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ABSTRACT 

The bonding and electrostatic properties of gold containing molecules are highly 

influenced by relativistic effects. To understand this facet on bonding, a series of simple 

diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom 

donates or accepts electrons, was investigated and discussed in this thesis.  

First, the optical field-free, Stark, and Zeeman spectroscopic studies have been 

performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. 

F and Cl) can be well characterized by the electronic structure studies and the permanent 

electric dipole moments, el. The spectroscopic parameters have been precisely determined 

for the [17.7]1, [17.8]0+ and X1+ states of AuF, and the [17.07]1, [17.20]0+ and X1+ states 

of AuCl. The el have been determined for ground and excited states of AuF and AuCl. 

The results from the hyperfine analysis and Stark measurement support the assignments 

that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3 state. Similarly, the 

analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3 state 

of AuCl. 

Second, my study focused on AuO and AuS because the bonding between gold and 

sulfur/oxygen is a key component to numerous established and emerging technologies that 

have applications as far ranging as medical imaging, catalysis, electronics, and material 

science. The high-resolution spectra were record and analyzed to obtain the geometric and 

electronic structural data for the ground and excited states. The electric dipole moment, el, 

and the magnetic dipole moment, m, has been the precisely measured by applying external 

static electric and magnetic fields.  el andm are used to give insight into the unusual 
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complex bonding in these molecules. 

In addition to direct studies on the gold-containing molecules, other studies of 

related molecules are included here as well. These works contain the pure rotation 

measurement of PtC, the hyperfine and Stark spectroscopic studies of PtF, and the Stark 

and Zeeman spectroscopic studies of MgH and MgD. 

Finally, a perspective discussion and conclusion will summarize the results of AuF, 

AuCl, AuO, and AuS from this work (bond lengths, dipole moment, etc.). The highly 

quantitative information derived from this work is the foundation of a chemical description 

of matter and essential for kinetic energy manipulation via Stark and Zeeman interactions. 

This data set also establishes a synergism with computation chemists who are developing 

new methodologies for treating relativistic effects and electron correlation. 
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1. INTRODUCTION 

1.1 A brief history of spectroscopy 

Although the spectral nature of the light is present in the rainbow, people didn’t 

recognize and understand this phenomenon until 1666 that Newton showed that the light 

from the sun could be dispersed into a continuous series of colors like a rainbow. That is 

considered as the beginning of the history of spectroscopy with the word “spectrum” 

introduced to describe this phenomenon. Then people started to realize that the sun’s 

radiation has the components of the colors of a rainbow. W. Herschel (1800) demonstrated 

that the sun's radiation extended into the infrared, and J.W. Ritter (1801) made similar 

observations in the ultraviolet. More important, dark lines in the solar spectrum were 

observed first by W. H. Wollaston in 1802 [1] by using narrow slits to disperse the 

wavelengths and then improved by Fraunhofer in 1814 [2]. Although discovered earlier, 

people didn’t understand the cause of these observed dark lines until in 1859 Kirchoff and 

Bonsen found the spectral lines belonged to unique chemical element. Since then, by 

realizing each atom and molecular has its own characteristic spectrum, spectroscopy as a 

scientific tool to study the atomic and molecular structure was established.  

The development of atomic molecular theories was motivated by trying to 

understand the spectral data. The spectral lines were noticed to be located at discrete 

wavelengths. In 1885, various visible spectral lines of atomic hydrogen were grouped by 

Balmer using a simple mathematical formula, known as the Balmer series. Later Rydberg 

and others extended this idea and recognized the spectral lines of atomic hydrogen at other 

wavelengths. But the insight of this phenomena was explained by the idea of “quantum 

mechanics” introduced primarily and started by Planck in the early 1900s. Planck assumed 



2 
  

that the energy of light consisted of small energy units, known as “quanta”. In 1905 the 

photoelectron effect was described by Einstein and he proposed the idea that the light was 

composed of photons, with energy, E=hv (h is the Planck’s constant and v is the light’s 

frequency). In 1913, Bohr modeled the hydrogen atomic lines using the concept of 

quantized energy and bought the idea that electrons exist in quantized energetic states and 

undergo transitions from one state to another. This work was awarded the Nobel Prize in 

1925. In 1924, Louis de Broglie postulated the wave nature of electrons and suggested all 

matters have wave properties in his PhD thesis. Around 1925, Heisenberg, Born and Jordan 

invented the matrix mechanics to first represent the form of quantum mechanics. Later in 

1926, Schrödinger formulated the wave function using differential equations form of 

quantum mechanics. In 1927, based upon the wave-particle duality, Heisenberg brought 

the idea of the uncertainty principle. Since then, the basic principles of quantum mechanics 

has been introduced and most of the understanding on modern physics and chemistry are 

driving from these early ideas.  

The era of modern spectroscopy began with the invention of the laser in 1960 by 

Theodore Maiman. Laser, an acronym for “light amplification by stimulated emission of 

radiation”, can provide intense, collimated and monochromatic radiation beam over wide 

spectral ranges. These advantages opened many fields of modern spectroscopy in both 

resolution domain and time domain. Here in my thesis, the technique applied is the high-

resolution laser induced fluorescence (LIF) spectroscopy, the detail of which will be 

introduced in Chapter 3.2. 
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1.2 An introduction on gold chemistry 

When the word “gold” comes into your mind, most people will have an image of a 

bright, yellow metal. This pretty signature color and the relative rarity of gold made it 

known as “King of the metals” for the first few thousand years of history. Gold has a noble 

personality, referring to its resistance to most corrosive forces and chemical reactions. 

While being chemically inactive, gold is also soft, malleable, and ductile, making it to be 

an ideal material used for coinage, jewelry and other arts. In recent decades, gold extends 

its application to industries. Gold metal is an excellent material used in the electronics 

industry due to its low electrical resistivity (0.022 m) and high thermal conductivity 

(310 W/mK). More important, gold changes its role in industry no longer being as a bulk 

metal after the recent discovery of gold nanoparticles and nanowires [3]. This discovery is 

not only important in industry, it is also considered as a milestone from the view of science. 

When you look at the number of publication related to gold chemistry, it increased 

dramatically since the discovery of nanoparticles. (Figure 1.1)  
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Figure 0.1 Number of publications related with “gold bonding” to illustrate the increasing 

interests on gold chemistry. 

The history of gold chemistry, not the alchemy, can be tracked back to 19th and 20th 

century when it is realized that gold was not simply a homologue of the other two metals 

in the periodic table, copper and silver[4] . Compared to the other two, gold shows different 

oxidation states and oxidation potentials, coordination numbers and coordination 

geometries[5]. With the electronic ground state configuration of [Xe][4f14][5d10]6s1, gold(I) 

compounds are favored to come up with a closed-shell configuration [5d10], which is 

analogues to the situation in copper(I)[3d10] and silver(I)[4d10]. However, the first 

ionization potential of a gas phase gold atom (9.225 eV) is significantly higher than that of 

silver atom (7.576 eV). Therefore, gold is behaving more like a non-corrosive, noble metal 

while silver is and copper are easier to be tarnished. In addition, silver is oxidized to form 

Ag(I) compounds when dissolved in the HNO3, while gold generates not Au(I) but Au(III) 

compounds reacting with aqua regia.  

Ag + 2HNO3  AgNO3 + H2O + NO2     (1.1) 

Au + 3HNO3/4HCl  HAuCl4 + 3H2O + 3NO2    (1.2) 
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 Thought to be the most “noble” metal, gold actually has a rich chemistry. As 

mentioned above, gold could form different compounds with various oxidation states, 

which varies from Au(I) to Au(V). A more interesting “personality” of gold is its ability to 

form stable compounds as an anionic component, Au-, the auride anion [6, 7]. This is first 

observed in the compound of Cs+Au- by reacting elemental cesium with gold back to 

1930s [8, 9]. This is not surprising when you consider the electron affinity of gold. Gold’s 

atomic electron affinity (~2.311 eV) is the largest of all metals, which is not far from that 

of iodine (~ 3.057 eV). It has been proved that the auride anions (Au-) can replace iodide 

anions in salt lattices without changing those alloys or causing any redox reactions [10, 11].   

 The observed unique “personalities” of gold gives rise to a question: why is its 

behavior so different from other metals. It is hard to find a straightforward answer by just 

looking at the periodic table and using the information presented in standard chemistry 

textbooks. Indeed, most of the unusual properties of gold are due to its large relativistic 

effect, which are not well documented in chemistry textbook. Relativistic effects are caused 

by the high speeds of electrons when moving near a heavy nucleus and leads to a 6s orbital 

energies stabilization and radial contraction [7, 12]. Among those heavy elements (Z>55), 

gold has a significantly large relativistic effect, larger than its neighbors and any other 

elements with Z<100. It can be quantitatively illustrated in Figure1.2 by comparing the 

contraction effect of the 6s orbital of gold with other elements [7]. Here the different 

predicated radial extent of the 6s orbital with and without relativistic contribution are given. 



6 
  

 

Figure 0.2 The ratio of relativistic and nonrelativistic 6s shell radii in the atomic ground 

states of the elements 55–100.[7] 

 

 The signature color of gold, back to the start of this subchapter, is another 

prominent example of this relativistic effect. Under the relativistic effect, 6s orbital on gold 

atom is having an energies stabilization and radial contraction, while 5d orbital is 

experiencing an effect of the opposite sign, with a destabilization and expansion [12, 13]. 

These effects lead to a small band gap between the Fermi level of 5d band and that of 6s 

band, which would be much larger in a set of non-relativistic orbitals, i.e. silver. Therefore, 

the color shown to human eyes is yellow for gold, and bright gray for silver. This effect 

exists as the same way in molecules as illustrated in Figure 1.3. The molecular orbitals in 

AuH are more affected by the relativistic effect than those in AgH, behaving as a smaller 

energy separation [14]. 
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Figure 0.3 The relativistic (R) and nonrelativistic (NR) orbital energies of AgH and AuH 

molecules (a.u. is atomic units).[12] 

  

There also exists a relativistic contraction on bond-lengths, which is correlated 

roughly with Z2 as reported by Desclaux and Pyykko [15]. This contraction causes the 

single-bond lengths between Au and ligands (Au-L) are less than or similar to those of the 

corresponding Ag-L bonds, and simultaneously making that the bond strengths of Au-L 

are larger than those of Ag-L bonds [14, 16].  

Due to the peculiar properties of this element, theoretical chemistry of gold is a 

challenging topic, particularly important in the theoretical predictions of the relativistic 

effect (RE). Preforming fully relativistic ab initio calculations for gold containing 

molecules is impractical and various approximation need to be implemented. As early as 

the 1970s, the RE in AuCl, HgCl2, and PtH were studied via self-consistent field (SCF) 

Hartree-Fock (HF) method by Basch and Topiol [17]. Since then, methods and principles 

of quantum chemical calculations on RE of gold chemistry have been developed, especially 

after the development of parallel processing computer technology. Systematic reviews of 

theoretical chemistry of gold have been reported by P. Pyykko [12, 18, 19].  
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A common question that all theorists have to face is how to judge and verify their 

methods and predictions. Simple gas-phase gold containing diatomic molecules AuX (X=F, 

Cl, O, S) introduced here are ideal venues for testing the various computational 

methodologies. This is the simplest model for the Au adatom-X system. Compared with 

similar counterparts in condensed-phase, experimental studies of gold containing 

molecules in gas phase have advantages of isolating the bonding between gold and its 

ligand. The bonding properties of these molecules can be precisely derived from high-

resolution spectroscopic measurements. A comparison of predicted and experimentally 

determined molecular bond lengths, re, electric dipole moments, μel, and magnetic dipole 

moments, μm, are particularly insightful for assessing predicted electronic wave functions. 

Although gas-phase studies of gold-containing molecules will not reveal all aspects of 

bonding between the ligands to the gold nanoparticles or extended surfaces, i.e. Au-S 

binding in nanoparticles. Still, the conceptual framework developed by the 

experiential/theoretical synergism established for the simple gas-phase systems will be 

applicable to modeling the chemistry of the more extended systems. 

  



9 
  

2. MOLECULAR THRORY 

 

2.1 Terms symbols of Diatomic Molecules 

Electronic states and structures of a diatomic molecule are designated by molecular 

term symbols to represent the information of both electronic orbital and electronic spin 

angular momenta. A term symbol is a compact notation for listing all the approximately 

good quantum numbers and has the general form of: 

2 1 /S  


                        (2.1) 

In this scheme the projection of total orbital angular momentum, L, usually leads to well 

defined component, , along the internuclear axis:   

      
2̂ ( 1)el elL L L                                                                           (2.2) 

        ˆ el el

ZL                                                                                     (2.3) 

The states associated with =0, 1, 2, 3… are called , , , … states. The total electronic 

spin angular momentum, S, resulting from the sum of individual electron spin angular 

momentum, si=1/2, and its projections, Sz, are also eigen operators:  

      
2ˆ ( 1)el elS S S                                                                           (2.4) 

        ˆ el el

ZS                                                                                      (2.5) 

For example, if there are 3 unpaired electrons in a molecule, it will lead to S=3/2 with 

=3/2, 1/2, +1/2 and +3/2. The electronic states are called singlet, doublet, triplet, etc., 
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states due to the results of 2S+1. Combination of the two terms are used to label the 

electronic states, such as 2S+1, 2S+1, etc. 

 The component along the internuclear axis of the total electronic angular 

momentum is called , and it is given by: 

= +                      (2.6) 

To a first approximation, the energy only depends upon the magnitude of  , and this 

is used as a a label: 2S+1 For example, in a 2 electronic states, we can have two fine-

structure components, labelled as 2and 2, due to the possible values of .  

 In a  state, +/- superscripts are used to represent the reflection symmetry of 

electronic wave function: 

            ˆ 1el el

z                                                                                     (2.7) 

 If the sign of the eigenfunctions in diatomic molecules remain unchanged when reflected 

along the plane containing the internuclear axis, it is a + state, otherwise it is a - state. 

For ≠0 the superscript is not warranted.  

 

2.2 Coupling of electronic and rotational motion: Hund’s coupling cases 

In the above subchapter, I introduced the electronic orbital angular momentum (L) and the 

electronic spin angular momentum (S). Then the question comes up immediately 

concerning the coupling of L and S. The possible coupling cases are first outlined by 

Friedrich Hund, and the details of them are described in the Ref [20]. There are five 
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commonly used coupling cases: Hund’s case (a), (b) … (e). Here I only focused on the two 

most common one of them, Hund’s case (a) and case (b), and will be used to understand 

and analyze the spectra of the molecules discussed in this thesis. 

The description of Hund’s case (a) coupling case is best illustrated by the vector 

diagram shown in Figure 2.1. The electronic orbital angular momentum (L) and the 

electronic spin angular momentum (S) are strongly coupled together along the internuclear 

axis. The components of this spin-orbit coupling, , is denoted by the sum of  and . The 

angular momentum of the end-over-end rotating nuclei, R, is coupled to and forms the 

resulting total angular momentum, J. Therefore, the vector coupling could be written as: 

   J=R+                                                         (2.8) 

 

Figure 0.4 The description of Hund’s case (a) coupling case illustrated by the vector 

diagram  
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The eigenfunctions for a hypothetical molecule having a Hund’s case (a) coupling 

scheme is the simple product of: 

                                    
( )case a JS J M                               (2.9) 

where the symbol η denotes all other quantum numbers, and MJ is the component of J along 

the laboratory-z axis. MJ will be important when there is applied external electric or 

magnetic field. Hund’s case (a) is a good representation whenever AΛ is much greater than 

BJ. A is the spin-orbit coupling constant, and B is the rotational constant. Under Hund’s 

case (a) limit, the good quantum numbers are: η, Λ, S, Σ, J, and Ω. The function given in 

Eq. (2.9) are commonly used as basis function for modelling the energy levels of real 

molecules. 

On the other hand, Hund’s case (b) becomes a good representation when the energy 

of AΛ is much less than BJ. In this case, the spin-orbit coupling between L and S vanished 

or it is so weak that does not apply. As shown in Figure 2.2,  is coupled to R to form N; 

N is then coupled with S to form the total angular momentum J. N is the total angular 

momentum excluding electron spin, so that N=J-S. The basis sets in case (b) are expressed 

as ( ) , JNS J M , and the good quantum numbers are: η, Λ, N, S, and J.  
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Figure 0.5 The description of Hund’s case (a) coupling case illustrated by the vector 

diagram 

 

2.3 Effective Hamiltonian Operator 

In Born-Oppenheimer (BO) approximation the motion of the nuclei (i.e. vibrations 

and rotations) and electron motions are treated separately. The justification for the BO 

approximation is the large mass difference between the electron and nuclei. The electrons 

move freely while the nucleus are considered to be stationary. Therefore, the total energy 

of a molecule can be treated separately by the following parts: a) the nuclear kinetic energy; 

b) the electronic kinetic energy; c) the electron-nuclear attraction; d) the nuclear-nuclear 

repulsion; e) the electron-electron repulsion. The total Hamiltonian can be given by: 

22 2 2 2
2 2

1 1 1 1 1 1 1 1, , ,

1ˆ
2 2

N n N n N N n n
I J

T I i

I i I i I J i jI i I I J i j

Z Z eZe e
H

M m r r r       

               ( 2.10) 
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                “a”                  “b”               “c”                 “d”                 “e”           

In a molecule, the separations of energies between each different electronic state 

are usually much greater than those between each vibrational level, and so are the 

comparison of the separations between the vibrational levels and rotational levels. The total 

Hamiltonian operator also accounts for the interactions between the different electronic 

states and vibrational levels. It may be thought that having the Hamiltonian operator and 

basis functions (either case (a) or (b)) than the standard approach for determining the 

energies could be employed. Namely the complete set of basis functions for all electronic 

vibration and rotation motions be used to construct a massive representation which is then 

diagonalized to produce energies. This is illustrated in Figure 2.3 for the lowest states of 

OH radicals which has a X2 ground state and an A2+ excited state. The problem with this 

direct approach is that the matrix representation is of infinite order. All those factors result 

in the dimension of the matrix representation for the total Hamiltonian operator being 

incredibly large and hard to solve.  
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Figure 0.6 A schematic diagram of the transform of the total Hamiltonian matrix 

representation (left) to the effective Hamiltonian. 

To simplify the analysis and to facilitate extraction of the insight, an effective 

Hamiltonian, Heff, is formed by adding several terms to the true Hamiltonian, Ht, that 

accounts for the various interactions. Unlike Ht, the Heff operates only within the energy 

levels of a single vibrational level of a single electronic state, such as for the rotational 

levels and hyperfine interactions. The effective Hamiltonian are different for each 

electronic state of a diatomic molecule. In this way the dimensions of the matrix 

representations for the Hamiltonian operator is reduced to a finite size, which greatly 

simplified the analysis and calculation. The most general form of the effective Hamiltonian 

for a field-free diatomic molecule can be written as the sum of the following terms [20]: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆeff

so ss sr rot cd LD mhfs QH H H H H H H H H                              (2.11) 
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where ˆ
soH  is the Hamiltonian operator for spin-orbit interaction; ˆ

ssH is the Hamiltonian 

operator for spin-spin interaction, ˆ
srH is the Hamiltonian operator for spin-rotation 

interaction, ˆ
rotH is the Hamiltonian operator for rotation, ˆ

cdH is the Hamiltonian operator 

for centrifugal distortion, ˆ
LDH is the Hamiltonian operator for -doubling, ˆ

mhfsH is the 

Hamiltonian operator for magnetic hyperfine interaction, ˆ
QH is the Hamiltonian operator 

for electric quadrupole interaction. The ˆ
cdH  and ˆ

LDH  terms in the effective operator have 

been added such as to account for interactions between vibrionic and electronic states. 

The Hamiltonian operator for spin-orbit interaction is: 

                                                       ˆˆ ˆ
so z zH AL S                                             (2.12) 

where A is the spin-orbital coupling constant; ˆ
ZL  and ˆ

ZS  are the orbital and spin angular 

momentum operators, respectively.   

The Hamiltonian operator for spin-spin interaction is: 

2 22 ˆ ˆˆ (3 )
3

ss zH S S         (2.13)  

where  is the spin-spin parameter. 

The Hamiltonian operator for spin-rotation interaction is: 

ˆˆ ˆ
srH N S                      (2.14) 

where  is the spin-rotation parameter.  
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The Hamiltonian operator for rotation is: 

                                                 
2ˆ ˆ

rotH BR                     (2.15) 

where B is the rotational constant that related with the reduced mass () and bond length 

(r) of the molecules ( 2 28

h
B

r 
 ). R̂ is the operator of the rotation. 

The Hamiltonian operator for centrifugal distortion is: 

2 2ˆ ˆ ˆ
cdH DR R                     (2.16) 

where D is the centrifugal distrotion constant. 

The Hamiltonian operator for -doubling is: 

2 2 2 21 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
2 2 2

LDH o S S p N S N S q N N                              (2.17.1),   

       or 2 2 2 21 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( )( ) ( 2 )( ) ( )
2 2 2

LDH o p q S S p q J S J S q J J                            (2.17.2)   

where the o, p, q are the  -doubling constant. Equation (2.17.1) usunally refers to a 

molecule under Hund’s case (b) basis set, and equation (2.17.2) usunally is under Hund’s 

case (a) basis set. 

 Most relevant to my study of this thesis are the modelling and analysis of the 

hyperfine interactions. These interactions are of four types: 

1) nuclear quadrupole moment with the electric field gradient at the nucleus; 

2) Fermi contact interaction; 
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3) electronic orbital angular momentum magnetic moment with the magnetic moment 

of the nucleus; 

4) electronic spin angular moment magnetic moment with magnetic moment of the 

nucleus.  

The first type of the effect is called the electric quadrupole interaction. The combined 

effects of 2-4 are called the magnetic hyperfine effect. The Hamiltonian operator for 

electric quadrupole interaction is: 

2 2 2 20 2ˆ ˆ ˆ ˆ ˆ(3 ) ( )
4 (2 1) 8 (2 1)

Q z

eq Q eq Q
H I I I I

I I I I
    

 
                (2.18) 

where the eq0Q and eq2Q are the electric quadrupole interaction parameters. Here and are 

related to the electric field qradients parallel and perperdicular to the bond axis.  

The Hamiltonian operator for magnetic hyperfine interaction is: 

      
1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3 ) ( )
3 2

mhfs z z F z zH aI L b I S c I S I S d S I S I                   (2.19)   

where a, b, c, and d are the magnetic hyperfine constant. Each  term in equation (2.13) 

refers to the nuclear spin electron orbit interaction (a), Fermi contact interaction (bF) , the 

diagonal dipolar interaction (c), the non-diagonal nuclear spin-electron spin dipolar 

interaction(d).  The defination of the magenetic hyperfine parameters are [20-22]: 

a/Hz = 








h4π

μ0
 gegNBN 



1
<|

3

ˆ
zi

i i

l

r
 |>                                                   (2.20), 

bF/Hz = 








h4π

μ0









3

π8
gegNBN 

1


<| i

ˆ δ ( )zi

i

s r | >                   (2.21), 
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c/Hz = 








h4π

μ0

2

3
gegNBN

1


<| ˆ

zi

i

s 3

i
2 )1θcos3(

ir


|> (2.22), 

d/Hz = 








h4π

μ0

2

3
gegNBN<'' | i

i

s
2

2i

3

θ
ii

i

sin
e

r


|"" >  (2.23), 

where ˆ
zil  and ˆ

zis  are orbital and spin angular momentum operators for the ith electron. ir  

and i  are the spherical polar coordinates of the electrons relative to the nuclei with I≠0. 

 

2.4 Interaction with external field: Stark effect & Zeeman effect 

In the presence of an external electric field the spectral lines of atoms are found to 

shift and/or split into several components. This effect was first discovered by Johannes 

Stark, and is called Stark effect. It is due to the interaction of the molecule’s electric dipole 

moment with the external electric field and the interaction Hamiltonian can be written as 

[20, 23]:  

                                ˆ ˆˆStark

elH E   ,                        (2.24) 

where Ê    is the external electric field and ˆ
el   is the molecular frame electric dipole 

moment operator. This operator typically suffices to model the observed shift/splitting 

when the field strength is less than 10 kV/cm. 

In the presence of a magnetic field the spectral lines of atoms or molecules is also 

found to shift or split into several components and it is called the Zeeman effect. Zeeman 

studies of molecules provide valuable information about the orbital and spin angular 

momenta, and the nature of any perturbing electronic state. The interaction of the molecule 

within the external magnetic field can be modelled using the Zeeman Hamiltonian: 
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                     ˆ ˆˆZee

mH B   ,                   (2.25) 

where B̂  is the external magnetic field, ˆ
m  is the magnetic dipole moment operator of 

the molecules. The major contribution to ˆ
m   are the electronic orbital ( ˆ

B Lg L  ), 

electronic spin ( ˆ
B Sg S  ), and a rotational ( ˆ

B Rg R  ) terms. The rotational magnetic 

dipole moment is negligibly small for low rotational levels, which are the focus of my 

studies. Thus, the effective Zeeman Hamiltonian can be taken as [20, 24]: 

2 2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆg L B g S B g μ S B S B g S B S Bi i

B L B S l B x x y y l BH e e     

   
          
   

Zee

                 
(2.26) 

The “” designates the ladder operators, is the azimuthal angle of the electronic 

coordinates. The g
l
 and g

l
 terms describe the anisotropic contribution to the electron spin 

which need to be added to Ĥ eff  to account for mixing of electronic states.. g
S
, g

L, gl
 and g

l’
 

are all treated as adjustable parameters to account for electronic state mixing (i.e. g
L
  1.0, 

g
S
,  2.002). 

 

2.5 Predictions of relative intensities 

The line strength of an electric dipole allowed transitions between different 

vibrartion rotation levels in the upper and lower states, v’J’v”J”, is proportional to the 

product of the population, Nv’J’, of the excited state level and the Einstein coefficient of 

spontaneous emission, 
' '

" "

v J

v JA  [25], 

' ' ' '

" " ' ' " "

v J v J

v J v J v JI KhvN A       (2.27) 

where K is a constant expressing the quantum efficiency. The Einstein coefficient, 
' '

" "

v J

v JA , 
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can be written as: 

3
' '

" " ' " ' "

64
[ ]
3 (2 ' 1)

v J

v J v v J J

v
A S S

h J





     (2.28) 

where  

2
' "

' " ' R "n n

v v eS v v       (2.29) 

is called the vibrational band strength factor(which is simply proportional to the Frank-

Condon factor, 
2

' "v v ), and 

2

' "

', "

3 ' ' " "J J

M M

S J M z J M     (2.30) 

is called the rotational line strength factor. “z” is the component of the electric dipole 

transition moment.  

Description of dipole moment in a transition is the key for the prediction of relative 

intensities.  Let us take a good case Hund’s (a) molecule as an example. The basis set for a 

Hund’s case (a) has been described in the above subchapters. Therefore, for a typical 

rotational transition between two different rotational levels that are approximated as case 

(a), the matrix elements for the transition operator, ̂ , is given: 

1

' ' ' 1

'

' ' 1

ˆ' ' ' ' ' ' ' ( )

' 1
( 1) ( 1) (2 ' 1)(2 1)
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' ' ' 1
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The 3-j symbol, 
' 1

'

J J

q

 
 
  

, in this expression gives the selection rules on the J with 

that J =-1, 0, 1. Usually, transitions that satisfied J =-1are grouped to be called P branch, 
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and similarly, those with J =0 are called Q branch and J =1 are called R branch.  
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3. EXPERIMENTAL METHOD 

 

3.1 Sample generation 

The generation of the molecular samples consists of two steps: a) generate plasma by 

using the laser ablation technique; b) form the molecular beam via supersonic expansion. 

The details of the setups will be described in the following sub-chapters. 

3.1.1 Laser ablation technique 

The production of the target molecules in our lab is usually achieved using the laser 

ablation/reaction technique. For example, AuS is generated by ablating the gold sample in 

the presence of an SF6/Ar gas expansion. A matching stainless steel end-cap is designed to 

fit the rod of the metal sample as shown in Figure 3.1, with a Teflon holder on the bottom 

pushing the rod position. Light from Nd: YAG laser (5 mJ/pulse, 532 nm) goes through 

the top hole on the end cap and ablates the metal rod surface. The ablated metal atoms react 

with the reagent seeded in the carrier gas (mostly argon or helium) passing through the 

pulsed valve to produce the target molecules. To have a fresh surface, the metal rod is 

rotating and translating continuously under the control of a commercial stepper motor via 

a homemade LabVIEW program. The plasma generated via laser ablation includes 

electrons, ions, atoms, molecules, clusters, as well as the desired radicals. The plasma also 

supplied the required energy to drive the chemistry. The ratio of different productions can 

be affected by the concentration of the reagent in carrier gas, backing pressure, background 

pressure of the source chamber, type of the carrier gas and ablation laser power. The 

selection of the end-cap is also important because the hole-size for the ablation laser and 

the gas-channel affects the production process and the resulting sample temperature.  
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Figure 0.7 A schematic diagram of laser ablation source and supersonic expansion in 

molecular beam apparatus. 

 

3.1.2 Super free jet expansion and molecule beam 

Supersonic free jet expansion has become a common laboratory tool for spectroscopic 

measurements and provides the ideal environment to study the physical properties of 

transient metal containing molecules. The theories and properties of the free jet expansion 

were first discovered by Kantrowitz et al [26] nearly half a century ago and are reviewed 

by Scoles [27]. A typical schematic diagram of a supersonic free jet expansion is shown in 

Figure 3.2. The key feature of the free jet expansion is a small nozzle aperture that separates 

a high-pressure gas source and a downstream vacuum region. In our setup the diameter of 

the nozzle aperture is around 1 millimeter. The backing pressure of the gas (Ar or He) 

ranges from 50 psi to more than 700 psi, while the pressure of the downstream is usually 

less than 10-6 torr which is maintained by a pumping system. One important part of this 

supersonic expansion is that the random orientation of the molecules velocity is converted 
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to a forward narrow velocity. In addition, the temperature of the post-expansion beam (T) 

can be heavily cooled down, given by: 

 
1

0

0

( )
P

T T
P







  ,                                                                       (3.1) 

where T0 is the pre-expansion temperature,  is the ratio of the specific heats, P0 and P are 

the pressure of the pre- and post-expansion environments. Under the above conditions in 

most of my experiments, the post-expansion temperature is around 10 to 20 K. 

In our high-resolution experimental setup, a “skimmer” is inserted in the travel path of 

the free jet expansion products to form a will collimated molecular beam. The skimmer is 

an adjustable iris (D: ~2.5cm) placed approximately 5 cm downstream between the source 

and detection chambers. This “skimmed” molecule beam can greatly reduce the spectral 

Doppler broadening effect.  

 

Figure 0.8 A schematic diagram of a supersonic free jet expansion. 
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3.2 Spectroscopic techniques 

3.2.1 Laser induced fluorescence 

Laser induced fluorescence (LIF) technique is the key to all my laboratory 

detections and measurements. The target molecules are excited to a higher energy level by 

the absorption of laser light, followed by the release of fluorescence light to reveal the 

structural information of the molecules. There are two types of LIF spectra: excitation 

spectra and disperse LIF spectra.  

Excitation LIF detection is the technique used in most of my work in this thesis. As 

the wavelength of the laser is scanned, the molecules of interest will be excited and emit 

fluorescence whenever the laser frequency is tuning to match the energy difference of the 

molecular levels. This process for a diatomic molecule is usually very sensitive and results 

in a strong fluorescence signal. The scheme of the light collection system for the 

fluorescence is shown in Figure 3.3. A spherical lens at the top of the cross-section is used 

to focus the anistropically emitted light onto a cooled photomultiplier tube (PMT). In 

addition, a reflection mirror at the bottom is used to help increase collection of the 

fluorescence signal. Usually, a narrow band-pass filter centered either on or off the laser 

excitation wavelength is used to reduce background noise and enhance the ratio of signal 

to noise.  The photon induced electrical signals are processed by a gated photon counter 

(Stanford Research System-SR400) which is interfaced to the data acquisition computer 

via a LabVIEW program. 
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Figure 0.9 A schematic diagram of fluorescence light collection setup. 

 The dispersed laser induced fluorescence (DLIF) technique provides information 

about the ground state vibrational structure. In this case the excitation laser is tuning to a 

certain resonant wavelength, and the resulting LIF signal is viewed through a McPherson 

2/3 m scanning monochromator and detected by a similar gated photon counter through 

the PMT. The resolution of a DLIF spectrum is controlled by the resolving power of the 

monochromator.   

 

3.2.2 Optical spectrometer 

Overall, three types of optical spectroscopy techniques were employed in my thesis: 

a. High resolution field-free spectroscopy, 

b. Optical Stark spectroscopy, 
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c. Optical Zeeman spectroscopy. 

The experimental setup for b and c are based upon the first apparatus of a.  

The high-resolution optical field-free spectrometer consists of the following parts: 

vacuum chamber, laser, source generation, signal detection and control program. The 

schematic diagram of my setup is illustrated in Figure 3.4. There are two separate chambers: 

molecule source chamber and LIF detection chamber. The two chambers are separated by 

an aluminum plate with an adjustable iris hole in middle to allow the passage of the 

molecular beam. Each chamber is connected to a mechanical vacuum pump and a 6” 

diffusion pump. A roots pump is installed on the source side to accelerate the pumping 

process. Normally the background pressure during the experiment is below 1×10-6 torr on 

both two sides. Details of the source generation and signal detection have been discussed 

above. The laser beam is from a Coherent model 699 continuous-wave (cw) ring dye laser 

pumped by the 488nm solid state laser. The output power of the laser beam is around 100 

mW with a diameter size of approximately 1.0 mm. This cw dye laser can cover most of 

the visible range (from 500 nm to 750 nm) by using different species of laser dyes. The 

calibration of the laser wavelength will be introduced in the following subchapter. A 

control program written in LabVIEW is used to communicate with each equipment and 

finish the process of parameter initializing, command sending, data acquiring, and spectra 

plotting.  
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Figure 0.10 A schematic diagram of optical high-resolution spectrometer 

To provide an external electric or magnetic field in the type b and c experiments, 

additional small devices are placed at the detection area of the field-free setup with all the 

other parts remaining the same. A schematic diagram of a homemade Stark device are 

shown in Figure 3.5. The static electric field is generated by applying a voltage across two 

conducting plates straddling the LIF region. Both plates are 5×5 cm square neutral density 

filter with 90% transmission of light. A spherical lens and reflection mirror are used to 

increase the signal. The strength of the electric field can go up to 6000 V/cm. A polarization 

rotator and polarizing filter are commonly used to orient the electromagnetic field vector 

of the linearly polarized laser radiation either parallel, “”, or perpendicular, “”, to that 

of the applied field.   

 In the Zeeman measurement, static homogenous magnetic fields are generated via 

a device illustrate in Figure 3.6. This apparatus use a homemade magnet/yoke assembly 

with rare earth magnets attached to each side of an iron yoke. 5 mm holes are drilled 

through these poles to allow for the passage of the molecular beam. The magnetic field can 
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be adjusted by adding or removing additional ferromagnetic poles and varied from 100 to 

3000 gauss. The strength is measured using a commercial Hall-type gauss meter. The 

relative orientation is achieved as described above. The systematic errors arising from the 

field calibration and the spectral measurement uncertainties in the Zeeman and Stark shifts 

are estimated to be less than 2%.  

 

Figure 0.11 A schematic diagram of the electric field and laser excitation region of the 

Stark spectrometer. Molecular beam (MB); Tunable laser radiation beam (LB); Neutral 

density filter (NDF); Stainless steel (SS); Cooled photomultiplier tube (PMT); Band pass 

filter (BPF); Lens(L); Mirror (M); Laser induced fluorescence (LIF).  
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Figure 0.12 A schematic diagram of the magnetic field and laser excitation region of the 

Zeeman spectrometer. Molecular beam (MB); Tunable laser radiation beam (LB); Rare-

earth permanent magnets (Mag); iron core (IC); Cooled photomultiplier tube (PMT);  Band 

pass filter (BPF); Lens(L); Mirror (M); Laser induced fluorescence (LIF).  

 

3.3 Wavelength calibration 

The wavelength of the laser beam from the cw ring dye laser is initially determined 

with a commercial wavemeter (WA 1500, Burleigh) with a precision of ±0.01 cm-1. This 

precision is further improved to ±0.0001 cm-1 (30 MHz) by using a combination of sub-

Doppler iodine spectra and etalons. (Figure 3.7) I2 absorption spectrum is chosen because 

the precise absolute frequencies of ±0.00001 cm-1 (3 MHz) are provided. Sub-Doppler I2 

spectra are recorded using a saturation polarization technique. The cw dye laser is split into 

two beams. The polarization of one laser beam (labeled A) is rotated via a half wave plate 

by 90o, which means the polarization is perpendicular to that of the other laser beam 
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(labeled B). The laser beam B is mechanically chopped at ~2 kHz. These two beams are 

counter propagating and are simultaneously absorbed only by these molecules with no 

transverse velocity (i.e. no Doppler effect). The intensity of laser beam A is detected by a 

photodiode after absorption. The output signal from the photodiode is monitored by a lock-

in amplifier. In this case, the modulation of laser beam B is transferred to a modulation of 

laser beam A for those molecules that are simultaneously excited (i.e. molecules with zero 

velocity). Since Doppler broadening is from the thermal motions of molecules, sub-

Doppler resolution (0.001cm-1) can be achieved by molecules with zero velocity. The I2 

cell can be heated to produce more I2 molecules in the gas-phase and populate additional 

levels. This will increase the absorption signal.  

The relative wavelengths are precisely measured by simultaneously recording the 

transmissions of two confocal étalons (Fabry-Pérot interferometers) with the sub-Dopper 

absorption spectrum of I2 (Figure 3.7). One étalon (labeled Et1) is unstabilized with free 

spectra range of 75.04 MHz and the other étalon (labeled Et2) is actively stabilized with 

free spectra range of 750.956 MHz. There is an insulated housing outside the Et2. The Et2 

is evacuated and temperature controlled. The cavity spacing of Et2 is locked to the 

transmission peak of a frequency stabilized Melles Griot Model 05 STP He-Ne laser. The 

transmission is detected by a photodiode and the signal is under computer control through 

a lock-in amplifier. When the monitored transmission intensity changes slightly, the 

spacing of the cavity is changed by sending a correction voltage to the piezoelectric crystal 

on the mirror or changing the temperature. The relative resolution could be determined to 

be approximately 0.0001cm-1.  
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Figure 0.13 A schematic diagram for wavelength calibration. Beam splitter (BS); Mirror 

(M); Half wave plate (HWP); Photodiode (PD); Etalon (Et); Polarize beam splitter (PS). 
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4. OPITICAL SPECTROSCOPIC STUDY OF GOLD FLURIDE, AuF, AND GOLD 

CHOLORIDE, AuCl 

 

4.1 Introduction 

Halogen elements are well known for their strong electronegativity, such as fluorine 

(3.98) and chlorine (3.16)1. They all have five electrons in the p-orbitals and want to accept 

an electron to from a state noble gas configuration. Gold, on the other hand, with an 

electronic configuration of [Xe][4f14][5d10]6s1, is considered to be a good electron donor 

and form a strong polar bond between Au and X(=F, Cl, …). This simple strong polar 

bonding between two atoms makes AuX an ideal starting target to step into the world gold-

containing molecules. As describing in Chapter 1, the large relativistic effect of gold caused 

the 6s orbital to be strongly contracted and energies to be stabilized. In an ideal Au+X– 

molecule, a small relativistic effect is expected because the 6s electron is transferred to X– 

and 6s orbital of Au is not occupied. On the opposite side, in an ideal Au–X+ molecule, 

which has 6s orbital occupation, strong bond relativistic effects are predicted. Hence, there 

should be a correlation among the different AuX molecules between the bond polarity and 

the bond lengths. The reduced dipole moment (=el/re, where re=bond length) is a good 

standard to probe the relativistic contributions to the bond polarity [28]. In the study of a 

AuX molecule by itself, its ground state properties (re and el) are insensitive to the 

relativistic stabilization of 6s-orbital because of the metal-center configuration of Au+ 

(5d10). However, the relativistic effect in the excited states will be much greater since the 

                                                           
1 In Pauling scale 
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metal center Au+ configuration becomes to be 5d96s1. It is a critical test to predict the 

electronic structure parameters for both ground and excited states of AuX molecules 

simultaneously and correctly. Therefore, in this chapter I will introduce my optical 

spectroscopic study on AuF and AuCl, which are the two most typical AuX molecules, 

including rotational properties, electronic hyperfine interactions, electric dipole moments 

(el), and magnetic dipole moment (m) of AuF and AuCl. 

Experimental studies of AuF and AuCl are both very limited. The first identification of 

AuF in gas-phase was reported by Saenger and Sun through visible emission spectrum in 

1992 [29], whereas the AuCl were measured seventy years earlier by Ferguson using the 

same method in 1928 when progressions in two bands (labelled as A and B) were assigned 

[30]. The first assignment of AuF was accomplished in 2000 with the spectra of A1–X1+ 

and B1+–X1+ bands being recorded [31]. In this study the first vibrational parameters for 

the X1+, A1, and B1+ states were determined together with the predicted results from a 

relativistic density functional theory (DFT) calculation. More importantly later the pure 

rotational study was performed using millimeter and submillimeter-wave spectroscopy to 

precisely determined the rotational and hyperfine parameters for the ground X1+(v=0) 

state of AuF [32]. The most recent works of AuF were performed by Varberg’s group using 

high-resolution laser spectroscopic technique in the visible range [33, 34]. The A1–X1+ 

and B1+–X1+ bands were reassigned as [17.7]1–X1+ and [17.8]0+–X1+ bands. Similarly 

to the studies on AuF, the A=1–X1+ and B=0+–X1+ of AuCl were recorded at near 

Doppler limited resolution using Fourier transform emission by O’Brien et al [35] and a 

pure rotational study were performed later by the Tanimoto’s group to determine the 
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rotational and hyperfine parameters of the X1+ state [36]. No high-resolution studies of 

AuCl in the visible range have been performed and precise measurement on the fine and 

hyperfine parameters of both excited states is in progress.  

In contrast to the limited number of experimental studies on AuF and AuCl, there have 

been numerous theoretical predictions on these two molecules. Most of those studies are 

focused on the prediction of the ground state properties, like bond lengths (re), vibrational 

frequencies(e), and dissociation energies (De), for both AuF [31, 37-43] and AuCl [44-

49]. However, the prediction of the dipole moment (el) were performed using a variety of 

methods and the results vary dramatically depending upon the approaches [31, 39]. A 

comparison of several selected predicted values for el with my experimental results will 

be present and discussed in the following subchapters [28]. 

 Theoretical predictions on the excited states of AuF and AuCl are described in the 

same two papers by Stoll group [39, 50]. Potential energies curves and various 

spectroscopic parameters (De, re, el, Te, and e) for the X1+ ground states and nine low-

lying excited states were predicted. The energies of the low-lying excited states of AuF and 

AuCl are presented in Figure 4.1 along with the observed values. It is noteworthy from 

Figure 4.1 that the large spin-orbit interaction makes the description of the states as 3, 3 

and 1 etc of limited value. Specifically the spin-orbit induced splitting and shifts is larger 

than the calculated state energy separation in the absence of spin-orbit.  The observed 

values are from the studies of Varberg group [33, 34] and my work [28, 51]. Surprisingly, 

the observed [17.7]1 and [17.8]0+ bands of AuF are close to the predicted energies[39] for 

the 130+ and 131 sub-states with different  components, but far from the previous 
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assigned components of 111 and 21+ states. In contrast to AuF, the observed two bands 

of AuCl are close to the predicted 130
+ and 131 sub-states. In addition, the predicted el 

values [39] for the states X1+ of AuF and AuCl are 4.91D and 4.90 D, and those for the 

3 states are 2.68D and 1.39 D, respectively. Therefore, it is interesting and necessary to 

have a comprehensive high-resolution study on the AuF and AuCl to determine the 

electronic properties and bring experimental insights of the energy states distribution.  

 

Figure 0.14 The calculated and observed energies for AuF (left) and AuCl (right). Calc. a 

is from ref. [39]. 

 

4.2 Optical Stark and Zeeman study of AuF 

Studies of the optical Stark and Zeeman effect were performed on the [17.8]0+–X1+ 

band and the permanent electric dipole moment and magnetic hyperfine parameters of the 

X1+  and [17.8]0+ states were determined [28]. Most parts of the experimental setup have 

been introduced in Chapter 3. The reacting gas was prepared with 5% sulfur hexafluoride 
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(SF6) and 95% argon carrier gas from a backing pressure of approximately 600 Psi. 

External static electric and magnetic fields were applied. 

4.2.1 Observation 

Three different lines of the [17.8]0+–X1+ band, R(0)(=17756.156 cm-1), 

R(1)(=17756.642 cm-1) and P(1)(=17755.125 cm-1), were selected for optical Stark 

measurements. In Figure 4.2 the spectra of the P(1) line recorded field-free and in the 

presence of a 2366 V/cm electric field with parallel (MJ =0) and perpendicular (MJ =1) 

orientation are given on the left. Stark induced shifts were precisely measured by scanning 

over the field-free and Stark-shifted component consciously with the field turning on or off 

as illustrate in Figure 4.2. The Stark tuning of the associated energy levels and assigned 

transitions are presented in right side portion of Figure 4.2. A total of 29 Stark shifts were 

precisely measured and are presented in Table 4.1 along with the assignments and the 

difference between the observed and calculated shifts. The calculated shifts were obtained 

using optimized el values of 2.03D and 4.13D for the [17.8]0+ and X1+ states, respectively. 

The R(0)(=17756.156 cm-1), R(1)(=17756.642 cm-1), R(2)(=17757.106 cm-1), 

P(1)(=17755.125 cm-1), P(2)(=17754.577 cm-1), and  P(3)(=177554.009 cm-1) lines were 

selected for optical Zeeman measurements. Zeeman spectra were rescored in a magnetic 

field of 4650 Gauss with both parallel (MJ =0) or perpendicular (MJ =1) orientation. 

The R(1) and P(3) lines, both of which goes to the same J =2 rotational level of the 

[17.8]0+(v=0) excited state, are presented in Figure 4.3. The Zeeman tuning of the 

associated energy levels and assigned transitions is also presented in Figure 4.3. As 

expected, no magnetic tuning effect were observed in the rotational levels of the X1+ (v=0) 
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state. The measured shifts and energy level assignment and difference between the 

observed and calculated shifts are presented in Table 4.2. The calculated results were 

obtained using in two sets of values: a) ideal values for a non-perturbed 3+ state 

(gS=2.0023 and gL=1.0); b) optimized values for the [17.8]0+ states (gS=2.84 and gL=1.0). 

 

Figure 0.15 The observed and predicted spectra of the P(1) line recorded field-free and in 

the presence of a 2366 V/cm electric field with parallel (MJ =0) and perpendicular (MJ 

=1) orientation. The Stark tuning of the associated energy levels and assigned 

transitions are presented on the right. 
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Figure 0.16 The observed and predicted spectra of the P(3) and R(1) line recorded field-

free and in a magnetic field of 4650 Gauss with parallel (MJ =0) and perpendicular (MJ 

=1) orientation. The Zeeman tuning of the associated energy levels and assigned 

transitions are presented on the right. 
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Table 0.1 The observed Stark shifts for the [17.8]0+–X1+ (0, 0) band. 

Branch, Pol 

Field 

(V/cm) Assign.a 

Shift 

(MHz) Obs-Calcb 

R (0), || 2751 A 779 6 

 2751 A 775 2 

 2745 A 769 0 

 2745 A 771 2 

 2472 A 619 -8 

 2931 A 870 -4 

R (0),  2565 B 522 -17 

 2565 B 550 11 

 2360 B 460 2 

R (1), || 1991 A -220 -22 

 1991 A -224 -26 

 2777 A -366 9 

 2366 A -272 4 

 1991 C 135 20 

 1991 C 126 11 

 1991 C 127 12 

 2366 C 160 -2 

 2777 C 216 -7 

R (1),  2739 B -352 25 

 2485 B -310 4 

 2490 B -291 24 

 2739 D 184 4 

 2485 D 159 11 

 2490 D 163 14 

P (1), || 2366 A -432 -10 

 2745 A -569 -6 

P (1),  2360 E 30 5 

 2360 E 30 5 

 2497 E 34 6 

 Std. dev. = 12 MHz 

 

a) A: MJ”=0 MJ’=0; B: MJ”=0 MJ’=1; C: MJ”=1 MJ’=1; D: MJ”=1 MJ’=2; 

E: MJ”=1MJ’=0; 
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b) Calculated shifts obtained using optimized el values of 2.03D and 4.13D for the 

[17.8]0+ and  X1+  states, respectively. 

 

Table 0.2 The observed Zeeman shifts for the [17.8] 0+ (v=0) levels. 

J, MJ 

 

Obs. Shift 

(MHz) 

Obs-Calca 

(MHz) 

Obs-Calcb 

(MHz) 

0, 0 10     -9 -28 

1, -1 -89     -45 -40 

1, +1 137    46 -4 

2, -2 -173   -63 -32 

2, -1 -86     -35 -23 

2, 0 7     -7 -20 

2, +1 119      35 -9 

2, +2 233      74 -6 

3, -3 -298  -122 -64 

3, -2 -195  -80 -43 

3, -1 -108  -56 -44 

3, 0 0  -14 -28 

3, +1 102 19 -24 

3, +2 214 60 -14 

3, +2 324 97 -12 

  Std=63 Std=31 

In a magnetic field of 4650 Gauss 

 

a) Calculated using gS =2.0023 and gL=1.0. 

b) Calculated using optimized gS = 2.84 and gL=1.0. 
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4.2.2 Analysis 

The analysis of the Stark and Zeeman measurement was straightforward since the 

rotational and hyperfine parameters for the [17.8]0+ and X1+ states have been determines 

by previous studies [32-34]. A 3 state description was chosen to model the behavior of 

the energy levels of the [17.8]0+ state. Guichemerre et. al [39] predicts an 0+  state in the 

energy region near that of the observed [17.8]0+  state that is primarily the 13 state (as 

shown in Figure 4.1), which is spin-orbit mixed with the 21 state, whereas the state is 

primary the 13 sub-state, which is mixed with the 11 and 13
 states. As expected, 

the spectra did not any hyperfine splitting due to the [17.8]0+ state. In the absence on 

hyperfined splitting, the effective Hamiltonian for a 3state is give as: 

    eff 3 2 2 2 2 2

' "

2 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆH ( ) R 3
3 2

v v Z Z ZT AL S B S o p q S S           S                       (4.1) 

where the values of A=-2780 cm-1, (o+p+q) = 3520.0 cm-1 and  = 419.3 cm-1 are from the 

fitting of the separations between 13, 13, 13, and 130- sub-states. The rotational 

constant, B, and -doubling constant, q, are from the experimental values of 0.254cm-1 and 

0.00324cm-1 [34], respectively. The field-free energies were modeled by numerically 

diagonalizing 66 matrices constructed in a Hund’s case (a) basis set. Based upon the well 

characterized field-free energy states, the Zeeman effect was modeled afterwards by 

numerically diagonalizing 4242 matrix representation for the J=0-6 rotational levels 

augmented by the matrix element for ZeeĤ . The initial parameters for predicting the Zeeman 

shifts were set to Lg =1.000, Sg =2.002 (i.e. those of a free electron) and gl = gl = 0.0 

assuming that a pure 3 state was observed. However, this resulted in a large standard 
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deviation of 62 MHz which was significantly larger than the estimated uncertainty (20 

MHz) and a large systematic trend in the residuals was observed (as show in the third 

column of Table 4.2). Various fits using Lg ,  Sg  and gl  as adjustable parameters were 

attempted.  In the end, the set of optimized value with Lg =1.000, Sg = 2.002 gl  =0 and 

gl =0.82 resulted in the residuals given in the fourth column of Table 4.2. The standard 

deviation of 32 MHz is still slightly larger than the estimated uncertainty (20 MHz) and a 

slight systematic trend in the residuals remains. 

The Stark induced shifts of the energy levels were modeled by including the 

operator: 

                                                 
Stark

el
ˆ ˆH E                                         (4.2) 

where el̂  is the dipole moment operator and E  is the applied static electric field vector. 

88 matrices were generated to represent the J=0-7 rotational levels for both the [17.8]0+ 

(v=0) and X1+ (v=0) state and then were numerical diagonalized to produce eigenvalues 

and eigenvectors. A non-linear least squares fitting was preformed using the observed Stark 

shifts in Table 4.1 to determine el  values of 2.03  0.05 D and 4.13 0.02 D for the 

[17.8]0+(v=0) and X1+ (v=0) tates, respectively. The standard deviation of the fitting 

procedure is around 12 MHz, which is much less than the estimated uncertainty (20 MHz).  
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4.2.3 Discussion 

The determined el  values for the [17.8]0+ (v=0) and X1+ (v=0) states are listed in 

Table 4.3 comparing with the selected predicted values from various reference [39, 40, 42, 

52]. The prediction results from the high level calculation for the X1+ (v=0) state (i.e., 

DFT-CCSD, CAM-B3LYP, and CBS-CCSD(T) in Ref. [40] and the DK-AE and SCPP in 

Ref. [42]) are within ±0.4D ( 10%) of the experimental values. This relatively good 

agreement may reflect the expected small relativistic effect for this highly polar molecule 

as discussed earlier. The el  value for the X1+ (v=0) state is 4.13(2) D, which is reasonable 

large due the nature of the bonding’s polarity. However, the el  value for the [17.8]0+ (v=0) 

state (=2.030.05 D) is significantly less than that for the ground state even though the 

bond distance for the [17.8]0+ state (=1.955 Å) is longer than that of the X1+ state. 

Different from the configuration of Au+(5d10) center in X1+ state, Au+(5d96s1) of the 

[17.8]0+ state has an occupation of the 6s-orbital. The 6s-orbital is more readily back-

polarized in comparison to the 5d orbital and thus there is a large reduction in the el upon 

excitation [12]. The limited theoretical predictions of the excited state el  and the 

disagreement between the results (i.e. 2.68 D in Ref.[39]) and experimental value is a 

reflection of the inability, and difficulty, of the employed methods to account for the 

relativistic and polarization effects. 

The magnetic tuning observed in the [17.8]0+ (v=0) state is a result of strongly 

mixing with the [17.7]1(v=0) state, which is only 100 cm-1 away from them. The tuning of 

the energy levels is larger than that expected of an isolated 3
 state having Lg =1.000 and 
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Sg = 2.002. This is consistent with the prediction from Guichemerre et al. [39] that the 

[17.7]1(v=0) state is primarily the 13
 sub-state but with mixed contributions from the 1 

and 3
+ states. Therefore, the results of Lg =1.000, Sg = 2.002 gl  =0 and gl =0.82 were 

obtained for the magnetic dipole moment for the [17.8]0+ (v=0) state of AuF. 

 

Table 0.3 The observed and predicted AuF el values [39, 40, 42, 52]. 

Method 

el  

(Debye) Ref. Method 

el  

(Debye) Ref. 
1X   

Exp. 4.130.02     

CBS/CCSD(T) 4.37 [39] a) DK-AE/LDA 3.585 [42] a) 

DFT/LDA 3.58 [39] DK-AE/PW91 3.578 [40] 

DFT/PBE 3.62 [39] DK-AE/PBE 3.576 [40] 

DFT-

CCSD(T)/LDA 4.44 

[39] DK-AE/M06 4.317 [40] 

DFT-

CCSD(T)/PBE 4.43 

[39] DK-

AE/B3LYP 

4.029 [40] 

CAM-B3LYP 4.24 [39] SC-SRRP-S b) 4.046 [40] 

  

 SC-SRRP-

LANL b) 

3.939 [40] 

  

 SC-SRRP-

CEP b) 

4.071 [40] 

  

 LC-SRRP-

LANL b) 

4.872 [40] 

CC-SRPP 4.89 c) [52]c)    

[17.8]0+ 

Exp. 2.030.05     

CC-SRPP 2.68  [52]c)    

 

a) Predicted at the experimental Re value (=1.9184 Å).   

b) DFT calculation using the B3LYP functional. 

c) Predicted at the theoretical Re value (=1.95 Å).    
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4.3 Optical field-free measurement of AuCl 

The high-solution spectra of the [19.07]1 – X1+ and [19.20]0+ – X1+ band systems of 

gold chloride, AuCl, have been record and analyzed. Precise measurement have been 

processed to determine the fine- and hyperfine molecular constants.  

4.3.1 Observation 

Both the spectral features of the [19.07]1 – X1+ and [19.20]0+ – X1+ sub-bands of 

AuCl were observed. Portions of the field-free excitation spectrum in the region of the 

[19.07]1 – X1+ and [19.20]0+–X1+ band systems are presented in Figures 4.4, respectively. 

Gold has only one naturally occurring isotope, 197Au, and chlorine has two, 35Cl (75.7%) 

and 37Cl (24.3%). The transitions of both isotopologues were observed, but only the 

spectral features of the main isotopologue, 197Au35Cl, were assigned and analyzed. The 

energy levels patterns of the X 1+ state is that of a molecule near the sequentially coupled 

Hund’s case (b) limit with a very small splitting due to the 35Cl(I=3/2) nuclear electric 

quadrupole interaction, eq0Q(Cl)=-62 MHz, and an even smaller splitting due to 

197Au(I=3/2), eq0Q(Au)=-9 MHz [36].The optical transitions studied here show only slight 

contributions due to ground state hyperfine splitting and the appropriate quantum numbers 

for describing the X 1+ state levels are the rotational angular momentum, N, and it’s 

laboratory projection, MN. The energy levels pattern of the two excited states of AuCl are 

treated as a 3 system [39], which is near the energy level pattern expected for a 

sequentially coupled Hund’s case (abJ) limit.  The vector coupling can be written as:  

J + I1 (
197Au) = F1;      F1+ I2 (

35Cl) = F,        (4.3) 
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and the corresponding basis function |n>|S>|J(JI1)F1(F1I2)F> is appropriate for the 

approximate description of the 3 state. The appropriate quantum numbers for describing 

the levels are total angular momentum, F, and the projection, MF, and the intermediate 

quantum number F1 and MF1 in the case where the small 35Cl(I=3/2) hyperfine interaction 

is not resolved.  

 

Figure 0.17 Portions of the field-free excitation spectrum in the region of the [19.07]1 – 

X1+ and [19.20]0+ – X1+ band systems of AuCl. 

The hyperfine splitting in Q-branch of the [19.07]1–X1Σ+ (0,0) band is significantly 

larger than either the P- or R-branch of the [19.07]1–X1Σ+ (0,0) band or the P- or R-branch 

of the [19.20]0+–X1Σ+(0,0) band, indicating a strong parity dependence. This is illustrated 

in Figure 4.5 where the observed and predicted high-resolution LIF spectra for the Q1(6)(= 

19073.475 cm-1) and P1(7)(= 19071.823 cm-1) branch features of the [19.07]1–X1Σ+ (0, 0) 
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band are presented.  The associated energy levels, obtained using the optimized 

spectroscopic parameters (see below), and assignments are given in the right-hand portion 

of Figure 4.5.  The upper energy termini of the Q1(6) and P1(7) branch features are the f-

parity and e-parity components, respectively, of the J = 6 rotational level of the 

[19.07]1(v=0) spin-orbit state. The complex structure of the Q1(6) and P1(7) lines is due 

primarily to 197Au(I=3/2) hyperfine splitting in the J = 6 rotational level of the [19.07]1(v 

=0) state. The hyperfine structures in the f-parity components of the J=6 level of the 

[19.07]1(v =0) state are well resolved, but those in the e-parity components are not. The 

spread of the hyperfine energy in e-parity, ∆E1, is about 80 MHz, whereas for the f-parity 

level the spread, ∆E2, is about 225 MHz, which is three time larger. Also shown in Figure 

4.5 are the predicted spectra obtained using the optimized spectroscopic parameters in this 

work.   

The energy level pattern in the f-parity level (Q-branches) varies with the increasing 

J-values as illustrated in Figure 4.6 by the example spectra of the Q(3), Q(6) and Q(15). At 

low-J there are four resolved spectral features, with F-values in the sequence of J-1.5, 

J+1.5, J-0.5, and J+0.5 going from high to low energy. However, with increasing rotation 

the upper two levels (i.e. F=J-1.5 and J+1.5) and the lower two patterns (i.e. F=J-0.5 and 

J+0.5) become grouped together, and the associate Q-branch spectral feature is a doublet, 

i.e. the spectra features of the Q(15) line. The hyperfine pattern also changes quickly upon 

going to lower-J branch features as illustrated in Figure 4.7 where the observed and 

calculated spectra for the spectra Q1(3)(= 19073.750 cm-1) and P1(4)(= 19072.810 cm-1) 

branch features of the [19.07]1–X1Σ+ (0, 0) band are presented. The broadening of the lines 

is assumed to be due to unresolved 35Cl(I=3/2) hyperfine interaction.  
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The observed and predicted spectra for R0(10)(=19200.758 cm-1), 

P0(10)(=19196.178 cm-1), and P0(12)(=19195.368 cm-1) branch features of the 

[19.20]0+–X1Σ+ (0,0) band are presented in Figure 4.8. Small hyperfine interactions in the 

[19.20]0+ (v=0) band were observed. The line positions of 53 transitions in the [19.20]0+–

X1Σ+ (0,0) band and 24 line positions [19.07]1–X1Σ+ (0,0) bands were accurately measured 

and are present in the Table  along with the assignments. 

 

Figure 0.18 The observed and predicted spectra for the Q1(6)(= 19073.475 cm-1) and 

P1(7)(= 19071.823 cm-1) branch features of the [19.07]1–X1Σ+ (0, 0) band 
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Figure 0.19 The energy level pattern of the Q(3), Q(6), and Q(15) branch features of the 

[19.07]1–X1Σ+ (0, 0) band 

 

Figure 0.20 The observed and predicted spectra for the Q1(3) (v=19073.750 cm-1) and 

P1(4) (v=19072.810 cm-1) branch features of the [19.07]1–X1Σ+ (0, 0) band. 
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Figure 0.21 High-resolution LIF spectra for the R0(10)(=19200.758 cm-1), 

P0(10)(=19196.178 cm-1), and P0(12)(=19195.368 cm-1) branch features of the 

[19.20]0+–X1Σ+ (0, 0) band. 

 

4.3.2 Analysis  

As what was done for the AuF study, the [19.20]0+ and [19.07]1 states were treated 

as components of the 3i state, and X1+ (v=0) states of AuCl requires an accurate 

determination of the relative field-free energies of low-rotational levels. The energies for 

the X1+ (v=0) state can be accurately predicted using the spectroscopic parameters from 

previous microwave work [36]. For the 3 (v=0) state, a two stage analysis process is 

performed similar to that used in the analysis of CuF [23]. The reason of preforming a 

“two-step” process is because the small relative splitting of a given branch feature, which 
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arise from the 197Au(I=3/2) and 35Cl(I=3/2) hyperfine interactions in the 3 (v=0) state, can 

be measured more accurately than the absolute transition wavenumber. Therefore, in the 

first stage, the hyperfine splitting in the [19.20]0+(v=0) and [19.07]1(v=0) sub-states were 

measured by combination/differences and used as input for a least squares optimization of 

the hyperfine parameters of the 3 state. The fine structure parameters for the 3(v=0) state 

were held fixed during this stage. In the second stage the measured transition wavenumbers 

were used as input into a least squares optimization of the fine structure parameters of the 

3(v=0) state and the hyperfine structure parameters were held fixed during this stage. The 

process was repeated for several iterations to get the final set of parameters.  

Modelling the energy levels of the X 1+ states of AuCl was straightforward by 

including the rotation and its centrifugal distortion, and the quadrupole interaction[20]: 

    
 2

eff 1 2 4

0 0 0

ˆ ˆ3
ˆ ˆ ˆH ( ) (Cl)

4 (2 1)

zI
B J D J eq Q

I I


   



I
                                                     (4.4) 

In equation (4.4), J is the angular momentum operator. The rotational, B0 (=3511.088 MHz), 

centrifugal distortion correction to rotation, D (=1.3128×10-3 MHz), and the quadrupole 

parameter of chlorine, eQq0(Cl) (=61.0 MHz) were held fixed at values determined from 

the analysis of the microwave spectrum [36]. The 197Au(I=3/2) quadrupole coupling 

parameter, 
0 (Au)eq Q , for the X 1+ state of AuCl is small (=10 MHz [36])and the effects 

not detectable in the optical spectra. The eigenvalues and eigenvectors for the X1 (v=0) 

state of AuCl were obtained by constructing and diagonalizing a 8  8 = (2S+1)(2I1+1)) 
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matrix representation constructed in a one nuclear spin (35Cl(I=3/2)) Hund’s case (aJ)  

basis set.   

For the analysis of  the [19.20]0+ and [19.07]1 states, which are assumed to be 

components of a 3(v=0) state, the effective Hamiltonian for fine structure was taken 

as[20]:  

      
    

   

eff 3 2 2 2 2 2

' "

2 2

2 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆH ( ) R 3
3 2

1 1ˆ ˆˆ ˆ ˆ ˆ( )
2 2

v v Z Z ZT AL S B S o p q S S

p q S J S J q J J

  

     

         

    

S

 (4.5) 

which included the spin-orbit(A),   -doubling(o, p, and q), and spin-spin () fine structure 

terms. The spin-orbit parameter, A, will be constrained to the predicted values of -2250 cm-

1 [39] and the (o+p+q) combination of parameters was constrained to 3548 cm-1, which is 

half the predicted splitting between the predicted 
3

0
1   and 

3

0
1  sub-states [39]. The 

observed splitting between the [19.20]0+ (v=0) and [19.07]1 (v=0) levels of AuCl is 

approximately 125 cm-1, which is much less than the predicted values of 725 cm-1.  

Therefore, the spin-spin parameter, , was treated as a variable.    

The hyperfine structure in the excited [19.07]1 and [19.20]0+ states of AuCl is 

primarily due to interaction of 197Au(I=3/2). Modelling of the hyperfine splitting of AuCl 

was divided into two parts: 1). the magnetic hyperfine Hamiltonian written in terms of the 

Frosch and Foley parameters [20]: 

 1 1
mhf z z F z z 3 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆH I S I S (I S I S) (S I S I )a b c d            (4.6) 

and 2). the nuclear quadrupole Hamiltonian: 
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  2 2i 2

Q 0 0 2

1

Ĥ 6 T ( , ) e T ( , )
4 (2 -1)

q

q 2q

q

eQ
q I I q I I

I I







 
  

 
   (4.7) 

Details of these two Hamiltonian operators have been introduced in the previous chapters.  

The first stage of analysis was achieved by having measured transitions 

wavenumbers for the [19.07]1-X1Σ+ (0,0) band hyperfine splitting (e.g. the splitting 

between the “a” ,“b”, “c”, and “d”  Q-branch spectral features, and  the  “A”, “B” ,and “C”, 

P-branch spectral features Figure 4.4) used as input to a least square fitting procedure of 

AuCl. The fitting procedure calculated both X1Σ+ energies, using the known parameters, 

and those for the [19.07]1 using the initial estimates of eQq0(Au), eQq2(Au), and a(Au). 

The eQq0(Au), eQq2(Au), and a(Au) parameters were optimized in a standard non-linear 

least squares procedure. The measured splittings and the differences between the observed 

and calculated splitting for AuCl are listed in Table 4.5. The optimized eQq0(Au), 

eQq2(Au), and a(Au) parameters are given in Table 4.6.    

In the second stage of the fit the input data set consisted of 78 precisely measured 

optical transition wavenumbers (as shown in Table 4.4) for the [19.07]1 and [19.20]0+ 

states. While the hyperfine parameters optimized from the first stage were held fixed, five 

fine structure parameters of the 3(v=0) state were optimized in the second stage: 0,0T , B, 

p+2q, and q.  The data set is primarily low-J and is relatively insensitive to the centrifugal 

distortion due parameters D and AD and these parameters were held fixed to the previously 

determined values [35]. Similarly, the spin orbit constant, A, and the -doubling parameter 

were constrained to theoretical values (see above). The results of the fitted parameter are 

listed in table 4.7 with a standard deviation of about 0.0014 cm-1.  
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Table 0.4 Observed and calculated line positions of the [19.20]0+X 1+(0,0) and 

[19.07]1 X 1+(0,0) band system of 197Au35Cl. 

Line F1’ F1” Obs. Dif.a 

10-4 

Line F1’ F1” Obs. Dif.a 

10-4 

Q1(3) 3.5 3.5 19073.7486 -10 R1(3) 5.5 4.5 19074.6096 -1 

 2.5 2.5 73.7511 -12 R1(4) 6.5 5.5 74.7478 -13 

 4.5 4.5 73.7511 -9 R1(5) 7.5 6.5 74.8696 0 

 1.5 1.5 73.7580 59 R1(6) 8.5 7.5 76.9699 -10 

Q1(4) 4.5 4.5 73.6748 -8 R1(7) 9.5 8.5 75.0524 -7 

 3.5 3.5 73.6779 1 R1(8) 10.5 9.5 75.1155 -9 

 5.5 5.5 73.6779 -9 R1(9) 11.5 10.5 75.1601 -5 

 2.5 2.5 73.6829 71 R1(10) 12.5 11.5 75.1865 8 

Q1(5) 5.5 5.5 73.5828 -5 P1(4) 4.5 5.5 72.8117 5 

 4.5 4.5 73.5847 -4 P1(5) 5.5 6.5 72.5022 7 

 6.5 6.5 73.5872 3 P1(6) 6.5 7.5 72.1721 -5 

 3.5 3.5 73.5909 9 P1(7) 7.5 8.5 71.8240 -5 

Q1(6) 6.5 6.5 73.4707 -18 P1(8) 8.5 9.5 71.4571 -3 

 5.5 5.5 73.4726 -15 R0(0) 2.5 1.5 19199.4715 15 

 7.5 7.5 73.4757 -7 R0(1) 3.5 2.5 99.6730 8 

 4.5 4.5 73.4787 -4 R0(2) 4.5 3.5 99.8571 -8 

Q1(7) 7.5 7.5 73.3423 -11 R0(3) 5.5 4.5 19200.0271 -4 

 6.5 6.5 73.3435 -12 R0(4) 6.5 5.5 00.1801 -8 



57 
  

 8.5 8.5 73.3467 -8 R0(5) 7.5 6.5 00.3174 -5 

 5.5 5.5 73.3498 0 R0(6) 7.5 6.5 00.4373 27 

Q1(8) 8.5 8.5 73.1948 -10  6.5 5.5 00.4373 19 

 7.5 7.5 73.1963 -7  8.5 7.5 00.4386 -1 

 9.5 9.5 73.2001 1  5.5 4.5 00.4386 -9 

 6.5 6.5 73.2027 6 R0(7) 8.5 7.5 00.5409 17 

Q1(9) 9.5 9.5 73.0298 1  7.5 6.5 00.5409 10 

 8.5 8.5 73.0311 2  9.5 8.5 00.5422 -11 

 10.5 10.5 73.0348 8  6.5 5.5 00.5422 -19 

 7.5 7.5 73.0367 8 R0(8) 9.5 8.5 00.6294 18 

Q1(10) 10.5 10.5 72.8446 -6  8.5 7.5 00.6294 11 

 9.5 9.5 72.8446 -16  10.5 9.5 00.6307 -10 

 11.5 11.5 72.8497 1  7.5 6.5 00.6307 -17 

 8.5 8.5 72.8515 3 P0(3) 3.5 4.5 19198.5013 4 

Q1(11) 11.5 11.5 72.6427 6 P0(4) 4.5 5.5 98.2181 -2 

 10.5 10.5 72.6427 -3 P0(7) 6.5 7.5 97.2699 12 

 12.5 12.5 72.6474 8  5.5 6.5 97.2699 2 

 9.5 9.5 72.6490 10  7.5 8.5 97.2709 -19 

Q1(12) 12.5 12.5 72.4209 4  4.5 5.5 97.2709 -30 

 11.5 11.5 72.4209 -5      

 13.5 13.5 72.4257 7      

 10.5 10.5 72.6096 9      
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Std. dev. = 0.0014 cm-1 

 

a  The differences between the observed and calculated values using the final set of 

optimized parameters given in Tables II and IV of text. The parameters for the X 1 were 

held fixed to those of Ref. [32]. 

 

Table 0.5 Observed and calculated hyperfine splitting in the [19.07]1 state of 197Au35Cl. 

Br,J’ 

,P 

1F – 1F   Ob

s 

Obs-calc Br,J’, 

P 

1F – 1F   Obs Obs-calc 

   Fit A Fit 

B 

   Fit A Fit 

B 

Q, 3, f   4.5-

3.5 

85 -83 -15 Q, 12, 

f 

13.5–

12.5 

144 -36 -7 

Q, 3, f   2.5-

3.5 

85 -42 -11 Q, 12, 

f 

10.5–

12.5 

197 11 -1 

Q, 3, f 1.5-3.5 25

0 

67 -8 Q, 12, 

f 

10.5–

12.5 

197 -36 -1 

Q, 4, f 3.5-4.5 10

0 

58 24 Q, 13, 

f 

14.5–

13.5 

147 11 -5 

Q, 4, f 2.5-4.5 22

5 

31 -16 Q, 13, 

f 

11.5–

13.5 

194 -32 1 
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Q, 5, f 4.5-5.5 69 34 6 Q, 15, 

f 

16.5–

15.5 

162 9 9 

Q, 5, f 6.5-5.5 13

5 

-45 5 Q, 15, 

f 

13.5–

15.5 

204 -17 15 

Q, 5, f 3.5-5.5 23

9 

46 8 R, 3, e 2.5-1.5 30 20 -4 

Q, 6, f 5.5-6.5 49 19 -4 R, 3, e 3.5-1.5 57 2 -

19 

Q, 6, f 7.5-6.5 13

2 

-49 -5 R, 3, e 4.5-1.5 92 4 -

15 

Q, 6, f 4.5-6.5 21

5 

24 -7 R, 4, e 5.5-2.5 74 30 -6 

Q, 7, f 6.5-7.5 46 20 0 R, 4, e 5.5-3.5 49 21 -9 

Q, 7, f 8.5-7.5 15

6 

-25 15 R, 4, e 5.5-4.5 26 14 -5 

Q, 7, f 5.5-7.5 24

6 

36 11 R, 5, e 6.5-3.5 72 37 8 

Q, 8, f 7.5-8.5 35 12 -6 R, 5, e 6.5-4.5 49 25 0 

Q, 8, f 9.5-8.5 14

2 

-39 -2 R, 5, e 6.5-5.5 25 12 -4 

Q, 8, f 6.5-8.5 21

9 

30 9 R, 6, e 7.5-4.5 70 41 17 
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Q, 9, f 8.5-9.5 20 -1 -16 R, 6, e 7.5-5.5 50 28 6 

Q, 9, f 10.5-

9.5 

13

7 

-44 -9 R, 6, e 7.5-6.5 20 7 -7 

Q, 9, f 7.5-9.5 19

2 

4 -13 R, 9, e 10.5-7.5 65 46 29 

Q, 10, 

f 

11.5-

10.5 

15

5 

-25 7 R, 9, e 10.5-8.5 40 22 6 

Q, 10, 

f 

8.5-

10.5 

21

0 

23 9 R, 15, 

e 

16.5-

13.5 

50 39 28 

Q, 11, 

f 

12.5-

11.5 

14

4 

-36 -6 R, 15, 

e 

16.5-

14.5 

30 15 4 

Q, 11, 

f 

9.5-

11.5 

19

7 

11 -1 P,3,e 2.5-1.5 40 12 5 

     P,3,e 3.5-1.5 77 25 1 

     P,3,e 4.5-1.5 112 50 4 

          

          

 Std. Fit A=33 MHz ; Std. Fit B=12 MHz      

 

 

Table 0.6 The hyperfine parameters for the 31(v=0) state of 197Au35Cl. 

Parameter AuCla,b 
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a The determined from the fit of  the hyperfine splitting of Table II. The fine structure 

parameters were held fixed to the values given in Table V.   

b Numbers in parentheses represent a 2 error estimate in the last quoted decimal point.  

  

a(197Au) e-

parity 

0.0039(3) 

a(197Au)f-

parity 

-0.0035(5) 

eq0Q (197Au) -0.0116(5) 

eq2Q (197Au) 0.0199(9) 
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Table 0.7 The determined parameters for modeling the 3i – X1+ (0,0) band of  

197Au35Cl. 

Parameter  AuCl 

T0,0 20024.013(1) 

A -2250.0(Fixed) 

 712.694(1) 

B 0.108159(1) 

106D 0.4397(Fixed) 

o+p+2q 3550(Fixed) 

p+2q -0.248(2) 

103q -0.581(27) 

a(197Au) -0.0035(7) 

eq0Q(197Au) -0.0118(13) 

eq2Q(197Au) 0.0061(2) 

 

a)All units are cm-1. 

b) Numbers in parentheses represent a 2 error estimate in the last quoted decimal point.  

 

4.3.3 Discussion 

The optimized fine and hyperfine structure parameters with associated errors of the 

[19.20]0+ (v =0) and [19.07]1(v =0) states of AuCl are presented in Table 4.7. The 

assumption of  treating the [19.20]0+ (v =0) and [19.07]1(v =0) states as components of a 
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3 state supported the fact that the two separate states could be fitted together into a 3 

model and come up with a set of molecular constants.  

For a 30
+ state, there is no magnetic hyperfine interaction to a first order 

approximation. This is consistent with the observation of really small hyperfine interaction 

in the [19.20]0+ (v =0) state, but large hyperfine interaction in the [19.07]1(v =0) state. The 

only contribution in the magnetic hyperfine interaction is coming from the “a” term in Eq. 

(4.6). Only the electronic orbital term orbital term, 
z z
ˆÎ Sa ,has a non-zero expectation value 

in the Hund’s case (aJ) limit 
3

11   state. As pointed out in Ref. [33], the reasonable 

estimates suggest that the orbital magnetic hyperfine parameter, a, should be a small 

positive value ( 100 MHz), which in our analysis is around 105 MHz. The parity 

dependent term, 1
2

ˆ ˆˆ ˆ(S I S I )d       which has selection rules 1   and 1   , and 

mixes the 
3

11   and 3

0
1  states, is not determined (set to zero). It is noted that the observed 

energy separation between the  
3

11   and 3

0
1   states for AuCl is only approximately 125 

cm-1 and the contribution to the observed hyperfine splitting from d is expected to be 

negligible. 

Unlike the small magnetic hyperfine interaction, the nuclear quadrupole coupling 

interactions are much larger in the 3 state of AuCl. As given in Eq. 4.7, two terms, eQq0 

and eQq2, have contributions to the observed hyperfine splitting. The eQq2 term effects the 

hyperfine splitting for the e-parity and f-parity levels in opposite sign, whereas eQq0 

contributes to both parity levels with the same sign. It is illustrated in Figure 4.9 that the 

observed negligible splitting in the e-parity levels (P- and R- branches) and relatively large 
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splitting in the f-parity levels (Q- branch) are coming from the combination of the two 

terms. For high-J branch features of the [19.20]0+-X1Σ+ (0,0) band, the approximately 40 

MHz splitting are coming from the contribution of the eQq0(Au) term, which gives the 

value of -0.0118 cm-1. 

 

Figure 0.22 The shift of the F components varies with increasing J-level with the 

contribution from the eqQ0, eqQ2 and the combine of the two. 

 

 

4.4 Optical Stark measurement of AuCl 

As a complement to the previous field-free study of AuCl, the [19.20]0+–X1+ band 

system of AuCl has been studied using optical Stark spectroscopy. The observed Stark 

shifts were analyzed to determine the permanent dipole moment, el, for the ground and 

excited states.    
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4.4.1 Observation 

Only the [19.20]0+X 1+ (0, 0) band of the 197Au35Cl isotopologue was studied by 

optical Stark spectroscopy because the low-J lines of the [19.07]0+X 1+ (0, 0) sub-band 

were severely overlapped. The R0(1) (=19199.47 cm-1) line recorded field free and in the 

presence of a 3686 V/cm with both the “” and “” polarizations were employed in Figure 

4.10. The energy levels as a function of applied field are also presented. The observed Stark 

shifts and the differences from the calculated values using the final optimized el values 

are presented in Table 4.8.  

 

Figure 0.23 The observed and predicted spectra of the R0(1) (ν=19199.47 cm−1) line 

recorded field free and in the presence of a 3686 V/cm with both the “” and “” 

polarizations. The associated energy levels as a function of applied field are also given. 
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4.4.2 Analysis 

Analysis of the Stark effect in the [19.20]0+X 1+ (0, 0) band of AuCl was very 

similar to that of AuF as I discussed in the previous subchapters. The interaction of the 

molecule in the static electric field was modelled using the conventional Stark Hamiltonian: 

Stark

el
ˆ ˆH E                                         

 (4.2) 

where el̂  is the dipole moment operator and E


 is the applied static electric field vector. 

A similar procedure  of matrices creation and diagonazation was  processed to determine 

the permanent dipole moment, el, with values of 3.69 ± 0.02 D and 0.32 ± 0.17 D for the 

X 1+ (v=0) and [19.20]0+ (v=0) states, respectively.  

 

Table 0.8 The Stark shifts for the [19.20]0+- X1+(0, 0) band. 

Branch, Pol 

Field 

(V/cm) Assign.a 

Shift 

(MHz) Obs-Calcb 

R (0), || 2285 A 794 -2 

 3427 A 1648 -13 

R (0),  1717 B 454 -6 

 1717 B 447 -13 

 2521 B 956 -13 

 3432 B 1638 27 

 3432 B 1679 30 
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 3432 B 1682 11 

R (1), || 1714 A -263 3 

 2285 A -450 -3 

 2857 A -656 -3 

 3428 A -879 -8 

 1714 C 151 6 

 2285 C 253 -2 

 2857 C 397 0 

 3428 C 553 -14 

R (1),  1714 B -282 -15 

 3428 B -848 23 

 3428 B -860 11 

 1714 D 150 6 

 3428 D 563 -1 

 3428 D 543 -21 

P (1),  1714 E 119 -20 

 3428 E 537 -13 

     

 Std. dev. = 14 MHz 

 

a  A: MJ”=0 MJ’=0; B: MJ”=0 MJ’=1; C: MJ”=1 MJ’=1; D: MJ”=1 MJ’=2; E: 

MJ”=1 MJ’=0; 
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b Calculated shifts obtained using optimized values of 3.69D and 0.3178D for the 

[19.20]0+ and X1+ states, respectively. 

 

4.4.3 Discussion 

The experimental values of el for the X 1+ (v=0) and [19.20]0+ (v=0) states of AuCl 

and those corresponding values for the X 1+ (v=0) and [17.7]0+ (v=0) states of AuF [28] 

are presented in Table 4.9. It is expected that el value for the X 1+ (v=0) state of AuCl 

(=3.69 D) is slightly smaller than that of AuF for the X 1+ (v=0) states, where el is 4.13D. 

This result is consistent with the difference in electronegativities of Cl and F as mentioned 

in the introduction part. However, the large difference between the el value for the 

[19.20]0+ (v=0) stats of AuCl (=0.32D) and the [17.7]0+ (v=0) state of AuF (=2.03D) is 

unexpected. This inconsistency indicates that there is a considerable differences between 

the electronic structures of the two excited states.   

To better explain and understand the excited electronic structures of the two molecules, 

a comprehensive computational study preformed Prof. Cheng and Prof. Stanton will be 

introduced here [51]. As summarized in Table 4.10, among the predicted results for dipole 

moments of the low-lying excite states of AuCl, only the 3 state has a relative small el 

value which is close to my experimental result. At the same time, the el value for the same 

electronic configuration with a 3  state in AuF is in consistent with my previous study 

[28]. This theoretical work gives additional evidence that the states of the AuF and AuCl I 

discussed above are both components of the 3 state. 

el
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The reason that the same 3 state behaves extremely different on AuF and AuCl is 

from their orbital natures. The excitation process from the X 1+ to the 13 state is 

dominated by the 2  3 transitions. As shown in Figure 4.10, the 2 orbital is a nearly 

half-half mixture of the Au 5dxz orbital and F 2px orbital, while the 3 orbital is mostly 

localized on the Au atom. Therefore, the charge transfer will result in a reduction on the 

dipole moment between the X 1+ and 13 states. In the case of AuCl, the electron 

occupation of the 3 orbital is similar to that of AuF, while the 2 orbital is more localized 

on the Cl atom (Shown in Figure 4.11). The difference on the occupation between the 

ground and excited states of AuCl will drive a bigger reduction on the dipole moment of 

the two states and results in a much smaller el value on the 13state of AuCl than that of 

AuF. This effect is even more significant for the bonding of other halogen atoms, like AuBr 

and AuI, as the results shown in Table 4.11. The 2  3 transitions in AuBr and AuI 

bring more charge densities from the X 1+ state to the 13 state, and even flips the sign of 

the dipole moment in the 13 state. 

Table 0.9 The electric dipole moments of AuCl and AuF (in Debye, D). 

 AuCl AuF 

Method X1+ [19.20]0+ X1+ [17.8] 0+ 

Experiment 3.69(2) 0.31(17) 4.13(2) 2.03(5) 

SFX2C-1e-CC 3.70 0.38 4.27 1.98 

MRCI 4.91 1.39 4.90 2.68 
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Table 0.10 Properties of low-lying excited states of AuCl and AuF calculated at SFX2C-

1e/EOM-CCSD/unc-ANO-RCC level. The gold 1s, 2s, 2p, 3s, 3p, 3d electrons were kept 

frozen in the electron-correlation treatment. 

 AuCl AuF 

 Re (Å)  (D) Re (Å)  (D) 

3 2.297 1.69 1.978 2.72 

3 2.275 0.38 1.950 1.98 

3 2.361 3.31 2.019 3.59 

1 2.339 2.30 1.961 2.12 

1 2.296 -0.06 1.975 1.91 

1 2.342 2.80 2.003 3.21 

     

el el
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Figure 0.24 The excitation from the ground state to the 3 state of AuF mainly consists of 

the promotion of an electron from the 2 orbital to the 3 orbital. In the graphs, the gold 

atom is placed on the left hand side and the chlorine atom on the right hand side. 

 

Figure 0.25 The excitation from the ground state to the 3 state of AuCl mainly consists 

of the promotion of an electron from the 2 orbital to the 3 orbital. In the graphs, the gold 

atom is placed on the left hand side and the chlorine atom on the right hand side. 

 

Table 0.11 Properties of the 3 states of AuX (X=F, Cl, Br, and I) calculated at SFX2C-

1e/EOM-CCSD/ANO2 level. During the geometry optimization, the 5d, 6s electrons of 
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gold and the valence s and p orbitals of halogen were correlated. In the dipole moment 

calculations, the Au 4s, 4p, and 4d electrons were also included in the electron-

correlation treatment. 

 Re (Å)  (D) 

AuF 1.959 2.17 

AuCl 2.280 0.45 

AuBr 2.424 -0.39 

AuI 2.636 -1.56 

 

4.5 Summary 

In this chapter, the spectroscopic studies have been described on the [17.8]0+-X1+ 

band of AuF and the [19.07]1–X1+ and [19.20]0+–X1+ bands of AuCl. Accurate 

spectroscopic parameters for the [17.7]1, [17.8]0+ and X1+ states of AuF and [19.07]1, 

[19.20]0+ and X1+ states of AuCl are determined through high-resolution field-free 

spectroscopy. Stark measurement were applied for the determination of the dipole 

moments for ground and excited states of AuF and AuCl. Comparison and discussion were 

made based upon the results of the hyperfine parameters and dipole moments between the 

two molecules (See above). Both of these results support the assignments of the [17.7]1 

and [17.8]0+ states to components of the 3 state of AuF, and the corresponding [19.07]1 

and [19.20]0+ states to components of the 3 state of AuCl.   

 

el
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5. OPITICAL SPECTROSCOPIC STUDY OF GOLD OXIDE, AuO, AND GOLD 

SULFIDE, AuS 

 

5.1 Introduction 

In the previous chapters the spectroscopic studies and bonding properties between 

gold and halogen have been introduced. In this chapter I will introduce the related work on 

the nature of the bond between gold and chalcogen, i.e. oxygen (O) and sulfur (S). 

Understanding the nature of AuO and AuS bonds can provide insight into the expanding 

field of gold chemistry. For example, the strong affinity of sulfur to gold has been exploited 

to make molecular contacts in the field of single molecule electronics [53-56]. An 

individual molecule was attached to gold electrodes via the Au-S bond and the properties 

of charge transport were investigated via this application. Studies involved Au-S bonding 

also have applications in the generation of self-assembled monolayers (SAMs) on planar 

gold surfaces and gold nanoparticles resulting from the interaction with organothiols and 

disulfides [57-61]. The Au-O bond is also very important highlighted by the recent studies 

that unsupported nonporous Au shows the activity for low-temperature CO oxidation and 

is attributed to the uncoordinated Au [62-64].  

Elements of the chalcogen group have relatively small electronegativities compared 

with fluorine and chlorine, with oxygen and sulfur, being 3.442 and 2.583, respectively. 

The bonding between gold and oxygen or sulfur is less polar, and more like a covalent 

                                                           
2 In Pauling Scale 
3 In Pauling Scale 
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bond. As discussed in the previous chapter, the orbital contraction cause by relativistic 

effects may lead to a larger reduction of charge transfer to the bonding partner on the 

covalent bonds than that on the polar bond. Therefore, the effect of reducing the polar 

character of bonding will be more significant for AuO and AuS, than that of AuF and AuCl. 

My studies of measuring the permanent electric dipole moment, el, is one of the most 

effective way to understand the polarity of the Au-O and Au-S bond. Given that the 6s 

electrons will be more involved in bonding it is expected that theoretical predations will be 

more challenging.  

Gas-phase spectroscopic studies of AuO and AuS are very limited. The first studies 

were performed via the photoelectron spectroscopy (PES) on the anions, AuO- and AuS-, 

by Lineberger’s group [65] and more recently by Wang’s group [66, 67].  The PES studies 

shows the results that AuO has a 2i ground state with a spin-orbit splitting of 1440±80 

cm-1 and a vibrational frequency of 590±70 cm-1, whereas AuS has the same 2i ground 

state with a spin-orbit splitting of 1280±60 cm-1 and a vibrational frequency of 400±30 cm-

1. Assignments of numerous excited states were made as well in those PES studies. Pure 

rotational transitions in the X23/2 (v=0) and X23/2 (v=1) states of AuO have also been 

recorded and analyzed by Tanimoto’s group to precisely determine the fine and hyperfine 

parameters [68]. The electronic spectroscopy of AuO has been investigated by O’Brien and 

co-worker on several different bands at medium spectral resolution [69-72]. Their most 

recent study utilized intra-cavity absorption spectroscopy of vibrational progressions of the 

B2--X23/2  transition in the 16900-18900 cm-1 spectral region [72].  
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Unlike the studies on AuO, no previous pure rotational measurement or electronic 

studies were performed on AuS, until the recent work carried out by our laboratory [73].  

In that work the electronic spectrum of AuS covering the 440–740 nm wavelength regions 

was recorded at medium spectral resolution and analyzed.  The electronic spectra were 

assigned to progressions involving transitions from the ground state to four excited states: 

2

3/2X   
4

3/2a  (Te= 12211.08 cm-1),  2A  (Te=15570.48 cm-1),  2B  (Te = 

16330.02 cm-1 ), 
2

3/2C  (Te= 18508.02 cm-1),  and  
2

5/2C  ( Te=19010.02 cm-1).  The 

dispersed fluorescence and radiative fluorescence decay curves were also recorded and 

analyzed.   

 

5.2 Optical field-free and Zeeman study in AuS 

The high-resolution spectrum of the B2Σ––X2Π3/2 (0, 0) band of 197Au32S in the 

region 16284 cm-1 to 16291 cm-1 was recorded field-free and in the presence of a static 

magnetic field. Fine and hyperfine molecular parameters of AuS in the X2Π3/2 (v=0) and 

B2Σ (v=0) states were precisely determined. Magnetic hyperfine parameters for the X2Π3/2 

(v=0) and B2Σ–
(v=0) states of AuS were interpreted to gain insight into the nature of the 

chemical bond. A comparison with the theoretical prediction is made. 

5.2.1 Observation 

The observed excitation spectra of AuS with the assignments are presented in 

Figure 5.1. For these transitions, a conventional 2 (case a) - 2– (case b) labeling scheme 

of  NJFi'Fi"(N") will be used, where the subscript “Fi ” (i=1 or 2 for J=N+1/2 or N-1/2) 

designates the electronic spin components. The “N” superscript is dropped when N=J. 
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The transition wavenumbers of the low-rotational branch features of all six branches for 

the B2Σ-–X2Π3/2
 (0, 0) band of AuS were precisely measured and are given in Table 5.1 

along with the difference between the observed and calculated wavenumbers (see below) 

and the quantum number assignments.  

 

 

Figure 0.26 The observed excitation spectrum of the B2Σ––X2Π3/2 (0, 0) band of AuS in 

the region 16284 cm-1 to 16291 cm-1 

The observed and predicted field-free spectra in the region of the 

SR21(5/2)(v≌16289.27 cm-1)  and R1 (5/2) (v≌19288.84cm-1) lines of AuS are presented in 

Figure 5.2. In the right-hand portion the associated energy levels and assigned transitions 

are given. The energy level pattern of the B2Σ– state is not that of a typical molecule near 

the Hund’s case (bJ) limit [20].  A typical Hund’s case (bJ) limit 2Σ state has widely 

spaced rotational levels designated by the approximately good quantum number of N (=R). 

A typical Hund’s case (bJ) has each rotational level consist of a relatively closely spaced 

doublet (called “-doubling”) caused by interaction of the electronic spin angular 
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momentum, S, with the N (referred to as the “spin-rotation interaction).  The resulting 

momentum J (=N+S) is an approximately good quantum number. For a typical Hund’s case 

(bJ) molecule the -doubling is an order of magnitude smaller than the rotational spacing.  

In the case of the B2Σ– state of AuS the -doubling is a comparable to the rotational spacing.   

The unusually large spin rotation interaction parameter (-0.357 cm-1) relative to the 

rotational constant (B= 0.125 cm-1) cause the J=N+1/2 level to be in close proximity to the 

J=(N+1)-1/2 level (see Figure 5.2).  As a consequence the energy level pattern of the B2Σ- 

state is very unusual being more similar to a state having non-zero electronic orbital angular 

momenta (e.g. a 21/2 state).   Note that the J=N+1/2 and J=(N+1)-1/2 levels have opposite 

parity. The coupling between J and the 197Au(I=3/2) nuclear spin angular momentum, I, 

gives a total angular momentum quantum number, F, which consists of up to four possible 

values: J-3/2, J-1/2 J+1/2, and J+3/2.  As can be seen in Figure 5.2, the magnetic hyperfine 

splittings in the B2Σ– state are relatively large  and correspondingly so are the hyperfine 

parameters (bF=-686(12) MHz, c=694(30) MHz).  Also note that the combination of the bF  

and c terms results in the opposite order of the hyperfine patterns between the J=N+1/2 and 

J=(N+1)-1/2 levels have opposite parity those two different parities.  The electric 

quadrupole hyperfine interaction within the B2Σ– state is relatively small (eQq0=148 (12) 

MHz). The hyperfine structure of the spectra presented in Figure 5.2 is primarily due to the 

B2Σ– state. 

The energy level pattern of the low-rotational levels of the X2Π3/2 state of AuS is 

that of a molecule near the Hund’s case (aJ) limit. It is a Hund’s case (a) because the 

electron spin is approximately quantized in the molecular axes frame due to the large spin 
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orbit coupling (A”≌1300 cm-1) relative to the rotational spacing (B”=0.13156(1) cm-1). It 

is a “J” coupling because nuclear spin, I, is strongly coupled to the angular momentum J. 

No -doubling was observed for lower rotational levels of the X2Π3/2 state of AuS studied 

here. Therefore, lower rotational levels of the X2Π3/2 sub-state consist of two sets of 4 

(=2I+1) very nearly degenerate hyperfine levels of opposite parity. In Figure 5.2, some 

weaker transitions on the shoulder of the stronger features were partially resolved, and 

these are due to small hyperfine splitting in the X2Π3/2 state. The small broadening of the 

spectral features due to the X2Π3/2 state could be modelled using an effective magnetic 

hyperfine interaction parameter h3/2 of -46.01(5) MHz and nuclear electric quadrupole 

hyperfine parameter eQq0=182.24(11) MHz. These two parameters were determined by 

the combination-difference method and the results of the least-square fitting.  The effective 

h3/2 parameter is a linear combination of the Frosch and Foley magnetic hyperfine 

parameters [20].  The determined hyperfine splittings together with calculated difference 

were listed in Table 5.2. All fitted parameters for both the X2Π3/2 and B2Σ– states of AuS 

are presented in Table 5.3, with errors associated with them. 

Zeeman spectroscopy can provide insight into the nature of the electronic spin and 

orbital angular momenta and help verify electronic state designations (i.e. Does the X2Π3/2 

level have =+1 and =1/2?). The observed spectrum in the region of the QP21(5/2) (v 

≌16287.70 cm-1) and P1 (3/2) (v ≌19287.82cm-1) lines recorded in the presence of a 328 

Gauss magnetic field oriented perpendicular (MJ = ±1) to the electric field of the laser 

radiation is presented in Figure 5.3.  Also presented are the predicted spectra calculated 

using the determined magnetic g-factors of the X2Π3/2 and B2Σ– states from Table 5.4 for 
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the tuning of the associated energy levels in the magnetic fields ranging from 0 G to 400 

G. The Zeeman tunings in the X2Π3/2
 state is changing rapidly with the increasing magnetic 

fields.  Due to the small hyperfine interaction in the X2Π3/2 state, MJ is the approximately 

good quantum number, resulting in the splitting of the J=3/2 and J=5/2 level into four and 

six groups of energy patterns (i.e. MJ varies from MJ =-J to MJ =+J). The large hyperfine 

interaction in the B2Σ– state leads to MF being the approximately good quantum number in 

the presence of the applied magnetic field for this state. The Zeeman effect in the B2Σ– state 

are relatively small comparing with the X2Π3/2 state, and observed Zeeman spectral shifts 

in Figure 5.3 were primarily from the tuning in the ground state. The transition represented 

by the dashed lines were not present here because they were overlapped with complicated 

Zeeman shift from other lines. Forty magnetically-induced Zeeman shifts were precisely 

measured and are presented in Table 5.4 along with the assignments and the difference 

between the observed and calculated shifts.  
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Figure 0.27 The observed and predicted field-free spectra in the region of the SR21 (5/2) 

(v≌16289.27 cm-1)  and R1 (5/2) (v≌19288.84cm-1) lines of AuS 
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Figure 0.28 The observed and predicted spectra in the region of the QP21(5/2) (v16287.70 

cm-1) and P1 (3/2) (v 19287.82cm-1) lines recorded field-free and in the presence of a 328 

Gauss magnetic field oriented in perpendicular polarization. 

 

Table 0.12 The observed and calculated transition wavenumber (cm-1) for the B2--X23/2 

(0, 0) band system of 197Au32S. 

Line F1’ F1” Obs. Dif.a 

10-4 

Line F1’ F1” Obs. Dif.a 

10-4 

R1(3/2) 3.5 3.5 19073.7486 -10 R1(3) 5.5 4.5 19074.6096 -1 

 2.5 2.5 73.7511 -12 R1(4) 6.5 5.5 74.7478 -13 

 4.5 4.5 73.7511 -9 R1(5) 7.5 6.5 74.8696 0 

R1(5/2) 1.5 1.5 73.7580 59 R1(6) 8.5 7.5 76.9699 -10 

 4.5 4.5 73.6748 -8 R1(7) 9.5 8.5 75.0524 -7 

 3.5 3.5 73.6779 1 R1(8) 10.5 9.5 75.1155 -9 

 5.5 5.5 73.6779 -9 R1(9) 11.5 10.5 75.1601 -5 

R1(7/2) 2.5 2.5 73.6829 71 R1(10) 12.5 11.5 75.1865 8 

 5.5 5.5 73.5828 -5 P1(4) 4.5 5.5 72.8117 5 
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 4.5 4.5 73.5847 -4 P1(5) 5.5 6.5 72.5022 7 

 6.5 6.5 73.5872 3 P1(6) 6.5 7.5 72.1721 -5 

 3.5 3.5 73.5909 9 P1(7) 7.5 8.5 71.8240 -5 

Q1(6) 6.5 6.5 73.4707 -18 P1(8) 8.5 9.5 71.4571 -3 

 5.5 5.5 73.4726 -15 R0(0) 2.5 1.5 19199.4715 15 

 7.5 7.5 73.4757 -7 R0(1) 3.5 2.5 99.6730 8 

 4.5 4.5 73.4787 -4 R0(2) 4.5 3.5 99.8571 -8 

Q1(7) 7.5 7.5 73.3423 -11 R0(3) 5.5 4.5 19200.0271 -4 

 6.5 6.5 73.3435 -12 R0(4) 6.5 5.5 00.1801 -8 

 8.5 8.5 73.3467 -8 R0(5) 7.5 6.5 00.3174 -5 

 5.5 5.5 73.3498 0 R0(6) 7.5 6.5 00.4373 27 

Q1(8) 8.5 8.5 73.1948 -10  6.5 5.5 00.4373 19 

 7.5 7.5 73.1963 -7  8.5 7.5 00.4386 -1 

 9.5 9.5 73.2001 1  5.5 4.5 00.4386 -9 

 6.5 6.5 73.2027 6 R0(7) 8.5 7.5 00.5409 17 

Q1(9) 9.5 9.5 73.0298 1  7.5 6.5 00.5409 10 

 8.5 8.5 73.0311 2  9.5 8.5 00.5422 -11 

 10.5 10.5 73.0348 8  6.5 5.5 00.5422 -19 

 7.5 7.5 73.0367 8 R0(8) 9.5 8.5 00.6294 18 

Q1(10) 10.5 10.5 72.8446 -6  8.5 7.5 00.6294 11 

 9.5 9.5 72.8446 -16  10.5 9.5 00.6307 -10 

 11.5 11.5 72.8497 1  7.5 6.5 00.6307 -17 

 8.5 8.5 72.8515 3 P0(3) 3.5 4.5 19198.5013 4 

Q1(11) 11.5 11.5 72.6427 6 P0(4) 4.5 5.5 98.2181 -2 

 10.5 10.5 72.6427 -3 P0(7) 6.5 7.5 97.2699 12 

 12.5 12.5 72.6474 8  5.5 6.5 97.2699 2 

 9.5 9.5 72.6490 10  7.5 8.5 97.2709 -19 

Q1(12) 12.5 12.5 72.4209 4  4.5 5.5 97.2709 -30 

          

     

     

     

     Std. dev. = 0.0014 cm-1 
 

a  The differences between the observed and calculated values using the final set of 

optimized parameters given in Tables II and IV of text. The parameters for the X 1 were 

held fixed to those of Ref. ??. 
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Table 0.13 The observed and calculated Zeeman shifts (MHz) for the lines of the B2--

X23/2 (0, 0) band system of 197Au32S. 

Branch Fiel

da 

Pol

. 

MF
’ 

MF
” Obs. Diff. 

R1(1/2) 3080  0 1 -5171 47 

   -1 0 -5060 48 

   2 1 -1589 17 

   1 0 -1404 51 

   -2 -1 1583 12 

   -1 0 1472 51 

   0 -1 5210 -10 

   1 0 5082 12 

 3080  1 1 -3360 43 

   0 0 -3191 62 

   -1 -1 3408 3 

   0 0 3281 26 

 1060  2 1 -583 -34 

   1 0 -393 10 

   -2 -1 573 28 

   -1 0 469 69 

 1060  1 1 -1210 -38 

   0 0 -1058 -32 

   -1 -1 1218 46 

   0 0 1075 48 

Q1(1/2) 3080  0 1 -4351 -26 

   -1 0 -4161 10 

   0 -1 4303 1 

   1 0 4222 74 

 3080  1 1 -4301 24 

   0 0 -4213 -38 

   -1 -1 4308 6 

   0 0 4190 39 

 1060  0 1 -1546 -60 

   -1 0 -1402 -62 

   0 -1 1456 -27 

   1 0 1380 43 

 1060  1 1 -1538 -52 

   0 0 -1387 -46 

   -1 -1 1538 55 

   0 0 1345 7 
SR21(1/2) 1060  0 1 -1814 -54 

   -1 0 -1661 -46 

   2 1 -646 -13 
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   1 0 -492 -4 

   -2 -1 674 30 

   -1 0 530 31 

   0 -1 1823 51 

   1 0 1702 75 

 1060  1 1 -1231 -35 

   0 0 -1052 -2 

   -1 -1 1239 -31 

   0 0 1115 -52 

 3080  0 1 -5098 -20 

   -1 0 -4953 -26 
SR21(1/2) 3080  2 1 -1806 2 

   1 0 -1662 -4 

   -2 -1 1904 -3 

   -1 0 1710 -39 

   0 -1 5260 75 

   1 0 5060 25 

 3080  1 1 -3431 8 

   0 0 -3270 18 

   -1 -1 3528 -18 

   0 0 3399 3 

R2(1/2) 3080  -1 0 3036 -30 

   0 1 3203 -17 

   1 0 6357 29 

   2 1 6475 -13 

 3080  -1 -1 2622 -54 

   0 0 2977 27 

   0 0 4639 -61 

   1 1 4801 -53 

 1060  -1 0 774 -15 

   0 1 978 40 

   1 0 1965 50 

 1060  -1 -1 446 21 

   0 0 715 29 

   0 0 1327 -25 

   1 1 1530 29 
RQ21(1/2) 3080  -1 0 -6115 33 

   -2 -1 -5746 69 

   1 0 -2848 24 

   0 -1 -2494 45 

   2 1 -1617 22 

   1 0 -1297 8 

   -2 -1 1023 -11 
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   -1 0 1325 16 

 3080  0 0 -4503 3 

   -1 -1 -4165 8 

   1 1 -3270 -3 

   0 0 -2932 0 

   2 2 -1851 -36 

   1 1 -1709 -44 

   -2 -2 -1898 -7 

   -1 -1 -1881 5 

 1060  2 1 -574 -66 

   1 0 -250 -58 

 1060  0 0 -1310 -50 

   -1 -1 -991 -43 

   2 2 -668 -33 

   1 1 -516 -25 

   -2 -2 663 17 

   -1 -1 629 9 

       

a) Magnetic field in Gauss. 

b) Standard deviation of fit: 37 MHz 

 

5.2.2 Analysis 

The analysis of the field-free spectrum was performed in a two-steps method. In 

the first step, the precisely measured splitting between the components in the observed 

branch features of the low-J lines were used as input into a least squares fitting procedure 

to optimize the X2Π3/2
 state hyperfine parameters h3/2(= a +(bF+c)/2)  and eQq0. In the 

second step the ground state hyperfine parameters were held fixed and the transition 

wavenumbers were least squares fitted to produce an optimized set of hyperfine structure 

parameters of the B2Σ– state and fine structure parameters for both of states.  

In 197Au32S the hyperfine interactions in the X2Π3/2
 and B2Σ– states are only due to 

the 197Au(I=3/2). Modelling the hyperfine structure in the X2Π3/2
 state of AuS consists of 

two parts: the magnetic hyperfine Hamiltonian and the nuclear quadrupole Hamiltonian. 
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The magnetic hyperfine Hamiltonian written in terms of the Frosch and Foley parameters 

is [20]: 

     1
mhf z z F z z 3

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆH I S I S (I S I S)a b c                                           (5.1) 

where Ŝ
and Î are the shift operators of the total electron spin, S, and nuclear spin angular 

momentum, I.  The magnetic hyperfine parameters, a, bF, c and d, are averages over the 

spatial coordinates of the unpaired electrons. In the Hund’s case (aJ) limit the energy 

contribution due to the magnetic hyperfine interactions in the 2Π3/2 spin-orbit component 

is given by [20]:   

)1(4

)1()1()1((3 2/3






JJ

JJIIFFh
Ehyf .                      (5.2) 

where h3/2 is a linear combination of the Frosch and Foley magnetic hyperfine parameter, 

F, I, and J= total, nuclear spin, and total in the absence of nuclear spin angular momenta 

quantum numbers.  The energies of the 2Π3/2 spin-orbit are insensitive to the parity 

dependent term magnetic hyperfine term, d. 

 Modelling of the nuclear quadrupole hyperfine interaction in AuS is the same as 

AuCl and AuF which I introduced in the previous chapter. The general form of  the nuclear 

quadrupole nuclear quadrupole Hamiltonian is given as [20]: 

  2 2i 2

Q 0 0 2

1

Ĥ 6 T ( , ) e T ( , )
4 (2 -1)

q

q 2q

q

eQ
q I I q I I

I I







 
  

 
                   (5.3) 

As indicated in Eq. 5.3 there are generally two parameters: the diagonal eQq0 term and an 

off-diagonal eQq2 term. In the present study the data set was only sensitive to the eQq0 

term. Under these conditions Eq. 5.3 reduces to  
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2
. 2

3/2 0

ˆ ˆ(3 )
( )

4I(2I 1)
Quad ZI

X eQq


 


I
H     (5.4) 

The first stage of analysis was achieved by having measured transitions hyperfine 

splitting for the X2Π3/2 (v=0) state used as input to a least square fitting procedure of AuS. 

The initial estimates of the AuS parameters for the fitting were taken as the measured 

parameters for the same X2Π3/2 (v=0) state of AuO [68]. The eQq0(Au) and h3/2(Au) 

parameters were optimized in a standard non-linear least squares procedure. The 

determined splittings and the differences between the observed and calculated splitting for 

X2Π3/2 (v=0) state of AuS are listed in Table 5.2.   

With determined hyperfine parameters for the X2Π3/2
 state of AuS, the modeling of 

the energy levels of the X2Π3/2
 state was straightforward by adding to Eqs. 5.1 and 5.4 the 

spin-orbit interaction, and rotation, [20]: 

2 2

3/2
ˆˆ ˆ( )eff

z zX AL S B  H N ,                                                  (5.5) 

where A is the spin-orbit parameter, and B is the rotational constant. An 16 × 16 matrix 

representation was constructed in a Hund’s case (aJ), nonparity basis set, (case aJ) = 

 n ; ; JI FMFS   , and diagonalized to produce the eigenvalues and eigenvectors for 

the X2Π3/2
 state. 

The energy levels of the B2Σ– state were modeled by including the rotation and its 

centrifugal distortion, the spin-rotation, the proton magnetic hyperfine, and nuclear electric 

quadrupole interactions [20]: 

2 2 4 21 1
2 3

( ) - ( )eff

D F z zB D b c I S 


           H N  N N S + N S,N I S I S     (5.6) 
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where N is the angular momentum operator excluding the electronic and nuclear spin, S 

and I, respectively, and 
2


  N S,N  indicates the anti-commutator. An 8 × 8 matrix 

representation was constructed in a Hund’s case (aJ) nonparity, basis set, (case aJ) =

 n ; ; JI FMFS   , and diagonalized to produce the eigenvalues and eigenvectors for 

the B2Σ– states.  A nonlinear least-squares fitting procedure program was written to 

optimize the parameters for the B2Σ– state and the fine structure parameters for the X2Π3/2
 

state. The determined parameters and associated errors are presented in Table 5.3. The 

standard deviation of the fit (= 0.0011 cm-1) is commensurate with estimated measurement 

uncertainties of the field-free spectrum.  

 Similar to the previous AuF study,  the effective Zeeman Hamiltonian was taken as 

[20]:  

2 2

ˆˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )

S B L B

i i

B x x y y B

eff g g

                   g S B S B g e S B e S B 

 

   

   

    

  

H S B L B  
Zee

l l

                                (5.7) 

The eigenvalues and eigenvectors of the X23/2 (v=0) and B2 (v=0) states were 

determined by diagonalization of a 6464 and 6464 matrix representations, respectively, 

constructed using the Hund’s case (aJ) basis set functions for F  7 level.  The 113 

magnetically-induced Zeeman shifts (Table 5.4), and initial estimates for g-factors for the 

B2 (v=0) and X23/2 (v=0) states were used as input for a nonlinear least square fitting 

procedure. Numerous least squares fits were performed in an attempt to optimize various 

combinations of g
S
, g

L
, g

l
 and 'lg . To within the estimated error, the optimized values for 
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g
L
 did not deviate from that9 expected for a free electron and  g

l
 and 'lg  were =0 for the 

X23/2 (v=0) state . It was determined that g
S
=2.150(1), and g

L
 =1.000(fixed) for the X23/2 

(v=0) state and g
S
=2.671(2) and g

l
 =1.616(4) for the B2 (v=0) resulted in a standard 

deviation of a fit (= 40 MHz) consistent with the experimental measurement uncertainty.  

The predicted spectra, such as those given in Figures 5.1-3, were obtained by co-

adding the individual spectral features obtained using a rotational temperature of 10 K and 

a Lorentzian linewidth of 30 MHz full width at half maximum.  The prediction used a 

slightly higher resolution than actually observed in order to reveal underlying structure.  

Table 0.14 The determined spectroscopic parameters from the analysis of the B2--X23/2 

(0, 0) band system of 197Au32S transition wavenumbers (Table 5.1). 

X23/2 

B” 0.13155(1) 

D”(×107) 0.64(1) 

h3/2” -0.00261(5) 

eq0Q” 0.0027(1) 

B2- 

B’ 0.12347(1) 

D’ (×107) 0.54(1) 

’ 0.35460(6) 

gD’(×105) -1.18(6) 

bF’ -0.0216(4) 

c’ 0.027(1) 

eq0Q’ 0.0062(4) 

T00’ 15638.0666(2) 

 

Table 0.15 The determined magnetic g-factor for the B2-(v=0) and X23/2 (v=0) states of 

AuS. 

X2P3/2 
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g
S
 2.150(1) 

g
L
 1.00(fixed) 

B2S- 

g
S
 2.671(2) 

g
l
 1.616(4) 

 

5.2.3 Discussion 

The lowest rotational features of the B2X23/2 (0, 0) band of AuS have been 

detected and analyzed for the first time. The hyperfine interaction observed in the X23/2 

state is determined small. The magnetic hyperfine parameter h3/2 (=-46.01(8) MHz) and 

nuclear quadrupole parameters eQq0 (=182.24(11) MHz) of AuS have been determined 

precisely using the combination-difference fitting process. These values are consistent with 

the previous determined parameters for the X2Π3/2
 state of AuO (h3/2=-48.10 MHz, eQq0= 

188.11 MHz) which come from the microwave measurement [68]. Unlike the small 

hyperfine interaction in the ground state, the B2 (v=0) state has a relative large magnetic 

hyperfine interaction (bF = -647(11) MHz, c=(30) MHz) and somewhat smaller nuclear 

quadrupole interaction (eQq0 =146(10) MHz).  

The determined anisotropic Zeeman parameter, gl, for the B2 (v=0) state can be 

qualitatively understood. This parameter is introduced into the effective Hamiltonian to 

account for spin-orbit and rotational mixing of electronic states. Such mixing is extensive 

for the  B2 (v=0) state due to the density of excited states and the large spin-orbit 

interaction. The major contribution to the spin-rotation parameter, , also comes from state 

mixing and the two parameters are related by the Curl relationship [23]: 

gl ≈ − /2B,        (5.8) 
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where  and B, are the spin-rotation and rotational parameters. Using the experimentally 

determined parameters (=0.357 cm-1and Bcm-1 ) from Table 5.5 gives gl (B
2) =-

1.41, which is in the same sign and close to the experimental determined value(gl=-1.62).  

 It is more difficult to rationalize why the determined gS parameters of B2 (v=0) 

state(=2.67), and  the X23/2 (v=0) state(=2.15) deviate so markedly from that expected for 

a free electron (=2.0023).  We are currently working with Prof. Lan Chang (Johns Hopkins) 

in effort to shed light on this mystery. The analysis for the high-solution field-free spectra 

of the B2X23/2 (0, 0) band of AuO was very similar to that of AuS. This is at the limit 

of an “effective Hamiltonian” approach which is a perturbation approximation.  

 

5.3 Optical Stark measurement of AuO and AuS 

The observed Stark shifts in the B2X23/2 (0, 0) band system of AuS and AuO were 

analyzed to determine the permanent dipole moment, el, for the ground states of the two 

molecules.  It is expected that el values for the two molecules should be very similar.   

 

5.3.1 Observation 

Due to complexity and congestion of spectra caused by the strong hyperfine 

interaction of 197Au(I=3/2), only very few lines of both AuS and AuO were suitable  for 

Stark measurement. The observed Stark tuning in the X23/2 (v=0) state of both AuO and 

AuS are very rapidly, due to the near degeneracy of levels of opposite parity (-doublets). 

In contrast the energy levels of opposite parity in the B2
 (v=0) states are well separated 
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and there was no evidence of observed spectral Stark shifts due to the contribution of these 

levels for the relatively low electric fields employed in the current study .   

The Q21(3/2) (=16899.26 cm-1) and P1(3/2) (=16897.43cm-1) lines in the 

B2X23/2 (0, 0) band of AuO were selected for optical Stark measurements. The 

observed and predicted field-free and Stark spectra for the P1(3/2) line of AuO are 

presented in Figure 5.4 associated with the energy levels and quantum number assignments. 

The predicted spectra and simulated energy level shifts were obtained using the optimizing 

parameter. The F=2 and F=1 hyperfine components of the N=0, J=1/2 level in the B2
 

(v=0) state are well separated by 450 MHz and stay constant with the applied electric field. 

The lower energy patterns for the X23/2 (v=0), J=3/2 level are much more complicated as 

a function of applied electric field. The nuclear spin angular momentum, I , remains 

coupled to the rotational angular momentum, J , over the applied field range, making the 

projection of total angular momentum, MF, to be the only appropriate quantum number. 

Therefore, the selection rules are 0FM   for the parallel polarization and 1FM   for 

the perpendicular polarization, respectively. The 24 Stark shifts of AuO were precisely 

measured and presented in Table 5.5 along with the quantum number assignments and 

difference between the observed and calculated values.  

Similar to the B2X23/2 (0, 0) band of AuO, only the 4, 3 3F F =    

components of the QP21(5/2) (=16287.7022 cm-1) line and the 4 3F F =    

component of the R1(3/2) (=16288.6629 cm-1) line of AuS are suitable for Stark 

measurements. The observed field-free spectrum and the predicted and observed Stark 
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spectra for the QP21(5/2) transition with the associated energy levels and Stark tuning are 

given in Figure 5.5. Exactly the same as the upper energy terminus of AuO, the hyperfine 

components of the N=2, J= 3/2 level in the B2
 (v=0) state of AuS are well separated and 

have no Stark tuning in the applied field. However, unlike the lower energy level pattern 

for AuO, the applied electric field (i.e. 600 V/cm) is sufficient to uncouple the nuclear spin 

angular momentum, I , from the rotational angular momentum, J . Therefore, the 

appropriate approximately good quantum numbers are transformed from F and MF at low 

field to MJ  and MI at high field in the presence of the electric field. This leads to a result of 

energy level patterns in 6 groups due to MJ in the high field as shown in Figure 5.5. The 

difference of the coupling case between AuO and AuS are due to the fact that the hyperfine 

splitting for the J=5/2 level of AuS ( 69 MHz) is significantly smaller than that for the 

J=3/2 level of AuO ( 155 MHz). The spectral Stark shifts of 68 features for AuS were 

precisely measured and presented in Table 5.6 with the quantum number assignments and 

difference between the observed and calculated values. 
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Figure 0.29 The observed and predicted spectra of the Q21(3/2) (=16899.26 cm-1) and 

P1(3/2) (=16897.43cm-1) lines in the B2X23/2 (0, 0) band of AuO recorded both field-

free and in the present of electric field 
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Figure 0.30 The observed and predicted spectra of the QP21(5/2) (=16287.7022 cm-1) 

R1(3/2) (=16288.6629 cm-1) lines in the B2X23/2 (0, 0) band of AuS recorded both 

field-free and in the present of electric field 

 

Table 0.16 The observed and calculated Stark shifts of lines in AuO. 

 Field     Obsa Difb 

Branch,  pol. (V/cm) F   MF
 F   MF

 (MHz) (MHz) 

Q21(3/2) , 138.0 0 0 1 1 -72 4.3 

 193.0 3 2 3 1 32 1.3 

  3 3 3 2 -62 -13.2 

  1 1 1 0 -116 4.4 

 221.0 0 0 1 1 -142 1.2 

  1 1 0 0 -144 5.0 

  3 2 3 1 179 -10.4 

        

Q21(3/2), || 55.2 3 3 3 3 -39 10.0 

  3 -3 3 -3 39 -10.0 

 110.4 3 3 3 3 -93 4.8 

  3 -3 3 -3 93 -4.9 

 165.7 3 3 3 3 -152 -5.0 
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  3 -3 3 -3 152 4.7 

 221.0 3 3 3 3 -197 -1.0 

  3 -3 3 -3 197 0.5 

        

P1(3/2),  165.7 2 0 3 1 -193 3.4 

  2 -2 3 -3 -155 -8.0 

  2 -2 3 -1 -92 6.0 

  2  2 3  1 29 5.4 

  2 2 3 3 165 17.7 

        

P1(3/2), || 276.2 2 -2 3 -2 -82 6.6 

  2 0 3 0 48 17.4 

  1 0 1 0 -37 -4.0 

  1 1 2 1 134 -12.1 

        

 Std. dev. =8.1 MHz    
a Observed Stark shift relative to the field-free line.  

b Difference between the observed and calculated Stark shift. 

 

Table 0.17 The observed and calculated Stark shifts of lines in AuS 

 Fiel

d 

    Ob

sa 

Dif
b 

 Fiel

d 

    Ob

sa 

Dif
b 

Branc

h, 

pol. 

(V/

cm) 

F

  

M

F
 

F

  

M

F
 

(M

Hz) 

(M

Hz) 

Branc

h, 

pol. 

(V/

cm) 

F

  

M

F
 

F

  

M

F
 

(M

Hz) 

(M

Hz) 

QP21(5

/2) , 

376

.3 
3 3 4 4 

-

200 -21 

QP21(

5/2) , 

|| 

276

.2 2 

-

2 3 -2 -75 -6 

 
 

3 2 4 3 

-

144 -25   2 0 3 0 -12 11 

  3 0 4 1 -73 -7   2 2 3 2 21 -9 

  3 1 4 0 2 -4   2 0 3 0 85 -6 

  3 1 4 2 79 -3  

276

.2 2 

-

2 3 -2 -70 11 

  3 3 4 4 171 -10   2 0 3 0 -7 -10 

 

552

.5 3 3 4 4 

-

236 26   2 2 3 2 35 6 

  3 2 4 3 

-

164 6   2 0 3 0 94 -1 

  3 0 4 1 -69 12  

331

.5 3 3 4 3 

-

110 16 

  3 1 4 0 24 2   3 2 4 2 -44 3 

  3 1 4 2 114 -19   3 0 4 0 0 15 
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  3 3 4 4 228 -37   3 

-

3 4 -3 84 -5 

  3 3 4 4 

-

247 15  

331

.5 3 3 4 3 

-

110 9 

  3 2 4 3 

-

173 -2   3 2 4 2 -45 -1 

  3 0 4 1 -73 9   3 0 4 0 -5 11 

  3 1 4 0 19 -3 

 

 3 

-

3 4 -3 70 -5 

  3 1 4 2 110 -23 

 552

.5 3 3 4 3 

-

185 -15 

  3 3 4 4 242 -24   3 2 4 2 -84 -6 

R1(3/2

), || 

220

.9 4 3 3 3 

-

156 0 

 

 3 0 4 0 16 -6 

  4 2 3 2 -85 -28   3 

-

3 4 -3 131 -7 

  4 0 3 0 21 24  

552

.5 3 3 4 3 

-

191 -21 

  4 

-

2 3 -2 141 2   3 2 4 2 -90 -10 

 

220

.9 4 3 3 3 

-

154 -6   3 0 4 0 10 -12 

  4 2 3 2 -82 -25   3 

-

3 4 -3 135 -4 

  4 0 3 0 20 22  

552

.5 3 3 4 3 

-

191 -20 

  4 

-

2 3 -2 146 6   3 2 4 2 -91 -13 

 

276

.2 4 3 3 3 

-

196 -11   3 0 4 0 10 -12 

  4 2 3 2 -98 -29   3 

-

3 4 -3 132 

-

7 

  4 0 3 0 26 15         

 

 4 

-

2 3 -2 187 10         

 

276

.2 4 3 3 3 

-

190 -6         

  4 2 3 2 -90 -20         

  4 0 3 0 24 12         

  4 

-

2 3 -2 177 0 

   Std. dev. =8.6 MHz 

 

a Observed Stark shift relative to the field-free line. b Difference between the observed 

and calculated Stark shift. 
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5.3.2 Analysis 

Since no Stark shifts were observed for the B2
 (v=0) states of AuO and AuS at 

the relatively low applied electric fields, only the Stark effect of the X23/2 (v=0) states 

needed to be considered and analyzed. The fine and hyperfine parameters for the X23/2 

(v=0) of AuS has been determined in the previous chapter, and those for the ground state 

of AuO were measured precisely by the pure rotational studies [68]. Those parameters are 

used for modelling the energies and wavefunctions of the X23/2 (v=0) states. 

The interaction with the static electric field was modeled using the conventional 

Stark Hamiltonian [20]:  

stark

el E  H ,                (5.9) 

where E  is the external electric field, and el  is the electric dipole moment operator.  A 

128128 matrix was generated for the X23/2 (v=0) state to represent the F=0-7 Hund’s 

case aJ, non-parity, basis set: (case aJ)  =  n ; ; JI FMFS   . The matrix was 

numerical diagonalized to produce eigenvalues and eigenvectors and the Stark shift 

energies was obtained. A non-linear least squares fitting was preformed using the observed 

Stark shifts in Table 5.5 to determine el values of 2.94  0.06 D and 2.22  0.05 D for the 

X23/2 (v=0) states of AuO and AuS, respectively. The standard deviation of the AuO and 

AuS fits are 8.1 MHz and 8.6 MHz, which are much less than the estimated uncertainty 

(20 MHz). The standard deviation statistical errors ( 0.06 D and   0.05D) of the 

determined el values are comparable to the estimated 2% possible systematic error.  
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5.3.3 Discussion 

The experimentally determined el values for X23/2 (v=0) states of AuO and AuS 

are listed in Table 5.7 comparing with the selected predicted values from various reference 

[74, 75] and the most recent prediction from our collaborator, Prof. Cheng [76].  The 

experimentally determined el value of AuO (el=2.94  0.06 D) is slightly larger than that 

of AuS (el=2.22 0.05 D), which is consistent with the electronegativity of S being less 

than that of O. The prediction using The relativistic Hartree-Fock (HF) and configuration 

interaction (CI) method are in very poor agreement with the determined values by giving 

the  el values of 5.53 D and 4.69 D [74]. Later the predicted values of 3.39 D and 2.63 D 

for AuO and AuS obtained using the NESC/DFT method are both approximately 0.4 D 

higher possibly because of insufficient modelling of the nature of the valence 2π and 2 

orbitals [75]. The most recent work by Prof. Cheng was performed using various methods. 

The results given by lower level computation methods (i.e. HF-SCF) are larger than the 

experimental values by more than 50%. The higher-level prediction with considering of 

electron correlation contributions and zero-point vibrational corrections greatly improved 

the results, i.e. CCSD(T). The best computational values presented here, 3.12 D for AuO 

and 2.44 D for AuS, agree reasonably well with the experimental results (2.94 D for AuO 

and 2.22 D for AuS).  

 Exp. Previous Prediction Prof. Cheng’s Prediction 

Theo

. 

  HF-

CL 

NESC/DF

T
 

HF-

SCFa,b 

CCSD(T)a,

b 
+TQa,c +SOd +viba

,c 
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Table 0.18 Calculated 
el for AuO and AuS (in Debye). 

 

a SFX2C-1e.  b unc-ANO-RCC basis sets. c ANO1 basis sets. d Dyall’s double-zeta basis.   

 

 

5.4 Summary 

In this chapter, the high-resolution field-free spectra for the B2Σ––X2Π3/2 (0, 0) band 

of AuS have been recorded and analyzed to precisely determine fine and hyperfine 

molecular parameters for the X2Π3/2 (v=0) and B2Σ (v=0) states. Optical Zeeman 

spectroscopic study was performed to determine the magnetic dipole moments for the 

X2Π3/2 (v=0) and B2Σ–
(v=0) states of AuS.  

The ground state permanent electric dipole moments, 
el




, for the two most 

fundamental gold-containing molecules, AuO and AuS, have been experimentally 

determined and theoretically predicted. A quantum-chemical calculation using the new 

developed SFX2C-1e scheme predicted 
el




 values (3.12 D for AuO and 2.44 D for AuS) 

agrees well with the experimental values (2.94  0.06 D for AuO and 2.44  0.05 D for 

AuS).  In contrast to the SFX2C-1e scheme, non-relativistic methodologies perform poorly. 

Somewhat surprising is the observation of the large reduction in 
el




 due to the inclusion 

of higher order electron-correlation (see Table 5.7). An important conclusion is that 

developing methods treat electron correlation is more important that methods to treat 

relativistic effect in diatomic Au-containing molecules.  

AuO 

2.94(6

) 5.53 3.39 4.46 3.21 3.20 3.12 3.12 

AuS 

2.22(5

) 4.69 2.63 4.14 2.44 2.44 2.37 2.37 
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6. OTHER STUDIES 

6.1 Introduction 

The systematic spectroscopic studies of diatomic gold-containing molecules, i.e. 

AuF, AuCl, AuS, and AuO, have been described in the previous chapters. In addition to 

those works, I have been involved, and made contributions, to other projects. These 

projects are highly related with the topic of my thesis (metal bonding). Therefore, I will 

briefly describe these works in this chapter. There are two subjects: 

1) The optical spectroscopic studies of PtC and PtF [77, 78], 

2) The optical Zeeman and Stark spectroscopy of MgH and MgD [79, 80]. 

Pt (Z=78) sits right next to Au (Z=79) on the periodic table with an electron 

configuration of [Xe][4f14]5d96s1. As shown in Figure 1.2, Pt has a similar strong 6s orbital 

contraction as Au due to relativistic effects. Therefore, the chemical properties performed 

by Pt are very like those of Au. With gaining an electron, the Pt ion (Pt) will have the 

same electronic structure as Au. The platinide anion Pt2
2- has been found and considered 

to as the first member of the continuous series with Au2 and Hg2
2+ [81].  Not just the ions, 

but Pt also has unusual higher oxidation states (Pt2+, Pt4+, and Pt6+) which is very similar 

to Au. All the common “personalities” between Pt and Au make the Pt chemistry equally 

interesting and important in studying and modelling the relativistic effect. The current 

studies of PtF and PtC examine proto-typical ionic and covalent bonding.  

 The spectra of magnesium hydride, MgH, and magnesium deuteride, MgD are 

routinely used for the characterization of effective temperature, gravities, and isotopic 

abundance of the stars [82-84]. Especially the A2rX2+ band, which are Zeeman active 
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and in the 515 nm visible range, has applications on the investigation of solar and stellar 

magnetism [80]. For example, this band has been used in the detection and analysis of the 

Zeeman split Stokes V spectra in spatially resolved sunspots with a probed magnetic field 

at around a few kG [85-87]. In addition being a light polar ( el >> 0D), paramagnetic ( m >> 

0 JT-1) neutral molecules, MgH and MgD have attractive properties for kinetic energy 

manipulation to produce ultra-cold molecules. MgH is a candidate slowing and trapping 

experiment vaia the interaction of el with a static electric field (i.e. the Stark effect) or m

with a static magnetic field (i.e. the Zeeman effect) to generate cold and ultra-cold 

molecular samples [88-90]. Therefore, these two important properties electric dipole 

moment, el , and magnetic dipole moment, m , will be investigated and discussed in this 

chapter. 

 

6.2 The spectroscopic studies of PtC and PtF 

The spectroscopic studies of a serious of Pt-containing molecules have been 

previously investigated by my former lab-mates, including PtC, PtN, PtO, PtF, etc. [77, 78, 

91-94]. Here I will introduce our most recent studies on PtF and PtC. The pure rotational 

spectrum of PtC has been recorded using pump/probe microwave optical double resonance 

technique and analyzed to determine the fine and hyperfine parameters for the X1+ (v=0) 

state. Also presented here are the experimental determination of el  and the 19F(I=1/2) and 

195Pt(I=1/2) magnetic hyperfine interactions for PtF in the [11.9] =3/2 (v= 0 and 1) and 

X23/2 (v = 0) states. 

 



105 
  

6.2.1 Pure rotational spectrum of PtC 

A block diagram of the pump/probe microwave optical double resonance set-up is 

given in Figure 6.1. Molecular beam pump/probe microwave optical double resonance 

(PPMODR) [95, 96] was used to record the pure-rotational spectrum of the 194Pt12C, 

195Pt12C, and 196Pt12C isotopologues. Radiation from a continuous wave dye laser was used 

to excite lines in the A1X1+ (0, 0) band near 540 nm. The resulting LIF signal was 

viewed through a 570 ± 10 nm band pass filter and detected with a cooled photo-multiplier 

tube. Photon-counting techniques were used to process the signal. An intense (~200 mW) 

laser pump beam was used to deplete the population in either the J”=1 or J”=2 levels of 

the X1+ (v = 0) state. Tunable microwave radiation repopulated the depleted level. The 

repopulation detected as an increase in the LIF signal induced using a weak (~10 mW) 

probe laser beam operating at the same wavelength as the pump beam. The tunable 

microwave radiation was generated by the second or fourth harmonic of nominally 15.86 

GHz radiation from a frequency synthesizer. A rubidium frequency standard was used to 

generate the time-base for the frequency synthesizer. The stabilized microwave radiation 

was introduced into the chamber via a homemade 26˚ ‘H-plane’ horn antenna 

(approximately 3 × 0.4 cm).  
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Figure 0.31 A schematic diagram of the PPMODR experimental. 

Two pure rotational transitions were measured for 194Pt12C, 195Pt12C and 196Pt12C: 

1) R(1) line for the J=0J=1 pure rotational measurements 

2) R(2) and Q(2) lines for the J=1J=2 pure rotational measurements  

The optical transition frequency of these lines were taken from the previous study 

[92]. A portion of the LIF spectrum in the region of the R(2) transition over the three 

isotopologues is presented in Figure 6.2. The associated energy levels of the 195Pt12C 

isotopologues are demonstrated on the right portion. The two widely spaced features (a and 

b) of the 195Pt12C transition are due to the large magnetic hyperfine splitting in the 

A1(v=0) state. The J=1J=2 pure rotational spectrum of 194Pt12C obtained by pumping 

the R(2) (v=18512.8289 cm-1) transitions is presented in Figure 6.3. The measured 

frequencies, associated quantum number assignments, and the difference between the 

observed and calculated frequencies are presented in Table 6.1. 
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Figure 0.32 The LIF spectrum of the A1  X1+ (0, 0) in the region of the R(2) branch 

feature and associated energy levels for the 195PtC isotopologue. The R(2) branch for 195PtC  

is split due to the orbital magnetic hyperfine splitting in the A1(v=0) state. The nuclear 

spin hyperfine splitting is not resolved in the LIF spectrum and not indicated in the energy 

level diagram.   
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Figure 0.33 The J=2  J=1  rotational transition for the 194PtC isotopologue obtained by 

pumping and probing the  R(2) transitions (=18512.8289 cm-1 ) of the A 1  X 1+ (0,0) 

band near 540 nm. 

 

Figure 0.34 The J=2, F =5/2 J=1, F=3/2 rotational transition for the 195PtC isotopologue 

obtained by pumping and probing the J=3, F=7/2 J=2, F=3/2,5/2  component of the  R(2) 

transitions (=18512.7784 cm-1 ) of the A 1  X 1+ (0,0) band near 540 nm. 
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Table 0.19 Observed and calculated frequencies for the X 1v pure rotational 

transitionsa. 

 194PtCb 195PtC 196PtCb 

 Observed Dif.c F’F” Observed Dif.c Observed Dif

.c 

J=1

J=0  
31714.374 0.006 

1/21/2 31704.740 -0.001 31695.504 -

0.0

01 

   3/21/2 31704.950 0.001   

J=2

J=1 63428.340 -0.003 

3/23/2 63409.120 0.005 63390.617 0.0

01 

   3/21/2 63409.312 -0.010   

   5/23/2 63409.466 0.006   

 

Std. dev.= 0.006MHz 

 Std. dev.= 

0.009MHz  

Std. dev.= 0.001 

MHz 

 
a All units are MHz. 
b D constrained to optical value of 0.0164 MHz [97]. 
c Dif.=Obs.-Calc. obtained using optimized parameters. 

 

Table 0.20 Spectroscopic parameters (in MHz) for the X 1v state 

 194PtC 195PtC 196PtC 

 PPMODRa Opt. b PPMODR Opt. PPMODR Opt. 

B  15857.217(4) 15857(1) 15852.430(10) 15851(1) 15847.786(1) 15847 

D 0.0164  0.0164 0.0124(16) 0.0164 0.0164c 0.0164 
eff

IC    0.138(12)    

     

 
a This work. 
b Ref. [93].  

 

The energies of the X 1+ state were modeled using the simple expression[20]:  

 2( 1) [ ( 1)] ( 1) ( 1) ( 1)
2

eff

IC
E BJ J D J J F F J J I I           ,                    (6.1) 

where B is the rotational  parameters, D is the centrifugal distrotion constant, and the last 

term was for the hyperfine interaction, which was omitted for 194PtC and 196PtC. The 
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determined spectroscopic parameters, along with those of the previous molecular beam 

study [93], are given in Table 6.2. 

The rotational parameters, B, determined here are consistent with the previous values 

[93], but are approximately a factor of 100 more precise. For isotopologues with different 

mass, the ratio of the rotational parameters are in good agreement with the ratio of the 

reduced masses, (/*). The determined ratios of rotational constant for B195/B194, 

B196/B194 and B196/B195 are 0.9996981, 0.9994052, and 0.9997070, whereas the ratio of 

reduced mass for (194/195),  (194/196), and (195/196) are 0.9997005, 0.9994047, and 

0.9997041, respectively.  

eff

IC  is the nuclear spin-molecular rotation coupling parameter. This interaction is 

unusually not detected using optical spectroscopy. The relatively large value of eff

IC  

(=138(2) MHz) was rationalized using perturbation theory. 

 

6.2.2 Optical Study of hyperfine interaction and Stark measurement of PtF 

High resolution spectra of the [11.9] Ω=3/2 ← X 2Π 3/2(0, 0) and (1, 0) bands of PtF 

were recorded field-free in the region from 11932.6 to 11938.3 cm-1 and 12494.8 to 

12489.6 cm-1. The observed and predicted spectra for the P(9/2) (v=11933.4 cm-1) branch 

feature of the (0, 0) band are presented in Figure 6.5.  Platinum has six naturally occurring 

isotopes: 190Pt, 0.01%; 192Pt, 0.79%; 194Pt, 32.9%; 195Pt, 33.8%; 196Pt, 25.3%, 198Pt, 7.23%.  

Spectral features for the four most abundant isotopologues of PtF are observed and 

identified in Figure 6.5. The observed and predicted spectra of the R(5/2) (v =12494.25 cm-

1) branch feature for the195PtF isotopologues in the (1, 0) band are presented in Figure 6.6, 

along with the associated energy level diagram and quantum number assignments. The 
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corresponding transitions for the 196PtF and 194PtF are at 12494.13 cm-1 and 12494.36 cm-

1, respectively. A total of precisely measured 289 field-free transition frequencies along 

with assignments is listed in Appendix B. 

 

Figure 0.35 The observed (upper) and predicted (lower) spectra for the P(9/2) (v=11933.4 

cm-1) branch feature of the (0, 0) [11.9] Ω=3/2 ← X2Π 3/2 band of PtF. The splitting is due 

to the 195Pt(I=1/2) and 19F(I=1/2)  magnetic hyperfine interaction.   
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Figure 0.36 The observed (upper) and predicted (lower) spectra for the R(2.5) (v=11933.4 

cm-1) branch feature of the for the Ω=3/2 ← X 2Π 3/2 (1,0) band of 195PtF.   The splitting is 

due to the 195Pt(I=1/2) and 19F(I=1/2)  magnetic hyperfine interaction. 

The isolated R(1.5) ( v =12493.7219 cm-1) features of 194PtF in the [11.9]Ω=3/2← 

X2Π 3/2 (1,0) band were selected for optical Stark measurements. The spectra of the R(1.5) 

line recorded field-free and in the presence of a 187.9 V/cm field are presented in Figure 

6.7 along with the predicted Stark spectrum using optimized parameters.  The Stark tuning 

of the associated energy levels as a function of applied electric field is given on the right 

portion of Figure 6.7 with the spectral features assignments. The applied static electric field 

was oriented parallel to the linearly polarized laser radiation, resulting in MF=0 selection 

rules. The measured Stark shifts relative to the field-free feature and quantum number 

assignments are presented in Table 6.3. 
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Figure 0.37 The observed field-free, Stark and predicted Stark spectra for the R(1.5)( v 

=12493.7219 cm-1 ) features of the (1,0) [11.9] Ω=3/2 ← X 2Π 3/2 band of 194PtF.  The Stark 

tuning of the energy levels associated with the R(1.5)( v =12493.7219 cm-1 ) features of the 

(1,0) [11.9] Ω=3/2 ← X 2Π 3/2 band of 194PtF was given on the right along with the 

assignment. 

Table 0.21 Observed and calculated Stark shifts for R(1.5) branch of (1, 0) [11.9] Ω=3/2 

← X2Π3/2  band system of 194PtF. 

Polarized branch 

F′←F" 
𝑴𝑭

′ ← 𝑴𝑭
″  Field 

(V/cm) 

Obs. 

(MHZ) 

Dif. 

(MHz) 

3←2   ∥ 2←2 106.6 -68 4 

 1←1  -42 0 

 0←0  -10 -3 

 1←1  34 2 

 2←2  65 -6 

 2←2 187.9 -134 -5 

 1←1  -87 -4 

 0←0  -19 0 

 1←1  45 -5 

 2←2  131 6 

2←2   ∥ 2←2 187.9 -106 6 

 1←1  -60 7 

 0←0  -20 3 
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 1←1  26 -7 

 2←2  101 8 

2←1   ∥ 1←1 106.6 -50 9 

 0←0  15 8 

 1←1  74 3 

2←1   ∥ 1←1 187.9 -92 3 

 0←0  22 1 

 1←1  124 -5 

3←1   ∥ 1←1 187.9 -94 -6 

3←2   ⊥ 1←2 187.9 -162 1 

 0←1  -120 -3 

 3←2  -93 0 

 -1←0  -54 -1 

 2←1  -47 1 

 2←1  19 1 

 1←0  19 8 

 3←2  90 -4 

 1←2  156 -1 

2←2   ⊥ -1←-2 187.9 -142 2 

 0←1  -101 8 

 1←0  -46 13 

 0←-1  -14 12 

 -2←-1  1 4 

 -1←0  40 6 

 0←1  87 -4 

 1←2  161 10 

2←1   ⊥ 0←1 187.9 -141 0 

 2←1  -58 -8 

 1←0  -29 -3 

 1←0  69 3 

 2←1  78 -3 

Std. dev. = 6 MHz 

 

Modeling the energy levels for both the [11.9]Ω=3/2 and X2Π3/2 states of PtF was 

treated as 2Π3/2 states, which is very similar to that of the X2Π3/2 of AuO and AuS. The 

effective Hamiltonian was written by including the origin (Tv′v"), a rotational (B), and 195Pt 

(I=1/2) and 19F (I=1/2) magnetic hyperfine terms as: 
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ff rot mhf mhf

' "
ˆ ˆ ˆ ˆH H H (Pt) H (F)e

v vT    .    

 (6.6) 

The description of each term in this Hamiltonian has been described in detail in the 

analysis of AuO and AuS (see Chapter 5.2). The field-free eigenvalues and eigenvectors 

were obtained by numerical diagonalization of a 4×4 or 8×8 matrix representation of 

ffĤe
. The 289 precisely measured optical transition wavenumbers were least-squares fit 

directly to obtained the optimized set of parameters and associated errors given in Table 

6.4 for the [11.9] Ω = 3/2 and X 2Π3/2 states of the 194PtF, 195PtF, 196PtF, and 198PtF 

isotopologues.  

As drove for all other Stark analysis of this thesis, the behavior of the energy levels 

in the presence of the applied electric field was modeled by including the operator 

Stark

el
ˆ ˆH E   ,                               

(6.7) 

where el̂  is the dipole moment operator and E


 is the applied static electric field vector.  

The Stark shifts of the X2Π3/2 and [11.9] Ω=3/2 states given in Table 6.3 were modeled 

with a 16×16 matrix representation and used as an input file into a non-linear least-squares 

fitting procedure. The standard deviation of the fit (= 6 MHz) is commensurate with 

measurement uncertainty in the Stark shifts.  The optimized el  values for the [11.9] = 

3/2 and 2

3/2X  states were determined to be  2.47±0.11 D and 3.42±0.06 D, respectively.  
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Table 0.22 The determined field-free spectroscopic parameters for the [11.9] Ω=3/2 

(v=1), [11.9] Ω=3/2 (v=0) and X 2Π3/2 (v=0) states of PtF (in wavenumbers, cm-1). 

State 194PtF 195PtF 196PtF 198PtF 

X23/2     

Ba 0.277316757(

8)b 

0.277190249(2) b 0.277065260(

5) b 

0.276818798(1

) b         

h3/2(Pt)  0.02385(42) 

0.023219(63) b 

  

h3/2(F) 0.01118(59) 

0.010870(16) 

b 

0.01088(46) 

0.010877(29) b 

0.01109(53) 

0.010872(10) 

b 

0.0111(15) 

0.010860(30) b 

[11.9](v=0)     

B 0.25808(3) 0.25796(2) 0.25785(2) 0.25759(6) 

h3/2(Pt)  0.05900(57)   

h3/2 (F) -0.00654(77) -0.00642(55) -0.00623(70) -0.00688(148) 

T0,0 -11930 6.15041(37) 6.16093(25) 6.17330(33) 6.19829(66) 

[11.9](v=1)     

B 0.25680(4) 0.25680(4) 0.25674(4)  

h3/2 (Pt)  0.05881(56)   

h3/2 (F) -0.00598(85) -0.00597(57) -0.00652(75)  

T1,0-12490 2.48144(41) 2.59467(31) 2.71202(38)  

Std.dev. 0.00074 0.00079 0.00068 0.00108 
a   B (X23/2 ) and D(X23/2 ) constrained to  those of given in Ref. 16. D([11.9](v=1and 

1)) constrained to X23/2  values.   
b Ref. [98],  

 

6.3 MgH and MgD 

6.3.1 The optical Zeeman spectroscopy of MgH 

The primary motivation for this study was to measure the magnetic tuning (i.e. 

Zeeman effect) of the optical features of MgH such that this spectra can be used to probe 

solar magnetic fields.  Precise determination of the Zeeman effect requires a precise 

determination of the field-free energies. Accordingly, the field free spectra of numerous 

low-J branch features were recorded. The observed wavenumbers, difference between the 

observed and calculated wavenumbers and the quantum number assignments are given in 
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Table 6.5. The field free transition frequencies determined here are approximately a factor 

of 10 more precise than those of the previous study [99] and unlike the previous study 

include the lowest members of the branches. The energy level pattern for the A2r state 

rapidly transform from a Hund’s case (a) limit to that of a Hund’s case (b) limit because 

the ratio of the spin-orbit parameter, A, to that rotational parameter, B, is only 3.6. The 

electronic spin rapidly decouples from the orbital angular momentum and recouples to 

rotational angular momentum. Consequently the spectral pattern for even the could 

molecular beam sample is not the normally recognized 12 branches of a A2r 

(case(a))X2+ (case(b)) electronic transition. The observed and predicted field-free spectra 

in the region of the Q1(3/2) (v=19275.93 cm−1) and QR12(1/2) (v = 19275.97 cm−1) lines 

are presented in Figure 6.8. Three most abundant isotopes of the magnesium has been 

observed in the three isotopologues: 24MgH, 25MgH, and 26MgH. The spectrum for the 

25MgH isotopologue is complex because of unresolved 25Mg (I=5/2) magnetic hyperfine 

splitting.  

The SR21(0.5)(v =19318.47 cm-1), R2(0.5)(v=19307.04 cm-1), and 

RQ21(1.5)(v=19307.00 cm-1) branch features of the A23/2-X2+ (0,0) sub-band and the 

Q1(0.5)( v =19273.27 cm-1) and R1(0.5)(v =19287.37 cm-1) branch features of the (0,0) 

A21/2-X2+ sub-band were selected for the Zeeman measurements. The spectra for the 

R1(0.5) feature recorded field-free and in the presence of a 3080 G magnetic field oriented  

perpendicular (∆MJ = ±1) to the electric field of the laser radiation are presented in the left 

side of the Figure 6.9. The associated energy level pattern as a function of magnetic field 

strength and spectral assignments are also given of Figure 6.8. The approximately 155 MHz 

splitting in the field-free spectrum is due to the proton magnetic hyperfine splitting between 
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the F=0 and F=1 (F=total angular momentum) of the N=0, J=0.5 level of the (v=0) X2+ 

state. The doubling in the J=1.5 level of the A2 state is approximately 2 GHz. The 

electronic spin projection MS(=±
1

2
) becomes approximately good quantum number upon 

application of only a modest magnetic field because the electronic spin is not strongly 

coupled to the molecular axis for the N=0, J=0.5 (v=0) X2+ rotational level. Similarly, the 

nuclear spin is decoupled from the molecular axis at very small field strengths and the level 

patterns consist of nearly degenerate pairs that differ in nuclear spin projection quantum 

number, MI(=±
1

2
). The hyperfine interaction is negligible in the A2i state and J is the 

appropriate total angular momentum quantum number in the absence of the magnetic field.  

The SR21(0.5) feature recorded field-free and in the presence of a 3080 G magnetic 

field oriented parallel (∆MJ = 0) to the electric field of the laser radiation is presented in 

left-hand side of Figure 6.10. The associated energy level pattern as a function of magnetic 

field and spectral assignment are also given in Figure 6.10. The lower energy level for the 

SR21(0.5) transition is identical to that of the R1(0.5) feature previously described. The J=1.5, 

A2levels rapidly tune upon the application of magnetic field. As before, the predicted 

spectrum indicated with the solid line was generated with optimized parameters gL
’, gl, and 

gl.  

The analysis of the field-free and Zeeman spectra for the A2iX2+ (0, 0) band of 

MgH was almost the same as that for the B2Σ––X2Π3/2 (0, 0) band of AuS but with switching 

the order of the upper and lower states. Therefore, I will not repeat it again here. The 

determined field-free parameters for the X2+ and A2r states of MgH are given in Table 
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6.6 along with the previous studies [84]. The determined Zeeman parameters for the X 2+ 

(v=0) and A2 (v =0) states of MgH are presented in Table 6.7.  

 

 

 

 

 

Figure 0.38 The observed Q1 (3/2)(v =19261.9366 cm-1)  and QR12 (1/2) (v =19261.9572 

cm-1) field-free spectrum. 
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Figure 0.39 The Observed and predicted spectra of the R1(0.5) feature recorded field-free 

and in the presence of a 3080 G magnetic field oriented  perpendicular (∆MJ = ±1) to the 

electric field of the laser radiation and the associated energy level pattern as a function of 

magnetic field. 
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Figure 0.40 The Observed and predicted spectra of the  SR21(0.5) feature recorded field-

free and in the presence of a 3080 G magnetic field oriented parallel (∆MJ = 0) to the electric 

field of the laser radiation and the associated energy level pattern as a function of magnetic 

field. 

 

Table 0.23 The observed and calculated transition wavenumber (cm-1)for the A 2- X2+ 

(0, 0) band system of MgH . 

A 23/2 - X
2+ 

Branch J  F Observeda Obs.-calc. 
SR21 0.5 1 19318.4736 0.0039 

  0 318.4838 0.0038 

 1.5 2 342.5495 0.0030 

  1 342.5556 0.0029 

 2.5 3 367.7184 -0.0006 

  2 367.7222 -0.0025 

Q2 1.5 2 284.1023 -0.0007 

  1 284.1077 0.0002 

 2.5 3 285.2908 -0.0061 

  2 285.2976 -0.0039 
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 3.5 4 287.6270 -0.0019 

  3 287.6397 0.0061 
RQ21 1.5 2 306.9987 -0.0014 

  1 307.0049 -0.0014 

 2.5 3 319.6365 0.0023 

  2 319.6409 0.0010 

 3.5 4 333.3735 -0.0061 

  3 333.3847 -0.0005 

R2 0.5 1 307.0385 -0.0015 

  0 307.0427 -0.0010 

 1.5 2 319.7010 0.0009 

  1 319.7061 0.0016 

 2.5 3 333.4716 -0.0001 

  2 333.4782 0.0018 

 3.5 4 348.1271 -0.0009 

  3 348.1337 0.0009 

P2 2.5 2 284.0410 -0.0018 

 3.5 4 239.5433 -0.0008 

  3 239.5479 -0.0009 

 4.5 5 230.5100 0.0022 

  4 230.5155 0.0015 

Std. Dev. = 0.0026 cm-1 

A 21/2 - X
2+ 

Branch J F Observeda Obs.-calc. 

Q1 0.5 1 19273.2679 -0.0006 

  0 273.2793 0.0006 

 1.5 2 275.9272 -0.0005 

  1 275.9333 -0.0006 

 2.5 3 278.3049 -0.0007 

  2 278.3128 0.0015 
QR12 0.5 1 275.9675 0.0002 

  0 275.9703 -0.0010 

 1.5 2 278.3725 0.0010 

  1 278.3748 -0.0012 

R1 0.5 1 287.3637 -0.0019 

  0 287.3759 0.0000 

 1.5 2 301.1958 -0.0015 

  1 301.2043 0.0009 

 2.5 3 315.3159 -0.0001 

  2 315.3218 0.0001 

P1 1.5 2 261.7550 -0.0012 

  1 261.7595 0.0007 

 2.5 3 252.9340 0.0011 

  2 252.9413 0.0026 
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PQ12 0.5 1 261.7971 -0.0008 

  0 261.7974 -0.0005 

 1.5 2 253.0000 0.0011 

  1 253.0040 0.0007 
OP12 1.5 2 238.9024 0.0007 

  1 238.9078 0.0016 

     

     

     

     

     

Std. Dev. = 0.0010 cm-1 
 

a  The total angular momentum for the A 2 state, F, value is obtained from the F = J 

relationship. 

 

 

 

  

Table 0.24 The field-free parameters for the X 2+ and A2 states of MgH. 

(v =0) X 2+ (v =0) A 23/2 (v =0) A 21/2 (v =0) A 2 

(total) 

Par. a Valuea Par. Value Par. Value Par. Value 

T0 0.0 T0 19278.54

05(1) 

T0 19278.545

1(1) 

T0 19278.

5703(8) 

B 5.7365 A 35.0581(

2) 

A 34.9474(1

) 

A 35.015

8(2) 

D(104) 3.543 B 6.0962(3) B 6.0930(2) B 6.0934(

7) 

 0.0263 D(10
4) 

3.563 D(104) 3.087(3) D(104

)

2.833(1

) 

D(106) -5.77 p 0.0843(7) p 0.0259 (7) p 0.0279(

1) 

bF 

(102) 

1.027 q -

0.0025(2) 

q 0.0017(2) q 0.0013(

6) 

c (104) 1.598       
a  The fine structure parameters of the (v=0) X 2+ state were held fixed to those of Ref. 

…. 
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Table 0.25 The determined Zeeman parameters for the X 2+(v =0)  and A2 (v =0) 

states of MgH. 

(v=0) X 2+ (v=0) A 2 

Parametera Valueb Parameter Valuea 

Sg  2.00227 
Lg  1.007(7) 

lg  -0.0023 
lg  -0.18(6) 

  
lg   -0.063(11) 

  
Sg  2.002 

  Corr. Matrixc 1.00   

   -0.78 1.00  

   -0.33 -0.46 1.00 
a The numbers in parentheses represent a 2 error estimate. All values without error 

limits were held fixed. 

 
b Taken from Ref. 19. 

 
c Column labels given in order of the listed  parameters.  

 

 

6.3.2 Optical Stark spectroscopy of magnesium deuteride, MgD 

The Stark effect in MgD is much larger than that of MgH because levels of opposite 

parity are closer together. The spectral features of the A2rX2+ (0, 0) band for MgD are 

nearly identical to the A2rX2+ (0, 0) band of MgH with difference with a shift of ~14 

cm-1 on the transition positions caused by the isotopic effect between the H and D. 

Corresponding to the lines in the spectrum of MgH in Figure 6.7, the observed field-free 

spectrum in the region of the Q1(3/2)(v =19261.9366 cm-1)  and QR12(1/2) (v =19261.9572 

cm-1) lines of MgD is presented in Figure 6.11. Also presented is the sub-Doppler I2 

absorptions spectrum used for absolute wavelength calibration and the transmission of the 

stabilized etalon used for measurements of Stark induced shifts. In addition to 24MgD, 

spectral features of the lesser abundant 25MgD and 26MgD, isotopologues are evident. The 
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complexity of the spectral features for the 25MgD isotopologue is due to the unresolved 

25Mg(I=5/2) magnetic hyperfine splitting. The precisely measured transition wavenumbers 

of the low-rotational branch features of all twelve branches of the A2r – X2+ (0,0) band 

of MgD are given in Table 6.8 along with the quantum number assignments and the 

difference between the observed and calculated wavenumbers.  

For the Stark effect measurement, the spectra of the R1(1/2)(v=19267.9157 cm-1), 

Q1(1/2)(v=19259.4133 cm-1) and, SR21(1/2) (v=19298.6093 cm-1) branch features of 24MgD 

were selected.  Spectra for the R1(1/2) transition recorded in the presence of the of 3375 

V/cm with both perpendicular and parallel polarizations are presented in Figure 6.12 along 

with the Stark tuning of the energy levels as a function of the applied electric field. The 

selection rules for the transitions in perpendicular polarization are MJ =±1, whereas in 

parallel polarization are MJ =0, respectively. A total of 48 shifts ranging from field 

strengths of 2250 to 10526 V/cm were accurately measured and are listed in Table 6.9 

together with the quantum number assignments, and difference between the observed and 

calculated shifts.   

A precise analysis of the Stark effect required the determination of the field-free 

energy levels of MgD, which is very similar to that of MgH. The optimized field-free 

parameters for the A 2 (v=0) are given in Table 6.10 associated errors and correlation 

coefficients. The standard deviation of the fit was 0.0011 cm-1, which is commensurate 

with the estimated measurement uncertainty of the transition wavenumbers. The 

determined values for el were 1.31±0.08 D and 2.567±0.010 D for the X 2+ (v=0) and 

A2 (v=0) states, respectively, with a standard deviation of 13 MHz.  
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Table 0.26 The observed and calculated transition wavenumber (cm-1) for the A 2r- 

X2+ (0, 0) band system of MgD. 

Branch 
J Observed Obs.-

calc.a 

Branc

h 
J Observed Obs.-

calc. 
QP21 5/2 19280.5916 -0.0004 Q1 1/2 

 

19259.4133 

(259.4111) 

0.0011 

 7/2 280.0879 0.0002  3/2 261.9366 

(261.9357) 

-0.0016 

Q2 3/2 280.6262 

(280.6292)b 

-0.0003  5/2 264.2849 

(264.2789) 

0.0001 

 5/2 280.1369 

(280.1294) 

0.0009  7/2 266.5907 

(266.5820) 

0.0017 

 9/2 281.3819 

(280.3720) 

0.0006  9/2 268.9653 

(268.9583) 

-0.0012 

 11/

2 

282.9155 -0.0006 QR12 1/2 261.9572 -0.0017 

SR21 1/2 298.6093 0.0013  3/2 264.3189 -0.0005 

 3/2 310.0986 0.0011  5/2 266.6393 0.0020 
RQ21 3/2 292.6010 -0.0005  7/2 269.0277 -0.0008 

 5/2 298.0971 0.0006 R1 1/2 267.9157 

(267.9228) 

-0.0016 

 7/2 304.3668 -0.0014  3/2 276.2507 

(276.2522) 

-0.0016 

 9/2 311.2991 0.0006  5/2 284.5418 

(284.5440) 

-0.0014 

R2 1/2 292.6221 

(292.6109) 

-0.0001  7/2 292.9023 

(292.9499) 

-0.0008 

 3/2 298.1303 

(298.0650) 

-0.0007  9/2 301.4159 

(301.4774) 

0.0008 

 5/2 304.4159 

(304.4014) 

-0.0006 PQ12 1/2 253.4096 

(253.3985) 

0.0007 

 7/2 311.3612 0.0007  3/2 249.9364 0.0006 

P2 5/2 262.6396 

(262.6517) 

-0.0004  5/2 246.2918 0.0010 

 7/2 256.1669 

(256.1771) 

0.0003  7/2 242.6136 0.0004 

 9/2 250.4842 -0.0017 OP12 3/2 241.4293 -0.0014 
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(250.4950) (241.4302) 

 11/

2 

245.4853 

(245.4887) 

0.0007  5/2 231.9785 

(231.9853) 

0.0018 

P1 3/2 253.3886 

(253.3985) 

0.0004     

 5/2 249.9018 

(249.9136) 

0.0005     

 7/2 246.2438 

(246.2606) 

0.0013     

 9/2 242.5513 

(242.6240) 

0.0001     

 Std. Dev. = 0.0011 cm-1     

       

a) Calculated using the optimized parameters given in Table 3. 

b) The numbers in parentheses are the observed transition wavenumbers from Ref. 

19.  
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Table 0.27 The observed and calculated Stark shifts of lines in A 2r- X
2+(0, 0)  band 

system of MgD. 

 Field   Obs Dif 

Branch (V/cm) |MJ
’| |MJ

”| (MHz) (MHz) 

R1(1/2) 2250 1/2 1/2 -43 -4 

|| 3375 1/2 1/2 -83 -1 

 4499 1/2 1/2 -126 10 

 4792 1/2 1/2 -137 14 

 5096 1/2 1/2 -165 2 

 5472 1/2 1/2 -190 -3 

 5607 1/2 1/2 -210 -15 

 6342 1/2 1/2 -237 -1 

 7202 1/2 1/2 -285 0 

 8114 1/2 1/2 -326 12 

 8787 1/2 1/2 -382 -5 

 9649 1/2 1/2 -423 4 

 10526 1/2 1/2 -468 9 

R1(1/2) 2250 1/2 3/2 -325 -8 

  -1/2 1/2 -48 -9 

 2812 1/2 3/2 -458 -11 

  -1/2 1/2 -46 13 

 3375 1/2 3/2 -606 -23 

  -1/2 1/2 -88 -6 

Q1(1/2) 3375 1/2 1/2 1240 -3 

||      

Q1(1/2) 281 -1/2 1/2 31 -2 

 450 -1/2 1/2 57 -12 

 562 -1/2 1/2 100 -1 

 1125 -1/2 1/2 295 -6 
SR21(1/2) 1125 1/2 1/2 -263 -8 

||  1/2 1/2 313 -4 

 2818 1/2 1/2 -687 -9 

  1/2 1/2 760 16 

 3375 1/2 1/2 -823 -4 

  1/2 1/2 882 -6 

 3375 1/2 1/2 -830 -11 

  1/2 1/2 869 -19 
SR21(1/2) 562 1/2 3/2 -395 1 

  -1/2 1/2 -119 -4 

  -1/2 -1/2 164 a -12 

  1/2 3/2 441 a -17 
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 1125 1/2 3/2 -848 -26 

  -1/2 1/2 -278 -23 

  -1/2 -1/2 295 a -22 

  1/2 3/2 858 a -27 

 2250 1/2 3/2 -1673 0 

  -1/2 1/2 -554 -17 

  -1/2 -1/2 564 a -34 

  1/2 3/2 1732 a -7 

 3375 1/2 3/2 -2530 -7 

  -1/2 1/2 -843 -24 

  -1/2 -1/2 888a 1 

  1/2 3/2 2583a -12 

Standard deviation of fit = 13 MHz 

a Field-induced transition.  

 
Table 0.28 The determined field-free spectroscopic parameters for the A 2 (v=0) state of 

MgD 

Par. Value Correlation Coef. 

A 34.9902(9) 1.00      

B 3.18626(3)      -0.10 1.00     

 -0.0066(3)     0.71 0.07 1.00    

p 0.01425(2) -0.01 0.08 0.09 1.00   

q 0.00067(5) -0.10 -0.04 -0.06 0.10 1.00  

T0(A 2) 19270.5240(4) 0.43 -0.70 0.38 -0.00 -0.07 1.00 

Std. dev= 0.0011       
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Figure 0.41 The observed Q1(3/2)(v =19261.9366 cm-1)  and QR12 (1/2) (v =19261.9572 

cm-1) field-free spectrum and the associated sub-Doppler I2 spectrum (middle) and 

transmission of a stabilized confocal etalon. The QR12(J) satellite branch quickly becomes 

weak relative to the main Q1(J) branch. 
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Figure 0.42 The R1(1/2) transition recorded field-free (lower), in the presence of the of 

3375 V/cm with parallel (middle), and perpendicular (upper) polarization. The energy 

levels as a function of the applied electric field associated with the R1(1/2) transition are 

also given. 
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7. SUMMARY 

The experimentally determined el values for AuF, AuCl, AuS, and AuO of this 

present study are listed Table 7.1 along with a comparison of the equilibrium bond lengths 

(r0), reduced dipole moments (
el




/r0), ionization potential of ligands (I.P.), and 

electronegativity of ligands(E.N.). The v=0 equilibrium bond lengths, r0, for AuF, AuCl 

and AuO were taken from previous studies of the pure rotational measurement [32, 36, 68, 

100], whereas that of AuS was precisely determined by high-resolution study from our lab 

[73]. Instead of comparing the value of 
el




 between this group of gold-containing 

molecules, a comparison of 
el




/r0 is more insightful because it emphasizes the change in 

electronic character. The electronegativity of the ligands is a good reference to represent 

the trend of 
el




/r0 , which in my cases is expected to be: AuS < AuO < AuCl < AuF. The 

observed ordering of 
el




/r0 of the Au-containing molecules is approximately consistent 

with the ordering of ligand’s electronegativity with the exception of the 
el




/r0 of AuO 

being similar to that of AuCl. This ordering of 0/el r  (i.e. AuS < AuO  AuCl < AuF) can 

be further understood by looking at the nature of the orbitals. 

The dominant configuration for the ground state of AuO and AuS predicated by high-

level electronic structure calculations is [66, 69, 101]: 

(1σ)2(1π)4(1δ)4(2σ)2(2π)3  X2i,                                          (7.1) 

whereas that of AuCl and AuF is very similar but with a fully occupied 2π orbital (i.e. 2π4 

vs. 2π3), given as [39, 102]: 
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(1σ)2(1π)4(1δ)4(2σ)2(2π)4  X1+.                                           (7.2) 

Table 0.29 Ground state 
el for  AuX (X= Cl, F, O, and S) 

 
el  r0 

el /r0 I . P . g  E . N . h  

units D Å D/ Å eV   

AuCl 3.69a 2.1990b 1.68 12.97 3.16 

AuF 4.32c 1.9184d 2.25 17.42 3.98 

AuO 2.94e 1.8487f 1.59 13.61 3.44 

AuS 2.22e 2.1556e 1.03 10.36 2.58 
a  Ref. [51].  b Ref. [100]. c Ref. [28]. d Ref. [32].  e Ref. [76].  f Ref. [103]  g Ionization 

potential of ligand. h Electronegativity of ligand (in Pauling scale). 

 

The M.O. correlation diagram of AuF, AuCl, AuS, and AuCl is illustrated in Figure 

7.1. The orbital energies of the ligands are estimated as the ionization potential (as shown 

in Table 7.1) with the values of: S(3p) -10.36 eV, Cl(3p) -12.97 eV, O(2p) -13.61 eV, 

and F(2p) -17.42 eV. The orbital energies for Au(5d) and Au(6s) are approximately -19.7 

eV and -9.1 eV. The similarity on the energies of the F(2p) orbital of Au(5d) causes the 2σ 

orbital of AuF to be essentially the F(2p0) orbital and the 2π orbital a strongly admitxture 

by: 1 10.8 5d (Au) 0.6 2p (F)     [51]. In the case of AuS, AuO, and AuCl, the 1σ, 1π, 

and 1δ molecular orbitals are mostly derived from the Au 5d orbitals, with minor 

contributions (for 1σ and 1π) from S(3p), O(2p), and Cl(3p). The 2σ orbital is bonding of 

Au(6s) + ligand(p0) polarized towards the ligand because the energy of the Au(6s)( 9.1 

eV) is close to that of the S(3p) (10.36 eV), Cl(3p)(12.97 eV), and O(2p) (13.61 eV) 

orbitals. The 2π orbital in these three molecules is essentially a non-bonding ligand-

centered p-orbital. The ordering of 0/el r  (i.e. AuS < AuO  AuCl < AuF) coincides with 
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the energy ordering of the ligand 2p and 3p orbitals (i.e. S(3p) < Cl(3p)  O(2p) < F(2p)) 

because of the change in polarization of the 2σ orbital.  

 

Figure 0.43 M.O. correlation diagram of Au-containing molecules. 

 In addition to understanding the trend in 
el




/ r0 for a series of Au-X molecules, it 

is also insightful to look at the trend when the metal is modified.  The experimental 

determined dipole moment of PtF has been discussed in Chapter 6. Here the determined

el



, r0, and the ratio of 
el




/ r0 for the ground state of AuF, PtF, and IrF are compared in 

Table 7.2.  The reduced dipole moment, 
el




/ r0, for the X23/2 state of AuF (=2.25 D/Å) is 

significantly larger than that for the X23/2 state of PtF (=1.83 D/Å), whereas that of PtF is 

larger than the X34 state of IrF (=1.52 D/Å). The ordering of 
el




 (i.e. AuF > PtF > IrF) is 

strongly dependent upon the relative contribution of the 5dn and 5dn-16s1 (n=7, 8 and 9 for 

Ir+, Pt+, and Au+, respectively) configurations. The 6s orbital on the metal will ligand-field 

mixed with the 6p0 orbital resulting in the molecular orbital being polarized away from the 

electrophilic center of F. This back polarization reduces 
el




 value.  Therefore, the 
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electronic states with a dominant 5dn configurations will have a significantly larger 
el




 

value than those with a dominant 5dn-16s1 configurations. As discussed above, the X23/2 

state of AuF has a pure 5d10 configuration with no contribution from the 6s of Au, whereas 

the X23/2 state of PtF are equally contributed by the 5d9 configuration and 5d86s1 

configuration as revealed by the hyperfine analysis [77].  For the X34 state of IrF, the 

analysis of magnetic hyperfine structure in previous study indicates that the X34 state has 

an approximate 66% contribution from the 5d76s1 configuration and a 33% contribution 

from the 5d9 configuration [104]. The ordering of the contribution from the 5dn-16s1 

configurations (i.e. IrF > PtF > AuF) is consistent with the observation of 0/el r .  

 

Table 0.30 Determined results of 
el




, r0, and the ratio of 
el




/r0 for the ground state of 

AuF, PtF, and IrF. 

 
el  r0 

el /r0 

units D Å D/ Å 

AuF 4.32a 1.918 2.25 

PtF 3.42b 1.868 1.83 

IrF 2.82c 1.851 1.52 
a  Ref. [28]. b Ref. [77]. c Ref. [104].    
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APPENDIX A 

MATRIX ELEMENTS OF THE HAMILTONIANS EVALUATED IN A CASE (a) 

BASIS SET FOR DIATOMIC MOLECULES WITH ONE NUCLEAR SPIN 

(J.M.Brown, I. Kopp, C. Malmberg and B. Rydh, Physica Scripta 17, 55(1978).) 
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(1) Matrix elements for spin-orbit interaction, ˆ
soH : 

ˆ
soS J IF H S J IF A         . 

(2) Matrix elements for spin-spin interaction, ˆ
ssH : 

22ˆ [3 ( 1)]
3

ssS J IF H S J IF S S            . 

(3) Matrix elements for spin-rotation interaction, ˆ
srH : 

2 1

' '

1

ˆ' '

[ ( 1)] ( 1) 1 1 ,

1 ' ';

1 1
1 ;

' '

1 ( 1)(2 1) ( 1)(2 1).

sr

phase

q

S J IF H S J IF

S S threeJ par with

phase J S

J J S S
threeJ

q q

par J J J S S S

 

     



     

 
         

 

   

  
   

     

    



 

(4) Matrix elements for the rotation, ˆ
rotH : 

1

' '

1

2 2 2 2

ˆ' '

1 2 ( 1) 1 2 ,

1 ( 1) ( 1) ;

1 ' ';

1 1
1 ;

' '

2 ( 1)(2 1) ( 1)(2 1).

rot

phase

q

x y

S J IF H S J IF

B par threeJ par with

par J J S S L L

phase J S

J J S S
threeJ

q q

par J J J S S S
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    
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     

 
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 

       

   
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   

     

    


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(5) Matrix elements for the centrifugal distortion, ˆ
CDH : 

1

' '

1

1 "

2 2 2

2 2

ˆ' '

1 2 ( 1) 2 3 4 ,

1 1 4 1 2

1 [ ( 1) ( 1) ] ;

1 1
1 ;

" "
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q

q
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(6) Matrix elements for the -doubling, ˆ
LDH :
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(7) Matrix elements for the magnetic hyperfine interaction, ˆ
mhyfH : 
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(8) Matrix elements for the electric quadrupole interaction, ˆ
QH :
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(9) Matrix elements for the electric dipole operator, ̂ :
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APPENDIX B 

SUPPLMENTAL MATERIAL FOR SPECTROSCOPIC STUDY OF PtF 

(Chapter 6.2.3) 

Description:  

Table S1: The observed and calculated transition wavenumbers (cm-1) for the [11.9] 

Ω=3/2 – X2Π3/2 (0, 0) and (1, 0) bands system of 194PtF. 

Table S2: The observed and calculated transition wavenumbers (cm-1) for the [11.9] 

Ω=3/2 – X2Π3/2 (0, 0) and (1, 0) bands system of 196PtF. 

Table S3: The observed and calculated transition wavenumbers (cm-1) for the [11.9] 

Ω=3/2 – X2Π3/2 (0, 0) band system of 198PtF. 

Table S4: The observed and calculated transition wavenumbers (cm-1) for the [11.9] 

Ω=3/2 – X2Π3/2 (0, 0) and (1, 0) bands system of 195PtF. 
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Table S1 The observed and calculated transition wavenumbers (cm-1) for the [11.9] Ω=3/2 – 

X2Π3/2 (0, 0) and (1, 0) bands system of 194PtF. Single prime denotes upper levels and double 

prime denotes lower levels. 

Branch F′ F″ Observed Calculated Obs.-Calc. 

(0,0)      

P(5.5) 4 5 11932.6619 11932.6613 0.0006 

 5 5 11932.6591 11932.6593 -0.0002 

 5 6 11932.6562 11932.6565 -0.0003 

P(4.5) 3 4 11933.3909 11933.3894 0.0015 

 4 4 11933.3881 11933.3869 0.0012 

 4 5 11933.3848 11933.3835 0.0013 

P(3.5) 2 3 11934.0805 11934.0795 0.0010 

 3 3 11934.0771 11934.0762 0.0009 

 3 4 11934.0727 11934.0719 0.0008 

P(2.5) 1 2 11934.7329 11934.7324 0.0005 

 2 2 11934.7274 11934.7272 0.0002 

 2 2 11934.7220 11934.7214 0.0006 

Q(4.5) 4 4 11935.7117 11935.7111 0.0006 

 5 4 11935.7094 11935.7091 0.0003 

 4 5 11935.7085 11935.7077 0.0008 

 5 5 11935.7061 11935.7057 0.0004 

Q(3.5) 3 3 11935.8848 11935.8850 -0.0002 

 4 3 11935.8821 11935.8825 -0.0004 

 3 4 11935.8808 11935.8808 0.0000 

 4 4 11935.8778 11935.8783 -0.0005 

Q(2.5) 2 2 11936.0210 11936.0211 -0.0001 

 3 2 11936.0174 11936.0178 -0.0004 

 2 3 11936.0155 11936.0154 0.0001 

 3 3 11936.0118 11936.0120 -0.0002 

Q(1.5) 1 1 11936.1206 11936.1208 -0.0002 

 2 1 11936.1148 11936.1156 -0.0008 

 1 2 11936.1120 11936.1119 0.0001 

 2 2 11936.1063 11936.1066 -0.0003 

R(1.5) 2 1 11937.4086 11937.4096 -0.0010 

 2 2 11937.4001 11937.4006 -0.0005 

 3 2 11937.3964 11937.3973 -0.0009 

R(2.5) 3 2 11937.8257 11937.8266 -0.0009 

 3 3 11937.8202 11937.8209 -0.0007 

 4 3 11937.8175 11937.8184 -0.0009 

R(3.5) 4 3 11938.2059 11938.2067 -0.0008 

 4 4 11938.2019 11938.2025 -0.0006 

 5 4 11938.1997 11938.2005 -0.0008 

(1,0)      

P(4.5) 3 4 12489.7040 12489.7025 0.0015 
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 4 4 12489.7015 12489.7002 0.0013 

 4 5 12489.6983 12489.6968 0.0015 

P(3.5) 2 3 12490.4032 12490.4015 0.0017 

 3 3 12490.3990 12490.3984 0.0006 

 3 4 12490.3950 12490.3941 0.0009 

P(2.5) 1 2 12491.0610 12491.0606 0.0004 

 2 2 12491.0558 12491.0558 0.0000 

 2 3 12491.0503 12491.0501 0.0002 

Q(2.5) 2 2 12492.3429 12492.3431 -0.0002 

 3 2 12492.3396 12492.3400 -0.0004 

 2 3 12492.3374 12492.3373 0.0001 

 3 3 12492.3341 12492.3342 -0.0001 

Q(1.5) 1 1 12492.4486 12492.4490 -0.0004 

 2 1 12492.4434 12492.4442 -0.0008 

 1 2 12492.4400 12492.4401 -0.0001 

 2 2 12492.4349 12492.4353 -0.0004 

R(1.5) 2 1 12493.7305 12493.7315 -0.0010 

 2 2 12493.7219 12493.7226 -0.0007 

 3 2 12493.7186 12493.7195 -0.0009 

R(2.5) 3 2 12494.1388 12494.1397 -0.0009 

 4 3 12494.1309 12494.1316 -0.0007 

R(3.5) 4 3 12494.5077 12494.5083 -0.0006 

 5 4 12494.5013 12494.5022 -0.0009 

Standard Deviation=0.00074cm-1 (22MHz) . 

Table S2 The observed and calculated transition wavenumbers (cm-1) for the [11.9] Ω=3/2 – 

X2Π3/2 (0, 0) and (1, 0) bands system of 196PtF. Single prime denotes upper levels and double 

prime denotes lower levels. 

Branch F′ F″ Observed Calculated Obs.-Calc. 

(0,0)      

P(5.5) 4 5 11932.6882 11932.6876 0.0006 

 5 5 11932.6863 11932.6856 0.0007 

 5 6 11932.6834 11932.6828 0.0006 

P(4.5) 3 4 11933.4168 11933.4149 0.0019 

 4 4 11933.4137 11933.4125 0.0012 

 4 5 11933.4106 11933.4091 0.0015 

P(3.5) 2 3 11934.1054 11934.1043 0.0011 

 3 3 11934.1017 11934.1011 0.0006 

 3 4 11934.0976 11934.0968 0.0008 

P(2.5) 1 2 11934.7573 11934.7564 0.0009 

 2 2 11934.7516 11934.7514 0.0002 

 2 2 11934.7461 11934.7457 0.0004 

Q(4.5) 4 4 11935.7349 11935.7346 0.0003 

 5 4 11935.7330 11935.7327 0.0003 
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 4 5 11935.7314 11935.7312 0.0002 

 5 5 11935.7296 11935.7293 0.0003 

Q(3.5) 3 3 11935.9077 11935.9082 -0.0005 

 4 3 11935.9052 11935.9058 -0.0006 

 3 4 11935.9036 11935.9040 -0.0004 

 4 4 11935.9009 11935.9016 -0.0007 

Q(2.5) 2 2 11936.0443 11936.0441 0.0002 

 3 2 11936.0408 11936.0409 -0.0001 

 2 3 11936.0385 11936.0384 0.0001 

 3 3 11936.0350 11936.0352 -0.0002 

Q(1.5) 1 1 11936.1429 11936.1436 -0.0007 

 2 1 11936.1377 11936.1386 -0.0009 

 1 2 11936.1342 11936.1347 -0.0005 

 2 2 11936.1288 11936.1297 -0.0009 

R(1.5) 2 1 11937.4311 11937.4313 -0.0002 

 2 2 11937.4223 11937.4224 -0.0001 

 3 2 11937.4188 11937.4192 -0.0004 

R(2.5) 3 2 11937.8474 11937.8481 -0.0007 

 3 3 11937.8417 11937.8424 -0.0007 

 4 3 11937.8393 11937.8400 -0.0007 

R(3.5) 4 3 11938.2267 11938.2279 -0.0012 

 4 4 11938.2228 11938.2237 -0.0009 

 5 4 11938.2203 11938.2218 -0.0015 

(1,0)      

P(4.5) 3 4 12489.9370 12489.9380 -0.0010 

 4 5 12489.9312 12489.9322 -0.0010 

P(3.5) 2 3 12490.6347 12490.6353 -0.0006 

 3 3 12490.6313 12490.6319 -0.0006 

 3 4 12490.6270 12490.6277 -0.0007 

P(2.5) 1 2 12491.2929 12491.2930 -0.0001 

 2 2 12491.2876 12491.2878 -0.0002 

 2 3 12491.2823 12491.2821 0.0005 

Q(3.5) 3 3 12492.4312 12492.4314 -0.0002 

 4 4 12492.4240 12492.4246 -0.0006 

Q(2.5) 2 2 12492.5751 12492.5751 0.0000 

 3 2 12492.5723 12492.5717 0.0006 

 2 3 12492.5692 12492.5694 -0.0002 

 3 3 12492.5661 12492.5660 0.0001 

Q(1.5) 1 1 12492.6802 12492.6802 0.0000 

 2 1 12492.6748 12492.6750 -0.0002 

 1 2 12492.6714 12492.6713 0.0001 

 2 2 12492.6663 12492.6661 0.0002 

R(1.5) 2 1 12493.9623 12493.9623 0.0000 

 2 2 12493.9542 12493.9534 0.0008 

 3 2 12493.9509 12493.9500 0.0009 
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R(2.5) 3 2 12494.3718 12494.3712 0.0006 

 3 3 12494.3661 12494.3655 0.0006 

 4 3 12494.3636 12494.3630 0.0006 

R(3.5) 4 3 12494.7412 12494.7410 0.0002 

 5 4 12494.7351 12494.7348 0.0003 

Standard Deviation=0.00074cm-1 (22MHz) . 

 

Table S3 The observed and calculated transition wavenumbers (cm-1) for the [11.9] Ω=3/2 – 

X2Π3/2 (0, 0) band system of 198PtF. Single prime denotes upper levels and double prime denotes 

lower levels. 

Branch F′ F″ Observed Calculated Obs.-Calc. 

(0,0)      

P(4.5)  3 4 11933.4441 11933.4421 0.0020 

 4 5 11933.4381 11933.4361 0.0020 

P(3.5) 2 3 11934.1324 11934.1312 0.0012 

 3 4 11934.1247 11934.1234 0.0013 

P(2.5) 1 2 11934.7838 11934.7830 0.0008 

 2 2 11934.7783 11934.7775 0.0008 

 2 3 11934.7725 11934.7718 0.0007 

Q(2.5) 2 2 11936.0691 11936.0693 -0.0002 

 3 3 11936.0600 11936.0600 0.0000 

Q(1.5) 1 1 11936.1695 11936.1690 0.0005 

 2 1 11936.1616 11936.1635 -0.0019 

 1 2 11936.1589 11936.1601 -0.0012 

 2 2 11936.1536 11936.1546 -0.0010 

R(1.5) 2 1 11937.4539 11937.4552 -0.0013 

 2 2 11937.4455 11937.4463 -0.0008 

 3 2 11937.4424 11937.4428 -0.0004 

R(2.5) 3 2 11937.8710 11937.8713 -0.0003 

 4 3 11937.8629 11937.8630 -0.0001 

R(3.5) 4 3 11938.2497 11938.2506 -0.0009 

 5 4 11938.2432 11938.2443 -0.0011 

Standard Deviation=0.000108cm-1 (32MHz) . 

Table S4 The observed and calculated transition wavenumbers (cm-1) for the [11.9] 

Ω=3/2 – X2Π3/2 (0, 0) and (1, 0) bands system of 195PtF. Here F1 refers to the 195Pt 

hyperfine levels. Single prime denotes upper levels and double prime denotes lower 

levels.  

Branch F1' F' F1" F" Observed Calculated Obs.–

Calc. 

(0,0)        
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P(5.5) 5 4.5 6 5.5 11932.6806 11932.6784 0.0022 

 5 5.5 6 6.5 11932.6764 11932.6738 0.0026 

 4 3.5 5 4.5 11932.6694 11932.6672 0.0022 

 4 4.5 5 5.5 11932.6639 11932.6625 0.0014 

P(4.5) 4 3.5 5 4.5 11933.4091 11933.4074 0.0017 

 4 4.5 4 4.5 11933.4067 11933.4050 0.0017 

 4 4.5 5 5.5 11933.4033 11933.4017 0.0016 

 3 2.5 4 3.5 11933.3943 11933.3929 0.0014 

 3 3.5 4 4.5 11933.3885 11933.3872 0.0013 

P(3.5) 3 2.5 3 2.5 11934.1092 11934.1081 0.0004 

 3 3.5 3 3.5 11934.1017 11934.1009 0.0008 

 3 2.5 4 3.5 11934.0999 11934.0990 0.0009 

 3 3.5 4 4.5 11934.0924 11934.0918 0.0006 

 2 1.5 3 2.5 11934.0806 11934.0788 0.0018 

 2 2.5 3 2.5 11934.0769 11934.0755 0.0014 

 2 2.5 3 3.5 11934.0728 11934.0715 0.0006 

P(2.5) 2 1.5 2 1.5 11934.7679 11934.7675 0.0004 

 2 2.5 2 2.5 11934.7573 11934.7573 0.0000 

 2 1.5 3 2.5 11934.7553 11934.7550 0.0003 

 2 2.5 3 2.5 11934.7503 11934.7502 0.0001 

 2 2.5 3 3.5 11934.7451 11934.7449 0.0002 

 1 0.5 2 1.5 11934.7220 11934.7210 0.0010 

 1 1.5 2 1.5 11934.7171 11934.7162 0.0009 

 1 1.5 2 2.5 11934.7118 11934.7108 0.0010 

Q(4.5) 5 5.5 5 4.5 11935.7277 11935.7284 -0.0007 

 5 4.5 5 4.5 11935.7270 11935.7263 0.0006 

 5 5.5 5 5.5 11935.7218 11935.7212 0.0006 

 4 3.5 4 3.5 11935.7166 11935.7163 0.0007 

 4 4.5 4 4.5 11935.7117 11935.7111 0.0006 

Q(3.5) 4 3.5 3 2.5 11935.9099 11937.9101 -0.0002 

 4 4.5 3 3.5 11935.9036 11937.9037 -0.0001 

 4 3.5 4 3.5 11935.9010 11935.9010 0.0000 

 4 3.5 4 4.5 11935.8969 11935.8970 -0.0001 

 4 4.5 4 4.5 11935.8944 11935.8946 -0.0002 

 3 2.5 3 2.5 11935.8881 11935.8885 -0.0004 

 3 3.5 3 3.5 11935.8819 11935.8820 -0.0001 

Q(2.5) 3 2.5 2 1.5 11936.0510 11936.0509 0.0001 

 3 3.5 2 2.5 11936.0423 11936.0423 0.0000 

 3 3.5 3 3.5 11936.0387 11936.0384 0.0003 

 3 2.5 3 3.5 11936.0348 11936.0352 -0.0004 

 3 3.5 3 2.5 11936.0332 11936.0331 0.0001 

 3 2.5 3 2.5 11936.0299 11936.0299 0.0000 

 2 1.5 2 1.5 11936.0213 11936.0215 -0.0002 

 2 2.5 2 1.5 11936.0177 11936.0162 -0.0005 

 2 1.5 2 2.5 11936.0159 11936.0162 -0.0003 



156 
  

 2 2.5 2 2.5 11936.0124 11936.0129 -0.0005 

Q(1.5) 2 1.5 1 0.5 11936.1588 11936.1600 -0.0012 

 2 2.5 1 1.5 11936.1481 11936.1474 0.0007 

 2 1.5 2 1.5 11936.1393 11936.1401 -0.0008 

 2 2.5 2 1.5 11936.1344 11936.1353 -0.0009 

 2 1.5 2 2.5 11936.1315 11936.1323 -0.0008 

 2 2.5 2 2.5 11936.1265 11936.1275 -0.0010 

 1 0.5 1 0.5 11936.1136 11936.1136 0.0000 

 1 1.5 1 0.5 11936.1086 11936.1087 -0.0001 

 1 0.5 1 1.5 11936.1060 11936.1058 0.0002 

 1 1.5 1 1.5 11936.1005 11936.1010 -0.0005 

 1 0.5 2 1.5 11936.0942 11936.0936 0.0006 

R(1.5) 3 2.5 2 2.5 11937.4147 11937.4157 -0.0010 

 2 1.5 1 0.5 11937.4135 11937.4141 -0.0006 

 3 3.5 2 2.5 11937.4120 11937.4125 -0.0005 

 2 1.5 1 1.5 11937.4056 11937.4063 -0.0007 

 2 2.5 1 1.5 11937.4021 11937.4030 -0.0009 

 2 1.5 2 1.5 11937.3934 11937.3941 -0.0007 

 2 2.5 1 1.5 11937.3900 11937.3908 -0.0008 

 2 2.5 2 2.5 11937.3823 11937.3831 -0.0008 

R(2.5) 4 3.5 3 2.5 11937.8400 11937.8404 -0.0004 

 4 3.5 3 3.5 11937.8344 11937.8351 -0.0007 

 4 3.5 3 3.5 11937.8321 11937.8327 -0.0006 

 3 2.5 2 1.5 11937.8304 11937.8312 -0.0008 

 3 2.5 2 2.5 11937.8249 11937.8259 -0.0010 

 3 2.5 2 2.5 11937.8223 11937.8234 -0.0011 

 3 2.5 3 2.5 11937.8182 11937.8188 -0.0006 

 3 3.5 3 3.5 11937.8152 11937.8163 -0.0011 

 3 3.5 3 3.5 11937.8103 11937.8110 -0.0007 

R(3.5) 5 4.5 3 3.5 11938.2242 11938.2251 -0.0009 

 5 4.5 4 3.5 11938.2195 11938.2200 -0.0005 

 5 4.5 4 4.5 11938.2154 11938.2160 -0.0006 

 5 5.5 4 4.5 11938.2132 11938.2141 -0.0009 

 4 3.5 3 2.5 11938.2106 11938.2119 -0.0013 

 4 3.5 3 3.5 11938.2078 11938.2079 -0.0001 

 4 4.5 3 3.5 11938.2043 11938.2059 -0.0016 

 4 3.5 4 3.5 11938.2018 11938.2028 -0.0010 

 4 4.5 4 3.5 11938.1995 11938.2008 -0.0013 

 4 4.5 4 4.5 11938.1953 11938.1968 -0.0015 

(1,0)        

P(3.5) 3 2.5 3 2.5 12490.5338 12490.5336 0.0002 

 3 3.5 3 3.5 12490.5269 12490.5266 0.0003 

 3 2.5 4 3.5 12490.5251 12490.5245 0.0006 

 3 3.5 4 3.5 12490.5219 12490.5215 0.0004 

 3 3.5 4 4.5 12490.5180 12490.5175 0.0005 
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 2 1.5 3 2.5 12490.5051 12490.5043 0.0008 

 2 2.5 3 2.5 12490.5017 12490.5013 0.0004 

 2 2.5 3 3.5 12490.4980 12490.4972 0.0008 

 2 2.5 4 3.5 12490.4929 12490.4921 0.0008 

P(2.5) 2 1.5 2 1.5 12491.1977 12491.1986 -0.0009 

 2 2.5 2 2.5 12491.1879 12491.1888 -0.0009 

 2 1.5 3 2.5 12491.1861 12491.1862 -0.0001 

 2 2.5 3 2.5 12491.1813 12491.1817 -0.0004 

 2 2.5 3 3.5 12491.1758 12491.1764 -0.0006 

 1 0.5 2 1.5 12491.1523 12491.1523 0.0000 

 1 1.5 2 1.5 12491.1478 12491.1478 0.0000 

 1 1.5 2 2.5 12491.1425 12491.1425 0.0000 

 1 1.5 3 2.5 12491.1355 12491.1354 0.0001 

Q(2.5) 3 2.5 2 1.5 12492.4757 12492.4763 -0.0006 

 3 3.5 2 2.5 12492.4681 12492.4680 0.0001 

 3 2.5 3 2.5 12492.4645 12492.4639 0.0006 

 3 3.5 3 2.5 12492.4614 12492.4609 0.0005 

 3 2.5 3 3.5 12492.4593 12492.4586 0.0007 

 3 3.5 3 3.5 12492.4560 12492.4556 0.0004 

 2 1.5 2 1.5 12492.4772 12492.4470 0.0002 

 2 2.5 2 1.5 12492.4436 12492.4440 -0.0004 

 2 1.5 2 2.5 12492.4421 12492.4417 0.0004 

 2 2.5 2 2.5 12492.4388 12492.4386 0.0002 

 2 1.5 3 2.5 12492.4348 12492.4346 0.0002 

 2 2.5 3 2.5 12492.4313 12492.4315 -0.0002 

 2 2.5 3 3.5 12492.4267 12492.4262 0.0005 

Q(1.5) 2 1.5 1 0.5 12492.5917 12492.5912 0.0005 

 2 2.5 1 1.5 12492.5791 12492.5789 0.0002 

 2 1.5 2 1.5 12492.5698 12492.5712 -0.0014 

 2 2.5 2 1.5 12492.5661 12492.5668 -0.0007 

 2 1.5 2 2.5 12492.5631 12492.5635 -0.0004 

 2 2.5 2 2.5 12492.5596 12492.5590 0.0006 

 1 0.5 1 0.5 12492.5452 12492.5449 0.0003 

 1 1.5 1 0.5 12492.5402 12492.5404 -0.0002 

 1 0.5 1 1.5 12492.5371 12492.5371 0.0000 

 1 1.5 1 1.5 12492.5323 12492.5326 -0.0003 

 1 1.5 2 1.5 12492.5207 12492.5204 0.0003 

 1 1.5 2 2.5 12492.5132 12492.5127 0.0005 

R(1.5) 3 2.5 2 1.5 12493.8493 12493.8489 0.0004 

 3 2.5 2 2.5 12493.8419 12493.8412 0.0007 

 3 3.5 2 2.5 12493.8384 12493.8396 -0.0012 

 2 1.5 1 0.5 12493.8384 12493.8382 0.0002 

 2 1.5 1 1.5 12493.8320 12493.8318 0.0002 

 2 2.5 1 1.5 12493.8279 12493.8288 -0.0009 

 2 1.5 2 1.5 12493.8196 12493.8196 0.0000 
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 2 2.5 2 1.5 12493.8161 12493.8166 -0.0005 

 2 2.5 2 2.5 12493.8082 12493.8088 -0.0006 

R(2.5) 4 3.5 3 2.5 12494.2580 12494.2578 0.0002 

 4 3.5 3 3.5 12494.2529 12494.2525 0.0004 

 4 4.5 3 3.5 12494.2504 12494.2503 0.0001 

 3 2.5 2 1.5 12494.2479 12494.2486 -0.0007 

 3 2.5 2 2.5 12494.2428 12494.2410 -0.0005 

 3 3.5 2 2.5 12494.2403 12494.2410 -0.0007 

 3 2.5 3 2.5 12494.2360 12494.2362 -0.0002 

 3 3.5 3 2.5 12494.2335 12494.2339 -0.0004 

 3 3.5 3 3.5 12494.2280 12494.2286 -0.0006 

  Standard Deviation=0.00079cm-1 (24MHz) . 

 


