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ABSTRACT  

   

Contamination of drinking water supplies from oxo-anion pollutants necessitates 

treatment prior to potable use. This dissertation aims to inform and improve light delivery 

(emission spectra, radiant intensity, reactor configuration) in order to enhance the 

photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-

anions in drinking water, and photocatalytic oxidation of two model organic pollutants 

(methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). By varying the photon 

fluence dose, two metrics (contaminant quantum yield (Φ), and electrical energy per order 

(EEO)) were used to assess photocatalytic reactor performance. A detailed literature 

review and experimental results demonstrated how different irradiance sources with 

variable intensity and emission spectra synergistically enhanced contaminant removal by 

a coupled photolytic/photocatalytic reaction mechanism. Cr(VI) was photocatalytically 

reduced on TiO2 and formed Cr(OH)3(s) in a large-scale slurry reactor, but Cr(III) was then 

photolyzed and reformed Cr(VI). UV light also led to photo-aggregation of TiO2 which 

improved its recovery by the ceramic membrane within the reactor. For nitrate reduction, 

light source emission spectra and fluence dose delineate the preferred pathways as 

intermediates were reduced via wavelength-dependent mechanisms. HONO was identified 

as a key nitrate reduction intermediate, which was reduced photocatalytically (UV 

wavelengths) and/or readily photolyzed at 365nm, to yield nitrogen gases. Photocatalytic 

nitrate reduction efficiency was higher for discrete wavelength irradiation than 

polychromatic irradiation. Light delivery through aqueous media to the catalyst surface 

limits efficiency of slurry-based photocatalysts because absorption and scattering of light 
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in nanomaterial slurries decreases effective photon transmittance and minimizes photolytic 

reactions. The use of optical fibers coupled to light emitting diodes (OF-LED) with 

immobilized catalyst demonstrated higher performance compared to slurry systems. OF-

LED increased Φ for MB degradation by increasing direct photon delivery to the 

photocatalyst. Design of OF-LED reactors using bundled optical fibers demonstrated 

photocatalytic pCBA removal with high Φ and reduced EEO due to increased surface area 

and catalytic sites compared to single OF/LED couples. This work advances light delivery 

as well as the suspension and attachment of nanoparticles in photocatalytic water treatment 

for selective transformation of oxo-anions and organic compounds to innocuous species. 
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CHAPTER 1 

INTRODUCTION 

Access to high-quality water supplies represents one of the key challenges at the beginning 

of the 21st century. The geospatial context of global water supplies increases the complexity of 

approaching a solution in that both groundwaters and surface waters are threatened (Danielopol, 

Griebler, Gunatilaka, & Notenboom, 2003). Scarcity of freshwater resources has already increased 

the need for high-energy treatment and delivery systems (Postel, 2000). The demand for innovative 

systems to overcome these water quality and quantity challenges is of paramount importance, 

particularly for remediation of widespread drinking water contamination by organics and oxy-

anions.  

Diminishing freshwater water quantity is linked to climate change, while water quality is 

predominantly attributable to anthropogenic inputs, such as those from industrial processes, 

sanitation, and agricultural activities. As such, a variety of potential contaminants challenge 

scientists and engineers in water treatment such as trace organic compounds, bacteria and viruses, 

and inorganic compounds such as oxyanions.  Common among these constituents is their inherent 

toxicity to humans and aquatic ecosystems (Gangolli et al., 1994), widespread geospatial 

distribution (Mandal & Suzuki, 2002), and complexity to achieve satisfactory removal per national 

standards (Fuerhacker, 2009).  

Pesticides, pharmaceuticals, azo-dyes, as well as other endocrine disrupting compounds 

(plasticizers, fire retardants, etc.) represent the class of chemicals denoted by contaminants of 

emerging concern. They are notably recalcitrant and persistent in the environment, and cause 

adverse effects to humans and the environment such as: carcinogenicity, mutagenicity, and 

hormone disruption (Benotti, Trenholm, et al., 2009). Similar effects have been documented from 
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exposure to inorganic compounds such as oxyanions and heavy metals (Sedman et al., 2006). This 

class of compounds includes mercury, arsenic (arsenate), chromium (chromate), halogenated 

compounds (perchlorate, bromate), and nitrogen (nitrate) and phosphorus (phosphate). National 

maximum contaminant level standards for both inorganic and organic compounds vary widely 

based on known or suspected toxicity, ranging in scale of parts per trillion (e.g., polychlorinated 

biphenyls, PCBs) to parts per million (e.g., NO3
-) (Electronic Code of Federal Regulations, 2017).  

Emerging and persistent contaminants are not mitigated by conventional drinking water 

treatment processes (Michael R. Burkart & Kolpin, 1993; Kolpin et al., 2002; Stackelberg et al., 

2004), yielding increased demand for novel treatment processes. These shortcomings are in part 

due to the low concentration of these contaminants compared to more abundant aqueous 

constituents. In conventional treatment processes, high-liquid phase partitioning and low 

biodegradability are important factors that hinder removal of these contaminants (Radjenovic, 

Petrovic, & Barceló, 2007). Certain chemicals (1) may pass untreated (Benotti, Trenholm, et al., 

2009) or (2) be transformed into more toxic metabolites (Kolkman, Martijn, Vughs, Baken, & Van 

Wezel, 2015).  Accordingly, new technologies should transform contaminants to their least toxic 

state in addition to physically removing them from the aqueous phase.   

Emerging technologies that induce transformative chemical reactions in situ for the 

oxidation or reduction of target compounds have risen to prominence in the past 20 years.  These 

technologies include: catalysis, photocatalysis, and photoelectrocatalysis. Through these 

processes, an initial compound is chemically transformed into partially- or terminally-

reduced/oxidized products. Of these technologies, photocatalysis emerges as a promising 

alternative to conventional treatment processes due to: its capacity for the mineralization of organic 

compounds (Nan, Jin, Chow, & Saint, 2010), potency for disinfection (Dalrymple, Stefanakos, 
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Trotz, & Goswami, 2010), and simultaneous potential for reduction of inorganic oxyanions and 

heavy metals (Sharma, Petrusevski, & Amy, 2008).  Further, photocatalysis is notable for its low 

chemical consumption (Barakat & Kumar, 2016).  

Research on photocatalysis began with the discovery of photocatalytic water splitting by 

Fujishima and Honda in 1972 (Fujishima & Honda, 1972). Since that time, there has been thorough 

research regarding photocatalytic materials (Fujishima, Rao, & Tryk, 2000; Linsebigler et al., 

1995) and environmental applications of the technology (Akpan & Hameed, 2009; Pirkanniemi & 

Sillanpää, 2002; Teh & Mohamed, 2011). Little of the published research has focused 

methodologies of implementation, namely engineered reactor design (Cassano, Martin, J., & 

Alfano, 1995; Shan, Ghazi, & Rashid, 2010; Wenderich & Mul, 2016).  Whereas photocatalysis 

has been widely studied from a scientific bench scale and materials point of view, the greatest 

barrier to engineered implementation is the lack of understanding of systemization and light 

delivery.  Whereas photocatalytic systems have been proven highly effective for remediation of a 

range of contaminants, the applied conditions are typically use of a model water and <1L total 

aqueous volume (Ibhadon & Fitzpatrick, 2013; Pirkanniemi & Sillanpää, 2002). While this is an 

excellent approach for determining photocatalytic mechanisms, complications of scale up are 

remain predominantly unexplored. 

Current barriers to the implementation of photocatalytic technologies are the lack of full- 

or pilot- scale investigations to understand operational difficulties and improve engineered reactor 

design (Stancl, Hristovski, & Westerhoff, 2015a). As a result, issues such as the reutilization of 

the catalyst and required technology to achieve regeneration are of yet unknown. Management of 

competing ions and catalyst fouling due to other aqueous constituents remain hurdles for 

implementation (T. Yang, Doudrick, & Westerhoff, 2013; F. Zhang et al., 2005). Determination 
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of a safe and effective separation technology is another barrier to implementation which results 

from the predominant use of nanoparticle-based slurry systems in the photocatalytic literature (Qu, 

Alvarez, & Li, 2013). To date, immobilization technologies have not been demonstrated to surpass 

slurry systems in kinetic performance (Shan et al., 2010; van Grieken, Marugan, Sordo, Martinez, 

& Pablos, 2009). Achieving higher performance in an immobilized catalyst reactor could 

significantly diminish operational complexity for photocatalytic systems.   

The delivery of light, both with regard to transmittance into the system and to activate the 

photocatalyst, represents another challenge to photocatalytic system design. This is a critical area 

because the delivery of light determines (1) the kinetic performance and (2) the by-products of the 

photocatalytic reaction. These two outcomes are based on the successful transmittance of light to 

the photocatalyst and excitation of electrons to react or produce radical species, and the 

photoactivity of certain aqueous constituents to result in photolysis in situ.  This dissertation aims 

to provide insights into the barriers to implementation of full scale photocatalysis with a particular 

focus on light delivery systems and investigation of a novel reactor scheme to enhance light 

delivery.  
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Dissertation Objectives 

Chapter 2 includes a comprehensive literature review which provided insights into current gaps 

of scientific and engineering expertise that are addressed in this dissertation. Based on previously 

published work, light delivery was identified as the critical element to facilitating innocuous 

products selectivity and high reaction kinetics.  The overarching research goal of this dissertation 

was to:  

Provide insight into the influence of light and catalyst delivery (emission spectra, radiant 

intensity, reactor configuration) to enable and enhance the photocatalytic reduction of two 

common oxo-anions (Cr(VI) and NO3
-) in drinking water. 

In an effort to address the overall goal above, the following specific research objectives guided the 

dissertation study:  

1. Quantify reduction and removal of hexavalent chromium via pilot-scale photocatalytic 

reactor under UV-C irradiation in real water matrix and identify engineering deficiencies 

to improve reactor use and design; 

2. Review literature on the photocatalytic and photolytic reduction of nitrate and outline 

mechanistic pathways for the selective reduction to nitrogen gases; 

3. Compare irradiation wavelengths and light sources  for the photocatalytic reduction of 

nitrate and nitrite to nitrogen gases and determine specific wavelengths of interest for N-

gas pathway selectivity; 

4. Develop an immobilized catalyst, in-situ light delivery system for photocatalytic oxidation 

of methylene blue and demonstrate efficacy compared to slurry photocatalysis; 

5. Demonstrate efficacy and determine efficiency of optical fiber/light-emitting diode flow 

through reactor for aqueous contaminant treatment. 
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Dissertation Organization  

The research completed to accomplish each objective is presented in the following chapters 

of this dissertation. Table 1.1 provides an outline for each objective and its corresponding chapter 

along with relevant citation information. At present, Chapters 3 and 4 has been published in a peer-

reviewed journal, and Chapters 5-7 are in preparation for submission. Chapter 8 provides a 

synthesis of all completed objectives in addition to synthesizing the conclusions from each chapter 

into a holistic summary.  Chapter 9 provides brief conclusions and recommendations for future 

research work based on the discoveries of this dissertation. 
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Table 1-1. Objectives and Organization of Dissertation Chapters 

Objective 1 

Quantify reduction and removal of hexavalent chromium via pilot-scale photocatalytic reactor 

under UV-C irradiation in real water matrix and identify engineering deficiencies to improve 

reactor use and design 

Dissertation Chapter 3 

Published: Stancl, H.O., Hristovski, K., Westerhoff, P., 2015. Hexavalent Chromium 

Removal Using UV-TiO2/Ceramic Membrane Reactor. Environmental Engineering 

Science 32(8): 676-683. doi:10.1089/ees.2014.0507. 

Objective 2 

Review literature on the photocatalytic and photolytic reduction of nitrate and outline 

mechanistic pathways for the selective reduction to nitrogen gases 

Dissertation Chapter 4 

Published: Tugaoen, H.O., Garcia-Segura, S. Hristovski, K., Westerhoff, P., 2017. 

Challenges in photocatalytic reduction of nitrate as a water treatment technology. 

Science of the Total Environment 599-600: 1524-1551.  

doi: 10.1016/j.scitotenv.2017.04.238 

Objective 3 

Compare irradiation sources for the photocatalytic of nitrate and nitrite to nitrogen gases and 

determine specific wavelengths of interest for N-gas pathway selectivity 

Dissertation Chapter 5 

In preparation: Tugaoen, H.O., Herckes, P., Hristovski, K., Westerhoff, P., 2017. 

Ultraviolet wavelengths influence kinetics and selectivity for N-gases during TiO2 

photocatalytic reduction of nitrate.  

Objective 4 

Develop an immobilized catalyst, in-situ light delivery system for photocatalytic oxidation of 

methylene blue and demonstrate efficacy compared to slurry photocatalysis 

Dissertation Chapter 6 

In preparation: Ling, L.,* Tugaoen, H.O.,* Brame, J., Sinha, S., Li, C., Schoepf, J., 

Hristovski, K., Kim, J., Shang, C., Westerhoff, P. Coupling light emitting diodes with 

photocatalyst-coated optical fibers improves quantum efficiency of pollutant oxidation. 

Objective 5 

Demonstrate efficacy and determine efficiency of optical fiber/light-emitting diode flow through 

reactor for aqueous contaminant treatment 

Dissertation Chapter 7 

In preparation: Tugaoen, H.O., Garcia-Segura, S., Hristovski, K., Westerhoff, P., 2017. 

Photocatalytic oxidation of pCBA in optical fiber/light emitting diode flow-through 

reactor: optimization of reactor conditions 
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CHAPTER 2 

BACKGROUND 

Defining the Critical Need 

Prevalence and Impact of Oxyanions in Drinking Water 

Nitrate (NO3
-) and hexavalent chromium (CrO4

2-) are two of the most ubiquitous and 

concerning oxyanions found in groundwater supplies. Both contaminants occur naturally, but also 

are produced at large scale commercially for agricultural and industrial purposes, respectively. 

NO3
- and CrO4

2- are very stable oxidized species, but may be reduced to innocuous products: N2 

and Cr(OH)3.  Predominant partitioning of these constituents into groundwater purports a direct 

risk to human consumption. Over 14.6 billion gallons of groundwater are utilized for public-supply 

purposes for drinking/household waters and another 3.7 billion gallons are withdrawn for domestic 

supply (individual households off-municipal grids) (Perlman, 2014). Further, redox conditions in 

groundwater can increase constituent transport and toxicity by transforming contaminants (e.g., Cr 

reduction or oxidation or denitrification) (Blowes, Ptacek, & Jambor, 1997; Puckett, Tesoriero, & 

Dubrovsky, 2011). Nutrient transport (Tesoriero, Liebscher, & Cox, 2000) and migration of 

volatile organic compounds and trace metals have all been linked to redox conditions in 

groundwater (Tesoriero, Terziotti, & Abrams, 2015), which vary at national scale (McMahon et 

al., 2008; McMahon & Chapelle, 2008). Adequate treatment technologies are available at larger 

municipal scale, but small systems are particularly impacted by these contaminants and often are 

limited in treatment options due to operational intensity, cost, and accessibility.  

Chromium in drinking water has been regulated most stringently by the state of California, 

which in 2014 passed a ruling to limit Cr(VI) in water to 10μg/L (California EPA, 2014) and 
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recommended a public health goal of 0.02μg/L.  The United States Environmental Protection 

Agency (USEPA) maximum contaminant ruling focuses on total chromium (Cr(VI)+Cr(III)), and 

currently is under review but presently remains at 100μg/L (California EPA, 2014). A 2010 study 

from the US Environmental Working Group found Cr(VI) concentrations in drinking waters 

frequently exceed 1μg/L, with less frequent occurrence of >10μg/L (Sutton, 2010). USEPA 

monitoring found one public water system in excess of the national 100μg/L standard in 2013-

2014 (United States Environmental Protection Agency, 2014). At sufficient concentrations, both 

trivalent and hexavalent chromium are linked to adverse health effects, particularly increased: 

cancer risk, gastrointestinal disruption, accumulation and toxicity to vital organs, damage to DNA, 

gene mutation (Beaumont et al., 2008; Costa, 1997; Dayan & Paine, 2001; Sedman et al., 2006).  

Nitrate in drinking water is regulated nationally by the USEPA to an MCL of 10mg/L. A 

2010 study of nitrate in groundwater in the United States indicated 24 million people utilize a 

supply above the 10mg-N/L MCL (Burow, Nolan, Rupert, & Dubrovsky, 2010). The predominant 

reason for regulation is methanoglobonemia, or blue baby syndrome, which can cause suffocation 

and death in infants and fetuses. Nitrogen is relatively stable in other aqueous forms, namely nitrite 

and ammonium. Nitrite is regulated at 1mg/L due to its high conversion to carcinogenic 

nitrosamines in the body (United States Environmental Protection Agency, 1996). Ammonium 

remains unregulated in drinking water supply, but causes disruption by promoting biological 

growth and exerting an oxygen demand and is thus an undesirable endpoint. Nitrogen gases are 

stable reductive endpoints of nitrate, and may be sparged due to their low solubility in the aqueous 

phase. Nitrogen gases remain the priority product of nitrate reduction as they are innocuous and 

reduce total fixed nitrogen. 
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Anthropogenic loadings of nitrogen into the environment are currently 150Tg-N/year, with 

15Tg-N/year percolating into groundwater (Schlesinger, 2009). Figures of nitrate input into 

groundwater for North America are estimated at 3Tg-N/year, indicating that North America 

contributes 20% of the global N-percolation (Schlesinger, 2009).  Groundwater nitrates are highest 

in regions of intensive agriculture (Foley et al., 2005; Gruber & Galloway, 2008), leaving less 

urbanized systems with the highest burden of pollutant removal. Negative consequences arise from 

increased nitrogen levels in aquatic systems: algal blooms, anoxic conditions (e.g., Dead Zone in 

Gulf), and increased nitrate concentrations (Bianchi et al., 2010; Howarth et al., 2012).  The 

National Academy of Engineering has cited management of the nitrogen cycle as a Grand 

Challenge for the 21st century, requiring immediate attention and engineering innovation. In 2011, 

Compton et al. estimated the loss of ecosystem services in the US attributable to increasing 

nitrogen loadings without renumeration: clean air, biodiversity, recreation and clean water to cost 

approximately $50 per kg of N (Compton et al., 2011).  

Current Treatment Technologies 

Remediation of oxyanion contaminants has largely been approached via traditional 

physical-chemical treatment processes, with the exception of biological treatment for 

denitrification. Best available treatment technologies (BAT) are promoted by USEPA, and largely 

represent scalable, high-removal processes for oxyanions. Table 2-1 and Table 2-2 articulate the 

recommended BATs for Cr(VI) and NO3
-, respectively. 

Though high removal capacity is a key reason for the use of these best available treatment 

technologies, the disadvantages make some of these processes prohibitive for use in small systems. 

All of the above listed physical-chemical treatment processes are non-destructive in nature and 

nominally transfer the contaminant from the aqueous phase to the solid or gaseous phase. 
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Adsorptive processes, though highly efficient, may also be non-regenerable in certain cases due to 

strong sorption affinity with the contaminant. If regenerable, a highly concentrated, toxic brine is 

produced during regeneration, which must be remediated on site or removed for off-site disposal 

or treatment. Hence, investment in renewable/regenerable transformative technologies for nitrate 

and Cr(VI) reduction and removal from the aqueous phase is a priority. Particular interest is in 

technologies with complete reduction to innocuous products, i.e., Cr(OH)3 or N2. Current 

technologies that are able to achieve reductive decontamination of oxyanions include: biological 

denitrification, electrolysis, hydrogen-driven bimetallic catalysis, and photocatalysis. A number of 

key metrics indicate photocatalysis is the best option for reductive decontamination in drinking 

water: catalyst safety and economic/environmental cost, energy input, and residuals post-

treatment.  

 

 

 

Table 2-1. Best Available Treatment Technologies for Cr(VI) (adapted from (Sharma et al., 2008)) 

Treatment Technology Example Advantages Disadvantages 

Coagulation-

Precipitation-Filtration 

Reductive Fe(II) 

Sulfate 

Alum and Fe(III) 

Coag. 

High capacity, solid 

partitioning  

Multiple stage process 

High volume of sludge 

Adsorption to 

Different Media 

Activated carbon 

Iron-oxide coated 

adsorbents 

High capacity, solid 

partitioning 

pH adjustment 

required 

Limited capacity 

Ion Exchange Strong basic anion 

(Cr(VI)) 

Cation (Cr(III)) 

High capacity, solid 

partitioning 

Disposal, regeneration 

and fouling issues 

Impacted by 

competing ions 

Membrane 

Technology 

Reverse Osmosis Physical removal via 

size exclusion 

High initial investment 

Disposal and fouling 
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Table 2-2. Best Available Treatment Technologies for NO3
- (adapted from (Archna, Sharma, & 

Sobti, 2012)) 

Treatment 

Technology 

Example Advantages Disadvantages 

Chemical 

Denitrification 

Iron hydroxide and 

copper catalyst at 

basic pH  

Produced ammonia may 

be sparged via air 

stripping 

Multiple stage process; 

high cost 

High volume of sludge 

Reverse 

Osmosis 

Membrane size 

exclusion from 300-

1500psi 

High removal of NO3
- Fouling, deterioration, 

brine production 

High life cycle cost 

Ion Exchange Strong basic anion  

 

High capacity, solid 

partitioning, 

significantly lower cost 

than RO (purchase/use) 

Disposal, regeneration and 

fouling issues 

Impacted by competing 

ions (SO4
2-) 

Electrodialysis Direct current induces 

ion transfer across 

membrane 

Membrane can be 

designed for NO3
- 

selectivity 

Liquid-liquid partitioning, 

ongoing flux reversal 

 

Photocatalysis for Reductive Transformation of Oxyanions in Drinking Water 

Fundamentals of Photocatalysis 

Surface Photochemistry 

Photocatalysis is a light driven process that provides photons to a semiconductor to 

promote reactions on the surface. The semiconductor photocatalyst is most often a metal oxide, 

e.g., TiO2, and has a particular bandgap energy, which is equal to the energy required to excite an 

electron from the valence band to the conduction band. The majority of TiO2-based catalysts have 

a bandgap greater than 3.2 eV, indicating that excitation by ultraviolet light is required. Adding 

noble metals or other semiconductors to create a composite may lower the bandgap energy which 

allows for a wider absorbance spectrum. For example, when silver is coated onto TiO2 
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nanoparticles, a Schottky barrier is formed at the Ag-TiO2 interface, which diminishes the potential 

energy barrier for electron transport. Additionally, silver can serve as an electron trap to prolong 

electron-hole recombination, one of the predominant sources of inefficiency in photocatalysis.  

Successful photocatalytic systems should consider the nature of the contaminant and how 

it will interact with the light source and catalyst. Cr(VI), for example, is easily reduced 

photocatalytically to Cr(III), but adsorbs as a precipitate to the catalyst, causing fouling that must 

be regenerated for ongoing use. Alternatively, nitrate is more challenging to reduce 

photocatalytically, but is a non-fouling contaminant in that by-products are either highly soluble 

(aqueous ammonium) or sparingly soluble which evolve as gases. Thus, the approach to designing 

systems is to some extent contaminant specific, and requires attention to contaminant absorbance 

spectra and quantum yields for photolytic activity as well as catalyst bandgap for photocatalysis. 

Surface charge, which is discussed in detail to follow, is a critical factor in the attraction of the 

contaminant to the metal oxide surface. Whereas at low pH a TiO2 catalyst will have a positive 

charge and attract anionic contaminants, in alkaline conditions a neutral/negative surface charge 

will cause less efficient removal of contaminants. Adding acid is often undesirable, but can 

dramatically increase reactivity and adsorption of anions to the catalyst surface.  

Delivery of light and choice of catalyst are critical to successful implementation of 

photocatalysis (Figure 2-1). Choice of irradiation source impacts photolysis, behavior of hole 

scavenger, and ultimately impacts by-product selectivity. For example, nitrate and nitrite undergo 

photolysis reactions under UV irradiation. In the case of nitrate, the quantum yield is 20-40x lower 

than that of other nitrogenous intermediates (Mack & Bolton, 1999b). Therefore, the primary 

reaction of nitrate to nitrate is predominantly driven by photocatalysis. Alternatively, further 

reduction reactions may be significantly enhanced by introduction of particular discrete 



14 

wavelengths to illicit a photolytic response. Further, the sacrificial electron donor (hole scavenger) 

may also undergo photolysis, which is undesirable in many systems due to the loss of catalyst hole-

scavenger recombination management. However, for nitrate reduction, the CO2
•- produced by the 

photolytic and photocatalytic oxidation of HCOOH is essential for catalyzing reduction to nitrite. 

Thus, carefully selecting a light source to accommodate for these alternative outcomes is critical 

to engineer specific reaction pathways. Ultimately, this allows for design of selectivity outcomes, 

with highest priority to innocuous products, e.g., N2, in NO3
- reduction.  

 A final category of focus for photocatalysis is on the life cycle properties of the catalyst: 

safety, regenerability, potential for capture or immobilization. Desired sustainability outcomes for 

the catalyst include creating safe-by-design systems for use and disposal. Again, Cr(VI) via a 

reductive/sorption process, may be reduced to less-toxic Cr(III), but remains on the catalyst 

surface, which requires regeneration to recycle the catalyst. Thus, understanding the complexation 

of foulants to the catalyst can guide optimal regeneration options. Different scenarios for 

capture/immobilization have been explored, including fixed film processes and use of ceramic 

membranes to separate catalysts. Further discussion of these topics will be explored herein. 
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Figure 2-1. Critical juncture of photocatalysis: light source irradiation wavelength and catalyst 

properties.  

 

Bandgap Influence on Photon Absorption 

Absorption of photons with greater energy than the bandgap of a photocatalyst generates 

conduction band electrons and subsequently, valence band holes. This ‘bandgap energy’ is the 

threshold of energy needed for the semiconductor to undergo redox upon absorption of a photon.  

Influent photons must meet this minimum threshold of energy in order to activate the 

photocatalyst, whereas other photonic wavelengths may be absorbed but with insufficient energy 

to promote electron-hole separation.  An example of successful activation for a titanium dioxide 

catalyst is as follows:  

𝑇𝑖𝑂2 + ℎ𝜈 → 𝑇𝑖𝑂2(𝑒𝑐𝑏
− + ℎ𝑣𝑏

+ )   Equation 1 
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where e-
cb represents the electron promoted to the conduction band and h+

vb represents the hole 

that theoretically remains in the valence band. Holes may also be mobile depending on the influent 

energy, structure of the lattice, and defect occurrence.  

 In an ideal semiconductor, there are no energy states within the band gap. A ‘fundamental 

absorption’ occurs if the light absorption is due only to the transfer of e- from the valence band to 

the conduction band (Seeger, 2002) and not resultant in lattice vibrations. Because electrons can 

only have discrete energy values, transitions between energy levels can either be spontaneous or 

instigated by photons (Schiavello, 1997).  For TiO2,  the band gap is well studied, and consensus 

values are 3.03 eV for rutile and 3.20 eV for anatase (Scanlon et al., 2013). Thus, for a titanium 

dioxide nanoparticle, a maximum photonic wavelength (minimum energy) is required for 

excitation:  

𝐸 =
ℎ𝑐

𝜆
       Equation 2 

𝜆𝐵𝐺−𝑇𝑖𝑂2 = 3.88𝑥10
−7𝑚 = 388𝑛𝑚    Equation 3 

where h (Planck’s constant) = 6.62606957 × 10-34 m2 kg / s, 1 eV = 1.6×10−19 joules, c (speed of 

light) = 2.998x108 m/s, and a joule is equal to 1 kgm2/s2.  From this relationship of bandgap, or the 

energy that must be overcome to excite an electron into the conduction band of TiO2, and 

wavelength, it is shown that a maximum wavelength of 388nm can activate TiO2 electrons.  Due 

to the inverse relationship of energy and wavelength, lower wavelength light must be utilized to 

have sufficient energy to excite TiO2 electrons photocatalytically. 

However, impurities within the crystal lattice may introduce allowable levels for electrons 

that are within the band gap. Influent photons below the bandgap threshold energy cause 

perturbations within the vibrational modes of the crystal lattice or absorption within impurities in 

the lattice (Elliot & Gibson, 1974).  This is also impacted electronically in the Fermi energy.  The 
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Fermi energy, EF, is the energy of the highest occupied electronic state at zero kelvin.  At 0K, the 

hypothetical Fermi energy represents the boundary of filled and unfilled electron energy states, 

where all states below EF are full, and all electronic states above EF are empty.  Upon excitation, 

electrons move to higher energy states thus creating a new and ephemeral excited electron 

configuration.  In the bulk of a perfect semiconductor, no electrons exist at the Fermi energy level 

because there are no electronic states available, i.e., the density of states is zero at the Fermi level. 

However, in a non-ideal semiconductor, structural defects allow for states to exist in the bandgap 

above zero kelvin.  

Resultant excitation depends on energy of the light, inclusive of frequency, wavenumber 

or wavelength of the photon.  If the final and initial energy state do not fulfill the resonance 

condition, photon absorption will not occur.  The absorption properties depend not only on the 

chemical identity of the substance and light wavelength, but also on the light’s angle of incidence 

and polarization.  Semiconductors require visible (for narrow bandgap) or ultraviolet irradiation in 

order to absorb photons due to the band gap energy requirement.  Infrared light cannot be absorbed 

because the energy is below the bandgap energy.  If the photon energy is sufficient to excite 

electrons from filled valence states to the vacant conduction states, electronic excitation occurs as 

a result of light absorption. The minimum energy for these transitions to produce free electrons is 

a quality intrinsic to materials and varies; the bandgap energy of TiO2 is 3.2eV. Bound electron-

hole pairs, called excitons, exist below the threshold of the conduction band and also participate 

in recombination reactions. 

The existence of a bandgap in a semiconductor has a number of important implications. 

Outright electrical conductivity is low due to the energy barrier of the bandgap to drive electrons 

in the conduction band. Additionally, electron-hole pair formation is limited by the input energy 
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required to overcome the gap between the valence and conduction bands. These properties of 

semiconductors necessitate an addition of energy in order to be meaningfully employed for 

contaminant reduction.  

 

Photocatalytic Implications 

 Predicting the viability of photocatalytic processes can, at least preliminarily, be assessed 

utilizing knowledge of the physics and chemistry of: lamps, semiconductors, and chemical 

contaminants of concern.  The proper pairing of output wavelength and semiconductor bandgap is 

essential to photocatalytic functionality, for if excitation does not occur, the only component of 

change would likely be adsorption due based on the pH, ionic strength, and surface chemistry of 

the semiconductor (see Appendix A). However, if the bandgap energy can be met by irradiation, 

both electrons and holes become available for reaction with adsorbed contaminants. The proximity 

of contaminants relates to the zeta potential of the surface, either creating a repulsive or attractive 

force for the chemical of concern.  Additionally, with changing pH, the surface charge changes, 

inducing different preferences for surface speciation. Without sufficient surface reactivity and 

electron-hole pair evolution, recombination will dominate, resulting in loss of transformation 

productivity on the semiconductor surface.  However, if electrons (and holes) can be trapped at 

surface sites, the potential for reaction increases and oxidation-reduction reactions will occur.  

Thus, the solid-liquid interface plays a significant role in the success of photocatalytic processes. 

These theoretical predictions can be verified through experimental results to better understand the 

mechanisms, pathways, and activities of contaminants with semiconductors in an aqueous 

environment.  
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Photocatalytic Reduction of Oxyanions 

Photocatalysis of Hexavalent Chromium, CrO4
2- 

Hexavalent chromium is an oxyanion that adsorbs poorly to most metal oxides at neutral 

pH ranges (pH=7 ±1) because of the repelling forces generated by the negatively charged surface 

of the metal oxide and the anionic chromate/dichromate forms. Ion-exchange technologies have 

been able to overcome these obstacles and adsorb Cr(VI) (Sharma et al., 2008), yet they generate 

brines containing high concentrations of hexavalent chromium which require secondary 

remediation. Other technologies remain uneconomical or cannot remove sufficient hexavalent 

chromium to achieve anticipated regulatory limits. In contrast, water treatment technologies based 

on photocatalytic reduction processes are able to overcome these challenges by reducing 

hexavalent chromium to a trivalent form, reversing the charge on the chromium species, and 

inducing favorable sorption to metal oxide surfaces.  

A number of studies have demonstrated that uniquely synthesized and modified 

semiconductor ultraviolet and visible (UV/VIS) light active photocatalysts are capable of reducing 

and removing hexavalent chromium from water to concentrations anticipated in the upcoming 

regulations (J. Li, Wang, & Du, 2012; Vignesh, Priyanka, Rajarajan, & Suganthi, 2013). However, 

much of the documented work focuses on laboratory scale conditions and commercially 

unavailable photocatalysts, and as such it is not readily translatable to full scale commercial 

applications (W. Liu, Ni, & Yin, 2014). The existing literature suggests that titanium dioxide 

(TiO2) may be among the few inexpensive and commercially available photocatalysts capable of 

addressing the majority of these deficiencies (Kyle Doudrick, Monzón, Mangonon, Hristovski, & 

Westerhoff, 2012; Ghorab, Djellabi, & Messadi, 2013). Although titanium dioxide is 
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conventionally viewed as a photocatalyst suitable for full scale advanced photo-oxidation 

processes because of its hydroxyl radical generation (i.e., oxidation), properly designed 

experimental conditions also allow for successful utilization of its photo-induced reduction 

capabilities. This has been demonstrated in a limited number of a laboratory scale studies (D. Chen 

& K. Ray, 2001; Gimenez, Aguado, & Cervera-March, 1996; Ku & Jung, 2001; Xiaoling Wang, 

Pehkonen, & Ray, 2004; JK Yang, Lee, & Farrokhi, 2012), but the photocatalytic reduction 

properties of TiO2 for removing hexavalent chromium in a full-scale commercially available 

reactor have not been explored. Further review of the literature on hexavalent chromium is 

presented in Chapter 3. 

 

Photocatalysis of Nitrate, NO3
- 

Reduction of nitrate via photocatalysis presents an opportunity to reductively transform 

nitrate to nitrogen gases. Hereby, zero aqueous nitrogen residual (e.g., NH4
+) may be achieved via 

selective reduction processes. A thorough review of the current state of the art for photocatalytic 

nitrate reduction and intermediate/by-product selectivity pathways may be found in Chapter 4. 

To date, many photocatalysts have been employed to investigate the reduction of nitrate to 

innocuous gases.  Exotic catalysts, with noble/precious metals or rare-earth elements have been 

explored for visible light photocatalysis or highly N-gas selective reduction of nitrate (Hamanoi & 

Kudo, 2002; J. Hirayama, Abe, & Kamiya, 2014; Mohamed & Baeissa, 2014; Pelaez et al., 2012; 

Soares, Pereira, Orfao, Faria, & Silva, 2014; Suriyaraj, Benasir Begam, Deepika, Biji, & 

Selvakumar, 2014; R. Wang, Yue, Cong, Gao, & Yang, 2015; Juan Yang, Dai, & Li, 2013), but 

present challenges in synthesis and future possibility of scale-up.  Additional visible light catalysts 
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have been synthesized by doping low weight elements such as carbon, fluorine, nitrogen, and 

sulfur into TiO2 (Soares, Pereira, Orfao, et al., 2014), but problems with replicability of synthesis 

protocols limit implementation.  Critical to the success of photocatalysis is the environmental and 

economic benefit to competition with prominent nitrate removal technologies, which must be 

carefully managed but has yet to be fully realized. 

Photocatalytic reduction of nitrate has been thoroughly explored utilizing titanium based 

catalysts (Bems, Jentoft, & Schlögl, 1999; Kobwittaya & Sirivithayapakorn, 2014; Shand & 

Anderson, 2013a), most commonly employing P25 or P90 and/or a combination of TiO2/Ag.  Most 

recently published studies utilize Ag/TiO2 (K Doudrick, Yang, Hristovski, & Westerhoff, 2013; 

Gekko, Hashimoto, & Kominami, 2012; Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 

2005; Ren, Jia, Zou, Wu, & Han, 2015; Sowmya & Meenakshi, 2015; D. Sun et al., 2016), which 

has been shown to remove up to 95% NO3
- (100mg-N/L) with  90% selectivity to N-gases (D. Sun 

et al., 2016). Higher activity is shown with Ag-coating or doping compared to neat-TiO2 due to 

the electron capture and hindered electron-hole recombination resultant from adding the silver to 

form a Schottky Barrier (F. Gao, Yang, & Wang, 2015; Grabowska et al., 2013; Kedziora, Strek, 

Kepinski, Bugla-Ploskonska, & Doroszkiewicz, 2012; Ko, 2014; Liga, Bryant, Colvin, & Li, 2011; 

Meng, Lu, Sun, & Lü, 2010; Mogal et al., 2014; Pipelzadeh et al., 2009; Seery, George, Floris, & 

Pillai, 2007; Sobana, Muruganadham, & Swaminathan, 2006; Suwanchawalit, Wongnawa, 

Sriprang, & Meanha, 2012; Vamathevan, Amal, Beydoun, Low, & McEvoy, 2002; Vereb et al., 

2012; F. Zhang et al., 2007). Fairly consistent in the literature since 2005 is the use of formic acid 

as the sacrificial electron donor, at concentrations ranging from 40mM to 200mM (K Doudrick et 

al., 2013; Kyle Doudrick et al., 2012; Ren et al., 2015; Sá, Agüera, Gross, & Anderson, 2009; D. 

Sun et al., 2016; F. Zhang et al., 2005). Another point of consensus is the 100mg-N/L starting 
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nitrate concentration (K Doudrick et al., 2013; Kyle Doudrick et al., 2012; Wenliang Gao et al., 

2004; R. Jin et al., 2004; Kato & Kudo, 2002; Ren et al., 2015; Sá et al., 2009; Sowmya & 

Meenakshi, 2015; D. Sun et al., 2016; F. Zhang et al., 2005), which is justified by authors to get 

an effective determination of reduction kinetics, particularly important for experiments using high-

wattage irradiation sources.   

In contrast, there is little consistency in the published literature with regard to facilitating 

selectivity outcomes via irradiation source.  The irradiation sources utilized include: xenon lamp, 

medium pressure lamp(s), and high pressure mercury lamp; these lamps are of widely different 

input power, and thus highly vary in intensity and light delivery.  With minimal information 

provided by many authors as to the photon flux of the lamp or dose required for the published 

nitrate removal, comparison between published research is incredibly challenging. The highest 

removal (>98%) and selectivity (100%) for nitrate reduction to nitrogen gases was achieved by 

Zhang et al.(F. Zhang et al., 2005), utilizing a P25/Ag catalyst, 0.04M HCOOH, 125W high-

pressure mercury lamp.   The spectrum for a high pressure mercury lamp primarily emits at 365nm, 

but yields high emission at lower UV wavelengths (302.3nm, 313.2nm) and the visible spectrum 

(435.8nm, 545.1nm) (Heraeus, 2016).   Both xenon and mercury lamp sources in combination with 

P25/Ag have achieved >90% removal   and >90% conversion to N-gases (Sowmya & Meenakshi, 

2015; D. Sun et al., 2016).  Though medium pressure Hg lamp yields high kinetics, the conversion 

of nitrate to nitrogen gases is <90% (K Doudrick et al., 2013). Herein, wavelength may play a 

factor in the determination of nitrate reduction kinetics and selectivity to nitrogen gases, as under 

identical conditions, varying results were obtained (discussed more in-depth in Chapter 5). 
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  Choice of Hole Scavenger (Electron Donor) 

As is required for biological treatment (Fowdar, Hatt, Breen, Cook, & Deletic, 2015), 

photocatalytic reduction of nitrate is significantly enhanced by the addition of an aqueous 

sacrificial electron donor, commonly an acid or acid salt that can simultaneously lower the pH (K 

Doudrick et al., 2013). This compound is oxidized at the metal oxide catalyst surface, to deliver 

electrons to propagate valence-conduction band transitions for photocatalytic reduction at the 

surface.  In order to have satisfactory reduction, the complementary oxidative process must be well 

managed to provide electrons on appropriate timescales such that recombination is minimal.  

Formic acid has been identified as the most effective hole scavenger for nitrate reduction 

(F. Zhang et al., 2005), and is commonly investigated for its degradation properties and radical 

production (Aristova, Leitner, & Piskarev, 2002; Bianchini, Forte, Musumarra, Pinzino, & Sergi, 

1997; Cao, Berski, Latajka, Räsänen, & Khriachtchev, 2014; D. H. Kim & Anderson, 1996; 

Mariani, Brandi, Cassano, & Zalazar, 2013). Products of TiO2 photocatalytic reaction with formic 

acid include H2, CO, CO2, and CH4 depending on other aqueous conditions (pH, fluence dose, 

concentration) (Dey, Nair, & Pushpa, 2009). Proximity and adsorption of the hole scavenger to the 

catalyst are the prevailing limitations to effective reduction of nitrate via hindrance of electron-

hole recombination (Q. Chen, Chang, Li, & Yuan, 2008). The Langmuir-Hinshelwood model 

effectively describes the kinetic reduction of formic acid, whereas the Langmuir model describes 

the adsorption to the catalyst (Q. Chen et al., 2008; Turki et al., 2014).  

 

Intermediates and Facilitating N-Reduction Selectivity 

Proposed reactions and intermediates in the reduction of nitrate to aqueous and gaseous 

products are thoroughly discussed in Chapter 4. The primary reaction in nitrate reduction is 
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transformation of nitrate to nitrite, which has been well documented as the first reduction 

intermediate (Lu, Gao, Deng, & Li, 2009; Mack & Bolton, 1999b; Villars, 1927). The 

photocatalytic pathway is discussed as the dominant mechanism for this work; however, photolysis 

of aqueous nitrate does occur at UV-C (𝜆<290) wavelengths (Mark, Korth, Schuchmann, & Von 

Sonntag, 1996), yielding HONO and NO2 (g) in acidic solutions (Barat, Gilles, Hickel, & Sutton, 

1970b; Scharko, Berke, & Ra, 2014). Nitrate has a strong UV absorption peak at 200nm 

(ε=9900cm-1M-1, π-π* transition) and weaker absorption peak at 300nm (ε=7.4cm-1M-1 n-π* 

transition) (Daniels, 1968; Petriconi & Papee, 1968; Wagner, Strehlow, & Busse, 1980). Quantum 

yields for nitrate photolysis have been thoroughly investigated at ultraviolet wavelengths, but are 

minimal (<10-3) in all cases (Warneck & Wurzinger, 1988). Vacuum ultraviolet irradiation 

(λ=195nm) was demonstrated to produce an unknown intermediate that led to the evolution of 

oxygen from nitrate reduction in the aqueous phase (L. Chu & Anastasio, 2003; Gankanda & 

Grassian, 2014a; Lesko et al., 2015; Marcotte et al., 2015; Schuttlefield, Rubasinghege, El-

Maazawi, Bone, & Grassian, 2008; Svoboda & Slavíček, 2014). Alternatively, some work has 

involved the photolysis of nitrate in atmospheric processes under natural irradiation conditions (L. 

Chu & Anastasio, 2003; Gankanda & Grassian, 2014a; Lesko et al., 2015; Marcotte et al., 2015; 

Schuttlefield et al., 2008; Svoboda & Slavíček, 2014) with particular emphasis on the evolution of 

nitrogen dioxide and nitric oxide. Atmospheric studies also attribute HONO as a significant 

intermediate in nitric acid and nitrate photolysis in natural processes (Gankanda & Grassian, 

2014a; Ye, Gao, Zhang, & Zhou, 2016). Nitrate radical species production are generated in 

photolysis and photocatalysis of nitrate and its intermediates. The nitrate radical was first reviewed 

by Wayne et al. (Wayne et al., 1991), as a concern for tropospheric chemistry in that it may form 

nitric acid or other toxic nitrogen compounds such as NOx (Malecki & Malecka, 2006).  
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Nitrite, NO2
-, responds photolytically and photocatalytically in the aqueous environment. 

In acidic conditions, nitrite will be present as nitrous acid (pKa = 3.39), which is less stable (Van 

Cleemput & Baert, 1984) and may be transformed via photolytic and photocatalytic processes in 

ultraviolet light (Zuo & Deng, 1998). With a +3 oxidation state, nitrite can undergo oxidation 

(Shifu & Gengyu, 2002) or reduction in natural (Jacobi et al., 2014) or artificial conditions to form 

dissolved or gas-phase N-species (De Laurentiis et al., 2015; Michael Fischer & Warneck, 1996). 

Quantum yields for nitrite (O C Zafiriou & Bonneau, 1987) and HONO have been determined in 

photolysis experiments with phenol: (NO2
-) ΦOH = 0.069±0.008 at 280nm decreasing to 

0.022±0.004 at 390nm and pH=6; (HNO2) ΦOH =0.35± 0.02 between 280-390nm at pH 2 (Michael 

Fischer & Warneck, 1996). Alternatively HONO has been studied with predominant photocatalytic 

products (TiO2) of NO and NO2 (El Zein, Bedjanian, & Romanias, 2013) under black light 

irradiation. 

Ephemeral aqueous, evolving gaseous, or adsorbed-gaseous species play an important role 

in aqueous nitrogen reduction including NO2, N2O, NO, NH3, and the per-nitrates such as 

peroxynitrite, pernitrite, and peroxonitrite.  Nitric oxide participates in gaseous reaction with NO2
 

to produce N2O3, whereas adsorbed NO+ reacts with water to produce HNO2 (Yeom, Henao, Li, 

Sachtler, & Weitz, 2005). In gaseous interactions, optimal yield of nitrogen gas (N2) occurs with 

an equivalent concentration mixture of NO and NO2 (Yeom et al., 2005). In a comparative study 

of NO and NO2 photocatalysis with titania nanotubes, NO reaction proceeded much faster than 

NO2, and NO2 conversion to NO3
- was the rate limiting step (Nguyen & Bai, 2014). TiO2-adsorbed 

NO was found to primarily produce N2O gas, which can be photo transformed to NO or remain 

adsorbed on the TiO2 surface (Rusu & Yates, 2000). In the presence of carbon monoxide (CO), 

NO reduction on TiO2 yields N2 and N2O (Lisachenko et al., 2007). Alternatively, the presence of 
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surface hydroxyls on the TiO2 can yield NO reaction to NH3 (D.-H. Kim, Lee, Ryu, Kim, & Choi, 

2014), whereas hydroxyl radicals can oxidize NO stepwise to HNO3 (Devahasdin, Fan, Li, & 

Chen, 2003).  Nitrous oxide (N2O) forms readily from numerous nitrogen radical species unstable 

in the aqueous phase and nitrogen containing compounds, e.g., hyponitrous acid (HON-NOH) 

(Trogler, 1999). Products of N2O are predominantly nitrogen gas in photocatalysis over TiO2 (M. 

A. Henderson, Szanyi, & Peden, 2003; Rusu & Yates Jr., 2001).  

A thorough review of photocatalytic products of nitrogen oxides (NOx) has been conducted 

by Lasek et al. (Lasek, Yu, & Wu, 2013) due to many existing applications of photo-asssisted NOx 

removal technology. NOx forms aqueous phase nitrates in oxidative photocatalytic reactions over 

TiO2 (Dalton et al., 2002). Nitrogen dioxide can also be oxidized to nitrous acid under natural 

sunlight in the environment (Gustafsson, Orlov, Griffiths, Cox, & Lambert, 2006; Han, Yang, Wu, 

Yang, & Xue, 2016). Gaseous products of the reaction of NO2 include primarily NO and <1% N2O 

when reacted over heterogeneous metal oxides (Underwood, Miller, & Grassian, 1999). Relative 

humidity (RH) and availability to partition to the aqueous phase can affect the products of NO2 

reactivity over TiO2, wherein higher RH conditions yielded predominantly HONO, whereas low 

RH predominantly produced NO (Bedjanian & El Zein, 2012).  Alternative nitrogenous gas species 

are not desired products of NOx reactivity on TiO2 due to their greenhouse gas potential compared 

to innocuous N2 (Rosseler et al., 2013).  

Removal of ammonia/ammonium from the aqueous phase has also been successful via 

TiO2 photocatalysis (UV-A) with primary products (>99%) N2, NO2
-, and NO3

- (Altomare, 

Chiarello, Costa, Guarino, & Selli, 2012). Initial studies, such as Mozzanega et al., found N2 and 

N2O were primary products of TiO2 photocatalysis, and yield was directly proportional to incident 

light intensity (Mozzanega, Herrmann, & Pichat, 1979). More recently, pH of photocatalytic 
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oxidation of aqueous NH3/NH4
+ was found to proceed more effectively at higher pH due to the 

higher NH3/NH4
+ ratio; NH3 oxidation yields NO2

- and NO3
- more readily than NH4

+ (Zhu, 

Castleberry, Nanny, & Butler, 2005). Under standard atmospheric conditions, air pollution studies 

have found photo-oxidation of NH3 over TiO2 yields HONO prior to N2 evolution (M. A. Kebede, 

Scharko, Appelt, & Raff, 2013) in addition to NO and NO2 (M. a Kebede, Varner, Scharko, Gerber, 

& Raff, 2013). Reactions of ammonia oxidation are primarily catalyzed via OH* generation 

(Huang, Li, Dong, Liu, & Hou, 2008), which occurs readily on the surface of TiO2 in favorable 

pH conditions. 

Other proposed intermediates in nitrate reduction to nitrogen gases or aqueous ammonium 

are highly ephemeral peroxynitrite, pernitrites, and peroxonitrite and their radicals (Mack & 

Bolton, 1999b). These species have been primarily investigated for their photolytic interactions 

with ultraviolet light, via lamp irradiation (Thøgersen et al., 2015), flash photolysis (Barat et al., 

1970b; Kissner, Nauser, Bugnon, Lye, & Koppenol, 1997), or pulse radiolysis (Goldstein, Saha, 

Lymar, & Czapski, 1998; Logager & Sehested, 1993). Details of the reactions of these species may 

be found in the review of Goldstein et al. (Goldstein et al., 1998). The instability of these pernitrite 

species and fast reaction kinetics render them as hindrances to efficiency evidenced by a yellow 

tinge (Plumb & Edwards, 1992), but not overwhelmingly competitive in the primary reduction of 

aqueous nitrate to nitrogen gases or ammonium (M N Hughes & Nicklin, 1968). 

Photocatalytic Oxidation of Model Pollutants 

Methylene Blue as a Probe Chemical for Photoactivity 

Initial photocatalytic study of methylene blue oxidation was utilized for the destructive 

removal of organic constituents from the aqueous phase, focusing on mineralization or 
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transformation via TiO2 slurry or thin film (Kapinus, Viktorova, & Problems, 2010; Kuo & Ho, 

2001; Matthews, 1989; Reeves et al., 1992). From the mid-1990s, TiO2-mediated photocatalysis 

of methylene blue was more thoroughly investigated, yielding replicable quantum yields and 

adsorption characteristics (Lakshmi, Renganathan, & Fujita, 1995). Natural solar (Kuo & Ho, 

2001; Reeves et al., 1992), artificial solar (Reeves et al., 1992), high pressure mercury lamp 

(Lachheb et al., 2002) and blacklight irradiation (Dariani, Esmaeili, Mortezaali, & Dehghanpour, 

2016; Lakshmi et al., 1995; Matthews, 1989) were utilized to photobleach methylene blue. P25 

(Degussa, now Evonik) was utilized in slurry studies (Akpan & Hameed, 2009; Lachheb et al., 

2002), whereas sol-gel (Kwon, Shin, Kim, Choi, & Yoon, 2004) or dip coating (Kuo & Ho, 2001) 

methods were utilized for fixed film studies. 

Methylene blue is a heteropolyaromatic cationic dye, distinguishable from other dye 

structures: anthraquionic, or azoic of which methylene blue had the fastest kinetics a study 

comparing varied structure dyes (Lachheb et al., 2002). High pH is favorable for adsorption onto 

TiO2 due to the cationic structure and attractive negative surface charge above pH 6.2. Thus, in 

neutral waters, a MB-TiO2 adsorption is promising, providing proximity for reaction on the TiO2 

surface upon illumination. Mineralization of methylene blue may be described by the following 

equation (Lachheb et al., 2002): 

C16H18N3S + 25.5O2 →16CO2 + 3NO3
- + SO4

2- + 6H+ +6H2O    Equation 4 

Alternatively, other bleaching mechanisms have been proposed, including a clear unstable 

reduction intermediate leuco-methylene blue which can be reoxidized to methylene blue by 

oxygen (S.-K. Lee & Mills, 2003). This system has been described in the literature as ambiguous 

due to the oxidation/reduction capacity of methylene blue (Mills & Wang, 1999), but remains a 

widely used surrogate organic pollutant (Shan et al., 2010). More recently, methylene blue has 
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been utilized in the investigation of illuminated optical fiber reactivity, both in photolysis and 

photocatalysis (Barton, Matejec, & Matousek, 2016; J. Chu & Zhong, 2012).  

 

Para-Chlorobenzoic Acid (pCBA) as a Model Organic Compound and Hydroxyl 

Radical Probe 

Para-chlorobenzoic acid (ClC6H4COOH, pCBA) has been widely used as a probe 

compound to determine hydroxyl radical production in advanced oxidation processes: catalytic 

ozonation (J. S. Park, Choi, & Cho, 2004), disinfection (Jeong, Kim, & Yoon, 2009; J. Jin, El-Din, 

& Bolton, 2011; D. Park et al., 2016), and heterogeneous photocatalysis (He, Grieser, & 

Ashokkumar, 2011). It demonstrates high oxidation kinetics resultant from contact with hydroxyl 

radicals, with a kOH/pCBA of 5.2x109 M-1s-1 (Elovitz & von Gunten, 1999). This proceeds according 

to the following steady state concentration of •OH (Elovitz & von Gunten, 1999; Zhao, Shang, 

Zhang, Ding, & Yang, 2011): 

d[pCBA]/dt = -kOH/pCBA[•OH]ss[pCBA]  Equation 5 

Degradation of pCBA can be quantified using liquid chromatography coupled with mass 

spectrometry (LC-MS) (Vanderford, Rosario-Ortiz, & Snyder, 2007) or more commonly high 

pressure liquid chromatography (HPLC) with photodiode array (Radeka et al., 2014). Using these 

methods, specific degradation products may be observed as a result of reaction with hydroxyl 

radical (Zona, Solar, Getoff, Sehested, & Holcman, 2010). Reactions of pCBA are influenced by 

co-occuring aqueous constituents that contribute to ionic strength as well as in the presence of 

hydrogen peroxide (Dionysiou, Suidan, Bekou, Baudin, & Laîné, 2000).  

To promote attraction of pCBA to the photocatalyst surface, acidic pH was utilized in most 

works (J. S. Park et al., 2004). A fundamental pulse radiolysis study found efficient dehalogenation 
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pCBA and a 1:1 ratio of •OH production and pCBA degradation in the presence of oxygen (Zona 

et al., 2010). This indicates that pCBA is directly oxidized by •OH to products. Therefore, its use 

as a probe in photocatalytic reactor testing is quite appropriate to assess the production of •OH on 

the photocatalyst surface.  

Light Delivery into Photocatalytic Systems 

Irradiance Sources 

Irradiance sources utilized vary widely throughout the literature. These differences are in 

the chemical nature of how photons are produced as well as other parameters such as the wattage, 

geometry, and produced wavelength spectrum (Appendix A). The chemical nature of photon 

production influences the produced wavelength spectrum, whereas the wattage and geometry are 

more correlated to the intensity of light emitted.  Photon fluence is the representative metric for 

comparison of kinetic data across irradiation sources (J. R. Bolton, Mayor-smith, & Linden, 2015). 

This is because photon fluence is normalized to the number of photons produced on an energy per 

wavelength basis.  Hence, all numerical values of photon fluence correspond to not only the 

irradiance (radiant intensity), but also to the wavelength spectrum produced. Therefore, 

determining the photon fluence or photon fluence dose (time-integrated) is critical to experimental 

analysis (J. R. Bolton et al., 2015) and begins with the ability to measure the emitted light.  

Measurement of Light 

Chemical actinometry has been a validation tool for determining photon flux into a reactor 

configuration and more recently, for photocatalytic activity. Actinometry may be utilized for 

single-source or multi-source irradiation and at broad or discrete wavelengths (J. R. Bolton, Stefan, 
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Shaw, & Lykke, 2011; Y, SO, & MB, 2004).  Potassium ferrioxalate, first suggested by Hatchard 

and Parker in 1956 (Hatchard & Parker, 1956), has been widely used for accurate estimation of 

ultraviolet photonic flux into solutions. A more thorough explanation of the chemistry and 

mathematics required to compile chemical actinometry data is provided in Appendix A. 

In lieu of chemical actinometry, a calibrated radiometer may be utilized to directly measure 

photon flux (J. R. Bolton et al., 2011). Limitations to radiometry are the challenges in determining 

flux into the water at all points due to reactor geometry (J. R. Bolton et al., 2011). However, an 

accurate estimate of the produced light intensity and wavelength spectra are readily obtained with 

the radiometer and can be normalized over the surface area of the light/water interface. Radiometer 

measurements are recorded in μW/cm2, units of radiant intensity, or irradiance. Irradiance has been 

defined as the total radiant power incident onto an infinitesimal portion of a surface of designated 

area (J. R. Bolton, Bircher, Tumas, & Tolman, 2001; JR Bolton & Stefan, 2002). Fluence rate is 

equivalent to irradiance for the cases in this investigation. Preferred units for irradiance are 

mJ/cm2-s for the scale of work in this prospectus, which are equivalent to mW/cm2. Through a 

series of mathematical permutations of irradiance, described in Appendix A, calculation of photon 

fluence and photon fluence dose may be achieved. These two metrics represent a normalized flux 

of photons (energy/light) across a surface area, with the latter being time-integrated. Hereby an 

overall photon dose can be utilized to compare varied irradiance sources.  

Applications of Light Delivery 

Influence of Light in Photolysis and Photocatalysis  

Photolysis and photocatalysis are both critically influenced by the delivery of light into the 

reactor system. As such, research into improved configurations for light delivery into photolytic 
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and photocatalytic systems is necessary. For photolysis, the aqueous constituents of concern are 

directly transformed via the incident irradiation. Alternatively, in photocatalysis, the irradiation 

source promotes electron excitation which then induces redox conditions in the aqueous phase near 

to/on the photocatalyst surface. Thereby, reaction by photolysis is directly dependent on 

irradiation, whereas photocatalytic reactions are catalyst mediated and thereby indirectly 

dependent on the incident wavelengths.  

Photons delivered to aqueous systems may undergo a series of reactions depending on (i) 

incident wavelength, (ii) transmittance, and (iii) photoactivity of aqueous constituents.  According 

to the irradiation spectrum, incident photons of different energies are delivered into the system. 

Particularly for polychromatic irradiation sources, wavelengths ranging from ultraviolet light 

(10nm<λ<400nm), visible light (400nm<λ<700nm), and infrared light (700nm<λ<1mm) may be 

incident to the solution. Alternatively, discrete wavelength irradiation sources such as light 

emitting diodes typically emit photons ±10nm around a specific wavelength, e.g., 365nm.  

Comparing the photon flux between polychromatic and discrete wavelength irradiation sources 

demonstrates significant differences both in incident wavelengths delivered as well as the overall 

energy flux into the aqueous system. Thereby the temporal rate of reaction may be influenced by 

the type of irradiance source utilized.  

Transmittance of light into the system will vary significantly based on the presence/absence 

of a photocatalyst. For photolytic reactions in the absence of a photocatalyst, other aqueous 

components may preferentially absorb photons in lieu of the target compound, which detracts from 

kinetic performance.  Therefore, the transmittance of the solution is a key variable for the 

photolytic degradation of compounds, as has been widely noted in disinfection literature (Sommer, 

Cabaj, Pribil, & Haider, 1997).  For photocatalysis, photocatalysts are most commonly introduced 
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into reactors as a slurry due to the maximized surface area and contact with targeted contaminants.  

This creates a significant hindrance to transmittance of incident irradiation due to the high 

absorption and scattering present in a semiconductor slurry (Carneiro, Berger, Moulijn, & Mul, 

2009).  Alternatives of slurry photocatalysis are immobilization in a fixed-bed or fixed-film 

system, where light transmittance based solely on the quality of the influent water. However, the 

limited surface area and rapid fouling of these photocatalytic systems have limited their practical 

use at scale (Katz, McDonagh, Tijing, & Shon, 2015).  

Photoactivity of aqueous constituents is most readily apparent in photolytic systems. 

Quantum yields for photolysis vary widely across wavelengths for a given contaminant. Hence, 

the intersection of incident wavelength and photoactive spectrum is critical to achieve successful 

photolytic reaction. Alternatively, in photocatalytic systems, the predominant spectrum of concern 

is that of the catalyst due to the aforementioned transmittance limitation. Again, light of sufficient 

energy (short enough wavelength) is required to excite conduction band electrons. This band-gap 

energy is widely varied based on the chemistry of the semiconductor, lattice substitutions or 

defects, and possible composite materials. Therefore, designing a workable photocatalytic system 

requires accounting for the catalyst, contaminant, and source of irradiation.  

Fiber Optic Technology to Deliver Light into Water 

Due to the aforementioned considerations and limitations that are inherent to conventional 

photocatalytic systems, a novel approach is required to achieve high performance and efficiency. 

An ideal system would provide (1) sufficient photon fluence to excite the photocatalyst and 

catalyze any photolytic reactions; (2) efficient conversion of photons via the photocatalyst into 

conduction band electrons and reactive radical species;  (3) the achievement of (1) and (2) in an 
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immobilized catalyst format for enhanced safety and recovery of adsorbed contaminants and 

regeneration of the catalyst.  Therefore, to meet these benchmarks, a fiber optic reactor 

configuration is assessed. 

Fiber optics have been used in numerous industrial applications for their excellent 

propagation of photons via total internal reflection (Scheme 1, Table 3). The capability for the 

fiber to propagate light with minimal losses is due to the optical properties and indices of 

refraction, both of the fiber and of the surrounding materials. To achieve total internal reflection, 

the index of refraction of the coated material must be lower than the index of refraction of the 

quartz fiber optic, thus reflecting the light back into the fiber for ongoing propagation. However, 

if the coated material is replaced with a material that has a higher index of refraction than quartz, 

light will begin to transmit via the interface into the coating. Thereby, coating a catalyst on the 

surface of the quartz fiber will induce light scattering from the fiber to promote photon-electron 

conversions within a TiO2 catalyst (λ < hc/Ebandgap). 

Marinangeli and Ollis initially proposed the concept of heterogeneous catalysis on optical 

fibers in the 1970s-1980s (Marinangeli & Ollis, 1977, 1980, 1982). This principle was first utilized 

for environmental applications in the early 1990s by the Hoffmann group to remove organic 

contaminants via artificial (xenon) and solar irradiation (N J Peill & Hoffmann, 1997b; Nicola J. 

Peill, Bourne, & Hoffmann, 1997; Nicola J Peill & Hoffmann, 1995, 1996, 1998). Both single-

fiber (Danion, Bordes, et al., 2004; Danion, Disdier, Guillard, Abdelmalek, & Jaffrezic-Renault, 

2004; Danion, Disdier, Guillard, Paisse, & Jaffrezic-Renault, 2006) and bundled fiber (J. Chu & 

Zhong, 2012; Nicola J. Peill & Hoffmann, 1998) approaches have been attempted in a batch mode, 

with highest performance noted in the multi-fiber configurations, though still less effective on a 

per-photon basis than comparable slurry systems (Nicola J. Peill & Hoffmann, 1998). 
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Development of side-glowing optical fibers has been an area of research to promote photon 

dispersion into solution, including silicon cladding (L. Lin, Wang, Luo, & Xu, 2015; J. Xu et al., 

2008), nanomaterials (Barton et al., 2016; Tandon, Li, Bookbinder, Logunov, & Fewkes, 2013), 

and phosphors at the commercial scale (Inc., 2016).  

 

Figure 2-2. Mechanism of light propagation, exit and absorption in coated and uncoated fiber 

optics; adapted from (W. Wang & Ku, 2003b). 

 

 



36 

 

TABLE 2-3. DEFINITIONS OF PHOTONIC TERMINOLOGY UTILIZED IN FIBER OPTIC DESIGN ADAPTED FROM (Paschotta, 

2016) 

Photonic 

Terminology 

Definition 

Total internal 

reflection 

propagation of light continues to fully reflect at the interface between two transparent media so long 

as the angle of incidence is larger than the critical angle  

Index of 

refraction 

for optically transparent media, the fraction of the speed of light travelling in vacuum to the speed 

of light in the media 𝑛 =
𝑐 (3𝑥108)𝑚/𝑠

𝑣𝑚𝑒𝑑𝑖𝑎 𝑚/𝑠
 

Critical Angle angle at which incident light enters a media to propagate via total internal reflection, defined via the 

relation between refractive indices: 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = arcsin
𝑛2

𝑛1
 

Numerical 

aperture 

sine of the acceptance angle of a fiber optic or waveguide; sine of the maximum angle (with respect 

to the axis of the fiber optic) of an incident ray that can be transmitted in the quartz core; relates to 

refractive index: 𝑁𝐴 =
1

𝑛𝑜
√𝑛𝑐𝑜𝑟𝑒2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

2  

Reflection occurs at an interface between two media in which a propagating wave returns into the medium in 

which it originated instead of continuing into the second medium 

Refraction occurs at an interface between two media in which a propagating wave continues into the second 

medium, but at an altered angle based on the index of refraction of the two media according to Snell’s 

law 

Absorption light may be absorbed by the catalyst coating due to the propagation of photons via refraction into 

the media of higher refractive index (nTiO2>>nquartz) 

Scattering propagation losses in optical fibers are predominantly due to Raleigh scattering (atom/molecule) 

within the optical fiber or Mie scattering (larger aggregates) for catalyst coated optical fibers due to 

irregularity at the core/coating interface; both are particularly prominent for fibers propagating 

ultraviolet irradiation and scattering photons are radially emitted 

Evanescent 

waves 

in cases of total internal reflection, all photons are reflected at the interface between the two media, 

however, the optical field energy will penetrate the second media via evanescent waves  

 

3
7
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Mechanisms of Light Delivery in Fiber Optic Reactors 

Coating photocatalysts onto optical fibers for immobilization and light delivery has 

been approached via dip-coating premade catalysts with (Nicola J. Peill et al., 1997; Nicola J 

Peill & Hoffmann, 1996) or without calcination (W. Wang & Ku, 2003b) and sol-gel methods 

(Barton et al., 2016; Danion, Bordes, et al., 2004; Danion, Disdier, et al., 2004; Danion et al., 

2006; L. Lin et al., 2015; Miller & Anderson, 1998; J. Xu et al., 2008). Study into the optimal 

coating length and thickness (Nicola J. Peill & Hoffmann, 1998; Nicola J Peill & Hoffmann, 

1996; W. Wang & Ku, 2003b) for light delivery have been addressed in the literature, but are 

inherently light-source dependent, and thus must be investigated in each modification of the 

reactor configuration. Focused work on light delivery modeling has been attempted both to 

address the light emanating from the tip of the fiber optic (Kozodoy, Lundahl, Bell, & 

Harrington, 1994), and that into the catalyst via adsorption/scattering (Pulz, Gerbsch, & 

Buchholz, 1995; Tandon et al., 2013; W. Wang & Ku, 2003b) or evanescent waves (MacCraith, 

1993; Matejec, Chomat, Pospisilova, Hayer, & Kasik, 1995; Y. Xu, Cottenden, & Jones, 2006). 

Additionally, incident light efficiency has been assessed for direct (fiber-irradiation) coupling 

or via lenses (Zaboub, Guessoum, Demagh, & Guermat, 2016). Losses are inherent to each 

additive step (e.g., light source-lens-fiber versus light source-fiber), though enhancements to 

light delivery have been noted utilizing lenses due to the numerical aperture of the fiber optic 

utilized and angle of light delivery, particularly with collimated irradiance sources (Barton et 

al., 2016).  

Deficiencies in the literature include definitive correlation and proactive utilization of 

the benefit of combined light delivery to deliver targeted wavelength light to excite a catalyst 

and induce aqueous reactions. Further, there remains an unclear relationship between coated 

thickness, incident light flux, and quantum efficiency of aqueous constituent removal which 
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limits the implementation of fiber optic photocatalysis designs.  Reactor design and 

demonstration in a flow-through regime has not yet been well described.  

Light Emitting Diodes for Engineered Photocatalysis 

The use of light emitting diodes in photocatalytic systems has emerged in the past 

decade, particularly due to environmental concerns of mercury-based lamps and their limited 

operational lifetime (Jenny, Simmons, Shatalov, & Ducoste, 2014).  LEDs are recognized for 

their high-efficiency conversion of electrical input to photon output and increased flexibility 

for reactor design as well as wavelength input. Further, light emitting diodes are a promising 

solution not only for disinfection (Chatterley & Linden, 2010; Close, Ip, & Lam, 2006; Würtele 

et al., 2011), but photocatalysis in the UV- and visible-wavelength range (Autin et al., 2013; L 

H Levine et al., 2011). Predominant focus of UV-LED photocatalysis has been on the 

remediation of toxic organic compounds, such as PCE (D. H. Chen, Ye, & Li, 2005), dyes (K. 

Natarajan, Natarajan, Bajaj, & Tayade, 2011; T. S. Natarajan, Thomas, Natarajan, Bajaj, & 

Tayade, 2011; Tokode, Prabhu, Lawton, & Robertson, 2014; W. Y. Wang & Ku, 2006), phenol 

(Jamali, Vanraes, Hanselaer, & Van Gerven, 2013), 4-chlorophenol (Ghosh, Sui, Langford, 

Achari, & Berlinguette, 2009), benzylamine (Matsushita et al., 2007), bisphenol A (Subagio, 

Srinivasan, Lim, & Lim, 2010; Xiaoping Wang & Lim, 2010). With the production of relatively 

efficient UV-C LEDs around 2010, investigation of germicidal efficiency became a focus, 

either in purely photolytic disinfection (C. Bowker, Sain, Shatalov, & Ducoste, 2011; 

Chatterley & Linden, 2010; Oguma, Kita, Sakai, Murakami, & Takizawa, 2013) or 

photocatalysis.  

Light delivery into photocatalytic systems is a critical design challenge (B. a. Wols et 

al., 2010; B. A. Wols & Hofman-Caris, 2012), for which LEDs offer a more flexible solution 

due to their compact size and focused emission angle (Jenny et al., 2014; Yeh, Yeh, Shih, 
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Byadgi, & Cheng, 2014).   LED sources have been demonstrated to be effective in slurry or 

fixed film processes (Eskandarloo, Badiei, Behnajady, & Ziarani, 2015; Rasoulifard, Fazli, & 

Eskandarian, 2014). Water quality parameters can impact transmittance into the solution, 

hindering UV-LED effectiveness in slurry systems, incentivizing immobilization of the catalyst 

for irradiation (Leblebici, Rongé, Martens, Stefanidis, & Van Gerven, 2015). A lamp-type 

cylindrical irradiance immersion reactor has been successfully employed for the photocatalytic 

oxidation of volatile organic compounds using near-UV LEDs; however, authors noted the 

performance (time-based) was lower than conventional lamp sources, but had higher energetic 

efficiency (Jo & Kang, 2012).   A unique LED slurry was implemented for methylene blue 

bleaching, wherein wirelessly powered LEDs were fluidized into the reactor for in-situ light 

delivery to a P25 slurry (Kuipers, Bruning, Yntema, & Rijnaarts, 2015). Another of the key 

parameters of effective UV-LED implementation is effective thermal management as LEDs, 

like all irradiance sources, produce excess heat subsequently reducing efficiency with 

increasing temperature (Ploch et al., 2013).  This is managed quite effectively via the use of 

external heat-sink devices and fans in LED arrays. 

Fiber Optic Reactor Design 

 Pairing light emitting diodes and fiber optics provides a direct coupling of light delivery 

source (Matthias Fischer, Wahl, & Friedrichs, 2012) and fixed-film substrate for the 

photocatalyst.  However, this has yet to be implemented as a solution for photocatalysis in 

water treatment. The following review will focus on alternative methods implemented for fiber 

optic reactors, both for air pollution remediation and water treatment as well as important 

studies and limitations for the scale-up of photocatalytic reactors. Design criteria for 

photocatalytic systems necessarily addresses: light distribution within the reactor, catalyst 

immobilization or capture, resilient design to combat reactively-competitive aqueous 
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constituents or catalyst foulants, maintaining useful surface area to volume ratio of nanoparticle 

photocatalysts within the reactor to provide sufficient active sites (Mukherjee & Ray, 1999). 

Most studies have focused on light delivery optimization to a slurry catalyst in either batch or 

flow through configurations (Coenen et al., 2013; Elyasi & Taghipour, 2006; Imoberdorf, 

Taghipour, & Mohseni, 2008; Mukherjee & Ray, 1999; Raupp, Alexiadis, Hossain, & 

Changrani, 2001; Shen & Wang, 2002; Q. Yang, Ling Ang, Ray, & Pehkonen, 2005), with 

negligible work on foulants and optimal surface area to volume distribution for increased active 

sites. 

Modeling efforts conducted on photocatalytic systems have demonstrated the complex 

interplay between light delivery and limits of reaction rate due to mass transport limitations 

and diffusion of constituents of interest as described by the Damköhler number (Gorges, 

Meyer, & Kreisel, 2004; Raupp et al., 2001; B. a. Wols et al., 2010). An attenuation of 

performance with increased light delivery (Shen & Wang, 2002) confirms that mass transport 

inherently limits photocatalytic processes as light saturation will occur prior to catalyst-

contaminant saturation. Additionally, scattering and absorption coefficients of the catalyst as 

well as catalyst concentration has been demonstrated to change optical properties of the 

solution, thereby affecting optimal removal performance (Q. Yang et al., 2005). Optimization 

of reactor design is best approached via experimentally-validated computational modeling 

(Elyasi & Taghipour, 2006; Imoberdorf et al., 2008), which contributes insight into irradiation 

distribution, mass transport of the contaminant and expected removal rate via quantum yield at 

batch scale. A 1999 review of photocatalytic reactors determined the most promising reactor 

configurations based on the previously listed criteria to be (1)distributive type of photocatalytic 

reactor design wherein hollow class tubes serve as a catalyst substrate; (2) narrow tube diameter 

lamp immersion type reactor (Mukherjee & Ray, 1999).  Multi-lamp reactors have dominated 

more recently in modeled flow through scenarios due to their increased radiant intensity 
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(Alexiadis & Mazzarino, 2005; Coenen et al., 2013; Imoberdorf et al., 2008). Insights from 

previous work in fixed bed catalysis (Alexiadis, Baldi, & Mazzarino, 2001; Kamble, Sawant, 

& Pangarkar, 2003; K. Natarajan et al., 2011; Raupp et al., 2001) include relative efficiencies 

of catalyst light absorption through the immobilization substrate or water and quantification of 

catalyst attrition to the solution. 

Delivery of light to photocatalyst-coated fiber optics has been attempted a variety of 

configurations since proposed by Mariangeli and Ollis in the 1970s (Marinangeli & Ollis, 1977, 

1980, 1982) and Hoffmann et al., in the 1990s (N J Peill & Hoffmann, 1997b; Nicola J. Peill 

et al., 1997; Nicola J. Peill & Hoffmann, 1998; Nicola J Peill & Hoffmann, 1995, 1996). In line 

configurations, where optical fibers are parallel to fluid flow, have been utilized for both water 

decontamination (Hofstadler, Bauer, Novalic, & Heisler, 1994) and remediation of air 

pollutants (Denny, Scott, Pareek, Peng, & Amal, 2010; Denny, Scott, Peng, & Amal, 2010; 

Hou & Ku, 2013; Wu, Wu, Chu, Huang, & Tsai, 2008). Monolith reactors have been 

implemented for remediation of wastewater pollutants (H. Lin & Valsaraj, 2006; “Removal 

of indoor alpha-pinene with a fiber optic illuminated honeycomb monolith photocatalytic 

reactor.pdf,” n.d.). Configurations include singular or multiple fibers connected to a light 

source collimated via a column or lenses (Denny, Scott, Pareek, et al., 2010; Denny, Scott, 

Peng, et al., 2010; Hofstadler et al., 1994; Hou & Ku, 2013; N J Peill & Hoffmann, 1997b; 

Nicola J. Peill et al., 1997; Nicola J. Peill & Hoffmann, 1998; Nicola J Peill & Hoffmann, 1996, 

1998; Nicola J Peill, Hoffmann, & Laboratories, 2002; Wu et al., 2008). These systems, though 

rich with scientific novelty, have not resulted in further progress of achieving an optical fiber 

reactor for the treatment of aqueous contaminants. 
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Deficiencies in the Literature and Novelty of Work Herein 

From a comprehensive review of the literature, deficiencies in current state of 

knowledge emerged, particularly with regard to (i) catalyst selection, (ii) light delivery and (iii) 

reactor design of photocatalytic systems. The interplay of the contaminant of focus and the 

resultant needs of a treatment system are highly relevant. Factors of cost, environmental impact 

and safety, in addition to overall performance of the reactor are a priority in system design, but 

access to this information is limited for photocatalytic systems. Thus, parameterizing the 

effectiveness of the system based on electrical energy per order (EE/O) remains one of the best 

solutions for rapid and comprehensive assessment. Further availability and assessment of more 

life-cycle parameters to implement in decision-making would be of imminent use, but without 

extensive data on both photocatalysis and the primary competitive processes, this is beyond the 

present scope.  

Literature on hexavalent chromium has to date focused on pH of reaction, other aqueous 

constituents, and kinetics in batch reactors at bench scale. In order to implement photocatalysis 

for hexavalent chromium removal, larger scale investigation and assessment of critical 

obstacles was a key priority. Furthermore, a feasibility assessment (economic, presented as 

EE/O), had not been completed to determine the efficacy of hexavalent chromium removal in 

a photocatalytic reactor. As a contaminant, hexavalent chromium is perhaps the most 

significant foulant to the slurry catalyst, due to its reduction to Cr(III) and precipitation onto 

the TiO2 surface. Thus, determination of the rate of fouling and recycling options was critical 

for larger scale implementation. Though the reactor utilized in the study (Chapter 3) was not 

optimized for hexavalent chromium removal, the experimental work was able to prove that 

hexavalent chromium is economically viable in higher-concentration conditions (e.g., 

100ppb+), whereas in the reactor investigated, the energy requirement  was not viable for 

minimal reduction needs (i.e., 10ppb). A flow-through scenario presented challenges of 
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contaminant reduction due to lack of sufficient catalyst-light interaction within the narrow 

window of irradiation contact time.  

One of the principle realizations throughout a survey of the literature is the minimal 

focus of the irradiance source in the study of photocatalysis (Chapter 4). Experimental work 

focuses frequently on the absorption of the catalyst, either visible-light or ultraviolet based on 

the band-gap, but rarely assesses the potential to select an irradiance source to more effectively 

manage the system efficiency. More emphasis on light delivery has been evidenced in the 

disinfection community, where wavelengths in the UV-C range have been thoroughly explored 

and only irradiance sources emitting UV-C irradiation are utilized. In contrast, photocatalysis 

work tends to select light sources on a fairly arbitrary basis, and with little attention to correct 

delivery of pertinent parameters upon publication: lamp spectrum, photon flux or irradiance 

data, and even at times lacks in describing the type of lamp or wavelength(s) of emission. 

Photocatalytic processes are inextricably tied to the source of light, and great efficiency gains 

are possible when pairing appropriate catalysts and light sources to targeted contaminants.  

Whereas the catalyst is the interface for aqueous photochemistry to occur, focus on targeted 

light delivery to the catalyst or secondarily the decision to opt for photolytic reactions if more 

favorable is solely dependent on irradiation source.  

Thus, in this investigation, a light delivery focus is emphasized for the photocatalytic 

reduction of nitrate (Chapter 5) and the effective photon dose clearly articulated.  Instead of 

purely focusing on kinetic parameters with regard to time (1/s for first order), I approach the 

problem from a photon and energetic input perspective to determine a normalized effectiveness 

across light sources of widely different wavelength output and intensity. Additionally, an 

assessment of discrete wavelength impacts on nitrate reduction is contrasted to multi-

wavelength output to determine highest selectivity for nitrate to innocuous nitrogen gases and 

priority pathways for implementation of the technology.  Further, the literature has noted varied 
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quantum yields for reduction of nitrate, nitrite and subsequent aqueous and gaseous 

intermediates (Chapter 4), but a discrete wavelength light delivery system had, prior to this 

work, not been utilized for the assessment of selectivity outcomes and reaction kinetics in 

engineered photocatalysis (Chapter 5). 

Further research in effective light delivery was inspired by the identification that multi-

lamp high-surface area reactors are optimal, but no work has of yet been completed to 

implement such a scenario. The deficiencies of modern lamp irradiance sources were noted to 

include: mercury content, broad emission spectrum with <50% effective photons (to excite 

band-gap), and rigid design that complicates implementation with immobilized-catalyst fixed-

films.  Accordingly, a novel approach was explored based on some seemingly abandoned work 

by the Hoffmann group in the area of nanoparticle coated fiber optics. Due to the immense 

technological advancements that have occurred since this previous work, it is presently more 

feasible to implement catalyst coated fiber optics than when the work was previously 

endeavored in the 1990s. Additionally, whereas previous investigations into light delivery to 

fiber optics focused on solar or artificial lamp sources, which require significant efforts in 

wavelength filtering (infrared) or collimation, we chose to continue developing the work with 

discrete wavelength LEDs as explored in Chapter 5 to produce a fiber optic/light emitting diode 

reactor for the treatment of aqueous contaminants (Chapter 6, 7).  Though catalyst-coated 

optical fibers have been implemented and effective catalyst coatings investigated, these 

parameters were found to change with incident light source, enabling immense flexibility in 

design, but also necessitating further investigation and consideration at each phase of 

development. Thus, providing a more holistic assessment of the system via photon fluence and 

its relation to photocatalytic or photolytic conversion was completed including computation of 

kinetic rates and quantum efficiencies, Φ. Thereby, a direct comparison was made and 

modeling work completed to validate the effectiveness of the system and determine an optimal 
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configuration for escalation from methylene blue bleaching (Chapter 6) to pCBA (Chapter 7) 

and ultimately nitrate and nitrate reduction (Chapter 9).  

A significant outcome of this dissertation is a viable photocatalytic flow through reactor 

implementing the optical fiber/light emitting diode configuration.  This pairing allows for direct 

light delivery in situ, a novel outcome without the necessity of quartz sleeves. Further, with 

nanoparticles (TiO2) immobilized on the surface of the quartz fiber optics for direct photon 

transfer, viability increases as nanomaterial exposure decreases while providing significant 

surface area to make contact with aqueous contaminants.  
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CHAPTER 3 

HEXAVALENT CHROMIUM REMOVAL USING UV-TIO2/CERAMIC MEMBRANE 

REACTOR 

This chapter has been published as: 

Stancl Heather O'Neal, Hristovski Kiril, and Westerhoff Paul. Environmental 

Engineering Science. August 2015, 32(8): 676-683. doi:10.1089/ees.2014.0507. 

 

Abstract  

Photocatalytic reduction of hexavalent chromium (Cr(VI)) was investigated to evaluate 

effectiveness for removing all chromium species from drinking and industrial waters. 

Deionized and tap water experiments were performed using a system that recirculates TiO2 

through an integrated process consisting of UV lamps and a ceramic membrane. Hexavalent 

and total chromium concentrations were simultaneously reduced during treatment. Cr(VI) 

removal gradually increased with higher energy input and TiO2 dosage, achieving greater than 

90% removal for a 1g/L dose of TiO2. Cr(VI) was photochemically reduced to Cr(III) on the 

surface of TiO2, where the Cr persisted as a precipitate. Upon further irradiation, Cr(III) could 

be reoxidized to Cr(VI). High volume flow-through experiments indicated significantly 

diminished chromium removal due to catalyst fouling during continuous catalyst use.  To 

greater extents in tap water than in DI water, photoaggregation of the TiO2 catalyst was 

evidenced by increased particle size. This photoaggregation effect was further supported by 

decreased breakthrough of TiO2 with increased irradiation intensity.  

 

 

Keywords: hexavalent chromium, photocatalysis, titanium dioxide, reduction, ultraviolet  
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Introduction 

Stemming from natural and industrial sources, chromium is a drinking water 

contaminant that poses significant risks to human health (Lurie and Wolfe, 2002). While a 2010 

study conducted by the U.S. Environmental Working Group revealed that hexavalent 

chromium (Cr(VI)) concentrations in drinking waters across the U.S. frequently exceeded 1 

μg/L, with cases sometimes exceeding 10 μg/L (Sutton, 2010), EPA monitoring showed 

concentrations in excess of the MCL for at least one public water system in 2013-2014 with 

concentration in excess of 100 μg/L (EPA, 2014). Both hexavalent and trivalent chromium 

(Cr(III)) forms have been linked to adverse health effects, including, but not limited to: 

increasing risk for cancers (respiratory, prostate, lymphoma, leukemia, bone, and stomach); 

gastro-intestinal system disruption; uptake, accumulation, and toxicity in vital organs; damage 

to DNA; and gene mutation (Costa 1997; Dayan and Paine 2001; Sedman et al., 2006; 

Beaumont et al., 2008). These findings have raised a concern among the general public and 

spurred a campaign to regulate Cr(VI) and decrease its level in drinking water. With California 

leading the way and setting an enforceable maximum contaminant level for hexavalent 

chromium at 10 μg/L, and in expectation of a major effort led by the EPA to promulgate a 

similar national hexavalent chromium standard, many utilities are exploring treatment options 

to address these upcoming regulatory requirements (Barrera-Diaz et al., 2012; California EPA, 

2011; Gore, 2014).  

Treatment options for Cr(VI) have traditionally fallen into six categories (Sharma et al., 

2008): (1) coagulation-precipitation-filtration, (2) adsorption to different media, (3) ion 

exchange, (4) membrane technology, (5) electrodialysis, and (6) biological removal. 

Challenges with these technologies include cost, scalability, and reliability to achieve low 

Cr(VI) concentrations. (McNeill et al., 2012; Owlad et al., 2009). Hexavalent chromium is an 

oxyanion that adsorbs poorly to most metal oxides at neutral pH ranges (pH=7 ±1) because of 
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the repelling forces generated by the negatively charged surface of the metal oxide and the 

anionic chromate/dichromate forms. Ion-exchange technologies generate brines containing 

high concentrations of hexavalent chromium, while the other technologies are either 

uneconomical or cannot remove sufficient hexavalent chromium to achieve anticipated 

regulatory limits. In contrast, water treatment technologies based on photocatalytic reduction 

processes are able to overcome these challenges by reducing hexavalent chromium to a 

trivalent form, reversing the charge on the chromium species, and inducing favorable sorption 

to metal oxide surfaces, which simultaneously may serve as photocatalysts.  

A number of studies have demonstrated that uniquely synthesized and modified 

semiconductor ultraviolet and visible (UV/VIS) light active photocatalysts are capable of 

reducing and removing hexavalent chromium from water to concentrations anticipated in the 

upcoming regulations (Vignesh et al., 2013; Chakrabarti et al., 2009; Li et al., 2012). However, 

much of the documented work focuses on laboratory scale conditions and commercially 

unavailable photocatalysts, and as such it is not readily translatable to full scale commercial 

applications (Liu, Ni, & Yin, 2014). The existing literature suggests that titanium dioxide 

(TiO2) may be among the few inexpensive and commercially available photocatalysts capable 

of addressing the majority of these deficiencies (Doudrick et al., 2012; Ghorab et al., 2013). 

Although titanium dioxide is conventionally viewed as a photocatalyst suitable for full scale 

advanced photo-oxidation processes because of its hydroxyl radical generation capacity (i.e., 

oxidation), properly designed experimental conditions also allow for successful utilization of 

its photo-induced reduction capabilities. These capabilities have been demonstrated in a limited 

number of a laboratory scale studies(Wang et al. 2008; Chen and Ray, 2001; Ku and Jung, 

2001; Yang et al., 2012; Gimenez et al., 1996), but the photocatalytic reduction properties of 

TiO2 for removing hexavalent chromium in a full-scale commercially available reactor have 

not been explored.  
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The overarching goal of this study was to examine the feasibility of using a 

commercially available integrated UV reactor system with commercial grade titanium dioxide 

to reduce and remove hexavalent chromium from water. To achieve the goal, five objectives 

were assessed: (1) the efficacy of the commercially available photocatalytic system for 

reduction of hexavalent and total chromium was verified in ultrapure water to exclude 

potentially interfering species; (2) the influence of water matrix effects on contaminant removal 

was examined in tap water and buffered deionized water to assess system performance under 

realistic conditions and to evaluate potential for scale-up; (3) oxidation of trivalent chromium 

adsorbed on titanium dioxide surfaces to hexavalent chromium and subsequent suspension 

upon further irradiation was investigated to quantify potential for back-reaction within the 

photocatalytic system; (4) surface analysis of the titanium dioxide catalyst for the  presence of 

chromium on the titanium dioxide surface and photo-induced aggregation of the catalyst was 

conducted to validate removal mechanisms and investigate potential limitations of continuous 

catalyst use without regeneration; and (5) the potential for catalyst leaching was investigated 

via analysis of membrane permeate to determine a realistic catalyst loss scenario. 

 

Methodology 

Determining the photocatalytic efficacy of a commercially available system for reduction of 

hexavalent and total chromium 

Based on previously published work, which demonstrated that commercially available 

photocatalytic systems can successfully oxidize organic compounds (Westerhoff et al., 2009; 

Benotti et al., 2009) and disinfect water (Gerrity et al., 2008), the Photo-Cat® Serial 0700 

system (Purifics ES Inc., Ontario, Canada) was selected to investigate the photocatalytic 

reduction capabilities of such systems for treatment of hexavalent chromium. The Photo-Cat® 

Serial 0700 system is an integrated UV/ceramic membrane reactor containing four 220W low 
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pressure mercury UV lamps controlled by an automated process control system (Figure 3-1). 

These low pressure lamps emit UV light with λ = 253.7 nm, which is sufficient to activate the 

TiO2 bandgap 3.2 eV (Doudrick et al., 2012) and create hole/electron pairs. Unmodified Evonik 

P90 TiO2, which has with same crystallinity as P25 but smaller crystal particle size and higher 

surface area, was used as a TiO2 photocatalyst to minimize the electron/hole recombination 

effect (Doudrick et al., 2012; Doudrick et al., 2013). The Photo-Cat® system allows for 

complete recovery and reutilization of the TiO2 photocatalyst by recirculating it through the 

ceramic ultrafiltration membrane. In addition to operating in a recirculation mode only (i.e., no 

active lamps), the Photo-Cat® system allows for variable power output control by operating 

one or multiple lamps simultaneously.  

 

Figure 3-1.  Schematic of pilot-scale photocatalytic reactor, Photo-Cat L®, by Purifics.  

 

The initial photocatalysis experiments were conducted in ultrapure water (< 1.5 μS/cm, 

>18.3MΩ*cm) to verify the system’s ability to remove chromium and exclude the potential 

interference of species that could impair the photocatalytic reduction process. The experimental 

matrix examined the hexavalent chromium reduction performance of the system at different 
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contaminant/catalyst ratios, which included two initial hexavalent chromium concentrations 

(100 μg/L and 500 μg/L) and three TiO2 doses (0.01g/L, 0.1g/L, and 1.0g/L P90). Although 

these hexavalent chromium concentrations generally exceed values found in natural systems 

(Seidel and Corwin, 2013), high concentrations were used to ensure observable concentration 

changes throughout experiments. Potassium dichromate (K2Cr2O7, Sigma Aldrich, >99%) was 

used as the source of the hexavalent chromium.  

The experiments were conducted using the Photo-Cat® system’s recirculation mode at 

a programmed flowrate of 20 L/min and at UV lamp energies ranging from 0 to 8 kWh/m3 with 

total treatment volume of 14 L. Temperature of the system was maintained at 27.5 ± 2.5 °C by 

running cooling water across the lamps. Control experiments with no TiO2 were also conducted 

to assess the reduction capability of the system without presence of TiO2 via photolysis. 

External organic hole scavengers and pH control were not used during experiments.  During 

the experiments, the pH ranged between 6.5 and 7.1.  The system was purged with minimum 

of 250 L of deionized water between experiments to eliminate potential for crossover 

contamination. As part of the quality control process, lamp performance was assessed 

periodically by conducting methylene-blue photo-degradation tests. These tests ensured 

comparable performance for all lamps. Electrical energy per order (EE/O) was calculated for 

photocatalytic batch experiments following the method described by Bolton and Stefan (2002). 

Separate experiments were performed in flow through operation using a feed of dechlorinated 

tap water (pH ~7.5) spiked with either 10 or 100 μg/L Cr(VI). The steady state flow rate through 

the system was 2.1 L/min. Lamps were operated at full power in the presence of 1 g/L TiO2, 

which was captured by the ceramic membrane, recirculated, and mixed with feed water. 

Sample aliquots (40 mL) were taken at regular time intervals from the system's effluent 

port located after the ceramic membrane. The aliquots were additionally filtered through 0.45 

μm filters to ensure absence of any aggregated TiO2 nanoparticles. Samples were acidified (1) 
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with ultrapure nitric acid for analysis via inductively coupled plasma mass spectrometry (ICP-

MS) or (2) with ammonium hydroxide buffer solution for ion chromatography. Modified EPA 

Method 218.6 was used to determine hexavalent chromium concentrations by ion-

chromatography (Dionex ICS, 2000) following a manufacturer recommended post-column 

derivatization method with 1,5-diphenylcarbazide and ammonium sulfate eluent. Total 

chromium concentrations were measured using a quadrapole inductively coupled plasma mass 

spectroscopy (ICP-MS; Thermo Fisher Scientific XSeries 2). 

Experiments in buffered deionized, pH-adjusted deionized, and tap water  

To examine the influence of water matrix on contaminant removal and assess the 

system’s performance, water matrices with increasing complexity were used: (1) 5 mM 

NaHCO3 buffered ultrapure water, (2) deionized water with added potassium hydroxide to 

adjust pH without adding carbonate alkalinity, (3) and a more complex tap water matrix 

(dechlorinated tap water from the City of Tempe, Arizona, distribution system with hardness 

= 220 mg/L as CaCO3, TDS = 615 mg/L and conductivity 1.0 ± 0.1 mS/cm). The pH of the 5 

mM NaHCO3 buffered ultrapure water was 8.6 ± 0.1, and the pH of the tap water was 7.8 ± 

0.1. The pH of the KOH-adjusted solution was varied from 6.5 ± 0.1 to 9.0 ± 0.1. Water samples 

were prepared by spiking 500μg Cr/L hexavalent chromium (potassium dichromate, K2Cr2O7, 

Sigma Aldrich, >99%) into the various water matrices. Input lamp energies ranged from 0 to 

31kWh/m3. Experimental protocol was identical to that followed for the ultrapure experiments 

above.  

Quantifying potential for oxidizing photocatalytically reduced Cr(III) to Cr(VI) 

As titanium dioxide photocatalysis is inherently an oxidation-reduction system, the 

potential for oxidation of photocatalytically reduced trivalent chromium sorbed onto the 

titanium dioxide surface was quantified to determine potential for re-suspension of hexavalent 

chromium upon excess irradiation. Chromium (III) chloride hexahydrate (CrCl3·6H2O, Sigma-



53 

Aldrich, >98%) was used as the source of trivalent chromium and was spiked into the system 

to achieve dosages of 100 and 500 μg-Cr/L.  Identical protocols were followed to previous 

photocatalytic experiments at catalyst dosages of 0.1g/L and 1.0g/L P90.  

Characterization of spent TiO2 photocatalyst  

Spent TiO2 photocatalyst samples from all three water matrices were examined to 

determine any photocatalyst poisoning or sorption of chromium onto the P90. The samples 

were dried at 100 °C on an aluminum stub and left to equilibrate at room temperature (22 °C) 

before electron microscopy analysis. Scanning electron microscopy equipped with an energy 

dispersive X-ray microanalysis system (SEM/EDX) (Philips XL30-EDAX) was used to 

determine presence of chromium on the surface of the titanium dioxide photocatalyst.  

Occurrence of TiO2 photocatalyst nanoparticles in treated effluent 

Samples for aqueous titanium analysis were collected from the ceramic membrane 

permeate sample port (Figure 3-1) to determine potential for nanoparticle leaching from the 

reactor. Single particle ICP-MS (spICP-MS), an emerging nanoparticle quantification and size 

characterization technique (Degueldre et al., 2005; Mitrano et al., 2012), was used to evaluate 

the particulate TiO2 equivalents in the photocatalytic reactor effluent. Effluent samples were 

introduced directly into the ICP-MS, and the instrument signal in counts per second (cps) was 

documented over time.  Dwell time, the unit time interval in which one reading was integrated, 

was set as 10 ms, and the sample flow rate was set as 0.69 ml/min.  Nebulizer transport 

efficiency to be used in Ti quantification was determined as 1.58% based on previous research 

(Pace et al., 2011).  Total Ti concentration was evaluated by considering the elevated baseline 

relative to the blank and counting the pulses that stand for the detectable particle signals.  
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Results and Discussion 

Cr(VI) Removal from Ultrapure Water 

 

Figure 3-2. Hexavalent chromium removal as a function of energy using four TiO2 catalyst 

dosages in model water matrix (18.3MΩ nanopure deionized water) with one of four 

operational lamps running in recirculation mode. pH ranged from 6.5 to 7.1 (initial to final), 

and temperature was maintained between 25 and 30oC. 

 

Cr(VI) concentrations slowly decreased  by direct UV photolysis in an ultrapure water, 

without TiO2 (Figure 3-2). Initial concentrations appear to vary but reflect different amounts 

of dark adsorption for the varied catalyst doses. A 1g/L TiO2 dosage had the highest rate and 

most complete removal of Cr(VI), achieving non-detect levels. An unexpected finding was that 

photolysis (no added TiO2) was marginally more effective than adding a very low dosage of 

0.01g/L. It is likely that the low TiO2 dosages reduced UV transmittance, thus limiting direct 

photolysis of Cr(VI) while providing minimal surface on the TiO2 for electron transfer to 

Cr(VI).  The highest titanium dioxide dose (1.0g/L TiO2) had an EE/O value of 0.36 kWh/m3, 

which is within the cost effective range (Crittenden, 2012). The EE/O for 0.1g/L TiO2 was 

found to be an order of magnitude higher (8.3 kWh/m3).  Based on these findings, two TiO2 
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dosages (0.1 g/L and 1.0 g/L) were tested for four water matrices and under different irradiance 

conditions.    

Cr(VI) Removal from Complex Water Matrices 

 

Figure 3-3. Removal efficiencies for hexavalent and total chromium in dechlorinated tap water 

with initial Cr(VI) concentration of 500 g/L. The y-axis represents calculated removal of 

either hexavalent (striped) or total chromium (solid), while the x-axis represents the energy 

input. Dark adsorption was measured after a runtime of one hour without illumination. 

Illumination data sets show removal normalized to an equivalent energy input (31kWh/m3) 

with error bars (n=1/2). 

 

In recirculation experiments, hexavalent and total chromium concentrations decreased 

simultaneously for a dechlorinated tap water matrix spiked with different initial Cr(VI) 

concentrations. This indicates both hexavalent and total chromium were removed from the 

aqueous solution (Figure 3-3). Using 1g/L TiO2, chromium removal varied between 89% and 

98% for initial concentrations of 500 μg/L Cr(VI).  Only 4% of Cr(VI) adsorbed onto TiO2 in 

the dark.  Therefore, Cr(VI) removal greater than 4% is attributable to photocatalytic processes. 

With only 0.1g/L TiO2 and 100 μg/L Cr(VI), removal varied from 45% to 70% with 

approximately 6.5% dark adsorption. The change in Cr(VI) concentration equaled the removal 

of total chromium in the system, indicating sorption of chromium species onto titanium 
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(discussed below). EE/O for dechlorinated tap water was substantially (~10x) higher than 

ultrapure water resultant from catalyst fouling and diminished availability of sites for 

adsorption and reduction.  

The impact of water matrix was assessed using four water sources: 18.3MΩ*cm 

nanopure water, buffered deionized water (5 mM NaHCO3,), pH-mediated deionized water 

with KOH, and dechlorinated tap water. In ultrapure water with only Cr(VI), >99% Cr(VI) 

reduction occurred with 2 kWh/m3 of energy input (Figures 3-1 and 3-4). In 5 mM NaHCO3 

buffered deionized water, TiO2 dosages below 1 gTiO2/L achieved less than 20% Cr(VI) 

removal, regardless of energy input, and a 1 g/L dose of TiO2 achieved 50% reduction of 500 

μg/L Cr(VI) at 10 kWh/m3.  

 

Figure 3-4. Effluent chromium concentrations based on initial input P90 dosage. Initial Cr(VI) 

concentration was 500 ug/L, and P90 titanium dioxide was 0.0 g/L, 0.01 g/L, 0.1 g/L, or 1.0 

g/L.  Experiments were conducted using buffered deionized water (5mM NaHCO3, pH 8.5 to 

8.7) unless otherwise noted in the legend. pH for dechlorinated tap matrix ranged from 7.7 to 

7.9  from Cin (at t=0) to Cf  (final sampling); pH for ultrapure ranged from 6.5-7.1.  Temperature 

was controlled to remain between 25oC and 30oC for all experiments. 
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Dechlorinated tap water exhibited slightly more effective Cr(VI) reduction than 5 mM 

NaHCO3 buffered deionized water, with removal highest at 62% with a 1g/L TiO2 dose. 

Because 5 mM NaHCO3 increases pH by one unit, which creates less favorable thermodynamic 

conditions for Cr(VI) reduction, further experiments were completed using deionized water 

without a buffer (Figure 3-5). A significant dark adsorption of chromium (CrO4
2-, pKa= 0.6 and 

5.9 from Brito et al., 1997) occurred when the solution pH was within ±1.5pH units of pHzpc 

for TiO2 (pHzpc=6.2). Desorption occurred upon initial irradiation followed by reduction to 

Cr(III) upon further irradiation, sorption, and thus removal from the aqueous phase. When the 

pH of the solution was greater than 7.8 (pH>1.5+pHzpc), less dark adsorption of chromium 

species was observed.  With multivalent cations (i.e., Cr(III)), small changes in pH can lead to 

relatively large changes in sorption capacity (Kinniburgh & Jackson, 1981), as evidenced in 

Figure 3-5.   

 

Figure 3-5. Comparison of chromium removal at varied pH for a deionized matrix. Initial 

Cr(VI) concentration (C0) was 500 μg Cr(VI)/L. pH was varied using aliquots of KOH solution 
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and equilibrated for 60 minutes before irradiation. Secondary x-axis corresponds to the 

illumination energy upon irradiation (beginning at t=60min).   

Spent TiO2 Surface Analysis 

Analyses conducted on slurry effluent samples taken after dechlorinated tap 

experiments showed accumulation of Cr on the TiO2 solid surface. While virgin P90 TiO2 is a 

pure white, the dried titanium samples from experiments were green, an indicator of chromium 

species on the surface of the titanium dioxide. SEM was conducted on both virgin P90 and a 

Photo-Cat® slurry effluent from a dechlorinated tap water experiment series of 1 g/L P90 and 

500 μg/L Cr(VI) to determine presence and quantity of chromium on the surface (Figure 3-6). 

For the case of virgin P90, SEM-EDX showed only Ti and O present at the surface, with a 

carbon response from the stub on which the P90 was mounted.  SEM-EDX analysis on spent 

TiO2 indicated chromium in addition to a number of common tap water constituents (based on 

EDX: Na > Cl > Mg > Cr > S > Ca > K) on the TiO2.  SEM of TiO2 after flow through 

experiments revealed a doubling in size of TiO2 particles compared to batch mode but with 

comparable distribution of elements on the catalyst surface. Though chromium represented a 

relatively low atomic weight percentage of surface coverage, detection shows that it was 

present and attached to the surface in some manner.  
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Figure 3-6. SEM images of virgin P90 versus P90 run in Photocat® with 500 μg-Cr/L and 1g-

P90/L. 

 

Cr(VI) Re-formation for Tap Water Spiked with Cr(III) 

Figure 3-3 shows that in recirculation operation mode, a steady state concentration of 

Cr(VI) and an equal concentration of soluble Crtotal (total chromium) occurs in solution. After 

Cr(VI) concentrations in the ceramic membrane permeate water decreased to below detection 

levels, continued and prolonged UV irradiation and photocatalysis may re-form Cr(VI).  This 

likely occurred as Cr(III) bound to the surface of the TiO2 was oxidized to Cr(VI). Cr(VI) re-

formation potential was investigated using an initial input of 100 μg/L Cr(III) with 0.1g/L P90 

and 500 μg/L Cr(III) with 1.0g/L P90. Figure 3-7 shows that in both cases, Cr(VI) evolved 

from the Cr(III) initial solution. Less than 10% of the Cr(III) became soluble Cr(VI) at 0.1g 

TiO2/L and 100μg-Cr/L, and even less (<2%) formed at the higher TiO2 and Cr(III) doses. This 

may be due to both the high sorption of Cr(III) to TiO2 and precipitation of Cr(OH)3(s) at neutral 

pH. The conceptual model presented in Figure 8 articulates the sorption-desorption-reduction 

cycle with recommendation of a mid-process recycle for the spent TiO2. 
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Figure 3-7. Evolution of Cr(VI) from starting concentration of only Cr(III) in dechlorinated 

tap water. pH increased over the course of the experiment (7.5 to 7.75 and 7.85 to 7.95 for 1.0 

g/L TiO2 and 0.1g/L TiO2, respectively). 

 

 

 

 

 

Figure 3-8. Conceptualization of mechanisms involved in the reduction of hexavalent 

chromium and removal from aqueous solution of total chromium species via reduction and 

sorption processes. Boxed items represent sorbed species. The phases indicated represent: I. 

Cr(VI) reduction to Cr(III) and sorption to TiO2 surface; II. Cr(III) stability on the surface and 

opportunity to recycle titanium and remove chromium species using acid rinse; III. Cr(III) 

oxidation and desorption upon additional irradiation.  

 

For 10 and 100 μg/L influent Cr(VI) flow-through experiments, effluent measurements 

of Cr(VI) and Crtotal were indifferent and averaged 9.4 ± 0.7 μg-Cr/L and 79.8 ± 1.8 μg-Cr/L 

after 30 minutes, respectively. These experiments suggest either poor photocatalytic reduction 

of Cr(VI) in the tap water or steady state removal and re-formation.  Poor photocatalytic 

reduction is suspected because evaluation of spent TiO2 indicated significant aggregation of 

the media, which would reduce light exposure on the surfaces and potentially reduce ability for 

Cr(VI) to directly contact the TiO2.  Figure 6 shows SEM images of virgin TiO2 and spent 

media from continuous flow tap water experiments. EDX analysis of the latter media indicated 

the presence of Na, Cl, Mg, Cr, S, Ca, and K. In contrast to a limited concentration of natural 

water foulants in batch experiments with tap water, continuous loading of foulants from tap 

water appears to have caused aggregation of TiO2 and reduction in chromium removal 
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efficiency. Prior research has suggested that fouling of TiO2 reduces effectiveness of the Photo-

Cat® system during long term operation oxidizing trace organics in reclaimed wastewater 

(Gerrity et al., 2008).  

Recovery and Release of TiO2 Across the Ceramic Membrane 

Potential passage of TiO2 across the ceramic membrane into the treated water was 

investigated. Figure 9 shows the concentration of TiO2 in the ceramic membrane permeate for 

0.1g/L TiO2 in 5 mM NaHCO3 deionized water as well as in dechlorinated tap water; all 

samples were taken at a run-time of 15 minutes and analyzed by spICP-MS.  The permeate 

concentrations depended on water matrix and illumination (3-4 lamps operating). Without 

illumination, TiO2 was poorly recovered by the ceramic membrane. Increasing irradiation 

significantly improved TiO2 recovery, indicating photoaggregation of the TiO2. There are only 

a few reports indicating illumination of catalysts results in aggregation (W. Liu et al., 2014; J. 

Sun, Guo, Zhang, & Zhao, 2014), what we term here as photoaggregation, but results indicate 

TiO2 surface hydroxyl groups enhance aggregation which results in changes to photocatalytic 

properties and longevity of the catalyst.  Without illumination of tap water, 24% of the TiO2 

passed the ceramic membrane.  With any level of illumination in tap water, less than 5% of the 

TiO2 passed the membrane. Tap water contains roughly 5 μg/L of Ti, but the spICP-MS mode 

clearly indicated TiO2 particles in the membrane permeate that were not present in the initial 

tap water, i.e., above the background concentration. Primary particle size of well-dispersed P90 

TiO2 is 12 – 18 nm. Because pores in ultrafiltration membranes range from 0.001 to 0.1 m (1 

to 100 nm), some pores may be larger than the individual TiO2 particles, leading to particle 

breakthrough. Reasons for observed variations in leaching may be TiO2 aggregation patterns 

upon illumination, pH and ionic strength differences of the water matrix (Tong et al., 2013; 

Domingos et al., 2009), or decreased ability to pass the ultrafiltration membrane upon higher 

chromium surface loading onto TiO2 and thus increased size of TiO2 particles.  
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Figure 3-9. Titanium dioxide concentration in membrane permeate samples taken at 

t=15min as a function of lamps and water matrix. pH for 5mM NaHCO3 buffered DI 

matrix increased from 8.5 to 8.7 from Cin to Cf; pH for dechlorinated tap increased from 

7.7 to 7.9 from Cin to Cf.   

 

Conclusions 

The removal of hexavalent chromium was investigated for several water matrices, 

titanium dioxide dosages, and energy inputs using an engineering-scale photocatalytic reactor 

system. The integrated UV-TiO2-ceramic membrane system reduces Cr(VI) and removes all 

aqueous chromium species.  Catalyst dosage was the most impactful parameter investigated, 

with the most successful dosage being 1 g TiO2/L. Higher alkalinity, pH, or presence of divalent 

salts decreased the effectiveness of Cr(VI) adsorption and subsequent reduction, which 

required higher EE/O . The presence of divalent cations in the tap water likely aggregated the 

TiO2. P90 has primary particle sizes of 12 – 18 nm, which are on the same size or smaller than 

some ultrafiltration membrane pores. Agglomeration of the initial media or aggregation of TiO2 

during use increases its size, making passage through the membrane less favorable. This 

phenomenon may occur as the catalyst produces electrons and holes on the TiO2 surface during 
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illumination, thus changing the local surface charges and allowing aggregation to occur.  

Additional research is needed to understand this photoaggregation process alone as well as on 

the role of divalent salts and the role of TiO2 photoaggregation on this advanced photo-

oxidation process. 

Surface analysis confirmed chromium species were present on the surface of the TiO2 

in the effluent slurry and significant aggregation of TiO2 particles when in flow-through mode. 

As Cr or inorganic foulants accumulate on TiO2, catalyst effectiveness is reduced as evidenced 

in the flow-through experiments. Based on full-scale implementation data, recovery and 

regeneration of the spent TiO2 may be completed via acid washing the media to remove Cr(III) 

species and foulants, allowing for reuse of the TiO2. While Cr(VI) photocatalytic reduction 

occurs readily in ultrapure water at low irradiance levels, the presence of salts, alkalinity, and 

elevated pH increase energy requirements.  These factors must be overcome for full-scale 

implementation, and feasibility studies must determine regeneration rates for the catalyst to 

maintain optimal running conditions. Overall, photocatalytic reduction of Cr(VI) appears 

feasible in complex water matrices after managing aggregation and foulants. Combined 

reduction and removal via photocatalytic processes for drinking water treatment may alleviate 

chromium exposures and risk of adverse health effects while addressing new regulatory limits.  
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CHALLENGES IN PHOTOCATALYTIC REDUCTION OF NITRATE AS A WATER 

TREATMENT TECHNOLOGY 
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Abstract 

Management of ubiquitous nitrate contamination in drinking water sources is a major 

engineering challenge due to its negative impacts from eutrophication to immediate risk to 

human health. Several water treatment technologies exist to manage nitrate pollution in water 

sources. However, the most widely used technologies are phase separation treatments. In this 

context, nanoscale photocatalysis emerges as a highly promising transformative technology 

capable of reducing nitrate to innocuous nitrogen with noticeable selectivity. This critical 

review describes the photocatalytic reduction mechanisms of nitrate toward undesirable 

products (nitrite, ammonium) and the more desirable product (dinitrogen). The mechanisms 

are based on the standard reduction potential of each individual species and highlight the 

contribution of reducing species (e.g.  CO2
•-) radical formed from different hole scavengers. 

The strategic use of different pure, doped, and composite nanoscale photocatalysts is discussed 

on the basis of reduction mechanisms’ overall conversion, kinetic rates, and selectivity towards 

N2. The influence of light source affects pathways and influence by-product selectivity because 

direct photolysis of N-intermediates, which has been overlooked in the literature. In addition, 

the re-oxidation of nitrite and ammonia as drawback process is explained. Finally, an 

exhaustive analysis presents the photocatalytic reduction applications for treating real water 

matrices and the competing effect of other species. Overall, this critical review aims to 
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contribute to the understanding of the potential application/constraints of photocatalysis in 

inorganic nitrogen management, and guide researchers toward future efforts required for 

widespread implementation. 

Keywords: Water treatment; Titanium dioxide (TiO2); Nitrogen cycle; Photocatalysis; 

Nanoparticle; Nanotechnology.
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Section 1: Prevalence and impact of nitrogen oxyanions in ground water and drinking 

water 

Managing the nitrogen cycle in water is one of the Grand Challenges for the 21st 

century society identified by the US National Academy of Engineers (Afzal, 2006; NAE, 

2017).  The nitrogen cycle is a process by which nitrogen species are exchanged between 

organisms and the environment. Thereby, the nitrogen species naturally found are 

interconverted by different chemical and biochemical reactions. Nitrogen is present in soils 

and waters in three forms: (i) organic nitrogen, (ii) inorganic cation ammonium (NH4
+), 

and (iii) nitrogen oxyanions as nitrite (NO2
-) or nitrate (NO3

-) (Spalding & Exner, 1993). 

Anthropogenic nitrogen transforms the global nitrogen cycle with environmental 

repercussions to this natural balance, such as the increase on nitrate content in water 

resources (J. N. Galloway et al., 2004; James N Galloway et al., 2008; Gruber & Galloway, 

2008). In fact, nitrate is the most frequently occurring anthropogenic ground water 

pollutant in the United States (Nolan, Hitt, & Ruddy, 2002). 

Nitrate occurs naturally in a few geological formations and groundwater. However, 

nitrate concentration in hydric resources increased dramatically worldwide during the last 

century due to the use of fertilizers in agriculture (M R Burkart & Stoner, 2007; Michael 

R. Burkart & Kolpin, 1993). Nitrogen fertilizers play a critical role for agriculture, but they 

lead to nitrate contamination of surface and ground waters (Rupert, 2008).Anthropogenic 

nitrogen loadings into the environment are currently ~150 Mg-N/year, with ~15 Mg-N/year 

percolated into the ground and dissolved in groundwater reserves (Schlesinger, 2009). 
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Nitrate inputs to groundwater for North America are estimated to be 3 Mg-N/year. Thus, 

North America represents the 20% of the global N-percolation (Schlesinger, 2009).  

Nitrogen in aquatic systems promotes biological growth and algal blooms that 

result in eutrophication of waters. Eutrophication depletes oxygen in water bodies, killing 

aquatic animals and irreversibly affecting aquatic ecosystems. Additionally, nitrogen 

oxyanions severely affect human health. Nitrate is reduced to nitrite in the human gut and 

causes methemoglobinemia (Kapoor & Viraraghavan, 1997; Sobti, Sharma, & Archina, 

2011). In methemoglobinemia, ferrous iron in hemoglobin oxidizes to ferric iron, reducing 

the oxygen transport, which can produce shortness of breath, fatigue, cyanosis, stupor, 

cerebral anoxia, and death. Methemoglobinemia in infants and fetuses, which are 

particularly sensitive to the side-effects of nitrate, is also known as “blue baby syndrome”. 

Nitrate in drinking water is regulated nationally by the United States Environmental 

Protection Agency (USEPA) to a maximum contaminant level (MCL) of 10 mg/L of NO3
- 

as N (USEPA, 2017), while similar values of 50 mg/L as NO3
- (~11 mg/L as N) is 

recommended by the World Health Organization (WHO, 2016). According to Burow et al. 

(2010), ~24 million people in the United States utilize a water supply with nitrate above 

the USEPA MCL of 10 mg/L of NO3
- as N (Burow et al., 2010). Even though nitrate is the 

most stable species in aqueous form, the presence of nitrite and ammonium should also be 

monitored. Nitrite is strictly regulated at 1 mg/L NO2
- as N because it causes 

methemoglobinemia directly and also may contribute to formation of carcinogenic 

nitrosamines, e.g., NDMA, in the human body (USEPA, 2017).  

Nitrate removal from water presents a great challenge to securing drinking water 

resources of suitable quality. In this context, several water treatment technologies have 
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been considered to address the environmental and health concerns of nitrate anion. Nitrate 

removal has been predominantly approached via traditional physical-chemical treatment 

processes (Bhatnagar & Sillanpää, 2011; Loganathan, Vigneswaran, & Kandasamy, 2013) 

and biological denitrification (Jensen, Darby, Seidel, & Gorman, 2014; Mohseni-Bandpi, 

Elliott, & Zazouli, 2013). Fig. 4-1 summarizes the current commercially available 

technologies, with additional detail and discussion provided in other reviews (Jensen et al., 

2014; Sobti et al., 2011). While the conventional technologies provide adequate treatment 

and are available at municipal scale, they have drawbacks for small communities affected 

by the contaminants, including high operational labor and energy requirements, cost, and 

residual waste streams including NO3
-, NO2

-, and NH3 (Health, 2005). Hence, developing 

decentralized, small footprint treatment technologies is desirable for a new generation of 

systems to secure drinking water  (J. Kim & Benjamin, 2004). As it can be deduced from 

Fig. 4-2a, nitrogen water treatment technologies are a focal point of researchers, with 

thousands of studies reported yearly on the critical environmental challenge of nitrogen 

management. The literature contains a hundred papers related to nitrate management using 

catalysts in the presence of light (Fig. 4-2b). Even though no photocatalytic technologies 

are currently commercially available, the increasing trend in research publications indicates 

the potential application of these alternative transformative technologies in the near future.  
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Figure 4-1. Methods applied to manage nitrate in waters. The processes blue framed 

correspond to phase separation processes while the red framed correspond to 

transformative technologies. 
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Figure 4-2. Number of publications from 1990 until February 2017 on (a) nitrate removal 

water treatment technologies and (b) specifically on nitrate photocatalytic reduction. 

This review focuses on photocatalytic reduction of nitrate because this 

nanotechnology-based process can be operated without chemical addition at small scales. 
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We critically examine the current state of research related to transformative photocatalytic 

technologies for nitrate remediation that reduce inorganic nitrogen to innocuous nitrogen 

gas (N2). Production of nitrite or ammonia in drinking water as product from other 

technologies is undesirable because nitrite is regulated and ammonia leads to excessive 

disinfectant demand, increases risk of producing nitrifying biofilms in pipes, and can 

produce unaesthetic odors in drinking water. The review employs two avenues of 

examination. First, the direct reactions for photolysis of nitrate and nitrite are examined to 

substantiate the importance of direct photolysis pathways during nitrate removal in 

photocatalytic systems. Second, indirect mechanisms for photocatalytic reduction of nitrate 

using nanoparticles are explored to evaluate the role of different catalyst materials, light 

sources, and materials on performance of these photocatalytic systems. The review 

concludes with an outline of opportunities for future research. 

Section 2: Direct photolysis of inorganic nitrogen species 

Most works concerning photocatalytic reduction of nitrate exclude the 

consideration of direct photolytic reactions. However, this mechanism could be a very 

important factor that determines overall system performance (Boule et al., 2005). 

Specifically, this review focuses on direct photolysis of NO3
- and NO2

- because ammonium 

is a photo-inert cationic species meaning that its direct photolytic activity is negligible in 

the aqueous phase. However, photolysis of ammonia has been demonstrated under vacuum 

conditions (Groth & Rommel, 1965; Washida, Inoue, & Suzuki, 1985). Fig. 4-3 shows the 

molar absorptivity for major aqueous inorganic nitrogen species between wavelengths (𝝀) 

from 200 nm to 450 nm. Photocatalytic processes for these species are typically enabled at 
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𝝀 < 380 nm. Due to their photosensitivity, nitrogenous ionic species are susceptible to 

photolytic transformations when irradiated with ultraviolet (UV) sources (Goldstein & 

Rabani, 2007; Mack & Bolton, 1999b).  

 

 

Figure 4-3. Absorptivity of different nitrogen species in solution within the UV-vis spectra 

range: HNO2, NO2
-, NO3

-, and NH4
+. The inset panel shows the null absorptivity of 

H2NOH. 

 

2.1. Photochemistry of NO3
-  

Nitrate photolysis in water occurs in the range of 270–330 nm with a maximum 

absorption at 300 nm. The first step in nitrate photolysis is the transition n → 𝝅* (𝜺 = 7.4 

M-1 cm-1), yielding unstable nitrate species in an excited state according to reaction (1). 

The unstable species subsequently evolves through two pathways given in reactions (2) 
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and (3) (Svoboda, Kubelová, & Slavíček, 2013; Svoboda & Slavíček, 2014). However, 

nitrate presents an additional UV absorption peak at 200 nm due to the 𝝅 → 𝝅* transition 

with a strong 𝜺 = 9900 M-1 cm-1 (Daniels, 1968; Petriconi & Papee, 1968; Wagner et al., 

1980). The reaction pathway given by equation (2), which produces nitrate and oxygen, is 

inferior with respect to quantum yield (𝜱𝝀) ≈ 0.001 at 305 nm (Mack & Bolton, 1999b). 

As summarized in equation (3), the 𝜱305 in the second pathway is an order of magnitude 

higher (0.01), releasing two radical species, nitrogen dioxide radical (NO2
●) and 

deprotonated hydroxyl radical O●- (Barat, Gilles, Hickel, & Sutton, 1970a; Daniels, 1968; 

Wagner et al., 1980; Warneck & Wurzinger, 1988). The O●- is quickly protonated due to 

the acid-base equilibria in reaction (4) with a pKa = 12.0:  

 

NO3- + h𝞶 → [NO3
-]*        (1) 

[NO3-]* → NO2
- + ½ O2   𝜱305 = 0.001   (2) 

[NO3-]* → NO2
● + O●-   𝜱305 = 0.01   (3)  

O●- + H2O ⇋ ●OH + OH-   pKa = 12.0   (4) 

 

The ●OH radical can dimerize (reaction (5)). Organic matter, inorganic carbon, and 

other ions can scavenge ●OH (reactions (6)–(8)) (Brillas, Sires, & Oturan, 2009; Buxton, 

Greenstock, Helman, & Ross, 1988). Nitrogen dioxide radicals preferentially dimerize and 

release N2O4 according to reaction (9) (Bonner & Wang, 1986), which in turn quickly 

hydrolyzes according to reaction (10) .  

 

2 ●OH → H2O2    k = 4.2 x 109 M-1 s-1  (5) 
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●OH + organics → products   k = 106 – 1010 M-1 s-1  (6) 

●OH + HCO3
- → CO3

●- + H2O   k = 8.5 x 106 M-1 s-1  (7) 

●OH + CO3
2- → CO3

●- + OH-    k = 3.9 x 108 M-1 s-1  (8) 

2 NO2
● ⇋ N2O4    k = 2.0 x 106 M-1 s-1  (9) 

N2O4 + H2O → NO3
- + NO2

- + 2 H+  k = 1.0 x 103 s-1  (10) 

 

Reactions between ●OH radical with NO2
● radical can form peroxynitrous acid 

(reaction (11)) (Goldstein & Rabani, 2007; Logager & Sehested, 1993). At 𝝀 < 280 nm, 

peroxynitrite can be formed by photo-isomerization of nitrate (reaction (12)) with a 𝜱254 

of 0.1, although its occurrence at higher wavelengths is unexpected (Daniels, 1968; 

Logager & Sehested, 1993; Mark et al., 1996; Wagner et al., 1980). Peroxynitrite can be 

protonated according to the acid-base equilibria (reaction (13)) with a pKa =6.5 (Daniels, 

1968; Logager & Sehested, 1993; Mark et al., 1996; Wagner et al., 1980). In both cases, 

peroxynitrous acid is a highly unstable species that disproportionates and yields nitrate 

from reaction (14) (Michael Fischer & Warneck, 1996; Goldstein & Czapski, 1996; 

Goldstein et al., 1998; M N Hughes & Nicklin, 1968). Thus, cyclical reductant reformation 

of nitrate is commonly observed. 

 

NO2
● + ●OH → HOONO   k = 5.0 x 109 M-1 s-1  (11) 

NO3
- + hν → ONOO-     𝜱254 = 0.1   (12) 

ONOO- + H+ ⇋ HOONO    pKa =6.5   (13) 

HOONO → NO3
- + H+   k = 1.4 s-1   (14) 
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The photolytic pathways are summarized in Fig. 4-4. According to the observed 

low 𝜱 values, nitrate photochemistry exhibits low conversion efficiency to nitrite 

(Warneck & Wurzinger, 1988), resulting in nitrate being one of the major final products of 

the photolytic process in aqueous solution. However, the formation of nitrate radicals by 

photolysis is of special concern in tropospheric chemistry under natural irradiation 

conditions (Gankanda & Grassian, 2014b; Wayne et al., 1991) because it may form nitric 

acid or other unwanted nitrogen compounds such as NOx (Malecki & Malecka, 2006; 

Scharko et al., 2014; Schuttlefield et al., 2008). 

 

 

Figure 4-4. Mechanism and main processes of nitrate photolysis in water. Solid line 

highlights the pathway leading to NO3
- as final product, dashed line highlights the pathway 

yielding NO2
- as result of the photo-reduction.  
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2.2. Photochemistry of NO2
-  

Nitrite undergoes photolysis within the 𝝀 region between 200 nm and 400 nm (see 

Fig. 4-3), where the transition n → 𝝅* is possible (reaction (15)) (𝜺 = 22.5 M-1 cm-1) 

(Michael Fischer & Warneck, 1996; Treinin & Hayon, 1970; O C Zafiriou & Bonneau, 

1987). Figure 4-5 depicts the complex mechanism of nitrite photolysis. The main 

photolytic degradation pathway involves the formation of NO● and O●- from the excited 

state following reaction (16), with 𝜱355 = 0.025. Similar to the case of nitrate, O●- is quickly 

protonated (reaction (4)). At lower pH, the photolysis of nitrous acid, which is in 

equilibrium with NO2
- with a pKa = 3.40 (reaction (17)), undergoes a similar photolytic 

process but with relatively high quantum yield of 𝜱355 ≃ 0.4 (L. Chu & Anastasio, 2003; 

Mack & Bolton, 1999b). 

 

NO2
- + h𝞶 → [NO2

-]*        (15) 

[NO2
-]* → NO● + O●-    𝜱355 = 0.025   (16)  

HNO2 ⇋ H+ + NO2
-     pKa = 3.40   (17) 

 

The diffusion-controlled reaction between ●OH radical and NO● radical yields 

nitrous acid by means of reaction (18) (Mack & Bolton, 1999b). In parallel, the ●OH radical 

oxidation of nitrite anion yields NO2
● radical (reaction (19)) (Mack & Bolton, 1999b; 

Vione, Maurino, Minero, & Pelizzetti, 2001). Alternatively, NO2
● can also be produced 

from the photolysis according to reaction (20) in the presence of electron scavenging 

species like dissolved oxygen (21), with a 𝜱355 of 0.0019.  
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NO● + ●OH → HNO2    k = 1.0 x 1010 M-1 s-1  (18) 

NO2
- + ●OH → NO2

● + OH-   k = 6.0 x 109 M-1 s-1  (19) 

[NO2-]* → NO2
● + e-    𝜱355 = 0.0019   (20) 

O2(aq) + e- →O2
●-    k = 2.0 x 1010 M-1 s-1  (21) 

 

The reaction (22) of both radical nitrogen species (NO● and NO2
●) forms dinitrogen 

trioxide, which is hydrolyzed yielding nitrite by reaction (23) (Mack & Bolton, 1999b). As 

shown previously in reaction (9), NO2
● can dimerize to N2O4, which yields nitrate and 

nitrite from its hydrolysis (reaction (10)). The dimerization of NO● forms dinitrogen 

dioxide by reaction (24) and oxidizes to N2O4 by dissolved oxygen (reaction (25)), which 

is hydrolyzed according to reaction (10) (De Laurentiis et al., 2015; Mack & Bolton, 

1999b). 

 

NO● + NO2
● → N2O3    k = 1.1 x 109 M-1 s-1  (22) 

N2O3 + H2O → 2 NO2
- + 2H+   k = 5.3 x 102 s-1  (23) 

NO● + NO● → N2O2    k =1.0 x 109 M-1 s-1  (24) 

N2O2 + O2 → N2O4    k = n.a.    (25) 

 

Secondary reactions involving peroxynitrite/peroxynitrous acid, which forms via 

mechanisms described by reactions (11) or (26), exhibit minor relevance (Goldstein & 

Rabani, 2007; Martin N Hughes, 1999; Thøgersen et al., 2015). Subsequently, this unstable 

species disproportionates according to reaction (14) (Anan’ev & Miklin, 2005). Other 

secondary reactions involve the nitrite release from the reaction of NO● with nitrate or the 
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reaction of NO2
● with O2

●- by reactions (27) and (28), respectively. However, the yield of 

these reactions is almost negligible in comparison to the main photolytic mechanism of 

nitrite (18)-(25). 

NO● + O2
●- → ONOO-   k = 1.9 x 109 M-1 s-1  (26) 

NO● + NO3
- → NO2

● + NO2
-   k = n.a.    (27) 

NO2
● + O2

●- → NO2
- + O2   k = 1.0 x 108 M-1 s-1  (28) 

 

Note that the main species yielded after nitrite photolysis is nitrite, which 

demonstrates a low transformation to other nitrogenous species. Thus, the photolytic 

process contributes to the formation of radical species that can be involved in the oxidation 

of organics and other species in solution without severely impacting in the overall nitrite 

content.
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Figure 4-5. Mechanism and main processes of nitrite photolysis in water. Dashed lines highlight the pathway leading to NO3
- 

as final product, while solid lines define the pathways yielding NO2
- from NO● and NO2

●.  
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Section 3: Photocatalytic nitrate reduction  

Photocatalysis is a light-driven process that provides photons to a catalyst to 

promote reactions on its surface. The photocatalytic behavior of semiconductor materials 

was reported for the first time by Fujishima and Honda in 1972 (Fujishima & Honda, 1972), 

where they described the photocurrent response of TiO2 after UV irradiation. Since that 

initial report, many researchers have studied nuances of photocatalytic water treatment 

technologies with major efforts devoted to evaluating photo-oxidation processes. In this 

context, photocatalytic nitrate reduction is one of the emerging transformative technologies 

capable of yielding innocuous gaseous products. 

The absorbance of photons of sufficient energy by a catalyst results in the excitation 

of an electron (ecb
-) from the valence band (VB) of a semiconductor material to the empty 

conduction band (CB), generating a positively charged (hvb
+) hole or vacancy as 

represented in Fig. 4-6. Both aforementioned ecb
-/ hvb

+ species are also referred to as charge 

carriers. The energy required by the semiconductor to photo-promote an electron from the 

VB to CB upon absorption of a photon is the “band gap energy” (Fujishima, Zhang, & 

Tryk, 2008; Hoffmann, Martin, Choi, & Bahnemann, 1995). Incident photons must meet 

or surpass this minimum energy threshold to activate the photocatalyst, generating the pair 

ecb
-/ hvb

+ by means of general expression (29). Other photonic wavelengths may be 

absorbed, but they may not exhibit energy sufficient to promote electron-hole separation.   

 

Semiconductor + h → ecb
-+ hvb

+      (29) 
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Figure 4-6. (a) Scheme of the fundamental photocatalytic excitation that result in the 

separation of the charge carriers (e-
cb/h

+
vb) and the redox processes promoted by each 

species. (b) Relationship between band structure of usual semiconductors, redox potentials 

vs standard hydrogen electrode, and characteristic band gaps.  

 

Both species, ecb
-/ hvb

+, are generated at the penetration depth of incident irradiation 

into the photocatalyst, which depends on (i) the material’s absorption coefficient, (ii) the 

irradiation source wavelength, and the (iii) fluence of photons (Fujishima & Zhang, 2006; 

Hitchman & Tian, 2002; Waldner & Kr, 2005). Charge carriers generated in the bulk of 

the catalyst must be transported to the surface to be involved in redox reactions (Cai & 

Feng, 2016). The transit time for ecb
-/ hvb

+ to reach the surface is defined by the radius of 

the particle or the coating thickness (Dosta et al., 2016; Gratzel & Frank, 1982; Hitchman 

& Tian, 2002) and the diffusion coefficient of the excited charge carriers in the 

photocatalyst. For example, the transit time is in the range of picoseconds for TiO2 

nanoparticles 10–20 nm in diameter from the point of origin within the structure to the 

surface (M. a. Henderson, 2011; Nan et al., 2010). Nevertheless, photo-promoted electrons 
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are in an unstable excited state and tend to return to the ground state. This occurs in 

picoseconds during their recombination with the unreacted h+
vb following reaction (30), 

which emits heat (Rossetti & Brus, 1982). Note that this reaction can occur either in the 

bulk of the semiconductor or at the catalyst surface (M. Bowker, 2007; Schneider et al., 

2014a).  

 

ecb
- + hvb

+ → Semiconductor + heat              (30)     

 

The ecb
-/ hvb

+ pair recombination is the main drawback of photocatalytic processes 

and affects their overall efficiency. The ecb
-/ hvb

+ production rate is highly relevant to 

minimizing the average loss by recombination (30) which may additionally be enhanced 

by semiconductor doping and the use of co-catalysts. Strategies for improving the charge 

carrier separation have been already reported and discussed thoroughly in several reviews 

(Devi & Kavitha, 2013; Kumar & Rao, 2017; Lazar, Varghese, & Nair, 2012; L. Zhang, 

Mohamed, Dillert, & Bahnemann, 2012). 

Considering that the ecb
- are highly reductive species, whereas the hvb

+ are strong 

oxidizing species, the efficacy of photocatalytic processes is centered around direct charge 

transfer from photoexcited ecb
- or indirect charge transfer by mediating reducing species. 

For photocatalytic reduction to occur, both species (ecb
-/ hvb

+) should be engaged in redox 

processes. However, to have successful oxidation-reduction reactions of constituents at the 

surface of the photocatalyst, the following two properties must exist: (i) for reduction, the 

conduction band must have a more negative potential than the reducing species; (ii) for 

oxidation, the valence band must have a greater positive potential than that of the oxidizing 
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species. Therefore, the band gap and the nitrogen species to be reduced must be band-

paired to be a thermodynamically feasible redox reaction.  

The overall surface catalyzed reduction reactions of nitrate to nitrite, ammonium, 

and nitrogen are described by reactions (31), (32), and (33), respectively. However, this 

general description does not ease the understanding of the mechanistic steps involved nor 

how to enhance products selectively towards N2. Furthermore, charge transfer processes 

involving more than one electron per step are rare. Therefore, the mechanistic reduction 

pathways are discussed considering elementary steps involving the short-lived 

intermediate products. It is important to remark that several mechanistic differences can be 

attributed to different catalysts that affect the selectivity. Hence the description of the 

reactions involved are specific to pristine photocatalysts. The differences observed in 

doped photocatalysts, monometallic composites, and bimetallic composites follow the 

main mechanism discussed for pristine photocatalysts. The following description refers 

principally to TiO2-based catalysts because the majority of works reported use this 

semiconductor as photocatalyst, although they can be transposable to other metal-oxides 

and chalcogenides that present similar trends (Lesko et al., 2015).  

 

  NO3
- + 2 H+ + 2 ecb

-→ NO2
- + H2O      (31) 

  NO3
- + 10 H+ + 8 ecb

-→ NH4
+ + 3 H2O     (32) 

  2 NO3
- + 12 H+ + 10 ecb

-→ N2 + 6 H2O     (33) 
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3.1. Reduction of nitrate on pristine photocatalyst 

Initial studies reported null conversion of nitrate using pure TiO2 photocatalysts 

(Ranjit, Varadarajan, & Viswanathan, 1995; Ranjit & Viswanathan, 1997a) in absence of 

hvb
+ scavengers. The recombination of charge carriers considerably reduces efficiency of 

the reduction process. Bems et al. (Bems et al., 1999) suggested that if some reduction 

occurred under the photocatalytic treatment without hvb
+ scavengers, the faster re-oxidation 

of the by-products leads to a steady concentration of nitrate in solution.  

The use of organic hvb
+ scavengers such as oxalic acid, formic acid, or methanol 

increases the conversion of nitrate by photocatalytic reduction, as presented in the studies 

summarized in Table 4-1. Selecting the appropriate hvb
+ scavenger is important because it 

affects both the overall efficiency and product selectivity. For formic acid, for example, 

direct hvb
+ oxidation (reaction (34)) yields carboxyl radical (CO2

●-) (G. Liu, You, Huang, 

& Ren, 2016b; Mora-Sero et al., 2005; Rengaraj & Li, 2007). 

 

HCOO- + hvb
+ → H+ + CO2

●-    k = 1.6 x 108 M-1 s-1  (34) 
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 Table 4-1. Nitrate conversion and products selectivity for pristine TiO2 photocatalysts. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

aRefers to the percentage of N2 experimentally quantified       bRefers to the percentage of NO experimentally quantified 

1  (Y. Li & Wasgestian, 1998)  2 (Kyle Doudrick et al., 2012) 3 (Tawkaew, Yin, & Sato, 2001) 4 (Sá et al., 2009)  

5 (G. Liu, You, Huang, & Ren, 2016a) 6 (L. Li et al., 2010) 7  (Kominami, Furusho, Murakami, & Inoue, 2001)  

8 (Montesinos, Quici, Destaillats, Litter, et al., 2015)

Cata

-lyst 

Lamp Loadin

g / g 

[NO3
-

]0 / 

mM 

Volum

e / mL 

Sacrificial 

agent 

pH Tim

e / 

min 

Conversio

n / % 

Selectivity / % Ref. 

NO2
-  

NH4
+  

N2  

TiO2 medium-

pressure Hg 

lamp 150 W 

0.2  1.0  80  Oxalic 

acid 5.2 

mM 

2.37 120 15  0 100 0 1 

TiO2 medium-

pressure Hg 

lamp 400 W 

n.r. 7.14  1800  Formic 

acid 40 

mM 

2.6 n.r. 64   0.77 0.60 98.6 2  

TiO2 high-pressure 

Hg lamp 100 W 

0.5  0.2  500  Methanol 

2000 mM 

4 240 100 0 80.0 20.0 3 

TiO2 high-pressure 

Hg lamp 110 W 

0.25  7.1  600  Formic 

acid 40 

mM 

3 180 100 0 42.0 58.0 4

  

TiO2 high-pressure 

Hg lamp 110 W 

0.25 0.8  600  Formic 

acid  

1 mM 

6.8 120 52.5 34.3 8.9 56.8 5  

TiO2 high-pressure 

Hg lamp 250 W 

0.5  0.97  500  Benzene  

0.12 mM 

4.2-

6.0 

240 8 0 56.8 43.2 6  

TiO2 high-pressure 

Hg lamp 400 W 

0.05 10  5  Oxalic 

acid  40 

mM 

3 180 9.8 0.61 42.8 56.5 7 

TiO2 n.r. n.r.  0.08  n.r. Formic 

acid 0.1 

mM 

2.8 60 74  0 40.5 19.0
a 

40.5
b 

8 

8
5
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Initially it was believed that the hole scavengers played only an indirect role on the 

photocatalytic reduction of NO3
-, acting similarly to hvb

+ scavengers to minimize (i) 

recombination drawback reaction (30) and (ii) re-oxidation of by-products to NO3
- by the 

hvb
+ or indirect by-product oxidation by hydroxyl radical (●OH) formed by water oxidation 

as in reaction (35). However, recent studies demonstrate that CO2
●- plays a role of a 

reducing mediator (Kyle Doudrick et al., 2012; Lozovskii, Stolyarova, Prikhod, & 

Goncharuk, 2009; Sá et al., 2009; F. Zhang et al., 2005). 

 

H2O + hvb
 + → H+ + ●OH        (35) 

 

3.1.1. Reduction of nitrate to nitrite 

Elementary reactions involve charge transfer processes of one electron per step. 

The reduction of NO3
- to NO2

- (reaction (31)) as the main intermediate during the complete 

reduction to NH4
+ or N2 is a complex three-step mechanism where two steps involve charge 

transfer (Fig. 4-7). The initial reduction of nitrate and one electron produces nitrate dianion 

radical (NO3
2-) (reaction (36)). This short-lived (~20 μs) dianion radical is hydrolyzed to 

yield a nitrogen dioxide radical (NO2
●) following reaction (37) (Cook et al., 2001). 

Subsequently, NO2
● undergoes the second charge transfer reaction to yield NO2

- as the 

product (38). 

 

NO3
- + e-→ NO3

2-●    k = 9.7 x 109 M-1 s-1  (36) 

NO3
2- + H2O → NO2

● + 2 OH-  k = 5.5 x 104 s-1  (37) 

NO2
● + e- → NO2

-    k = 4.6 x 109 M-1 s-1  (38) 
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The e- is the general reducing species represented in equations (36) and (38). 

However, the initial reduction to ●NO2
- hardly occurs by the photogenerated ecb

-. The 

elementary step in reaction (36) has a standard reduction potential of Eº(NO3
- / ●NO3

2-) = -

0.89 V vs Standard Hydrogen Electrode (SHE) (Cook et al., 2001; Fessenden, Meisel, & 

Camaioni, 2000). The ecb
- photogenerated on TiO2 has a standard potential within the range 

of -0.01 V down to -0.14 V vs SHE depending on the crystalline phases (Dung, Ramsden, 

& Gratzel, 1982; Ward, White, & Bard, 1983). Therefore, the direct reduction by ecb
- 

photogenerated on TiO2 is not thermodynamically possible, and it should be disregarded. 

However, the CO2
●- radical, which has a high reducing potential of Eº(CO2/ CO2

●-) = -1.81 

V vs SHE, acts as an intermediary agent that leads to indirect reduction of NO3
- 

(Montesinos, Quici, Destaillats, & Litter, 2015; Sá et al., 2009).  

Another important feature that corroborates a mediated reduction is the low 

adsorption of NO3
- on TiO2, which is negligible (Wehbe et al., 2009). Usually, 

photocatalytic processes involve adsorption of a target pollutant on the catalyst surface and 

the likelihood of adsorption of formic acid. The redox processes involving the ecb
-/ hvb

+ 

pair mainly occur within the Helmholtz plane at the solid/liquid interface of the double 

layer by direct charge transfer between the semiconductor photocatalyst surface and the 

pollutant adsorbed. However, indirect processes by redox mediators, such as reaction with 

CO2
●- radical, can occur in the solution bulk. In the first charge reaction where NO3

- 

reduces to NO2
- according to reaction (31), it is the adsorption of the hvb

+ scavenger (e.g., 

formic acid) that affects the reduction kinetics and not the NO3
- adsorption, because NO3

- 
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reduction occurs predominantly in the bulk (Marcotte et al., 2015; Sá et al., 2009; Wehbe 

et al., 2009). 

The second charge transfer reaction (38) that yields NO2
- has a Eº(NO2

● / NO2
-) = 

1.04 V vs SHE, meaning both ecb
- and CO2

●- radical are capable of reducing NO2
●. 

Considering the overall reaction (31) involves only CO2
●- radical formed by reaction (34), 

the reduction of 1 mol of NO3
- would require 2 mol of CO2

●- (or formic acid). However, 

according to Doudrick et al. (2013), only 1.4 moles of formic acid are required 

experimentally per mol of NO3
- (K Doudrick et al., 2013). This result demonstrates that 1 

mol is required for reaction (36), while reaction (38) involves both direct and indirect 

charge transfer processes. Furthermore, the consumption of only 0.4 moles of formic acid 

during the second elementary reaction (38) suggests that direct charge transfer contributes 

to ~60% of the reduction. 

The possible contribution of direct photolysis on the initial reduction to NO2
- in 

reaction (31) could also depend on the irradiation source. The absorption of photons by 

NO3
- (Fig. 3) induces NO3

-  photolysis and releases NO2
● with a 𝜱305 of 0.01 by reaction 

(4), which can circumvent the requirement of CO2
●- as reducing species. The divergent 

results reported in the literature could be partially explained by the use of different 

irradiation sources that exclude or promote differently the NO3
- photolysis. 
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Figure 4-7. Mechanism and main processes of photocatalytic reduction of nitrate in water. The pathways leading selectively to 

N2 as the final product are highlighted in red, pathways yielding NH4
+ are shown in green, and other colors show minor reactions 

leading to other products.  
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3.1.2. Reduction of nitrite to nitrogen and ammonia 

It is widely accepted that NO2
- is the first stable intermediate product obtained from 

nitrate reduction, and it can remain in solution as NO2
- or undergo further reduction to N2 

or NH4
+. Some authors have been unable to detect quantifiable amounts of NO2

- at the end 

of the photocatalytic reduction of NO3
- because it can be easily reduced after its formation 

(de Bem Luiz, Andersen, Berger, Jose, & Moreira, 2012; Kyle Doudrick et al., 2012; 

Kominami et al., 2001; L. Li et al., 2010; Y. Li & Wasgestian, 1998). Because of its faster 

reduction, several works study the direct reduction of NO2
-. Reduction of this intermediate 

species is relevant to enhancing the mechanistic understanding of photocatalytic reduction 

processes, because the reduction of nitrite is the divergent point that defines the selectivity 

towards innocuous N2 release or undesired NH4
+. The overall reduction from NO2

- to NH4
+ 

and N2 occur according to reactions (39) and (40), respectively. 

 

NO2
- + 8 H+ + 6 e- → NH4

+ + 2 H2O      (39) 

2 NO2
- + 8 H+ + 6 e- → N2 + 4 H2O      (40) 

 

The catalytic sites will severely affect the selectivity towards NH4
+ or N2 because 

both processes involve the same number of electrons in the reduction process. Nonetheless, 

the release of ammonium results from direct nitrite reduction on the photocatalyst surface. 

Producing one molecule of N2 requires a pairing of two nitrogen-containing surface 

species. Hence, Zhang et al. (2007) suggested that the selectivity of nitrite reduction could 

be discussed as a function of the ratio of surface coverage of N-species to reductant species 



91 

(F. Zhang et al., 2007) . This hypothesis suggests that the adsorption of NO2
- and the 

intermediate species on the photocatalyst surface is critical, making pH one of the main 

factors controlling photocatalytic performances. Solution pH modifies the electrostatic 

surface charge of the solid surface of metal oxides by acid-base reaction. The photocatalyst 

surface can have neutral, positive, or negative charge, as it is represented by the point of 

zero charge (pHpzc). This parameter is also referred to as the isoelectric point; TiO2 

photocatalyst has a pHpzc = 6.2. When solution pH > pHpzc, the surface is highly 

deprotonated according to reaction (41) for TiO2 and consequently negatively charged 

(Kormann, Bahnemann, & Hoffmann, 1991). When pH < pHpzc, the surface is highly 

protonated and is positively charged according to reaction (42) for TiO2 (Wenliang Gao et 

al., 2004). Electrostatic repulsion results between the surface and the ionic species when 

similarly charged. Neutral molecules can be also adsorbed on the semiconductor surface, 

although the charged species exhibit stronger interactions. In the case of NO2
- in acid-base 

equilibria (17) (pKa = 3.4), significant NO2
- adsorption would be observed within pH 

ranges between 3.4 and 6.2. Therefore, the reduction of NO3
- and NO2

- is best carried out 

below the pHpzc. One can question if the pH influence on selectivity goes further than a 

simple surface charge effect on adsorption, but the requirement of H+ in several reactions 

indicates that acidic pH is required to ensure the complete reduction of nitrate.  

 

TiOH ⇋ TiO- + H+   pH > 6.25     (41) 

TiOH + H+ ⇋ TiOH2
+   pH < 6.25    (42) 
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The elementary steps that lead to formation of either N2 or NH4
+ identify the 

formation of nitroxyl or azanone (HNO) as the true milestone that marks the divergent 

pathway, as depicted by the overall mechanistic pathway in Fig. 4-7. The reduction 

pathway of NO2
- to this highly reactive intermediate involves two elementary charge 

transfer reactions. The charge transfer reactions are pH-dependent because the reduction 

standard potentials depend on the speciation of HNO2/NO2
-
, which depends on acid-base 

equilibria (reaction (17)). When the predominant species is NO2
-, the first elementary 

reaction leads to formation of NO2
2- dianion radical following reaction (43). With an 

Eº(NO2
- / NO2

2-) = -0.47 V vs SHE (Goldstein, Behar, Rajh, & Rabani, 2016), the reduction 

process should be mediated solely by CO2
●- radical because a non-direct reduction by ecb

- 

is not thermodynamically feasible. Then, NO2
2-, similarly to NO3

2-, hydrolyzes quickly by 

reaction (44), yielding NO●. Subsequently, NO● reduces further to nitroxyl anion according 

to reaction (45), which is quickly protonated according to acid-base equilibria reaction (46) 

with a pKa = 11.4, leaving HNO the predominant species in aqueous solution.  

 

NO2
- + e-→ NO2

2-    k = 2.0 x 106 M-1 s-1  (43) 

NO2
2- + H2O → NO● + 2 OH-   k = 1.0 x 105 s-1  (44) 

NO● + e- → NO-    k = 800 M-1 s-1   (45) 

NO- + H+ ⇋ HNO    pKa = 11.4   (46) 

 

When HNO2 is the predominant species in solution, NO● is released according to 

reaction (47). NO● can be produced directly by charge transfer reduction with ecb
- and/or 

indirectly by CO2
●-, according to the potential Eº(NO2

- / NO2
2-) = 0.88 V vs SHE (Hérissan, 
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Meichtry, Remita, Colbeau-justin, & Litter, 2017). Consequently, HNO2 converges with 

the pathway previously referred for NO2
- involving reactions (45) and (46). 

 

HNO2
 + e- → NO● + OH-   k = n.a.    (47) 

  

As stated previously, the reaction of HNO shifts photocatalytic selectivity toward 

either N2 or NH4
+. Therefore, the first reaction pathway leads to the innocuous desired 

product N2 as a result of the efficient photocatalytic management of NO3
-.  The high 

number of available nitrogen species adsorbed on the photocatalyst surface leads to 

preferential removal of aqueous nitrogen to gas species. The dimerization of HNO by 

reaction (48) and/or the reaction between HNO and NO● by reaction (49) yield N2O as 

intermediate species of N2 gas evolution. The release of N2 is tailored to the further 

reduction reaction of N2O with an Eº(N2O
 / N2) = -0.96 V vs SHE by CO2

●- according to 

reaction (50).  

 

2 HNO → N2O
 + H2O    k = 8.0 x 106 M-1 s-1  (48) 

HNO + NO● → N2O
 + HNO2   k = 5.0 x 109 M-1 s-1  (49) 

N2O + CO2
●- + H+ → N2 + ●OH + CO2 k = ~ 109 M-1 s-1  (50) 

 

Reaction (50) is highly controversial and unclear in the literature. In most published 

reports, loss of total nitrogen dissolved in solution is directly ascribed to the formation of 

N2, and few studies quantify direct yield of N2. Instead, most papers attribute N2 evolution 

as the difference between initial and final concentrations of aqueous inorganic N-species 
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corresponding to the result of equation (51) where n corresponds to the number of moles 

of each species.  

 

 𝑛𝑁2 = 𝑛𝑁𝑂3−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑛𝑁𝑂3− − 𝑛𝑁𝑂2− − 𝑛𝑁𝐻4+     (51) 

 

The lack of reports identifying the gaseous species released during the 

photocatalytic reduction treatment of inorganic nitrogen anions does not allow to directly 

discriminate releases of noxious NxOy gases as suggested by Wehbe et al. (Wehbe et al., 

2009). The quantification of N2 by gas chromatography was reported by Kominami et al. 

(Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005) and by Zhang et al.(F. Zhang 

et al., 2005). Where they found complete mass balance, only 75% of nitrogen species were 

identified, suggesting the possible release of other nitrogen species using a Pt-Cu/TiO2 

photocatalyst. However, experimental work by Zhang et al. (F. Zhang et al., 2005) 

concluded that N2 was the only gas product released using an Ag/TiO2 photocatalyst. A 

separate study of Kominami et al. (Kominami, Gekko, & Hashimoto, 2010) analyzed the 

feasible formation not only of N2 but also NO and N2O. NO was not identified as a by-

product evolved from NO2
- reduction; however, N2O was identified as a by-product in 

different ratio to N2 depending on the catalyst used. A recent report by Litter’s group 

(Montesinos, Quici, Destaillats, & Litter, 2015) quantified the release of NO and N2 during 

the photocatalytic reduction of NO3
- by bare TiO2 corresponding to 68% and 32% of the 

gas composition, respectively. An important feature to consider is the solubility of the gas 

species involved. Taking into account that for the vast majority of works (see Tables 1-6) 

the concentrations of initial NO3
- are ~1.6 mM, complete conversions would lead a 
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maximum amount of 1.6 mM of NO or 0.8 mM of N2/N2O in aqueous phase. The solubility 

of NO at 20 ºC is 1.94 mmol L-1 atm-1 (Zacharia & Deen, 2005), which is far superior to 

the concentrations that can be generated in experimental conditions with a 100% of 

conversion to NO. Similar outcomes occur with N2O with a high solubility of 34.0 mmol 

L-1 atm-1 at 15 ºC (Weiss & Price, 1980). The low solubility of N2 of 6.24 x 10-4 mmol L-1 

atm-1 (Hamme & Emerson, 2004) suggests its direct evolution after formation, displacing 

the reactions towards its formation as observed by Zhang et al (2005). Nevertheless, other 

gases formed during water splitting such O2 and H2 can displace N2O and NO from the 

aqueous phase, justifying their identification in the gas phase. Furthermore, the observed 

differences could be attributed to using different photocatalysts that: (i) modify the extent 

of some reactions, (ii) incur different enthalpies of adsorption of gaseous intermediates, or 

(iii) allow alternative pathways. However, N2O has been identified as an intermediate 

released in other reductive treatments such as hydrogenation (Nakamura, Yoshida, 

Mikami, & Okuhara, 2006; Prüsse, Hähnlein, Daum, & Vorlop, 2000; Prusse & Vorlop, 

2001). Future studies on photocatalytic reduction of NO3
- and NO2

- should quantify the gas 

species released in order to clarify which gaseous species are released during photocatalytic 

treatment. Even though N2 is an inert species, other nitrogen-containing gas species such 

as N2O, NO, and other NxOy are hazardous species with high environmental implications 

in atmospheric chemistry (Compton et al., 2011; Garcia-Segura, Mostafa, & Baltruschat, 

2017).  

The last major product obtained during NO3
- and NO2

- reduction is ammonium 

cation, which is released from an alternative pathway than the one of the HNO 

intermediate. When a high number of reductant species are available in comparison to the 
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coverage of N-species, the reduction of HNO is preferred to the dimerization reaction (48) 

or to reaction (49). The reduction of HNO to aminoxyl radical (NH2O
●) with an Eº(HNO / 

H2NO●) = 0.52 V vs SHE can be conducted by ecb
- and CO2

●- radical following reaction 

(52). An additional quick charge transfer leads to hydroxylamine (NH2OH) from this short-

term lived by-product according to reaction (53). Even though NH2OH has not been 

detected, it has been speculated as intermediate formed in very low quantities (i.e., below 

detection limit) by several authors (Montesinos, Quici, Destaillats, & Litter, 2015; Ranjit, 

Varadarajan, et al., 1995). In acidic conditions typically used for NO3
- reduction 

experiments, hydroxylamine is protonated according to its acid-base equilibria (54) with a 

pKa = 5.93. Then, the reduction of hydroxylamine yields ammonia (NH3) by reaction (55), 

which is in equilibria with NH4
+ with pKa = 9.25 (reaction (56)). 

 

HNO + H+ + e- → NH2O
●   k = n.a.    (52) 

NH2O
● + H+ + e- → NH2OH   k = 1.0 x 108 M-1 s-1  (53) 

H2NOH + H+ ⇋ H3NOH+   pKa = 5.93   (54) 

H3NOH+ + e- → NH3 + ●OH   k = 1.0 x 105 M-1 s-1  (55) 

NH3 + H+ ⇋ NH4
+    pKa = 9.25   (56) 

 

The intermediate H2NO● can dimerize as N2 by reaction (57); however, this is a 

minor pathway, which is negligible.  

 

2 H2NO● → N2 + 2 H2O    k = 1.4 x 108 M-1 s-1  (57) 

 



97 

In summary, the selectivity of nitrate depends on the ratio of surface coverage of 

N-species to reductant species. A low coverage or high concentration of reducing mediators 

could deteriorate the selectivity for formation of NH4
+. An appreciable pseudo-

concentration of adsorbed nitrogen intermediates, mainly HNO and NO●, would favor the 

pathway leading to N-gas species. Many reactions are highly pH-dependent; therefore, 

acidic pH is necessary to assure sufficient H+ to allow fast kinetic rates. Accordingly, the 

pH dependence is not only related to the surface charge that modulates the adsorption of 

species on the photocatalyst surface but also as H+ source to ensure the complete reduction. 

3.2. Doped semiconductor photocatalysts 

Several strategies have been considered to modify and improve the photocatalytic 

properties of pure semiconductors and decrease their band gaps. Depending on the atomic 

size of the dopant element, it can be introduced into the lattice by (i) substitutional doping 

or (ii) interstitial doping. In TiO2 based photocatalysts, metal doping occurs usually via 

substitutional doping where titanium atoms are replaced by the introduced metallic dopant. 

Alternatively, non-metal dopants can either replace oxygen atoms or can be inserted in the 

interstices of the existing semiconductor lattice, depending on the atomic size of the dopant 

species (Palanivelu, Im, & Lee, 2007; Selase, Low, Qin, Wageh, & Al, 2015).  

Even though the band gap energy for the electron photoexcitation is almost 

identical, introducing intraband levels permits the transition in two steps and requires less 

irradiation energy to form the charge carriers as illustrated in Fig. 4-8b. In brief, the 

photoexcitation can be conducted by absorption of visible light instead of UV (Ansari, 

Khan, Ansari, & Cho, 2016). Using these photocatalyst materials does not affect the 
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general mechanism of NO3
- reduction described in the previous subsection. However, using 

visible light to conduct photoexcitation makes the process more environmentally friendly 

and more economical because the energy required for photoexcitation can be provided by 

longer wavelengths or even direct solar irradiation (Dozzi & Selli, 2013; Kamble et al., 

2003; Kuo & Ho, 2001; Shinde, Bhosale, & Rajpure, 2011). Furthermore, the narrowing 

of the band gap is not the only effect reported. Table 2 summarizes the experimental results 

reported using doped semiconductors and shows doped semiconductors provide higher N2 

selective conversion rates for nitrate than the semiconductors presented in Table 1. Copper-

doped TiO2 photocatalysts produced 100% nitrite as a product, whereas doping with 

chromium and zinc produced > 95% nitrogen gases (de Bem Luiz et al., 2012). A mixed 

tungsten-nitrogen co-doped TiO2 reduced 94% of aqueous nitrate to 96% nitrogen gases 

(Mishra, Mahato, Aman, Patel, & Sahu, 2011) with formic acid as a hole scavenger. This 

catalyst was highlighted for both its high surface area and substantial absorption in the 

visible spectrum, allowing for use of the solar spectrum and natural sunlight as the 

irradiation source. Thus, doping can provide higher conversion of nitrate and selectivity to 

nitrogen gases than neat TiO2, but results are comparable to composite catalysts, raising 

the question of whether interstitital/substitutional doping is necessary compared to 

photodeposition methodologies (Kumar & Rao, 2015). 
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Table 4-2. Nitrate conversion and products selectivity for doped photocatalysts. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1 (Bem Luiz et al., 2012) 2 (Bem Luiz et al., 2012) 3 (Bem Luiz et al., 2012) 4 (Mishra et al., 2011) 5 (R. Jin et al., 2004) 

  6 (Adachi and Kudo, 2012)  

 

Catalyst Lamp Loading 

/ g 

[NO3
-

]0 / 

mM 

Volume 

/ mL 

Sacrificial 

agent 

pH Time 

/ min 

Conversion 

/ % 

Selectivity / % Ref. 

NO2
-  NH4

+  N2 

Cu-

doped 

TiO2 

low-

pressure 

Hg lamp 

17 W 

2.7 0.6  2700  Formic 

acid 9.8 

mM 

2.5 120 93.7 0 100 0 1 

Cr-doped 

TiO2 

low-

pressure 

Hg lamp 

17 W 

2.7 0.6  2700  Formic 

acid 9.8 

mM 

2.5 120 56.3 0 1.5 98.5 2 

Zn-doped 

TiO2 

low-

pressure 

Hg lamp 

17 W 

2.7 0.6  2700  Formic 

acid 9.8 

mM 

2.5 120 91.7 0 4.5 95.5 3 

WN co-

doped  

TiO2 

high-

pressure 

Hg lamp 

125 W 

0.25 1.3  250  Formic 

acid 4.3 

mM 

n.r. n.r. 94.0 1.0 3.0 

 

 

96.0 4  

MgTiO3-

TiO2 

high-

pressure 

Hg lamp 

125 W 

0.2 7.0  200  Sodium 

oxalate 5 

mM 

5 120 1.2  4.2 22.5 73.3 5  

BaLa4Ti4

O15 

high-

pressure 

Hg lamp 

450 W 

0.5 10.0  350  none 8.0 1260 97.4 2.05 0.29 97.6 6 

9
9
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Figure 4-8. Reduction processes on (a) bare TiO2, (b) doped TiO2, (c) metallic/TiO2 

composite, and (d) bimetallic/TiO2 composite. 

 

3.3. Metallic/semiconductor composite photocatalysts 

A composite photocatalyst is made by combining two or more constituent materials 

with significantly different chemical properties that, when combined, present different 

characteristics from the individual components, usually due to synergistic effects (Weiwei 

Gao et al., 2016; Shah, Park, Zhang, Park, & Yoo, 2012). The individual components of 

the composite remain separate and distinct within the finished photocatalytic material. For 

example, a composite metal/semiconductor would present metallic domains with their 

 

b) 

c) 

a) 

e- sink 

d) 
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characteristic crystalline structure along with the characteristic domains of the 

semiconductor material such as anatase crystalline phase. Composite photo-catalysts differ 

from doped semiconductors where the dopant substitutes for other atoms within the 

semiconductor lattice or in the interstices of the lattice. The composite photocatalyst 

configuration is represented by both materials separated by a slash representing the 

interface of both materials and indicates that two separate phases or domains are present. 

For example, Ag/TiO2 refers to a composite of silver and titanium dioxide photocatalyst. 

The use of the term decorated photocatalyst is also prevalent in the literature.   

 The presence of a metal/semiconductor interface modifies the morphology of the 

space-charge region and the near surface region of charge density such that it differs from 

the bulk solution. The lower work function of the noble metal as compared to the electron 

affinity of TiO2 is evidence of a high electron affinity by the metal. The metal then behaves 

as electron sink, forming a Schottky barrier potential as depicted in Fig. 4-8c and d. The 

charge carrier depletion region at the surface generates an electrical dipole layer that repels 

the majority of charge carriers from the surface toward the bulk (Tung, 2014). Therefore, 

the variation in surface states provides a potential for disparity between the electron density 

at the surface relative to the bulk and allows for diffusive electron transport to lower density 

regions. The differing electron densities promote the separation between charge carriers 

and delay the recombination reaction (30), thereby extending the time of life of e-
cb as 

reducing agents. Apart from the electron trapping mechanism via the decorated metal, the 

interface can in some cases contribute to achieving a pseudo-lower band gap that allows 

for lower excitation energies (Kochuveedu, Jang, & Kim, 2013). However, an excessive 

metal loading in the composite can be detrimental, becoming a recombination center 
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instead of the desired electron sink (Ranjit & Viswanathan, 1997b). Optimizing metal loads 

to about 1.0% w/w typically minimize this detrimental effect (H. Park, Park, Kim, & Choi, 

2013). Similar effects are observed when two different semiconductors are combined; 

however, because these composites have been barely reported for nitrate reduction 

treatment (de Bem Luiz, José, & Peralta, 2014), they are not included in this review.  

3.3.1 Monometallic composite photocatalyst 

Monometallic composites are the most prevalent types reported in the literature. 

However, different behaviors and performances are reported in function of the metal used 

as co-catalyst. The most commonly evaluated metals (Table 3 to 6), which are discussed 

herein, are the fourth period transition metals—iron, cobalt, nickel, and copper—, 

platinoids (e.g., platinum, paladium and ruthenium) and noble metals (e.g., gold and silver).  

3.3.1.1. Fourth period metals 

According to Kominami et al. (2001), using Co and Ni leads to lower N-gas 

conversions (4.4% and 20%, respectively). Using Co in photocatalyst composites reduces 

nitrate reduction (Kominami et al., 2001) and does not improve N2 selectivity whereas 

using Ni induces nearly 100% NH4
+ selectivity because it catalyzes reduction of the 

intermediate HNO species to NH4
+ as illustrated in Fig. 4-7. Consequently, using Ni and 

Co composites is not recommended to manage NO3
- and NO2

-. 

Using iron composites (Fe/TiO2) considerably improves the NO3
- selectivity 

towards N2 from 58% for bare TiO2 up to 87% for Fe/TiO2 under similar experimental 

conditions (Sá et al., 2009). The mechanisms for improving selectivity are two-pathway 

reduction by TiO2 photocatalyst and the decorated nano-zero-valent iron (nZVI). The 

pathways for reduction of nitrate with Fe0 exhibit conventional chemical mechanism as 



103 

summarized in equations (58), (59) and (60) (Hwang, Kim, & Shin, 2011; Khalil, Eljamal, 

Amen, Sugihara, & Matsunaga, 2017; Suzuki, Moribe, Oyama, & Niinae, 2012). However, 

the preferred product obtained during nZVI reduction is NH4
+, which precludes the use of 

nZVI for chemical denitrification of drinking water. 

 

Fe0 + NO3
- + 2 H2O → NO2

- + Fe2+ + 2 OH-     (58) 

4 Fe0 + NO3
- + 7 H2O → NH4

+ + 4 Fe2+ +10 OH-    (59) 

5 Fe0 + 2 NO3
- + 6 H2O → N2 + 5 Fe2+ + 12 OH-    (60) 

 

The combination of photocatalyst and nZVI in a composite promotes increased selectivity 

towards N-gases in comparison to nZVI reduction alone. Consequently, although the 

mechanism follows a chemical reduction pathway, the interface with TiO2 synergistically 

affects the process by: (i) adsorbing some N-intermediates on the TiO2 surface, which 

enhances the ratio of N-species surface coverage to reductant species and favors the 

evolution of N-gases, and (ii) allowing photogenerated electrons to contribute to the nitrate 

reduction and also to the recovery of nZVI via reduction of oxidized iron species (Y. Liu 

et al., 2014; Pan, Huang, Hsieh, & Wu, 2012). Unfortunately, little information is available 

about the implications of Fe2+/Fe3+ leaching from the nZVI. Although nZVI/TiO2 

composites exhibit better performance than nZVI alone, the selectivity towards N-gases, 

which is 38–60%, is still considerably inferior to the selectivity exhibited by other 

photocatalysts.  

Copper is the most studied metal of the fourth period for use in composites, though 

contradictory effects have been found, which are more related to the scavenger selected 
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than to the copper material (R. Jin et al., 2004; Krasae & Wantala, 2016; L. Li et al., 2010; 

Sá et al., 2009). Kominami et al. (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 

2005) studied the effect of the pH, demonstrating that highly alkaline media (pH = 11.0) 

delivers NO2
- as main product, whereas NH4

+ is the predominant species in acidic 

conditions (pH = 3.0). This result could be explained with the overall mechanism described 

for the pristine TiO2 photocatalyst, where H+ is required to attain complete reduction either 

to N2 or NH4
+. Under similar low pH conditions, Sá et al. (Sá et al., 2009) reported a slightly 

superior selectivity towards N2 of 63% (5% increase) for TiO2 (see Tables 1 and 3) when 

formic acid was used as a scavenger. It could be postulated that Cu facilitates NO3
- 

reduction because (i) it easily complexes with nitrogen species and (ii) it could act as a 

reducing mediator with the complexed nitrogen species with an Eº(Cu+/Cu) = +0.521 V vs 

SHE and Eº(Cu2+/Cu) = +0.337 V vs SHE, while being easily regenerated by the e-
cb at the 

interface metal/semiconductor. However, the stability of Cu composites in acidic media 

can be compromised by their dissolution as reported by Wehbe et al. (Wehbe et al., 2009) 

where 45% of initial Cu leached after 2h in a formic acid solution. Even though other 

authors have not reported Cu leaching studies during and after its use, it is imperative to 

examine the implications of Cu dissolution in future studies.
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  Table 4-3. Nitrate conversion and products selectivity for photocatalysts composites with 4th period metal.  

Catalyst Lamp Loadin

g / g 

[NO3
-

]0 

/mM 

Volu

me 

/mL 

Sacrificial 

agent 

pH Tim

e / 

min 

Conversi

on / % 

Selectivity / % Ref. 

NO2

- 

NH4

+ 

N2 

Co/TiO2 high-pressure 

Hg lamp 400 

W 

0.05 10.0 5  Oxalic acid  

40 mM 

3 180 4.4  0.9  45.5  53.6  1 

Cu/TiO2 high-pressure 

Hg lamp 400 

W 

0.05 10.0 5  Oxalic acid  

40 mM 

3 180 44 .0 0.2  90.9  8.9  2 

Cu/TiO2 high-pressure 

Hg lamp 125 

W 

0.04 7 .0 200  Sodium 

oxalate 5 

mM 

5 120 31.4  65.9 16.7 17.4 3 

Cu/TiO2 high-pressure 

Hg lamp 400 

W 

0.05 10.0  5  Oxalic acid  

40 mM 

11 720 28.0 100 0 0 4 

Cu/TiO2 high-pressure 

Hg lamp 110 

W 

0.25 7.1  600  Formic 

acid 40 

mM 

3 180 100  0 37.0 63.0 5 

Cu/TiO2 high pressure 

Hg lamp 250 

W 

0.5  1.0  500  Benzene 

0.12 mM 

4-6 240 33.0 68.7 4.6 26.7 6 

Cu/Cu2O high-pressure 

Hg lamp 

80W 

Photo-

cathode 

0.08 250 None 

(+0.20 V) 

7 75 93.0 40.0 10.0 50.0 7 

 

 

 

 

 

 

 

1
0
5
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1 (Kominami et al., 2001) 2 (Kominami et al., 2001) 3 (R. Jin et al., 2004) 4 (Kominami, Nakaseko, Shimada, Furusho, Inoue, 

et al., 2005)   5 (Sá et al., 2009) 6 (L. Li et al., 2010) 7 (Paschoal, Nuñez, Lanza, & Zanoni, 2013) 8 (R. Jin et al., 2004) 9 (Sá et 

al., 2009) 10 (Pan et al., 2012) 11 (W. Liu et al., 2014) 12 (Kominami et al., 2001) 13 (Hamanoi & Kudo, 2002) 

 

Table 4-3 (continued). Nitrate conversion and products selectivity for photocatalysts composites with 4th period metal. 

Cu/MgTi

O3-TiO2 

high-pressure 

Hg lamp 125 

W 

0.2 7.0 200 Sodium 

oxalate 5 

mM 

5 120 39.2 76.3 18.4 5.3 8 

Fe/TiO2 high-pressure 

Hg lamp 

110W 

0.25 7.1 600 Formic 

acid 40 

mM 

3 180 100 0 13.0 

 

87.0 9 

nzv 

Fe/TiO2 

cold cathode 

fluorescent 

lamp 

0.25 0.16 30 none 3 30 95.0 0 62.0 38.0 10 

nzv 

Fe/TiO2 

UV-A lamp 

20 W 

20 0.8 n.r. Formic 

acid 27 

mM 

3 720 80.0 0 39.1 60.9 11 

Ni/TiO2 high-pressure 

Hg lamp 400 

W 

0.05 10 5 Oxalic 

acid  40 

mM 

3 360 20.0 0 100 0 12 

Ni/ZnS Xe lamp 300 

W 

0.5 1000 100 Methanol 

1.5 M 

n.r. 120

0 

0.3 91.0 8 .0 1.0 13 

1
0
6
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3.3.1.2. Platinoids 

The use of platinoids in TiO2 composites drastically alters photocatalyst 

performance due to associated changes in the reductive mechanisms (Shin, Jung, Bae, Lee, 

& Kim, 2014). The pioneering work of Ranjit et al. (1994) compared the effects that these 

metals may have on nitrate conversion. They observed decreasing photocatalytic 

performance of Rh > Ru > Pt > pristine ZnS > Pd (Ranjit, Krishnamoorthy, & Viswanathan, 

1994). These different performances observed for TiO2 photocatalysts depended on the 

synthetic method. The performance of impregnated catalysts decreased in the order Ru > 

Rh > Pd > Pt, while the preparation of the composites by photodeposition was found to be 

Pd > Rh > Pt > Ru (Ranjit & Viswanathan, 1997b). The different trends related to synthetic 

method were correlated to differences in the size and morphology of the dispersed metal 

clusters (Ranjit & Viswanathan, 1997b). However, the metals’ performance was also 

related to the intrinsic capability of each platinoid to stabilize Hads because materials with 

higher overpotential for H2 evolution presented predominant yield of NH4
+. In this context, 

Li et al. (Y. Li & Wasgestian, 1998) and Kominami et al (Kominami et al., 2001) suggested 

that, in the case of platinoids, nitrate can be reduced by adsorbed H● with an Eº(H+/ H●) = 

-2.31 V. The most influential factors affecting efficiency of proton reduction on the metal 

surface are (i) the hydrogen overpotential during water splitting and (ii) the Hads 

stabilization (Juan Yang et al., 2013). In support of this hypothesis, Hamanoi et al. 

(Hamanoi & Kudo, 2002) proved experimentally that a decrease in NO3
- conversion is 

observed when hydrogen evolution is increased. Furthermore, bubbling H2 enhances the 

reduction of NO3
- to NH4

+, demonstrating that the adsorption of H2 on platinoids surface 

catalytic sites as Hads contributes to the reduction process (Sá et al., 2009).  
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 The use of metals allows an alternative reductive pathway. The first step is the 

preferred reduction of H+ to H● on the metallic surface (Trasatti, 1972), which remains 

adsorbed on the Pt surface and creates an electron sink as summarized in reaction (61). The 

Hads can dimerize and evolve to H2 (Sehested & Christensen, 1990) following the pathway 

described in reaction (62) or it can react with NO2
-, reducing it to N2 or NH4

+ (L. Li et al., 

2010). For this hydrogenation pathway, the first reduction of NO3
- to NO2

- follows the 

mechanism discussed for pure TiO2 depicted in Fig. 4-7. The secondary reductive 

mechanism is still unclear, but a pathway similar to the one reported for nitrate reduction 

by hydrogenation is suggested (R. Zhang et al., 2013), where the hydrogenation of NO2
- 

yields NO by reaction (63). The NO is subsequently easily reduced to NH4
+ according to 

reaction (64). The release of N2 instead requires adsorption of two NO molecules to react 

with Hads releasing N2O as intermediate (reaction (65)) that can be reduced by CO2
●- or 

Hads following pathways in reactions (50) and (66) (Czapski & Peled, 1968; R. Zhang et 

al., 2013), respectively. 

 

H+ + e-
cb → Hads         (61) 

2 Hads → H2     k = 5.0 x 109 M-1 s-1  (62) 

NO2
- + Hads → NO + OH-    k = 7.1 x 108 M-1 s-1  (63) 

NO + 5 Hads → NH4
+  + OH-   k = n.a.    (64) 

2 NO + 2 Hads → N2O + H2O   k = n.a.    (65) 

N2O + 2 Hads→ N2 + H2O   k = 2.1 x 106 M-1 s-1  (66) 
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The experimentally-observed low conversions (2–20%) when using monometallic 

platinoid photocatalysts could be related to the preferential evolution of H2 when compared 

to the alternative pathways for N-based reactions (63) to (66). As seen in Table 4-4, 

platinoid composites yield NH4
+ as the main product; although it is still unclear which gas 

species are released.   
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Table 4-4. Nitrate conversion and products selectivity for photocatalysts composites with platinoids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1(Kominami et al., 2001) 2 (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005) 3 (Mohamed & Baeissa, 2014) 4 (Kominami et al., 

2001) 5 (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005) 6 (L. Li et al., 2010) 7 (Kominami et al., 2001) 

 

Catalyst Lamp Loading 

/ g 

[NO3
-

]0 / 

mM 

Volume 

/ mL 

Sacrificial 

agent 

pH Time 

/ min 

Conversion 

/ % 

Selectivity / % Ref. 

NO2
- NH4

+ N2 

Pd/TiO2 high-

pressure Hg 

lamp 400 W 

0.05 10 5  Oxalic acid  

40 mM 

3 180 2.6  3.1  76.9  20.0 1 

Pd/TiO2 high-

pressure Hg 

lamp 400 W 

0.05 10 5  Oxalic acid 

40 mM 

11 720 6.0 0 0 0 2 

Pd/ 

NaTaO3 

n.r. Hg lamp  

500 W 

0.8 1.6  1000  Oxalic acid 

60 mM 

3 60 100 n.r. n.r. n.r. 3 

Pt/TiO2 high-

pressure Hg 

lamp 400 W 

0.05 10  5  Oxalic acid  

40 mM 

3 180 6.4  1.2 31.3 67.5 4 

Pt/TiO2 high-

pressure Hg 

lamp 400 W 

0.05 10  5  Oxalic acid  

40 mM 

11 720 4.0 0 0 0 5 

Pt/TiO2 high-

pressure Hg 

lamp 250 W 

0.5 0.97  500  Benzene 

0.12 mM 

4.2-

6.0 

240 25.0 0 63.0 37.0 

 

6 

RuO2/Ti

O2 

high-

pressure Hg 

lamp 400 W 

0.05 10  5  Oxalic acid  

40 mM 

3 360 17.2 3.5 33.7  62.8 7 

1
1
0
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3.3.1.3. Noble metals: gold and silver 

The last group of monometallic composites combine noble metals silver (Ag) and 

gold (Au) with a semiconductor. Using Au/TiO2 composites generally demonstrated a low 

performance for NO3
- conversion in comparison to Ag/TiO2 catalysts as summarized in 

Table 5. The use of oxalic acid as a hole scavenger may be one of the main factors 

contributing to this reported lower performance for Au/TiO2 (Anderson, 2011, 2012). 

Literature reports suggest that formic acid may be a more efficient hole scavenger when 

compared to oxalic acid (see section 4). However, insufficient data exist to better 

understand the role of gold on the photocatalytic reduction of nitrate, especially in light of 

Kominami et al. (Kominami et al., 2001) study, which demonstrates a 6-fold increase when 

compared to pristine TiO2 under similar experimental conditions.  

In contrast to other monometallic composites, Ag/TiO2 catalysts exhibit a much 

higher selectivity towards N2 evolution in presence of formic acid as hole scavenger (F. 

Zhang et al., 2005). Major selectivity towards N2 has been reported by a number of authors 

(K Doudrick et al., 2013; Kobwittaya & Sirivithayapakorn, 2014; Lozovskii et al., 2009; 

Parastar et al., 2013; Sá et al., 2009; D. Sun et al., 2016), as summarized in Table 4-5. The 

different performances could not be attributed only to the Schottky barrier and the 

recombination rate diminution phenomena because similar results could not be observed 

for other composites. It could be postulated that silver has the ability to improve the ratio 

of N-species surface coverage to reductant species. A possible enhancement on the 

reduction rate kinetics could be attributed to the mediated reduction by e- on the silver 

surface by direct charge transfer. However, more data is needed to better elucidate the role 

of Ag surfaces with respect to improving selectivity. 
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Table 4-5. Nitrate conversion and products selectivity for photocatalysts composites with noble metals silver and gold. 
Catalyst Lamp Loading 

/ g 

[NO3
-

]0 / 

mM 

Volume 

/ mL 

Sacrificial 

agent 

pH Time 

/ min 

Conversion 

/ % 

Selectivity / % Ref. 

NO2
- NH4

+ N2 

Ag/TiO2 Xe lamp 

300 W 

0.125 1.6  250 Formic 

acid 8 mM 

3.0 180 95.0  2.0 8.0 90.0 1 

Ag/TiO2 high-

pressure 

Hg lamp 

400 W 

0.05 10.0 5 Oxalic 

acid  40 

mM 

3.0 180 86.0 0 53.5 46.5 2 

Ag/TiO2 high-

pressure 

Hg lamp 

400 W 

0.05 10.0  5  Oxalic 

acid  40 

mM 

11.0 720 24.0 5.0 0 95.0 3 

Ag/TiO2 high-

pressure 

Hg lamp 

125 W 

0.25 7.0 250  Formic 

acid 40 

mM 

3.0 30 71.7 16.0 0.23 83.7 4 

Ag/TiO2 low-

pressure 

Hg lamp 8 

W 

0.45 7.1  450  Formic 

acid 40 

mM 

3.0 30  96.0 0 0 100 5 

Ag/TiO2 high-

pressure 

Hg lamp 

110 W 

0.25 7.1  600  Formic 

acid 40 

mM 

3.0 180 100 0 4.0 96.0 6 

 

 

 

 

 

 

1
1
0
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1 (D. 

Sun et al., 2016) 2 (Kominami et al., 2001) 3 (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005) 4 (F. Zhang et al., 2005) 5 

(Lozovskii et al., 2009) 6 (Sá et al., 2009) 7 (K Doudrick et al., 2013) 8 (Kobwittaya & Sirivithayapakorn, 2014) 9 (Parastar et al., 2013) 

10 (Ren et al., 2015) 11 (Kominami et al., 2001) 12 (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005) 13 (Anderson, 2011) 

14 (Anderson, 2012)

Table 4-5 (continued). Nitrate conversion and products selectivity for photocatalysts composites with noble metals silver and 

gold. 

Ag/TiO2 high-

pressure 

Hg lamp 

400 W 

0.2 7.1  200  Formic 

acid 40 

mM 

2.5 n.r. 99.0 0 12.0 88.0 7 

Ag/TiO2 black-

light bulb 

15 W 

Thin 

film 

7.1 4500  Formic 

acid 59.3 

mM 

2.8 360  70.0 0.5 0.10 99.4 8 

Ag/TiO2 n.r. UV 

light 125 

W 

1.2 1.6  1500  Formic 

acid 40 

mM 

5.0 180  82.0 0 0 100 9 

Ag2O/TiO2 high-

pressure 

Hg lamp 

300 W 

0.02 7.1  20 Formic 

acid 8 mM 

3.0 240  97.2 2.4 14.4 83.2 10 

Au/TiO2 high-

pressure 

Hg lamp 

400 W 

0.05 10.0  5  Oxalic 

acid  40 

mM 

3.0 360 44.0 0.1 50.0 49.9  11 

Au/TiO2 high-

pressure 

Hg lamp 

400 W 

0.05 10.0 5  Oxalic 

acid  40 

mM 

11.0 720 16.0 75.0 0 0 12 

Au/TiO2 n.r. UV 

light 400 

W 

0.25 1.6  1200  Oxalic 

acid 8 mM 

3.0 180  60.0 n.r. n.r. n.r. 13 

Au/TiO2 n.r. UV 

light 400 

W 

0.25 1.6  1200  Oxalic 

acid 8 mM 

3.0 180 44.0 0 39.0 61.0 14 

1
1
0
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3.3.2. Bimetallic composite photocatalyst 

Bimetallic nanoparticles improve kinetics of nitrate reduction by hydrogenation 

processes due to the synergistic contribution of platinoid metals and fourth period metals 

(mainly Cu) (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005; Wehbe et al., 

2009). As discussed previously, copper can contribute to faster reduction of NO3
- to NO2

-, 

but it hardly yields a complete reduction to NH4
+ or N2. Platinoids, such Pt and Pd, can 

easily reduce NO2
- via the hydrogenated mediated mechanism, although low conversion 

efficiencies are typically observed because NO3
- reduction is a limiting step. The 

underlying idea behind these bimetallic composites is enhancement of the overall reduction 

process by combining both metals with TiO2 as e-
cb and H2 source (Sá et al., 2012). In cases 

like these, the overall performance is considerably enhanced as illustrated in Table 4-6.  

Soares et al. (Soares, Pereira, Orfao, et al., 2014) reported evaluating the influence 

of a Pd-Cu/TiO2 composite as catalyst for: (i) direct hydrogenation and (ii) direct 

hydrogenation combined with photocatalysis when bubbling H2 or H2/CO2 mix. The direct 

bubbling of H2 in the dark resulted in a 55% of NO3
– conversion with selectivity of 72% 

for NO2
-, 22% for NH4

+, and 6% for N2. When light was applied, the conversion increased 

to 75% with selectivity of 72% for NO2
-, 18% for NH4

+, and 10% for N2. In contrast, when 

CO2 and H2 are simultaneously bubbled, the conversion increases under both dark and light 

experimental conditions. In dark, 90% NO3
– conversion was observed with a selectivity of 

85% for NH4
+ and 15% for N2. This NO3

– conversion increased to 98% and the selectivity 

shifted to 48% for NH4
+ and 52% for N2 in light conditions. These results emphasize two 

interesting effects. The first effect is related to pH and stems from the direct use of H2 vs 

H2/CO2. When H2 was bubbled, the pH varied from pH ≈ 3 to pH ≈ 8.0. In contrast, pH 
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was maintained at ~5.0 when H2/CO2 was bubbled because CO2 acted as a buffer for the 

released OH– as summarized in reactions (63) and (64). Both experiments confirmed the 

mechanism of hydrogenation in presence of platinoid metals (mono and bimetallic 

composites). Considering reactions (63) and (64), the overall process efficiency is 

markedly influenced by pH changes. The major selectivity towards NO2
- release in the 

alkaline condition suggests that the second part of the mechanism, which involves 

reduction from NO2
- to NH4

+ or N2, is the highly pH-dependent mechanism, as it could be 

deduced from Fig. 4-7. The alkaline media inhibits additional reduction of NO2
-, which 

remains a main product with a selectivity of 72%.  

The second effect is related to photon contribution during the photocatalytic 

reduction. From the shift in N2 selectivity, which changes from 15% to 52%, it can be 

concluded that NO3
– reduction occurs via both mechanisms: (i) reduction via H2 and (ii) 

reduction via CO2
●- radical and photogenerated e-

cb. Therefore, when NO3
- is reduced by 

H2, it yields NH4
+ as main product (also observed in monometallic platinoid photocatalysts 

in Table 4-5) (Barrabes & Sa, 2011), because release of N2 via reactions (65) and (66) is 

negligible. The photocatalytic reduction via CO2
●- and photogenerated e-

cb represents the 

selective step towards N2 generation. According to Soares et al. (Soares, Pereira, Orfao, et 

al., 2014), both the pH and the hole scavenger effects are involved in NO3
- reduction and 

could influence product selectivity.  
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Table 4-6. Nitrate conversion and products selectivity for bimetallic photocatalysts composites. 

 

 

 

 

 

 

 

 

 

 

 

 

1 (Krasae & Wantala, 2016) 2 (Wenliang Gao et al., 2004) 3 (Kominami et al., 2005) 4 (Soares, Pereira, Orfao, et al., 2014)  

5 (Wehbe et al., 2009) 6 (Wehbe et al., 2009) 7 (L. Li et al., 2010) 8 (Hamanoi & Kudo, 2002) 

 

Catalyst Lamp Loading 

/ g 

[NO3
-

]0 / 

mM 

Volume 

/ mL 

Sacrificial 

agent 

pH Time 

/ min 

Conversion 

/ % 

Selectivity / % Ref. 

NO2
- NH4

+ N2 

nzv Fe-

Cu/TiO2 

3 UV-A 

lamps, 20 W  

n.r. 1.2  100  none 4 360  100 0 15.0 85.0 1 

Ni-

Cu/TiO2 

high-pressure 

Hg lamp 125 

W 

0.2 1.6  200  Oxalic acid 

5.0 mM 

3.0 300 25.0 16.0 44.0 40.0 2 

Pd-

Cu/TiO2 

high-pressure 

Hg lamp 400 

W 

0.05 10.0 5 Oxalic acid  

40 mM 

11.0 720 56.0 1.5 0 98.0 3 

Pd-

Cu/TiO2 

n.r. near-UV 

to visible light 

0.1 1.6  200  Formic acid 

40 mM 

3.3 240  85.0 0 15.0 85.0 4 

Pt-

Cu/TiO2 

5 n.r. UV 

lamps  

15 W 

1.0 0.8  500  Formic acid 

20 mM 

2.0 60  39.0 0 0 100 5 

Pt-

Cu/TiO2 

5 n.r. UV 

lamps  

15 W 

1.0 0.8  500  H2 60 

mL/min + 

Formic acid 

20 mM 

2.0 60  100 0 13.7 86.3 6 

Pt-

Cu/TiO2 

high-pressure 

Hg lamp 250 

W 

0.5  1.0  500  Benzene 

0.12 mM 

4.2-

6.0 

240 66.0 0 0 100 7 

Pt-

Ni/ZnS 

Xe lamp 300 

W 

0.5  1000 100  Methanol 

1.5 M 

n.r. 1200 0.03 54.3 42.7 3.0 8 

1
1
6
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In summary, it could be concluded that the use of bimetallic catalysts and silver 

monometallic materials represent the most promising avenues for improving both catalytic 

reduction of nitrate and selectivity towards N2. Future research efforts directed at 

elucidating the role of these bimetallic composite photocatalysts and their use in full-scale 

reactors is necessary to facilitate the development and implementation of photocatalytic 

technologies for nitrate management. Development of alternative photocatalysts, 

especially composites, would further aid in solving the challenges related to nitrate 

reduction efficiency and selectivity. 

Section 4: Hole scavengers influence 

The importance of hole scavengers, also called sacrificial electron donors, during 

NO3
- reduction stems from the need to minimize recombination reactions and also from 

their role as reduction process mediators (i.e., CO2
●-). Based on the existing literature, all 

hole scavengers employed in nitrate reduction processes are organic compounds. The most 

common scavengers are methanol, oxalic acid, and formic acid, including their 

corresponding salts. These three compounds have been connected to slightly different 

mechanisms that result in diverse scavenging effects and yield different reduction by-

products. Formic acid is typically the preferred hole scavenger, although the potential 

importance of the other organics should not be neglected.  

 

4.1. Methanol as a hole scavenger 

Methanol (CH3OH) was first used as a hole scavenger by Mori et al. (Mori, Suzuki, 

Fujimoto, Watanabe, & Hasegawa, 1999), who employed xenon light source and a 
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hollandite photocatalyst (K1.8Ga1.8Sn6.2O16) to reduce nitrate. In an attempt to analyze 

labeled nitrogen compounds via Fourier transform infrared spectroscopy (FTIR) and 

determine particular gaseous products, Mori et al (Mori et al., 1999) elucidated important 

mechanistic pathways for reduction of nitrate to N2. Specifically, they observed the 

formation of nitroso-compounds with characteristic bands at 1200 cm-1 as intermediate by-

products, which led them to propose a reaction mechanism for the reduction of NO3
- to N2 

mediated by methanol as summarized in equations (67) to (69):  

 

 HNO3+ CH3OH → [ON-CH2OH] + H2O + ½ O2     (67) 

[ON-CH2-OH] + ½ O2 → [ON-CHO] + H2O     (68) 

[ON-CHO] → (H+) HCOOH+ ½ N2       (69)  

 

The formic acid, which is released as a product, can be further oxidized, yielding 

CO2
●- as described previously in reaction (34). This species could further interact with 

nitrate via a mechanism illustrated in Fig. 4-7 (see Section 3.1). The studies conducted 

using methanol as a hole scavenger show low nitrate conversions of ~23–40%, with 

preferential yield of ammonium and nitrite as main reduction products using CdS based 

catalysts (Tawkaew, Fujishiro, Yin, & Sato, 2001; Tawkaew, Uchida, Fujishiro, & Sato, 

2006; Tawkaew, Yin, et al., 2001). The highest conversion (64.0%) was achieved using 

methanol and ZnO catalyst, although the authors did not report experimental product yield 

results and selectivity towards N2 could not be determined (S. Park et al., 2007). However, 

Hamanoi et al. (2002) observed preferential generation of NO2
- along with H2 produced 

from water reduction using a Ni-ZnS photocatalyst (Hamanoi & Kudo, 2002), which 
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further suggests that using methanol may not lead to high N2 selectivity. Nonetheless, 

methanol improves the conversion of nitrate compared to a no-scavenger case, but with 

poor selectivity compared to formic acid (see Tables 4-1 to 4-6). Additionally, methanol is 

highly toxic to humans, acting as central nervous system depressant and potentially causing 

permanent blindness, and these health concerns restrict its use in drinking water 

applications.  

 

4.2. Oxalic acid as a hole scavenger 

The second most-used hole scavenger in photocatalytic nitrate reduction is oxalic 

acid (C2H2O4). Experiments with pure TiO2 using oxalic acid as a hole scavenger at pH < 

3.0 yield <15% nitrate reduction (Kominami et al., 2001; Y. Li & Wasgestian, 1998) and 

high ammonium selectivity. Upon adding silver to the TiO2, 86% reduction was achieved, 

but the selectivity was still driven towards ammonium with >50% being ammonium end-

product (Kominami et al., 2001). Introducing Ag/TiO2 as a photocatalyst yielded 95% 

selectivity to nitrogen gases, but nitrate reduction did not exceed 24% (Kominami, 

Nakaseko, Shimada, Furusho, Inoue, et al., 2005). Limited nitrate reduction of 28% and 

44% was also observed when Cu/TiO2 and Au/TiO2, respectively, were used as 

photocatalysts with oxalic acid as hole scavenger (Kominami, Nakaseko, Shimada, 

Furusho, Inoue, et al., 2005). The difference in conversion outcomes is attributed to the pH 

influence on the distribution of oxalic acid and its anionic species in acid-base equilibria 

with pKa1 = 1.25 and pKa2 = 4.14 according to reactions (70) and (71), respectively. This 

trend is observed in results reported by Kominami et al. (Kominami, Nakaseko, Shimada, 

Furusho, Inoue, et al., 2005) where the difference in outcomes is attributed to the difference 
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in pH: faster kinetics and complete reduction at pH 3.0 vs slower kinetics and incomplete 

reduction at pH 11.0. Therefore, the oxidation of this dicarboxylic acid is highly affected 

by electrostatic repulsion when the photocatalyst surface is negatively charged. 

 

 C2H2O4 ⇋ H+ + C2HO4
-   pKa1 = 1.25   (70) 

C2HO4
-
 ⇋ H+ + C2O4

2-    pKa2 = 4.14   (71) 

 

Compared to formic acid, oxalic acid exhibits a different oxidation mechanism 

during photocatalysis. Formic acid is oxidized directly by h+
vb, whereas oxalic acid is 

indirectly oxidized by ●OH produced from oxidation of water according to reaction (35) 

(Kyle Doudrick et al., 2012). The ●OH production step additionally contributes to slower 

kinetics than alternative scavenging species. Hydroxyl radical, however, has the ability to 

oxidize NO2
- and NH3 to NO3

-. This competitive re-oxidation mechanism further decreases 

the nitrate reduction kinetics. The oxidation mechanism of oxalic acid by hydroxyl radical 

is well known and involves the release of oxalate radical following reaction (72). These 

radical species can either dimerize releasing CO2 or disproportionate yielding CO2 and 

CO2
●- via reaction pathways (73) and (74), respectively (Ershov, Janata, Alam, & Gordeev, 

2008; Garcia-segura & Brillas, 2011; Sá, 2015).  

 

●OH + -OOC-COOH → ●OOC-COOH + OH- k = 5.0 x 107 M-1 s-1 (72) 

2 ●OOC-COO- → -OOC-COO- + 2 CO2  k = 5.0 x 108 M-1 s-1 (73) 

●OOC-COO- → CO2 + CO2
●-    k = 2 x 106 s-1  (74) 
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Formation of CO2
●- radical as a reducing mediator is considerably slower from 

oxalic acid than from formic acid. Furthermore, the generated CO2 from oxidation of oxalic 

acid, which yields more CO2 than oxidation of formic acid under similar conditions, 

increases the CO2 dissolution by forming carbonic acid as summarized in reaction (75). 

The dissociation of carbonic acid yields bicarbonate and carbonate anions from reactions 

(76) and (77), which can compete with CO2
●- and N-species sorption on the catalyst surface 

and have the ability to poison it. Therefore, the demonstrated low nitrate reduction when 

oxalic acid is used could also be attributed to these processes. 

 

CO2 + H2O → H2CO3        (75) 

H2CO3 ⇋ H+ + HCO3
-    pKa1 = 3.63   (76) 

HCO3
-  ⇋ H+ + CO3

2-    pKa2 = 10.32   (77) 

 

The existing evidence about the behavior of oxalic acid as a sacrificial electron 

donor hinders future research aimed at exploiting this hole scavenger in developing 

photocatalytic nitrate reduction systems and suggests the need for examining more efficient 

donor species such as formic acid. 

 

4.3. Formic acid as a hole scavenger 

The most favorable hole scavenger for nitrate reduction is formic acid because of 

its simple carboxylic acid structure and single-electron direct transfer mechanism that 

provides the strong reductant CO2
●- as the only product according to reaction (34). 

However, using formic acid in photocatalytic nitrate reduction has additional benefits. As 
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a weak acid with pKa = 3.75, formic acid can release H+ according to equation (56), which 

represents one of the key factors to drive the NO3
- conversion pathways towards N2. When 

formic acid is used as hole scavenger, the typical initial pH is reported between 2.5 to 3.0 

(de Bem Luiz et al., 2012; Kobwittaya & Sirivithayapakorn, 2014; Lozovskii et al., 2009; 

Ren et al., 2015; D. Sun et al., 2016) (Tables 4-1 to 4-6). The H+ consumption during the 

complete reduction to N2 increases the pH to quasi-natural conditions of pH > 5.0 (K 

Doudrick et al., 2013; Sá et al., 2009; D. Sun et al., 2016), demonstrating the requirement 

of protons to attain complete reduction. To maintain a low pH environment, excess formic 

acid needs to be provided. 

The optimal dose for formic acid as a hole scavenger depends on the catalyst, the 

available catalytic sites (dosage), and the formic ratio respective to nitrate. For pure TiO2, 

metal-composite TiO2, and carbon-doped TiO2 (Shaban, El, Kh, & Farawati, 2016b), 40 

mM formic acid provides optimal results when 100 mg-N L-1 of NO3
- is treated with varied 

irradiation conditions (Lozovskii et al., 2009; Sá et al., 2009; F. Zhang et al., 2005). Under 

optimal conditions, 98.4% conversion of nitrate, with > 99% selectivity for nitrogen gases, 

has been achieved. Bem Luiz et al. (2012) reported that lower formic acid concentrations 

led to incomplete conversions and decreased selectivity towards N2, probably because of 

insufficient reducing mediators (CO2
●-) (de Bem Luiz et al., 2012). Interestingly, excess 

formic acid also reduced N2 selectivity by increasing NH4
+ yields by 20 %. The high formic 

acid:NO3
- ratios (over 15:1) in these scenarios contribute to saturation of the 

photocatalyst’s surface area and decrease the ratio of N-species at the surface to reductant 

species. This is due to the higher occupancy of the active sites by the reducing agent (de 

Bem Luiz et al., 2012; Sá et al., 2009), as depicted in Fig. 4-9a. 
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Kinetics also appear associated with the formic acid:NO3
- ratio. Even though 

conversion of high formic acid concentrations is similar at extended treatment times (cf. 

Fig. 4-9a), Doudrick et al. (K Doudrick et al., 2013) found that HCOOH concentration 

affects the kinetic rate constant. As depicted in Fig. 4-9b, the rate constant increases 

exponentially when the formic acid:NO3
- ratio increases to ~4.0–5.0 (which corresponds 

to the observed optimum concentration of 40 mM to treat 100 mg-N L-1). The rate constant, 

however, decreases when this ratio increases above 5.0. Furthermore, excess scavenger—

apart from being counterproductive in terms of selectivity and kinetics—also affects the 

required operational times of the photocatalytic reductive treatment because the 

photocatalytic treatment should be extended until complete removal of the hole scavenger.   

  



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9. (a) NO3
- () conversion and () selectivity to N-gases attained after 3h of 

treatment of 100 mg-N L-1 using a Cu/TiO2 photocatalyst at different formic acid:nitrate 

ratios. Readapted from Sá et al. 2009. (b) Variation of the pseudo-first-order rate constant 

(k) for NO3
- reduction with different formic acid:nitrate ratios during the treatment of 100 

mg-N L-1 NO3
- solution using an Ag/TiO2 photocatalyst. Readapted from Doudrick et al. 

2013. 

4

6

8

10

12

14

0 2 4 6 8 10 12

NO3-

NO2-

H
2
NOH

HNO2

NH4+

k
 /

 c
m

2
 p

h
o
to

n
s-1

 x
 1

0
2
0

 [Formic acid] / [NO
3

-
 ] 

0

20

40

60

80

100

120

0 5 10 15 20 25

Conversion
Selectivity

 %
 C

o
n

v
er

si
o
n

%
 S

el
e
ct

iv
it

y
 t

o
w

a
rd

 N
-g

a
se

s

 [Formic acid] / [NO
3

-
 ] 

a 

b 



125 

4.4. Other scavengers reported 

Methanol, oxalic acid, and formic acid are not the only organic species considered 

as hole scavengers for nitrate reduction. Alternative hole scavengers also have been 

explored, although their observed low efficiencies preclude their future uses and 

investigations.  

Ethanol is an attractive alternative to methanol because of its innocuous character. 

However, Zhang et al. (2005) and Yang et al. (2013) reported lower conversion rates 

compared to methanol and lower selectivity towards N2 (Juan Yang et al., 2013; F. Zhang 

et al., 2005). These results suggest that the increasing the number of carbons in linear 

alcohols and carboxylic acids is somehow detrimental to the overall reduction process. This 

undesired effect could be attributed to more complex oxidation mechanism that long 

carbon chain molecules may have when compared to shorter and simpler molecules such 

as methanol, which readily release of CO2
●-. 

Li et al. (L. Li et al., 2010) suggested benzene as hole scavenger. The unusual use 

of this organic pollutant as a hole-scavenger was considered as a potential scenario for 

simultaneously treating groundwaters contaminated with multiple common pollutants via 

photocatalysis: the oxidation of benzene to CO2 and the reduction of nitrate to N2. However 

insufficient nitrate removals of 8.0%, 25.0%, 33.0%, and 66.0% were obtained after 4 h of 

treatment for TiO2, Pt/TiO2, Cu/TiO2, and Pt-Cu/TiO2, respectively. Also, the selectivity 

towards N2 was low, even though benzene and its by-product phenol were completely 

degraded within 10 minutes of starting treatment. The formation of phenol as a by-product 

evidenced that benzene degradation occurs via ●OH oxidation mediated pathway (reaction 

(35)), which could cause potential re-oxidation of NO2
- and NH3. Within the same context, 
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Hirayama et al. (J. Hirayama et al., 2014) conducted similar work using glucose as hole 

scavenger after considering its availability in waters. However, only 23% NO3
- reduction 

was reported using a system combining Pt/TiO2 and SnPd/Al2O3 nanoparticles with 75% 

N2 selectivity. In contrast, Bems et al. (Bems et al., 1999) considered using humic acids as 

hole scavenger because their ubiquitous presence in natural water resources, but this 

achieved only 32% NO3
- reduction after 76 h of treatment with pristine TiO2. Nonetheless, 

their work led to exploring photocatalytic reduction of nitrate in natural waters without the 

external addition of hole scavengers in exchange for elongating the residence and treatment 

times.  

 

4.5. Photoelectrocatalytic systems to minimize recombination  

An alternative strategy to minimize recombination reaction (30) and enhance the 

photocatalytic performance is the application of a constant current density (j) or defined 

potential (E) through the photocatalyst, which favors the charge carriers’ separation by an 

external electrical circuit (Garcia-Segura & Brillas, 2017). Only a few works have 

considered this approach of using the catalyst as photo-electrode to enhance photocatalyst 

performance via electrochemical methods. Wang and Turner (Heli Wang & Turner, 2013) 

present a short communication demonstrating the enhanced photocatalytic reduction of 

nitrate using a photocatode of p-GaInP2 at Ecat = -1.0 V, but they do not identify the released 

products. A more complete study is reported by Paschoal et al. (Paschoal et al., 2013). The 

application of Ecell = +0.2 V using a Cu/Cu2O photocathode at pH 7.0 reduces initial NO3
- 

by 93% after 75 min with the with a selectivity of 42% NO2
- and 52% N2. Therefore, the 

reduced NO2
- would likely be further reduced preferentially to N2 if the treatment duration 
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is extended. Particularly promising aspects of the photoelectrocatalytic approaches are (i) 

the good selectivity exhibited at quasi-neutral pH environments and (ii) the great 

performance exhibited without hole scavenger addition. Note that TiO2 is not considered a 

photocathode because the standard potential of ecb
- on TiO2 surface of -0.14 V vs SHE 

(Dung et al., 1982; Ward et al., 1983) cannot reduce nitrate as discussed above (Eº(NO3
- / 

●NO3
2-) = -0.89 V vs SHE). Alternative catalysts such Cu2O with an ecb

- standard potential 

of -1.2 V vs SHE can lead to complete nitrate reduction (cf. Fig. 4-6b) (X. Liu, Li, & Yu, 

2014; Paschoal et al., 2013). The early results stemming from work with other 

semiconductor materials encourage further exploration of alternative photoelectrochemical 

systems. 

Section 5: Influence of light sources and spectra outputs on photocatalytic reduction 

of nitrate 

One of the fundamental components of all photocatalytic processes is the irradiation 

source, which provides the energy required for photoexcitation and generation of charge 

carriers h+
vb/e

-
cb as summarized in reaction (29). The importance of light source selection 

and optimization has been frequently overlooked in photocatalytic reduction because of the 

misconception that the light source does not render any influence beyond providing the 

needed band gap energy for photogeneration of h+
vb/e

-
cb in a photocatalyst. However, light 

source selection may represent the cornerstone element in obtaining effective 

photocatalytic reduction of nitrate. 

As discussed, nitrate undergoes both photocatalytic and photolytic transformations, 

which could affect by-product selectivity and the overall kinetics. Many irradiance sources 
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are available for use in photocatalytic systems, and, all of these sources could be 

parameterized by their light spectra and intensities expressed in terms of photon fluence 

(photons/cm2 or Einstein/cm2) (J. R. Bolton & Stefan, 2002; J Bolton, 2000; M. I. Stefan 

& Bolton, 2005). These parameters are clearly articulated in the literature (J. R. Bolton & 

Linden, 2003) and could serve to properly asses light dose and energy efficiency.  

The main irradiation sources used in photocatalytic treatments are low-pressure Hg 

lamps, medium-pressure Hg lamps, and high-pressure Hg lamps. However, the use of Xe 

lamps or even natural sunlight irradiation has been considered for doped photocatalyst with 

narrower band gaps. Figure 4-10 depicts the characteristic electromagnetic emission 

spectra of each irradiation source. Sources emitting within the ranges of 270–330 nm and 

200–400 nm where photolysis of NO3
- and NO2

- can occur, respectively, are of particular 

interest in photocatalytic reduction of nitrate (cf. Fig. 4-3). 
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Figure 4-10. Overlay of light source irradiance spectra with electromagnetic spectrum for: 

(a) low-pressure Hg lamp, (b) medium-pressure Hg lamp, (c) high-pressure Hg lamp, (d) 

xenon lamp, and (e) natural sunlight. From left to right the colors corresponds to  UV-C,  

 UV-B,  UV-A,  visible light and  IR spectrum. 

The low-pressure Hg lamp has a distinctive peak at 254 nm (Figure 4-10a) and is 

most commonly employed for UV disinfection processes. Under this irradiation, nitrate 
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and nitrite are photolytically active with Φ254nm ≈ 0.17 (Mack & Bolton, 1999b) and Φ254nm 

≈ 0.02 (Sharpless & Linden, 2005), respectively. However, due to the short wavelength 

output of low-pressure Hg lamps, a high energy input (E= 4.88 eV/photon) is required to 

produce photons at λ = 254 nm.  

Medium-pressure Hg lamps have become more prominent in the photocatalytic 

research literature because of their broader polychromatic UV emission compared to low-

pressure Hg sources (Figure 10b). However, the visible and infrared wavelengths can 

reduce photocatalytic efficiency because those photons do not produce photoexcitation 

even though energy is consumed for their production. Medium-pressure lamps, due to their 

broader effective UV spectrum range, can target both photocatalytic and photolytic 

pathways for both nitrate and nitrite reduction. The predominant peak at λ=355 nm has high 

photolytic quantum yield for nitrite and HNO2, but it is outside the photolytic window for 

nitrate photolysis, which is λ<315 nm (Bilski et al., 1992; Mack & Bolton, 1999b) (cf. Fig. 

4-3). 

High-pressure Hg lamps are the most popular source of irradiance, encompassing 

about 60% of the reports related to photocatalytic reduction of nitrate. As can be seen in 

Fig. 4-10c, high-pressure Hg lamps exhibit the highest overall peak density in the UV-

spectrum. The majority of photons produced by these lamps are in the UV-A and UV-B 

spectrum regions, which are sufficient for photocatalytic excitation. A smaller number of 

photons are emitted in UV-C wavelengths that would promote photolytic reactions of 

nitrate and nitrite in solution.  Key peaks at 302 nm and 313 nm and a broader output 

between 220–250 nm are beneficial to nitrate reduction, wherein quantum yields are 

between 0.01 and 0.17 (Mack & Bolton, 1999b). Even though high-pressure lamps are the 
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most commonly used in photocatalytic processes, their additional photonic benefits have 

largely been understated in the present literature, leading to inadequate understanding of 

photolytic synergies beyond photoexcitation of photocatalysts alone.    

Xenon irradiance sources and solar light similarly offer disproportionately high 

fluence of sub-band gap photons (for TiO2, Ebg = 3.25). While these sources have been 

utilized with some success for nitrate reduction, their photonic efficiency remains quite 

low because of their significant photon production in the visible and infrared part of the 

spectrum. Xenon lamps produce broad band irradiation from the UV-C through UV-A 

wavelength range (Figure 4-10d), which means that photolytic processes may be activated 

via xenon irradiance sources. Few studies utilize the solar spectrum due to the complexity 

of engineering light delivery in a scalable reactor design; however, the broad inclusion of 

UV-A and visible light (Figure 4-10e) allows for employing short band gap photocatalysts 

for nitrate reduction. The use of natural sunlight has the potential to drastically reduce 

operational costs and highlights the environmentally-friendly potential of photocatalytic 

processes from the perspective of using renewable energy sources. Due to the low intensity 

(<4%) of UV light in the solar spectrum, the likelihood of photolytic activity for nitrogen 

oxyanions is minimal.  

Varying the lamp power changes the radiant flus or irradiance, but it does not 

change the characteristic emission spectrum. For example, a 100 W high-pressure Hg lamp 

would be expected to produce intensity about 4-fold lower than a 400 W high-pressure Hg 

lamp, but both would emit with the characteristic spectrum shown in Figure 4-10c. A 

minimum fluence rate (photons cm-2 s-1) is required to activate the photocatalytic process. 

Insufficient light hinders radical formation and reductive processes on the photocatalyst 
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surface, while surplus light diminishes efficiency because photonic saturation reduces the 

proportion of photons that successfully promote one electron to the empty conductive band 

(reaction (29)). Therefore, similar conversions can be attained at similar treatment times 

over certain wattages. However, higher wattage lamps lead to higher energy consumptions.   

By accounting for the energy per photon at each wavelength emitted by a light 

source, widely disparate irradiance sources may be compared directly by assessing the 

energy emission via the Planck-Einstein relationship (78):    



c
E

h
          (78)  

where E is the energy per photon of light at the specific wavelength λ in eV; λ is the 

wavelength; the product of hc corresponds to 1240 eV nm with h being the Planck’s 

constant (6.62 x 10-34 m2 kg s-1), and c is the speed of light in vacuum (3.00 x 108 m s-1). 

Consequently, a combination of spectrum and intensity, well-represented by the 

photon fluence, could be a meaningful representation of the contribution of light to the 

photocatalytic reduction of nitrate. Unfortunately, the existing reports do not present a 

standardized expression of the irradiance results, which makes cross-comparison difficult. 

For example, studies reporting the use of a composite Ag/TiO2 photocatalyst and formic 

acid hole-scavenger have used low-, medium-, and high-pressure Hg lamps as well as black 

light bulbs and xenon lamps for nitrate reduction (K Doudrick et al., 2013; Kobwittaya & 

Sirivithayapakorn, 2014; Lozovskii et al., 2009; D. Sun et al., 2016; F. Zhang et al., 2005). 

Literature reports nitrate removal following the trend: high-pressure Hg > medium-

pressure Hg > low-pressure Hg > xenon > black light (UV-A); and these results span from 
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71% to 100% reduction of nitrate. In contrast, selectivity for nitrogen gases, which can 

range from 88% to 100%, follows a different trend: low-pressure Hg > black light (UV-A) 

> high-pressure Hg > xenon > medium-pressure Hg. However, these results are not 

normalized to fluence because this information is frequently omitted in the reports, which 

renders the published results incomparable.  

The effect of light source in nitrate reduction has largely been ignored, but from the 

available data analysis, reported variables confound trends. Information gaps and 

inconsistencies exist related to (i) reported intensity of light source (wattage), (ii) published 

data on fluence only reported in three articles to-date (K Doudrick et al., 2013; Marks, 

Yang, Westerhoff, & Doudrick, 2016; T. Yang et al., 2013), and (iii) great diversity of 

utilized semiconductors and composites (Ketir, Bouguelia, & Trari, 2009; Mohamed & 

Baeissa, 2014; Oka, Miseki, Saito, & Kudo, 2015; R. Wang et al., 2015; Y. Wang, Yang, 

Gao, Cong, & Yang, 2014). To illustrate, the radiant intensity of sources reported in the 

literature varies extensively from one experimental setup to another, and the photonic 

fluence the lamps is seldomly reported. The lamp powers could vary from 8 W (Lozovskii 

et al., 2009) for a low-pressure Hg lamp to 500 W for a xenon lamp (Mori, Suzuki, 

Fujimoto, Watanabe, & Hasegawa, 2000). The wide variation eliminates the possibility of 

comparing the data. Therefore, normalizing the future reported findings to photon fluence 

becomes imperative to compare results across diverse experimental conditions, reactor 

designs, and light sources.   

While photocatalytic pathways have the ability to improve nitrate conversion rates, 

the direct energy absorption by the anionic species (see Fig. 4-3) could lead to direct 

photolysis, which competes with the absorption of photons by the photocatalysts. 
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Consequently, the photon absorption by the anionic nitrogen species has the potential to 

reduce the efficient conversion of photons into charge carriers when light sources that 

could induce photolysis are used. These factors modify the electrical energy per order 

(EE/O) and the overall photonic efficiency of a photocatalytic system related to the 

quantum efficiency for nitrate photocatalytic reduction. Both are relevant parameters 

scientifically and to engineered applications. To make these systems more competitive 

from a light-based perspective, careful assessment of light-catalyst-contaminant 

interactions must be conducted.    

Section 6: Competitive oxidation reactions of inorganic nitrogen species 

As discussed previously, to propagate the reactions, both photogenerated charge 

carriers (h+
vb and e-cv) must undergo redox processes in which h+

vb scavengers play a 

crucial role. Un-scavenged species, such as h+
vb, or reactive oxygen species, such as ●OH 

or HO2
●, could propagate re-oxidation of the main ionic products NO2

- and NH4
+ via a 

series of parallel reactions. Consequently, understanding these parallel reactions is critical 

to developing an efficient photocatalytic system because they could undermine the overall 

photo-reduction efficiency.  

 

6.1. Photocatalytic reactions involving NH4
+ 

Photocatalytic oxidation could contribute to selective removal of ammonium via 

innocuous N2 generation pathway. However, different parallel pathways could lead to NO2
- 

and NO3
- as end-products. The pH plays a key role in directing a photocatalytic ammonium 

oxidation pathway because it affects ammonium speciation (pKa = 9.25) as illustrated by 
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its acid-base equilibria described by reaction (56). Adapted from Bonsen et al. (1997), Fig. 

4-11 depicts ammonia removal after 6 h of photocatalytically treating 5 x 10-4 mol L-1 of 

NH4Cl at different pH-controlled NH4
+/NH3 distributions (Bonsen, Schroeter, Jacobs, & 

Broekaert, 1997). As reported, no significant degradation is observed at pH< 7.0 (Murgia, 

Poletti, & Selvaggi, 2005b; H.-H. Ou, Liao, Liou, Hong, & Lo, 2008; Pollema, 

Milosavljevi, Hendrix, Soluji, & Nelson, 1992b; Zhu et al., 2005), which questions the 

reactivity of NH4
+ and its role in the photocatalytic oxidation. In fact, similar conclusions 

could be deduced from the experimentally determined rate constants for ●OH reaction with 

NH3 (k = of 108 M-1 s-1) and NH4
+ (non-quantifiable k) (Neta, Maruthamuthu, Carton, & 

Fessenden, 1978; Nilsson, Christensen, Pagsberg, & Nielsen, 1971). Furthermore, Zhu et 

al. (2005) proved that the adsorption of cationic NH4
+ on the negatively charged surface of 

TiO2 catalyst (pHpzc = 6.2) does not influence the NH4
+/NH3 oxidation rate (Zhu et al., 

2005). A plot of available NH3 according to the equilibria reaction (56) demonstrates that 

the data at different initial pH converge in a single data series fitting with Langmuir-

Hinshelwood adsorption model. The increasing rates of NH4
+/NH3 photocatalytic 

oxidation with increasing pH should be explained by the pH-dependent equilibrium (56) 

and not the pH-dependent electrostatic attraction between NH4
+ and the negatively-charged 

TiO2 surface. In conclusion, these results validate the negligible contribution of NH4
+ in 

photocatalytic oxidation. This conclusion is highly relevant because several authors 

suggest N2 released during the catalytic reduction of nitrate is produced from ammonia 

oxidation (de Bem Luiz et al., 2014; Oka et al., 2015; Wehbe et al., 2009), which is 

incorrect according to the discussed results.  
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Figure 4-11. Speciation of NH4
+/NH3 as a function of the pH, and () the percentage of 

degradation attained after 6 h of treatment of 0.5 mM of NH4
+ with TiO2. Readapted from 

Bonsen et al. 1997.  

 

By using selective hole scavengers, Wang et al. (2014) demonstrated the role of 

●OH radicals during photocatalytic NH3 degradation, where NH3 conversion was reduced 

25% by competitors(Hua Wang et al., 2014). Even though h+
vb is primarily engaged in 

harvesting the sacrificial electrons, both species (h+
vb and ●OH) play an active role in the 

ammonia degradation pathways that yield NO2
-, NO3

-, and N2, as main products. As 

described above, the first step in photocatalytic degradation is adsorption of the target 

pollutant, NH3, according to expression (79). The first oxidation reaction of NH3(ad), occurs 

by h+
vb or ●OH and corresponds to the formation of ●NH2 radical via reactions (80) and 

(81), respectively (Hickel & Sehested, 1992; Hua Wang et al., 2014; Yamazoe, Okumura, 

Hitomi, Shishido, & Tanaka, 2007). The highly reactive ●NH2 reacts rapidly with water 

(reaction (82)) or ●OH (reaction (83)) yielding NH2OH as the main product, which is a 
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common intermediate found in biological nitrification.  The subsequent oxidation of 

NH2OH by h+
vb or ●OH yields hydroxylamine radical (●NHOH) following reactions (84) 

and (85), respectively (Simic & Hayon, 1971). 

 

NH3aq → NH3ad           (79) 

NH3ad + h+
VB → ●NH2 + H+   k = n.a.    (80)  

NH3ad + ●OH → ●NH2 + H2O   k = 9.7 x 107 M-1 s-1  (81) 

●NH2 + H2O → NH2OH(ad) + H+  k = n.a.    (82) 

●NH2 + ●OH → NH2OH(ad)   k = n.a.    (83) 

NH2OH + h+
VB → ●NHOH(ad) + H+  k = n.a.    (84) 

NH2OH +●OH → ●NHOH(ad) + H+  k = 9.5 x 109 M-1 s-1  (85) 

 

Upon formation of ●NHOH radical intermediate, both NO2
- and NO3

- species can 

be yielded. According to Wang et al. (2014), oxidation of ●NHOH by dissolved O2 occurs 

via reaction (86), which yields a product that is further reacted with hydroxyl anion in 

alkaline environment to produce NO2
- according to reaction (87). NO2

- then oxidizes to 

NO3
- following reaction (88), which stems from reactions started by reaction (19). 

 

●NHOH + O2(aq) → ●O2NHOH   k = n.a.   (86) 

●O2NHOH + OH- → NO2- + H2O + ●OH  k = n.a.   (87) 

NO2
- + ●OH → NO3

- + H+    k = n.a.   (88) 
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An alternative pathway scenario, which is highly plausible without the generation 

of hydroxylamine, could be also considered (Yamazoe et al., 2007). In this scenario, ●NH2 

radical reacts with O2
●- (reaction (21)), releasing nitric oxide anion (NO-) (reaction (89)) 

that could be easily oxidized by oxygen to NO2
– and NO3

– as described by reactions (90) 

and (91): 

 

●NH2 + O2
●- → NO- + H2O  k = n.a.     (89) 

2NO- + O2 → 2 NO2
-   k = n.a.     (90) 

NO- + O2 → NO3
-   k = 5.7 x 107 M-1 s-1   (91) 

 

Bonsen et al. (1997) corroborated the above pathways (89) to (91) by reporting 

lower yields for NO2
- and NO3

- in absence of O2 after bubbling N2 gas. Similar results were 

observed by Lee et al. (2002), who demonstrated higher NO2
- and NO3

- yields in presence 

of O2 (Jaesang Lee, Park, & Choi, 2002a). However, these findings also indirectly confirm 

the existence of an alternative pathway yielding nitrogen oxyanions without the O2 

requirement. This was suggested by Pollema et al. (1992) and is described with reactions 

(92) and (93) as an alternative to the preferred pathway in presence of oxygen that is 

described in reaction (94) (Murgia et al., 2005b).  

 

NH3 + 2 H2O + 6 h+
VB →NO2

- + 7H+      (92) 

NO2
- + H2O + 2 h+

VB → NO3
- + 2H+      (93) 

NH3 + O2 + 2 h+
VB →NO2

- + 7H+      (94) 
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In contrast, the evolution of N2 on pure photocatalysts is considered to be associated 

with ●NH2 radical dimerization (reaction (95)), which releases hydrazine (N2H4). 

Hydrazine is further oxidized by the holes to produce N2 according to reaction (96) 

(Yamazoe et al., 2007). 

 

2 ●NH2 → N2H4     k = n.a.   (95) 

N2H4 + 4 h+
VB → N2 + 4H+     k = n.a.   (96) 

  

Unfortunately, reaction (96) has a low quantum yield with negligible conversion 

rates when pure semiconductors are used as photocatalysts, as deduced from Table 4-7. 

Consequently, the reaction selectivity leads to preferential formation of oxyanions as final 

products of the photocatalytic NH3 oxidation by pure semiconductors (H.-H. Ou et al., 

2008). The N-loss is attributed to N2 formation, but because the N-loss could be also 

attributed to NH3 volatilization, the actual contribution of this pathway to the overall 

photocatalytic oxidation of NH3 remains unclear. The N-loss due to NH3 volatilization 

could be significant as demonstrated by Luo et al. (2015) who reported 20% NH3 removal 

in absence of catalyst after 5 h under stirring (Luo et al., 2015a). Note that NH3 could 

evaporate during photocatalytic treatment because of temperature increases due to (i) 

constant irradiation, (ii) photocatalyst heating from recombination reactions, and (iii) 

continuous stirring. Furthermore, the NH3 loss via evaporation becomes more prominent 

at higher alkaline pH and larger initial NH3 concentrations, as summarized in Table 4-7. 

Conducting complete nitrogen mass balance, which include N2 analysis, becomes an 

imperative in ascertaining formation of all final product species during photocatalytic 
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oxidation of NH3, as demonstrated by Shavisi et al (2014) (Shavisi, Sharifnia, Hosseini, & 

Khadivi, 2014). Therefore, evolution of N2 during the photocatalytic treatment of NH3 

rarely occurs if it is not catalyzed by a noble metal co-catalyst. 

Enhanced selectivity towards N2 evolution from NH4
+ photocatalytic oxidation has 

been observed in TiO2 composites with noble metals, such Au/TiO2 or Pt/TiO2. Gerischer 

and Mauerer (1970) proposed that noble metals contribute to stabilization of active 

intermediate NHx species (Gerischer & Mauerer, 1970). As described by reaction (97), the 

●NH2 adsorbed on Pt or Au surface can undergo additional oxidation, forming NH- anion 

(NH-), which could further be oxidized to an adsorbed N atom via reaction (98) reaction. 

These so-called NHx species, where x and y are equal to 0, 1, or 2, are highly reactive and 

lead to different intermediate species N2Hx as described by equation (99). N2Hx species 

easily decompose to form N2 as illustrated with equation (100). The final step is desorption 

and evolution of N2 (101) (K. Lee, Ku, & Pak, 2016).  

 

●NH2(ad-Pt) + ●OH (h+
vb) → NH-

(ad-Pt) + H2O (H+)    (97) 

NH-
(ad-Pt) + ●OH (h+

 vb) → N(ad-Pt) + H2O (H+)     (98) 

NHx(ad-Pt) + NHy(ad-Pt) → N2Hx+y(ad-Pt)  (x,y = 0,1,2,)    (99) 

N2Hx+y(ad-Pt) + (x+y) h+
 vb → N2(ad-Pt) + (x+y) H+    (100) 

N2(ad-Pt) → N2(g)↑        (101) 

 

Lee et al. (2002) reported an interesting study where the selectivity of pure TiO2 

photocatalyst was compared to Au/TiO2 and Pt/TiO2 0.2 wt% nanoparticles containing 

composites (Jaesang Lee et al., 2002a). As can be seen in Table 4-7, the selectivity towards 
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N2 generation increases from 10% for pure TiO2 to 30% for Au/TiO2 with similar NH3 

conversion scenarios of ~20%. When Pt/TiO2 composite is introduced under comparable 

conditions, selectivity increases to 65%, and photocatalytic conversion is enhanced, 

attaining a 65% oxidation of initial 0.1 mM of NH3.  

Fundamental studies related to photocatalytic oxidation of NH3 are mainly 

conducted in model water matrices and in absence of significant interferences from other 

co-pollutants, which must be considered if the system is to be employed in realistic 

conditions. Zhu et al. 2008 and Vohra et al. 2010 conducted their studies in presence of co-

pollutants in greywater and simulated wastewater, respectively. Zhu et al. 2008 noted that 

surfactants and monosaccharides could diminish NH4
+/NH3 photocatalytic degradation by 

50–90% at pH 10.1. Hydroxyl radical scavenging by organics contributed to 80% 

performance reduction when compared to pure-water conditions (Zhu, Nanny, & Butler, 

2008). However, TiO2 photocatalysis was able to remediate surfactants, monosaccharides, 

and ammonia through production of hydroxyl radicals, although at a >50% slower rate than 

pristine compound kinetics. This research effort demonstrated that applications for photo-

catalytically treating greywater remain promising, provided that sufficient irradiation and 

surface adsorption sites are available for the reactions to occur. Similarly, Vohra et al 

(2010) demonstrated in realistic conditions that TiO2 adsorption is less dominant than the 

pH-dependent speciation for NH4
+/NH3 oxidation (Vohra, Selimuzzaman, & Al-Suwaiyan, 

2010). In the presence of other co-pollutants, optimal pH in their study shifted from pH 12 

(NH4
+/NH3 alone) to pH 10 for both binary and ternary systems of NH4

+/NH3 with S2O3
2- 

and S2O3
2- /p-Cresol, respectively. 
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Table 4-7. Ammonia conversion and products selectivity during photocatalytic oxidation. 

Catalyst [NH3]0 

/ mM 

pH Time 

/ min 

Conversion 

/ % 

Selectivity / % References 

NO2
- NO3

- N 

loss 

TiO2  5.8  

x 10-4 

9.1 120 100 0 54.3 - (Pollema, 

Milosavljevi, 

Hendrix, 

Soluji, & 

Nelson, 

1992a) 

TiO2  0.1  11.5 3600 100 81.0 19.0 - (A. Wang, 

Edwards, & 

Davies, 

1994a) 

TiO2  0.1  10.2 360 98 0 95.0 5.0 (Zhu et al., 

2005) 

TiO2  0.5  9.9 360 44.7 12.5 80.7 6.8 (Bonsen et 

al., 1997) 

TiO2   1.5  10.7 1440 50 41.9 36.4 21.7 (Murgia, 

Poletti, & 

Selvaggi, 

2005a) 

TiO2 

nanotubes  

0.6  10 360 40 15.0 42.0 43.0 (H. Ou & 

Liao, 2008) 

TiO2   0.1  10 120 18 30.0 

 

60.0 10.0 (Jaesang 

Lee, Park, & 

Choi, 2002b) 

Au/TiO2  0.1  10 120 18 

 

50.0 10.0 40.0 (Jaesang Lee 

et al., 2002b) 

Pt/TiO2   0.1  10 120 65 20.0 15.0 65.0 (Jaesang Lee 

et al., 2002b) 

Pt/TiO2  7  10 360 85 10.0 55.0 35.0 (Altomare et 

al., 2015) 

La/Fe/TiO2 6  10 360 50 5.0 25.0 20.0 (Luo et al., 

2015b) 
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6.2. Photocatalytic reactions involving NO2
- 

Even though the role of different oxidant species (holes, free hydroxyl radicals, or 

adsorbed hydroxyl radicals) in photocatalysis is still not explained well for all model 

pollutants, experimental evidence was presented in the early 1990s by demonstrating nitrite 

is not directly oxidized by photogenerated h+
vb (reaction (29)), but that the pathway is 

mediated by ●OH formed through water oxidation in reaction (35) (Milis & Domenech, 

1993; Milis, Peral, & Domenech, 1994a). A mechanistic pathway for nitrite photocatalysis 

is presented where equations (102) and (103) involve forming several radical intermediate 

species through elementary steps. Specifically, the oxidation of nitrite by ●OH radical leads 

to HNO3
●- radical formation via reaction (102) (Navio et al., 1998). HNO3

●- radical species 

are in acid equilibria (103) with their conjugate (NO3
●)2- bases (Gonzalez & Braun, 1995). 

 

NO2
- + ●OH → HNO3

●-    k = 2.5 x 109 M-1 s-1  (102) 

HNO3
●- ⇋ H+ + (NO3

●)2-   k = 16  s-1   (103) 

 

Following reaction (103), two different pathways are possible. The first pathway 

involves (NO3
●)2- radicals reacting with dissolved oxygen to directly yield NO3

- as 

illustrated in reaction (104). This reaction reaffirms the improved nitrite oxidation results 

that are observed when oxygen is bubbled. 

 

(NO3
●)2- + O2 → NO3

- + O2
●-   k = 1.6 x 108 M-1 s-1  (104) 
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The second pathway involves release of NO2
● either from HNO3

●- dissociation by 

reaction (105) or by (NO3
●)2- radical reaction with water by reaction (106). This is 

coincident with the overall reaction (19) described for nitrite photolysis. 

 

HNO3
●- → NO2

● + OH-   k = 2.3 x 105 M-1 s-1  (105) 

(NO3
●)2- + H2O → NO2

● + 2OH-  k = 5.5 x 104 M-1 s-1  (106) 

 

Once NO2
● radicals are produced, they dimerize and form N2O4 according to 

reaction (9), which rapidly decomposes to release NO2
- and NO3

- according to reaction (10) 

(Botta, Navio, Hidalgo, Restrepo, & Litter, 1999; Shifu & Gengyu, 2002). Additionally, 

NO2
● could further react with ●OH to form peroxynitrous acid (reaction (11)) that could 

quickly isomerize to NO3
- (reaction (14)). 

Table 4-8 summarizes the findings related to photocatalytic oxidation of nitrite. 

High selectivity of the process forming nitrate can be observed. Although nitrate is less 

hazardous than NO2
-, it remains an undesired product. Understanding the factors affecting 

catalytic oxidation is of high interest because nitrite is a key intermediate species in 

photocatalytic oxidation of ammonia. For TiO2, the optimal oxidation to nitrate is achieved 

at pH values close to the TiO2 pHpzc, and the pH could dramatically affect the mass 

transport kinetics and practically inhibit it.  
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Table 4-8. Nitrite conversion and products selectivity during photocatalytic oxidation. 

Catalyst [NO2
-

]0 / 

mM 

pH time  

/ min 

Conversion 

/ % 

Selectivity / % References 

NO3
- 

 N loss 

TiO2 0.1 5.0 120 100 100 

(with 

air) 

56.7 

(without 

air) 

0 (Shifu & 

Gengyu, 

2002) 

Cr-TiO2 

photoanode 

(1.2 V) 

0.2  6.2 180 90 100 0 (Shi, Leng, 

Zhu, 

Zhang, & 

Cao, 2006) 

Fe-Doped 

TiO2  

0.2 6.5 30 100 100 0 (Milis, 

Peral, & 

Domenech, 

1994b)  

WO3 (1.3 

V) 

0.1 6.3 180 50 100 0 (Cheng & 

Leng, 

2007) 

Zn-WO3 

(1.3 V) 

0.1 6.3 180 75 100 0 (Cheng & 

Leng, 

2007) 

 

 

It has been observed, even during the photocatalytic oxidation of NH3, that the 

photocatalytic oxidation of nitrite does not occur at highly alkaline pH (Luo et al., 2015a; 

A. Wang, Edwards, & Davies, 1994b). Milis et al. (1994) reported a seven-fold decrease 

in the initial reaction rate when the pH increased from 5.7 to 9.5. Nitrite speciation, 

which is pH dependent (17) via its acid-base equilibria (pKa = 3.40), plays an important 

role because photocatalytic oxidation can be achieved only for nitrite that is sorbed on the 

surface of a photocatalyst.  
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Figure 4-12. Speciation of HNO2/NO2
- as a function of pH, and () the initial rate 

determined during the treatment of 0.18 mM of NO2
- with TiO2. Readapted from Zhu et al. 

2005.  

 

Fig. 4-12 depicts the pH-dependent speciation of HNO2/NO2
- and the 

corresponding rate constants (Zhu et al., 2005). The rate increases below the pHpzc with the 

increase of NO2
- due to the favored adsorption of the negatively charged anion on the 

positively charged surface of TiO2 in the case discussed. The electrostatic repulsion 

between the anion and the negatively charged surface of TiO2 over the pHpzc can explain 

the dramatic decrease on the oxidation kinetics of nitrite at alkaline pH (Milis et al., 1994a). 

However, Zhu et al. (2005) noted additional factors contributing to the kinetic decrease. 

As suggested by Bravo et al. (1993), the competitive adsorption of OH- could probably 

inhibit the adsorption of other species under highly alkaline conditions (Bravo, Garcia, 

Domenech, & Peral, 1993). However, it must not be neglected that the rate of other 

elementary steps could also be affected by pH (Zhu et al., 2005). 



147 

Section 7: Photocatalytic reduction of nitrate in real water matrices 

The photocatalytic reduction of nitrate has been predominantly studied in model 

water matrices without competing species; however, some available studies report nitrate 

reduction in natural and more complex water matrices including high salinity, other anionic 

species, and mixed organic constituents collected in Table 409. The presence of species in 

solution that competitively react with the hvb
+, ecb

-, or redox mediators could significantly 

affect performances as well as the competitive adsorption on catalytic sites. Presence of 

competitive species appears to slow down reaction kinetics by an order of magnitude (Kyle 

Doudrick et al., 2012; T. Yang et al., 2013). Fortunately, selectivity remains high for 

nitrogen gases in most cases.  

The most significant anionic competitors identified are sulfate (SO4
2-) and 

carbonate (CO3
2-) species (F. Zhang et al., 2005). These anionic species could 

competitively adsorb on the photocatalyst surface due to their higher anionic charge when 

compared to nitrogen oxyanions and conventional hole scavengers (e.g., formic or oxalic 

acid). Kominami et al. (2005) reported complete suppression of nitrate reduction in the 

presence of high CO3
2-, which has the ability to poison a photocatalyst (Kominami, 

Nakaseko, Shimada, Furusho, Inoue, et al., 2005). However, CO2 stripping could 

completely recover the catalyst. In addition to photocatalyst inhibition, SO4
2- has been 

reported to contribute to photo-aggregation of TiO2 nanoparticles (Y. Shih, Zhuang, Peng, 

Lin, & Tseng, 2012), which reduces the catalyst’s effective surface area and, consequently, 

its photocatalytic performance.  
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  Table 4-9. Nitrate conversion and products selectivity during photocatalytic reduction treatment of actual matrices. 

Reactor 

Configuration 

Matrix Components Applied Photon 

Dose 

Nitrate Removal Selectivity toward Ng Ref. 

125W high-pressure 

Hg, 250mL, Ag/TiO2 

[PD], 30 min, HCOOH 

Separate comparison 

of 100mg/L Na2SO4, 

Na2CO3, NaHCO3 

-NR- None: 98% 

Na2SO4: 30% 

Na2CO3: 27% 

NaHCO3: 85% 

None: 100% Ng 

Na2SO4: 83% Ng 

Na2CO3: 82% Ng 

NaHCO3: 82% Ng 

1 

17W low pressure Hg, 

2.7L, Zn/TiO2, 9mg/L 

NO3
-N, 120 min, 

HCOOH 

Slaughterhouse 

wastewater, high 

turbidity, low TOC 

(5mg/L), high CFU 

(>105) 

2.64x10-3 

Einstein/min 

2.38x1022 

photons 

TiO2 alone: 87.5% 

Zn/TiO2: 91.7% 

TiO2 alone: 70.71% Ng 

Zn/TiO2: 95.5% Ng 

2 

450W medium pressure 

Hg, 200mL,TiO2 (P90) 

7.1mW/cm2  

IX Brine; Synthetic: 

500mg/L NO3
-, 0-

10%wt NaCl 

12x1019 

photons/cm2 

No TiO2: 30% 

(0%wt NaCl) 

48% (6%wt NaCl) 

TiO2: 100%  

No TiO2: >90% NO2
- 

TiO2: 75% Ng, 25% 

NH4
+ 

3 

450W medium pressure 

Hg, 200mL, TiO2, (P90) 

7.1mW/cm2, HCOOH 

IX Brine; Real: 

1793mg/L TDN, 

23.9mg/L DOC, 

<50mg/L SO4
2- 

(precipitated prior), 

350mg/L as CaCO3 

26x1019 

photons/cm2 

Sulfate-Removed 

Brine: 89%  

 

Sulfate-Removed Brine: 

83% Ng, 17%NH4
+ 

4 

15W low pressure Hg, 

500mL, C/TiO2, 

65W/m2, 40 min, 

HCOOH 

Seawater, >600mM 

Cl-, >500mM Na+, 

33mM SO4
2-, 61mM 

Mg2+, <12mM: Ca2+, 

K+, Sr+, HCO3
-, Br- 

1.99x1019 

photon/cm2 

C/TiO2: 100% C/TiO2: 100% Ng 5 

  1 (F. Zhang et al., 2005) 2 (de Bem Luiz et al., 2014) 3 (T. Yang et al., 2013) 4 (T. Yang et al., 2013)  

  5 (Shaban, El, Kh, & Farawati, 2016a)  

 

1
4
6
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Interestingly, high salinity (e.g. seawater or ion exchange brines) produced 

contrasting effects for predominantly photolytic or photocatalytic reduction processes due 

to the presence of the chloride anion. For example, Yang et al. (2013) studied a synthetic 

ion exchange brine and found photolytic reduction of nitrate was 18% higher in the 

presence of 6%wt NaCl versus no-salt added. However, for photocatalytic reduction (pure-

TiO2, P90), the sodium chloride brine inhibited performance by a factor of 1.5 (T. Yang et 

al., 2013). This trend can be attributed to nitrite stabilization due to the chloride in the 

photolytic reduction of nitrate to nitrite (Petriconi & Papee, 1968; T. Yang et al., 2013). 

The chloride stabilization leads to minimal (<10%) production of gaseous nitrogen via 

photolysis reaction as nitrite remains the predominant product. For the photocatalytic 

reaction, the reactivity of the CO2
●- upon oxidation of formic acid is significant to reduce 

NO3
- to NO2

-. Thereby, the photoactivation of chloride ion in the aqueous solution is 

transformed to a scavenging oxidant, Cl● (Eº(Cl●/Cl-) = 2.43 V vs SHE), and inhibits 

reduction performance when in competition with formic acid for surface sites. 

Similar to the presence of chloride, other anionic species can affect the 

photocatalytic reduction performance. The kinetic response to additional competitive 

anionic species varies based on the properties of the added competitor. The inhibition of 

competing anions has largely been attributed to (i) the lesser availability of catalytic surface 

sites for nitrate/reductive intermediates adsorption and (ii) reaction due to other 

constituents with higher adsorption rates. However, as seen in a recent paper employing a 

C/TiO2 catalyst in seawater (Shaban et al., 2016b), 100% reduction may still be achieved 

at a rate similar to previous works in model waters (Table 4-8). Another group utilized 

Zn/TiO2 composite catalyst to remove nitrate from slaughterhouse wastewater (de Bem 
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Luiz et al., 2014) and achieved complete reduction with 95.5% N2 selectivity under low-

pressure Hg irradiation. The complexity of this matrix and photon flux comparable to the 

high salinity matrices posit feasibility of nitrate photocatalysis in a real water matrix.  

Proper hole scavenger dose to treat real water matrices (Shaban et al., 2016b) is 

important to maintaining performance and selectivity to nitrogen gases. Shaban et al. 

(2016) observed that an optimum concentration of 40 mM of formic acid was required to 

treat 1.6 mM of NO3
- in the presence of 0.64 M of chloride. In other words, a 25:1 ratio of 

HCOOH:NO3- was optimum, which is 5-fold higher than the 5:1 ratio typically used in 

pure waters containing NO3
-.  

Throughout the literature, there is minimal discussion of the catalytic affinity for 

nitrate and its subsequent effects on promoting N2 versus NH4
+ as a reduction product. 

Particularly in real water matrices, the proximity of nitrate and N-species to the catalyst in 

lieu of other competing species becomes important for efficient reduction. In all cases, the 

solid/liquid interface structure should be discussed in terms of the charged semiconductor 

catalyst surface and the double layer depicted in Fig. 4-13a. As we discussed previously, 

the direct charge transfer processes occur within the Helmholtz plane; therefore, the 

approach to the targeted species within this thin layer is crucial. As has been discussed in 

more recent papers, Figure 4-13b shows how competing species modify the double layer. 

The influence of the complex water matrix on NO3
- photocatalytic reduction can 

significantly slow nitrate photocatalytic performance (de Bem Luiz et al., 2014; Shaban et 

al., 2016b; T. Yang et al., 2013). According to Korgel et al. (1997), under higher ionic 

strengths, the effects of the double layer should decrease, and the reduction rates should 

increase (Korgel & Monbouquette, 1997). However, the experimental results show the 
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displacement of nitrate and hole scavenger species by other anionic species (such Cl-, 

CO3
2- or SO4

2-) reduce the efficiency of the desired reactions. Even though the 

modifications on the double layer also affect the reaction rates, the decrease of nitrate and 

formic acid concentration close to the photocatalyst surface is the limiting rate step. Further 

studies using complex water matrices are critical foci to ensure the applicability and 

scaling-up of photocatalytic technologies.  
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Figure 4-13. Double layer in (a) synthetic water matrices containing only nitrate and (b) 

actual water matrices with competing ionic species. 
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Section 8: Summary of key insights 

Nitrogen is essential for all forms of life, yet it suffers from the “goldilocks” 

paradox where too much or too little nitrogen in the wrong place at the wrong time can be 

detrimental. Managing the nitrogen cycle, a National Academy of Engineering Grand 

Challenge, impacts the food-energy-water system because industrial production of 

ammonia from N2 fixation (100 Tg N yr-1) from the atmosphere via the Haber-Bosch 

process consumes 1-2% of the world’s annual energy (James N Galloway et al., 2008; 

Gruber & Galloway, 2008). Nearly 75% of the world’s ammonia production goes towards 

fertilizers.  Nitrate contamination of freshwater supplies results from over application of 

fertilizers (50% are urea-based fertilizers, followed by anhydrous ammonia and ammonium 

nitrate) and is a major drinking water challenge where nanotechnology holds significant 

promise to address.  Hundreds of papers over the past two decades on photocatalytic 

reduction of nitrate were critically reviewed to summarize key knowns and to identify 

important questions that need resolution before the opportunities of this technology can be 

recognized. 

From the discussion of the elementary steps involved in nitrate reduction, a 

complete mechanism is described in Fig. 4-7. Furthermore, certain differences observed 

while using modified catalysts and co-catalysts have been discussed. One of the major 

features is the dual role played by hole scavengers: (i) they minimize the recombination 

reaction and (ii) they are the source of CO2
●- radical, which functions as the reducing 

mediator species. Some elementary steps involving charge transfer processes cannot be 

conducted by the ecb
-, with a standard reduction potential of -0.14 V vs SHE for TiO2, 

hence, the presence of CO2
●- radical (Eº(CO2/CO2

●-) = -1.81 V vs SHE) is crucial. In 



154 

contrast, the results reported in the literature identify pH as one of the particularly 

influential variables. The solution pH modifies the superficial charge and adsorption 

properties of the catalyst, and it also affects the reaction rates because several steps require 

H+. Acidic pH conditions of ~3.0 are optimal.  Furthermore, the use of different hole 

scavengers is presented and identifies formic acid as the most efficient because it results in 

major conversions and selectivity towards N2. Alternative hole scavengers such methanol, 

ethanol, oxalic acid, or other organic species have been also reported but with lower 

conversions due to the lower generation of CO2
●-.  The pending question that needs 

addressing is: How can photocatalytic reduction of nitrate be enhanced at near neutral pH 

without the addition of an external hole scavenger, to reduce chemical usage? 

Different photocatalysts have been synthesized and studied, including pure 

semiconductors, doped semiconductors, metallic composites, and bimetallic composites. 

Among all the considered options, Ag/TiO2 photocatalysts presented the best performance 

with respect to conversion and selectivity. Bimetallic Pd-Cu/TiO2 and Pt-Cu/TiO2 also 

show promising results. Future research should be devoted to the exploration of new 

materials that improve the products selectivity toward desirable by-products (N-gases) 

from nitrate. 

Light source (i.e., lamp, LED, sunlight spectra output) selection is frequently 

overlooked in photocatalytic systems, where it is incorrectly thought that light source does 

not render any influence beyond providing the needed band gap energy.  Depending upon 

reactor design (fixed films versus slurry based reactors) the importance cannot be 

overlooked for direct photolysis reactions to occur involving nitrate, nitrite or other 

intermediates. For example, light emitted near the peak absorption wavelengths and 
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quantum yields for HNO2/NO2
- are likely very important for polychromatic light sources 

with output in the 350-380 nm range. Additionally, the amount of light of different 

wavelengths that is scattered versus absorbed by nano-scale photocatalysts as a function of 

nanoparticle slurry or surface concentration is important, yet ill-defined in most 

experimental reports regarding nitrate removal.  A key question that needs to be addressed 

as this technology advances towards implementation is: What are the correct units (photon 

flux, energy flux) and optimal wavelength range for photocatalytic reduction of nitrate to 

desirable N-gas by-products? 

Nanotechnology has tremendous opportunity to modulate the lattice structure of 

photocatalysts and to use bimetallic photocatalysts.  While doping metals into 

photocatalysts influences the spectral bandwidth of absorbed energy and influences the 

bandgap of the photocatalyst, it does not appear to influence the mechanisms of nitrate 

reduction.  In contrast, production of metallic composites (e.g., silver nanoparticles on the 

surface of TiO2) does appear to change the mechanisms of nitrate reduction.  An important 

question to advance this topic that has not been considered in previously published articles 

is: What is the optimal particle size, aspect ratio, shape or morphology and composition of 

composite nanoparticle photocatalysts to maximize nitrate reduction rates and improve by-

product selectivity? 

Aiming toward the application of photocatalytic reduction management as a 

solution for nitrate pollution, the treatment of real water matrices should be considered. 

Only a few works articulate the possible competitive ions that may diminish photocatalyst 

efficiency among other concerns. Photocatalytic treatment may focus on concentrated 

waste streams from other water treatment processes (e.g., ion exchange brines containing 
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high salt (5 to 25% NaCl) with nitrate (>1000 mg N L-1) in the presence of sulfate or 

bicarbonate) or direct treatment of ground and surface waters that must be treated at near 

neutral pH levels and in the presence of heterogeneous mixtures of anions, cations and 

natural organic matter that may act as electron or hole scavengers.  An insufficient number 

of studies have evaluated the performance of highly efficient nitrate reducing 

photocatalysts in complex water matrices.  Even fewer studies exist that evaluate the 

lifetime effectiveness of photocatalysts, because experiments have been performed in batch 

reactors rather than single-base continuous flow reactors.  Key questions that emerge are: 

What compounds in natural drinking waters serve as “natural” hole scavengers, and do 

they play a role in nitrate reduction mechanisms and by-product selectivity?  What is the 

role of natural water constituents on fouling or dissolving (composite) photocatalysts 

during prolonged operation (months) in continuous flow photocatalytic reactors? And how 

can these issues be minimized through catalyst cleaning or other strategies? 
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CHAPTER 5 

ULTRAVIOLET WAVELENGTHS INFLUENCE KINETICS AND SELECTIVITY FOR N-

GASES DURING TIO2 PHOTOCATALYTIC REDUCTION OF NITRATE 

Abstract 

For drinking water applications, photocatalytic reduction processes beneficially 

transform aqueous nitrate to innocuous nitrogen gases but can produce nitrite and ammonia 

as undesirable aqueous by-products. We hypothesize that by-product selectivity is a 

function of light source and photon fluence dose, such that discrete wavelengths can 

increase yield of desirable N-gases. Experiments performed under different wavelength 

irradiation (ultraviolet- [UV] A, B, C) reduced nitrate in water to differing extents based 

on pH over the range of 1 to 8 or the presence of soluble organic electron donors. At an 

equivalent photon fluence dose, the most rapid nitrate loss in acidic solutions occurred 

using a combination of three UV-light emitting diodes (285 nm, 300 nm, 365 nm) closely 

followed by a polychromatic medium pressure UV lamp. A polychromatic xenon light 

source was least effective in reducing nitrate. Nitrite is an important intermediate during 

photocatalytic reduction of nitrate. Nitrite absorbs 330–380 nm light with high quantum 

efficiency. Thus, polychromatic or monochromatic light sources with strong UV-A 

emission more rapidly convert nitrite to by-products than UV-C monochromatic light 

sources. Nitrous acid (HONO) has a higher molar absorptivity (ε) and quantum efficiency 

than nitrite ion (pKa = 3.39) around 350-370nm. Selectivity towards nitrogen gases is 

bifurcated at the nitrite intermediate and is strongly influenced by direct photolysis instead 

of photocatalytic reduction. Thus, the selectivity of by-products can be controlled by 
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delivering light in the 350-370nm wavelength range, where it enables photocatalytic 

processes to rapidly initiate NO3
- reduction and delivers photons for direct photolysis of 

HONO. 
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Introduction 

Nitrate contamination in drinking water is globally pervasive, affecting over 24 

million people in the United States alone, with concentrations above the 10 mg-N/L 

maximum contaminant level (MCL) set by the United States Environmental Protection 

Agency (Burow et al., 2010). The National Academy of Engineering has listed 

management of the nitrogen cycle and provision of clean water as two of its top twelve 

grand challenges (National Academy of Engineering, 2017). Dealing with ubiquitous 

nitrate contamination requires transformation of fixed nitrogen in the aqueous phase to 

innocuous gaseous products (e.g., N2). Accepted technologies for nitrate removal from 

drinking water include ion-exchange and reverse osmosis, but both of those yield product 

waters (i.e., brines) containing concentrated nitrate instead of transforming nitrate into 

nitrogen gases. Biological denitrification is excellent for wastewater treatment, but 

managing organic or hydrogen electron donors, bacteria populations, release of soluble 

organics, and rapid start up and shut down of systems can be difficult for small drinking 

water systems (Health, 2005). Physical-chemical treatment processes are more feasible to 

implement at small system scale because they are less operationally intensive and are more 

reliable than biological processes for nitrate reduction. Emerging solutions for nitrate 

reduction are photocatalysis (Sá et al., 2009; Wehbe et al., 2009), catalytic hydrogen 

reduction (Barrabes & Sa, 2011; Y. X. Chen, Zhang, & Chen, 2003; Lecloux, 1999; Pintar, 

2003; Prüsse et al., 2000; R. Zhang et al., 2013), and electrochemical reduction (Mook et 

al., 2012; Polatides, Dortsiou, & Kyriacou, 2005; Safari, Rezaee, Ayati, & Jonidi-Jafari, 

2015), whereby nitrate is terminally reduced to innocuous nitrogen gases (e.g., N2) and 

minimal aqueous ammonium. Herein, we focus on photocatalysis for reduction of nitrate 
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because it uses environmentally benign catalysts, uses efficient photonic light sources, and 

can completely reduce nitrate to innocuous N-gases (e.g., N2).  

Photocatalytic reduction can treat nitrate in drinking water directly or treat ion 

exchange brines (T. Yang et al., 2013) to produce both aqueous and gaseous constituents 

with varying implications and toxicity (Gangolli et al., 1994; Montesinos, Quici, 

Destaillats, & Litter, 2015; WHO, 2016). A primary challenge for photocatalysis is to avoid 

ammonium production, which occurs readily at neutral pH (Kominami et al., 2001). 

Aqueous ammonia production is undesirable in drinking waters because it exerts a chlorine 

demand upon disinfection in water distribution systems. The preference is a sparingly 

soluble non-ammonia nitrogen gas by-product (e.g., N2, NOx). Selectivity toward non-

ammonia nitrogen gases may be further controlled in photocatalytic systems via adjustment 

of experimental and reactor parameters (Tugaoen, Garcia-Segura, Hristovski, & 

Westerhoff, 2017).  

Previous studies have focused efforts on managing by-product selectivity through 

manipulation of experimental conditions, including: pH (K Doudrick et al., 2013; F. Zhang 

et al., 2005), alkalinity (Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005; F. 

Zhang et al., 2005), sacrificial electron donor (K Doudrick et al., 2013; Sá et al., 2009), 

salinity (Petriconi & Papee, 1968; Shaban et al., 2016b; T. Yang et al., 2013), and catalyst 

(Bems et al., 1999; K Doudrick et al., 2013; Kyle Doudrick et al., 2012; Wenliang Gao et 

al., 2004; Gekko et al., 2012; Hamanoi & Kudo, 2002; R. Jin et al., 2004; Kobwittaya & 

Sirivithayapakorn, 2014; Kominami, Nakaseko, Shimada, Furusho, Inoue, et al., 2005; L. 

Li et al., 2010; Y. Li & Wasgestian, 1998; Lu et al., 2009; Penpolcharoen, Amal, & Brungs, 

2001; Ranjit, Krishnamoorthy, Varadarajan, & Viswanathan, 1995; Ranjit & Viswanathan, 
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1997a, 1997b; Ren et al., 2015; Sá et al., 2009; Shand & Anderson, 2013b; Soares, Pereira, 

Órfão, Faria, & Silva, 2014; Sowmya & Meenakshi, 2015; D. Sun et al., 2016; Juan Yang 

et al., 2013; T. Yang et al., 2013; F. Zhang et al., 2005, 2007). The literature shows N-

gaseous by-product formation ranging from > 80% to < 10%. These differences in 

selectivity emerge from aforementioned experimental solution conditions (pH (K Doudrick 

et al., 2013; F. Zhang et al., 2005), presence of external electron donors (K Doudrick et al., 

2013; Sá et al., 2009), or catalyst properties (Wenliang Gao et al., 2004; L. Li et al., 2010; 

Ren et al., 2015; Sowmya & Meenakshi, 2015; D. Sun et al., 2016)). Common experimental 

conditions (K Doudrick et al., 2013; Kyle Doudrick et al., 2012; Sá et al., 2009; F. Zhang 

et al., 2005) are 1 g/L of catalyst and 40 mM HCOOH to (1) satisfy low-pH conditions and 

(2) serve as a sacrificial hole scavenger. Acidic conditions are preferred for nitrate 

reduction to nitrogen gases, with HCOOH yielding the best kinetics and selectivity at pH 

≈ 2.5 (K Doudrick et al., 2013). Recent works have identified CO2
•-, a product of HCOOH 

oxidation (G. Liu et al., 2016b; Mora-Sero et al., 2005; Rengaraj & Li, 2007), as a primary 

photocatalytic mechanism for reduction of nitrate to nitrite in lieu of the conduction band 

electron due to its thermodynamic feasibility (Montesinos, Quici, Destaillats, & Litter, 

2015; Sá et al., 2009). Near the pKa of 3.39, nitrous acid (HNO2, HONO; Eqn. 1) forms, 

which is more photoactive in the mid 300nm range (quantum yield, Φ280-385nm = 0.35–0.45 

(Michael Fischer & Warneck, 1996; Oliver C Zafiriou & True, 1979; Zellner, Exner, & 

Herrmann, 1990)) than nitrite ion (Φ280-385nm = 0.025–0.15 (Mack & Bolton, 1999a)). 

However, this photolytic reaction is predominantly circular, yielding NO2
- (Eqns. 3–5).  

NO2
- + H+ ⇋ HONO   pKa = 3.39  Equation (1) 

NO3
- + H+ ⇋ HNO3  pKa <1   Equation (2) 
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HONO + hν → NO• + OH•     Equation (3) 

NO• + NO2
• → N2O3      Equation (4) 

N2O3 + H2O → 2NO2
- + 2H+     Equation (5) 

Due to the complex photochemistry, a parallel reaction reforming NO3
- and NO2

- is likely 

co-occurring via Eqns. 6–8 (which may contribute to oxidation of NO2
- in situ):  

NO• + NO• → N2O2      Equation (6) 

N2O2 + O2 → N2O4      Equation (7) 

N2O4 + H2O → NO3
- + NO2

- + 2H+    Equation (8) 

Titanium dioxide (TiO2) photocatalysis does not produce e-
cb of sufficient energy 

to reduce nitrate or its intermediates to nitrogen gases (Tugaoen et al., 2017). Formic acid 

oxidation occurs directly via h+
vb to yield carboxyl radical (CO2

•-) according to Eqns. 9 and 

10 (G. Liu et al., 2016b; Mora-Sero et al., 2005; Rengaraj & Li, 2007): 

  Semiconductor + hν → h+
vb + e-

cb   Equation (9) 

HCOO- + h+
vb

 → H+ + CO2
●-     Equation (10)  

Combining photocatalysis with photolysis, reactions proceed that yield gaseous products 

(Eqns. 11–16) (L. Chu & Anastasio, 2003; Mack & Bolton, 1999b): 

HONO + e- → NO• + OH-     Equation (11) 

NO• + e- → NO-      Equation (12) 

NO- + H+ ↔ HNO      Equation (13) 

2HNO → N2O + H2O     Equation (14) 

HNO + NO• → N2O + HONO   Equation (15) 

N2O + CO2
•- + H+ → N2 + •OH + CO2   Equation (16) 
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Targeting HONO as a key intermediate for evolution of nitrogen gases offers a 

method to minimize ammonium production via transformative processes yielding 

nitrogenous gases (Eqns. 11–16). TiO2 photocatalysis has been postulated in the literature 

to include nitrate reduction reactions to largely unsubstantiated intermediate constituents 

as articulated in Scheme 5-1. Photocatalysis reduces nitrate to nitrite (Mack & Bolton, 

1999b) via a stepwise two-electron transfer. Both photocatalytic and photolytic pathways 

are more relevant for nitrite reduction to ammonia or nitrogen gases.   

 

Scheme 5-1. Conceptual sequence for nitrate reduction to desirable nitrogen gas (N2) and 

undesirable ammonium ion.  

 

Light sources emit different wavelengths, and the role of light constitutes an 

excitement of electrons within photocatalysts in parallel to photolysis of aqueous nitrogen 

species. Each aqueous nitrogen species absorbs photons of different wavelengths 

corresponding to different photolytic quantum yields. For photocatalysis, the bandgap 

energy must be exceeded to produce electrons for reduction. Likewise, hole scavengers 

may undergo photolytic processes under short-wavelength irradiation, yielding oxidation 

products such as the CO2
•- radical in the case of HCOOH. Thus, incident wavelengths 
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should play a significant role in reduction kinetics and selectivity, with arbitrary selections 

leading to energetic/photonic inefficiency and ammonium production. Although many 

studies report nitrate loss and by-product formation as a function of irradiation duration, 

they often do not provide the irradiation spectrum or light intensity in the reactor, thereby 

complicating direct comparisons between studies (Wenliang Gao et al., 2004; R. Jin et al., 

2004; Kato & Kudo, 2002; L. Li et al., 2010; Sá et al., 2009; Sowmya & Meenakshi, 2015; 

F. Zhang et al., 2005). 

Photocatalytic nitrate reduction has been explored using a TiO2 or metal-TiO2 

catalyst under irradiation by xenon lamps or medium pressure or high pressure mercury 

lamps (Mack & Bolton, 1999b). The highest selectivity toward nitrogen gases under these 

irradiation conditions utilize TiO2, TiO2/Ag, or TiO2/Cu in acidic solutions containing 

HCOOH. A detailed literature review on photolysis and photocatalysis of nitrate is 

provided elsewhere (Tugaoen et al., 2017). From this review, we hypothesize that nitrate 

photocatalytic degradation and by-product selectivity is a function of light source and 

photon fluence dose at key wavelengths and that particular discrete wavelengths will 

predominantly yield N-gases through a combined photocatalytic/photolytic mechanism. To 

test this hypothesis, multiple light sources with different emission spectra were used to 

address the following objectives: (1) compare absorbance spectra of aqueous N-species 

and TiO2 photocatalyst against emission spectra of polychromatic light sources; (2) 

demonstrate photocatalytic reduction of nitrate in acidic solutions with an external aqueous 

electron donor using polychromatic light sources; (3) quantify how wavelength filters 

coupled with polychromatic light sources change photocatalytic nitrate reduction products; 

(4) compare the effects of polychromatic light sources and discrete irradiation wavelengths 
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(using light emitting diode [LED] sources) on photocatalytic reduction of aqueous nitrate 

and nitrite; and (5) postulate mechanisms for indirect photocatalytic and direct photolytic 

pathways for reduction of aqueous nitrate to N-gases, identifying nitrite as a critical 

intermediate and point of bifurcation in selectivity outcomes. 

Methods and Analyses 

Absorption Spectra Determination 

Aqueous absorption spectra were measured using UV/vis spectroscopy (DR5000, 

HACH) and calculating molar absorptivities according to the Beer-Lambert Law. Quantum 

efficiencies were compiled from the literature to compare expected photolytic yields of 

aqueous nitrogen species. Diffuse reflectance spectra of solid photocatalyst samples were 

measured using a Lambda 18 (Perkin Elmer, USA) with a 150 mm integrating sphere to 

determine the absorption spectrum of the catalyst.  

To quantify the spectral output of the polychromatic light sources, irradiance was 

measured using a fiber optic spectrometer with cosine corrector (Avantes AvaSpec 2048). 

Multiple locations were measured in the reactors to provide average irradiance values. 

Fluence dose (mJ/cm2) and photon fluence dose (photon/cm2) were calculated (JR Bolton 

& Stefan, 2002; M. Stefan & Bolton, 2005) to represent (1) the full spectrum of light 

emitted by the source and (2) partial spectrum based on the assumption that only 

wavelengths available for P90 (TiO2) bandgap excitation (ultraviolet, λ ≤ 388 nm) were 

experimentally relevant.   
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2.2 Determining Photocatalytic Nitrogen Reduction  

Commercially available titanium dioxide (Evonik) was obtained as a powder (P90) 

and used as received. P90 contains anatase (86%, 12 nm) and rutile (14%, 18 nm) crystal 

phases and has a surface area of 104 m2/g (Kyle Doudrick et al., 2012). P90 has a higher 

nitrate reduction rate compared to P25 (Kyle Doudrick et al., 2012). Sodium nitrate 

(NaNO3, 99% EMD Millipore) and sodium nitrite (NaNO2, 97% Sigma) were the nitrate 

and nitrite source, respectively. Formic acid (HCOOH, 98% Fluka) was the sacrificial 

electron donor (hole scavenger) in experiments where indicated. All experiments were 

performed in 18.2 MΩ-cm Nanopure® water with no buffering. 

Most experimental conditions were consistent with prior work (K Doudrick et al., 

2013; F. Zhang et al., 2005). In brief, the pH was 2.5, and the water matrix contained 100 

mg-NO3
--N/L (7.14mM), 40 mM HCOOH, and 1 g/L P90. Parallel experiments were 

conducted with 100 mg-NO2
--N/L (7.14 mM) instead of nitrate as noted. In all experiments, 

30 min dark adsorption preceded illumination to determine non-photocatalytic removal of 

nitrogen due to adsorption. In all reactors, magnetic stirring was employed to maintain 

catalyst suspension. 

Samples were collected from the reactors over time and filtered (0.2 μm nylon 

membrane filters, Pall). Cumulative sample volumes collected from the reactors were 

<10% of aqueous phase reactor volume. Samples were stored in amber glass vials in dark 

conditions for analysis within 48 h. Aqueous concentrations of nitrate, nitrite, and 

ammonium were analyzed (EPA Method 300.0, ASTM Standard Method D6919) using a 

dual anion/cation ion chromatography instrument (ICS-5000, Dionex). Results are reported 
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as total nitrogen reduction (TNR), which we define using concentrations [mg-N/L] of 

initial (0) and final (f) aqueous constituents according to Eqn. 17: 

 TNR = 100 ∗ (1 −
[[NO3

−]+[NO2
−]+[NH4

+]]
f

[[NO3
−]+[NO2

−]+[NH4
+]]

o

)   Equation 17 

The selectivity to gaseous nitrogen species was based on the difference of initial (0) and 

final (f) aqueous constituents and was calculated according to Eqn. 18: 

  S(Ngases) =
[NO3

−]o−[NO3
−]f−[NO2

−]f−[NH4
+]
f

[NO3
−]o−[NO3

−]f
  Equation 18 

To study reactivity of an important intermediate species, experiments were 

conducted starting with nitrite instead of nitrate. Nitrite or HONO reduction was 

investigated using either broad-wavelength or discrete wavelength irradiation to elucidate 

the reaction bifurcation mechanism that produces either aqueous ammonium or nitrogen 

gases. TNR was used to quantify nitrogen removal from the aqueous phase. Dark 

adsorption testing at pH 2.5 induced non-photonic HONO oxidation, which likely 

contributed to the observed nitrate concentrations.   

 

2.3 Photocatalytic Light Sources and Reactors 

Experiments using a 450 W medium pressure mercury lamp (UV: 100 mW/cm2) 

were conducted in a double-walled quartz immersed-lamp photoreactor (200 mL; Ace 

Glass power supply, 7830-60; Ace Glass, 78-25-34; Hanovia PC 451.050) with external 

cooling water to maintain constant temperature (25°C). A borosilicate sleeve surrounded 

the lamp to filter out wavelengths lower than 280 nm and eliminate direct photolysis of 

nitrate or formate.  
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Experiments using a 450 W Xe-arc lamp (300 mW/cm2, 66924-450XV-R1, 

Newport) were performed in a 150 mL reactor, which was separated from the lamp by a 

quartz window (d = 7 cm) and water filter to eliminate infrared irradiation and reactor 

heating from the irradiation source. For some experiments, an ultraviolet cutoff filter 

(Newport, 90017074) selectively blocked wavelengths between 280 nm and 450 nm to 

eliminate UV-A (315 nm to 400 nm) and UV-B (280 nm to 315 nm) irradiation to only 

transmit 240 nm - 280 nm for isolated UV-C testing. Xenon lamp experiments were 

performed to compare results of broad-wavelength irradiation to the polychromatic 

spectrum of the medium pressure mercury lamp. 

Experiments at 285, 300, and/or 365 nm were performed in a Petri dish reactor (40 

mL) using an LED collimated beam light source (AquiSense PearlBeam custom UV-

LEDs) with incorporated heat sink, fan, and quartz viewing lens. Light was collimated (13 

cm column, 10 cm diameter) to ensure a uniform LED array across the 10 cm Petri dish 

diameter. Illumination was delivered using the LEDs individually and in varied 

combination: 285 nm, 300 nm, or 365 nm alone; 285 nm and 300 nm combined; or 285 

nm, 300 nm, and 365 nm combined. LED light source experiments investigated discrete 

wavelength polychromatic irradiation in comparison to more broadly emitting medium 

pressure Hg and Xe lamps.  
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Results and Discussion 

Comparison of Light Source Emission Spectra with Absorptivity of N-Species 

and TiO2 

Among the ionic aqueous nitrogen species, nitrite has the highest molar absorptivity 

(ε) in the 280 to 400 nm range (Figure 5-1). Between 350 and 370nm, HONO has a 

maximum ε (~ 40 M-1 cm-1) approximately twice that of NO2
-. Nitrate has a maximum ε at 

300 nm and very low ε between 350 and 380nm. Ammonium ion (NH4
+) and 

hydroxylamine (H3NO) have negligible absorbance (ε < 0.5 M-1 cm-1) in the UV range. 

Higher absorptivity does not directly correspond to higher photolytic activity because of 

the variable quantum yields, as described by Mack and Bolton (Mack & Bolton, 1999b). 

Thus, depending on the light source used and its particular irradiation emission spectrum, 

different direct photolysis reactions may occur, both of primary species and aqueous or 

adsorbed intermediates. 
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Figure 5-1. Diffuse reflectance (DR) absorption spectra of TiO2 and wavelength dependent 

molar absorptivity (ε) for relevant aqueous nitrogen species: NO3
-, NO2

-, HONO, H3NO, 

NH4
+ (as mol N). 

 

Figure 5-2 illustrates the ultraviolet spectral output of: (a) the polychromatic 

medium pressure mercury lamp; (b) xenon lamp filtered to exclude wavelengths between 

280 and 450; (c) xenon lamp allowing all wavelengths (i.e., not filtered); and (d) UV-LED 

irradiation source at 285, 300, and 365 nm. Comparing the absorbance spectra in Figure 5-

1 with the emission spectra in Figure 5-2 suggests photons from the 365 nm LED would 

be absorbed more by HONO than NO2
-, and little absorbance would occur by NO3

- or other 

aqueous N-species. Light with λ ≈ 295 nm that is delivered into the solution would be 

absorbed by NO2
-, NO3

-, and HONO. At 295 nm and throughout the ultraviolet spectrum, 

these species will undergo direct photolysis to different extents due to their varied quantum 

yields (Mack & Bolton, 1999b). 
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Figure 5-2. Ultraviolet spectral output of: (left axis) polychromatic medium pressure 

mercury lamp [MP Hg]; (right axis) xenon lamp [Xe; filtered to exclude wavelengths 

between 280 and 450nm, or allow all wavelengths], UV-LED irradiation of three LEDs 

(285, 300, and 365nm) operating simultaneously.  

 

Figure 5-1 also illustrates the diffuse reflectance spectra for TiO2. In suspended 

slurry, TiO2 scatters or absorbs light below 400 nm. This scattering reduces photon 

transmittance into solution and limits direct photolysis of aqueous N-species to the portions 

of solution that are closest to the light source. As such, the emission spectra of the light 

source and the interfacial area between the lamp source and water both influence the 

reactivity due to direct photolysis and the TiO2 catalyzed areas. Overall, a weaker 

photolytic and more dominant photocatalytic response would be expected for slurry 

photocatalysis. P90, with a bandgap of 3.2 eV (Kyle Doudrick et al., 2012), absorbs light 

below 390 nm as calculated with the Kubelka-Monk Equation. As described by Planck-

Einstein relationship, each wavelength corresponds to a different energy. Photons with 

lower energy (λ > 390 nm) are thereby not relevant for production of aqueous electrons 

associated with TiO2. Further, photons with λ > 390 nm are also not relevant for direct 

photolysis reactions with aqueous N-species. Thus, on an energy basis, only photons with 

λ < 390 nm are considered effective for nitrate photocatalysis and/or photolysis and are 

tabulated as such for photon fluence values reported in this work. 

3.2 Nitrate Removal during Photocatalysis with Different Polychromatic Light Sources 

To assess the variability of nitrate reduction kinetics and by-product selectivity 

across irradiation sources, three light sources and reactor configurations delivered varied-

wavelength photons for photocatalytic reduction of nitrate. Prior experiments using 

medium pressure mercury lamp photocatalysis with TiO2 show nitrate reduction (Kyle 
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Doudrick et al., 2012; Ren et al., 2015; Sá et al., 2009; F. Zhang et al., 2005), but new 

insights may be gained through assessing the system’s photonic efficiency. Figure 5-3 

shows nitrate concentrations decreasing over irradiation time with low production of nitrite 

or ammonia for the medium pressure Hg light source emitting wavelengths longer than 240 

nm in the presence of TiO2 and an external electron donor (HCOOH). Nitrite formed as an 

intermediate, accounting for a maximum of 20% of the nitrogen after 28 min of irradiation. 

The net loss of aqueous N-containing species was consistent with evolution of volatile N-

gases (Kominami et al., 2010; Montesinos, Quici, Destaillats, & Litter, 2015; F. Zhang et 

al., 2005). Control experiments in the dark showed no nitrate removal.  
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Figure 5-3. NO3
- photocatalytic reduction and by-product formation (nitrite and ammonia) 

under medium pressure mercury irradiation with 1 g/L TiO2 (P90) and 40mM HCOOH 

(pH=2.51 ± 0.05).  

 

Rather than evaluating concentration changes based on reaction time, reaction 

kinetics are also plotted as a function of photon fluence dose (photons/cm2) and fluence 

dose (mJ/cm2) to facilitate comparisons between irradiation sources. Energy-based fluence 

has been used to assess microbial inactivation by UV light (J. R. Bolton & Linden, 2003; 

Linden & Darby, 1997), demonstrating wavelength-dependent outcomes (Beck et al., 

2017) in UV disinfection performance studies. When nitrate reduction is observed 

experimentally, the irradiation source generates photons at wavelengths that exceed 

bandgap energy or induce photolytic response from aqueous N-species. Because N-species 

may undergo direct photolysis at different wavelengths plus indirect reduction on photo-

excited TiO2, photon fluence facilitates comparisons across the various wavelength sources 

when quantifying N-reduction efficiency. 

Table 5-1 summarizes experimental data for the same initial aqueous conditions as 

illustrated in Figure 5-3 but under irradiation with a xenon lamp. Xenon lamp irradiation 

can yield both photocatalytic and direct photolytic response for nitrate reduction due to its 

photon production at λ<290 nm. For both wavelength-filtered and unfiltered xenon 

irradiation, negligible ammonium or nitrite formed, indicating complete reduction to 

nitrogen gases. Irradiation of a nitrate solution with the unfiltered xenon source achieved 

double the nitrate reduction (46%) after an applied photon fluence dose of 4.8x1020 

photons/cm2 with 1 g/L TiO2 compared against 21% nitrate reduction in the absence of 

TiO2 after the same photon fluence dose. This implies that direct photolysis of nitrate 
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occurs for 240 to 400 nm xenon irradiation, but a higher net removal of nitrogen occurs via 

combined direct photolysis and photocatalysis in the presence of TiO2. UV-C only 

(λ<280nm) irradiation using the xenon source achieved 20% nitrate reduction during direct 

photolysis (with HCOOH) but less than 14% nitrate reduction during photocatalysis (1 g/L 

TiO2) at a photon fluence dose of ~ 5.5x1019 photons/cm2, indicating higher efficiency of 

nitrate photolysis than photocatalysis at wavelengths less than 280 nm. Nitrate undergoes 

direct photolysis at wavelengths less than 290 nm (Barat et al., 1970a; Gonzalez & Braun, 

1995; Scharko et al., 2014), which causes photolytic processes to dominate the mechanisms 

for its reduction in the UV-C region. In contrast, TiO2 has broad absorption throughout the 

UV-A to UV-C range, allowing for photocatalysis to co-occur with photolysis when the 

xenon lamp is used without the 280–450 nm wavelength filter (transmits 240-280 nm and 

λ > 450 nm). 

 

Table 5-1. Reduction of Nitrate or Nitrite under Wavelength Filtered or Unfiltered Xenon 

Lamp Irradiation (UV Wavelengths Emitted: 240-280nm or 240-400nm, respectively).   
Initial 

N-

Species  

Effective 

Irradiation 

Wavelengths 

(UV-only)  

Applied 

Fluence 

Dose 

(mJ/cm2)  

Applied 

Photon 

Fluence Dose 

(photons/cm2)  

P90 Dose  

(g/L)  

Initial 

Formic 

Acid  

(mM)  

% Reduction 

of Total 

Aqueous 

Nitrogen  

NO3
-  240-400  1.70E+08 4.83E+20 0  0  0.5 

NO3
-  240-400  1.70E+08 4.83E+20 0  40  21.2 

NO3
-  240-400  1.70E+08 4.83E+20 1  40  46.2 

NO2
-  240-400  1.70E+08 4.83E+20 0  0  9.4 

NO2
-  240-400  1.70E+08 4.83E+20 0  40  83.2 

NO2
-  240-400  1.70E+08 4.83E+20 1  40  99.9 

NO3
-  240-280  2.30E+07 5.49E+19 0  0  5.0 

NO3
-  240-280  2.30E+07 5.49E+19 0  40  20.1 

NO3
-  240-280  2.30E+07 5.49E+19 1  40  13.9 

NO2
-  240-280  2.30E+07 5.49E+19 0  0  3.8 

NO2
-  240-280  2.30E+07 5.49E+19 0  40  82.1 

NO2
-  240-280  2.30E+07 5.49E+19 1  40  84.3 
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Experiments were conducted using 285, 300, and 365 nm LEDs operating 

simultaneously under identical initial aqueous conditions as those in Figure 3. This LED 

configuration outperforms the other light sources on a reduction per-photon or per-mJ basis 

(Figure 5-4), though it requires a longer time to achieve nitrate reduction due to the low 

photon fluence rate of the LEDs. The maximum achieved photon fluence dose was 2.3x1019 

photons/cm2 for the LED, which is 2.4 times lower than the xenon lamp experiment (Table 

1) and 18 times lower than the mercury lamp due to the scale of the system employed. At 

an equivalent 0.23x1020 photon/cm2 photon fluence dose in the mercury lamp experiment, 

~9% of nitrate reduction was achieved compared with 15% for polychromatic LEDs. On a 

time-basis, these two polychromatic photoreactors appear to perform quite differently, but 

the energetic and photonic efficiency are similar. This result should allow for transitioning 

from Hg-based irradiation sources to more innocuous and compact LED systems where 

appropriate (e.g., small systems, point of use facilities) when high output LEDs become 

available. These experiments show the need to select the appropriate units of fluence to 

evaluate nitrate photocatalytic reduction; the preferred units consider wavelengths in the 

photoactive region (200–400 nm) for TiO2 and aqueous N-species. 
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Figure 5-4. NO3
- photocatalytic reduction and by-product formation (nitrite and 

ammonia) under 285, 300, 365nm UV-LED irradiation with 1 g/L TiO2 (P90) and 40mM 

HCOOH (pH=2.51± 0.05). 

 

3.3 Kinetics and Selectivity of By-Products during Nitrate Photocatalysis 

Tables 5-2 and 5S1 show that photocatalytic reduction of nitrate yields the 

following final conversion of NO3
- and selectivity to nitrogen gases S(Ngases) for the 

medium pressure Hg, Xe (240-280 nm), Xe (240-400 nm), and UV-LEDs (285, 300, 365 

nm): 78% with 89% S(Ngases), 14% with 100% S(Ngases), 46.2% with 100% S(Ngases), and 

10% with 82% S(Ngases), respectively. Based on these values alone, comparison would 

yield significantly different key insights than further examination based on photon fluence 

and energetic kinetic rates. Changes in nitrate removal throughout an experiment were 

fitted by pseudo-first order kinetics with respect to time, photon fluence dose, or fluence 

dose. Figure 5 illustrates an example of photocatalytic nitrate reduction data for the 
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medium pressure Hg lamp fitted with pseudo-first order kinetics and reporting of rate 

constants using three corresponding units for kinetics. Table 5-2 and 5S1 show the rate 

constants (k) expressed in three different forms—time (sec-1), photon fluence dose 

(photon/cm2)-1, and fluence dose (mJ/cm2)-1—for all irradiance sources. These tables also 

contain values for aqueous and gaseous selectivity for polychromatic experiments. 

 

Table 5-2. Summary of Kinetic Data for NO3
- Reduction Experiments under Varied 

Irradiance Conditions* 

Light 

Source 

Final % 

NO3
--N 

Reduction 

ktime
  

(10-

5s-1) 

klight (10-22 

cm2/photon) 

kenergy  

(10-

6cm2/ 

mJ) 

TNR (% 

N) 

Removed 

Selectivity (%) 

Ng NO2
- NH4

+ 

Medium 

Pressure 

Hg 

77.96 64.5 38.3 10.9 69.1 89 0 11 

Xe 

(240–

280nm) 

13.9 2.31 0.18 0.065 13.9 100 0 0 

Xe 

(240–

400nm) 

46.2 17.3 1.49 0.581 30.6 100 0 0 

UV-

LED 

(285, 

300, 

365nm) 

9.76 1.60 63.9 12.3 9.48 82 2 16 

*All experiments in Table 2 were conducted with initial NO3
--N concentration of 100mg-

N/L, 40mM HCOOH, and 1 g/L P90 TiO2 catalyst. Wavelength data include all produced 

wavelengths (200–1100nm). 
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Figure 5-5. Pseudo-first order nitrate removal kinetics using medium pressure lamp with 

1 g/L TiO2 (P90), and 40mM HCOOH (pH = 2.5±0.05) with respect to time, photons, and 

energy. 

 

Figure 5-6 shows half-lives of nitrate reduction computed from the pseudo-first 

order rate constants (t1/2 =
ln2

k
) with respect to experimental time, photon fluence dose, 

and fluence dose. Shorter t½ values occurred for medium pressure Hg irradiation on a time-

basis or LED irradiation on a photon- and energy-basis. Accounting for all incident 

wavelengths (200–1100 nm), the UV-LED combination had the shortest half-life (i.e., best 

performance) at 1.08x1020 photons/cm2 (0.56x105 mJ/cm2) compared to 1.81x1020 

photons/cm2 (0.63x105 mJ/cm2) for the medium pressure Hg lamp. Due to the broad-band 
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irradiation from the xenon lamp, half-life for reduction of nitrate for both UVC and UVA-

UVC irradiation was > 10x higher than that of the medium pressure or LED sources. This 

is because much of the energy used to produce photons for the medium pressure Hg and 

xenon lamps is effectively wasted in a TiO2-based photocatalytic system because UV 

wavelengths are required for excitation.  

 

 

Figure 5-6. Half-life of NO3
- reduction kinetics with respect to time (x103 s), photons 

(x1020 photons/cm2), and energy (x105mJ/cm2) for medium pressure lamp, xenon lamp 

with UV-filter to include 240-280nm only or xenon lamp without UV filter to include all 

wavelengths, and 285, 300, 365nm UV-LED combination array. Experimental 

parameters: 100mg-NO3-N/L, 1 g/L P90, 40mM HCOOH (pH = 2.5±0.05). Total lamp 

output considers all wavelengths incident to reactor, and effective photons delineates 

wavelengths (<380nm) absorbable by TiO2.    

 

Differences in nitrate removal and product selectivity between irradiation sources 

indicates key wavelengths dominated the process of nitrate reduction to nitrogen gases. In 

broad-spectrum irradiance conditions, a photonic saturation occurred, where excess light 

merely lowered efficiency rather than promoting nitrate reduction. A secondary effect was 
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the known mass-transfer limitation of nitrate in photocatalytic systems. This limitation 

further induces the photonic saturation while catalyst reactive sites may undergo excitation 

and recombination prior to contact with aqueous nitrogen species (Shand & Anderson, 

2013a). 

3.4 Photocatalysis and Direct Photolysis of HONO and NO2
-  

Nitrite photolysis with a xenon lamp led to 9% TNR for the 240–400 nm range and 

only 4% TNR for the 240–280 nm range (Table 5-1) at a photon fluence dose of 4.83x1020 

photon/cm2 and 5.49x1019 photon/cm2, respectively. In contrast, over the same wavelength 

ranges, the effect of pH led to HONO photolysis and more removal compared to NO2
-: 

83% TNR (240–400 nm) and 82% TNR (240–280 nm). Photocatalytic xenon lamp 

experiments with HONO used 1 g/L P90 and achieved 99.9% TNR (240–400 nm) and 84% 

TNR (240–280 nm). This increased HONO removal (10 times higher performance 

HONO:NO2
-) corresponded to only a 1.6x higher molar absorptivity in the ultraviolet 

wavelength range, further illustrating interplay of quantum yield (Φ) and molar 

absorptivity (ε). The quantum yield of the photolysis for HONO (Φ355nm ≈0.4) is 

significantly higher when compared to nitrite (Φ355nm = 0.025) at 355 nm (Mack & Bolton, 

1999b). Acidification of NO2
- to HONO greatly enhanced total nitrogen removal and 

increased selectivity away from aqueous ammonium.   

On a photon fluence basis, higher aqueous nitrogen removal was observed with 

LED irradiation compared to the broad-spectrum xenon lamp. HONO (pH= 2.5) reduction 

using the 365 nm LED achieved >93% TNR for photolysis (Figure 5S1) and >95% TNR 

with TiO2 (Figure 5S2). Negligible (<5%) ammonium was produced under individual 

illumination with 285 nm or 300 nm LED and combined irradiation of 285 nm and 300 nm 
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LEDs for both photolysis and photocatalysis. Complete reduction of HONO in solution 

with < 2% ammonium production was observed with 1.71x1019 photons/cm2 at 365 nm. In 

contrast to the xenon lamp results, the LED light source (365 nm) showed no competitive 

advantage for nitrite reduction using TiO2
 (compared against direct photolysis) (Figure 5-

7) due to the high absorbance and quantum yield of HONO and absorption and scattering 

of light by TiO2 at 365 nm. Further, the discrete wavelength irradiation (UV-LED) used 

only one-third of the photons (200 nm to 1100 nm) compared to the broad-spectrum 

(xenon) irradiation for complete removal of HONO.   

 

 

 

Figure 5-7. Photolytic (A) and photocatalytic (B) nitrite reduction at 365nm with formic 

acid (pH=2.5) as a sacrificial hole scavenger. Photocatalytic experiments with 1 g/L P90.  

 

 

Selectivity of HONO reduction under photolytic and photocatalytic conditions with 

(1) single UV-LEDs (285 nm, 300 nm, or 365 nm) or (2) combinations thereof yielded > 

88% and > 94% conversion to N-gases, respectively (Figure 5S1, 5S2). For photocatalytic 

experiments, selectivity to undesired ammonium was always < 2%. Under illumination of 

a combination of 285 nm and 300 nm irradiation, up to 100% selectivity to nitrogen gases 
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was achieved at > 97% photocatalytic reduction of HONO and 92.5% photolytic HONO 

reduction. HONO oxidation to nitrate was 4.6±0.5% using a single 285 nm or 365 nm LED 

or a combination of 285, 300, and 365 nm irradiation for photocatalysis and increased to 

6.0±0.9% for photolysis across all wavelength combinations. Selectivity of aqueous 

ammonium in lieu of nitrogen gases in photolytic experiments with UV-LEDs was ordered: 

S300nm > S285+300+365nm > S365nm > S285nm > S285+300nm. These observations led to the 

understanding of wavelength influences for reaction kinetics, pathways and by-product 

selectivity as described in Scheme 5-2. Nitrate reduction via direct photolysis is 

thermodynamically feasible utilizing ultraviolet wavelengths (Goldstein & Rabani, 2007), 

but it is not kinetically favorable for producing nitrogen gases. This is due to the higher 

quantum yield of nitrite photolysis (Mack & Bolton, 1999b), which can be both reductive 

(N2/NH4
+) (Treinin & Hayon, 1970) or oxidative (NO3

-) (Mark et al., 1996). 

Thermodynamically, conduction band electrons of TiO2 are not sufficiently energetic to 

reduce nitrate to nitrite alone (Cook et al., 2001; Sá et al., 2009). Hence, through the use of 

a hole scavenger such as formic acid, both a reduction in pH and production of radical 

species CO2
●-, which can reduce nitrate (Montesinos, Quici, Destaillats, & Litter, 2015), 

are achieved. As demonstrated in this work, both photolytic and photocatalytic pathways 

reduced nitrite to N-gases and aqueous ammonium. Key pathways may be enhanced by 

combining photocatalytic and photolytic processes with wavelengths targeted toward 

specific intermediates, e.g., NO/NO• which have been previously demonstrated (Hérissan 

et al., 2017) to increase N-gas selectivity (Eqns. 11–16). Further, pH is critical because 

many of the reactions require H+ (Eqns. 4, 13, 16), and HONO is significantly more 
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photoactive than NO2
-. Novel herein is the use of discrete wavelengths to demonstrate 

enhanced production of N-gases (Figure 5-6, 5S1, 5S2, and Scheme 5-2).  

 

 

Scheme 5-2. Conceptual model for nitrate reduction to nitrogenous intermediates and by-

products in acidic and neutral pH conditions.  
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Supplementary Information  

 Table 5-S1. Summary of Kinetic Data for NO3
- Reduction Experiments under Varied 

Irradiance Conditions* 

Light 

Source 

Final % 

NO3
--N 

Reduction 

ktime
  

(10-

5s-1) 

klight (10-21 

cm2/photon) 

kenergy  

(10-

6cm2/ 

mJ) 

TNR (% 

N) 

Removed 

Selectivity (%) 

Ng NO2
- NH4

+ 

MP Hg 77.96 64.5 22.2 37.1 69.1 89 0 11 

Xe (240-

280nm) 

13.9 2.31 1.69 3.09 13.9 100 0 0 

Xe (240-

400nm) 

46.2 17.3 2.31 3.66 30.6 100 0 0 

UV-

LED 

(285, 

300, 

365nm) 

9.76 1.60 7.41 13.0 9.48 82 2 16 

 

*All experiments in Table S1 were conducted with initial NO3
--N concentration of 100mg-

N/L, 40mM HCOOH, and 1g/L P90 TiO2 catalyst. Utilizes wavelength data for only UV 

wavelengths (200-400nm) defined as photocatalytically active wavelengths for TiO2.  

 
Figure 5-S1. Photolytic reduction of nitrite at varied wavelength with formic acid (pH=2.5) 

as a sacrificial hole scavenger.  
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Figure 5-S2. Photocatalytic reduction of nitrite at varied wavelength with formic acid 

(pH=2.5) as a sacrificial hole scavenger and 1g/L P90 TiO2.  
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CHAPTER 6 

COUPLING LIGHT EMITTING DIODES WITH PHOTOCATALYST-COATED OPTICAL 

FIBERS IMPROVES QUANTUM EFFICIENCY OF POLLUTANT OXIDATION 

 

 

  



188 

Abstract 

A photocatalyst-coated optical fiber was coupled with a 318-nm ultraviolet-A light 

emitting diode, which activated the photocatalysts by interfacial photon-electron excitation 

while minimizing photonic energy losses due to conventional photocatalytic barriers. The 

light delivery mechanism was explored via modeling of evanescent wave energy produced 

upon total internal reflection and photon refraction into the TiO2 surface coating. This is 

the first work to explore aqueous phase LED-irradiated optical fibers for treating organic 

pollutants and the first to propose a dual-mechanistic approach to light delivery and 

photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a 

function of optical fiber coating thickness, fiber length, and photocatalyst attachment 

method and compared against the performance of an equivalent catalyst mass in a 

completely mixed slurry reactor. Measured and simulated photon fluence through the 

optical fibers decreased as a function of fiber length, coating thickness, or TiO2 mass 

externally coated on the fiber. Thinner TiO2 coatings achieved faster pollutant removal 

rates from solution, and dip coating performed better than sol-gel attachment methods. 

TiO2 attached to optical fibers achieved a 5-fold higher quantum yield compared against 

an equivalent mass of TiO2 suspended in a slurry solution. 

Keywords: oxidation, titanium dioxide, photolysis, reactor, optical fiber 
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Introduction 

Photocatalyst-coated optical fibers have potential to oxidize organic compounds in 

air or water(Denny, Scott, Peng, et al., 2010; Hou & Ku, 2013; Nicola J Peill & Hoffmann, 

1995) while simultaneously overcoming barriers to using photocatalyst suspensions in 

water treatment, including recovering the suspended particles and reducing the light 

scattering/occlusion by aqueous constituents and photocatalytic nanoparticles.(Stancl, 

Hristovski, & Westerhoff, 2015b) However, optical fibers only transmit light axially by 

coating or cladding fiber surfaces with materials that have higher refractive index than the 

fiber itself.(Tandon et al., 2013) Challenges for photocatalyst-coated optical fibers include 

effectively delivering light into the fibers and optimizing photon fluence with fiber length 

or catalyst thickness.(Nicola J. Peill & Hoffmann, 1998; Nicola J Peill & Hoffmann, 1995) 

Experimental evidence and modeling suggests an optimal photocatalyst thickness exists to 

degrade pollutants,(Nicola J Peill & Hoffmann, 1996, 1998; Nicola J Peill et al., 2002; W. 

Wang & Ku, 2003a) but prior studies exclude contaminant mass transfer to the 

photocatalyst surface or the electron-hole recombination of the photocatalyst in the coating 

layer. Concentrated solar light can be delivered into optical fibers,(N J Peill & Hoffmann, 

1997b) but without appropriate filters, infrared wavelengths generate heat that causes 

detachment of coated photocatalysts and composite materials.(Bilodeau, Scheer, & 

Haugen, 1998; Marinangeli & Ollis, 1980) Additionally, for solar or xenon-arc light 

sources, heat buildup from the infrared spectrum needs to be reduced using a filtering 

system to limit light outside the wavelength range suitable for photocatalysis (i.e., 310–

375 nm is suitable for TiO2).(Barton et al., 2016; Denny, Scott, Pareek, et al., 2010; Nicola 
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J Peill & Hoffmann, 1996) To limit heat buildup, we investigated 318 nm monochromatic 

light from a light emitting diode (LED) delivered into the optical fiber.   

UV-LED technologies reduce the need to filter light from conventional 

polychromatic UV-radiation sources and deliver narrow bandwidth UV irradiation to the 

fibers without compromising power output, lifetime, and luminous efficiency. While UV-

C LEDs used for pathogen inactivation remain costly,(Beck et al., 2017; Chatterley & 

Linden, 2010) less expensive visible light, UV-A and UV-B LEDs, are commercially 

available and more energy efficient(L H Levine et al., 2011) than xenon- or mercury-based 

light sources. Because of their compact design and technological advancements in the field 

of optical communications,(Yeh et al., 2014) light from LEDs can be directly coupled to 

optical fibers for environmental applications. This approach effectively delivers light into 

the optical fibers and has been investigated for degrading organic pollutants in air.(Denny, 

Scott, Peng, et al., 2010) In water-based reactors, immobilizing photocatalysts on coated 

optical fibers eliminates the need to recover (e.g., via ceramic membranes)(Stancl et al., 

2015a) suspended nanomaterials from slurry suspensions. Advances in first principles 

photonic modeling of optical fibers coupled with experimental validation can advance the 

use of photocatalysis for water purification. We hypothesized that a fixed-film system can 

be designed to achieve more efficient pollutant degradation than an equivalent slurry 

system. 

There are three key barriers to using optical fibers for water treatment: the 

longitudinal passage of light; the effects of coating materials, including material thickness 

and total mass loading; and the radical production pathways on the exterior of optical 

fibers. We collected data to fill these knowledge gaps by quantifying quantum yield as a 
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function of TiO2 coating thickness and optical fiber lengths to optimize catalyst-absorbed 

light intensity. Electrostatic attachment of commercially-fabricated TiO2 (P25) was 

compared against sol-gel precipitation with calcination directly on optical fibers. 

Experimental evidence using methylene blue (MB) as a probe molecule was also supported 

by optical modeling to enhance understanding of system parameters and energy 

interactions at the fiber-catalyst-water interface.  

Experimental Methods and Materials 

 Photocatalytic and photolytic experiments using the UV-LED/TiO2/optical fiber 

system were conducted in an 8.5 cm long and 1 cm diameter cylindrical glass batch reactor 

(V = 10 mL) with magnetic mixing at the bottom. The cylindrical glass batch reactor 

enabled in-situ quantification of methylene blue (MB, Sigma Aldrich) with a 

spectrophotometer (HACH DR5000) at 664 nm (95000 M-1 cm-1, (Cenens & Schoonheydt, 

1988)) without the need to extract sample volumes from the reactor for analysis. A 318-

nm UV-LED (I = 1.5 mW cm-2, SETi, UV-TOP), which utilized 5 V input at 3 mA, was 

mounted above the reactor. In most cases, a single fiber was polished as described in SI 

and attached to the LED. Optical fibers, LED mounts, and polishing/stripping equipment 

were purchased from Thorlabs (FT1000UMT; numerical aperture of 0.39, Ø1000 µm Core 

Multimode Optical Fiber, High-OH for 300–1200 nm). Optical fibers were prepared by 

stripping the polymeric buffer coating and cladding, assembling into a quick-connect SMA 

(SubMiniature version A) connector, and polishing both ends of each optical fiber 

(described in SI). Polished fibers were coated by either sequential electrostatic dip coating 

with preformed TiO2 (P25 or P90 obtained from Evonik) or sol-gel synthesis 
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methodologies using titanium (IV) isopropoxide (TTIP) with calcination at 500 ºC to 

achieve different layer thickness and surface coverage homogeneity. A detailed description 

of the fiber preparation protocol is provided in SI. Masses of the TiO2 layers on the optical 

fibers were measured gravimetrically by the weight of the optical fibers before and after 

the dip coating/drying cycles (0–20 coating cycles). The TiO2 coating surface morphology 

was obtained by scanning electron microscopy with energy dispersive X-ray spectroscopy 

(SEM/EDX: Philips XL30-EDAX). TiO2 layer thickness was obtained from SEM images 

of vertically-oriented fibers. 

 Optical fibers were suspended into the reactor solution with 4.0 μM MB (pH ≈ 6) 

in double deionized water at a resistivity above 18.2 MΩ-cm (Millipore Inc.). Direct 

photolysis experiments were conducted by connecting a 1-cm (longitudinal) uncoated 

optical fiber to the 318-nm LED to deliver light into the solution. Photocatalytic 

experiments were conducted with (1) TiO2-coated optical fibers (7 cm coated length) 

directly coupled to a 318-nm LED or (2) a mixed slurry system of P25 irradiated with the 

1 cm uncoated optical fiber and a 318-nm LED (see SI for details). Experimental 

parameters are outlined in Table 6-1. Mechanistic understanding of the optical fiber 

exterior interface was approached via mathematical modeling of the system optics to assess 

excitation via evanescent wave energy or refraction of photons into the TiO2 coating layer. 

Light intensities emitted from the LED and from the terminal end of the fiber tips 

were measured by a radiometer (Avaspec 2048L) to compare catalyst coating methods, 

length, and thickness. The LED had an intensity of 168 μW cm-2 between 308 and 330 nm. 

Light absorbed by the coated photocatalyst was indirectly determined as a difference 

between radiometric measurements with and without coating. Photon fluence calculations 
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are shown in SI. Only wavelengths between 308 and 330 nm were considered for the 318-

nm LED, which was >99% of emitted light.  

Quantum yields (Φ) of the dip-coated fibers, sol-gel-coated fibers, and slurry 

systems at equivalent catalyst doses were calculated as follows: (J. R. Bolton et al., 2001; 

Serpone, Salinaro, & N. Serpone, 1999) 

Φ =        Equation 1

 

where k is the pseudo first order reaction rate of MB degradation in different systems (s-1), 

V is the liquid volume of the reactor (L), [MB] is the initial methylene blue concentration 

(mol-MB L-1), and Iabs is the light intensity absorbed by the TiO2 coating layer (mol-

photons s-1; details for the calculation of Iabs are included in SI).  

 

Table 6-1. Experimental Parameters and Resultant Quantum Yields 

ID Catalyst 

Delivery 

Catalyst 

Mass per 

Volume 

(mg/10 mL) 

Mass Loading 

Rate of TiO2 per 

Coated Layer  

Number of 

Coating 

Layers 

Quantum 

Yield, Φ 

A None 0 - - 0.01 

B P25 Slurry 0.02 - - 0.02 

C P90 Slurry 0.02 - - 0.02 

D P25 Slurry 0.1 - - 0.06 

E P25 Dip-Coat 0.02 0.0029 mg cm-1 1 0.15 

F P90 Dip-Coat 0.02 0.0029 mg cm-1 1 0.12 

G P25 Dip-Coat 0.1 0.0029 mg cm-1 5 0.12 

H Sol-Gel 0.24 0.034 mg cm-1  1 0.14 

I Sol-Gel 1.68 0.034 mg cm-1  5 0.06 

- k V [MB] 

Iabs 
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Results and Discussion  

The dip coating method deposited 0.0029 ± 0.0001 mg cm-1 of TiO2 per coating 

cycle for each coating cycle up to 20 coating cycles (i.e., 0.4 mg TiO2 for 20 cycles on a 7 

cm fiber). The TiO2 coating thickness ranged from uncoated to 8175 ± 634 nm with 5 

coating cycles (0.1 mg coated mass, Figure 6S1). Additional dip coating, up to 20 total 

layers, continued to increase TiO2 mass but did not increase TiO2 thickness. The higher 

TiO2 mass on fibers beyond 5 dip coating cycles was attributed to the filling of cavities on 

the TiO2 coating layers (Figure 6S2). The sol-gel-coated fibers contained 0.034 mg cm-1 of 

TiO2 (per coated layer) and had a denser TiO2 coating compared to the dip coating method 

(0.0029 mg cm-1). SEM of sol-gel samples from TTIP and P25 precursors indicated more 

uniform coating than dip coatings of fewer than 5 coating cycles (Figure S3). 

Optimizing catalyst-absorbed light intensity 

Figure 6-1a shows the relationship between light intensities absorbed by TiO2 with 

increasing coating layers and TiO2 coating mass for a 28-cm long optical fiber. Higher 

TiO2 coating masses resulted in more light flux absorbed by TiO2, increasing from 1.71 ± 

0.52  10-12 Einstein cm-2 s-1 to 5.36 ± 0.33  10-12 Einstein cm-2 s-1. These measurements 

indicate that 16% of photons were absorbed when the fiber was coated with 1 coating layer 

(0.02 mg TiO2), whereas 50% were absorbed when the fiber underwent 5 to 20 coating 

cycles (0.1 mg to 0.4 mg TiO2), suggesting that the change in light intensity absorbed by 

TiO2 followed an attenuating trend. Across all the fiber samples, light transmission 

exponentially decreased with higher attached catalyst mass or thickness (Figure S4). Light 

interacting with the TiO2 coating may generate excitons, heat (i.e., recombination of 

electrons and holes), or simply become scattered at the fiber-TiO2 interface.  
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Figure 6-1. Light intensity from 318 nm UV-LED (168 μW cm-2) absorbed in 

photocatalyst-coated optical fiber as a function of (a) dip-coated mass on 28 cm optical 

fiber; (b) optical fiber length (0 cm to 28 cm) with two different TiO2 coating thicknesses 

(0.0029 mg cm-1 and 0.058 mg cm-1, which corresponds to 1 and 20 layers of coating, at 

0.02 mg and 0.4 mg total coating, respectively). Error bars represent 1σ of three replicate 

radiometric or gravimetric measurements.  
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Experiments conducted with variable optical fiber lengths and similar deposited 

TiO2 mass loading are shown in Figure 6-1b. For a dip-coated mass loading rate of 0.0029 

mg cm-1 (i.e., one coating), the photon flux absorbed by TiO2 increased 3x from 7.2 ± 1.4 

 10-13 to 2.2 ± 0.3  10-12 Einstein cm-2 s-1 for a 4x increase in optical fiber length (7 to 

28 cm). At a higher dip-coated TiO2 mass loading (0.058 mg cm-1, 20 coatings), the light 

intensity absorbed by the TiO2 has a higher net absorbance, increasing from 2.85 ± 0.08  

10-12 to 5.51 ± 0.14  10-12 Einstein cm-2 s-1 at 7 and 28 cm, respectively. In both cases, the 

light absorption increased to maximum values in longer optical fibers with a decreasing 

differential photon flux absorbed by TiO2. The incremental absorption attenuation was 

more acute in optical fibers with thicker TiO2 coatings (i.e., higher dip-coated mass 

loading). This was likely due to the increased homogeneity of TiO2 in contact with the 

quartz surface of the optical fibers that occurred with thicker TiO2 coatings.  

For photon flux at an equivalent TiO2 mass loading, light absorption increased with 

coated fiber length. Furthermore, a higher TiO2 coating density (mg cm-1) allowed for 

higher photon absorbance due to photon refraction into the TiO2, though the increase was 

attenuated at higher loadings. Light absorbed by the photocatalyst attenuated 

asymptotically when increasing the coating mass and the fiber length (Figure 1), leading 

to complete light attenuation at some point with negligible increased absorbance for added 

length or thickness. For our UV-LED/TiO2/optical fiber system, this saturation (i.e., >95% 

of maximum absorbed photon flux) occurred at 0.1 mg catalyst coating mass and fiber 

lengths above 14 cm. This observation is consistent with a transition from total internal 

reflection (TIR) at zero coating layers to complete refraction into the TiO2 coating layer 

upon a homogenous surface layer.(Peatross & Ware, 2008) However, note that some light 
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(~ 47%) transmits through the TiO2-coated fiber in all cases due to the angle of incidence 

of those photons and short experimental fiber length (Figure S4). In this case, the photons 

do not collide with the optical fiber wall and do not result in either TIR or refraction, as 

seen in other reports.(Nicola J Peill & Hoffmann, 1996) The finding of an exponential 

attenuation of light density with increasing coating thickness is comparable to Peill et al.’s 

study.(Nicola J. Peill & Hoffmann, 1998) Wang and Ku reported difficulty in tabulating a 

value for the photon flux absorbed into the TiO2 layer with an optical fiber substrate due 

to the inability to accurately measure the photonic endpoints: scattering, transmission, 

absorption, and utilization or absorption and recombination/loss(W. Wang & Ku, 2003a). 

Therefore, in contrast to previous works that solely focused on fixed-length coating 

thickness, our work significantly advances knowledge and computation methodology for 

the optimal fiber length based on the attenuating light flux absorbed as illustrated in Figure 

6-1b. 

Quantum yield of the MB-UV-LED/TiO2/optical fiber system  

Figure 6-2 shows MB transformation kinetics for different TiO2 coating methods 

and loadings (defined in Table 6-1). MB degradation follows pseudo-first order kinetics, 

with rate constants (k) determined as shown in Figure 6S5. Due to MB direct absorption of 

light at 318 nm,(Dariani et al., 2016) photolysis contributes slightly to the MB bleaching. 

An uncoated optical fiber (control) degraded less than 5% of the MB over the 4 hour test. 

Faster MB degradation occurred when TiO2 was present. For TiO2 in the mixed slurry 

reactor, MB degradation rates increased with higher TiO2 dosages and plateaued for TiO2 

above 5 mg/L. Presumably, MB degradation is limited to a reaction zone where light 

penetrates the water-TiO2 slurry.(McCullagh, Robertson, Adams, Pollard, & Mohammed, 
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2010) MB degradation rates in the TiO2 slurry reactor were always lower than experiments 

with equivalent TiO2 mass attached to optical fibers and the same photon fluence.  

 

Figure 6-2. Pseudo-first order degradation kinetics for methylene blue at different TiO2 

doses and coating regimes in 10 mL reactor volumes. 

 

Figure 6-2 also shows that similar MB degradation rates were observed for all the 

dip-coated TiO2 optical fibers, despite being loaded with 5x different TiO2 masses. 

Although more light was absorbed as the coating layer became thicker (Figure 1a), the 

additional light absorbed by the thicker coating layer did not increase MB degradation. The 

thicker coating layer potentially created barriers for MB mass transfer to inner reactive 

sites in the TiO2 coating layer while also limiting the transfer of excitons through the TiO2 

grain boundaries.(Richter & Schmuttenmaer, 2010; Salafsky, 1999) This resulted in a non-

reactive, inert TiO2 coating zone that only absorbs light and dissipates heat. Therefore, 

TiO2 coating layer thickness design should optimize the coating thickness to provide 

enough reactive sites rather than maximizing absorbed light. Peill et al.(Nicola J Peill & 
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Hoffmann, 1996) report that 7.0 μm is an optimal thickness for a 20 cm length fiber used 

in aqueous phase oxidation of 4-chlorophenol, considering 100% light absorbance within 

the 20 cm fiber length. Thicker coatings have been reported to reduce performance due to 

exciton trapping prior to transport and utilization at the TiO2/water interface.(Choi, Ko, 

Park, & Chung, 2001; Danion, Disdier, et al., 2004; Nicola J Peill & Hoffmann, 1995) Choi 

et al. conclude 1.75 μm as optimal thickness for a 30 cm length fiber in gas-phase treatment 

based upon a compromise between light absorption and reactant diffusion to the 

photocatalytically active sites.(Choi et al., 2001) Our findings align with the desired 

compromise of higher performance based on the photon utilization and sufficient 

contaminant mass transport within the reactor to the photocatalytic sites, concluding an 

optimal coating thickness should be ≤ 2 μm.  

To assess the difference in coating methods for MB degradation performance, TiO2 

sol-gel was compared against dip coating. The sol-gel-coated fibers exhibited an inverse 

relationship between coating thickness and performance (Figure 6-2). This further suggests 

that thicker and denser mass loadings applied to the optical fibers via sol-gel methods 

slowed MB degradation. Sol-gel coatings provide more control of TiO2 coating layer 

properties (index of refraction, porosity, crystallinity) on quartz substrates.(Hu, Yoko, 

Kozuka, & Sakka, 1992) However, this work observed inferior MB degradation 

performance for sol-gel compared against dip coating. 
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Figure 6-3. Quantum yield (Φ) of MB bleaching using photolytic or photocatalytic 

conditions (4 μM initial MB concentration and 10 mL reactor volume with a 7 cm fiber 

and 318-nm LED) based on catalyst delivery and fiber coating techniques reported in Table 

6-1. 

 

Figure 6-3, which summarizes quantum yields (Φ) of the dip-coated fibers, sol-gel-

coated fibers, and slurry systems at equivalent catalyst doses, shows slurry based systems 

had marginally higher Φ than photolysis alone. This proves that the UV-LED/TiO2/optical-

fiber system has higher energy utilization efficiency compared to the slurry system. Values 

for Φ increased between 3x to 10x when the optical fibers were coated compared to 

photolysis alone. Experiments characterized by highest Φ were single dip-coated or single 

sol-gel-coated fibers. This outcome is likely a result of light penetration within the TiO2 
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100x factor improvement in quantum yield of MB bleaching using the UV-

LED/TiO2/optical-fiber system compared to polychromatic lamp-driven slurry systems.  

Geometric and theoretical modeling  

The fibers used in this study have a numerical aperture of 0.39, which corresponds 

to an acceptance angle of 23.0° to enter the fiber (relative to the axis of the fiber) and an 

interior illumination angle (θ) of 15.5° after the light refracts from the air into the quartz 

fiber. Therefore, all light rays within the fiber are between 0° (perfectly parallel to the fiber 

axis) and 15.5°. Total internal reflection (TIR) occurs within the fiber when the index of 

refraction of the fiber (nf = 1.46 for quartz fibers) is greater than the index of refraction of 

the surrounding external media (ne = 1.00 for air, 1.33 for water) and the incident angle (θi 

) of the light, measured relative to the normal of the interface between the fiber and the 

external media (note that θi = 90° - θ), is greater than the critical angle. The critical angle 

(θc) can be derived from Snell’s law as (Peatross & Ware, 2008): 

𝜃𝐶 = sin
−1 (

𝑛𝑒

𝑛𝑓
)     Equation 2 

Within the fiber, light incident on the quartz interface is refracted out of the fiber 

when the effective index of refraction of the external material (𝑛𝑒) is greater than the index 

of refraction of the quartz fiber (𝑛𝑓). The 𝑛𝑒 depends on the coating characteristics of the 

fiber. For an infinitely smooth TiO2 coating (𝑛𝑒 = 2.6 > 𝑛𝑓) with a thickness much larger 

than the illumination wavelength, any light incident on the boundary would refract out of 

the fiber and into the photocatalyst coating. For the case of no TiO2 coating, the external 

material is water (𝑛𝑒 = 1.3 < 𝑛𝑓), resulting in TIR within the fiber. Figure 4 illustrates the 

proposed mechanism of these two activation pathways for TiO2 coatings on optical fibers.  



202 

During TIR, the boundary conditions of Maxwell’s equations result in an imaginary 

wavenumber (𝐤), which produces a corresponding electromagnetic energy field 

E(r):(Peatross & Ware, 2008) 

𝐤 =  𝑘𝑦�̂� +  𝑘𝑥�̂� = 𝑖𝛼�̂� +  𝛽�̂�    Equation 3 

𝐸(�̂�) =  𝐸0𝑒
−𝑖(𝑖𝛼�̂�+ 𝛽�̂�) = 𝐸0𝑒

𝛼�̂� − 𝑖𝛽�̂�   Equation 4 

The flow of this energy, (E(�̂�)), called an evanescent wave, is parallel to the waveguide 

surface (x-y plane, along the fiber length), while intensity of the field (I) falls off 

exponentially away from the waveguide surface (z direction). Thus, no energy is 

transmitted into the second medium, and the intensity of the electric field in the z direction 

(I(z), perpendicular to the waveguide) decreases according to equation (5), described as the 

evanescent penetration depth: (Lensun, Smith, & Gee, 2002; Atom Sarkar, Robertson, & 

Fernandez, 2004) 

𝐼(𝑧) = 𝐼(0)𝑒−
𝑧

𝑑;  𝑑 =  
𝜆

4𝜋√𝑛𝑓
2𝑠𝑖𝑛2𝜃𝑖− 𝑛𝑒

2
   Equation 5 

This rapidly decaying energy field depends on the wavelength of the light inside the fiber 

(𝜆), the incident angle of the light to the waveguide (𝜃𝑖), and both 𝑛𝑓 and 𝑛𝑒. As such, the 

evanescent field intensity attenuates as distance from the fiber surface (z) increases. For 

the case of no TiO2 coating, an evanescent field on the exterior of the fiber was produced 

with intensity shown in Figure 5. Further, Figure 5 shows z-direction attenuation of the 

evanescent field with respect to three typical incident angles: 74.5º, 80º, and 90º 

corresponding to the 0º to 15º acceptance angle of the optical fiber.  

The kinetic experimental data (Figure 6-2) is consistent with the theoretical 

mechanism (Figure 6-4), which demonstrated that increasing the TiO2 coating thickness 
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should not increase the photocatalytic degradation rate. This is because neither energy of 

evanescent waves nor charge carrier transport can reach the TiO2/water interface to induce 

reaction in thick coating layers (>2–5 μm).(Choi et al., 2001) However, excitation of the 

photocatalyst in the fiber-photocatalyst system is possible via either light refracting from 

the quartz fiber waveguide into the thinly-coated photocatalyst (<2 μm), or through indirect 

excitation by evanescent energy near the surface of the optical fibers. The production of 

evanescent waves depends on the collision of photons at the fiber wall and resultant total 

internal reflection(Y. Xu et al., 2006) and represents a new alternative reactive mechanism. 

At higher coating thickness, refraction dominates.(Peatross & Ware, 2008) While photons 

are the well-described energy input through which photocatalytic excitation occurs, 

excitation by an alternating electromagnetic wave (e.g., evanescent wave) is likewise 

possible. (He et al., 2011; Motojima, Suzuki, Hishikawa, & Chen, 2003; Ueno & Misawa, 

2013; Wada, Yin, & Yanagida, 2002)  
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Figure 6-4. Scheme to represent the two potential mechanisms of excitation in the optical 

fiber/light emitting diode reactor: (a) total internal reflection and production of an 

evanescent wave at an uncoated interface; (b) refraction of light into TiO2 and generation 

of charge carriers to induce aqueous phase oxidation-reduction. 

 

The photocatalyst-coated optical fibers prepared herein were not perfectly uniform 

when coated with few coating layers (Figure 6S1, 6S2), which likely led to both TiO2 and 

water contacting the optical fiber surfaces. A single dip-coat produced a non-homogeneous 

layer of TiO2 approximately 2 μm thick, resulting in 16% attenuation of photon flux 

through the fiber (Figure 6-2). As the coating thickness increased to 8.2 μm (i.e., 5 

coatings), the flux of light coming through the fiber decreased to approximately 50% of 

the photons of an uncoated fiber. Additional dip coatings (up to 20 total coats) did not 

further decrease the photon flux through the fiber. Similarly, increasing the length of the 
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fiber up to 28 cm with a coating mass loading rate of 0.058 mg cm-1 (i.e., 20 coating cycles) 

did not reduce the total photon flux through the fiber by more than 50%. This indicates that 

there was still significant TIR inside the fiber, even with significant TiO2 loading, and the 

photocatalyst material near the surface of the fiber (within the first hundred nm, see Figure 

6-5) resided within the evanescent wave. Excitation of the photocatalyst in the fiber-

photocatalyst system is therefore possible through both light refracting from the quartz 

fiber waveguide into the photocatalyst coating(W. Wang & Ku, 2003b) and through 

excitation by evanescent energy near the surface of the optical fibers. Note that while this 

is supported by the data observed, there was light transmission through the entire fiber even 

for the thickest coatings. Therefore, a quantifiable fraction of the light is experiencing TIR 

and reflecting to the end of the fiber due to the short coated length. One report indicates 

that up to 25% of photon energy can be transferred as evanescent energy(Bao & Van, 

2000), indicating a multi-pathway excitation mechanism through evanescent waves and 

refracted photons may be contributing to photolytic and photocatalytic processes. Further 

work is needed to elucidate the interplay between these two mechanisms and better 

understand how they contribute to the significantly improved quantum yield of the system.  
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Figure 6-5. Evanescent wave intensity as a function of radial distance (μm) from the 

optical fiber surface for three photon incident angles (θi=74.5°, 80°, 90°) for 318 nm light, 

nf = 1.46 (quartz), ne = 1.33 (water).  

 

Engineering Implications  

As shown above, the direct coupling of UV-LEDs to photocatalyst-coated optical 

fibers demonstrated a viable technology to overcome the major limitations of 

heterogeneous photocatalysts for water treatment applications. Such barriers include the 

requirement of slurry catalyst separation from the treated water and light scattering and 

occlusion by light-absorbing aqueous constituents and nanoparticles. The performance of 

the UV-LED/TiO2/optical fiber system suggests that MB oxidation in a controlled-catalyst 

delivery configuration was enhanced by better light transmittance and significant photon-

electron/hole conversion. Inefficient light transmittance to the outer-most TiO2 coating 

layer (in contact with aqueous pollutants) resulted from thick coating layers (< 2–5 μm). 

Further, compared to conventional UV irradiation sources, UV-LEDs provide a narrow-
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wavelength output for irradiation, which is capable of removing pollutants via 

photocatalytic or photolytic mechanisms while decreasing required energy inputs and 

systemic inefficiency due to heat losses. In our MB degradation experiments, ~47% of 

incident light was not utilized, suggesting that the pollutant degradation efficiency may be 

further improved by either altering the incident light angle or elongating the photocatalyst 

coated optical fibers. Investigation of the excitation mechanism is underway to 

quantitatively assess the contributions of the excitation provided by evanescent energy, 

from frustrated total internal reflection, and photon tunneling.  
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Supplementary Information for Chapter 6 

Fiber stripping and preparation for catalyst deposition 

11-cm fiber segments were cut using a ceramic square or ruby blade to achieve a 

clear fiber cut. To remove the TECS cladding (a clear coating around the fibers that 

maintains total internal reflection of the light) and external buffer, the fibers were soaked 

in acetone for 24 hours, and the cladding was manually removed. If necessary, a second 

24-hour acetone soak and manual cladding removal step was used. The fibers were then 

rinsed with water to remove any remaining acetone residual as the catalyst solution was 

prepared. 

Fiber mounting and polishing for enhanced light transmission 

 Fibers were fixed to the metal connector (SMO5SMA, Thor Labs) using heat shrink 

wrap (TT100 1/16” and 1/8”, 0.5 cm and 1.5 cm, respectively, Tech-Tron) placed (1) 

between the stripped fiber and the connector and (2) overlaid on the combined fiber-

connector. Heated air was used to shrink wrap the components to flush-fit, and the fibers 

were cooled prior to further treatment or use. Thor Labs ruby blade was used to gently 

score the fiber and cleave along the mechanical axis of the fiber to achieve smooth ends 

for polishing. Mounted, cleaved fibers were then polished using a polishing assembly 

(D50SMA, Thor Labs) with fiber polishing paper (LF30P, LF5P, LF03P). Fiber 

microscope was used to determine uniformity of clarity at the fiber tip.  

LED mounting to optical fiber used a butt-coupling method of direct contact 

between the LED quartz window and polished optical fiber tip (S05LEDM, SM05M05, 

SM05SMA, Thor Labs). Male/female SMA (SubMiniature version A) pairing allowed for 

the LED housing to connect directly to the polished fiber assembly.  
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Dip coating method for TiO2 deposition 

  A dispersion of 1% or 2% (10 g/L, 20 g/L) TiO2 (P25 or P90, Evonik – formerly 

Degussa) was created utilizing the CEINT (Center for the Environmental Implications of 

NanoTechnology) protocol.(Tantra, Sikora, Hartmann, Sintes, & Robinson, 2015) The 

dispersion solution was nanopure water, and P90 was added to reach 20 g/L, with no 

additional chemical addition (pH = 4.0-4.5). The solution was sonicated in an immersed 

sonicator horn, and the sonicated solution maintained stability for up to 48 hours. Two 

variations of a dip coating protocol were used: (1) extended dip/dry cycling and (2) rapid-

enhanced dip/dry cycling. For extended drip/dry cycling, fibers were immersed in the 

solution for 24 hours to achieve good electrostatic interaction; fibers were then allowed to 

dry (24 hours) and rinsed with nanopure water to release any excess TiO2 prior to analysis 

or use. For rapid-enhanced drip/dry cycling, 30 s dip/dry cycle was conducted with a 2% 

TiO2 solution for TiO2 deposition and hot-air drying to allow for rapid processing of the 

optical fibers.  

Sol-Gel method for TiO2 deposition 

To functionalize the optical fiber surface, the optical fibers were first sonicated for 

30 min in acetone, ethanol, and then water. After sonication, fibers were rinsed with 

distilled water and dried with a stream of nitrogen gas. Then the optical fibers were 

immersed into piranha solution (H2O2:H2SO4 = 1:3, volume ratio) to generate hydroxyl-

functionalized surfaces (Caution: piranha solution reacts violently with most organic 

materials and must be handled with extreme care). The functionalized optical fibers were 

rinsed with water and ethanol, sequentially, then immersed in 6 ml of ethanol (200 proof) 

containing titanium isopropoxide (TTIP, 0.6 ml). After 5 mins, the fibers were slowly taken 
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out and exposed to air for another 5 mins to allow TTIP hydrolysis to generate 1 layer of 

TiO2 precursor. Repeating the dip coating process can result in multiple TiO2 precursor 

layers. Optical fibers were dried at 60 °C for 2 h to allow complete hydrolysis, then heated 

to 500 °C (2 °C min-1) for 1 h to crystallize the TiO2 particles. As a control, P25 particles 

(1wt %) instead of TTIP were dispersed in ethanol and used as precursor solution for dip 

coating. The samples were characterized by scanning electron microscopy (SEM).  

Tabulation of Iabs 

Geometry of the Optical Fiber 

D= 0.1 cm diameter      L= 6.5 cm coated 

length 

Area of the optical fiber tip: 𝐴𝐹𝑂−𝑡𝑖𝑝 = 
𝜋𝐷2

4
 

Surface area of the optical fiber (without tip): 𝑆𝐴𝐹𝑂 = 𝜋𝐷𝐿 

Quantum Yield (general equation) 

𝛷 =
𝑑𝑋/𝑑𝑡

𝐼𝑎𝑏𝑠
 

𝑑𝑋

𝑑𝑡
=
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 

𝑡𝑖𝑚𝑒
 

𝑑𝑋

𝑑𝑡
=
𝑑𝐶

𝑑𝑡
∗ 𝑉 

𝑑𝑋

𝑑𝑡
= [
𝑚𝑜𝑙 − 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡

𝑡𝑖𝑚𝑒
] 

𝐼𝑎𝑏𝑠 = [
𝑚𝑜𝑙 − 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑡𝑖𝑚𝑒
] 

Iabs 

Photolysis 
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  𝐼𝑎𝑏𝑠(𝑃) = 𝐸𝑍𝐸𝑅𝑂 ∗ 𝐴𝐹𝑂−𝑡𝑖𝑝 

  𝐸𝑍𝐸𝑅𝑂 = light from LED/FO tip at zero coatings 

Slurry  

  𝐼𝑎𝑏𝑠(𝑆) = 𝐸𝑍𝐸𝑅𝑂 ∗ 𝐴𝐹𝑂−𝑡𝑖𝑝 

  𝐸𝑍𝐸𝑅𝑂 = light from LED/FO tip at zero coatings 

Coated Fiber 

  𝐼𝑎𝑏𝑠(𝐶) = (𝐸𝑍𝐸𝑅𝑂 − 𝐸𝑋𝐶𝑂𝐴𝑇) ∗ 𝐴𝐹𝑂−𝑡𝑖𝑝 

  𝐸𝑋𝐶𝑂𝐴𝑇 = light from LED/FO tip at X-coatings  
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Supplementary Figures 

Scanning electron microscopy (SEM) was conducted on fiber optics to visualize 

titanium dioxide surface coating density and thickness on optical fibers. SEM was 

conducted using a scanning electron microscope equipped with an energy dispersive X-ray 

microanalysis system (SEM/EDX; Philips XL30-EDAX). Optical fibers were arranged 

both horizontally to assess the coating homogeneity along the length of the fiber and 

vertically to assess the coating thickness via cross-sectional analysis.  

Figure S1 shows two optical fibers: blank (no coating, cladding stripped) on the left 

and five coating layers (TiO2 dip coating; 0.1 mg added mass) on the right. Zero coating 

was observed on the stripped fiber surface of the blank sample, and an overall thickness of 

8175 ± 634 nm was observed on the optical fiber with five coating layers of P25. Figure 

S2 portrays images along the longitudinal axis for blank, a single coating layer, and five 

coating layers. The five P25 coating layers (Figure S2c) shows complete TiO2 coverage 

whereas the single coating layer (Figure S2b) showed exposed quartz surfaces and non-

homogenous surface coating.  

The sol-gel method was also assessed via SEM/EDX to look at coverage 

completeness and particle size, density, and dispersion (Figure S3). Comparing images 

from single coating layer to five coating layers of TTIP sol-gel or P25 sol-gel indicated 

that the TTIP sol-gel method achieved more complete coverage surface coating as well as 

better surface smoothness and homogeneity.  

Presented as the inverse of Fig. 1a (main text), Figure S4 shows the photon flux 

transmitted through the optical fibers as measured through the tip for various coating 
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cycles. These were the values measured by the radiometer, and are presented averaged 

from three collected measurements with error bars.  

 

Figure 6S1. (a) Scanning electron microscopy image of: (a1) stripped quartz optical fibers 

with no catalyst coating, (a2) 5x (0.1 mg) coating on quartz optical fibers (8175 ± 634 nm); 

 

Figure 6S1. (b) catalyst coated thickness (μm) based on catalyst coating mass (mg) for 0, 

1, 3, or 5 coating layers. Error bars represent 1σ and are shown for x- and y-axes.  
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Figure 6S2. Scanning electron microscopy of the side of (a) 0x coated optical fiber (blank); 

(b) 1x (0.2 mg) coated optical fiber; (c) 5x (0.1 mg) coated optical fibers with catalyst 

compaction and minimal void space.  

 

 

a 

c 

b 
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Figure 6S3. Scanning electron microscopy of the side of sol-gel TiO2 coated optical fibers: 

(a-d) 5 layers of TiO2; (e-h) 1 layer of TiO2, (i-l) 5 layers of TiO2. TTIP was the precursor 

in (a-h), and P25 was the precursor in (i-l). 
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Figure 6S4. Photon flux transmitted through the optical fibers measured at the optical fiber 

tip as a function of catalyst coating mass. Error bars represent ±1σ of triplicate 

measurements.  
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Time-based kinetics were assessed to determine effectiveness of each coating 

methodology and corresponding mass-equivalent slurry conditions. Apparent rate 

constants, kapp (Figure S5a) were tabulated from first-order (s-1) relationships as shown in 

Figure S5b. Linear trendlines and coefficients of determination (R2) were tabulated for 

each.  

 

Figure 6S5a. Apparent reaction rate constant, kapp, for bleaching of methylene blue under 

photolytic and photocatalytic conditions.  
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Figure 6S5b. Data fit for apparent reaction rate constant, kapp, for bleaching of methylene 

blue under photolytic and photocatalytic conditions.  
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CHAPTER 7 

COMPACT LIGHT-EMITTING DIODE OPTICAL FIBER IMMOBILIZED TIO2 REACTOR 

FOR PHOTOCATALYTIC WATER TREATMENT 

Abstract 

A key barrier to the implementation of photocatalysis is delivery of light to photocatalysts 

in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light 

penetration and require catalyst separation, which necessitates the development of 

photocatalysts fixed films. However, a challenge of photocatalytic films for water 

treatment is efficient light delivery. TiO2-coated quartz optical fibers were coupled to light 

emitting diodes (OF/LED) to improve in situ light delivery. Design factors studied for 

OF/LEDs in a flow-through reactor include: (i) the influence of number of light LED 

sources coupled to fibers, and (ii) the use of optical fiber bundles. The light delivery 

mechanism from the optical fibers into the TiO2 coatings is thoroughly discussed. To 

demonstrate influence of design variables, experiments were conducted in the reactor using 

the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics 

of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (EEO) 

were determined. The use of optical fiber bundles coated with TiO2 reduces the energy 

requirements to deliver photons and increases available surface area, which improves Φ 

and enhances oxidative pollutant removal performance (EEO). 

Keywords. Water treatment; Photocatalysis; Nanotechnology; advanced oxidation 

processes; trace organics, pollutants 
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Introduction 

 Photocatalytic principles have been explored since the famous discovery by Fujishima 

and Honda in 1972 (Fujishima & Honda, 1972), when the photocurrent response of TiO2 

after UV irradiation was first reported. Since then, more than four thousand reports per 

year on the study of novel nano-materials and their possible applications are published. 

Photocatalysis as a nano-enabled water treatment technology has been recognized for its 

promising applications (Nicola J Peill & Hoffmann, 1995). Research for water treatment 

has focused more on catalyst material design (Schneider et al., 2014b), and less on reactor 

efficiency in utilizing the catalysts (Lazar et al., 2012; McCullagh, Skillen, Adams, & 

Robertson, 2011; Van Gerven, Mul, Moulijn, & Stankiewicz, 2007). Reactors designed for 

photocatalysis are either fluidized slurry (Ibhadon & Fitzpatrick, 2013; Nakata & 

Fujishima, 2012) or fixed catalyst films (Shan et al., 2010). The photocatalytic reactors 

designed to date consider the external excitation of the photocatalyst using either lamp 

sources or natural sunlight by irradiating the catalyst surface (Boyjoo, Ang, & Pareek, 

2014; Lan, Lu, & Ren, 2013). The main problem for photocatalyic reactors is light 

scattering and light propagation (van Grieken, Marugan, Sordo, & Pablos, 2009) within or 

towards these solutions to efficiently excitate the photocatalysts to photogenerate the 

charge carriers according to reaction (1): 

TiO2+ h → ecb
-+ hvb

+      (1) 

 Supporting or fixing the nanoparticles onto substrates as photocatalytic coatings have 

advantages, namely  eliminating the necessity to separate micro- or nano-sized catalyst 

particles from solution after treatment (Stancl et al., 2015a; Westerhoff, Alvarez, Li, 

Gardea-torresdey, & Zimmerman, 2016). Fixed film systems involve passage of light from 
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a source through water to an attached catalyst surface which diminishes light delivery 

efficiency (van Grieken, Marugan, Sordo, Martinez, et al., 2009). Light transport has been 

considerably technologically improved for telecomunications applications with the 

development of low-loss optical fibers. Light is transported through total internal reflection 

inside these optical fibers without loss due to careful design of external coatings (Peatross 

& Ware, 2008). Light is internally reflected because the optical fiber (fused SiO2) has a 

higher refractive index (n) than the protective polymeric coating represented in Fig. 7-1 as 

n1 and n2, respectively. If the coating n is higher than the characteristic value of the optical 

fiber (n1 = 1.5), light can be partially refracted into the coating and subsequently absorbed 

or scattered. Thereby, an optical fiber coated with TiO2 (n3= 2.6) can deliver light to 

photoexcite TiO2. Previous work has improved light delivery to the catalyst by using 

optical fibers (Barton et al., 2016; Marinangeli & Ollis, 1982). The advancement of 

approach is that the photocatalytic coating is irradiated from inside the photocatalyst 

support, the optical fibers (Nicola J Peill & Hoffmann, 1996; J. Xu et al., 2008). Thereby, 

the photonic transport efficiency can be considerably improved (Nicola J. Peill & 

Hoffmann, 1998; Nicola J Peill & Hoffmann, 1995; W. Wang & Ku, 2003b). Note that 

refractive events rarely would occur when uncoated fibers are in contact with air (nair = 

1.0) or water (nwater = 1.3), where total internal reflection would dominate. 
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Figure 7-1 – Mechanism of light transport through the optical fiber and light delivery to 

the photocatalyst. Indices of refraction are denoted: n1 for the quartz optical fiber, n2 for 

the cladding or other outside interface (e.g., water, air), n3 for the TiO2 coating. 

 

  The coupling of optical fibers and light sources has been conducted previously with 

emphasis on: collimated lamp sources and solar irradiation (Barton et al., 2016; N J Peill 

& Hoffmann, 1997a). Due to their high energetic demand, pressurized mercury lamps – 

though potent in photocatalysis- are not optimized for energy efficient light delivery into 

optical fiber systems (Denny, Scott, Peng, et al., 2010). Likewise, the solar spectrum, with 

only 6% ultraviolet irradiation, requires infrared wavelength management and is 

susceptible to significant losses (N J Peill & Hoffmann, 1997a) due to excess heat 

generation which can slough off the photocatalyst coating. However with the recent 

advancement in light emitting diode (LED) technologies (Jo & Kang, 2012; Langanf H. 

Levine et al., 2011), direct coupling of a discrete wavelength irradiation source to 

individual optical fibers without added optical lenses could be possible (Hou & Ku, 2013). 

Further, LEDs are monochromatic and therefore can deliver wavelength-specific light as 

desired for photocatalytic bandgap excitation (K. Natarajan et al., 2011). 

 We designed and operated an optical fiber/LED recirculating reactor system to assess 

performance to remove para-chlorobenzoic acid (pCBA), a model compound. 
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Performance was assessed through both physical measurements of light passage along the 

optical fibers as a function of TiO2 coatings, and determination of apparent quantum yields 

and electrical energy per order for pCBA removal under different reactor configurations. 

Throughout the course of this study, the main objective was to determine the highest 

performance light delivery scheme via variance of: (a) number of light emitting diodes; (b) 

effective surface area through the use of bundled fiber optics or individually coupled fiber 

optics under identical illumination conditions. In this work we exploit these characteristics 

to design a photocatalytic compact reactor using fiber optics as a light delivery method.  

 Experimental 

Chemicals and materials 

 Pure p-chlorobenzoic acid (99%) and TiO2 (P90) were purchased from Sigma-Aldrich 

and Evonik, respectively. Stock solutions and TiO2 suspensions were prepared with water 

from a Millipore Milli-Q system with resistivity >18.2 MΩ cm at 25 ºC. The solution pH 

was adjusted to 4.0 with analytical grade sulfuric acid and sodium hydroxide supplied by 

Fisher Chemical. Acetonitrile used for the preparation of the mobile phase was of HPLC 

grade (>99.9%) from Sigma-Aldrich.  Analytical grade acetone purchased from Merck was 

used to strip the polymeric cladding. LED mounts and optical fibers of numerical aperture 

0.39 and 1000 μm diameter were acquired from Thorlabs (FT1000UMT: transmit 

wavelengths 300-1200 nm). Heat shrink wraps of  0.16 cm and 0.24 cm of diameter were 

purchased from Tech-Tron while 365 nm ultraviolet (UV) LED emitters were supplied by 

Digi-Key Electronics (365nm 300mA TO-39). 
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Fiber optics preparation and TiO2 coating 

 Fiber optic segments of 20.0 cm were cut with a ceramic blade obtaining a smoth and 

flat cut surface. The plastic buffer was manually removed by using a specialized micro-

strip fiber optic stripper. Then, the stripped fibers were soaked in acetone to dissolve the 

polymeric cladding which consists of a thin TECS coating to maintain the total internal 

reflection of light. Uncoated fibers were subsequently rinsed and cleaned with nanopure 

water. Prior to polishing, fiber optic segments were individually fixed to metallic LED 

connectors (SMO5SMA, Thorlabs) by using heat shrink wrap. Fibers were mounted on a 

fiber support (D50SMA, Thorlabs) to homogeneously polish the cut surface until an 

specular surface was obtained using optical polishing paper (LF30P, LF5P, LF03P). Both 

tips of each optical fiber were polished and the uniformity of polished fiber tips was 

evaluated using a fiber microscope before coating. One of the fiber tips was assembled in 

direct contact with the LED quartz window through a male/female conection between the 

LED mount and the LED connector as shown in Fig. 7-2.  

 The TiO2 P90 photocatalyst was deposited on the fibers surface using a dip-coating 

method. A 1.0 % TiO2 P90 dispersion (10 g/L) was prepared following a published protocol 

(Tantra et al., 2015). The dispersion solution was prepared in nanopure water and sonicated  

with a QSonica Misonix immersion sonicator for 15 min. The optical fibers were immersed 

in the dispersion solution and heat dried to ensure the adherence to the fiber optics surface. 
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Figure 7-2 (a) Scheme of the TiO2/optical fiber coupling with LED light source. (b) 

Characteristic light emission and photon fluence of the 365nm UV-LED used in the reactor 

through non-coated fibers. 

 

Reactor design 

A sketch of the photocatalytic TiO2/optical fiber flow reactor is shown in Fig. 7-3. 

The photoreactor consisted of a Near Clear PVC cylinder (Harrington Plastics) of 2 cm of 

inner diameter with a total length of 18 cm. The solution reached a total height of 16 cm, 

which is equivalent to a 50 mL of solution confined inside the reactor under magnetic 

stirring at 700 rpm and hydraulic retention time of 10 min. The 150 mL solutions 

containing 0.1 mM of pCBA at pH 4.0 were introduced in the reservoir and recirculated 

through the system by means of a peristaltic pump at 5 mL min-1. The coated optical fibers 
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were inserted into the reactor with equal spacing. Note that different set-ups were explored 

using different fiber-LED couples: (i) individual fibers connected independently to an LED 

source (OF/LED), (ii) a bundle of three coupled fibers connected to the same LED source, 

and (iii) a bundle of fifteen fibers coupled to an LED. Furthermore, the influence of 

increasing number of OF/LED units inside the reactor where considered from 1 to 5.  

 

Figure 7-3. Scheme of flow-through reactor design for OF/LED system. 
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Apparatus and analytical procedures  

The light irradiance (E) delivered from the light sources and from the output tip of 

the optical fibers was quantified with a radiometer Avantes AvaSpec 2048 spectrometer 

with cosine corrector measured as μW cm-2. The photon fluence rate (Ep’) expressed in 

einstein cm-2 s-1 was then calculated as follows (J. R. Bolton et al., 2001): 

 

Ep’ = Σ            (2) 

 

where λi is the i wavelength of the light source in nm, nA is the Avogadro constant 

(6.022 x 1023 einstein mol of photons-1) and 5.04 x 109 is a conversion factor to homogenize 

units (10-6 J s-1 μW-1 / 1240 eV nm / 1.60 x 10-19 J eV-1). Meanwhile, the photons adsorbed 

by the TiO2 coatings (Iabs) were estimated from the difference of Ep’ for the uncoated fibers 

and the coated fibers (W. Wang & Ku, 2003a). Due to the complexity of accurately 

measuring light endpoints upon entering the optical fiber, it was assumed that the light loss 

is associated to the refraction of light into TiO2 neglecting scattering effects (W. Wang & 

Ku, 2003a). It is important to remark that light irradiance is always detected at the optical 

fiber tip, because part of the beam of photons is directly transported through the fiber 

without undergoing reflection or refraction (Peatross & Ware, 2008; Nicola J Peill & 

Hoffmann, 1996). Solid analysis of the TiO2 coatings was conducted using SEM/EDX 

(Philips XL30-EDAX). Imaging of the vertically oriented optical fibers was used to 

determine the thickness of the TiO2 coating. EDX demonstrated the contents of the optical 

fiber to be quartz (SiO2) and the coating to be TiO2.   

5.04 x 109 E λi  

nA 
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The pH of the solutions was measured using a Thermo Scientific Orion Star A221 

pH-meter. The removal of pCBA was followed by reversed-phase chromatography using 

a Waters 2695 HPLC with a Waters LiChrosorb® 10 μm RP18 (100 mm x 4.6 mm) column 

at 25 ºC with a LiChroCART® 4-4 guard column. The photodiode array detector Waters 

2996 was set at λ = 233 nm corresponding to the maximum absorbance of pCBA. The 

analysis were conducted  by injecting 20 μL aliquots of samples collected at different 

photocatalytic treatment times and using a mobile phase 35:65 (v/v) acetonitrile/water 

mixture at 0.6 ml min-1.  

Results and discussion 

TiO2 coatings and light passage characterization 

Figure 7-4 shows the SEM images of one fiber optic coated with TiO2, where the 

magnification elucidates a smoth coating surface. The cross sectional image of coated 

fibers evidenced a physical attachment of TiO2 nanoparticles with an uniform thickness 

observed through the fiber (see Fig. 7-4c). Optical fibers subjected to several cycles of dip-

coating have increasing thickness of 1.1 ± 0.1 μm, 2.2 ± 0.1 μm, 3.2 ± 0.1 μm and 4.7 ± 

0.1 μm after 1, 2, 3 and 5 coating cycles, respectively. The steady state intensity of light 

delivery was monitored at the terminal end of fibers of different coating thickness 

(individually attached to the 365nm LED). The coating thickness influences not only the 

photocatalytic response but also the light delivery through the fiber. Fig.7-5 shows the 

differential Ep’ value measured between a coated and uncoated fiber, which corresponds 

to the number of photons potentially refracted, absorbed and scattered by the TiO2 coating 

layer. This value increases with the thickness until reaching a plateau. The increased Ep’ 
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differential can be explained by the higher number of particles in the interface glass/TiO2 

which increase the optical fiber light refraction (Danion, Bordes, et al., 2004; Danion, 

Disdier, et al., 2004). Whereas, the plateau achieved by thicker coatings can be associated 

to the saturation of the photocatalytic coating. However, these values are approximate, as 

the true value of photons absorbed is obscured by those potentially lost via scattering (W. 

Wang & Ku, 2003a).   

 

Figure 7-4. Scanning electron microscopy (SEM) images of (a) the optical fiber, (b) the 

free-surface micrograph of the TiO2 coating, and (c) the cross section of the TiO2 coating 

on fiber optic substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

c 



230 

Coating thickness is a highly relevant parameter since  photo-generated charge 

carriers must be transported from the inner TiO2 coating interface in contact with the 

optical fiber up to the external TiO2 interface with the aqueous solution (Choi et al., 2001). 

The depth penetration of light into the TiO2 coating is function of 1/α, where α is the 

absorption coefficient at the characteristic wavelength of the incident light (Dosta et al., 

2016; Hitchman & Tian, 2002). The charge carriers generated in the depletion layer should 

be transported to the catalyst surface (L. Zhang et al., 2012). The coating thickness should 

take into account the minority carrier diffusion length of up to 10 μm for TiO2
 electrons 

(varies by TiO2 morphology) (Hodes & Kamat, 2015; Könenkamp, 2000), which is the 

maximum field-free region of photogenerated charge carriers prior to recombination 

reaction (3).  

 

ecb
-+ hvb

+ → heat       (3) 

 

 From Fig. 7-5 we can deduce that longer fiber lengths increase the Ep’ differential 

for a fixed TiO2 coating thickness. The probability of obtaining refraction from a reflected 

photon beam increases with length. For long fibers, a plateau is reached because photons 

are already reflected, refracted and absorbed before reaching the tip of the fiber.  For the 

365nm LED and optical fibers used in this study, the TiO2 particles attached over certain 

length (> 20 cm) will not be effectively photoexcited under any circumstance.  Thus, a 

coated length of 15 cm obtained after 1 coating cycle was determined as optimum for the 

reactor design. At this length, similar amounts of photons are absorbed regardless of 

coating thickness. 
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Figure 7-5. Photon fluence differential estimated between uncoated and coated fiber 

measurements as a function of coating thickness of optical fibers for different coated 

lengths of: () 5 cm, () 10 cm, () 15 cm, () 20 cm, () 25 cm, and (x) 30 cm.  

   

Influence of the number of optical fiber/LED couples on pCBA removal 

  Control experiments on pCBA removal were initially performed to assess the 

amount of adsorption onto TiO2 coated optical fibers or losses of pCBA within the reactor. 

The initial pCBA concentration remained constant after 8 h of recirculation through the 

reactor without optical fibers. Absorption of the organic pollutant pCBA on the PVC walls 

of the reactor was not observed. Model pollutant concentration was unaltered after the 

immersion of uncoated optical fibers, either under dark condition or with illumination when 

LEDs were attached to the optical fiber. Hence, the influence of photolytic degradation 

under our experimental conditions was negligible. Moreover,  differences lower than 1% 

were observed during control experiments where pCBA solution was recirculated through 

 

0

1 10
-7

2 10
-7

3 10
-7

4 10
-7

0 1 2 3 4 5 6

5
10
15
20
25
30


 E

p
' 

/ 
ei

n
st

ei
n
 c

m
-2

 s
-1

TiO
2
 coating thickness / m



232 

the reactor containing 5 optical fibers TiO2 coated without delivering light through the 

OF/LED couples. This behavior indicates that removal of pCBA by its adsorption on TiO2 

does not appreciably contribute to the overall removal. Degradation of pCBA was observed 

when light was delivered into the TiO2 coated optical fibers by the LED light sources (Fig. 

7-6). This trend suggests that the organic pollutant is oxidized by the photogenerated hvb
+ 

from reaction (1) or by hydroxyl radical yielded from water oxidation reaction (4) (Zona 

et al., 2010).  

 

  hvb
+ + H2O → ●OH + H+      (4) 

 

 Combinations of single fiber to single LED couples (1 OF/LED to 5 OF/LED) were 

configured in parallel as depicted in Fig. 7-2. This configuration was limited to a maximum 

number of 5 optical fibers due to the diameter of the LED devices in relation to the 

cylindrical reactor diameter. Fig. 7-6 depicts pCBA transformation for varying number of 

OF/LED couples in the reactor set-up. The organic pollutant is more rapidly degraded with 

increasing number of fibers and LEDs because of the higher TiO2 surface area: volume 

treated ratio and the increasing number of photons delivered into the system, respectively. 

The coated surface per fiber is 4.7 cm2, and increases linearly to 14.1 cm2 and 23.5 cm2 

when 3 or 5 fibers are contained in the reactor set-up, respectively.  
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Figure 7-6 – Photocatalytic degradation of 0.1mM pCBA treated in the optical fiber/TiO2 

reactor with increasing number of OF/LED couples utilized in the set up: () 1 uncoated 

fiber - 1 LED, () 1 fiber – no LED , () 1 fiber - 1 LED, () 3 fibers – 3 LEDs, () 5 

fibers – 5 LEDs. The corresponding estimated quantum yields (Φ) are presented adjacently. 

 

 Pseudo first-order kinetics were fit to pCBA removal over time. Pseudo-first order rate 

constants (k1) of 2.3 x 10-5 s-1 (R2 = 0.99) for 1 OF/ 1 LED, 3.3 x 10-5 s-1 (R2 = 0.99) for 3 

OF/ 3 LED, and 5.2 x 10-5 s-1 (R2 = 0.95) for 5 OF/ 5 LED were obtained. This trend is 

indicative of a constant photocatalytic production of oxidizing species, such as hvb
+ and 

●OH (k•OH/pCBA= 5.2 x 109 M-1s-1 (Elovitz & von Gunten, 1999; Pi, Schumacher, & Jekel, 

2005)). Previously published reports have also noted decreased kinetic oxidation with 

increasing irradiation time due to oxidant scavenging by degradation by-products of pCBA 

(i.e., 4-chlorophenol) (He et al., 2011).  

 Equation (5) was used to calculate the apparent quantum yield (Φ) assuming the 

photons measured via the uncoated optical fiber were absorbed by the TiO2 layer. This 
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accounts for photon losses inherent to the unique configuration, e.g., optical effects such 

as scattering, refraction, and reflection which results from the coating layer (W. Wang & 

Ku, 2003a). The addition of more combinations of optical fibers individually coupled to 

LEDs influences the apparent Φ since the use of more LED sources linearly increases the 

number of photons delivered into the reactor. The experimental photon flux delivered by 

each LED was 4.39 x 10-7 einstein cm-2 s-1. Light lost in the OF/LED connection was an 

important parameter. Ca. 46 % of light was directly lost in coupling, with the light delivered 

through the tip of the fiber measured as 2.37 x 10-7 einstein cm-2 s-1. This astonishing 

percentage of direct loss in coupling is compounded to approach 57 % after considering 

that nearly 20% of the light delivered through the optical fiber is directly transported to the 

fiber tip without internal reflection as has been noted in other reports (Nicola J Peill & 

Hoffmann, 1996). One of the major challenges for effective reactor design resides in the 

coupling of the OF/LED. Thereby, consideration of numerical aperture for the optical 

fibers can increase the transport of light due to the acceptance of light at a wider range of 

incident angles.  

 

Φ =     =      (5)   

  

 where Δ[pCBA] is the experimental pCBA removed in mol L-1, Vr is the reactor volume in L, γ is 

the mol of photons delivered through the fiber which can be potentially absorbed by the TiO2 

coating, and  Δt is the time of irradiation in s (Brouwer, 2011). There we assume that each mol of 

photon absorbed potentially generates one mol of oxidant that reacts with one mol of pCBA, where 

the Φ clarifies the actual efficiency.  Then, the apparent quantum efficiency corresponds to 

   mole of pCBA oxidized      Δ[pCBA] Vr 

mole of photons absorbed         γabs Δt 
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Φ1OF,1LED,15cm= 0.03, Φ3OF,3LED,15cm= 0.02, and Φ5OF,1LED,15cm= for 0.01 for 1 OF/ 1 LED, 3 

OF/ 3 LED and 5 OF/ 5 LED couples, respectively. The diminishing Φ at higher Ep’ 

indicates that increasing photon flux into the system at fixed photon flux to surface area 

ratio does not provide added value to the reactor in terms of oxidation efficiency, although 

higher photon flux does contribute to faster removal kinetics (R.-D. Sun, Nakajima, 

Watanabe, Watanabe, & Hashimoto, 2000).  

 

 

Figure 7-7 – Photocatalytic degradation of 0.1mM pCBA treated in the optical fiber/TiO2 

reactor with increasing number of OF/LED couples utilized in the set up: () 1 fiber - 1 

LED, () 3 fibers – 1 LED, () 15 fibers – 1 LED. The corresponding apparent quantum 

yields (Φ) are presented adjacently. 

 

Influence of fiber-LED configuration: the use of optical fiber bundles 

 The use of optical fiber bundles connected to the same light source provides an 

interesting alternative to increase the available TiO2 surface area while reducing 
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operational cost resulting from fixed light input. A single LED was coupled to 1, 3, or 15 

optical fiber bundles to determine whether additional surface area could increase overall 

performance of the reactor. As can be seen in Fig. 7-7, the increase of number of fibers by 

using bundles considerably enhances the degradation of pCBA. This trend can be related 

to the increase on the number of available catalytic sites by the considerable increase of 

TiO2 coating area from 4.7 cm2 for 1 fiber up to 70.5 cm2 for the 15 fibers bundle. 

Furthermore, the presence of a higher number of fibers in solution improves the mass 

transport of pCBA in the solution to the catalyst surface, promotes turbulence in the flow 

reactor and consequently diminishes possible short-circuiting (Athanasiou, Romanos, & 

Falaras, 2016). The kinetic analysis of pCBA abatement denotes pseudo-first order rate 

constants with values of 2.3 x 10-5 s-1 (R2 = 0.99) for 1 optical fiber, 2.6 x 10-5 s-1 (R2 = 

0.98) for 3 optical fiber bundled, and 2.4 x 10-5 s-1 (R2 = 0.99) for 15 optical fiber bundled, 

respectively. 

 Even though higher removal is achieved with optical fiber bundles,  noteworthy is the 

fact that efficiency light delivery is dramatically decreased at the OF/LED junction. As 

discussed above, in the coupling of 1 LED : 1 fiber there is a total loss of 57 % of light 

emitted by the LED.  However, this value increases up to 93 % when the LED is coupled 

to bundles due to the variation of the incident light angles. The light delivered through the 

uncoated bundles corresponds to 3.68 x 10-8 einstein cm-2 s-1 and 1.97 x 10-8 einstein cm-2 

s-1 for 3 OF / 1 LED and 15 OF/ 1 LED bundles, respectively. Future works could consider 

the use of optical lenses that could reduce the loss by collimating light directly into the 

fibers. However, even as the light delivered to the TiO2 decreased, the effective surface 

area was able surpass this hindrance to result in higher performance. This trend can be 
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observed from the estimated Φ which increases with available surface area: Φ1OF,1LED,15cm 

= 0.03 for 1 fiber, Φ3OF,1LED,15cm = 0.21 for one bundle of 3 fibers, and Φ15OF,1LED,15cm = 0.46 

for one bundle of 15 fibers. Due to the tabulation of quantum efficiency based on the light 

measured through the uncoated optical fiber bundles, there is an order of magnitude 

difference between the 1:1 couple and 1:15 couple. However, in a comparison with 

previously published works using irradiation coupled to optical fibers, the lower Φ values 

correspond well to the optimized coupling reactor from Peill et al. (Nicola J Peill & 

Hoffmann, 1996) whereas the higher Φ values correlate to more recent work by Wang and 

Ku (W. Wang & Ku, 2003a). The latter presents higher Φ values, which exponentially 

decrease by increasing the fluence delivered through the fibers (W. Wang & Ku, 2003a). 

This trend is coincident with the results observed, where lower fluence is measured through 

the bundles due to low coupling efficiency compared to single optical fiber – single LED 

couples. Therefore, higher apparent Φ are determined for bundled optical fibers.   

Reactor design influences on the electrical energy per order  

 Increasing performance by adding additional fiber optics can be achieved with little 

added capital cost. Electrical energy per order (EEO) from equation (6) is used to assess 

trade-off between number of fibers and number of LEDs (J. R. Bolton et al., 2001):  

 

 EEO =         (6) 

 

where PLED is the electrical input power consumed by the LED light sources in kW, v0 is 

the volumetric flow rate in m3 h-1 and C0 and C represent the pollutant concentration at 

PLED  

v0 log(C0/C) 
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initial and final treatment time. A single LED (V = 3.5 V, I =0.3 A) requires 1.05 W of 

power.  

 Table 7-1 reports calculated EEO for each configuration tested. EEO values reported for 

photocatalytic treatment range from 0.1 kWh m-3 order-1 up to 100 kWh m-3 order-1 

depending on the targeted pollutant and reactor configuration (M. A. Behnajady, Vahid, 

Modirshahla, & Shokri, 2009; M. a Behnajady & Modirshahla, 2006; Benotti, Stanford, 

Wert, & Snyder, 2009; Stancl et al., 2015a). In the case of organochlorinated compounds 

like pCBA or chlorophenols, EEO is reported with average values ca. 30 to 100 kWh m-3 

order-1 (Z. Zhang, Anderson, & Moo-Young, 2004). In our case, an EEO of 15.8 kWh•m-

3•order-1 is required for pCBA oxidation in the 1LED:15OF system. A reduction of 3.5 

times (70%) in EEO occurs when the 15 fiber bundle is used in comparison to the 5 OF/ 5 

LED configuration. From the scenarios investigated the 15 optical fiber bundle results to 

be the most promising from an engineering perspective. Hence, further work to develop 

better light delivery for the bundled systems, which are presently non-optimized, could 

yield opportunity to further enhance the surface area at the same energy requirement. 

Table 7-1. Comparison of EEO values for the OF/LED configurations tested. 

LEDs / # Optical 

Fibers / # 

Ep’a/ 10-7 

Einstein•cm-2 

s-1 

Surface 

Area / cm2-

coated 

Quantum 

Efficiency, 

Φ 

EEO / 

kWh•m-3 

•order 

1 1 2.37  4.7 0.03 24 

1 3 0.37  14.1 0.21 19 

1 15 0.20 70.5 0.46 16 

3 3 7.11 14.1 0.02 36 

5 5 11.7  23.5 0.01 56 
a Ep’ refers to the sum of photon fluence emitted through the uncoated optical fibers for 

that configuration.  

 



239 

Conclusions  

 We present a flow-through photocatalytic reactor with TiO2 photocatalyst immobilized 

on optical fibers coupled to UV-LEDs (OF/LED). The mechanism of light delivery into 

this OF/LED system is explored based on the TiO2 coating thickness on the surface of the 

optical fibers as well as varied catalyst coating length. Measurement of photon fluence 

through the optical fibers and into the catalyst coating layer indicated a maximum coating 

of 15cm at 1.1μm coated thickness was required for optimal light delivery into the TiO2, 

which should be used for reactor design. The mechanism of light delivery into the TiO2 

photocatalyst is based on the refractive indices at the TiO2/quartz interface, at which 

refraction of photons can be achieved. For locations without TiO2 coating, total internal 

reflection dominates, propagating light longitudinally down the optical fiber. Experiments 

with pCBA were conducted to assess optimal reactor design. Highest kinetics were 

achieved for 1:1 couples using 5 OF/ 5 LEDs. However, this configuration presents the 

lowest quantum yield (Φ) and the highest electrical energy per order (EEO) in comparison 

to the other set-ups. This outcome is explained by the higher numbers of photons emitted 

that are not consumed in photocatalytic reactions of interest. Hence, to increase overall 

performance of the system, a single LED was coupled to bundled optical fibers which 

dramatically increased the available photoactive surface area. For this scenario, oxidation 

of pCBA increased with increasing number of optical fibers with respect to: kinetics, Φ, 

and EEO. Challenges inherent to this system are the efficiency of light coupling to both 

single fibers and bundles, as greater than 40% of light produced by the LED was lost for 

each scenario.  
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CHAPTER 8 

SYNTHESIS 

Introduction 

 Water treatment remains one of the critical challenges of the twenty-first. Quality 

and quantity of drinking water resources are of concern as global population increases. 

Oxyanions are among the most ubiquitous contaminants, paralleled by persistent organic 

pollutants (POPs) (Postigo & Barceló, 2015; Arpan Sarkar & Paul, 2016; Seidel & Corwin, 

2013; Spalding & Exner, 1993). Both of these contaminant categories present immense 

challenges to conventional large scale water treatment processes, as they may by-pass 

treatment and/or accumulate at various points in the overall process, requiring new 

treatment strategies. Most commonly, these chemicals are treated through adsorptive 

processes or ion exchange, in which the constituent is separated from the aqueous phase 

but remains untreated on the surface of an adsorbent.  For example, nitrate and chromate 

are commonly treated using ion exchange, which transfers the oxo-anion to the ion 

exchange (IX) resin and ultimately into a brine upon resin regeneration (Owlad, Aroua, 

Daud, & Baroutian, 2008). These residuals highly concentrate toxic constituents, and their 

management remains quite difficult. Alternatively, POPs more commonly by-pass IX 

treatment due to their recalcitrance in biodegradation and required activated carbon 

adsorption or advanced oxidation processes for removal.  

 Technologies have emerged to destructively remediate oxyanions and POPs, of 

which a promising candidate is photocatalysis. Inherent to this processes is the chemical 

transformation of the initial compound to partially- or terminally- reduced or oxidized 
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products. Photocatalysis has been explored for its oxidation of organic compounds, potent 

capacity for disinfection, and potential for reductive decontamination of oxyanions and 

heavy metals. Few studies have assessed both applications and obstacles for engineered 

design and implementation of photocatalysis at scale. Process design deficiencies (Abdel-

Maksoud, Imam, & Ramadan, 2016; McCullagh et al., 2011; Van Gerven et al., 2007) 

discussed herein include: (1) catalyst capture and safe design of nanomaterial 

photocatalytic slurry reactors; (2) potential frameworks for catalyst immobilization with 

attention to fouling and competing constituents; (3) careful consideration and investigation 

of optimal light delivery configuration and irradiation source. This work focuses on 

overcoming barriers to implementation in photocatalytic reactor design and specifically 

emphasizes the delivery of light and its influence not only on reactor design, but also 

aqueous reaction efficiency and product selectivity.  Herein, the objectives (Chapter 2) 

presented in this dissertation are critically synthesized. 

A Combined Photolytic/Photocatalytic Approach to Drive Selectivity Outcomes 

 Achieving desired selectivity and efficiency outcomes require tradeoffs of 

particular design criteria: reactor scale (throughput), time of treatment, methodology of 

catalyst delivery, and management of irradiation source. A cross-comparison of the 

resultant EEO for Cr(VI), NO3
-, NO2

- reduction in photolytic/photocatalytic slurry reactors 

ranging from 10 mL to 14 L demonstrates the combined effect of these characteristics 

(Figure 8-1 and 8-2 (a-b)). For hexavalent chromium, both photocatalytic and photolytic 

reduction processes occur in solution irradiated by 253.7nm low pressure mercury UV-

light (Fig. 8-1). Evidence of photo-induced reduction indicates an indirect mechanism 
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occurs for Cr(VI) photo-reduction to Cr(III) involving the photolysis of other aqueous 

constituents which mediate the process (Hsu, Wang, & Tzou, 2007; Kaczynskl & Kleber, 

1993; Machado, Lansarin, & Matte, 2014; S. L. Wang et al., 2009).  Of subsequent concern 

is the photo-mediated re-oxidation of surface-adsorbed Cr(III) to aqueous Cr(VI) (Stancl 

et al., 2015a).  

However, it is evident that photocatalytic processes dominate in reduction of Cr(VI) 

to Cr(III) when a photocatalyst is present (Chapter 3, (Barrera-Díaz, Lugo-Lugo, & Bilyeu, 

2012)). Observation of catalyst photo-aggregation in the pilot scale Photo-Cat® TiO2 

slurry reactor demonstrates that both light and aqueous constituents can contribute to 

diminished photocatalyst surface area and active sites. Further, fouling within 

photocatalytic slurry reactor systems is a critical obstacle to implementation in real water 

matrices (e.g., IX brine, groundwater). Significant fouling due to divalent cations and 

carbonate complexes in conjunction with adsorbed Cr(III) species on the photocatalyst 

decreased Cr(VI) active sites for reduction (Stancl et al., 2015a).  
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Figure 8-1. Electrical energy per order for photolytic and photocatalytic (1 g/L P90) 

removal of 500 μg/L Cr(VI) in 14L recirculating PhotoCat® reactor for three water 

matrices: ultrapure water (pH = 6.5), 5mM NaHCO3 buffered deionized water (pH = 8.5), 

and dechlorinated tap water (pH = 7.7). Data for photolysis in dechlorinated tap water was 

not collected. 

 

Figure 8-1 emphasizes the inhibition of photocatalytic reduction of Cr(VI) due to 

competing species, particularly those which are known to contribute to catalyst surface 

fouling and aggregation (Y. H. Shih, Liu, & Su, 2012). The efficiency of Cr(VI) removal 

decreases sixty-fold in real water matrices with carbonate species due to their high 

scavenging activity and poisoning of the photocatalyst (Kominami, Nakaseko, Shimada, 

Furusho, Inoue, et al., 2005; F. Zhang et al., 2005). Cr(VI) treatment in dechlorinated tap 

water requires 37-times more energy input than that of an ultrapure matrix, indicating that 

competing species and higher pH waters may require pretreatment to achieve complete 

removal of Cr(VI) at satisfactory EEO. Further, pH influence on the chromium adsorption 

properties may exacerbate preferential adsorption of inert species (e.g., Ca2+) on the TiO2 

surface (Chenthamarakshan, Rajeshwar, & Wolfrum, 2000). Safe and effective design of 

photocatalyst slurry systems requires attention to nanomaterial endpoints (leaching) and 

regenerability and capture of the photocatalyst. 

 In contrast to Cr(VI), reduction of nitrogen oxo-anions (NO3
- and NO2

-) is more 

influenced by direct photolytic processes (Chapter 4).  However, these photolytic processes 

for NO3
- rarely progress beyond an NO3

-/NO2
- equilibria unless the aqueous conditions are 

highly acidic. Further, photolytic or photocatalytic production of CO2
•- (G. Liu et al., 
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2016b; Mora-Sero et al., 2005; Rengaraj & Li, 2007) or a comparable reducing radical is 

critical for complete reduction of NO3
- to nitrogen gases.  NO3

- reduction proceeds via 

wavelength-dependent pathways toward nitrogen gases, with HONO as a primary 

bifurcation point (Chapter 5). Hence, the choice of irradiance source influences not only 

kinetics (number of photons generated at wavelengths with photocatalytic or photolytic 

excitation potential) but also by-product selectivity (NH4
+ or N-gases). Figure 8.2 (a) 

represents the synthesis of data for photocatalytic and photolytic reduction of nitrate in 

varied water matrices (FNR = HCOOH : NO3
-) under the following irradiation sources: 

low pressure mercury lamp (LP), medium pressure mercury lamp (MP), xenon-arc lamp 

(Xe), light emitting diode into a slurry (LED), optical fiber-coupled to light emitting diode 

(OF-LED). A main takeaway from the electrical energy per order of these diverse 

photocatalytic scenarios is the importance of recognizing tradeoffs in efficiency and 

selectivity. In all cases herein, higher performance (lower EEO) is coupled to higher 

selectivity of undesirable NH4
+. 

 Nitrate reduction is particularly complex due to its multi-step chemistry, for which 

particular wavelengths and contributing species (TiO2 e
-
cb, CO2

•-) can alter both kinetics 

and selectivity outcomes (to N-gases or NH4
+ as indicated by secondary y-axis, Fig. 8-2 

(a)). The EEO for nitrate reduction increases with decreasing per-photon energy depending 

on incident wavelengths, which further evidences a coupled photolytic/photocatalytic 

mechanism. LP lamps (253.7nm monochromatic irradiation) reduced nitrate across 

equivalent water matrices with significantly less energy per order removed: ~10 lower than 

MP (broad UV-vis polychromatic spectrum) and ~4 times lower than LED irradiation 

(285nm, 300nm, 365nm discrete wavelengths). Further, these results suggest energetic 
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economies of scale may enable efficacy of photocatalysis in effectively designed large-

scale reactors. However, a significant tradeoff of selectivity is observed with the LP lamp, 

which generated 40-64% NH4
+ as a final product of nitrate reduction. Of the three LP 

matrices, the highest kinetic performance is achieved without formic acid due to the 

photolytic/photocatalytic synergism, but yields the highest NH4
+ because acidic pH and 

addition of a hole-scavenger are critical for selectivity to N-gases (Sá et al., 2009). Smaller-

scale slurry experiments (10mL to 200mL) with MP, Xe, and LED irradiation 

demonstrated significantly higher EEO, but predominant selectivity to N-gases.   

 Efficiencies of photolytic and photocatalytic reduction (slurry) of HONO are shown 

in Fig. 8-2 (b: Xe, LED). Though at the smallest scale, LED irradiation (285nm, 300nm, 

365nm) in a slurry presents the lowest electrical energy demand for both photolytic and 

photocatalytic reduction of HONO, with <98% selectivity to nitrogen gases.  For the Xe 

irradiance source, photocatalysis was more effective, potentially due to the broad 

wavelength irradiation which can cause oxidation of aqueous nitrogen intermediates 

(Tugaoen et al., 2017), thereby decreasing kinetics of reduction processes (Chapter 5).  
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Figure 8-2. Electrical energy per order (EEO, left) and NH4
+ selectivity (as N, right) for 

varied irradiance input photolytic and photocatalytic (1 g/L P90) reduction of (a) nitrate 
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with 5.6 HCOOH: NO3
- (varied concentration NO3

-; LP:1.4mM, MP, Xe, LED, FOLED: 

7.14mM, IX: 107mM) or (b) HONO with 5.6 HCOOH: NO2
- (7.14mM NO2

--N). Data for 

bars not shown was not collected.  

Implementation Constraints for Photocatalytic Reactors 

 Though photocatalytic reduction of oxo-anion contaminants proceeded effectively 

via photolytic/photocatalytic pathways in slurry systems, nanoparticle photocatalyst 

recovery (for regeneration/reuse) from a large scale slurry system remained a significant 

obstacle. Due to the liability demonstrated upon implementation (leaching, Chapter 3), 

immobilization schemes were considered as an alternative for photocatalytic reactor 

design.  Fixed-film systems required investigation into efficiency losses which stem from 

(1) diminished overall surface area of photocatalyst for contaminant removal, (2) 

insufficient light delivery mechanism to activate the photocatalyst, and (3) surface fouling 

and stability of films.  Hence, determining an effective catalyst delivery method to enhance 

performance while managing light delivery was a key focus of this work.   

The majority of batch-scale photocatalytic reactors with fixed-film photocatalyst 

delivery are of the following configurations: flat plate, cylindrical, or fixed bed/mixed-

media (McCullagh et al., 2011). Attachment methodologies vary in the literature (Shan et 

al., 2010), but desired outcomes are strong adherence to the substrate media while 

maintaining high surface area for reaction and ease of reuse. With these objectives in mind, 

optical fibers presented the highest potential surface area with in situ light transmission 

directly to the catalyst interface as demonstrated in the literature for methylene blue (MB) 

oxidation (Nawi & Zain, 2012). Further, the use of quartz media allowed for UV 
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transmittance to promote photolytic and photocatalytic reactions as most photocatalysts 

(e.g., TiO2) require UV irradiation for excitation.  Accumulation of foulants on the surface 

may be readily mitigated by fiber extraction and surface regeneration, after which the 

quartz optical fibers may be reused.  

 

Managing Light Delivery to Enhance Photocatalytic Performance in a Fixed-Film 

Reactor 

The optimal light delivery source for combined performance in nitrate reduction 

selectivity and energetic efficiency was irradiation with light emitting diodes (Fig. 8-2).  

Production of inert wavelengths at high photon fluence dose decreases conventional reactor 

efficiency (Fig 8-2(a): MP, Xe) but can be managed by LED irradiation sources. These 

discrete wavelength emitters can be utilized to selectivity photolyze aqueous constituents 

while concurrently inducing photocatalyst excitation. Implementation of these compact 

irradiation sources in photocatalytic slurry systems presents similar obstacles to lamp-

driven systems with regard to catalyst slurry removal and regeneration. However, UV-

LEDs may be efficiently coupled to commercially available quartz optical fibers (Hou & 

Ku, 2013; Nicola J Peill et al., 2002; W. Wang & Ku, 2003b), which serve as a light 

delivery medium and substrate for nanomaterial photocatalyst immobilization (Fig. 8-2). 

In an un-optimized OF-LED system, HONO reduction progressed ~20 times slower than 

slurry photocatalysis under identical irradiation conditions and NO3
- reduction was 

unsatisfactory. Hence, optimization of the OF-LED reactor was required for the 

remediation of oxo-anion pollutants.  
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Determination of the photocatalytic oxidation-reduction conditions induced by 

photocatalyst-coated optical fibers coupled to light emitting diodes was the initial 

benchmark required to progress towards optimization. Photocatalytic OF-LED treatment 

of MB and pCBA yielded the optimal reactor conditions for high-efficiency (Φ) removal 

of contaminants in an aqueous matrix (Chapter 6-7). Data from these investigations is 

synthesized in Figure 8-3. A fundamental investigation of reactor parameters (including 

coating length, thickness, light intensity) and resultant reactor performance demonstrated 

increased efficacy with dip-coating methodology compared to sol-gel, slurry or photolysis 

alone (Fig 8-3(a)).  Thickness of the coating layer plays a key role in the overall efficacy 

of photocatalysis in the OF-LED configuration due to the necessity of excited charge 

carrier transport through the TiO2 film layer to the aqueous interface for photocatalytic 

reaction (Hodes & Kamat, 2015; Könenkamp, 2000). Further, the when comparing photon 

fluence dose per unit surface area, the bundled optical fibers (Fig. 8-3 (b)) achieve higher 

Φ and lower EEO compared to individual 1LED:1Fiber couples, either operating alone or 

simultaneously.  
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Figure 8-3. Quantum yield (Φ) and EEO for OF-LED system for photocatalysis of: (a) 

methylene blue bleaching in batch reactor (10mL) varying catalyst delivery method under 

318nm LED irradiation, and (b) pCBA oxidation in recirculating flow-through OF-LED 

system (150mL) varying photon fluence dose and optical fiber surface area under 365nm 

LED irradiation.  

 

The OF-LED system capitalizes on the low-energy, discrete wavelength emission 

of an LED, high surface area per volume of optical fibers which can electrostatically 

immobilize TiO2 (or other nanoparticle photocatalysts), and direct light delivery from the 

LED to the optical fiber/TiO2 interface via optical refraction processes.  Bundled optical 

fibers reduce the energetic footprint of the OF-LED reactor, while greatly enhancing 

surface area for photocatalytic reaction. In combination with EEO values, these reactor 

characteristics meet the aforementioned requirements for a viable photocatalytic system 

design. Example considerations for successful implementation of the OF-LED 

photocatalytic configuration include: coupling quantum yield data to wavelengths 

delivered for varied contaminants (e.g., MB is photolyzed at 318nm but not 365nm, as 

investigated), and proper selection of photocatalyst to minimize additional chemical inputs 

(e.g., Ag/TiO2 to reduce HCOOH demand and residual in NO3
- reduction (Tugaoen et al., 

2017)).  
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Figure 8-4. Conceptual model of the catalyst-contaminant-irradiation nexus for 

photocatalysis of aqueous phase contaminants.  

 

A light-based investigative approach with quantifiable metrics such as EEO, photon 

fluence dose, and quantum yield (Φ) demonstrated key variables for enhancing efficiency 

and selectivity of photocatalytic processes.  Successful implementation of photocatalytic 

processes requires attention to the characteristic properties of the photocatalyst, 
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contaminant and irradiation source (Figure 8-4). Combining photocatalytic and photolytic 

processes for synergistically enhanced performance can ultimately yield viable systems, 

both for compact small-systems treatment, and application at larger scale to treat 

recalcitrant pollutants. Oxo-anion treatment requires careful consideration of catalyst 

fouling management (e.g., Cr(VI)/Cr(III)). Product selectivity (e.g., NO3
-/NH4

+) is relevant 

to both oxo-anions and treatment of organic compounds, where oxidation/reduction 

endpoints must be lower toxicity than initial compounds. Hence, management of these 

systems by a combined photolytic/photocatalytic, comprehensive photocatalytic approach 

can capitalize on known adsorption and photolytic properties to achieve desired outcomes.  
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CHAPTER 9 

SUMMARY, CONCLUSIONS AND FUTURE RECOMMENDATIONS 

The overarching research objective of this dissertation was to: inform and improve 

light delivery (emission spectra, radiant intensity, reactor configuration) in order to 

enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, 

two common oxo-anions in drinking water, and photocatalytic oxidation of two model 

organic pollutants (methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). 

Summary 

Chapter 2: Review of the Literature 

 Light delivery and engineered reactor design for photocatalytic systems are 

infrequently addressed in the literature but constitute significant contributions to 

overall system efficiency and opportunity for implementation. More frequent is 

synthesis, characterization and performance of new catalytic materials 

 Hexavalent chromium and nitrate commonly occur in groundwaters used as 

drinking water supplies and can be reduced to more innocuous products (Cr(III), 

N2) which are readily removable from the aqueous phase.  

 Where photolysis and photocatalysis transform chemical contaminants, light 

delivery and light source may be able to target specific product outcomes. 

 Model compounds such as methylene blue and para-chlorobenzoic acid are 

frequently used to determine quantum efficiency and radical production in varied 

reactor configurations. 
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Chapter 3: Hexavalent Chromium Removal Using UV-TiO2/Ceramic 

Membrane Reactor 

1. Under varied water matrix conditions, the removal of Cr(VI) via TiO2 

photocatalytic achieved complete removal of aqueous chromium species via (1) 

Cr(VI) adsorption, (2) surface reduction of Cr(VI) to Cr(III), followed by (3) 

precipitation of Cr(OH)3(s) on TiO2.  

2. Higher alkalinity, pH, or presence of divalent salts (e.g., Ca2+) decreased Cr(VI) 

removal on TiO2 due to catalyst aggregation and fouling, which increased EE/O.  

3. Photo-aggregation of TiO2 decreased Cr(VI) removal performance over time.  

4. ICP-MS demonstrated the benefit of increased particle size: to decrease TiO2 

leaching through the ultrafiltration membrane into the permeate. Leached TiO2 

concentrations of up to 100 μg/L were observed without irradiation and as low as 

0.11 μg/L under illumination for dechlorinated tap water. 

5. TiO2 photocatalytic reduction of Cr(VI) is economically feasible based on EE/O, 

however barriers to implementation at full scale remain: (1) slurry catalyst 

regeneration to manage foulants and aggregation, (2) optimized light delivery (to 

steer away from high-energy input UV-C irradiation).  

 

Chapter 4: Challenges in Photocatalytic Reduction of Nitrate as a Water 

Treatment Technology 

1. Photocatalytic reduction of nitrate to nitrogen gases occurs in model water spiked 

with sacrificial electron donor (e.g., HCOOH) and TiO2-based photocatalysts. 
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2. Photogenerated e- from TiO2 cannot thermodynamically reduce nitrate to nitrite. 

CO2
•- radical is noted as the primary reductive mechanism for transformation of 

nitrate to nitrite in photocatalysis or UV-C photolysis.  

3. Photolysis of nitrate or nitrite are highly circular and produce predominant products 

of nitrate and nitrite, respectively. Photocatalysis can achieve nitrate reduction to 

NH4
+/NH3 or N-gases. 

4. Composite catalysts (e.g., Ag/TiO2) present the highest kinetics of photocatalytic 

reduction and N-gas selectivity.  

Chapter 5: Ultraviolet Wavelengths Influence Kinetics and Selectivity for N-

Gases during TiO2 Photocatalytic Reduction of Nitrate 

1. Nitrate reduction to nitrite or nitrogen gases does not proceed with photolysis alone, 

except under high-dose UV-C irradiation. 

2. A bifurcation point occurs in the photocatalytic reduction of nitrate at NO2
-/HONO 

(pKa = 3.39), which influences by-product selectivity and reduction kinetics. EEO 

values for photolytic reduction of NO2
- was about 30-times higher than HONO. 

3. Based upon fluence-based half-lives, discrete wavelength irradiation reduces 

nitrate to N-gases at higher photonic and energetic efficiency than polychromatic 

irradiance sources.  

4. Reduction of HONO (nitrous acid) in the presence of neat-TiO2 photocatalysis at a 

5.6 formic acid to nitrogen ratio (pH = 2.5) achieved the 100% selectivity to N-

gases under a combination of 285 nm and 300 nm irradiation using UV-LEDs.  
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Chapter 6: Coupling Light Emitting Diodes with Photocatalyst Optical Fibers 

Improves Quantum Efficiency of Pollutant Oxidation 

1. Single-coating layer dip-coated optical fibers were highest performing compared to 

various catalyst delivery methods (i.e., sol-gel, slurry).  

2. Titanium dioxide-coated optical fibers coupled to UV-LEDs achieved higher 

quantum efficiency (Φ) of photocatalytic bleaching of methylene blue compared to 

an equivalent mass-dose slurry system. Values of Φ were 0.15 for OF/LED and 

0.02 for slurry photocatalysis, respectively. 

3. An attenuation of light refracted into the photocatalyst from the optical fibers is 

noted upon increased coating length and coating thickness for 318nm irradiation.  

4. Based on modeling results, a combined effect of: (1) evanescent waves produced 

via total internal reflection of photons through optical fibers, and (2) refraction of 

light into the TiO2 coating layer, are proposed to synergistically enhance 

photocatalytic reduction of methylene blue.  

Chapter 7: Compact Light-Emitting Diode/Optical Fiber/TiO2 Reactor for 

Photocatalytic Water Treatment 

1. A reactor where light is delivered through TiO2 coated optical fibers has been 

designed with modular LED and optical fiber inputs and evaluated using pCBA.  

2. Design and optimization of this flow-through photocatalyst-coated optical 

fiber/light emitting diode reactor was tested for pCBA oxidation to determine •OH 

production. This yielded key insights regarding light delivery into immobilized 

catalyst photocatalytic reactors based on coated surface area and photon fluence. 
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3. Kinetics of pCBA oxidation were assessed in the TiO2-OF/LED reactor. Highest 

removal was obtained using an array of LEDs coupled to multiple fibers according 

to the following ratio: 1LED:3fibers.  

4. Quantum efficiency of pCBA oxidation demonstrated the feasibility of the 

technology for implementation with oxidation and reduction of more complex 

chemicals. Φ of single OF/LED was 0.01 compared to 0.46 for bundled optical 

fibers coupled to a single LED.   

5. A key barrier for the TiO2-OF/LED reactor is effectively launching light into the 

optical fiber bundles.  

 

Conclusions  

 This work addressed two major barriers for photocatalysis: light delivery and 

reactor design. First, I concluded that management of light delivery can enable synergistic 

photocatalytic/photolytic reactions to enable efficient contaminant removal kinetics and 

desired by-product selectivity. Inherent to the management of light delivery (photon flux, 

emission spectra) is the physical configuration of the reactor, for which I found that a 

photocatalyst-coated OF/LED could deliver enhanced removal of organic pollutants 

compared to an equivalent photocatalyst-mass slurry system. Second, key metrics 

identified for the effective comparison of different reactors and light delivery 

configurations were: photon fluence dose, quantum yield (Φ) and electrical energy per 

order (EEO).  Each of these parameters is inherently normalized to quantify results across 

variables including: contaminant removal, volumetric throughput (or batch volume), 
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irradiation source intensity and spectrum, and/or energy consumption. Based on photon 

fluence dose, quantum yield and electrical energy per order, removal of contaminants under 

UV-LED irradiation exceeded that of polychromatic irradiation sources. This resulted from 

more efficient utilization of discrete wavelength photons for photocatalytic and photolytic 

reactions. Finally, an optimized reactor was designed to provide high reactive surface area 

(bundled optical fibers), direct light delivery to photocatalyst (via LED-generated photons 

refracting out of the optical fiber), and sufficient photon flux for photocatalyst excitation 

and photolytic reactions. Implementation of this reactor demonstrated viable EEO and Φ for 

the oxidation of organic contaminants (methylene blue and pCBA). With attention to 

photocatalyst selection and photon fluence, this reactor could be modified to 

photocatalytically treat oxo-anions to innocuous products.  

Recommendations for Future Research 

 From a thorough exploration of nitrate reduction literature, much work on the 

photocatalytic or photolytic reduction mechanisms has been published.  However, a 

combined photocatalytic/photolytic process for targeted nitrate reduction to nitrogen gases 

had not been previously investigated. Whereas a synergism between photocatalysis and 

photolysis had not been considered as a possible mechanism, both processes are inherent 

to photocatalytic systems. Confirmation that discrete wavelength sources produce different 

nitrogen reduction endpoints (e.g., N-gases in lieu of NH4
+) using UV-LEDs (Chapter 5) 

demonstrates the potential viability of a strategically designed reactor to achieve 100% 

nitrogen gas selectivity with reasonable kinetics. Further work related to this conclusion 

could be the implementation of broader-absorption photocatalysts that can readily employ 
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visible light and/or UV-A irradiation. This would decrease system EEO through use of less 

energy intensive irradiation (e.g., in contrast to low pressure Hg irradiation) while 

delivering photons at wavelengths (UV-A, not visible light) that can induce photolytic 

reduction of nitrate intermediates.  

The experimental work (Chapter 5) and the review of nitrate literature (Chapter 4) 

revealed that the production of CO2
•- from formic acid is critical for photocatalytic 

reduction of nitrate using wide-band gap materials (e.g., TiO2) where conduction band 

electrons do not provide sufficient energy to achieve nitrate-to-nitrite reduction. Therefore, 

a preliminary assessment of photocatalyst reduction potential to determine thermodynamic 

feasibility of nitrate reduction via e-
cb is recommended to determine requirements for hole 

scavenger addition. Reduction of other oxo-anions should be analyzed in a similar manner, 

to address thermodynamic potentials of their reduction and subsequently select appropriate 

photocatalysts. Organic contaminants are typically oxidized by either the h+
vb or •OH, and 

hence, appropriately determining the band-edge of the photocatalyst band-gap is essential 

for effective oxidation.  

In tandem to photocatalyst and hole scavenger selection, irradiation sources must 

be assessed from the perspective of photonic efficiency in the context of photocatalysis and 

photolysis. Highest efficiency light sources would be those where each emitted photon is 

capable of producing a meaningful result (e.g., photolysis or band-gap electron excitation). 

This enhances contaminant removal performance (Φ) and decreases energy consumption 

(EEO) because electricity is not provided to produce photons outside the photoactive 

spectrum. Hence, assessment of catalyst-light pairing is important to future research work 
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to manage energy consumption and increase process viability for coupled 

photolytic/photocatalytic systems. 

 Photocatalytic reactor design utilizing immobilized catalyst film on an optical 

fibers presents a unique opportunity to capitalize on photocatalytic and photolytic reactions 

at compact reactor scale.  With ongoing advancements in both optical fiber technology (and 

cost) and light emitting diodes, the prospect of implementing in situ immobilized 

photocatalysis with high surface area is becoming realizable. A proof of concept of the 

technology is provided in Chapters 6-7, as well as discussion a few obstacles that yield 

opportunity space for new research. Demonstration of higher performance in a fixed-film 

versus slurry photocatalysis system was achieved using un-optimized conditions (Chapter 

6). There is great opportunity for improvement of reactor design and implementation, for 

which a preliminary attempt was outlined in Chapter 7. A key area of future work would 

be to improve the percent of light launched into the fiber from ~50% to > 80% using optical 

lenses. Other improvements include factors related to relative surface area, delivery of 

appropriate photon flux/dose, and management of coating thickness.  
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Lamp Mechanics 

Conventional lamps consist of four crucial elements to functionality: gaseous 

metal ions, electron current induced by a potential difference across an electrode, a noble 

and inert gas, and a light permeable/impermeable sleeve depending on the desired 

photonic output. Thus, from the AC current output from the wall, an electric current is 

induced across a +/- electrode pair within the lamp housing. This induces a flow of 

electrons throughout this sleeve.  Gaseous metal ions, most commonly mercury, exist in a 

mobile state within the sleeve, coexisting with the inert gas. The inert gas, most 

commonly argon, is added to serve as the means for pressure modification and 

additionally to reduce electron collisions with the sleeve wall.   

Thus, upon lamp turn-on, a flow of electrons driven by the potential difference 

between the two electrodes propagates through the argon-mercury media and undergoes 

collisions.  Electron-wall collisions induce a release thermal heat upon electron energy 

exchange, creating no meaningful photonic output.  Electron-argon collisions do not 

significantly degrade the energy of the electrons, while leaving the argon unchanged and 

thus represent a quasi-neutral energy transaction.  The important collisions for photon 

emission are the electron-mercury ion collisions, in which mobile electrons transfer 

energy to mobile mercury electrons.  This energy transfer leads to a promotion of an 

electron within the mercury valence to an excited state.  Upon relaxation of this electron 

to the pre-existing state, or another quantized level of lesser energy, a photon is emitted. 

Based on the resonance energy of the electron excitation and return, the photon will emit 

at a particular wavelength.  Higher energy discharge corresponds to a shorter wavelength 

emission.  
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The inert gas is essential to the process of buffering the electrons from the tube 

walls to prevent heat transfer upon collision.  Additionally, this gas increases the 

frequency of elastic collisions between gaseous constituents, thereby reducing the mean 

free path of electrons (and their energy upon collision).  This property can be 

manipulated to increase the number of spectral output wavelengths or to increase high 

quality low wavelength output by pressure modification. Additionally, energy loss in 

collisions with the inert gas does not diminish the electron energy level to the extent that 

the excitation of metal atoms is negated by additional collisions (Flesch, 2006).    

Photon Generation in Xe and Hg Low and Medium Pressure Lamps 

Photocatalytic processes most commonly employ mercury and ‘mercury-free’ 

xenon lamps to provide light irradiation to activate the catalyst. Depending on the 

chemical constituent of interest, either low pressure or medium pressure lamps are 

utilized, the former with sharper peaks and singular wavelength ultraviolet (UV) outputs 

and the latter with a broader spectrum of available wavelength in the UV and low 

wavelength visible range.   The lamp properties that induce these output differences relate 

to the material utilized (Hg/Xe), the abundance of that material, as well as pressure of the 

system.   

Mercury Lamps 

Low pressure mercury lamps are pervasive as efficient fluorescent lamps (Wani, 

1994), but are also widely implemented in photocatalytic and germicidal processes due to 

their wavelength of emission.  The emission spectrum of mercury has two high efficiency 

resonance lines of wavelength 253.7nm and 184.9nm at low pressure (Voronov, 2008). 

The exclusive emission of these two wavelengths is related to the mean free path the 



315 

electron is able to travel within the lamp.  Within a low pressure system, the mean free 

path of electrons is sufficiently large that it can gain enough velocity, and thereby kinetic 

energy (KE=1/2mv2), that collision with mercury ions produces significant electron 

excitation – velocities too high result in electron annihilation.  The baseline velocity of 

the electrons may be altered by changing the potential difference between the electrodes.  

As discussed, the introduction of the inert gas helps to mitigate energy lost in electron-

wall collisions and maintain a desired balance of electron velocity and collision 

frequency.  If the pressure is too low, then the probability of electron-mercury collisions 

diminishes and the likelihood of annihilation increases. At a reasonably low pressure, 

however, sufficiently high energy collisions may occur resultant in the desired 63P1 to 

61S0 transition between resonance states in the mercury that provide a photonic output at 

253.7nm (Loo, Moss, & Tozer, 2004).  

At pressures between 1-10 bar, what constitutes the medium pressure range, the 

mean free path length of electrons is shortened due to heightened collision frequency 

resultant from higher mercury vapor pressure.  Thus, an increased applied voltage is 

necessary to induce electron-ion collisions of sufficient energy to produce photons.  The 

wavelength outputs of medium pressure lamps are longer than those of low pressure 

lamps due to the diminished energy transfer from electrons to the mercury valence.  Due 

to the higher non-radiative losses and wall losses, the ultraviolet efficiency of medium 

pressure lamps is lower than that of low pressure lamps (Giller, 2000). 
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Xenon Lamps 

Due to emerging environmental and health concerns from mercury residual from 

lamp disposal and failure in addition to point of use concerns with warm up time, xenon 

lamps are being pursued as alternatives (Schaefer, Grapperhaus, Shaefer, & Linden, 

2007). Xenon is currently the most promising mercury replacement due to strong 

resonance and excimer emissions in the VUV region, from 100-200nm (Masafumi Jinno, 

Okamoto, Takeda, & Motomura, 2007).  Xenon lamps similarly utilize a quartz envelope 

and electric potential between to electrodes; however, they only employ xenon – a noble 

gas – to provide excitation from electron collisions against a neon gas background.  

Pulsed xenon-neon lamp emissions have two peaks, one during the discharge current and 

a second during the afterglow period. Depending on the partial pressure of xenon in the 

envelope, the afterglow intensity varies – it increases with increasing Xe content (M 

Jinno, Kurokawa, & Aono, 1999). Discharge wavelengths of pulsed xenon-neon lamps 

are 147nm and 172nm.  Additional output wavelengths between 200-300nm have been 

reported (Liang, Min, Davis, Green, & Remer, 2003). Xenon efficiencies and 

luminosities are generally lower than mercury lamps, although for the 147nm output 75% 

efficiencies have been obtained (Uhrlandt et al., 2005). 

 

Photon Generation in Light-Emitting Diodes 

 In contrast to xenon or mercury lamp sources which rely on gas discharge, light-

emitting diodes (LEDs) are solid state emitters capitalizing on excitation and radiative 

recombination of electrons and holes in semiconductors to generate photons. Radiative 

recombination of the injected carriers (electrically-supplemented electrons) has been 
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demonstrated to have incredibly high efficiency, with some reports of quantum yields 

close to unity with respect to photon generation (Zukauskas, Shur, & Gaska, 2002).The 

process of excitation in light emitting diodes is injection luminescence, also called 

electroluminescence, in which ionization of within a solid state semiconductor or at a p-n 

junction results in radiant output.  Electrons and holes separated within the 

semiconductor via input energy can recombine in two ways: non-radiatively, which 

generates vibration, phonons (heat), due to native defects, or a radiative recombination, in 

which a band-to-band (CBVB) transition occurs resulting in an emitted photon 

(Zukauskas et al., 2002). Due to conservation of energy and momentum, the emitted 

photon will have equivalent energy to the distance between the two bands, the band-gap, 

unless doped materials or impurities allow for inter-band states (Zukauskas et al., 2002). 

 Direct gap semiconductors, such as InAlGaN-based LEDs, have been engineered 

to produce ultraviolet light in the wavelength range of 290-375nm depending on the 

composition of the material (H. Hirayama, 2005). Longstanding use of gallium arsenide 

or gallium nitride direct-gap semiconductors to produce visible or white light emitting 

diodes has yielded innovation to produce wavelengths in the near-UV and 

UVA/UVB/UVC regions with high efficiency and continuously diminishing cost (H. 

Hirayama, 2005; S. Kim et al., 2008; Tan et al., 2016).  

Mechanistic Assessment of Aqueous Electron/Hole Lifetimes 

Ideally, the electrons and holes generated may be utilized to induce chemical 

reactions at the surface of the metal oxide semiconductor.  Fundamental to semiconductor 

function is the behavior of the p-n junction, where a contact potential exists between the 

p-type and n-type portions of a semiconductor lattice at equilibrium; this potential 
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contributes to separation of electrons and holes at the n-type and p-type sides, 

respectively (Moll, 1964).  If this potential is decreased by increasing the positivity of the 

p-side, charge carriers may more readily diffuse from regions of majority to minority 

along a charge gradient.  However, if the p-type becomes more negative than the n-type 

side, the barrier is increased and diffusion is greatly diminished.  Thus, to understand and 

catalyze reactions, the process of production and transport of e-/h+ pairs in 

semiconductors as well as the potential for recombination must first be assessed and 

accounted for.   

Production 

Conduction electrons and holes are produced in pairs within a semiconductor and 

at the surface upon proper irradiation.  The rate of production (number per unit volume 

per unit time) depends on the semiconductor material (energy and momentum needed to 

produce a pair) in addition to the thermal activity of the surroundings (Adler, Smith, and 

Longini, 1964).  Temperature changes in the solution may produce sufficient thermal 

vibrations within the lattice to produce an electron-hole pair via the breaking of a valence 

bond.  More commonly in photocatalytic endeavors, this production is prompted by a 

light source (photon emission/absorption) that provides sufficient energy to the 

semiconductor to break a covalent lattice bond.  

Transport 

Transit time for holes and electrons to reach photocatalyst surface are related to 

the radius of the particle, R, and a diffusion coefficient of the excited charge carriers 𝜏 =

𝑅2/𝜋𝐷 (Gratzel and Frank 1982).  Thus, for particles between 10-20nm, a common TiO2 

nanoparticle size range, transit time from the point of origin within the structure to the 
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surface is in the range of picoseconds.  Additionally, the morphology of the space-charge 

region, the near surface region of charge density that differs from the bulk solution, 

strongly influences charge carrier transport.  Distinct band bending patterns result from 

either an ohmic contact or Schottky barrier which represent electrical properties of 

semiconductor-metal interfaces (Kolansinski, 2009). The Schottky barrier may be defined 

as a carrier depletion region at the surface that is resultant from the electrical dipole layer 

rejection of majority charge carriers from the surface toward the bulk (Seeger, 2002).  

Additionally, variation in surface states (from a nonhomogeneous semiconductor 

surfaces) provide a potential for disparity between the electron density at the surface 

relative to the bulk.  This difference allows for diffusive transport of electrons to lower 

density regions.  

The valence band wavefunction of TiO2 particles has a larger curvature than that 

of the conduction band, indicating that the ‘effective’ mass of the hole is smaller than that 

of the electron; therefore, at the surface, there would likely be more photogenerated 

holes, whereas electrons would be more readily trapped in the interior (Rajh, Poluektov 

and Thurnauer 2003).  Photoactivation may occur via the surface localization of 

photogenerated charge carriers traveling from the bulk of the semiconducting material 

(Cunningham 1988). These charge carriers persist longer at the interface (Cunningham, 

Goold, and Fierro 1982).  

Recombination, Trapping, and Surface Reactions 

Upon band gap irradiation, three primary photochemical processes occur in a 

colloidal TiO2 nanoparticle system: 1) recombination, 2) trapping, and 3) reactions with 

surface adsorbed constituents. Recombination occurs as a thermodynamic mechanism of 
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restoring thermal equilibrium, and it constitutes the largest energy inefficiency of TiO2.  

Charge carriers (e-/h+) are formed due to the absorption of light into the titanium dioxide 

nanostructure. Recombination can occur as radiative or non-radiative according to the 

following equation:  𝑒𝑐𝑏 𝑂𝑅 𝑡𝑟
− + ℎ𝑣𝑏 𝑂𝑅 𝑡𝑟

+ → 𝑇𝑖𝑂2 + 𝑒𝑛𝑒𝑟𝑔𝑦, where cb represents the 

conduction band, vb represents the valence band and tr represents a trapped charge carrier 

(either electron or hole as indicated) (Bahnemann, Dillert, and Robertson 2003). With 

insufficient transportation rates and/or pathways and external reaction source, i.e., hole 

scavenger, electron-pair holes will recombine, releasing heat.  

Trapping of electrons and holes occurs within the metal oxide lattice and on the 

surface, slowing recombination rates. There is consensus that electrons prefer trapping at 

the surfaces of the TiO2, though there is some evidence and theoretical modeling efforts 

that suggest bulk trapping supersedes surface trapping (M. a. Henderson, 2011).  Upon 

low temperature irradiation, a small number of electrons are trapped in the interior to 

produce Ti3+ interstitial ions. Electron paramagnetic resonance indicates two types of 

electron traps in TiO2 nanoparticles: 1) internal traps with a narrow and axially 

symmetric EPR signal, and 2) surface traps with broad EPR lines (Rajh, Poluektov and 

Thurnauer 2003).  Hole trapping, however, occurs on oxygen species within and on the 

titanium dioxide lattice: Ti4+O−∎Ti4+OH− or  Ti4+O2−Ti4+O−∎ (Howe & Gratzel, 1985) 

dependent on surface modifications to the TiO2 and temperature treatment. 

Recombination may be successfully deferred in through consumption of electrons 

and holes at the surface of the semiconductor. Reactive electrons available for interface 

transfer from TiO2 colloids to surface constituents occur at the surface Ti atoms that are 

coordinated with solvent molecules (Kolle, Moser, & Gratzel, 1985).  Reactive holes 
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transfer at surface oxygen molecules that are covalently linked to titanium atoms (Micic 

& Zhang, 1993).  Radical species generation are postulated as a significant acceptor of 

surface holes and electrons throughout interfacial transfer, in this case at the solid-liquid 

interface.  This provides both direct and indirect oxidation-reduction pathways.   In 

photocatalytic redox reactions over TiO2, surface trapped photogenerated holes are the 

essential to the process, most commonly oxidizing aqueous organic species.  In order to 

maintain neutrality, a balance of oxidation-reduction reactions must exist as 

photogenerated electrons (-) and holes (+) are consumed. In order to have successful 

oxidation-reduction reactions of constituents at the surface of the photocatalyst the 

following two properties must exist: 1) for reduction, the conduction band have a more 

negative potential than the reducing species; 2) for oxidation, the valence band must have 

a more positive potential than that of the oxidizing species. Therefore, the bandgap and 

contaminant must be band-paired to undergo successful redox reaction.  

Metal Oxide Surface Charge and Zeta Potential 

Chemistry at the water-metal interface, i.e., of semiconductors, is determined by 

the reactivity of water on the metal, chemical reactivity changes due to the 

electrochemical potential and steric and electrostatic effects of the solvent (Taylor and 

Neurock, 2005).  Surface layers can be classified in four categories based the carrier 

densities of the n-type semiconducting surface (in comparison to the bulk): 1) 

accumulation layers (ns>nb), 2) flat band (ns=nb), 3) depletion layers (ns<nb and ps≤nb), 4) 

inversion layers (ps>nb) with n and p representing the carrier densities at the surface (Berz 

1975). The accumulation layer is charge dense, while the depletion layer has a lower 

charge density than the bulk.   
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The water layer structure is influenced by the metal, but also by the presence of 

co-adsorbates, dissociation capacity, and the presence of an electric field created by the 

ionic species (which would induce a dipole alignment).  Subsequently, under varied pH 

conditions, water molecule alignment changes due to changing surface charge of the 

metal surface (Kolansinski 2009).  The point of zero charge (pHpzc), also called the 

isoelectric point, is defined as the pH at which the overall surface charge is neutral.  As 

the pH or potential changes, the net surface charge will change, most often moving more 

negative with increasing pH and vice versa. For colloidal species, this pHpzc is the point 

of zero zeta potential.  Zeta potential is defined as the potential differential between a 

surface and the surrounding bulk liquid. The pHpzc is significant because changes in the 

surface charge (dipole) cause changes in both the adjoining aqueous layer, but also the 

accessibility for adsorption of other species in solution (cations to negative surfaces and 

anions to positive surfaces). The zeta potential represents a net surface charge, and thus 

represents an aggregate sum of charges on the surface – even at very high pH or electric 

potential a mix of charges will exist on the surface, allowing for diversity of reactivity 

and surface adsorption capacity though most often the majority of charge is either 

positive or negative.  

Surface charge of metal oxides is additionally highly dependent on pH due to the 

variation of (de)protonation of surface sites with increasing or decreasing pH.  At high 

pH, the surface sites would be highly deprotonated, and thus surfaces would likely be 

more negative. A hydroxylated surface can serve as a proton donor (Bronsted acid) or a 

proton acceptor (Bronsted base). Electrochemical measurements determine the isoelectric 

point of the surface – the pH value of a solution in contact with the surface that yields an 
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equal concentration of XOH2+ and XO- sites.  At this point, the surface has a net charge 

of zero.  A high isoelectric point indicates a strong surface basicity, whereas a low 

isoelectric point indicates a strong surface acidity.  These relationships pertain to the 

ability to donate or accept electrons and influence adsorbate-substrate charge transfers 

but do not directly address adsorption energy. Adsorption energy pertains mainly to the 

electrostatic and covalent energy. TiO2 for example, would be protonated at low pH, with 

surfaces covered by –OH groups: 

≡ TiOH2
+ ↔ ≡ TiOH + H+      logka1 = −2.5 

≡ TiOH ↔ ≡ TiO−  + H+      logka2 = −8.0 

which show deprotonation on the surface with increasing pH (Duro, Bruno and 

Honeyman 2001).  In acidic environment, the surface would reflect the first equation with 

a mix of TiOH2
+ (a very protonated species) and TiOH with excess hydrogen in solution, 

whereas in an alkaline environment, the surface would reflect the equilibrium of the 

second equation. Additionally, though the species are the majority in solution, there will 

be a mix of charges both at low pH and high pH but these equations represent the 

majority case of the surface charge: (+) at low pH due to the extra hydrogen on the 

surface and (-) at high pH due to deprotonation with increasing pH. 

 

Electrostatic Surface Complexation Models: Accounting for Ion-Metal Oxide Interactions 

Overview of Metal Oxide Surfaces 

Metal oxide surfaces experience a surface energy due to an imbalance of forces 

between atoms, ions and molecules at the surface. Thereby, a finely dispersed solid metal 

oxide will attempt to reduce its surface area by complexing with adjacent phase 
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molecules and ions, thus decreasing its overall surface energy. In an aqueous matrix, 

these molecules may coordinate water molecules by dissociative chemisorption, most 

often leaving hydroxyl groups at the surface.  Because of the metal Ti ions in TiO2 act as 

Lewis acids (electron pair acceptor), these surface hydroxyl groups may be replaced by 

adsorbing oxyanions (Schindler 1981). The charging of a solid surface in a liquid occurs 

as a result of three mechanisms: 1) ionization or dissociation of surface groups; 2) 

adsorption or binding of ions from solution onto a charge neutral surface (ion 

exchangeable surface); 3) charge exchange where charges (protons or electrons) shift to 

another surface and induce an electrostatic attraction in an acid-base and opposite charge 

manner (Israelachvili 2011). 

 

Solid-Liquid Interface 

 The solid-liquid interface can be divided into four regions: the bulk liquid, the 

bulk solid, the surface of the solid along with its adsorbates, and a region just above the 

adsorbed layer that is different from the bulk liquid. In aqueous solution, water will 

complex on the semiconductor surface based on the pH.  As such, pH is the master 

variable that determines the extent of adsorption of aqueous species onto the surface.  

Basic oxides exhibit a weak covalent energy with respect to the surface OH—bond, but as 

oxide acidity increases, the covalent energy increases. This is attributable to increasing 

electronegativity and decreasing ionic radius.  Electrostatic energy is more complex due 

to Coulombic interactions and adsorbate-substrate charge transfers. The overall 

adsorbate-substrate interaction is influenced by attractive and repulsive interaction with 

all substrate ions; the charge transfer at this interface is responsible for a charge decrease 
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of both species as hydroxyl groups and surface oxygen lose electrons and protons and 

surface cations capture electrons (Noguera 1996). 

Ion Adsorption 

Adsorption of anion species onto metal oxide surfaces occurs through ligand 

exchange, a common type of specific adsorption, and correlates to the pH of solution 

(Hingston 1981).  An anion and its conjugate acid will experience an increase in adsorption 

as the pH increases until dissociation is complete (Bowden, et al. 1973), i.e.:  

HCrO4
− ↔ CrO4

2− + H+  pKa = 5.9  (Brito et al., 1997) 

HCr2O7
− ↔ Cr2O7

2− + H+  pKa = 1.8 (Brito et al., 1997) 

Thereafter, a decrease in adsorption will occur past the pka of the anion/conjugate acid 

pair. For chromium, it would be expected that above pH 5.9, the majority of the species 

would be deprotonated and thus experience diminished but existent adsorption rates to 

the TiO2 surface.   

At the pHpzc of TiO2 is at pH=6.2, cationic species would more readily adsorb 

than anionic species due to the reversal in net surface charge.   Minimal cation sorption 

occurs at or below the pHpzc, but above the pHpzc, cations are adsorbed to counterbalance 

the overall negative surface charge. Part of the net surface charge is also counterbalanced 

by the exclusion of anion adsorption at higher pH.  Therefore, for metal oxides, cation 

adsorption increases with increasing pH.  Cation selectivity is also influenced by changes 

in oxidation state, which would be represented in this case as Cr(VI) to Cr(III) and their 

aqueous complexes.  With multivalent cations, small changes in pH can lead to relatively 

large changes in sorption capacity (Kinniburgh & Jackson, 1981).   
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Surface Complexation Models 

Whether ions are specifically or nonspecifically adsorbed within the innermost 

layer (closest to the metal oxide) depends on the electric field strength and the chemical 

properties of the ions, while the outer Helmholtz layer includes fully solvated ions.  The 

combination of both of these layers forms the electric double layer.  The overall surface 

charge is determined by the compensation of the excess charge of the first layer at the 

surface (Kolansinski 2009). With preliminary definitions for the electric double layer and 

a conceptual framework of charge at the surface, surface complexation models will be 

explored. The diffusive layer model (two layer model), the constant capacitance model, 

and the triple layer model are utilized to describe chemical reactions at the surfaces of 

metal oxides.   

The constant capacitance model addresses scenarios when surface potentials are 

small or high ionic strength in the bulk solution compresses the solution side of the 

electric double layer. In such a case, the surface potential is proportional to the surface 

charge: 

𝛹 =
𝜎

𝐶
 

where Ψ is the potential in volts, σ is the surface charge in Coulombs/m2, and C is the 

integral capacitance in Farad/m2 (Stumm 1992). Assumptions of the constant capacitance 

model include: 1) all surface complexes are inner-surface complexes; 2) constant ionic 

medium reference state determines the activity of aqueous species meaning that no 

surface complexes are formed with background ions; 3) the surface is represented by one 

plane of charge (Goldberg 1995). This model most closely resembles the Helmholtz 

double layer because adsorbing ions are directly adjacent to the surface. The diffuse layer 



327 

model, also called the two-layer model, makes another set of assumptions: 1) surface 

complexes are inner-sphere complexes; 2) complexes do not form with the background 

ions; 3) the surface is represented by two planes of charge. The triple layer model was 

created with the assumptions that: 1) H+ and OH- ions form the inner-sphere complexes; 

2) outer sphere and inner sphere surface complexes are formed by ion adsorption 

reactions; 3) outer sphere surface complexes are formed by background ions; 4) three 

planes of charge represent the surface. The surface-solution interface may also be 

displayed graphically (potential versus distance from particle surface), with the constant 

capacitance model as sloped line, the two layer model a horizontal and subsequently 

curved line (the diffuse layer is the boundary), and the triple layer model a sloped line 

followed by a line of steeper slope and finally a curve representing the three layers and 

their potential v. distance relationship. 

 Surface complexation models describe the interaction of anions and metal oxide 

surfaces as undergoing a chemisorption substitution process where the anion substitutes 

for water hydrated or hydroxylated surface species (Blesa et al., 2000).  In the constant 

capacitance or diffusive layer model this would occur in the first coordination sphere, 

whereas in the triple layer model in the outer layer. It has been shown that the electronic 

state of the metal in addition to the surrounding solution greatly influence reactivity at the 

interface, but dynamics within the double layer have not been well documented in 

literature (Taylor & Neurock, 2005). 

Validation of Photon Flux and Potential for Photocatalytic Activity 

Quantum yields are well characterized for wavelengths between 205-365nm (Goldstein & 

Rabani, 2008) for the following reactions (Harris, Adams, Moore, & Sorensen, 1987): 
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[Fe(C2O4)n]
(3−2n)+

hv
→  Fe2+ + (n − 1)C2O4

2− + C2O4
− 

A synergistic thermal reaction causes the quantum efficiencies to exceed unity at 

wavelengths shorter than 436nm according to the following reaction (Harris et al., 1987): 

[Fe(C2O4)n]
(3−2n)+ + C2O4

−
 
→ Fe2+ + (n)C2O4

2− + CO2 

These reactions yield a calculation of the dose of light into the system 

Dose (
mWs

cm3
)  =

[Fe++]after − [Fe
++]before

Φ
×
4.719x108mWs

einstein
 ×

L

103cm3
 

The value for Φ represents the quantum yield of production of Fe++ per Einstein of light: 

Φ = quantum yield (
moles Fe++

einstein
)  

Φ is valued at 1.26 moles Fe++/Einstein for wavelengths less than 365.6nm (assumed to be 

constant (John Lee & Seliger, 1964)). 

Radiant intensity is equivalent to irradiance and fluence rate, and can be 

ultimately converted to a fluence dose. The energy of each wavelength of light may be 

articulated on a per-photon basis via the Planck-Einstein relationship: 

𝐸 =
ℎ𝑐

𝜆
;  ℎ𝑐 = 1240𝑒𝑉 ∗ 𝑛𝑚 

Fluence rate may be transformed to a photon fluence (or fluence dose) through the use of 

the following transformation at each measured wavelength: 

At Xnm: 
10−3mW

cm2
∗

J
s⁄

1 W
∗

1eV

1.6021 x 10−19 J
∗
1 photon

Eλ (eV)
=
photon

cm2 − s
 

Commonly utilized units are Einsteins/cm2-s to provide the number of moles of photons 

delivered at each wavelength. 

Accordingly, these values must be multiplied by the time of irradiation to provide 

a fluence dose instead of a fluence rate. Outputs from each wavelength can be summed to 
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form the total fluence dose, with differentiation of effective photon dose versus total photon 

dose. Effective photon dose is similar to the germicidal dose in disinfection (R. Z. Chen, 

Craik, & Bolton, 2009; Giese & Darby, 2000; Linden & Darby, 1997): accounting for the 

number of photons delivered to the system that are expected to have a contribution to the 

desired reaction. In the case of germicidal dose, photons are normalized to the output at 

254nm, whereas for photocatalysis, the effective photon dose wavelength range would 

typically be between ~200-400nm for titanium dioxide-based catalysts due to the large 

bandgap. Final fluence dose values will most often be of the form photon/cm2 or 

einstein/cm2 where either increment allows for a holistic, normalized view of the energetic 

and photonic input into the system and is comparable across irradiation sources. Simply 

reporting irradiation times is inadequate for accurate representation of aqueous 

photochemistry, and particularly unhelpful for complex reactions such as nitrate reduction 

to nitrogen gases, where photonic efficiencies vary widely (Mack & Bolton, 1999b) and 

wavelength-dependent outcomes are hypothesized.  
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