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ABSTRACT  
   

Craniofacial morphology in primates can vary on the basis of their diet because 

foods are often disparate in the amount and duration of force required to break them 

down. Therefore diet has the potential to exercise considerable selective pressure on the 

morphology of the masticatory system. The zygomatic arch is a known site of relatively 

high masticatory strain and yet the relationship between arch form and load type is 

relatively unknown in primates. While the relative position and robusticity of the arch is 

considered a key indicator of craniofacial adaptations to a mechanically challenging diet 

and central to efforts to infer diet in past species, the relationships between morphology 

and diet type in this feature are not well established. This study tested hypotheses using 

two diet categorizations: total consumption percent and food material properties (FMPs). 

The first hypothesis that cortical bone area (CA) and section moduli (bone strength) are 

positively correlated with masticatory loading tests whether CA and moduli measures 

were greatest anteriorly and decreased posteriorly along the arch. The results found these 

measures adhered to this predicted pattern in the majority of taxa. The second hypothesis 

examines complexity in the zygomaticotemporal suture as a function of dietary loading 

differences by calculating fractal dimensions as indices of complexity. No predictable 

pattern was found linking sutural complexity and diet in this primate sample, though hard 

object consumers possessed the most complex sutures. Lastly, cross-sectional geometric 

properties were measured to investigate whether bending and torsional resistance and 

cross-sectional shape are related to differences in masticatory loading. The highest 

measures of mechanical resistance tracked with areas of greatest strain in the majority of 

taxa. Cross-sectional shape differences do appear to reflect dietary differences. FMPs 
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were not correlated with cross-sectional variables, however pairwise comparisons suggest 

taxa that ingest foods of greater stiffness experience relatively larger measures of bending 

and torsional resistance. This study reveals that internal and external morphological 

factors vary across the arch and in conjunction with diet in primates. These findings 

underscore the importance of incorporating these mechanical differences in models of 

zygomatic arch mechanical behavior and primate craniofacial biomechanics. 
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CHAPTER 1: INTRODUCTION 

 Craniofacial morphology in primates can vary on the basis of their diet because 

foods are often disparate in the amount and duration of force required to break them 

down. As a group, primates have significant dietary variability as compared to other 

mammals and the differences in primate masticatory complexes are hypothesized to map 

onto variances in food acquisition and processing (Bouvier and Hylander, 1982; Beecher 

et al., 1983; Anapol and Lee, 1994; Constantino, 2007; Yamashita et al., 2008a;b).  As an 

integrated complex, the different parts of the face must co-exist in a relatively constrained 

space within the skull, while meeting all of the mechanical demands imposed by 

mastication (Kay, 1975; Constantino, 2007; Lucas et al., 2008).  These mechanical 

demands span a broad range: from material properties of foods, to frequency and force of 

muscle activation and gape, to overall skull form and robusticity. Ultimately, these spatial 

and biomechanical constraints on bony morphology must be balanced against muscle 

orientation and efficient bite force production to enable efficient chewing performance 

and avoid tooth/bone failure or dislocation of the temporomandibular joint (Greaves, 

1985; Spencer, 1995; 1999).  Internally, the density and composition of facial bones are 

expected to vary in predictable ways according to the types of forces passing through 

them, just as cross-sectional shape and overall morphological form is predicted to be 

influenced by the types of loads experienced to maintain structural integrity and avoid 

failure.   While the relationships between masticatory loading and bone response is 

central to our efforts to infer diet and dietary adaptation in extinct species, the 

relationships between diet type and a key masticatory feature of craniofacial complex, the 
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zygomatic arch, is not well established even though this feature is continually invoked as 

a hallmark of adaptation to a mechanically resistant diet.    

 Current understandings of craniofacial adaptation in relation to feeding derive 

from the creation of testable hypotheses from mechanical models and the rigorous testing 

of those questions using comprehensive, comparative studies. Food consumption is a 

combination of the muscular activation necessary to generate bite forces at a particular 

point along the tooth row and the subsequent repeated chewing bouts necessary to fully 

ingest the object; therefore, an attachment site for a major masticatory muscle is expected 

to experience varying magnitudes of loading in accordance with the food being processed 

because of the habitual nature of chewing.  This study evaluates new data on bone cross-

sectional properties and mechanical behavior in conjunction with primate dietary data to 

test specific hypotheses about the nature of interplay between zygomatic arch 

morphology, a feature which serves to anchor the masseter muscle, in relation to diet 

within an evolutionary context. 

  One of the most highly strained regions of the skull is the zygomatic arch, a 

bilaterally present bone feature comprised of the temporal process of the zygomatic bone 

and the zygomatic process of the temporal bone. The zygomatic arch serves as the 

attachment for the deep and superficial masseter muscles, which function as primary jaw 

adductor muscles.  Geometrically, the arch resembles a beam with two fixed ends that is 

subjected to varying degrees of tension, compression, and shear as well as combinatory 

loading that includes parasagittal bending and torsion.  Some of the earliest work on 

zygomatic arch mechanics centered on in vivo strain data collection at three discrete 

points along the zygomatic arch using strain gauges (Hylander and Johnson, 1997).  
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Importantly, these initial findings revealed that strain was not uniform along the 

zygomatic arch in that anterior sections (presumably due to the attachment of the 

masseter muscles) experienced relatively higher strain magnitudes than posterior 

portions. Within the fossil record, the relative positioning and robusticity of the arches 

have been interpreted as clear signals of adaptation to the consumption of mechanically 

resistant (i.e., hard and/or tough) foods, however the relationship between dietary loading 

and bone morphology in this region is not clear. Beyond the gross, observational level of 

arch form in terms of relative positioning on the skull and its relative robusticity, the 

nature of bone loading and response in terms of internal architecture and external shape is 

not clear in primates. Studies have suggested a link between zygomatic arch form and 

masticatory loading but have rarely tested the nature of this link in primates (but see 

Iwasaki, 1989; Hylander and Johnson, 1997).  

  With the use of micro-computed tomography (µCT) scans of primate skulls from 

a broad taxonomic sample of primates, this study investigated whether zygomatic arch 

morphology, in terms of internal architecture and cross-sectional form, reflected known 

strain patterns and if zygomaticotemporal sutural complexity varied in accordance with 

diet type.  These comparisons were performed intraspecifically, interspecifically, and by 

diet type.  By tracking how biomechanically relevant variables of bone structure change 

along the arch, this study tests whether the arch is uniformly constructed, which provides 

a solid foundation for a more complete understanding of arch morphology in relation to 

loading.     

 Research that studied the plasticity of this region in model organisms such as pigs 

(Sus scrofa Franks et al., 2016) and rabbits (Oryctolagus cuniculus Franks et al., 2016) 
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determined that animals fed strictly hard or soft diets resulted in differences in bone 

density and remodeling rates.  This has been extended to experimental studies on 

primates, such as baboons (Corruccini and Beecher, 1984), squirrel monkeys (Bouvier 

and Hylander, 1982; Corruccini and Beecher, 1982; Beecher et al., 1983), and macaques 

(Iwaksai, 1989), in which feeding on hard objects was found to increase bone density 

compared to individuals who consumed soft foods. This finding suggests a greater 

frequency of remodeling events or possibly greater osteogenesis per event; resulting in 

greater bone growth and maintenance in individuals fed hard diets, as compared to those 

fed only soft foods (Bouvier and Hylander, 1981; Lieberman et al., 2004) and supports 

the assumed link between diet type and craniofacial morphology. My study tests the 

hypothesis that differences in diet type (and therefore differences in force magnitudes) 

translate into differences in zygomatic arch bone morphology by calculating a series of 

biomechanically relevant variables that quantify bone response to loading and comparing 

those values among taxa of different dietary groups.  The expectation is that taxa that 

primarily consume hard and/or tough foods should have relatively greater measures of 

bone subperiosteal area, cortical area, and increased resistance to bending and torsional 

forces compared to taxa that consume soft or exudate foods.    

 Furthermore, this study examines whether measures of bone cross-sectional 

properties match existing in vivo strain distributions, and whether the extent to which 

these properties pattern relates to differences in diet type in a taxonomically diverse 

primate sample. These properties include measures of total area and cortical area, in 

which relatively large amounts of cortical area are expected to deposit in areas of 

increased loading, as well as measures of section moduli (bone strength), resistance to 
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bending and torsional forces, and bone cross-sectional shape.  This study also quantifies 

the complexity of the single suture on the arch, the zygomaticotemporal suture, within the 

context of arch mechanics and it’s biomechanical relevance to models of zygomatic arch 

functional morphology. Each part is tested within the context of primate diet type as 

defined by total consumption percent of a particular food item and food material 

properties (FMPs) data. To test these questions, this study is divided into three separate, 

but logically connected, hypotheses and results.  

  A comprehensive review of the vast literature and existing experimental work 

pertaining to craniofacial form and function is synthesized and presented in Chapter 2. 

Chapter 3 focuses on the quantification and comparison of zygomatic arch cross-sectional 

total area, cortical area, and section moduli (bone strength) measures in the study sample 

in relation to diet. In Chapter 4 the hypothesis that zygomaticotemporal sutural 

complexity tracks with diet type is tested using cross-sectional images of the zygomatic 

arch at the suture midpoint and two different dietary schemes. Chapter 5 provides the 

results of the third hypothesis, which examines cross-sectional shape and resistance to 

bending and torsional forces throughout the zygomatic arch. Chapter 6 describes and 

summarizes the important results, discusses the importance of the work to feeding 

biomechanics and primate craniofacial adaptation and offers possibilities for future 

research. 
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CHAPTER 2: BACKGROUND 

 Numerous lines of research suggest that significant selection pressures deriving 

from the necessity of efficiently process dietary items have shaped craniofacial 

morphology in the primate lineage. With regard to studying the effects of diet type on 

craniofacial morphology, research has often examined features such as the teeth and 

mandible to understand the complex interplay of masticatory loading and bone response.  

Yet the zygomatic arch, which is functionally linked to the mandible via the masseter 

muscle, and whose activation powers chewing bouts, remains a relatively understudied, 

yet highly relevant masticatory feature.  This study examines the functional morphology 

of the primate zygomatic arch from the perspective of internal architecture, sutural 

complexity, and external cross-sectional shape to determine whether the arch’s bony 

morphology reflects experimentally obtained strain measures as they pertain to dietary 

loading, as well as the relationship between bone morphology and differences in diet 

type.   

EXPERIMENTAL RESEARCH 
 

First models of masticatory performance 

 Models of masticatory performance can generally be divided into two main types.  

The first approach examines questions regarding force generation (Bakke and Michler, 

1991; Antón, 1994:1999; Christiansen and Wroe, 2007; Clausen et al., 2008; Lucas, 

2012) in which studies focus on quantifying the amount of force produced at a given 

point (e.g. bite force) within the oral cavity.  Identifying loads at different locations 

indicates how much force one area of bone experiences relative to another, and helps 

trace patterns of high versus low force areas within the craniofacial complex. 
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 The second type of model examines stress resistance; which examines the 

potential for the bone or bony feature to resist forces (Bouvier and Hylander, 1996; 

Bright and Gröning, 2011; Chalk et al., 2011; Lucas, 2012).  These studies rely on 

measuring bone surface strain and estimating stress to explain how bone structure and its 

properties react to an applied load (Endo, 1965, 1973; Herring and Mucci, 1991; Spencer, 

1995; Herring and Teng, 2000; Herring et al., 2005; Lucas, 2012) which in turn aid in the 

interpretation of the potential adaptive value of the feature. This second type of research 

has been conducted on many non-human primates and comprises a large amount of the 

literature on this topic (Bouvier and Hylander, 1981,1994; Hylander, 1984, 1986; Rubin, 

1984; Herring and Mucci, 1991; Hylander and Johnson, 1992,1997; Spencer, 1995; Liu 

and Herring, 2000; Mulder et al., 2007; Koyabu and Endo, 2009). 

 Generally speaking, many studies do not subscribe to only one of these 

perspectives, but instead employ a combination of both (e.g., Picq and Hylander, 1989; 

Oberheim and Mao, 2002; Ravosa, 2000; Preuschoft and Witzel, 2005; Ravosa et al., 

2009).  Historically, some of the first studies on skull morphology assumed that any 

given force that contacted bone would spread evenly across its surface (Endo, 1966).  

Based on this premise, all parts of the skull were expected to be uniform in their bone 

density.  Later experimental work revealed that this is not the case, but rather that there 

are areas of the facial skeleton that have relatively more bone present than the rest of the 

skull, suggesting that forces are distributed unevenly in these areas (Endo, 1966; 

Hylander et al., 1991; Hylander and Johnson, 1992, 1997) and that the skull is therefore 

not a homogenous structure.  
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 The first model examining facial architecture in relation to masticatory force 

resistance came from Görke in 1904.  His work envisioned the face being constructed 

from three vertical columns (Fig. 1).  According to this model, facial strains increased 

as the bite point moved anteriorly; thus biting on the anterior teeth (with the 

accompanying high strains) would be resisted by the midline vertical column that 

passed through the nasal aperture and between the orbits (Görke, 1904; Endo, 

1965,1966).  The two remaining lateral columns would resist biting on the posterior 

teeth.  This arrangement of the two lateral columns was used to explain why the inferior 

portions of the zygomatic arch were denser as a means to resist the forces of the 

masseter muscle during mastication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Görke’s model of facial architecture. Figure adapted 
from Endo, 1966. 
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In the following decades of research more models emerged.  Among these was 

Richter’s (1920) “watchtower model” (Fig. 2) which elaborated on Görke’s model by 

incorporating additional horizontal beams in the supraorbital torus and alveolar margin 

that connected these beams with a series of struts (Richter, 1920; Endo, 1966). This 

organization creates a frame structure composed of additional horizontal and diagonal 

beams; features Görke’s model did not include.  

 

 

 

 

 

 

 

 

 

             

 

 Bluntschli (1926) proposed a model that incorporated pillars for support in the 

face.  In this model, three paired struts originate from the alveolus and extend to the rest 

of the face while a single column resides in the midline of the face (Endo, 1966).  

Horizontal struts would then pass across these paired struts in the region of the lateral 

orbital margin, zygomatic arch, and infraorbital margin.  However, this model was not 

well supported by empirical evidence and was eventually disregarded (Endo, 1966). 

  
 

 
  

 

Fig. 2 Richter's model of facial architecture. Figure 
adapted from Endo, 1966.  
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These early models were mainly theoretical and lacked experimental validation.  In 

later decades, experimental work showed that these models did not accurately account 

for how the facial skeleton was dispersing or resisting forces (Benninghoff, 1925; 

Endo, 1966).  Several decades later, Endo (1966, 1972) like Richter, proposed that the 

facial skeleton was best characterized as a frame, based on in vitro strain gauge 

analyses taken from gorilla and human skulls (Fig. 3).  As in previous models, Endo 

characterized the alveolar region and supraorbital torus as a pair of parallel beams.  In 

Endo’s model, the masticatory muscles exert an inferior, vertical pull the face while the 

bite point exerts a superior and medial pull on the face.  When combined, these produce 

compressive forces in the facial skeleton (Endo, 1966).   

 

Fig.  3 Endo's ‘rigid frame’ model. Figure adapted from Endo, 1966.  

 

These early ideas illustrate how difficult it is to model the distribution of stresses 

and stress resistance across the face because it is a complex anatomical region comprised 

of many fused parts.  During these early years, empirical data were not available and 
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these types of models were constructed primarily from x-ray photographs (Endo, 1966).  

Current models continue to acknowledge that part of the difficulty in rendering accurate 

depictions derives from the variety of stresses encountered and the complex architecture 

of the bony features that comprise the face (Endo, 1973; Hylander and Johnson, 1992; 

Christianson and Wroe, 2007; Curtis, 2011).  

Traditionally, denser and thicker areas of bone were associated with locations of 

high stress because bone mass tends to increase in the presence of higher loads (Görke, 

1904; Bluntschli, 1926; Roberts and Tattersall, 1974).  Early work in masticatory 

mechanics assumed that the skull experienced uniform and high levels of loading during 

mastication (Hylander and Johnson, 1997).  Under this assumption all the bones of the 

facial skeleton should be equally optimized to resist strain caused by mastication 

(Hylander et al., 1991; Hylander and Johnson, 1997).   However, this is not the observed 

trend throughout the skull. Masticatory strain varies in magnitude and depends on the 

types of foods consumed (Bouvier and Hylander, 1981, 1982; Daegling, 1993; Wright, 

2005; Constantino, 2007).  Because of this amount of variation, it is unlikely that all 

bones of the face are optimized solely for resisting chewing forces (Hylander et al., 1991, 

1997) or that all diet types produce the same levels of bone density.  

 

Facial loading 

Banri Endo performed some of the earliest work that experimentally tested the 

nature of stress (force per unit area experienced by a material) and strain (amount of 

deformation experienced by a material) as they are produced during mastication (Endo, 

1965, 1966).  Using an apparatus meant to mimic the loading conditions of mastication, 
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he determined that facial strains shifted according to the location of the bite point (Endo, 

1965). The axis of the principal strains (which represent the maximum and minimum 

stretches of a volume) appeared to be dependent on the location of the bite point.  The 

highest principal strains were also found in areas closest to the bite point (e.g., portion of 

the maxilla closest to the loaded tooth, origin site of the masseter on the zygomatic arch 

and infero-lateral aspect of the orbit) (Endo, 1965). Throughout a chewing cycle, the bite 

point will move throughout the mouth and therefore subject the facial skeleton to a range 

of different principal strains depending on the location of the bite point and the resulting 

bite forces that are generated (Endo, 1965).   

In addition, different facial features are subjected to varying force magnitudes that 

consequently leads them to undergo some form of loading (Endo, 1965).  The post-orbital 

septum and zygomatic arch undergo parasagittal bending, shear (two materials pushing in 

opposite directions of one another) and torsional (twisting) forces (Hylander, 1986; 

Hylander et al., 1991; Herring et al., 1996; Ross, 2001; Lieberman et al., 2004) whereas 

the mandibular corpus is subjected to lateral transverse bending (wishboning), in addition 

to parasagittal bending and torsion (Hylander 1979, 1985, 1988; Daegling and Hylander, 

1997; Lieberman et al., 2004).  It is these load types (i.e., bending, torsion, and shear), 

which contribute primarily to models of facial loading during mastication (Ross, 2001; 

Lieberman et al., 2004), as they generally constitute the dominant loading regimes.   In 

contrast to the high force zones observed in the post-orbital septum and zygomatic arch, 

the portions of the mid (region from the inferior part of the maxilla to the inferior portion 

of the orbits) and upper face (portion superior to the base of the orbit) experience 

relatively lower magnitude forces and do not appear to possess any consistent patterns of 
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high force like those observed in the lower portion of the face (Hylander et al., 1991; 

Hylander and Johnson, 1992, 1997; Lieberman et al., 2004).   

One of the continuing problems that require addressing within comparative 

cranial biomechanics is how to identify the relationships between primate facial 

morphology and site-specific strain distributions.  The majority of primate studies 

examining craniofacial stress and strain have focused on groups of anthropoid primates 

and have shown that a steep strain gradient exists from the lower part of the face (at the 

level of the occlusal plane) towards the mid and upperface (Hylander et al., 1991; 

Hylander and Johnson, 1992; Ross and Hylander, 1996; Ross and Metzger, 2004; 

Lieberman et al., 2004).  However, the nature of the relationship between stress and strain 

profiles and the morphology of the facial skeleton continues to challenge researchers 

particularly in the context of dietary evolution. Furthermore, the biological architecture 

and functionality of specific and highly strained bone regions, such as the zygomatic 

arch, continue to challenge existing models of craniofacial performance. While the 

craniofacial complex is often discussed as a single functional unit, it is composed of 27 

different bony parts that are different shapes and consequently subjected to varying force 

magnitudes.  The space of the skull is finite which requires all of the parts to fit together 

in a functionally efficient and, ultimately, adaptive way.  

 

Bone response to loading 

  Teeth and associated cranial fragments are some of the most commonly preserved 

skeletal elements preserved in the fossil record and reveal important information about 

the individual to which they belonged (Kay, 1975; Lucas et al., 1985; Lucas et al., 1986; 
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Teaford and Ungar, 2000; Lucas, 2004).  While teeth offer some of the most direct 

evidence of diet, other parts of the cranium also are impacted by feeding behavior and 

can offer valuable insight into the diet mechanics of that individual.   These major 

functional parts include the muscle attachment sites for the major masticatory muscles 

and specific bony areas that experience high amounts of loading as a result of feeding. 

During a given feeding episode, muscle recruitment patterns and resulting force 

potentials will cause the underlying cranial bone to react differently depending on how 

those forces are directed through the cranium (Mulder et al., 2007).  Ultimately, the goal 

is to model these factors so that predictions can be made about how forces are generated, 

how they dissipated, and how the morphology responds.  One way to accomplish this is 

through biomechanical models.   

There are two major components that are necessary in the creation of a 

biomechanical model for some element of the body. First, there is a theoretical model that 

describes how a system operates under experimental conditions and secondly there is a 

mechanical model, which is usually simple, and is developed to capture how this system 

works in reality.  In biology, mechanical models are useful because they can simplify a 

complicated system in terms of basic physics.  However, caution should be exercised 

when it comes to relying on a model to explain all aspects of a biological system.  A 

model can only be as accurate as the number of variables it can capture and accurately 

characterize.   Typically, models are created based on some predictions grounded in a 

theoretical framework.  To determine whether the model accurately captures the 

workings of the system it wants to describe, it must be accompanied by rigorous 

empirical testing.   
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In terms of biomechanical models, bone is a difficult material to model (Strait et 

al., 2008).  The elastic properties of bone vary from area to area on the skull, making it 

difficult to construct a single model that subsumes all parts of the skull (Peterson and 

Dechow, 2003; Wang and Dechow, 2006; Strait et al., 2008).  An example of this is the 

supraorbital torus versus the postorbital bar in macaques.  The latter is about 51% stiffer 

(resistant to bending) than the former, indicating differences in the mechanical properties 

of adjacent cranial features.  In general, bone is also anisotropic, meaning that its’ 

materials are arranged in different directions (Strait et al., 2008).  However, the 

craniofacial complex has many areas that are orthotropic, that is, wherein the bone has 

each of its three axes exhibiting its own material properties (Strait et al., 2008).  The 

shape of the bone exerts a considerable influence on the orientation of the axes and 

complicates the construction of the model (Lanyon and Rubin, 1984; Antón, 1994; 

Bouvier and Hylander, 1996; Wang and Dechow, 2006; Strait et al., 2008).  In previous 

studies that have examined the orientation of the axes in cortical bone, two of the three 

axes are parallel to the surface whereas the third is normal to the surface (Strait et al., 

2008).  However, much of the bone in the skull is curved which causes the axes to vary 

depending on the degree of curvature.  This is an important consideration when trying to 

formulate a mechanical model of the skull.  

One of the most well-known feeding models comes from Greaves (1985) who 

modeled the skull as a simple cylinder that twists along a 45 degree axis during feeding 

(Ross, 2009). This model hypothesizes that the global strains produced by mastication 

will affect the local environment of the circumorbital region (specifically the postorbital 

bar) (Ross, 2009). This model has received mixed support given Hylander et al. (1991) 
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found no support for the skull twisting like a cylinder.  Ross and Hylander (1996) also 

examined the strain measures in the circumorbital region of Aotus but found that there 

was no consistent support for the skull twisting like a cylinder (Ross, 2001, 2009). 

Otolemur appeared to have some twisting in the postorbital region, suggesting further 

investigation of other strepsirrhines was required to determine if this was consistent 

throughout the clade. To further test whether haplorhines and strepsirrhines exhibit clade 

specific patterns, additional haplorhine (Papio, Aotus and Macaca) and strepsirrhine 

(Eulemur) specimens were measured.  The skull of Eulemur did not act like a twisting 

cylinder, thus providing no support for a strepshirrhine specific pattern.  Instead, 

Eulemur’s pattern of strain actually resembled those of Macaca, Papio and Aotus (Ross, 

2009).  Based on these results, there appears to be some degree of twisting of the 

braincase relative to the facial skeleton in these primate taxa, which is consistent with 

findings in previous works (Ravosa et al., 2000a; Ross, 2001; 2009).  This twisting is 

affecting the loading regime of the postorbital bar, but differences in the bar’s geometry 

produce varying amounts of strain (Ross, 2001; 2009).    

Hylander & Johnson (1992) measured strain along the postorbital bar of 

macaques to determine the strain environment during feeding bouts on various food 

types.  They found that strain levels on the postorbital bar were intermediate between the 

dorsal interorbital area and the zygomatic arch.  The amount of strain experienced was 

not equivalent bilaterally because the relative amount of muscle activation (i.e., the levels 

of masseter and temporalis recruitment) depends on whether the muscles are on the 

working (chewing side) or balancing (non-chewing side) of the skull.  Therefore, the 

strain relationships were different between the working and balancing sides of the skull.  
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This is significant for the circumorbital region; especially for a feature like the anterior 

root of the zygomatic arch because it serves as the attachment point for the powerful 

masseter muscle (Hylander and Johnson, 1997; Rafferty et al., 2000; Witzel et al., 2004; 

Kupczik et al., 2007).   Specifically, the high strains of the anterior portion of the 

zygomatic arch were higher on the working side than on the balancing side (Hylander & 

Johnson, 1992).  

 

Masticatory strain 
 

 By definition, strain is a tissue property of bone and is a measure of the relative 

amount of deformation a material undergoes.  Formally, this is calculated as the change 

in length divided by the original length (Nordin and Frankel, 2012). Mastication causes 

physiological deformations of the face as a result of a combination of forces produced by 

the muscles and teeth.  Accurately mapping and measuring surface bone and sutural 

strains caused by mastication are key factors for assessing the mechanical environment of 

the skull (Bright and Gröning, 2011).  One of the most common ways to study the 

masticatory system involves collecting in vivo or in vitro data to assess masticatory 

function during chewing (Hylander, 1986; Hylander et al., 1991; Daegling, 1993; 

Hylander and Johnson, 1997; Dechow and Hylander, 2000; Ravosa et al., 2000a; Vinyard 

et al., 2008).  Both of these techniques rely on strain readings taken from strain gauges.   

 In vivo studies are valuable because they directly measure strains as they actively 

pass across the bone surface; however some researchers have raised questions about the 

ability of this technique to capture non-uniform strain distributions (Dumont et al., 2005; 

Wroe et al., 2007). In vivo is helpful because it allows live strain recordings to be taken, 
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however there are limits to how the gauges may be placed so as not impede the activity in 

the body part of interest. In vitro work is useful for testing hypotheses about strain 

patterns during biting and chewing but is limited because it cannot capture real 

masticatory behaviors as it is highly simulated (Rayfield, 2011).  For instance, changes to 

the elastic properties of bone and tissues can occur as a result of preservation or from the 

process of being harvested from the individual.  This is especially problematic for fossil 

taxa, as the precise material properties of the bone and the contribution of soft tissue 

cannot be known (Rayfield, 2011).  Also, the rates at which the bone and tissue are 

loaded must be taken into account (Wang et al., 2008).  Strain gauges can be problematic 

because there is a limit to the number that can be applied in a given space and they can be 

difficult to apply (Dumont et al., 2005; Rayfield, 2007; Wroe et al., 2007).  As long as 

appropriate measures are taken to adjust for these factors during an experiment, the 

results should remain accurate (Wang et al., 2008).  

Initially, it was expected that all regions of the facial skeleton would experience 

similar amounts of strain.  This expectation is founded in the notion that bone mass reacts 

to specific loads and is optimized to resist those loads (Bouvier and Hylander, 1981; 

Lanyon and Rubin, 1984; Hylander and Johnson, 1992).  Specifically, this prediction 

stated that an increase in bone mass would be stimulated in the presence of high 

magnitude, cyclical loading, while decreased loading would result in reduced bone mass 

(Hylander and Johnson, 1992).  A bone's response to loading has often been defined as a 

"functional adaptation" (Hylander and Johnson, 1992; Lanyon and Rubin, 1985) and is 

hypothesized to restrict bone strain magnitudes to a small range of values (also known as 

the optimal strain environment) (Lanyon and Rubin, 1985; Hylander & Johnson, 1992).  
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This assumption served as the basis for previous studies that operated under the 

expectation that the facial skeleton experienced uniform strain distributions. However, 

the available in vivo data suggest that there is a large degree of variation in the functional 

strain magnitudes throughout the facial skeleton (Hylander et al., 1991; Hylander and 

Johnson, 1992).  Based on these observations, it is unlikely that all facial bones are 

specifically structured to maximize strength and minimize bone tissue (Hylander and 

Johnson, 1992).   

While the mandible is expected to endure high masticatory forces because of its 

involvement in every chewing bout, the zygomatic arch is also found to consistently bear 

relatively high loads across primates. This is supported by the findings of previous work 

on primates such as chimpanzees (Pan troglodytes) and macaques (Macaca fascicularis) 

(Hylander, 1997; Ravosa et al., 2000a; Ross and Metzger, 2004; Wroe et al., 2007). The 

zygomatic arch has an increasing amount of stress towards its anterior portion related to 

the activation of the masseter muscle during chewing activity (Hylander 1997; Wroe et al 

2007). During mastication, the working side zygomatic arch strains are larger anteriorly 

than posteriorly (Hylander and Johnson, 1992) which is presumably due to the 

attachment of the masseter muscles at the anterior portion of the arch, and which is 

responsible for the presence of relatively high strain magnitudes. In contrast to the 

zygomatic arch, which bears some of the highest strains of the face, the browridge region 

in some species of primates had much lower strains present overall despite being notably 

more robust in its bony morphology (Hylander and Johnson, 1992). Hylander (1992) has 

argued that an area with a greater concentration of bone does not necessarily correlate 

with experiencing large routine cyclical loads associated with mastication or incisal 
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biting.  Alternatively, these areas that are fortified with more bone may be some type of 

adaption to resist structural failure due to relatively infrequent non-masticatory external 

loads (Hylander and Johnson, 1992).  Based on the strain data, if all the bony areas of the 

face have been optimized to resist masticatory forces, then each region of the face should 

vary in the amount of bone it possesses (Hylander and Johnson, 1992).  Because there is a 

wide range of variation in the magnitude of strains across different regions of the face, it 

is not likely that all the facial bones are structured to maximize their strength against 

masticatory loading with the lowest amount of bone possible.    

 Within the realm of primate craniofacial biomechanics, in vivo studies provide the 

foundation for current, comparative studies being done and are particularly relevant for 

matching real-time strain loading with the underlying bone morphology.  For the 

purposes of the current study, previous in vivo work on the zygomatic arch in primates 

provided the basis for making predictions concerning if and how the arch’s morphology 

tracked given the experimentally collected strain measures by Hylander and Johnson in a 

1997 study.   As noted previously, strain gauges collect strain measures in discrete 

locations, making total strain coverage of a structure more difficult to obtain. Thus, the 

current in vivo data available for the zygomatic arch stem from strain gauges placed at 

three points along the zygomatic arch corresponding to anterior, mid-zygomaticotemporal 

suture, and posterior regions (Hylander and Johnson, 1997).  This provides an important 

baseline upon which to make predictions about the underlying bony morphology, but it 

leaves much of the arch’s remaining structure unaccounted for. While this current study 

does not collect in vivo data, it does expand the number of regions along that arch that are 
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sampled and evaluated in the context of mechanical performance to determine whether 

significant variation exists in closely adjacent bone regions along the zygomatic arch.        

 

Masticatory muscle anatomy and function 

 Testing hypotheses about the biomechanics of feeding requires a consideration of 

masticatory muscle morphology, orientation, and how each contributes to the system’s 

overall efficiency (Adams, 1918; Taylor and Vinyard, 2008; Vinyard and Taylor, 2010).  

In the last few decades, the number of studies utilizing in vivo methods (e.g., Hylander, 

1984, 1985; Hylander and Johnson, 1994, 1997; Ross and Hylander, 2000; Vinyard et al., 

2005; Wall et al., 2006) have provided some of the best data on the ways primates recruit 

their masticatory muscles and how those recruitment patterns translate to internal loads 

that are resisted by the masticatory apparatus (Taylor and Vinyard, 2008). 

The underlying musculoskeletal morphology plays an important role in the 

proficiency and performance of the system.  Previous studies have investigated 

hypotheses concerning muscle positioning and the resulting mechanical advantage of the 

complex (Biegert, 1963; Hylander, 1975, 1979; Ravosa, 1990; Anapol and Lee, 1994; 

Spencer, 1999; Williams et al., 2002; Vinyard et al., 2003; Wright, 2005; Vinyard and 

Taylor, 2010).  In general, mammals possess a masticatory muscle scheme comprised of 

the masseter, temporalis, and medial and lateral pterygoid muscles (Roberts and 

Tattersall, 1974; Greaves, 1995; Taylor and Vinyard, 2008; Ravosa et al., 2010).   The 

superficial and deep masseter muscles, along with the temporalis muscle, power 

mastication through a coordinated series of actions, which function to adduct and retrude 

the mandible. 
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  The superficial masseter, which originates on the inferior, medial border of the 

zygomatic arch, has a strong vertical force component that when contracted results in the 

jaw being adducted (Hylander et al., 2005).  The muscle fibers pass inferiorly and 

anteriorly to eventually insert onto the ramus of the mandible.  The deep masseter is 

located posteriorly and deep to the superficial masseter and attaches along the medial 

border of the zygomatic arch. It is also smaller than the superficial masseter and its fibers 

pass inferiorly and posteriorly which eventually insert onto the coronoid process of the 

mandible. The deep masseter has a more medial force component when it is activated 

during mastication, which results in adduction and transverse movement of the mandible 

(Hylander et al., 2005). The medial pull of the deep masseter also exerts shear forces on 

the zygomatic relative to the squamosal suture.  From the lateral side of the arch, these 

shearing forces would appear as tensile forces as well (Herring and Mucci, 1991).  In all, 

the masseter pulls the zygomatic bone anteriorly, inferiorly, and medially (Herring and 

Mucci, 1991).   

  Work on the masseter muscles of pigs found muscle fibers had varying 

orientations and that not all fibers are simultaneously recruited (Herring and Mucci, 

1991).  Instead, groups of muscle fibers are recruited which alter the fine action of the 

masseter, and other muscles, during mandibular movement (Herring et al., 1979; Herring 

and Mucci, 1991).  These differences in muscle fiber recruitment should affect strain 

patterns on the zygomatic arch and other bones.  The temporalis, the other important jaw 

adductor, originates on the temporal, frontal and sphenoid bones and sweeps inferiorly to 

pass between the medial portion of the zygomatic arch and the skull.  The anterior muscle 
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fibers are more vertically oriented whereas the posterior fibers run more horizontally 

(Cachel, 1979; Ross, 1995; Vinyard and Taylor, 2010).   

 The amount of force a muscle can produce is dependent on several different 

factors.  Internally, muscle force potentials are reliant on which motor units are firing and 

for how long they fire. An important mechanical aspect associated with muscle force 

includes the length of the moment arm of a muscle and its cross-sectional area (Hylander, 

1975;Weijs and Hillen, 1985; Anapol et al., 2008). Internal fiber architecture is a critical 

factor that determines the ability of the muscle to produce force and excursion during 

contraction (Powell et al., 1984; Wall et al., 2008; Vinyard and Taylor, 2010).  Within the 

muscle itself, the individual fibers and motor units are responsible for its regular 

functioning (Herring et al., 1989,1991; Vinyard et al., 2008).  Muscle is highly organized 

and composed of a hierarchy of structures (Lieber and Friden, 2000).  At the smallest 

scale of the hierarchy is the sarcomere, which is composed of small myofilaments known 

as actin and myosin (Taylor and Vinyard, 2008).  The manner in which the thin actin and 

thicker myosin fibers cross one another enables the muscle to contract (Powell et al., 

1984; Lieber and Friden, 2000; Taylor and Vinyard, 2008).  Within a given muscle, the 

fiber composition can vary throughout; this variation can also extend across individuals 

and species (Vinyard et al., 2008).    

The arrangement of the fibers is important because it affects the force-generating 

potential of a muscle (Lieber and Friden, 2000; Vinyard and Taylor, 2010).  The fibers 

can run along the muscle in different ways and this can influence the physiological cross-

sectional area of the muscle.  Myofibrils, which are rod-shaped muscle units composed of 

long proteins, are arranged in parallel formations whereas sarcomeres are oriented 



  24 

longitudinally (Taylor and Vinyard, 2008).  The arrangement of the myofibrils dictates 

the distance a muscle fiber can travel and is a measure of its contraction velocity.  Both 

fiber diameter and length affect the function of the muscle fiber.  For instance, the 

shortening or lengthening of a muscle fiber is dictated by fiber length whereas fiber 

diameter modulates how much force can be produced (Taylor and Vinyard, 2008).   

Parallel and pinnate fiber muscles have different functional capabilities, which 

are reflected in the actions of the muscles.  Pinnation results in an increase in the number 

of fibers packed together and which affects the muscle’s force potential (Antón, 1999).  

Pinnate muscle fibers tend to be relatively shorter in length and are oriented at an angle 

relative to the force-generating axis; thus enabling a larger number of fibers to be packed 

together (Vinyard and Taylor, 2010).   When a greater number of serially arranged 

sarcomeres (functional units of contraction) are present, a muscle is capable of 

shortening, or lengthening over a greater distance (Williams and Goldspink, 1978; Taylor 

and Vinyard, 2008; Vinyard and Taylor, 2010).  Based on this observed relationship, 

fiber length is proportional to muscle excursion, and as Vinyard and Taylor (2010) argue, 

also proportional to extension contraction velocity.   

 

Muscle force 

Accurate models of muscle activity depend on estimates of muscle force 

magnitude and direction (Antón, 1999).  A muscle fiber's diameter and alignment, 

relative to the force-generating axis, influences the maximum force generated during 

muscle contraction (Vinyard and Taylor, 2010).  Depending on the angle of orientation of 

the fiber to the force-generating axis, some force potential can be lost.  However, in spite 
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of force loss the muscle can compensate by packing more fibers together in a given area 

and increasing the cross-sectional area of the muscle.  The directions of these muscle 

fibers vary within a single muscle across all muscles in the body and across species 

(Taylor and Vinyard, 2008).  Because of these differences in orientation, using muscle 

mass is not an accurate measure for the force potential a muscle can produce.   

Using a simple muscle area measurement to approximate muscle force is not 

entirely accurate.  An example formula for simple muscle area (Ikai and Fukunaga, 1968; 

Perry and Wall, 2008) is as follows: 

  Area= muscle mass / (average fiber length x muscle density)                  (1) 

Typically, muscle mass has been employed as a major determinant of muscle force.  

However, this has been shown to be inaccurate (Perry and Wall, 2008).  Much of the 

muscle’s mass is composed of sarcomeres held within muscle fibers and any additional 

fiber length (which would increase the muscle area) does not confer any extra muscle 

force (Perry and Wall, 2008). 

A more accurate means of quantifying a muscle’s force potential is to measure its 

physiological cross-sectional area (PCSA). Using PCSA as a proxy for muscle force is an 

improvement over previous estimates that used only gross muscle mass or size (Perry and 

Wall, 2008; Taylor and Vinyard, 2008).  The formula for calculating PCSA is as follows 

(Anapol and Barry, 1996; Antón, 1999; Lieber and Friden, 2000; Taylor and Vinyard, 

2008; Eng et al., 2013): 

 PCSA= Muscle mass (gm) x cos θ	  /	  lf	  (cm)	  x	  1.0564 gm/cm3                         (2) 

Here, muscle mass in grams and the angle of pinnation, (θ), is the angle measured 

between the fiber orientation and line of action of the muscle (Anapol and Barry, 1996).  
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lf is the fiber length and 1.0564 gm/cm3 is the specific density of muscle (Murphy and 

Beardsley, 1974).  The PCSA of a given muscle is a measure of the cross-sectional area 

of the fibers that compose the muscle and is thus proportional to the maximum force a 

muscle can generate (Powell et al., 1984; Antón, 1999).  Muscles with greater PCSA are 

predicted to be relatively larger than those with smaller cross-sectional areas and exert 

greater amounts of force during muscle contraction.  

For estimates of the superficial masseter muscle, the longest fibers are likely 

along the anterior portion of the muscle meaning that the PCSA based on the fiber 

lengths of the superficial masseter would yield a lower estimate for the overall masseter 

PCSA (Antón, 1999).  While estimates for PCSA from muscle architecture are important 

for physiological studies, these analyses have been limited to only a few animals; fiber 

length measurements are even more limited (Antón, 1999).  Additionally, PCSA 

estimates are more accurate when variables such as relative and absolute muscle mass 

(Demes et al., 1986; Demes et al., 1988; Antón, 1990; 1994; 1999) are included.  

Previously, researchers utilized jaw-muscle electromyography (EMGs) taken 

from primates to understand muscle recruitment and timing during chew cycles.  Timing 

is important because it reflects when the muscle reaches peak activity, how long that 

activity is sustained, and in what order the muscles are recruited (Hylander et al., 2005; 

Wall et al., 2009; Vinyard and Taylor, 2010).  As such, the levels of stress and strain are 

expected to reflect the rise and fall of this activity.    The present understanding of 

primate mastication and its relationship to jaw morphology has been greatly advanced by 

descriptions of jaw muscle activation (Hylander et al., 1987, 2000, 2005: Hylander and 

Johnson, 1994; Vinyard et al., 2005, 2006, 2007; Vinyard and Taylor, 2010). 
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Specifically, recording the levels of muscle recruitment of the working side (chewing 

side), versus the balancing (non-chewing side) of the jaw has highlighted differences in 

activity patterns and has been an essential part of current models of masticatory 

performance.  

 Comparisons between the working versus balancing sides of the jaw have 

provided ratios that can be used for measuring the relative recruitment of each side and, 

by extension, assessing the relationship between muscle activity and muscle architecture 

(Vinyard and Taylor, 2010).  The relationships between muscle activity and muscle 

architecture has important bearing on the morphology of the bones. Some of the variation 

in bony morphology could reflect differences in muscle activity and architecture across 

groups.   Within Primates, differences in jaw muscle activity are informative for 

understanding the variation in jaw muscle form across primate groups.  

The types of relationships linking muscle activation and bone form have 

important applications within primate comparative work, especially with regard to 

masticatory mechanics and the evolution of its functional parts. Not surprisingly, 

differences between the masticatory muscle size, morphology, and composition have 

been observed in different primate groups such as platyrrhines and hominoids (Cachel, 

1984; Taylor and Vinyard, 2009; Vinyard and Taylor, 2010: Vinyard et al., 2011).  It is 

clear that primates exhibit a wide range of variation in their masticatory systems.  In 

addition, food mechanical properties, bite location, and muscle orientation influence the 

complex nature of this system (Throckmorton and Throckmorton, 1985; van Eidjen, 

1991; Spencer, 1995; Taylor et al., 2008; Vinyard et al., 2008) and are discussed in detail 

in the following sections. 
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The Jaw as a Simple Lever 

 To understand the application of mechanical terms to the body requires a 

discussion of lever systems and their components.  In physics, a moment or torque refers 

to the tendency of a force to rotate an object about an axis or fulcrum and is calculated as 

“force x distance” (Nordin and Frankel, 2012) and a moment arm is the distance (d) from 

an applied load to the fulcrum.  In anatomy, several parts of the body are modeled 

according to three different types of levers known as: 1st, 2nd, or 3rd class lever systems. 

Regardless of the type of lever, all are based on combination of a fulcrum or joint, an 

applied force, and resistance (Nordin and Frankel, 2012).   

  Classically, the jaw has been theoretically modeled as a third class lever  

(Hylander, 1975; Greaves, 1978; Smith, 1978; Spencer, 1995,1999; Perry and Wall, 

2008) and the simple lever model is the most basic model used to interpret the 

biomechanics of chewing. According to this model, the masticatory adductor muscles 

(the temporalis, deep and superficial masseters, and medial pterygoid muscles) apply a 

superiorly directed force on the mandible, which is counteracted, by the downward 

reaction forces at the bite point and temporomandibular joints (TMJs). To quantify this, 

the muscle moment arm is measured as the perpendicular distance from the muscle force 

to the fulcrum (TMJ). The resistance moment arm (labeled the bite force moment arm in 

this model) is the distance from the resistance force (the bite point on the tooth row) to 

the fulcrum (TMJ). 

Under the principle of static equilibrium, the equation for calculating bite forces 

and joint reaction forces at any given bite point is: 
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    Bb + Jj +Mm =0        (3)   

where B is the bite force magnitude, J is the joint reaction force, and M is the muscle 

resultant. Similarly, b,j, and m are their respective moment arms. When the fulcrum is 

placed at the TMJ, the moment arm j equals zero because no torque is generated by J. 

This model is routinely used to calculate bite forces and joint reaction forces at any bite 

point along the tooth row (Gysi, 1921; Bramble, 1978; Greaves, 1978; Smith, 1978; 

Hylander, 1985; Spencer, 1995). 

 

Bite Force 

 As models of bite force production have noted, the location of the bite point along 

the tooth row changes the possible bite force that can be produced.  The placement of the 

bite point relative to the muscles and temporomandibular joint affect its overall bite force 

potential (Spencer and Demes, 1993; Spencer, 1995,1998,1999).  Modeled as a third 

class lever system, the bite point represents the point of loading on the lever, the (TMJ) 

temporomandibular joint is the fulcrum and the masticatory muscles produce the force 

(Spencer, 1995,1998).  Whether the bite point is moved anteriorly or posteriorly changes 

the resulting bite force because it alters the distance (i.e., moment arm) from the TMJ. As 

the bite point is moved more anteriorly from the TMJ, the jaw moment arm increases 

resulting in a lower bite force. If the bite point is moved posteriorly (towards the TMJ), 

the moment arm is decreased and the resulting bite force increases (Spencer, 1995). The 

tooth morphology of each region of the mouth affects how much force is generated at a 

particular bite point (Spencer, 1995; Serra and Manns, 2013). The teeth with the largest 

occlusal surfaces in the posterior part of the mouth are the important sites for high bite 
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force production.  Being able to produce bite forces sufficiently high enough to process 

foods of different material properties is important, particularly to individuals who ingest 

mechanically challenging foods. 

Within the craniofacial system, leverage is defined as the ratio of the distance 

from the jaw joint (TMJ) to the point of application of a load (i.e. piece of food) (Rentes 

et al., 2002). Bite force is exerted by the adductor muscles of the mandible and regulated 

by the muscular, dental, and skeletal system (Rentes et al., 2002). There are also complex 

responses in the periodontal tissues, mandibular joint capsules, and motorneurons that 

have long been recognized as a means to ensure bite forces are not too high (Lund and 

Lamarre, 1974: Hannam, 1976).  Like any other biomechanical system, bite force 

increases in response to the stresses of chewing (Eng et al., 2013). Over time, constant 

chewing results in an increase of masticatory muscle functional capacity and cross-

sectional area as the muscles become better conditioned with repeated use (Rentes et al., 

2002).   In addition, longer durations of chewing are required to process a difficult food 

material, and an increased amount of tooth surface area or thicker enamel is necessary 

(Bakke et al., 1991; Ingervall and Minder, 1997).  Within mammals, tooth morphology 

(especially in the molar region) reflects diet specializations (Spears and Crompton, 1996: 

Evans et al., 2007; Smits and Evans, 2012). For instance, thinly enameled molars can 

wear in such a way as to create new shearing crests which are helpful for a diet requiring 

large amounts of crushing and grinding (Kirk and Simons, 2001). 

There are also data that suggest stress and strain change depending on the bite 

point. For example, stress and strain levels of the skull were observed to be slightly 

higher in unilateral molar biting on the balancing side than on the working side using a 
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Finite Element Analysis (FEA) simulation (Wroe et al., 2007).  However, this result is 

contrary to past empirically derived results, which found the working side masseter 

indeed exerts more force than the balancing side (Hylander, 1997; Wroe et al., 2007).   

Jaw muscle EMG data from Lemur catta during chewing revealed a relatively 

high working to balancing side (W/B) ratio in the deep masseter muscle activation that is 

similar to that observed in galagos, but unlike those seen in haplorhines (Vinyard et al., 

2006).  This activity suggests that haplorhines are using relatively more force during 

chewing with their BS deep masseter muscle than strepsirrhines (Vinyard et al., 2006).  

Though EMG data on W/B ratios within strepsirrhines are relatively limited, the available 

data suggest that within Primates there are different patterns of muscle recruitment during 

chewing which translate into different patterns of strain experienced by their facial 

skeletons.  Therefore, the primate facial skeleton can experience variation in the 

magnitudes of masticatory force between the working and balancing sides during a single 

chewing bout.  This exposes the bony morphology to variable levels of force instead of 

purely static loading.   

 The results of Wall et al. (2008) also suggest that the production of high bite 

forces is not only a function of muscle recruitment but also of the type of muscle fiber 

contained in the muscle belly.  Type II fibers are found in higher proportions in the 

superficial part of the muscle than in the deeper portion (Wall et al., 2008).  Type II fibers 

are responsible for rapid force production and are necessary for high bite forces (Herring 

et al., 1979; Wall et al., 2006; Wall et al., 2008).  Research between baboon and macaque 

males and females was done to determine if sex differences in muscle fiber type or 

composition exist.  In both cases, male baboons and macaques possess more type II fibers 
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in the superficial portion of the muscle as compared to the deeper sections (Wall et al., 

2006, 2007, 2008).  In addition, fiber size in females was smaller than males in both cases 

suggesting that sexual dimorphism is present in these and other dimorphic primate taxa 

(Wall et al., 2006, 2007, 2008).  While differences in chewing forces between human 

males and females have been studied, it is not known whether all sexually dimorphic 

primates exhibit similar trends of fiber type.   

 

Sexual dimorphism in the masticatory complex 

 Sexual dimorphism within the masticatory complex could impact the magnitude 

of the chewing forces that can be produced (Sciote et al., 2003; Daniels et al., 2008). In 

humans, changes in the amount of bite force an individual can exert are affected by the 

onset of puberty. Typically, female humans undergo puberty before males, and are the 

first to see increases in their bite forces.  Males, however, achieve greater overall bite 

forces on average despite undergoing puberty later.  It is unclear whether this pattern is 

consistent across all primates, but these patterns may exist in primate species that have 

marked sexual dimorphism.  In the studies using mice, no significant difference in 

masticatory muscle function between the sexes was found (Daniels et al., 2008).  

However, mice are not very dimorphic so this result is not unexpected.  However, 

differences in muscle fiber type and organization between sexes may impact the rate at 

which muscles contract and produce force (Daniels et al., 2008).  
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Sutures 

A unique feature of the bones of the skull is the presence of sutures that run 

between the plates of the cranium. These sutures are places of bone deposition and 

growth and can influence the orientation, shape, and size of the cranium (Rayfield, 2005; 

Wang et al., 2008).  While cranial sutures are classified as synarthroses, meaning they are 

"unfused, fibrous, and relatively immobile contact points" (Rayfield, 2005, p.349), they 

may actually be sites of cranial bone mobility (Kokitch, 1992; Perrson, 1995; Rayfield, 

2005).  This is further supported by the work of Herring et al. (2001), which noted that 

across vertebrates there is observable cranial flexibility at suture sites.  

 Cranial and facial sutures are composed of soft connective tissue that interlocks 

between the perimeters of bones (Mao, 2002).  Based on their construction, forces that 

pass across the skull are experienced differently depending on whether they are passing 

across the solid bone or a suture.  Because sutures are essentially joints between bones, 

they can transmit and absorb stresses that are produced from activities such as 

mastication (Mao, 2002; Wang et al., 2008). The manner in which forces pass across 

sutures affects the growth and physiology of bone and its associated tissues and is an 

important factor for constructing models of bone force (Mao, 2002).  

Sutural morphology can vary a great deal depending on how straight or curved, or 

long or short, the suture is as it affects how it is able to resist forces (Herring, 1972; 

Wang et al., 2008). Quantifying the biomechanical nature of sutures is difficult because 

they can vary so much within an individual (Wang et al., 2008).  A key aspect of suture 

morphology is the degree of interdigitation, which has been shown to correlate with the 

amount of mechanical loading experienced by the suture (Byron, 2009).   Areas that 
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experience higher instances of force or greater degrees of force are expected to have 

relatively more complex sutures (Herring and Mucci, 1991; Rafferty and Herring, 1999; 

Byron et al., 2004; Rayfield, 2005; Byron, 2009).   Greater amounts of interdigitation 

enable a bone to resist greater magnitude forces such as bending or torsion (Wang et al., 

2008).  In long-term experiments performed in rhesus macaques, devices that delivered 

static forces were attached to the skull to study how the bone and sutures would react 

(Mao, 2002).   This study found tensile and compressive forces were created in both 

anterior and posterior directions along the bone and sutures (Mao, 2002).   The presence 

of these forces promoted suture growth at both the nasofrontal and pre-maxillomaxillary 

sutures, suggesting both tensile and compressive forces help induce bone growth (Mao, 

2002). Similar bone responses have been observed in the periosteal and endocortical bone 

growth in long bones (Rubin and Lanyon, 1984; Mosely and Lanyon, 1998; Mao, 2002).  

When any force is applied to a bony suture, a mechanical stress is created, and 

this is measurable as sutural strain (Herring et al., 1996; Hylander and Johnson, 1997; 

Mao, 2002).  Microstrain forces induced by tension or compression likely affect sutural 

growth (Mao, 2002; Mao et al., 2003) leading to increased interdigitation (or in some 

cases overlap) that allows for a certain degree of flexibility.  The bones of the cranium 

are relatively stiff and inelastic compared to the flexibility of the sutures that run between 

them (Byron, 2009).  Because of this arrangement, when loads are applied to the skull it 

reacts as a series of pieces rather than one solid structure (Herring and Teng, 2000; 

Byron, 2009). With the presence of these more elastic structures (sutures) bordering 

relatively inelastic structures (bone), the cranium is able to absorb an increased amount of 

force as compared to a completely solid structure that would have had to be thickened in 
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order to combat increased loading as a result of feeding (Rayfield, 2005; Byron, 2009).  

This supports the notion that sutures are important functional components of cranial bone 

construction and should be accounted for in models of chewing mechanics because they 

are mechanically relevant to the structure’s performance.  

The hypothesis that greater suture complexity is present in species that rely on 

mechanically resistant (both tough and hard) foods was tested on Sapajus (formerly 

Cebus) apella, a non-human primate that exhibits a robust dental, cranial, and mandibular 

profile (Byron et al., 2006; Wang et al., 2008; Byron, 2009).  Compared to other species 

of cebids, S. apella feeds on hard seeds that require greater relative bite forces and more 

chewing cycles (Byron, 2009).  Based on these characteristics, their cranial sutural 

complexity is expected to be greater than other cebids that do not rely on such 

mechanically challenging foods (Wang et al., 2008; Byron, 2009). The relatively 

increased sagittal complexity exhibited in S. apella compared to non-apelloid species (C. 

albifrons, C. capuchinus, C. olivaceus) was interpreted as a reflection of the increased 

reliance on hard and tough foods present in S. apella relative to the other species. These 

findings are compelling because they indicate sutural complexity may represent a non-

dental morphological correlate that may be compared across primates of varying diet 

type. 

DIET CATEGORIES 

 Within the realm of primate feeding ecology, non-human primates are often 

grouped as either frugivores, folivores, or insectivores.  However, within each of these 

broad dietary categories lies a plethora of variation including graminivory (grasses), 

granivory (seeds), gummivory (tree exudates), nectivory (nectar), and faunivory (animals 
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and/or insects) (Kay, 1973; Lambert, 2010).  There is no clear consensus on how to 

define the mechanical implications of these dietary categories, making it difficult to 

compare the results of studies especially when different sets of criteria are used (Lambert, 

2010). The majority of primate taxa are not exclusive to any single dietary category but 

usually consume a variety of foods (Kay, 1973; Lambert, 2010; Pickett et al., 2012). 

Because of this, matching a specific morphology or set of morphologies with a specific 

food in extant species can be difficult.  Different diets require different morphologies so 

as to best process those foods.    

 With these broad dietary categories, the functional demands of different foods are 

variable, especially in terms of their mechanical properties, total chewing time, and the 

quantity of consumed food necessary for the individual to meet its nutritional 

requirements (Kay, 1973). Because of this, specific morphological features associated 

with mastication (i.e. teeth, mandible, and other craniofacial features) are assumed to be 

adapted in a way that helps the individual to best process their respective food choices.  

The force requirements to break down food can vary greatly and the expectation 

is that with more resistant (i.e., food material that resists deformation and/or crack 

propagation) foods, the facial skeleton will be exposed to increased stress and strain 

during feeding. In species that are specialized to accommodate a highly resistant diet, the 

facial skeleton is predicted to be buttressed to resist those forces, especially in areas that 

experience elevated stresses.  Food fragmentation is measured according to the material 

properties of food, which include: toughness, hardness, and Young’s modulus (stiffness) 

(Lucas and Pereira, 1990; Constantino, 2007;Yamashita et al., 2009). Tough foods, which 

are usually highly fibrous, require longer feeding times because they are more difficult to 
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fracture and are sometimes not preferred (Hill and Lucas, 1996; Ang et al., 2008; Lucas 

et al., 2012). In contrast, hard objects tend to be brittle because they break into small 

pieces at high stresses (Lucas et al., 2000; Yamashita, 2008a). These distinctions in food 

material type suggest specific anatomical domains associated with mastication (e.g., 

teeth, mandible, and zygomatic arch) are assumed to be adapted in ways that allow the 

individual to best process the foods on their menu. For instance, possible morphological 

adaptations include enlarged, molarized premolars (Hylander, 1988; Daegling and Grine, 

1991; Teaford and Ungar, 2000) thick enamel (Grine and Martin, 1988; Lucas et al., 

2008) both of which are found in species of Paranthropus. 

Previous experimental work has noted that the amount of strain in the 

circumorbital region (i.e., the post orbital bar, dorsal orbital region and zygomatic arch) 

changes depending on how mechanically challenging the foods being processed are 

(Hylander, 1997; Wroe et al., 2007). Evidence from Finite Element Analysis (FEA) 

highlights a similarity in the stress and strains between both sides as increasingly tough 

foods are processed (Wroe et al., 2007).  Early in vivo work by Hylander (1997) also 

supports this conclusion.  In experimental work with macaques and baboons, Hylander 

and Johnson (1992) found that during the mastication of an almond, the strains of the 

zygomatic arch were much larger than in the dorsal interorbital region.  Similarly, during 

the mastication of an apricot, zygomatic arch strains were larger than strains in the dorsal 

interorbital area and the postorbital bar (Hylander and Johnson, 1992).   Diet type is also 

predicted to affect soft tissue structures such as the PSCA of the jaw adductor muscles 

(Perry and Wall, 2008).   
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Food material properties (FMPs) 

  The physical properties of food are understood in terms of their size and shape 

(external factors) and the nature of their material composition (internal factors) (Strait, 

1997; Lucas, 2004; Yamashita, 2008a;b).  Because a food item needs to be broken down 

for consumption, understanding the physical composition of different foods involves 

elements of fracture mechanics; specifically the extent to which a dietary item is stiff or 

compliant, soft or hard, tough or brittle (Lucas et al., 2000; Wood and Schroer, 2012). 

The internal factors that govern food fragmentation include strength, toughness, and 

deformability (Lucas et al., 1986b; Lucas, 2004) and it is these factors that influence the 

morphological components that function to fracture the food item. To understand the 

relationships between an applied force, material deformation, and fracture (failure) of a 

food item, one examines a load/deformation plot (Figure 4).  

                                   
Fig. 4 Hypothetical load vs. deformation curve. Elastic region denotes the loads in which 
a material will return to its original state. The yield point (yellow dot) indicates the load 
at which the material begins to deform. The plastic region indicates the loads that 
permanently deform the material. Failure (red dot) indicates the point at which the 
material can no longer resist loading. Stiffness (K) is the slope along the line and 
toughness is calculated based on the area under the curve. 
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Within the realm of biomechanics, stiffness (K) is a measure of the change in force 

divided by the change in deformation for a material when it is under some external load.  

Stiffness is measured within the elastic region of a load-deformation curve (Yamashita, 

2008a).   

 With respect to ingested food items, the equivalent relationship in a stress (σ)- 

strain (ε) curve is Young’s modulus (E), which is a scaled version of stiffness of a 

particular food item (Figure 5). Young’s modulus is calculated as the slope of the elastic 

region in a stress – strain curve.  

 

                              
 

 

  

 

In general, stiff materials under high stress undergo low levels of strain (Wood and 

Schroer, 2011; Nordin and Frankel, 2012) while a material that experiences low stress 

and high levels of strain is a compliant material (the opposite of a stiff material). These 

characteristics are sometimes translated in the primate dietary ecology as the relative 

“hardness” or “softness” of a food item. Hardness is the extent to which a material resists 

deformation in the plastic and elastic regions (Lucas et al., 2000).  This is typically 

Fig. 5 Stress – strain curve with Young’s modulus. Yellow dot 
indicates the point past which the material is permanently 
deformed. 
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measured by the degree to which a material resists indentation.  A soft material easily 

deforms and is therefore easily indented (Wood and Schroer, 2011).     

 Another key food material property, particularly with regard to primate dietary 

mechanics, is toughness (R) which describes a material that is compliant yet difficult to 

fracture.  In practical terms, toughness is defined in two ways that both describe how a 

solid material resists the propagation of cracks (Lucas et al., 2008; 2012).  First, 

toughness is a measure of the amount of work required to fracture a (food) material’s 

surface (Lucas et al., 2000,2012; Wood and Schroer, 2011).  This value for toughness (R) 

is measured in Joules per meter squared (J m2) and is calculated as the area under a given 

a load/deformation curve of a material (Yamashita, 2008b; Lucas et al., 2012). The 

second definition of toughness describes the effect of cracking on the stress field of the 

material that has linear elastic behavior.  Calculated as (T) it is the measure of combining 

the average stress experienced by the material and the square root of crack length. This 

value provides the critical measure for the instance when stress is high enough to 

propagate and/or extend a crack (Lucas et al., 2012). 

In a tough food, a high amount of force (i.e., bite force) must be applied to 

effectively fracture the material.  Highly fibrous foods tend to be tough, and for primates, 

a food of this quality is not preferred (Lucas et al., 2012).  A brittle object, which lacks 

toughness, requires only small amounts of energy to fracture (Lucas et al., 2000; 

Yamashita, 2008b).  Nuts are examples of hard objects that tend to be brittle because they 

break into small pieces at high stresses.  There would be no plastic deformation, 

suggesting these pieces could, theoretically, be put back together to construct the original 

nut.  This is not characteristic of soft objects, like leaves, which fracture at low stresses 
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and do not break in a way that allows them to easily reconstruct the original leaf.  Soft 

objects, for this reason, tend to be tough (Wood and Schroer, 2011).    

The ways foods fragment is complex and many of the factors are difficult to 

measure, particularly in the wild.  A common way to measure fragmentation is through 

toughness and stiffness.  These two factors capture how a plant’s construction can deter 

herbivores from consuming it (Agrawal et al., 1998; Lucas et al., 2000; Lucas, 2004; 

Yamashita, 2008b).  Stress-limited foods are characteristically brittle and break apart 

when sufficient force is applied to them.  This plant type relies on the consumer not being 

able to generate sufficient chewing forces to break it down (Yamashita, 2008b).  In 

contrast, displacement limited plants rely on the inability of the herbivore to induce 

enough strain on the plant to cause it to fracture (Agrawal et al., 1998; Yamashita, 

2008b).  These include tough foods.  These distinctions in food material type are 

important for understanding how the teeth must function to efficiently break down 

different food types with varying force requirements. While there is great interest in this 

field, more information about the relationship between the food properties and 

microstructure and how these interface with mastication is still needed (Lucas et al., 

2012).  If these relationships are better understood, then the ways tooth macro- and 

microwear are interpreted can be improved in living and fossil primates. 

 
DIETARY DIFFERENCES IN RELATION TO FACIAL MORPHOLOGY  

 
 Understanding the ways in which masticatory forces are resisted is crucial for 

modeling facial growth.  While genetic and environmental factors exert considerable 

influence on facial growth, it is also important to consider how mechanical factors 
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associated with mastication shape growth and the resulting morphological forms that 

manifest in the craniofacial complex. A large literature exists concerning the effects of 

craniofacial morphology and diet type, and the breadth of experimentally obtained 

evidence suggests a strong link between these elements across mammals.   

 Most of the models of facial growth in relation to masticatory loading are derived 

from experimental studies performed on non-human anthropoid primates and mammals 

(Lieberman et al., 2004a; Wall et al., 2008; Ross et al., 2009; Perry and Hartstone-Rose, 

2010).  For example, a study by Koyabu et al. (2009) examined the differences in 

craniodental morphology between two sympatric species of tree squirrels (Callosciurus 

erythraeus and Dremomys rufigenis) finding that while both species prefer the same fruits 

and insects, only C. erythraeus incorporated tree bark and hard seeds into its’ diet.  As 

expected, C. erythraeus possessed cranial features that would aid in resisting increased 

masticatory loading and higher bite force production required for hard-seed feeding 

(Koyabu et al., 2009).  These features include a more robust zygomatic arch to resist 

increased forces from masseter muscle activation, greater temporalis and masseter muscle 

leverage during incision and a relatively wider interorbital region as compared to D. 

rufigenis (Koyabu et al., 2009).  That study’s findings suggest that the differences in 

craniofacial morphology between these squirrel species is functionally linked to the 

differences in their diets. Experimental work on rats determined that those that were fed 

soft foods had smaller muscle attachment sites smaller jaw adductor muscles and 

decreased overall facial height (Kilidaris et al., 1986; Engstrӧm et al., 1986; Yamada and 

Kimmel, 1991; Lieberman et al., 2004a).  As expected, the associated strain magnitudes 

on the mandible, decreased in soft food eaters.  Work by Lieberman et al. (2004a) 
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investigated the effects of food material property type in relation to growth in rock 

hyraxes (Procavia capensis) given their similarities in strain distributions to the non-

human primate skull.  Their findings support the hypothesis that masticatory strains 

follow a gradient in which the highest strains occur near sites of occlusion and 

masticatory muscle insertion but decrease when moving dorsally on the skull (Lieberman 

et al., 2004a).  These conclusions also agree with the strain patterns observed in primates 

(Hylander and Johnson, 1992; Hylander and Ravosa, 1992; Ross and Hylander, 1996). 

 Within the work done on primates there have been numerous studies directed at 

answering questions concerning the effects of hard versus soft diets in primates such as 

baboons (Corruccini and Beecher, 1984) and squirrel monkeys (Bouvier and Hylander, 

1982; Corruccini and Beecher, 1982; Beecher et al., 1983).  In each case, the individuals 

who chewed on harder foods exhibited taller palates, thicker mandibular corpora, and 

faces that were taller and wider.  In contrast, those raised on soft diets possessed several 

abnormal features including crowded teeth, malocclusion and narrowed maxillary arches, 

all of which are indicators of abnormal growth (Lieberman et al., 2004a).  One way to 

explain how different growth trajectories manifest between these broad diets due to the 

rate at which the Haversian systems (the fundamental units of bone) are remodeling.  

Individuals who feed on harder foods may be experiencing higher rates of remodeling (or 

more remodeling events) which result in greater bone growth and maintenance as 

compared to those fed only soft foods (Bouvier and Hylander, 1981, 1996; Lieberman et 

al., 2004a).  This suggests that the portions of the face impacted by increased masticatory 

loading have greater bone response throughout the course of growth and development. 
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 In addition to the size of facial features, the internal bone architecture and degree 

of mineralization has been altered in cases of reduced forces applied to features such as 

the mandible (Tanaka et al., 2007) and zygomatic arch (Franks et al., 2016).  It is 

hypothesized that low magnitude forces will result in lower bone remodeling rates, 

whereas high magnitude forces would require higher bone remodeling rates to ensure the 

bone will not fail (Tanaka et al., 2007).  Tanaka et al. (2007) compared mandibular 

cortical and trabecular bone mineralization and determined that rats fed hard pellets had 

lower degrees of mineralization than those fed soft pellets.  With a soft diet, less muscle 

force is required to power the masticatory muscles, which causes the bone to resorb.  The 

rates of new bone formation decrease, causing the bone to become more mineralized.  In 

trabecular bone, the deeper portions of the bone have higher mineralization than more 

superficial zones (Mulder et al., 2007).  The extent to which is a bone is mineralized has 

an affect on its stiffness.  Bone with high mineralization is generally stiff and brittle with 

a lower threshold to failure (Mulder et al., 2007).  At a bone’s surface, the trabecular 

bone (which is less mineralized) would be more compliant and therefore less stiff.  This 

makes bone capable of resisting higher strains over a period of time (Mulder et al., 2007).    

 Certain primate taxa stand out morphologically because of their specialized diets, 

and because of specified feeding behaviors that required adaptations of the skull.  These 

morphologies are notable because they appear to be adaptations for specific diets.  

Cebids, especially S. apella, have served as test subjects for studies interested in trying to 

identify features associated with a hard object diet (Byron, 2009; Lieberman et al., 

2004a).  Among the factors that seem to relate to hard-object feeding is an orientation of 

the mandibular ramus in a more vertical plane, a more anteriorly placed temporalis 
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muscle, and a shift of the root of the zygomatic bone to a more anterior position. 

Pithecia, a group known to consume seeds as a major portion of their diet, relied on their 

post-canine dentition to produce enough force to break through the seed and process it 

(Happel, 1982; Martin et al., 2003; Lieberman et al., 2004a).   

 In addition to the work on food material properties, several studies have examined 

the relationships between strain magnitudes and nutrition (Moore, 1965; Kilidaris, 1989; 

Kilidaris et al., 1992; Lieberman et al., 2004a).  While the material properties of a food 

require certain levels of force production, the nutritional content of the food can also 

affect the growth of some bony features.  Studies done on rats revealed that diets lower in 

calcium had smaller mandibles in terms of their overall dimensions as compared to rats 

that had low calcium content and soft foods had mandibles that were smaller in vertical 

height and smaller in condyle size (Lieberman et al., 2004a).  From this, it appears that 

differences in strain and calcium content create changes in the jaw size as compared to 

differences in strain magnitude alone, which resulted in changes of jaw shape (Lieberman 

et al., 2004a).  These types of data support hypotheses about the influence of food 

material properties on facial form. 

 The patterns and relationships linking morphology and diet in extant groups 

provide researchers with a frame within which to understand similar morphologies in 

fossil specimens.  Using the knowledge accrued from the studies performed on primate 

taxa and their diet specializations allows hypotheses about similar specializations in past 

taxa.  Once aspects of diet can be identified, other aspects of their life, activities, and 

behavior can be inferred. 
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THE ZYGOMATIC ARCH 

 Previous studies of zygomatic arch morphology have typically focused on only a 

few mammalian species including pigs (Herring and Mucci, 1991; Herring et al., 1996; 

Freeman et al., 1997; Teng et al., 1997), macaques (Hylander and Johnson, 1997) and 

chimpanzees (Witzel et al., 2004) and used small sample sizes making it a relatively 

under-studied feature of the primate cranium. During a chewing bout, the masseter 

muscles are activated causing the arch to twist along its long axis resulting in eversion of 

the superior border and inversion of the lower border of the arch (Hylander and Johnson, 

1997). In previous experimental studies on pig and macaque zygomatic arches the 

contraction of the masseter affected strain distribution causing disproportionate amounts 

of strain to accumulate anteriorly along the arch as well as producing high concentrations 

of bending and shearing forces at the anterior portion of the arch (Herring and Mucci, 

1991; Hylander et al., 1991a,b; Herring et al., 1996; Freeman et al., 1997; Hylander and 

Johnson, 1997; Rafferty et al., 2000; Witzel et al., 2004).  The vertical component of the 

masseteric force bends the arch in the parasagittal plane, which is considered to be the 

dominant loading regime experienced by the bony arch (Hylander and Johnson, 1997).  

Furthermore, experimental work on chimpanzees (Pan troglodytes) and macaques 

(Macaca fascicularis) shows the zygomatic arch experiences some of the highest strains 

in the face (Hylander and Johnson, 1997; Ravosa et al., 2000a,b; Ross and Metzger, 

2004).  

 The form of the zygomatic arch is unique compared to other cranial bones, and is 

typically modeled as a curved beam with two fixed ends (Hylander and Johnson, 1997; 

Kupczik et al., 2007).  However, modeling the zygomatic arch in this way is difficult, as 
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it tends to oversimplify the overall form.  Because of variation in loading experienced 

during mastication, the arch does not experience uniform loads throughout a single chew 

cycle.  In addition, the presence of a suture on the bone affects the dispersion of forces 

along the arch over time (Hylander and Johnson, 1997).   The zygomatic arch is bent 

laterally in the middle and medially at both ends (Oberheim and Mao, 2002). This 

construction causes the zygomatic arch to experience tensile forces along its inferior 

margin and compressive forces on the superior margin (Witzel et al., 2004).    

 While modeling the zygomatic arch as a curved beam has heuristic value, such a 

model fails to incorporate the non-uniform strain distributions and the effects of high 

magnitude strains on the bone.  In addition, the presence of a suture between bones 

affects the load distribution along the arch throughout growth (Herring and Mucci, 1991; 

Hylander and Johnson, 1997; Curtis et al., 2014). Zygomatic arch form is intriguing from 

a biomechanical perspective because structures in tension are more likely to fail than 

those in compression, and as the bony anchor for the masseter muscle, bone failure would 

prove detrimental to an individual’s ability to masticate, and therefore cause a severe 

fitness cost.   

 Additionally, the zygomaticotemporal suture along the arch is impacted by 

mechanical stress, which affects its ontogeny and function.  Sutural anatomy has been 

used to predict the magnitude of loading, though interpreting the type of load (i.e., 

compression or tension) is not easily determined from the sutural morphology (Herring, 

1972; Jaslow, 1990; Hylander and Johnson, 1997; Mao, 2002; Mao et al., 2003; Rafferty 

et al., 2003; Rayfield, 2005; Kupczik et al., 2007). Herring and Mucci (1991) examined 

the zygomatico-temporal suture of pigs and found the vertical portion of the suture 
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experienced tension (and some shear) while the horizontal portion was loaded in 

compression.  Importantly, the intrasutural fibers appear to differ between the two 

loading types with the fibers running obliquely between the interlocking laminae in 

compression and directly between the bones in tension (Herring and Mucci, 1991).  This 

supports the utility of using intrasutural fiber orientation to trace functional stress in 

cranial bones (Prahl-Andersen, 1968; Herring and Mucci, 1991). 

 The bony morphology of the zygomatic arch is expected to respond to the high 

masticatory forces generated by mastication but it is unclear whether this response would 

change the external cross-sectional shape, internal cortical bone distribution, or both.  

Despite the extensive work performed on the primate craniofacial skeleton, the influences 

that may pattern variation (both intra- and inter- specifically, and by diet) in zygomatic 

arch form remain relatively unclear. 

 

FOSSIL HOMININS 

 The relationships between masticatory function and force resistance have 

important evolutionary implications for primate craniofacial form.  Studies of masticatory 

performance are important for quantifying differences among extant groups, which then 

can be applied to the fossil record of hominin evolution.  When fossil specimens with 

robust morphologies are uncovered the assumption is that those individuals primarily 

relied on mechanically challenging foods. However, this generalization has some 

exceptions such as Paranthropus boisei (Ungar et al., 2008). For this fossil species, the 

robust morphology may reflect an adaptation for the consumption of occasional fallback 

foods rather than preferred foods based on the dental microwear signal (Ungar et al., 
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2008).  This raises questions about how to interpret robust morphologies in the fossil 

record, especially among other lines of evidence such as microwear and isotopic 

analyses. 

 Determining the diet of early hominins is an important part of the foundation of 

paleoanthropology and remains a highly debated issue because many lines of evidence do 

not agree on what extinct taxa were feeding on. Using what is known about the feeding 

behaviors and morphology of living taxa helps researchers explain the variation in cranial 

morphology in fossil hominins.  Taking a dietary perspective offers other ways of 

examining extinct taxa beyond just the foods they were eating.  For instance, 

understanding the hominin facial form is an important starting point for creating 

hypotheses about their radiation across Africa and the foods that they were relying on 

(Cerling et al., 2011; Dominy et al., 2008; Daegling et al., 2011; Lee-Thorp et al., 2010; 

Wood and Schroer, 2012).   

 There are several features of the skull that suggest these fossil taxa had different 

dietary specializations.  Models of masticatory performance based on extant primates 

help reconstruct the diets of extinct taxa such as Australopithecus and Paranthropus 

(DuBrul, 1977; Rak, 1983; Lucas et al., 1985; McCollum, 1994; Wood and Lieberman, 

2001; Macho et al., 2005; Daegling et al., 2011; Balter et al., 2012; Wood and Schroer, 

2012; Daegling et al., 2013).  The craniofacial morphologies of these groups are complex 

and there are some striking differences between the craniodental features of these taxa 

tied to their dietary choices. However, Australopithecus and Paranthropus pose many 

challenges to those interested in reconstructing their diet and interpreting their 
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morphology because different lines of evidence have led researchers to conflicting 

conclusions.  

 Upon its discovery, Paranthropus was characterized as a strict herbivore whereas 

Australopithecus was a more generalized feeder (Broom, 1946; Robinson, 1954a,b; 1956; 

DuBrul, 1977; Rak, 1983).  In Paranthropus, the possession of robust craniodental 

characteristics, which include an anteriorly thickened hard palate, thickly enameled teeth, 

tall mandibular ramus and flaring zygomatic arches, suggested it was specialized for a 

diet requiring high magnitude forces (Broom, 1950; Robinson, 1954b; Grine, 1986; 

Wood and Lieberman, 2001; Ungar et al., 2008).  However, the craniodental features 

within australopiths (i.e., the marked anterior placement of the zygomatic roots along 

with some mediolateral expansion of the face and reduced prognathism) suggested a diet 

that did not require high magnitude forces and was more in line with omnivory (DuBrul, 

1977; Rak, 1983).  The features of Paranthropus seem to allude to some degree of 

dietary specialization for tough and/or hard foods (DuBrul, 1977; Wood and Lieberman, 

2001; Wood and Strait, 2004; Wood and Constantino, 2007; Cerling et al., 2011; 

Daegling et al., 2011).                                                 

 Paranthropus boisei, an East African hominin, had a relatively large and thick 

mandibular corpus, large and low-cusped postcanine teeth and cranial features that 

suggest the presence of large temporalis muscles (Rak, 1983; Lucas et al., 1985; Grine, 

1986; Grine and Kay, 1988; McCollum, 1994; Cerling et al., 2011; Ungar and 

Sponheimer, 2011).   Rak (1983) provided one of the earliest evaluations of the 

craniofacial features in Paranthropus by applying Endo’s (1966) frame model of the face 

to hominoids.  Under Endo’s model, the highest masticatory stresses should reside in the 
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supraorbital region bringing Rak (1983) to conclude that the robust australopiths evolved 

a face that minimized the effects of these forces through increased facial height and 

elongated malar regions in relation to greater bizygomatic breadth.  However, subsequent 

analyses (Picq and Hylander, 1989; Hylander et al., 1991; Ravosa, 1991) found that 

Endo’s model did not agree with the results from their experimental work, bringing Rak’s 

conclusions into question (McCollum, 1994).  Experimental evidence has revealed that 

masticatory strains have limited impact on the browridge region (Hylander et al., 1991; 

McCollum, 1994).   Clearly facial development is dictated by a host of factors and is not 

simply a product of mechanics; however the masticatory apparatus must meet the 

mechanical demands imposed on it throughout development.  The nature of this 

relationship remains unclear and requires further study. 

 

Diet of Paranthropus 

 One of the most studied and continually debated cases of specialized masticatory 

loading revolves around interpretations of the craniofacial and craniodental morphology 

of Paranthropus. These taxa possess several features pinned as adaptations for producing 

high bite forces and resisting high magnitude strains (Strait et al., 2008; Daegling et al., 

2011). Specifically, these individuals had large, thickly enameled cheek teeth, molarized 

premolars, more anteriorly placed zygomatic root and well-developed muscle attachment 

sites for the masseter and temporalis muscles which would aid in resisting bending and 

torsion forces experienced during feeding (Rak, 1983,1985; McCollum, 1994; Strait et 

al., 2008; Daegling et al., 2011).     
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Durophagy, or hard-object feeding, is used by some living primate groups, such 

as mangabeys, as an alternative dietary strategy (McGraw et al., 2012) during times of 

resource scarcity.  Because hard-object feeding serves as a fallback food in some extant 

groups, some researchers have argued that it could also be used by fossil hominins during 

times of resource scarcity or when preferred foods are unavailable (Daegling et al., 2011).   

Feeding on large, hard objects has been suggested to explain premolar adaptations 

in fossil hominins such as Paranthropus (Strait et al., 2008).  Accompanying this diet 

type is the necessity of generating high bite forces, as well as a concomitant increase in 

the maximum distance individuals could open their mouth (i.e., gape) to accommodate 

the size of the food. Thus, gape is an important mechanical constraint of the masticatory 

complex (Perry & Hartstone-Rose, 2010; Daegling et al., 2011). Gape is multifaceted as 

it is affected by factors such as location and morphology of the jaw adductor muscles and 

the height of the teeth (Herring & Herring, 1974; Hylander, 1979a; 2009; Perry & 

Hartstone, 2010). 

If the food item were large relative to the individual’s oral cavity, it would be 

difficult for that individual to open their mouths enough to situate the item comfortably 

on the post-canine teeth (Strait et al., 2008).  In anthropoids that consume large objects, 

such as fruit, they first use their incisors to take bites out of the object to reduce it to more 

manageable-sized pieces (Ungar, 1994; Strait et al., 2008).  However, if the food was too 

resistant to process with the incisors, then the premolars could be used to produce higher 

bite forces that then would allow the food to be fully processed.  Because premolars are 

located more mesially in the mouth, they do not require the same degree of gape as 

compared to molars.  The premolars could then be capable of breaking off a piece of the 
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food or at least propagating cracks in the food item so that it can eventually be consumed 

(Strait et al., 2008).  This has been argued for the diet of Paranthropus boisei, given the 

low amount of microwear on the incisors (Ungar and Grine, 1991; Strait et al., 2008).   

However, gape is difficult to determine in the fossil record because of how much 

constraint soft tissues (specifically, the adductor muscles) influence the bone (Daegling et 

al., 2011). In the absence of soft tissue and/or large canines, gape is impossible to 

reconstruct in the fossil record (Daegling et al., 2011).  In fossil hominins, gape to 

accommodate canine size is likely not a selective force on their morphology.  Based on 

the suite of adaptations possessed by Paranthropus, the consumption of small, hard 

objects was identified as an important component of their diet (Jolly, 1970; Grine, 1981; 

Strait et al., 2008); however this conclusion is not entirely supported biomechanically. 

  Biomechanical models constructed in several studies have not found small, hard 

objects to be a source of higher magnitude premolar loading (DuBrul, 1977; Smith, 1978; 

Greaves, 1978; Spencer, 1995, 1998) given that biting on premolars produces bite forces 

almost equivalent to that of molar biting but with higher resulting strains.  There would 

be no advantage to chewing a small, hard object on the premolars: thus, no specialization 

for premolar loading would be necessary (Strait et al., 2008).   

Finite-element modeling performed on Australopithecus africanus has suggested 

that hard-object feeding, using their premolars, was part of their overall feeding strategy 

(Strait et al., 2009).  It is plausible that A. africanus had a relatively gape, which would 

confer more muscular mechanical advantage but would limit the size of the object that 

could be processed orally (Daegling et al., 2011).  To bypass this constraint on object 

size, A. africanus could have used extraoral processing to reduce the food’s size 
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(Daegling et al., 2011).  This type of behavior is observed in chimpanzees (Pan 

troglodytes) and mangabeys (Cercocebus atys) (Boesch and Boesch, 1982; Daegling et 

al., 2011). However, wear patterns observed in consistent hard-object feeders, such as 

sooty mangabeys, does not support hard-object feeding in A. africanus (Daegling et al., 

2011).  This is due to dissimilarities between the cranial features of A. africanus and 

extant hard-object feeders, as well as inconsistencies in the microwear signals of these 

groups.  

While disagreement concerning early hominin diets continues, if hard-object 

feeding was a significant part of fossil hominin diets then placing high loads on the 

premolars and being able to produce the high magnitude bite forces would likely be 

required (Grine, 1986; Strait et al., 2008; Grine et al., 2010; Daegling et al., 2011). One 

way the facial skeleton has been hypothesized to accommodate increased loading is 

through evolving more anteriorly placed zygomatic roots and anterior pillars, which are 

features found in Australopithecus and Paranthropus (Rak, 1983; Daegling et al., 2011).  

The anterior pillars of Australopithecus africanus have been interpreted to as forms of 

facial buttressing necessary for the consumption of hard objects (Rak, 1983).  However, 

extant primate species, such as sooty mangabeys, utilize hard objects but lack the facial 

buttressing of A. africanus (Singleton, 2004; Daegling et al., 2011).  Because they do not 

share similar cranial features with earlier hominins, making inferences from such diet 

comparisons is tenuous.  

PREDICTIONS 

 The masticatory complex has been subjected to different selection pressures over 

the course of evolution.  As a whole, the different parts of the face must exist in a 



  55 

relatively constrained space on the skull.  The mechanical demands of chewing vary 

depending on the material properties of the food, muscle activation and gape.  Internally, 

the density and composition of the bone is also expected to vary according the types of 

force passing through the face. In addition, this dissertation will be able to comment on 

the influence of hard-object feeding in relationship to zygomatic arch morphology, which 

will inform on current understandings of this dietary strategy in living and extinct 

priamtes. The following are a set of predictions addressing these points with respect to 

zygomatic arch form in primates with the intention of generating new insight regarding 

craniofacial dietary adaptation and reconstruction in fossil hominins. 

 

Cross-sectional shape, cortical bone, and diet  

 Features that are subjected to higher magnitude loading, such as the zygomatic 

arch and inferior circumorbital region, are expected to exhibit reinforced bone 

architecture; a pattern that has been observed in many primate taxa.  The consumption of 

less mechanically resistant foods would require lower magnitude forces as compared to 

those required of more resistant foods. In primates, this is the difference between soft, 

fleshy ripe fruits as compared to hard nuts or seeds.  The forces required for processing 

resistant foods are higher than those of less resistant foods.  Thus, the morphology 

associated with mastication in hard-object feeders should exhibit adaptations for resisting 

high magnitude loads, including larger masticatory muscles that are positioned more 

anteriorly, larger bone cross-sectional areas (CSA) and/or increased bone density.   

  One of the most notable adaptations of the haplorrhine skull is the 

presence of post-orbital closure.  Many have argued that this feature is representative of a 
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major morphological shift to accommodate larger chewing muscles (Cartmill, 

1970,1972,1980).  If true, this suggests other features in this area may have undergone 

some additional selection to accommodate higher magnitude loads.  The zygomatic arch 

may have a functional role in resisting masticatory forces associated with particular diet 

because it serves as the attachment site for the masseter muscle.  In addition, the 

temporalis muscle passes between the arch and the lateral part of the cranial vault.  

Changes to the morphology zygomatic arch may confer some mechanical advantage in 

terms of force production.  For instance, a taller, wider or denser zygomatic arch may be 

able to support a larger masseter muscle that would be required to exert high magnitude 

forces.   

 In the following studies, cross-sectional shape in relation to bone mechanical 

behavior is investigated to determine whether different masticatory induced load types 

(bending and torsion) are uniformly experienced along the arch or whether they follow 

the known strain distribution. In addition, specific cross-sectional shapes and their ability 

to best resist bending or torsional loads are quantified and compared intraspecifically, 

interspecifically, and by diet type. 

 

Stress Resistance 

It is well established that bone responds to different loads in a way that allows it to resist 

applied forces and avoid failure.  Studies that have quantified bone stress note than an 

increase in cortical bone is a response to high stress (Bouvier and Hylander, 1981; Wang 

and Dechow, 2006).  Areas of the face that experience high stress should therefore 

exhibit greater amounts of cortical bone and those that experience less stress should have 



  57 

relatively less cortical bone.  In primates, and other mammals, the areas that experience 

the greatest amount of stress, such as the zygomatic arch, are expected to exhibit some 

architectural response, either by exhibiting a more robust form or changing the internal 

architecture by way of increasing bone density or cortical area (Chamay and Tschantz, 

1972; Bouvier and Hylander, 1981, 1996; Beecher et al., 1983; Martin and Burr, 1989; 

Antón, 1994; Hylander and Johnson, 1997; Mulder et al., 2007; Kupczik et al., 2009). 

While the strain profile of the zygomatic arch has been examined in past studies, its 

morphology and shape in relation to the stress profiles have not been well understood.  Its 

unique structure and position relative to the masseter and temporalis muscles makes it a 

good candidate for looking at the relationship between masticatory stress and bone. It is 

not clear whether the morphology of the zygomatic arch, which is highly variable across 

primate taxa (both living and extinct), is a product primarily of function, phylogeny, or 

some combination of both.  The unique form of the arch also calls into question the role 

of shape in strain resistance and the impact of the feature’s location relative to other 

structures (e.g., the lateral portion of the orbit and the tooth row). In the following 

studies, the expectation is that areas of greatest cortical bone concentration and measures 

of bone strength will correspond to the areas of greatest strain in the zygomatic arch. 

 

Sutural Complexity 

 Given the findings observed in cebids, the expectation is that sutural complexity 

will be greater in primate taxa that consume mechanically resistant diets.  In particular, 

given that hard-object consumption in S. apella suggests that the high magnitude loads 

associated with fracturing a hard object necessitate increased bite forces and high facial 
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strains, the expectation is that hard-object consumers will exhibit relatively more 

complex sutures than taxa with less resistant diets. 

 

Diet 

 The above predictions are couched within larger questions that relate to linking 

specific aspects of craniofacial morphology with diet in primates.  To quantify these 

relationships, two different dietary schemes are employed: total reported consumption 

percents for food items, and food material properties (FMPs) data. Using this 

comparative approach to examine arch cross-sectional variables and sutural complexity 

provides an opportunity to test the duality of these approaches and make determinations 

about how to improve dietary categorization for future studies. 
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CHAPTER 3: ZYGOMATIC ARCH CORTICAL AREA AND DIET IN PRIMATES 

3.1 Abstract 
 
 The influence that various types of ingested foods have on the form (size and 

shape) of specific features of the masticatory system is an area in which many questions 

remain unanswered. The bony zygomatic arch, the focus of this study, is directly linked 

to the masticatory system because it serves as the anchor for the masseter muscle, a 

primary muscle of chewing and source of masticatory force.  However, the influence of 

diet and the forces associated with different diet types on the arch’s internal bone 

architecture is not well understood across haplorhine primates. Despite the breadth of 

work centered around the craniofacial complex and biomechanics of mastication, there is 

a need for further investigations into the functional relationships between specific bony 

features that experience high strains, (e.g., the zygomatic arch), and the masticatory 

forces generated by different diets (e.g., mechanically resistant versus non- mechanically 

resistant) across non-human primates. 

 A hypothesis and series of predictions assessing diet in relation to variability in 

cortical area distributions and values of section moduli (measures of bone strength) 

throughout the zygomatic arch were tested in a sample of haplorhine primates. Cortical 

area and measures of section moduli appear to track with the known masticatory strain 

distribution along the zygomatic arch. Pairwise comparisons between closely related taxa 

of different diets reveals significant differences in anterior cortical area and section 

moduli values. These results imply that differences in masticatory loading due to diet 

manifest in the zygomatic arch’s internal bone structure. 
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3.2 Introduction 

 Craniofacial morphology and diet type are intricately linked. Different foods have 

variable functional demands, especially in terms of their mechanical properties, total 

chewing time, and the quantity of food an individual must consume to meet its nutritional 

requirements (Kay, 1973).  The force requirements to break down food can vary greatly 

(Lucas and Luke, 1984; Kinzey and Norconk, 1990; Lucas et al., 2008, 2012; Taylor et 

al., 2008; Reed and Ross, 2010). More mechanically challenging foods (i.e., those that 

resist deformation and/or crack propagation) should expose the facial skeleton to 

increased stress (defined as the amount of force per unit area) and strain (defined as the 

amount of deformation as a result of stress). As a result, primate species that feed on 

resistant diets should possess buttressed facial skeletons that act to resist those forces. 

 Investigating the relationship between dietary loading and bone response is a 

critical part of understanding the morphology of the cranium. The zygomatic arch must 

resist repetitive masticatory forces given that feeding is a routine behavior that involves 

habitual loading of the face (Hylander et al., 1991a,b; Hylander and Johnson, 1992, 

1997). It is imperative that the zygomatic arch, a known site of high masticatory strains, 

be examined in order to understand the effects of different loads on a specific portion of 

the primate cranium.   

  Research on the craniofacial skeleton and the biomechanics of mastication have 

revealed that the primate cranium experiences varying amounts of stress and strain during 

feeding (e.g., Hylander, 1979b, 1984; Hylander and Johnson, 1997; Dechow and 

Hylander, 2000; Ravosa et al., 2000b).  To understand how different masticatory stresses 

and strains influence craniofacial form, a consideration of the individual components of 
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the face, and in particular, those regions that experience the greatest masticatory loading 

is required.  Thus, studies that investigate the effects of processing different diet types 

(and therefore different force magnitudes) on specific parts of the facial skeleton (e.g., 

Spencer, 2003; Wright, 2005; Terhune, 2011) are an essential part of understanding 

masticatory biomechanics in living primates and in the rendering of accurate dietary 

reconstructions in extinct taxa. 

 Internally, the density and composition of facial bones are expected to vary in 

predictable ways according to the types of forces passing through them. In a structure like 

the skull, the degree of bone stiffness and flexibility affects how the bone responds to 

masticatory strains (Dechow and Hylander, 2000; Wang et al. 2006).  In discussions of 

bone strain and bone loading, it is important to note that “high strain” is not equivalent to 

“high loading” in all instances. While high loading (i.e., high magnitude external force 

applied to bone) does elevate strain (i.e., increase the displacement of bone material), 

high strains may also appear in regions that are structurally less strong. Strain data 

collected in vivo presumably derive from bone regions that are already adapted to their 

habitual loading environment. Thus, bone regions that consistently experience high 

strains are assumed to have greater bone stiffness.  Furthermore, areas with high bone 

stiffness will resist strain more than those with high flexibility (Dechow and Hylander, 

2000).  Cortical bone density is used as evidence of bone response to variations in strains 

and stress (Hylander, 1979a,b, 1985; Ohman et al., 1997; Hylander et al., 1998; Demes et 

al., 2000; Daegling, 2002a), thus providing morphologists with a means of gauging the 

extent to which forces can be resisted; higher densities of cortical bone are believed to 

signal higher loading.  
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 It is well established that bone responds to loading by increasing bone formation 

(Currey, 2003; Rantalanien et al., 2011; Mantila Roosa et al., 2012) and that levels of 

bone mass are maintained through repeated loading (Lanyon and Rubin, 1984; Rubin and 

Lanyon, 1984). Within the realm of masticatory biomechanics, experimental studies have 

detailed the effects of hard versus soft diets in primates such as baboons (Corruccini and 

Beecher, 1984) and squirrel monkeys (Bouvier and Hylander, 1982; Corruccini and 

Beecher, 1982; Beecher et al., 1983) and found that feeding on hard objects increases 

bone density.  This suggests a greater frequency of remodeling events (or possibly greater 

osteogenesis per event); resulting in greater bone growth and maintenance in individuals 

fed hard diets, as compared to those fed only soft foods (Bouvier and Hylander, 1981; 

Lieberman et al., 2004a).  While these studies highlight the localized effects of a soft 

versus hard diet on bone, these data suggest that diet type directly influences bone 

remodeling and that the portions of the face that are affected by increased masticatory 

loading exhibit a greater bony response.  Based on this experimental work, an underlying 

assumption of comparative morphology studies is that skeletal elements reflect their force 

environment in vivo (Daegling, 2002a).   

 Attachment sites for the masticatory muscles show increased bone mass as a 

reflection of the increased loads they experience during activation. In the last few 

decades, a number of studies utilizing in vivo methods (e.g., Hylander, 1984, 1985; 

Hylander and Johnson, 1994, 1997; Ross and Hylander, 2000; Vinyard et al., 2005; Wall 

et al., 2006; Taylor and Vinyard, 2008) have provided some data on the ways primates 

recruit their masticatory muscles and how those recruitment patterns translate to internal 

loads that are resisted by the bones of the masticatory apparatus. However, this approach 
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has not been applied to investigate the morphology of an area that routinely experiences 

high strain due to mastication: the zygomatic arch.  

 Previous studies of zygomatic arch morphology have focused on only a few 

mammalian species including pigs (Herring and Mucci, 1991; Herring et al., 1996; 

Freeman et al., 1997; Teng et al., 1997), macaques (Hylander and Johnson, 1997) and 

chimpanzees (Witzel et al., 2004).  This limited taxonomic breadth, in combination with 

these studies’ small sample sizes, makes the zygomatic arch a relatively under-studied 

feature of the primate cranium.  

 Early experimental work found that the zygomatic arch experiences a non-

uniform strain distribution; the anterior portion experiences greater strains than the 

posterior portion (Herring and Mucci, 1991; Hylander et al., 1991a,b; Herring et al., 

1996; Freeman et al., 1997; Hylander and Johnson, 1997; Rafferty et al., 2000; Witzel et 

al., 2004).  Studies of pig (Sus scrofa domesticus) and macaque (Macaca fascicularis) 

zygomatic arches revealed that masseter muscle contraction affected strain distribution 

along the arch and produced high concentrations of bending and shearing loads at the 

anterior portion of the arch (Herring and Mucci, 1991; Herring et al., 1996; Hylander and 

Johnson, 1997).  Furthermore, experimental work on chimpanzees (Pan troglodytes) and 

macaques showed that the zygomatic arch experiences some of the highest strains in the 

face (Hylander and Johnson, 1992,1997; Ravosa et al., 2000a,b; Ross and Metzger, 

2004).  Based on these strains, the internal bone architecture is expected to reflect these 

loading regimes, but it is unknown whether the internal architecture indeed correlates 

with experimentally obtained strain patterns. 
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 From a biomechanical perspective, zygomatic arch form is intriguing because 

structures in tension are more likely to fail than those in compression (Wood, 1971), and 

as the bony anchor for the masseter muscle, bone failure would prove detrimental to an 

individual’s ability to masticate. Despite the extensive work performed on the primate 

craniofacial skeleton, the influences that may pattern variation (both intra- and inter- 

specifically, as well as by diet) in zygomatic arch form remain relatively unclear. An 

understanding of the internal architecture of the zygomatic arch in relation to diet has 

untapped value in the realm of masticatory biomechanics for both living and extinct taxa, 

not only from the perspective of comparative morphology, but also in the creation and 

validation of Finite Element Models (FEM), and the reconstruction of diet.   

 

3.3 Materials and Methods 

3.3.1 Study Sample  

 MicroCT scans (voxel range 7.94-30.0 voxels/mm) of skulls from 11 primate 

species (n=77 individuals; Table 1) were selected from skeletal and cadaver collections at 

Arizona State University and Northeast Ohio Medical University (NEOMED). Species 

were selected to obtain a sample that spanned a variety of diet types and were assigned to 

a dietary category based on a diet profile constructed from published data on specific 

foods consumed and the mechanical properties of those foods. Only adult, wild 

specimens without pathology were included to control for influences resulting from 

captivity and/or disease.  A summary of the number of males and females for each 

species is shown in Table 1. 
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Table 1. Study sample composition 
Taxon Female, n Male, n  Unknown, n Total, n 
Gorilla gorilla 9 - - 9 
Piliocolobus badius 4 3 - 7 
Alouatta caraya 2 3 1 6 
Pan troglodytes 8 - - 8 
Cercopithecus mitis 8 - - 8 
Ateles geoffroyi - - 8 8 
Callicebus moloch - 7 - 7 
Cebus capucinus 5 - 4 9 
Pithecia pithecia 1 1 1 3 
Sapajus apella 1 3 2 6 
Callithrix jacchus - - 6 6 
Total 38 17 22 77 

 

3.3.2 Dietary categories 

 A species’ designation as a “tough feeder,” “hard feeder,” “soft feeder,” or 

“exudate feeder” was based on total consumption of 55% or more of a particular food 

type deemed as tough, hard, soft, or exudate based on its mechanical properties. Because 

this study examined the effects of presumed variation in masticatory loads on the bony 

morphology of the zygomatic arch, “exudate feeder” remained distinct from “soft feeder” 

as each of these food types differ in their material properties and time required for 

mastication (Norconk et al., 2009). In instances where two or more primary food types 

are consumed (e.g., tough and soft), the species’ diet characterization was assigned based 

on the food type with the highest consumption percent (Table 2).  

 

3.3.3 Hypothesis 

  The hypothesis that cortical bone area (CA) is positively correlated with 

elevated masticatory loading regimes experienced in the zygomatic arch during feeding 



  66 

was tested in this study. Increased cortical bone concentrations are known to track with 

areas of greater loading (Hylander and Johnson, 1997) and to provide increased axial 

strength. Thus, areas of higher loading in the zygomatic arch are expected to possess 

increased cortical bone concentrations.  Because in vivo data on macaques (Hylander and 

Johnson, 1997) document zygomatic arch strains to be highest anteriorly and lowest 

posteriorly, it is expected that the relative amount of cortical bone as a function of cross-

sectional area be relatively largest anteriorly and smallest posteriorly. With regard to diet, 

haplorhines who feed on resistant diets likely experience relatively higher strains along 

their arches. Therefore, it is expected that resistant-object feeders exhibit relatively 

greater amounts of CA compared to closely related non-resistant feeders. Because the 

anterior portion of the arch experiences the largest loads in vivo during feeding, all 

comparisons were focused on this region. Finally, the greatest measures of the section 

moduli (Zx and Zy) are predicted to occur anteriorly given loading is greatest in this 

region. As a measure of cross-sectional strength (Ruff, 2000; 2008), section moduli 

values should be greatest in areas of increased loading as compared to regions of 

decreased loading 
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3.3.4 Data Collection   

 Bones under loading have been characterized by beam models (Ohman, 1993; 

Ruff, 2000), which enable estimates of cross-sectional strength and resistance to bending 

and torsion to be calculated. Within the cranium, the anthropoid mandibular symphysis 

has been modeled as a curved beam (Hylander 1984,1985) in which higher 

concentrations of cortical bone developed lingually to offset the effects of bending forces 

during chewing. Given the structure and orientation of the zygomatic arch on the skull, a 

beam model is appropriate, but more complicated because it requires the considerations 

of a curved beam undergoing combinatory loading as a result of mastication. Using a 

model of a hollow, circular beam for the zygomatic arch requires the collection of data on 

internal bone organization relative to total cross-sectional area. 

 Three-dimensional (3D) models of primate skulls were constructed from microCT 

scans from existing collections at ASU and NEOMED using Amira 3D visualization 

software (FEI Visualization Sciences Group). Once created, each skull model was placed 

in the Frankfort horizontal position to standardize their orientation. Using the 3D models 

of each skull, five locations along the zygomatic arch were identified and resliced along 

the long axis of the arch using Amira’s “obliqueslice” tool.  This generated the necessary 

cross sections at each slice location for analysis. The five slice locations chosen were 

based on previous work (Hylander and Johnson, 1992) that placed strain gauges at the 

anterior, midsuture, and posterior areas on a macaque zygomatic arch (Figure 6). This 

present study incorporated two additional locations (anterior to the suture and posterior to 

the suture) to provide more coverage of the arch and to determine if these intermediate 

areas are markedly different from the initial three locations. Arch cross-sections were 
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extracted, exported and then analyzed with the MomentMacroJ v1.4 program (Ruff, 

2006) for ImageJ (http://www.hopkinsmedicine.org/FAE/mmacro.htm). In short, this 

macro generated estimates of total subperiosteal area, cortical area, the distribution of 

bone around both the x- and y-axes, and variables describing the tendency of the bone to 

resist bending forces in the transverse and sagittal planes. 

 

 

Figure 6. Schematic of five arch slice locations taken on Gorilla gorilla specimen.  Top: 
Slice locations (A-E) along zygomatic arch represent (from left to right): anterior, 
anterior suture, midsuture, posterior suture, and posterior regions. Suture is indicated by 
the dotted line. Bottom: Resulting cross-sectional images for each slice location. 
 

 

 

A             B                 C               D           E!

A             ! !       B                    !     C                !   !  D            !            E!
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 Using this protocol, four variables were collected on each arch cross-section using 

the above protocol: cortical area (CA), total subperiosteal area (TA), section modulus 

about a transverse axis (Zx), and the section modulus about a superoinferior axis (Zy) (see 

Fig. 7 for descriptions). Internal bone architecture, specifically cortical bone distribution, 

was examined at each of the five arch locations to determine if cortical bone varies by 

arch location. In response to the range of strains experienced by the arch during 

mastication, CA is expected to be greater in areas of higher strain (i.e., anterior zygomatic 

region) and relatively lower in low strain areas (i.e., posterior zygomatic arch).  The CA 

of each cross-section was measured from the cross-sectional slices using Amira. For both 

the x- and y-axis of each cross-section, the section modulus (Z), a direct measure of the 

strength of a beam, or in this case, a bone, was measured (O’Neill and Ruff, 2004; Ruff, 

2008). Ratios of cortical area to total area (CA/TA) were then calculated to quantify 

cortical distributions relative to total area at each arch location.  Descriptive statistics for 

CA, TA, and CA/TA ratios are available in Table 3.  
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Variable 

 
Description1 

TA Total subperiosteal area 
CA Cortical area 
CA/TA Amount of cortical bone relative to total 

subperiosteal area 

Zx Section modulus about x-axis (Ix/max y 
radius) measures stiffness about x-axis 

Zy Section modulus about y-axis (Ix/max x 
radius) measures stiffness about y-axis 

1Descriptions taken from momentmacro  (NIH image) from www.hopkinsmedicine.org 
Figure 7. Biomechanical variables characterizing zygomatic arch cross-sectional form 
measured from momentmacro readout through ImageJ. The top image illustrates the 
variables in relation to the cross-sectional image. 
 

 

 

 

 

!
Image: Anterior zygomatic arch cross section of Sapajus apella with illustrated examples of biomechanical measures (I) Total 
subperiosteal area (TA) highlighted in orange.  (II) Cortical area (CA) highlighted in blue. The x’ and y’  axes are the major and minor 
principal axes, respectively.  (III) Illustration of the section moduli (Zx and Zy) of a cross-section. Axes x and y are parallel and perpendicular 
to the horizontal plane. Zx is measured about the x-axis, whereas Zy is measured about the y-axis. 

Variable Description1 

TA Total subperiosteal area  
CA Cortical area 
CA/TA Amount of cortical bone relative to total subperiosteal area 
Zx Section modulus about x-axis (Ix/max y radius) measures stiffness about x-axis 
Zy Section modulus about y-axis (Ix/max x radius) measures stiffness about y-axis 
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Image: Anterior zygomatic arch cross section of Sapajus apella with illustrated examples of 
biomechanical measures (I) Total subperiosteal area (TA) highlighted in orange.  (II) Cortical 
area (CA) highlighted in blue. The x’ and y’  axes are the major and minor principal axes, 
respectively.  (III) Illustration of the section moduli (Zx and Zy) of a cross-section. Axes x and y 
are parallel and perpendicular to the horizontal plane. Zx is measured about the x-axis, whereas 
Zy is measured about the y-axis. 
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Table 3. Species means and standard deviation values for Total Area (TA), Cortical Area 
(CA), and CA relative to TA (CA/TA) 

 

3.3.5 Data analysis 

 Because this study’s primary focus is to quantify cortical bone distributions, and 

to compare those distributions by arch region, species, and diet type, these analyses 

concentrated on the five previously mentioned variables.  In species that have males, 

females, and/or unknown individuals present, each sex was compared intraspecifically for 

each variable to determine if there were any significant effects of sex. All comparisons 

found no significant differences.  Therefore, males, females, and unknown individuals for 

each species were analyzed together. 

Taxon Variable A AS M PS P
Gorilla gorilla TA 35.4558 (7.6452) 33.9513 (13.9263) 32.7179 (14.955) 33.9217 (11.8898) 47.3352(23.1717)

CA 33.2888(6.2423) 30.0088(9.8665) 28.4458(12.1981) 29.2105(9.9822) 39.7464(15.0996)
CA/TA 0.9465 (0.0646) 0.9051 (0.0774) 0.88525(0.09275) 0.7822(0.2905) 0.87182(0.0962)

Piliocolobus badius TA 9.5169(2.6766) 8.9248(2.9359) 7.6469(3.0921) 6.5498(3.0921) 7.9936(2.7698)
CA 8.6858(1.9292) 8.0636(2.1348) 6.7655(2.7602) 5.9607(2.7876) 7.2460(2.7301)
CA/TA 0.9258(0.0655) 0.9220(0.0794) 0.9023(0.1031) 0.9347(0.0949) 0.9042(2.2766)

Alouatta caraya TA 17.9162(10.0091) 12.7031(9.0816) 13.1634(8.7146) 13.9633(7.3909) 14.6163(8.8477)
CA 15.9154(8.2826) 10.873(7.2456) 11.4542(7.0470) 11.3390(5.5901) 11.4734(6.7075)
CA/TA 0.9040(0.0413) 0.8892(0.0932) 0.8942(0.0538) 0.8388(0.0914) 0.0823(0.0727)

Pan troglodytes TA 14.1422(6.0882) 10.2142(2.2671) 9.05415(1.7012) 8.3603(2.37052) 9.7225(4.1521)
CA 13.7577(6.0391) 9.9518(2.4441) 8.6951(1.8089) 8.0561(2.3479) 9.5102(4.0399)
CA/TA 0.9684(0.0668) 0.9718(0.06985) 0.96069(0.0763) 0.9634(0.0644) 0.9734(0.0433)

Cercopithecus mitis TA 11.3276(4.2234) 8.6506(3.7805) 4.4172(2.1963) 4.3253(1.0926) 5.5412(2.3757)
CA 9.3961(2.8491) 7.2054(2.7926) 3.9598(1.7053) 3.8287(0.9299) 4.4078(1.3943)
CA/TA 0.8490(0.09377) 0.8663(0.1106) 0.9176(0.0725) 0.8893(0.0800) 0.8528(0.1958)

Ateles geoffroyi TA 4.9899(1.3993) 3.9661(1.6237) 3.2569(1.0066) 3.6914(1.3270) 4.9183(1.1081)
CA 5.0596(1.7361) 4.0455(1.5447) 3.1717(0.6384) 3.4569(1.1327) 4.7939(1.2732)
CA/TA 1.0216(0.2550) 1.0770(0.4345) 1.0590(0.3774) 0.9979(0.2727) 1.0123(0.3746)

Callicebus moloch TA 4.6458(2.2393) 3.1897(1.1292) 2.4181(0.8477) 2.7749(0.6517) 2.4365(1.2645)
CA 4.1835(1.9605) 3.0291(1.0419) 2.2166(0.9831) 2.3611(0.4592) 2.1304(1.0443)
CA/TA 0.9132(0.0783) 0.9534(0.0272) 0.9000(0.1604) 0.8818(0.1912) 0.9010(0.0959)

Cebus capucinus TA 5.5315(1.5828) 4.4209(2.1652) 3.0914(1.4048) 2.9101(0.7358) 2.6486(0.7921)
CA 5.0310(1.5953) 3.9588(2.0772) 2.7643(1.1104) 2.7707(0.6665) 2.4159(0.6302)
CA/TA 0.9078(0.0632) 0.8913(0.0527) 0.9119(0.0636) 0.9547(0.0442) 0.9229(0.0703)

Pithecia pithecia TA 2.3444(0.0823) 2.1195 (0.9272) 0.3239(0.1306) 0.5347(0.1876) 0.50022(0.1889)
CA 2.2893(0.7643) 2.0157(0.9057) 1.8075(0.4937) 2.889(0.8132) 2.6213(0.7583)
CA/TA 0.9802(0.0192) 0.9468(0.0159) 0.8367(0.0919) 0.8250(0.1208) 0.8150(0.1728)

Sapajus apella TA 7.7627(1.1625) 4.1549(0.5941) 3.3613(0.5902) 3.0082(0.5687) 3.4289(0.8065)
CA 6.5799(0.9523) 3.4156(0.5022) 2.8602(0.3341) 2.6583(0.4380) 3.2014(0.7312)
CA/TA 0.8503(0.0610) 0.8248(0.0675) 0.8605(0.0913) 0.8882(0.07224) 0.9351(0.0477)

Callithrix jacchus TA 1.0742(0.1287) 0.9240(1.2162) 0.8032(0.1821) 0.7404(0.2735) 0.9552(0.3870)
CA 1.0359(0.1075) 0.8814(0.1946) 0.7431(0.1528) 0.6932(0.2536) 0.8351(0.3071)
CA/TA 0.9665(0.0398) 0.9577(0.0494) 0.9310(0.05144) 0.9455(0.0865) 0.8894(0.0938)
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 All data were log transformed in order to meet assumptions of normality and 

homogeneity of variance. Log transformed cortical area (CA) measurements were 

compared using a mixed effects analysis of variance (ANOVA) to address whether 

cortical bone distributions were greatest anteriorly and lowest posteriorly. A Bonferroni 

correction was applied to account for multiple comparisons.  Post-hoc paired t-tests 

comparing log transformed cortical area distributions between location pairs (e.g., 

anterior v. anterior suture, anterior v. midsuture, etc) throughout the arch were performed 

on all significant results.  To compare the amount of cortical area (CA) relative to total 

area in a particular location, a ratio of cortical area/total area (CA/TA) was calculated and 

compared between regions. Because the uncorrected CA/TA ratios did not meet the 

statistical assumptions for normality, a log-transformed ratio of logCA/logTA was 

generated for each species so that pairwise comparisons between taxa of different diets 

could be performed. The transformed CA/TA ratios in anterior regions were compared 

among diet types using pairwise comparisons between closely related taxa of differing 

diet to determine if primates who fed on resistant food items possessed more CA as 

compared to non-resistant feeders. A multivariate analysis of variance (MANOVA) was 

performed along with pairwise comparisons on measures of Zx and Zy for all taxa to 

determine if section moduli values were greatest anteriorly as compared to posteriorly.  

All calculations were performed in the software program R studio (RStudio Team, 2015)  

 

3.4 Results 

 Log transformed measures of CA at each arch location were analyzed using a 

mixed effects ANOVA. The ANOVA compared log transformed CA measures by 
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location within a species. The results of the mixed-effects ANOVA revealed significant 

differences across arch locations for every taxon except Callithrix jacchus (see Table 4).  

Table 4. ANOVA results for logCA distributions across arch locations  
Taxon Result 
Gorilla gorilla S (F=3.826, p=0.0119) 
Piliocolobus badius S (F=5.525, p=0.0027) 
Alouatta caraya S (F=4.227, p= 0.0122) 
Pan troglodytes S (F=6.761, p=0.0006) 
Cercopithecus mitis S (F=14.85, p=0.0000) 
Ateles geoffroyi S (F=2.974, p=0.0364) 
Callicebus moloch S (F= 15.76, p=0.0007) 
Cebus capucinus S (F=50.44, p=0.0000) 
Pithecia pithecia S (F=6.41, p=0.0129) 
Sapajus apella S (F=36.97, p=0.0000)  
Callithrix jacchus NS (F=2.087, p=0.1230) 

 

The results of post-hoc paired t-tests comparing log transformed cortical area 

distributions between location pairs (e.g., anterior v. anterior suture, anterior v. 

midsuture, etc) throughout the arch are listed in Table 5. Tough food consumers showed 

no significant results, which indicates that the CA in anterior, middle, and posterior 

portions of the arch are not significantly different from one another. Soft food consumers 

showed significant differences primarily in their anterior v. midsuture, anterior v. 

posterior suture, and anterior v. posterior regions comparisons. This indicates that soft 

food consumers have significantly different amounts of cortical area from anterior to 

posterior regions. Sapajus apella, a hard-object feeder that also consumes fruit, yielded 

significant differences (p<0.001) in CA amounts in all anterior comparisons, similar to 

soft food consumers.  In contrast, Pithecia pithecia, showed no significant differences in 

cortical bone area by region, which is more similar to the distributions observed in tough 

feeders.  
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 To determine whether CA was relatively greater anteriorly than posteriorly, ratios 

of cortical area/total area (CA/TA) were calculated and averaged by species and then 

compared across arch regions. It was predicted that the areas of greatest masticatory 

loading (i.e., anterior portions of the arch) should exhibit greater amounts of cortical bone 

relative to posterior portions as a reflection of masticatory strain distribution. Of the 11 

taxa compared, 8 yielded their highest CA/TA ratios in anterior and/or anterior suture 

locations (see Table 3). Tough food consumers all possessed their absolute highest 

CA/TA ratios in their anterior arch sections.  Soft consumers in general varied in which 

regions had the greatest proportion of cortical area with three of the five taxa, (Ateles 

geoffroyi, Callicebus moloch, and Pan troglodytes), yielding their greatest CA/TA ratios 

in anterior and/or anterior suture locations. Unexpectedly, Sapajus apella exhibited its 

greatest CA/TA ratios in posterior portions as did Cebus capucinus.  Box plots of anterior 

CA/TA ratios for each taxa are shown in Figure 8.   

 

 

 

 

 

 

 
 
 
Figure 8. Box and whisker plot of anterior CA/TA measures for all study taxa grouped by 
diet category 
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 Pairwise comparisons between closely related taxa of different diets were 

performed on log-transformed variables of CA, section moduli (Zx and Zy), and CA/TA 

for anterior arch regions (Table 6). Significant differences (p< 0.01) in logCA measures 

were found in every comparison except when exudate consumer Callithrix jacchus was 

compared to hard-object consumer Pithecia pithecia (p=0.056). All pairwise comparisons 

on logZx were significant except in the comparison between Cebus capucinus and 

Sapajus apella. Comparisons using logZy were significant except in the pairings of 

Callithrix jacchus and Pithecia pithecia, Sapajus apella and Piliocolobus badius, and 

Sapajus apella and Alouatta caraya. In contrast, no comparisons for logCA/TA were 

significant except for the comparison of Sapajus apella and Cebus capucinus (Table 6). 
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Table 6. Results of pairwise comparisons on anterior regions 
# Comparison Diet group Variable Results 
1 C. jacchus v. P.  pithecia exudate v. hard logCA (t=3.7459, p=0.0561) 
2 

  
logZx (t=5.3337, p=0.0131) 

3 
  

logZy (t=1.0988, NS) 
4 

  
logCA/TA (t=-0.5645, NS) 

5 C. jacchus v. C. moloch exudate  v. soft logCA (t=6.7387, p=0.0003) 
6 

  
logZx (t=11.2983, p<0.0001) 

7 
  

logZy (t=7.5328, p<0.0001) 
8 

  
logCA/TA (t=2.6816, NS) 

9 S. apella v. P. badius hard v. tough logCA (t=2.6868, p= 0.0220) 
10 

  
logZx (t=2.834, p=0.0165) 

11 
  

logZy (t=0.2107, NS) 
12 

  
logCA/TA (t=1.0554, p=0.0230) 

13 S. apella v. C. capuchinus hard v. soft logCA (t=-2.6768, p=0.0120) 
14 

  
logZx (t=-1.8756, NS) 

15 
  

logZy (t=-3.3841, p=0.0049) 
16 

  
logCA/TA (t=1.0554, NS) 

17 C. jacchus v. A. caraya exudate v. tough logCA (t=12.3468, p<0.0001) 
18 

  
logZx (t=12.9412, p<0.0001) 

19 
  

logZy (t=8.8365, p<0.0001) 
20 

  
logCA/TA (t=-0.4733, NS) 

21 S. apella v. A. caraya hard v. tough logCA (t=3.5844, p=0.0124) 
22 

  
logZx (t=5.0185, p=0.0017) 

23 
  

logZy (t=1.3214, p=NS) 
24 

  
logCA/TA (t=3.0235, p=0.0213) 

25 A. caraya v. A. geoffroyi tough v. soft logCA (t=4.4399, p=0.0019) 
26 

  
logZx (t=5.3665, p=0.0005) 

27 
  

logZy (t=3.2114, p=0.0090) 
28 

  
logCA/TA (t=-0.821, NS) 

29 G. gorilla v. P. troglodytes tough v. soft logCA (t=5.7426, p=0.0002) 
30 

  
logZx (t=4.9465, p=0.0009) 

31 
  

logZy (t=4.7355, p=0.0005) 
32     logCA/TA (t=-0.0537, NS) 

 

 To address prediction three, measures of bone cross-sectional strength, Zx and Zy, 

were compared by arch region intraspecifically, interspecifically, and by diet type. When 

compared by arch location, the highest values of Zx appeared in anterior cross-sections 
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across all taxa (see Appendix A for descriptive statistics for section moduli measures, 

Zmax, Zmin, and Theta values; Tables SM1 and SM2). Similarly, Zy was also highest in all 

anterior cross-sections except for Gorilla gorilla whose greatest values were found in 

posterior regions. Across diet types, hard and tough food consumers exhibited the 

greatest anterior Zx values compared to soft and exudate consumers, with the exception of 

Pan troglodytes. MANOVA analyses of these variables were performed on each species 

to test for differences in mean values. A Bonferroni correction was applied to account for 

the multiple comparisons. The results of the MANOVA found varying results among 

different diet types (Table 7). In general, tough food consumers showed significant 

differences in midsuture - posterior and posterior suture - posterior comparisons. Soft 

food consumers showed a greater spread in values, in which anterior - posterior/posterior 

suture and midsuture - posterior portions were significantly different from one another. 

Both Ateles geoffroyi and Pan troglodytes yielded no significant differences. Hard-object 

consumer Sapajus apella showed significant differences in all anterior v. midsuture and 

anterior v. posterior comparisons. In contrast, Pithecia pithecia exhibited no significant 

differences among regions. Callithrix jacchus showed significant differences in anterior - 

posterior, and midsuture - posterior comparisons.  Pairwise comparisons of anterior Zx 

regions in taxa of different diet types revealed significant results (p < 0.01) in all 

comparisons except Sapajus apella and Cebus capuchinus (see Table 6).   
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Figure 9. Anterior cross-sectional images for all study taxa, grouped by diet category. A. 
Soft consumers (top row, L to R): Ateles geoffroyi, Cercopithecus mitis, Callicebus 
moloch (bottom row, L to R): Cebus capucinus, Pan troglodytes. B. Exudate consumer 
Callithrix jacchus. C. Hard consumers (L to R): Sapajus apella, Pithecia pithecia. D. 
Tough consumers (L to R): Alouatta caraya, Piliocolobus badius, Gorilla gorilla. Note 
that images are sized similarly for the purposes of illustration.  
 

3.5 Discussion 

 The strength of a bone is a function both of the CA present and how cortical bone 

is distributed around the centroid of the axis (Stock and Shaw, 2007). When viewed in 

cross-section, one can observe differences in the deployment of CA at various points 

along the zygomatic arch (Figure 9). Quantifying these differences and linking them with 

diet is an important step towards understanding how internal bone structure resists 

external masticatory loading. The hypothesis that the internal architecture of the arch, 

namely CA and section moduli (Zx and Zy) values, is patterned based on known strain 

distributions was supported in the majority of taxa tested. The greatest amounts of 

cortical area relative to total area were found in anterior or anterior suture regions in 8 of 

the 11 taxa tested. Unlike other taxa, Cebus capuchinus, Sapajus apella, and 

A. D. 

B. C. 
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Cercopithecus mitis exhibited their greatest CA distributions in posterior suture and 

posterior arch portions. One reason some species did not follow the expected pattern may 

be related to interspecific differences in strain distributions. In both Sapajus apella and 

Cebus capuchinus the highest relative amounts of cortical bone appear in posterior and 

posterior suture regions while Cercopithecus mitis yielded its greatest values in midsuture 

and posterior suture sections. The published values on zygomatic arch strains in primates 

have primarily been limited to studies on macaques (e.g., Hylander and Johnson, 1997), a 

group not included in the present study. Because strain gradients may be species specific, 

CA is likely best examined in concert with documented strain measures for a particular 

species. 

 Tough food consumers (Piliocolobus badius, Gorilla gorilla, and Alouatta 

caraya) all contained their highest CA/TA ratios in their anterior regions. For these taxa, 

loading associated with a tough diet generates greater CA amounts in anterior regions 

relative to the rest of the arch. Callicebus moloch, a soft food consumer that also ingests 

leaves in varying amounts (23-66% (Müller, 1996)), also had its greatest amounts of CA 

in anterior regions. Given the range of tough food consumption reported for this species, 

it is possible that masticatory loading associated with such a diet is sufficient to yield CA 

amounts more similar to strict tough food consumers than soft food consumers. Taylor et 

al. (2008) notes that material properties of a food, rather than consumption percent, may 

explain the patterning of such variables. In this case, the toughest food consumed may 

influence how much CA is maintained at a specific location along the arch.  

 In contrast, the apparent lack of a pattern among soft food consumers with respect 

to the location of their greatest CA/TA ratios along the arch may be due to a combination 
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of other factors that influence load resistance. The magnitude of the loads produced by 

processing soft foods may not be sufficient for the generation and maintenance of more 

bone in certain regions relative to other areas. If a primate consumes more mechanically 

challenging foods (e.g., leaves and/or nuts, seeds) on a seasonal basis then relatively high 

amounts of cortical bone may not be continuously maintained.  The type of load (i.e., 

bending, torsion, shear) experienced during chewing varies and may be due in part to the 

nature of the foods being processed. Preliminary analyses of arch form in a group of 

haplorhines have shown that resistant feeders (hard and/or tough feeders) have arch 

cross-sections that are shaped differently than non-resistant feeders at different points 

along the arch (Edmonds, 2015).  This suggests the dominant loading type varies across 

these taxa, which likely influences the internal bone architecture. Because loading in this 

region is so different than loading in the postcrania, the threshold for increased bone 

maintenance in anterior regions, despite being the site of the attachment for the masseter, 

may not be met. Other factors such as zygomatic arch cross-sectional shape and/or 

positioning on the lateral portion of the cranium should be taken into consideration for 

future analyses as they may play a large role in mediating masticatory loading.  Non-

mechanical factors such as sexual dimorphism may also contribute to some differences in 

the arch’s morphology. 

  In vivo studies of primates chewing on various types of foods suggest that the 

activation of the deep and superficial masseter muscles subjects the anterior portion of 

the zygomatic arch to a vertical force component and (to a lesser degree) a medial force 

component. Together, these actions induce relatively high instances of parasagittal 
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bending. To combat these bending forces, increased strength in the superoinferior 

direction would be necessary.  

 The section moduli measures, Zx and Zy, quantify the bending tendency of a 

cross-section about both the transverse and sagittal planes.  In this study, the highest 

measures of Zx (i.e., the measure of axial strength about a transverse axis – x in Fig 2. III) 

occurred anteriorly in every species, thus indicating that this region was the most 

strengthened relative to the other portions of the arch. Similarly, Zy  (i.e., the measure of 

axial strength about a superoinferior axis – y in Fig. 2. III) was greatest anteriorly in all 

species except Gorilla gorilla. These results support the prediction that measures of axial 

strength, about both the superoinferior and transverse axes, are greater in anterior regions 

than in posterior regions in all study taxa.  

 Pairwise comparisons between closely related taxa with, different diets yielded 

significant differences in anterior logZx measures in all pairs but one comparison. 

Notably, the comparisons between a hard-object feeder Sapajus apella and tough food 

consumer Piliocolobus badius were significantly different (p=0.016) as well as between 

Sapajus apella and soft food consumer Cercopithecus mitis (p=0.003).  This suggests 

hard-object feeders may have significantly different Zx measures, and therefore their 

zygomatic arches are “strengthened” differently than both tough and soft feeders.  

 When Zx and Zy are compared intraspecifically, Zx values are greater than Zy 

values at each zygomatic arch region within each species. This suggests parasagittal 

bending forces are greater than transverse bending.  The presence of lower Zy values 

relative to Zx values overall may be due to the fact that the zygomatic arch is a curved 

beam-like structure, and is thus inherently bent about the transverse x-axis. In addition, 
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the attachment location and subsequent activation of the masseter muscles does not 

generate force vectors that would cause significant bending in the transverse plane.  

 

3.6 Conclusions 

 Cortical area has been hypothesized to track with loading, and the results of this 

study found the majority of taxa adhere to this pattern. Cortical area alone, however, does 

not capture the complete picture. Incorporating measures of arch strength provides a way 

to quantify which region is most fortified against an applied load. While CA may not 

always be greatest anteriorly, the relative strength of the arch is greatest at the anterior 

portions. Intuitively, this makes sense given the attachment of the masseter muscle and in 

light of the observed strain values in experimental studies, which demonstrate that the 

anterior zygomatic arch routinely experiences the greatest masticatory strains. Broadly 

speaking, these results support the notion that internal bone architecture patterns with 

masticatory strain values. 

 Primates vary greatly in their dietary breadth.  As such, consideration of the 

effects of different diets on craniofacial morphology is critical. An important distinction 

within the food material properties literature is the dichotomy between the effects of 

hard-object consumption and tough food consumption and how the nature of those diets 

manifests in the bony morphology (Spencer, 2003; Wright, 2005; Yamashita, 2008b). 

Studies on primate mandibular morphology have not found adaptations that distinguish 

the effects of a hard versus a tough diet (Hylander, 1988; Daegling and Grine, 1991; 

2007) suggesting that there is not a single mandibular form necessary to process those 

diets (Daegling et al., 2011). However, the significant differences in the pairwise 



  86 

comparisons between “hard” and “tough” feeders with respect to CA and Zx suggests that 

zygomatic arch morphology may detect dietary signals and help to disentangle these diet 

types.  

 Notably, the “hard-food consumer versus tough food consumer” debate still 

surfaces frequently in paleoanthropology when assessing the diets of the Paranthropus 

species (Wood and Strait, 2004; Ungar, 2011). Previous work on Paranthropus boisei has 

suggested it subsisted on tough foods (Dubrul, 1977), while others have proposed it 

consumed hard foods (Peters, 1987) or just consumed greater quantities of food (Walker, 

1981).  A distinctive feature shared by the Paranthropus species is their wide, flaring, 

and anteriorly placed zygomatic arches. This has been widely accepted as an indicator of 

dietary specialization yet a critical examination of the internal architecture of their arches 

has not been carried out. Furthermore, measures of paranthropine CA, TA, and section 

moduli (to the extent they are preserved) would provide novel insights into the 

mechanical behavior of their arches and how they differ from other primates, both living 

and extinct.  
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CHAPTER 4: ZYGOMATICOTEMPORAL SUTURAL COMPLEXITY IN 

RELATION TO DIET IN PRIMATES 

4.1 Abstract 
 
 Cranial sutures are primarily composed of complex, collagenous fibers that serve 

as joints between the bones of the skull. Cranial suture complexity, defined as the degree 

of interdigitation of these collagenous fibers, is thought to vary in relation to the 

mechanical demands of the skull.  These sutures link bones together, allowing movement 

between parts of the skull during growth, while also serving to help dissipate stress 

generated by mastication.  However, sutures presumably create areas of potential 

weakness in the presence of high loads. To combat this weakness, increased 

interdigitation of the bones is thought to minimize and/or mitigate these loads. The 

zygomatic arch experiences considerable masticatory loading during feeding and the 

zygomaticotemporal suture, the single suture on the arch, is assumed to experience 

similar loads. Previous work shows increased sagittal sutural complexity tracked with 

mechanically resistant diets in Cebus but this pattern has not been shown to extend to 

other cranial sutures. If greater loading promotes increased sutural complexity, then other 

sutures in the masticatory complex (e.g., zygomaticotemporal suture) are predicted to 

also reflect differences in diet type. This study employed two different dietary schemes, 

total consumption percent and food material properties (FMPs) data, to investigate the 

relationship between sutural complexity and diet type in primates. The results indicate 

that neither dietary approach was a good predictor for sutural complexity in this primate 

sample.  These results suggest that the zygomaticotemporal suture is not sensitive to the 
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effects of dietary loads and/or the magnitude of loading experience is not sufficient to 

catalyze significantly increased sutural complexity in this region. 

 

4.2 Introduction 

 One of the critical components underlying the biomechanics of the craniofacial 

system is an understanding of the role of cranial sutures during dynamic loading. Cranial 

sutures are composed of collagenous connective tissue fibers that interlock neighboring 

edges of bones together. These complex, fibrous structures function as joints between 

bones of the skull (Moss, 1957; Koskincn et al., 1976, Johansen and Hall, 1982; Kokich, 

1986; Jaslow, 1990; Burn et al., 2010; Di Ieva, 2013) and function to prevent the cranial 

bones from separating during loading. Specifically, sutures mediate the effects of bone 

deformation during instances of cyclic loading from muscle activity, cranial distortion 

during birth, and traumatic impacts (Mao et al. 2003) as well as mechanical stress 

transmission (Moss, 1957; Maloul et al., 2013).  

 In humans, sutures are relatively simple at birth and are composed of straight 

edges that interlock to varying degrees (Jaslow, 1990). Postnatally, sutures are 

characterized as relatively simple, flat joints with some degree of patency. In contrast, the 

sutures in an adult are characterized by relatively greater degrees of interdigitation and 

interlocking bony projections that typically fully fuse by late adulthood (Rice, 2008; 

Maloul et al., 2013). The degree of patency in a suture has been experimentally shown to 

affect the local strain environment of the suture (Behrents et al., 1978; Herring and Mucci 

1991; Herring and Teng, 2000) since more patent sutures offer greater flexibility than 

more fused sutures.  As such, the relative stiffness or rigidity of cranial sutures changes in 
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response to the needs of craniofacial development  (Weidenreich, 1941; Moss & Young, 

1960; Moss, 1969; Moss and Salentijn, 1969; Enlow and Hans, 1996; Mooney et al. 

2002; Richtsmeier et al., 2006; Sardi et al., 2007; Cray et al. 2011) and mastication 

(Herring and Mucci, 1991; Herring, 1993, 2008; Herring and Teng, 2000; Herring et al., 

2001; Mao, 2002; Fong et al., 2003; Byron et al., 2004a, 2008; Alaqeel et al., 2006; Wu 

et al., 2007; Yu et al. 2009) throughout ontogeny leading to differences in the potential to 

resist loading as well.  A key difference between these two factors is that neurocranial 

expansion terminates at adulthood while masticatory loading and suture closure persists 

throughout the life of the individual (Meindl and Lovejoy, 1985; Cray et al., 2008; 2010). 

 Localized, elevated strain levels have been identified over sutures in numerous in 

vivo and in vitro strain gauge studies (e.g., Behrents et al., 1978; Smith and Hylander, 

1995; Herring and Mucci, 1991; Herring, 1993; Jaslow and Biewener, 1995; Rafferty and 

Herring, 1999; Herring and Teng, 2000; Sun et al., 2004; Shibazaki et al., 2007; Wang et 

al., 2008) indicating sutures are mechanically relevant to models of the cranium. In 

adults, the cranium is modeled as a static and stable body whose sutures act as shock 

absorbers that dissipate stresses transmitted through the skull (Buckland-Wright, 1978; 

Herring and Mucci, 1990, Byron et al., 2004a; Herring and Teng, 2000; Jaslow, 1990b; 

Jaslow and Biewener, 1995; Pritchard et al., 1956; Rafferty et al., 2003; Rayfield, 2004, 

2005; Byron, 2009; Maloul et al., 2013). While it is known that cranial sutures form even 

in the absence of muscle activity (Persson, 1983), many studies have supported the 

hypothesis of Moss (1957) which proposed that sutural morphology and interdigitation 

are secondary responses to extrinsic forces and that sutures disturb local strain flow 

(Wang et al., 2010). 
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 By increasing the degree of complexity (i.e., interdigitation), the suture is able to 

absorb more energy by virtue of increasing the surface area across which collagen fibers 

of different bones attach (Jaslow, 1990; Nicolay and Vaders, 2008). The nature of the 

fiber’s orientation better adapts the structure to resist either tensile or compressive loads. 

Obliquely attached fibers are able to resist compressive forces (Rafferty and Herring, 

1999) as well as accommodate stresses emanating from different directions (Jaslow, 

1990; Rafferty and Herring, 1999; Byron et al., 2004, Nicolay and Vaders, 2008). In 

contrast, the cruciate or perpendicular arrangement of “butt-ended” sutures are associated 

with tensile resistance (Herring and Teng, 2000).  Thus, the relative increase in 

interdigitation through growth is presumed to be directly linked to the magnitude of 

mechanical loads imposed on the cranium (Masler and Schour, 1951, Moss 1957, Oudhof 

1982; Jaslow, 1990) and the orientation of the sutural fibers are indicative of the load 

type experienced.  

 Under these assumptions, previous studies have investigated the relationship 

between suture morphology and response to loading during the functioning of the 

craniofacial complex in instances such as rooting in pigs and peccaries (Herring, 1972), 

head butting in sheep (Jaslow, 1989), competitive horn sparring in goats (Jaslow and 

Biewener, 1995) and antler use in white-tailed deer (Nicolay and Vaders, 2006).  Using 

goats (Capra hircus), Jaslow (1990) identified several key findings regarding the 

response of cranial sutures to three point bending loads: energy absorption by sutures was 

positively correlated with increased sutural complexity, such that greater interdigitation 

enabled more bending strength. Maloul et al. (2013) also found this to be true in the 

cranial sutures of humans.  While sutures alone are generally not as strong as pure cranial 



  91 

bone (which is likely due to the collagenous component of the suture), highly 

interdigitated sutures were found to resist bending loads to the same extent as pure bone 

when loaded slowly (Hubbard et al., 1971; Jaslow, 1990). Importantly, cranial bone with 

sutures was found to absorb more energy than bone without sutures, which further 

reinforces the mechanical importance of their presence on the cranium (Jaslow, 1990). 

 Studies in the last decade have used fractal analysis as a meanigful tool for 

quantifying the complexity of natural structures, such as sutures, because natural 

structures are typically complex, and irregularly shaped  (Long, 1985; Slice, 1993; 

Monterio and Lessa, 2000). Put simply, the fractal dimension (D) is calculated as a 

measure of suture complexity or interdigitation.  A suture that is more interdigitated 

(deviates from a straight line), or more complex, results in larger fractal value compared 

to a suture that is relatively less interdigitated (Monterio and Lessa, 2000).  

 Within primates, the primary source of mechanical loading in the skull is related 

to mastication and the loading associated with triturating different types of food items. In 

addition, ingestive biting, accessing hard objects, and breaching the coatings of foods are 

also sources of loading in the skull.  One of the contributing factors to masticatory 

loading is related to bite force, which is proportional to recruitment and size of the 

masticatory muscles. Experimental studies have detailed a linear relationship between 

temporalis muscle activation and bite force using electromyographic (EMG) 

measurements (Van Eijden, 1990; Van Eijden et al., 1990). To examine the extent to 

which muscle recruitment impacted sutural morphology, Byron et al. (2004a) employed 

myostatin-deficient mouse models to study the effects of increased temporalis muscle 

mass, and therefore increased stress, on the sagittal suture. This study found that 
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increased temporalis muscle size induced larger tensile loads on the sagittal suture during 

activation, which contributed to instances of greater sutural complexity and waveform 

formation in the sagittal suture (Byron et al. 2004a).  This result has been confirmed in 

other studies as well (Herring and Teng, 2000; Mao, 2002, Lieberman et al., 2004a) 

suggesting that increased masticatory muscle recruitment induces bone loading to the 

extent that sutural interdigitation increases in response. Thus, in instances where 

mechanically resistant food items are consumed, the concomitant increase in masticatory 

muscles recruitment presumably leads to increased sutural complexity as well.  

 Beyond model organisms in experimental settings, species of caiman (Caiman) 

that consume hard foods have been found to possess more complex cranial sutures than 

those of congeners (Monteiro and Lessa, 2000). Specifically C. latirostris, a type of 

Caimen that consumes gastropods with hard shells, possessed the largest fractal measures 

in the suture between the maxilla and nasal bones; an area that is important for 

maintaining stability and functional integrity of the skull during feeding (Monterio and 

Lessa, 2000).  One possible functional interpretation is that because this species possesses 

a relatively broad snout, and consumes hard-shelled mollusks, the skull experiences high 

shearing loads during each bite necessitating increased sutural formation to resist these 

loads (Monterio and Lessa, 2000).  A similar phenomenon has been observed in primates, 

in which Byron (2009) noted that cranial suture complexity in cebids varied such that the 

hard-object feeder Sapajus apella possessed more complex sagittal sutures than other 

closely related taxa Cebus albifrons, Cebus capucinus, and Cebus olivaceus.  Coupled 

with their robust mandibular morphology, these results suggest that the presence of 

relatively more complex sutures in the S. apella cranium is a result of relatively higher 
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jaw muscle activity and increased chewing forces as compared to other cebids (Byron, 

2009). It is also important to note that the ingestive behaviors of these taxa are also key 

sources of loading in their cranium and may be more important than masticatory forces 

alone. Fractal measures of cranial sutures in mammals generally exceed the values found 

in reptiles based on the global shape differences in the skull and differences in dental 

morphology and bone architecture. Furthermore, the effect of suture morphology and 

patency has been found to alter strain levels in lizards (Moazen et al., 2008) but not to the 

same extent in primates (Wang et al., 2010), suggesting that suture morphology may be 

more important in animals with relatively more patent sutures or greater suture to bone 

volume (Curtis et al., 2013). Despite these differences, the consumption of hard objects 

appears to instigate increased sutural complexity in both groups. 

 In a comparative study of chimpanzee (Pan troglodytes) and gorilla (Gorilla 

gorilla), ectocranial suture activity, defined as the relative amount of bone formation due 

to osteoblast and osteoclast activity, differs between these two closely-related taxa 

resulting in differential timing of sutural closure (Cray et al., 2011). Compared to other 

extant hominoids, gorillas possess a more robust masticatory complex characterized by 

the presence of large temporalis and masseter muscles and a pronounced sagittal crest 

(Shea, 1983). Previously, Cray et al. (2010) found a strong relationship between suture 

activity and dental eruption in hominoids such that suture activity generally terminates 

after the emergence of the third molar. When this was investigated in gorillas however, 

suture activity was found to initiate earlier in ontogeny as compared to both Pan and 

Homo.  This suggests that the larger masticatory muscles (Hylander, 1979a; Shea, 1983, 

1985; Taylor, 2002, 2006; Taylor et al., 2008), early ingestion of mechanically resistant 
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foods (Nowell and Fletcher, 2008), and resulting mechanical loads in gorillas leads to 

increases in ectocranial sutural activity earlier in ontogeny (Cray et al., 2011).  These 

studies broadly suggest that masticatory muscle size and contractile force affects sutural 

morphology and that sutural complexity and the mechanical loading environment are 

functionally linked. 

 An important area to consider in terms of suture morphology and masticatory 

loading is the zygomatic arch because it is such a highly strained environment on the 

macaque skull (Hylander and Johnson, 1997) and presumably across all primates as well, 

though only a limited amount of in vivo data on zygomatic arch strains exists for these 

taxa. The zygomatic arch experiences considerable masticatory loading during feeding 

and the zygomaticotemporal suture, the single suture on the arch, is assumed to 

experience similar loads.  The zygomatic arch resembles a beam with two fixed ends, 

which bears an off-center load (due to the origin of the deep and superficial masseter 

muscles) and has been modeled as such in experimental studies (Hylander and Johnson, 

1997; Kupczik et al., 2007).  The primate zygomatic arch has been shown to experience a 

range of strain magnitudes, with the highest strains occurring anteriorly and then 

decreasing posteriorly (Hylander and Johnson, 1997). Hylander and Johnson (1997) 

noted that modeling the zygomatic arch as a beam did not take into account the presence 

of the zygomaticotemporal suture.  However, given the potential mechanical benefit of 

the suture to dissipate loads across the bone surface, it is prudent to investigate the 

biomechanical significance of this feature to improve current models of zygomatic arch 

bone behavior.  
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 Many studies have approached questions concerning the impact of sutures in a 

wide breadth of both living and extinct taxa using finite element analysis (FEA) 

(Rayfield, 2004, 2005; Kupczik et al., 2007; Wang et al., 2007, 2008, 2010, 2012; Farke, 

2008; Moazen et al., 2009; Fitton et al., 2009; Jasinowski et al., 2010), yet FEA often 

yields conflicting results concerning the influence sutures have on local and global 

aspects of the skull (see Kupczik et al., 2007 and Wang et al., 2012). With respect to the 

zygomatic arch, previous studies have assessed the mechanical role of the 

zygomaticotemporal suture using finite element models of primate crania to incorporate 

the presumed effect of the suture on strain dispersal along the arch (Kupczik et al., 2007; 

Wang et al., 2012). While both studies conducted their analyses using macaque crania, 

they found contrasting results. Wang et al. (2012) found that the zygomaticotemporal 

suture responded similarly to loading in both static and dynamic scenarios but had little 

effect in mediating global strain patterns, whereas Kupczik et al. (2007) found sutures 

have an effect on the global strain environment of the skull. A critical difference between 

the studies of Kupczik et al. (2007) and Wang et al. (2012), was that the former used the 

skull of a juvenile (Macaca fascicularis) whereas the latter used an adult (Macaca 

mulatta) cranium. Experimental studies on pig crania have demonstrated that cranial 

sutures disperse facial strains under dynamic loading (Herring & Teng, 2000; Rafferty et 

al., 2003) and furthermore that the polarity and degree of strain in some cranial sutures 

change with age (Sun et al., 2004). If this is the case in primates, then juveniles with 

more patent sutures likely experience higher bending moments as compared to adults 

with relatively stiffer (more mineralized) sutures (Kupczik et al., 2007). There are also 

marked dietary differences between these two primate taxa. Though phylogenetically 
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similar, the diets are quite different: Macaca mulatta consumes high levels of leaves and 

buds (84.4%, see Goldstein and Richard, 1989) compared to Macaca fasciularis, which 

primarily consumes fruits (66.7-87%, see Wheatley, 1980; Yeager, 1996). A diet 

composed of primarily tough or hard foods as opposed to soft foods imposes different 

mechanical demands on the bone and presumably contributes to differences in sutural 

morphology. Given the wide dietary range found in primates, it is unclear whether diet 

influences sutural morphology in the zygomaticotemporal suture to the degree that it can 

be detected across primates of different dietary profiles. Thus, a biomechanical 

understanding of cranial sutures is important for elucidating the manner in which forces 

are dispersed through bone, how differences in suture architecture affect how masticatory 

strain levels, and the nature of the interplay between diet and bone response.  

 In this study, I quantify zygomaticotemporal sutural complexity using a broad, 

comparative sample to determine if sutural complexity is related to differences in primate 

diets.  This study uses fractal geometry, a common method that is useful for examining 

the two-dimensional nature of sutures (Long, 1985; Hartwig, 1991; Long and Long, 

1992; Monteiro and Lessa, 2000; Skrzat and Walocha, 2003a,b; Lynnerup and Jacobsen, 

2003; Yu et al., 2003; Byron et al., 2004a; Byron, 2006) to quantify suture complexity in 

the zygomaticotemporal suture in relation to its masticatory loading environment. Using 

this approach, this study will provide a novel perspective from which to examine the 

interplay of primate diet and zygomatiotemporal sutural response on the zygomatic arch.  
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4.2.1 Predictions 

 The hypothesis that I test here is that the distribution and magnitude of 

masticatory strain affects the complexity of the zygomaticotemporal suture such tha high 

forces transmitted across the suture require greater sutural complexity. Increased sutural 

complexity is observed in some primates (e.g., Sapajus apella) that consume 

mechanically challenging food items as compared to other congeners (Byron et al., 2006; 

Wang et al., 2008).  Therefore, I predict that (1) more complex sutures characterize taxa 

with diets consisting principally of mechanically resistant (specifically tough and/or hard) 

foods compared to those consuming less mechanically resistant foods overall, and (2) that 

primates with diets consisting of high toughness (R) or high Young’s modulus (E) 

possess more complex sutures than those consuming foods with low toughness or low 

Young’s modulus. Toughness is defined as a material’s resistance to the propagation of a 

crack (Lucas and Pereira, 1990; Lucas et al., 2000, 2011) and Young’s modulus, also 

known as the elastic modulus, is the ratio of stress (force per unit area) to strain 

(deformation) and is a measure of a material’s ability to resist elastic deformation 

(Gordon, 1978; Williams et al., 2005). The higher the value of Young’s modulus, the 

harder that material is. 

 

4.3 Materials & Methods 

4.3.1 Study sample 

 MicroCT (µCT) scans (voxel range 7.9-30.0 voxels/mm) of skulls from 43 

species (N=349, Table 8) were selected from scan collections housed at Arizona State 

University and Northeast Ohio Medical University (NEOMED). Only adult, wildshot 
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specimens without pathology were included to control for influences from captivity 

and/or disease. In species where equal numbers of males and females were available, 

preliminary comparisons were performed to determine whether there was an effect of 

sex. Because no significant differences were found the sexes were grouped together for 

the purpose of analysis in this study. 
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Table 8. Study sample 

 
*Indicates taxa for which food material properties (FMP) data were available 
 

Species Males Females Unknown n
Alouatta caraya 2 2 1 5
Alouatta palliata - - 12 12
Aotus trivirgatus 3 6 3 12
Ateles geoffroyi - 5 14 19
Cacajao rubicunda 1 1 - 2
Callicebus moloch 12 2 1 15
Callithrix argentata 6 1 - 7
Callithrix humeralifera 2 2 - 4
Callithrix jacchus 1 1 1 3
Cebus capucinus - 5 5 10
Cercocebus torquatus 8 2 - 10
Cercopithecus mitis - 12 - 12
Chiropotes albinasus - 1 - 1
Chiropotes satanas - - 1 1
Colobus polykomos 2 10 - 12
Erythrocebus patas 2 2 1 5
Gorilla gorilla - 10 - 10
Hylobates lar - 18 - 18
Lophocebus albigena 6 2 2 10
Macaca fascicularis 2 9 1 12
Macaca fuscata 2 - - 2
Macaca mulatta 2 - 2 4
Mandrillus sphinx - - 2 2
Macaca sylvanus 8 - - 8
Mandrillus leucophaeus 3 1 1 5
Miopithecus talapoin 4 1 1 6
Nasalis larvatus - 12 - 12
Pan paniscus 1 2 - 3
Pan troglodytes - 12 2 14
Papio anubis 8 3 1 12
Piliocolobus badius 4 6 1 11
Pithecia monachus 1 1 3 5
Pithecia pithecia 2 1 - 3
Pongo pygmaeus - 3 - 3
Presbytis hosei 1 3 2 6
Presbytis rubicunda 2 5 4 11
Saguinus oedipus 6 5 - 11
Saimiri oerstedii 3 2 - 5
Saimiri sciureus 4 1 1 6
Sapajus apella 7 9 1 17
Symphalangus  syndactylus 1 - - 1
Theropithecus gelada - - 2 2
Trachypithecus cristatus - 20 - 20
Total 349
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4.3.2 Dietary categorization 

 A twofold approach was used to categorize the taxa into dietary categories. The 

first approach used published data on dietary preference to assign each species to a 

dietary category on the basis of food mechanical properties. Following the methodology 

of Muchlinkski (2010) a species’ designation as a “tough feeder,” “hard feeder,” “soft 

feeder,” or “exudate feeder” was based on total consumption of 50% or more of a 

particular food type (as measured from time spent feeding on an item) deemed as tough, 

hard, soft, or exudate based on its material properties. Because this study examined the 

effects of presumed variation in masticatory loads on the bony morphology of the 

zygomatic arch, “exudate feeder” remained distinct from “soft feeder” as each of these 

food types differ in their material properties and time required for mastication (Norconk 

et al., 2009). In instances where two or more primary food types are consumed (e.g., 

tough and soft), the species’ diet characterization was assigned based on the food type 

with the highest consumption percent (See Appendix B, Table SM1 for species’ reported 

dietary consumption percents and dietary categorizations). 

 The second dietary approach was used to divide a subset of the total study sample 

(species n = 9, Table 9) using specific food material properties (FMPs) data collected on 

foods consumed by those species in the field (Venkatamaran et al., 2014; Coiner-Collier 

et al., 2016). Specifically, these recorded material properties are toughness (R), and 

Young’s modulus (E). Because material properties data were not available for all taxa 

included in this study, the second dietary approach and its associated analyses will be 

limited to these nine primate species. For the purposes of comparison, “high” toughness 

measures and “high” Young’s modulus measures were determined as follows: based on 
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the available FMPs data, taxa were divided based on whether their mean fracture 

toughness values are greater or equal to 700 Jm-2 and those that are less than 700 Jm-2. 

For the purposes of this study, those that exceed 700 Jm-2 are considered to have a high 

toughness diet. For example, the seed shells of Mezzetia parviflora consumed by 

orangutans range from 1,204 to 3,113 Jm-2 (Lucas, 1989; Lucas et al., 1991) while apple 

pulp is much lower, averaging about 663 Jm-2 (Williams et al., 2005). To define the 

threshold for high Young’s modulus values, taxa consuming foods with mean Young’s 

modulus measures of <10 MPa are considered to be of “low” Young’s modulus values.  

The include foods like carrots (average 6.86 MPa) or pear skins (average 5.80 Mpa) 

(Williams et al., 2005). Taxa consuming foods with values of  >90 MPa or more are 

considered to have “high” Young’s modulus values.  These include foods such as cherry 

pits (average 189.48 Mpa) or prune pits (average 325.40 Mpa) (Williams et al., 2005).  
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4.3.3 Data Collection  

 The use of high-resolution microCT (µCT) scans to collect data on trabecular and 

cortical bone across humans and animals has grown immensely in the past years 

(Bouxsein et al., 2010) and has become a standard means of collecting comparative 

morphological data. MicroCT scans possess greater resolution than standard CT scans in 

that microCT scans decrease the thickness of each virtual cross-section (commonly 

referred to as “slices”) from about 1mm to approximately 10µm (Mittra et al., 2008).  

This serves to increase the total number of slices generated per specimen and increases 

the number of pixels in each slice, which enables fine bone features to be identified, and 

accurately measured (Peyrin et al., 1998; Ding et al., 1999; Laib et al., 2000). For the 

purposes of examining sutural morphology, microCT scans are necessary in order to 

achieve precise and accurate measures of the suture’s pattern and ensure no damage 

befalls the specimen.  

 Scans of primate skulls were used to construct 3D models of the cranium using 

Amira (FEI Visualization Group, 2016). Once constructed, the skull model was oriented 

in Frankfurt horizontal to standardize cranial position during virtual sectioning. Once 

oriented, the Amira “slice” feature was used to pass a vertical plane along the zygomatic 

arch (Fig. 10).  Once positioned at the midpoint of the zygomaticotemporal suture, a 

“slice” was captured.  This midsuture slice was collected on each specimen and then 

exported to ImageJ (Schneider et al., 2012) for fractal analysis.  Each cross-section is 

saved as an 8-bit image and the “adjust” feature is used to improve the contrast of the 

image in prepration for highlighting the suture. For each image, FracLac (Karperien, 
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2013) for ImageJ was used to generate measures of fractal dimension (Df), lacunarity (λ), 

and prefactor lacunarity (PΛ) using the box counting (or grid) method.  

 

 

4.3.4 Fractal dimensions 

 Fractal dimensions (Df) are a measure of a shape’s self-similarity with increasing 

magnification (or scale) (Byron et al., 2004a; Karperien et al., 2013). Generally speaking, 

the more complex the pattern, and the greater the scale, the higher the fractal dimension.  

This method was developed by Benoit Mandelbrot and has been successfully used to 

characterize the geometry found in Nature (Mandelbrot 1967, 1977; Monteiro and Lessa, 

2000; Jaslow, 1990; Long and Long, 1992; Nicolay and Vader, 2006). Fractal analysis 

quantifies the complexity of a pattern by assigning a unit-free measure ranging between 

one and two dimensions (1.0-2.0) (Byron et al., 2004a). The fractal dimension (Df) is 

calculated as: 

                                                            𝑁! = 𝜀!"                                                               (4) 

 

Figure 10. Midsuture cross-sectional image collected from model of Gorilla 
gorilla 
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                                                              (5) 

where the number of sampling elements (𝑁!) is equal to the scale (𝜀) raised to the power 

of Df.  Specifically for this study, the box-counting method was used to measure the 

fractal dimension (DB) for each specimen. This method is common for calculating fractal 

dimensions because of its simplicity and computability (Li et al., 2009). The 

approximation (D) of a DB is estimated from the limit as scale decreases: 

                                                                                                                                        𝐷! = lim!→!
!"#$%
!"#!

                                                 (6) 

where N is the number of sampling elements (i.e., boxes) at a particular box size that 

contain meaningful foreground pixels in a box counting scan, 𝜀  is the scale, and 𝐷𝑓 finds 

the slope of the regression line for the data. Simply stated, the box-counting method 

covers the image in a series of non-rotating grids and then counts how many of the boxes 

are inhabited by the pattern (Smith et al., 1996; Fig. 11). Each series of boxes is 

characterized by a box size and the number of boxes necessary to cover the structure of 

interest and is recorded as a function of box size.  

 

This process is iterative as the grid is refined with smaller and smaller boxes (Fig. 12). 

The log of the number of boxes inhabited by the structure is then multiplied by the length 

Figure 11. Example of grid overlay used in the box counting method used on 
each cross-sectional image. 
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of a box edge and plotted against the log length of a box edge for each series of 

differently-sized boxes (Smith et al., 1996).   

 

FracLac infers a scaling rule for each pattern by taking measurements over many box 

sizes and approximating the log-log relationship from the slope of the regression line for 

the data. Given that this method can be sensitive to the structure’s location on the grid, 

each image was measured three times and averaged in order to obtain the most accurate 

fractal dimension measure.  

 Because the arch cross-sectional images are grayscale, it is important to ensure 

that only the meaningful parts of the pattern are recognized. To address this, the intensity 

(I) is quantified for each image. I is calculated as: 

    𝐼i,j,ε = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑝𝑖𝑥𝑒𝑙  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝛿𝐼i,j,ε −   𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑝𝑖𝑥𝑒𝑙  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝛿𝐼i,j,ε              (7) 

This is used in the calculation of the fractal dimension by using box counting (DB), from 

the log-log regression line of the sum of all Iijε (intensity) vs ε (scale). For more 

information about box counting algorithms see Mandelbrot (1983) or Ristanovic et al. 

(2009). 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

Figure 12. Examples of varying grid sizes overlaying an image. Box size decreases 
as scale increases. A. Grid with low scale, larger box size B. Grid with higher scale 
and smaller box size C. Grid with high scale, small box size 

A. B. C. 
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 Lacunarity (λ) derived from Latin, lacuna, meaning gap or hole (Mandelbrot, 

1982) is a scale-dependent measure of the texture of a fractal based on the number of 

gaps and rotational and translational invariance in the structure (Plotnick et al., 1993). 

Prefactor lacunarity, PΛ, is a type of lacunarity that measures the heterogeneity 

dependent on where a grid series is placed and is affected by image size. The difference 

between these two measures (that is lacunarity and prefactor lacunarity) is one of scale; 

there is a λ measure for each size of the sampling unit, whereas Λ is usually an average of 

overall sizes used to sample an image. Biologically, lacunarity is a measure of the 

“roughness” of sutures based on the spatial distributions of the gaps in the suture 

(Cordeiro et al., 2016). Thus, this is a measure that quantifies how space is filled and is a 

reasonable means by which to measure sutures in terms of gap distribution (Cordeiro et 

al., 2016) and is also useful for discerning amongst patterns sutures that have similar 

fractal values. 

 Linear measures of total arch height and traced measures of sutural path length 

were taken to generate a ratio of traced length to total height following a modified 

version of the method from Jaslow (1990). Using ImageJ, the straight-line tool was used 

to measure the vertical distance of the cross-section of the image, and then the freehand 

tool was used to trace along the entire suture path (Fig. 13). 

 A series of three-dimensional (3D) anatomical landmarks were collected across 

the skull (18 landmarks) including 4 landmarks across the zygomatic arch (see Fig. 14). 

In the absence of body mass estimates for these taxa, geometric means of skull size and 

zygomatic arch size were calculated from these landmarks to serve as a proxy for size in 

comparative analyses. 
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Figure 13. Linear measures taken in ImageJ to calculate suture path length: A. vertical 
height (dashed line) and B. traced suture path length (solid line) 

 

Figure 14. Cranial landmarks taken on each specimen to determine the geometric mean 
for skull size and zygomatic arch size. Descriptions from Buikstra and Ubelaker (1994). 
 

 

A. B
.
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4.3.5 Statistics 

 Shapiro-Wilk Tests and Levene’s Tests were used to determine if the variables 

met the assumptions of normality and homogeneity of variance. Variables were log 

transformed to meet these assumptions. The variables for complexity, lacunarity, 

prefactor lacunarity, and relative suture path length were compared by diet type using two 

diet categorization schemes with Analysis of Variance (ANOVA) and post-hoc Tukey-

HSD tests. Student’s t-tests were used for comparing sample means.  Pairwise 

comparisons between closely related taxa were also performed for each variable using 

two-sample t-tests. The significance level for all tests was set at α< 0.05.  A Bonferroni-

Holm correction for multiple comparisons was also applied (Holm, 1979).  

 All variables were log-transformed in order meet assumptions of normality and 

homogeneity of variance. To first examine the effect of size on sutural complexity, the 

geometric mean for skull size and zygomatic arch size were compared. To compare these 

variables, a Reduced Major Axis (RMA) regression was used to determine whether the 

difference between the variables had an isometric or allometric relationship (Warton et 

al., 2006; Smith, 2009). The expected slope of isometry for skull size and zygomatic arch 

size for these data was 1.0. To compare skull size and logged measures of complexity 

(D), lacunarity (λ), prefactor lacunarity (PΛ), and sutural path length, Ordinary Least 

Squares (OLS) regressions were used to determine whether skull size affected complexity 

in addition to diet (Smith, 2009). Descriptive statistics for all variables are available in 

Appendix B, Table SM2. 

 Phylogenetic Generalized Least Squares (PGLS) Regressions were also used to 

account for the influence of phylogeny in the data. Consensus trees for the entire study 
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sample as well as the subsample were obtained from the 10KTrees database 

(http://10ktrees.nunn-lab.org/, Arnold et al., 2010). Because not all the species in this 

study were available in the 10KTrees database, published phylogenetic positions and 

divergence dates for Chiropotes albinasus, Presbytis rubicunda and Presbytis hosei were 

acquired from the literature (Finstermeier et al., 2013) and added to the final consensus 

tree. Given that this study tested hypotheses using two different dietary schemes and not 

all taxa have available FMPs data, the initial consensus tree containing 43 species was 

trimmed to include only the 9 species for which FMP data were available. 

 Principal Coordinate Analysis (PCoA) was performed to visualize the data and 

determine whether diet groups (as determined by traditional dietary categories or food 

material properties) diverge from one another and to determine the dissimilarity among 

groups. In this type of analysis, distances between samples are used to calculate positions 

in the multidimensional framework.  

 All analyses were performed using the R Statistical Programming Language 

version 3.1.0 (http://www.R-project.org/) (R Development Core Team, 2014). Packages 

APE (Paradis et al., 2004) and caper (Orme et al., 2013) were used for PGLS. To test the 

hypotheses that total consumption percent, FMP, and variables of complexity are related, 

PGLS regressions incorporating an interaction between FMPs and total consumption 

percent were performed. If the interaction was not significant then the models were run 

again without the interaction.  
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4.4 Results 

4.4.1 Size and sutural complexity 

 The results of the RMA regression of skull size regressed on zygomatic arch size 

found a significant, positive relationship between the size variables (R2=0.895, slope= 

2.609, CI= 2.170, 2.933, p<0.000) indicating that the relationship between skull size and 

arch size is positively allometric. Zygomatic arch size, relative to skull size, is greater 

than would be expected under an isometric relationship. The results of the OLS 

regression of log skull size and log complexity values (logD) yielded a significant 

relationship (R2= 0.168, slope= 0.180, CI=0.359,1.724, p=0.003) (Table 10; Fig. 15).  

Average log size of the zygomatic arch and log complexity were also significantly 

correlated (R2=0.171, slope=0.069, CI= 0.024, 0.115, p=0.003), indicating both scale 

relatively equally to sutural complexity (Fig. 15). Measures of skull size and logged 

values of lacunarity as well as logged values of prefactor lacunarity were not significantly 

correlated. Suture path length was correlated with both the geometric mean of skull size 

(R2=0.139, slope=0.714, CI=0.197, 1.230, p=0.007) and zygomatic arch size (R2=0.107, 

slope=0.245, CI=-.194.7, -134.3, p<0.000) (Fig. 15). See Table 10 for the results of all 

OLS regressions. 
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Figure 15. OLS Regressions of skull size (dark red) and zygomatic arch size (light red) 
with logged complexity (D) and suture path length measures 
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 Phylogenetic Generalized Least Squares (PGLS) regressions were performed on 

the data to determine the evolutionary association between the sutural complexity values, 

diet consumption percent, and FMP data. The GenBank consensus tree from 10KTrees 

was used to estimate the phylogenetic relationships and divergence dates for the primate 

species. Pagel’s lambda was calculated as a quantitative measure of phylogenetic signal 

in the data (Nunn, 2011). These models resulted in a maximum-likelihood estimate of 0 

for Pagel’s lambda indicating a low phylogenetic signal in the residual errors for the 

traits. Under these models, dietary designations using total consumption percent and food 

material properties, were not good predictors of lacunarity, prefactor lacunarity, or sutural 

path length.  

4.4.2 Sutural complexity (DB) 

 Box and whisker plot showing average complexity values for each dietary group 

is in Figure 16. Hard-object consumers possessed the largest complexity measures on 

average. ANOVA analyses with posthoc Tukey HSD tests were performed on taxa 

organized in the traditional dietary groups of “tough”, “hard”, “soft”, and “exudate” to 

determine the degree of variation between dietary groups as well as within dietary 

groups. ANOVA results on log transformed complexity (logD) compared among dietary 

categories found no significant differences (F= 2.192, p=0.088; Table 11).  
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Table 11. ANOVA results between dietary category for measures of complexity and its 
associated variables 
Variable F P 
Complexity (DB) 2.192 0.088 
Lacunarity (λ) 0.023 0.995 
Prefactor lacunarity (PΛ) 1.247 0.293 
Sutural path length 11.04 <0.000 

 
 
 
 

 
Figure 16. Box and whisker plot of average zygomaticotemporal sutural complexity 
values by diet type 
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 ANOVA analyses were also performed on each dietary group to determine the 

variance in complexity within each dietary category. Tough consumers were found to be 

significantly different in complexity (F= 2.65, p=0.012) as were soft consumers (F= 

2.212, p=0.002). Exudate consumers were not significantly different from one another, 

nor were hard-object feeders (Table 12). Comparisons between raw complexity values 

and diet type shows hard-object consumers generally possess greater complexity 

measures on average, followed by tough consumers, soft consumers, and exudate 

consumers, but no comparisons were significantly different.  

 To examine whether differences in sutural complexity measures between closely 

related taxa based on total consumption percent of a particular food item existed, pairwise 

comparisons were performed on 17 pairs of species (Table 13) using logged complexity 

values. All comparisons were not significant except for the one comparison between 

Theropithecus gelada, a tough food consumer, and Papio anubis, a soft (and sometimes 

hard) food consumer (p= 0.033). 
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Table 13. Results of pairwise comparisons using two-sample t-tests comparing logD 
values 
Comparison t df p 
G. gorilla (T) v. P. troglodytes (S) 1.71 14.4 0.11 
G. gorilla (T) v. P. pygmaeus (S) -1.84 8.59 0.09 
M. fascicularis (S) v. M. mulatta (T) 0.59 7.42 0.56 
L. albigena (H) v. C. torquatus (S) -1.78 10.5 0.10 
A. palliata (T) v. A. geoffroyi (S) 0.37 20.1 0.71 
P. pithecia (H) v. P. monachus (S) -1.84 1.21 0.28 
M. talapoin (S) v. E. patas (S) 0.36 5.80 0.72 
P. anubis (S) v. T. gelada (T) 8.11 1.48 0.03 
P. badius (T) v. C. polykomos (T) -0.44 16.2 0.66 
T. cristata (T) v. P. hosei (T) 0.61 7.64 0.56 
T. cristata (T) v. P. rubicunda (H) 1.45 11.3 0.17 
G. gorilla (T) v. H. lar (S) -0.70 12.5 0.49 
C. jacchus (E) v. S. oedipus (S) -1.56 9.72 0.15 
S. sciureus (S) v. S. oerstedii (S) -0.77 6.91 0.46 
S. sciureus (S). A. trivirgatus (S) -1.75 3.44 0.16 
S. apella (H) v. C. capucinus (S) 0.53 21.5 0.59 
N. larvatus (T) v. P. rubicunda (H) -0.22 10.7 0.82 

T= tough consumer; S= soft consumer, H= hard-object consumer; E= exudate consumer 
 

4.4.3 Lacunarity  

 For lacunarity, λ, which describes the texture or heterogeneity of the fractal, 

ANOVA and post-hoc Tukey HSD tests were performed to assess the degree of variation 

in fractal texture across diet groups. Logged lacunarity ANOVA comparisons between 

dietary groups found no significant differences (F=0.016, p=0.995).  Similar to the results 

of logged complexity (logD), when separated by dietary group, significant differences 

within groups were found in soft feeders and tough food consumers (Table 12). Hard-

object consumers and exudate consumers had no significant differences within their 

group members. These results suggest that there is relatively higher instances of 

heterogeneity in soft and tough consumers overall, and more homogeneity in hard-object 

and exudate consumers.  
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4.4.4 Prefactor lacunarity 

 The results of ANOVA comparisons between dietary groups found no significant 

differences (F=1.24, p=0.293). Similar to the results found within dietary groups with 

respect to complexity and lacunarity (Table 12), soft and tough consumers yielded 

significant results (Table 12). Interestingly, hard-object consumers were also significantly 

different (Table 12), although they were not in previous tests of lacunarity and sutural 

complexity. Exudate feeders were not significantly different from one another. These 

results suggest that for this measure of lacunarity, there is varying heterogeneity in the 

fractal measures in all diet categories except exudate consumers. 

 

4.4.5 Suture path length 

 Relative suture path length was calculated for each specimen using linear 

measures of vertical arch height and the total traced path length of the suture on the bone.  

ANOVA comparisons between dietary groups found significant differences between 

exudate consumers and all other dietary categories (F=11.04, p<0.000; Fig. 17). Post-hoc 

Tukey HSD tests found exudate consumers to be significantly shorter in pathlength 

comparison to tough, soft, and hard-object consumers (p<0.000, Table 9). In addition, 

comparisons between soft and tough consumers were also significant with tough 

consumers being longer than soft consumers in pathlength (p=0.010).   

 ANOVA results for comparison within traditional dietary categorization found 

significant results within tough, soft, and exudate consumers (Table 12). Hard-object 

consumers did not yield significant results. Pairwise comparisons of closely related taxa 

from different diets were performed and seven pairs of taxa yielded significant results (p< 
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0.030, Table 10).  Path length and logged complexity values were compared to determine 

whether longer path lengths were also more complex. OLS regression on complexity and 

path length found no relationship between the variables (p=0.08). 

 

 

Figure 17. Box and whisker plot of zygomaticotemporal suture path length measures by 
traditional dietary category. 
 
 
Table 14. Post-hoc Tukey HSD Tests on suture pathlength 
Comparison Tough Soft Hard Exudate 
Tough     --- 0.010 0.381 <0.000 
Soft 0.010    --- 0.999 <0.000 
Hard 0.381 0.999    --- <0.000 
Exudate <0.000 <0.000 <0.000      --- 
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4.4.6 Sutural complexity and diet: Total consumption percent of food type 

 A series of Phylogenetic Generalized Least Squares (PGLS) regressions 

conducted using the consensus tree of all study taxa and which included measures of size, 

total consumption percent of a food type, and measure of complexity, found total 

consumption percent to be a poor predictor of complexity (Appendix B; Table SM3). All 

models generated a maximum-likelihood estimate of 0 for lambda indicating a low 

phylogenetic signal in the data. One contributing factor to this result is the relatively low 

number of species with FMPs data available (n=9); ideally PGLS regression recommends 

that sample size considerably exceed the number of predictors (Mundry, 2014). 

 

4.4.7 Sutural complexity and diet: Food material properties (FMPs) 

 A Phylogenetic Generalized Least Squares (PGLS) regression was calculated on 

the subsample of species for which FMP data were available. None of the overall models, 

which included complexity, lacunarity, prefactor lacunarity, and suture path length, mean 

toughness (R) and mean Young’s modulus (E) values, were significant. All models 

generated a maximum-likelihood estimate of 0 for lambda indicating a low phylogenetic 

signal in the data (Appendix B; Table SM3). 

 Individual OLS regressions of food materials properties (FMP) and size found a 

significant relationship between Young’s modulus and skull size (Table 15; Fig. 18) as 

well as Young’s modulus and zygomatic arch size.  These regression results suggest that 

larger taxa consume foods of less hardness than smaller-bodied taxa. It is important to 

note that these data were only available for a relatively small number of species, and that 

the measures of Young’s modulus only represent the hardest foods consumed, not the 
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most commonly consumed foods. For instance, Callithrix jacchus consumes bark and 

cambium of trees, which yielded average E measures of 113.0-282.9 MPa (Correa et al., 

2000) even though the primary foods consumed for these taxa are exudates. These values 

even exceed some seed tissues consumed by S. apella (114.3 MPa, see Coiner-Collier et 

al., 2016).  No relationship between toughness and skull size or toughness and zygomatic 

arch size was found. No relationship between Young’s modulus and toughness was 

found.  Lacunarity and mean toughness were significantly correlated (Table 15). No 

relationship was found between lacunarity and Young’s modulus. Neither prefactor 

lacunarity nor suture path length was correlated with toughness or Young’s modulus. 

 

 

Figure 18. OLS regression of logged average values for Young’s Modulus and logged 
geometric mean for skull size and logged lacunarity and mean toughness measures. Dark 
red is skull size, orange is zygomatic arch size; dark green is skull size and light green is 
zygomatic arch size. 
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  Results of the Principal Coordinates Analysis (PCoA) on both FMPs and 

traditional dietary groupings were performed to visually assess the data and to also 

quantify the dissimilarity between groups.  PCoA results for the traditional dietary 

categories found a combined 69.46% of the variation captured by the first two coordinate 

axes (Fig. 19).  Visually, tough consumers and soft consumers cluster separately from 

one another with only slight overlap. Exudate consumers fall within the distribution of 

soft consumers, while only some hard-object consumers (Sapajus apella and Chiropotes 

satanas) overlap with soft consumers. All other hard-object consumers clustered 

separately from soft, exudate, and tough consumers.  

Figure 19. Principal Coordinates Analysis (PCoA) plot of complexity measures and size 
using traditional dietary categories. Filled circle= soft consumers, open circles=exudate 
consumers, open squares= tough consumers, plus=hard-object consumers. 
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 PCoA plots were generated for both toughness and Young’s modulus measures in 

relation to measures of sutural complexity.  With regard to toughness, approximately 

87.69% of the variation was accounted for in the first two principal coordinates. In this 

plot, tough consumers were relatively closely clustered overall, though tough consumer 

Alouatta paliatta clustered more closely to Pan troglodytes (a soft consumer) and 

Pithecia pithecia (a hard consumer) than it did to any other tough consumer (Fig. 20). 

Similarly, S. apella grouped more closely with Callithrix jacchus,the sole exudate 

consumer, and P. troglodytes than with hard-object consumer Chiropotes satanas or 

Pithecia pithecia.  Chiropotes satanas, separated from all other dietary groups as did 

Pongo pygmaeus.  

 For measures of Young’s modulus, the first two principal coordinates account for 

80.40% of the variation observed. PCoA plots generated for Young’s modulus measures 

in relation to suture complexity measures yielded a different clustering pattern than was 

observed in toughness measures (Fig. 21); generally speaking, taxa with similar primary 

dietary types grouped more closely together and there is relatively less overlap between 

groups as well.   
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Figure 20. Principal Coordinates Analysis (PCoA) plot of sutural complexity and size 
with measures of fracture toughness (R). Key: filled square = hard-object consumer; 
filled circle = soft consumer; open circle = tough consumer; plus = exudate consumer 

 

 Overall, the results for Young’s modulus measures in relation to complexity has 

taxa with relatively higher Young’s modulus values (i.e., values above 90 MPa)  

clustering together above the second coordinate axis with the exception of Pongo 

pygmaeus.  In the toughness plot however, the taxa with the relatively highest toughness 

measures (i.e., values greater than 700 Jm-2) separate farther from other groups regardless 

of diet type.  However, C. jacchus and P. pithecia cluster more closely together than to 

any other group.   In the Young’s modulus PCoA plot, the taxa that consume primarily 
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tough foods clustered closer together than to any other group.  In addition, P. troglodytes 

and Pongo pygmaeus, which are both categorized as soft consumers, separated less than 

in the toughness plot, and plotted within the same quadrant to the exclusion of all other 

taxa. Hard-object consumers S. apella and P. pithecia plotted more closely to exudate 

consumer C. jacchus, than hard-object consumer C. satanas.  C. satanas remained 

separated from other hard-object consumers in both the Young’s modulus plot and 

toughness plot. 

 

 

Figure 21. Principal Coordinates Analysis (PCoA) plot of sutural complexity and size 
with measures of Young’s modulus (E). Key: filled square = hard-object consumer; filled 
circle = soft consumer; open circle = tough consumer; plus = exudate consumer 
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4.5 Discussion 

 One of the key functions of cranial sutures is their role in the transmission and 

dissipation of mechanical loads experienced during mastication (Herring, 1972).  If this is 

the case, then suture morphology should reflect the loading environment to which it is 

subjected (Rafferty and Herring, 1999). Previous work in primates by Byron (2009) 

determined that dietary signals were detectable in the sagittal sutures of cebids, and that 

the relative increased interdigitation observed in Sapajus apella compared to other 

closely related cebids was attributable to the consumption of hard objects. Thus, this 

study sought to extend this reasoning to the zygomaticotemporal suture in order to test 

whether sutures in other highly loaded areas of the cranium respond to differences in 

strain magnitude.  

 The results of this study do not support the predictions that increased sutural 

complexity (in the form of increased interdigitation) is found (1) in taxa consuming a 

mechanically resistant diet (tough and/or hard) as compared to those with less 

mechanically resistant diets or (2) in taxa that consume foods with higher toughness 

and/or Young’s Modulus values. Broadly speaking, both total consumption percent and 

FMPs data appear to be poor predictors of complexity in the zygomaticotemporal suture 

in this sample of primates.  The lack of differences between dietary groups as well as in 

pairwise comparisons between closely related taxa support the idea that differences in 

sutural complexity are not driven by diet, in terms of total consumption percent or FMPs, 

in this sample.   

 It is notable however that across the study sample as a whole, the raw complexity 

measures were on average greatest in hard-object consumers, followed by tough 
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consumers, soft consumers, and exudate consumers (Fig. 7). While this does not directly 

support the study’s hypotheses in a statistical sense, it may broadly suggest that feeding 

on hard or tough foods may be an indirect contributor to sutural complexity through the 

resulting masticatory strains produced during the oral processing of these foods. While 

this study did not find direct support for the hypothesis that dietary type catalyzes an 

increased sutural response, it does not discredit the notion that morphological complexity 

is in part related to diet, and that in this region of the skull, sutural morphology may be 

relatively conserved regarding the extent to which that morphology can vary. 

Furthermore, the lack of support for the hypothesis may derive from the relatively low 

variation in complexity across the entire primate sample, given complexity values are 

generally constrained to values between 1 and 2.  

 The overall shape of the zygomatic arch, compared to other cranial bones joined 

by sutures is also notably different; as a beam-like structure fully suspended in space 

from the skull, the presence of high loading will presumably cause it to behave 

differently as compared to the large, rounded, bony plates between which the sagittal, or 

coronal sutures run. Furthermore, the zygomaticotemporal suture appears on a bone that 

directly experiences high forces due to the direct attachment of powerful masticatory 

muscles and other fascia, which generate high magnitude and opposing forces along the 

length of the zygomatic arch (Eisenberg and Brodie, 1965; Preushoft and Witzel, 2004; 

Rodriguez-Vegas and Casado Perez, 2004; Curtis et al., 2011; Curtis et al., 2014).   

Burn et al. (2010) found that regardless of diet, cranial suture in pigs were thicker and 

less interdigitated than facial sutures, and that relative interdigitation can vary within 

sutures as well. If this is the case in primates, then the low variance in interdigitation 
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observed between groups may be because masticatory strain doesn’t appear to 

significantly affect suture form and the variation observed within dietary groups may be 

due to species specific patterns unrelated to masticatory loading. 

 Sutural complexity in the mid-palatal sutures of two species of colobus monkeys 

(Colobus polykomos and Procolobus badius) have been previously quantified using 

fractal analysis to determine whether differences in the dietary composition of these 

sympatric primates manifested in the relative interdigitation of the mid-palatine suture 

(Hotzman, 2004).  This study found no significant differences between these taxa with 

respect to mid-palatal suture complexity, which is consistent with the findings of the 

zygomaticotemporal suture in the present study.  Hotzman (2004) found that the average 

fractal measure in C. polykomos (D=1.18) was slightly, though not significantly, greater 

than in P. badius (D=1.13) which may be attributable to the relatively higher 

consumption of the particularly hard African oil bean (Pentaclethra macrophylla) in C. 

polykomos as compared to P. badius. In spite of this key dietary difference, the 

consumption of this seed likely does not generate enough force to cause more stress in 

this portion of the palate (Hotzman, 2004).  The current study also executed pairwise 

comparisons of fractal values between specimens of C. polykomos and P. badius but 

found no significant differences between these taxa, and determined that overall, their 

zygomaticotemporal suture complexity values are relatively the same (D=1.46 and 

D=1.47 respectively).  This further suggests that dietary loading is not sufficient to 

catalyze significant variation in suture morphology and that the extent to which sutural 

morphology can be modified is relatively restricted in particular portions of the 

masticatory complex. In the zygomatic arch (and palate) architectural differences in the 
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amount and composition of bone that exist between the forces generated at various bite 

points in the tooth row may disrupt the masticatory forces generated during chewing, and 

therefore reduce the magnitude of the loads at the suture sites. However, without in vivo 

strain data, bite force measures, or estimates of muscle activation, this remains 

speculative at best. 

 The zygomatic arch is known to experience a range in strains along its long axis 

with the highest loads occurring anteriorly and decreasing posteriorly (Hylander and 

Johnson, 1997).  Because the entire arch does not bear uniformly high magnitude loading, 

increased zygomaticotemporal sutural complexity may not be necessary. Alternatively, 

because sutures could be places of potential structural weakness, particularly under high 

loading, it may not be selectively advantageous to allow highly flexible or pliant sutural 

phenotypes in a highly strained area because bone failure would result in severe fitness 

consequences.  Therefore, the range of sutural values may be constrained as a protective 

measure to ensure structural integrity.  

 

4.5.1 Complexity measures and diet 

 This study found that zygomaticotemporal sutural complexity is related to both 

skull size and zygomatic arch size in primates, and suggests that generally, larger 

individuals exhibit greater sutural complexity in this region than do smaller individuals. 

However, size alone only explains a small portion of the variation observed. Suture path 

length and complexity were also not related, indicating that larger zygomatic arches do 

not necessitate more complex suture morphology. For measures of complexity, 

lacunarity, and prefactor lacunarity, no significant results were found between dietary 
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groupings, but significant variation was observed within specific dietary groups (soft and 

tough).  This suggests that the dietary groupings of “tough,” “soft,” “hard,” and 

“exudate” are not the most informative way to categorize diet and may overlook some 

underlying patterning because they are too generalized.  In addition, there is also the 

possibility that the size association found among the taxa may be a function of 

measurement scale or the resolution of the scans. 

 The significant findings within tough and soft consumers indicate that there is 

substantial variation within these two groups, which is unsurprising given they had 

relatively larger sample sizes than either the hard-object or exudate groups.  The tough 

and soft consumer groups contained some of the largest bodied taxa overall (e.g., G. 

gorilla, P. pygmaeus, and P. troglodytes) and while complexity was correlated with size, 

size alone appears to account for only a small portion of the variation within these 

groups.  Therefore the weak relationship between size and complexity leaves the majority 

of the variation unaccounted for.  The relatively low variation observed in hard object 

and exudate is likely due to their relatively small sample sizes and more similar body 

sizes.   

 The results for pairwise comparisons between different dietary groups also 

supports the finding that dietary grouping on the basis of total consumption percent is not 

a good predictor for complexity.  In this set of comparisons, only the pairing between 

Theropithecus gelada and Papio anubis was significant (p=0.030).  There are several 

potential explanations for this result. First, given that geladas are specialized gramnivores 

with highly tough diets, and Papio anubis is a relative generalist that consumes a wide 

variety of foods, the dietary signal in this pairing may be more detectable because their 
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diets are more diametrically opposed as compared to taxa who have more similar diet 

compositions.  Secondly, with respect to the bone morphology of the zygomatic arch, 

geladas appear to possess measures of bending and torsional resistance that are relatively 

greater in posterior portions than in anterior portions; a pattern that opposed what is 

typically observed in primates, including P. anubis.   If this difference in bending and 

torsional resistance is due to the fact that masticatory strain measures are also greatest 

posteriorly as compared to anteriorly in this species, then that would potentially explain 

the significant differences between T. gelada and P. anubis because the concentrations of 

the highest strains would be positioned on opposite sides of the zygomaticotemporal 

suture in these taxa.  Finally, the architectural differences in the skulls of geladas versus 

baboons may also contribute to the differences seen here; both are highly prognathaic 

compared to other primates and the relative activation of the masseter muscle when 

opening and closing the jaw during non-masticatory behaviors may subject the suture to a 

different series of strains. It would be interesting to investigate the relationships between 

these taxa further by way of masseter muscle activation and in vivo strain measurement 

along the zygomatic arch to determine whether geladas possess a species-specific pattern 

unique among other primates. 

 The results for lacunarity (relative “gappiness”) and prefactor lacunarity 

(heterogeneity) concur with the findings for complexity with regard to dietary 

categorization on the basis of total consumption percent.  These results indicate that for 

soft and tough consumers, the texture and fluctuation in the suture’s path are greatest as 

compared to hard and exudate consumers. Both soft and tough feeders had significant 

variation in these measures indicating suture patterns with varying degrees of holes or 
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gaps persisted throughout both groups. In addition, the significant variability in the 

heterogeneity of the fractals in the soft and tough diet groups suggests that the suture path 

ungulates non-uniformly and that there is variation both intra-, interspecifically, and by 

diet type in these species. Given these variables are related to complexity, it logically 

follows that they pattern similarly to complexity in relation to the dietary groups. 

Moreover, both lacunarity and prefactor lacunarity do not appear to be related to 

traditional dietary categories in any predictable way nor do they appear to be related to 

any measures of size.  

 Suture pathlength was significantly related to both skull and zygomatic arch 

though the relationships are relatively weak (r2= 0.139 and 0.107 respectively; Table 5).  

This suggests that on average, larger taxa have relatively greater path lengths, though this 

relationship is relatively weak.  Suture path length and complexity, however, are not 

related suggesting that taxa with relatively longer sutures do not necessarily have more 

complex sutures.  Surprisingly, suture path length was significantly different among 

dietary groups with exudate consumers possessing significantly different path length 

measures as compared to soft, hard, and tough consumers.  Compared to the other groups, 

exudate consumers possessed the lowest complexity values as well as the relatively 

shortest path length values on average, which at least partially explains why they are so 

different from the lengths in other taxa. Soft and tough consumers were also found to 

have significantly different average path lengths, with tough consumers possessing the 

greatest path lengths on average among all taxa. Because path length was correlated with 

size, it is not surprising that tough consumers yielded the greatest path lengths since they 

contained some of the largest taxa in the sample.  
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 An additional component to consider in future analyses is the potential effect of 

sexual dimorphism, specifically masseter muscle size, on sutural complexity. The lack of 

equal sex samples for each species in this study precluded the performance of extensive 

comparisons between males and females, particularly given the lack of male specimens 

representing the more dimorphic species such as Gorilla gorilla and Pongo pygmaeus. 

While this study did conduct preliminary comparisons between males and females in 

species where sample sizes were more equal, no significant differences were found. 

Sexual dimorphism in cranial sutures has been identified in sheep, where males were 

found to possess greater complexity in facial sutures (presumably from clashing horns) 

while females had greater complexity in their cranial sutures as compared to males 

(Jaslow, 1989). While primates do not engage in these types of traumatic behaviors, the 

degree of sexual dimorphism in the masticatory muscles may explain sutural complexity 

differences intraspecifically, particularly in highly dimorphic species such as gorillas, 

orangutans, or chimpanzees. Given the developmental differences in sutural growth and 

fusion observed in gorillas and chimpanzees, a consideration of the effect of diet and 

masticatory muscle size on suture formation would improve our understanding of cranial 

suture ontogeny. 

 

4.5.2 Hard-object feeding and sutural complexity 

 The effect of hard-object feeding is of great import and debate in 

paleoanthropology given its implications for extinct hominin diets and associated 

craniofacial adaptations in both Australopithecus and Paranthropus (Jolly, 1970; Grine, 

1981; Rak, 1983; Kay, 1985; Lucas et al., 1985; Hylander, 1988; Teaford and Ungar, 
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2000; Strait et al., 2009; Daegling et al., 2011).  To understand these effects, extant 

primate models are critical because they provide a comparative foundation in which both 

their morphology and behavior can be observed and then applied to the fossil record.  

 The Pitheciinae are distinct among living primates because of their reliance on 

hard seeds, immature fruits, and possession of specially adapted dentition (e.g., 

procumbent, high crowned lower incisors, large canines, specialized premolars) and deep 

jaws (Ayres, 1989; Norconk et al., 1998; Boubli, 1999), which allows them to process 

these foods. Comprised of three genera (Chiropotes, Cacajao, and Pithecia) these taxa 

consume fruit, and in particular hard and immature seeds to varying degrees, although 

during resource stress they are known to increase their reliance on hard seeds (Ayres, 

1989; Martin et al., 2003). These taxa are all predispersal seed predators (Janzen, 1971) 

that consume fruit encased in a hard pericarp that is pierced using their procumbent 

incisors (Kinzey, 1992).  These types of fruits typically have softer seeds, which are 

easily masticated on the molars once the hard pericarp is pierced (Martin et al., 2003).  

 Sapajus apella also consumes hard objects, though not to the extent of the 

pithecids. A significant aspect of S. apella’s consumption of hard objects (such as palm 

nuts) is the manual manipulation of the hard husks (Peres, 1991) and their thickly-

enameled molars that crush hard food items.  Compared to the pithecids, which use their 

anterior dentition to open the hard pericarp, S. apella relies on the power of its posterior 

dentition to puncture-crush the hard food (Martin el al., 2003). In both pithecids and S. 

apella, there is presumably high masseter recruitment with correspondingly high 

masticatory strain during feeding on these objects, which would theoretically create a 

mechanical environment forging the basis for increased sutural response. 
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 When average fractal values (D) are compared across all study taxa, the highest 

averages values were indeed found in Chiropotes albinasus (D=1.894) and Cacajao 

rubicundus (D=1.705), both of which consume hard seeds and immature fruit, though C. 

albinasus consumes relatively fewer amounts of seeds (about 35.9%, see Ayres, 1989) as 

compared to C. rubicunda which consumes about 67% (see Ayres, 1989).  Chiropotes 

satanas, also a routine hard-object consumer, possessed an average complexity value of 

1.45, placing it below the averages of the other pithecids. In contrast, S. apella’s average 

complexity value of 1.45 places it within the same range as C. satanas but below the 

average for both C. rubicundus and C. albinasus. In both species of Chiropotes in this 

study however, the species is represented by a single datum point, which is used with 

caution in the interpretation of these results. For future study, it would be important to 

include larger sample sizes. For the purpose of the present study these results may 

indicate that the increased complexity in pithecids compared to S. apella may be a 

function of the differences in the portions of their diets dedicated to hard-object 

consumption. Dietary data on Sapajus indicates that approximately 12.5% of its diet is 

composed of hard seeds, while up to 75% of the diet is primarily fruit (Galetti et al., 

1994) suggesting that the relatively infrequent consumption of these hard items compared 

to these other taxa does not lead to same degree of sutural complexity found in the 

pithecids.  

  Among the Cercopithecidae, Cercocebus torquatus, a thickly enameled, hard-

object consumer possessed a higher complexity value (D=1.583) than Lophocebus 

albigena (D=1.476) a result that is unsurprising (and not statistically significant) given 

that Cercocebus consumes harder items on average that Lophocebus. Like the pithecids, 
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L. albigena populations in Kibale National Park, Uganda, are known to switch to eating 

seeds (which are presumed to have high hardness) and bark during periods of food 

scarcity (Lambert et al., 2004). Because hard seeds can serve as an important fallback 

food source, the ability to process such a food item would be advantageous, particularly 

during periods of extended resource scarcity.  

 Previous work has examined the craniodental features of S. apella in relation to 

other cebid species (e.g., Eaglen, 1984; Bovier, 1986; Cole, 1992; Daegling, 1992; 

Masterson, 1996; Wright, 2005) finding S. apella possesses clear morphological 

adaptations to hard-object feeding.  When the complexity values of S. apella are 

compared to closely related C. capucinus, S. apella possesses only slightly more complex 

(D=1.45) zygomaticotemporal sutures compared to C. capucinus (D= 1.40) despite the 

marked craniofacial morphological differences found between these taxa. This finding is 

in contrast to that of Byron (2009a) who found sagittal sutural complexity was greater in 

S. apella compared to that of other capuchins. The relatively larger temporal area of S. 

apella (a proxy for the size of the temporalis muscle) compared to other cebids suggests 

that increased temporalis recruitment resulting from hard-object biting induces greater 

tensile loads on each side the sagittal suture, causing greater tensile loading along the 

bone edges, and consequently increasing sutural complexity (Byron, 2009a).  In addition, 

the deep layer of the temporal fascia attaches along the medial surface of the arch and the 

superficial layer attaches to the lateral surface of the archwhich functions to resist the 

tension generated by the masseter muscle (Eisenberg and Brodie, 1965; Curtis et al., 

2011).  
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 In the case of the zygomaticotemporal suture, the relationship between the 

masticatory muscle (i.e., the superficial and deep masseter) and its resulting strain 

magnitudes and orientation relative to the zygomaticotemporal suture is different than 

that of the sagittal suture. Specifically, the masseter muscle takes its origin at the anterior 

portion of the zygomatic arch (and thus anteriorly to the zygomaticotemporal suture), 

which, upon activation, would presumably generate greater tensile loads along the 

zygomatic portion of the suture as compared to the temporal bone portion. Thus, unlike 

the sagittal suture, which experiences tensile loads emanating from the respective 

temporalis muscles on each side of the cranium, the zygomaticotemporal suture 

experiences strain only from the one side, consequently diluting the amount of strain 

experienced on the other side.  This may make the suture less sensitive to the effects of 

high magnitude, obdurate feeding because the suture is not entrenched in a uniformly 

strained region. In the case of cebids, this may explain the differences in interdigitation 

found in the sagittal versus zygomaticotemporal sutures, if the strains on the zygomatic 

arch do not differ significantly between S. apella and C. capucinus.  To more adequately 

test this, future work should consider collecting measures of masticatory muscle 

activation in concert with masticatory strains in both regions during feeding in this group. 

 The taxa with the lowest overall sutural complexity values were Callithrix 

humeralifera, (D= 0.646), and Callithrix jacchus (D=1.144), both of which are 

committed exudate consumers whose complexity measures support the initial prediction 

that less mechanically resistant diets result in less complex sutures. Surprisingly however, 

the two species of Pithecia (Pithecia monachus and Pithecia pithecia) also possessed 

relatively low complexity values overall (D= 1.37 and D=1.06 respectively) as compared 
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to other seed predators and the study sample as a whole. Like Cacajao and Chiropotes, 

Pithecia too exhibits clear craniodental adaptions for hard-object feeding (e.g., 

procumbent incisors, molarized premolars, low occlusal relief in the molars and 

premolars, see Ledogar et al., 2013). Yet, their low complexity values, particularly in P. 

pithecia, place them within the range of exudate consumers as opposed to other hard-

object feeders. One possible explanation for the presence of craniodental adaptations to 

hard-object consumption in P. pithecia but low sutural complexity values rests not in the 

degree of suture interdigitation, but in the degree of overlap in the suture as a means of 

resisting tensile and shear forces generated during mastication.  

 In a 2014 study, Dzialo and colleagues examined the squamosal suture of 

Paranthropus boisei to determine whether its large and overlapping sutures were an 

adaptation to maintain sutural integrity during seemingly high magnitude masticatory 

forces and to prevent any separation of the bones.  The high degree of squamosal suture 

overlap in P. boisei was first noted by Rak (1978) who predicted the potential failure of 

the squamosal suture in two ways: as being a consequence of high shearing forces 

derived from the inferior pull of the temporalis muscle on the parietal bone or from the 

inferior pull of the masseter on an anteriorly shifted, flaring zygomatic arch, which would 

rotate the temporal bone, causing it to separate from the parietal (Dvialo et al., 2014).   

 Using Finite Element Modeling (FEM), this study simulated the effect of static 

premolar biting on suture strength and integrity in models of P. boisei and Pan 

troglodytes (Dvialo et al., 2014). The peak von Mises and maximum principal stress 

results for this study found that an increase in suture size led to a decrease in stress on 

both the working and balancing side sutures. Furthermore, this study found that these 
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maximum principle stresses were consistently greater on the balancing side than on the 

working side, suggesting that the risk of suture failure is higher on the balancing side than 

on the working side (Dvialo et al., 2014). Shearing forces appeared to be the dominant 

force type experienced on both the working and balancing sides, and the increased 

thickness of the suture was necessary to avoid failure (Dvialo et al., 2014). In addition, 

increasing contact area effectively reduces shearing loads as shear resistance ability to a 

function of cross-sectional area. If relative suture volume and overlap do function to 

resist high magnitude strains independently of sutural complexity, then this could 

represent an alternative means to combat high masticatory strains. A valuable future 

study would be to quantify suture volume and overlap in extant hard-object consumers 

(such as the pithecids) to establish a baseline to which fossil taxa can be compared.  

 

4.5.3 Total consumption percent versus FMPs data 

 One of the primary aims of this study was to determine whether food material 

properties data or total consumption percent was a better predictor of 

zygomaticotemporal sutural complexity in a diverse primate sample.  The results for total 

consumption percent do not suggest that it is a good predictor of sutural complexity in the 

zygomaticotemporal suture in this primate sample. This study designated consumption 

percent using the protocol of Muchlinkski et al. (2010) in which a species’ dietary 

designation was based on 50% or more consumption of a food item.  Given the dietary 

shifts that can take place as a result of food availability, a species dietary category may 

technically shift depending on the time of year, particularly if a species transitions to the 

consumption of harder food items as a fallback strategy.  For example, Lophocebus 
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albigena populations in Kibale National Park, Uganda, are known to switch to eating 

seeds (which are presumed to have high hardness) and bark during periods of food 

scarcity (Lambert et al. 2004). The utility of both FMP data and total consumption 

percent may be hampered when in isolation from other measures of primate diets.  One of 

the disadvantages of categorization based on total consumption percent alone is the fact 

that cumulative measures of consumption do not account for the variation in food 

material properties that can occur within a single food item. Furthermore, the seasonal 

fluctuation and variation in local ecology complicates the issue when populations of the 

same species are compared. To account for these effects, it would be prudent to generate 

estimates of diet that weigh FMP measures by reported consumption percentages.  

Venkatraman et al. (2014) generated estimates of cumulative toughness in geladas that 

took measures of toughness (R) for a given food item multiplied by the percent the food 

item constituted in the diet. The result of these estimates for all food items were summed 

together, representing a weighted measure of the toughness that can be used for 

comparisons between groups across an annual dietary cycle. By extension, an analogous 

estimate for Young’s Modulus (E) could be generated and used to more adequately 

quantify the variation in stiffness of various food items.   Furthermore, the scale at which 

these cumulative, weighted measures are applied can also target questions concerning the 

relative differences in material property measures within a single food item. Plant tissues 

range from those that are easily processed to those that are more mechanically resistant 

and a primate ingesting that food may encounter a series of plant layers with markedly 

different processing requirements (Wright, 2004). For instance, the Inga fruit ingested by 

P. pithecia varies in toughness depending on the plant part; the endosperm has relatively 
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low toughness measuring about 182.1 J m-2 compared to the much tougher sections of the 

external woody tissues (4382.9 J m-2) (See Table 5.3 in Wright, 2004). Thus, the 

toughness measures of this fruit fall within the range of many types of leaves, and would 

impose greater masticatory demands on the masticatory complex compared to less tough 

fruits. Given the complexity of primate feeding ecology, future studies would ideally be 

able to collate data on FMPs, total consumption percent, feeding times, and site-specific 

local ecology to craft a more comprehensive dietary profile. 

 The results for the FMPs comparisons indicate that mean measures of both 

toughness and Young’s modulus have no relationship to zygomaticotemporal sutural 

complexity. With respect to size, no relationship was found between skull size or 

zygomatic arch and mean toughness, but a significant, negative relationship between 

skull size and mean Young’s modulus was found in this sub-sample of primate taxa (Fig. 

6). This result suggests that taxa of increasing skull size consume foods of decreasing 

hardness or stiffness; a finding also observed by Coiner-Collier et al. (2016) in their 

sample of primates.  This result may be misleading given the difficulties in including the 

full spectrum of hard food items consumed by larger bodied taxa because of issues with 

FMP data collection in the field (see Coiner-Collier et al., 2016, p. 112). If complete 

dietary profiles could be constructed, particularly on these large-bodied taxa, then that 

would provide more information about this relationship and provide increased 

explanatory power.  

 Despite these issues, a notable strength of FMP data is its ability to differentiate 

between hard (using Young’s modulus) foods and tough foods in a mechanical sense. 

Dietary comparisons are usually dichotomized into food categories of “hard versus soft” 
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or “mechanically challenging versus less mechanically challenging” as a means of 

characterizing the mechanical differences between the two categories. For example, 

previous work by Burn et al. (2010) examined the effect of a hard diet versus a soft diet 

on midline cranial sutures in pigs (Sus scrofa).  Their results found subjects consuming 

hard foods had greater sutural thickness and greater interdigitation compared to those fed 

soft foods, but these relationships were not statistically significant (Burn et al., 2010). In 

contrast both tough and hard foods are commonly subsumed under the category of 

“mechanically challenging” which carries expectations about the durability of the food 

item, time necessary to process it, and the concomitant bite forces required to break it 

down. Hard foods and tough foods, however, differ in these regards. In this study, 

separation of tough consumers from hard consumers, as well as the inclusion of FMP 

data was meant to test whether differences between hard and tough consumers were 

detectable. Gorillas are known for consuming large quantities of tough food in contrast to 

orangutans, which generally consume fruits, as well as hard seeds (Vogel et al., 2008). 

This study found that average complexity measures of orangutans (D=1.54) were greater 

than that of gorillas (D=1.49) though these values were not significantly different.   

Similar to the findings of Burn et al. (2010), absolute differences in sutural 

interdigitation, albeit not statistically different, occur in individuals consuming different 

diets. Given that this study found hard-object consumers tend to have absolutely greater 

complexity values than closely related taxa suggests there may be an indirect effect on 

suture morphology connected to hard-object feeding.  

 Mechanically, the presence of the zygomaticotemporal suture on the zygomatic 

arch is important for the maintenance of arch architectural integrity because it allows for 
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relatively small levels of tensile and rotational freedom during instances of bending 

induced during mastication (Curtis et al., 2014). While a limited range of motion is 

necessary to accommodate the pull on the arch during mastication, too much instability 

has the potential to cause breakage or failure.  The finding that sutural complexity was 

not significantly different across the taxa in this study may stem from the need to allow 

enough movement to adequately disperse forces impacting bone while simultaneously 

maintaining a safety factor that ensures the bone will not fail.  

 In addition to feeding, the ontogenetic nature of suture structure on the zygomatic 

arch reveals that suture complexity and stiffness increases with age.  The study on Curtis 

et al. (2014) found that ontogenetic changes affected zygomaticotemporal sutural form in 

macaques of different ages. Despite the simple representation of this suture in models of 

the zygomatic arch, this study finds that significant increase in organized bone facets that 

interlock to minimize movement between the zygomatic and temporal bones during 

feeding (Curtis et al., 2014). Younger individuals have relatively more movement at this 

junction allowing the two bones to displace in the same direction along the bone plane 

whereas older individuals have relatively less movement due to the constraining nature of 

the increased suture interdigitation.  Thus complexity appears to increase with age (Curtis 

et al., 2014).  While this study was limited in sample size and only looked at a single 

macaque species, it would be interesting to expand this is future work through an 

examination of ontogeny in relation diet, particularly at the point when young individuals 

make the transition to a fully adult diet.   

 Finally, a key point accompanying the findings of this study concerns the use of 

fractals for quantifying complexity in a biological structure. Some have criticized the use 
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of fractals analysis on human cranial sutures (see Long and Long, 1992) because these 

suture forms were believed to violate the rule of “self-similarity” and were therefore not 

fractals despite yielding dimensions between 1 and 2 (Hotzman, 2004).  Studies of human 

cranial sutural complexity that have employed the box counting method have 

demonstrated that these sutures indeed reflect self-similarity by plotting the logged 

number of squares with length r occupied by the suture against the logarithm of 1/r. 

Fraclac provides the log-log graphs for each analyzed suture and has shown a linear 

relationship between the points indicating that the sutures are self-similar and thus by 

definition considered fractal. However, one of the issues that arose was that some 

specimens that are exudate consumers yielded fractal values below 1, as fractal 

dimensions in nature are expected to exceed 1 (Long and Long, 1992).  In this case, these 

exudate consumers can still generate fractal measures but may actually represent a 

nonfractal curve.  In sutures generally, irregular curves are adaptive in resisting shear and 

compression (Herring, 1972), however mathematically they can become non-scaling 

(Long and Long, 1992). This means that as length N(r) increases (because r is smaller) a 

fractal dimension is still measured.  High values of r generate a false fractal, while 

smaller values of r result in curves that are Euclidean in nature and yield values 

approximating 1 (Long and Long, 1992). In some human lambdoid sutures (Long and 

Long, 1992), the suture folds and extends back and forth in such a way as to create a 

wavelength with an r value that is relatively smaller, and thus superficially appears to be 

a fractal. It has been argued that there are distinctions within suture types such that 

sutures can be ordinary, irregular, waveform, or intricate (Long, 1985; Long and Long, 

1992) depending on the extent to which the suture undulates to create elaborate, 
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interlocked bonds between bone or relatively low interdigitations that still provide 

adequate stiffness.   

 In the case of the zygomaticotemporal suture, it may be more appropriate to 

examine differences in sutural morphology with respect to suture type to determine 

whether the patterning of the convolutions is markedly different among taxa. 

Observationally, the sutures of exudate consumers appear to have sutures with relatively 

longer wavelengths (i.e., greater distance between peaks) and the amplitude of the peaks 

appear less wide relative to other taxa.  In other words, the sutures appear relatively more 

linear with r lengths that are smaller, and therefore more Euclidean as compared to taxa 

with shorter wavelengths and larger amplitudes. 

 

4.6 Conclusions 

 Modeling the biomechanical nature of the primate cranium has often focused on 

analyzing bone samples without accounting for the presence of cranial sutures and their 

role in strain dissemination. Despite the highly strained environment of the zygomatic 

arch, the degree of complexity in the zygomaticotemporal suture appears to have no 

relationship to food material properties data or total consumption percent in primates. 

The measures of sutural complexity observed here were generally highest in hard-object 

consumers but not statistically significant, which may suggest that hard-object feeding 

potentially indirectly influences sutural interdigitation through increased masticatory 

loading; however, more work in the future is required to test this more extensively. In 

addition, the degree of overlap in the zygomaticotemporal suture may have a greater 

functional role in dissipating strain experienced during feeding in this region of the skull 
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that the amount of interdigitation present. In addition, the composition of the sutural 

fibers themselves may reveal important information about the nature of the suture joints 

and their mechanical importance to the cranium. Thus further exploration of the 

mechanical factors that affect sutural morphology and the craniofacial complex as a 

whole are necessary for the improvement of models of feeding and for a comprehensive 

understanding of the biomechanics in this region. 
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CHAPTER 5: ZYGOMATIC ARCH CROSS-SECTIONAL GEOMETRY COMPARED 

WITH DIET IN PRIMATES 

5.1 Abstract 

 Craniofacial morphology in primates is suggested to vary on the basis of diet 

because foods are often disparate in the amount and duration of force required to break 

them down. Therefore, diet has the potential to exercise considerable pressure on the 

morphology of the masticatory system.  The zygomatic arch is a known site of relatively 

high masticatory strain and yet the relationship between arch form and load type is 

relatively unknown in primates. This study uses cross-sectional geometric properties to 

investigate the effects of different diet types (measured in terms of total consumption 

percent and food materials properties) on zygomatic arch form to determine whether 

measures of bone mechanical resistance and shape track with experimental strain 

patterns. Across the primate sample presented here, measures of maximum bending and 

torsion resistance were found to track with experimentally obtained strain patterns.  

Species who primarily consumed tough foods exhibited the greatest measures of bending 

and torsional resistance in the zygomatic arch compared to other dietary groups. The 

highest measures of bending resistance and torsional resistance were found in anterior 

regions in the majority of taxa regardless of diet type, which supports the prediction that 

zygomatic arch cross-sections reflect known strain distributions.  Tough consumers 

generally possessed the highest measures of these variables compared to other diet 

groups, but no predictable pattern within any diet group emerged.  Direct measures of 

toughness (R) and Young’s modulus (E) were not found to correlate with cross-sectional 

geometric properties. Stress-limited and displacement-limited indices were also not 
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correlated. Pairwise comparisons between taxa do reveal that consumption of hard/tough 

items does suggest higher instances of bending and torsional resistance, however. Cross-

sectional shape indexed by Imax/Imin determined there is shape variation throughout the 

zygomatic arch regions, but that no predicable pattern emerges. These results suggest that 

direct measures of resistance to bending and torsion are relatively predictable along the 

zygomatic arch, whereas measures of cross-sectional shape are less predictable. These 

findings support the hypothesis that the mechanical behavior of the arch reflects known 

strain patterns, that zygomatic arch bone cross-sectional form is complex, that simple 

beam models do not adequately explain the differences in cross-sectional shape, and that 

further study of bone form and dietary type in this region is necessary. 

 

5.2 Introduction 

 The anatomy of the craniofacial complex is central to masticatory function across 

mammals, and adaptations within this complex enable individuals to access necessary 

food items. As a group, primates have significant dietary variability compared to other 

mammals and the differences in primate masticatory complexes are hypothesized to map 

onto variances in food acquisition and processing (Bouvier & Hylander, 1982; Beecher et 

al., 1983; Anapol & Lee, 1994; Lucas et al., 2008a,b; Yamashita, 2008b). Within 

mammals, experimental work has shown broadly that biting on mechanically challenging 

(i.e., tough or hard) foods leads to longer chewing durations and processing time, 

increased bite forces, increased jaw-adductor recruitment activity, and relatively higher 

levels of balancing-side jaw-muscle force activity (Herring and Scapino, 1973; Luschei 

and Goodwin, 1974; Weijs et al., 1989; Hylander et al., 1992).  In the latter, differences 
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in jaw-muscle activity patterns ultimately affect the frequency and magnitude of bite 

force applied to food itemds, as well as the reaction forces experienced by masticatory 

features through the course of a chewing cycle (Franks et al., 2016).    

 Internally, the presence of elevated peak bone strain magnitudes and increased 

cyclical loading during the mastication of challenging (particularly obdurate) foods has 

been shown to induce increased cortical bone modeling and remodeling instances of 

masticatory elements in mammals (Beecher and Corruccini, 1981; Bouvier and 

Hylander, 1981; He and Kiliaridis, 2003; Lieberman et al., 2004a; Ravosa et al., 2007; 

Menegaz et al., 2009, 2010; Scott et al., 2014). In extant primate taxa that regularly 

consume hard or tough foods, more wide spread morphological adaption has been found 

to translate into robust features such as deeper mandibular corpora, differences in 

occlusal morphology (Degusta et al., 2003; Vogel et al., 2008; Ledogar et al., 2013), and 

increased enamel thickness (Dumont, 1995; Constantino et al., 2012) and these 

observations have been extended for use in the fossil record. In addition to those listed 

here, a key masticatory element hallmarked as an indicator of a mechanically challenging 

diet in fossil taxa, such as Paranthropus, is the relative positioning and robusticity of the 

zygomatic arch on the cranium.  In the case of Paranthropus, the anterior positioning, 

coupled with the large degree of lateral flare and robust bone of the arch are perceived as 

evidence of increased mechanical advantage during chewing (Rak, 1983).  However, 

despite the weight of this cranial feature in determining the diet of an individual, 

relatively little is known concerning the specific bone structural and mechanical elements 

of the zygomatic arch in relation to dietary loading in living primates especially given 

that the existing in vivo zygomatic arch strain data is primarily limited to macaques (e.g., 
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Iwasaki, 1989; Hylander and Johnson, 1997).  Without a sense of the extent that bone 

responds to masticatory loading in this region, accurate dietary assessments in fossil taxa 

cannot be made.  This issue is further compounded because zygomatic arches in fossil 

hominin crania often are not adequately preserved, leaving only broken or missing 

portions of the arch exposed. Therefore, an understanding of zygomatic arch cross-

sectional form in relation to dietary loading in extant primates arms future investigations 

with the tools to assess this feature in fossilized individuals, despite the presence of 

broken or damaged arches. 

 The zygomatic arch is particularly relevant to mammalian masticatory mechanics 

given its structural placement within the mammalian skull and because it serves as the 

anchor for the masseter muscle.  In vivo bone strain data reveal that upon activation, the 

masseter exerts an inferiorly directed force that induces parasagittal bending on the 

zygomatic arch as well as a torsional force caused by the inferior, medial pull of the 

masseter on bone (Hylander and Johnson, 1997; Herring et al., 1996). Furthermore, the 

inferior pull of the masseter may also produce a mediolateral bending moment (Smith 

and Grosse, 2016). Given that the masseter attaches on the anterior portion of zygomatic 

arch, a steep strain gradient has been experimentally shown to exist along the length of 

the arch in cats (Buckland-Wright, 1978), pigs (Sus scrofa) (Herring et al., 1996, 2001; 

Marks et al., 1997; Herring and Teng, 2000; Rafferty et al., 2000, 2003), and macaques 

(Macaca fascicularis) (Hylander et al., 1991; Hylander and Johnson, 1997). In Macaca 

specifically, a strain gradient was observed in which strains were highest anteriorly and 

decreased posteriorly (Hylander and Johnson, 1997).  The published max micro strain (γ-

max in µε) values for macaques indicates that strain is approximately three times higher 
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in anterior as compared to posterior sections (see Table 1 in Hylander and Johnson, 

1997).  Furthermore, mean anterior zygomatic arch micro strain values (985 µε) greatly 

surpass strain measures in the upper face (98-216 µε), and mandibular corpus (783 µε) 

(Hylander, 1984; Hylander et al., 1991; Hylander and Johnson, 1997; Ravosa et al., 

2010).  Compared to other regions of the cranium, the peak strains experienced by the 

zygomatic arch are similar to, and even surpass, those of the mandible and maxilla, and 

far outstrip strains experienced in the circumorbital region (Frank et al., 2016).  Given 

these observations, it follows that the zygomatic arch experiences some of the highest 

strains overall (Ross and Metzger, 2004) and that as the origin for the primary jaw 

adductor muscles, it serves a crucial role within the primate masticatory system.   

 The zygomatic arch is constructed from the zygomatic process of temporal bone 

and the temporal process of the zygomatic bone, and the two bones are joined at the 

zygomaticotemporal suture.  The zygomatic arch’s unique form, from a simple geometric 

perspective, is most similar to a hollow beam with two fixed ends. This model has been 

employed in previous work (Hylander and Johnson, 1997) and the application of beam 

theory has been used to elucidate the mechanical behavior of the arch under masticatory 

loading (e.g., Iwasaki, 1989; Smith and Grosse, 2016). Under such loading, the 

zygomatic arch in macaques has been found to bear high concentrations of compressive 

and tensile strains in its anterior portions (Hylander and Johnson, 1997), medial to the 

masseter muscle, and lateral to the tooth row (Pryor McIntosh et al., 2016).  Principal 

strains are also directionally distinct between anterior and posterior positions along the 

zygomatic arch (Iwasaki, 1989). Within macaques, the tensile axis was close to vertical 

anteriorly, mirroring the orientation of the masseter muscle, while posteriorly the tensile 
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axis was almost horizontal (Iwasaki, 1989).  This arrangement, however, is not unique to 

macaques as it has also been observed in pigs (Herring et al., 1996). Notably though, 

there is a contrast between pigs and macaques concerning where the greatest zygomatic 

arch strains are present. In pigs (and cats) the highest strains are found posteriorly, rather 

than anteriorly (Buckland-Wright, 1978; Herring et al., 1996).   

 The squamosal portion of the zygomatic arch in pigs (which comprises the 

posterior portion of the arch) experiences about twice as much strain on average (349 µε) 

as the zygomatic bone (174 µε) (see Table 2 in Herring et al., 1996) indicating that the 

strain pattern is reversed from that of macaques.  These disparities are likely attributable 

to how the arch deforms under loading in each species.  In pigs, the squamosal region 

experiences a degree of out-of-plane bending in the squamosal region causing the 

presence of high strains in the posterior region of the arch (Herring et al., 1996). 

Accordingly, the cross-sectional shape of the zygomatic arch of pigs is primarily flat, and 

bladelike, which effectively resists high parasagittal bending loads (Herring et al., 1996). 

In contrast, the activation of the masseter muscle in macaques results in anteriorly 

concentrated peak strains, leading to more in plane bending tendencies (Hylander and 

Johnson, 1997). Notwithstanding the differences in the locations of the highest strain 

values on the zygomatic arch in these species, it is notable that average strain measures 

on the arch exceed strain measures found in other masticatory elements in both of these 

mammalian taxa. 

 Early comparative work on zygomatic arch shape by Hollister (1917) argued that 

differences in diets between captive and wild lions (Panthera leo), resulted in observable 

shape differences in the arch; namely that wild lions displayed more mediolaterally broad 
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and robust sections that tapered to a point superiorly, while captive lions exhibited more 

blade-like sections that were relatively narrow and tall, tapering superiorly to a point that 

curves medially (see Figs. 1-2 in Hollister, 1917).  Hollister (1917) argued that the 

inability for captive lions to hunt prey resulted in the “non-action” of the masseter 

muscles, which lead to a more blade-like arch cross-sectional shape in the captive lions, 

as compared to the more circular section in wild lions.  Later studies of dietary effects on 

craniofacial bone morphology in non-carnivores (specifically primates) (i.e., Bouvier and 

Hylander, 1982; Corruccini and Beecher, 1982; Beecher et al., 1983; Corruccini and 

Beecher, 1984; Iwasaki, 1989) determined that the consumption of hard foods resulted in 

relatively greater bone density as compared to soft foods and also demonstrates the 

relative plasticity of the masticatory complex.  

 The plasticity of the zygomatic arch in rabbits and pigs was experimentally 

examined by Franks et al. (2016) to determine whether cortical bone or levels of 

biomineralization differed between dietary groups.  While the pig sample was not 

significant (likely attributed to the sample size of 2 for each treatment and thus lack of 

statistical power) specimens in the rabbit sample that consumed more resistant foods 

exhibited relatively greater biomineralization in the superior and medial portions of the 

zygomatic arch as compared to those consuming a less resistant diet (Franks et al., 2016).  

As Franks et al. (2016) notes in their discussion, interpretations restricted only to the 

results for the cortical bone would incorrectly infer that the zygomatic arch does not 

undergo bone remodeling under higher magnitude dietary loading despite the presence of 

high strains.  However, the increased biomineral response precipitated by differences in 

diet does support the argument that the zygomatic arch is part of the masticatory system 
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and that increased dietary loading translates to differential bony response (Franks et al., 

2016). Beyond rabbits and pigs, a recent study of cortical bone distributions and section 

moduli (measures of bone strength) in the zygomatic in a sample of high order primates 

found that cortical area distributions generally tracked with areas of high strain in the 

zygomatic arch (Edmonds, 2016). More importantly, every species included in Edmonds 

(2016) exhibited their highest section moduli measures in anterior sections, further 

reifying the assumption that arch architecture and regions of greatest bone strength track 

with reported strain distributions. However, it is important to note that the relative 

scarcity of in vivo data on the zygomatic arch across primates makes these conclusions 

speculative at best.  While there appears to be evidence of similar patterns in cortical 

bone distributions and bone strength measures in the zygomatic arch across various 

primate taxa, in vivo data are necessary to understand what types of loads are present and 

at what magnitudes. 

 If changes in dietary loading affect strain magnitude, do changes in bone cross-

sectional geometry also alter strain distributions? Recent work by Smith and Grosse 

(2016) manipulated chimpanzee zygomatic arch cross-sectional shape using three forms 

(cylindrical, elliptical, and blade-like) to determine whether changes in shape altered 

strain distributions.  Regardless of the cross-sectional shape, few regular strain patterns 

emerged (Smith and Grosse, 2016). While blade-like cross-sectional shapes were 

associated with elevated magnitudes of strain in the point where the postorbital bar meets 

the zygomatic arch (likely as a means of stiffening the arch in the parasagittal plane), 

strains were not reduced in the arch itself compared to cylindrical or elliptical shapes 

(Smith and Grosse, 2016). This suggests that in this model, cross-sectional shape did not 
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reduce the strain magnitudes within the arch body indicating that the arch does not 

conform to simple beam theory, which confirms the findings of previous studies (Herring 

et al., 1996; Teng et al., 1997; Rafferty et al., 2000).  If the objective is to test for the 

effects of zygomatic arch cross-sectional shape on strain using computational models, it 

is difficult to make predictions without first knowing how shape patterns along the 

zygomatic arch and the extent to which those patterns differ intra-individually, 

taxonomically, or by diet type. In order to adequately model the effects of masticatory 

loading, bone shape needs to be assessed in conjunction with measures of load resistance, 

known strain data, and dietary composition across multiple regions along the zygomatic 

arch to establish a foundation upon which hypotheses can be tested within a broad, 

comparative framework. 

 The importance of the zygomatic arch within the masticatory complex is 

undisputed, yet it remains unclear how cross-sectional geometry relates to the masticatory 

loads experienced, whether shape patterning is predictable by diet type, or whether arch 

shape and/or load resistance remains relatively uniform along the zygomatic arch. An 

investigation into the specific biomechanics of the zygomatic arch by way of cross-

sectional shape and direct measures of bending and torsional strength is an approach not 

yet conducted in primates, but one that has the potential to influence current knowledge 

on dietary loading in response to a specific bony feature and the mechanical and 

ultimately adaptive consequences of form within the masticatory complex.  Furthermore, 

this study couches these questions within the context of dietary adaptation and evaluates 

the effects of two distinct dietary schemes when approaching such questions.  It is clear 

that simple beam models are not adequate to address the mechanical behavior of the arch 
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and the mechanical response of the arch can change depending on whether it is on the 

working or balancing side of the skull. Furthermore, within a single chewing bout, the 

working and balancing sides alternate between the left and right zygomatic arches.    

Better characterizing the role zygomatic arches play in resisting loads associated with 

different diets offers an opportunity to test how a bony feature responds to differential 

loading from differing diets and further emphasizes the zygomatic arch as a functionally 

relevant structure to studies of craniofacial biomechanics and primate cranial evolution as 

a whole.  

 

5.2.1 Hypotheses 

 In haplorhines, cross-sectional shape in the zygomatic arch is related to 

masticatory loading regimes experienced along the arch during feeding.  It is difficult to 

predict specific loading regimes across most primates as we lack in vivo data on loading 

in the majority of species.  Thus, I take an exploratory approach to examine the 

functional consequences of arch form across haplorhine primates, making comparisons 

intraspecifically, interspecifically, and by dietary preferences.  

 First, the ability to resist torsion (twisting) versus bending loads is predicted to 

vary with the ratio of bizygomatic arch width to biramus width across primates.  This 

ratio should reflect the line of action of the masseter muscle relative to the arch, in the 

coronal plane.  As this ratio of bi-zygomatic arch width to bi-ramus width is closer to 1.0 

(i.e., a more vertically-oriented masseter muscle), bending resistance should increase 

resulting in a higher Imax/Imin ratio (i.e., an Imax/Imin ratio that deviates from 1.0).  As the 

zygomatic arch becomes more flared, the masseter muscle line of action will generate 
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increased torsion of the arch resulting in a lower Imax/Imin ratio (i.e., a Imax/Imin ratio that 

approximates 1.0).  Second, the greatest measures of torsional strength (the polar moment 

of inertia, J) and resistance to bending moments (Imax) are predicted to occur in the 

anterior cross sections of the zygomatic arch given the highest bending and torsional 

forces are generally concentrated anteriorly.  

 

5.3 Materials and Methods 

5.3.1 Study sample 

 Micro-computed tomography (µCT) scans (voxel range 7.94-30.0 voxels/mm) of 

skulls from 43 species (n=349, see Table 8) were selected from scan collections housed at 

Arizona State University and Northeast Ohio Medical University (NEOMED). Only 

adult, wildshot specimens without pathology were included to control for influences from 

captivity and/or disease. Because a disparate number of males and females were found in 

the majority of the study species, some taxa only have one sex represented.  In species 

where equal numbers of males and females were available, preliminary comparisons were 

performed to determine whether there was an effect of sex. Because no significant 

differences were found between males and females, the sexes were grouped together for 

the purposes of analysis in this study. 

 

5.3.2 Dietary categorization 

 A twofold approach was used to categorize the taxa into dietary categories. The 

first approach used published data on dietary preference to assign each species to a 

dietary category on the basis of food mechanical properties. Following the methodology 
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of Muchlinkski (2010) a species’ designation as a “tough feeder”, “hard feeder”, “soft 

feeder”, or “exudate feeder” was based on total consumption of 50% or more of a 

particular food type (as measured based on the cumulative time spent feeding on an item) 

deemed as tough, hard, soft, or exudate based on its mechanical properties. Because this 

study examined the effects of presumed variation in masticatory loads on the bony 

morphology of the zygomatic arch, “exudate feeder” remained distinct from “soft feeder” 

as each of these food types differ in their material properties and time required for 

mastication (Norconk et al., 2009). In instances where two or more primary food types 

are consumed (e.g., tough and soft), the species’ diet characterization was assigned based 

on the food type with the highest consumption percent (Appendix B, Table SM1). 

 The second dietary approach was used to divide a sub-set of the total study 

sample (species n = 9, see Table 9) using specific food material properties data collected 

on foods consumed by those species in the field (Venkatamaran et al., 2014; Coiner-

Collier et al., 2016). Specifically, these recorded material properties are “toughness” (R), 

and “Young’s modulus” (E).  Toughness is defined as a material’s resistance to the 

propagation of a crack (Lucas et al., 1986, 2000, 2002, 2008; Lucas and Pereira, 1990) 

and Young’s modulus, also known as the elastic modulus, is the ratio of stress (force per 

unit area) to strain (deformation) and is a measure of a material’s ability to resist elastic 

deformation  (Gordon, 1978; Williams et al., 2005; Lucas et al., 2008a; Coiner-Collier et 

al., 2016). The higher the value of Young’s modulus, the harder the material is. These 

properties constitute the two main mechanical defenses of plants and possess different 

material construction and ecological functions (Lucas et al., 2000). Because materials 

properties data were not available for all taxa included in this study, the second dietary 
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approach and its associated analyses will be limited to these nine primate species. 

Because foods can possess overlapping values of both stiffness and toughness, measures 

of stiffness and toughness were used to calculate stress-limited ([R*E]0.5) and 

displacement-limited ([R/E]0.5) fragmentation indices.  These indices quantify the 

mechanical condition dictating the processing and breakdown of a food item due to its 

stiffness and toughness (Lucas, 2004; Williams, 2005). 

 

5.3.3 Image acquisition and analysis 

 Micro-computed tomography (µCT) is a non-invasive imaging technique ideal for 

examining fine structures of bone, particularly in cases where specimens are delicate and 

fragmentary. Because µCT images are digital representations of the scan field divided 

into a finite number of pixels, it is important to maintain constant pixel size in order to 

standardize the resolution of the images (Carlson, 2005).  Pixel length in a µCT image is 

calculated as the field of view (FOV) divided by the matrix size.  Voxels, which represent 

the three-dimensional pixels in digital image data, are calculated as pixel area multiplied 

by slice thickness (Foley et al., 1990; Carlson, 2005).  

 For this study, microCT scans of primate skulls were used to construct 3D models 

of the cranium using Amira 5.6 (FEI Visualization Group, Burlington, Mass 2016). Once 

constructed, the skull model was oriented in Frankfurt horizontal to standardize the 

cranial position during sectioning. Once oriented, the Amira “slice” feature was used to 

pass a vertical plane along the zygomatic arch to capture cross-sectional images in the 

coronal plane in five locations: The anterior-most point of the zygomatic arch, anterior to 

the zygomaticotemporal suture, midway along the zygomaticotemporal suture 
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(midsuture), posterior to the zygomaticotemporal suture, and posterior-most point of the 

zygomatic arch (Fig. 22). These images were saved and exported as 2D TIFF files to 

ImageJ (Schneider et al., 2012).  

                 
Figure 22. Sites of measurement for each arch location. The locations include: anterior- 
most point on the zygomatic arch (‘Anterior’), anterior-most point of the 
zygomaticotemporal suture (‘Anterior - Suture’), the midway point along the 
zygomaticotemporal suture (‘Midsuture’), the posterior-most point of the 
zygomaticotemporal suture (‘Posterior - Suture’), and the posterior-most point on the 
zygomatic arch (‘Posterior’). 
  

 To calculate cross-sectional geometric properties (e.g., areas, second moments of 

area, and polar moments of inertia) for bone cross-sectional images, the MomentMacroJ 

v1.4B (Ruff, 2006, http://www.hopkinsmedcine.org/fae/mmacro.html) macro for ImageJ 

was used. In ImageJ, each section was converted to an 8-bit gray scale image, and 

cropped to isolate the zygomatic cross-section (or region) of interest. Using the 

“threshold” option, the portions of bone in the cross-section are highlighted. This 

“thresholding” works by separating pixels that fall within a desired range of intensity 
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values from those that do not. Once the pixel intensities have been determined, the “wand 

tool” was used to outline the highlighted zygomatic arch section to be analyzed. Finally, 

the MomentMacro is selected, and the image’s intensity values as well as its voxel size 

are entered to set the proper scale and ensure accurate calculation of the resulting 

biomechanical variables.  

 

5.3.4 Cross-sectional geometry 

 With regard to craniofacial functional adaptation, bone response to mechanical 

loads is the crux of examinations of bone morphology in relation to the in vivo force 

environment.  Since bone undergoes varying load types (e.g., bending, shear, torsion), 

cross-sectional geometric properties are expected to be influenced by the magnitude and 

types of loads experienced (e.g., Lanyon and Baggott, 1976; Lovejoy and Burstein, 1977; 

Ruff and Runestad, 1992; Trinkaus et al., 1994; Ruff, 2000; Daegling, 2002b; Lieberman 

et al., 2004b).  Given the high peak strains reported in the aforementioned studies on the 

zygomatic arch during mastication, bone formation along the arch is expected to respond 

to the varying magnitudes and types of load induced during chewing.    

 Cross-sectional geometric properties of long bones have been used to make 

inferences about the magnitude and type of load experienced during use (Polk et al., 

2002; Lieberman et al., 2004a; Patel et al., 2013). This perspective is based on the 

premise that bone cross-sectional geometry reflects bone functional adaptation to its 

loading environment (e.g., Wainwright et al., 1976; Ruff and Hayes, 1983; Ruff et al., 

1984, 2006; Schaffler et al., 1985; Burr et al., 1989a; Trinkaus et al., 1991; Ruff and 

Runestad, 1992; Martin et al., 1998; Polk et al., 2000; Currey, 2002; Ruff, 2002; Habib 
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and Ruff, 2008; Shaw and Ryan, 2012). The use of these cross-sectional properties 

depends on the type of model used and the assumptions concerning how that model 

structure responds to loads. For bone, beam models are typically employed (Ohman, 

1993; Ruff, 2000). Several beam models exist (i.e., circular, non-circular, solid, hollow 

etc.), but bone (e.g., long bone) is commonly modeled as a hollow, circular beam 

undergoing mechanical loading (Ruff and Runestad, 1992; Lieberman et al., 2004b). 

Using a beam model for the zygomatic arch is more complex because it requires 

considerations of the mechanical response of a curved, hollow beam subjected to 

combinatory loading as a result of chewing.  

 Previous experimental studies found that the unexpected strain characteristics of 

the zygomatic arch suggests it does not behave like a simple beam (Herring et al., 1996) 

but is rather much more complex in its mechanical behavior.  This study uses cross-

sectional geometric properties to examine the arch’s tendency to resist parasagittal 

bending and torsional forces during mastication. These properties are informative about 

beam behavior, including those of a curved beam, and enable morphologists to be better 

characterize the geometric structure of the arch.  

 To quantify the relative strength of the bone and its ability to resist different load 

types (e.g., bending and torsion), specific cross-sectional geometric properties are 

calculated. Specifically, a series of variables reflecting biomechanical measures of 

resistance to bending (second moments of area, I), torsion (polar moment of inertia, J), 

and other loads are calculated from the amount and distribution of cortical and trabecular 

bone in a given cross section which elucidate the mechanical environment of that bony 

region (Schaffler et al., 1985; Polk et al., 2000; Daegling, 2002b).  
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 Second moments of area (I) measure how material (i.e., bone) is distributed 

around a specified axis (Schaffler et al., 1985; Polk et al., 2000).  Once I is calculated, the 

section modulus (Z) can be measured, which provides an approximation for a cross 

section’s resistance to bending in a particular plane (Wainwright et al., 1976; Lieberman 

et al., 2004b). In addition to the measures themselves, estimates of body size (or skull 

size) are necessary to generate accurate interpretations of J and I (Polk, 2000).  Common 

methods for estimating the cross-sectional shape of a bone include the measurement of 

second moments of area (I) about anatomical axes (anteroposterior [Iy] and mediolateral 

[Ix]) or maximum (Imax) and minimum (Imin) bending resistances about principle axes on 

cross-section (CT) images (Schaffler et al., 1985; Carlson, 2005: Patel et al., 2013; Fig. 

23). In the latter, Imax is an approximation of maximum rigidity which is expected to 

reflect the magnitude of peak loads (Carlson, 2005).  

 

Figure 23. Schematic of cross-sectional variables that quantify bending and torsional     
resistance. 

 

Ratios created from these variables (e.g., Imax/Imin) provide a biomechanically relevant 

index of cross-sectional shape where a ratio of 1.0 indicates axial symmetry (and 
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therefore a more circular section) and a ratio deviating from 1.0 indicates a more 

elliptically shaped section (Schaffler et al., 1985; Daegling, 2002b; Patel et al., 2013). An 

advantage of using shape ratios is that they do not require an estimate of body size and 

Imax/Imin does not require information about the anatomical orientation of the bone making 

it ideal for analysis of fragmentary shafts (Patel et al., 2013). In addition, Schaffler et al. 

(1985) proposed that the shape ratio Imax/Imin provided an appropriate measure for 

estimating locomotor type. For the purposes of this study, shape ratios about principal 

axes (Imax/Imin) are used to approximate cross-sectional shape.  

 This study quantifies and compares cross-sectional geometric properties (i.e., Ix, 

Iy, Imax, Imin, Imax/Imin, J) of the zygomatic arch across various locations to determine if 

arch cross-sectional shape varies intra-individually in relation to strain distribution, if 

cross-sectional shape varies interspecifically, and if it does, whether variation in cross-

sectional shape is the result of differing diet types across primates. Because this approach 

has been primarily applied to long bones, this study takes a novel approach in the 

examination of bone cross-sectional shape and estimation of load resistance along the 

zygomatic arch to investigate relationships between masticatory loading and bone form.  

 

5.3.5 Resistance to bending & torsion 

 Certain cross-sectional shapes are more conducive to resisting bending forces than 

others; and the zygomatic arch is known to experience both bending and torsional forces 

during mastication. In circular cross sections, second moments of area (I) measure the 

distribution of cortical area around a centroid, which provides an approximation of 

average bending resistance (rigidity) of a bone (Schaffler et al., 1985; Polk et al., 2000; 
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Holmes and Ruff, 2011). Minimum and maximum bending strengths (Imin and Imax 

respectively) along with Ix and Iy (second moments of area about the x- and y-axes) will 

be compared among slice locations to determine the relative bending resistance of the 

arch.  

 A circular bone cross section is most efficient for withstanding torsion (twisting) 

while oval sections are better suited to resist bending along its long axis. The ratio of 

Imax/Imin will be calculated for each slice location to quantify the circularity (or non-

circularity) of a zygomatic cross section (Daegling, 2002b; Gosman et al., 2013; Patel et 

al., 2013). Imax/Imin values deviating from 1.0 are more elliptical (non-circular) whereas 

Imax/Imin values approximating 1.0 indicate a relatively round cross-section (Schaffler et 

al., 1985; Daegling, 2002b; Patel et al., 2013). Imax/Imin ratios deviating from 1.0 indicate 

increased resistance to bending as oblong, or oval, shapes are capable of resisting 

different types of bending forces (e.g., parasagittal or transverse bending) by aligning the 

longest diameter in the direction of the bending load.  The polar moment of inertia (J) 

will be calculated as the sum of perpendicular second moments of area (Ruff and 

Runestad, 1992; Polk et al., 2000; Ruff, 2000; Stock and Shaw, 2007). This will serve as 

an estimate of torsional strength and bone rigidity. The regions of the zygomatic arch 

subjected to greater torsional loads are expected to have greater measures of J overall. 

Greater measures of J would suggest relatively round and rigid cross-sections as 

compared to parts of the arch that experience higher bending forces.  In these high force 

areas, J should be lower.  

 The ratio of bizygomatic breadth to biramus breadth (BZBR) (which is distinct 

from the shape ratio Imax/Imin) should affect of the angle of the masseter and the resulting 
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pull on the zygomatic arch.  Therefore taxa with more flared zygomatic arches (and thus 

greater bizygomatic breadth) are characterized by more angled masseter insertions, are 

therefore expected to possess more circular cross-sections given the masseter activation 

would induce a relatively greater torsional moment on the zygomatic arch. In contrast, 

taxa with less flared arches (and therefore more vertical masseter muscle orientations) 

should correspond to BZBR ratios approximating 1.0 and experience greater bending 

moments. To combat this, arch cross-sectional shapes are predicted to be elliptical.   

 

5.3.6 Statistics 

 Statistical analyses included the calculation of descriptive statistics for each cross-

sectional variable for each taxon in the study. Box-and-whisker plots were created to 

visually assess the data. Shapiro-Wilk Tests and Levene’s Tests were used to determine if 

the variables met the assumptions of normality and homogeneity of variance; the data 

were log transformed to meet these assumptions. Variation in second moments of area 

about the x- and y- axes (Ix, Iy), maximum and minimum bending resistance (Imax, Imin), 

polar moment of inertia (J), and differences in cross-sectional shape (Imax/Imin) among five 

arch regions in the zygomatic arch were examined at three scales: intra-individually 

(comparing arch regions), intraspecifically, interspecifically, and by diet type.  Analysis 

of Variance (ANOVA) and post-hoc paired t-tests and Tukey-HSD tests were used to 

compare the distribution of values for a specific variable within a taxon across different 

zygomatic arch locations (i.e., anterior, anterior suture, midsuture, posterior suture, and 

posterior regions) as well as to compare variances between dietary groups.  Student’s t-

tests were used for comparing sample means.  Interdietary and intradietary pairwise 
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comparisons between closely related taxa were also performed for each variable using 

Welch’s two-sample t-tests. The significance level for all tests was set at p< 0.05.  A 

Bonferroni-Holm correction for multiple comparisons was also applied (Holm, 1979). 

Pearson product moment correlations were performed between Imax/Imin ratios and FMP 

data as well as between Imax/Imin ratios and reported total consumption percent data.  

Bizygomatic breadth to biramus width (BZBR) ratios were calculated and compared to 

approximate the angle of the masseter (masseter line of action) in relation to zygomatic 

arch cross-sectional shape. 

 Phylogenetic Generalized Least Squares (PGLS) and multiple regressions were 

used to account for the influence of phylogeny in the data. (PGLS) Regressions were also 

performed on each variable in relation to two proxies for size: skull size and zygomatic 

arch size. Consensus trees for the entire study sample as well as the subsample were 

obtained from the 10KTrees database (http://10ktrees.nunn-lab.org/, Arnold et al., 2010). 

Because not all the species in this study were available in the 10KTrees database, 

published phylogenetic positions and divergence dates for Chiropotes albinasus, 

Presbytis rubicunda and Presbytis hosei were acquired from the literature (Finstermeier 

et al., 2013) and added to the final consensus tree. Given that this study tested hypotheses 

using two different dietary schemes and not all taxa have FMP data available, the initial 

consensus tree containing 43 species was trimmed to include only the 9 species for which 

FMP data were available (Fig. 24). 
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Figure 24. Consensus trees created from 10KTrees database: Tree containing all study 
species (left), and trimmed tree (right) containing nine species for which FMP data were 
available. 

 

 All analyses were performed using the R Statistical Programming Language 

version 3.1.0 (http://www.R-project.org/) (R Development Core Team, 2014). Packages 

APE (Paradis et al., 2004) and caper (Orme et al., 2013) were used for PGLS. To test the 

hypotheses that total consumption percent, FMPs, and variables of cross-sectional 

geometry are related, PGLS regressions incorporating an interaction between FMPs and 

total consumption percent were performed. If the interaction was not significant then the 

models were run again without the interaction.  
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5.4 Results 

 Descriptive statistics (Appendix E, Table SM1) and results of statistical 

comparisons of zygomatic arch cross-sectional shape are provided in Tables 16-22. 

Anterior cross-sectional images for each species are shown in Figures 25a-25d and 

grouped by dietary category.  The following section details the results for comparisons of 

cross-sectional geometric variables in relation to arch location, size (skull size and 

zygomatic arch size) and diet type.  

 Phylogenetic Generalized Least Squares (PGLS) Regressions were conducted on 

each cross-sectional variable in relation to two measures of size (skull size and zygomatic 

arch size) in anterior regions to account for the effects of phylogeny on the data. Size and 

scaling adjustments were not made. For every model, the interactions did not approach 

significance, requiring that models be re-run without the interaction (Table 16). The 

results found no relationships between size estimates and measures of Imin and Imax/Imin 

ratios. Positive relationships were observed in all models Ix, Iy, Imax, and J; however the 

individual correlations with each size proxy are not significant.  
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Figure 25a. Anterior arch cross-sectional images for all tough consumers. Images are not 
to scale. From top, left: 1. Alouatta caraya, 2. Alouatta palliata, 3. Gorilla gorilla,4. 
Macaca mulatta,5. Piliocolobus. badius. From bottom, left: 6. Theropithecus gelada,7. 
Trachypithecus cristatus, 8. Nasalis larvatus,9. Colobus polykomos, 10. Presbytis hosei 
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Figure 25b. Anterior arch cross-sectional images for all soft consumers. Images are not to 
scale. From top, left: 11. Erythrocebus patas, 12. Hylobates lar, 13. Aotus trivirgatus, 14. 
Ateles geoffroyi, 15. Callicebus moloch, 17. Pan troglodytes, 17. Pithecia monachus, 18. 
Cebus capucinus, 19. Pan paniscus, 20. Cercopithecus mitis, 21. Miopithecus talapoin, 
22. Cercocebus torquatus, 23. Lophocebus albigena, 24. Papio anubis, 25. Macaca 
fasicularis, 26. Mandrillus leucophaeus, 27. Mandrillus sphinx, 28. Pongo pygmaeus, 29. 
Saguinas oedipus, 30. Saimiri oerstedii, 31. Saimiri sciureus, 32. Chiropotes satanas, 33. 
Symphalangus syndactylus   
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Figure 25c.  Anterior arch cross-sectional images for all hard-object consumers. Images 
are not to scale.  From top, left: 34. Chiropotes satanas, 35. Cacajao rubicunda, 36. 
Macaca fuscata, 37. Macaca sylvanus, 38. Pithecia pithecia, 39. Sapajus apella, 40. 
Presbytis rubicunda  

 
Figure 25d.  Anterior arch cross-sectional images for all exudate consumers. Images are 
not to scale. From left: 41. Callitrhix jacchus, 42. Mico argentata, 43. Mico humeralifera 
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5.4.1 Comparisons by dietary group 

 ANOVA comparisons were first conducted on the four dietary groups to 

determine the extent to which each biomechanical variable varied across each arch 

region. Posthoc Tukey HSD tests were performed on significant results in order to 

determine which dietary groups varied at a given zygomatic arch region.  The findings of 

these ANOVA analyses (see Table 17) determined that measures of second moments of 

area about the x-axis (Ix), and polar moment of inertia measures (J) were significantly 

different in all arch regions among all dietary groups. Maximum bending tendency (Imax) 

measures were significant in all regions except anterior sections whereas minimum 

bending tendencies (Imin) and second moments of area about the y-axis (Iy) were 

significantly different only in anterior and anterior-suture sections. Post hoc TukeyHSD 

tests found that tough consumers and exudate consumers were significantly different 

(p<0.05) from one another in each of these comparisons (Appendix D, Tables SM1), 

which is probably due to size. No other dietary group was significantly different in any 

comparison.  

 To assess the amount of variation within each dietary group with respect to each 

biomechanical variable and arch region, ANOVA analyses (Appendix D, Table SM2) 

were conducted within each diet group (tough, soft, hard, exudate) and posthoc Tukey 

HSD tests were used to evaluate significant results. The results for these ANOVA 

analyses found that all variables (Ix, Iy, Imax, Imin, J) and arch regions were significantly 

different in soft consumers and tough consumers at all locations except in midsuture 

Imax/Imin measures in tough consumers.  Hard-object consumers and exudate consumers 

both exhibited significant differences in measures of Ix, Imax, and J, but both were not 
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significantly different with respect to Imax/Imin ratios.  Intraspecific comparisons for each 

variable are reported in Appendix D, Table SM3.  
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Paired t-tests performed on significant comparisons in tough consumers found that A. 

palliata, G. gorilla, and C. polykomos were consistently different from other taxa in 

measures of Ix, Imax, and J (Appendix D, Table SM4). In contrast, within soft consumers, 

most taxa differed from one another in some comparisons, but no single species was 

consistently different in all comparisons. Within hard consumers, the species that 

constantly differed from other species was Macaca fuscata. Among exudate consumers, 

C. jacchus and C. argentata were significantly different in comparisons of Ix, Imax, and J. 

In sum, these results indicate there is broad variation within soft and tough food 

consumers with respect to biomechanical variables across different arch regions. 

Significant variation is also present in hard-object and exudate consumers, though to a 

lesser degree.  Hard-object and exudate consumers were not found to have significant 

variation in arch cross-sectional shape between arch regions unlike tough and soft food 

consumers. The results of intraspecific comparisons (Table H, Table SM1) determined 

that the majority of taxa varied in one or more of the biomechanical variables measured 

across arch regions. The following sections detail the results for each variable as well as 

the results for post-hoc analyses. 

 

5.4.2 Bending resistance about the x - and y - axes (Ix and Iy) 

 Across the 43 taxa included in this study, the largest measures of Ix occurred in 

anterior or anterior suture regions in all taxa except Pongo pygmaeus, Macaca sylvanus 

(highest in midsuture regions), Pithecia pithecia, Pithecia monachus (highest in posterior 

suture regions), Theropithecus gelada, Mandrillus leucophaeus (highest in posterior 

regions) (Appendix C, Table SM1). Paired t-test comparisons between the sites of highest 
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bending and the predicted sites of highest bending (anterior regions) were not found to be 

significantly different.  This was also true for Iy measures, in which all taxa possessed 

their highest values in anterior or anterior suture sections except for Pithecia pithecia 

(highest in posterior suture regions) Gorilla gorilla, Theropithecus gelada, Chiropotes 

albinasus, Mandrillus leucophaeus, Presbytis rubicunda (highest in posterior regions).  

Paired t-test comparisons between predicted areas of highest Iy measures and observed 

highest Iy measures for these taxa found significant differences for G. gorilla (t=0.556, 

p=0.001) alone. C. albinasus and M. sylvanus could not be compared because the sample 

size was not sufficient to meet the assumptions of the t-test. 

 Across all dietary groups, tough consumers on average possessed the highest 

bending resistance moments (see Figs. 26a & 26b).  In taxa categorized as tough 

consumers, ANOVA results determined that all species yielded significant variation in 

bending measures except for Macaca mulatta, and Ix measures in G. gorilla and T. 

gelada (Appendix D, Table SM3).  

 



  181 

 
Figure 26a. Box and whisker plots of measures of bending resistance about the x-axis (Ix) 
for each dietary group across all arch regions. ANT= anterior arch sections, AS= anterior 
suture sections, M= midsuture, PS= posterior suture, PT= posterior arch.  
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Figure 26b. Box and whisker plots of measures of bending resistance about the y-axis (Iy) 
for each dietary group across all arch regions. ANT= anterior arch sections, AS= anterior 
suture sections, M= midsuture, PS= posterior suture, PT= posterior arch. 
 

Paired t-tests performed between all possible arch region comparisons determined that 

measures of Ix and Iy were significantly different in comparisons of anterior sections 

versus midsuture and anterior sections versus posterior regions. Both G. gorilla and P. 

badius did possess significantly different comparison in anterior versus posterior measure 

in Iy, but none in Ix (Appendix D, Table SM4). Of the ten species designated as tough 

consumers, eight possessed significant differences in one or more comparison of arch 

regions in Ix and Iy. More specifically, within the taxa that possessed differences in 

second moments of area, the majority had bending resistance measures that are 

significantly different in anterior regions of the zygomatic arch as compared to other 

regions (see Appendix D, Table SM4). 
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 In soft consumers, ANOVA results found significant variation in bending 

measures in all taxa except Pongo pygmaeus, Presbytis rubicunda, and Saimiri scurieus.  

Because of issues with sample size, Chiropotes albinasus, and Symphalangus syndactylus 

could not be evaluated using an ANOVA.  In the remaining taxa, measures of Ix and Iy 

were significantly different in anterior regions compared to other regions in the majority 

of soft consumer comparisons. Generally speaking, the significant differences among 

arch regions are concentrated in comparisons of anterior regions with other regions (e.g., 

midsuture, posterior-suture, and posterior).  However, paired t-tests between locations 

arch region pairs (Appendix D, Table SM4) found the majority of soft consumers 

possessed significant differences throughout the arch, including in adjacent areas.  For 

example, Lophocebus albigena and Macaca fascicularis, exhibited significant 

comparisons in adjacent arch regions (e.g., anterior vs. anterior suture, anterior versus 

midsuture etc) as well as in comparisons of anterior arch sections to other sites. It is 

notable that in ten of the twenty-four species classified as soft consumers, significant 

differences between adjacent regions (i.e., anterior vs. anterior-suture, anterior-suture vs. 

midsuture, midsuture vs. posterior suture, or posterior-suture vs. posterior) were found.  

This suggests that areas intermediate to the primary three regions traditionally examined 

(namely anterior, midsuture, and posterior) possess significantly different bending 

resistance potentials.  

 In contrast, ANOVA results for hard-objet consumers found no significant 

differences among arch regions except in Sapajus apella, Pithecia pithecia, and Macaca 

fuscata. Paired t-test results, however, rendered no significant differences among arch 

regions in these taxa except for S. apella (Appendix D, Table SM4) whose significant 
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comparisons were between anterior sections and all other arch regions. In exudate 

consumers, ANOVA results found significant results for all species, but only Callithrix 

argentata yielded significant differences by arch region in Ix. No significant differences 

were found with respect to Iy. Arch region comparisons determined that anterior versus 

anterior suture, posterior suture, and posterior measures were significantly different as 

well as between midsuture versus posterior regions in this sample of exudate consumers.  

 

5.4.3 Maximum and minimum bending tendencies (Imax and Imin)  

 Maximum bending resistance measures were greatest in anterior (or anterior 

suture) sections in all taxa except M. sylvanus (highest in midsuture sections) P. 

monachus, P. pithecia (highest in posterior suture sections) T. gelada, C. albinasus, M. 

leucophaeus (highest in posterior sections). Paired t-test comparisons between areas of 

observed highest Imax values compared to predicted areas of highest Imax values found no 

significant differences between sites. C. albinasus and M. sylvanus could not be 

compared because the sample size was not sufficient to meet the assumptions of the t-

test. 

 When average anterior Imax values were compared across dietary groups, tough 

consumers yielded the highest average values followed by soft consumers, hard-object 

consumers, and exudate consumers (Figs. 26c & 26d).  Similar to the findings for Ix and 

Iy, ANOVA comparisons among tough food consumers found significant differences in 

maximum and minimum bending tendencies in all taxa except G. gorilla, M. mulatta, P. 

badius, and T. gelada (Appendix D, Table SM3).  
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Figure 26c. Box and whisker plots of measures of maximum bending resistance (Imax) for 
each dietary group across all arch regions. ANT= anterior arch sections, AS= anterior 
suture sections, M= midsuture, PS= posterior suture, PT= posterior arch.  
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Figure 26d. Box and whisker plots of measures of minimum bending resistance (Imin) for 
each dietary group across all arch regions. ANT= anterior arch sections, AS= anterior 
suture sections, M= midsuture, PS= posterior suture, PT= posterior arch.  
 

Post hoc comparisons found seven of the ten total tough consumer species yielded 

significant differences between anterior or anterior suture regions and midsuture, 

posterior suture, and/or posterior regions (Appendix D, Table SM4). Four taxa exhibited 

extensive differences in maximum and minimum bending tendencies across all regions of 

their zygomatic arch: Alouatta palliata, Colobus polykomos, Nasalis larvatus, 

Trachypithecus cristatus. Similar to the results for Ix and Iy, the significant differences in 

maximum bending resistance in these taxa demonstrate that adjacent regions can yield 

significantly different bending resistance potentials. 

 ANOVA results for sixteen of twenty-four species of soft consumers found 

significant differences among arch regions (Appendix D, Table SM3).  Post-hoc tests 
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revealed that arch regions varied significantly by location and that while anterior regions 

were generally significantly different from posterior regions, midsuture and posterior 

regions were also found to differ from one another in several taxa such as in Cebus 

capucinus, Cercocebus torquatus, Cercopithecus mitis, and Lophocebus albigena.    

 The extent to which specific regions differed from one another varied extensively 

throughout this dietary group.   Some species, such as Miopithecus talapoin, possessed a 

single significant comparison between two arch regions with respect to Imax measures, 

while other species possessed significant differences in most (almost all) arch 

comparisons (e.g., Lophocebus albigena, Cercopithecus mitis) for Imax. It is notable that 

in every species that possessed a significant comparison or comparisons among arch 

regions, anterior sections were found to consistently differ from posterior sections.  

 ANOVA results for hard-object consumers found significant variation in Imax 

measures in about half the species (P. pithecia, S. apella, and M. fuscata). Comparisons 

with hard-object consumers found all species possessed their largest measures Imax in 

anterior regions except in two taxa Macaca sylvanus (greatest in midsuture sections) and 

Pithecia pithecia (greatest in posterior suture sections). As noted previously for Ix and Iy, 

the differences between the regions of observed highest Imax values and predicted highest 

Imax values were not significantly different from one another. Posthoc analyses on 

significant results found that only S. apella exhibited statistically significant differences 

in Imax and Imin measures across zygomatic arch regions. Specifically, these differences 

occurred in comparisons of anterior sections to all other arch regions.   

 All ANOVA results for exudate consumers were significant indicating significant 

variability in maximum bending resistance.  Imin measures were also significant for this 



  188 

group except for in Callithrix humeralifer (ANOVA F= 3.537, p=0.061).  All exudate 

consumers possessed their absolute highest Imax measures in anterior sections as well. 

Posthoc comparisons revealed that only C. argentata had statistically significant 

differences in anterior Imax values compared to other regions.  

 In sum, the results for both second moments of area and maximum bending 

resistance indicate that the majority of primates, regardless of dietary type, possess the 

highest bending resistance in anterior portions of the zygomatic arch. This supports the 

hypothesis that arch cross-sectional geometry with respect to bending resistance reflects 

the same gradient observed in previous strain studies.  

 

5.4.4 Resistance to torsion (J) 

 Measures of the polar moment of inertia (J) were compared across arch regions to 

determine differences in resistance to torsion and overall rigidity at varying arch 

locations. The expectation was that similar to Imax measures, torsional resistance would be 

greatest anteriorly compared to posteriorly because torsional loads derived from 

mastication concentrate anteriorly. The greatest measures of J co-occurred in the same 

regions where Imax was also greatest, indicating that the regions of highest bending 

resistance are also most resistant to torsional forces as well (Appendix C, Table SM1). 

Among dietary groups, tough consumers had the highest J measures on average, followed 

by soft consumers, hard-object consumers, and exudate consumers; the same result also 

noted with regard to Imax (Fig. 26e). Measures of J were also significant across arch 

regions both within and between all dietary groups (Tables 16 and 17). 
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Figure 26e. Box and whisker plots of measures of torsional resistance (J) for each dietary 
group across all arch regions. ANT= anterior arch sections, AS= anterior suture sections, 
M= midsuture, PS= posterior suture, PT= posterior arch.  
 

 Within tough consumers, T. gelada was the only species to have its highest J 

values in posterior regions, as opposed to anterior or anterior suture regions, which 

typified all other tough consumers. The second highest measures of J for this species, 

however, occurred in anterior measures.  While posterior measures were absolutely 

larger, the differences between anterior arch regions and posterior regions for geladas are 

not significant (see Appendix D, Table SM4).  Given the small sample size for T. gelada 

in this study, it would be interesting to investigate these patterns in a larger gelada sample 

to determine whether this pattern of arch mechanics is specific to this species.   

 Among soft food consumers, all taxa possessed their highest measure of J in 

anterior regions with the exception of M. leucophaeus, C. albinasus, and P. monachus 
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which all possessed their greatest resistance to torsion in posterior or posterior suture 

regions. As in the case of the second moments of area as well as maximum bending 

resistance values, the relatively high posterior and posterior suture measures observed the 

these taxa were not significantly different from measures of J in anterior sections. 

ANOVA results for each species revealed that approximately of the taxa classified as soft 

consumers did not possess significant differences among arch regions with regard to 

torsional resistance, indicating relatively uniform resistance to torsional loads throughout 

the arch. Posthoc analyses on significant results found that taxa varied in terms of which 

arch regions were significantly different. For instance, Lophocebus albigena possessed 

significant differences in torsional resistance in every arch comparison while Ateles 

geoffroyi possessed only a single significant comparison between anterior and midsuture 

regions.  Additionally, significant comparisons are not relegated to those that include 

anterior regions and a more posterior region. Unlike the findings for bending resistance in 

soft consumers, anterior measures, while absolutely greater on average, are not 

consistently different from other arch regions in this group. 

 ANOVA results both within and between hard-object consumer and exudate 

consumers found significant differences in each group (Appendix D, Table SM2 and 

Appendix D, Table SM3).  All hard-object consumers as well as exudate consumers 

possess their highest values of J within anterior regions. Paired t-tests determine that S. 

apella as the only hard-object consumer to possess any significant differences in arch 

regions with respect to measures of J.  In addition, these are the same arch location pairs 

that were significantly different in response to Imax measures as well. With respect to 

exudate consumers, paired t-test results found C. argentata to be the only taxon with 
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significant comparisons between anterior and more posterior locations. C. jacchus though 

also possessed a single significant comparisons between anterior suture regions and 

posterior regions (Appendix D, Table SM4; t=15.30, p=0.004). Of all the variables tested 

on this species in particular, this was the only significant comparison that appeared.  

 In sum, the results for torsional measures, suggest that like bending resistance, 

resistance to torsional forces is also on average greatest in anterior arch sections 

compared to other regions and therefore supports the prediction that torsional loads are 

greatest anteriorly as compared to other regions.   

 

5.4.5 Shape ratio comparisons Imax/Imin 

 The ratio Imax/Imin serves as an indicator of whether a bone section is more circular 

or elliptical in shape. Sections with a ratio approximating 1.0 are more circular and are 

thus better suited for resisting torsional forces, while sections with ratios deviating from 

1.0 are elliptical in shape and best for bending resistance along the long axis of the 

section.  Thus, sections with greater measures of J (resistance to torsion) are predicted to 

correspond to arch regions in which Imax/Imin ratios approximate 1.0. In contrast, sections 

with relatively lower measures of J, and therefore Imax/Imin ratios deviating from 1.0, are 

expected to be more elliptical in shape and thus more resistant to bending. ANOVA 

results for comparisons among dietary groups found no significant differences between 

groups.  However, ANOVA tests conducted within dietary groups found significant 

differences between arch regions in tough consumers and soft consumers, but not in hard 

or exudate consumers (Table 17 and Appendix D, Tables SM1).  
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 Ratios were compared across arch locations based on the degree to which the ratio 

deviated from 1.0. By measuring the deviation of the ratio from 1.0, it was possible to 

determine the extent to which the cross-section was elongated into an elliptical form. In 

other words, the more distant the ratio was from 1.0, the more elliptical the cross-

sectional shape of the arch.  Generally speaking, arch cross-sections in zygomatic arch 

regions across the majority of the study taxa possess one or more region that is generally 

elliptical in shape (i.e., a ratio deviating by more than 0.1 from 1.0), suggesting that these 

arch sections are best constructed to resist bending rather than torsional forces and that 

this is likely the primary load type experienced (Fig. 26).  

 
Figure 27. Heatmap of Imax/Imin ratios by species. Darker values indicate relatively more 
circular regions while lighter values indicate relatively more elliptically shaped sections. 
Abbreviations: logA= logged anterior values, logAS= logged anterior suture values, 
logMS= logged midsuture values, logPS=logged posterior suture values, logPT= logged 
posterior values. 
 

Of the 43 total species included, 18 exhibited one or more arch region whose ratio 

deviated less than 0.1 from 1.0, indicating a relatively more circular (rather than 
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elliptical) arch cross-section. Notably, of these 18 species only one taxon, Presbytis 

rubicunda, exhibited consistently relatively circular cross-sections across all of its arch 

regions. This is reinforced by the lack of significant differences in shape ratio across 

regions, suggesting a relatively uniform cross-sectional shape along the arch. Nasalis 

larvatus possessed circular sections in three arch regions (anterior, anterior suture, and 

midsuture). Within N. larvatus, paired t-test comparisons of Imax/Imin ratios found anterior 

suture versus posterior suture, midsuture versus posterior suture, and posterior suture 

versus posterior sections to be significantly different, indicating that the presence of 

distinct cross-sectional shape in regions in close proximity.  Across the study sample, a 

species’ most circular arch cross-sections generally occurred in posterior regions, 

indicating that torsional forces may be the more dominant load type in posterior sections 

as compared to other regions. Otherwise, the overwhelming cross-sectional shape 

observed throughout all taxa was elliptical.  

 Within tough consumers, intraspecific ANOVA comparisons for A. caraya, G. 

gorilla, N. larvatus, P. badius, T. cristatus all yielded significant results for Imax/Imin ratios 

across arch regions (Appendix D, Table SM2). Posthoc comparisons determined that of 

these taxa, A. caraya, G. gorilla, and T. cristatus yielded significant differences in 

comparisons of anterior versus posterior arch sections, while all other significant 

comparisons were restricted to comparisons in the midsuture, posterior suture, and 

posterior portions of the arch. Taken together, the results for tough consumers indicate 

that anterior sections have less shape variation than posterior sections.   

 Intraspecific ANOVA comparisons within soft consumers revealed that nine 

species yielded significant differences in shape ratios, of which all had at least one 
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significant comparison between an anterior or anterior suture and a more posterior cross-

section location (Appendix D, Table SM3).  Of all the variables compared across this 

dietary group, Imax/Imin measures appear to be the least variable not only along the arch 

but within and across species as well.  

 Interspecific ANOVA results for hard-object consumers were not significant with 

respect to Imax/Imin ratios.  The sole intraspecific ANOVA comparison that rendered a 

significant result was for S. apella. Paired t-test results of arch region pairs in this diet 

group similarly found no significant differences between regions except in S. apella. Like 

taxa in both the tough and soft consumer groups, S. apella possessed significant 

differences in Imax/Imin ratios in multiple arch region comparisons indicating that this 

species possesses significant variation throughout its arch. In exudate consumers, 

interspecific ANOVA results were not significant, and intraspecific results were 

significant only for C. argentata.  Paired t-test results for this species found anterior 

regions to be significantly different in comparison to midsuture, posterior suture, and 

posterior arch sections (Appendix D, Table SM4).  

 In sum, these results suggest that Imax/Imin ratios do not follow a pattern of 

predictability akin to those observed in Imax and J measures, however, the results across 

all dietary groups indicate that anterior consistently manifest as regions that are 

significantly different in shape as compared to other regions.  

 
5.4.6 Bizygomatic breadth and biramus breadth (BZBR) ratios in relation to cross-
sectional shape 
 
 Within the study taxa, those with BZBR ratios closest to 1.0 (i.e., more vertical 

masseter muscles) were H. lar, C. jacchus, and C. humeralifera (Appendix D, Table 
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SM5).  The cross-sectional shapes of their arch sections were compared to determine 

whether these taxa indeed possessed more elliptically shaped cross-sections. 

Comparisons of their Imax/Imin ratio reveals these taxa did not have significantly more 

elliptically shaped arch sections compared to other taxa in the sample.   

 The taxa that on average did possess the most elliptically shaped arch sections 

were Mandrillus leucophaeus (Imax/Imin ratios 0.17-0.62), and Pithecia monachus 

(Imax/Imin ratios -0.16-0.01).  In taxa with more angled masseters, the expectation is that 

the increased angle induces greater torsional loads on the arch than would be present if 

the masseter remained more vertically oriented. Taxa with BZBR values deviating most 

from 1.0 (i.e., more angled masseters and Imax/Imin ratios approximating 1.0) were 

predicted to have the relatively roundest cross-sections were Macaca sylvanus, 

Theropithecus gelada, and Alouatta caraya.  However, when Imax/Imin ratios were 

compared across the study taxa, the roundest sections appeared in Presbytis rubicunda 

and Nasalis larvatus. In these taxa, the masseter is flared relative to some taxa in this 

sample, is not significantly more flared overall.  This suggests that the presence of more 

circular cross-sections is not directly predictable from the angle of the masseter.  

 Ratios of BZBR were calculated (Appendix D, Table SM5) compared to measures 

of J and Imax/Imin for each arch location across species using Ordinary Least Squares 

(OLS) Regressions (Table 18).  
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 Surprisingly, no significant correlations were found in anterior arch regions, 

however significant negative correlations (p<0.000) were found between measures of J 

and BZBR breadth in anterior suture, midsuture, posterior suture, and posterior regions 

(Table 18). These results indicate that as measures of torsional resistance increase, BZBR 

ratios are decreasing.  Lower BZBR ratios indicate a greater disparity in the distances 

spanning the zygomatic roots and mandibular width, and thus lower ratios indicate the 

presence of relatively more flared zygomatic arches.  Therefore, as zygomatic arches 

become more laterally flared, torsional resistance appears to increase, which supports the 

hypothesis that a more diagonally oriented line of action of the masseter results in greater 

torsional moments.  

 Under condition of high torsional loads, measures of Imax/Imin approaching 1.0 

(indicating a circular cross-sectional shape) were predicted to correlate with BZBR 

measures that are less than 1.0 (indicating a more flared zygomatic arch).  The results of 

OLS regressions found a relatively weak, negative correlation among that data in all 

regions except anterior suture, but the results were not significant.  Imax/Imin appear to 

have no significant relationship to measures of BZBR in this sample and thus do not 

support the hypothesis that relative flare (quantified as BZBR) is correlated with 

zygomatic arch cross-sectional shape.    

 ANOVA comparisons of ratios of bizygomatic breadth to biramus breadth across 

dietary groups revealed significant differences between the groups (ANOVA, F= 4.46, 

p=0.008). Post hoc Tukey HSD tests found significant differences in comparisons of 

exudate consumers and hard object consumers (Table 19; p=0.007), exudate consumers 

and soft consumers (p=0.049), and exudate consumers and tough consumers (p=0.013).  
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Table 19. Tukey HSD results for Bizygomatic-biramus (BZBR) ratios across dietary 
groups 
Comparison Tough Soft Hard Exudate 
Tough    --- 0.644 0.927 0.013 
Soft 0.644    --- 0.355 0.045 
Hard 0.927 0.355    --- 0.007 
Exudate 0.013 0.045 0.007    --- 

 

No significant differences were found in the remaining comparisons. These results 

suggest that exudate consumers are significantly different from all other dietary groups in 

their ratio of bizygomatic breadth to biramus breadth, whereas tough, soft, and hard are 

not significantly different from one another. 

 

5.4.7 Pairwise comparisons 

 Pairwise comparisons of anterior measures of Ix, Iy, Imax, J, and Imax/Imin were 

conducted on pairs of closely related taxa from different diet types using Welch’s two-

sample t-tests. Because masticatory loading is hypothesized to be greatest anteriorly, 

comparisons were concentrated in this region. Seven of 13 comparisons found significant 

differences (p<0.05) in one or more variables (Appendix D, Table SM6 and Figs. 27a-

27m) though no singular pattern emerged. Of these pairs, the comparisons between Ateles 

geoffroyi  (a soft food consumer) and Alouatta palliata  (a tough food consumer) 

rendered significant differences in every cross-sectional variable (p<0.000).  
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Figure 28a. Boxplots of pairwise comparisons between A. palliata and A. geoffroyi for 
each biomechanical variable. 
 

Other comparisons between soft and tough consumers (e.g., Pan troglodytes & Gorilla 

gorilla, Macaca fascicularis & Macaca mulatta) also yielded significant differences 

(p=0.02, and p<0.04 respectively) in cross-sectional variables. Specifically, P. 

troglodytes and G. gorilla were significantly difference in Imax, J and Ix, while M. 

fascicularis and M. mulatta were significantly different in measures of J, Ix, and Iy. 

Comparisons between other soft food and tough food consuming taxa did not yield 

significant differences. For instance, comparisons of T. gelada and Papio anubis were not 

significantly different for any cross-sectional variable and neither were the comparisons 

between G. gorilla and P. pygmaeus despite the differences in their diets.  
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Figure 28b. Boxplots of pairwise comparisons between G. gorilla and P. troglodytes for 
each biomechanical variable. 
 

 
Figure 28c. Boxplots of pairwise comparisons between P. anubis and T. gelada for each 
biomechanical variable. 
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Figure 28d. Boxplots of pairwise comparisons between G. gorilla and P. pygmaeus for 
each biomechanical variable. 
 

 

Figure 28e. Boxplots of pairwise comparisons between M. fascicularis and M. mulatta 
for each biomechanical variable. 
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Comparisons between exudate consume Callithrix jacchus and soft consumer Saguinas 

oediupus found no significant differences between taxa, though S. oedipus possessed 

higher average values for each variable. Among all comparisons, the result for anterior 

Imax/Imin values is most marked in this taxa pair, suggesting that cross-sectional shape is 

different in these taxa; specifically it appears that S. oedipus has relatively rounder 

secitions compared to the more oval-shaped sections of C. jacchus.  Comparisons 

between Saimiri scurieus and Saimiri oerstedii found S. oerstedii consisitenly exhibited 

relatively higher values on average for each variable. The differences are not significant, 

which is not surpising given the overall dietary similarity between these species.  

 

 
Figure 28f. Boxplots of pairwise comparisons between C. jacchus and S. oedipus for each 
biomechanical variable. 
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Figure 28g. Boxplots of pairwise comparisons between S. oerstedii and S. scurieus for 
each biomechanical variable. 
 

Comparisons between taxa consuming hard objects and soft foods also yielded significant 

differences.  Pithecia monachus and Pithecia pithecia, both members of the pithecids 

though the former generally consumes more fruits, were found to differ in their measures 

of Imax, Ix, and Imax/Imin measures. Macaca fasicularis and Macaca fuscata varied in their 

measures of Imax, J, and Ix finding that hard-object consumer M. fuscata was significantly 

greater than soft consumer M. fasicularis in measures of Imax, J, and Ix.  Surprisingly, the 

comparisons between hard-object consumer Sapajus apella and soft consumer Cebus 

capucinus found relatively similar values for each variable on average.  While the 

differences between these taxa were not significant, C. capucinus possessed slightly 

higher values on average.  The morphological similarity between this pair may be due in 

part to the preoral preparation of hard objects by S. apella.  
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Figure 28h. Boxplots of pairwise comparisons between P. monachus and P. pithecia for 
each biomechanical variable. 
 

 
Figure 28i. Boxplots of pairwise comparisons between M. fasicularis and M. fuscata for 
each biomechanical variable. 
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Figure 28j. Boxplots of pairwise comparisons between S. apella and C. capucinus for 
each biomechanical variable. 
 
 
Lophocebus albigena and Cercocebus torquatus, both classified as soft consumers in this 

study, were also compared. This comparison yielded differences in Imax/Imin indicating 

these taxa, while similar in many aspects of bending and torsional resistance, varied in 

shape. When Imax/Imin is compared in anterior regions for this pair, C. torquatus is 

relatively more circular than L. albigena. While the diet of these taxa is primarily fruit, 

both also consume hard seeds to different extents: 20% in C. torquatus (see Mitani, 1989) 

and 29-36% in L. albigena (see Ham, 1994; Poulsen et al., 2001). However, the seeds 

consumed by C. torquatus tend to be harder than those consumed by L. albigena. Thus, 

the higher Imax/Imin value observed in C. torquatus may indicate that the hardness of a 

food item, rather than the total consumption percent, contributes to differences in arch 

shape.  
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Figure 28k. Boxplots of pairwise comparisons between C. torquatus and L. albigena for 
each biomechanical variable. 
 
 

Comparisons between hard-object consumer Macaca fuscata and tough consumer 

Macaca mulatta found significant results in Imax and Ix indicating that maximum bending 

resistance differences may be significantly different in some tough versus hard-object 

consumers. If consistent, then this suggests that hard-object feeding versus tough food 

consumption resorts in differential bone response. 
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Figure 28l. Boxplots of pairwise comparisons between M. fuscata and M. mulatta for 
each biomechanical variable. 
 

 To investigate the effect of hard-object consumption, intradietary comparisons 

were conducted on three sets of taxa (M. fuscata & M. mulatta, C. torquatus & L. 

albigena, P. badius & C. polykomos) with the same primary diet type but different hard-

object consumption amounts.   
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Figure 28m. Boxplots of pairwise comparisons between P. badius and C. polykomos for 
each biomechanical variable. 
 

Welch’s two-sample t-tests found significant differences in the following:  for Imax in M. 

fuscata and M. mulatta (t=3.351, p=0.031), for Imax and J in P. badius and C. polykomos 

(t=-2.642, p= 0.016; t=-2.384, p=0.027 respectively), and for no comparisons in C. 

torquatus and L. albigena (Fig. 28). Notably, when the values for Imax, Imin, and J are 

plotted for each species, the species with the greater hard-object consumption percent 

consistently possessed higher values on average for all three variables. While the 

relationships were significant in three cases (noted previously), this suggests that hard-

object consumption may contribute to greater maximum, minimum, and torsional 

resistance values, even if the primary dietary type is the same in the both taxa.  
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Figure 29. Box plots for intrasietary comparisons conducted on closely related taxa 
with similar primary diet types. Hard-object consumption percent values are reported 
for each species in the pairwise comparison. 
 

5.4.8 FMPs and cross-sectional geometry 

 The cross-sectional geometric properties (Imax, Imin, Ix, Iy, J, Imax/Imin) for anterior 

arch sections in the sub-sample of the study taxa (n=9 species), for which food materials 

properties data were available, were compared using Phylogenetic Generalized Least 

Squares (PGLS) multiple regressions to determine whether there was an effect of 

phylogeny on the data and to account for size in the cross-sectional variables. In these 

models, FMPs data on mean toughness (R) and mean Young’s modulus (E) were 

regressed with measures of cross-sectional geometry to determine whether significant 
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relationships occurred.  This same set of comparisons was also performed between cross-

sectional variables and stress-limited ([E*R]0.5) and displacement-limited indices 

([R/E]0.5). These results are presented in Appendix D, Tables SM7. 

 Results for both Young’s modulus measures and toughness measures found no 

significant relationships between these FMP measures and cross-sectional variables. In 

addition, the PGLS models found a lambda value approximating 1.0, indicating the 

presence of a strong phylogenetic signal in the residuals of these data. Results for 

displacement-limited and indices also found no significant correlations with cross-

sectional variables.  No models were significant, and the lambda values obtained also 

approximate 1.0, indicating a phylogenetic effect on the data. In sum, these findings do 

not provide evidence that FMP or other indices of E and R are good predictors for cross-

sectional variables.  Given the small sample size for this set of analyses, a lack of 

statistical power is a likely contributor.   

 Finally, Pearson product-moment correlations (Pearson’s r) between anterior 

Imax/Imin measures and average food material properties measures of toughness (R) and 

Young’s modulus were conducted to determine the dependence of one variable on the 

other. Results of these comparisons found no correlation between anterior Imax/Imin ratios 

and toughness (Pearson r=0.394, p=0.293), or between anterior Imax/Imin and Young’s 

modulus (Pearson r=-1.146, p=0.303).   A pearson product moment correlations between 

anterior Imax/Imin values and dietary categories based on total consumption percent found 

no relationship between dietary category and Imax/Imin shape ratios. 
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5.5 Discussion 

 Questions concerning the developmental, biomechanical, and adaptive value of 

the zygomatic arch and zygoma have seen a renaissance with the recent publication of 

two special issues dedicated to the topic. The zygomatic arch is but one of the series of 

diverse, overlapping, and competing craniofacial features arranged in a relatively small 

area and subjected to varying amounts of masticatory strain. Given the complexity of this 

region, the variation in the constituent features, and their contributions to masticatory 

load resistance (Vinyard and Ryan, 2006), it is not surprising that comparative analyses 

of zygomatic arch mechanics sometimes fail to discern a clear signal in terms of bone 

behavior under specific types of loading. Case in point, the traditional approach to 

modeling the zygomatic arch as a beam is problematic because while it looks like a beam, 

the arch does not behave as one (Herring et al., 1996; Teng et al., 1997; Rafferty et al, 

2000; Smith and Grosse, 2016). This, however, does not preclude the continued study of 

this feature, but instead challenges morphologists to consider form in relation to load type 

and load resistance exhibited by bone, and consider alternative mechanical models that 

incorporate the differential strain profile observed in the arch.  

 One of the most pertinent observations from the first in vivo studies on macaques 

(e.g., Hylander and Johnson, 1997) was the presence of an anteroposterior strain gradient 

which matches cortical bone distributions as well as section moduli (strength) measures 

throughout higher order primates (Edmonds, 2016). Given the consistency of this 

gradient, the expectation was that bone form would also follow a similar pattern. Thus, 

the analyses in this study were undertaken in large part to examine the cross-sectional 

geometry of the arch – an approach not yet used to examine arch form in relation to 
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dietary function –to examine the consequences of masticatory loading on bone form. 

 Unlike direct measures of bending and torsion resistance, cross-sectional shape 

did not adhere to the same anteroposterior gradient. In general, arch form was elliptical 

across the majority of regions in all species, which supports the hypothesis that 

parasagittal bending is the primary load type. Despite the lack of consistency regarding 

cross-sectional shape, the results for maximum bending resistance and resistance to 

torsion provide compelling evidence that zygomatic arch loading is similar at a species 

level, and potentially at the family level, with few exceptions.  While in vivo strain data 

are available for only a few primate taxa, the data gathered in this study provide 

biomechanically meaningful measures of bending and torsion resistance across a wide 

primate sample that demonstrates a regular pattern of bone resistance along the 

zygomatic arch. In concert with the results of strain, cortical bone, and section moduli 

measures, the findings of this study reinforce the presence of mechanical gradient along 

the zygomatic arch and as such calls for the formulation of a heterogeneous beam model 

that incorporates these aspects.  

 One of the means by which these models can be tested is through the use of 

visualization techniques, such as Finite Element Modeling (FEM).  Recent FEM work 

published by Smith and Grosse (2016) investigated zygomatic arch cross-sectional shape 

in the context of strain pattern differences in relation to hypothetical cross-sectional arch 

shapes. Smith and Grosse (2016) concluded that few consistent strain patterns emerged 

with respect to manipulations of cross-sectional shape in a chimpanzee model.  In the 

present study though, cross-sectional properties within chimpanzees were found to vary – 

specifically that measures of Ix were significantly different in anterior versus posterior 
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suture sections meaning that the bending resistance about the x-axis was relatively 

increased, and that presumably there wouldn’t be as much deformation in these regions. 

In addition, measures of Imax/Imin within chimpanzees were different in anterior versus 

posterior and anterior suture versus posterior regions, showing that anterior sections were 

more elliptically shaped compared to posterior regions, which indicates that bending 

loads were relatively higher anteriorly.  This suggests that shape differences exist along 

the arch and that they confer specific load resistance capabilities, and that the 

construction of an FEM model meant to replicate in vivo conditions would be best done 

by modeling the zygomatic arch according to these regional differences rather than 

modeling it as a uniformly similar structure.  Great strides in model improvement have 

been made through the inclusion of data on bone material composition in addition to 

landmark data as well as in vivo strain data, however, when modeling the zygomatic arch, 

this study argues that an accounting for the differences in bone behavior and shape 

variation would provide a more accurate basis upon which to construct an FEM model 

and enhance the strength of the conclusions drawn from such models in the pursuit of 

answers concerning evolutionary questions about masticatory adaptation in primates.   

 

5.5.1 Dietary groups and cross-sectional geometric properties  

 Grouping taxa together on the basis of dietary type is a common method for 

understanding the interface of dietary quality and morphological features. Recent work 

investigating the utility of traditional dietary categories (e.g., frugivore, folivore, 

faunivore) found that these designations do not correspond to food material properties 

(Coiner-Collier et al., 2016) and thus may not be the most meaningful or appropriate 
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groupings to use for analyses. Criticisms of the use of traditional dietary categories cite 

the disproportionate reliance on different criteria, the difficulty in how to account for the 

degree of seasonal and/or population variation in primates, and the challenge of defining 

categories that are biologically, ecologically, and ultimately evolutionarily meaningful. 

The separation of taxa into more mechanically relevant categories (e.g., tough consumer, 

hard consumer, soft consumer) in this study was meant to match biomechanical variables 

with biomechanically relevant dietary groupings.  While this study finds that mechanical 

dietary designations are informative about certain morphological characteristics related to 

diet, the best approach for future wok would be the inclusion of food material properties 

data in conjunction ecological data. The use of food material properties data in this study 

was limited due to the availability of these measures within the literature for the taxa 

included here. Though limited, these results indicate that food material properties may be 

a more appropriate means by which to quantify primate diet given the direct relationship 

between the mechanical needs of a food (measured as toughness or Young’s Modulus) 

and the response of the bone to these loads. This point is discussed more extensively in 

the following sections. 

 Within this study, examining the entire series of biomechanical variables by 

dietary group (on the basis of total consumption percent) found that the most significant 

differences occurred in tough versus exudate consumers and that the significant 

differences between these groups extended to all regions of the zygomatic arch. Body 

size is likely a contributing factor to the differences observed in this group given the taxa 

subsumed under tough feeding included some of the largest bodied taxa in the sample 

(e.g., G. gorilla and T. gelada) whereas exudate consumers contained some of the 
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smallest bodied taxa (e.g., C. jacchus).  It is well known that primate diet and body size 

are intricately linked, and that primates of relatively greater body size consume large 

quantities of low-quality food (e.g., leaves) while smaller bodied individuals consume 

higher quality (e.g., insects) (Kay, 1984; Fleagle, 1998) and thus it is to be expected that 

some effect of body size is present in these comparisons.  

 The shape ratio Imax/Imin was not significantly different between dietary groups for 

any arch region indicating that, while tough and exudate consumers differ with respect to 

bending and torsional resistance, they did not differ in cross-sectional shape. Because 

Imax/Imin is corrected for body size, the lack of difference between the dietary groups may 

also further indicate an effect of body size is present. Intra-dietary comparisons found 

that tough and soft food consumers possessed significant differences in shape ratios 

across the zygomatic arch, whereas hard and exudate consumers did not.  The significant 

degree of variation observed in these groups may indicate that shape differences exist 

because of the taxonomic diversity rather than as a result of the differences in masticatory 

loading.  

 The consumption of soft foods is found in most primate taxa to some degree, and 

the primary reliance on such foods varies in conjunction with seasonal and regional 

availability. Of the dietary categories included here, soft food consuming encompasses 

the most generality in terms of food type as well as the largest number of species. Intra-

dietary group comparisons of soft consumers found significant differences in the variance 

for each biomechanical variable at each zygomatic arch region (p<0.001) with regard to 

bone bending resistance about the x- and y- axes (Ix, Iy), maximum bending resistance 

(Imax), and resistance to torsion (J). This amount if variation is not unexpected given the 
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wide taxonomic breadth included under this dietary category. Because of this extensive 

variation, it does not appear that the consumption of soft foods leads to any specific 

patterning that with respect to zygomatic arch architecture.  

 In contrast to a mechanically soft diet, the nature of a hard diet is relatively more 

specialized and often involves the consumption of fruits as well.  To process hard objects, 

such as seeds or nuts, requires relatively high, but infrequent, bite forces generated by 

specific craniofacial configurations.  For example, within cebids the relative positioning 

of the temporalis and masseter muscles in Sapajus apella and Cebus olivaceus were more 

anterior compared to other species of platyrhine, which allows for greater force 

production on the anterior teeth (Wright, 2005).  This is also reflected in the cross-

sectional variables for S. apella, which reveal that anterior arch sections are significantly 

different in bending and torsional resistance from all other regions, indicating that the 

relative anterior shift of the muscles places greater loading in this region of the arch.  

Niche broadening characteristics, such as the increased leverage at the anterior teeth 

afforded by the masticatory muscle placement, is advantageous in that it permits the 

consumption of foods of varying toughness (Wright, 2005) as well as hardness.  While 

this pattern is exaggerated in S. apella, the key element in these primates is that the 

craniodental complex permits the regular processing of soft food items as well as the 

ability to use increased bite forces on the anterior teeth to breach hard food items 

(Wright, 2005; Wright et al., 2009).   

 In terms of adaptation, the ability to access more resistant foods items, even if the 

food item is not a staple in the individual’s diet, confers an important fitness benefit 

particularly in times of food scarcity.   In a 2008 study by Taylor and colleagues, food 
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material properties in relation to loading in the mandible were compared in hominoids to 

determine relative load resistance abilities. The results found that mandibular load 

resistance is linked with the maximum toughness of a food material, rather than the total 

average consumption.  In other words, the food with greatest toughness, even if 

consumed less often, determines the load capacity of the bone (Taylor et al., 2008). Given 

the variation within tough (and soft consumers) with respect to cross-sectional variables, 

it is likely that differences in relative toughness of the foods likely vary across these 

species as well. For instance, toughness values recorded for Pongo pygmaeus (classified 

as a soft food consumer in this study) actually surpass values for Alouatta palliata and 

Theropithecus gelada, both of which are classified as tough food consumers (Coiner-

Collier et al., 2014). When maximum bending resistance and polar moment of inertia 

values for P. pygmaeus and T. gelada are compared, P. pygmaeus was found to have 

greater bending and torsional resistance measures in all arch regions except posterior 

portions.  While tough foods on average do not constitute the general quality of the foods 

consumed by P. pygmaeus, it suggests that the zygomatic arch of this species is fortified 

to resist higher masticatory loads even if those loads are infrequent. 

 Compared to both tough consumers and soft consumers, hard-object consumers 

demonstrated significant differences in all cross-sectional variables except Imax/Imin ratios. 

Because of the more specific mechanical demands of a hard diet, the relative lack of 

variation among hard-object consumers indicates that the zygomatic arch is more uniform 

in bending and torsion resistance. While hard-object consumers constituted a relatively 

smaller group within this study, the manner in which bone is oriented in each cross-

section appears to be relatively similar, generating an overall cross-sectional shape that is 
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uniform throughout. Despite the similarity in overall cross-sectional shape, bending and 

torsional values across all arch locations vary throughout this dietary group suggesting 

that while overall shape is similar, the bone regions which bear the highest loads vary.  

 Exudate consumers performed similarly in this regard, as no significant variation 

was found in their shape ratios. However, unlike the other dietary groups, exudate 

consumers possessed relatively uniform measures of Iy and Imin in anterior and anterior 

suture regions. Given this region expressed the highest Imax and J measures of all arch 

regions, the lack of variation in Iy and Imin in this region suggests that these taxa 

experience relatively similar transverse loads. The marmosets (Callithrix jacchus, Mico 

argentata, Mico humeralifera) included in this exudate group are known to rely on 

exudate consumption to a greater degree as compared to closely related tamarins 

(Leontopithecus and Saguinas) and use their lower teeth and wide gapes (Hogg et al., 

2011) to gouge holes into tree back to stimulate exudate flow (Kinzey et al., 1975; 

Sussman and Kinzey, 1984). While this strategy is effective for obtaining exudates, it 

does not provide increased load resistance capabilities (Hogg et al., 2011). Furthermore, 

comparative analysis of fiber architecture in the masseter and temporalis muscles of 

marmosets suggests they are capable of relatively increased excursion but possess 

reduced force-producing potential compared to tamarins (Taylor and Vinyard, 2004). 

When the Imax and J measures for the marmoset and tamarin (Saguinas oedipus) species 

are compared, both M. argentata and M. humeralifera were found to possess relatively 

lower values, not only in comparison to S. oedipus, but compared to the study taxa as a 

whole, suggesting that these taxa possess relatively reduced maximum bending and 

torsional resistance potential compared to all other taxa.  Despite having the lowest 
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values observed in the sample, all exudate consumers (i.e., species of marmosets) adhered 

to the predicted pattern of possessing their highest bending and torsional resistance values 

in anterior sections.  

 Several taxa appeared to be outliers with respect to variation in each cross-

sectional variable for each dietary group. In tough consumers, A. palliata, G. gorilla, and 

C. polykomos were consistently different in their comparisons with other tough 

consumers with regard to Ix, Imax, and J measures across all zygomatic arch regions. With 

regard to maximum bending resistance measures, both A. palliata and G. gorilla 

possessed the relatively highest measures of Imax in the sample.  Both of these taxa 

consume diets high in toughness, and while Alouatta does not grow to the size of a 

gorilla, they have relatively large teeth for their body size, high crowns and long shearing 

crests compared to other platyrrhines of equal body size (Rosenberger et al., 2011; 

Terhune et al., 2015) that aid in processing large quantities of structural carbohydrates 

(Terhune et al., 2015). The zygomatic arches of A. palliata appear to be relatively robust 

compared other platyrrhines given that cross-sections are generally taller and maintain a 

uniform shape at both superior and inferior edges, and lack a curve along the medial.  

Other platyrrhines by comparison have relatively short arches that are relatively 

constricted mediolaterally and whose inferior margins taper to render a “teardrop” shape, 

such as in Aotus, or can have a curved mesial margin, as in Saimiri. Importantly, masseter 

and temporalis muscle physiological cross-sectional areas (PCSA) are known to scale 

with negative allometry in platyrrhines (Taylor et al., 2015) which contrasts with the 

positively allometric relationships observed in Old World monkeys (Anapol et al., 2008; 
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Taylor et al., 2013) and further reinforces functionally distinct differences in the crania 

and masticatory morphology between these two groups.   

 If masseter muscle PCSA is negatively allometric with respect to body size, then 

what explains the high Imax values observed in A. palliata? It appears that A. palliata is an 

exception to the pattern observed in other platyrrhines in that it deviates considerably 

above the RMA slopes for comparisons of masseter muscle size in relation to jaw length 

and condyle-to-first mandibular molar length (see Fig. 3A in Taylor et al., 2015) 

indicating the presence of a relatively large masseter PCSA for both load arm lengths 

(Taylor et al., 2015). Upon activation, relatively larger masseter muscles likely induce 

relatively higher parasagittal bending moments on the zygomatic arch, requiring that the 

arch be able to resist such loads to avoid failure. In humans, temporalis PCSA and 

anteroposterior length of the zygomatic arch was weakly correlated (Antón, 1994) but it 

is not clear if that relationship is upheld across non-human primates.  To better answer 

this question, scaling relationships between the masticatory muscles and zygomatic arch 

would provide a better understanding of the effect of muscle PCSA in relation to arch 

form and its mechanical behavior.   

 Within soft consumers, no single species was found to be consistently different 

from other soft feeders with respect to bending resistance indicating high variance among 

species in the group as well as between species, but no predictable patterns overall. 

Within hard-object consumers, maximum and minimum bending resistance differences 

were primarily observed between Macaca fuscata and other hard object consumers. The 

diet of Macaca fuscata is highly variable both seasonally and regionally (Aoki et al., 

2015) and their consumption of hard seeds can vary from 13.2 % (Hill, 1997) to 44% or 
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more (Agestsuma and Nakagawa, 1998). Hard-object consumption in other taxa in this 

group such as Macaca sylvanus (26.7-32.2%, see Menard and Vallet, 1996) is more 

consistent and less variable which may influence the regularity with which higher 

magnitude loading is experienced in the zygomatic arch. Additionally, the average 

maximum bending resistance in M. sylvanus is greater than that of M. fuscata which may 

relate to the relatively higher and more consistent hard-object consumption found in the 

former.   

  In exudate consumers significant differences were found across arch locations for 

each variable with the exception of Iy, Imin, indicating relatively uniform measures of 

transverse bending resistance throughout the zygomatic arch, and Imax/Imin indicating 

similar cross-sectional shapes throughout the arch. Within this group, C. jacchus and C. 

argentata cross-sectional shape was not found to differ, but aspects of bending tendencies 

do differ markedly between this pair.  Though both primarily consume exudates, C. 

argentata appeared to possess relatively higher bending and torsional resistance measures 

as compared to C. jacchus even though C. jacchus is reported to consume more tough 

foods (up to 18.1%, Smith and Smith, 2013) than C. argentata.  For this reason, it is also 

important to consider the effect of local dietary shifts that may have occurred in the 

primates’ habitat. For example, populations of C. jacchus in Pontes and Soares’ (2005) 

study were reported to consume upwards of 61.5% fruits and 28.7% of exudates. 

However a similar study in the same geographical region in 2010 found C. jacchus’s diet 

included 61.99% for exudates and 2.9% fruit (Silva et al., 2010).  A shift from a low 

exudate, high fruit to a high exudate, low fruit strategy likely imparts a shift in 

masticatory loading as well, such as a concomitant increase in bending moments, 
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particularly if the high fruit consumption included fruits comprised of varying measures 

of toughness and stiffness. Compared to C. jacchus, C. argentata also incorporates more 

fruit on average (up to 36%, Smith and Smith, 2013).  The difference in food restrictions 

is likely due to human intervention and changes to the local ecology (Silva et al., 2010) 

and further emphasizes the difficulty is assigning taxa to specific dietary groupings when 

populations of the same species can vary over relatively short time spans.   

 Comparisons between arch regions for bending and torsional resistance in C. 

argentata more closely echo those observed in soft consumers than in other exudate 

consumers, particularly because C. argentata possesses significantly different Ix and Imax 

measures in comparisons of anterior regions to more posterior regions; a common trend 

in soft consumers that is absent in both C. jacchus and C. humeralifera. Thus, 

morphologically C. argentata appears to align more closely to other primates that are 

more dietarily similar in fruit consumption, rather than with more closely related species 

of marmosets.  

 The findings of this study do not strongly support total consumption percent as a 

means of comparing diet in relation to mechanical variables measured on the primate 

zygomatic arch. While the differences between tough consumers and exudate consumers 

speak to some level of dietary differentiation, this approach alone is not sufficient to 

predict patterns in dietary categorization because the criteria upon which groupings are 

made are to a degree subjective. With the amount of seasonal variation present in many 

primate species, it is difficult to set criteria for assigning a taxon to a particular dietary 

category that truly represents their average dietary intake throughout the year.  Moving 

forward, relying on more empirical standards of categorization (i.e., food material 
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properties) may provide the necessary resolution by way of comparisons along a 

continuous scale rather than binning taxa into discrete groups. 

 

5.5.2 Resistance to bending and torsion 

 The tendency for a bone to bend about the x- and y-axes (Ix, Iy) as measured in 

cross-sections of the zygomatic arch was found, in general to be greatest in anterior 

regions as compared to any other region across the study taxa which supports this study’s 

second hypothesis. Larger values of I indicate that a shape has an area at a greater 

distance away from an axis through its centroid. Within the zygomatic arch it appears that 

the increased distance of the bone border from the centroid effectively increases the 

stiffness because it places more bone farther from the neutral axis of the structure. Given 

that stresses are highest moving away from the neutral axis, the addition of bone material 

would strengthen the cross-sectional shape. Operating under the model that strain is 

highest anteriorly due to the positioning of the masseter; it stands to reason that the 

masticatory loads experienced are also concentrated anteriorly. Because parasagittal 

bending appears to be the dominant loading regime overall (especially in anterior 

sections), it follows that bending resistance would also be greatest in the portions of the 

arch subjected to the highest loads.  

 The expectation was that this pattern would be exaggerated in taxa consuming 

more mechanically challenging diets (tough and/or hard) in that they would possess 

relatively higher Imax and J measures compared to taxa who primarily consumed less 

mechanically challenging foods (soft or exudate). When average values of maximum 

bending tendencies were compared across dietary groups, tough consumers possessed the 
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highest average Imax and J measures, followed by soft consumers, hard consumers, and 

exudate consumers. While this result may be linked to the mechanically challenging 

nature of a tough diet, these results may be more influenced by body size given the 

largest bodied taxa (Gorilla) in the study were generally tough consumers, followed by 

other large bodied taxa (Pan and Pongo) in the soft consumer group. When overall 

dietary group averages were compared by region, anterior measures of bending and 

torsional resistance were greatest overall in all dietary groups regardless of diet type. 

 Of the 43 species included in this study, only Macaca sylvanus, Pithecia pithecia, 

Pithecia monachus, Theropithecus gelada, Mandrillus leucophaeus, and Chiropotes 

albinansus did not possess their greatest second moments of area, maximum bending 

resistance, and polar moments of inertia in anterior or anterior suture regions.  Potential 

explanations to account for the differences in these taxa are discussed in the following 

sections. The findings for the remaining taxa however, strongly support the hypothesis 

that anterior zygomatic arch regions routinely experience higher bending loads as 

compared to posterior regions, and thus exhibit greater bone structural response to 

combat these loads. These findings also agree with the documented strain distribution 

described by Hylander and Johnson (1997) and suggest that the presence of an 

anteroposterior strain gradient in the zygomatic arch reflects a pattern that exists 

regardless of diet type, and that may represent a general primate pattern.   

 In hard-object consumers, all taxa except Macaca sylvanus, Pithecia pithecia, and 

Presbytis rubicunda (highest posteriorly only in Iy) exhibited their highest Ix, Iy, Imax, and 

J measures in anterior regions. In P. rubicunda though, posterior measures of Iy were not 

significantly different than those in anterior sections.  Interestingly, Macaca sylvanus was 
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the only species within the entire study to possess its greatest measures of bending 

resistance at the midsuture region followed by the posterior suture regions. However, this 

species is represented by a single individual, which limits the statistical power of this 

observation. While M. sylvanus in designated as a hard-object consumer in this study on 

the basis of the food item of which it consumes the most, this species also consumes 

leaves (up to 13%, see Menard and Vallet, 1996; 1997) and insects (10.5% see Menard 

and Vallet, 1996; 1997).  It is unexpected that the highest Imax values occurred at the 

midsuture region given that suture sites are seen as locations of strain dispersion and 

potential structural weakness under high loading (Kupczik et al., 2007; Wang et al., 2010; 

2012). I am cautious in drawing the conclusion that the highest bending resistance values 

regularly occur in midsuture sections in M. sylvanus in the absence of a larger sample 

size for this species.  Further study on this point is necessary to tease out whether M. 

sylvanus exemplifies a pattern that is different not only from other macaque, but from 

haplorhine primates in general. 

 Chiropotes albinasus was found to have its greatest measures in posterior regions, 

however issues associated with the small sample size of this species do not provide 

adequate statistical power to conclude that posterior regions are consistently highest in 

this taxon.  Therefore, future work with larger sample sizes is necessary to render a more 

confident result. The P. pithecia and P. monachus samples were sufficient for statistical 

analysis, and they had absolutely higher Ix, Iy, Imax, and J values in posterior suture 

regions when compared to all other arch locations intraspecifically, though these 

differences are not statistically significant.  One explanation is that the apparent shift in 

strain may be due to a change in masseter placement and/or activation.  Without in vivo 
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strain data to compare to the cross-sectional geometry or detailed soft tissue 

measurements of these pithecids, this conclusion remains speculative at best. As hard-

object specialists, pithecids face two functional challenges: the size of the object to be 

fractured, and the material properties of the food item contained therein.  Pithecids are 

known to possess specific craniodental features that aid in the processing and 

consumption of hard seeds, which include increased occlusal area on the postcanine teeth, 

large splayed canines, and tall appressed incisors (Kinzey, 1992).  These dental tools 

function to breach or masticate one or multiple plant tissue layers in order to access the 

nutrient rich pulp or endosperm (Wright, 2004). Pithecids also place hard seeds on their 

molarized premolars, a characteristic associated with hard-object consumption in 

primates (Kay, 1990), which enables efficient trituration of the seed tissues (Kinzey, 

1992; Rosenberger, 1992). 

 Within the realm of ingestible foods, some plant tissues are more easily processed 

(i.e., are easily torn or comminuted) while other layers are more mechanically resistant 

(i.e., more difficult to breach, tear, or comminute) meaning that within a single food item, 

a primate may encounter a series of plant layers with markedly different processing 

requirements (Wright, 2004).  For instance, the Inga fruit consumed by P. pithecia varies 

in toughness from the endosperm (measuring about 182.1 J m-2) to much higher measures 

in the external woody tissues (4382.9 J m-2) (See Table 5.3 in Wright, 2004).  Thus, the 

tissues in these fruits fall within the range of many types of leaves, and place increased 

mechanical demands on the masticatory complex. It is on this point that the mechanical 

demands imposed by the processing of specific plant tissues, rather than the demands of 
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processing specific food types, impact the form and muscular components of the 

masticatory system in primates.   

 In humans, small vertical changes in jaw height (obtained from subjects biting on 

a pad) were found to significantly affect the nature of motor unit recruitment in distinct 

portions of the masseter muscle and that recruitment was greater in the deep masseter as 

compared to the superficial masseter (Terebesi et al., 2015). This study observed that 

masseteric activity decreased as vertical distance increases even while maintain a 

constant bite force (Terebesi et al., 2015). In the case of the pithecids, placing an object 

on the posterior teeth would require a larger vertical distance in jaw height (i.e., gape), 

which would conceivably reduce masseter muscle activation compared to biting on a 

smaller object and possibly displace the locations of strain as well. It may be that the 

activation of different masseter motor units in relation to the size of the food object 

results in more posteriorly concentrated strains on the zygomatic arch in this species. 

Spencer (1995) found that the mechanical advantage of the masticatory muscles in P. 

pithecia was substantially lower than in other hard-object consumers (Chiropotes and 

Cacajao). However, masseter muscle PCSA size in P. pithecia is relatively larger 

compared to other pithecids (Taylor et al., 2015) which may be necessary to provide 

increased power as a tradeoff to counteract the lack of mechanical advantage.  In 

addition, placing the food item closer to the TMJ, would also function to reduce the 

magnitude of the masseter muscle during a bite. The fact that this pattern of bending and 

torsional resistance is observed in both taxa, this may indicate the presence of a species-

specific pattern.  Future work examining this pattern in P. pithecia and P. monachus in 

relation to other pithecids would be necessary to confirm this.  Further investigation into 
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the multiple factors (e.g., muscle architecture, fiber length, insertion location etc) that are 

undoubtedly contributing to this phenomenon would also be valuable for future work.  

 Similar to the pithecids, Theropithecus gelada, a committed gramnivore with a 

diet high in toughness, exhibited their greatest bending resistance in posterior regions. It 

is interesting that P. pithecia, P. monachus, and T. gelada yield high measures in 

posterior regions given they are architecturally and dietarily distinct; Pithecia is relatively 

short faced and consumes hard seeds while T. gelada is more prognathaic and consumes 

grasses. As previously discussed, differential motor unit recruitment may vary in T. 

gelada to the extent that high strain concentrate posteriorly. The consumption of grasses 

does not require a particularly large gape, but the presence of large, dimorphic canines 

does.  Like pitheicids, geladas possess unique dental characteristics that reflect their 

grazing habit; these include large, thickly enameled, high-crowned molars, that wear to 

become curved enamel crests upon which tough foods are effectively comminuted and 

ingested (Jolly, 1970; Jablonski, 1993, 1994; Venkataraman et al., 2014).   

 The soft tissue emanating from the zygomatic arch in T. gelada includes the 

origin of the pars superficialis, a thick aponeurosis that originates from the anterior two-

thirds of the inferior surface of the zygomatic arch (Jablonsky, 1981, p. 72), the second 

internal aponeurosis which takes its origin from the inferior aspect of the central portion 

of the zygomatic arch (Jablonsky, 1981, p. 73), and the pars profunda which has its more 

muscular attachment in at the posterior third of the arch and extends the entire inferior 

and a large portion of the inferomedial aspect of the arch (Jablonsky, 1981, p. 77). Upon 

activation, these soft tissue structures may induce greater loading in posterior regions, 

particularly if temporalis activation is diminished in comparison to masseter activation in 
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this species. However, more data on in vivo strain patterns in this species are necessary to 

determine if strains do concentrate posteriorly, and if so, is that accomplished in a 

different way than is observed in Pithecia. 

  Mandrillus leucophaeus was also characterized as having its largest measures of 

Ix, Iy, Imax, and J in posterior regions and also possesses a relatively prognathaic facial 

structure. Unlike geladas, this species of mandrill generally consumes soft foods (58%, 

see Gonzalez-Kirchner and Sainz de la Maza, 1996)	  and some leaves (16%, see 

Gonzalez-Kirchner and Sainz de la Maza, 1996). One explanation for the similarity in 

these arch measures across these taxa could derive from the similarity in the toughness of 

the foods consumed. Sensu Taylor et al., 2008, the maximum toughness of the foods 

consumed by mandrills may approximate that of geladas even if the frequency with 

which the tough foods are consumed varies. Without material properties data on mandrill 

diets though, this remains unclear. Alternatively, the similarity in the bending moments 

of these taxa may relate to relative positioning of the arch on the cranium given both 

Mandrillus and Theropithecus possess relatively high degrees of snout prognathism and 

large gapes. While zygomatic arch position was outside the purview of this study, the 

architectural similarities between these taxa may explain the presumed posterior shift of 

high zygomatic arch strain.  

 While the presence of higher posterior bending loads may be derived in these taxa 

relative to other primates, the presence of relatively high instances of bending in posterior 

zygomatic arch sections is not unheard-of in other mammals. In herbivorous marsupials, 

high posterior zygomatic arch strains have been observed in the common wallaby 

(Vombatus ursinus), a known grazer.  The zygomatic arch was the most highly strained 
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part of the skull during molar biting overall among all models and the results suggest that 

variation in the performance of the masticatory system in marsupials is tied to diet. The 

highly grazing wombat exhibited the highest mechanical efficiency indicating the 

cranium (and zygomatic arch) is strong and efficient for transmitting masticatory muscle 

loads to the teeth and is thus optimized to combat high bite forces (Sharp, 2015).  

Wombats consume diets high in toughness (e.g., Tussock grasses) and possess adaptions 

to aid in combatting the resulting functional loads.  While wombats are morphologically 

different than geladas in key ways (e.g., the teeth), the high instances of posterior bending 

may induce a shift in strain such that the highest strain loads are concentrated posteriorly. 

 Similarly, pigs (Sus scrofa) have also been found to experience high loads on 

posterior arch (on the squamosal bone) portions. Strain in the zygomatic arch derives 

primarily, but likely not exclusively, from the masseter muscle (Herring et al., 1996) but 

also from the soft tissue aponeuroses that envelop this area of the cranium.  In both pigs 

and primates, the zygomatic arch is composed of two bones: the zygomatic and 

squamosal in pigs, and the zygomatic and temporal bone in primates.  In primates, 

Hylander and Johnson (1992) noted the presence of an anteroposterior strain gradient that 

traversed the full length of the arch, whereas pigs have distinct strain patterns unique to 

each constituent part of the arch. In the zygomatic arch of pigs, Herring et al. (1996) 

noted the presence of bending on both arch portions but that the direction of bending was 

opposite in each portion; namely that the zygomatic portion experiences in plane bending 

while the squamosal portion experiences out-of-plane bending.  It appears a transition 

happens at the zygomaticosquamosal suture in which a load transmitted from the 

zygomatic bone to the squamosal bone is transferred posteriorly as well as ventrally 
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(Herring et al., 1996).  This transfer results in relatively higher strain values in squamosal 

sections compared to those in the zygomatic bone.  

 The out-of-plane bending in the squamosal bone is the reverse of what is expected 

given the masseter attaches anteriorly and functions as the sole muscle that pulls directly 

on the bone. If the out-of-plane bending derives from the medial muscle pull of the 

masseter, why is the strain greatest in the squamosal region?  These assumptions operate 

on the premise that the arch is a homogenous bony structure composed of isotropic bony 

tissue. However, the microstructure of the squamosal and zygomatic bones reveals that 

the squamosal portion contains osseous tissue arranged mediolaterally, which stiffens the 

arch in the transverse plane (but less stiff along the plane of measurement) whereas the 

zygomatic is buttressed against loading in all three directions (Herring et al., 1996).   In 

these primates, the posteriorly higher bending resistances may be derived from a similar 

circumstance. Rafferty et al. (2000) noted that upon contraction, the masseter muscle in 

pigs pulls the zygomatic bone medially, posteriorly, and inferiorly while the squamosal 

portion remains fixed posteriorly to the cranium.  Under this condition the vertical 

componenet of the zygomatico-squamosal suture experiences compression (Herring and 

Mucci, 1991).  At the suture, the zygomatic bone is lateral to the squamosal bone and the 

contraction of the masseter must cause the zygomatic bone to push inferiorly and 

posteriorly on the squamosal bone, causing it to bend medially and experience out-of-

plane bending (Rafferty et al., 2000). In the studies of macaques, Hylander and Johnson 

(1997) noted that the high anterior strains on the arch derive from the in-plane bending 

induced by the anteriorly concerntrated masseter muscle.  Thus, the role of in-plane 

versus out-of-plane bending differs between macaques (and likely other primates) and 
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pigs.  Unlike pigs which have dorsoventrally tall arches well suited to resist in-plane 

bending (Rafferty et al., 2000), M. leucophaeus appears to possess relatively robust and 

round arch sections while T. gelada appears to have more “teardrop”shaped arches; 

neither of which appear to be suited to resist in-plane bending. Based on the results 

presented here it would be intriguing to compare the osseous tissues of these taxa to 

determine whether they adhere to the pig or primate pattern.   

   

5.5.3 Shape ratio differences: Imax/Imin 

 The application of a biomechanical shape ratio (Imax/Imin) has not been used in 

previous studies of zygomatic arch morphology but provides a shape index for which to 

assess the relative ability of a cross-section to resist bending or twisting loads.  While 

typically used to assess long bone or mandibular shape and loading, this study is the first 

to apply this technique to the zygomatic arch to investigate the cross-sectional shape 

consequences of different masticatory loads. I predicted that cross-sectional shape, as 

indexed by Imax/Imin, would predict whether the masseter line of action was more vertical 

(indicating high bending loads and lower BZBR ratios) or more oblique (indicating high 

torsional loads and greater BZBR ratios). Elliptically shaped zygomatic arch cross-

sections were predicted to occur in taxa with more vertical masseter insertions as 

compared whereas more circular cross-sections should occur in taxa with more obliquely 

oriented masseter muscles.  Unlike strict measures of bending and torsion, Imax/Imin ratios 

did not follow a predictable pattern across arch regions. In a general sense, all taxa 

possessed arches that were generally elliptical (to some degree) in each arch region 

regardless of the predicted masseteric line of action.   
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 Under the initial prediction, more flared zygomatic arches should result in a 

higher bizygomatic-biramus ratio (BZBR), Imax/Imin ratio approximating 1.0, greater 

torsional moments, and thus more circular cross-sections. The taxa with the lowest BZBR 

ratio are expected to experience the highest torsional moments.  T. gelada, A. caraya, and 

P. paniscus possessed some of the lowest bizygomatic-biramus width ratios and their 

associated Imax/Imin values did not approximate 1.0 more than most other taxa. 

Furthermore, when the site-specific Imax/Imin ratios for these taxa are compared, they are 

not markedly circular in shape. In T. gelada, midsuture sections were relatively circular, 

but anterior and posterior sections were quite elliptical by comparison. Notably, the most 

elliptical arch sections for geladas appear in their posterior regions, which corresponds to 

their sites of highest Imax measures. While polar moment of inertia measures were also 

highest posteriorly in this species, it is likely that the magnitude of parasagittal bending 

exceeds that of torsion, requiring that the arch’s cross-sectional shape be more elliptical, 

rather than circular, to combat the primary load type.  

 In contrast, taxa with the highest BZBR ratios, and thus presumably most vertical 

masseters, were predicted to have more elliptical cross-sections. Of the entire sample, H. 

lar, C. jacchus, and C. humeralifera possessed bizygomatic-biramus width ratios closest 

to 1.0, however their Imax/Imin ratios were relatively low and thus are predicted to possess 

more circular arch cross-sections.  Within these three taxa, the sites found to be most 

elliptically shaped, (posterior in H. lar, midsuture in C. humeralifer, and anterior suture 

in C. jacchus) did not correspond to regions where Imax measures were highest.   

 From the perspective of strict Imax/Imin ratio patterns by arch region, the species 

whose arch sections were relatively more circular compared to others was soft consumer 
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P. rubicunda (Imax/Imin ratios 0.91-1.06), followed by tough consumer Nasalis larvatus 

(Imax/Imin ratios 0.82-1.06). Based on this result, one would expect that P. rubicunda and 

N. larvatus would possess more flared arches compared to other taxa. These taxa had 

relatively similar bizygomatic-biramus width ratios (0.82 and 0.85 respectively). 

However, these ratios do not indicate that these taxa have particularly flared arches in 

comparison to other taxa, which suggests that bizygomatic-biramus width ratios do not 

clearly determine Imax/Imin ratios. Despite the lack of consistent patterning with respect to 

arch shape, it is notable that the taxa with relatively more flared arches were tough or 

hard-object consumers in comparison to taxa with relatively less flared arches, which 

were generally soft or exudate consumers. Compared to the other biomechanical 

variables quantified in this study, Imax/Imin measures were relatively consistent across arch 

locations among all taxa. This suggests that unlike measures of bending or torsion, 

Imax/Imin ratios are not simply mirroring where masticatory strain is most concentrated. In 

the majority of primate taxa examined here, Imax/Imin measures indicate that parasagittal 

bending, rather than transverse bending, are the primary bending loads experienced. 

There is also likely an effect of where the masseter attaches on the zygomatic arch; an 

attachment superior to the central axis would counteract some torsional loading and 

generate a medial bending load instead.  Furthermore, an elliptical shape may enhance 

the surface area of attachment for the masseter in addition to indicating a parasagittal 

bending load. However, in vivo data demonstrating the load pattern are required to verify 

this prediction. 

 In circular cross-sections, the presumption is that there is a more equitable 

arrangement of cortical bone about the axis, and thus the cross-section is best suited to 
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resisting a combination of transverse bending and torsional loads. The polar moment of 

inertia (J) can overestimate torsional rigidity in non-cylindrical sections (Daegling, 

2002b).  However, Daegling (2002) determined that departures of approximately 20% or 

less result in negligible errors while departures up to 50% produce modest errors of 5%.  

When Imax/Imin ratios exceed 1.5 though, the results enter into significant error and thus 

generate erroneous results (Daegling, 2002b). A cross-section with large J measures is 

generally interpreted to be more resistant to torsional loads; however this interpretation is 

most robust when cross-sections are (physically) nearly circular (Imax/Imax <1.5) (Marelli 

and Simons, 2014).  In the taxa examined here, species averages were less than 1.5 and 

thus I argue that measures of J and the ways they pattern in the zygomatic arch are 

reflective of true biological form.  In future, it would be prudent to calculate alternative 

measures of torsional rigidity (K or an “effective J”, see Daegling, 2002b) to compare the 

results of both variables. 

 

5.5.4 Pairwise comparisons 

 The strongest contrasts between taxa occurred in the comparisons between soft 

consumer A. geoffroyi and tough consumer A. palliata, followed by soft consumer P. 

troglodytes and tough consumer G. gorilla.  In both of these pairs, significant differences 

between Ix, Iy, Imax, and J measures were observed. In comparisons of Ateles/Alouatta, 

Alouatta consistently possessed higher values for each variable, indicating greater 

resistance to bending and torsion in all measures. In Pan/Gorilla comparisons, Gorilla 

was also possessed higher values, but to a lesser degree than was observed in 

Aloutta/Ateles. This relationship was also observed in soft consumer M. fasciularis and 
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tough consumer M. fuscata, G. gorilla and P. pygmaeus (though these differences were 

not significant).  The strength of these differences, suggests that tough and soft food 

consumers vary in their ability to resist bending and torsional loads, and that tough 

consumers on average possess higher resistance potentials. The only comparison that did 

not follow this pattern was between P. anubis and T. gelada. Because these comparisons 

were restricted to anterior measures, it is not surprising that T. gelada, despite being a 

tough food consumer, had relatively lower values for a given cross-sectional measure 

given its highest values occurred in posterior and not anterior regions. However, when 

the highest values for bending and torsional resistance in P. anubis are compared to the 

highest values of T. gelada, T. gelada is surprisingly found to be absolutely lower given 

their highly tough diet.  This result is likely due to the differences in sample size between 

these two species. Because of the small size of the T. gelada sample, there is limited 

statistical power for this result.  Thus, I am cautious in drawing the conclusion that 

geladas are consistently lower in cross-sectional geometry measures as compared to 

baboons. Future comparisons conducted with a larger sample size would better speak to 

this point.  With the exception of the Papio/Theropithecus pairing, the results of these 

comparisons suggest that tough food consumers consistently possess relatively greater 

bending and torsion resistance potentials as compared to soft consumers further 

supporting the prediction that the more mechanically challenging nature of a tough diet 

exerts greater bone response relative to a less challenging diet.  

 The findings for pairwise comparisons between hard-object consumers and soft 

consumers are less clear however. Analogous to the predictions for soft and tough 

consumers, hard-object consumers were expected to exceed soft consumers in each 
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measure. Comparisons between hard-object consumer P. pithecia and soft consumer P. 

monachus found that P. pithecia exceeded P. monachus in all variables. In contrast, the 

comparison of S. apella and C. capucinus revealed no significant differences between the 

pair, and found soft consumer C. capucinus exceeded S. apella on average in all 

measures. The contrasting results from these two pairings make it unclear whether hard-

object feeding results in greater measures of bending and resistance.  The lack of 

differences observed in the Sapajus/Cebus comparison likely stem from the degree of 

pre-oral preparation (e.g., smashing nut with a rock) used by Sapajus to breach a hard 

object rather than solely relying on bite force to propogate a crack. Tufted capuchins (S. 

apella) and non-tufted capuchins (C. capucinus) are clearly demarcated by their cranial 

and dental morphology in that tufted or ‘robust’ capuchins possess clear adaptations (e.g., 

thickened corpora, larger ascending rami, and shorter mandibles) for a durophageous diet 

that are absent in ‘gracile’ capuchins (Bouvier, 1986; Daegling, 1992; Silva, 2001; 

Wright et al., 2009).  Notably, robust capuchins were described as having larger 

zygomatic arches with greater flare (Bouvier, 1986; G. Jones in Fragaszy et al., 2004a; 

Fig. 2 in Alfaro et al., 2012) relative to gracile capuchins.  

 In this study though, relative zygomatic arch flare was very similar in both C. 

capucinus and S. apella (BZBR ratios of 0.85 and 0.83 respectively), which is counter to 

the observations made in previous studies. In addition, under the assumption that Sapajus 

possess relatively more robust zygomatic arches than C. capucinus, the expectation is that 

maximum bending resistance and/or torsional resistance should also exceed that of C. 

capucinus. Contrary to expectation, this study found that C. capucinus possessed greater 

average Ix, Iy, Imax, and J measures than S. apella. In this regard, gracile capuchin C. 
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capucinus appears to possess zygomatic arches that are better strengthened to withstand 

loads compared to robust capuchin S. apella.  

 One explanation for this may derive from the diet profiles of these two taxa. S. 

apella consumes hard seeds (up to 16%) on a seasonal basis, as well as varying portions 

of flowers (11.1%), leaves (6.3%), and even corn (13.9%) when in close proximity to 

agricultural fields (Galetti and Pedroni, 1994). However, the bulk of the capuchin diet 

stems from fruit pulp consumption (53.9%) and include a wide spectrum of fruit type 

ranging from small drupes like Urera baccifera to large pods of Inga spp. (Galetti and 

Pedroni, 1994). As noted previously, Inga pods contain plant tissues of significant 

toughness and processing such a food would require significant masticatory force. As a 

commonly available food in regions where S.apella feeds, regular consumption of such a 

tough food would presumably induce relative high masticatory loads. The apparent 

increase in cross-sectional geometry in C. capucinus may be due to the consumption of 

some other mechanically challenging foods in spite of the absence of load resisting 

adaptations in other portions of the cranium.  

 Chapman and Fedigan (1990) found neighboring groups of C. capucinus yielded 

very different dietary profiles in terms of fruit consumption ranging from 53-81.2% 

depending on the capuchin group. Without the specific food material properties data for 

each fruit consumed, it is difficult to compare the mechanical nature of these diets, 

however, this raises an important point about variance in food range ecology as well as 

behavioral practices such as food selection based on learned group tradition (Chapman 

and Fedigan, 1990) rather than strict food availability. It would be interesting to compare 

food material properties data between these two groups to determine whether C. 
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capucinus consumes plants of similar toughness to S. apella and if that may explain the 

differences in zygomatic arch cross-sectional geometry. 

 Other primate taxa, such as Cercocebus torquatus and Lophocebus albigena, 

consume hard objects, though generally to a lesser degree compared to durophagy 

specialists. Though categorized as soft consumers based on consumption percent, both 

taxa consume hard objects as well.  Pairwise comparisons between these two species 

found that C. torquatus, whose diet contains up 36% hard objects, consistently possessed 

greater bending and torsional resistance measures as compared to L. albigena (whose 

hard-object consumption can be up to 29%). These taxa also make a compelling 

comparison because they are reported to subsist on similar levels of relatively soft, fruits 

(60% and 59% respectively, see Table 2).  Holding this portion of their diet constant, the 

marked differences in their cross-sectional geometry suggest that hard-object 

consumption induces greater bone response in the zygomatic arch even if it does not 

constitute the majority of the primate’s diet.  

 To test this further, intra-dietary pairwise comparisons contrasting tough 

consumers Piliocolobus badius and Colobus polykomos revealed that despite the 

similarity in tough food consumption in these species (47% and 52.2% respectively), C. 

polykomos persisted in possessing greater values for each cross-sectional measure. This 

result may to due to the relatively greater consumption of hard objects by C. polykomos 

(up to 32.5%) as compared to the lack of hard objects consumed in P. badius. Similarly, 

the pairing between tough consumers Macaca fuscata and Macaca mulatta found that M. 

fuscata consistently exceeded M. mulatta in all cross-sectional variables. The presence of 

hard-object feeding in M. fuscata (up to 13.2%) compared to the lack of hard-object 
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feeding in M. mulatta (and other taxa mentioned previously) suggests that the differences 

in bending and torsional resistance may stem from the supplementary consumption of 

hard objects.  

 While these comparisons are albeit limited, these results suggest that the effects of 

hard-object consumption may be detectable in cases where primary food type 

consumption is equivalent, but hard-object consumption varies. Even if the hard objects 

consumed are done so as a result of a fallback food strategy, this finding suggests that 

even infrequent bouts of hard-object feeding may be sufficient to induce strengthened 

zygomatic arches.  

 

5.5.5 Food material properties (FMPs) and cross-sectional geometry 

 On the smaller subsample of study taxa for which published food material 

properties data were available, PGLS multiple regressions found no relationships 

between FMPs data, stress-limited and displacement-limited indices, and cross-sectional 

variables in the zygomatic arch.  One of the limiting factors in this particular study was 

the low sample size for this test group. In addition, both size and phylogenetic relatedness 

among the taxa are also likely responsible for the non-significant findings. Young’s 

modulus measures have been observed to be inversely correlated with body mass while 

no relationship occurs between toughness and body mass (Coiner-Collier et al., 2016).  In 

the former, a sampling bias may be responsible given not all foods a primate consumes 

were measured (Coiner-Collier et al., 2016) and some of the most challenging foods 

could not be included due to limitation of the mechanical tester (e.g., as described in 

Vogel et al., 2008; 2014).  This species sample may be too constrained, both 
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phylogenetically and with regard to measures of FMPs, to adequately assess whether any 

relationships pertaining to load resistance manifest in the zygomatic arch.  In addition, 

the use of weighted measures of toughness (Venkataraman et al., 2014) and Young’s 

modulus may serve as better predictors of diet type in relation to bone morphology 

because they take both consumption frequency and FMPs measures into account.  Given 

the observed findings in the inter- and intradietary pairwise comparisons in this study as 

well as the large experimental literature on facial morphology and diet type, it would 

seem plausible that foods of higher stiffness should compel some form of bone adaptation 

to resist the higher magnitude forces.  However, bending and torsional resistance 

capabilities along the zygomatic arch may not be as plastic, necessitating that the 

morphology remain relatively unchaged regardless of the magnitudes of the forces 

experienced.  It may be that smaller-scale changes in bone mineralization (Franks et al., 

2016) and/or isotrophy may accomodate differences in FMPs. Without further testing 

though, these explanations are conjectural at best.  

 The extent and scale to which FMPs affect bone form has been examined in 

macaques (e.g., Iwasaki, 1989) but the magnitude to which these relationships exist 

across primates still remains unclear.  The effects of a hard versus soft diet have been 

tested extensively within the experimental literature though many gaps in our 

understanding of the functional links among chewing patterns, FMPs, and craniofacial 

form remain.  One of the foundational assumptions concerning diet consistency and 

masticatory form and function is that infrequent, high-magnitude masticatory force 

production and low-magnitude, cyclical loading are expected to prompt the same 

physiological and evolutionarily adaptive responses (Bouvier and Hylander, 1981; 
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Lanyon and Rubin, 1985; Biewener, 1993).  For this reason, tough and hard (stiff) foods 

are often grouped categorically as “mechanically challenging”.  One issue pertaining to 

this assumption is an incomplete understanding of the influence of FMPs on chewing 

behaviors that likely underlie load-related variation in masticatory morphology (Ravosa 

et al., 2015), such as the zygomatic arch.  

 Examinations of the effects of chewing frequency and chewing investment (as 

they pertain to chewing duration) in relation to FMPs in rabbits determined that elastic 

modulus measures are the primary influence on chewing investment, and that increases in 

the rate of force production, rather than increases in chewing duration are related to 

dietary properties (Ravosa et al., 2015).   It is well established that a positive association 

between bite force magnitudes and food stiffness exists among mammals (e.g., Weijs and 

De Jongh, 1977; Hylander, 1986; Hylander et al., 1998; Ross et al., 2007; Ravosa et al., 

2010; Rafferty et al., 2012), and thus it is reasonable to interpret the robusticity in parts of 

the masticatory complex, such as the mandible and (potentially) the zygomatic arch, as 

plastic responses to high-magnitude loading.  

 Previous studies which mapped principal strain distributions on the zygomatic 

arches of pigs (Herring et al., 1996; Herring, 2005) and macaques (Iwasaki, 1989), found 

that the mastication of hard foods (in both adults and juveniles/infants) yielded 

differences in strain magnitude as well as between the two constituent bones comprising 

the zygomatic arch; namely the zygomatic and squamosal in pigs, and the zygomatic and 

temporal bones in primates.  Iwasaki (1989) examined the effects of hard versus soft 

foods on the dynamic nature of the cranium noting that the zygomatic arch bears 

relatively high strains because it serves as the attachment for the masseter but that the 
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arch also serves as an important stress dissipater. In this work, Iwasaki described the 

“buffer effect” in which cranial bones dispersed stresses of muscles on the non-

masticatory side as stresses are transmitted from the working side (Iwasaki, 1989). In the 

study’s sample of adult macaques, the balancing side temporal bone, TMJ, and posterior 

zygomatic arch serve this purpose as each bone individually acts as a stress buffer using 

elements of the their shape and position on the cranium (Iwasaki, 1989).  Furthermore, 

Iwasaki (1989) argues that these strains are “ingeniously dispersed” (Iwasaki, 1989, page 

89) using the nature of the dual bone construction of the zygomatic arch.  

 The proposed mechanism for this is as follows: the division of the arch into, on 

the one hand, an anterior zygomatic portion, and on the other hand, a posterior temporal 

portion changes the nature of strain orientation. Anterior regions exhibit compressive 

strains in the anteroposterior direction while tensile strains are oriented along the vertical 

axis. The posterior region is oriented in the exact opposite way in that tensile strains are 

oriented anteroposteriorly, and compressive strains are oriented vertically (see Table 10 

in Iwasaki, 1989).  During mastication, the directions of the principal strains did not 

change in anterior and posterior regions, but there was considerable variation on the non-

masticating (balancing) side.  

 Recall that pigs and macaques have opposite strain spectrums along their 

zygomatic arches. Herring et al. (2005) noted that infant piglets exhibit twisting and or 

shearing moments in their squamosal region; the same pattern that is reported for the 

posterior zygomatic arch in macaques (Iwasaki, 1989; Hylander and Johnson, 1997).  

Thus, despite their differences, infant pigs and macaques converge on this pattern, 

suggesting that infant piglets more closely resemble higher order primates like macaques 
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than adult pigs in this respect (Herring, 2005).   These similarities extend to juvenile pigs 

as well in that tensile strain is directed anteriorly and dorsally as opposed to anteriorly 

and ventral like in infants (Herring, 2005).   

 In macaque experiments using soft food, the strain magnitude of the posterior 

arch on the balancing side exceeded that of the anterior principal strain magnitudes on the 

balancing side zygomatic arch (see Table 4 in Iwasaki, 1989). In contrast to these results 

for adult macaques, the results for infant macaques indicate that the magnitude of the 

balancing side zygomatic arch strains are relatively low compared to adults, and that the 

parts of the cranium have to work collectively to buffer stress from the working side.  

There may be a selective advantage to consuming hard foods sooner in order to prime the 

bones (especially the zygomatic arch) to act as a buffer for masticatory loads. To test this 

fully, more food materials properties data on the foods regularly consumed by primates 

are needed. While this is a tall order given the scale and variation of foods in primate 

diets, straightforward measures of toughness and Young’s modulus would provide 

mechanically relevant and quantifiable data that would bolster work on the craniofacial 

complex in primates.  

 

5.5.6 Implications for future work on zygomatic arch morphology 

 The basis of this study was centered in an investigation of cross-sectional shape 

and the mechanical nature of bone resistance to loading. While this region of masticatory 

complex is receiving increased attention by researchers, much is still unknown about 

zygomatic arch morphology.  Studies on bone biology note that there are multiple 

osteogenic factors that influence bone remodeling, and that attempts to minimize strain 
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are not the primary catalysts for bone response (Rubin et al., 2001; Demes, 2007).  

Among post-cranial studies there is disagreement as to whether bone deposition is driven 

by strain magnitudes (Ruff et al., 2006) or not (Judex et al., 1997).  Yet, in studies of the 

craniofacial complex, changes in diet and the concomitant increases in masticatory strain 

do appear to precipitate an adaptive osteogenic response in key masticatory features 

(Franks et al., 2016). Future questions that would elaborate on these effects would 

include an account of the ontogenetic changes in bone shape and curvature once a 

primate is weaned and begins an adult diet. Herring et al. (2005) noted that infant piglet 

zygomatic arches were relatively rounded in cross-section and straighter than that of adult 

pigs.  This concomitant increase in dorsoventral arch height and decrease in the 

mediolateral thickness of the squamosal bone indicates that adult individuals adapt to an 

adult diet during growth. As such, strain patterns are more predictable in adults; once 

weaned, piglets appear to assume this adult strain pattern following the adoption of a 

fully adult diet.  These results suggest that the pig facial skeleton is not pre-adapted to 

functional loads but rather its response is contingent on the nature of the loads 

experienced.  At the point of feeding transition (from suckling to adult diet) there is a 

presumably radical change in the both the magnitude and pattern of masticatory loading. 

If this model were tested across primates, it would be intriguing to see whether 

differences in strain patterns and/or bone architecture tracked with the shift to an adult 

diet.  

 The question of whether relative zygomatic arch curvature or lateral flare changes 

in response to muscle maintenance is also unclear.  In humans, differences in the 

curvature of the zygomatic arch have been attributed to age, such that older individuals 



  246 

experienced changes in bone curvature presumably as a result of masticatory muscle 

atrophy, and deterioration (Williams and Slice, 2010). Reductions in muscle quality have 

been found to correlate with age (Williams and Slice, 2010), meaning diminished muscle 

functionality impacts the mechanical stimulus on the bone by effectively minimizing the 

process of bone formation and maintenance (Borkan et al., 1983; Porter et al., 1995; 

Gallagher et al., 1997; Peyron et al., 2004; Rubin et al., 2006; Judex et al., 2007).  As 

primates senesce, does the functional capacity of the masticatory muscles become 

reduced, and does that then impart changes on the zygomatic arch? In humans, observed 

masticatory muscle activity is generally partitioned into the energy needed to power the 

mandible, and the energy needed to overcome the food items being processed (Ottenhoff 

et al., 1992a,b).  Regardless of whether a food item is hard or soft, human masseter 

muscles have been found to show an increase in excitatory drive in two distinct phases 

within the chew cycle: one at the beginning, and one at the end (Grigoriadis et al., 2014).  

These phases appear to correspond to the points when the mandible is adducted and 

comes into contact with the food items.  Unsurprisingly, hard foods generated relatively 

greater EMG readings than soft foods during these phases.  The underlying muscle 

commands operate such that the early phase loading relies on signals from the muscle 

spindles to generate enough bite force to fracture the food item while the later excitation 

phase relies on inputs form both the masseter muscle spindles and periodontal 

mechanoreceptors (Grigoriadis et al., 2014).  If the muscles are comprised however, they 

may be able to generate an initial response during the first phase but may not be able to 

recruit adequate power for the latter phase. Thus reduced functionality would presumably 

lead to decreased muscle performance, lower bite force potentials, and smaller magnitude 
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masticatory strains overall. While the relative contribution of masticatory muscles in 

relation to zygomatic arch morphology was not quantified in this study, it would be 

compelling to conduct a study comparing the relative contribution of different 

masticatory muscles in relation to arch robusticity to determine if the differences in 

activation equate to changes in strain patterns and the underlying bone morphology.  

 Furthermore, an important next step in the analyses presented here would be an 

investigation into the size adjustments and scaling relationships between zygomatic arch 

morphology, body size, and masticatory musculature. Because of the variation in primate 

body sizes it is critical to account for these differences during biomechical analyses to 

tease out the adaptive mechanical implications of specific morphologies from those that 

are simply attributable to size. 

5.5.7 Implications for hominin craniofacial adaptation 

 As a distinctive feature in African Plio-Plesitocene hominins, particularly in 

Paranthropus, the zygomatic arch persists as a source of insight relating to the adaptive 

significance of efficient masticatory force dispersion through bone. In recent times, 

questions related to early hominin diets and dietary adaptation have benefitted from a 

combination of improved methodological innovations and access to previously 

unavailable specimens (Strait et al., 2013). At the crux of many questions regarding 

craniofacial adaption is how do the effects of processing different foods translate to 

differences in bone morphology and in what ways are those differences experimentally 

detectable.  One of the archetypal debates within paleoanthropology centers on the 

dietary reconstruction for robust australopiths and whether their derived craniodental 

features are representative adaptions for consuming hard or tough foods. Recent work 
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done on the crania and teeth in australopiths (Lucas et al., 2008b; Strait et al., 2009, 2010; 

Lawn and Lee, 2009; Constantino et al., 2010) determined that specific craniodental traits 

present in these taxa were adaptations for consuming hard foods (e.g., seeds or nuts). In 

contrast to this finding, dental texture analyses (Scott et al., 2005; Ungar et al., 2008, 

2010) did not detect evidence of hard-object consumption in most australopiths. The 

robust morphological complexes in Paranthropus robustus and Paranthropus boisei are 

hypothesized to serve similar dietary purposes and yet the dental microwear signals 

indicate the presence of hard-object consumption in P. robustus, but not in P. boisei 

despite the similarity in their craniodental features. The results of stable isotope analyses 

supports the findings for microwear in that P. robustus indicates the consumption of C3 

plants (which includes most plants the generate nuts) while P. boisei has high levels of 

C4 plants, which are generally highly tough (Cerling et al., 2011). This apparent dietary 

dichotomization between such morphologically similar taxa continues to fuel debates 

within paleoanthropology concerning how to most effectively reconstruct diet in the face 

of so many varying lines of evidence. While the explicit testing of stable isotopes and 

dental microwear are beyond the purview of this study, this work offers an opportunity to 

comment on the utility of morphological and biomechanical analyses of the zygomatic 

arch with respect to the hominin craniofacial form.  

   While no single line of evidence or method of analysis can fully answer the 

questions regarding dietary differences in Paranthropus, the inclusion of additional 

information gleaned from the zygomatic arch would bolster our current understanding of 

these highly derived facial morphologies. Strain and bite force results from FEM models 

created for OH5 (P. boisei) found that the cranium for this individual possessed 
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considerable mechanical capability for producing relatively high bite forces without 

inducing distractive forces on the working side TMJ (Smith et al., 2014).  The robust 

facial skeleton and chewing muscles possessed by OH5 suggest that the consumption of 

mechanically resistant foods requiring highly repetitive feeding loads (Van der Merwe et 

al., 2008) must have been primary components of the diet in order to maintain such high 

levels of bone mass. While tough foods have been proposed as the most likely candidate 

food given the presence of C4 rather than C3 stable isotope signals, the fact that OH5 

possesses relatively blunt occlusal morphology, rather than teeth with increased shearing 

ability, does not seem probable (Strait et al., 2013).  In the case of P. boisei, the 

consumption of hard foods (as well as the relative hardness/stiffness of a food overall) 

exercises greater selective importance in terms of masticatory features and their ability to 

process such a diet. Thus, the evolution of the feeding apparatus of P. boisei, as well as 

other hominins, may stem from the consumption of hard objects, regardless of how 

frequently they are consumed. If this is the case, then microwear analyses, which capture 

dietary signals only in the last weeks, may fail to detect hard-object feeding that falls 

outside that timeframe. Thus, I propose that the application of a comprehensive 

comparison of the cross-sectional geometry of P. boisei compared to other robust 

australopiths would potentially reveal new understanding concerning the nature of their 

diet. 

 Paleoanthropologists generally agree that P. robustus subsisted on the 

consumption of hard objects (e.g., Grine and Kay, 1988; Teaford and Ungar, 2000; Ungar 

et al., 2008; Strait et al., 2013) for at least part of the time as they may have served as 

critical fallback foods during periods where preferred foods were less plentiful (Scott et 
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al., 2005). If the robust functional morphology observed in both P. boisei and P. robustus 

are indicative of at least partial consumption of hard objects during life, there are two 

potential scenarios to explain this: First, similar selection pressures for the consumption 

of hard objects caused both taxa to evolve convergently, or alternatively the robust 

morphology in both taxa evolved at the base of the Paranthropus clade and represents an 

adaptation for consuming hard objects (Smith et al., 2014). If instead the robust 

morphology of P. boisei is an adaption for consuming tough foods, then P. robustus and 

P. boisei independently converged on a similar morphological set of traits as a response 

to feeding on different diets (Strait et al., 2013; Smith et al., 2014). It is difficult to 

disentangle this scenario without the (obvious) benefit of truly observing what foods 

these taxa selected; however the lack of known examples of this in living primates makes 

it difficult to test this phenomenon (Smith et al., 2014).  

 While this study does not argue that zygomatic arch morphology, or any single 

morphological feature for that matter, can diagnose the diet of a species, the dietary 

insight the zygomatic arch provides in terms of cross-sectional geometry may lend 

credence to one of the evolutionary scenarios posed above. Within the intra-dietary 

comparisons performed on extant primates in this study, the consumption of hard objects 

appears to catalyze a relative increase in bending and torsional resistance in the 

zygomatic arch to offset the higher loading conditions that accompany this food type.  It 

would be intriguing to compare P. boisei and P. robustus in this regard to determine 

whether significant differences in bending and/ or torsional resistance exist between their 

zygomatic arches.  If the zygomatic arch strain pattern observed in extant primates is a 

suitable proxy for the strain pattern that existed in robust australopiths, then we can 
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surmise that anterior measures of the zygomatic arch would presumably be greater than 

posterior portions, reflecting a shared pattern of strain dispersion in living and fossil taxa.  

Comparative studies on mandibular cross-sectional geometry of Australopithecus, 

Paranthropus, and living hominoids revealed fundamental shape differences that confer 

greater strength in resisting torsional and bending loads in fossil taxa than in living taxa 

(Daegling, 1989, 1990). In these studies, Daegling surmised that the qualitative 

differences in mandibular form and robusticity are ostensibly due to qualitative 

differences in diet. It is plausible perhaps, that similar relationships exist with regard to 

the zygomatic arch, because it is functionally connected to the mandible via the masseter, 

and bears relatively high masticatory strains. 

 To my knowledge, no comprehensive comparisons of zygomatic arch cross-

sectional morphology in hominins exists, despite the numerous studies that have 

identified the zygomatic arch as a key masticatory feature. Furthermore, the zygomatic 

arch provides a ‘fresh’ feature upon which to test hypotheses about dietary loading and 

masticatory muscle recruitment. While such studies on fossil zygomatic arches would be 

constrained due to issues concerning the relative preservation of the zygomatic arch in 

fossil crania, the potential insight such a comparison would afford our current 

understanding of fossil hominin diets would be undeniably valuable.  

 

5.6 Conclusions 

 This study found support for the hypothesis that highest measures of bending 

(Imax) and torsional (J) resistance appear in anterior sections as compared to posterior 

sections in accordance with experimentally determined strain patterns along the 



  252 

zygomatic arch. With respect to differential loading in relation to specific diet types, this 

study found that on average, tough consumers exhibited the greatest average Imax and J 

values, followed by soft consumers, hard-object consumers, and finally by exudate 

consumers. The relative degree of lateral flare of the zygomatic arch was also predicted 

to dictate the angle of the masseter to be either more angled (inducing greater torsional 

loads), or more vertical (inducing greater bending loads). In general, this study found that 

the degree of arch flare did not predict the resulting arch cross-sectional shape. In the 

study sample overall, arch cross-sections were primarily elliptical in shape rather than 

round, indicating parasagittal bending is the dominant load type. Unlike direct measures 

of load resistance (Imax, Ix, J) an index of cross-sectional shape (Imax/Imin) is not as 

predicable along the zygomatic arch.  It is probable that the influences on cross-sectional 

shape are more variable and may be tied to the effects of soft tissue (e.g., aponeurosis, 

masseter activation patterns and attachment sites). 

 Within the fossil record, zygomatic arches are continually upheld as key evidence 

of dietary specialization (particularly in cases of mechanically challenging diets), 

however the dearth of information available on bone morphology, mechanical resistance, 

and whether patterning is related to diet in the zygomatic arch leaves researchers without 

the necessary evidence from which to draw conclusions. This project bridges that gap by 

conducting a comprehensive, comparative study using living primates in accordance with 

two different dietary data sets to test hypotheses centered on masticatory loading in 

relation to diet type.  Of the diet schemes employed here, the utilization of FMPs rather 

than traditional dietary categories may be more appropriate when testing biomechanically 

based questions because these measures are more objectively quantifiable. The finding 
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that measures of Young’s modulus and toughness were not significantly correlated with 

bone cross-sectional variables but that consumption of hard foods may result in 

differential load resisitance potentials raises the question of how to generate better 

estimates of diet moving forward. This work provides evidence that supports the presence 

of the zygomatic arch strain gradient and cites key functional aspects of bone cross-

sectional form which will inform current and future work conducted with FEM and other 

visualization techniques.   

 At the crux of understanding the biomechanics of the zygomatic arch, and the 

continuation of its study, is the formulation of a model that is applicable across taxa. The 

dilemma encountered by many studying the arch is that in a comparative context, no 

single model has yet explained the variation in its morphology. Because morphological 

variation, particularly in this region, appears so diverse, the possibility looms that a single 

biomechanical model may not adequately characterize the observed variation with the 

desired accuracy (Daegling, 2002b). It is also important to note that the morphology 

alone only shows the amount and distribution of bone material present to resist a load 

across varying locations but does not show what the load types experienced are or to 

what magnitude they occue. Thus, in vivo data are a critical complement to 

morphological studies for understanding precisely what load types are present. 

The morphology and development of the primate zygoma and zygomatic arch are 

becoming burgeoning fields of research with the potential to provide previously untapped 

insight into primate feeding adaption in the skull.  Studies on the biomechanics of the 

zygomatic arch are critical components of the masticatory system and possess insight to 

make compelling observations about the nature feeding, masticatory forces, and bone 
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adaptation. With the addition of in vivo data, food material properties and high-resolution 

ecological data, morphologists can conduct comprehensive studies on the craniofacial 

complex and draw more informed conclusions about the interface of diet and bone 

morphology within an evolutionary context.  
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CHAPTER 6: CONCLUSIONS 

 The goal of the current study was to assess the morphological variation 

concerning the internal architecture and cross-sectional shape of the arch in conjunction 

with the experimentally obtained strain values measured in previous studies. 

Furthermore, this study also quantified the complexity of the zygomaticotemporal suture 

to determine whether differences in dietary loading are detectable in sutural complexity 

and to examine the mechanical relevance of the suture to the zygomatic arch. In addition 

to the comparative, qualitative analyses concerning bone morphology and mechanical 

behavior, this study examined the relationship between arch morphology and dietary type 

to determine whether different diet types, and therefore different dietary loading 

scenarios, influence arch morphology.  To assess these relationships between zygomatic 

arch morphology and diet, it was necessary to procure data on arch morphology from 

individuals that could then be compared at a variety of scales including intraspecifically, 

interspecifically, and by diet type.  In order to access the internal bone morphology and 

cross-sectional shape of the arch, and to obtain the greatest image resolution, µCT scans 

were used to generate three-dimensional skull models, which were an integral part of the 

data collection for this study. The arch cross-sectional images captured and analyzed in 

this study represent the largest and most taxonomically diverse examination of primate 

zygomatic arch morphology currently available. 

 In Chapter 3, cortical area (CA) distributions were compared across arch regions 

to determine whether the largest concentrations of cortical area occurred in anterior 

regions as compared to posterior regions. Bone remodeling, which maintains cortical 

bone structure and properties, is altered by mechanical stimuli (Ascenzi, 1988, Burr et al., 
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1989b; Dechow et al., 2010) and thus the expectation is that differential masticatory 

loading results in varying amounts of cortical bone in the zygomatic arch. Across the 

entire sample, cortical area measures appear to track with known strain magnitudes. 

 When dietary groups were compared, tough consumers in general possessed 

relatively uniform amounts of cortical bone area throughout the arch as compared to 

other dietary groups. The highest absolute measures of cortical bone appeared anteriorly 

in all taxa with the exception of G. gorilla, whose highest values occurred in posterior 

regions.  In contrast, soft consumers possessed significantly different cortical bone 

distributions primarily in anterior versus midsuture and anterior versus posterior suture 

and posterior arch sections. These findings support the hypothesis that cortical area tracks 

with portions of the arch subjected to the highest masticatory strains in soft consumers, 

and while the relationships across tough consumers were not statistically significant, the 

pattern of absolute cortical bone measures does adhere to the expected pattern with the 

exception of gorillas.  

 However, the trends in hard-object consumers are not as clear. For instance, hard-

object consumer Sapajus apella possessed significant differences in all anterior 

comparisons indicating that the amount of cortical bone varies throughout arch regions 

and thus aligns with the patterns observed in soft consumers. Given that that S. apella 

supplements its diet with varying amounts of fruit, which can reach levels of up to 82.5% 

of the diet (Teborgh, 1983), it is not surprising that their cortical bone distributions fall 

within the pattern observed in other frugivorous primates. In contrast, Pithecia pithecia, a 

hard-object specialist, was found to have no significant differences in cortical bone 

distributions across arch regions, which is more similar to the patterning found in tough 
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food consumers. Compared to S. apella, P. pithecia consumes relatively more hard seeds 

(up to ~60%, Kinzey and Norconk, 1993) and slightly more leaves than S. apella, which 

may account for their biomechanical affinity with tough consumers. Exudate consumer 

Callithrix jacchus was found to have significant differences in anterior and anterior 

suture comparisons but not between any other regions along the arch.  The absolutely 

highest measures of cortical bone appear in anterior regions of this diet group as well. 

Taken together, these results suggest that the majority of primate taxa possess cortical 

area concentrations that track with the portions of the arch subjected to the highest 

masticatory strains. Importantly, the differences in the deployment of cortical bone 

suggests that loading in this region is sufficient to elicit bone remodeling and 

maintenance events throughout the life of the individual. In addition, the presence of 

significant differences in the intermediate areas (anterior suture and posterior suture 

measures) between the traditional arch measurement locations (anterior, midsuture, and 

posterior measures) suggests that strain variation is mutable in adjacent regions, and that 

the strain gradient that exists along zygomatic arch may be more complex that previously 

thought.  If cortical bone geometry is sensitive to load history (Daegling and Hotzman, 

2003), then the consistent presence of relatively higher cortical bone distributions in 

anterior versus posterior arch sections may serve as evidence that zygomatic arch loading 

patterns are conservative across, at the very least, haplorhines.   

  Comparisons of cortical area to total area ratios (CA/TA) across arch regions were 

also performed to determine whether anterior regions possessed a relatively greater 

proportion of cortical bone compared to other arch regions. If CA distributions are 

absolutely greatest anteriorly, then the expectation is that these distributions should also 
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be relatively greater with respect to total arch area in anterior sections as well.  In the 

majority of the study taxa this hypothesis was supported; CA/TA ratios were generally 

highest anteriorly and decreased posteriorly across dietary groups.  However, several taxa 

did not follow this model.  For instance, both hard-object consumer S. apella and soft 

consumer Cebus capucinus yielded their highest CA/TA ratios in posterior portions as 

compared to anterior portions despite possessing their absolutely largest cortical area 

measures in anterior regions. The reasons for this trend are not immediately clear, 

however there are several potential explanations.  Jaw kinematics in relation to FMPs in 

Cebus observed a regularized gape cycle but a temporal and spatial variability within the 

phases of a gape cycle (Reed and Ross, 2010). Primates are known to exhibit higher 

variance in the durations of the constituent phases that compose a gape cycle, than in 

overall chewing duration as a whole (Reed and Ross, 2010).  In the case of capuchins, the 

adaptions for a generalized diet and hard-object consumption may make the feeding 

sequence durations less sensitive to changes in FMPs (Wright, 2005) and consequently 

may not translate to differences in cortical area amounts. Exploring these relationships 

further would provide greater resolution to these findings. 

 Section moduli measures (Zx and Zy) quantify the bending tendency of a cross-

section about both the transverse and sagittal planes.  In every species included in this 

study, the highest measures of Zx (strength about the transverse axis) occurred in anterior 

sections.  This result suggests that measures of cross-sectional strength occur in anterior 

arch regions relatively more consistently than do the highest concentrations of cortical 

bone area. In other words, the relatively large amounts of cortical bone do not necessarily 

correspond to regions with the largest bone strength measures.  This result is supported 
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by the recent work by Franks et al. (2016) which found that biomineralization levels, 

rather than cortical distributions, were more responsive to masticatory loads on the 

zygomatic arch in pigs and rabbits.  While cortical bone distributions and section moduli 

measures appear to correspond in most cases, the assumption that cortical bone always 

accumulates in the areas of greatest loading may not always be true across all taxa.  

 The measures of axial strength about the superoinferior axis, Zy, were greatest 

anteriorly in all species except G. gorilla, whose largest value appeared posteriorly and 

thus corresponded to the portions with the highest cortical bone.  In cross-section, gorillas 

appear to have very tall and narrow arches well suited to the resistance of parasagittal 

loading.  The finding that their highest cortical values and Zy measures occur posteriorly 

is presumably due to higher loading experienced posteriorly as compared to anteriorly. 

Thus, the increased strength about the superoinferior axis coupled with the cortical bone 

distributions in posterior regions suggests significant parasagittal loading is experienced 

in that region. Strength measures about the transverse axis in this species are highest 

anteriorly and thus follow the predicted pattern. Across the species sample as a whole, 

areas of the highest cortical area and those with the highest measures of strength appear 

to correspond, suggesting that both bone internal architecture and relative strength are 

reliably connected. In instances when section moduli measures are highest in different 

arch sections, the suggestion is that the overall cross-sectional shape requires increased 

strength about one axis (either in the coronal or transverse plane), rather than both. This 

occurred primarily in taxa with relatively more exaggerated cross-sectional shapes.  

 Pairwise comparisons conducted on closely related taxa of different diets 

determined that cortical area and section moduli measures varied between taxa in anterior 



  260 

sections and that the relationships by in large were significant. Interestingly, comparisons 

between hard-object consumer S. apella and tough consumers P. badius and A. caraya 

were also significant indicating that differences between mechanically resistant diets are 

also potentially detectable.  Often, the terms “hard” and “tough” are subsumed under the 

single term of “mechanically challenging”.  However, the results of this study suggest 

that important differences between tough and hard-object consumption exist and should 

be considered separately to provide greater resolution to questions of dietary loading and 

bone response in primates.  This is particularly relevant to comparisons between P. boisei 

and P. robustus as the debate concerning their dietary strategies (i.e., hard-object feeding 

versus tough food consumption) remains contentious within paleoanthropology.  In sum, 

this study provides provisional support for the hypothesis that masticatory induced bone 

loading produces a large strain gradient from anterior to posterior along the zygomatic 

arch and that local variation in cortical bone mass and strength measures are associated 

with these gradients.   

  Chapter 4 investigated zygomaticotemporal sutural complexity, and tested the 

predictions that (1) sutural complexity is relatively increased in taxa consuming tough 

and/or hard diets and (2) that primates with diets consisting of high toughness (R) or high 

Young’s modulus (E) possess more complex sutures compared to taxa with lower values 

of toughness and Young’s modulus. The influence of differential dietary loading has been 

observed in other species of Cebus and Sapajus primates in which increased sagittal 

sutural complexity occurred in S. apella, a hard-object consumer, compared to other 

closely related species of Cebus that did not routinely consume hard objects (Byron, 

2009).  Reduced Major Axis (RMA) regressions of skull size with zygomatic arch size 
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found a significant, positively allometric relationship indicating zygomatic archs are 

relatively larger than would be expected under an isometric relationship. One means of 

explaining this could include the need for more robust arches in order to support 

relatively larger masticatory muscles. It is known that masticatory muscle size is 

relatively isometric in relation to body size in primates (Cachel, 1984), however it is 

currently unknown how masseter muscle size scales with zygomatic arch size in 

primates.  In canids, masticatory muscles also scale isometrically, but endocranial volume 

is found to scale with negative allometry. In these taxa, masseter muscle size has been 

found to scale isometrically with zygomatic arch width (Penrose et al., 2016), and 

primate zygomatic arches may scale to masticatory muscles in a similar way. 

  Within canid taxa, skull shape changes in the zygomatic arch (namely the 

relatively wide arches and large sagittal crests) found in species with greater body masses 

allows the skull to accommodate the relative enlargement of the jaw adductors compared 

with the endocranium.  Interestingly, primates have been shown to have isometrically 

scaling masticatory muscles (Cachel, 1984), as well as negatively scaling endocrania 

(Rilling, 2006).  In addition, large-bodied primates also possess sagittal crests (Ankel-

Simons, 2007) and relatively wide zygomatic arches (Frost et al., 2003). This suggests 

that the need for muscle accommodation is more universal than previously thought 

(Penrose et al., 2016) and is an arrangement shared among, at the very least, primates and 

canids.  

 Ordinary Least Squares (OLS) regression results for skull size and sutural 

complexity measures found a positive relationship, indicating that individuals with 

relatively larger skulls have more complex sutures. This result does not indicate that skull 
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size accounts for the majority of the variation observed in sutural complexity across the 

study taxa. The same result was also found in comparisons of sutural complexity and 

zygomatic arch size. In addition, associated measures of lacunarity and prefactor 

lacunarity (heterogeneity and overall fractal texture) do not appear to have any 

relationship to skull size.  Suture length was correlated with both skull and arch size, but 

the relationships were relatively weak, indicating that size does not explain the majority 

of the variation with respect to relative length.  

 In the context of the dietary groupings used in this study, neither total 

consumption percent categories nor food material properties (FMPs) data are good 

predictors for sutural complexity in these species of primates.  The hypothesis that 

increased sutural complexity would occur in taxa with more resistant diets was supported 

in that taxa that primarily consumed hard or tough foods on average possessed relatively 

greater complexity values. However, these findings were not statistically significant and 

the findings that both size and dietary category are not good predictors for complexity 

suggests other factors are responsible for the amount of variation observed. Within 

dietary groups both tough and soft consumers possessed differences among taxa in each 

respective group, indicating high variance in sutural values. These results contrast with 

the relatively low variance observed in exudate and hard consumers.  The differences in 

the variance found in tough and soft consumers is likely attributable to the relatively 

larger sample sizes available compared to those for hard and exudate consumption. In 

other words, the high variance found in soft and tough consumers may result from the 

fact that more primate taxa fall into those categories than into hard or exudate consumers, 

which had much fewer taxa. In addition, the taxonomic breadth found in the tough and 
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soft consumption groups is greater than that observed in exudate or hard-object 

consumption groups.  Because of this, the variation in complexity within groups may be 

due to differences in sampling.   

 When raw complexity values alone are compared across dietary groups, hard-

object consumers generally possessed the highest complexity values compared to all 

dietary groups despite the fact that hard-object feeders included fewer individuals than 

tough or soft consumers.  According to the Byron (2009) study, the sutural complexity 

measures in the sagittal sutures were significantly different between C. capucinus and S. 

apella, in which S. apella had relatively greater sutural values in this region. In the 

current study, the same comparison was conducted comparing zygomaticotemporal 

sutural complexity finding that S. apella had only slightly greater complexity values than 

C. capucinus, but these results were not significant. If hard-object feeding indeed induces 

relatively greater sutural complexity then the expectation for all pairwise comparisons 

would be that hard-object consumers would consistently possess relatively greater 

complexity values. With the exception of the Sapajus/Cebus comparison, no other closely 

related taxa pairs yielded higher complexity measures in the taxon that consumed hard 

objects. In all pairwise comparisons, no significant differences were found except in the 

comparison of soft consumer P. anubis and tough consumer T. gelada. Surprisingly, 

complexity values were greater in P. anubis than in T. gelada despite the fact that geladas 

are specialized gramnivores with highly tough diets (Venkataraman et al., 2014).  There 

are several potential explanations for these findings. First, the zygomaticotemporal 

suture’s relative interdigitation may be highly constrained because it must maintain some 

safety factor that guard against bone failure given the region is habitually bombarded by 
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high masticatory strains.  In addition, the surface area of the connection between the 

zygomatic and temporal bones is relatively small compared to the relatively long cranial 

sutures that traverse along the skull. Secondly, there may not be sufficient differences in 

masticatory loading to in induce greater sutural complexity in mechanically challenging 

diets as compared to those that are less mechanically challenging. Like the sutural 

complexity in the midpalatal sutures of P. badius and C. polykomos, there may be no 

dietary differentiation because the transfer of strains to the sutures may be hampered by 

the presence of other bone structures (Daegling and Hotzman, 2004).  The more 

mechanically meaningful aspect of sutural morphology on the zygomatic arch may relate 

to the degree of overlap of the sutures as a means of strengthening the sutural joint rather 

than just measures of interdigitation alone.  Thus, future work investigating this further is 

necessary. 

 In Chapter 5 cross-sectional geometric variables relating to maximum and 

minimum bending resistance, torsion, and cross-sectional shape were quantified and 

compared to determine whether different diet types elicited unique bone responses.  

Typical investigations of bone cross-sectional geometry have applied measures of bone 

mechanical behavior to long bones (e.g., Ruff and Hayes, 1983; Ruff et al., 1984; Ruff, 

2000; Patel et al., 2013) and the mandible (e.g., Daegling, 1989; 1990; 1992; 1993; 2002) 

in primates to deduce the effects of form on function. This study applied similar 

methodologies to investigate mechanical resistance and bone form in the zygomatic arch 

by conducting comparisons on a taxonomically broad primate sample.  

 Cross-sectional shape measures of Imax/Imin varied throughout the zygomatic arch 

in all primates, with the majority of sections indicating the presence of an elliptically- 
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shaped section suited to resisting high parasagittal bending loads. Comparisons of arch 

shape by region generally found no significant differences in cross-sectional form along 

the arch, which indicates that significant shape change is not present even if significant 

differences in strain exist.  Significant variation was found within tough and soft 

consumer dietary groups, likely as a result of the greater species abundance included in 

these categories as compared to the hard-object consumer or exudate groups. Overall, 

these results do not suggest Imax/Imin ratios adhere to any predictable patterns within this 

sample of primates. 

 To further examine cross-sectional shape, bi-zygomatic to bi-ramus width ratios 

(BZBR) were calculated as proxies for the relative degree of zygomatic arch flare and to 

approximate the angle of the masseter to estimate whether parasagittal bending (vertical 

masseter) or torsion (angled masseter) concurred with the observed Imax/Imin values 

obtained.  Taxa with BZBR ratios indicating highly elliptical arches were found to have 

elliptically shaped cross-sections, but not to a greater degree than other taxa. The taxa 

with the highest Imax/Imin ratios did not possess BZBR ratios indicating highly elliptical 

cross-sections.  The same was also true for measures of how circular arch sections were 

in relation to Imax/Imin ratios.  These results indicate that BZBR ratios do not predict cross-

sectional shape when used in conjunction with Imax/Imin ratios. The utility of cross-

sectional indices may be restricted in the zygomatic as compared to the postcrania 

because the nature of loading is markedly different in each region.  For instance, 

masticatory loading and locomotor loading have different force magnitudes and 

directions, and the loading episodes themselves differ in intensity and duration.  In 

addition the orientation of the bones and muscles relative to the direction of gravity, the 
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muscle force, and load differs in these two regions as well, which affects how the results 

can be interpreted biologically.  

 Cross-sectional variables quantifying bending resistance about the x- and y- axes 

(Ix, Iy), as well as maximum and minimum bending resistance (Imax, Imin), and torsional 

resistance (J) were compared intraspecifically, interspecifically, and by diet group with 

the expectation that these measures would reflect the same gradient observed via 

experimentally obtained strain values.   In 37 of the 43 species examined, this hypothesis 

was supported; leaving six species that did not.  Two of these six taxa (M. sylvanus, C. 

albinasus) had low sample sizes and extensive statistical comparisons were therefore not 

possible; thus, some caution in the conclusion that they do not follow the expected 

morphological patterning is warranted.  Future work with larger samples is necessary to 

confirm this pattern in these species. The remaining four taxa (T. gelada, M. 

leuchophaeus, P. pithecia, P. monachus) possess unique craniodental and craniofacial 

architectural features that may account for their divergence from the expected pattern.  

For instance, both T. gelada and M. leuchophaeus possess relatively prognathaic facial 

skeletons with the capacity to exercise large gapes while both P. pithecia and P. 

monachus are specialized hard-object consumers.   

 Comparisons between dietary groups found significant differences between tough 

and exudate consumers for all variables, which are likely attributable to differences in 

size.  Significant variability within dietary groups was also observed, though no single 

taxon appeared to drive the differences in any particular group.  Instead there appears to 

be substantial variation for each cross-sectional variable regardless of dietary category. 

Intraspecific comparisons reveal that there are significant changes in bending and 
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torsional resistance throughout the arch.  In particular, closely adjacent areas were 

frequently and significantly different in this regard, citing that increased capacities to 

resist loading are not relegated to only the anterior-most or posterior-most portions of the 

arch.  By combining intermediate arch locations with the primary locations measured by 

Hylander and Johnson (1997), this study was able to determine that loading along the 

arch is more complex and varied than originally thought.  

 Finally, FMPs and indices of stress-limited and displacement-limited foods were 

compared with cross-sectional variables to determine whether a relationship was present.  

The results found no predictive value in these FMPs measures with regard to arch form, 

however the small sample size and effect of phylogeny clearly impacted these results.  

Confounding these findings are the observations that closely related taxa that consume 

different diets were found to have significant differences in mechanical resistance.  

Furthermore, intra-dietary pairwise comparisons found taxa that consume relatively more 

hard objects generally had greater measures of load resistance. While these results were 

not all significant, they allude to a pattern that may exist in relation to hard-object 

consumption.  Two potential alternative hypotheses to address this further could include: 

1) hard-object consumption elicits greater bending and torsional differences in the 

zygomatic arch or 2) presumed dietary differences among haplorhine primates are not 

accompanied by important differences in masticatory loads given the dietary breadth 

found across primates in general.   While the findings for this study did not support the 

prediction that FMPs measures correlate with bone mechanical resistance in the arch, 

there is a wide comparative literature where bone response to differential dietary loading 
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has been demonstrated. Thus, more work with a larger and more phylogenetically 

restricted sample is necessary to probe these research questions more fully. 

 Taken together, the results obtained on the internal bone architecture, external 

shape, and sutural complexity indicate that the zygomatic arch is a dynamic and complex 

portion of the craniofacial complex. The relationship between masticatory loading and 

bone response observed in this study has important implications for understanding how 

masticatory strain in distributed and resisted in the zygomatic arch.  The observable 

variation in its morphology, both in living and extinct taxa, and its consistent role as a 

bearer of high masticatory strain make it a critical area for continued study, particularly 

in terms of dietary adaptation in primates. 
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APPENDIX D  

SUPPLEMENTARY TABLES FOR CHAPTER 5 (SM1 TO SM7) 

 

Consult Attached Files using Microsoft Excel 

 

 


