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ABSTRACT

The volume and frequency of cyber attacks have exploded in recent years. Or-

ganizations subscribe to multiple threat intelligence feeds to increase their

knowledge base and better equip their security teams with the latest infor-

mation in threat intelligence domain. Though such subscriptions add intelli-

gence and can help in taking more informed decisions, organizations have to

put considerable efforts in facilitating and analyzing a large number of threat

indicators. This problem worsens further, due to a large number of false posi-

tives and irrelevant events detected as threat indicators by existing threat feed

sources. It is often neither practical nor cost-effective to analyze every single

alert considering the staggering volume of indicators. The very reason moti-

vates to solve the overcrowded threat indicators problem by prioritizing and

filtering them.

To overcome above issue, I explain the necessity of determining how likely a

reported indicator is malicious given the evidence and prioritizing it based on

such determination. Confidence Score Measurement system (CSM) introduces

the concept of confidence score, where it assigns a score of being malicious to

a threat indicator based on the evaluation of different threat intelligence sys-

tems. An indicator propagates maliciousness to adjacent indicators based on

relationship determined from behavior of an indicator. The propagation algo-

rithm derives final confidence to determine overall maliciousness of the threat

indicator. CSM can prioritize the indicators based on confidence score; how-

ever, an analyst may not be interested in the entire result set, so CSM narrows

down the results based on the analyst-driven input. To this end, CSM intro-

duces the concept of relevance score, where it combines the confidence score
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with analyst-driven search by applying full-text search techniques. It prioritizes

the results based on relevance score to provide meaningful results to the ana-

lyst. The analysis shows the propagation algorithm of CSM linearly scales with

larger datasets and achieves 92% accuracy in determining threat indicators.

The evaluation of the result demonstrates the effectiveness and practicality of

the approach.
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Chapter 1

INTRODUCTION

The threat intelligence domain creates many new challenges for security an-

alysts as it is vast and heterogeneous. The volume and frequency of new cyber

threats and variants targeting organizations and companies are continuously

on the rise and have become critical concerns as more automated tools are

available to anyone with the bitcoin account to conduct cyber attacks. Not

only the government and other public sectors are facing unprecedented cy-

ber attacks, which may potentially undermine national security and critical in-

frastructure [34], but also individuals and businesses are vulnerable to cyber

threats constituting a persistent threat to privacy, finances, and the economy

as a whole. It was estimated that the likely annual cost to the global economy

from cybercrime is more than $400 billion in 2014 [23]. And, the number is

projected to reach $2 trillion in 2019 [26].

The staggering number of cyber crimes are able to evade existing security

measures because they have complicated workflows. In light of this, organiza-

tions are looking to increase their knowledge base of threat intelligence data

to better equip their security teams with the latest information on new and

existing attack methods and how to stop them. As one solution does not fit

all, to avoid being victimized, respondent organizations rely on multiple threat

intelligence feeds, including the community-driven and vendor-driven feeds for

aggregation and analysis to tackle against the adversary's attacks. Though such

subscriptions add intelligence and can help in taking more informed decisions

to security incidents, it comes with the unique set of challenges.
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By following subscription to multiple source feeds and current practices, or-

ganizations may face a challenge to turn threat intelligence data from multiple

sources into actionable, contextual information. To ensure threat detection and

remediation happens in a timely manner, organizations have to put considerable

efforts in facilitating and analyzing a large number of indicators. The dilemma

of entrusting prevails organizations to subscribe to many reputable yet over-

lapping threat feed sources in fear of not losing out on potential harmful threat

indicators which results in overcrowded data [39].

The volume and frequency based problem worsens further, due to a large

number of false positives detected as threat indicators by existing threat feed

sources. It forces organizations to analyze each individual threat alert which

remains neither practical nor cost-effective considering the staggering volume

of indicators. Considering the criticality to monitor threat indicators, limited

time availability in responding to the situation and volume of observations, the

manual assessment is not sufficient enough to measure the assurance of sys-

tems. The ability to quickly triage malicious items is of vital importance and

it requires automated assessment of suspected malicious indicators [46]. The

very reason motivates to solve the overcrowded threat indicators problem by

prioritizing and limiting them.

In order to determine the maliciousness of threat indicators, CSM intro-

duces the concept of confidence score, where it defines how likely the reported

indicator is malicious based on the evaluation of the indicator by different

threat intelligence systems. An indicator propagates maliciousness to adjacent

indicators based on relationship determined from behavior of an indicator. The

propagation algorithm derives final confidence to determine overall malicious-

ness of the threat indicator. Further, an analyst may not be interested in the
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entire result set generated from the confidence score, so CSM has to narrow

down the results based on the analyst-driven input. To this end, CSM intro-

duces the concept of relevance score, a method for computing a ranking of

every threat indicator by combining confidence score with analyst driven input.

When the analyst queries to the system, it filters result based on full-text search

techniques and combines pre-calculated confidence score in real time to gen-

erate relevance score of the threat indicators. The relevance score balances

the user-driven input with confidence score to provide meaningful result to the

analyst by prioritizing them.

To sum up, CSM provides an analysis framework that crawls and analyzes

plenty of heterogeneous threat indicators. CSM exploits the domain knowledge

of various analysis systems in a structured tuple format to store into the knowl-

edge graph. It then applies an iterative propagation algorithm to propagate

maliciousness to adjacent threat indicators and to derive final confidence score

of a threat indicator through convergence. It further incorporates user search

terms to derive relevance score based on search criteria provided by the ana-

lyst. With this refined scores, CSM provides useful information to help security

analysts make an informed decision with further investigation.

Structure of document This thesis document is divided logically into the

following sections:

• Chapter 2 discusses the challenges in threat intelligence domain and mo-

tivation to solve overcrowded threat indicators problem in that domain.

• Chapter 3 discusses the system design, the architecture, and the compo-

nents of the system.

3



• Chapter 4 compares existing graph propagation techniques and their short-

comings. Then, it discusses the algorithm design through various scenar-

ios and explains the algorithm in detail.

• Chapter 5 describes the full-text search techniques, and it’s integration

with derived confidence score to prioritize and limit the results according

to the search of an analyst.

• Chapter 6 describes the experimental setups.

• Chapter 7 evaluates the system, presents our findings and our analysis of

the results. It also describes limitation and scope of improvement of the

research.

• Chapter 8 explores related work in the area.

• Chapter 9 concludes this thesis.

We hope that our research sheds some light on this relatively new problem

faced by threat intelligence teams, and suggests one possible approach to solve

the problem. In summary, we make the following contributions:

• We developed a novel graph propagation approach to calculate confidence

and relevance score of the threat indicator.

• We designed and implemented a scalable architecture that can incorpo-

rate heterogeneous threat indicators from various threat intelligence sys-

tems, stores into the knowledge graph and propagates confidence through-

out the graph to provide proof of concept for our approach.

• Our proof of concept shows the feasibility of our technique to limit and

prioritize threat indicator based on an analyst input and confidence score.
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Chapter 2

BACKGROUND

This chapter describes the current practices followed in cyber security domain.

Next, it focuses into threat intelligence domain and goes into detail about the

challenges with threat intelligence. It then provides motivation for our research

in the relevant field by emphasizing the requirement of limiting and prioritizing

the threat indicators.

2.1 Problem Background

To understand the challenges faced by threat intelligence teams, we need

to first understand the current trends observed in the organizations. Current

trends in the cyber security domain remain as follows:

• Attackers use sophisticated technology and tactics with continu-

ous attempts to breach security: As Mcafee reports, they have seen

a change during the past two years, with a significant increase in the

number of technically sophisticated attacks. Many of these have been de-

signed purely to evade advanced defenses. Attackers are infiltrating in

pieces, hiding in seemingly inert code, and waiting for an unprotected

moment to emerge. These threats also avoid the signature-based traps of

their ancestors, employing encryption and dynamic code modification to

change with each new deployment and hide incriminating data [24].

• Enterprises lack the resources or skills to protect the assets: A re-

port from Cisco reports one million cybersecurity job openings at global
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level [9]. Symantec points out that demand is expected to rise to 6 mil-

lion globally by 2019, with a projected shortfall of 1.5 million. It expects

demand to further rise due to burgeoning cybersecurity market which is

expected to grow to $170 billion by 2020 [48]. Moreover, statistics reports

show that more than 209,000 cybersecurity jobs in the U.S. are unfilled,

and postings are up 74% over the past five years, which emphasizes the

lack of resources to protect the assets of organizations [37].

• Analysis, enforcement, and mitigation is largely manual: Today,

57% of cybersecurity professionals claim that their threat intelligence pro-

grams are "somewhat mature" or "immature". Collecting, processing, cor-

relating, and analyzing threat intelligence is still a manual effort as cyber-

security professionals spend a lot of time cutting and pasting data from

emails, transforming data formats, and writing code. Many organizations

are still figuring out how to weave threat intelligence into things like com-

munication, collaboration, risk scoring, and IT workflows. Enterprises are

sharing internally-derived threat intelligence, but they are doing so on an

ad-hoc and informal basis [14]. Such manual proactive steps or counter-

measures lead to high response time as harsh reality statistics validate

that for the vast majority of incidents (85%), attackers are able to com-

promise the victim very quickly (minutes or faster) but initial discovery of

compromise happens only after few days [46].

• Small organizations cannot afford to have separate personnel: Small

and mid-sized businesses are hit by 65 percent of all cyber-attacks and

the last five years have shown a steady increase in attacks targeting busi-

nesses with less than 250 employees. As small organizations cannot af-
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ford to have a dedicated team looking after vulnerabilities, they become

an easy, soft target to penetrate for cybercriminals [41].

2.2 Challenges with Threat Intelligence

As per trend, many organizations have some level of threat detection and

incident response capabilities. But building out these capabilities to take a

proactive stance against an evolving threat landscape is often expensive and

challenging. It requires additional and significant investment in people, in-

telligence, technology, and analytics. In the past few years, it has become

abundantly clear that enterprises leveraging threat intelligence have a distinct

advantage in protecting their critical infrastructure [13]. In light of this, orga-

nizations are looking to increase their knowledge graph of threat intelligence

data to better equip their security teams with the latest information on new

and existing attack methods and how to stop them. As one solution does not fit

all, to avoid being victimized, respondent organizations rely on multiple threat

intelligence feeds, including the community-driven and vendor-driven feeds for

aggregation and analysis to tackle against the adversary's attacks. Organiza-

tions normally consume threat intelligence from paid solutions, trusted part-

ners, formal industry corporations, government and law enforcement agencies,

and open source solutions, as well as their own analysis and detection pro-

cesses. Organizations are increasingly integrating threat intelligence feeds into

their security architecture. Though such subscriptions add intelligence and can

better pinpoint threats to specific systems and help in focusing efforts on more

informed responses to security incidents, it comes with the unique set of chal-

lenges. Before we address those challenges, letś understand what is threat

intelligence.
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According to [38] threat intelligence is the set of data collected, assessed

and applied regarding security threats, threat actors, exploits, malware, vulner-

abilities and compromise indicators. The challenges with threat intelligence are

mentioned below:

• Too many alerts. As organizations consume threat intelligence from nu-

merous sources, security teams are overwhelmed with threat feed alerts.

They have limited staff members to investigate and triage all the alerts.

It leads to the reason where the team struggles to filter out the noise be-

cause there were too many irrelevant alerts produced by internal sources

or consumed from external sources.

• Too little time to respond. Time remains an extremely critical factor in

threat intelligence environment. As reported by [46], the time between

the initial attack to the initial compromise remains trivially small. Hence

security team has very little time to investigate the compromise and pro-

vide mitigation or enforcement steps. With the volume of data breach

directly proportional to the time taken to address compromise, too little

time to respond remains an ardent challenge for threat intelligence team.

• Too few resources. In order to ensure threat detection and remediation

happens in a timely manner, organizations have to put considerable efforts

in facilitating and analyzing a large number of indicators. Often, reported

potential threat indicators outnumber the capacity of investigating and

triaging all the alerts resulting in a struggle for the team to filter out

important alerts from irrelevant alerts.

• Issues with false positives The problem with the deluge of threat feeds

becomes worse with false positives or irrelevant information provided by

8



sources. False positives may lead to conclude a wrong decision. As per the

survey conducted, more than 83% security practitioners agreed to face a

problem of false positives reported by threat feed sources [19].

2.3 Motivation

As overwhelmed by security alert volume, today’s organizations are in dire

need of smarter, faster and stronger solutions. They require an approach which

helps them to filter out and limit irrelevant data and prioritize the threat indi-

cators as per the need of an analyst.

To further strengthen our claim, we present a motivating example to show

the overwhelming threat indicators provided by different threat intelligence

systems, which clearly shows the necessity of an automated prioritizing and

filtering system to accelerate the incident response life cycle.

On a daily basis, [6] [2] [28] [3] [33] such organizations published list

of IP addresses, domains, URLs, ASN and other threat indicators. Considering

each list contains more than 100 threat indicators, a threat intelligence team

deals with more than a couple of 1000 indicators on a daily basis. Research

by Anomali and the Ponemon Institute found that 70 percent of security profes-

sionals believe the data is too voluminous and complex to be actionable [40].

Further, all these lists provide isolated disjoint intelligence from heterogeneous

sources which does not provide a holistic picture to understand cyberattack

events. A careful analysis of such a scenario tells us the necessity to priori-

tize and limit the threat indicators as per the requirement of an analyst which

remains the motivation for my thesis.
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2.4 Research Questions

This motivation leads us to ask three research questions. First question

is how likely the reported indicator is malicious? This question tries to un-

derstand whether reported indicator is malicious or not. CSM introduces the

concept of confidence score to measure maliciousness of a threat indicator.

However, with the limited amount of time and resources, an analyst may have

time to investigate only 5 out of 500 indicators. This prompts us to ask sec-

ond research question that is how to prioritize reported threat indicators? We

may use confidence score to prioritize reported indicators but this provides an

entire knowledge graph of indicators with measured confidence score of each

indicator. However, there is a better way to filter and prioritize threat indi-

cators. Since, different analyst have different perspectives, and interests, we

need to integrate analyst’s perspective into search results. This guides us to

ask third research question that is how to prioritize and filter threat indicators

based on analyst’s inputs? To solve this research question, CSM introduces the

concept of relevance score.

The confidence score is the value between 0 to 100 assigned to the threat in-

dicator that represents the confidence we have in an indicator being malicious.

0 confidence suggests that we are not confident enough to consider an indica-

tor as malicious. 100 confidence suggests we are extremely confident about

malicious behavior of the indicator.

The relevance score is the value between 0 to 100 that shows how relevant

a threat indicator to the analyst interest. 0 relevance suggests that a threat

indicator is irrelevant to the analyst query. 100 relevance suggests that a threat

indicator is extremely relevant to the analyst query.
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Chapter 3

SYSTEM DESIGN

In this chapter, we present the design goals that CSM strives to meet. Then,

we discuss the system design and explain the architecture and the components

of the CSM in detail. We then proceed to enumerate the issues faced and the

assumptions made during the building of the system.

3.1 System Design Goals Of CSM

To calculate the confidence score and relevance score we designed and im-

plemented Confidence Score Measurement System abbreviated as CSM. CSM

is designed with the following goals in mind:

• Continuous Collection of Threat Feeds. Discovering intelligence is a

continuous process as we may find new evidence at any moment during

the process. Not only that, sometimes, the discovered intelligence may

get updated. CSM requires to continuously integrate newly discovered

or updated intelligence into the knowledge graph by properly interlinking

between threat indicators and propagating confidence among them.

• Reusing Existing System. Existing analysis tools can provide more

details about reported threat indicators. For example, VirusTotal is the

leading service that analyzes suspicious files and URLs and facilitates the

quick detection of viruses, worms, trojans, and all kinds of malware by

providing detailed reports including monitored system calls and static and

dynamic analysis [47]. Safe Browsing is a Google service that lets client
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applications check URLs against Google’s constantly updated lists of un-

safe web resources including social engineering sites (phishing and de-

ceptive sites) and sites that host malware or unwanted software [36]. By

reusing existing analysis systems, CSM will be able to establish interlinks

between indicators in the light of evidence.

• Automated Confidence and Relevance Score Calculation. Given the

ever increasing volume of threat indicators, the manual process of calcu-

lating confidence score and limiting and prioritizing the relevant data is

impossible for human analysts in a timely manner. Therefore, automatic

processes are desperately needed to help analysts utilize their time for

value-added analysis.

3.2 System Workflow

Figure 3.1 provides a high-level overview of the workflow of our proposed

CSM, which begins from the collection of data and ends at the generation of

prioritized results.

CSM collects threat indicators from various threat intelligence systems which

consist of autonomous crawlers and their corresponding parsers. For example,

a crawler for VirusTotal [47] will continuously crawl threat indicator analysis

reports for malicious hash values, URL, domain or IP address using VirusTotal

API. Similarly, a crawler for ThreatCrowd [45] will continuously collect threat

intelligence by scraping HTML structure for reported hash, IP address, and do-

main. Each threat intelligence system generates detailed analysis report about

the threat indicator in JSON file format. JSON format makes it easier to extract

relevant behavioral information of the threat indicator and store it in the knowl-

edge graph. These analyzed reports are passed to individual parsers for further

12



Figure 3.1: System Workflow Overview.

processing, where the parser converts these reports into a set of structured for-

mat to store into the knowledge graph, a graph database. The parser utilizes

the behavior reported by threat feeds to establish relationships between threat

indicators in the knowledge graph. The next step is to propagate the malicious-

ness to the neighbor threat indicators based on the relationship and derives

confidence to determine overall maliciousness of the threat indicator. For ex-

ample, a malware connecting to URL to receive further instructions propagates

malicious behavior to URL. Lastly, CSM narrows down the scope of generation

of the result, based on the analyst-driven input as an analyst may be interested

in specific indicators. It prioritizes and filters the results based on relevance

score to provide meaningful results to the analyst.

13



Figure 3.2: System Architecture Overview.

3.3 System Architecture

The CSM architecture shown in Figure 3.2 consists of 4 modules from left

to right: i) Data Acquisition Module ii) Data Extraction Module iii) Confidence

Score Calculation Module iv) Relevance Score Calculation Module. This section

describes in detail the functionality of each of the module.

3.3.1 Data Acquisition Module

This module collects information from various threat sources. It contin-

uously collects open-source threat intelligence feeds as well as commercial

feeds from various autonomous threat intelligence systems such as AlienVault

Open Threat Exchange to collect indicators of compromise reported by thou-

sands of active users on such platforms. These indicators are collected and

stored in a relational database for future reference. More detail on the same

is orchestrated in 3.3.1 database subsection. These indicators are further

queried to various open-source threat intelligence systems, such as VirusTotal,
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PyWhoIs, ThreatCrowd, ThreatMiner, SafeBrowsing, and various other black-

list maintaining websites to fetch additional information of threat indicators.

The crawler maintains threat indicators in a queue to further query to different

threat intelligence system APIs respecting their usage limits.

Crawler

The crawler uses two different methods to collect information. i) API calling ii)

Web scraping.

i) API calling. In general, threat intelligence feeds have an API for their

customers. They provide a relatively easy way to extract information about the

threat indicator.

However, many such threat intelligence feeds do not have an API or there

are many limitations on the data that is available through the API. Even if the

API provided access to all the data, we need to adhere to their rate limits.

To overcome such shortcomings, we developed the second approach regarding

web scraping.

ii) Web scraping. Our web scraper collected information from more than

one hundred websites providing blacklist or threat intelligence feeds. We re-

spected the rate limits in many such systems to not hammer the feeds with

hundreds of concurrent requests.

For the scope of our research, we collected 70,402 threat indicators from

the reported analysis. All these analyses are published between November

2016 and April 2017. Sample structure of a report crawled by the crawler is

shown in the Listing 3.1.
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{

"report": [

{

"intelligence": {

"type": "domain",

"information": "..."

},

"system": "ThreatCrowd",

"attribution": "example.com"

},

{

"intelligence": {

"type": "domain",

"information": "..."

},

"system": "VirusTotal",

"attribution": "example.com",

}

...

]

}

Listing 3.1: Sample analysis report

In general, CSM subscribes and crawls multiple cyber threat generated

feeds to accumulate collective intelligence reports.
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Database

CSM collects and stores as much data as possible at each stage in the system.

It is due to the two following reasons:

1. The data is used to validate our findings.

2. The data collected can be used for other research projects in this area.

Figure 3.3: Database Schema.

While collecting the information, we found that many such threat indicator

reports provide an additional and important set of information which can be
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used to decide whether a particular artifact is malicious, whether it is a part

of any ongoing malicious campaign, or does it talk about any new attacks for

which signatures has not been developed by existing security firms. Consid-

ering this information as highly important and relevant, we design a schema

of the database shown in Figure 3.3. Each table in our database is listed in

Table 3.1 along with the data it is designed to hold.

In CSM, data acquisition module collects key observations from threat in-

telligence sources. It collects such information in real-time and keeps the

knowledge graph of CSM updated with real-time information. It keeps track

of already scraped information to avoid duplication. All accumulated JSON re-

ports from different data sources are then presented to data extraction module.

Though we collected 70,402 threat indicators and analysis reports, it only con-

stitutes a small part of collective threat intelligence available.

3.3.2 Data Extraction Module

After the collection of a dataset, the next step is to extract relevant informa-

tion from the analysis report and store it into the knowledge graph. We followed

a similar approach as mentioned in [25] to store threat indicators data into the

knowledge graph. In this module, relevant data extractor parses analysis re-

port to understand the behavior of attribution and establish the relationship

between them. It uses indicator type and behavior to determine the relation-

ship between them. It also extracts information in a set of tuple to conveniently

store it into the knowledge graph (a graph Database).
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S.No Table Name Purpose

1 pulse Holds data about all the pulses (aka in-

dicators of compromise) that we receive

from the OpenSource communities such

as description, creation time, author in-

formation etc.

2 indicator Holds data about all the indicators that

we receive from various pulses such as in-

dicator value, type, description etc.

3 tag Holds data about all the tags that we re-

ceive from the pulses such as malware,

dropper, trojan.

4 pulse_indicator Holds indicator and pulse mapping to es-

tablish interconnectivity between pulse

and indicators.

5 pulse_tag Holds tag and pulse mapping to establish

interconnectivity between pulse and tags.

6 entry Holds information about the last pulse

fetched by the crawler.

Table 3.1: The different tables in our database.
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Relevant Data Extractor

Each threat intelligence system is autonomous, and it only cares about ana-

lyzing certain types of data. Each autonomous crawler provides such analysis

report in JSON format where it includes intelligence information, attribution

details, and threat intelligence system information. Even though each stan-

dard threat intelligence system may have a structured format, its structures

and attributes vary. Therefore, making a generic structure regarding repre-

sentation of knowledge of threat indicators is required. To address this issue,

relevant data extractor abstracts each analyzed report as a set of structured

tuples. This store process is influenced by [25]. It established such relationship

based on the type of incoming and outgoing threat indicators and their reported

behavior. To understand structured tuple format, let us take examples.

〈"windows-exe", "ip", "has-associated-ip"〉, (3.1)

〈"url", "windows-exe", "has-detected-sample"〉 (3.2)

Line (1) says if we take a windows executable file as an input, and out-

puts an IP address where the executable file contains IP address in the string

of an executable. The relationship between the input and output remains as

"has-associated-ip" due to uncertainty towards the context of behavior. Line

(2) says if we found a malicious windows executable file gets downloaded from

a url, our system can report the relationship between the domain and file as

"has-detected-sample". Obviously, a comprehensive analysis system will be ab-

stracted as a set of hundreds or even thousands of 3-tuples like this [25].

Table 3.3 provides more information of such tuples which CSM utilizes to

establish the relationship between two indicators.
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Input Type Output Type Relationship

Domain Domain
HAS-ASSOCIATED-DOMAIN

HAS-OTHER-DOMAIN

Domain Email HAS-ASSOCIATED-EMAIL

Domain IP HAS-IP

Domain Hash
HAS-DETECTED-SAMPLE

HAS-ASSOCIATED-SAMPLE

Email Domain HAS-OTHER-DOMAIN

URL IP
HAS-IP

HAS-ASSOCIATED-IP

URL Domain HAS-DOMAIN

URL Hash
HAS-DETECTED-SAMPLE

HAS-ASSOCIATED-SAMPLE

URL Email HAS-ASSOCIATED-EMAIL

IP Domain HAS-DOMAIN

IP Hash
HAS-DETECTED-SAMPLE

HAS-ASSOCIATED-SAMPLE

Hash Domain

HAS-ASSOCIATED-DOMAIN
HAS-COMMUNICATING-SAMPLE

HAS-DETECTED-DOMAIN

Hash IP

HAS-ASSOCIATED-IP
HAS-COMMUNICATING-SAMPLE

HAS-DETECTED-IP

Hash URL

HAS-ASSOCIATED-URL
HAS-COMMUNICATING-SAMPLE

HAS-DETECTED-URL

Hash Email
HAS-ASSOCIATED-EMAIL
HAS-DETECTED-EMAIL

Table 3.2: Indicator types and relationship between them.
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Relationship Context

HAS-ASSOCIATED-DOMAIN

Associated sub-domain
Connects to

Analytics associated domain
Adsense associated domain

HAS-ASSOCIATED-EMAIL

Has admin email
Has registrant email

Contains

HAS-OTHER-DOMAIN
Other TLD

Owns

HAS-IP Owns

HAS-ASSOCIATED-IP
Contains

Connects to

HAS-DOMAIN Maps to

HAS-DETECTED-SAMPLE Downloads

HAS-ASSOCIATED-SAMPLE Downloads

HAS-ASSOCIATED-DOMAIN
Contains

Connects to

HAS-ASSOCIATED-URL
Contains

Connects to

HAS-DETECTED-EMAIL Attachments

HAS-COMMUNICATING-SAMPLE Communicating

HAS-DETECTED-IP Downloads from

HAS-DETECTED-DOMAIN Downloads from

HAS-DETECTED-URL Downloads from

Table 3.3: Relationship and their context.
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Knowledge Graph

The knowledge graph stores collected intelligence into a graph. Given the het-

erogeneousness of the intelligence and the systems that generate them, the

knowledge graph has to handle, store and represent knowledge containing in-

formation from various threat intelligence systems in a suitable manner so that

a holistic picture of heterogeneous intelligence can be painted.

At a high level, the knowledge graph can be viewed as a system that collects

and stores the intelligence in a structured format. CSM stores it into the graph

format, where each vertex is a threat indicator that includes some information

about it, such as the type, the value, and other properties. Each edge in this

graph is labeled with a relationship and is assigned propagation factor to each

relationship.

When parser extracts information about threat indicators, it also establishes

local confidence or prior knowledge of the threat indicator. There are two ways

CSM can determined prior knowledge of a threat indicator. 1) Set by experts -

The prior knowledge of a threat indicator can be set by domain experts based

on their experience and expertise. 2) Set through analysis reports - CSM uses

reported analysis to determine the behavior of the threat indicator. It then cu-

mulates the opinion about the threat indicator from various threat intelligence

systems and sets a threshold value to determine whether the given threat indi-

cator is malicious or not. If more than 5 analysis system reports an indicator

as malicious, then local confidence of an indicator is set as malicious. This in-

tuitively set threshold for CSM can be adjusted by the analyst. However, we

believe there is a scope of improvement in determining prior knowledge of a

threat indicator.
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3.3.3 Confidence Score Calculation Module

After the data is stored into the knowledge graph, the next step is to prop-

agate maliciousness to the adjacent nodes based on the behavior reported by

analysis systems. The confidence score calculation module is responsible for

propagating the maliciousness to determine the confidence of a threat indicator.

Each vertex in the knowledge graph determines the category (type) and the re-

lationship between them is assigned based on the reasoning and context about

an existing or evolving cyber-attack. Each relationship is linked with a propa-

gation factor that can be set by an expert in the domain or assigned based on

prior experience, usability tests and surveys or through machine learning algo-

rithms. The confidence score calculation module uses a proprietary algorithm

to determine the global confidence of the indicator from the local confidence

score, and the behavior spreads from the adjacent nodes. More information

on the algorithm is described in section 4.5. If the threat intelligence system

is uncertain about the behavior, in such cases, the indicator generalizes the

relationship. The starting indicator propagates lowest possible weights to its

neighbors in an uncertain situation. However, if the behavior provides enough

reasoning, context, and implications of maliciousness, the indicator propagates

highest possible weights to adjacent neighbors.

Table 3.4 refers the propagation factor associated with each relationship in

CSM.

3.3.4 Relevance Score Calculation Module

The relevance score calculation module of CSM provides a way to extract

relevant information from the knowledge graph. It is determined by the com-
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Relationship Propagation Score

HAS-ASSOCIATED-DOMAIN 0.3

HAS-ASSOCIATED-EMAIL 0.3

HAS-OTHER-DOMAIN 0.3

HAS-IP 0.6

HAS-ASSOCIATED-IP 0.3

HAS-DOMAIN 0.6

HAS-DETECTED-SAMPLE 1

HAS-ASSOCIATED-SAMPLE 0.3

HAS-ASSOCIATED-DOMAIN 0.3

HAS-ASSOCIATED-URL 0.3

HAS-DETECTED-EMAIL 1

HAS-COMMUNICATING-SAMPLE 0.5

HAS-DETECTED-IP 1

HAS-DETECTED-DOMAIN 1

HAS-DETECTED-URL 1

Table 3.4: Propagation factor assigned to relationships.

bination of search criteria and confidence score of the threat indicator. Con-

sidering the analyst may not be interested in the entire result set from the

knowledge graph, CSM has to narrow down the scope of the results based on

the analyst-driven input. An application can take analysts’ input and search

related information in the knowledge graph based on the search term and filter

criteria, prioritize the output based on relevance score and retrieve the results.

More information on the approach is being described in section 5.2.
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3.4 Design Issues

This section will describe the issues we faced with the design decisions we

made, and how we did our best to mitigate them, and their effect on the system.

• Knowledge Representation

All discovered and collected intelligence from the analysis reports is stored

in a graph database instead of a relational database like MySQL, as our

dataset represents well in the form of connected data and majority of the

time, an analyst is interested in close neighbors from a particular node.

In graph databases, data connections take priority, hence the application

doesn’t have to infer relations through multiple join queries, which im-

proves performance significantly.

• Speed Up the System

To benefit from parallel processing and speed up the system, we imple-

mented crawler with threading and a queuing system where each thread

processes data from a global queue which holds crawled report and parses

it to put the tuple formed data into the knowledge graph. To speed up the

insertion of the records, we also inserted data using bulk insert.

• Individual Crawler-Parser Construction

CSM contains several threat intelligence feeds to crawl information for

threat indicators. Whereas these feeds provide additional information

about the behavior or newer intelligence through analysis, each feed pro-

vides intelligence in its own format. In order to standardize the format,

each crawled data requires to have specific parser based on response from

the threat intelligence feed. We modularized the system in such a way that
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each plug and play crawler and parser generates the final result into the

standard 3-tuple format which was described 3.3.2.

• API Shortcomings

We found that some APIs do not provide a detailed result which is shown

during visiting the website and providing the same parameters. To deal

with this issue, we converted such approaches from the API crawling-

based approach to the web scraper-based approach. We used libraries

such as BeautifulSoup and Selenium web driver to scrap the details of the

fields in which we are interested.

• Bot Blockers

Because our data collection is fully automated, it is also susceptible to

being stopped by ’bot-blockers’ i.e. mechanisms built-in to a website to

prevent automated crawls. Measures like CAPTCHA (Completely Auto-

mated Public Turing test to tell Computers and Humans Apart) are often

used to detect bots [30], [49].

We did not have an anti-CAPTCHA functionality built into our system, in

such cases, we requested permission to have higher usage of such re-

sources for research purpose.

• Handling Malformed or Erroneous Response of API

The parser assumes to have valid JSON object and it does not try to parse

malformed JSON, and throws an exception on encountering malformed

content. Thus, we have designed the system to exit gracefully on such

occasions. A side-effect of this is that our system is unable to parse JSON

object which contains bad markup.
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• Limitation of Crawling Websites

In contrast to bot blockers that try to prevent the automated systems from

attacking them, some APIs define the upper limit on the number of queries

that can be performed to limit the resource utilization. To honor the limit

on utilization of such resources, we added sleep time in our queries to

restrict our queries to the upper limit.

3.5 Assumptions

We made certain assumptions while building the system. This section de-

scribes the assumptions and explores the extent to which these hold true:

1. Crawler is not blocked by firewalls

This is a requisite for our system to work. If the crawler is blocked for any

reason, we do not get the data for our system, and without this input, it

is almost impossible to set our system up. Having said that, we have ad-

justed our crawlers to honor daily quota limit of various threat intelligence

feeds to not affect the performance of such services.

2. Crawler feed is an ideal representation of the threat intelligence

feed

We have collected a reasonable amount of data from the open source sys-

tems where more than 25000 security researchers have subscribed. How-

ever, considering the large magnitude of heterogeneous threat feeds will

help us in representing the reliable sample of the entire population. A

crawl of this large magnitude should give us a very distributed sample of

the overall Threat indicators, eventually converging to the average of all

threat indicators in existence.
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3. Weights assigned to calculate relevance score at various stages in

the process represents the justifiable ideal scenarios

We assume that based on analysis reported by threat intelligence systems,

each system requires assigning a different level of confidence. Further,

reported indicators themselves show a variety of behaviors leading to as-

signed set of relationships. Each relationship conveys a weighted propa-

gation factor that helps us to calculate a final confidence score of threat

indicators.

We believe that this is a reasonable assumption, as we tried to assign

weights in a justifiable manner.

That concludes our discussion about the design of the system. To recap, we

discussed our approach, the system architecture and how the components fit

into our architecture. We also discussed the issues faced, and the assumptions

that we made while building the system.
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Chapter 4

PROPAGATION ALGORITHM

In this chapter, we discuss the logic behind adding the propagation module.

Then, we compare the existing propagation algorithms and their shortcomings

for CSM. Then, we discuss the algorithm design using various scenarios and

explain the algorithm in detail.

4.1 Motivation

In confidence building we deal with shades of gray rather than simple black

and white. Hence, determining the confidence level of our assessment of an en-

tity’s reputation is essential. Security professionals rely on such confidence

scores to make effective policy decisions based on known probabilities and

score generated by confidence score measurement system. The more dimen-

sions we take into consideration when calculating a score, the higher our con-

fidence. A useful analogy could be putting together pieces of a puzzle. The

more pieces are joined, more likely we are to guess the correct outcome of the

puzzle. To reach a high confidence level, we may need to look at a dozen dimen-

sions that, on their own, dont́ tell us much but, correlated with each other, offer

us high confidence. However, many times, data for such dimensions are not

available, and in the absence of that, we need to focus on correlation factor of

the puzzle. We may consider how likely a piece of the puzzle is correlated with

another to identify the links between two pieces of the puzzle. Taking the same

analogy, we believe indicators when correlated with other indicators, propagate

contextual behavior which helps us in propagating confidence throughout such
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a neighborhood. This belief remains the motivation for propagating confidence

score between threat indicators.

4.2 Definitions

Before we look into propagation algorithms, let us understand certain ter-

minology which will be widely used in explanation of those algorithms.

4.2.1 Confidence Score

In simple terms, the confidence score is a value between 0 to 100 assigned

to the threat indicator which represents the confidence CSM has in a reported

threat indicator being malicious. 0 confidence suggests that CSM is not confi-

dent enough to consider the node as malicious. 100 confidence suggests CSM

is extremely confident about the malicious behavior of the node.

Let k be a threat indicator. Then let Fu be the set of threat indicators that

points to k. Let ζk(l) be the local confidence derived from the analysis report

from the threat indicator system, then global confidence score of the threat

indicator (ζk(g)) can be determined by summing up the propagated confidence

of the neighbors and normalizing it by the normalization factor
(100−ζk(l) )∑

i 100

ζk(g) = ζk(l) + (100− ζk(l)) ∗
∑
i

(ζi(g) ∗Max(ψik))

100
(4.1)

where

ζk(g) = Global confidence score for threat indicator k

ζk(l) = Local confidence score for threat indicator k

i = Neighboring node which have outgoing edges to k; i ∈ Fu

ψ = Propagation Factor
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The reason that confidence score is interesting is that there are many cases

where the simple graph propagation algorithm does not correspond to our com-

mon sense notion of importance. For example, if a threat indicator has an in-

coming link which says that a botnet downloads these samples in the victim

machine to communicate, it may be just one link but it is a very important one

which makes the threat indicator receive a higher confidence score than many

other threat indicators which have more links but with obscure context or links

which do not generate enough confidence to determine that given indicator is

malicious. However sometimes, we have a threat indicator which may not have

enough links due to lack of evidence or an indicator which is analyzed as mali-

cious by threat intelligence system analysis, in such cases, inherent properties

of the threat indicator itself helps in determining the higher confidence score.

Overall, Confidence Score is an attempt to see how good an approximation can

be obtained by combining inherent properties and link structure.

4.2.2 Propagation Factor

Let u,v be threat indicators. Let Eu,v be the edge between threat indicator

nodes that points from u to v, then propagation factor ψu determines the per-

centage of confidence that node u propagates to node v. The propagation factor

is determined by relationship types. Section 4.4 provides detailed scenarios to

understand more about the propagation factor and how it can propagate confi-

dence from one node to another.

The propagation factor from u to v can be considered as a dependency of

node v on u. If two nodes have an edge between them, then we cannot assume

they are conditionally independent, meaning confidence score of the node v

cannot be determined before confidence score of node u.
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4.2.3 Key Observations

The key observation of CSM is that threat indicators’ behavior and determi-

nation of maliciousness are not separated; instead, they are closely correlated

and interdependent. Through interacting with each other, CSM can determine

the confidence that the indicator can impact the neighbors through malicious

behavior. At the same time, the threat indicator itself can be influenced by

the behavior of its neighbors. For example, if a malicious file’s frequent visits

are suspicious due to phishing, malware sites, botnet C&C, then these visited

threat indicators are likely to receive a higher confidence of being malicious

from CSM. Similarly, if a malware is detected that downloads a file, it may also

propagate bad influence on that file providing higher confidence on the down-

loaded file as being malicious. This mutually dependent relationship is more

formally known as the mutual reinforcement principle.

Another key observation is that while analyzing threat indicators data, we

found a linear ordering of vertexes such that for every directed edge u → v,

vertex u comes before v in the ordering. Through this property, we can reduce

the number of iterations required to converge the graph drastically as the con-

fidence score of the follower node v is only determined after the confidence

score of the followee u.

4.3 Problem Background

In the section 3.3.2, we have seen that the knowledge graph is represented

in graph form, where the graph can be viewed as a network of threat indica-

tors, all broadcasting their activities to their neighbors, that propagate the in-

formation to neighboring nodes, which leads to the question of how to measure
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information spread through the network. We reviewed existing propagation al-

gorithms, and this section describes the various properties and differences of

each existing algorithm compared to CSM propagation algorithm.

PageRank

PageRank is a graph propagation algorithm, and it assigns a numerical weight-

ing to each element of a hyperlinked set of documents, with the purpose of mea-

suring its relative importance within the set. It works by counting the number

and quality of links to a page to determine a rough estimate of how important

the website is. The underlying assumption is that more important websites are

likely to receive more links from other websites [51]. Some of the shortcomings

of PageRank are listed below:

• The main factor used in determining a website’s PageRank is the quantity

of inbound links and the PageRank of the web pages providing the in-

coming links. If we apply similar analogy a malicious node has to receive

large number of incoming edges. However, there is no guarantee that a

malicious node will always receive large number of incoming edges.

• PageRank cumulates the outgoing neighboring probability to 1 by equally

dividing or weighing each edge differently. By doing so, it obtains nice

properties of stochastic matrix which helps it to converge. Let us take

following scenario to understand the shortcoming of above property. In

figure 4.1, if M represents a malicious node and N represents a non

malicious node then due to the single outgoing connection a malicious

node will propagate entire confidence to a non malicious node. So, if

PageRank starts with equal initial value for all nodes in the graph, then a
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Figure 4.1: An Example Scenario of PageRank and Similarity Flooding

Shortcoming.

non malicious node end up receiving higher confidence then a malicious

node which remains counterproductive for our definition of the confidence

score.

Similarity Flooding

The philosophy behind this iterative method is that "two nodes are similar if

their neighborhoods are also similar." It attempts to find the correspondence

between the nodes through similar neighborhoods and remains dependent on

structural similarities. In this algorithm, humans check whether the match-

ings are correct, and the accuracy of the algorithms is computed based on the

number of adaptations that have to be done in the solutions to get the right

ones [18].

Though it is a different problem from ours, it is based on the notion that

in each iteration, the nodes exchange similarity scores and this process ends

when convergence is achieved.

CSM does not try to match similarity between two nodes; rather it tries

to propagate confidence between two nodes through the relationships. CSM

does not depend on human intervention except in the case where we determine

the weight of the domain-specific relations. CSM does not stack the outgoing

propagation to 1 otherwise it will suffer from similar problem as PageRank. It

considers propagation to each node independently.
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There is one more algorithm which works on the similar line with CSM prop-

agation algorithm.

Belief Propagation

Belief Propagation is an iterative message passing(graph propagation) algo-

rithm to answer conditional probability queries in a graphical model. It requires

the subset of the graph as evidence nodes (observed variables E), and compute

conditional probabilities on the rest of the graph (hidden variables X) [50]. It

has been widely used to solve many graph inference problem [7], such as social

network analysis [5], fraud detection [29], and computer vision [11].

Both Belief Propagation and CSM work on peer pressure. Belief Propagation

is typically used for computing the marginal distribution for the nodes in the

graph, based on the prior knowledge about the nodes and from its neighbors.

A node X determines a final belief distribution by listening to its neighbors in

Belief Propagation, where nodes in CSM determine local confidence score from

the reputation of reporting threat indicator systems and monotonically increase

this confidence through propagation from neighbors.

Belief Propagation multiplies message passing from neighboring nodes di-

rectly with the prior knowledge of a node. This creates problem if there is

not enough context about the established relationship or a non malicious node

propagates belief to a malicious node. In both the scenarios, it ends up negating

confidence of high confident malicious sample.

In figure 4.2, if M represents a malicious node and N represents a non mali-

cious node then due to the connection from a non malicious node to a malicious

node, it will reduce our confidence in prior knowledge of a node being mali-

cious. If a node M with prior knowledge of getting detected by 50 antivirus
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Figure 4.2: An Example Scenario of Belief Propagation Shortcoming.

Figure 4.3: An Example of Confidence Score Normalization.

systems receives connection from a non malicious node or receives lower prop-

agation factor due to unknown context, then it will reduce the confidence of the

malicious node.

Next, Belief Propagation takes number of iterations to converge to a con-

sensus that determines the marginal probabilities of all the nodes. In graphs

with loops, it creates a problem as Belief Propagation may not converge and

may perform poorly [18].

Based on above shortcomings, we design and implement a graph propaga-

tion algorithm which follows below listed properties.

• CSM takes into consideration node’s inherent properties and their prior

reported analysis to determine local confidence score of a node. It further
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determines the propagation factor to propagate confidence from one node

to other node. It does this only based on reported behavior independent

of considering count of outgoing edges from a node.

• CSM propagation algorithm propagates confidence between nodes based

on relationship. Based on the relationship CSM determines propagation

factor to spread maliciousness to adjacent nodes. If Two nodes A and B

with relationship connects-to between them, represents different con-

text than relationship downloads between them. Hence, a relationship

connects-to propagates different confidence than downloads between

two nodes.

• CSM normalizes propagated score to avoid confidence being saturated at

100 for the nodes having many incoming links. Figure 4.3 represents a

scenario to explain why we need to normalize confidence score of a node.

Let us say, we have 6 malicious nodes with 100 confidence propagates con-

fidence to an IP address with 0.3 propagation factor. By summing all the

incoming confidence, the receiving node, IP address may end up getting

180 confidence. The problem here is even though each node propagates

only 0.3 of original confidence, the receiving node saturates confidence

at 100. Hence, CSM requires to normalize the propagated score to avoid

confidence being saturated at 100 for the nodes.

• To avoid being problem faced by belief propagation represented in fig-

ure 4.2, CSM considers propagated confidence score as complement to

local confidence score (prior knowledge) of the node. It makes confidence

score calculation function monotonically increasing function of local con-

fidence score.
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• CSM avoids propagation of confidence in cycle by taking advantage of

linear ordering. It calculates confidence of a parent node before calcu-

lating confidence of a child node. During cycle, since the parent node is

dependent on the child node and vice versa, it avoids calculation for all

the nodes participating in forming the cycle. This indirectly solves the

problem of nodes getting saturated at 100 confidence in cycle and CSM

propagation algorithm converges even if there is a cycle in the graph.

4.4 Various Scenarios

To understand the working of our algorithm, we have orchestrated various

scenarios and calculated the confidence score of the node during that scenario.

The following images represent the scenarios:

Figure 4.4(a) represents the confidence score calculation between two nodes,

which are directly connected via a single edge.

Figure 4.4(b) represents the confidence score calculation between two nodes

that have more than one edge connected to them. In such a scenario, the prop-

agation algorithm takes the maximum propagation factor of the incoming edges

to propagate the confidence score.

Figure 4.4(c) represents the confidence score calculation where two nodes

have different incoming relationships generating from the same source.

Figure 4.4(d) represents the confidence score calculation where a node has

multiple incoming edges from different sources.

Figure 4.4(e) represents the confidence score calculation where a node does

not have any incoming edge. In this case, the local confidence score of the node

becomes the global confidence score.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Example Scenarios of Confidence Score Calculation.
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4.5 Propagation Algorithm

This section complements Section 4.4, and discusses the propagation algo-

rithm of our project.

In the knowledge graph, information forms a directed Graph G = (V, E)

where V is a set of vertexes and E is a set of directed edges. The algorithm

presented in Algorithm 1 propagates the confidence score between vertexes

in the graph, where each vertex represents a threat indicator. This algorithm

accepts, Directed Graph G, as an input parameter. It further uses our obser-

vation which states that the knowledge graph represents a linear ordering of

vertexes such that for every directed edge u → v, vertex u comes before v in

the ordering. We have implemented a customized topological sorting algorithm

to propagate confidence score throughout the graph.

The following steps describes Algorithm 1 in detail:

• Compute in-degree (number of incoming edges) for each of the vertex

present in the graph and initialize the set of visited nodes as φ.

• Pick all the vertexes with in-degree as 0 and add them into a queue (En-

queue operation).

• Pick all the vertexes v ∈ V with local confidence score ζv(l) as 100, set

global confidence score ζv(g) of the indicator as 100 and add them into a

queue (Enqueue operation).

• Repeat next step until queue is not empty.

• Remove a vertex v from the queue (Dequeue operation).

Update visited set by adding visited node v.
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Algorithm 1 Iterative Propagation algorithm

procedure Initialize(V)

for each v ∈ V do

v = The current vertex

indegree[v]← 0

score[v]← ζv(l) . ζv(l) represents local confidence score

visited← φ

end for

end procedure

procedure ComputeInDegree(E)

for each edge u, v ∈ E do

indegree[v]← indegree[v] + 1

end for

end procedure

procedure Enque(V)

for each v ∈ V do

if indegree[v] = 0 then

add v to queue

else if ζv(l) = 100 then

ζv(g) = 100

add v to queue

end if

end for

end procedure

procedure Enque(v)

add node v to queue

end procedure
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Algorithm 1 Iterative Propagation algorithm (continued)

procedure Propagate(Directed Graph G(V,E))

call Initialize(V)

call ComputeInDegree(E)

call Enque(V)

while queue is not empty do

Remove a node v from the queue.

visited.update(v)

calculate ζv(g) based on ζu(g) ∈ Fu

. Fu be set of the adjacent vertexes u that has outgoing edges in v

for each node w ∈ Fw do

. Fw be set of the adjacent vertexes w that has incoming edges from v

indegree[w]← indegree[w]− 1

if indegree[w] = 0 and w is unvisited then

call Enque(w)

end if

end for

end while

end procedure
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Calculate confidence score of the node v based on incoming neighboring

nodes using equation 4.1.

Decrease in-degree by 1 for all its neighboring nodes.

If in-degree of a neighboring nodes is reduced to zero, then add it to the

queue.

• At the point, when the queue becomes empty, the graph converges.

If in the future a new node is joined, a new edge is discovered or the weight

of the node is changed, then the algorithm can work only on that subgraph to

accommodate changes.

If an edge(u,v) is added, the confidence score of node v gets recalculated.

These changes further propagated into the graph, where v propagates updated

confidence score to nodes that have incoming edges from v. This propagation

continues until the queue of updated node becomes empty.

If a node u changes its weight after the calculation of the confidence score,

then the algorithm determines the outgoing edge(u,v) from the node u and prop-

agates the updated weight to all neighboring nodes v ∈ V, which has an incom-

ing edge from node u. These changes propagated into graph until the queue of

updated node becomes empty.
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Chapter 5

RELEVANCE SCORE CALCULATION

After the confidence score propagation, the knowledge graph receives global

confidence score of each node. However, an analyst still has to deal with all the

reported and collected indicators. In this chapter, we introduce the technique

to narrow down the scope of the results by combining search query with the

confidence score of a threat indicator. We explain a full-text search technique

used in the narrowing down the results of search query and the workflow of

calculation of relevance score in search application of the CSM.

5.1 Background

During our analysis, we found that every threat pulse (set of indicators),

when reported provides title, description, and tags for the group of threat in-

dicators. These attributes linked with reported threat indicators give us infor-

mation about the event that occurred or the operating system for which these

indicators were detected, the location at where this incident was reported, etc.

We found this great deal of information, when combined with the previously cal-

culated confidence score, helps the analyst to perform relevant queries quickly.

This section provides background on the technique used in the full-text search

to filter and prioritize threat indicators based on the search term used by the

analyst.

CSM uses the Query Model to find matching threat indicators, and applies

boosting and filtering techniques in real time as the practical scoring function

to calculate relevance. This formula borrows concepts from term frequency/in-
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verse document frequency (TF/IDF) and the vector space model but adds more

modern features like a coordination factor, field length normalization, and term

or query clause boosting.

[42] provides description on the full-text search technique used in the CSM.

These full-text search techniques can be used with Boolean Model or Fuzzy

Model where the former simply applies the AND, OR, and NOT conditions ex-

pressed in the query to find all the terms that match, and the later calculates

the edit distance to match relevant terms that are within the maximum edit

distance specified in fuzziness. As both models rely on an underlying concept

of TF/IDF, this section provides an overview of this technique.

5.1.1 Term Frequency/Inverse Document Frequency (TF/IDF)

When the analyst searches for the result, the algorithm searches for the list

of matching indicators and ranks them by relevance. Not all indicators will

contain all the terms, and some terms are more important than others. The

relevance score of the indicator depends on the weight of each query term that

appears in that indicator[42].

Term frequency

Term frequency (tf) stands for how often does the term appear in this indicator.

The term frequency is calculated as follows:

tf =
√
f (5.1)

The term frequency for term t in document d is the square root of the number of

times the term appears (f ) in the indicator attributes such as title, description,

tags, etc.
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Inverse document frequency

Document frequency stands for how often does the term appear in all the indi-

cators in a collection. Inverting such document frequency reduces the impor-

tance of common terms and increases for uncommon terms[42]. The inverse

document frequency (idf) is calculated as follows:

idf = 1 + log(ni/(nc+ 1)) (5.2)

The inverse document frequency of term t is the logarithm of the number of

indicators in the index (ni), divided by the number of indicators that contain

the term (nc).

Field-length norm

Field length norm normalizes the weight assigned to the term based on the

length of the field. If a term appears in a short field, such as a title field, it

is more likely that the content of that field is about the term than if the same

term appears in a much bigger description field[42]. The field length norm is

calculated as follows:

norm(d) = 1/
√
nt (5.3)

The field-length norm (norm) is the inverse square root of the number of terms

in the field (nt).

These three factors term frequency, inverse document frequency, and field-

length norm are used together to calculate the weight of a single term in a

particular indicator.
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Vector Space Model

The vector space model provides a way of comparing a multiterm query against

an indicator.

5.2 Relevance Score Calculation Application

In this section, we present the skeleton of the application that displays re-

sults based on relevance. As mentioned in the background, the search applica-

tion lets an analyst specify the search term, applies full-text search techniques

on nodes and relationships in the knowledge graph, combines with a confidence

score and returns search results on the graph based on human analysts’ inputs.

The searcher application provides a platform for human analysts to carry out

research queries, allowing users to find what they are looking for very quickly,

visualize relationships between heterogeneous data nodes and understand how

they are correlated to get the insight of data, which is not eminent by just

looking at the data.

Like existing search engine functionalities, the search application also serves

results in real-time, sorted by decreasing relevance. However, apart from a

search based on a string of characters, an analyst may also be interested in

advance search such as a search based on category, time, etc. Hence, the ap-

plication requires to have filtering parameters to provide personalized search

results. Specifically, we provided following search techniques:

• Combined Search

This query will apply conjunction to the words appear in the search term

to find all the terms that match the partial or full input and return results.
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Figure 5.1: Full-Text Search Workflow.

• Exact Search

This query will return results for the exact search term provided as input.

• Category Filter

This query can be used very effectively to generate filtered results by

restricting the search scope to the specific category such as IP, Domain,

Hash, etc.

• Time Filter

This query can be used very effectively to generate filtered results by

restricting the search scope to the time range such as last 6 months, last

1 month, last 7 days, etc.

Further, the position of the word appearing in the collection derives different

weights due to the significance of position. For example, a term appearing in

the tag or title section provides direct relevance compared to the term that
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appears in the description section. Considering the same analogy, we need to

assign different weights to different fields to establish the significance of the

one field over other. It requires a full-text search engine to boost the fields,

which are more important than others.

Hence, the application is required to build techniques on top of a full-text

search engine, which allows the analyst to filter, order, and boost the results

based on field weights. Figure 5.1 provides an overview of the entire workflow

of the full-text search process. When an analyst does not provide search term,

results are generated only based of the confidence score. If analyst provides a

search term, the application leverages TF/IDF based full-text search technique,

and calculates the results from graph data. If filtering parameters are provided,

the application further filters the results based on selected parameters such as

category and reported time. It calculates relevance score by boosting result-

ing indicators’ full-text search score based on confidence and field weights and

generates search results. The final result is returned to the analyst in the de-

creasing order of the relevance score.
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Chapter 6

SYSTEM IMPLEMENTATION

This chapter describes the experimental setup for our project including the

servers used, the software and platforms involved, and the languages used.

We follow this up with our evaluation of the system, with a result section to

describe our findings from a sample application.

6.1 System Configuration

We used a single system for the project, and its configuration is as follows:

• Dell OptiPlex 9020

CPU: Intel Core i7 @ 3.6 GHz

Cache size : 8 MB

No. of Cores : 4

Total Memory (RAM) : 16 GB

Disk Space : 1 TB

6.2 Platforms and Software

We enumerate the platforms and the software used for our project in Ta-

ble 6.1.

6.3 Languages Used

We used Python 2 and Java 8 to build the system. The following factors

influenced our choice of language: Neo4j traversal capabilities specifically built
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Operating system Windows 7 Enterprise

Server Apache Tomcat - 7.0.75

Flask Built-in Server

Database Neo4j - 3.1.0

MySQL - 5.7.16

Other software used ElasticSearch, PostMan, Redis

Table 6.1: Platforms and software used for our project.

in JAVA, Full-Text Search Integration Support and the numerous libraries for

HTML Parsing, HTTP request generation, etc. We made use of the following

major libraries (shown in Table 6.2) for our system.

Library Functionality

Httplib HTTP Request Generation

Urllib2 Url Reuqest Generation

Beautiful Soup HTML Parsing

Selenium HTML Parsing

Re Regular Expression Operations

Py2Neo Graph Database Support

Neo4j-driver Graph Database Support

ElasticSearch Full Text Search Operations

Table 6.2: Libraries that we used and their functions.
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6.4 Implementation

We implemented a prototype CSM framework that integrates various open

source analysis platforms including the VirusTotal, ThreatCrowd, ThreatMiner,

PyWhoIS, etc. The autonomous crawling and analysis systems were imple-

mented in Python language. These scripts were built using Python-based li-

braries like Beautifulsoup, and Selenium webdriver. The results from the crawler

were stored in MySQL relational database and file reports. The Relevant Data

Extractor parsed data using Python based library such as re for information

extraction. This preprocessed information is converted into a structured tuple

format and is stored as indexed data with source based identification. As to

avoid storing duplicate data, we implemented unique indexing to de-duplicate

data. All discovered intelligence is stored in a Neo4j graph database instead

of relational database systems like MySQL since it has been found that graph

databases work well on highly connected data. A propagation technique is de-

veloped to propagate maliciousness behavior between threat indicators through-

out the graph to determine confidence score. This propagation algorithm de-

veloped in Java as to leverage traversal API of Neo4j and to easily parallelize

the propagation in future. A web-based application was developed to show

the potential of the system where we integrated full-text search technique to

provide flexibility of searching to the analyst through various filters. It was im-

plemented using Flask framework, Python, D3.js which queries to interface to

provide required filtered and prioritized data.
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Chapter 7

DATA ANALYSIS AND RESULTS

This chapter serves to present our findings. It reports various observation

based conclusion to evaluate the effectiveness of the CSM. It describes com-

prehensive and analytical evaluation results for our system to demonstrate the

feasibility and scalability of our approach.

7.1 Collected Data

At the time of writing, the CSM knowledge graph consists of more than

70,402 nodes from heterogeneous data sources and more than 51,418 relation-

ships between nodes. Our perception of collecting more data concludes that if

each received threat indicator also serves as a data point influencing the over-

all confidence score measurement, more data translates to more evidence to

establish a higher degree of confidence in the system. Table 7.1 shows informa-

tion about the gathered data. It confirms our data remains well-balanced and

heterogeneous in nature to perform our analysis.

S.No Type of Data Quantity

1 Network Indicators (IP-Domain-URL) 49329

2 Other Indicators (Email) 203

3 System Indicators (File-Hash) 20870

Table 7.1: Collected Node Data.
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7.2 Analysis of Threat Indicators

Next, we wanted to analyze threat indicators based on category. We di-

vided overall indicators into network-centric, system-centric indicators, and

other indicators. Network-centric indicators may include IP, domain, URL,

while system-centric indicators may include registry entries, file hashes, etc.

Remaining indicators may belong to the other category. We applied the propa-

gation algorithm with default propagation factors to the graph, and we tried to

decipher the results.

In network-centric indicators (IP-Domain-URL), we found that the confidence

of indicators spread across the range from 0 to 100 and the distribution can be

represented as multimodal distribution. The important point is 8.9% more indi-

cators of overall network indicators were successfully able to derive confidence

between 90-100 through propagation shows effectiveness of the propagation

algorithm in network indicators. Figure 7.1a and 7.1b reveal more information

about determined confidence score for network indicators.

System-centric indicators (files-hash) provides bimodal distribution of indi-

cators where majority of indicators derive confidence between 0-9 or 90-100.

Through propagation we have seen 0.8% more indicators of overall system in-

dicators were successfully able to derive confidence between 90-100. This indi-

cates, system-indicators have enough prior knowledge about threat indicators

being malicious or not. Figure 7.1c and 7.1d reveal more information about

determined confidence score for system indicators.

Plenty of other indicators such as email address can be considered as a

network or system indicator based on whether they are the result of whois in-

formation linked with malicious domain or derived during dynamic analysis of
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(a) Local Confidence spread of Network

Indicators

(b) Global Confidence spread of Network

Indicators

(c) Local Confidence spread of System

Indicators

(d) Global Confidence spread of System

Indicators

(e) Local Confidence spread of Other

Indicators

(f) Global Confidence spread of Other

Indicators

Figure 7.1: Threat Indicator Analysis Based on Category.
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malware. We categorized such indicators into the other category. For other

indicators, we did not have any prior knowledge, hence their prior knowledge

remain 0. With the propagation algorithm and whois information, they were

able to receive generalized context, which spread the confidence score of in-

dicators in the range from 0-39. Figure 7.1e and 7.1f reveal more information

about the determined confidence score for other indicators.

Based on the above observation, we conclude that majority time system-

centric indicators have enough prior knowledge about threat indicator. We can

confirm it through bimodal distribution of indicators. Propagation of confidence

creates minor impact on system indicators. On the other hand, network-centric

indicators receives major impact through propagation as 8.9% network indica-

tors successfully derive confidence through propagation. The wide spread of

network indicators confirms network indicators derive gray confidence. The

reason for gray confidence could be some indicators either provide too generic

context to deduce any concrete conclusion from their behavior or they are as-

sociated indicators that have participated in the event, yet do not perform any

malicious actions. Hence, they propagate lower confidence towards being ma-

licious.

7.3 Accuracy

To measure the accuracy in terms of percent false positives (%fp) and per-

cent false negatives (%fn) we collected 130 threat indicators that are malicious

and benign. For the non-malicious dataset, we selected Alexa top-20 domains

and their IP address by assuming them to be non-malicious. We further se-

lected 19 windows executables from originaldll.com [43] to make our dataset

heterogeneous. For a malicious dataset, we used virusshare dataset [35].
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We further used malwaredomains to accumulate malicious domains and IP ad-

dress [21] [22]. Figure 7.2 shows how CSM algorithm fares with selected

dataset. Non-malicious data received the confidence score between 0 to 64.

The higher confidence was due to malicious indicators are communicating with

the non-malicious domains and their IP address. We believe with more detailed

context, such as the analysis of communication between threat indicators, can

further improve the decision-making process of calculating confidence score.

The majority of malicious data resided in the range from 60 to 100. However,

some of the malicious threat indicators failed to provide enough context to re-

ceive high confidence on indicator being malicious. To statistically measure

how the CSM performed, we considered percent false positives and percent

false negatives. Percent false positives and percent false negatives can be

formally defined as follows. Let µr be the number of non-malicious entities

reported as malicious entities above β and let µo be the number of malicious

entities in the original dataset then percent false positives is given as

%fp =
µr
µo

(7.1)

Let µnr be the number of malicious entities reported as non-malicious en-

tities below β and let µo be the number of malicious entities in the original

dataset then percent false negatives is given as

%fn =
µnr
µo

(7.2)

If threshold β is set too high, many hacker actions are missed and if β is

set too low, too many entities are above the threshold β, indicating inaccurate

threat predictions. Examining both %fp and %fn seems to be essential to de-
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Figure 7.2: ROC Curve of an Example Dataset.

termine the accuracy of an algorithm. From the 7.2 we found, we can take β

between 60-70 to get more accurate results. With the β at 65, we received %fn

as 14.7% and %fp as 0%. If the number of indicators in a dataset is given as N

then accuracy (accr) is given as

accr =
N − (µnr + µr)

N
(7.3)

Accuracy for the CSM algorithm stands at 92%. The area under curve (AUC)

remains 0.9736.

7.4 Scalability

To compare the scalability of CSM propagation algorithm, we collected 5

months of data to analyze the performance of the algorithm. We iteratively in-

creased the size of the graph in terms of the number of nodes and edges to

measure running time of the propagation algorithm. Figure 7.3, in which x-axis
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Figure 7.3: Propagation Time with Varying Size of the Knowledge Graph.

indicates number of nodes and number of edges in the graph and y-axis shows

the propagation time of the algorithm. At peak of 5 months of data, the prop-

agation algorithm took 318 seconds to propagate confidence score throughout

the graph.

As shown in Figure 7.3, the running time of the algorithm linearly increased,

which shows our algorithm can scale very well with large graphs. Further,

given the data is organized in small clusters, propagation algorithm can be

distributed and executed in parallel, providing more scalability by reducing the

processing time of the algorithm.

7.5 Justification for Assigned Weights

Next, we wanted to verify the impact on the results and justify our assigned

weights. We calculated the confidence score of threat indicators based on

weights provided in 3.4. These weights were intuitively assigned based on the
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behavior from the description. However, we may derive such weights from the

inputs of domain experts based on their prior experience, usability tests, and

surveys or machine learning algorithms through collecting enough data.

Anything that screamingly tells about malicious behavior of the end indica-

tor receives the relationship *DETECTED*. For example, an email attachment

using exploitation of trust to lure to phish for sensitive data, distribute malware,

promote scams, generate revenue from ads on parked domains, and drive mon-

etizable traffic to other site considered as a malicious behavior receives has-

detected-email relationship, which propagates 100% confidence.

A report from [44] suggests that from overall domain infringements, 26%

infringements took place through subdomains. Further, through techniques

such as domain shadowing, they noticed the risk of subdomain associated with

malware and phishing increases 10 fold. This leads us to believe associated

subdomains prove to be risky and requires to propagate 25-30% of confidence

from parent domain. Some may argue to consider weighting through

total number of detected subdomains/total number of subdomains. However,

there are technical challenges, which require vast infrastructure and techni-

cal investment to collect large enough repository of data to be useful for this

purpose [44]. Further, these domains maliciousness change over time and they

require continuous adaptation of newer information and lastly, we need to re-

strict our scope to the reported subdomains. This lead us to believe for asso-

ciated subdomains, the best way to provide propagation factor is to take the

proportionate a subdomain involved in exploiting system compare to a domain.

A report from Cisco [16] reports domain registration relationship with whois

information. The research concludes that registrant email address was associ-

ated with a mix of malicious and benign domains and some registered domains
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had no email addresses. Moreover, there are many instances where people

have used altered or fake contact information when registering their domains

as a step to ensure their privacy. These force us to put such whois information

to the generalize category where there are further efforts required to verify

the accuracy of registered details. Hence, we propagate 25-30% confidence to

HAS-ASSOCIATED-EMAIL or HAS-REGISTRANT-EMAIL relationships.

[32] provides insights about various TLDs with their reputations for spam

operations and the domains that offered free, greatly discounted and 2 for 1’s

are the top source for spamming according to this list. As there was no infor-

mation available about the size of the individual TLD, we decided to take the

median of the dataset after cleaning the TLDs with 0 score. To our surprise, we

received the mean for such an entry as 5.40 and a median as 1 for 246 such

TLD entries. Apparently, we decided to propagate the same confidence as to

other generalize situation, which is 30% confidence for HAS-OTHER-DOMAIN

relationship. However, it would be more prudent if we had assigned different

propagation factor to each TLDs as such .science TLD scores 93.3% bad rep-

utation in Spamhaus list, that might have been proved as more appropriate

approach.

[15] reported a detailed observation of ASes (Autonomous systems) indulge

in hosting malicious activities due to lax security measures. They reported more

than 65% ASes had at least 10% but less than 50% of their IP addresses black-

listed. More precisely, 25% ASes had 20-30% of their IP addresses blacklisted,

which remains the mode for the given ranges. Hence, we determined to use 20-

30% confidence for HAS-ASSOCIATED-IP relationships. Overall, a relationship

which represents generalized behavior for threat indicators was represented

through *ASSOCIATED* and they achieved propagation between 20-30%.
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Communicating samples represent the samples that communicate with the

domain/IP during sandbox analysis. Apparently, such samples often connect to

benign domains to check network availability. Alternatively, ransomware con-

nects to malicious domains to receive further commands. Due to lack of avail-

ability of the total number of such incidents or samples, we simply propagate

50% confidence score for HAS-COMMUNICATING-SAMPLE relationships due

to bifurcation of possibilities.

In receiving whois information about IP domain resolution, if an IP is owned

by a domain, it should normally propagate 100% confidence score. However,

these resolutions may change over time, and that requires a massive historical

resolution data set, which allows analysts to view which domains resolved to

an IP address and vice versa, as well as in terms of time-based correlation.

These factors negate the confidence of the system and required integrating

time-based information involved to verify accurate resolution during the time

period of threat incident. Due to such factors, we consider to propagate 60%

confidence to the end indicator for HAS-DOMAIN and HAS-IP relationships.

7.6 Example Scenarios

Note that there is no ground truth of measuring the confidence score of

threat indicators. Therefore, we opt for providing example scenarios to eval-

uate the effectiveness of our approaches. We handpicked scenarios to under-

stand what drives receiving higher and lower confidence scores.

First, let’s take an example of how propagation of confidence helps us to

determine the newer intelligence. In the first example, we found information

reported for JSdropper architecture through pastebin. Our system quickly re-

lated the information to establish highest possible confidence for

63



(a)

(b)

Figure 7.4: An Example of New Intelligence Discovered via Propagation of

Confidence Score.
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9d923147baf5fe885c80cfea2bbc468bac9480822be09db5015bf70993e7513c. At

current time, only 4 antivirus systems were able to report such a dropper in-

stance as malicious. Figure 7.4a reveals more information about propagated

behavior between

9d923147baf5fe885c80cfea2bbc468bac9480822be09db5015bf70993e7513c and

adjacent nodes.

In another example, we found the analysis report where an Iranian threat

agent OilRig has been targeting multiple organizations where the attackers set

up two fake websites pretending to be a University of Oxford conference sign-up

page and a job application website. In these websites, they hosted malware that

was digitally signed with a valid, likely stolen, code signing certificate. Based on

such behavior we found oxford-careers.com and oxford-symposia.com were

set up to host malware

7da7df6b2ae25a2b32a494dacea2c51b02b173dcb020c79f4df47a92fb497274. At

the current time, only 1 antivirus system was able to report such malware in-

stance as malicious. Figure 7.4b reveals more information about propagated

behavior between

7da7df6b2ae25a2b32a494dacea2c51b02b173dcb020c79f4df47a92fb497274 and

adjacent nodes.

However, propagation of confidence from many nodes does not always satu-

rates the confidence at 100. It depends on the behavior displayed by adjacent

nodes as well as the indicator itself. To verify the same, we have taken the ex-

ample of abuse@godaddy.com which stands for email-address from Godaddy’s

abuse department that monitors the complaint regarding spam. Figure 7.5

reveals that many incoming indicators generalizes relationship behavior to nor-

malized confidence score of abuse@godaddy.com to 20.
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Figure 7.5: An Example of Low Confidence Propagation via Incoming Links.
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We noticed that determining the confidence score of a threat indicator is

not enough as it may still provide more than 33,000 results, which the analyst

would have to analyze or understand for a confidence score greater than 90.

We wanted to further narrow the scope of results for the analyst. Hence, we

developed a searching application that uses title, description, tags, proximity

and other related parameters. The benefits of the search application are the

greatest for underspecified queries. For example, an analyst search for "An-

droid Rootnik" may return any number of threat indicators related to Android,

but results related to Android Rootnik is listed on top.

In the first example, if human analysts want to find out about the "Android

Rootnik" related threat indicators, they can simply input the search term in

the search bar. CSM application finds all the threat indicators that contain all

or partial of the query words. Then, it sorts the results by relevance score.

As shown in the figure 7.6, an application automatically prioritizes the results

based on calculated relevance score based on the search term "Android Root-

nik." Relevance score of threat indicators, which are related to "Android" but

not with "Android Rootnik" gets score less than 60 and declining, while indica-

tors with "Android Rootnik" and 100 confidence receives the score above 95.

In another example, if human analysts want to find out IP address related

to "Banking Trojan," they can simply put search term "Banking Trojan" into the

search bar and set a filter to a IP address. CSM application takes all IP address

and filters them according to a search term. It further calculates relevance

score based on the parametric equation that includes search terms, their ap-

pearance, and confidence score. It then prioritizes the results based on calcu-

lated relevance score. As shown in the figure 7.7, an application automatically

filtered category as IP address and prioritized the results based on calculated
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Figure 7.6: An Example Result for Android Rootnik Query.

relevance score. Note that some of the IP address though related to "Banking

Trojan," does not have enough confidence receives lower relevance score and

IP address related to partial search term receives lower relevance score.

The reason that this search mechanism works so well is that it ensures high

precision and the confidence score ensures high quality. When matching a

query like "Android," recall is not very important because there are more in-

dicators available then an analyst can analyze. In such queries where precision

is more important, it combines full-text and the confidence to calculate the rel-

evance of the threat indicators. For specific searches, recall is more important.

In such a scenario, the search mechanism combines a traditional information

retrieval technique with a confidence score. We believe using confidence score

as a factor in searching mechanism is quite beneficial.
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Figure 7.7: An Example Result for Banking Trojan Query.

7.7 Limitations

This section discusses the limitation of our project. The following list goes

into the limitation of our project in detail:

• We created a prototyped version to show the effectiveness of our method

in calculating confidence score and relevance. For the same, we restricted

our research to limited types of threat indicators, and to limited number

of threat feeds. It may be possible to derive more meaningful intelligence

by adding more niche threat intelligence feeds which provide a detailed

results for certain categories, for example, Spamhaus provides insights

about various Top Level Domains with their reputations for spam opera-

tions. The same can be improved by including diverse threat indicators

such as CVE, registry entries, mutex, etc.
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• Our system determines the propagation factor and threshold value to de-

rive local confidence through knowledge available in public domain and

intuition. Techniques based on natural language processing or machine

learning combining with experts’ insights can provide more meaningful

way to approach such fixed weights and threshold values. We believe

there is a scope of improvement in deriving such values in the system.

• We have established relationship between indicators based on context that

are widely available as per our knowledge. At the current stage, any un-

known context may miss the opportunity to determine proper propagation

factor which may lead to receive lower confidence of an indicator. This

set of context list needs to be exhaustive to provide full proof system to

calculate confidence score of a threat indicator.

• Network-centric indicators change their behavior with the passage of time.

Hence, such indicators require continuous reanalysis to update the con-

fidence of them. Similarly, the prior knowledge of system indicators may

change with time as many antivirus systems may change their reported

analysis with passage of time. Currently, CSM does not provide ability to

integrate such analysis in the system.

• Sometimes, an analyst may provide valuable insights about certain indi-

cators, CSM does not provide ability to integrate such feedback in calcu-

lation of confidence score.
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Chapter 8

RELATED WORK

The community interest in threat intelligence analysis and sharing platform has

continuously grown throughout the years. Magee et al. presented a collective

of threat intelligence gathering system [20]. Beaver et al. proposed a generic

threat assessment approach that provides a computational means to draw con-

clusions about the probability of a threat [4]. MITRE also presented a system

called Collaborative Research Into Threats, which combines an analytic engine

with a cyber threat database. [10].

Similarly, there has been a great deal of work on calculating threat score/

risk score where they have published methods of how various parameters such

as attacker rating, target rating, valid rating determines the threat score [8].

Another approach proposes a threat assessment algorithm to predict potential

future attacker actions based on the attacker’s capability and opportunity, and

fuse the two to determine the attacker’s intent [12]. The network threat risk

assessment tool looks at multiple aspects of an IT threat, including both specific

(traditional) IT threats and general (non-traditional) IT threats, and generates

a threat score for each threat’s overall potential to do harm [17].

Though these works on calculating a threat score and designing collective

threat intelligence system are related to our work, it still leaves behind a gap

to represent a different perspective where we need to assess the confidence

score for each of the threat indicators. Risk/Threat score represents the rel-

ative or absolute maliciousness of reported malicious threat indicator for the

given system. It is determined by the potential damage to the organization
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if the indicator is successful in carrying out the attack. However, given the

community-driven reported threat indicators, we also need to assess the quality

of reported threat indicators on the basis of ability to vet the threat intelligence

and to confirm the observable as malicious. The confidence score assigns this

value to the threat indicator between 0 to 100 where 0 confidence suggests

that CSM does not confident enough to consider indicator as malicious, and

100 confidence suggests CSM is extremely confident about indicator being ma-

licious. [31] throws more light on the difference between confidence score and

risk score(impact) and derives the matrix to help in the decision making for

where to apply the observable.

At the academic level, very little has been reported on how to evaluate con-

fidence of the threat indicator because of the variety and constantly changing

nature of cyber security threats. There has been some interest at the indus-

try level on how to measure confidence score of the threat indicators. Rob et

al. at Netflix presented Fully Integrated Defense Operation (FIDO) system [27].

They have provided an example scoring mechanism to determine the total score

based on various parameters such as Threat Feeds, Other Detectors, Historical

Information, User/Machine Previous Alerted, Machine Posture, User Posture,

Asset Value by assigning a weight as to how much percentage it will make up

of the score for machine/user/threat and total scores. However, there is no

information available apart from one sample scoring example which remains

insufficient to validate the feasibility of the technique.

Alex et al. at MLSec presented TIQ-Test that carries out a number of statis-

tical tests against IP address threat data. They determined statistical inference

based on how often the data changes, how much does feed overlap, and how do

they compare with the population of IP addresses allocated to a particular coun-
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try by performing novelty, overlap, and population test. These statistical test

may represent the parameters in determining the confidence score of a threat

indicator; however, only one type of data from the heterogeneous dataset may

not paint a complete holistic picture of prioritizing and limiting the threat indi-

cators [1].

We also believe utilizing graph properties to harness intelligence from re-

ported threat indicators may provide a better result, which has not been re-

ported to our best knowledge.
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Chapter 9

CONCLUSION

We presented our automated Confidence Score Measurement system CSM

as a novel system for calculating a confidence and relevance score of a threat

indicator that automatically measures the confidence incurred by a graph prop-

agation technique. Our approach starts from the collection of threat indicators

from diverse threat intelligence feeds. Our system crawled 70,402 heteroge-

neous indicators over the span of 5 months and established 51,418 relation-

ships. Then, it extracts relevant information from analysis reports to identify

the behavior of a threat indicator and converts into a structured tuple format

to conveniently store into the knowledge graph. The graph based propagation

technique then propagates maliciousness to adjacent nodes to establish the

confidence of an individual threat indicator. CSM further supports analysis by

providing a relevant result by prioritizing and filtering the output according to

the search criteria provided by an analyst. Also, we have described a proof-of-

concept implementation of CSM, along with the extensive evaluation results of

our approach. Our result shows the feasibility and effectiveness of calculating

confidence and relevance score through scalable graph propagation algorithm

and full-text search techniques.

We hope that our work sheds light on how current threat intelligence sys-

tems can leverage our technique to prioritize the threat feeds according to the

needs of an analyst. To sum up, We developed a novel approach to calculate

confidence and relevance score of a threat indicator. We designed and imple-

mented a scalable architecture to provide proof of concept for our approach.
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Our proof of concept shows the feasibility and effectiveness of our technique

which can be used to prioritize the threat indicators according to the search

criteria.

75



REFERENCES

[1] Alex Pinto, A. S., “Data-Driven Threat Intelligence: Metrics on Indica-
tor Dissemination and Sharing”, URL https://www.blackhat.com/us-
15/briefings.html#data-driven-threat-intelligence-metrics-on-
indicator-dissemination-and-sharing (2015).

[2] alienvault.com, “alienvault”, http://reputation.alienvault.com/
reputation.data (2017).

[3] autoshun.org, “shunlist”, http://www.autoshun.org/files/shunlist.csv
(2017).

[4] Beaver, J. M., R. A. Kerekes and J. N. Treadwell, “An information fusion
framework for threat assessment”, in “Information Fusion, 2009. FU-
SION’09. 12th International Conference on”, pp. 1903–1910 (IEEE, 2009).

[5] Bian, J., Y. Liu, D. Zhou, E. Agichtein and H. Zha, “Learning to recognize
reliable users and content in social media with coupled mutual reinforce-
ment”, in “Proceedings of the 18th international conference on World wide
web”, pp. 51–60 (ACM, 2009).

[6] blocklist.de, “Ftp”, http://www.blocklist.de/lists/ftp.txt (2017).

[7] Chau, D. H. P., C. Nachenberg, J. Wilhelm, A. Wright and C. Faloutsos,
“Polonium: Tera-scale graph mining and inference for malware detection”,
in “Proceedings of the 2011 SIAM International Conference on Data Min-
ing”, pp. 131–142 (SIAM, 2011).

[8] Church, C. A., M. Govshteyn, C. D. Baker and C. D. Holm, “Threat scoring
system and method for intrusion detection security networks”, US Patent
7,594,270 (2009).

[9] Cisco, “Mitigating the cybersecurity skills shortage”, http:
//www.cisco.com/c/dam/en/us/products/collateral/security/
cybersecurity-talent.pdf (2015).

[10] Community, C., “Collaborative Research Into Threats”, URL https://
github.com/crits/crits (2016).

[11] Felzenszwalb, P. F. and D. P. Huttenlocher, “Efficient belief propagation for
early vision”, International journal of computer vision 70, 1, 41–54 (2006).

[12] Holsopple, J., S. J. Yang and M. Sudit, “Tandi: Threat assessment of net-
work data and information”, in “Defense and Security Symposium”, pp.
62420O–62420O (International Society for Optics and Photonics, 2006).

[13] Jervis, S., “Cyber attack! 60six months”, http://
www.huffingtonpost.co.uk/shivvy-jervis/cyber-attacks-
business_b_5083906.html (2014).

76

https://www.blackhat.com/us-15/briefings.html#data-driven-threat-intelligence-metrics-on-indicator-dissemination-and-sharing
https://www.blackhat.com/us-15/briefings.html#data-driven-threat-intelligence-metrics-on-indicator-dissemination-and-sharing
https://www.blackhat.com/us-15/briefings.html#data-driven-threat-intelligence-metrics-on-indicator-dissemination-and-sharing
http://reputation.alienvault.com/reputation.data
http://reputation.alienvault.com/reputation.data
http://www.autoshun.org/files/shunlist.csv
http://www.blocklist.de/lists/ftp.txt
http://www.cisco.com/c/dam/en/us/products/collateral/security/cybersecurity-talent.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/security/cybersecurity-talent.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/security/cybersecurity-talent.pdf
https://github.com/crits/crits
https://github.com/crits/crits
http://www.huffingtonpost.co.uk/shivvy-jervis/cyber-attacks-business_b_5083906.html
http://www.huffingtonpost.co.uk/shivvy-jervis/cyber-attacks-business_b_5083906.html
http://www.huffingtonpost.co.uk/shivvy-jervis/cyber-attacks-business_b_5083906.html


[14] Jon Oltsik, J. G., Bill Lundell, “Threat intelligence and its role within
enterprise cybersecurity practices”, http://cdn2.hubspot.net/hubfs/
299408/irp/ESG-Research-Report-Abstract-Threat-Intelligence-
June-2015.pdf (2015).

[15] Kalafut, A. J., C. A. Shue and M. Gupta, “Malicious hubs: detecting abnor-
mally malicious autonomous systems”, in “INFOCOM, 2010 Proceedings
IEEE”, pp. 1–5 (IEEE, 2010).

[16] Kasza, A., “Visualizing Domain Registration Relationships by WHOIS In-
formation”, URL https://umbrella.cisco.com/blog/blog/2014/07/21/
visualizing-domain-registration-relationships-whois/ (2014).

[17] Kelley, J., J. Lahann and D. Mackey, “Network threat risk assessment tool”,
US Patent App. 10/947,575 (2004).

[18] Koutra, D., A. Parikh, A. Ramdas and J. Xiang, “Algorithms for graph sim-
ilarity and subgraph matching”, in “Technical report”, (Carnegie-Mellon-
University, 2011).

[19] LLC, P. I., “The importance of cyber threat intelligence to a strong secu-
rity posture”, https://webroot-cms-cdn.s3.amazonaws.com/9114/5445/
5911/ponemon-importance-of-cyber-threat-intelligence.pdf (2015).

[20] Magee, J., A. Andrews, M. Nicholson, J. James, H. Li, C. Stevenson and
J. Lathrop, “Collective threat intelligence gathering system”, URL http:
//www.google.com/patents/US20140007238, uS Patent App. 13/538,831
(2014).

[21] malware domain list team, “Malicious IP address.”, URL
https://www.malwaredomainlist.com/mdl.php?search=&colsearch=
IP&quantity=50 (2017).

[22] malware domains Team, “Malicious Domain.”, URL http://
mirror1.malwaredomains.com/files/justdomains (2017).

[23] McAfee, “Net losses: Estimating the global cost of cybercrime. economic
impact of cybercrime”, http://www.mcafee.com/us/resources/reports/
rp-economic-impact-cybercrime2.pdf (2014).

[24] McAfee, “Threats report”, http://www.mcafee.com/us/resources/
reports/rp-quarterly-threats-aug-2015.pdf (2015).

[25] Modi, A., Z. Sun, A. Panwar, T. Khairnar, Z. Zhao, A. Doupé, G.-J. Ahn and
P. Black, “Towards automated threat intelligence fusion”, in “Collaboration
and Internet Computing (CIC), 2016 IEEE 2nd International Conference
on”, pp. 408–416 (IEEE, 2016).

[26] Morgan, S., “Cyber crime costs projected to reach $2 trillion by
2019”, http://www.forbes.com/sites/stevemorgan/2016/01/17/cyber-
crime-costs-projected-to-reach-2-trillion-by-2019/ (2016).

77

http://cdn2.hubspot.net/hubfs/299408/irp/ESG-Research-Report-Abstract-Threat-Intelligence-June-2015.pdf
http://cdn2.hubspot.net/hubfs/299408/irp/ESG-Research-Report-Abstract-Threat-Intelligence-June-2015.pdf
http://cdn2.hubspot.net/hubfs/299408/irp/ESG-Research-Report-Abstract-Threat-Intelligence-June-2015.pdf
https://umbrella.cisco.com/blog/blog/2014/07/21/visualizing-domain-registration-relationships-whois/
https://umbrella.cisco.com/blog/blog/2014/07/21/visualizing-domain-registration-relationships-whois/
https://webroot-cms-cdn.s3.amazonaws.com/9114/5445/5911/ponemon-importance-of-cyber-threat-intelligence.pdf 
https://webroot-cms-cdn.s3.amazonaws.com/9114/5445/5911/ponemon-importance-of-cyber-threat-intelligence.pdf 
http://www.google.com/patents/US20140007238
http://www.google.com/patents/US20140007238
https://www.malwaredomainlist.com/mdl.php?search=&colsearch=IP&quantity=50
https://www.malwaredomainlist.com/mdl.php?search=&colsearch=IP&quantity=50
http://mirror1.malwaredomains.com/files/justdomains
http://mirror1.malwaredomains.com/files/justdomains
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.forbes.com/sites/stevemorgan/2016/01/17/cyber-crime-costs-projected-to-reach-2-trillion-by-2019/
http://www.forbes.com/sites/stevemorgan/2016/01/17/cyber-crime-costs-projected-to-reach-2-trillion-by-2019/


[27] Netflix, “Introducing FIDO: Automated Security Incident Response”, URL
http://techblog.netflix.com/2015/05/introducing-fido-automated-
security.html (2015).

[28] nothink.org, “blacklist”, http://www.nothink.org/blacklist/
blacklist_ssh_day.txt (2017).

[29] Pandit, S., D. H. Chau, S. Wang and C. Faloutsos, “Netprobe: a fast and
scalable system for fraud detection in online auction networks”, in “Pro-
ceedings of the 16th international conference on World Wide Web”, pp.
201–210 (ACM, 2007).

[30] Pope, C. and K. Kaur, “Is it human or computer? defending e-commerce
with captchas”, IT Professional 7, 2, 43–49 (2005).

[31] Poputa-Clean, P., “Automated defense using threat intelligence to augment
security”, (2015).

[32] Project, T. S., “The World’s Most Abused TLDs”, URL https://
www.spamhaus.org/statistics/tlds/ (2017).

[33] projecthoneypot.org, “listofips”, http://www.projecthoneypot.org/
list_of_ips.php?rss=1 (2017).

[34] Robert P. Hartwig, C. W., “Cyber risks: The growing threat”, Insurance
Information Institute (2014).

[35] Roberts, J.-M., “Virus share”, (2014).

[36] Safe Browsing, A., “Google developers”, (2012).

[37] SETALVAD, A., “Demand to fill cybersecurity jobs booming”, http://
peninsulapress.com/2015/03/31/cybersecurity-jobs-growth/ (2015).

[38] Shackleford, D., “Who’s using cyberthreat intelligence and how?”, SANS
Institute. Retrieved February 23, 2016 (2015).

[39] Simkin, S., “Are You Getting the Most from Your Threat Intelligence
Subscription?”, URL http://www.securityweek.com/are-you-getting-
most-your-threat-intelligence-subscription (2016).

[40] Smith, M., “70 per cent of businesses overwhelmed by threat intelligence
data”, https://www.anomali.com/news-events/in-the-news/70-per-
cent-of-businesses-overwhelmed-by-threat-intelligence-data
(2016).

[41] Symantec, “Symantec internet security threat report”, https:
//www.symantec.com/content/dam/symantec/docs/reports/istr-21-
2016-en.pdf (2016).

78

http://techblog.netflix.com/2015/05/introducing-fido-automated-security.html
http://techblog.netflix.com/2015/05/introducing-fido-automated-security.html
http://www.nothink.org/blacklist/blacklist_ssh_day.txt
http://www.nothink.org/blacklist/blacklist_ssh_day.txt
https://www.spamhaus.org/statistics/tlds/
https://www.spamhaus.org/statistics/tlds/
http://www.projecthoneypot.org/list_of_ips.php?rss=1
http://www.projecthoneypot.org/list_of_ips.php?rss=1
http://peninsulapress.com/2015/03/31/cybersecurity-jobs-growth/
http://peninsulapress.com/2015/03/31/cybersecurity-jobs-growth/
http://www.securityweek.com/are-you-getting-most-your-threat-intelligence-subscription
http://www.securityweek.com/are-you-getting-most-your-threat-intelligence-subscription
https://www.anomali.com/news-events/in-the-news/70-per-cent-of-businesses-overwhelmed-by-threat-intelligence-data
https://www.anomali.com/news-events/in-the-news/70-per-cent-of-businesses-overwhelmed-by-threat-intelligence-data
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf


[42] Team, E., “Theory behind relevance scoring”, https://www.elastic.co/
guide/en/elasticsearch/guide/current/scoring-theory.html (2017).

[43] Team, O., “Windows Executables.”, URL http://originaldll.com/
search?q=.exe (2017).

[44] Team, R., “Subdomain infringement an unseen threat”,
URL https://safe.riskiq.com/rs/455-NHF-420/images/
RiskIQ_Subdomain_Infringement_White_Paper.pdf (2016).

[45] Team, T., “ThreatCrowd Community”, URL https://threatcrowd.org/
(2017).

[46] Team, V. R. et al., “Data breach investigations report (2012)”, (2012).

[47] Total, V., “Vt community”, (2011).

[48] VENTURES, C., “Cybersecurity market report”, http://
cybersecurityventures.com/cybersecurity-market-report/ (2016).

[49] von Ahn, L., M. Blum and J. Langford, “Telling humans and comput-
ers apart automatically”, Commun. ACM 47, 2, 56–60, URL http://
doi.acm.org/10.1145/966389.966390 (2004).

[50] Wikipedia, “Belief propagation — Wikipedia, the free encyclo-
pedia”, http://en.wikipedia.org/w/index.php?title=Belief%
20propagation&oldid=759708673, [Online; accessed 28-February-2017]
(2017).

[51] Wikipedia, “PageRank — Wikipedia, the free encyclopedia”, http://
en.wikipedia.org/w/index.php?title=PageRank&oldid=766217165, [On-
line; accessed 28-February-2017] (2017).

79

https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
http://originaldll.com/search?q=.exe
http://originaldll.com/search?q=.exe
https://safe.riskiq.com/rs/455-NHF-420/images/RiskIQ_Subdomain_Infringement_White_Paper.pdf
https://safe.riskiq.com/rs/455-NHF-420/images/RiskIQ_Subdomain_Infringement_White_Paper.pdf
https://threatcrowd.org/
http://cybersecurityventures.com/cybersecurity-market-report/
http://cybersecurityventures.com/cybersecurity-market-report/
http://doi.acm.org/10.1145/966389.966390
http://doi.acm.org/10.1145/966389.966390
http://en.wikipedia.org/w/index.php?title=Belief%20propagation&oldid=759708673
http://en.wikipedia.org/w/index.php?title=Belief%20propagation&oldid=759708673
http://en.wikipedia.org/w/index.php?title=PageRank&oldid=766217165
http://en.wikipedia.org/w/index.php?title=PageRank&oldid=766217165


APPENDIX A

ACKNOWLEDGEMENT

80



This work was supported by grant from the Center for Cybersecurity and
Digital Forensics at Arizona State University. The information reported here
does not reflect the position or the policy of the funding agency or project spon-
sor.

81


	LIST OF TABLES
	LIST OF FIGURES
	1 
	2 
	2.1 Problem Background
	2.2 Challenges with Threat Intelligence
	2.3 Motivation
	2.4 Research Questions

	3 
	3.1 Design Goals
	3.2 System Workflow
	3.3 System Architecture
	3.3.1 Data Acquisition Module
	3.3.2 Data Extraction Module
	3.3.3 Confidence Score Calculation Module
	3.3.4 Relevance Score Calculation Module

	3.4 Issues
	3.5 Assumptions

	4 
	4.1 Motivation
	4.2 Definitions
	4.2.1 Confidence Score
	4.2.2 Propagation Factor
	4.2.3 Key Observations

	4.3 Problem Background
	4.4 Various Scenarios
	4.5 Propagation Algorithm

	5 
	5.1 Background
	5.1.1 Term Frequency/Inverse Document Frequency (TF/IDF)

	5.2 Relevance Score Calculation Application

	6 
	6.1 System Configuration
	6.2 Platform
	6.3 Languages Used
	6.4 Implementation

	7 
	7.1 Collected Data
	7.2 Analysis of Threat Indicators
	7.3 Accuracy
	7.4 Scalability
	7.5 Justification for Assigned Weights
	7.6 Example Scenarios
	7.7 Limitations

	8 
	9 
	REFERENCES
	A 





