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ABSTRACT  
   

Phishing is a form of online fraud where a spoofed website tries to gain access to user's 

sensitive information by tricking the user into believing that it is a benign website. There are 

several solutions to detect phishing attacks such as educating users, using blacklists or extracting 

phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches 

that extract features from phishing websites and train classification models with extracted feature 

set to classify phishing websites. We create an exhaustive list of all features used in these 

approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 

features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity 

of the website and analyze their robustness in classifying a phishing website. Our emphasis is on 

determining the predictive performance of robust features. We evaluate the classification 

accuracy when using the entire feature set and when URL features or site popularity features are 

excluded from the feature set and show how our approach can be used to effectively predict 

specific types of phishing attacks such as shortened URLs and randomized URLs. Using both 

decision table classifiers and neural network classifiers, our results indicate that robust features 

seem to have enough predictive power to be used in practice. 
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CHAPTER 1 

INTRODUCTION 

Phishing is a major online security concern. According to latest Google Safe Browsing report, 

Google search blacklists over 50,000 malware sites and over 90,000 phishing sites monthly [30]. 

 The APWG (Anti – Phishing Working Group) reported that the number of phishing attacks in 

2016 was 65% more than 2015 [29]. In the last 12 years, the number of phishing attacks per 

month has increased 5753%. Kaspersky Labs reported that its anti-phishing system was 

triggered over 30.8 million phishing sites during the second quarter of 2015 [31].   

The damage caused by phishing attacks is as extensive as it is diverse.  It was reported that loss 

due to phishing attacks was $65 million in 2015 [29]. Kaspersky also reported that criminals in 

Eastern Europe had used phishing attacks to access more than 100 banks from 30 different 

countries over the past few years [31]. A total of 557 different brands or institutions were targeted 

by phishers in the first quarter of 2014 [42]. Almost any enterprise that takes in personal data via 

the Web is a potential target. The main objective of a phishing attack is usually financial in nature 

causing data breaches and leakage of confidential information pertaining to individual users and 

organizations and resulting in huge losses to individuals and companies [31]. MarkMonitor found 

that companies in the Retail and Financial services sectors remained the top targets.  Hence, 

detecting and minimizing the impact of phishing attacks is extremely important [29]. 

We discuss here some of the ways in which phishers operate. Phishers work by compromising a 

legitimate domain to create phishing websites or by compromising an existing website to include 

scripts to redirect to a malicious server where user data can be downloaded or by luring users 

with domain names such as pay5al.com, pay.pal.com, or paypal.sign-in.online, which look like 

benign site Paypal.com [5] [6] [12]. 

Phishers also try to confine their attack to certain regions, by using IP filters. IP filters operate at 

TCP/IP stack to allow or deny traffic based on rules set by the administrator. Attackers make use 

of this filtering technique to deny people on IP addresses outside specific domain/country, to see 
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the fraud sites – only people inside of domain/country can see the fraud sites. The goal is to 

make it more difficult for response teams at hosting provider outside of country to view the active 

fraud, so they cannot confirm the problems and then eliminate them. This IP filtering technique is 

prevalent in Brazil and was used in 29 percent of phishing attacks [29]. 

There are different ways in which phishing attacks can be detected.  Phishing blacklists are 

frequently updated based on user reports and used in browser plugins to check if the website 

entered by the user is present in the blacklist [46] [47] [48].  Visual similarity based detection 

techniques are also used, where the web page is captured as an image and compared with 

potential target sites to detect a phishing attack [49] [50]. Several approaches in phishing 

detection use features extracted from URL of the website, web page content, hosting domain, 

traffic ranking, and popularity of the website [1 - 28]. Each approach uses a unique combination 

of features to differentiate between a benign and a phishing site. Once features are extracted, 

data mining algorithms (classification algorithms in most cases) are used for training them to build 

a classification model that will help classify any new website as phishing or benign.   

In the literature surveyed, an exhaustive listing of all website features and finer categories under 

which these features can be classified is not present [1-28]. Most of the available research works 

do not address the robustness of the features used in phishing detection techniques. A phishing 

detection feature or a set of features are robust if either an adversary cannot easily create a 

phishing website for which the features looks like that of a benign website or even if he/she 

creates such a phishing website, the success probability of the phishing attack would become 

less. For example, we consider an adversary who operates through email spams by creating new 

phishing websites to lure users. An example of a non-robust feature is the number of dots in the 

URL. Though we find that in many phishing website URLs, the number of dots is more than that 

would be in a benign site URL, the adversary can carry out a phishing attack by creating a URL 

with lesser number of dots in it. An example for robust feature would be WHOIS registration date 

(age of domain), as the adversary cannot create a new phishing website with an older registration 

date.  
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Thus, a discussion on feature robustness is necessary to create phishing detection systems that 

are hard to break or compromise. Moreover, each research work uses a different classification 

algorithm to train features and different prediction performance measure, and hence comparing 

the works with each other is difficult. Finally, many of the existing works do not justify the datasets 

used to extract the website features.  

The contributions of our work are as follows. 

We built a broader framework to describe various phishing detection research works and to 

categorize the various features such as URL features, web page features, hosting domain based 

features, website popularity based features and network level features used in these research 

works into finer categories. In chapter 2, we present the list of features gathered from literature 

surveyed. 

We discuss the robustness of different feature categories and mention set of robust features for 

specific phishing attacks in chapter 3. Additionally, we also state how even if some features can 

be good predictors individually, they many not give proper predictions when used to predict 

certain attacks and we provide examples for this in chapter 4. 

We extract 59 features from website URL, URL redirection, hosting domain and popularity, as 

mentioned in chapter 5 and train classifier with combinations of URL, hosting domain and site 

popularity feature categories, and set of all extracted features and determine the predictive 

performance of robust features. To show that robust features have enough predictive power to be 

used in practice, we train our entire feature set using decision table classifier and neural networks 

and obtain classification accuracy of 96.18% and 98.16% respectively. The classification results 

are mentioned in detail in chapter 6. We also mention how our work can be useful to create 

systems that are unbiased towards any feature category and can thus predict well for new types 

of phishing attacks with shortened URLs or newly compromised websites.  
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We also discuss how neural networks can provide better classification accuracy in detection 

phishing websites, in chapter 7. 

The benefit of this work is that any future phishing detection system can effectively make use of 

this exhaustive list of features under various categories and features’ robustness analysis to get 

information on what kind of features can be extracted and used effectively in their system. Our 

work is a good place to start, for a new phishing detection tool that aims to use features that can 

are easily collected, robust and provide more accurate predictions. 
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CHAPTER 2 

SURVEY AND FEATURE CATEGORIZATION 

1. Overview 

We have surveyed 28 research works that use features from website URL, page content, hosting 

domain, popularity etc. to train a classification model and use the model to classify phishing 

websites. The papers selected are a good representative of the research works that have studied 

the various characteristics and features specific to phishing websites.  

The survey includes a consolidated list of close to 120 features from the 28 research works 

categorized into broader and finer categories. Combining similar features together as a category, 

we get 6 broader and 32 finer categories of features. 

The 6 broader categories discussed are URL Features, Page and JavaScript features, Security 

features, Site popularity features, Hosting Domain based features and Network layer features. 

Each of these broader categories and features under these categories are described below.  

In this survey, we also analyze the robustness of these feature categories, as mentioned in 

chapter 3. 

2. URL Features 

URL or Lexical features are obtained based on the properties of the URL of the website. The 

composition of words in the domain portion, part portion and TLD (Top Level Domain) of the URL 

and presence of certain special characters and their positions are significant URL features that 

contribute to detection of phishing sites.  

Most of the phishing attacks are through email scams [29] and hence attackers need a way in which they 

can lure users by creating a phishing website that looks exactly like an existing benign website. Phishers 

normally use obfuscation techniques to deceive the user to click on the phishing URL. By 
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obfuscating the host name with an IP address or including the target brand’s domain name in the 

URL path with or without spelling errors or using longer URLs to embed benign looking tokens in 

the sub-domain or path of the URL, phishers try to lure users into accessing the phishing site, for 

example, www.ebay.example.com. Usage of special characters such as ‘@’ which cause the 

browser to ignore the string on the left of ‘@’ and treat the string on the right as actual URL are 

few other ways to trick users, for example, http://ebay.com/personal_info@www.xyz.com [13]. 

Phishing pages generally have multiple redirects to redirect from the initial URL to the final site 

which is hosted by the attacker in any compromised machine [12] [24]. Attackers also infect 

benign sites with a heavily obfuscated malicious JavaScript code, that embeds an iframe with 

attacker’s malicious domain URL and then throws an HTTP 302 redirection to load the phishing 

website exploit domain [12]. 

In several research works studied, [1] [2] [3] [4] [5] [7] [8] [15] [16] and [19], bag-of-words 

representation [43] on the entire URL is considered as a significant feature. In this representation, 

the URL is processed to extract each segment delimited by special characters (‘/’, ’.’, ’,’,  ’?’, ’=’, 

’;’, etc.) as a token and binary features are created for each of the tokens. Bag-of-words 

representation for each portion of the URL (domain and path portions) is also considered in [2] [4] 

[5]. Length of the different parts of the URL, number of tokens in each part and count of each 

special character in the URL are other common features that are extracted and trained to 

contribute to phishing website detection [2] [4] [5] [6] [9] [10] [12] [15] [16] [19] [20] [24]. Some 

research works also look for presence of brand names in the URL, and domain brand name 

distance [3]. Domain brand name distance is the edit-distance between domain name and brand 

name that can be potential phishing target. Redirection features such as Number of redirects 

between the pages and status of redirection can help detect phishing attacks where a legitimate 

hosting domain is compromised to redirect to another malicious domain where the attacker steals 

user’s information [12] [24]. The different URL features used in the research works that contribute 

to phishing detection are categorized as follows as mentioned in Table 1. The different features 

under each of these categories are listed in Table 2 (Appendix 8.1) 
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Table 1 

Finer categories of URL features 

Category 

Tokens in URL – Bag-of-words approach 

Presence of security sensitive, client server keywords / brand name 

Presence of character codes 

Presence of @, port No, IP address 

Length of URL/Domain/Path 

Number of dots, hyphens, underscores (special characters) 

Domain/Path Token features 

TLD Organization 

URL Redirects 

 

3. Page content and JavaScript features 

Many features extracted from the web page content such as the presence of login forms, the 

presence of password fields and presence of abnormal scripting content can help in detecting a 

phishing site. Most phishing web pages contain forms with input fields to obtain user payment 

card details or password. Apart from that, several techniques such as hidden elements, popups, 

and prompts to enter sensitive information are used to lure users into entering passwords and 

confidential information [19]. JavaScript abnormalities, the presence of shell code in the page and 

suspicious Active X controls can also denote a phishing page – where an attacker exploits any 

vulnerability in the web page to inject scripts/code that can download user sensitive information 
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from the page to the attacker’s server [21]. Many research works extract these features to detect 

phishing websites.  

Afroz et al [8], extract the entire web page along with HTML content and images and store it as a 

profile. Whenever user loads a new site, it is checked against all stored profiles. If a close match 

is found, there are high chances that the loaded site is a phishing site [8]. Prophiler system 

extracts many features from JavaScript, DOM and Active X controls of the web page along with 

URL and Host based features to train the classifier to predict phishing websites [21]. Some 

research work check for the presence of forms and password field in forms, source URL match 

with request URL and links on page [10] [11] [13] [14] [16] as these features are claimed as good 

indicators of phishing websites. This makes the overall system a light weight operation with less 

computational overhead, when compared to systems like Prophiler [21] and the one designed by 

Thomas, Kurt, et al [19] which extract many pages and JavaScript features to detect phishing. 

The different page features used in the research works that contribute to phishing detection are 

categorized as follows as mentioned in Table 3. The different features under each of these 

categories are listed in Table 4 (Appendix 8.1). 

Table 3 

Finer categories of Page features 

Categories  

HTTP header information (server, cache control) 

Presence / Absence of specific page events 

Number of abnormalities in Scripting Content  

HTML code, Text and Images 

Number of White space, unknown tags and Hidden elements, Small area elements 

Abnormal features in Forms / Presence of specific form fields 
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Features of Iframes, Pop ups, User Prompts and plugins 

Features of Links on page / Redirect pages 

Request URL 

Shell code and suspicious Active X controls 

 

4. Hosting Domain features 

Features from WHOIS and DNS records of the website provide insight into how and where 

phishing websites are hosted. WHOIS services are provided by registrars and registries for the 

domain names that they sponsor. WHOIS records provide information about the registrant of the 

website, registration creation and expiration dates and few other details [52]. DNS records are 

mapping files that tell the DNS (domain name system) server which IP address each domain is 

associated with. When someone visits a web site, a request is sent to the DNS server and then 

forwarded to the corresponding IP address where the website is hosted [53].  

WHOIS features such as the age of domain, the life span of a domain, registrar details and few 

others and DNS record features such as autonomous system number, name server address, and 

location, time to live value of DNS record etc. are commonly used in the literature surveyed. 

Phishers normally target compromised hosting domains to launch their attacks, so that obtaining 

user information through the phishing site is easy. Phishing sites are created for a short span to 

get the maximum out of it in a few days before the site is detected and blocked. Phishing 

campaigns are short-lived as phishers cannot afford to pay for a hosting domain for a long period.  

Phishers also use free web hosting services and domain tasting [5] to host their websites for a 

short span of time.   
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TTL (Time to Live) is a setting for each DNS record that specifies how long a DNS resolver is 

supposed to cache the IP address before it expires and a new one needs to be queried [54]. By 

using lower TTL values in DNS NS (name server) records, attackers easily redirect the webpage 

to different IP addresses when the DNS entry refreshes each time.  

Most of the research works studied use hosting domain features along with other categories of 

features in-order to improve the accuracy in classifying phishing websites [4] [5] [7] [ 9] [10] [16] 

[19] [21]. Some of these works use only URL and hosting domain features to achieve good 

classification results – 96% to 99% accuracies [4] [5] [7]. WHOIS registration dates, especially 

age of domain is considered as an important predictor in many of the works surveyed [3] [13] [14]. 

Table 5 lists the hosting domain based features used in the research works surveyed. 

Table 5 

Hosting Domain features 

Finer Categories of 

Host based features  
Features under each category 

Hosting Domain 

features 

1. Domain's autonomous host number, 2. IP Address of host,               

3. Primary domain name,  4. Domain Reputation Score,  5. Domain 

Confidence level,   6. Connection speed of host,   7. DNS server 

domain and IP address,   8. Mail server domain and IP address. 

WHOIS registration 

Information 

1. Age of Domain (Creation Date – Today),   2. Life span of Domain 

(Creation date – Expiration date),   3. Last Update (Updation date – 

Today),   4. Number of Registration Info Available,  5. Presence of 

Creation, Updation and Expiration dates,   6. WHOIS Registrar name  

7. WHOIS Registrant name,    8.  Whether domain name applicant is an 

individual or enterprise?,   9. Whether registration dates are defined. 

DNS / PTR Record 

1.   Presence of PTR record,   2. Does the PTR record in turn resolve 

one of the host’s IP addresses?,  3. TTL value of DNS records of 

hostname,  4. Presence of DNS A record,   5. Presence of DNS NS 

record,   6. Presence of DNS MX record. 
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DNS IP Address 

1.  Number of Resolved IP addresses,   2. Are IPs of A, MX and NS 

records belonging to same autonomous system,   3. IP Prefix,   4. BGP 

Prefix,   5. Is the IP address in a blacklist,   6. Country where the IP 

address belongs to. 

5. Security Features 

Presence of SSL certificate for the website, presence of public key certificate and if the website 

cookie is abnormal are few security related features.  

While most phishing attacks run over HTTP, a significant number run on sites for which SSL 

certificates have been issued as certificate authorities do not scrutinize who gets their SSL 

certificates [51]. Bonafide certificate owners sometimes unwittingly provide facilities for phishing 

because their site has been compromised by an attacker. In certain cases, where phishers host 

their own websites, it may be difficult to obtain a fake SSL certificate as some certificates also 

require validation by a certificate authority [51]. Table 6 lists the different security features 

extracted to detect phishing.  

Aburrous, et al, [9] [20] use the security features listed in Table 6 to classify phishing websites. Some 

approaches check for presence of SSL certificate along with other feature categories [8] [10] [11].  

Table 6 

Security Features 

Finer Categories of 

Security features  
Features under each category 

SSL features 
1. Presence of SSL, 2. SSL Certificate match with protected site,   

3.SSL Certificate authority name,   4. SSL Certificate age 

Abnormal Cookie 

1. Abnormal Cookie - If the cookie points to its own domain which is 

inconsistent with claimed identity or points to real site which is 

inconsistent with its own domain 

Public Key 

Certificate features 

1. Distinguished names in public key certificate whether inconsistent 

with claimed identities 
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6. Site Popularity features 

Google rank [56], Alexa traffic rank [55] and number of links pointing to the website are good 

indicators of how popular the website is [3] [15] [16] [18]. Alexa traffic rank is calculated by 

Alexa.com and provides three months of aggregated data based on number of links within site 

viewed by users and number of users viewed the website [55].  

Phishing web pages are short lived and thus either have a very low page rank [22] or their page 

rank does not exist in the Alexa database. Their social reputation score, which is the number of 

likes/shares on Facebook and Twitter would be less. We extract the features as listed in Table 7 

to get details on the popularity and social reputation of a website. We use this feature category 

along with URL and hosting domain features for phishing website detection as these features are 

easier to collect and make the phishing detection system a light weight operation [3] [15] [16] [22]. 

Table 7  

Site Popularity features 

Finer Categories of 

Site popularity based 

features  

Features under each category 

Page Rank 1. Google Page Rank,   2. Page rank of hosting site 

Website Traffic 
1. Real traffic rank of that site from Alexa.com,  2. Number of 

visitors,   3. Number of pages they visit 

Number of links pointing 

to site from Search 

Engines 

1. Domain Google links,   2. Domain Baidu links,   3. Domain Bing 

links,   4. Domain Yahoo! Links,   5. SLD (Second level domain) 

Google links,   6. SLD Baidu links 
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7. Network Features 

Malicious websites use rich web resources that can cause multiple HTTP requests sent to the 

web server, including multiple redirections, iframes and external links to other domain names [24]. 

Hence network layer information such as the number of packets sent and received to establish 

connection and number of ports opened on the web server can help in detecting phishing 

websites. Table 8 lists some of them mentioned by Li et al [24] to detect phishing websites. 

 

Table 8 

Network Features 

Finer Categories 

of Network Layer 

features  

Features under each category 

TCP Information 

1. Number of TCP packets sent to remote server by crawler,   2. Number 

of distinct TCP ports of web server used,   3. No of Remote IP 

addresses connected by crawler 

Application layer 

communication 

1. Number of bytes of data from/to web server,  2. Number of UDP 

packets generated,   3. Number of TCP urg (urgent flag set) packets, 

4.Number of data packets from / to crawler,   5. Average local packet 

rate,   6. Average remote packet rate  

DNS queries 
1. Number of DNS queries sent by crawler,   2. Response time of DNS 

server 

Traffic Flows 
1. Inter-arrival time between consecutive flows,  2. Number of flows 

generated during entire life cycle,   3. Duration of each flow. 

 

8. Comparison with similar surveys 

Our survey includes a consolidated list of all features from 26 research works that detect phishing 

websites by using the features extracted from the webpages, whereas the survey by Khonji et al 

[4] only explains six such research works on website feature extraction and classification.  
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Comparing our work with Survey by Doyen et al [38], which was independently published in Jan 

2017, we have categorized URL features from 27 research works and hosting domain features 

from 16 research works, as compared to their work that surveys URL features from 12 research 

works and hosting domain features from 10 research works. The other feature categories have a 

similar coverage in both the surveys. We have categorized similar features into finer categories 

and provide a better representation of the feature categorization, as compared to the other 

surveys [4] [38].  We also analyze the robustness of different feature categories and how the 

features can be effectively used to predict specific phishing attacks and new types of phishing 

attacks with shortened URLs or newly compromised websites. This analysis has not been done in 

the other surveys studied. 
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CHAPTER 3 

ROBUST FEATURES 

1. Overview 

A phishing detection feature or a set of features are robust if either an adversary cannot easily 

create a phishing website for which the features looks like that of a benign website or if it is costly 

for the adversary to create a website that, with high probability, is indistinguishable from a benign 

site. Most URL features such as number of dots in URL, length of URL etc. can be modified by 

adversary to look like a benign website and so these features are not robust individually. But in 

certain cases, such as when long URL names are used by adversary to trick users, these 

features when considered together can be more robust than individual features as discussed in 

detail in this chapter.  

Similarly, considering DNS features, the website owner has access to change the mail server, 

name server and PTR records for his/her website and hence these features are not robust. 

Attackers who host and own their phishing websites can modify these features so that the feature 

looks like that of a benign site. Thus, a discussion of the robustness of different categories of 

features is necessary to arrive at a set of robust features that can be used effectively to detect 

phishing websites. 

In this chapter, we have considered the main types of phishing attacks such as compromising 

websites / servers, obfuscating URLs to lure users and creating new phishing campaigns and 

discuss the robustness of features we extracted under each category that can help detect these 

attacks. We justify robustness of these features by explaining why crafting features to make 

website appear as a benign website would reduce attacker’s profitability. We also discuss few 

non-robust features from the literature surveyed. 
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2. Threat Model 

We assume an adversary with capability to create a phishing attack by either of the following 

ways. 

a) Adversary is limited to phishing through email spams and makes use of existing 

compromised hosting domains to host the new phishing website. Adversary crafts URLs 

(long URLs or shortened URLs) with legitimate looking tokens in-order to lure users into 

clicking it.  

b) Adversary compromises security of legitimate hosting domains/website to embed 

malicious scripts that would redirect a benign website to a phishing website belonging to 

the adversary. So, when user visits the benign site, he/she is redirected to the phishing 

website that would steal user’s information.  

The following are the assumptions on adversary’s ability to create phishing website with features 

crafted in such a way that would make the website to look like a benign website. 

a) We assume adversary has limited affordability to create multiple hosting servers for load 

balancing and hence mail servers and name servers of the phishing website are hosted 

in the same hosting domain. 

b) We assume adversary cannot compromise WHOIS registry databases and is external to 

Alexa.com, WOT, SEOquake [44] and Google servers. We also assume that these 

servers are secure and cannot be compromised by adversary.  

c) We assume adversary can modify DNS mail server (MX), name server (NS) and PTR 

records for a website that he/she has hosted and owns.  

d) Adversary can create shortened URL names to lure users, or hyperlinks that hide the 

actual destination domain.  
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e) Some attack types such as configuring IP filters in network to block detection systems, 

sending deceptive email attachments and impersonation of an executive to authorize 

fraudulent wire transfers are beyond the scope of this thesis work [57]. 

3. Robustness of URL Features: 

The goal of the adversary in crafting a phishing URL is to deceive users to click on it and at the 

same time, evade detection by phishing detection systems.  

We analyzed several phishing URLs from phishtank and we find that most of them have the 

characteristics such a long URLs, more number of dots, more number of tokens in the URL and 

presence of words such as online, verify, secure etc. to deceive users into thinking that is a 

benign site. 

Phishing detection systems that work on URL features, commonly check for length of domain 

name, length of path, number of dots/ special characters in the URL, presence of brand name 

etc. Features such as brand name presence and brand name distance if changed by attacker in 

such way that makes the phishing website appear benign, can reduce the probability of user 

being victimized by the phishing attack. For example, URLs with brand names embedded in it, 

such as pay.pal.com and pay5al.com can be detected using these brand name features. If 

attacker crafts a malicious URL with domain name - funpal.com, the purpose of phishing is lost if 

the URL cannot lure users into clicking on it. Hence brand name features are robust.  

Similarly, assume adversary creates a phishing URL, for example, http://slindau.ch/STD/ 

Standardbank.co.za/index.php, to appear as a webpage from standard bank website. This 

website can be detected using features such length of hostname, length of URL and number of 

forward slash characters in URL. Alternately, if the phishing website created is www.slin.ch, the 

chances of user clicking on it is lesser. So, to in-order to make a successful phishing attack, the 

URL created by the adversary should be long enough to include deceptive names (online, verify, 

account etc) or brand names to deceive users into clicking on it.  

http://slindau.ch/STD/%20Standardbank.co.za/index.php
http://slindau.ch/STD/%20Standardbank.co.za/index.php
http://www.slin.ch/
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Though we assume that long URLs with above characteristics can lure users better than short 

URLs, there are lot of attacks in recent times that use shortened URL names or hyperlinks that 

hide the actual URL.  

Hence, robustness of URL features varies depending on the threat model considered. As 

mentioned above, for phishing attacks involving long URLs in the email to lure users, URL 

features are robust. But, in other types of email spams such as those that include shortened 

URLs, randomized URLs and hyperlinks to hide URLs, these features are not robust. 

4. Robustness of WHOIS features 

We use WHOIS records obtained from website registrars and ICANN WHOIS database, which 

cannot be forged or compromised easily. In many phishing campaigns, phishing websites are 

newly created and hosted for a short span to steal user information, as we have mentioned in our 

first threat model. If adversary creates a phishing site with a longer life span, he can evade 

detection by a system that uses these features, but he might have to pay for the domain name 

until it expires, even if is captured and blocked before its expiry by phishing detection systems. 

Hence, for attacks of this type, WHOIS registration dates, age of domain and life span of domain 

are robust [5] [6]. 

5. Robustness of Site popularity features 

Adversary will not be able to forge or modify Alexa traffic rank, SEMRush from SEOquake [44], 

Google +1 count and WOT scores. Any newly created phishing website either has a lower Alexa 

rank or there is no entry in Alexa database. So, for detecting attacks created using new phishing 

websites, site popularity features are robust. 

6. Robustness of DNS / IP features 

As many phishing websites are hosted in a single compromised hosting domain, it is easier to 

find such domains using features such as autonomous system number, IP address prefix of 
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hosting domain etc [21]. Due to limited affordability, attacker usually creates the name server, 

mail server and other services in the same hosting domain’s infrastructure. Otherwise, cost of 

additional hosting domains can be higher than what the attacker can get out the phishing 

campaign and hence can result in loss to the attacker. This makes the features, DNS ASN, IP 

Prefix, ‘are IP addresses of DNS A, MX and NS records present in the same autonomous 

system’, Mail server and name server records, robust.  

7.  Robustness of URL redirection features. 

Phishing attack created by redirecting a benign website to a phishing website, can be detected by 

checking for number of redirects between the initial page and final landing page and redirect 

status for each redirect. These features cannot be forged and with fewer redirects attacker would 

not be able to make a successful redirect to his/her malicious server. We find that one of the 4 

ways in which malicious web pages are used is attacks is through redirection [12]. Hence we 

consider these features as robust.  

8. Analysis of Non-robust features. 

We identified the following non-robust features from the literature surveyed. We argue that an 

adversary can create sites for which these features are indistinguishable from those of benign 

sites while not affecting the adversary’s ability to launch a phishing attack. 

Table 9 

Non-robust features 

Feature category Features 

URL features 1. Presence of hexadecimal or Unicode characters in URL, 2.   Presence 

of @ in URL, Presence of Port Number / IP address in domain portion, 3.  

Length of file name or directory portion 
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Page features 1. HTTP header tokens, fields and values, cache control 

Hosting Domain 

features 

1. Presence of DNS A, MX, NS records, 2. Mail Server address and 

Nameserver address 

The presence of hexadecimal, Unicode or other special characters are not necessary for 

launching a phishing attack. The adversary can still create URLs that can deceive the user 

without using such characters. The presence of IP address is useful because it hides the domain 

of the adversary, but it is not necessary for launching a phishing attack. Similarly, the adversary 

should be able to register a URL to obtain DNS A, MX and NS records without divulging 

information about the adversary. Similarly the adversary can provide header tokens without 

divulging information about the adversary. 

All the other features, including page features such as malicious scripting and form features, if 

modified to look like a benign site, the probability of a successful phishing attack would become 

less. Hence all other features are robust. 

. 
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CHAPTER 4 

FEATURES FOR SPECIFIC PHISHING ATTACKS 

1. Overview 

In the previous chapter, we have discussed the robustness of feature categories with respect to 

specific attacks. Though robust features make the system hard to break, including non-robust 

features together with robust features to create a detection system, would not negatively impact 

the performance of the system. But, some features even though they are good predictors 

individually, might reduce the performance of the system when used to predict certain types of 

phishing attacks. For example, we have features from the path portion of the URL in our feature 

set and when this feature set is used for predicting shortened phishing URLs, the URLs might be 

misclassified as benign. Hence, in this chapter we show that it is necessary to analyze the 

features that might create a bias in the results and select features that can predict well for specific 

phishing attacks. 

2. Feature categories for shortened URLs crafted with phishkits. 

Nowadays, phishkits are used by attackers to strategically craft shortened URLs that evade 

detection [29].  Hence URL features like number of dots in URL, length of URL etc. can prove 

ineffective in efficiently predicting such a phishing website. 

Hence, a system that uses URL features in the feature set might misclassify shortened phishing 

URLs as benign. Hence, we train our classifier with a combination of hosting domain (WHOIS + 

DNS/IP) features, site popularity features, and URL redirection features and evaluate the results 

to see how we can use other feature categories, apart from URL features to effectively detect this 

kind of phishing attack.  
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3. Features used to detect phishing attack by compromising existing websites. 

Existing websites have a good traffic ranking, confidence score and legitimate WHOIS features. 

We consider a use case where the attacker compromises the security of an existing website to 

embed scripts that would redirect to a malicious server at attacker’s domain, through which 

attacker can get access to any data user enters in the website. If we use a classification model 

trained with all features including site popularity features and WHOIS features, this compromised 

website may fall into the set of false negatives, and evade detection. Hence, it is necessary to 

avoid site popularity features and WHOIS features and use features such as URL redirection, 

DNS TTL and page related features to effectively detect phishing attacks of this type. 
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CHAPTER 5 

FEATURE EXTRACTION AND MACHINE LEARNING 

1. Overview 

We extract features from the website’s URL, hosting domain and popularity and convert them to 

feature vectors (binary, numeric, nominal and text forms) to feed it to a classification algorithm. 

The algorithm learns a pattern from the feature vectors and defines a classification model that 

maps the input (feature vectors) to a target class. The target class values (phishing or benign) are 

also provided along with the input data for training the classifier. For building a classification 

model, we need feature vector inputs from both benign websites and phishing websites to predict 

both the classes accurately. Once a classification model is defined using the data, it can be used 

to predict the target class for new samples of data. The datasets we use to collect these features 

are described in the section 5.5. We use python libraries to extract the features and Weka [58] to 

define a classification model by training the feature set. 

2. Feature Extraction with Python libraries. 

Table 9 (Appendix 8.2) lists the various features (URL, hosting domain (WHOIS and DNS/IP) and 

site popularity features) we extract from both benign and phishing websites. These features are 

selected from literature surveyed with the intention to create a light –weight faced paced detection 

system. 

We implemented a Python application to extract these features from the input set of URLs and 

store results as a csv (comma separated values) file. The input URL list is fed as a csv file to the 

application. URL is processed to split the domain name, path and TLD portions separately. The 

tokens in each part (tokens are words delimited by special characters) are obtained using python 

regular expression library using which number of tokens in hostname / path of URL, length of 

tokens and similar other features are created. These tokens together form the bag-of-words 

feature and are represented as word vectors [43], which is done automatically by Weka’s filtered 
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classifier [59], when we feed the entire URL as one of the features.  We also create numeric 

features such as length of the different parts of URL, count of tokens in each part of URL and 

count of each special character. Python library urlparse [39] is used to get the domain name and 

http scheme of the URL.  

Python whois library is imported and used to get the WHOIS record information from ICANN 

WHOIS. WHOIS databases are run by domain registrars and registries. ICANN's WHOIS service 

is a publicly searchable tool that searches the databases of registries and registrars to detail the 

domain owner contact information across all contracted gTLDs [33]. WHOIS registrar and 

registrant details are represented as bag-of-words [43]. WHOIS registration dates objects are 

parsed to get the date values from which are the age of domain (WHOIS creation date – today’s 

date), life span of domain (WHOIS expiration date – creation date) and last update value (WHOIS 

last update date – today’s date) are calculated as numeric values. For some websites, the 

WHOIS object obtained in the form of a python dictionary of key value pairs has some missing 

information. The dictionary structure is parsed to get the count of WHOIS information that’s 

available for the website – number of registration information available feature. 

DNS record details for DNS A, MX and NS records are obtained from dnspython library through 

DNS resolver query [34]. IP address information such as IP prefix, ASN (autonomous system 

number) information and SOA record details including the time-to-live (TTL) value of DNS records 

are obtained as a json object from ipwhois python module, by querying the domain name of the 

website. The json object is parsed to get the necessary DNS information mentioned above [35].  

Site popularity features such as WOT (Web of Trust) features and page rank features are 

obtained from WOT API and seolib python modules respectively [36] [37]. WOT information is 

obtained using python’s urllib2 request to WOT API using the API key provided in mywot.com. 

Web of Trust features are explained in detail in the next section.  
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The features extracted are in the form of binary values (presence of DNS A record, for example), 

numeric values (length of hostname and age of domain, for example) and text (URL, WHOIS 

registrar, for example) and are stored in csv format. 

Figure 1 image depicts the different python libraries used to extract the features. 

Figure 1  

Python Modules for Feature Extraction 

 

3. New Features used in our work 

We use new features in our work that have not been used in the literature surveyed such as the 

Web of Trust (WOT) features (URL reputation and confidence, WOT category and confidence 

value), Google +1 count (user votes for the website), SEMRush rank (rank based on search 

engine keywords and traffic coming from search engine lookup of the website), presence of IP 

address in PTR record and presence of DNS SOA (State of authority) record. 
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Web of Trust Wiki is a website reputation and review service based on crowdsourcing approach 

that collects ratings and reviews from a global community of millions of users who rate and 

comment on websites based on their personal experiences. It helps people in making informed 

decisions about whether to trust a website or not [32]. 

4. Building a classification Model 

The accuracy of the classification model in predicting a given website as phishing largely 

depends on the features trained to create the model and classification algorithm used. We 

choose a classifier that fits well with the data. 

We use Decision table, Logistic Regression, J48 and Naïve Bayes classifiers in Weka [58] to train 

the model based on these features and present results for classifier that fits well with the data. 

The text features can be converted to bag-of-words using Weka’s filtered classifier [59], where we 

select a StringToWordVector filter for that feature, which tokenizes the text and converts it into 

binary feature vector. We also use neural network fitting tool in MATLAB [60] to train a neural 

network with these features as inputs.  

5. Datasets  

The features 5999 phishing and 6158 benign as mentioned in Table 9 (Appendix 8.2) were 

extracted from URLs. We fetched a recent phishing URL list from Phishtank archive [40] and 

benign URL list from all categories of DMOZ directory [41]. From our lists, we randomly sampled 

a set of 12157 unique URLs (5999 phishing and 6158 benign) and used it for feature extraction. 
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CHAPTER 6 

RESULTS 

1. Overview 

We train different classifiers and regression models as mentioned in chapter 5, with features 

mentioned in Table 9 (Appendix 8.2).  Decision Table and Neural network provide better results 

for most feature vectors.  

We start by analyzing individual predictive performance of all features considered and present the 

predictive power of features with better individual predictive power (above 70% (approx.) 

accuracy). We also present set of features selected by Weka along with their individual prediction 

performance. Finally, we present classification accuracy for the different combinations of robust 

features tested and show how they can be used in practice to detect specific phishing attacks. 

2. Features with better predictive performance 

We present the features which provide better prediction results over others on training individually 

with Decision Table classifier. Table 10 (Appendix 8.3) shows features with individual 

classification accuracy of 70% (approx.) or above in classifying a website as phishing or benign. 

3. Features selected by Weka 

Decision Table Classifier was trained with all features as mentioned in Table 9 (Appendix 8.2). 

We used Weka’s feature selection [61] to select significant features from all these features.  

The features selected by Weka’s feature selection algorithm are number of redirects of URL, 

number of token in path portion of URL, number of dots in domain and path portions, number of 

special characters in path portion, length of path portion of URL, Number of tokens in the 

hostname, Google +1 count, WOT Reputation, Presence of DNS NS record, DNS ASN, Age of 

domain and HTTP scheme. 
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Out of these features selected by Weka, all of them, except number of redirects in URL, HTTP 

scheme and Google +1 count, provide more than 70% (approx.) accuracy individually in 

predicting a phishing website. 

4. Results 

The results obtained on training with features as mentioned in Table 9 (Appendix 8.2) is 

presented in Table 11. 75% of the dataset was used for training and 25% for testing.  

Table 10 

Results 

Combination of features trained 
Decision Table 

Classifier 

Neural Networks  

All features - URL + URL redirection + 

WHOIS + DNS/IP + Site popularity 
96.18% ACC 98.16% ACC 

URL redirection + WHOIS + DNS/IP + Site 

popularity 
91.11% ACC 92.16% ACC 

URL + URL redirection + WHOIS + DNS/IP 94.40% ACC 96.7% ACC 

URL + URL redirection + DNS/IP 92.76% ACC 93.8% ACC 

Note : ACC denotes prediction accuracy 

5. Comparing our results with available research works. 

Dataset Selection 

Our datasets obtained from phishtank and DMOZ are a good representation of both phishing and 

benign URLs. DMOZ directory includes popular domains as well as regional non-popular benign 
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domains. Few research works use Alexa.com’s list of top web sites for obtaining a benign URL 

set [18] [22]. As Alexa’s top web sites have higher ranking compared to other benign URLs this 

might not be a good representation of benign sites. 

Evaluation of results 

As mentioned in Chapter 4, we analyze the results we get, for our different combinations of robust 

feature categories and state how it can be used in detecting specific phishing attacks. Our results 

indicate that robust features seem to have enough predictive power to be used in practice. 

Few scams use directory generation to generate a different path for each user and randomized 

URLs that can evade detection by URL features. We know that URL features are not robust and 

may not predict well for phishing attacks that use shortened URL services, as mentioned in 

chapter 4. By using 32 features belonging to categories other than URL features category we get 

reasonable accuracy of 92.16% with neural networks. Most of the works we had surveyed do not 

present appropriate feature sets for different phishing use-cases.  

Comparing our work with [1] [2] and [4] which mostly rely on URL features for classification of 

phishing sites, we extract more than 50% of our feature set from hosting domain of the website.  

We hence provide a more robust system that is tolerant to spams with crafted URLs that evade 

detection and that can detect attacks with shortened URLs effectively. 

To detect phishing attacks executed by compromising existing popular websites, detection 

systems can make use of a combination of DNS/IP + URL features to create the classification 

model to detect phishing with 92% to 94% accuracy as mentioned in Table 11. Site popularity 

features and WHOIS features of the existing website are not used in this case to avoid feature set 

bias in defining the classification model which can result in incorrect predictions.  

Change in Phishing Trends 

Comparing our work with the approach by Ma, Justin, et al in 2009 [5], we use more categories of 

features to cater to the change in phishing trends between 2017 and 2009. Ma, Justin, et al, [29] 
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had shortlisted top 6 generic TLDs that hosted most phishing sites, whereas, in 2016, 220 new 

malicious TLD were found and more than half of phishing sites are hosted by .com TLDs. 

Comparing the dataset description mentioned in the paper [5] with our current phishtank dataset, 

we find that phishing URL lengths have shortened over the years and very few URLs have IP 

addresses in the hostname in the recent years.  

Hence, our analysis on feature robustness and feature categories that would predict well for 

specific phishing attacks would prove useful to predict the present-day phishing attacks. 

Light Weight operation 

We provide a fast-paced light weight operation, as the features used in our work can easily be 

collected within a short period, and hence advantageous over works that collect features from 

web page and scripting content [9] [10] [12] [19] [21]. 
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CHAPTER 7 

Neural Networks in Phishing detection. 

Neural Networks are used in a few research works to detect phishing websites. In the research 

works surveyed, the features used to train neural networks are from URL of website, webpage 

features, links in email and features from body of email. The features used and methods of 

extraction of these features are similar to machine learning algorithm based phishing detection 

techniques. When conducting the experiments, the number of input layers, number of hidden 

layers and number of hidden neurons are specified and changed per the output and MSE (Mean 

Square Error) values after each test. 

The advantages of using neural networks is that we can adjust weights as per the changes in the 

environment and we can retrain the network with new set of inputs and targets in-order to get 

better fitting for new data. There are continuous changes in the phishing trends and different 

ways in which attackers try to fool users. Training neural networks with new data each time, 

would provide better prediction as compared to machine learning algorithms that train of a single 

batch of data. This is more efficient for cases where we predict output class for inputs not in the 

training set. 

Zhang et al [27], predict email spam using features from email body and links and test their neural 

network with two activation functions (Hyperbolic tangent and Sigmoid). The accuracy is 95.5% 

which is similar to results obtained from SVM and Naïve Bayes classifiers. But using decision 

table, they get a better accuracy of 96.5%. 

Rami Mohammad et al [28], use features from URL, WHOIS and Webpage to model a neural 

network and they present the experimental results for various number of hidden layers and 

neurons. The best MSE rate is 0.00223 with 2 neurons and 1 hidden layer.  

Online learning algorithms such as AROW and CW algorithms are used in few research works [4] 

[7], which also train on data in real time and hence are better at predicting new phishing trends as 
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compared to machine learning algorithms.  But online learning algorithms require prior knowledge 

such as an expected behavior or a probability distribution in-order to obtain a certain level of 

accuracy on the data, whereas neural network can also be trained in an unsupervised manner 

where it self organizes data to detect patterns. The latter is called deep learning. Feed forward 

neural networks and kernels under the supervised learning paradigms can be adopted for 

unsupervised learning. Hence deep learning can be used in real time to predict phishing with 

better accuracy and better adaptability. Moreover, while training the network, higher weights can 

be assigned to robust features, thus increasing the adaptability of the neural network.  

Some phishers create fake websites by recreating or copying Logos and images in the original 

website. The minor changes or deviations in these logos can be caught by using neural networks 

and convolutional matrix [45]. 

In our work, we trained a neural network with a set of 25 features (binary and numeric features) 

extracted from the URL, WHOIS records, DNS IP records of the website and features based on 

site popularity. We used MATLAB Neural network fitting application and Levenberg-Marquardt 

algorithm to train the network with 6 hidden neurons and 1 hidden layer. Trained with 12157 

samples of data (75% training; 5% validation and 20% testing), the MSE value is 1.84 X e-2 

(98.16% accuracy) for testing dataset.  
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APPENDIX A 

FEATURE CATEGORIZATION 
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   Table 2 

   URL Features 

Finer Categories of 

URL features  
Features under each category 

Tokens in URL – Bag-of-

words approach 

1. Tokens in entire URL,   2. Tokens in Domain portion, 3. Tokens 

in path portion. 

Presence of security 

sensitive, client server 

keywords / brand name 

1. Presence of security sensitive words,  2. Presence of client/ 

server keywords in the path portion,   3. Presence of brand 

names in domain and path portions,  4. Brand name distance for 

brand names in Domain / Path portion. 

Presence of character 

codes 
1. Presence of hexadecimal or Unicode characters in URL 

Presence of @, port No, 

IP address 

1. Presence of @ in URL,  2. Presence of Port Number / IP 

address in domain portion. 

Length of 

URL/Domain/Path 

1. Length of entire URL,  2. Length of TLD,  3. Length of primary 

domain,  4. Length of secondary domain,  5. Length of path 

portion,  6. Length of file name or directory portion 

Number of dots, 

hyphens, underscores 

(special characters) 

1. Number of Dots in URL,   2. Number of Dots in domain portion, 

3. Number of dots in path portion,   4. Number of hyphens in 

URL, 5. Number of underscore in URL,   6. Number of special 

characters in URL,   7. Number of forward slash in URL 

Domain/Path Token 

features 

1. Number of tokens in domain / path portion,   2. Length of 

longest token in Domain/Path portion,  3. Average length of token 

in Domain/Path portion,   4. Average Domain / Path tokens count 

TLD Organization 1. Tokens in the TLD,   2. Length of TLD 

URL Redirects 

1. Number of Redirects between initial and final landing page,   2. 

Status of Redirect,  3. Cause of Redirect (Http response or 

JavaScript or flash). 
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   Table 4 

   Page and Content Features 

Finer Categories of Page 

features  
Features under each category 

HTTP header information 

(server, cache control) 
1. HTTP header tokens, fields and values, cache control 

Presence / Absence of 

specific page events 

1. Presence of on mouse over to hide link,  2. Presence of 

On before unload event,   3. Whether Right click is 

disabled 

Number of abnormalities in 

Scripting Content  

1. Percentage of scripting content on page,  2. Number or 

string assignments in script,  3. Number of DOM modifying 

functions,  4. Number of event attachments (event handler 

calls) in script,   5. Number of suspicious JavaScript 

functions, 6.  Number of long strings in script 

HTML code, Text and Images 

1. HTML code matching with phishing sites,   2. Images on 

page,   3. tokens from text on page,   4. Check for copying 

website and spelling errors 

Number of White space, 

unknown tags and Hidden 

elements, Small area 

elements 

1.  Percentage of white space in page,   2. Percentage of 

unknown tags,   3. Number of elements such as div, iframe 

or object with small area,   4. Number of Hidden elements 

Abnormal features in Forms / 

Presence of specific form 

fields 

1. Presence of empty string or about:blank in form action 

or pointing to a different domain,   2. Presence of Data 

field that take user Input (credit card , password),   3. 

Presence of forms with <input> tag, sensitive keywords,   

4. images in form,   5. non-http scheme in URL in action 

field. 

Features of Iframes, Pop ups, 

User Prompts and plugins 

1. Number of Iframes,   2. Embedded Iframe URL features,   

3. Number of  Popup windows,   4. Pop up window URL 

features,  5. Behavior that caused pop up window,   6. 



  46 

Number of User prompts,   7. Text of User prompts,   8. 

Number of plugins on page,   9. Plugin URL features,   10. 

Application type of plugin (Java, flash) 

Features of Links on page / 

Redirect pages 

1. Links on Page - Same URL Heuristics are checked,  2.  

Number of Links on Page <a> tags,    3. Number of links 

that point to target website, 

Abnormal Anchor: Whether different from domain of Page 

URL, Anchors With values such as "file:///E:/”, “#” 

Request URL 
1. Request URL (Whether domain of URL  in address bar 

and source code  (<src>) are different) 

Shell code and suspicious 

Active X controls 

1. Number of elements with shellcode between the start 

tag and end tag,   2. Number of suspicious objects / Active 

X controls. 
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APPENDIX B 

FEATURES EXTRACTED 
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   Table 11  

   Features Extracted under different categories 

Category Features 

URL  Features 

 

1. Number of dots in domain name / path,   2. Length of 

Hostname,  3.  Presence of IP address in domain name,   4. 

Number of Tokens in domain name / path,   5. Length of Longest 

token of domain name / path,   6. Average Length of tokens in 

domain name / path,   7. Number of ‘@’ in URL,   8. Number of 

hyphens in domain name / path,   9. Number of underscore in 

domain name / path,   10. Number of forward slash in domain 

name / path,   11. Number of underscore in domain name / path,   

12. Number of forward slash in domain name / path,   13. Number 

of special characters in path,   14. Number of Client/Server 

keywords in URL,   15. Number of Security keywords in URL,   16. 

Bag of words representation,  17. Scheme (http or https),  18.  No 

of redirects between initial and final page (URL Redirection 

feature) 

Site Popularity 

1. Alexa traffic rank,  2. Google +1 count,   3. SEMRush rank,   4. 

URL Reputation from Web of trust,   5. URL Confidence from Web 

of Trust,   6. Web of Trust Category Identifier,   7. Web of Trust 

confidence value for that category 

WHOIS features 

1. Age of Domain (Creation Date – Today),   2. Life span of 

Domain (Creation date – Expiration date),   3. Last Update 

(Updation date – Today),   4. Number of Registration Info 

Available,  5. Presence of Creation, Updation and Expiration 

dates,   6. WHOIS Registrar  7. WHOIS Registrant 

DNS/ IP Features 

1. DNS ASN Number,  2. DSN MX and NS server name and IP 

address,   3. No of resolved IP addresses,   4. Presence of A, MX, 

NS  and PTR and SOA Record,   5. Are IPs of A, MX and NS 

records belonging to same autonomous system?,   6. DNS TTL,   

7. IP Address in PTR Record,   8. IP Prefix,   9. DNS ASN Country 

 



  49 

APPENDIX C 

RESULTS 
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  Table 12 

  Individual feature performance results 

Category Feature 
Individual Feature 

performance 

URL Features 

Tokens in URL (Bag-of-words) 80% ACC 

Number of Tokens in path portion 87.1% ACC 

Length of entire URL 82.4% ACC 

Length of URL path portion 88.15% ACC 

Number of special characters in path portion 86.4% ACC 

Dots in Hostname 71% ACC 

Dots in Path portion 72.39% ACC 

Number of Tokens in hostname 77.85% ACC 

Site Popularity 

Alexa traffic Rank 69.6% ACC 

WOT Confidence 74.1% ACC 

WOT category identifier 83.7% ACC 

WOT Reputation 85.96% ACC 

WHOIS 

features 

Age of Domain (Creation Date – Today) 70.85% ACC 

Life span of Domain (Creation date – Expiration date) 69.8% ACC 
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DNS/ IP 

Features 

DNS ASN Number 69.9% ACC 

DNS TTL 75.1% ACC 

IP Prefix 77.7% ACC 

Presence of DNS NS record 74.76% ACC 

   Note: ACC denotes prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 


