Aligning English Sentences with Abstract Meaning Representation Graphs using
Inductive Logic Programming
by

Shubham Agarwal

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved July 2017 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Yezhou Yang
Baoxin Li

ARIZONA STATE UNIVERSITY

August 2017

ABSTRACT
In this thesis, I propose a new technique of Aligning English sentence words
with its Semantic Representation using Inductive Logic Programming(ILP). My
work focusses on Abstract Meaning Representation(AMR). AMR is a semantic
formalism to English natural language. It encodes meaning of a sentence in a rooted

graph. This representation has gained attention for its simplicity and expressive power.

An AMR Aligner aligns words in a sentence to nodes(concepts) in its AMR
graph. As AMR annotation has no explicit alignment with words in English sentence,
automatic alignment becomes a requirement for training AMR parsers. The aligner in
this work comprises of two components. First, rules are learnt using ILP that invoke
AMR concepts from sentence-AMR graph pairs in the training data. Second, the
learnt rules are then used to align English sentences with AMR graphs. The technique
is evaluated on publicly available test dataset and the results are comparable with

state-of-the-art aligner.

To Mother, Father and Brother

i

ACKNOWLEDGMENTS
I would like to thank many people for their support and guidance which made this
possible. First of all, thanks to my advisor, Dr. Chitta Baral, who guided me at
every step in the project with his experience and helped me in making sense out of
numerous confusing scenarios. Thanks to my committee members, Dr. Baoxin Li and
Dr. Yezhou Yang, who offered me guidance and support whenever I needed. Thanks
to the Arizona State University for providing me an opportunity to work with such
great minds and technology. Thanks to my colleagues in Dr. Baral’s lab, especially
Arindam Mitra and Arpit Sharma who encouraged me and corrected me at times with
their knowledge of subject matter and experience. Without them this project would
not have been possible. And finally, thanks to my parents, and numerous friends who

endured this long process with me, always offering support and love.

il

TABLE OF CONTENTS

Page
LIST OF TABLES .. e vi
LIST OF FIGURES ... e vii
CHAPTER
1 INTRODUCTION .o 1
1.1 Sentence - AMR Alignment 2
1.2 Related Works 2
1.3 An Overview Of The Approach.............. 4
2 LINGUISTIC BACKGROUND KNOWLEDGE EXTRACTION AND
ENCODING o 10
2.1 Background Knowledge 10
2.2 Answer Set Programming Encoding............................. 12

3 RULE LEARNING USING INDUCTIVE LOGIC PROGRAMMING .. 15

3.1 Inductive Logic Programming 15
3.2 The XHAIL Systemoooiiiiiiiiii. .. 16
3.3 Learning. 18
3.3.1 Modal Concepts 19
3.3.2 Negation Conceptooiiiiiiiiiiiiii, 22
3.3.3 Question Concept ... 26
3.3.4 Concept As Word Tokens 29
3.3.5 Concepts As Categorial Variations Of Word Tokens 33
3.3.6 Concepts Negated With Prefix And Suffix................. 34
3.3.7 Imperative Concept.........oooiiiiiiiiiiii 34
3.3.8 Causal Concept 35

v

CHAPTER Page

3.3.9 Abstract Concept 36

4 ALIGNING ..o 38
5 EXPERIMENTS AND RESULTS 41
D.1 Dataset 41

5.2 Results - Category Modal Concepts............................. 42

5.3 Results - Negation Category 42

5.4 Results - Question Category.......... 43

5.5 Results - Imperative Category 43

5.6 Results - Concept as Word Tokens Category..................... 44

5.7 Results - Concept as Categorial Variation Category 44

5.8 Results - Abstract Concept Category 45

5.9 Results - Causal Concept Category 45

6 CONCLUSION AND FUTURE WORK 47
6.1 Explainability of the Inductive Logic Programming Approach.. ... 48

6.2 Future Work 49
BIBLIOGRAPHY ... o 50

APPENDIX

A ILP ALIGNER IMPLEMENTATION DETAILS 52

LIST OF TABLES

Table Page
1. Rules - Modal Conceptso 23
2. Rule - Negation Concept 26
3. Rule - Question Concept 30
4. Rule - Word Token as Conceptsuiiiiiiinieiiinaan. 33
5. Rule - Concepts as Categorial Variations of Word Tokens 34
6. Rule - Concepts as Categorial Variations of Word Tokens 34
7. Rule - Imperative Concept 35
8. Rule - Causal Concept e 36

9. AMR/English Corpus. The Number in Parentheses Is the Percent of Tokens

Aligned in Gold Annotation. 42
10.Results - Category Modal Concepts...........ccoooiiiiiiiii ... 42
11.Results - Category Negation Concepts ..., .. 43
12.Results - Category Question Concepts ..., .. 43
13.Results - Category Imperative Concepts 44
14.Results - Category Concept as Word Tokens............................... 44
15.Results - Category Concept as Categorial Variation 44
16.Results - Abstract Concept Category 45
17.Results - Causal Concept Category 46
18.Results - Development Dataset 46
19.Results - Test Dataset ... 46

vi

LIST OF FIGURES

Figure Page

1.

Alignment between Sentence and Its AMR Graph. Each Color Is an Alignment

excluding Black.. 2
. Work-Flow Diagram of AMR Aligner Using ILP. 5
Example Showing Alignment of Innovate-01 Concept....................... 6

Example Showing Alignments of :polarity - Concept and ‘Person’ Abstract

(7030 T67c)] R 6
Explainability Issues in Al Systems Today 49
. Algorithm : Constructing AMR Graph......... 54
. Algorithm : Alignment 56

vii

Chapter 1

INTRODUCTION

Natural language facilitates the exchange of thoughts and ideas among people.
These ideas are essence of the natural language sentences, also called semantics.
In other words, meaning of a text is called its semantics. To fully address natural
language semantics, it would require a complete theory of how people think and
communicate their ideas. In one of the recent works in this direction, Banarescu
et al. (2013) released a large Abstract Meaning Representation(AMR) corpus that
captures the logical meaning of sentences. AMR is a single rooted, directed acyclic
graph that incorporates semantic roles, coreference, modality, questions, negation,
and many other linguistic attributes. Nodes of the graph are Concepts and edges are
Roles. Figure 1 shows an example AMR graph for the sentence The government can

override the market.

However, AMR is not annotated with alignment links between English words
and AMR concepts. Such alignments are necessary in the construction of semantic
parsers for AMR. Semantic parsing refers to the task of transforming natural language
sentence into a formal representation of its meaning. To train a semantic parser, it is
important to know which spans of words invoke which concepts in the corresponding
graph, i.e. alignment links between each English token and its AMR representation

are needed.

The government can override the market.

(p / possible
:domain (o / override-01
:ARGO (g / government-organization
-ARGO-of (g2 / govern-01))
ARG1 (m / market)))

Figure 1. Alignment between sentence and its AMR graph. Each color is an
alignment excluding black.

1.1 Sentence - AMR Alignment

Alignment between an English sentence and its AMR graph refers to the correspon-
dances between individual word tokens and nodes in the graph. These alignments are
not trivial as many AMR concepts are invoked by words that have no lexical similarity
to the concept. Figure 1 shows an aligned example. Note that the concept possible is

invoked by the word can depicting the non-trivial nature of AMR alignment.

Existing works for this problem statement propose methods based on manual rules
and string-to-string Machine Translation. Section 1.2 discusses related works and

Section 1.3 gives an overview of my approach.

1.2 Related Works

Flanigan et al. (2014) is the first work in English-AMR alignment. They propose
a rule-based method that aligns spans of English tokens to an AMR graph concept

fragment by manually writing a set of rules to be executed in a specific order.

They assume that AMR roles are associated to the aligned concepts so they do not
explicitly align roles. They evaluate their method on a hand aligned dataset of 200
sentences. The limitation of the rule-based method is that it cannot benefit from
more data annotation of AMR. Also if new concepts are introduced by AMR later,

new set of rules will have to be defined which might possibly conflict with existing rules.

A Statistical Machine Translation(SMT) based string-to-string alignment method
has been proposed by Pourdamghani et al. (2014). They align both concepts and
roles to English tokens. They linearize the AMR graph and transform the original
string-to-graph problem into string-to-string. They use unsupervised alignment
models(IBM models, Brown et al. (1993)). Machine Translation generally requires a
large amount of training data, hence this method severely suffers from data sparceness
issues due to small amount of AMR training data. They report accuracy of their

system on a different hand aligned dataset.

Chu and Kurohashi (2016) work on the base method of Pourdamghani et al. (2014)
and propose a supervised syntax-based alignment model. They first convert AMRs to
Constituency Trees and then perform Hierarchical Alignment on these Constituency

Trees.

In AMR parsing, Flanigan et al. (2014) is the first work. They proposed a graph
based parsing method that first generated concepts given a sentence. The concepts
come from their own aligner. Then they form the graph from those concept fragments
using relation(role) prediction. Their algorithm finds a maximum spanning and

connected graph. Their parser is named JAMR and is publicly available. Werling

et al. (2015) extended the work of JAMR by proposing generative actions for subgraph
derivation based on their alignment criteria. Wang et al. (2015) proposed a transition
based method that first parses English sentence to dependency tree using a dependency
parser and then transforms the dependency tree to AMR graph by learning the series
of transitions requires to reach AMR graph as destination from the source dependency
tree. They also use the JAMR aligner for feature extraction in their parser. Their
parser is publicly available as CAMR parser. Artzi et al. (2015) proposed using the
combinatory categorial grammar(CCG) for AMR parsing. Pust et al. (2015) used
string to tree syntax based Machine Translation method. After transforming English
sentences to trees, they further convert trees to AMR graphs. Their parser is publicly

available as ISIT AMR parser.

1.3 An Overview Of The Approach

As previously mentioned, the approach is based on learning alignment rules
instead of manually defining them. This includes three main components: Natural
Language and AMR to ILP encoder to encode the preprocessed data in a meaningful
representation which can be fed to ILP engine for learning, ILP engine where rules are
learnt from the training data for each category of AMR and Aligner to align sentences

using learnt rules. Figure 2 shows the work-flow diagram.

The idea behind this approach is that predicting concepts invoked by words in a
sentence is same as aligning words to those concepts. So effectively, learning rules
to invoke these concepts becomes the primary target. After carefully studying the
AMR guidelines, concepts can be categorized into following: concepts as word tokens,

modal concepts, imperative concept, negation concept, concepts as categorial variations

1
ii The government can override the market. n

i (p/possible _ fimm == m oo Sentence-AMR
i :domain (o / override-01 :: graph pairs
i ARGO (g / government-organization {Raw Training Data)

i :ARGO-of (g2 / govern-01))]
i ARG (m / market))) i

(Matural

Language AMR) 1o
ILP encoder

:i token(1,1,the). 0 W
i token(1,2,government). i
[i ILF encoded sentence
4 token(1,3,can). Fommmmmemmmmm e and AMR corpus

(Training Data)

ii ;Fexample concept{possible). :i

ILP engine(ASP
grounding + solver +
ILP generalization)

T mmm———————

Leaming

ey et B

ii concept(possible V1):-token{V1,V2,can), sentence(V1), position(Va). i

; Development
Aligner

+
Test Dataset

Alignments

Results Ewvaluation Engine

Figure 2. Work-Flow diagram of AMR aligner using ILP.

of word tokens, concepts negated with prefix and suffix, question concepts, abstract

concepts, causal concept. The categories are defined as follows.

Establishing models in Industrial Innovation.

(e / establish-01
:ARG1 (m / model
'mod (i / innovate-01

:ARG1 (i2 / industry))))

Figure 3. Example showing alignment of innovate-01 concept

Palmer is not bright.

(b / bright
‘polarity -

:domain (p / person :name (n / name :op1 "Palmer")))

Figure 4. Example showing alignments of :polarity - concept and ‘person’ abstract
concept

e Concepts as word tokens:

In this category, AMR concepts are exactly the same as word tokens in the
sentence. For example:

Sentence: The government can override the market. (Figure 1)

Concept in focus: market

Aligning token in sentence: market

e Modal concepts

In this category, modal concepts like possible, obligate etc. are invoked from
modal tokens in the sentence.

Sentence: The government can override the market. (Figure 1)

Concept in focus: possible

Aligning token in sentence: can

Imperative concepts

In this category, imperative concept is invoked with an exclamation mark token
in the sentence.

Sentence: Go Chinal!

Concept in focus: imperative

Aligning token in sentence: !

Negation concept

In this category, modal concept :polarity - is invoked from negation words like
no, not etc. in the sentence.

Sentence: Palmer is not bright. (Figure 4)

Concept in focus: :polarity -

Aligning token in sentence: not

Concepts as Categorial variations of word tokens

In this category, categorial variations of word tokens in sentence are aligned
with concepts in AMR which are defined as root forms. For example, the word
innovation(noun) aligns to the concept innovate(verb)

Sentence: Establishing Models in Industrial Innovation (Figure 3)

Concept in focus: :innovate-01

Aligning token in sentence: Innovation

Concepts negated with prefix and suffix

In this category, negation is inherent to the word itself. For example, word
‘illegal’ is equivalent to ‘not legal’.

Sentence: This is illegal.

Concept in focus: : 1/ legal :polarity -

Aligning token in sentence: illegal

Question concepts

In this category, question words like who, what, where etc. are aligned to
amr-unknown concept.

Sentence: Where is John?

Concept in focus: : amr-unknown

Aligning token in sentence: Where

Abstract concepts

In this category, concepts like person, organization, thing etc. that do not
directly match with any word token are aligned.

Sentence: Palmer is not bright. (Figure 4)

Concept in focus: : person

Aligning token in sentence: Palmer

e Causal concept
In this category, concept cause is invoked if there is a causal relation between
two events in the sentence.
Sentence: The government can override the market because it is powerful.
Concept in focus: cause

Aligning token in sentence: because

For each of these categories, rules are learnt using ILP on the training dataset.
The learnt rules are then put together to align sentences with their AMR. Note that
information related to each category is provided to split the data into each category.
Also when learning rules for each category, concepts related to only that category are
considered while the rest are ignored. In the following Chapters each component of

this approach is discussed and explained in detail with appropriate examples.

Chapter 2

LINGUISTIC BACKGROUND KNOWLEDGE EXTRACTION AND ENCODING

This chapter details the prerequisites of rule learning process. For learning,
appropriate background knowledge needs to be extracted. Each data instance will
be represented using this background knowledge in a logical form. Subsection 2.1
talks about Background Knowledge and Subsection 2.2 talks about the Answer Set

Programming logical form.

2.1 Background Knowledge

Learning alignment rules from sentence-AMR input pairs requires extraction of
linguistic background knowledge from sentence. The input pairs are represented
using this background knowledge. Extracted background knowledge is according the
categorization of AMR as listed in section 1.3. Using the definition of each category

provided by AMR guidelines, following is the list of background knowledge used:

e Lemma
Lemma is the outcome of lemmatization which refers to removing inflectional
endings and to return the base form of a word using a vocabulary and morpho-
logical analysis of words. Stanford CoreNLP(Manning et al. (2014)) is used to
perform lemmatization.

For example: Lemma of word saw attempts to return either see or saw

10

depending on whether the use of the word was as a verb or a noun.

e Part of Speech
Part of Speech(POS) tags like wverb, noun, pronoun, modal, adverb, wh-
determiner, wh-pronoun, etc. from Penn Treebank part-of-speech tag set are
used as background knowledge. Stanford POS tagger(Toutanova et al. (2003))

is used to tag the sentences with POS.

e Modal
Modals like can, could, may, might, shall, should, will, would invoke modal
concepts. Sentences having modals have this as one of the distinctive background
knowledge. Again Stanford POS tagger is used to find modals in sentences

recognized by ‘MD’ tag.

e Named Entity
Stanford’s Named Entity Recognizer(NER)(Finkel et al. (2005)) is used to find
named entities like person, location, organization etc. in sentences.
For example: In the sentence, My name is Shubham., Stanford NER marks

‘Shubham’ as a person.

¢ Question tokens
Again the POS tagger was used to find out question words like who, whom,

where, how, which etc.. Their POS tags are one of ‘WP, WP$, WRB’.

e Categorial Variation

11

Many concept in AMR are categorial variations of word tokens in sentences. For
example, ‘innovate’ aligns to ‘innovation” and lemmatizer will not return innovate
as the lemma of innovation because former is a verb while latter is a noun. To
align such concepts, categorial variation of words is required as background
knowledge. CATVAR 2.0(Habash et al., 2003) is used for it. It is a database of
clusters of uninflected words (lexemes) and their categorial (i.e. part-of-speech)
variants. For example, the words hunger(V), hunger(N), hungry(AJ) and hungri-
ness(N) are different English variants of some underlying concept describing the
state of being hungry. Another example is the developing cluster:(develop(V),
developer(N), developed(AJ), developing(N), developing(AJ), development(N)).

2.2 Answer Set Programming Encoding

Now, since we have the background knowledge, its important to represent input
data using it, in a formal way that can be read by Inductive Logic Programming
engine. I am using the XHAIL open source software! for rule learning using ILP. It
takes input in Answer Set Programming(ASP) format. ASP is a form of declarative
programming oriented towards difficult search problems. It is particularly useful in
knowledge-intensive applications. ASP is based on the stable model (answer set)
semantics of logic programming (Gelfond and Lifschitz (1988)), which applies ideas of
autoepistemic logic (Moore (1984)) and default logic (Reiter (1980)) to the analysis of

negation as failure.

It is a collection of rules of the form,

Thttps://github.com /stefano-bragaglia/XHAIL

12

Ly Ly,...,Ly,notL,, q,...,notL,
where L;’s are literals as in classical logic. Intuitively, the above rule means that if
Ly, ..., L, are true and if L,, 1, ..., L, can be safely assumed to be false then Ly must
be true (Baral (2003)) . The left-hand side of an ASP rule is called the head and
the right-hand side is called the body. The semantics of ASP is based on the stable

model (answer set) semantics of logic programming (Gelfond and Lifschitz (1988)).

An example representation is as follows:

Sentence : Even the government cannot override the market!

%% Background

position(I) :- token(S,I,L).
sentence(S) :- token(S,I,L).
lemmalList(L) :- token(S,I,L).

modalConcepts(possible;likely;obligate; permit;recommend;prefer).

token(28,1,even).
token(28,2,the).
token(28,3,government).
token(28,4,can).
token(28,5,nt).
token(28,6,override).
token(28,7,the).

token (28,8, market).

modal(can).

%% Examples
#example concept(possible,28).

In the above example, sentence is represented as numbered lemma tokens(28
is sentence number and 1-8 are index/position of tokens in the sentence) and the

background knowledge modal(can). Background is a general definition of representation.

13

Here it defines what a positon and lemma is in an arity 3 token of sentence. Modal
Concepts is a list of modal concepts AMR uses as by its definition. Example defines
the target concept annotated in this sentence by AMR. Here possible is a concept in

the corresponding AMR of this sentence.

14

Chapter 3

RULE LEARNING USING INDUCTIVE LOGIC PROGRAMMING

3.1 Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton (1991)) is a subfield of Machine
learning that is focused on learning logic programs. Given some background knowl-

edge, a set of positive examples {1, negative examples £, an ILP algorithm finds a

Hypothesis H (answer set program) such that BUH E {t and BUH ¥ £~

A language bias restricts the possible hypothesis space by a series of Mode
declarations M (Muggleton (1991)). A modeh(s) declaration denotes a literal s that
can appear as the head of a rule (Table 3). A modeb(s) declaration denote a literal s
that can appear in the body of a rule (Table 3). The argument s is called schema

and consists of two parts:

1) an identifier for the literal

2) a list of placemakers for each argument of that literal.

A placemaker is either +type (input), -type (output) or $type (constant), where
type denotes the type of the argument. An answer set rule is in the hypothesis
space defined by L (call it L(M)) iff its head (resp. each of its body literals) is

constructed from the schema s in a modeh(s) (resp. in a modeb(s)) in L(M)) as follows:

15

- By replacing an output (-) placemaker by a new variable.
- By replacing an input (+) placemaker by a variable that appears in the head or
in a previous body literal.

- By replacing a ground ($) placemaker by a ground term.

As mentioned in Mitra and Baral (2016), note that the set of negative examples
&~ is required to restrain H from being over generalized. Informally, given an ILP
task, an ILP algorithm finds a hypothesis H that is general enough to cover all the
examples in £ and also specific enough to not cover any example in £~. Without
¢, the learned H will contain only facts. In this thesis, negative examples are
automatically generated from positive examples by assuming the answers are complete,
i.e. if a sentence-AMR pair says that possible is the only modal concept in it, then its

assumed that other modal concepts are negative examples for this instance.

I use the XHAIL system for rule learning. Next section discusses the details of

XHAIL.

3.2 The XHAIL System

As mentioned in Katzouris et al. (2015), XHAIL is an abductive-inductive system

that constructs hypotheses in a three-phase process. Given an ILP task ILP(B, E,

M), the first two phases return a ground program K, called Kernel Set of E*, such

2This kernel is the learnt model using Inductive Logic Programming. It is different from a typical
Kernel in Machine Learning which generally helps to do certain calculations faster that otherwise
would involve computations in higher dimensional space.

16

that B UK F E. The first phase generates the head’s of K’s clauses by abductively
deriving from B a set A of instances of head atoms, as defined by the language bias,
such that BUA E E. The second phase generates K, by saturating each previously
abduced atom with instances of body atoms that deductively follow from B UA. The

language bias used by XHAIL is mode declarations as mentioned above.

By construction, the Kernel Set covers the provided examples. In order to find
a good hypothesis, XHAIL thus searches in the space of theories that subsume the
Kernel Set. To this end, the latter is variabilized, i.e. each term that corresponds
to a variable, according to the language bias, is replaced by an actual variable. The

variabilized Kernel Set K, is subject to a syntactic transformation of its clauses.

For each clause C; ¢ K, and each body literal 67 ¢ C;, a new atom v(87) is
generated, as a special term that contains the variables that appear in 5; . The new
atom is wrapped inside an atom of the form try(i, j,v(57)). An extra atom use(i,0)
is added to the body of C; and two new clauses try(i, j,v(0?)) « use(i,j), 8 and

try(i, j,v(87)) < not use(i, j) are generated, for each body literal 6/ € C;.

These clauses are all put together into a program Uk, . From Uy, , literals and
clauses may be selected in order to construct a hypothesis that accounts for the
examples. As explained in Ray (2009), the intuition is as follows: In order for the
head atom of clause C; € Uk, to contribute towards the coverage of an example, each
of its try(i, j,v(d})) atoms must succeed. By means of the two rules added for each
such atom, this can be achieved in two ways: Either by assuming not use(i, j), or

by satisfying 6/ and abducing use(i, 7). A hypothesis clause is constructed by the

17

head atom of the i-th clause C; of K, if use(i,0) is abduced, and the j-th body
literal of C; , for each abduced use(i, j) atom. All other clauses and literals from K,
are discarded. Search is biased by minimality, i.e. preference towards hypotheses

with fewer literals. This is realized by means of abducing a minimal set of use/2 atoms.

3.3 Learning

In this section, I illustrate the formulation of an ILP task for alignment rule
learning and the way the answer set programs are learned. I explain the approach
with the XHAIL (Ray (2009)) algorithm. Rules are learnt for each category of AMR

as described in Introduction.

Given an ILP task ILP(B,{ =& U £, M), XHAIL derives the hypothesis in a
three step process:

e Grounding
¢ Finding kernel

e Hypothesis generation/Generalization

These three steps remain the same for each category rule learning, just the content

involved in each step changes. Lets see them one by one.

18

3.3.1 Modal Concepts

In this category, modal concepts like possible, obligate, recommend etc. are
aligned to modals in the sentence. So rules stating which modal concepts are invoked
by which particular modals are to be learnt. For example in Figure 1, can aligns to
possible concept. Note here that while learning rules for this category, only concepts
corresponding to this category are considered while the others are ignored. So
information is being provided on what concepts the learning target has but the ILP
system learns which of these concepts align to which words in the sentence. Lets

discuss the three steps of learning in this case.

Following is ASP encoding of the two examples to be referred for the three steps

in this category.

% sentence: The government can override the market.
%% Background

position(I) :- token(S,I,L).

sentence(S) :- token(S,I,L).

lemmalList(L) :- token(S,I,L).

modalConcepts(possible;likely;obligate; permit;recommend;prefer).

token(0,1,the).

token(0,2,government).

token(0,3,can).

19

modal(can).
token(0,4,override).
token(0,5,the).
token(0,6,market).

%% Examples

#example concept(possible,0).
#example not concept(likely,0).
#example not concept(obligate,0).

#example not concept(permit,0).

#example not concept(recommend,().

#example not concept(prefer,0).

% sentence: I like you.
token(1,1,i).

token(1,2,like).

token(1,2,you,).

#example not concept(possible,1).
#example not concept(likely,1).
#example not concept(obligate,1).

#example not concept(permit,1).

#example not concept(recommend,1).

#example not concept(prefer,1).

%% Mode(s)

20

#modeh concept($modalConcepts,+sentence).

#modeb token(+sentence,-position,$modal).

Step 1 : In the first step the XHAIL algorithm finds a set of ground (variable
free) atoms A = U, «; such that B U A E ¢ where each «; is a ground instance
of modeh(s) declaration atoms. For the ILP problem above, there is one modeh
declaration. Thus the A can contain ground instances of this atom in the modeh

declaration. Following shows one possible A that meets the above requirements for

the ILP task:
A = concept(possible,0)

Step 2 : In the second step, XHAIL computes a clause o; < 4;...0;" for each a; in
A, where BU A F 53, Vi < i< n, 1 < j < m;and each clause o; < 4;...0]"
is a ground instance of the rule in L(M). In the running example, A contains one
atom that must lead to a clause k;. ki = concept(possible,0):-token(0,2,can). is
initialized to the head of clause k;. The body of k; is saturated by adding all possible
ground instances of the literals in modeb(s) declarations that satisfy the constraints
mentioned above. The only ground clause K constructed in this step for the running
example and its variabilized version K, that is obtained by replacing all input and

output terms by variables is shown below:

= concept(possible,0) : —token(0,2, can).

K
K, = concept(possible, V1) : —token(V1,V2, can).

21

Step 3 : In this step XHAIL tries to find a compressive theory H by deleting from
K, as many literals (and clauses) as possible while ensuring that B U H E £. In the

running example, it will lead to H = K,,. Following is the expanded learnt rule:

H = concept(possible, V1) : —token(V'1,V2,can), sentence(V'1), position(V2).

When put into words, this rule reads: If ‘can’ is a token in the sentence V1 at position

V2 then the concept ‘possible’ aligns to this token.

Following the exact same pattern for all the sentences in the training dataset,

Table 1 lists the set of rules learnt.

3.3.2 Negation Concept

The Negation Concept is represented as :polarity - in AMR which aligns to

negation words like no, not. For example,

% sentence: We can not say for certain.
%% Background

position(I) :- token(S,I,L).

sentence(S) :- token(S,1,L).
lemmalList(L) :- token(S,I,L).

modalConcepts(possible;likely;obligate; permit;recommend;prefer).

22

concept(possible,V1):-token(V1,V2,can),sentence(V1),position(V2).

concept(recommend,V1):-token(V1,V2,can),sentence(V1),position(V2).

concept(obligate,V1):-token(V1,V2,must),sentence(V1),position(V2).

concept(obligate,V1):-token(V1,V2,shall),sentence(V1),position(V2).

concept(likely,V1):-token(V1,V2,should),sentence(V1),position(V2).

concept(recommend,V1):-token(V1,V2,shld),sentence(V1),position(V2).

concept(possible,V1):-token(V1,V2,may),sentence(V1),position(V2).

concept(obligate,V1):-token(V1,V2,may),sentence(V1),position(V2).

concept(possible,V1):-token(V1,V2,will),sentence(V1),position(V2).

concept(obligate,V1):-token(V1,V2,will),sentence(V1),position(V2).

concept(recommend,V1):-token(V1,V2,will),sentence(V1),position(V2).

concept(possible,V1):-token(V1,V2,would),sentence(V1),position(V2).

concept(prefer,V1):-token(V1,V2,would),sentence(V1),position(V2).

Table 1. Rules - Modal concepts

negative Concept(polarityNeg).

negationTokens(no;not_ tok).

token(0,1,we).
token(0,2,can).
modal(can).
token(0,3,no0t_tok).
token(0,4,say).
token(0,5,for).

token(0,6,certain).

%% Examples

23

#example concept(possible,).
#example not concept(likely,0).
#example not concept(obligate,0).
#example not concept(permit,0).
#example not concept(recommend,().
#example not concept(prefer,0).

#example concept(polarityNeg,0).

% sentence: I like you.

token(1,1,i).

token(1,2,like).

token(1,2,you).

#example not concept(possible,1).
#example not concept(likely,1).
#example not concept(obligate,1).
#example not concept(permit, 1).
#example not concept(recommend,1).
#example not concept(prefer,1).

#example not concept(polarityNeg,1).

#modeh concept($negativeConcept,+sentence).

#modeb token(+sentence,-position,-negationTokens).

%% Mode(s)

#modeh concept($modalConcepts,+sentence).

24

#modeb token(+sentence,-position,$modal).

The bold lines highlight information related to this category. The three steps for

this category in learning are as follows:

Step 1 : There are two modeh declarations in this example. Thus the A can
contain ground instances of this atom in the modeh declaration. Following shows two

possible A that meet the above requirements for the ILP task:

concept(polarityNeg, 0)
A —

concept(possible, 0)

Step 2 : In the second step, Kernel is formed using the A instances as the head
to a clause and its body is saturated by adding all possible ground instances of the
literals in modeb(s) declarations. The only ground clause K constructed in this step
for the running example and its variabilized version K, that is obtained by replacing

all input and output terms by variables is shown below:

concept(possible, 0) : —token(0, 2, can), token(0, 3, not,ok).
K =

concept(polarityNeg,0) : —token(0, 2, can), token(0, 3, notok).

25

concept(polarityNeg,V1):-token(V1,V3,V4),sentence(V1),position(V3),
negationTokens(V4).

Table 2. Rule - Negation concept

concept(possible, V1) : —token(V1,V2, can),token(V1,V3 V4
pt(p , V1) (V1,V2,can), (V1,V3,V4)

concept(polarityNeg, V1) : —token(V'1,V2, can),token(V1,V3,V4).

Step 3 : In this step XHAIL tries to find a compressive theory H by deleting
from K, as many literals (and clauses) as possible while ensuring that B U H F €.
In the running example, it will lead to rule in Table 2. Note that hypothesis relevant

to this category is shown only.

3.3.3 Question Concept

The question concept is represented as amr-unknown in AMR which aligns to
question words in sentence like how, when, where, what, who, why. Following is an

ASP encoded example,

% sentence: How did they set it up ¢
%% Background

position(I) :- token(S,I,L).
sentence(S) :- token(S,I,L).

26

lemmalList(L) :- token(S,I,L).

questionConcept(amrUnknown).

question Words(where;when;why;how;what;who;whom,).
posTags(wdt;wp;wpdollar;wrb;vbd;prp;vb;rp;dot;vbp).

% this is just a subset of POS tags used for illustration

quesPos(wdt;wp;wpdollar;wrb).

token(0,1,how).
pos(0,1,wrb).
token(0,2,did).
pos(0,2,vbd).
token(0,3,they).
pos(0,3,prp).
token(0,4,set).
pos(0,4,vb).
token(0,5,it).
pos(0,5,prp).
token(0,6,up).
pos(0,6,rp).
token(0,7,questionMark).
pos(0,7,dot).

%% Ezxamples

27

#example concept(amrUnknown,0).

% sentence: I like you.
token(1,1,i).
pos(1,1,prp).
token(1,2,like).
pos(1,2,vbp).
token(1,2,yo0u).
pos(1,3,prp).

#example not concept(amrUnknown,1).

#modeh concept($questionConcept,+sentence).
#modeb token(+sentence,-position, $question Words).

#modeb pos(+sentence,-position,$quesPos).

Step 1 : There is one modeh declaration in this example. Thus the A can contain
ground instances of this atom in the modeh declaration. Following shows the possible

A that meets the above requirement for the ILP task:

A = concept(amrUnknown, 0)

Step 2 : In the second step, Kernel is formed using the A instances as the head
to a clause and its body is saturated by adding all possible ground instances of the

literals in modeb(s) declarations. The only ground clause K constructed in this step

for the running example and its variabilized version K, that is obtained by replacing

28

all input and output terms by variables is shown below:

K = concept(amrUnknown,0) : —token(0, 1, how), pos(0, 1, wrbd).

K, = concept(amrUnknown, V1) : —token(V1,V2, how), pos(V1, V2 wrb).

Step 3 : In this step XHAIL tries to find a compressive theory H by deleting
from K, as many literals (and clauses) as possible while ensuring that B U H E €.

In the running example, it will lead to following rule.

H = concept(amrUnknown, V1) : —token(V1,V2 how), pos(V1,V2 wrb),

sentence(V'1), position(V'2).

Following the same pattern, Table 3 lists all the rules learnt for question concept.

3.3.4 Concept As Word Tokens

In this category, word tokens in the sentence are the concept themselves. Following

is an ASP encoded example,

% sentence: They can set it .
%% Background

position(I) :- token(S,I,L).
sentence(S) :- token(S,I,L).

29

concept(amrUnknown,V1) :- token(V1,V2how), pos(V1,V2,wrb), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,which), pos(V1,V2,wdt), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,what), pos(V1,V2,wp), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,who), pos(V1,V2,wp), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,whom), pos(V1,V2,wp), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,whose),
pos(V1,V2,wpdollar), sentence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,where), pos(V1,V2,wrb), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,when), pos(V1,V2,wrb), sen-
tence(V1), position(V2).

concept(amrUnknown,V1) :- token(V1,V2,why), pos(V1,V2,wrb), sen-
tence(V1), position(V2).

Table 3. Rule - Question concept

lemmalList(L) :- token(S,I,L).

conceptList(they;set;it;placeholder).

modalConcept(possible;likely;obligate;permit;recommend;prefer).

token(0,1,they).
token(0,2,can).
modal(can).

token(0,3,set).

30

token(0,4,it).

%% Examples

#example concept(they,0).
#example concept(possible,0).
#example concept(set,0).
#example concept(it,0).
#example not concept(likely,0).
#example not concept(obligate,0).
#example not concept(permit,0).
#example not concept(recommend,().
#example not concept(prefer,0).

#example not concept(placeholder,0).

#modeh concept($modalConcept,+sentence).
#modeb token(+sentence,-position,$modal).
#modeh concept(+conceptList,+sentence).

#modeb token(+sentence,-position,+conceptList).

The bold lines highlight information related to this category. The three steps for

this category in learning are as follows:

Step 1 : There are two modeh declarations in this example. Thus the A can

contain ground instances of this atom in the modeh declaration. Following shows four

31

possible A that meet the above requirements for the ILP task:

p

concept(it,0)
concept(they,0)

concept(set,0)

concept(possible, 0)
\

Step 2 : In the second step, Kernel is formed using the A instances as the head
to a clause and its body is saturated by adding all possible ground instances of literals
in modeb(s) declarations. The only ground clause K constructed in this step for the
running example and its variabilized version K, that is obtained by replacing all input

and output terms by variables is shown below:

(

concept(it,0):-token(0,2,can),token(0,4,it).
concept(they,0):-token(0,2,can),token(0,1,they).

concept(set,0):-token(0,2,can),token(0,3,set).

concept(possible,0) : —token(0, 2, can)
(

concept(V1,V2):-token(V2,V4,V1).

concept(possible, V1) : —token(V1,V2, can)

32

concept(V1,V2) :- token(V2,V4,V1), sentence(V2), position(V4), con-
ceptList(V1).

Table 4. Rule - Word token as concepts

Step 3 : In this step XHAIL tries to find a compressive theory H by deleting
from K, as many literals (and clauses) as possible while ensuring that B U H E &.
In the running example, it will lead to rule in Table 4. Note that hypothesis relevant

to this category is shown only.

3.3.5 Concepts As Categorial Variations Of Word Tokens

In this category, categorial variations of word tokens in sentence are aligned with
concepts in AMR which are defined as root forms. This category is a similar to a fuzzy
matching of words and concepts, except that I am using a categorial variation database
of word clusters called CATVAR (Habash and Dorr (2003)). If a token lies in the catvar
cluster of a concept, it is aligned to that concept. For example, catvar cluster of concept
innovate is [innovate, innovator,innovation,innovative,innovational,innovativeness/. If
sentence has any token that matches these words in this cluster, then that token is
aligned to this concept innovate. This is somewhat similar to the previous category
except that we are matching with words in catvar cluster of concept instead of concept

itself.

The rule looks like in Table 5.

33

concept(V1,V2) :- token(V2,V4,V3), catword(V3,V1), sentence(V2), po-
sition(V4), conceptList(V1), lemmaList(V1).

Table 5. Rule - Concepts as Categorial variations of word tokens

concept(polarityNeg,V2) :- token(V2,V4,V3), hasNegativePrefix(V3),
appliesCatvarRule(V5), rootWithoutNegativePrefix(V5,V3), sen-
tence(V2), position(V4), lemmaList(V3)

concept(V1,V2) :- token(V2,V4,V3), hasNegativePrefix(V3), appli-
esCatvarRule(V5), rootWithoutNegativePrefix(V5,V3), resultCatvar-
Rule(V1,V5), sentence(V2), position(V4), lemmaList(V3)

Table 6. Rule - Concepts as Categorial variations of word tokens

3.3.6 Concepts Negated With Prefix And Suffix

In this category, negative prefix or suffix invokes the :polarity - concept along
with the concept corresponding to root of the word. For example, illegal will invoke
:polarity - concept aligning to prefix - and legal aligning to root legal. Prefixes and
suffix [a,im,ir,in,un,dis,non,less| are part of this rule. To align the root of the prefixed
word, CATVAR is used as in the Table 5 rule. Learnt rule for this category is in Table
6.

3.3.7 Imperative Concept

In this category, concept imperative aligns to token ! in the sentence. For Example,

Sentence: Go China !

(92/go — 01 : mode imperative

34

concept(imperative,V2) :- token(V2,V4,exclamationMark), sen-
tence(V2), position(V4)

Table 7. Rule - Imperative Concept

ARG1(c¢/country : name(n/name : opl “China’)))

Table 7 shows the learnt rule for this category.

3.3.8 Causal Concept

In this category, concept cause is invoked by tokens like because, since depicting a
causal relation of two events in the sentence. The way AMR is defined allows causal

relations to be represented in this way too. For example,

Sentence: Since our road expenditures mowhere mear match the increase in

business or state domestic product , it is no wonder we suffer congestion problems .

(w2 /wonder — 02
: ARG1(s/suf fer — 01
: ARGO(w /we)
: ARG1(p/problem
: topic(c/congest — 01)))
: polarity—
: ARG1 — of (c2/cause-01
: ARGO(m/match — 01
: ARG1(t/thing

35

concept(cause,V2) :- token(V2,V4,because), sentence(V2), position(V4)

concept(cause,V2) :- token(V2,V4,since), sentence(V2), position(V4)

Table 8. Rule - Causal Concept

: ARG1 — of (e/expend — 01
: ARGOw
: ARG2(r/road)))
: polarity—
: ARG1(t2/thing
: ARG2 — of (i/increase — 01
: ARG1(02/or
: opl(b2/business)
: op2(p2/product
: mod(d/domestic)
- mod(s2/state)))))))

The word Since invokes the concept cause.

Learnt rule for this category is in Table 8.

3.3.9 Abstract Concept
In this category, concepts like person, organization are aligned with proper

nouns(actual names or people and organization). These are aligned when their

children nodes are already aligned and are named entities as identified by Stanford

36

Parser.

37

Chapter 4

ALIGNING

In chapter 3, all the rules are learnt. Now these rules need to be used for aligning

sentence-AMR pairs in the Aligner engine.

The learnt rules do not directly say the alignments. Instead they invoke concepts
based on tokens in the sentence. But the invoked concepts are essentially the
alignments too. So these rules are also used as alignments interchangeably. For
example, a rule in modal concept category invokes concept possible if there is a token
can in the sentence. This rule is used in aligner by saying - if there is a concept
‘possible’ in the concept set of an data instance, and there is a token ‘can’ in the

sentence, then the token aligns to this concept.

I am using context also at code level to make sure concepts are not misaligned

when the same concept appears more than once in the same data instance. For example,

Sentence: On the receiving end of the message were officials from giants like Du Pont
and Maytag , along with lesser knowns like Trojan Steel and the Valley Queen Cheese

Factory .
(r/receive — 01

: ARGO(p/person
: ARGO — of (h/have — org — role — 91

38

: ARG1(a3/and
: opl(g/giant
: example(a/and
: opl(e/company : name(d/name : opl“Du” : op2“Pont”))
: op2(c2/company : name(m/name : opl “Maytag”))))
: op2(ch/company
: ARG1 — of (k/know — 01
s degree(l/less))
: example(a2/and
: opl(e3/company : name(t/name : opl “T'rojan” : op2“Steel™))
op2(cd/company : name(v/name : opl“Valley”
op2“Queen” : op3“Cheese” : opA“Factory”)))))
: ARG2(05/of ficial)))
. ARG1(12/thing
: ARG1 — of (m3/message — 01)))

In this example, there are two and concepts(bold) and its important to check the

context while alining with and tokens to make sure they are aligned correctly.
The learnt rules are executed in an order so that no rule conflicts any other rule

and rules that are very specific to concepts and particular tokens are executed first

than rules that are more generic. Following is the order of execution of rules:

1. Concept as word tokens

2. Imperative concept

39

Concepts negated with prefix and suffix

4. Modal concepts

L % N o

Negation concepts

Concepts as categorial variation of word tokens
Question concept

Abstract concept

Causal concept

40

Chapter 5

EXPERIMENTS AND RESULTS

The obtained alignments in Chapter 4 are evaluated through a series of experiments
on the available alignment annotated dataset for AMR. The results are explained with

proper justification.

5.1 Dataset

The data consists of 13,050 publicly available AMR/English sentence pairs®.
Pourdamghani et. al. (2014) have hand aligned 200 of these pairs to be used as
development and test sets?®. Table 9 shows the details of AMR /English corpus used
for training and testing. I train my aligner on 12,850 pairs of sentences and test on
the 200 aligned sentences.

The results are computed for each category of AMR mentioned in Chapter 3 for the
200 aligned sentences. Also results are computed for the 200 aligned sentences after

combining all the categories together.

3LDC AMR release 1.0, Release date: June 16, 2014 ; https://catalog.ldc.upenn.edu/LDC2014T12
4https://www.isi.edu/natural-language /mt /dev-gold.txt

Shttps://www.isi.edu/natural-language /mt /test-gold.txt

41

Train Dev Test
Sent. pairs | 12850 100 100
AMR tokens | 430 K | 3.8 K (52%) | 2.3 K (55%)
ENG tokens | 248 K | 2.3 K (76%) | 1.7 K (74%)

Table 9. AMR/English corpus. The number in parentheses is the percent of tokens
aligned in gold annotation.

Precision | Recall | F-Score
Pourdamghani et al. 2014 1.0 0.89 0.94
ILP Aligner 1.0 1.0 1.0

Table 10. Results - Category Modal Concepts

5.2 Results - Category Modal Concepts

Table 10 shows the results for this category. My system beats the state-of-art
aligner in this category. Pourdamghani’s system removes some stop-words to gain
some precision on the cost of recall. “Would’ is one of the stop words which is not
aligned in their system. My system has a rule learnt corresponding to ‘would” modal

in this category.

5.3 Results - Negation Category

Table 11 shows the results for this category. My system beats the state-of-art
aligner in this category. Pourdamghani’s system does not perform well on prefix
and suffix negated words like illegal(= not legal). My system has learnt separate
rules(Concepts Negated with Prefix and Suffix category) for this type of words besided

the regular negation words(no, not).

42

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.95 0.87 0.90

ILP Aligner 1.0 0.9125 | 0.95

Table 11. Results - Category Negation Concepts

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.966 0.90 0.930

ILP Aligner 0.961 0.924 | 0.938

Table 12. Results - Category Question Concepts

5.4 Results - Question Category

Table 12 shows the results for this category. My system beats the state-of-art
aligner in this category for overall F-score. The precision loss is due to some sentences
that have the word ‘which’ as a non-question word while the learnt rule considers it
as a question word. The major recall hain is because Pourdamghani’s stop-words list

contains ‘which’ that is removed in their system for precision gain on cost of recall.

5.5 Results - Imperative Category

Table 13 shows the results for this category. My system does not perform well as
compared to the state-of-art aligner in this category. The learnt rule in my system
only looks for exclamation mark. There many sentences that are imperative type
witout the presence of ‘!I". For example: Just think if this money had been put on
some good purpose.

Here ‘imperative’ concept is aligned to ‘think’.

43

Precision | Recall | F-Score

Pourdamghani et al. 2014 1.0 0.76 0.86
ILP Aligner 1.0 0.52 0.68

Table 13. Results - Category Imperative Concepts

Precision | Recall | F-Score

Pourdamghani et al. 2014 1.0 1.0 1.0

ILP Aligner 1.0 1.0 1.0

Table 14. Results - Category Concept as Word Tokens

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.93 0.95 0.94
ILP Aligner 0.961 | 0.952 | 0.956

Table 15. Results - Category Concept as Categorial Variation

5.6 Results - Concept as Word Tokens Category

Table 14 shows the results for this category. Both systems perform perfectly in

this category as this is the simplest category.

5.7 Results - Concept as Categorial Variation Category

Table 15 shows the results for this category. My system beats the state-of-art

aligner in this category. Pourdamghani’s system depends on occurence of alignments

of words in this category to appear in training data for it to align in test data.

44

Precision | Recall | F-Score

Pourdamghani et al. 2014 1.0 0.75 0.85

ILP Aligner 1.0 0.781 | 0.877

Table 16. Results - Abstract Concept Category

5.8 Results - Abstract Concept Category

Table 16 shows the results for this category. My system beats the state-of-art
aligner in this category. My system performs better in mine for the concept ‘person’
because in many sentences it is aligned to non-proper nouns which my system is able

to handle during aligning.

5.9 Results - Causal Concept Category

Table 17 shows the results for this category. My system does not perform well as
compared to the state-of-art aligner in this category. The major recall loss is because
many sentences have implicit causality in them which my learnt rules are not able
to capture. For example : Knowing a tasty and free meal when they eat one, the
executives gave the chefs a standing ovation. Pourdamghani’s system predicts the
alignments for these implicit causalities better because in the traning set, they see
some similar sentences. This increases their conditional probability P(causal concept
| sentence fragment containing words knowing, let etc.) Essentially my rules trade

recall loss for significant precision gain.

Overall results on Development and Test Data is shown in Table 18 and 19. some

changes are made in rule learning and rule execution order based on the results of

45

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.931 0.92 0.92
ILP Aligner 1.0 0.67 0.80

Table 17. Results - Causal Concept Category

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.972 0.882 0.925

ILP Aligner 0.951 0.813 | 0.869

Table 18. Results - Development Dataset

Precision | Recall | F-Score

Pourdamghani et al. 2014 0.955 0.847 | 0.898
ILP Aligner 0.971 0.858 | 0.91

Table 19. Results - Test Dataset

development data to improve the results obtained.
Data coverage with the categories AMR is split into is 88.3% which is almost equal to

that of state-of-art aligner(88.6%).

46

Chapter 6

CONCLUSION AND FUTURE WORK

One of the main advantage of Inductive Logic Programming is that it enables the
user to provide domain-specific background knowledge to be used in learning. The
use of background knowledge enables the user both to develop a suitable problem
representation and to introduce problem-specific constraints into the learning provess.
In the application of AMR aligner in this work, domain-specific background knowledge

is given for each AMR category and rules are being learnt for each category.

Inductive Logic Programming has been used in various Natural Language applica-
tions earlier like Constructing Biological Knowledge Bases by Extracting Information
from Text Sources but this is the first time it is being used to align English sentences
with their semantic representations. From the results obtained and analyzed, it
can be concluded that ILP performs better than state-of-the-art aligner in most
of the categories(Modal, Negation, Question, Word Tokens, Categorial Variations,
Abstract Concept) where the information of data instances related to that category
can be very well represented as background knowledge. It doesn’t perform well in the
categories(Imperative, Causal Concept) where information is implicit to sentences or
if there is ambiguity in the sentences, especially when English is ambiguous at many
places. It needs more precise information on the cost of generalization to be able to

learn the missing rules.

Another outcome from the analysis in this work is the use of Catvar database in

47

background knowledge for two categories(Categorial Variation, Concepts negated
with Prefix and Suffix) in which ILP based aligner performs better than state-of-art
aligner. It proves good for the application for aligner as this is the first time it is

being used in this kind of application.

The effectiveness of Al systems is limited by the machine’s inability to explain its
thoughts and actions to human users. Explainable Al has been in recent talks among

research communities and is a program initiative of DARPA.

6.1 Explainability of the Inductive Logic Programming Approach

Explainable AT aims to create a suite of machine learning techniques that:

e Produce more explainable models, while maintaining a high level of learning
performance (prediction accuracy); and
e Enable human users to understand, appropriately trust, and effectively manage

the emerging generation of artificially intelligent partners.

Figure 5 shows that Al systems today suffer from explainability in their learnt model.
The end user encounters an error in output and is unable to find out the reason
because the learnt model is not explainable at all.

On the other hand, the learnt models in ILP systems are very easy to understand
by humans. For example, the learnt model for Modal concepts category is:

K = concept(possible,0) : —token(0,2, can).

K, = concept(possible, V1) : —token(V1,V2,can).

which means possible is a concept that aligns to can word in sentence. Clearly it is

48

/\l—> Learning Process

Thisis a left turn
sigh

Training bata

Learned Function

Figure 5. Explainability issues in Al systems today

QOutput

User

How do |

correct an
error?

human readable and understandable. Given this property, ILP systems are one of the

best in having an explainable learnt model.

6.2 Future Work

Some of the applications of ILP based aligner as part of future work would be:

Current AMR parsers are using either manual rule based aligner or statistical

machine translation based aligner. It would be interesting to learn how ILP

based aligner performs in AMR parsing

The ILP based aligner in this work performs well on AMR semantic representa-

tion. Generalizing it to other semantic representations as their aligners would

be another exciting work in this field.

e In the task of Machine Translation, an intermediate semantic representation can

help the learning process. To benefit from this intermediate representation, an

aligner would be very helpful in finding the links between AMR graph fragments

and language phrases thereby providing fine grained translation correspondances

during training.

49

BIBLIOGRAPHY

Artzi, Y., K. Lee and L. Zettlemoyer, “Broad-coverage ccg semantic parsing with
amr.”, in “EMNLP”, pp. 1699-1710 (2015).

Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer and N. Schneider, “Abstract meaning representation for
sembanking”, in “LAWQACL”, (2013).

Baral, C., Knowledge representation, reasoning and declarative problem solving (Cam-
bridge university press, 2003).

Brown, P. F., V. J. D. Pietra, S. A. D. Pietra and R. L. Mercer, “The mathematics of
statistical machine translation: Parameter estimation”, Computational linguistics

19, 2, 263-311 (1993).

Chu, C. and S. Kurohashi, “Supervised syntax-based alignment between english sen-
tences and abstract meaning representation graphs”, arXiv preprint arXiv:1606.02126
(2016).

Finkel, J. R., T. Grenager and C. Manning, “Incorporating non-local information
into information extraction systems by gibbs sampling”, in “Proceedings of the
43rd annual meeting on association for computational linguistics”, pp. 363-370
(Association for Computational Linguistics, 2005).

Flanigan, J., S. Thomson, J. G. Carbonell, C. Dyer and N. A. Smith, “A discriminative
graph-based parser for the abstract meaning representation”, (2014).

Gelfond, M. and V. Lifschitz, “The stable model semantics for logic programming.”, in
“ICLP/SLP”, vol. 88, pp. 1070-1080 (1988).

Habash, N. and B. Dorr, “A categorial variation database for english”, in “Proceedings
of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 17, pp. 17-23
(Association for Computational Linguistics, 2003).

Katzouris, N., A. Artikis and G. Paliouras, “Incremental learning of event definitions
with inductive logic programming”, Machine Learning 100, 2-3, 555-585 (2015).

Manning, C. D., M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard and D. McClosky,
“The stanford corenlp natural language processing toolkit.”, in “ACL (System
Demonstrations)”, pp. 55-60 (2014).

Mitra, A. and C. Baral, “Addressing a question answering challenge by combining
statistical methods with inductive rule learning and reasoning”, (2016).

20

Moore, R. C., “Possible-world semantics for autoepistemic logic”, Tech. rep., DTIC
Document (1984).

Muggleton, S., “Inductive logic programming”, New generation computing 8, 4, 295-318
(1991).

Pourdamghani, N., Y. Gao, U. Hermjakob and K. Knight, “Aligning english strings
with abstract meaning representation graphs.”, in “EMNLP”, pp. 425-429 (2014).

Pust, M., U. Hermjakob, K. Knight, D. Marcu and J. May, “Parsing english into
abstract meaning representation using syntax-based machine translation”, Training
10, 218-021 (2015).

Ray, O., “Nonmonotonic abductive inductive learning”, Journal of Applied Logic 7, 3,
329-340 (2009).

Reiter, R., “A logic for default reasoning”, Artificial intelligence 13, 1-2, 81-132 (1980).

Toutanova, K., D. Klein, C. D. Manning and Y. Singer, “Feature-rich part-of-speech
tagging with a cyclic dependency network”, in “Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1”7, pp. 173180 (Association for
Computational Linguistics, 2003).

Wang, C., N. Xue, S. Pradhan and S. Pradhan, “A transition-based algorithm for amr
parsing.”; in “HLT-NAACL”, pp. 366-375 (2015).

Werling, K., G. Angeli and C. Manning, “Robust subgraph generation improves
abstract meaning representation parsing”, arXiv preprint arXiv:1506.03139 (2015).

51

APPENDIX A

ILP ALIGNER IMPLEMENTATION DETAILS

52

This appendix gives implementation details of the ILP based aligner, starting
from raw data processing to aligning. From implementation point of view, the system
consists of four major modules - Data Preprocessing, Data Encoding, Rule Learning
and Aligning. Note that some of these modules differ from the ones discussed in
Chapter 1 since these are strictly in coherence with code implementation perspective.

Each of these modules is discussed in the following sections.

The code of this ILP based Aligner is available on GitHub. 6

The tools used in the development process are the following:

e Stanford CoreNLP 7, for background knowledge
e Catvar 2.0 8, for categorial variation clusters

e XHAIL 9, for Inductive Logic Programming

A.1 Data Preprocessing

The raw data consists of English sentences and AMR representation. Preprocessing

steps on this raw data are as follows:

e The English sentence is first converted into lowercase.

Shttps://github.com/agarwalshubham2007 /AMR-Aligner-ILP
Thttps://stanfordnlp.github.io/CoreNLP /
8https://clipdemos.umiacs.umd.edu/catvar/

Yhttps://github.com /stefano-bragaglia/XHAIL

93

Algorithm : Constructing AMR Graph

1: procedure AMR_GRAPH_CONSTRUCT(Ncyrrs Samr) 3 Constructing AMR graph from AMR
string Saur

2 while Mg is not EOS

3 if M_is ("

4: while Mg is not ‘(and ‘)’

5: Mg +=1

6: if Mg is “(’

7: Ncurr is text between M, and Mg

9: AMR_GRAPH_CONSTRUCT(Nygw » Samr)
10: else if Mg is ‘)

11: Ncurr is text between M, and Mg

12: return

13: else if M is)

14: Mg += 1

15: M, = Mg

16: return

Figure 6. Algorithm : Constructing AMR Graph

Using Stanford CoreNLP, background knowledge mentioned in Chapter 2 is
extracted from the sentence.

The AMR representation is stored in memory in a graph data structure using a
recursive algorithm. The algorithm is shown in Figure 6.

The graph is traversed to extract out all the concepts.

The senses are removed from concepts. Example, in concept ‘want-01’, *-01’ is
removed.

There are certain concepts that are enclosed in inverted commas, those commas

are removed too.

54

A.2 Data Encoding

The preprocessed data is now encoded in ASP format using the extracted back-

ground knowledge and concepts in AMR representation. Following are its details:

e The common background knowledge for each data instance is

— position(I) :- token(S,I,L).
— sentence(S) :- token(S,I,L).
— lemmalList(L) :- token(S,I,L).

e Then background knowledge for the category rule is being learnt is introduced.
For example: Modal Concept Category
modalConcepts(possible;likely;obligate;recommend;permit;prefer).

e From the concepts extracted in data processing, concepts related to this category
are encoded as examples.

For example :
#example concept(possible,).

e Concepts missing in this category for this example are encoded using not prefix.
For example:

#example not concept(obligate,0).

e Mode declarations are encoded for the category, rules are being learnt for.

55

Algorithm : Alignment

: procedure ALIGN(D,ys) ; Aligning data instance Dg
for each concept C in D\yg
if C is not aligned already
if isApplicableRule1(D,ys, C)
assign alignment
else if isApplicableRule2(D\s, C)
assign alignment

SN RWON 2

e

Figure 7. Algorithm : Alignment

A.3 Rule Learning

The encoded data is given to XHAIL system for learning rules. Implementation

details for rule learning are as follows:

e XHAIL system is not scalable for learning rules on large datasets. So rules are
learnt on batches of 60 instances.

e The count of number of times every unique learnt rule is stored as this will
decide the preference rule execution inside any category.

e The learnt rules are mentioned in Chapter 3.

A.4 Aligning

The learnt rules are then executed on every test data instance(see algorithm in
Figure 7) in the following order in the implemented system on the development and

test dataset:

e Concepts as Word Tokens

96

e Imperative

e Concepts Negated with Prefix

— Negated polarity concept rule

— Root word concept rule
e Modal Concepts

— Concept possible invoked by can

— Concept obligate invoked by must

— Concept obligate invoked by shall

— Concept recommend invoked by should
— Concept possible invoked by may

— Concept obligate invoked by will

— Concept possible invoked by would

e Negation Concept
e Categorial Variation Concept

e Question Concept

— which with WDT POS tag invokes amr-unknown concept
— what, who or whom with WP POS tag invokes amr-unknown concept
— whose with WP§ POS tag invokes amr-unknown concept

— how, where, when or why with WRB POS tag invokes amr-unknown concept
e Causal concept

— because invokes cause concept

— since invokes cause concept

e Imperative Concept

o7

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Linguistic Background Knowledge Extraction and Encoding
	3 Rule Learning Using Inductive Logic Programming
	4 Aligning
	5 Experiments and results
	6 Conclusion and Future Work

	
	Bibliography

	Appendix
	A ILP Aligner Implementation Details

