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ABSTRACT  
   

This investigation is focused on the consideration of structural uncertainties in nearly-

straight pipes conveying fluid and on the effects of these uncertainties on the dynamic 

response and stability of those pipes. Of interest more specifically are the structural 

uncertainties which affect directly the fluid flow and its feedback on the structural 

response, e.g., uncertainties on/variations of the inner cross-section and curvature of the 

pipe. Owing to the complexity of introducing such uncertainties directly in finite element 

models, it is desired to proceed directly at the level of modal models by randomizing 

simultaneously the appropriate mass, stiffness, and damping matrices. The maximum 

entropy framework is adopted to carry out the stochastic modeling of these matrices with 

appropriate symmetry constraints guaranteeing that the nature, e.g., divergence or flutter, 

of the bifurcation is preserved when introducing uncertainty.  

To support the formulation of this stochastic ROM, a series of finite element 

computations are first carried out for pipes with straight centerline but inner radius 

varying randomly along the pipe. The results of this numerical discovery effort 

demonstrate that the dominant effects originate from the variations of the exit flow speed, 

induced by the change in inner cross-section at the pipe end, with the uncertainty on the 

cross-section at other locations playing a secondary role. Relying on these observations, 

the stochastic reduced order model is constructed to model separately the uncertainty in 

inner cross-section at the pipe end and at other locations. Then, the fluid related mass, 

damping, and stiffness matrices of this stochastic reduced order model (ROM) are all 

determined from a single random matrix and a random variable. The predictions from this 

stochastic ROM are found to closely match the corresponding results obtained with the 
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randomized finite element model. It is finally demonstrated that this stochastic ROM can 

easily be extended to account for the small effects due to uncertainty in pipe curvature. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

The stability and dynamics of fluid filled pipes have been the subject of much research 

over the years motivated by the broad range of applications in heat exchangers, nuclear 

reactors, medical devices, oil and gas pipelines, etc. This broad literature has been 

extensively covered and described in the landmark text by Paidoussis [1], in which 

findings from years of extensive study have been summarized. The text discusses 

analytical and experimental results and formulations for many configurations of fluid 

conveying pipes. Another extensive review of the literature has been carried out by 

Ibrahim [2,3]. With over 400 references, it provides tremendous information regarding 

modeling, dynamic analysis, and stability regimes for pipes with many types of boundary 

conditions. 

Two particular topics within this large body of work which relate to the current 

investigation are (i) tapered or conical pipes, i.e., those exhibiting variations of the cross-

section and (ii) curved pipes. The consideration of tapered pipes appears to have been 

initiated by Hannoyer and Paidoussis [4-6] who proceeded with (i) deriving the equations 

of motion of non-uniform pipes with external and internal flow, (ii) numerically solving 

the resulting eigenvalue problem with an assumed truncated Fourier series global 

approximation of the eigenvector, and (iii) performing an experimental validation of the 

computational results. This extensive investigation remained the state of the art for 

almost four decades until the recent publications of [7-9]. The focus of these newer 

studies is primarily on improving the physical understanding of the effects of taper on the 
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dynamics and stability of the pipes, e.g., Wang et al. [7] have observed that an increase in 

the taper angle induces a shift of the flutter instability from higher modes to lower modes, 

thereby forcing the fluid-structure system to become instable at lower velocities. Similar 

observations have also been drawn in [8, 9]. 

Contrarily to tapered pipes, curves ones have been the subject of many investigations 

over a long period with the papers by Misra et al. [10-12], see also [1], providing an 

excellent summary at that point in time. A key controversy item in the early papers on 

this topic involved the effects of and need to include the extension of the centerline of the 

pipe from its no-flow geometry to the statically deformed one under the action of the 

steady fluid forces. Misra et al. reviewed first two theories: the conventional inextensible 

theory, in which the centerline of the pipe is assumed to be un-stretched, and the 

extensible theory, in which the shape of the pipe changes with flow velocity. They then 

proposed a third theory, the modified inextensible theory, in which the assumption of 

inextensibility of the centerline is retained but the longitudinal force induced by the 

steady flow is introduced. Somewhat surprisingly, the matter may not be fully settled yet 

given the investigation of [13] which started from the nonlinear equations of motion for a 

semi-circular fluid-conveying pipe and then linearize them to obtain a yet different set of 

linear equations.  

Almost all investigations of the dynamics of curved pipes have focused on arcs of finite 

(non-small) curvature. Two notable exceptions are the investigations of [14,15] which 

consider slightly curved pipes conveying fluid with constant flow velocity and proceed to 

analyze the geometrically nonlinear, large deformations, response of these pipes. The 
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stability results, performed on the linearized equations, demonstrate that the critical 

(divergence) velocity shifts to higher values as the curvature increases.  

Quite surprisingly given this large body of work, nearly all these studies have been 

performed under the assumption that the fluid structure system has well defined 

properties and do not take into consideration the uncertainties in manufacturing process 

which can lead to variations in the fluid structure system geometry. Notable exceptions 

are the two investigations [14,15] focusing on shallow curved pipes which explicitly 

mention the curvature as resulting from “geometric imperfections” although the geometry 

remains deterministic. The sole stochastic modeling of the uncertainty in pipes and of its 

propagation to the dynamic response and stability appears to be the very recent 

investigation of [16], see below for further discussion. 

With regards to fluid flow in pipes, there are three main sources of uncertainties in the 

pipe-fluid system that can be identified. First are the uncertainties associated with the 

structural problem that have no direct effect on fluid flow. They include the density of the 

pipe, its Young’s modulus, the external shape and diameter (assuming only internal 

flow), etc. At the opposite end are the fluid only uncertainties, i.e., the density of the 

fluid, non-uniformity of the flow speed, fluid modeling, which are typically convected 

along the pipe creating time dependent variations of the system. Finally are the 

uncertainties on the structure-fluid coupling terms which include variations of the internal 

shape and diameter of the pipe and of its curvature.  

Various probabilistic methods have been developed by which uncertainties associated 

with design variables (e.g., geometry and/or material properties) can be incorporated in 

the analysis to capture the effects of their variations on the overall output (e.g., response 
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and/or stability). In many other applications of structural dynamics besides fluid filled 

pipes vibrations, the effects of uncertainties on the geometric and/or material properties 

of the structure have been quite thoroughly investigated, as highlighted by Soize [17]. 

This reference gives an overview of different methods used for stochastic modeling of 

uncertainties, types of uncertainties, uncertainty propagation techniques and methods 

developed to solve these dynamical equations. The aim is ultimately to complement the 

available, very accurate predictions methods of the response of deterministic systems, 

e.g., finite element modeling, to account for differences between modeled systems and 

physical ones.  

As discussed in [17], the modeling of uncertainty in structures can be carried in a variety 

of ways and at various levels, ranging from varying specific local properties of a detailed 

finite element model (FEM) to modeling the parameters of a global reduced order model 

(ROM) of the structural response. Given the ubiquitous use of FEM, the consideration of 

uncertainty within that framework is very natural and such approaches are referred to 

here as parametric as they affect only specific parameters of the model leaving variations 

in the others unaccounted for. While some parameters are easily modified, such as the 

radius, others are not, for example the out of roundness. Since structures are very often 

analyzed using ROMs, it was proposed, originally in [18], to model the uncertainty 

directly at the ROM level without formally connecting the uncertain ROM realizations to 

particular finite element models. Besides its high computationally efficiency, this 

approach permits the consideration of uncertainty in parameters but also in other 

properties such as the out of roundness; it has accordingly been referred to as 

nonparametric. This approach has been applied to a variety of different contexts within 
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structural dynamics, e.g., linear structural dynamics [18, 19], vibro-acoustics [20, 21], 

rotor dynamics [22-24], nonlinear structural dynamics [25, 26], nonlinear thermoelastic 

problems [27], linear viscoelastic structures [28], etc., but also in rigid body dynamics 

[29, 30] and micromechanics and multiscale modeling, see [17] for extensive review. 

One important aspect of the nonparametric approach is the selection of the joint 

probability density function of the ROM parameters which must in particular guarantee 

that all simulated samples are physically acceptable. To this end, it has been proposed 

[17, 18] that this function be selected as the one achieving the maximum of the entropy 

(the Maximum Entropy principle) under the constraint that all properties/conditions on 

the ROM parameters resulting from the physics of the problem considered be satisfied. 

For linear structural dynamic problems, the ROM mass and stiffness matrices must be 

symmetric and positive definite matrices and the consideration of these constraints leads 

to the “standard” nonparametric approach of [17]. In other problems however, e.g., 

nonlinear structural dynamics [25, 26] and rotor dynamics [22-24], there are multiple 

matrices/sets of parameters that must be jointly modeled because they originate from the 

same aspect of the structure, leading to problem specific variants of the standard 

nonparametric approach. 

 

1.2 Objectives and Plan 

The overall objectives of the present effort are to first clarify the effects, on the pipe 

stability, of structural uncertainties that affect the fluid induced forces, i.e., variations of 

the internal shape and diameter of the pipe and of its curvature. To this end, a 

“computational experiment” is carried out in which the internal diameter of the pipe is 



  6 

randomly varied along its length and the resulting changes in its stability determined. 

Next, a global modeling of these uncertainties is developed at the level of a reduced order 

model using the nonparametric approach. In that, the present investigation parallels the 

work by Ritto et al. [16] but a notably different formulation is adopted here which results 

from the observations drawn from the computational experiment. 

The next Chapter reviews briefly the governing equations for tapered pipes and describes 

the formulation and validation of a finite element methodology to predict their stability. 

Chapter 3 reports on the above computational experiment carried out with the finite 

element formulation of Chapter 2 on both simply supported and cantilevered pipes with 

randomly varying inner radii. Next, in Chapter 4, a stochastic reduced order model is 

formulated to account for the effects of the random taper and its predictions validated in 

comparison with the results of Chapter 3. Finally, Chapter 5 describes the effects, or 

more exactly the almost lack thereof, of small random variations in the pipe curvature. 

 

1.3 Dynamic Instabilities in Fluid Filled Systems 

The vibrational behavior of pipes depends on the velocity of the fluid it conveys. When 

this velocity is low, the pipe vibrates as a structural-only multi degree of freedom system 

exhibiting harmonic motions that are either decaying in time or of constant amplitude as 

free response. As the flow speed is increased above a particular critical value, it is 

typically observed that this free response grows in time leading to an unbounded linear 

response. 

As will be described in Chapters 2 and 4, the pipe conveying the fluid can be modeled as 

the multi degree of freedom system 
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0 yKyCyM   (1.1) 

The corresponding free response is of the form 

tey   (1.2) 

Then, introducing Eq. (1.2) into (1.1) leads to the eigenvalue-type problem 

  02  KCM  (1.3) 

To determine the eigenvalue  and eigenvector , it is easier to proceed with the state 

space form equivalent of Eq. (1.1). More specifically, that equation can be rewritten as 

0ˆˆˆˆ  zAzB   (1.4) 

where 
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Then, assuming a solution of the form  

tez  ˆˆ  (1.6) 

yields the classic generalized eigenvalue problem 

 ˆˆˆˆ BA  (1.7) 

the solution of which can be determined using standard numerical methods. Since the 

mass, damping, and stiffness matrices depend on the flow velocity, the eigenvalues will 

also depend on it. 

From the above derivations, it is seen that there are 2 types of instabilities. In the first 

one, an eigenvalue  becomes real and positive transitioning through a zero value at a 

critical flow velocity cU . This type of instability is referred to as divergence. This 
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phenomenon is commonly observed in pipes supported at both end. When divergence 

takes place, the eigenvalues are wholly imaginary for cUU  and then for cUU  they 

become wholly real. Divergence is marked by having zero frequency or zero eigenvalue 

at cU  and is symptomatic of a pitchfork bifurcation. 

In the second instability, the real part of an eigenvalue  becomes positive transitioning 

through a zero value at a critical flow velocity cU  at which the eigenvalue is then purely 

imaginary. This instability is referred to as flutter and is commonly seen in pipes with 

cantilevered boundary conditions. Flutter is characterized by zero structural damping 

when a pair of eigenvalues cross from   0Re  to   0Re   as U is increased, such that 

at CUU   the pair of eigenvalues is purely imaginary   0Re   and   0Im  . This 

type of bifurcation is coined a Hopf bifurcation. 
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CHAPTER TWO 

MODELING OF STRAIGHT PIPES WITH VARYING CROSS SECTION 

 

The dynamics of uniform straight pipes is fairly straightforward and solutions to the 

system of equations have been extensively studied over the years, e.g., see [1]. However, 

due to manufacturing tolerances, variations of the internal radius are expected to happen 

in practice and it is desired in this Chapter to develop a computational tool, i.e., a finite 

element code that permits the detailed study of the effects of these variations. This tool 

will then be utilized in the next chapter to obtain data on the overall effects of these 

variations in inner radius. The core of the formulation, briefly reviewed in the following 

section, follows the developments of [1, 4-6].  

 

2.1 Equation of Motion of Non-Uniform Pipes 

The dynamics of fluid filled pipes with non-uniform flow passage has been studied 

extensively by Paidoussis and Hannoyer [4-6], see also the summary in [1]. The 

derivation of the governing equations was developed assuming a slender pipe in which 

the variations of inner cross-section are axisymmetric, gradual and smooth with respect to 

the axial coordinate x. Moreover, the complete derivation considers both internal and 

external flows, both modeled as plug flows, i.e., with constant velocity throughout each 

cross-section and that remain so as the inner and outer radii are varied. This derivation 

also includes gravity and pressurization effects. 

Under these assumptions, it was found that  
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In Eq. (2.1),  txw ,  denotes the pipe’s transverse deflection at axial location x and time t. 

Next, the internal and external flow cross-section areas are denoted as iA  and eA , the 

structural mass per unit length is m, and the flexural rigidity is EI. Further, i and e  are 

the densities of the internal and external fluids. Finally, the term  L  is referred to as 

the longitudinal tension and will be discussed further below.  In this derivation, the 

second order terms in  txw ,  have been neglected, as well as transverse shear 

deformations and rotatory inertia.  

In the present investigation, gravity and pressurization effects are neglected and it is 

assumed that there is no externally imposed tension. Moreover, the fluid conveying 

system is considered to have no external fluid flow. Then, the governing equation for the 

transverse displacements reduces from Eq. (2.1) to the following 
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In this equation, the first term relates to the flexural restoring force or structural stiffness 

of the pipe while the second represents the structural inertia. The next group of terms 

arise out of fluid related moments and involve the change in inner radius. The fourth term 

comprises the core effects of the fluid, i.e., the centrifugal, Coriolis and inertial forces 

due to the fluid. These terms provide the dominant contributions to the fluid related 

damping, stiffness and mass. The next, fifth, term is the follower force acting at the end 

of the pipe resulting from the ejection of the fluid. The last term represents the effects of 

the longitudinal tension  L . As discussed in [1], it depends on the boundary conditions 

of the fluid filled system but can generally be neglected under the above assumptions. 

With the neglect of the longitudinal tension and a slight regrouping of terms, Eq. (2.2) 

further simplifies to 
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2.2 Finite Element Development 

 

2.2.1 Finite Element Formulation 

Studying the dynamic behavior of fluid filled pipes with varying inner radius requires 

solving the partial differential equations (PDE) of Eq. (2.3) with appropriate boundary 

conditions (see below). Since closed form solutions are not available, it is necessary to 

proceed with a numerical approach and the finite element method (FEM) is adopted here. 
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More specifically, a one dimensional finite element modeling of the fluid filled pipe is 

developed in which each element has two nodes and two degrees of freedom (DOF) per 

node, thus a total of four degrees of freedom per element. The first nodal DOF 

correspond to the transverse displacement  w while the second one is the corresponding 

rotation   . The elemental displacement vector is then  

 Te
www 2211   (2.4) 

where T  denotes the operation of vector/matrix transposition. The displacement field in 

that element will then be expressed as  

      xNtwtxw
Te

,  (2.5) 

where  xN  is a vector of interpolation functions to be selected, see below. Once these 

functions are known, the mass, damping, and stiffness matrices of the pipe conveying 

fluid can be constructed. This step will be carried out here using Galerkin method. That 

is, the approximation of Eq. (2.5) will be introduced in the PDE and the resulting error 

will be made orthogonal to the interpolation functions selected as trial functions. 

To ensure that the nodal displacement and rotations are continuous over the entire pipe, 

C1 continuity must be satisfied within each element and this is achieved by selecting the 

standard Hermitian cubic shape functions as interpolation functions. To proceed next, it is 

convenient to first map the physical domain of a particular element  elx ,0  to the 

standard domain  1,1  and this is achieved through the transformation  

1
2


el

x
 (2.6) 
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where x and   are referred to as the physical and natural coordinates. With this 

transformation, the interpolation functions and their first, second, and third derivatives 

with respect to x are 
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In obtaining the above derivatives of the interpolation functions, it was recognized from 

Eq. (2.6) that 

eld

dx 2



 (2.9) 

For future use, it is also noted that the Jacobian for this 1D finite element is   

2

ee l
JJacobian   (2.10) 

 

 



  14 

2.2.2 Determination of Elemental Matrices  

The determination of the elemental mass, damping, and stiffness matrices proceeds by 

computing the projection of each term in Eq. (2.3) on the 4 interpolation functions of Eq. 

(2.7.a). The equations below detail the specific contributions of each term to the ji 

element of the corresponding elemental matrix. 

Structural stiffness matrix: 
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Structural mass matrix: 
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Fluid stiffness matrix 
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Fluid damping matrix 
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Fluid mass matrix 
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Since the system under consideration is a tapered pipe with internal cross section varying, 

both the flow velocity and internal area vary along the length of the pipe, but the 

volumetric flow rate in the pipe remains constant, i.e.,   

iUiA = constant (2.20) 

with 

2
ii rA   (2.21) 

In the present investigation, it is assumed that the internal radius of the pipe varies 

linearly between two nodal values, it is thus defined in terms of the natural coordinate by 

the relation 
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,,, leftirightileftii rrrr  (2.22) 
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Where leftir ,  and rightir ,  are the radii at the left end and right end of the element. Using 

the differentiation rule of Eq. (2.9), one has  
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  (2.23) 

The integrations involved in Eqs (2.11)-(2.19) were carried out numerically using a 

Gauss quadrature method with the weights and points taken from [32]. The number of 

Gauss points GPn  can be estimated from the relation given in [33], i.e., 

12  GPnp  (2.24) 

Where, p is the order of the polynomial in the integrand. To this end, note that the 

volumetric flow rate constraint of Eq. (2.20) implies that the flow velocity iU  is not a 

polynomial of  but involves it in the denominator. Thus, a similar term will appear in the 

integrands of Eqs (2.13)-(2.15). In this light, 12 integration points were selected for each 

element for all results shown in chapter 3.  

 

2.2.3 Convergence analysis and Numerical Accuracy 

A series of computations were carried out to assess the accuracy of the presented finite 

element results. To this end, the finite element model of the simply supported pipe with a 

taper angle of 1.2 degree was considered as representative and the effects of the number 

of elements and Gauss points were first investigated. Specifically, the finite element 

model was ran initially with 40 elements and 8 Gauss points, then with 40 elements and 

12 Gauss points, and finally with 80 element model and 12 Gauss points. The real part 

and imaginary parts of the eigenvalues obtained for the three cases were found to be very 
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close to each other, overlaying each other on Figs 1(a) and 1(b). As an indication of the 

difference, the maximum absolute difference between the 3 sets of normalized real parts 

of eigenvalues at the arbitrarily selected normalized flow velocity of 2.8040 was found to 

be 6.425e-5. The corresponding maximum absolute difference for the imaginary parts of 

eigenvalues at same flow velocity was 5.0e-5.  

  
(a) (b) 

Figure 1. (a) Normalized real part of eigenvalues vs normalized flow speed (b) 

Normalized imaginary part of eigenvalues vs normalized flow speed, simply supported 

pipes with taper angle of 1.2 degree, finite element computations with different number 

of elements and Gauss points 

 
To ensure that the critical velocity was captured accurately from the simulation results, 

the flow velocity was incremented with a small step size, selected as 1.83 10-3, near the 

expected first divergence or flutter instability speed. For simply supported cases, the 

divergence speed was estimated to occur in a particular flow velocity interval if the angle 

of the curve normalized real part of eigenvalue vs. flow speed exceeded 10 degree 

between beginning and end points of the interval. When that occurred, the divergence 

flow speed was recorded as the lower end of the interval. For cantilevered cases, the 
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flutter speed was obtained by linear interpolation of the normalized real part of 

eigenvalue between its last negative and first positive values.  

 

2.2.4 Global Finite Element Matrices 

After numerical integration, the elemental matrices are scattered into the global finite 

element matrices. Each of the individual terms contributes to the dynamics as a mass, 

stiffness, or damping term leading finally to the discretized version of Eq. (2.3) as 

        0 wUKKwUCwUMM fpffp   (2.25) 

Where, w  denotes the time dependent vector of nodal values of the displacement, pM  

and fM  are the global structural and fluid mass matrices, 
fC  is the global fluid damping 

matrix, and pK and fK  are the global structural and fluid stiffness matrices. The pipe is 

assumed here to be undamped without fluid effects. 

The particular case of a uniform pipe will also be considered later and in this case, the 

necessary integrals to determine the elemental matrices can be determined in closed form.  

 

2.2.5 Boundary Conditions  

Two different boundary conditions will be considered in the remainder of this thesis: 

simply supported and cantilevered pipes. For simply supported pipes, the translational 

degrees of freedom at the two ends, x = 0 and x = L, are set to zero. That is, 

0w  at 0x and Lx   (2.26) 

In the cantilevered case, the translation and rotation degrees of freedom at the clamp, 

assumed at x = 0 are both set to zero, that is 
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0w  at 0x  and 0




x

w
 at 0x  (2.27) 

A natural boundary condition exists at the end, x = L, of the pipe which is not enforced in 

the finite element formulation. 

 

2.3 Validation / Verification of FEM model 

The finite element formulation and code developed above were validated by comparison 

against previously published results on the stability of pipes conveying fluid. This 

validation was carried out for both uniform and constant taper pipes with both boundary 

conditions, i.e., simply supported and cantilevered pipes. The results of this validation are 

detailed below, first for the uniform pipe, then for the constantly tapered one. 

Following standard practice, the flow velocity and the eigenvalues and flow velocities are 

normalized by the following quantities 
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where  0I  is the moment of inertia of the pipe at its inlet, and  0iA  and  0pA  are the 

inner and structural cross-section areas at that same location. 

For most of the validations, the material properties and geometric parameters were 

selected as those from the work of [7] on tapered pipes conveying fluid. Specifically, the 

densities of the fluid (water) and the pipe (silicon) were selected as i = 1000 kg/m3 and 

p = 2330 kg/m3. The pipe considered has a length of 200 nm, an inner radius of 8 nm, 
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and an outer one of 10 nm. Finally, the Young’s modulus of the pipe was taken as 130 

GPa. 

 

2.3.1 Simply supported uniform pipe 

In this case, the finite element (FE) results, real and imaginary parts of eigenvalues 

plotted against flow speed, were compared to those published in [16]. The plots of 

normalized eigenvalues vs. normalized flow speeds only depend on the parameter 

ppii

ii

AA

A




  (2.30) 

The results of [16] were shown for = 0.24 and a 40 element model. Then, to allow the 

closest possible comparison, the number of elements was chosen here as 40 and the outer 

radius of the pipe was changed to 12.2874 nm to match the value of . Shown in the Fig. 

2 is the comparison for the first four modes and an excellent match is obtained 

throughout and for all modes. The system undergoes divergence at a critical velocity 

value of 3.1408 m/s which is very close to the exact value of  [1]. 
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(a) 

 

(b) 

Figure 2. (a) Normalized real part of eigenvalues and (b) normalized imaginary part of 

eigenvalues both vs. normalized flow speed, simply supported uniform pipe. Data from 

[16] (“Baseline”) and current predictions (“Finite Element”). 
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2.3.2 Cantilevered uniform pipe 

In this case, the FE results for the real and imaginary parts of eigenvalues were validated 

in comparison with the results of [7], see Fig. 3. The material properties and geometric 

parameters are stated above and the number of elements considered was 40. Again, an 

excellent match is obtained. 

  

Figure 3. Normalized real part of eigenvalues vs. normalized imaginary part of 

eigenvalues, cantilevered uniform straight pipe. Data from [7] (“Baseline”) and current 

predictions (“Finite Element”) 

 

2.3.3 Cantilevered uniformly tapered pipe 

The previous validations have only exercised some of the terms in the finite element 

model, i.e., none of the terms involving 
dx

dAi  which was zero in the two previous cases. A 

comprehensive validation of all terms is now carried out against the results of [7] relevant 

to the stability of uniformly tapered (or conical) pipes. Their analysis involves taper of 

both internal and external pipe dimensions, i.e.  
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     tan0 xrxr ii  (2.31) 

     tan0 xrxr oo  (2.32) 

Where  is the taper angle and or  is the external radius of the pipe. The material 

properties were selected as above. The validations were carried out for the three different 

taper angles of = 0.3, 1.2, and 1.815 degrees and a 40 element finite element model was 

adopted. Shown in Figs 4-6 are the comparisons of the corresponding present finite 

element predictions with the results of [7] showing a close agreement. Also presented in 

[7] are plots of the flutter speed and the corresponding natural frequency as functions of 

the taper angle , see Figs 7 and 8. Accordingly, it was desired to also use this data for 

further validation. To this end, the finite element code was ran with different values of  

in the range of angles shown in Figs 7 and 8. For each angle, the real parts of the 

eigenvalues were then monitored to estimate the flutter speed which was then recorded 

together with its corresponding natural frequency. These results were then gathered and 

added to Figs 7 and 8. Again, an excellent match is obtained providing a final 

confirmation of the correctness of the finite element formulation and code. 
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Figure 4. Normalized real part of eigenvalues vs. normalized imaginary part of 

eigenvalues, cantilevered tapered straight pipe, = 0.3 degree. Data from [10] 

(“Baseline”) and current predictions (“Finite Element”) 

 

 

Figure 5. Normalized real part of eigenvalues vs. normalized imaginary part of 

eigenvalues, cantilevered tapered straight pipe, = 1.2 degree. Data from [10] 

(“Baseline”) and current predictions (“Finite Element”). 
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Figure 6. Normalized real part of eigenvalues vs. normalized imaginary part of 

eigenvalues, cantilevered tapered straight pipe, = 1.815 degree. Data from [10] 

(“Baseline”) and current predictions (“Finite Element”) 

 

 

Figure 7. Normalized flutter speed vs. taper angle. Cantilevered uniformly tapered 

straight pipe. Data from [7] (“Baseline”) and current predictions (“FE”).  
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Figure 8. Normalized flutter frequency vs. taper angle. Cantilevered uniformly tapered 

straight pipe. Data from [7] (“Baseline”) and current predictions (“FE”).  

 

2.3.4 Simply supported uniformly tapered pipe 

The case of simply supported uniformly tapered pipes does not seem to have been 

reported in the literature. For completeness, it was nevertheless decided to investigate it, 

e.g., to confirm the occurrence of divergence. The analysis was carried out for a taper 

angle of 0.3 degree and shown in Fig. 9 is the normalized real part of the eigenvalues as a 

function of flow speed. At first glance, it does indeed appear that divergence occurs. On 

closer inspection, it is seen that some of the eigenvalues have a small positive real part 

for extremely low velocities. Though small, they would suggest the presence of unstable 

modes which can cause the system to undergo instability at much lower velocities, almost 

zero in fact, than the actual divergence velocity. This behavior is clearly unphysical. 

It was first questioned whether these non-zero values were the results of finite accuracy 

computations. To this end, the corresponding eigenvalues for the uniform pipe were also 
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computed by the same code and compared to those for the tapered case, see Table 1. The 

significant differences between these two sets of eigenvalues warrant further analysis of 

the tapered case. To this end, the number of its elements and Gauss points were also 

varied to assess their potential effects on the eigenvalues shown in Table 1, but these 

values appear converged. This analysis thus suggests that the observed positive real part 

of the eigenvalues at low speed is not a numerical problem but results from the problem 

formulation. 

 

 
(a) 
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(b) 

Figure 9. (a) Normalized real part of eigenvalues vs. normalized flow speed, simply 

supported uniformly tapered straight pipe, taper angle  = 0.3 degree. (b) Same as (a) 

zoomed 

 
Table 1. Comparison of real part of eigenvalues of simply supported pipes with constant 

taper (0.3 degree) and zero taper, Paidoussis and Enhanced models 

 

 Normalized 

Flow 

Velocity 

Normalized Real Part of Eigenvalue 

Tapered Uniform 
Enhanced 

40 elements 

Enhanced 

80 elements 

1 0 8.831 x 10-9 6.167 x 10-9 8.831 x 10-9 8.831 x 10-9 

2 0.1476 0.003061 2.037 x 10-9 0.003061 0.003061 

3 0.2592 0.006122 3.128 x 10-9 0.006122 0.006122 

4 0.4427 0.009184 2.871 x 10-9 0.009184 0.009184 

5 0.5903 0.01255 -3.579 x 10-9 0.01255 0.01255 

6 1.328 0.0276 4.387  x 10-7 0.0276 0.0276 

7 1.476 0.03608 2.498 x 10-9 0.03608 0.03608 

8 1.623 0.03377 6.012 x 10-8 0.03377 0.03377 
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2.4 Enhanced tapered pipe model 

To understand the presence of unstable eigenvalues at very low speeds, the derivation of 

the equation of motion of non-uniform pipes presented in [1] was revisited. In doing so, it 

was recognized first that the prior equation, Eq. (2.3), is in fact limited to first order terms 

in the taper (as briefly stated in [1]). On this basis, it was thought that the relatively large 

positive real part of eigenvalues shown in Fig. 9(b) and Table 1 may result from the 

truncation of the taper related terms to first order. This hypothesis prompted a complete 

revisit of the derivation of [1] to include all taper related terms.  

With the notations defined in [1], the force balance equations in x and w directions of a 

small element of pipe conveying fluid are 
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Similarly, the moment balance equation is  
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  (2.35) 

In Eqs (2.33)-(2.34), itF  and inF  are the tangential and normal components of the fluid-

pipe interaction forces associated with the internal flow and etF  and enF  are their 

counterparts for the external fluid flow. The symbol Q denotes the transverse shear force 

and f  is the fluid related moment associated with the external and internal flow. Other 

quantities in the equation are as defined in Section 2.1. 

The force balance equations on the fluid element are [1] 
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where,  








































x

w
U

x
U

tx

w
U

t

w
wD iii

2

2

2
2 2  (2.38) 

Since for the current analysis no external fluid is acting in the system, the equation for the 

external forces has been neglected. 

The evaluation of f  is stated in [1] as “quite tedious” pointing to the derivation of [4]. 

A review of this derivation has suggested that it holds regardless of the taper magnitude, 

i.e., is not simplified to first order. Thus,  
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Combining the above equations in the present case without external flow or gravity leads 

to  
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Or, after expanding the wD2  term according to Eq. (2.38) 
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The difference between this equation and Eq. (2.3) are the terms in the second bracket 

which are 
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A comparison of the above terms with their counterparts from Eq. (2.3) shows that the 

first group of terms in Eq. (2.42) is indeed present in Eq. (2.3) but none of the others is. 

In evaluating them, note that 
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Moreover, the last term of Eq. (2.42) can be evaluated as follows 
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where  
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The enhanced model governing equation, Eq. (2.41), was implemented in a finite element 

format following the steps of section 2.2 with the following terms contributing to the 

structural and fluid mass, fluid damping, and structural and fluid stiffness.  
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2.5 Comparison of Paidoussis and Enhanced Models 

The predictions from the finite element code implementing the enhanced model were 

compared to those obtained from the one described in Section 2.2 and based on the 

Paidoussis model, i.e., Eq. (2.3) for the simply supported pipe of section 2.3.4. It was 

observed that the results are almost perfectly in agreement over the entire speed range 

even at low flow speeds, see Table 1. These results demonstrate that the presence of 
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eigenvalues with small real parts at low flow speeds is not due to the retention of only the 

linear terms in taper in the Paidoussis model and thus remains, at this point, an 

unresolved issue.  
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CHAPTER THREE 

RANDOMLY TAPERED PIPES: DISCOVERY EFFORT 

 

This chapter focuses on reporting the results of “computational experiments” carried out 

with the finite element code formulated and validated in Chapter 2 but in which the inner 

radii of the tapered pipes were randomly varied. These experiments are performed first to 

analyze and understand the effects of random variations in internal radius on the overall 

stability of the fluid conveying pipe. The second objective of these experiments is to 

generate the data for validation and verification of the stochastic reduced order models 

developed in the following chapter.  

A series of numerical calculations were carried out for randomly tapered pipes with 

simply supported and cantilevered boundary conditions. For the analysis, the finite 

element code consisted of all the terms that are defined in section (2.4). Discussions by 

Paidoussis [1] have demonstrated that the behavior of cantilevered tapered pipes is 

strongly dependent on the exit velocity  LU i  which is explicitly present in Eq. (2.3). 

Note that this velocity is solely dictated by the inner radius at that location. On this basis, 

three cases were identified: 

Option 1: Numerical computations were carried for pipes with only the exit velocity 

varying. This condition is ensured by randomizing only the inner radius at the last node 

of the finite element mesh and keeping it equal to the mean model value at all the other 

nodes. The external radius of the pipe is constant throughout the length of the pipe. 
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Option 2: Numerical computations were carried for pipes with the radius varying at every 

node of the finite element model (except at the inlet, see below). The external radius is 

however assumed to be constant throughout the pipe.  

Option 3: Numerical computations were carried for pipes in which the internal radius is 

randomized throughout the length of the pipe except at the end and at the inlet (see 

below). The radius at the end of the pipe is fixed to its value at the inlet and the external 

radius is constant throughout the pipe.  

The inner radius at the inlet node was kept constant for convenience so that the various 

samples simulated could be compared based on the same flow speed at the inlet as 

opposed to matching the volumetric flow rate. Since these results are intended to provide 

baseline data to validate the stochastic ROM of Chapter 4, the mass and stiffness matrices 

of the pipe without flow, pM  and pK , were kept constant in the simulations. Thus, the 

results presented here describe the effect of random variations of the fluid related forces 

on the pipe stability only. 

The inner radii were first modeled as independent truncated Gaussian random numbers of 

mean equal to the mean model and specified standard deviation. The simulated values 

were limited to  4 standard deviations to avoid the occurrence of unphysical, very large 

changes of the inner radius. The computations were also repeated with uniformly 

distributed random inner radii of identical mean and standard deviation to assess the 

effects, or lack thereof, of the distribution of these properties. For the simply supported 

case, the coefficient of variation of the inner radius was assumed to be 1.5%. Similarly, it 

was considered to be 0.75% for cantilevered pipes. 
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In judging the magnitude of the induced variations of geometry, it is useful to evaluate 

the corresponding standard deviations of taper angle. From Eq. (2.31), it is seen that the 

taper angle i  in the element i is such that  
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xrxr
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1tan  (3.1) 

When the radii at the beginning and end of the elements are independent, one obtains 

assuming the taper angle small 

L

M
i

i

r


2
 (3.2) 

where 
i

 and 
ir

 are the standard deviations of the taper angle and radius, M is the 

number of elements and L is the length of the pipe. Thus, the variations of radius stated 

above induce here standard deviations of element taper angle equal to 1.9 and 1 degree in 

the simply supported and cantilevered cases. 

For the analysis, an initial computation was carried for the base or mean model. Then, 

using a 40 element mesh, 400 Monte Carlo simulations were performed for each of the 

cases described above. For comparison and future use, the plots of the real and imaginary 

parts of the eigenvalues vs. flow velocity as well as the estimated probability density 

functions of the critical velocities (flutter and divergence) are presented in Figs 10-15. 

The variations of the eigenvalues is reflected on these figures by the uncertainty band 

shown in yellow which corresponds, at each flow velocity, to the interval spanning the 

5th to 95th percentiles of the computed real/imaginary parts of the eigenvalues. 

From these figures, it is concluded that: 
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i. The most significant effect of the change in radius is through the exit velocity

 LU i , compare the results for options 1 and 2. In fact, see option 3, it does not 

appear that the variation of radius inside the pipe domain, i.e.,  Lx ,0  induces 

much change in the pipe response, at least for the independent random variations, 

Gaussian or uniform, of radius considered here.  

ii. The distributions of the critical speed are very similar in the Gaussian and 

uniform case in option 3, when there is a large number of random variables 

describing the geometry. Moreover, these distributions are Gaussian-like. These 

observations likely results from a central limit type situation, especially 

considering the small magnitude of the effects of variation in radius in that option. 

On the contrary, in options 1 and 2, the distribution of the critical speed strongly 

reflects the distribution of inner radius. This finding is expected since from (i) it 

was concluded that  LU i  is dominant. So, the critical speed can effectively be 

recognized as a mapping of the inner radius at the pipe end. Given the relatively 

small changes in critical speed, this mapping is approximately linear and thus the 

probability density function of the critical speed is similar to that of the inner 

radius as observed. 

iii. There is a small shift of the mean critical speed which is more visible in option 3 

because the variations in this speed are smaller. To facilitate this observation, the 

mean model value is indicated by a red triangle in Figs 10-15 (e) and (f). 

The small level of variability observed in option 3 was unexpected and it was questioned 

whether it could be the result of the assumed independence, in the above computations, of 

the nodal values of the inner radius. To assess this possibility and study more completely 
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the effects of variations of inner radii, these random variables were next assumed to be 

Gaussian distributed but exponentially correlated, that is with 

        /exp ljrliji xxxrxrE
i

 (3.3) 

where  is the correlation length. Realizations of the inner radii were generated by first 

forming the covariance matrix V of jl element 

    lijijl xrxrEV   (3.4) 

In forming this matrix, it was convenient (see below) to stack the inner radii in the 

following order of nodes: 1, 41, 2, 3, ...., 40. Next, a Cholesky decomposition of the 

covariance matrix was performed yielding the lower triangular matrix L̂  such that 

TLLV ˆˆ  (3.5) 

Finally, samples of the inner radii stacked in the vector r were obtained as 

rzLr  ˆ  (3.6) 

where z denotes a vector of independent standard Gaussian random variables and r  is the 

vector of inner radii for the mean model. To ensure that the inner radii at the first and last 

node were kept constant to their mean values, the first two components of the vector z 

were simply constrained to be zero.  

The above simulation was performed for a series of values of the correlation length . For 

each of these, 300 sets of inner radii were generated and used in the finite element code to 

estimate, in option 3, the flutter speed of the corresponding cantilevered pipe.  This data 

was then reduced to the mean, standard deviation, and probability density of the 

divergence/flutter speed which are plotted as functions of the correlation length on Figs 
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16 and 17 for the cantilevered boundary conditions and Figs 18 and 19 for the simply 

supported ones. 

While the behavior of the mean critical speed is similar for both boundary conditions, i.e., 

sharp initial increase with increasing correlation length then leveling off, opposite 

behaviors are seen on the plots of the standard deviation. For the cantilevered case, the 

standard deviation first rises sharply to achieve a maximum at a correlation length 

approximately equals to 1/4 of the pipe length then decreases steadily. For the simply 

supported pipe, the standard deviation first decrease until the correlation length 

approximately equals the same 1/4 of the pipe length, where it is almost zero, then 

increases and levels off. 

In analyzing these trends, it should first be recognized that the standard deviation of the 

element taper angle, derived as in Eqs (3.1) and (3.2), is  

   


  /exp1
2

1 ii
r

xx
L

M
i

i
 (3.7) 

which is monotonically decreasing with increasing correlation length  as expected since 

the evolution of the inner radius along the pipe becomes smoother. Consequently, all 

taper related term in Eq. (2.3) or (2.42) are expected to decrease on average as the 

correlation length is increased at constant standard deviation
ir

 . Short correlation 

variations, on the other hand, are expected to be “averaged out” in the global character of the 

instability as is confirmed by the Gaussian like probability density functions of the 

divergence/flutter speed obtained in option 3, see Figs 12 and 15, regardless of the distribution of 

the inner radius (uniform or truncated Gaussian). Accordingly, it is believed that there are two 

competing mechanisms at work as the correlation length is increased, one of growth and one of 
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decrease,  the interplay of which leads to an optimum, maximum or minimum, of the standard 

deviation of the critical speed as observed on Figs 16(b) and 18(b). 

In concluding this analysis, note that the peak coefficient of variation of the flutter speed in the 

cantilevered case is larger than its counterpart for the divergence speed of the simply supported 

pipe even though the standard deviation of inner radius is smaller in the former case than in the 

latter one. Thus, cantilevered pipes are more sensitive to inner radius variations than simply 

supported ones. 

Finally, it should be recognized that even the peak standard deviation of flutter speed observed on 

Fig. 16(b), i.e., 9 x 10-3, is much smaller than its option 1 counterpart, i.e., 0.1107,  so that the 

earlier stated dominance of the effects of the exit flow speed U(L) still remains valid. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for simply supported pipes - option 1 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  

Figure 11. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for simply supported pipes - option 2 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for simply supported pipes - option 3 

 



  44 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for cantilevered pipes - option 1 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for cantilevered pipes - option 2 



  46 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 15. (a),(b) Normalized real part of eigenvalues vs. normalized flow speed; (c),(d) 

normalized imaginary part of eigenvalues vs. normalized flow speed; (e),(f) probability 

density function of divergence speed. Mean model shown as “--". (a),(c),(e) Gaussian and 

(b),(d),(f) uniform inner radius distribution for cantilevered pipes - option 3 
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(a) (b) 

 
Figure 16. (a) Mean value and (b) standard deviation of flutter speed for randomly 

tapered cantilevered pipes as functions of the correlation length – option 3 

 

 

Figure 17. Probability distribution of flutter speed for randomly tapered cantilevered 

pipes as a functions of the correlation length-option 3 
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(a) (b) 

Figure 18. (a) Mean value and (b) standard deviation of divergence speed for randomly 

tapered simply supported pipes as functions of the correlation length – option 3 

 

 

Figure 19. Probability distribution of divergence speed for randomly tapered simply 

supported pipes as a functions of the correlation length-option 3 
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CHAPTER FOUR 

DEVELOPMENT OF A STOCHASTIC MODEL FOR STRAIGHT PIPES  

WITH VARYING CROSS SECTION 

 

4.1 Overall Perspective 

The discovery effort carried out in the previous chapters aimed at providing both 

qualitative and quantitative data to be used in developing, in this chapter, a more generic 

stochastic model of straight pipes conveying fluid. One of the challenges involved in 

constructing detailed stochastic models (as in the previous chapters) of uncertain 

structures, pipes here, is the need to completely characterize the uncertainty. For 

example, the inner radius must be specified as a stochastic process, that is, all of the joint 

probability density functions of its values at the finite element nodes must be known or 

imposed. The deviations in shape of the inner cross-section (not considered in Chapters 2 

and 3) would also need to be defined, etc. Obtaining such data on a number of samples 

would represent a tremendously painstaking task and would be time consuming to 

implement. These issues motivate the construction of a more generic or global model of 

the uncertainty. 

The approach selected here for the construction of such a model is the one successfully 

implemented in a series of structural dynamics problems (see [17] for a review), i.e.,  

(i) develop a reduced order model (ROM) of the mean model, the straight pipe with 

constant cross-section here, 

(ii) randomize the matrices involved in the ROM using the maximum entropy concepts 

[17,18] ensuring that all physical constraints on the random matrices are satisfied. 



  50 

Section 4.2 describes the development of a reduced order modeling of the mean model 

and its properties while section 4.3 provides a brief overview of the maximum entropy 

approach. Next, section 4.4 presents the construction of the stochastic reduced order 

model which is then critically assessed in comparison with the results of Chapter 3 in 

section 4.5. 

 

4.2 Mean Model Reduced Order Modeling 

The mean model here describes a perfectly straight pipe with constant cross-section. 

Then, its governing equation is obtained from Eq. (2.3) with iA  constant, that is 
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A ROM of this equation can be obtained by seeking a solution of the form 

     xtqtxw j

N

j

j  
1

,  (4.2) 

where  xj  are basis functions satisfying the geometric boundary conditions,  tq j  are 

the corresponding generalized coordinates, and N is the number of such terms. Then, 

proceeding in a Gakerkin format as in the finite element modeling, leads to the following 

set of ordinary differential equations for the generalized coordinates stacked in the vector 

q 

    0 qKKqCqMM fpffp   (4.3) 
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where pM , fM , fC , pK , fK  are, respectively, the pipe and fluid-induced mass 

matrices, the fluid-induced damping matrix, and the pipe and fluid-induced stiffness 

matrices, the rs elements of which all are 

   dxxxM s
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,   (4.4a), (4.4b) 
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  (4.6a), (4.6b) 

An inspection of Eqs (4.4)-(4.6) provides a series of properties that hold independently of 

the boundary conditions. More specifically, the matrix pM  is symmetric, as

srprsp MM ,,  , but it is also positive definite since 

   

  0

0

2

1

0
11

1,

,

















































 











L N

r

rrp

L
N

s

ss

N

r

rrp
N

sr

srrspp
T

dxzx

dxzxzx
zzMzMz

 (4.7) 

for any vector z of components rz . Following the same arguments, it is found that fM  

and pK  are also symmetric and positive definite. In general, the matrices fC  and fK  
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do not have any particular property but they do when the pipe is simply supported. In that 

case, the boundary terms in Eq. (4.5) and (4.6) vanish and one observes that fC  is skew-

symmetric, and fK  is symmetric and negative definite. In fact, these properties are 

critical to prove that the pipe will exhibit divergence as opposed to flutter, see Appendix 

A for a proof. 

Moreover, one can construct a matrix that regroups them and which has similar property. 

To this end, note first that 
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is positive for any combination of values ry  and rz  as the integrand is always positive. 

Expanding the product of the two brackets, it is found that 
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,,,, 5.05.0  (4.9) 

Since this expression should be positive for all values of ry  and rz , the symmetric 

matrix F  defined as 
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 (4.10) 

 

4.3 Standard Nonparametric Modeling – Symmetric Positive Definite Matrices 

The nonparametric modeling is a strategy for the stochastic modeling of matrices 

exhibiting particular properties. The original formulation of this method [18] focuses on 

symmetric positive definite matrices A for which it assumes that the mean A  is known. 
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This limited information is not sufficient to uniquely define the joint probability density 

function of the elements of A, denoted as  apA . Faced with this issue, Soize proposed in 

[18] that this joint probability density function be selected as the one that maximizes the 

entropy S given the available information. That is,  apA  should maximize 

   


 daapapS AA ln  (4.11) 

given that 

Unit total probability:     1


daapA       (4.12) 

Given mean:      Adaapa A 


      (4.13) 

Nonsingularity:        finitedetln 


daapa A     (4.14) 

where the domain of support  of the probability density function is then such that the 

matrix A is positive definite, or equivalently that it admits a Cholesky decomposition, i.e.,  

      .,0
~

,,
~

:,...,1,,
~

;
~~

 iiijij
T LjiLnjiLLLa  (4.15) 

The probability density function  apA  maximizing S given the constraints of Eqs 

(4.12)-(4.14) can be derived by calculus of variation and is found to be 

       aaCap T
A 

 ~trexpdet
~ 1

  (4.16) 

where C
~  is the appropriate constant to satisfy the normalization condition, Eq. (4.12) 

and and  are the Lagrange multipliers associated with the constraints of Eqs (4.13) and 



  54 

(4.14), respectively. After a change of random variables, it is found that the matrices A of 

joint probability density function  apA , Eq. (4.16), can be generated as 

TT LHHLA   (4.17) 

Where L  is any decomposition, e.g., Cholesky, of A , i.e.,  

TLLA   (4.18) 

Moreover, H is a lower triangular matrix such that (see also Fig. 18) 

(1) its off-diagonal elements ilH , li , are normally distributed (Gaussian) random 

variables with standard deviation  2/1 , and 

(2) its diagonal elements iiH  are obtained as  /iiii YH  where iiY  is Gamma 

distributed with parameter    2/1ip  where 

  12 0  inip  and     2/12 0  n        (4.19) 

 

Figure 20. Structure of the random H matrices with n = 8, i =2, and 0 =1 and 10. 
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In the above equations, n is the size of the matrices and the parameter 0 > 0 is the free 

parameter of the statistical distribution of the random matrices A. An alternative 

parametrization is through the dispersion parameter   defined as 

12

1

0

2






n

n
 (4.20) 

 

4.4 Stochastic ROM Construction 

The first step in formulating a global modeling of uncertain pipe is to recognize that 

proceeding with the assumed representation of Eq. (4.2) in Eq. (2.3) would give a set of 

equations similar to Eq. (4.3) but with different matrices which would all involve the 

variations of the pipe’s inner geometry in different manner. This observation would 

suggest that pM , fM , pK , fK  and fC  should all be randomized together to model 

uncertainty in the internal cross-section properties. Of course, separate uncertainty on the 

density of the pipe, its outer diameter, Young’s modulus, etc. would also come in 

inducing further uncertainty on the pipe’s own matrices pM  and pK  and decreasing the 

dependence between the elements of these matrices and those of the fluid-induced ones. 

On this basis, it is suggested here that  pM  and pK  can be modeled independently of the 

remaining three matrices fM , fC , and fK  which however ought to be modeled 

together since they originate from the same source, the fluid flow, and involve at least 

one common uncertain factor, i.e., the fluid mass per length which depends on the inner 

cross-section area. In considering the modeling of fK , it should further be recognized 

that this matrix would be the only one affected by the exit flow velocity  LU i  since this 
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variable appears only in a stiffness term in Eq. (2.3) (i.e., a term without time derivative). 

Moreover, that term is the largest stiffness one in the case of small taper; it is in fact the 

only one present without taper. Finally,  LU i  is seen to scale this term. In summary,  

 LU i  provides a near scaling of the pipe stiffness when its taper is small. 

The need for a combined modeling of the flow-induced matrices was also stated in [16]. 

The authors argued additionally that the fluid-induced mass matrix could be lumped with 

the pipe’s own since they exhibit a similar symmetry. That left the fluid-induced stiffness 

and damping matrices which were ingeniously combined into a complex impedance 

modeled according to the extension of the nonparametric method applicable to general 

matrices [17]. 

A different perspective in generating the random matrices fM , fC  and fK  is adopted 

here based on the expectation that, for appropriately small uncertainty levels, 

(i) the uncertain pipes exhibit the same type of instability, flutter or divergence, as the 

mean model, and 

(ii) the pipes becomes unstable at flow speeds close to the critical speed of the mean 

model. 

The property (i) is in fact much more stringent that could be imagined at first especially 

for the case of simply supported pipes. Since the perfectly straight simply supported pipe 

diverges, the real parts of all its eigenvalues are exactly zero until divergence takes place. 

The condition (i) then requires that a similar result be obtained for the uncertain system. 

This condition is however not achieved by any arbitrary small variations of fM , fC , 

and fK  which, on the contrary, typically lead to the occurrence of complex eigenvalues 
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with small negative real part (indicative of flutter) at much lower speeds than the 

divergence speed, sometimes even as U 0 which is clearly unphysical (and in 

opposition of requirement (ii)). 

The above observations suggests here that it is necessary to impose a particular structure 

to the random matrices fM , fC , and fK  of the uncertain pipes. In the absence of clearer 

information, it will be assumed here that these matrices satisfy the same properties as the 

perfectly straight simply supported pipe, that is 

(a) fM  is symmetric positive definite, fC  is skew-symmetric, and fK  is symmetric and 

negative definite. 

Then, it is guaranteed from Appendix A that divergence will occur. Moreover, for small 

enough uncertainty level, it will be expected that 

(b) the matrix F  obtained as in Eq. (4.10) with the matrices fM , fC , and fK  is 

positive definite. 

Then, the uncertain simply supported pipes diverge and any early onset of flutter is 

avoided. The conditions (a) and (b) will be enforced by expressing fM , fC  and fK  as 

PMPM f
T

f         PCPC f
T

f    PKPK f
T

f            (4.21a), (4.21b), (4.21c) 

where P is a NxN random matrix to be selected. It is readily shown that these relations 

guarantee the needed symmetry/skew symmetry and negative definiteness properties of 

fM , fC , and fK . They do also imply the condition (b) since 

QFQ
P

P

KC

CM

P

P

KC

CM
F T

f
T
f

ff

T

T

f
T
f

ff






















































0

0

5.0

5.0

0

0

5.0

5.0
 (4.22) 



  58 

where 











P

P
Q

0

0
 (4.23) 

While the above discussion strictly holds only for simply supported pipes, it is desirable 

that the construction of the stochastic reduced order model be independent of the 

boundary conditions. Thus, Eqs (4.21) will also be applied for all boundary conditions, 

e.g., also for cantilevered pipes.  

It remains finally to address the explicit dependence of fK  on the exit flow velocity

 LU i , i.e., the dependence of this matrix on a single random variable modeling the jet 

effect at the outlet. As discussed above, this speed effectively scales the stiffness matrix

fK . It is thus proposed here to modify Eq. (4.21c) to read 

PKPRK f
T

f   (4.24) 

where the positive random variable R is introduced to model the effects of the exit flow 

velocity  LU i . 

In this light, the present model, Eqs (4.21a), (4.21b) and (4.24) is a combined parametric-

non parametric model as first investigated in [34], see also [17] and [35] for a somewhat 

similar example. 

To complete the stochastic ROM construction, it then remains to specify the 

distribution of the random variable R and of the random matrix P. It is proposed here to 

rely on the maximum entropy approach [17]. More specifically, the application of this 

methodology, see Eqs (4.17)-(4.18), to the mass matrix fM  alone would lead to 
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TT
NNf LHHLM       where  T

f LLM         (4.25) 

with NH  a NxN lower triangular matrix as in section 4.3, see also Fig. 18. The single 

hyperparameter of this distribution is the overall measure of deviation, N . Equating the 

random mass matrices fM  of Eqs (4.21a) and (4.25) yields a desired expression for P, 

i.e., 

TT
N

T LHLP   (4.26) 

The modeling of the random variable R  could be achieved in different ways. One 

approach would be to represent this variable in a polynomial chaos format, e.g., see 

[34,35]. A simpler approach is adopted here on the basis of the maximum entropy 

principle. Specifically, R  is recognized as a 1x1 positive definite random matrix leading 

directly to its modeling as 
2
1

HR   where 1H  is similar to NH  but with a matrix size of 

1 and appropriate dispersion 1 . 

 

4.5 Mean Model ROM Validation  

The first step in the development of the stochastic ROM described in the previous section 

is the construction of the deterministic ROM of the mean model. It was achieved from the 

finite element model to emulate the continuum formulation of Eqs (4.2) – (4.6). 

Specifically, the basis vectors  x
j

  were selected as the linear modes of the pipe 

without flow which are obtained from the eigenvalue problem Eq. (1.3) or  

  
FE
p

FE
p MK 2  (4.27) 
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where 
FE
pM  and 

FE
pK  are the structural mass and stiffness matrices of the finite element 

model as given in chapter 2. 

Then consistently with Eq. (4.2) the solution of Eq. (2.25) was sought in the form  





N

j
jj qqw

1

 (4.28) 

where   is the matrix whose columns are the linear modes 
j

 . Then, the ROM mass, 

damping and stiffness matrices of the mean model are 


FE
p

T
p MM   

FE
f

T
f MM   

FE
f

T
f CC  


FE
p

T
p KK                   

FE
f

T
f KK                                                   (4.29) 

where 
FE
fM , 

FE
fC , 

FE
fK  are the fluid induced mass, damping and stiffness matrices of 

the finite element model as given in chapter 2. 

The ROM of the mean model, straight uniform pipe, was achieved using the first 6 linear 

modes in the simply supported case and the first 8 modes in the cantilevered case.  

Shown in Fig. 19 and 20 are comparisons of the real and imaginary parts of the 

eigenvalues obtained for the simply supported and cantilevered uniform pipes by the FE 

method and the above ROM. Clearly the matching is excellent and the ROM can be used 

instead of the FE model to predict the behaviour of the uniform pipe. It remains to assess 

whether the ROM is appropriate for tapered pipes as well. To this end, the comparison of 

Fig. 20 was reconducted but for a uniformly tapered pipe with taper angle of 1.8 degree. 

Then, shown in Fig. 21 is a comparison of the real and imaginary parts of the eigenvalues 
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obtained by the ROM and the finite element model. The excellent match between these 

sets of results confirm the validity of the ROM basis for the present analysis.  

  
(a) (b) 

Figure 21. Comparison of (a) normalized real part of eigenvalues vs normalized flow 

speed (b) normalized imaginary part of eigenvalues vs. normalized flow speed; finite 

element code and ROM for cantilevered pipe with uniform cross section 

 

  

(a) (b) 

Figure 22. Comparison of (a) normalized real part of eigenvalues vs normalized flow 

speed (b) normalized imaginary part of eigenvalues vs. normalized flow speed; finite 

element code and ROM for simply supported pipe with uniform cross section 
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(a) (b) 

Figure 23. Comparison of (a) normalized real part of eigenvalues vs. normalized flow 

speed (b) normalized imaginary part of eigenvalues vs. normalized flow speed; finite 

element code and ROM for cantilevered pipe with taper angle of 1.8 degree 

 

4.6 Stochastic ROM Assessment 

To assess the potential of the stochastic ROM to match the physical behaviour of the 

randomly tapered pipes discussed in Chapter 3, the dispersion parameters N  and 1  

were selected so that the standard deviations of the flutter and divergence speed obtained 

by the stochastic ROM match their counterparts for options 1 (when N = 0; 1  0) and 

3  (when N  0; 1 = 0). The stochastic ROM thus calibrated was then applied to both 

simply supported and cantilevered pipes in options 1, 2, and 3 and its eigenvalues, real 

and imaginary parts, were tracked as a function of the flow speed U. Moreover, the 

probability density function of the critical speed, flutter for the cantilever configuration 

and divergence for the simply supported one, was estimated as well. These results were 

then compared to their counterparts of Chapter 3. 
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Consider the simply supported configuration first. Calibrating the dispersion parameters 

N  and 1  from the standard deviation of the divergence speed obtained under the 

truncated Gaussian distribution of inner radii for options 1 and 3, it is found that N = 0 

and 1 = 0.0294 for option 1 and N = 0.0021 and 1 = 0 for option 3. Proceeding next 

with these values, shown in Figs 22, 24, 26 are the corresponding plots of the real and 

imaginary parts of the eigenvalues for all three options. Comparing these with their 

counterparts of Chapter 3, i.e., Figs 10-12, it is seen that a very close match of the 

uncertainty bands is obtained. The comparison of the probability density functions of the 

divergence speed is shown on Figs 23, 25, 27. The stochastic ROM results clearly 

provide a very good agreement of the general shape of the probability density functions 

obtained with the truncated Gaussian and uniform inner radii. For options 1 and 3, the 

match is close with the Gaussian results, further with the uniform ones, as expected from 

the similarity of the Gaussian and Gamma distributions. For option 2, all three 

distributions are close but note that the divergence speeds exhibit a slight mean shift 

which is different in all three models. 

Proceeding next with the cantilevered configuration, shown in Figs 28, 30, 32 are the 

plots of the real and imaginary parts of the eigenvalues for all three options which again 

match very closely their counterparts of Chapter 3, Figs 13-15. These results were 

obtained with the values N = 0 and 1 = 0.015 for option 1 and N = 0.00025 and 1 = 0 

option 3, that yield equal standard deviations of the flutter speed of the random taper 

finite element code (with truncated Gaussian inner radii)  and of the stochastic ROM for 

options 1 and 3. Comparing the probability density functions of the flutter speed, see Figs 
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29, 31, 33, lead here to the same observations as for the simply supported configuration. 

Note that Figs 27 and 33 show the deviations of the divergence and flutter speeds from 

their mean value to better demonstrate the similarities. Finally, it is observed from the 

above discussion that the parameter 1  is very closely equal to twice the coefficient of 

variation of the inner radius. This is in fact fully expected as, by conservation of the 

volumetric flow rate,  LU  is inversely proportional to the inner radius and thus the 

coefficient of variation of the random variable R which models it (and is equal to 1 ) 

should be close to twice the corresponding value for the inner radius. 
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(a) (b) 

Figure 24. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed - stochastic ROM of 

simply supported pipe - option 1 

 

 

Figure 25. Probability density functions of divergence speed; tapered finite element code 

with Gaussian and uniform distribution and stochastic ROM; simply supported pipes - 

option 1 
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(a) (b) 

Figure 26. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed - stochastic ROM of 

simply supported pipe - option 2 

 

 

Figure 27. Probability density functions of divergence speed; tapered finite element code 

with Gaussian and uniform distribution and stochastic ROM; simply supported pipes - 

option 2 
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(a) (b) 

Figure 28. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed – stochastic ROM of 

simply supported pipe - option 3 

 

 

Figure 29. Probability density functions of divergence speed deviations; tapered finite 

element code with Gaussian and uniform distribution and stochastic ROM; simply 

supported pipes - option 3 
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(a) (b) 

Figure 30. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed - stochastic ROM of 

cantilevered pipe - option 1 

 

 

Figure 31. Probability density functions of flutter speed; tapered finite element code with 

Gaussian and uniform distribution and stochastic ROM; cantilevered pipes - option 1 
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(a) (b) 

Figure 32. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed - stochastic ROM of 

cantilevered pipe - option 2 

 
 

 

Figure 33. Probability density functions of flutter speed; tapered finite element code with 

Gaussian and uniform distribution and stochastic ROM; cantilevered pipes - option 2 
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(a) (b) 

Figure 34. (a) Normalized real part of eigenvalues vs. normalized flow speed; (b) 

normalized imaginary part of eigenvalues vs. normalized flow speed – stochastic ROM of 

cantilevered pipe - option 3 

 

 

Figure 35. Probability density functions of flutter speed deviations; tapered finite element 

code with Gaussian and uniform distribution and stochastic ROM; cantilevered pipes - 

option 3 
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CHAPTER FIVE 

EFFECTS OF PIPE CURVATURE AND FULL STOCHASTIC  

REDUCED ORDER MODEL 

 

The previous chapters have focused extensively on the variations of inner radius/cross-

section but the curvature of a pipe is also known to significantly affect its dynamic 

behavior/response. In his book [1], Paidoussis dedicates one chapter to the study of 

curved pipes, circular arcs of finite curvature in particular, which are analyzed in a related 

curvilinear frame. A key discussion item in that chapter is that the fluid flow in the 

curved pipe generates on it a steady loading which induces both static stress and 

displacement fields which in turn affect the pipe geometry and dynamic response. The 

stress fields includes in particular an axial preload which is known to potentially affect 

the pipe transverse behavior. 

Closer to the present focus are the investigations of [14,15] which consider slightly 

curved beams and investigate briefly the linear response, e.g., eigenvalue vs. flow speed, 

but much more deeply the nonlinear geometric response past divergence (which is not 

part of the present investigation). It is observed that their formulation is in the Cartesian 

frame that would be used for the straight pipe but with the displacement measured from 

the statically deformed pipe. This relative positioning is not convenient in the current 

framework given the randomness of the undeformed pipe geometry and thus a revisit of 

the formulation is warranted. More specifically, the two key questions to address/quantify 

are (a) the expression of the flow induced forces and (b) the effect of a potential axial 

force in the pipe. The ensuing discussion will involve the following three transverse 
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positions of the beam at axial location x and time t:  xw0  the position corresponding to 

the undeformed pipe (no flow),  txw ,  the elastic transverse deflection, and 

     txwxwtxwt ,, 0   the total transverse position.  

With regard to the flow induced forces, proceeding as in the case of a straight pipe, 

e.g., see [1], it is found that they are expressed as  
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 (5.1) 

as long as second order terms in tw  can be neglected. 

Consider next the magnitude and effects of the axial preload  txN , . Neglecting the 

effects of the time varying deflection  txw ,  (as to remain in a linear framework), the 

flow induced forces generating the axial preload are, from Eq. (5.1), 

2

0
2

2)0(

dx

wd
UAF iiiflow

 . Then, it is concluded that the axial preload N will only 

depend on position (not time) and that its magnitude will be of order
dx

dw
F

flow
0)0(

, i.e., 

proportional to 2
iU  and an order higher in the curvature than 

)0(
flow

F . Moreover, its effects 

on the pipe response will be to modify the stiffness as is seen for example in the case of a 

straight pipe where it induces the term 

















x

w
N

x
. This discussion demonstrates that a 

small undeformed curvature of the pipe will induce a change in the effective stiffness fK
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. Thus, the uncertain effects of a preload generated by a random curvature can be 

absorbed in the randomization of fK  proposed in Chapter 4. It may still be argued 

whether this effect should be included or not in the model as it is a second order effect in 

the small curvature as shown above. 

It should finally be recognized that the curvature of the pipes induces a natural coupling 

between the transverse and axial deflections so that the ROM should be extended to 

include the latter motions. However, following standard practice, it is expected that the 

natural frequencies of axial motions are much higher than their transverse counterparts so 

that a static condensation of the former ones on the latter can be accomplished. This 

process effectively reduces the modeling to only the transverse motions. 

Then, proceeding with an expansion of the displacement field  txw ,  as in Eq. (4.2) 

and expressing similarly  xw0 , i.e.  

   xqxw j

N

j
j  

1

)0(
0   (5.2) 

it is found that the linear ROM equations of a slightly curved pipe conveying fluid would 

be of the form 

    )0(~
qKqKKqCqMM ffpffp    (5.3) 

where fK  and fK
~

 differ from each other by the axial preload effect if it is included. In 

this linear formulation, the pipe’s undeformed curvature only affects the eigenvalues 

through the structural mass and stiffness matrices, pM  and pK . 

To validate this property, the normalized imaginary part of the first eigenvalue vs. 

normalized flow speed results presented in [15] were considered. They relate to a simply 
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supported curved pipe in the form of a half-sine wave of amplitude 0a  equal to 0, 1%, 

2.5%, and 5% of the pipe length, see Fig. 34 Per the above discussion, the difference 

between the four curves should solely be the effects of the change in structural stiffness 

and mass resulting from the curvature. Thus, if a straight pipe ROM was calibrated to 

yield at zero flow the natural frequency of the curved pipe, a close agreement of the 

imaginary part of eigenvalue vs. flow speed should be obtained throughout. To check this 

possibility, the Young’s modulus of the straight pipe was modified to yield the correct 

natural frequency in the no flow case. Then, its eigenvalues with flow were computed and 

also plotted in Fig. 34 As can be seen from this figure, the very close matching of the 

“fit” curves (i.e., the straight pipe predictions with modified Young’s modulus) with the 

“data” ones (from [15]), demonstrates that the above property holds. 

 Thus, a small curvature of the pipe does not induce any significant change in the fluid 

forces except the presence of the term on the right-hand-side of Eq. (5.3). If the 

uncertainty on this term needs to be modeled, it is proposed here that the components of 

the vector )0(
q  be taken as independent, zero mean Gaussian random variables. 
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Figure 36. Normalized imaginary part of the first eigenvalue vs. normalized flow speed 

for curved pipes in the form of a half-sine wave of amplitude 0a  = 0, 1%, 2.5%, and 5% 

of the pipe length. Computations from [15] (“Data”) and approximation based on 

calibrated straight pipe (“Fit”) 
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APPENDIX A 

SUFFICIENT CONDITION FOR THE EIGENVALUES OF A DAMPED MULTI 

DEGREE OF FREEDOM TO BE PURELY IMAGINARY 
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Consider here the multi degree of freedom system satisfying the equations of motion 

0 qKqCqM   (A.1) 

It is desired to prove that the corresponding free response is of the form 

tieq   (A.2) 

with   independent of time and  real if M and K are real symmetric, M is nonsingular, 

and C is real skew symmetric. To this end, introducing Eq. (A.2) into (A.1) leads to the 

quadratic eigenvalue problem  

  02  KCiM  (A.3) 

Next, let 













  (A.4) 

Then, Eq. (A.3) can be rewritten in the form 

 BA  (A.5) 

where 











M

K
A

0

0
  and 










0M

MCi
B         (A.6) 

Given their forms, it is readily seen that both A and B are Hermitian, i.e., AAH   and 

BB H  , with H  denoting the combined operation of complex conjugation and matrix 

transposition, when M and K are real symmetric and C is real skew symmetric. Then, pre-

multiplying Eq. (A.5) by H
  it is seen that 
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B

A

H

H

 (A.7) 

but both numerator and denominator of this expression are purely real since A and B are 

Hermitian. Thus, the frequency  is real. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


