
Security Analysis of HTTP/2 Protocol

by

Naveen Tiwari

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2017 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair
Adam Doupé
Ziming Zhao

ARIZONA STATE UNIVERSITY

August 2017

ABSTRACT

The Internet traffic, today, comprises majorly of Hyper Text Transfer Protocol

(HTTP). The first version of HTTP protocol was standardized in 1991, followed by

a major upgrade in May 2015. HTTP/2 is the next generation of HTTP protocol

that promises to resolve short-comings of HTTP 1.1 and provide features to greatly

improve upon its performance.

There has been a 1000% increase in the cyber crimes rate over the past two years.

Since HTTP/2 is a relatively new protocol with a very high acceptance rate (around

68% of all HTTPS traffic), it gives rise to an urgent need of analyzing this protocol

from a security vulnerability perspective.

In this thesis, I have systematically analyzed the security concerns in HTTP/2

protocol - starting from the specifications, testing all variation of frames (basic entity

in HTTP/2 protocol) and every new introduced feature.

In this thesis, I also propose the Context Aware fuzz Testing for Binary communi-

cation protocols methodology. Using this testing methodology, I was able to discover

a serious security susceptibility using which an attacker can carry out a denial-of-

service attack on Apache web-server.

i

DEDICATION

To my parents for all their love and support, and their insistence on best possible

education. I appreciate all their sacrifice without which this would not have been

possible. Thanks Mom and Dad.

To my fiancée, Manisha for her support and understanding...

To Erik Trickel for his mentoring...

ii

ACKNOWLEDGMENTS

The journey towards completion of my thesis has been circuitous and I am extremely

grateful to the amazing people around who helped me in achieving this goal.

First of all, I would like to express the deepest gratitude to my Supervisor Dr.

Gail-Joon Ahn , without whom this would not have been possible. I would like to

thank him for his extensive support and encouragement during the tenure.

I am immensely thankful to Dr. Adam Doupé and Dr. Ziming Zhao for their

guidance during every stage of this project.

The support and feedback from my friends - Sukhwa Kyung, Haehyun Cho, Erik

Trickle, Faris Kokulu, Dr. Carlos Rubio and Vaibhav Dixit has been a motivating

force for me and I can’t thank them enough for this.

I would also like to acknowledge the everlasting support of my family and their

words of wisdom at times when I felt low.

Last, but definitely not the least, Dr. Wonkyu Han. I would like to thank him for

guiding me throughout the project, especially during the initial phases.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 Introduction. 1

2 Background . 8

2.1 Why Do We Need HTTP/2 . 8

2.2 Brief Introduction to HTTP/2 . 10

2.2.1 Types of Frames . 12

2.2.2 Communication Using HTTP/2 Protocol 13

2.2.3 HPACK: Header Compression For HTTP/2 14

2.3 Features of HTTP/2 . 15

2.3.1 Multiplexing . 15

2.3.2 Resource Prioritization . 16

2.3.3 Server Push . 16

2.4 Whitebox Testing . 17

2.5 Fuzz Testing . 18

3 Related Work . 19

4 Approach . 21

4.1 Why Context Aware Fuzz Testing? . 21

4.2 Open Source Implementation . 22

4.3 Why Not Use Available Open Source Implementation? 23

4.4 Context Aware Fuzzing . 25

4.5 Challenges . 29

4.6 Test Environment . 29

iv

CHAPTER Page

4.7 Test Cases. 31

5 Implementation . 33

5.1 Modules . 33

6 Experimental Results . 36

6.1 Experiment Environment . 36

6.2 Problems With The specification . 36

6.3 Finger Printing Of Web Server. 38

6.3.1 Difference in Half-Closed Stream Behavior. 38

6.3.2 Frame Size in Apache Web Server. 39

6.3.3 Difference in Encoding String Using HPACK. 40

6.4 Security Vulnerability: DoS. 41

6.5 Server Push . 45

7 Conclusion . 48

REFERENCES . 49

APPENDIX

A PYTHON EXPLOIT CODE . 52

B STATIC TABLE ENTRIES IN HPACK . 54

v

LIST OF TABLES

Table Page

1.1 Web Server Developers: Market Share of Top Million Busiest Sites

(Source netcraft.com [4]). 7

2.1 Example of Header Name and Header Value in HTTP/2. 15

4.1 List of Open Source HTTP/2 Implementation. 22

4.2 Frame-wise Testing Of The HTTP/2 Protocol (Part 1). 32

4.3 Frame-wise Testing Of The HTTP/2 Protocol (Part 2). 32

6.1 System Configuration For Test Environment. 36

6.2 Passive OS Identification Using Only The Initial Values in TCP/IP [18]. 37

B.1 Static Table Entries. 55

vi

LIST OF FIGURES

Figure Page

1.1 Network Layer Protocol Traffic Distribution (Source arbor.net [8]). 1

1.2 Traffic on Various TCP Ports (Source arbor.net [8]). 2

1.3 TCP Port Based Attack Distribution (Source arbor.net [8]). 2

1.4 Growth of HTTP/2 (Source w3techs.com [34]). 3

1.5 Percentage of Communication Over HTTPS (Source keycdn.com [20]). . 4

2.1 HTTP 1.1 Connection With And Without Pipelining. 9

2.2 Structure of Frame. 12

2.3 HTTP/2 Communication Over A Stream. 14

2.4 Overall HTTP/2 Communication Over A Connection. 14

2.5 Communication With And Without Server Push. 17

4.1 Design of Our Implementation. 24

4.2 TCP Bytes Exchanges For Establishing Connection. 26

4.3 HTTP/2 Bytes Exchanges For Establishing Connection. 27

4.4 Architecture Of Our Testing Framework. 28

4.5 Architecture Of Testing Framework For TCP. 30

6.1 Sending Big HTTP Header Over A Stream In HTTP/2. 38

6.2 Memory Consumption of Victim vs Time & Data Received by Victim

vs Time. 45

6.3 System Statistics While Being Attacked. 46

vii

Chapter 1

INTRODUCTION

Internet, as we know today, is made up of massively distributed client and server

based information systems. It comprises of diverse type of applications like email,

file transfer, audio-video streaming, web browsing and so on. To support such wide

range of applications there are enormous number of protocols like HTTP, FTP, SMTP,

POP, Telnet, SSH, SMB to name a few [9]. Amongst all such protocols used over the

Internet, HTTP is the most popular and widely used (based on the World-Wide-Web

traffic [24]).

Figure 1.1 shows the traffic distribution among various network layer protocols,

clearly identifying TCP as the most prevalent protocol on the Internet [8].

Figure 1.1: Network Layer Protocol Traffic Distribution (Source arbor.net [8]).

HTTP is an application layer protocol, built on top of TCP/IP. According to the

data collected by 67 different ISPs (Source arbor.net [8]), amongst all the protocols

built on top of TCP, HTTP is the most prominent (as depicted in figure 1.2).

This high prevalence and continued migration to HTTP makes it one of the most

targeted protocol for the attackers. Figure 1.3 shows the percentage of attacks on

various TCP based protocols [8].

1

Figure 1.2: Traffic on Various TCP Ports (Source arbor.net [8]).

Figure 1.3: TCP Port Based Attack Distribution (Source arbor.net [8]).

Since its introduction in 1991 [31], there have been four different versions of HTTP.

The first three variations included minor upgrades over their predecessor with addition

of few new functionalities. HTTP/2, the latest version of HTTP, has its origin from

the Google’s SPDY protocol which attempts to re-look at HTTP from the perspective

of new era web technologies requirements. HTTP/2 has been developed from scratch

and was standardized in May 2015.

2

Since its standardization, there has been a tremendous rise in migration from

HTTP 1.1 to HTTP/2. The biggest factor contributing to this shift is the significant

improvement in page load time [15], thereby leading to high performance. Figure 1.4

shows the growth rate of HTTP/2 over time [34], taking into account both HTTP

and HTTPS traffic.

Figure 1.4: Growth of HTTP/2 (Source w3techs.com [34]).

Although HTTP/2 has a significant acceptance rate in totality, it would be im-

portant to check the statistics for HTTPS traffic only, since our primary focus is on

security analysis. Figure 1.5 shows that among all communications over HTTPS,

approximately 68% of the traffic utilizes HTTP/2 (as of April 2016) [20].

The motivation for the development of HTTP/2 lies in the shortcomings of HTTP

1.1 and also the evolved needs of the modern era of web technologies. The key factors

are as follows:

• HTTP 1.1 is a good protocol but its performance has degraded over the past 15

years with the fast pacing advancements in the Internet world. At the time of its

development, the major objective of the web had been to show static web pages

3

Figure 1.5: Percentage of Communication Over HTTPS (Source keycdn.com [20]).

with images. Over the course of time, loading a web page has become a resource

intensive task, owing to the fact that most of the web pages are inherently

dynamic with lots of images and scripts controlling the run time behavior of

the page. Thereby arising the need to revisit the protocol’s performance.

• The requirement of any new feature in HTTP 1.1 to cope up with the increasing

needs of the web, made the protocol more convoluted, leading to implementa-

tions that are prone to bugs.

• HTTP 1.1 protocol is based in ASCII. Since the web pages are processed by

computers and not humans (thereby eliminating the need for an ASCII based

protocol), it increases the required bandwidth and also the processor load on

the system.

• There is no way of simultaneously fetching resources due to inherent sequential

nature of the protocol.

4

To achieve the targeted goals of HTTP/2, members of Internet Engineering Task

Force (IETF) have looked at every aspect of the protocol and introduced many new

functionalities. The key features are as follows:

• Binary Protocol - HTTP 1.x used ASCII format for request and response,

that was highly resource intensive for client and server. HTTP/2 uses the same

semantics but in binarized version, there by making it more efficient. This has

many advantages like:

– Reduced overhead in request and response.

– Lower on-the-wire footprint thus reducing bandwidth requirements.

– Reduced network latency and improvement in overall throughput

• Stream Priority - This feature of HTTP/2 protocol was introduced with the

new capability requirements of the web. While loading a web page, the browser

(or rendering engine) proceeds in a logical sequence and hence the client should

be able to ask the server to prioritize a particular resource over others. An

example for this would be prioritizing the HTML, CSS and JavaScript files over

the image files.

• Multiplexing - This is one of the most important feature in HTTP/2 which

was introduced to remove sequential request and response. Using this feature,

client and server can use the same TCP connection to fetch and serve multiple

resources.

• Server Push - This feature was introduced due to the fact that server can have

prior knowledge about the resource requirement of client. The main advantage

of this feature is utilized by servers that generate web pages based on the infor-

5

mation in request. The server can utilize this time for sending other resources

like JavaScript, CSS and image files which are static in nature.

• Header Compression - This feature was introduced in order to further reduce

the bandwidth requirements. The client and server use HPACK algorithm to

compress the transmitted request and response header.

• ALPN - Application Layer Protocol Negotiation (or ALPN) is a Transport

Layer Security (TLS) extension for application layer protocol negotiation. This

was introduced to decide upon the use of HTTP/2 as application layer protocol

for communication by server and client. The important aspect of ALPN is that

the protocol negotiation happens without introducing any additional round trips

in TLS handshake.

HTTP/2 is a new protocol with high acceptance rate, which demands an urgent

need for evaluating this protocol for any security concerns. This was my primary

motivation for working on the security vulnerability analysis of HTTP/2 protocol.

In order to do the vulnerability analysis I chose NGINX (version 1.11.3) web server

and Apache web server (version 2.4.17 - 2.4.23). The primary reason for selecting these

as servers is that they are open source and serve around 70% of the entire web traffic.

The table 1.1 shows the web server that developers share for top million web sites.

For client we selected Chrome (version 52) and Firefox (version 48) since they are

used by more than 70% of all the users [2].

The main contributions of this thesis are as following:

• Developed a testing methodology that can be used for testing any binary net-

work communication protocol.

6

Table 1.1: Web Server Developers: Market Share of Top Million Busiest Sites

(Source netcraft.com [4]).

Developer January

2017

Percent February

2017

Percent Change

Apache 416,257 41.63% 414,118 41.41% -0.21

nginx 282,986 28.30% 283,409 28.34% 0.04

Microsoft 102,660 10.27% 101,909 10.19% -0.08

Google 17,702 1.77% 17,648 1.76% -0.01

• Discovered a serious security vulnerability which can allow the attacker to per-

form a denial-of-service attack on a server grade machine using a commodity

hardware.

• Uncovered multiple ways in which one can fingerprint the server.

The rest of this thesis is organized in the following manner. Chapter 2 further

describes the problems in HTTP 1.1 protocol, introduction to HTTP/2 and expla-

nation of its various features. The chapter also explains white-box and fuzz testing,

and provides information about the client and server that we have tested. Chapter 3

discusses other published research works related to HTTP/2 or the testing method-

ologies. Chapter 4 provides details on the utilized testing methodology, also outlining

its applicability to other binary network communication protocols. Chapter 5 ex-

plains the implementation techniques. Chapter 6 explores the testing environment

and the results obtained. Chapter 7 concludes this thesis.

7

Chapter 2

BACKGROUND

HTTP (Hyper Text Transfer Protocol) is an application layer protocol which was

designed on the principles of simplicity. The original protocol, introduced in 1991

[31], had simple design goals which included:

• File transfer capabilities.

• Ability to search the indexed HTML archive.

• Ability to redirect a client to another server.

The initial design was developed under the assumption that all client requests are

idempotent.

2.1 Why Do We Need HTTP/2

Internet has seen tremendous growth since the introduction of HTTP, but the

basics have remained same [19]. The predecessor of HTTP/2 had started showing

signs of aging - for every new demand of the growing web, it required patching which

never completely resolved the problem as intended. For example the parallel loading

of the resources required by the web pages.

The client can request only one resource at a time and since web pages nowadays

contain huge number of scripts, style-sheet, images and other resources, the page

load time increases. There were a couple of approaches devised in order to tackle this

problem:

8

Multiple Client Connections In this approach, the client establishes multiple

connections with servers (may be different servers based on resource location) and re-

quests each resource on different connection. The main drawback with this approach

is that it increases the load on the server due to higher consumption of resources.

Hence, each web browser implements a practical limitation on the number of con-

nections that can be established for each user request. Firefox limits the number of

connections to 17 while Chrome limits it to 10 [13].

Request pipelining Figure 2.1 shows the concept of pipelining. This solves the

sequential request response problem but faces Head of Line Blocking (a big response

starves all the following responses) issue.

Figure 2.1: HTTP 1.1 Connection With And Without Pipelining.

9

2.2 Brief Introduction to HTTP/2

HTTP/2 is an application layer protocol that is build on top of TCP/IP layer and

it shares all the resources that are used for HTTP 1.1 like the use of http://, https://,

ports among other things. Since it shares everything with its predecessor, it requires

a mechanism for the client and server to inform each other and agree on the use of

HTTP/2.

HTTP/2 over clear text TCP If the client support HTTP/2, while sending

the HTTP request it includes upgrade field with h2c as its value along with the

HTTP/2 settings (refer section 2.2.1), indicating that the client supports HTTP/2.

For example:

GET / HTTP/1 .1

Host : s e r v e r . example . com

Connection : Upgrade , HTTP2−Se t t i n g s

Upgrade : h2c

HTTP2−Se t t i n g s : <base64ur l encoding o f HTTP/2 SETTINGS payload>

The server ignores the upgrade field if it does not support HTTP/2 and proceed with

normal HTTP 1.1 response. But if the server supports HTTP/2 it should send 101

Switching protocols and then proceed with HTTP/2 communication. For example;

HTTP/1.1 101 Switching Protoco l s

Connection : Upgrade

Upgrade : h2c

HTTP/2 over TLS During the handshake process of Transport Layer Security

(TLS) negotiation, the client and server negotiate the application layer protocol that

they would be using. TLS defines an extension called Application Layer Protocol

10

Negotiation (ALPN) which allows the client and server to negotiate an application

layer protocol in a secure manner without increasing the number of round trips. Using

this protocol, the client sends a list of application layer protocols to server, which then

selects one of them [16]. Earlier, the Next Protocol Negotiation (NPN) extension

was used which has now been deprecated [3] [1].

After the client and server agree on HTTP/2 protocol, the client sends a string

known as Connection preface such as

0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

or

"PRI ∗ HTTP/2.0\ r \n\ r \nSM\ r \n\ r \n"

along with exchange of a setting frame (explained in section 2.2.1). The connection

preface is a final conformation of the protocol in use that each end point is required

to send.

The basic unit in HTTP/2 protocol is called a Frame that begins with a fixed

9-bytes header followed by a variable length of payload as shown in the figure 2.2.

Fields in the header include:

• Length (24 Bits) - denotes total length of the frame.

• Type (8 Bits) - denotes type of the frame (refer section 2.2.1).

• Flag (8 Bits) - flags specific to frame type.

• Reservers (1 Bit) - Reserved for future use.

• Stream Id (31 Bits) - Used for parallelization of data transfer.

In HTTP/2 there are different types of information which has to be transfered

between client and server. For each type of information the protocol defines different

11

Length (24)

Type (8) Flag (8)

Stream Id (31)R

Payload (Variable length)

Figure 2.2: Structure of Frame.

types of frames. For example, the HTTP request is transfered using the Header

Frame, data (HTML files, CSS, JavaScript or image files) is transfered using Data

Frame and connection level settings like maximum size of frame are transfered using

the Setting Frame.

2.2.1 Types of Frames

Data Frame (0x0) This frame is used to carry the data to and from the server.

Header Frame (0x1) This frame is used to send the HTTP request headers.

Priority Frame (0x2) This frame sets the priority of a stream. Priority is a 8 bit

number, also called weight. An endpoint sends this frame to set priority of frame,

but that is only a suggestion.

Reset Frame (0x3) This frame is used for immediate termination of the frame.

Setting Frame (0x4) This frame is used to transmit connection level setting in-

formation like maximum length of frame, maximum number of concurrent streams

etc.

12

Push Promise Frame (0x5) This frame is used by the server when it knows the

resource requirements of the user and wants to push them to avoid delays at the client

end.

Ping Frame (0x6) This frame is utilized by the end points to check if the connec-

tion is active.

Go away Frame (0x7) This frame is used to close the connection.

Window Update (0x8) This frame type is used to implement flow control.

Continuation Frame (0x9) This frame is used along with header frame and push

frame. The objective of continuation frame is to carry data of header and push frame

when the payload exceeds frame size.

2.2.2 Communication Using HTTP/2 Protocol

A to and fro sequence of frames defines a Stream. Each stream can be used

for only one request and response, Figure 2.3 shows the communication between the

client and server over a stream. Each block in figure 2.3 represents a frame and

all the frames together form a stream. The client sends HTTP header in Header

frame to which the server responds using the Header frame along with the contents

of index.html in Data frame.

Every stream in HTTP/2 comprises of multiple frames which can be assembled

properly at the endpoint, provided they arrive in correct sequence. This capability

allows the client and server to establish multiple streams of request/response for

numerous resources, known as multiplexing.

13

Stream 1

:method: GET
:scheme: https
:path: /index.html
:user-agent: safari

C
L
I
E
N
T

S
E
R
V
E
R

HEADER Frame (0x1)

:status: 200 OK
:server: NGINX

HEADER Frame (0x1)

DATA Frame (0x0)

<html>
….
</html>

Figure 2.3: HTTP/2 Communication Over A Stream.

Figure 2.4 shows the communication between client and server. An important

point to notice here is the multiplexing feature of HTTP/2 which the client utilizes

to concurrently access resources.

Figure 2.4: Overall HTTP/2 Communication Over A Connection.

2.2.3 HPACK: Header Compression For HTTP/2

The major objective of HTTP/2 was improved performance. Hence, it defines a

simple and flexible mechanism of compressing the header fields to reduce bandwidth

requirements.

14

HTTP/2 converts the HTTP request into a list of name value pairs. For example,

consider the following HTTP header:

GET / index . html HTTP/1 .1

This can be expressed as a list of header name and header value pairs as shown below:

Table 2.1: Example of Header Name and Header Value in HTTP/2.

Header Name Header Value

:method GET

:scheme https

:path /index.html

HPACK defines header compression algorithm for HTTP/2 where each endpoint

maintains a mapping (known as HPACK table) of index to header name or header

value or both, defined by the other endpoint. HPACK also defines a list of static

entries (see table B.1 in Appendix B). Using the table B.1 we can convert the name

value pairs in table 2.1. HPACK defines that the first bit of byte is reserved to mark

the end of index. Since the index fits in 7 bits, they are represented as bytes in the

request. In the following example, the client request would be 3 bytes in length as

shown below:

10000010 10000111 10000101

2.3 Features of HTTP/2

2.3.1 Multiplexing

HTTP/2 defines Stream for communication between a client and server for each

individual resource. The endpoints in this communication are allowed to asyn-

15

chronously request and respond for each Steam without stopping or blocking any

other Stream. For example, consider the scenario where a web page is made up of

1 image, 1 JavaScript, 1 CSS and 1 HTML file. The client would create 4 different

streams (assuming Server push is disabled) and the server is allowed to respond in

any sequence, making sure that frames of a particular stream are in sequence. This

would be beneficial, since the HTML page preparation might take some time while

the other resources are read from disk and transmitted to the client.

2.3.2 Resource Prioritization

HTTP/2 defines a way of prioritizing a particular resource over another, since the

web pages tend to contain lot of images and may take some time before the client

receives them. It is important to note that for loading of a web page, the browsers

(or rendering engines) require HTML, JavaScript and CSS before it need images.

2.3.3 Server Push

Accessing a web page over the Internet requires sending a request to remote

server and receiving the response. A web page generally contains lot of resources

like JavaScript, CSS and image files, most of which are generally static files.

In the traditional request response pattern, the client knows about the additional

required resources only after receiving the web page. Most of the web pages are

generated at run time, and the time elapsed between the server receiving the request

and preparing the response is the idle time. This is illustrated in figure 2.5a.

Since server serving the request is (or can be made) aware of the additional re-

sources that would be required by the client, it can push this information to client

during the idle time. This feature increases the performance of the protocol by uti-

lizing the time effectively. This is illustrated in figure 2.5b.

16

ServerBrowser

GET index.html

<html><head>…

Other required resources

Network
Idle

(a) Communication Without Server Push.

ServerBrowser

GET index.html

<html><head>…

Other required resources

Required resources like CSS

(b) Communication With Server Push.

Figure 2.5: Communication With And Without Server Push.

2.4 Whitebox Testing

White box testing is a software testing methodology that tests the internal struc-

ture of the software instead of the functionality like black box testing. White box

testing requires internal knowledge of the system along with programming skills to

develop the test cases. The test cases include multiple control flows of the software

during execution along with data flow. The design of the test cases is based on

following:

• Control Flow testing

• Data flow testing

• Branch testing

• Statement coverage

• Decision coverage

• Modified condition/decision coverage

• Prime path testing

• Path testing

17

2.5 Fuzz Testing

Fuzz testing (or simply Fuzzing), developed in 1989 [30], is an automated software

testing technique used to find vulnerabilities or bugs in software by sending massive

amount of random data or valid input data with random modifications as input.

Fuzz testing can be categorized in three different ways:

• Fuzzer can generate raw input for the program or it can randomly modify correct

data to generate fuzzed input.

• Fuzzer can have knowledge about the structure of input data or can randomly

generate the data.

• The fuzzed input data can be generated based on black box testing , grey box

testing or white box testing.

18

Chapter 3

RELATED WORK

The web application security research team at Imperva Defense Center pub-

lished a HTTP/2 analysis document outlining four different attack vectors for HTTP/2

implementations [6]:

• Slow Read attack sends correct application layer request but makes sure that

it reads the response from server very slowly, thereby trying to exhaust all

the server resources. By using the multiplexing feature of HTTP/2, client can

simultaneously make multiple requests to the server with prior knowledge that

most of the servers will allocate a different thread for each stream. This can be

utilized by the client to attack the server.

• HPACK (Compression) raises two main concerns. Firstly, there is a risk of

data leak when compression precedes encryption operation in an application.

Secondly, there is risk from specially crafted zipped message that can cause un-

expected behavior in the decoder, which was exploited in the zip bomb attacks.

• Dependency DoS The nghttp2 implementation of HTTP/2 suffers from possi-

blity of DoS attack or even remote code execution attack. This happens because

Nghttp2 restricts the dependency graph size to MAX_CONCURRENT_STREAMS

and upon new priority request it drops old streams. Due to improper memory

cleanup, the attack becomes a possibility.

• Stream abuse - HTTP/2 defines that one stream ID can be used only for a

particular request and response, and prevents further reuse of this ID. When

IIS receives two different requests on the same stream, it crashes [10].

19

The research done by web application security research team at the Imperva De-

fense Center has been very crucial to the evolution of HTTP/2 as a secure protocol.

But, there is definitely need for formulating a systematic approach to test all the bi-

nary network communication protocols.

Taintscope [35] is a checksum aware fuzz testing approach which tries to solve

a common drawback of fuzz testing in protocols containing checksum field. This is

a fully automated approach - detection of checksum field, fuzzing and repairing the

crash samples. Results from the various experiments are indicative of Taintscope’s

high accuracy in identifying and drastically improving the fuzz testing approach.

Taintscope is one of the most interesting research works which directed my attention

towards formulating a methodology for testing network communication protocol.

Taint-based Directed Whitebox Fuzzing [17] is an automated fuzzing tech-

nique (also tool). It uses dynamic taint tracing to locate previously fuzzed regions

that influenced values used in key program attack points. This is followed by gen-

eration of a new test input file using the previous test input file as base and fuzzed

region as seed for fuzzing.

TLS-Attacker [29] is an open source framework for evaluating TLS library by

allowing the users to create custom TLS message flows and randomly modifying the

contents of a message.

20

Chapter 4

APPROACH

4.1 Why Context Aware Fuzz Testing?

Fuzz testing is generally a black box testing methodology, but in our case of

Context Aware Fuzz Testing, it is used as a white box testing paradigm. The

reasons for selecting White box fuzzing can be attributed to its many advantages.

The application of black box fuzz testing approach on binary communication protocol

poses special kind of challenges like -

• Controlling the state of protocol during the fuzzing process. For example, dif-

ferent states of HTTP 2 protocol are - Idle, reserved (local), reserved (remote),

open, half closed (local), half closed (remote) and close.

Without controlling the state of protocol, the fuzzing process would generate

unbound fuzzed output, thereby making the process of fuzz testing difficult.

This will also lead to a reduction in test coverage.

• Controlling the fuzzing process itself to weed out unnecessary fuzzing of the

input data. For example, any modification to the payload would not be of any

use.

• Black box fuzz testing has very low code coverage and it is able to test only a

fraction of test scenarios.

• Black box testing suffers from repetitive testing of same thing multiple times.

• No advantage can be obtained from the fact that we are testing most of the

open source projects for which the code is readily available.

21

4.2 Open Source Implementation

Our objective is to analyze HTTP/2 protocol from server and client perspective,

using both encrypted and unencrypted channels. The table 4.1 lists open source

implementation of HTTP/2 protocol supporting both - server and client, over HTTP

and HTTPS [7].

Table 4.1: List of Open Source HTTP/2 Implementation.

Name Language

Deuterium C

http-2 Ruby

http2 Go

hyper Python

Jetty Java

Netty Java

nghttp2 C

Protocol::HTTP2 Perl

firefly Java

I have analyzed the following open source implementations of HTTP/2:

• NGINX implements the server component of HTTP/2 protocol over the en-

crypted channel only. The implementation is lucid and easy but there is no

support for client and communication over clear text TCP.

22

• nghttp2 is an implementation of HTTP/2 along with the header compression

algorithm. This is one of the most stable and matured libraries for HTTP/2

which is also consumed by Apache web server.

• hyper-h2 is pure-python based implementation of the HTTP/2 protocol.

4.3 Why Not Use Available Open Source Implementation?

Although there are numerous open source implementations available on the Inter-

net, none of them proved suitable due to the following reasons:

• Most of the libraries were not flexible enough i.e. the logic of the HTTP/2

communication was built into the library and not modifiable. This posed as

a challenge during protocol testing, where the sequence of bytes sent, did not

follow the guidelines of HTTP/2 protocol itself. For example, sending frames

with incompatible flags enabled is not possible.

• The frame formation happened within the library and most of the fields were

populated inside, which was difficult to handle for many of the test cases. For

example, one of my test case was sending multiple requests to the server in

decreasing order of the stream id.

• There was very little support provided by the libraries for creating a custom

payload along with the header field values. Due to this, most of the work was

required to be done even after using the library.

• For HTTPS, encryption and decryption was not supported by any library.

The above factors lead to our own implementation of HTTP/2 for both client and

server, using clear text TCP and TLS. The design for our implementation is very

modular, enabling creation of a HTTP/2 frame with any value.

23

HTTP/2

Communication

Context aware fuzzer

Fuzzer
Test case
Manager

Figure 4.1: Design of Our Implementation.

Figure 4.1 show the major components in our design where each module has

following functionality:

• HTTP/2 Communication module is responsible for creating packets as dic-

tated by the test case manager. It supports the following functionalities:

– Creating an empty frame.

– Clearing values of any given frame.

– Writing values in the frame. For example, writing stream id or frame type

in the frame.

– Handling header compression (when asked).

– Automatically translating the header frame received from the other end

point.

• Test case manager is responsible for maintaining the test cases that it has to

run and the list of test cases it has already completed. All the values are disk

persisted to avoid loss of data in case of failure. The test case manager is also

responsible for providing the required values to the fuzzer. The flags are tested

for all possible combinations and are not passed to the fuzzer.

24

• Fuzzer is responsible for fuzzing the HTTP/2 frame. Along with the frame, it

also takes the bytes that it has to fuzz. This provides a more granular control

to the Test case manager module.

• Network module is responsible for handling TLS negotiation for HTTP/2

and also for clear text TCP communication. During connection initiation, the

Test Case Manager tells the Network Module if it has to establish a secure

or an open connection.

4.4 Context Aware Fuzzing

Generally, all network communication protocols have same structure i.e. every

packet is made up of header fields and payload. Hence, in order to test a protocol

comprehensively, we should test them in isolation as well as with combination of

packets which are used to provide a feature. For example, in TCP we have SYN, SYN-

ACK and ACK packets to establish the connection, followed by the communication,

and finally the FIN packet. Testing the protocol with each packet in isolation enables

us to understand the behavior of system when it receives unexpected values. Fuzzing

binary protocols may lead to unrestricted number of inputs being generated, making

it unfeasible to use. In order to make this work, knowledge of protocol is required

which helps in limiting the number of cases.

While testing communication protocols, it is essential to maintain states. Gener-

ally, communication protocols can be broken down into the following steps:

• Establishing Connection: This is the step where client and server exchange set

of byte sequence to establish the connection. These set of bytes may or may not

be first set of bytes in the entire communication. For example, in case of TCP

these are actually the first set of bytes while in all the protocols that are based

25

on TCP like HTTP, these are not the first set of bytes. Most communication

protocols utilize a simpler way of establishing the connection.However, new

protocols like HTTP/2 have slightly complex way of doing that. In HTTP/2,

client sends Magic sequence of bytes to server which informs the server that

client is going to communicate in HTTP/2. To establish the connection, client

sends another sequence of bytes (the header frame) to start communication over

a stream. Here, unlike the traditional way of communication, server can also

start a new communication stream.

This step of the communication protocol is extremely important from testing

and vulnerability perspective - like the SYN-FIN attack in TCP, which does not

have any logical sense in our regular use but should be handled properly. There

are multiple such combinations that we have already seen in TCP protocol.

Figure 4.2: TCP Bytes Exchanges For Establishing Connection.

• Communication over the protocol: This is the part of the protocol where client

and server exchange the data and is a rather mundane aspect from vulnerability

and testing point of view.

While testing this part of the protocol we need to ensure that during fuzzing of

26

Figure 4.3: HTTP/2 Bytes Exchanges For Establishing Connection.

the input, no fields in the header frame are changed that could lead to changes

in the state of the connection like closing or resetting it. Another important

thing is to avoid fuzzing the payload part of the data as it does not concern the

communication protocol itself.

• Connection closing from one end: This part of the protocol, generally called

half open, is where the closing end only accepts the data. This step has some

interesting aspects from vulnerability point of view - like if the closing end sends

the data, would the other end still finish the remaining data or just abandon the

connection. The fuzzing process should run uncontrolled for this step, since the

connection has been closed only from our end and all the test cases generated

by the fuzzing process are acceptable.

• Closing the connection from other end: This part of the protocol is generally

called "half closed - remote". The chances of finding a security vulnerability

here is slim because the other end would be releasing all the resources held for

27

this connection.

The fuzzing process can practically do anything because there is no next stage.

 Other End-point

Network Log

HTTP/2

Communication

Context aware fuzzer

Evaluation

Fuzzer
Test case
Manager

12

3

4

5 6

Figure 4.4: Architecture Of Our Testing Framework.

The figure 4.4 shows the architecture of our testing process. Most of the modules

have been explained in section 4.3 and the explanation for the rest are as follows:

• Evaluation is the module that has pre-populated request-response pairs which

are utilized to compare the response from the other endpoint. This enables

automatic detection of success or failure of each test case.

• Log is module that keeps everything persisted, for restarting the testing process

from the last position.

28

The figure 4.4 also shows the interaction between different components:

1. Generate a sequence of HTTP/2 frame (a full request/response).

2. Give a copy of the sequence of received HTTP/2 frame from step 1 to fuzzer

along with sequence of bytes to fuzz.

3. Give the fuzzed input to the network module to transmit to other end-point.

4. Transmit the frame and collect the response (if any).

5. Give the received output to the Evaluation engine.

6. Log the response and state of the test case in files.

4.5 Challenges

One of the biggest challenge while working with the fuzzer based testing approach

is finding out when the fuzzer is stalling and when it is running as expected. A lot

of trial and error is involved in order to solve this issue. For example, when fuzzing a

sequence of bytes representing a number, it requires heuristic and few optimizations

- like not fuzzing higher order bytes in order to continuously generate large or small

numbers.

4.6 Test Environment

The applicability of our test environment is suitable for testing any network based

communication protocol like Transmission Control Protocol (TCP).

The Figure 4.5 shows the modification of our approach for the Transmission Con-

trol Protocol. Changes needed for testing TCP are:

29

 Other End-point

Network Log

TCP

Communication

Context aware fuzzer

Evaluation

Fuzzer
Test case
Manager

12

3

4

5 6

Figure 4.5: Architecture Of Testing Framework For TCP.

• Instead of generating sequence of HTTP/2 frame, there would be a module that

generates a sequence of TCP packets.

• The context awareness part of the Test case manager would require modification

since it has to understand what fields to fuzz in order to generate a sequence of

test cases.

30

4.7 Test Cases.

Basic Connect - Disconnect test cases:

• Connection Creation

• Stream Creation

• Communication Over Stream

• Stream Closing

• Connection Closing

Feature wise testing of HTTP/2 protocol:

• Odd-even Stream Id Test

• Exceeding Agreed Concurrent Streams

• Prioritize completed streams

• Prioritize unused stream ids

• Prioritize current streams over unused stream

• Circular Dependency

• Extreme values of dependency

Fuzz testing for different parts of the frames: Frame wise testing of the HTTP/2

protocol

31

Table 4.2: Frame-wise Testing Of The HTTP/2 Protocol (Part 1).

Data Header Priority Reset Stream Setting

Flag Done Done Done The stream is Done

Length Done Done Done closed hence not Done

Stream Id Done Done Done much can be Done

Payload Its Data Done Done achieved. Done

Table 4.3: Frame-wise Testing Of The HTTP/2 Protocol (Part 2).

Push

Promise

Ping Goaway Window

Update

Continuation

Flag Done Done The Connect- Done Done

Length Done Done ion is closed Done Done

Stream Id Done Done by the other Done Done

Payload Done Done end hence

no apparent

change.

Done Done

32

Chapter 5

IMPLEMENTATION

One of the reasons for popularity of C programming language is that it allows

programmers to implement functionalities at machine-level, without resorting to as-

sembly code (or even machine language), in order to achieve the targeted goal. For

example, bit level manipulation are very easy in C. These reasons make C an ideal

language for development of any binary network communication protocol.

Moreover, most of the encryption libraries (like OpenSSL) are written in C and

numerous languages provide a wrapper over these libraries. This poses a significant

challenge, specially when using a feature that has been recently introduced in the

base library. For example, HTTP/2 uses Application Layer Protocol Negotiation

(ALPN) for negotiating HTTP/2 as the application layer protocol. But since ALPN

was recently introduced (at the time of starting this project), it did not have properly

documented wrappers.

Following Libraries are used for this project:

• libcrypto - provides all the required cryptographic functionalities.

• libssl - provides support for various protocols in TLS.

5.1 Modules

The major modules in my implementation are:

• IO Layer - This layer is responsible for reading and writing of data to and from

the socket. It is also responsible for TLS handshake and encryption/decryption.

APIs’ exposed by this module are:

33

– init_HTTP2_client_overTLS - returns a communication context. It takes

care of ALPN negotiation and makes sure that HTTP/2 is the application

layer protocol.

– init_HTTP2_client_over_clear_text - returns same communication con-

text as init_HTTP2_client_overTLS.

– read / write - returns the read / write data based on the input communi-

cation context (takes care of decryption, if required).

• Frame - This module is responsible for handling the bit level frame nuances

and read the buffered frame. APIs’ exposed by this module are:

– get_empty_frame - returns an empty frame.

– Setter and getters for all the frame header field.

– get_next_frame - returns the next received frame from the other end

point, based on the input communication context.

• Fuzzer - This module takes the frame and an array of bytes that are to be

fuzzed as input. After fuzzing it writes the frame to the other endpoint using

IO Layer.

• Test case Manager - This module is responsible for generating the frame

sequence using the HTTP/2 Communication module. This sequence is a

complete and valid request/response. It passes a copy of this sequence along

with bytes that have to be fuzz tested.

• HTTP/2 Communication module is responsible for creating packets as dic-

tated by the test case manager. It supports the following functionalities:

– Creating an empty frame.

34

– Clearing values of any given frame.

– Writing values in the frame. For example, writing stream id or frame type

in the frame.

– Handling header compression (when asked).

– Automatically translating the header frame received from the other end

point.

35

Chapter 6

EXPERIMENTAL RESULTS

6.1 Experiment Environment

For the purpose of deriving results that corresponds to real world scenarios, we

setup a wide range of systems resembling such scenarios. Table 6.1 lists the configu-

ration of all the systems used in test environment.

The first server in table 6.1 represents a real world high end server while the others

Table 6.1: System Configuration For Test Environment.

Physical Processor RAM (in GB) Swap (in GB) Disk (in GB)

24 128 128 2048

2 16 5 1048

2 4 5 1048

4 16 10 256

represent various types of commodity hardware. This spectrum enabled us to broaden

and explore a wide range of testing scenarios.

6.2 Problems With The specification

In most cases the specifications covers all the important aspects of the protocol but

generally miss out on the corner cases. Each vendor defines his/her own interpretation

on how to handle such corner cases that eventually makes the system susceptible to

36

fingerprinting attacks. Although many security researchers have stated that operating

system fingerprinting is not the key to a successful attack, but they also acknowledge

that it is definitely a starting point [22] [28]. For example, let us look at the TCP/IP

protocol:

Table 6.2: Passive OS Identification Using Only The Initial Values in TCP/IP [18].

Operating System TTL (IP

Datagram)

Window Size

(TCP Packet)

Linux (kernel 2.4 and 2.6) 64 5840

Google’s customized Linux 64 5720

FreeBSD 64 65535

Windows XP 128 65535

Windows 7, Vista and Server 2008 128 8192

Cisco Router (IOS 12.4) 255 4128

In HTTP/2, the specification defines a mechanism to send large sized HTTP

header. As per this, the HTTP header is broken down to a size that fits into the first

header frame (min size = 214 (default) to 224 − 1). Rest of the header is broken and

sent using the continuation frames. HTTP/2 specification states that all these frame

should be contiguous and not be interleaved with frames of other stream. Thse same

is depicted in figure 6.1.

However, this HTTP/2 specification does not specify the number of continuation

frames that the other endpoint receives before declining the request.

37

Continuation

Frame N

Continuation

Frame 2

Continuation

Frame 1

HEADER

Frame

Figure 6.1: Sending Big HTTP Header Over A Stream In HTTP/2.

6.3 Finger Printing Of Web Server.

6.3.1 Difference in Half-Closed Stream Behavior.

Definition of half-closed (local/remote) as per specification.

ha l f−c l o s ed (l o c a l) :

A stream that i s in the " ha l f−c l o s ed (l o c a l) " s t a t e cannot be used

f o r sending frames other than WINDOW_UPDATE, PRIORITY, and

RST_STREAM.

A stream t r a n s i t i o n s from th i s s t a t e to " c l o s ed " when a frame that

conta in s an END_STREAM f l a g i s r e c e i v ed or when e i t h e r peer sends

a RST_STREAM frame .

An endpoint can r e c e i v e any type o f frame in t h i s s t a t e .

Provid ing flow−c on t r o l c r e d i t us ing WINDOW_UPDATE frames i s

nece s sa ry to cont inue r e c e i v i n g flow−c on t r o l l e d frames . In t h i s

s ta te , a r e c e i v e r can ignore WINDOW_UPDATE frames , which might

a r r i v e f o r a shor t per iod a f t e r a frame bear ing the END_STREAM

f l a g i s sent .

PRIORITY frames r e c e i v ed in t h i s s t a t e are used to r e p r i o r i t i z e

streams that depend on the i d e n t i f i e d stream .

ha l f−c l o s ed (remote) :

38

A stream that i s " ha l f−c l o s ed (remote) " i s no l onge r be ing used by

the peer to send frames . In t h i s s ta te , an endpoint i s no l onge r

ob l i g a t ed to maintain a r e c e i v e r f low−c on t r o l window .

I f an endpoint r e c e i v e s add i t i ona l frames , other than

WINDOW_UPDATE, PRIORITY, or RST_STREAM, f o r a stream that i s in

t h i s s ta te , i t MUST respond with a stream e r r o r o f

type STREAM_CLOSED.

A stream that i s " ha l f−c l o s ed (remote) " can be used by the

endpoint to send frames o f any type . In t h i s s ta te , the endpoint

cont inues to observe adve r t i s ed stream−l e v e l f low−c on t r o l l im i t s .

A stream can t r a n s i t i o n from th i s s t a t e to " c l o s ed " by sending a

frame that conta in s an END_STREAM f l a g or when e i t h e r peer sends a

RST_STREAM frame .

The end point which is half-closed(local) is not expected to transmit any frame

to the other end point. But in case if the end point transmits frame the behavior of

other end point is to close the stream with an error. Apache Web Server (versions

2.4.17 and above) does not close the steam and it chooses to ignore the received

frames whereas the NGINX Web Server follows the specification and terminates the

connection.

Using this difference in behavior of the both web servers we can utilize this to

distinguish among them.

6.3.2 Frame Size in Apache Web Server.

The HTTP/2 specification states that every end-point should support minimum

frame length of 214. NGINX Web Server supports the entire frame length range

39

i.e.from 214 to 224 where as the Apache Web Server supports only the bare minimum

frame length 214.

This difference in frame length can be utilized in order to distinguish between

Apache Web Server and NGINX Web Server.

6.3.3 Difference in Encoding String Using HPACK.

Header Compression.

The format de f ined in t h i s s p e c i f i c a t i o n t r e a t s a l i s t o f header

f i e l d s as an ordered c o l l e c t i o n o f name−value pa i r s that can inc lude

dup l i c a t e pa i r s . Names and va lues are cons ide r ed to be opaque

sequences o f oc t e t s , and the order o f header f i e l d s i s pre se rved

a f t e r being compressed and decompressed .

Encoding i s informed by header f i e l d t ab l e s that map header f i e l d s to

indexed va lue s . These header f i e l d t ab l e s can be inc r ementa l l y

updated as new header f i e l d s are encoded or decoded .

In the encoded form , a header f i e l d i s r ep re s en ted e i t h e r l i t e r a l l y

or as a r e f e r e n c e to a header f i e l d in one o f the header f i e l d

t ab l e s . Therefore , a l i s t o f header f i e l d s can be encoded us ing a

mixture o f r e f e r e n c e s and l i t e r a l va lue s .

L i t e r a l va lue s are e i t h e r encoded d i r e c t l y or use a s t a t i c Huffman

code .

The encoder i s r e s p on s i b l e f o r dec id ing which header f i e l d s to i n s e r t

as new e n t r i e s in the header f i e l d t ab l e s . The decoder execute s the

mod i f i c a t i on s to the header f i e l d t ab l e s p r e s c r i b ed by the encoder ,

r e c on s t r u c t i n g the l i s t o f header f i e l d s in the proce s s . This

enab l e s decoders to remain s imple and i n t e r op e r a t e with a wide

40

va r i e t y o f encoders .

Use of Huffman encoding is optional and both the web servers choose different

length after which they encode the string using Huffman encoding.

6.4 Security Vulnerability: DoS

While testing this protocol using our approach, we discovered a serious security

vulnerability in Apache HTTPD web server configured to use HTTP/2.

In HTTP/2 the client initiates a new stream by sending a header frame to server that

contains the following -

• Unique unused odd number which acts as a stream id.

• Length of the entire frame.

• Appropriate flags

• List of HTTP request header like action (GET, PUT, POST, etc..), requested

resource, user agent and other information.

As mentioned in the previous section, if the client cannot fit all the header content in

one frame, the information is split into multiple frames where the last frame carries

a flag indicating the end of header information. During the tests, we realized that

the rate of packet transfer declined rapidly from client to server if the fuzzing process

did not send the flag marking the end of HTTP header request. Upon further inves-

tigations, we discovered that the Apache web server did not enforce any restriction

on the amount of memory that server can allocate for a particular client even after

configuring the server with low values for ’LimitRequestFields ’. The figure 6.2 shows

the amount of data received by the Apache web server and the memory it allocate

for the client.

41

The server process gets killed by ’Linux out-of-memory killer’. The main point

here is the amount of data that the client has to send in order to kill a server machine.

Secur i ty Advisory − Apache Software Foundation

Apache HTTPD WebServer / httpd . apache . org

Server memory can be exhausted and s e r v i c e denied when HTTP/2 i s used

CVE−2016−8740

The Apache HTTPD web s e rv e r (from 2 .4 . 17 −2 .4 . 23) did not apply

l im i t a t i o n s on reques t headers c o r r e c t l y when exper imenta l module

f o r the HTTP/2 pro to co l i s used to a c c e s s a r e sou r c e .

The net r e s u l t i s that a the s e r v e r a l l o c a t e s too much memory in s t ead o f

denying the reque s t . This can lead to memory exhaust ion o f the

s e r v e r by a proper ly c r a f t e d reque s t .

Background :

−−−−−−−−−−−−

Apache has l im i t s on the number and length o f r eques t header f i e l d s .

which l im i t s the amount o f memory a c l i e n t can a l l o c a t e on the

s e r v e r f o r a r eques t .

Vers ion 2 . 4 . 1 7 o f the Apache HTTP Server introduced an exper imenta l

f e a t u r e : mod_http2 f o r the HTTP/2 pro to co l (RFC7540 , prev ious

v e r s i on s were known as Google SPDY) .

This module i s NOT compiled in by de f au l t −and− i s not enabled by

de fau l t , a lthough some d i s t r i b u t i o n may have chosen to do so .

I t i s g en e r a l l y needs to be enabled in the ' Protoco l s ' l i n e in httpd by

adding 'h2 ' and/or ' h2c ' to the ' http /1 . 1 ' only d e f au l t .

42

The de f au l t d i s t r i b u t i o n s o f the Apache Software Foundation do not

in c lude t h i s exper imenta l f e a t u r e .

De t a i l s :

−−−−−−−−−

− From ve r s i on 2 . 4 . 1 7 , upto and in c l ud ing ve r s i on 2 . 4 . 2 3 the s e r v e r

f a i l e d to take the l im i t a t i o n s on reques t memory use in to account

when prov id ing ac c e s s to a r e sou r c e over HTTP/2 . This i s s u e has been

f i x ed in ve r s i on 2 . 4 . 2 3 (r1772576) .

As a r e s u l t − with a reques t us ing the HTTP/2 pro to co l a s p e c i a l l y

c r a f t e d reque s t can a l l o c a t e memory on the s e r v e r u n t i l i t r eaches

i t s l im i t . This can lead to den i a l o f s e r v i c e f o r a l l r e que s t s

aga in s t the s e r v e r .

Impact :

−−−−−−−−

This can lead to den i a l o f s e r v i c e f o r a l l s e r v e r r e s ou r c e s .

Vers ions a f f e c t e d :

−−−−−−−−−−−−−−−−−−−

Al l v e r s i on s from 2 . 4 . 1 7 to 2 . 4 . 2 3 .

Reso lut ion :

−−−−−−−−−−−−

For a 2 . 4 . 2 3 ve r s i on a patch i s supp l i ed . This w i l l be inc luded in the

next r e l e a s e .

Mi t i ga t i on s and work arounds :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43

As a temporary workaround − HTTP/2 can be d i s ab l ed by changing the

c on f i gu r a t i on by removing h2 and h2c from the Protoco l s l i n e (s) in

the c on f i gu r a t i on f i l e .

The r e s u l t i n g l i n e should read :

Pro toco l s http /1 .1

Cred i t s and t ime l i n e

−−−−−−−−−−−−−−−−−−−−−

The f law was found and reported by Naveen Tiwari <naveen . t iwar i@asu . edu>

and CDF/SEFCOM at Arizona State Un ive r s i ty on 2016−11−22. The i s s u e

was r e s o l v ed by Ste fan E i s s i ng and inco rpora ted in the Apache

r epo s i t o ry , ready f o r i n c l u s i o n in the next r e l e a s e .

Apache would l i k e to thank a l l invo lved f o r t h e i r he lp with t h i s .

I further explored the possibility of bug or finger-printable attack for the same in

NGINX and Apache web server and the results were shocking.

Figure 6.2 is a dual Y-axis graph which shows the memory consumption of the

system versus time of the left Y-Axis and data received by the victim server versus

time. The interesting thing in this graph is the scale on the two Y-Axis, memory

consumption is measured in GIGABYTES while the data received is measured in

MEGABYTES. The system configuration for this test was:

• Server i7 with 16 GB RAM

• Client Dual core Intel processor with 4GB RAM

Figure 6.3 shows the state of the system on right console, and the attack being

carried out on the left console. This test was done on a server grade machine to

44

Figure 6.2: Memory Consumption of Victim vs Time

& Data Received by Victim vs Time.

prove that even the big servers can crash with same client machines. The system

configuration for the test was:

• Server Xeon dual processor each with 12 physical cores and 128 GB of RAM

and 128 GB of swap.

• Client Dual core Intel processor with 4GB RAM

6.5 Server Push

The server push feature explained in the HTTP/2 specification lacks any practical

use without extension of the specifications. The specifications talk about the packets

exchange between client and server, and how the client can accept or deny one or all of

the server push requests. The problem to be noted here is that the servers do not have

45

Figure 6.3: System Statistics While Being Attacked.

the ability to guess the resources required by the client only on the basis of information

from the requested web page. Without knowledge of the required resources, the server

cannot push to client. One company - CloudFlare, has attempted to extend the server

push capability by utilizing the ’link’ tag in HTTP request. Now, when the server

tries to respond to a client request where the response is configured to include the

’link’ tag, it first pushes the associated resources and then sends the header.

As far as the security of this feature goes, there can be only 2 possible vulnerable

scenarios :

• Compromised server - Client is doomed anyways when it access the server, the

entire safety of client comes from the browser security feature including the

same-origin-policy.

46

• Legit Server - The basic idea behind the server push is to utilize the following

times:

1. Time required by the server to prepare the web page, server can start

pushing the static resources like stylesheet, javascript, and may be images.

2. The time taken by the client to parse the web page.

In both of the above cases the client has no idea about the resources required by

the web page and hence can only cache the server push response and use them only

if required by the requested page.

47

Chapter 7

CONCLUSION

With each passing day, the number of security attacks and threats to any system

connected to the Internet is rapidly accelerating. These threats exploit minute vul-

nerabilities at each network and software layer, making it of paramount importance

that we identify and prevent these vulnerabilities. Due to tremendous surge in ac-

ceptance rate of HTTP/2 protocol , it is a need of the hour to evaluate this protocol

for any such security susceptibilities.

Being a relatively new protocol, in comparison to its predecessor - HTTP 1.1,

containing many new functionalities, an exhaustive and effective testing methodology

needed to be developed. Context aware fuzzing for binary network commu-

nication protocol, as outlined and explained in this thesis, has proven to achieve

significant results in covering major aspects of security testing for HTTP/2 protocol.

Moreover, this approach has been generalized and can be modified to test any binary

network communication layer protocol, and not just HTTP/2.

Security vulnerability identified in the Apache Web Server, as outlined in section

6.4, has been very notable in preventing major DOS attack on systems using these

servers.

48

REFERENCES

[1] “Deprecate and remove npn.”, URL https://bugs.chromium.org/p/chromium/
issues/detail?id=526713 (2017).

[2] “Desktop browser market share.”, URL https://www.netmarketshare.com/
browser-market-share.aspx?qprid=0&qpcustomd=0 (2017).

[3] “Do not negotiate http/2 using npn when using a blacklisted ciphersuite.”, URL
https://bugs.chromium.org/p/chromium/issues/detail?id=484709 (2017).

[4] “February 2017 web server survey.”, URL https://news.netcraft.com/
archives/2017/02/27/february-2017-web-server-survey.html (2017).

[5] “Global application trends.”, URL http://www.menog.org/presentations/
menog-6-7-8-9/MENOG-Trends%20in%20Internet%20Traffic%20Patterns_
0.pdf (2017).

[6] “Http/2: In-depth analysis of the top four flaws of the next generation web proto-
col.”, URL https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf (2017).

[7] “Implementations”, URL https://github.com/http2/http2-spec/wiki/
Implementations (2017).

[8] “Internet traffic trends.”, (2017), URL https://www.nanog.org/meetings/
nanog43/presentations/Labovitz_internetstats_N43.pdf.

[9] “Lists of network protocols.”, URL https://en.wikipedia.org/wiki/Lists_
of_network_protocols (2017).

[10] “Microsoft security bulletin ms16-049.”, URL https://technet.microsoft.
com/en-us/library/security/ms16-049.aspx (2017).

[11] “Relation between http/2 and spdy.”, URL https://http2.github.io/faq/
#whats-the-relationship-with-spdy (2017).

[12] Belshe, M., R. Peon and M. Thomson, “Hypertext Transfer Protocol Version 2
(HTTP/2)”, The effects of brief mindfulness intervention on acute pain experi-
ence: An examination of individual difference 1, 1–96 (2015).

[13] BrowserScope, “How does your browser compare”, URL http://www.
browserscope.org/?category=network&v=top (2017).

[14] Cadar, C., D. Dunbar and D. R. Engler, “KLEE: Unassisted and Automatic Gen-
eration of High-Coverage Tests for Complex Systems Programs”, Proceedings of
the 8th USENIX conference on Operating systems design and implementation pp.
209–224, URL http://portal.acm.org/citation.cfm?id=1855756 (2008).

[15] de Saxcé, H., I. Oprescu and Y. Chen, “Is http/2 really faster than http/1.1?”,
in “Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE
Conference on”, pp. 293–299 (IEEE, 2015).

49

https://bugs.chromium.org/p/chromium/issues/detail?id=526713
https://bugs.chromium.org/p/chromium/issues/detail?id=526713
https://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=0
https://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=0
https://bugs.chromium.org/p/chromium/issues/detail?id=484709
https://news.netcraft.com/archives/2017/02/27/february-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/02/27/february-2017-web-server-survey.html
http://www.menog.org/presentations/menog-6-7-8-9/MENOG-Trends%20in%20Internet%20Traffic%20Patterns_0.pdf
http://www.menog.org/presentations/menog-6-7-8-9/MENOG-Trends%20in%20Internet%20Traffic%20Patterns_0.pdf
http://www.menog.org/presentations/menog-6-7-8-9/MENOG-Trends%20in%20Internet%20Traffic%20Patterns_0.pdf
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Implementations
https://www.nanog.org/meetings/nanog43/presentations/Labovitz_internetstats_N43.pdf
https://www.nanog.org/meetings/nanog43/presentations/Labovitz_internetstats_N43.pdf
https://en.wikipedia.org/wiki/Lists_of_network_protocols
https://en.wikipedia.org/wiki/Lists_of_network_protocols
https://technet.microsoft.com/en-us/library/security/ms16-049.aspx
https://technet.microsoft.com/en-us/library/security/ms16-049.aspx
https://http2.github.io/faq/#whats-the-relationship-with-spdy
https://http2.github.io/faq/#whats-the-relationship-with-spdy
http://www.browserscope.org/?category=network&v=top
http://www.browserscope.org/?category=network&v=top
http://portal.acm.org/citation.cfm?id=1855756

[16] Friedl, S., A. Popov, A. Langley and E. Stephan, “Transport layer security (tls)
application-layer protocol negotiation extension”, URL https://tools.ietf.
org/rfc/rfc7301.txt (2017).

[17] Ganesh, V., T. Leek and M. Rinard, “Taint-based directed whitebox fuzzing”, in
“Proceedings of the 31st International Conference on Software Engineering”, pp.
474–484 (IEEE Computer Society, 2009).

[18] Hjelmvik, E., “Passive os fingerprinting.”, URL http://www.netresec.com/
?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting (2017).

[19] InternetWorldStats, “Internet growth statistics”, URL http://www.
internetworldstats.com/emarketing.htm (2017).

[20] JACKSON, B., “Http/2 statistics keycdn report on http/2 distribution.”, URL
https://www.keycdn.com/blog/http2-statistics (2017).

[21] Kerner, S. M., “The month of the browser bugs begins.”, URL http://www.
internetnews.com/security/article.php/3618126 (2017).

[22] Lee, R. E., “Block os detection.”, URL http://seclists.org/pen-test/2007/
Sep/30 (2017).

[23] Mogull, R., “the month of kernel bugs (mokb) archive.”, URL https://jon.
oberheide.org/mokb/ (2017).

[24] Odlyzko, A. M., “Internet traffic growth: Sources and implications”, in “Proceed-
ings of SPIE”, vol. 5247, pp. 1–15 (2003).

[25] Peon, R. and H. Ruellan, “RFC 7541 HPACK: Header Compression for
HTTP/2”, The effects of brief mindfulness intervention on acute pain experi-
ence: An examination of individual difference 1, 1–55, URL https://tools.
ietf.org/html/rfc7541 (2015).

[26] Peon, R. and H. Ruellan, “Huffman code”, URL https://tools.ietf.org/
html/rfc7541#appendix-B (2017).

[27] REUTERS, “Chinese see almost 1,000 percent increase in cy-
ber attacks.”, URL http://www.nbcnews.com/tech/tech-news/
chinese-see-almost-1-000-percent-increase-cyber-attacks-n689466
(2017).

[28] Smart, M., G. R. Malan and F. Jahanian, “Defeating tcp/ip stack fingerprinting.”,
(2000).

[29] Somorovsky, J., “Systematic fuzzing and testing of tls libraries”, in “Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security”, pp. 1492–1504 (ACM, 2016).

[30] Takanen, A., J. Demott, C. Miller and I. Books24x7, “Fuzzing for software secu-
rity testing and quality assurance”, (2008).

50

https://tools.ietf.org/rfc/rfc7301.txt
https://tools.ietf.org/rfc/rfc7301.txt
http://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
http://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
http://www.internetworldstats.com/emarketing.htm
http://www.internetworldstats.com/emarketing.htm
https://www.keycdn.com/blog/http2-statistics
http://www.internetnews.com/security/article.php/3618126
http://www.internetnews.com/security/article.php/3618126
http://seclists.org/pen-test/2007/Sep/30
http://seclists.org/pen-test/2007/Sep/30
https://jon.oberheide.org/mokb/
https://jon.oberheide.org/mokb/
https://tools.ietf.org/html/rfc7541
https://tools.ietf.org/html/rfc7541
https://tools.ietf.org/html/rfc7541#appendix-B
https://tools.ietf.org/html/rfc7541#appendix-B
http://www.nbcnews.com/tech/tech-news/chinese-see-almost-1-000-percent-increase-cyber-attacks-n689466
http://www.nbcnews.com/tech/tech-news/chinese-see-almost-1-000-percent-increase-cyber-attacks-n689466

[31] TimBL, “The original http as defined in 1991.”, URL https://www.w3.org/
Protocols/HTTP/AsImplemented.html (2017).

[32] Tiwari, N., “Apache httpd web server 2.4.23 memory exhaustion.”, URL https:
//packetstormsecurity.com/files/140023/Apache-HTTPD-Web-Server-2.
4.23-Memory-Exhaustion.html (2017).

[33] Tiwari, N., “Common vulnerabilities and exposures.”, URL http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-8740 (2017).

[34] w3techs, “Historical trends in the usage of site elements, December
2016”, URL https://w3techs.com/technologies/history_overview/site_
element/all (2017).

[35] Wang, T., T. Wei, G. Gu and W. Zou, “TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection”, in “Proceedings -
IEEE Symposium on Security and Privacy”, pp. 497–512 (2010).

51

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://packetstormsecurity.com/files/140023/Apache-HTTPD-Web-Server-2.4.23-Memory-Exhaustion.html
https://packetstormsecurity.com/files/140023/Apache-HTTPD-Web-Server-2.4.23-Memory-Exhaustion.html
https://packetstormsecurity.com/files/140023/Apache-HTTPD-Web-Server-2.4.23-Memory-Exhaustion.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8740
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8740
https://w3techs.com/technologies/history_overview/site_element/all
https://w3techs.com/technologies/history_overview/site_element/all

APPENDIX A

PYTHON EXPLOIT CODE

52

#!/ usr /bin /python

"""
The mod_http2 module in the Apache HTTP Server 2 . 4 . 1 7 through 2 . 4 . 2 3 ,

when the Pro toco l s c on f i gu r a t i on i n c l ud e s h2 or h2c , does not
r e s t r i c t request−header length , which a l l ows remote a t t a ck e r s to
cause a den i a l o f s e r v i c e (memory consumption) v ia c r a f t e d
CONTINUATION frames in an HTTP/2 reques t . (https : // a c c e s s . redhat . com/
s e c u r i t y / cve/cve−2016−8740)

Usage : e xp l o i t . py [HOST] [PORT]
"""

import sys
import s t r u c t
import socke t

HOST = sys . argv [1]
PORT = in t (sys . argv [2])

s = socket . socke t (socke t .AF_INET, socket .SOCK_STREAM)
s . connect ((HOST, PORT))

https : // http2 . g ithub . i o /http2−spec/#ConnectionHeader
s . s e nda l l ('PRI ∗ HTTP/2.0\ r \n\ r \nSM\ r \n\ r \n ')

https : // http2 . g ithub . i o /http2−spec/#SETTINGS
SETTINGS = s t r u c t . pack (' 3B ' , 0x00 , 0x00 , 0x00) # Length
SETTINGS += s t ru c t . pack ('B ' , 0x04) # Type
SETTINGS += s t ru c t . pack ('B ' , 0x00)
SETTINGS += s t ru c t . pack ('>I ' , 0x00000000)

s . s e nda l l (SETTINGS)

https : // http2 . g ithub . i o /http2−spec/#HEADERS
HEADER_BLOCK_FRAME = ' \x82\x84\x86\x41\x86\xa0\xe4\x1d\x13\x9d\x09\x7a\

x88\x25\xb6\x50\xc3\xab\xb6\x15\xc1\x53\x03\x2a\ x2f \x2a\x40\x83\x18\
xc6\ x3f \x04\x76\x76\x76\x76 '

HEADERS = s t r u c t . pack ('>I ' , l en (HEADER_BLOCK_FRAME)) [1 :] # Length
HEADERS += s t ru c t . pack ('B ' , 0x01) # Type
HEADERS += s t ru c t . pack ('B ' , 0x00) # Flags
HEADERS += s t ru c t . pack ('>I ' , 0 x00000001) # Stream ID

s . s e nda l l (HEADERS + HEADER_BLOCK_FRAME)

Sending CONTINUATION frames f o r l e ak ing memory
https : // http2 . g ithub . i o /http2−spec/#CONTINUATION
whi le True :

HEADER_BLOCK_FRAME = ' \x40\x83\x18\xc6\ x3f \x04\x76\x76\x76\x76 '
HEADERS = s t r u c t . pack ('>I ' , l en (HEADER_BLOCK_FRAME)) [1 :] # Length
HEADERS += s t ru c t . pack ('B ' , 0x09) # Type
HEADERS += s t ru c t . pack ('B ' , 0x01) # Flags
HEADERS += s t ru c t . pack ('>I ' , 0x00000001) # Stream ID
s . s e nda l l (HEADERS + HEADER_BLOCK_FRAME)

53

APPENDIX B

STATIC TABLE ENTRIES IN HPACK

54

Table B.1: Static Table Entries.

Index Header Name Header Value
1 :authority
2 :method GET
3 :method POST
4 :path /
5 :path /index.html
6 :scheme http
7 :scheme https
8 :status 200
9 :status 204
10 :status 206
11 :status 304
12 :status 400
13 :status 404
14 :status 500
15 accept-charset
16 accept-encoding gzip, deflate
17 accept-language
18 accept-ranges
19 accept
20 access-control-allow-origin
21 age
22 allow
23 authorization
24 cache-control
25 content-disposition
26 content-encoding
27 content-language
28 content-length
29 content-location
30 content-range
31 content-type
32 cookie
33 date
34 etag
35 expect
36 expires
37 from
38 host
39 if-match
40 if-modified-since
41 if-none-match
42 if-range
43 if-unmodified-since
44 last-modified

55

Index Header Name Header Value
45 link
46 location
47 max-forwards
48 proxy-authenticate
49 proxy-authorization
50 range
51 referer
52 refresh
53 retry-after
54 server
55 set-cookie
56 strict-transport-security
57 transfer-encoding
58 user-agent
59 vary
60 via
61 www-authenticate

56

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Why Do We Need HTTP/2
	2.2 Brief Introduction to HTTP/2
	2.2.1 Types of Frames
	2.2.2 Communication Using HTTP/2 Protocol
	2.2.3 HPACK: Header Compression For HTTP/2

	2.3 Features of HTTP/2
	2.3.1 Multiplexing
	2.3.2 Resource Prioritization
	2.3.3 Server Push

	2.4 Whitebox Testing
	2.5 Fuzz Testing

	3 Related Work
	4 Approach
	4.1 Why Context Aware Fuzz Testing?
	4.2 Open Source Implementation
	4.3 Why Not Use Available Open Source Implementation?
	4.4 Context Aware Fuzzing
	4.5 Challenges
	4.6 Test Environment
	4.7 Test Cases.

	5 Implementation
	5.1 Modules

	6 Experimental Results
	6.1 Experiment Environment
	6.2 Problems With The specification
	6.3 Finger Printing Of Web Server.
	6.3.1 Difference in Half-Closed Stream Behavior.
	6.3.2 Frame Size in Apache Web Server.
	6.3.3 Difference in Encoding String Using HPACK.

	6.4 Security Vulnerability: DoS
	6.5 Server Push

	7 Conclusion

	REFERENCES
	A PYTHON EXPLOIT CODE
	B STATIC TABLE ENTRIES IN HPACK

