for Saleh et al. (2017)’s algorithm; and

for the new algorithm, we consider various values of reduction factor R.

Estimating the Hurst parameter of a noisy fMRI data is quite challenging. Sometimes,

we might use a wrong Hurst parameter in the model for obtaining optimal designs. We are

interested in the performance of the optimal designs obtained from wrong model assumption.

We run the simulation with different value of Hurst parameter, and evaluate the optimal

designs with ‘true’ Hurst parameter to investigate the robustness of the optimal designs to

the Hurst parameter.

4.5 Results

We demonstrate the performance of our proposed algorithm with the following simula-

tions.

4.5.1 Evaluation Under the D-Optimality Criterion

We evaluate Saleh et al. (2017)’s algorithm and the newly proposed algorithm with the

D-optimality criterion for Models 4.3 and 4.6 when τISI = τTR and τISI 6= τTR. We then
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compare the optimal designs obtained from each algorithm together with some tradition

designs including m-sequence based design and block design.

4.5.1.1 Estimation Problem with τISI = τTR

Figure 4.8 presents some features of our algorithm. In this example, we set the reduction

factor R = 0.96 and the Hurst parameter H = 0.75 to search the D-optimal design with 2

stimulus types for estimation problem when τISI = τTR.
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Figure 4.8: Simulation process of the newly proposed algorithm for estimation problem

when τISI = τTR with Q = 2, the reduction factor R = 0.96. Plots from top to bottom: (A)

The record of best φ-values during the entire search for the optimal design; (B) φ-values for

each iteration during the searching process; (C) Probability for accepting a worsen design;

(D) The optimal design obtained.
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Plot (A) in Figure 4.8 gives the best φ-values obtained achieved over the iterations of our

algorithm. As excepted, at the beginning of the search, the φ values may go up or down as

shown in the plot (B) of Figure 4.8. At this stage, the algorithm tends to explore the entire

design space and there is a high probability to accept a worsen design; see also plot (C) of

Figure 4.8, where the probability of accepting a worse design over iterations is presented.

We can see a significant improvement at the early stage of the search, and we then slowly

approach the optimal solution. Plot (D) shows the optimal design we obtained from our new

algorithm. We observe similar performance of the new algorithm for estimation problem

with τISI 6= τTR, thus, we omit the results.

Tables 4.1, 4.2 and 4.3 present the D-optimality criterion values of the optimal designs

(φbest) and computing time of Saleh et al. (2017)’s algorithm and the new algorithm for

Q = 1, 2, 3 for estimating the HRF. With similar CPU time, the optimal designs obtained

from the new algorithm tend to perform slightly better than those obtained by Saleh et al.

(2017)’s algorithm. Additionally, comparing to Saleh et al. (2017)’s algorithm, for achieving

similar design efficiencies, the new algorithm tends to require a less CPU time than the

algorithm of Saleh et al. (2017).

To compare the performance of the algorithms, we run the simulations with 10, 25, 50,

75, 100, 250, 500 and 1000 initial designs for Saleh et al. (2017)’s algorithm and the new

algorithm has a reduction factor of R = 0.7, 0.75, 0.8, 0.85, 0.9, 0.96, 0.97 and 0.98. For the

former algorithm, we did not observe a significant improvement by using a large number

of initials designs. As for the new algorithm, better designs are obtained when we have

a bigger reduction factor R; see also Figure 4.9, which presents the achieved D-optimal

criterion values over the iterations of the proposed algorithm for obtaining optimal designs

withQ = 1. The reduction factor is set to R = [0.7, 0.75, 0.8, 0.9, 0.95]. Despite the ‘badness’

of the randomly generated initial design, our proposed algorithm reaches to a good design

after certain number of iterations. We also observe that the designs obtained from both

algorithms perform better than m-sequence based design and block design.
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Figure 4.9: The achieved D-optimal criterion values (φbest) over iterations of proposed

algorithm for reduction factor R = [0.7, 0.75, 0.8, 0.9, 0.95] and Q = 1.

To investigate the effect of the value of the Hurst parameter on the obtained optimal

designs, we run the simulations with Hurst parameter H = [0.6, 0.75, 0.9]. With the optimal

design obtained from each simulation, we then evaluate the designs with a ‘true’ criterion

φ(H), where H = [0.6, 0.75, 0.9], the relative efficiencies is given in Table 4.4. From the

results, the new algorithm obtained optimal designs with similar performance over the

different values of the Hurst parameter. This suggests that the optimal designs obtained

from the new algorithm is robust to a misspecified Hurst parameters in the model. Having

slightly inaccurate information about the value of the Hurst parameter does not seem to

have a serious consequence on the performance of the obtained optimal designs.
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Table 4.1: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 1 and τISI = τTR.

Old algorithm New algorithm

I Time (s) φbest R Time (s) φbest

10 7.1860 21.2731 0.70 4.6341 21.2807

25 13.9154 21.2861 0.75 5.6027 21.2848

50 30.9679 21.2902 0.80 6.7221 21.2856

75 45.1091 21.2905 0.85 9.1236 21.2853

100 66.1904 21.2818 0.90 15.7067 21.2914

250 169.3016 21.2933 0.96 35.0616 21.2944

500 310.0266 21.2921 0.97 45.5945 21.2971

1000 573.3169 21.2962 0.98 65.1150 21.3031

Tradition designs

φbest(dblock) 0.46838

φbest(dmseq) 21.0837

4.5.1.2 Estimation Problem with τISI 6= τTR

Tables 4.5, 4.6 and 4.7 provide the φ values with the D-optimality of the optimal designs

that were found by Saleh et al. (2017)’s algorithm and our algorithm. The computing time

needed for obtaining these designs are also provided there. For comparison purposes, Saleh

et al. (2017)’s algorithm is tested several times with different number of initial designs,

I = 10, 25, 50, 75, 100, 250, 500, 1000. We repeated our proposed algorithm with different

values for the reduction factor R = 0.7, 0.75, 0.8, 0.85, 0.9, 0.96, 0.97, 0.98. Similarly to the

cases with τISI = τTR, we see that, with similar computing time, our algorithm can obtain
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Table 4.2: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 2, τISI = τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 24.1112 16.3079 0.70 15.2565 16.3096

25 58.9485 16.3033 0.75 19.9904 16.3233

50 118.3059 16.3025 0.80 24.7501 16.3171

75 184.2289 16.3204 0.85 30.8919 16.3298

100 243.0310 16.3256 0.90 47.4077 16.3369

250 609.2890 16.3229 0.96 113.9497 16.3380

500 1.2271 ×103 16.3187 0.97 154.3477 16.3419

1000 2.5437 ×103 16.3289 0.98 227.8445 16.3391

Tradition designs

φbest(dblock) 0

φbest(dmseq) 16.0519

statistically more efficient designs than designs achieved by Saleh et al. (2017)’s algorithm.

In addition, our algorithm can obtain statistically equivalent design with a much less com-

puting time. By increasing number of initial designs, the computing time of Saleh et al.

(2017)’s algorithm increases linearly, however, the achieved design efficiency is not signif-

icantly improved. On the other hand, with a higher reduction factor for our algorithm,

although the computing time increases, it also gives a better optimal design. Designs ob-

tained from both algorithms perform better than m-sequence based design and block design.
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Table 4.3: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 3, τISI = τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 66.2604 13.1973 0.70 32.9317 13.2439

25 158.9035 13.2384 0.75 46.3659 13.2594

50 310.0428 13.2187 0.80 55.0119 13.2491

75 459.6314 13.2322 0.85 70.0541 13.2824

100 619.7323 13.2218 0.90 101.1490 13.2885

250 1.5532 ×103 13.2205 0.96 264.6488 13.2960

500 3.1586 ×103 13.2333 0.97 342.4683 13.2931

1000 6.6084 ×103 13.2497 0.98 517.1954 13.2913

Tradition designs

φbest(dblock) 0

φbest(dmseq) 12.9442

Table 4.4: Robustness of the designs obtained by the proposed algorithm with misspecified

Hurst parameter for estimation When τISI = τTR.

Q 1 2 3

d∗(H = ·) 0.9 0.75 0.6 0.9 0.75 0.6 0.9 0.75 0.6

φ(0.9) 1 0.998 0.991 1 0.996 0.989 1 0.997 0.988

φ(0.75) 0.996 1 0.999 0.995 1 0.997 0.992 1 0.999

φ(0.6) 0.991 0.998 1 0.987 0.996 1 0.982 0.996 1
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Table 4.5: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 1, τISI 6= τTR.

Old algorithm New algorithm

I Time (s) φbest R Time (s) φbest

10 24.7688 24.0313 0.70 13.3208 24.1598

25 65.4386 24.0844 0.75 16.7258 24.1633

50 123.8135 24.0663 0.80 20.3398 24.1556

75 175.6222 24.0352 0.85 27.6570 24.1591

100 230.4629 24.0481 0.90 45.1774 24.1646

250 563.8479 24.0232 0.96 108.9030 24.1587

500 1.1369 ×103 24.1333 0.97 151.8808 24.1596

1000 2.2452 ×103 24.0978 0.98 219.3428 24.1791

Tradition designs

φbest(dblock) 0.5740

φbest(dmseq) 23.9369

We also study the robustness of optimal design obtained by our algorithm under mis-

specified Hurst parameter. The results for Q = 1, 2, 3 with H = 0.6, 0.75, and 0.9 are

presented in Table 4.8. The relative efficiencies are all very close to 1, the performance of

the obtained design is better if the specified value of the Hurst parameter is closer to the

‘true’ one. For example, when Q = 1 and the ‘true’ Hurst parameter H is 0.1, the optimal

design obtained under H = 0.75 is better than the optimal design obtained under H = 0.6

when these designs are evaluated with H = 0.9. But, again, all the relative efficiencies are

close to 1. Thus, we say that our designs are robust under misspecified Hurst parameter.
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Table 4.6: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 2, τISI 6= τTR).

Old algorithm New algorithm

I Time (s) φbest R Time (s) φbest

10 77.5988 17.5335 0.70 57.5101 17.6993

25 182.0149 17.6058 0.75 63.3740 17.7015

50 366.8843 17.6044 0.80 82.8099 17.7030

75 518.8944 17.6201 0.85 108.0507 17.6999

100 735.1227 17.6136 0.90 161.4309 17.7017

250 1780.9 17.6528 0.96 418.0875 17.7061

500 3.5397 ×103 17.5964 0.97 536.0883 17.7047

1000 7.1772 ×103 17.5234 0.98 817.4659 17.7083

Tradition designs

φbest(dblock) 0

φbest(dmseq) 17.4636

4.5.1.3 Detection Problem with τISI = τTR

In this section, we study the detection problem, the aim is at obtaining a design that helps

to provide precise inference on detecting the activated regions of the brain in response to

stimuli.

Figure 4.10 presents the process of our algorithm in search of optimal design for detection

problem when τISI = τTR, we set the reduction factor R = 0.96 and the Hurst parameter

H = 0.75 to search the D-optimal design with 2 stimulus types. We observe the similar

features of the algorithm for detection problem when τISI 6= τTR, and thus omit the results
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Table 4.7: The performance of the optimal designs for estimation obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 3, τISI 6= τTR).

Old algorithm New algorithm

I Time (s) φbest R Time (s) φbest

10 170.8543 13.9787 0.70 106.3306 14.1563

25 370.5744 13.9351 0.75 140.5539 14.5960

50 8.0015 ×102 13.9950 0.80 186.6411 14.1571

75 1.1979 ×103 13.9605 0.85 280.9567 14.1734

100 1.6435 ×103 14.0497 0.90 352.533 14.1751

250 4.0718 ×103 14.0014 0.96 889.4479 14.1786

500 7.9138 ×103 13.9763 0.97 1.2083 ×103 14.1796

1000 1.6030 ×104 14.0148 0.98 1.7527 ×103 14.1839

Tradition designs

φbest(dblock) 0

φbest(dmseq) 13.9031

Table 4.8: Robustness of the designs obtained by the proposed algorithm with misspecified

Hurst parameter for estimation When τISI 6= τTR.

Q 1 2 3

d∗(H = ·) 0.9 0.75 0.6 0.9 0.75 0.6 0.9 0.75 0.6

φ(0.9) 1 0.999 0.987 1 0.998 0.991 1 0.998 0.993

φ(0.75) 0.998 1 0.999 0.995 1 0.999 0.996 1 1

φ(0.6) 0.993 0.999 1 0.989 0.998 1 0.989 0.995 1
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in the next subsection. The best φ-values achieved over the iterations of our algorithm is

presented in plot (A). Plot (B) gives the search path, as excepted, at the beginning of the

search, the φ-value goes up and down and there is a high probability to accept a worsen

design; see also plot (C) of Figure 4.10. Same as estimation problem, the algorithm has a

significant improvement of φ-value at the early stage of the search, it then slowly approach

the optimal solution. Plot (D) presents the D-optimal design we obtained. The pattern of

the design is very close to a block design.
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Figure 4.10: Simulation process of the newly proposed algorithm for detection problem

when τISI = τTR with Q = 2, the reduction factor R = 0.96. Plots from top to bottom: (A)

The record of best φ-values during the entire search for the optimal design; (B) φ-values for

each iteration during the searching process; (C) Probability for accepting a worsen design;

(D) The optimal design obtained.
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Tables 4.9, 4.10 and 4.11 show the best φ-values of D-optimality designs and the com-

puting times of Saleh et al. (2017)’s algorithm and our proposed algorithm with Q = 1, 2

and 3, for τISI = τTR. From these results, we observe that our new algorithm can obtain

optimal designs that perform similarly to the designs obtained by Saleh et al. (2017)’s al-

gorithm with less CPU time. However, we do not have a significantly improved result by

increasing the number of initial designs for the algorithm of Saleh et al. (2017). Similar

observation is made for our algorithm when we elevate the value of the reduction factor.

Table 4.9: The performance of the optimal designs for detection obtained from Saleh et al.

(2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm (new

algorithm) with R reduction factor, block design and m-sequence based design, and the

their computing time (seconds): Q = 1, τISI = τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 3.1893 4.0436 0.70 1.7270 4.0201

25 9.3451 4.0452 0.75 2.5745 4.0353

50 18.4501 4.0533 0.80 2.8857 4.0324

75 27.7966 4.0529 0.85 4.0925 4.0503

100 36.2295 4.0526 0.90 6.1673 4.0457

250 87.8387 4.0539 0.96 14.4039 4.0372

500 176.3849 4.0559 0.97 18.7579 4.0462

1000 363.1153 4.0543 0.98 28.8654 4.0425

Tradition designs

φbest(dblock) 3.9884

φbest(dmseq) 1.3678

96



Table 4.10: The performance of the optimal designs for detection obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 2, τISI = τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 9.8523 3.0507 0.70 5.4796 3.0440

25 22.5540 3.0597 0.75 6.7517 3.0500

50 45.5222 3.0571 0.80 8.4988 3.0484

75 67.7046 3.0596 0.85 11.4983 3.0517

100 91.4980 3.0592 0.90 17.8382 3.0590

250 221.8722 3.0594 0.96 38.5067 3.0500

500 455.0383 3.0637 0.97 51.7084 3.0599

1000 884.0667 3.0622 0.98 77.7042 3.0554

Tradition designs

φbest(dblock) 3.0460

φbest(dmseq) 0.9914

Table 4.12 presents the results for the robustness of the obtained optimal deigns from

our proposed algorithm with respect to misspecified Hurst parameter where H is set to

0.4, 0.75, 0.9 of a long memory process, for Q = 1, 2, 3. We conclude that the optimal designs

obtained from our proposed algorithm are robust with misspecified Hurst parameter. With

an inaccurate Hurst parameter in model assumption, we still be able to get a relatively

good design evaluated by a given optimal criterion with the ‘true’ Hurst parameter.
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Table 4.11: The performance of the optimal designs for detection obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 3, τISI = τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 12.4685 2.4842 0.70 10.7526 2.4747

25 29.9098 2.4834 0.75 14.2351 2.4773

50 60.1788 2.4871 0.80 16.8970 2.4774

75 94.6489 2.4849 0.85 22.5703 2.4845

100 119.6936 2.4855 0.90 34.5422 2.4840

250 296.1110 2.4873 0.96 80.8378 2.4847

500 591.9253 2.4872 0.97 108.1506 2.4830

1000 1.1861 ×103 2.4881 0.98 162.0152 2.4846

Tradition designs

φbest(dblock) 2.4763

φbest(dmseq) 0.8297

Table 4.12: Robustness of the designs obtained by the proposed algorithm with misspecified

Hurst parameter for detection When τISI = τTR.

Q 1 2 3

d∗(H = ·) 0.9 0.75 0.6 0.9 0.75 0.6 0.9 0.75 0.6

φ(0.9) 1 0.999 0.987 1 0.999 0.991 1 0.996 0.985

φ(0.75) 0.998 1 0.996 0.997 1 0.997 0.999 1 0.997

φ(0.6) 1 1.003 1 0.997 1.002 1 0.996 1.001 1
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4.5.1.4 Detection Problem with τISI 6= τTR

We now present selected the results for detection problem where τISI 6= τTR. Tables 4.13,

4.14 and 4.15 convey very similar information as their counterparts for the case where τISI =

τTR. The φ-values of the optimal designs obtained from both algorithms are very close,

however, our proposed algorithm requires much less computing time. We can thus conclude

that our proposed algorithm give good quality designs without much computational effort.

Table 4.13: The performance of the optimal designs for detection obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 1, τISI 6= τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 4.7702 3.6318 0.70 4.4399 3.6123

25 12.1525 3.6358 0.75 5.2267 3.6184

50 22.6666 3.6449 0.80 12.9373 3.6443

75 34.8532 3.6408 0.85 8.5356 3.6438

100 46.5148 3.6473 0.90 12.9373 3.6443

250 110.8309 3.6441 0.96 20.6292 3.6458

500 222.2530 3.6441 0.97 28.3089 3.6500

1000 446.6612 3.6481 0.98 41.8434 3.6480

Tradition designs

φbest(dblock) 3.6130

φbest(dmseq) 1.6652
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Table 4.14: The performance of the optimal designs for detection obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 2, τISI 6= τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 12.0889 2.7295 0.70 16.5506 2.7345

25 27.8303 2.7420 0.75 20.3560 2.7406

50 53.4159 2.7376 0.80 29.3155 2.7459

75 78.5595 2.7385 0.85 35.0732 2.7480

100 109.1063 2.7429 0.90 52.5037 2.7457

250 264.6267 2.7418 0.96 79.4459 2.7484

500 537.9187 2.7474 0.97 105.5870 2.7419

1000 1.0637 ×103 2.7454 0.98 158.9135 2.7417

Tradition designs

φbest(dblock) 2.7596

φbest(dmseq) 1.2628

4.6 Conclusion and Discussion

In this chapter, we develop an efficient computer algorithm to obtain optimal fMRI

designs for estimating the HRFs and detecting brain activation using the wavelet-based

models. The proposed algorithm was inspired by Saleh et al. (2017), to avoid being trapped

into local optimum, we incorporate a simulated annealing algorithm and the widely used

coordinate-exchange algorithm. We then demonstrate the usefulness of the new algorithm

through several case studies. The performance of the new algorithm is compared with

Saleh et al. (2017)’s algorithm along with some tradition designs under the D-optimality
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Table 4.15: The performance of the optimal designs for detection obtained from Saleh

et al. (2017)’s algorithm (old algorithm) with I initial designs, our proposed algorithm

(new algorithm) with R reduction factor, block design and m-sequence based design, and

the their computing time (seconds): Q = 3, τISI 6= τTR.

Old algorithm New algorithm

Initials Time (s) φbest R Time (s) φbest

10 16.8382 2.2145 0.70 38.9274 2.2202

25 35.0378 2.2128 0.75 45.4260 2.2269

50 70.8276 2.2165 0.80 66.0379 2.2213

75 118.5528 2.2129 0.85 82.8047 2.2225

100 148.3543 2.2182 0.90 127.5102 2.2293

250 368.6457 2.2249 0.96 191.0071 2.2259

500 730.7741 2.2233 0.97 262.7654 2.2234

1000 1.4634 ×103 2.2244 0.98 398.1672 2.2263

Tradition designs

φbest(dblock) 2.2360

φbest(dmseq) 1.1248

Table 4.16: Robustness of the designs obtained by the proposed algorithm with misspecified

Hurst parameter for detection When τISI 6= τTR.

Q 1 2 3

d∗(H = ·) 0.9 0.75 0.6 0.9 0.75 0.6 0.9 0.75 0.6

φ(0.9) 1 0.996 0.989 1 1 0.973 1 0.997 0.981

φ(0.75) 1.002 1 0.999 0.999 1 0.992 0.998 1 0.992

φ(0.6) 1 1 1 0.998 1.008 1 1.002 1.004 1
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criterion. The results show that our algorithm requires significantly less time to obtain op-

timal designs with similar design efficiencies, compared with Saleh et al. (2017)’s algorithm.

The optimal designs obtained by the new algorithm always perform better than tradition

designs. Furthermore, our algorithm is superior to Saleh et al. (2017)’s algorithm as the

design matrix becomes larger in terms of computing time. For comparison purposes, we

choose the D-optimality criterion as in Saleh et al. (2017), however, our algorithm can be

further extended to other optimality criteria, such as A-optimality criterion. In addition,

to check the robustness to the Hurst parameter of our algorithm, we run the simulations

with different values of the Hurst parameter, with the obtained optimal designs, we then

evaluate them under ‘true’ Hurst parameters. We observe that our algorithm is robust to

the Hurst parameter. That is, if the experimenter use a wrong Hurst parameter for error

term in the model to obtain an optimal design, it will still perform well with a ‘true’ Hurst

parameter.
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Büchel, C. and K. Friston, “Modulation of connectivity in visual pathways by attention:
cortical interactions evaluated with structural equation modelling and fmri.”, Cerebral
cortex 7, 8, 768–778 (1997).

Bullmore, E., M. Brammer, S. C. Williams, S. Rabe-Hesketh, N. Janot, A. David, J. Mellers,
R. Howard and P. Sham, “Statistical methods of estimation and inference for functional
MR image analysis”, Magnetic Resonance in Medicine 35, 2, 261–277 (1996).
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