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ABSTRACT 42 

 Having accurate measurements of sedentary behaviors is important to understand 43 

relationships between sedentary behaviors and health outcomes and to evaluate changes 44 

in interventions and health promotion programs designed to reduce sedentary behaviors. 45 

This dissertation included three projects that examined measurement properties of 46 

wearable monitors used to measure sedentary behaviors. Project one examined the 47 

validity of three monitors: the ActiGraph GT3X+, activPAL™, and SenseWear 2. None 48 

of the monitors were equivalent with the criterion measure of oxygen uptake to estimate 49 

the energy cost of sedentary and light-intensity activities. The ActivPAL™ had the best 50 

accuracy as compared with the other monitors. In project two, the accuracy of ActiGraph 51 

GT3X+and GENEActiv cut-points used to assess sedentary behavior were compared with 52 

direct observation during free-living conditions. New vector magnitude cut-points also 53 

were developed to classify time spent in sedentary- and stationary behaviors during free- 54 

living conditions. The cut-points tested had modest overall accuracy to classify sedentary 55 

time as compared to direct observation. New ActiGraph 1-minute vector cut-points 56 

increased overall accuracy for classifying sedentary time.  Project 3 examined the 57 

accuracy of the sedentary sphere by testing various arm elevation- and movement-count 58 

configurations using GENEActiv and ActiGraph GT3X+ data obtained during free-living 59 

conditions. None of the configurations were equivalent to the criterion measure of direct 60 

observation. The best configuration of the GENEActiv was: worn on the dominant wrist 61 

at 15 degrees below the horizontal plane with a cut-point <489 for each 15-second 62 

interval. The best configuration for the ActiGraph was: worn on the non-dominant wrist 63 

at 5° below the horizontal plane with a cut-point of <489 counts for each 15-second 64 
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interval. Collectively, these findings indicate that the wearable monitors and methods 65 

examined in this study are limited in their ability to assess sedentary behaviors and light 66 

intensity physical activity. Additional research is needed to further understand the scope 67 

and limitations of wearable monitors and methods used to assess sedentary behaviors and 68 

light intensity physical activity. 69 
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Chapter 1 

INTRODUCTION 

 
For more than 50 years, the health effects of physical activity have been studied 

extensively. Research has shown a positive relationship between physical activity and 

positive health outcomes.1 Levels of physical activity that expend an energy expenditure 

of at least 500 kcal per week in moderate and intensity activities or where adults 

accumulate at least 150 minutes per week in moderate-intensity activities or 75 minutes 

per week in vigorous-intensity activities reduce the risks for morbid health conditions and 

premature mortality.2,3 In 1978, Paffenbarger et al.2 reported that physical activity energy 

expenditure was inversely related to the risk of a first heart attack in men. In 1989, Leon 

et al.4 observed that leisure time physical activity was inversely related to coronary heart 

disease and overall mortality in middle-aged men at high risk for coronary heart disease. 

Further, Helmrich et al.1 showed an inverse association between physical activity and 

type 2 diabetes among male college students. Collectively, these and other studies 

support the observation that regular physical activity is positively related to good health 

and disease prevention.5 

Within the past 15 years, there has been a growing body of evidence showing that 

sedentary behaviors are a distinct risk factor independent of physical activity and that 

sedentary behaviors are related to multiple adverse health outcomes in adults.6–9 

Sedentary behaviors are defined as any waking behavior characterized by an energy 

expenditure ≤1.5 metabolic equivalents (METs) while in a sitting or reclining posture.10 

As a referent, one MET is defined as the energy cost while sitting quietly. In the 
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Australian Diabetes, Obesity and Lifestyle Study (AusDiab), Dunstan et al.6,11 found that 

among non-diabetic adults, self-reported television viewing time was positively 

associated with abnormal glucose metabolism and metabolic syndrome. In another study 

on sedentary behaviors, Wijndaele et al.9 reported that increases in television viewing 

were associated with increases in waist circumference and diastolic blood pressure. As 

well, Howard et al.8 showed that television viewing time was associated with an 

increased risk of colon cancer. The adverse health associations between sedentary 

behaviors also have been reported in other population-based studies that have included 

different types of sedentary behaviors, to include sitting and reclining behaviors. 

The importance of understanding the health impact of sedentary behaviors and 

health relates to the prevalence of sedentary behaviors and the relationship with 

metabolic disease conditions. American adults spend at least 55% of their time sitting,12 

and only 3.5% attain sufficient physical activity to meet national physical activity 

recommendations.13 Furthermore, in both developing and developed countries, the 

prevalence of sedentary behaviors is increasing and metabolic energy expenditure is 

decreasing in daily activities.14 Thus, high exposure to sedentary behaviors can 

compromise the metabolic health for persons who are sedentary for prolonged periods of 

the day. The adverse health effects of prolonged sedentary periods also applies to persons 

who engage in enough physical activity to meet physical activity recommendations.15 

As the study of sedentary behaviors is a new field, current interest in sedentary 

behaviors research is focused mainly in three areas. First, the physiological evidence of 

specific health effects of sedentary behaviors is unique to sedentary behaviors that are 

detrimental to health, independent of physical activity levels.16,17 This area is of high 
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importance as the evidence supporting sedentary behaviors as a chronic disease risk 

factor is in the early stages as compared with the enormous amount of evidence of the 

protective effects of moderate-to-vigorous intensity physical activity.18 Second, the 

physiological evidence of specific health effects showing that ‘breaking up’ or having 

intermittent amounts of sedentary behaviors is better for health than uninterrupted 

sedentary behaviors.19 Research in this area is important as some American adults spend 

as much as 96% of their free time in light-intensity physical activities and sedentary 

behaviors.12 Additional research is needed to understand the optimal frequency, intensity, 

and duration of breaks between bouts of sedentary behaviors.20 A third area of focus is 

the measurement of sedentary behaviors. Time spent in sedentary behaviors and the types 

of sedentary behaviors performed are measured with self-report questionnaires and daily 

records or logs (herein referred to as self-report methods) and/or accelerometer-based 

wearable monitors (herein referred to as wearable monitors). Another type of sedentary 

behavior assessment is direct observation of human movement (herein referred to as 

direct observation). Direct observation uses a systematic method to record sedentary and 

physical activity behaviors as an individual completes their daily activities. 

Accurate measures of sedentary behaviors is important for surveillance systems to 

assess the prevalence of sedentary lifestyles, to determine the dose-response relationships 

between sedentary behaviors and health outcomes, and to plan and evaluate health 

promotion interventions.21 The accurate measurement of sedentary behaviors 

encompasses several challenges. Self-report methods are cost-effective, readily accessible 

to the majority of the population, have a relatively low participant burden, and can be 

used to identify types of behaviors in the context in which the behaviors occur; however, 
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self-report methods consistently demonstrate low-to-moderate criterion-related 

validity.22,23 A major impediment to establishing the validity of self-report methods is the 

lack of an accepted criterion measure.24 Self-report methods commonly are validated 

against accelerometer-based devices; however, accelerometers have their limitations in 

assessing sedentary behaviors. For example, low compliance for hip-mounted wearable 

monitors and reliance on activity counts without including posture allocations for each 

activity reduces the accuracy of sedentary time estimations. Thus, research related to the 

wearable monitors-based measurement of sedentary behaviors is needed to improve the 

accuracy of identifying sedentary behaviors. Few studies have used direct observation as 

a criterion measure of physical activities and sedentary behaviors.25–27 Direct observation 

has distinct advantages over wearable monitors in that it allows identification of several 

sedentary behaviors characteristics. For example, direct observation allows recording of 

the type and context of sedentary behaviors according to when, where, and with whom 

the behaviors under observation occur. Because of the large amount of information 

collected, direct observation is labor intensive and it is difficult to estimate energy 

expenditure from the behaviors observed.28 

Statement of the Problem 

A challenge with wearable monitors-based measurement of sedentary behaviors is 

in the ability to distinguish sedentary behaviors from light-intensity physical activities 

that people perform during the day.18,29 Two of the commonly used wearable monitors 

used to measure sedentary behaviors are the ActiGraph (ActiGraph LLC, Pensacola, FL, 

USA) and the activPAL™ physical activity logger (PAL Technologies Ltd, Glasgow, 

UK). Another less popular wearable monitor is the SenseWear 2 (SWA, BodyMedia Inc., 
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Pittsburgh, PA, USA). The ActiGraph measures ambulatory movement using acceleration 

counts while the activPAL™ measures differences in posture during physical activity and 

sedentary behaviors. The SenseWear provides measures of movement in MET values. 

Unfortunately, the three wearable monitors are unable to differentiate between several 

types of movement. The ActiGraph is unable differentiate sedentary behaviors from light-

intensity activities that yield zero or very few counts per minute, such as standing and 

other stationary activities.21 Similarly, the ActiGraph has been shown to misclassify 

standing as a sedentary behavior.30 The activPAL™ also has limitations in being unable 

to detect differences in movement intensities. For example, Harrington et al.,31 showed 

the MET values from the activPAL™ during walking speeds ranging from 2- to 4 mph 

were significantly different from the energy costs of walking measured by oxygen uptake 

(P <0.0001). Further, since the activPAL™ sedentary behavior estimates are posture-

based and the monitor is worn in the front of the thigh, it is difficult to differentiate sitting 

from lying behaviors since the monitor is horizontal in both conditions.32 

Another problem with wearable monitors-based assessment of sedentary 

behaviors is a lack of consensus about the most appropriate protocol to analyze data 

arising from controlled movement settings.24 One of the most common approaches to 

analyzing data from accelerometer-based devices is the cut-points approach which 

determines the time spent in varying movement intensities.24,33,34 This approach assumes 

a linear relationship between movement counts per minute used to develop the cut-points 

and resulting amount of time spent in different intensity levels. Because of variability in 

movement, movement intensity does not increase linearly in all persons. Thus, using a 

cut-points approach to analyze data may lead to inaccurate estimates of time spent in 
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different movement intensities.35–37 To complicate the matter, only a few cut-points have 

been developed and validated to classify sedentary behaviors. These include values of 50 

counts per minute,35 100 counts per minute,12 150 counts per minute,25 and 500 counts 

per minute.38 Notably, 100 counts per minute often is used to reflect time spent in 

sedentary behaviors, despite the observation that it underestimates sitting time by 5%.25 

To date, cut-points used to estimate time spent in sedentary behaviors has been 

applied to uniaxial accelerometers that measure movement in a vertical plane only. With 

the development of tri-axial accelerometers that measure movement in the vertical, 

anteroposterior, and mediolateral planes, analytic methods allow a computed axis 

resulting in a combination of these three axes. This composite measure is referred to as 

the vector magnitude. In theory, analyzing the vector magnitude may provide an 

improved estimate of time spent in sedentary behaviors as compared with the use of the 

vertical axis only. To date, vector magnitude cut-points have not been developed to 

identify sedentary behaviors using the ActiGraph accelerometer; instead, they have been 

developed to estimate sedentary behaviors for the wrist-worn GENEActiv (ActivInsights, 

Cambs, United Kingdom). The GENEActiv is a tri-axial accelerometer that provides 

activity counts for the 3 axes noted previously and a composite vector to estimate 

movement duration and intensity. The vector magnitude cut-points have been evaluated 

in laboratory settings, and to lesser extent in free-living conditions.39 

A persistent concern about using accelerometer-based wearable monitors is that 

current monitors have limited functional abilities to measure sedentary behaviors in 

agreement with the current definition of sedentary behaviors.21 Instead, a more accurate 

assessment of sedentary behaviors includes estimating energy expenditure using MET 
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values and posture. Both methods require complex, analytical approaches as opposed to 

the simple cut-point methods in use today. Complex approaches to estimating sedentary 

behaviors, such as machine learning techniques, are being gradually implemented;26 

however, they are still under development and beyond many researchers’ understanding. 

Thus, such complex analytical methods are not practical at this time to measure sedentary 

behaviors for use by most researchers and practitioners.40 Alternatively, the use of tri-

axial accelerometers allow for an inclinometer feature of monitors to estimate posture 

allocations, which in addition to current cut-point scoring methods, may improve the 

assessment of sedentary behaviors without the complexity of machine learning 

techniques.41 However, this feature has not been widely tested.41–44 One method 

developed recently is referred to as the sedentary sphere, which allows for posture 

classification by estimating arm elevation combined with activity counts obtained from 

wrist-worn wearable monitors.41 The sedentary sphere has shown to be a valid method to 

determine sedentary time in laboratory- and free-living settings, and across brands (i.e., 

GENEActiv and ActiGraph model GT3X+) when the accelerometer is worn on the non-

dominant wrist.44 The validity of the sedentary sphere method has not been tested when 

the wearable monitors are worn on the dominant hand and with different configurations, 

defined as activity count thresholds and arm elevation angles. 

The current dissertation includes three projects that examined measurement 

properties of wearable monitors used in the assessment of sedentary behaviors. Project 

one assessed the criterion validity of three commonly used wearable monitors (ActiGraph 

GT3X+, activPAL™, and SenseWear 2) to estimate the intensity of sedentary behaviors 

and light-intensity physical activities in adults as compared to the criterion method of 
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indirect calorimetry (VO2). Project two tested the accuracy of six uniaxial cut-points and 

two vector magnitude cut-points for the GENEActiv and the ActiGraph GT3X+ to 

classify sedentary and stationary time in free-living conditions as compared to the 

criterion of direct observation. Project two also developed optimal vector magnitude cut-

points for the ActiGraph and the GENEActiv to classify sedentary time and stationary 

time based upon data collected in free-living conditions. Project three tested the accuracy 

of estimates of sedentary time computed by the sedentary sphere method with the 

GENEActiv and the ActiGraph GT3X+ during free-living conditions. The monitors were 

worn on the dominant and non-dominant wrist. Project three also tested the accuracy of 

the sedentary sphere method with different arm elevation angles and activity count 

thresholds. 

Purposes and Hypotheses 

The three projects were designed to utilize different wearable monitors to measure 

time spent in sedentary behaviors. The research hypotheses for each project are listed 

below. 

Project One. Wearable monitors criterion validity for energy expenditure 

estimates in sedentary and light activities. 

Project one purpose. To examine the validity of three wearable monitors 

(ActiGraph GT3X+, activPAL™, and SenseWear 2) to estimate intensity for sedentary-

to-light activities in adults as compared with oxygen uptake measured in ml•kg-1•min-1. 

Project one hypothesis. There will be no difference between energy expenditure 

estimates for sedentary-to-light activities made by the tested wearable monitors 
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(ActiGraph GT3X+, activPAL™, and SenseWear 2) and energy expenditure estimates 

from the criterion measure of indirect calorimetry. 

Project Two. Wearable monitors accuracy to classify sedentary and stationary time 

under free-living conditions. 

Project two purpose 1. To test the accuracy of selected uniaxial and vector 

magnitude cut-points to classify sedentary and stationary time in free-living conditions. 

Project two purpose 2. To develop optimal vector magnitude cut-points from the 

ActiGraph GT3X+ and GENEActiv to classify sedentary and stationary time using data 

obtained under free-living conditions. 

Project two hypothesis 1. There will be no difference between sedentary and 

stationary classifications made by different cut-points for the ActiGraph GT3X+ (wrist 

and waist) and GENEActiv (wrist) and sedentary behaviors classifications from the 

criterion of direct observation. 

Project two hypothesis 2. There will be no difference between free-living 

sedentary and stationary classifications made by the developed vector magnitude cut-

points and free-living sedentary and stationary classifications from the criterion of direct 

observation. 

Project Three. Accuracy of posture-based sedentary behavior estimates made by 

the sedentary sphere method in free-living settings. 

Project three purpose 1. To test the accuracy of posture-based sedentary time 

estimates made by the sedentary sphere method from GENEActiv and ActiGraph GT3X+ 
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wearable monitors during free-living conditions in both dominant and non-dominant 

wrists. 

Project three purpose 2. To test the accuracy of posture-based sedentary time 

estimates made by the sedentary sphere method from GENEActiv and ActiGraph GT3X+ 

wearable monitors during free-living conditions with different angle and activity 

threshold configurations. 

Project three hypothesis 1. There will be no difference between free-living 

sedentary behavior classifications made by the sedentary sphere method from 

GENEActiv and the ActiGraph GT3X+ wearable monitors in both dominant and non-

dominant wrists and free-living sedentary behaviors classifications from the criterion 

measure of direct observation. 

Project three hypothesis 2. There will be no difference between free-living 

sedentary behavior classifications made by the different configurations of the sedentary 

sphere method from GENEActiv and the ActiGraph GT3X+ and free-living sedentary 

behavior classifications from the criterion measure of direct observation. 

Scope 

This dissertation consists of three distinct research projects with the overall theme 

of the wearable monitors-based measurement of sedentary behaviors. The studies were 

designed to: A) examine the validity of wearable monitors (ActiGraph GT3X+, 

activPAL™, and SenseWear 2) to estimate intensity for sedentary-to-light activities. B) 

test the accuracy of wearable monitors (GENEActiv and the ActiGraph GT3X+) to 

classify sedentary and stationary time in free-living using different cut-points and body 
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locations (wrist and waist); and to develop optimal vector magnitude cut-points to 

classify sedentary and stationary time based upon data collected under free-living 

conditions. C) test the accuracy of posture-based sedentary time estimates made by the 

sedentary sphere method from GENEActiv and the ActiGraph GT3X+ wearable monitors 

during free-living conditions in both dominant and non-dominant wrists and with 

different angle configurations. 

Assumptions 

1. The oxygen cost of activities performed in the exercise physiology laboratory was 

accurately assessed using portable indirect calorimetry. 

2. The accelerometer placements were made by strictly following research protocols, 

ensuring identical wearing setup among all enrolled participants. 

3. For healthy adults, two observation days (weekday and weekend) with at least 6 hours 

per day, was sufficient to capture regular physical activity and sedentary behaviors in 

free-living conditions. 

4. In the absence of motion, the gravitational component of the acceleration signal 

allows to determine the orientation of the monitor and therefore wrist position. 

Limitations 

1. Project one data were obtained in a laboratory setting with staged activities, limiting 

generalization of the results to free-living settings. 

2. Participants in the three projects comprised a convenience sample of healthy adults, 

limiting generalization of the results to other populations. 

3. Problems with initialization and downloading wearable monitors caused missing data 

which may introduce measurement error. 
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4. The generalization of the results of this dissertation is limited to populations 

composed of individuals who are similar to the participants studied. 

5. By having two researchers conducting simultaneous observations, there is a potential 

bias in direct observation as one researcher observations may influence the other. 

Significance of the Research 

Despite the knowledge that sedentary behaviors are related to negative health 

outcomes independent of physical activity levels, some American adults spend at least 

96% of their time in light-intensity physical activities and in sedentary behaviors, of 

which 55% of that time is spent sitting.12 Having accurate measurement of sedentary 

behaviors is important to understand additional relationships between sedentary 

behaviors for surveillance, identifying health outcomes, and to evaluate changes in 

interventions and health promotion programs.17 

This dissertation had a goal to increase understanding of the measurement of 

sedentary behaviors by: 1) examining the validity of commonly used wearable monitors 

(ActiGraph GT3X+, activPAL™, and SenseWear 2); examining the validity of two 

wearable monitors (GENEActiv and the ActiGraph GT3X+) to classify sedentary and 

stationary time in free-living settings using different cut-points and body locations (wrist 

and waist) (2a) and developing vector magnitude cut-points to classify sedentary and 

stationary time based upon data collected under free-living conditions (2b); and 3) testing 

the accuracy of posture-based sedentary time estimates made by the sedentary sphere 

method from GENEActiv and the ActiGraph GT3X+ wearable monitors during free-

living conditions in both dominant and non-dominant wrists (3a), and testing the 

accuracy of posture-based sedentary time estimates made by the sedentary sphere method 
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from GENEActiv and the ActiGraph GT3X+ wearable monitors during free-living 

conditions with different angle configurations (3b). 

Findings in this dissertation have several implications for research in the 

measurement of sedentary behaviors. Project one results help to understand the degree to 

which light intensity physical activity is misclassified as sedentary behaviors and vice 

versa. Thus, future improvements in wearable monitors’ accuracy to measure energy 

expenditure in the low end of the energy continuum could aim to overcome such 

limitations and successfully integrate sedentary behaviors and light-intensity physical 

activity to the entire activity intensity spectrum measurement. Project two results will add 

arguments to the ongoing debate on what is the most accurate uniaxial cut-point to 

classify sedentary time, and whether vector magnitude cut-points developed with free-

living data will improve the assessment of sedentary behaviors. Project three will help to 

understand whether the combination of an inclinometer feature available in tri-axial 

accelerometers and cut-points will accurately measure sedentary behaviors in free-living 

settings. Project three results also may offer an alternative to complex analytical 

approaches such as machine learning to measure sedentary behaviors. Collectively, the 

three projects have the potential to help researchers and practitioners decide what type 

wearable monitor and data analysis best fits their needs in measuring sedentary 

behaviors. 

Definition of Terms 

• Accelerometers. Devices that measure body movements using changes in 

acceleration that are used to estimate the intensity of physical activity over time.45 

Accelerometers are also known as activity monitors or wearable monitors. 
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• Activity counts. Raw accelerations filtered, digitized, and integrated over a given 

sampling period.46 A common way to express activity counts is integrating them into 

a 1-minute epoch. 

• Area under the receiver operating characteristic curve (AUC). Is a plot of a test 

true-positive rate (y-axis) against the corresponding false-positive rate (x-axis) (i.e., 

sensitivity against 1-specificity). The AUC allows to combine sensitivity and 

specificity into a single measure of "diagnostic accuracy" which facilitates 

comparisons.47 

• Cut-points. Levels of movement that are equivalent to different activity intensities. 

• Epoch. User-specified time interval integrates a filtered digitized acceleration signal 

from an accelerometer.48 

• Glucose transporters (GLUT). Different types of proteins that are critical to glucose 

uptake stimulated by three signals: basal metabolism (GLUT-1), insulin release 

(GLUT-4), and exercise (GLUT-4).49 

• Hazard Ratio. The hazard ratio, sometimes called a relative hazard, is typically used 

to compare time to event data between two treatment groups.50 

• Inactive. A person who is performing insufficient amounts of moderate-to-vigorous 

intensity physical activity; not meeting established physical activity guidelines.10 

• Lipoprotein lipase (LPL). An enzyme that binds to circulating lipoproteins when 

present on the vascular endothelium and is essential for hydrolysis of the triglyceride 

contained in lipoproteins.51 

• Low-Frequency Extension. A filter is designed to detect lower amplitude 

movements over standard filter in ActiGraph accelerometers.52 
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• Metabolic Equivalent (MET). The value of resting oxygen uptake relative to total 

body mass and is generally ascribed the value of 3.5 milliliters of oxygen per 

kilogram of body mass per minute.53 

• Odds Ratio (OR). Is a measure of association between an exposure and an outcome. 

The OR represents the odds that an outcome will occur given a particular exposure, 

compared to the odds of the outcome occurring in the absence of that exposure.54 

• Physical Activity. Any bodily movement produced by skeletal muscles that results in 

energy expenditure.55 

• Physical activity Absolute Intensity. Refers to the energy or work required to 

perform an activity which does not take into account the physiologic capacity of the 

individual. For aerobic activities, absolute intensity may be expressed as the rate of 

energy expenditure in kilocalories per minute or multiples of resting energy 

expenditure expressed as METs and the speed of movement such as walking at 3 

miles per hour or jogging at 6 miles per hour. Absolute intensity for physical 

activities is classified as light (1.6 to 2.9 METs), moderate (3.0 to 5.9 METs) and 

vigorous (6.0 > METs).3 

• Relative Risk (RR). Is a measure of the risk of an outcome in one group compared to 

the risk of the outcome in another group.56 

• Sedentary behavior. Any waking behavior characterized by an absolute energy 

expenditure of ≤1.5 METs while in a sitting or reclining posture.10 

• Vector magnitude. A composite of accelerations from three orthogonal axes 

(vertical, anteroposterior, and mediolateral) of tri-axial accelerometers. For 

ActiGraph the vector magnitude is calculated as follows, Vector magnitude = √ 
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(Vertical2 + anteroposterior2 + mediolateral2).34 For the GENEActiv the vector 

magnitude is calculated as follows, Vector magnitude = Σ [(x2 + y2 + z2)1/2 – 1g].57 
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Chapter 2 1 

REVIEW OF THE LITERATURE 2 

 3 
This chapter provides an overview of the evolution of the sedentary behavior 4 

concept, the health outcomes related to sedentary behaviors, the physiological 5 

mechanisms how sedentary behaviors impact health, the prevalence of sedentary 6 

behaviors, and the measurement of sedentary behaviors. 7 

Evolution of the Sedentary Behavior Concept 8 

The term sedentary behavior is a relatively new term that has gained popularity in 9 

the new millennium. One of the initial definitions of sedentary behaviors was presented 10 

by Hamilton et al.58 who defined sedentary behavior as primarily sitting and doing other 11 

activities that involve low levels of metabolic energy expenditure. According to 12 

Hamilton, some activities that could be deemed as sedentary behaviors are sitting or 13 

watching television. In 2008, Pate et al.17 operationalized the concept of sedentary 14 

behavior by adding the specific range of energy expenditure values and made the 15 

differentiation between sedentary behaviors (1.0-1.5 METs) and light physical activities 16 

(1.6-2.9 METs). In 2010, Owen et al.,16 complemented the existing definitions by making 17 

explicit that sedentary behaviors could happen in different contexts such as commuting, 18 

work sites, domestic environment and during leisure time. 19 

A common practice in the physical activity literature has been to use the term 20 

sedentary to describe individuals who are not meeting physical activity guidelines, but 21 

not high amounts of sedentary time. Accordingly, too much sitting is different than too 22 

little exercising. In an attempt to disambiguate the term and to avoid confusion, the 23 
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Sedentary Behavior Research Network (SBRN) proposed a new definition of sedentary 24 

behavior as, “any waking behavior characterized by an energy expenditure ≤1.5 METs 25 

while in a sitting or reclining posture.”10 The SBRN also suggested that the term 26 

“inactive” should be used to describe those individuals who are not meeting physical 27 

activity guidelines as they have low levels of moderate-to-vigorous physical activity. The 28 

new definition of sedentary behaviors developed by the SBRN seems to have high 29 

acceptance within the academic community as evidenced by its broad use. As standing is 30 

usually difficult to classify, as either sedentary behavior or light intensity physical 31 

activity, the definition of sedentary behavior may change soon and may include both 32 

sedentary behaviors and standing still as stationary type of behaviors. It is important to 33 

notice that this classification is not been still recognized by the scientific community. 34 

Health Outcomes Related to Sedentary Behaviors 35 

The goal of this section of the literature review is to examine the evidence for the 36 

association between sedentary behavior exposures, breaks in sedentary time, and health 37 

outcomes and mortality attributed to sedentary behaviors. 38 

Exposure to sedentary behaviors 39 

Research on the deleterious effects of excessive amounts of sedentary behaviors 40 

can be traced to the middle of the 20th century. Morris et al.’s 59 seminal research 41 

conducted in the 1950’s with the London bus drivers and ticket takers is one of the 42 

earliest published studies in which sedentary behaviors showed a negative health impact. 43 

The purpose of the study was to examine differences in the incidence of ischemic heart 44 

disease events between sedentary bus drivers and active ticket takers employed by the 45 

London Transit Authority. When comparing health outcomes, the drivers had a higher 46 
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incidence of ischemic heart disease when compared with conductors (2.7 vs. 1.9 per 47 

1,000 men-years of study). Although Morris et al. gave no explicit reference to sedentary 48 

behaviors in the study since the purpose of the study was to show the benefits of 49 

occupational physical activity, the study showed that occupational physical inactivity was 50 

a risk factor for developing ischemic heart disease. 51 

Following Morris’ study, most of the research in the 1960’s through the 1990’s 52 

focused on the associations between physical activity and varied health outcomes but not 53 

on sedentary behaviors. Two seminal studies were published by Paffenbarger in the 54 

1970’s (San Francisco longshoremen and the Harvard alumni studies) that highlighted the 55 

importance of active versus sedentary population groups. In the San Francisco 56 

Longshoremen’s study, Paffenbarger et al.60 compared the energy cost of occupational 57 

tasks of longshoremen with office clerks. In comparing mortality rates of longshoremen, 58 

who had a more active job of handling cargo, experienced a coronary death rate one- 59 

quarter lower than the less active clerks. In one of the first prospective cohort studies 60 

published about the health effects of leisure-time physical activity, Paffenbarger et al.2 61 

observed the exposure of low leisure-time physical activity energy expenditure on the 62 

risk of a first heart attack in men who attended Harvard University in the early-to-mid 63 

20th century. The results showed a lower risk of a first heart attack in men who expended 64 

from 500- to 2,000 kilocalories per week (kcal/week) in leisure-time physical activities as 65 

compared with men who reported no leisure-time physical activity. The energy 66 

expenditure associated with the lowest risk was 2,000 kcal/week. In 1989, Leon et al.4 67 

reported the association of leisure-time physical activity metabolic activity units and the 68 

risks for all-cause mortality and disease-specific mortality rates in men with one or more 69 
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coronary heart disease (CHD) risk factors enrolled in the Multiple Risk Factor 70 

Intervention Study. All-cause mortality and fatal and non-fatal CHD events were 20% 71 

lower for men with middle-to-high tertiles levels of leisure time physical activity (47 72 

minutes/day and 124 minutes/day, respectively) as compared with men in the lowest 73 

tertile of leisure-time physical activity (15 minutes/day) (P <0.05). An additional seminal 74 

study published in 1991 by Helmrich et al.1 analyzed data from the University of 75 

Pennsylvania Cohort Study to show the effects of different doses of moderate-to-vigorous 76 

intensity physical activity on mortality attributed to type 2 diabetes. Results showed a 6% 77 

reduction in the risk of type 2 diabetes-related for every 500 kcal/day increment in 78 

physical activity energy expenditure. An overview of these and other studies supporting 79 

the association of physical activity (as compared with sedentary behaviors) and reduced 80 

morbidity and mortality is provided by the expert panel report of the 2008 U.S. Physical 81 

Activity Guidelines.3 82 

Evidence supporting adverse associations between sedentary behaviors and health 83 

outcomes has increased in the past decades. The first studies, published in the 1990’s and 84 

early 2000’s, used cross-sectional and epidemiological prospective designs to show 85 

inverse associations between self-reported television viewing as a sedentary behavior 86 

with disease-specific morbidity and the presence various chronic disease risk factors. In 87 

2004, Dunstan et at.,6 studied the association between television viewing and the risk of 88 

having an abnormal glucose metabolism in 8,299 healthy Australian adults (55.4% 89 

women), aged 25 years or older. Television viewing was measured by self-reported total 90 

time spent watching TV or videos in the previous week. Abnormal glucose metabolism 91 

was based on an oral glucose tolerance test. The data were analyzed using odds ratios to 92 
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determine the association between the exposure and the outcome. Results showed that 93 

television viewing for >14 hours per week had a significantly increased risk of having 94 

type 2 diabetes in men (OR = 2.40, 95% CI = 1.41 to 4.12) and women (OR = 2.20, 95% 95 

CI = 1.32 to 3.61). Alternatively, the risk of having an abnormal glucose metabolism 96 

among television watchers was significant higher for women (OR = 1.49, 95% CI = 1.12 97 

to 1.99), but not for men (OR = 1.16, 95% CI = 0.79 to 1.70). The results were 98 

independent of several confounders such as age, education, family history of diabetes, 99 

cigarette smoking, diet, and physical activity. The authors concluded that physical 100 

activity has a protective effect and TV time has a deleterious effect on the risk of having 101 

abnormal glucose metabolism in adults. 102 

Prospective studies have added evidence to the deleterious effects of sedentary 103 

behaviors on health. In 2008, Howard et al.,8 studied the association between sedentary 104 

time and incidence of colon cancer in 488,720 participants from the NIH-AARP Diet and 105 

Health Study (40.27% women), aged 50–71 years at baseline. Sedentary behaviors were 106 

assessed by asking participants about the average number of hours per day they currently 107 

spent watching television or videos. Incidence of colon cancer was established by 108 

histologically confirmed incident colon and rectal cancer cases. The data were analyzed 109 

by using Cox proportional hazards regression to estimate relative risks (RR) and 95% 110 

confidence intervals (CI) of colon or rectal cancer with age as the underlying time metric. 111 

During an observation period of eight years, results showed that watching television more 112 

than 9 hours per day was significantly associated with an increased incidence of colon 113 

cancer in men (RR=1.61, 95% CI=1.14 to 2.27) but not in women (RR=1.45, 95% 114 

CI=0.99 to 2.12). These associations were independent of total physical activity, age, 115 
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smoking and alcohol consumption, education, race, family history of colon cancer, diet, 116 

and menopausal hormone therapy. The authors concluded that time spent sedentary is 117 

associated with increased colon cancer risk. 118 

In 2010, Wijndaele et al.,9 conducted a 5-year prospective cohort study to identify 119 

the association between hours spent in television watching and cardiometabolic risk 120 

factors defines as waist circumference, triglycerides, HDL-cholesterol, systolic and 121 

diastolic blood pressure, and fasting plasma glucose in 3,846 healthy Australian adults. 122 

The mean age at baseline was 47.64 years (95% CI = 47.17 to 48.11) and 48.61 years 123 

(95% CI = 48.06 to 49.16) for women and men, respectively. Television viewing was 124 

measured by self-reported total time spent watching TV or videos in the previous week. 125 

Cardiometabolic risk factors were assessed in a laboratory setting with trained personnel. 126 

The data were analyzed with multiple linear regression modeling in which the change in 127 

the cardiometabolic risk variables was regressed against changes in TV viewing time. 128 

The results showed that for every 10 hours•week-1 increase in television viewing time 129 

there were significantly associated increases in waist circumference (men: 0.43 cm, 95% 130 

CI = 0.08 to 0.78 cm, P = 0.02; women: 0.68 cm, 95% CI = 0.30 to 1.05, P = 0.001), and 131 

diastolic blood pressure (women: 0.47 mm Hg, 95% CI = 0.02 to 0.92 mm Hg, P = 0.04). 132 

The associations were independent of baseline television viewing time and baseline 133 

physical activity and change in physical activity. The authors concluded that an increase 134 

in television viewing time is associated with adverse cardiometabolic biomarker changes. 135 

Associations between sedentary behaviors and health outcomes also have been 136 

found in population-based studies that included varying types of sedentary behaviors than 137 

watching television. In 2003, Hu et al.,61 analyzed the relationships between television 138 
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watching and risks of obesity and type 2 diabetes in women (n = 50,277 for risks of 139 

obesity; n = 68,497 for risks of type 2 diabetes ), aged 30 to 55 years, from the Nurses’ 140 

Health Study. Sedentary time was assessed by asking participants to list their sitting time 141 

in watching television, sitting at work, sitting while driving, and other sitting such as 142 

meals and reading). Body weight was self-reported. A case of diabetes was considered 143 

when the participant reported one or more of the following criteria: 1) classic symptoms 144 

of type 2 diabetes plus elevated fasting plasma glucose concentrations, 2) two or more 145 

measures of elevated fasting plasma glucose concentrations in the absence of symptoms, 146 

and 3) current treatment with oral hypoglycemic agents or insulin. The data were 147 

analyzed using Cox proportional hazard models. The results showed that time spent 148 

watching television and sitting at work were positively associated with risks of obesity 149 

and type 2 diabetes. Each two hours per day increment of time spent watching television 150 

was associated with a 23% (95% CI = 17% to 30%) increase in obesity risk and a 14% 151 

(95% CI = 5% to 23%) increase in diabetes risk. Also, each two hours per day increment 152 

of time spent sitting at work was associated with a 5% (95% CI = 0% to 10%) increase in 153 

obesity risk and a 7% (95% CI = 0%-16%) increase in type 2 diabetes risk. The results 154 

were independent of age, smoking history, alcohol consumption, physical activity, family 155 

history of diabetes, and diet. The authors concluded that sedentary behaviors, especially 156 

television viewing, were associated with significantly elevated risk of obesity and type 2 157 

diabetes. 158 

In 2005, Brown et al.,62 conducted a 5-year prospective cohort study to determine 159 

the relationship of hours spent sitting on weight gain in 8,071 women, aged 45 to 55 160 

years, enrolled in the Australian Longitudinal Study on Women’s Health. Self-reported 161 
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sitting time and body weight data were obtained using a questionnaire developed for the 162 

study. The data were analyzed using multiple regression analyses. Results showed an 163 

increased mean 5-year weight change among women who spent more time sitting than in 164 

active behaviors (P for trend <0.0001). The results were independent of physical activity, 165 

menopause transition and hysterectomy, smoking transition, and body weight. The 166 

authors concluded that sitting time was independently associated with weight gain over a 167 

5-year period in the cohort study of middle-age Australian women. 168 

In 2009, Gierach et al.,7 studied the association between sedentary time and 169 

incidence of endometrial cancer in 109,621 women from the NIH-AARP Diet and Health 170 

Study, aged 50–71 years at baseline. Sedentary behaviors were assessed by collapsing the 171 

answers to two different questions (time spent watching TV or videos during a typical 24- 172 

hour period over the past 12 months and the time spent sitting during a typical 24-hour 173 

period over the past 12 months) into a sedentary behavior category. Incidence of 174 

endometrial cancer was established by histologically confirmed incidents of the disease. 175 

The data were analyzed by using Cox proportional hazards regression with change in age 176 

as the time scale. Results showed the risk for endometrial cancer significantly increased 177 

with the number of hours of daily sitting (RR = 1.56, 95% CI = 1.22 to 1.99 for 7 or more 178 

hours per day). The results were independent of age, race, smoking status, number of 179 

births, ever use of oral contraceptives, and age at menopause. The authors concluded that 180 

the risk for endometrial cancer increased with number of hours of daily sitting. 181 

Sedentary behaviors have also been associated with mortality. In 2009, 182 

Katzmarzyk et al.,63 studied the relationship between sitting time and mortality among 183 

17,013 Canadians (7,278 men and 9,735 women), aged 18–90 years. The amount of 184 
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sitting time during work, school, and housework was obtained from a lifestyle 185 

questionnaire previously developed and validated for the study. Mortality was determined 186 

by linking the study database with the Canadian Mortality Database. The data were 187 

analyzed by Cox proportional hazards models. Results showed that time spent sitting was 188 

associated with increased mortality rates. For all-cause mortality, sitting three-fourths of 189 

the time had a HR = 1.36 (95% CI = 1.14 to 1.63) and sitting almost all of the time had a 190 

HR = 1.54 (95% CI = 1.25 to 1.91). For cardiovascular disease-related mortality, sitting 191 

three-fourths of the time had a HR = 1.47 (95% CI = 1.09 to 1.96) and sitting almost all 192 

of the time had a HR = 1.54 (95% CI = 1.09 to 2.17). For other causes of mortality, 193 

sitting three-fourths of the time had a HR = 1.65 (95% CI = 1.18 to 2.31) and sitting 194 

almost all of the time had a HR = 2.15 (95% CI = 1.47 to 3.14). The results were 195 

independent of age, smoking status, alcohol consumption, leisure-time physical activity, 196 

and scores on the Physical Activity Readiness Questionnaire (pass/fail/missing). The 197 

authors concluded that a dose–response association exists between sitting time and all- 198 

cause mortality and cardiovascular disease specific mortality. 199 

In 2010, Patel et al.,64 examined relation between leisure time spent sitting and 200 

physical activity on mortality in 123,216 adults (53,440 men and 69,776 women) from 201 

the American Cancer Society’s Cancer Prevention Study II - Nutrition Cohort. 202 

Participants were aged 63.6 ± 6.0 years in men and 61.9 ± 6.5 years in women when 203 

enrolled in the study. Leisure time spent sitting was assessed by using the question, 204 

“During the past year, on an average day (not counting time spent at your job), how many 205 

hours per day did you spend sitting (watching television, reading, etc.)?” Deaths were 206 

identified by linking the study database to the National Death Index. The data were 207 
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analyzed using Cox proportional hazards models with follow-up time in days as the time 208 

axis. Results showed that leisure-time sitting was positively associated with all-cause 209 

mortality rates in both women (3-5 hours per day RR = 1.13, 95% CI = 1.07 to 1.18; >6 210 

hours per day RR = 1.34, 95% CI = 1.25 to 1.44) and men (3-5 hours per day RR = 1.07, 211 

95% CI = 1.03 to 1.12; >6 hours per day RR = 1.17, 95% CI = 1.11 to 1.24). The results 212 

were independent of age, race, marital status, education, smoking status, body mass 213 

index, alcohol use, total caloric intake, comorbidities, and total physical activity. The 214 

authors concluded that the time spent sitting was independently associated with total 215 

mortality, regardless of physical activity level. 216 

In 2012, Matthews et al.,65 studied the association between overall sitting time 217 

and television viewing with mortality in 240,819 adults from the NIH-AARP Diet and 218 

Health Study, aged 50–71 years who did not report any cancer, cardiovascular disease, or 219 

respiratory disease at baseline. Television viewing was assessed by the question, “During 220 

a typical 24-hour period over the past 12 months, how much time did you spend watching 221 

television or videos?” Overall sitting was assessed by the question, “During a typical 24- 222 

hour period over the past 12 months, how much time did you spend sitting? Cause- 223 

specific mortality was assessed through linkage of the study data with the Social Security 224 

Administration Death Master File and the National Death Index. The data were analyzed 225 

using Cox proportional hazards models. Results showed that television viewing (≥7 h/d 226 

compared with <1 h/d) was positively associated with mortality; all-cause mortality (HR 227 

= 1.61, 95% CI = 1.47 to 1.76), cardiovascular mortality (HR = 1.85, 95% CI = 1.56 to 228 

2.20), and cancer mortality (HR = 1.22, 95% CI = 1.06 to 1.40). The results were 229 

independent of age, sex, education, smoking, diet, race, and moderate-to-vigorous 230 
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physical activity. The authors concluded that time spent in sedentary behaviors was 231 

positively associated with mortality and participation in high levels of moderate-to- 232 

vigorous physical activity did not fully mitigate health risks associated with prolonged 233 

time watching television. 234 

The strength of this evidence is confirmed by meta-analyses and systematic 235 

reviews that support the findings. In a meta-analysis with morbidity and mortality 236 

outcomes, Biswas et al.66 found significant association between sedentary behaviors with 237 

all-cause mortality (HR = 1.24, 95% CI = 1.09 to 1.41), cardiovascular disease mortality 238 

(HR = 1.18, 95% CI = 1.11 to 1.26), cardiovascular disease incidence (HR = 1.14, 95% 239 

CI = 1.00 to 1.73), cancer mortality (HR = 1.17, 95% CI = 1.11 to 1.24), cancer incidence 240 

(HR = 1.13, 95% CI = 1.05 to 1.21), and type 2 diabetes incidence (HR = 1.91, 95% CI 241 

1.64 to 2.22). In 2011 Proper et al.,67 conducted a systematic review of the literature on 242 

longitudinal studies for the relationship between sedentary behaviors and health 243 

outcomes. In total, 19 studies met their inclusion criteria, of which 14 were of high 244 

methodologic quality. Results shows moderate evidence for a positive relationship 245 

between time spent sitting and the risk for type 2 diabetes and strong evidence for time 246 

spent sitting and all-cause and cardiovascular disease mortality. 247 

In summary of the health outcomes of sedentary behaviors, two topics emerged. 248 

First, spending more time in sedentary behaviors is adversely associated with health 249 

outcomes and increases pre-mature mortality. Associations between sedentary behaviors 250 

and morbidity include having an abnormal glucose metabolism (for women but not for 251 

men),6 increased risks of developing type 2 diabetes (for men and women),6,67 having a 252 

high diastolic blood pressure (for women),9 developing colon cancer (in men but not for 253 
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women),8 and in developing endometrial cancer in women.7 Exposure to sedentary 254 

behaviors increases waist circumference for men and women9 and sedentary behaviors 255 

contributes to weight gain for women.61,62 Sedentary behaviors also are associated with 256 

all-cause,64–66 cardiovascular disease-related, 65,66 and other diseases-specific mortality 257 

rates.63,65 Second, the associations between sedentary behaviors and morbidity and pre- 258 

mature mortality are independent of physical activity and other physical, 259 

sociodemographic, and behavioral confounders.6–9,61–65 260 

Interruptions in sedentary behaviors 261 

Recent research findings have shown that interrupting long periods of sedentary 262 

time into shorter periods may have a beneficial impact on health outcomes. One of the 263 

initial studies to examine the effects of interrupting sedentary behaviors was reported by 264 

Healy et al. in 2008.68 The investigators conducted a cross-sectional study to examine the 265 

association of breaks in sedentary time with different biological markers of metabolic risk 266 

in 168 adults (65 men and 103 women), aged 53.4 years ± 11.8. Sedentary time was 267 

measured with a hip-mounted ActiGraph 7164 accelerometer during waking hours for 268 

seven consecutive days. A break was classified as an interruption in sedentary time 269 

(minimum 1 minute) in which the accelerometer counts were higher than 100 counts per 270 

minute. Metabolic risk markers included anthropometric measurements, an oral glucose 271 

tolerance test and blood lipids. Blood samples were assayed according to laboratory 272 

protocols. Data were analyzed using linear regression models. Results showed that breaks 273 

in sedentary time were beneficially associated with lower values for waist circumference 274 

(β = -0.16, 95% CI = -0.31 to -0.02, P = 0.026), BMI (β = -0.19, 95% CI = -0.35 to -0.02, 275 

P = 0.026), triglycerides (β = -0.18, 95% CI = -0.34 to -0.02, P = 0.029), and 2-h plasma 276 
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glucose (β = -0.18, 95% CI = -0.34 to -0.02, P = 0.025). The results were independent of 277 

age, sex, employment, alcohol intake, income, education, smoking, family history of 278 

diabetes, diet quality, moderate- to vigorous-intensity time, mean intensity of breaks, and 279 

total sedentary time. The authors concluded that more interruptions in sedentary time 280 

were associated with lower metabolic risk values 281 

In a cross-sectional study published in 2011, Healy et al.69 reported the 282 

associations between objectively assessed sedentary time and breaks in sedentary time 283 

with cardio-metabolic and inflammatory risk biomarkers in 4,757 adults from the 284 

2003/04 and 2005/06 US National Health and Nutrition Examination Survey (NHANES). 285 

Sedentary time was assessed by an ActiGraph 7164 accelerometer using a threshold of 286 

<100 counts per minute to depict sedentary time. Breaks in sedentary time were classified 287 

as counts per minutes in excess of 100 counts per minute within the sedentary periods. 288 

The accelerometer was worn on the right hip during waking hours (except for water- 289 

based activities) for 7 days. Cardio-metabolic and inflammatory risk biomarkers 290 

measured in all participants included waist circumference, resting systolic blood pressure, 291 

non-fasting serum measures of HDL, non-fasting C-reactive protein, triglycerides, plasma 292 

glucose, and insulin Additionally, half of the participants had measured fasting 293 

triglycerides, plasma glucose, and insulin. Data were analyzed with linear regression 294 

analysis. Results showed that breaks in sedentary time were beneficially associated with 295 

lower waist circumferences (P for trend <0.0001) and lower C-reactive protein values (P 296 

for trend = 0.001). The results were independent of age, socioeconomic status, race, 297 

smoking/alcohol use, dietary variables, moderate-to-vigorous physical activity, sedentary 298 

time, and medical history. The authors concluded that breaking up sedentary time had 299 
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significant beneficial associations with cardio-metabolic health. 300 

In addition to cross-sectional studies showing the benefit of interrupting sedentary 301 

behaviors on health outcomes, experimental studies have tested the effects of modifying 302 

sitting durations on cardiometabolic risk factors, particularly glucose levels. In 2012, 303 

Dunstan et al.,70 conducted a cross-over trial to examine the effects of uninterrupted 304 

sitting time compared with sitting time that was interrupted by brief bouts of light- or 305 

moderate-intensity walking on postprandial levels of glucose and insulin in 19 306 

overweight/obese adults (11 men and 8 women) with a mean age 53.8 ± 4.9 years. 307 

Participants completed three experimental conditions lasting one day each, 1) 308 

uninterrupted, continuous sitting, 2) continuous sitting with 2-minute breaks of light- 309 

intensity walking every 20 min, and 3) continuous sitting with 2-minute breaks of 310 

moderate-intensity walking every 20 min. Participants were randomly assigned to group 311 

conditions with >6 days of separation between the group tasks. The dependent variable 312 

was measured by obtaining hourly venous samples and analyzed using standard 313 

laboratory assays. Data were analyzed using generalized estimating equations. The results 314 

showed that interrupting sitting time with short breaks of light- and moderate-intensity 315 

walking lowered glucose metabolism (24.1%, P <0.01 and 29.6%, P <0.0001 for light 316 

and moderate intensity respectively) as compared to uninterrupted sitting. The authors 317 

concluded that interrupting sitting time with short bouts of light- or moderate-intensity 318 

walking lowers postprandial glucose and insulin levels in overweight/obese adults. 319 

In 2013, Peddie et al.,71 conducted a randomized crossover study to compare the 320 

effects of prolonged sitting, continuous physical activity combined with prolonged 321 

sitting, and regular activity breaks on postprandial metabolism in 42 women and 28 men, 322 
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aged 25.9 ± 5.3 years. Enrolled participants completed three experimental conditions 323 

lasting 9 hours each 1) prolonged sitting, 2) walking 30 minutes and then sitting, and 3) 324 

walking 1 minute and 40 seconds every 30 minutes. Participants a consumed a meal- 325 

replacement beverage at 1, 4, and 7 hours during each 9 hour experiment. The order 326 

participants received treatments were assigned randomly and each condition was 327 

separated by a wash-out period of 6 days. The dependent variables of plasma glucose, 328 

insulin, and triglycerides were obtained from venous blood and analyzed using standard 329 

laboratory assays. Samples were obtained every hour from baseline to the end of the 330 

experiment, with additional blood samples obtained at 30 and 45 minutes after the 331 

consumption of each meal-replacement. Areas under the curve (AUC) were calculated for 332 

the dependent variables of insulin, glucose, and triglycerides. Data were analyzed using 333 

mixed models regression analysis. Results showed that the regular activity break 334 

intervention lowered insulin AUC by 866.7 IU · L-1 · 9 h-1 (95% CI = 506.0 to 1227.5 IU 335 

· L-1 · 9 h-1, P <0.001) compared with the prolonged sitting intervention and by 542.0 IU 336 

· L-1 · 9 h-1 (95% CI = 179.9 to 904.2 IU · L-1 · 9 h-1, P <0.001) compared with the 337 

physical activity intervention. The effects of the prolonged sitting and physical activity 338 

interventions on insulin AUC did not differ significantly from each other (difference: 339 

324.7 IU · L-1 · 9 h-1, 95% CI = -38.0 to 687.4 IU · L-1 · 9 h-1, P = 0.079). Alternatively, 340 

the regular activity break intervention lowered plasma glucose AUC by 18.9 mmol · L-1 · 341 

9 h-1 (95% CI = 10.0 to 28.0 mmol · L-1 · 9 h-1, P <0.001) compared with the prolonged 342 

sitting intervention and by 17.4 mmol · L-1 · 9 h-1 (95% CI = 8.4 to 26.3 mmol · L-1 · 9 h- 343 

1, P <0.001) compared with the physical activity intervention. The effects of the 344 

prolonged sitting and physical activity interventions on plasma glucose AUC did not 345 
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differ significantly (difference: 1.6 mmol · L-1 · 9 h-1, 95% CI = 27.4 to 10.6 mmol · L-1 · 346 

9 h-1, P = 0.730). The effects of the physical activity (P = 0.098) and regular activity 347 

break (P = 0.284) interventions on triglyceride AUC were not significantly different from 348 

the effects of the prolonged sitting intervention. The authors concluded that regular 349 

activity breaks were more effective than continuous physical activity at decreasing 350 

postprandial glycemia and insulinemia in healthy, normal-weight adults. 351 

In 2015, Bailey and Locke,72 reported a crossover trial study that tested the effects 352 

of breaking up prolonged sitting time with standing or light-intensity walking on different 353 

cardiometabolic risk markers (plasma glucose, total cholesterol, HDL, triglycerides, and 354 

systolic/diastolic blood pressure) in 10 non-obese adults( 7 men and 3 women) with a 355 

mean age of 24.0 ± 3.0 years. Participants completed three experimental conditions 356 

lasting 5 hours each, 1) uninterrupted sitting, 2) seated with 2-min bouts of standing 357 

every 20 min, and 3) seated with 2-min bouts of light-intensity walking every 20 minutes. 358 

Participants were randomly assigned to group conditions with a minimum wash-out 359 

period of 6 days between each condition. Before the beginning of each condition, two 360 

standardized test drinks were consumed and hourly blood samples and blood pressure 361 

readings were taken. Total cholesterol, HDL, and triglycerides were assessed at baseline 362 

and at 5 hours. The dependent variables of plasma glucose, total cholesterol, HDL, and 363 

triglycerides were obtained every hour from venous blood samples and analyzed using 364 

standard laboratory assays. Hourly blood pressure readings were taken by trained 365 

personnel. The data were analyzed by first calculating total area under the curve (AUC) 366 

for plasma glucose and blood pressure and, then AUC data were analyzed by using 367 

ANOVAs to explore between-trial differences. Effect sizes with eta squared were 368 
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measured as an indicator for the strength of association (etas of .02 = small effect, .13 = 369 

medium effect, and .26 = large effect) between the independent and dependent variable. . 370 

Data from pre- and post-trial lipid parameters were analyzed by using repeated measures 371 

ANOVA to assess differences across conditions. Results showed a significant effect of 372 

condition with a large effect size (partial eta squared= 0.39) for glucose AUC (F = 8.59, p 373 

= 0.001). Glucose was lower after the activity-break condition (mean AUC = 18.5, 95% 374 

CI = 17.0 to 20.0 mmol L/5-h) as compared to the uninterrupted sitting condition (mean 375 

AUC = 22.0, 95% CI = 20.5 to 23.5 mmol L/5-h) and the standing-break conditions 376 

(mean AUC = 22.2, 95% CI = 20.7 to 23.7 mmol L/5-h). There was no significant effect 377 

of the condition for systolic blood pressure AUC and a small effect size (partial eta 378 

squared = 0.03) (F = 0.45, p = 0.65,). There was no significant condition effect but a 379 

small-to-medium effect size (partial eta squared = 0.08) (F = 1.10, p = 0.35,) for diastolic 380 

blood pressure AUC. There was no significant main effect for the condition on changes 381 

in total cholesterol (F = 0.01, partial eta squared = 0.00), HDL (F = 0.09, partial eta 382 

squared = 0.01), or triglycerides (F = 1.45, partial eta squared = 0.10) from baseline to 5- 383 

h. The investigators concluded that interrupting sitting time with frequent brief bouts of 384 

light-intensity activity, but not standing, imparts beneficial postprandial responses that 385 

may improve cardiometabolic health. 386 

On the other hand, there is evidence showing that the beneficial effect of breaking 387 

sedentary time on glucose metabolism is also observed for standing breaks but not only 388 

light intensity physical activity as proposed by Bailey and Locke. For example, In 2016, 389 

Crespo et al.,73 reported a randomized crossover full-factorial study that tested the effects 390 

of incremental intervals of standing, walking, and cycling to a sit-only condition on 24-h 391 
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and postprandial glucose responses in nine (2 men, 7 women) overweight/obese (body 392 

mass index = 29 ± 3 kg·m2) adults with a mean age of 30 ± 15 years. Participants 393 

completed four experimental conditions 1) sitting, 2) standing, 3) cycling, and 4) walking 394 

during an 8-hours simulated workday. Standing, cycling, and walking intervals increased 395 

from 10 to 30 min · h-1 (2.5 h total) during an 8-h workday. Four meals were provided per 396 

condition. Participants were randomly assigned to group conditions with a minimum 397 

wash-out period of 7 days between each condition. The dependent variables were 398 

obtained through continuous interstitial glucose monitoring was performed for 24 hours 399 

for three consecutive days; different glucose metabolism metrics were calculated from 400 

the continuous glucose monitoring, including mean interstitial glucose and total area 401 

under the curve. The data were analyzed with linear mixed models to test for condition 402 

differences. Results showed that compared with sitting (5.7 ± 1.0 mmol · L-1), mean 24-h 403 

glucose during standing (5.4 ± 0.9 mmol · L-1), walking (5.3 ± 0.9 mmol · L-1), and 404 

cycling (5.1 ± 1.0 mmol · L-1) were lower (all P <0.001). Similar results were observed 405 

during the 8-hours simulated workday and after-work evening hours. Compared with 406 

sitting, cumulative 6-h postprandial mean glucose was 5 to 12% lower during standing, 407 

walking, and cycling (P <0.001). Also 6-h postprandial glucose integrated area under the 408 

curve was 24% lower during walking (P <0.05) and 44% lower during cycling (P 409 

<0.001). The authors concluded that replacing sitting with regular intervals of standing or 410 

light-intensity activity during an 8-h workday reduces 24-h and postprandial glucose and 411 

that these effects persist during after work evening hours, with cycling having the largest 412 

and most sustained effect. 413 
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Meta-analysis research designs have been used to examine the consistency of 414 

studies examining the relationship between breaks in sedentary behaviors and health 415 

outcomes. In 2015, Chastin et al.,74 conducted a meta-analysis and systematic review to 416 

study the relationship between breaks in sedentary behavior with adiposity (BMI and 417 

waist circumference), cardiometabolic (glucose, insulin, triglycerides, and cholesterol), 418 

and inflammation markers (C-reactive protein). Studies were included that met the 419 

following criteria, 1) reported a measure of breaks in sedentary behaviors (observational 420 

studies) or used a design that included interruptions of sedentary behaviors (experimental 421 

studies), 2) reported at least one marker of cardiometabolic health as an outcome, 3) 422 

written in English, 4) included human subjects, and 5) were primary research articles. 423 

Thirteen articles were included in the analyses. Observational studies (n=7) were used for 424 

the systematic review and were analyzed by computing a Bayesian posterior probability 425 

of an association between breaks in sedentary behaviors and cardiometabolic markers. 426 

Experimental studies (n=6) were used for the meta-analysis and were analyzed using the 427 

inverse variance method modified for crossover trials. The results for observational 428 

studies did not find an association between breaks in sedentary behaviors and markers of 429 

glucose metabolism, cardiovascular health and inflammation; except for one study by 430 

Healy et al.,69 which found a significant association with C-reactive protein. On the other 431 

hand, observational studies showed that breaks in sedentary behaviors were associated 432 

with positive outcomes in adiposity markers (BMI and waist circumference). The results 433 

for experimental studies in the meta-analysis showed that standing breaks do not produce 434 

significant effect in blood glucose (-2.26%, 95% CI = -12.63 to 8.12) compared to 435 

uninterrupted sitting. However, light-intensity physical activity breaks and moderate-to- 436 
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vigorous physical activity breaks showed significant reductions in blood glucose 437 

postprandial response (-17.42%, 95% CI = -24.25 to -10.60 and -1.40%, 95% CI= -1.60 438 

to -1.20 respectively). Moderate-to-vigorous physical activity breaks in sedentary time 439 

seemed to be more effective in reducing blood glucose than a single prolonged bout of 440 

moderate-to-vigorous physical activity. Regarding insulin levels, light-intensity physical 441 

activity breaks, and moderate-to-vigorous physical activity breaks showed significant 442 

reductions in insulin levels (-14.92%, 95% CI = -20.44 to -9.40 and -23.84%, 95% CI = - 443 

43.46 to -4.22 respectively). Standing breaks also were shown to have a significant effect 444 

on metabolic risk; however, data from only one study was available. Moderate-to- 445 

vigorous physical activity breaks also seemed to be more effective in reducing blood 446 

insulin level than a single prolonged bout of MVPA (17.98%, 95% CI = 9.43 to 26.52). 447 

Breaks in sedentary behaviors failed to have a significant effect on triglyceride levels 448 

(P=0.32). For cholesterol values, results from the two studies investigating the effects of 449 

breaks in sedentary behavior on cholesterol levels could not be pooled, but both reported 450 

null findings. The authors concluded that interrupting bouts of sedentary behavior with 451 

light-intensity activity might help control adiposity and postprandial glycemia. 452 

In summary, three topics emerged from the research cited in this section. First, for 453 

healthy adults, interrupting sedentary time with breaks of light-to-moderate intensity is 454 

beneficial for maintaining normal glucose metabolism and to reduce adiposity metrics, 455 

such as waist circumference. These findings have been observed in observational studies, 456 

experimental studies, and in a meta-analysis. Additional research is needed to identify if 457 

the associations are independent of total sedentary time. Second, findings showing 458 

associations between health outcomes such as blood pressure and inflammatory markers 459 
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are inconsistent and suggest that more research is needed to elucidate whether breaks in 460 

sedentary time are beneficial for altering these health conditions. Third, it is necessary to 461 

elucidate whether stationary standing during a sitting break is equally effective than light- 462 

to-moderate intensity physical activity to gain beneficial effects of breaking up sedentary 463 

time on health outcomes. 464 

Physiological Mechanisms of Sedentary Behaviors 465 

This section provides a brief overview of the physiological mechanisms for which 466 

high amounts of sedentary behaviors have a negative impact on health. As the deleterious 467 

effects of sedentary behaviors on metabolic health appear to be mediated by changes in 468 

lipoprotein lipase (LPL) activity and changes in muscle glucose transporters (GLUT) 469 

protein content,75 this section will review these two proteins in relation to sedentary 470 

behaviors. 471 

The LPL is an enzyme that catalyzes the hydrolysis of circulating chylomicrons 472 

and very low density lipoproteins by releasing their fatty acids for entry into tissue 473 

cells.76 Low levels of LPL are associated with increased circulating triglyceride levels 474 

(hypertriglyceridemia) and decreased HDL cholesterol.58 Hypertriglyceridemia is 475 

associated with increased risks of cardiovascular death, myocardial infarction, 476 

cardiovascular events, and possibly acute pancreatitis.77 Low HDL is associated with 477 

increased risks for myocardial infarction, stroke, sudden death, and severe premature 478 

atherosclerotic disease in the proximal left main coronary artery.78 LPL activity is 479 

reduced in response to both acute and chronic sedentary behaviors with the this response 480 

localized to slow oxidative muscle fibers.51 481 

GLUT is a family of proteins required for the transfer of glucose across the lipid 482 
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bilayer cellular membrane. Cells import glucose by a process of facilitative diffusion 483 

mediated by the GLUT family of proteins. Fourteen GLUT types are expressed in 484 

humans which include transporters for other substrates, including glucose.79 The GLUT-4 485 

protein is found in adipose tissues, skeletal muscle and cardiac muscle. It serves as a 486 

major mediator of glucose removal from the circulation and a key regulator of whole- 487 

body glucose homeostasis.80 Sedentary behaviors affect carbohydrate metabolism 488 

through reductions in GLUT content.75 Thus, with a reduced GLUT content, the 489 

regulation of circulating levels of glucose are modified representing an elevated risk for 490 

developing glucose intolerance and insulin resistance. 491 

Prevalence of Sedentary Behaviors 492 

This section describes the prevalence of sedentary behaviors in two U.S. studies 493 

and two international studies. The studies use questionnaires, records, and accelerometers 494 

to obtain data about time spent in sedentary behaviors. 495 

In 2011, Bauman et al.,81 reported the prevalence of sitting during a single day in 496 

the 2002-2004 International Prevalence Study (IPS). The IPS was a cross-sectional study 497 

of physical activity and sitting time in 20 countries who volunteered to participate in the 498 

study. Sitting time was obtained with a single question from the International Physical 499 

Activity Questionnaire (IPAQ) that asked participants to recall their hours spent sitting on 500 

a usual weekday. A total of 49,493 adults, aged 18–65 years, reported spending an 501 

average of 5.8 ± 3.39 hours/day sitting. The countries with the highest median values for 502 

sitting time (>360 minutes/day) were Taiwan, Norway, Hong Kong, Saudi Arabia, and 503 

Japan. The countries with the lowest median values for sitting time (<180 minutes/day) 504 

were Portugal, Brazil, Colombia, and the U.S. 505 
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The American Time Use Survey (ATUS) is a population-based survey designed 506 

to provide nationally representative estimates of how, where, and with whom Americans 507 

spend their time. The ATUS uses a stratified random sample drawn from households that 508 

have completed the Current Population Survey with a sampling frame weighted to be 509 

representative of the U.S. civilian non-institutional population.82 Participants in the 510 

ATUS complete a detailed diary of time spent for one day in varied activities. Results 511 

from the 2015 ATUS (n = 10,900) showed that for periods classified as leisure time, 512 

Americans spent an average of 3.27 hours/day in sedentary behaviors during weekdays 513 

and 4.14 hours/day during weekends. Among the types of reported sedentary behaviors, 514 

watching television occupied the most time (2.56 and 3.29 hours/day for weekdays and 515 

weekends, respectively). Playing games while using a computer was the second most 516 

common sedentary behavior (0.39 and 0.50 hours/day for weekdays and weekends 517 

respectively). The third most common sedentary behavior was reading (0.32 and 0.35 518 

hours/day for weekdays and weekends respectively). Cumulatively, sedentary behaviors 519 

accounted for two-thirds of the leisure time reported by American survey respondents.83 520 

In 2007, Hagströmer et al.,84 reported results from a cohort study using 521 

accelerometers to determine the time spent in sedentary time in a nationally 522 

representative sample of Swedish adults (56% women), aged 45 ± 15 years. A total of 523 

1,114 participants wore an ActiGraph accelerometer (model 7164) for seven consecutive 524 

days except during water activities. 672 participants were included in the analyses who 525 

met the analytic inclusion criteria of having at least four days of valid accelerometer data. 526 

Sedentary time was defined as less than 100 counts per minute. Results showed an 527 

average sedentary time of 7.8 ± 1.5 hours/day. 528 
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In 2008, Matthews et al.,12 reported sedentary time assessed by accelerometers in 529 

a sub-sample of the 2003-2004 National Health and Nutrition Examination Survey 530 

(NHANES). NHANES is a population survey that includes a representative sample of the 531 

U.S. civilian and noninstitutionalized population. In the sub-sample, 7,176 participants 532 

wore an ActiGraph accelerometer (model 7164) for seven consecutive days. 6,329 533 

participants were included in the analyses who met the analytic inclusion criteria of at 534 

least one day of valid data. Sedentary time was computed as less than 100 counts per 535 

minute. Results showed the average monitor-wearing time was 13.9 hours/day. 536 

Participants were sedentary for 55% of the monitored time, totaling a 7.7 ± 0.04 537 

hours/day, the combination of light-intensity activity and sedentary time makes up 96% 538 

of the average American's waking hours. 539 

In summary, as evidenced by both self-report and wearable monitors-based 540 

measures, adults spend the much of their waking time in sedentary behaviors averaging 541 

nearly 8.0 hours/day. High amounts of time spent in sedentary behaviors are observed for 542 

global reports of sitting time and domain-specific sedentary behaviors (i.e., leisure time). 543 

This is demonstrated by an average of 5.8 hours/day of total sitting time, or 3.27 544 

hours/day engaged in sedentary behaviors during leisure time. 545 

Sedentary Behavior Measurement Methods 546 

Sedentary behaviors have been measured using a variety of self-report methods 547 

and wearable monitors-based methods. These two methods are presented below in more 548 

detail. 549 

Self-report methods 550 
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Self-report methods include a variety of tools used to assess a limited number of 551 

discretionary behaviors thought to be proxy variables of sedentary behaviors. Self-report 552 

methods include single item questions (e.g., time spent watching television or sitting 553 

time),6 multiple sedentary behaviors questionnaires (e.g., watching television, playing 554 

computer/video games, and sitting while listening to music),85 or domain-specific 555 

questionnaires (e.g., sitting at work).86 Healy et al.33 provide a detailed description of the 556 

validity and reliability for self-report questionnaires used to assess sedentary behaviors. 557 

Other self-report methods such as behavioral logs and short term recalls are used to 558 

identify detailed information about sedentary behaviors, although these methods are used 559 

less frequently than questionnaires. The reader is directed to Atkin et al.24 for a 560 

description of other tools used to assess sedentary behaviors such as proxy-report 561 

questionnaires and diaries. 562 

In general, self-report methods have shown acceptable-to-good test-retest 563 

reliability on the order of ρ=0.28–0.93 (Spearman’s rho).33 Concurrent validity 564 

correlation coefficients are in the low-to-moderate range (r =-0.02 to 0.40) when 565 

compared with direct measures of sedentary behaviors, such as accelerometers.33 The 566 

highest concurrent validity correlation coefficients are observed for sedentary behaviors 567 

that are performed on a regular basis and for prolonged periods of time such as sitting at 568 

work and using a computer at home (r=0.69 to 0.74).87 The lowest coefficients are 569 

observed for less regularly performed behaviors such as reading ρ=0.20.88 Also, 570 

concurrent validity coefficients tend to be lower for a composite questionnaire of 571 

different sedentary behaviors than when assessed by a single item (e.g., sitting time).24,33 572 

Self-report measures of sedentary behaviors have strengths and limitations that 573 
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should be noted. Strengths are that self-report methods can be implemented on a large 574 

scale, are relatively inexpensive, do not alter the behavior under investigation,33 and are 575 

useful to identify the type of behavior/context,21 Limitations to their use include 576 

participant burden, systematic reporting errors, administration costs,33 and difficulty in 577 

measuring breaks in sedentary time.25 Despite the limitations, self-report measures of 578 

sedentary behaviors continue to be a primary source of data in the study of sedentary 579 

behaviors for surveillance and health outcomes. 580 

Wearable Monitors-Based Methods 581 

Technological advancements have allowed the development and popularization of 582 

several wearable monitors that are easily available to the general public and for the 583 

physical activity and sedentary behaviors researchers. This section focuses on research- 584 

grade wearable monitors used in sedentary behavior measurement that covers the 585 

following topics: types of wearable monitors, technical features, functioning principles, 586 

approaches to analyze data, and the validity and reliability of the measurement methods. 587 

Types of wearable monitors used to measure sedentary behaviors. Wearable 588 

monitors are used to measure sedentary behaviors that can be classified as energy 589 

expenditure estimation monitors or posture classification monitors.21 Among the several 590 

existing wearable monitors, two stand out as being commonly used as energy expenditure 591 

estimation monitors: the ActiGraph and the GENEActiv. A commonly used posture 592 

classification monitor is the activPAL™ physical activity logger. A recent approach has 593 

emerged in research to use either the ActiGraph or the GENEActiv wearable monitors to 594 

classify sedentary behaviors due to their tri-axial accelerometer-based inclinometer 595 

features.44 596 
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The ActiGraph is a tri-axial accelerometer that provides activity counts for 597 

separate axes (vertical, anteroposterior, and mediolateral) and a composite vector 598 

magnitude of its three axes to estimate movement duration and intensity. The ActiGraph 599 

usually is worn on the waist or on the wrist secured to the body with an elastic band. The 600 

ActiGraph uses a Windows compatible software package (ActiLifeÒ) to initializing the 601 

device, extract data from the recorded activity, and to analyze recorded data. ActiLifeÒ 602 

software has several versions; 9.0.0.0 - April 2012 the newest. A useful feature of the 603 

ActiLifeÒ software is that it allows data analysis using several options. For example, data 604 

can be summarized and analyzed using different user-defined time epochs ranging from 605 

one second and longer. It also is possible to choose different wear time determination 606 

algorithms or different cut-points to estimate movement duration and intensity. The 607 

ActiLifeÒ software allows data to be exported as raw accelerations or as an epoch- 608 

compressed file into .csv format. The processed outputs from the ActiLifeÒ software 609 

include a time stamp, time in selected intensity cut-point ranges, total counts per axis, 610 

vector magnitude counts, time in sedentary breaks, steps count, and steps per minute. The 611 

advantage of the ActiLifeÒ software is that it allows for easy analysis of physical activity 612 

and sedentary behavior data without the need to have extensive data programming 613 

experience. An important limitation of the ActiLifeÒ software is that the purchased 614 

license is required to process all of the records from the ActiGraph wearable monitors. 615 

The GENEActiv is a tri-axial accelerometer that provides activity counts for 616 

separate axes (vertical, anteroposterior, and mediolateral) and a composite vector 617 

magnitude of its three axes to estimate movement duration and intensity. The 618 

GENEActiv is worn on the wrist secured to the body with a factory strap. The 619 
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GENEActiv uses a Windows compatible software package (GENEActiv PC Software) 620 

that allows one to initialize the device and to extract data from the recorded activity. 621 

GENEActiv PC Software has several versions; v3.1 - April 2016 is the newest. Data can 622 

be summarized using different user-defined time epochs ranging from one second and 623 

higher. The software also allows data to be exported as raw accelerations or as an epoch- 624 

compressed file into .csv format. Processed outputs from the GENEActiv PC software 625 

include a time stamp, averages of the individual axes, and vector magnitude. 626 

The activPAL™ is a uniaxial accelerometer that identifies walking, sitting, 627 

standing, steps, and instantaneous cadence using proprietary algorithms 89. The 628 

activPAL™ usually is worn on the anterior aspect of the thigh (midline) attached to the 629 

skin using double-sided medical tape. The activPAL™ uses a Windows compatible 630 

software package (activPAL™ Professional Research Edition). The activPAL™ software 631 

has several versions; v7.2.32 – October 2014 the newest. The software allows one to 632 

initialize the device and to extract data from the activity recorded. Once the data are 633 

downloaded, they are summarized over 15 seconds epochs which allows data to be 634 

exported to .csv format. Outputs from the activPAL™ include a time stamp, steps count, 635 

MET values, sedentary time, upright time, stepping time, sedentary-to-upright 636 

movements, and upright-to-sedentary movements. 637 

Technical features and functioning principle of wearable monitors used to 638 

measure sedentary behaviors. Technical features may vary across brands; however, 639 

accelerometer-based wearable monitors used to measure sedentary behaviors may share 640 

the following characteristics and functioning principles. A single wearable monitor (unit) 641 

can integrate one or several types of sensors, namely motion, physiological, and 642 
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contextual sensors.90 Examples of sensors are accelerometers (motion sensor), skin 643 

temperature sensors (physiological sensor) and light sensors (contextual sensor). 644 

Accelerometers are the most common type of sensor placed in wearable monitors, which 645 

have yielded a common practice of naming them as accelerometers, although a more 646 

precise name would be accelerometer-based wearable monitors. Older models of 647 

accelerometer-based wearable monitors included single vertical axis accelerometers (e.g., 648 

ActiGraph GT1M); modern models include tri-axial accelerometers (e.g., ActiGraph 649 

GT3X+ and GENEActiv). 650 

Most of the accelerometer-based wearable monitors use the same underlying 651 

functioning principle of measuring and recording the frequency and amplitude of 652 

acceleration of the body segment to which they are attached. Often, a proprietary 653 

algorithm applies a digital filter to the raw data to eliminate any acceleration noise 654 

outside of the normal human activity frequency bandwidth. A typical bandwidth filter for 655 

a hip or waist worn accelerometer is 0.2 to 3.0 Hz, which is supposed to filter out 656 

acceleration signals that are likely not to be reflective of human movement.90 Then, using 657 

a manufacturer’s software, the filtered data are integrated (summed or averaged) over a 658 

specified interval of time referred to as an epoch. The epoch data are exported in the form 659 

of timestamped movement counts (also known as activity counts), absolute body 660 

positions, or other user-defined variables, such as breaks in sedentary time. Some of the 661 

wearable monitors, including the ActiGraph and GENEActiv, allow for user defined 662 

epochs while other wearable monitors, such as the activPAL™, summarizes data in 663 

predefined epochs. The activPAL™ summarizes data in a 15-second epoch. 664 
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Tri-axial accelerometers allow obtaining activity counts in individual axes 665 

(vertical, anteroposterior, and mediolateral) or composite measures (vector magnitude). 666 

Additionally, tri-axial accelerometers allow the use of an accelerometer-based 667 

inclinometer feature with which estimations of a subject’s body segment position and 668 

posture are possible. Thus, when there is a change in one’s position, it is possible to 669 

establish an angle between the wearable monitor (attached to a pre-defined body 670 

segment) and a constant vector given by the gravity. For example, the ActiGraph GT3X+ 671 

classifies as standing an angulation between 0º to 17º, sitting 17º to 65º, or lying >65º.91 672 

Accelerometers also allow to record and download a raw signal that is not filtered. 673 

The raw acceleration signal is characterized by several features in multiple domains, 674 

being time and frequency the two most common domains.92 Examples of features for the 675 

time domain are: mean, standard deviation, percentiles, lag-1-autocorrelation; while, total 676 

signal power and frequency of the signal with most power are features within the 677 

frequency domain. As raw signal features provide the possibility of improved estimates, 678 

as compared to the traditional activity count cut-points, its use is becoming increasingly 679 

popular for physical activity and sedentary behavior measurement research. 680 

Approaches to analyze data from wearable monitors used to measure 681 

sedentary behaviors. While there is not a standard approach used to analyze sedentary 682 

behavior data, the most common approach is to analyze accelerometer-based wearable 683 

monitor data using a cut-points approach. Cut-points are numerical values for the 684 

acceleration of movement intensity (activity counts) that reflects differences in the energy 685 

cost of movement. Higher numerical cut-points reflect higher energy costs of movement. 686 

Cut-points are derived from prediction equations in which accelerometer counts are 687 
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regressed against energy expenditure values in kilocalories or in oxygen uptake values 688 

(ml/kg/min).35 Cut-points that reflect sedentary behaviors are usually established for 689 

activity counts equivalent to ≤ 1.5 METs. Several thresholds of activity counts have been 690 

proposed to classify sedentary time from the ActiGraph accelerometer: 50 counts per 691 

minute,35 100 counts per minute,12 150 counts per minute,25 and 500 counts per minute.38 692 

Among these cut-points, 100 counts per minute is the most commonly used threshold. 693 

Even though modern accelerometer-based wearable monitors are capable of measuring 694 

acceleration in three axes, existing ActiGraph cut-points include the vertical axis only. 695 

There also are published vector magnitude cut-points that classify sedentary behaviors 696 

with the GENEActiv accelerometer (217, 386, and 77 counts per minute for left wrist, 697 

right wrist and waist respectively).39 698 

In addition to the selection of a cut-point, the determination of accelerometer wear 699 

time is a common approach for free-living assessment of sedentary behaviors. 700 

Establishing wear-time parameters is important as accelerometers will collect data even 701 

when the monitor is not worn by a subject. If wear-time versus non-wear time is not 702 

differentiated, it is possible for the investigator to misclassify non-wear time as time 703 

spent in sedentary behaviors instead of time when the monitor was not being worn. With 704 

the established amount of wear time, researchers can flag a day as a “valid” or “not- 705 

valid” day regarding a minimum amount of required accelerometer wear time hours per 706 

day. Non-wear time is usually defined as an interval of at least 60 consecutive minutes of 707 

zero activity intensity counts, with allowance for 1-2 minutes of miscellaneous counts 708 

between 0 and 100.13 There are different approaches that are available to classify non- 709 

wear time.13,65,93–95 Typically, to exclude non-wear time it is necessary to run an 710 
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automated computer program mediated for classification algorithms. Customizable 711 

parameters also can be used to classify wear time. For example, the ActiLife® software 712 

(used for ActiGraph wearable monitors), provides a process to evaluate vector magnitude 713 

for non-wear classification.96 It has been recommended that a minimum wear time of 13 714 

h·d⁻¹ is needed to provide a valid daily measure for sedentary and light intensity 715 

activities,97 and to include at least 4 days for analyses.98 However, as some investigators 716 

have used one day of accelerometer data for data analysis, variation exists for the valid 717 

number of days required to include data into the analyses.65 718 

Sophisticated techniques in data analysis have been developed in attempt to 719 

overcome limitations of existing accelerometer scoring methods.26,99 Overall, these new 720 

techniques allow for automatic classification of different activities by posture (e.g., 721 

standing, sitting, and reclining), movement types (e.g., walking, running, and intermittent 722 

activities), the use of more densely sampled data (e.g., 100 Hz versus 30 Hz), and the 723 

integration of multiple information sources (e.g., accelerometry and GPS technology).33 724 

 One of these emerging methods for data analysis is the sedentary sphere. In 2014, 725 

Rowlands et al.41 presented this method for classifying sedentary behaviors based on 726 

posture and activity counts from the GENEActiv. The sedentary sphere has also been 727 

used to classify posture from ActiGraph data.44 This method, allows an application for 728 

posture classification by a simple premise of arm elevation that, combined with activity 729 

counts, can provide estimates of sedentary behaviors.41 The sedentary sphere uses the 730 

gravitational component of the acceleration signal to determine the orientation of the 731 

monitor; hence, the wrist position can also established, which in combination with 732 

activity counts allows for estimates of the most likely posture. The sedentary sphere uses 733 
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the following directions. (1) If the arm is elevated to > 15 degrees above the horizontal 734 

plane and the activity counts are less than 489 counts per each 15-second epoch (light-to- 735 

moderate intensity), the posture is classified as siting and/or lying (sedentary). (2) If the 736 

arm is hanging to <15 degrees below the horizontal plane and the activity counts are less 737 

than 489 counts per each 15-second epoch and, posture is classified as standing (non- 738 

sedentary). (3) If the activity counts are greater than 489 counts per each 15-second 739 

epoch regardless of wrist elevation, posture is classified as standing (non-sedentary). The 740 

value of the sedentary sphere is that, without the need of significant computational 741 

resources or data science experience, it avoids the limitations of using solely the cut- 742 

points approach to determine time spent in sedentary behaviors. 743 

Even more sophisticated approaches, commonly recognized as human activity 744 

classification models are under development. Many of the human activity classification 745 

models involve multi-stage processes in which the raw recorded data (or signal) is 746 

divided into a number of small time segments referred to as windows. From each 747 

window, one or more features are derived to characterize an acceleration signal. 748 

Examples of features extracted from the accelerometer’s signal are: standard deviation, 749 

percentiles, correlations between axes, total signal power, frequency of the signal with 750 

most power, etc.92 The derived features are then used as inputs to a classification 751 

algorithm (e.g., decision trees or artificial neural networks) that associates each window 752 

with an activity type. Although these emerging techniques show considerable promise for 753 

more accurate assessments of sedentary behaviors, challenges arise for their 754 

implementation. For example, the complexity of these approaches may require highly 755 
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dedicated computational resources or skills that may be beyond many researchers’ 756 

experience. 757 

In summary, regardless of the approach used to analyze data from wearable 758 

monitors, the two most common outputs used in research are the volume and breaks of 759 

sedentary behaviors.24 Other metrics such as the number of breaks per hour of sedentary 760 

behaviors are receiving interest from the sedentary behavior research community, 761 

however, the metrics are still under examination.100 Also, new sophisticated techniques 762 

that integrate more features from the accelerometer’s signal are under development; 763 

however, its complexity is a limiting factor to their use physical activity and sedentary 764 

behaviors research. 765 

Validity of wearable monitors used to measure sedentary behaviors. The 766 

purpose of this section is to review the validity of the most commonly used wearable 767 

monitors to measure sedentary behaviors. The validity of energy expenditure estimations, 768 

posture classification methods and machine learning methods will be reviewed. 769 

The ActiGraph and the GENEActiv are devices used predominantly to measure 770 

sedentary behaviors using energy expenditure estimations. Specific to the ActiGraph, the 771 

cut-point value that has received the most of the attention is 100 counts per minute. The 772 

accuracy of using 100 counts per minute to reflect sedentary behaviors has been tested by 773 

several studies. Matthews et al.69 compared the ActiGraph cut-point of 100 counts per 774 

minute to reflect sedentary behaviors with values obtained from a criterion monitor, 775 

Intelligent Device for Energy Expenditure and Activity (IDEEA). In a sample of 19 776 

adults (mean age = 40.1 years), the results showed moderate correlations between the two 777 

monitors when assessing sedentary time (r = 0.59, p <0.01). 778 
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In addition to testing 100 counts per minute as a cut-point for sedentary behaviors, 779 

Kozey-Keadle et al.25 tested the criterion validity of five ActiGraph cut points (50, 100, 780 

150, 200 and 250 counts per minute) against a criterion measure of direct observation. In 781 

a sample of 20 adults (mean age = 46.5 years), the results showed that the 100 counts per 782 

minute underestimated sedentary time by 4.9% and that 150 counts per minute had the 783 

lowest bias, but overestimated sedentary time by 1.8%. In a third study, Lyden et al.100 784 

assessed the criterion validity of the ActiGraph cut-points of 100 and 150 counts per 785 

minute to estimate sedentary behaviors, the absolute number of breaks, and the break-rate 786 

against a criterion measure of direct observation of sedentary behaviors. In a sample of 787 

13 adults (mean age = 24.8 years), results showed that both ActiGraph cut-points 100 and 788 

150 significantly overestimated all sedentary time metrics (total sedentary time, absolute 789 

number of breaks, and break-rate) measured in the study. 790 

There is limited evidence of the validity of other published ActiGraph cut-points 791 

used to classify sedentary behaviors. For example, Silva et al.38 reported using 500 counts 792 

per minute to classify sedentary behaviors, but has provided no evidence for the validity 793 

of the cut-point. Alternatively, Esliger et al.39 compared vector magnitude cut-points for 794 

the GENEActiv accelerometer to reflect sedentary behaviors, light-, moderate-, and 795 

vigorous-intensity physical activity against a criterion measure of indirect calorimetry. In 796 

a sample of 60 adults (mean age = 49.4 years), the results for sedentary behaviors showed 797 

that the GENEActiv demonstrated high values for the area under the receiver operating 798 

characteristic curve (AUC) for each monitor location (Left wrist AUC = 0.98, 95% CI = 799 

0.98 to 0.99; Right wrist AUC = 0.98, 95% CI = 0.97 to 0.99; and Waist AUC = 0.97, 800 

95% CI = 0.96 to 0.98).39 801 
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The most common device used to assess sedentary behaviors by posture 802 

classification is the activPAL™; however, the ActiGraph41–44 and GENEActiv41,44 803 

wearable monitors have been evaluated for their ability to reflect postures with the 804 

monitors accelerometer-based inclinometer feature. Despite the popularity of the 805 

activPAL™, few studies have assessed the criterion validity of the activPAL™ to assess 806 

sedentary behavior by body postures in adults. Instead, the majority of the studies have 807 

assessed the validity of the activPAL™ to count steps.24 Several studies have shown 808 

convergent validity for the activPAL™ against questionnaires,30 and other monitors that 809 

are not considered to be criterion measures for the movement domains studied.33,101,102 A 810 

likely problem for these studies is that the activPAL™ is commonly used as the criterion 811 

to estimate sedentary time. 812 

Several studies have assessed the validity of the activPAL™ to measure postural 813 

changes. Grant et al.89 assessed the criterion validity of the activPAL™ as a measure of 814 

posture against a criterion measure of direct observation. In a sample of 10 adults (mean 815 

age = 43 ± 10.6 years), the results showed high agreement as expressed by a mean 816 

percentage difference of 0.19% (limits of agreement: 0.68% to 1.06%) for time spent 817 

sitting. Steeves et al.103 assessed the criterion validity of the activPAL™ as a measure of 818 

posture against a criterion measure of direct observation. In a sample of 21 adults (mean 819 

age = 37.9 ± 14.2 years), the results showed that the activPAL™ correctly classified 820 

different sitting positions most of the time (self-selected sitting posture 95.2%, legs 821 

crossed at the knee 100%, 90-degree hip and knee angles 100%, legs crossed with ankle 822 

on opposite knee 100%), but only correctly classified sitting with legs outstretched 85.7% 823 

and sitting on a laboratory stool 5% of the time. 824 
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Studies also have evaluated the ability of the activPAL™ to assess sedentary 825 

behaviors and breaks in sedentary behavior. Kozey-Keadle et al.25 tested the criterion 826 

validity of the activPAL™ to assess sedentary behaviors against a criterion measure of 827 

direct observation. In a sample of 20 adults (mean age = 46.5 years), the results showed 828 

that the activPAL™ underestimated sedentary time by 2.8%. Lyden et al.100 assessed the 829 

criterion validity of the activPAL™ to estimate sedentary time, absolute number of 830 

breaks and break-rate against a criterion measure of direct observation. In a sample of 13 831 

adults (mean age = 24.8 ± 5.2 years), the results showed a small but not significant bias 832 

for the activPAL™ as compared to the criterion measure (sedentary time = 1.6%, 95% CI 833 

= -0.1 to 3.4; absolute number of breaks = 0.3%, 95% CI = -7.0 to 7.7; and break rate = 834 

1.0%, 95% CI = -9.1 to 7.0). 835 

As the activPAL™ is limited in distinguishing between sitting and lying due to 836 

the thigh being horizontal in both of these postures, Basset et al.32 tested whether placing 837 

a second activPAL™ monitor on the torso would allow the detection of seated versus 838 

lying postures against a criterion measure of direct observation. In a sample of 15 adults 839 

(mean age = 25 ± 9.4 years), results showed a high level of agreement between the two- 840 

accelerometer technique and the criterion measure (kappa = 0.968, P <0.001). By using 841 

this approach lying down and sitting were correctly classified 100% of the time. 842 

Even though the activPAL™ is the most common device used to assess sedentary 843 

behaviors by posture classification, other accelerometer-based wearable monitors also are 844 

able to classify sedentary behaviors by using an accelerometer-based inclinometer 845 

feature. One of the few published studies of the accuracy of accelerometer-based 846 

inclinometer feature was demonstrated in a free communication poster presented at the 847 
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2010 ACSM annual meeting by McMahon et al.42 . In a sample of 10 participants, the 848 

results showed the ActiGraph GT3X inclinometer functioned accurately classified 40% 849 

and 96.5% of the time spent in standardized and free-sitting activities, respectively and 850 

80% and 30% for standardized and free-lying activities, respectively when compared to 851 

direct observation. Similarly, Peterson et al.43 tested the accuracy of the inclinometer 852 

feature of the ActiGraph GT3X+ accelerometer. In a sample of 28 adults (age range 18 to 853 

20), the results showed that when compared to direct observation the ActiGraph GT3X+ 854 

correctly classified sedentary behaviors 65% of the time (95% CI = 59.1 to 73.9). 855 

 The accuracy of posture classification from wrist-mounted GENEActiv using the 856 

sedentary sphere method has been examined in few studies. Rowlands et al.41 tested the 857 

convergent validity between the sedentary sphere method with GENEActiv data and the 858 

activPAL™ for posture classification. The study included three different samples, 1) 859 

Free-living sample n=13, mean age = 34.5 years in which participants wore an extra 860 

thigh-mounted GENEActiv (next to the activPAL™), 2) Laboratory-based sample n=25, 861 

mean age = 39.8 years, and 3) Hospital in-patients sample n=10, mean age = 75.9 years). 862 

The results showed fair-to-substantial agreement between the wrist-mounted GENEActiv 863 

and the activPAL™ (free-living kappa = 0.65, SD = 0.25; laboratory-based kappa = 0.59, 864 

SD = 0.50; and hospital in-patients kappa = 0.38, SD = 0.11). The posture classification 865 

from the GENEActiv worn at the thigh (free-living sample) had the highest agreement 866 

with the activPAL™ (kappa = 0.90, SD = 0.40).41 In a subsequent study, Rowlands et 867 

al.44 tested the convergent validity for the sedentary sphere method with GENEActiv 868 

data, the ActiGraph GT3X+ data, and the activPAL3™ to classify sedentary behaviors by 869 

posture. In a sample of 34 adults (mean age = 27.2 years) that wore the wearable 870 
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monitors during laboratory and free-living settings, results showed a moderate-to- 871 

substantial agreement among the tested wearable monitors (GENEActiv vs. activPAL3™ 872 

kappa = 0.50, 95% CI = 0.45 to 0.54; GENEActiv vs. ActiGraph kappa = 0.62, 95% CI = 873 

0.56 to 0.68; and ActiGraph vs. activPAL3™ kappa = 0.49, 95% CI = 0.44 to 0.53). 874 

More recently, Pavey et al.102 tested the convergent validity for the sedentary sphere with 875 

GENEActiv data and the activPAL3™ to classify sedentary behaviors by posture. In a 876 

sample of 57 adults (mean age = 28.1 years), the results showed slight underestimation of 877 

the total sedentary time for GENEActiv compared with the activPAL3™ (as showed by 878 

the Bland-Altman plots, mean difference = −3.44 minutes per day, limits of agreement = 879 

−144 to 137 minutes per day), and a moderate agreement as shown by a Mean kappa = 880 

0.53 SD = 0.12. 881 

Literature on the validity of the use of machine learning methods (also known as 882 

human activity classification models) to measure physical activity and sedentary 883 

behaviors have increased in the last decade. Available literature is scattered showing the 884 

efficacy of different models to perform activity recognition,104–108 and to lesser extent, the 885 

validity of such methods to estimate sedentary behaviors. For example, in 2014, Lyden et 886 

al.,26 in a sample of thirteen participants (5 males, 8 females), aged 24.8 ± 5.2 years, 887 

developed and studied the validity of two machine-learning methods (soj-1x and soj-3x 888 

for uniaxial and tri-axial hip-mounted ActiGraph data respectively) to estimate free-living 889 

MET-hours, sedentary time, and time spent in light, moderate and vigorous physical 890 

activity data against a criterion measure of direct observation. Both methods (soj-1x and 891 

soj-3x) were developed using hybrid machine learning approaches that combine artificial 892 

neural networks and decision trees. The data were analyzed using repeated measures 893 
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linear mixed models, percent bias, intraclass correlation coefficient (ICC) and root mean 894 

squared error (rMSE). Results for sedentary minutes for the Soj-1X method showed 895 

%bias= 8.8 (95% CI= 1.1 to 16.4) with significant differences from direct observation, 896 

rMSE= 50.1 (95% CI= 31.7 to 68.5), and ICC= 0.72 (95% CI= 0.37 to 0.89) showing 897 

significant correlations with direct observation. Results for sedentary minutes for the Soj- 898 

3X method showed %bias= 0.5 (95% CI= -4.5 to 5.6) with no significant differences 899 

from direct observation, rMSE= 25.5 (95% CI= 15.4 to 35.6), and ICC= 0.91 (95% CI= 900 

0.78 to 0.97) showing significant correlations with direct observation. Overall, 901 

differentiating sedentary behavior from light intensity activities in free-living individuals 902 

was superior with the soj-3x compared with the soj-1x. 903 

In summary, the validity of most of the methods used to assess sedentary 904 

behaviors is still under assessment. The lack of accepted criterion measures to assess 905 

sedentary behaviors is problematic as available monitors are not yet capable of 906 

successfully integrating energy expenditure and posture assessments when measuring 907 

sedentary behaviors. Promising methods based on machine learning methods are also 908 

under development but its validity and applicability is still limited. 909 

Direct Observation 910 

Direct observation is a method of collecting evaluative information in which the 911 

researcher watches the subject in his or her usual environment without changing that 912 

environment.109 There are several sampling methods available to conduct direct 913 

observation, including focal, instantaneous, and scan sampling methods, which are the 914 

most likely methods to be used in physical activity and sedentary behaviors research. 915 

Focal sampling refers to a technique in which the researcher observes one individual for 916 
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an established length of time to make a record with the duration or frequency of the 917 

observed behaviors. Instantaneous sampling is a technique in which the researcher 918 

records an individual’s current activity at preselected moments in time (e.g., every 5 919 

minutes). Scan sampling is similar to instantaneous sampling with the difference that 920 

instead one individual, the researcher is observing a group of individuals.110 921 

Direct observation has a long tradition in research in different applied disciplines 922 

such as psychology, sociology, and zoology. However, its use in physical activity 923 

research has been overlooked as a viable methods as it requires a significant amount of 924 

work in relation to obtaining data and may be monotonous and time consuming for 925 

researchers.111 Some advantages of using direct observation in physical activity research 926 

includes its ability to provide detailed information about the physical activity type, 927 

duration, intensity, and the context in which the observed behaviors occur.112 Limitations 928 

of direct observation include a potential for observers to be biased, participants’ reactivity 929 

to being observed, and the labor-intensive nature of the sampling. Considerable time is 930 

required for researchers to travel to and to collect data in the participant environment.112 931 

The main applications of direct observation in the physical activity field has been 932 

derived from the research led by McKenzie et al.112 McKenzie and colleagues developed 933 

several systems that have been designed to directly observe people in their environments 934 

are described briefly. The Behaviors of Eating and Activity for Children’s Health: 935 

Evaluation System (BEACHES) was designed to measure children’s physical activity, 936 

sedentary and eating behaviors at home and in selected environmental, social and 937 

physical, settings that may influence these events.113 The System for Observing Fitness 938 

Instruction Time (SOFIT) was designed to measure simultaneous measurement of student 939 
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activity levels, lesson contexts in which the lessons occur, and teacher interactions 940 

relative to promoting physical activity and fitness.114 The System for Observing Play and 941 

Leisure in Youth (SOPLAY) was designed to measure the number of participants and 942 

their physical activity levels during play and leisure opportunities in targeted areas.115 943 

The System for Observing Play and Active Recreation in Communities (SOPARC) was 944 

developed to measure the number of participants and their physical activity levels in park 945 

and recreation settings.116 Last, the System for Observing Children’s Activity and 946 

Relationships during Play (SOCARP) was designed to measure children’s physical 947 

activity levels on the playground while simultaneously assessing the contextual variables 948 

of social group size, activity type, and pro- and anti-social interactions with peers.117 A 949 

common characteristic for all of the direct observations systems developed by McKenzie 950 

and colleagues is that they allow for time spent in activity level classifications such as 951 

sedentary, walking, moderate and vigorous. 952 

More recently, direct observation has been used as a criterion measure in 953 

sedentary behaviors research. In 2011, Kozey-Keadle et al.,25 examined the criterion 954 

validity of wearable monitors to assess sedentary behaviors in a sample of 20 overweight 955 

inactive office workers, five men and fifteen women, aged 46.5 ± 10.7 years. Participants 956 

were directly observed for two 6-hour periods while wearing an activPAL™ and an 957 

ActiGraph GT3X. The criterion measurement was direct observation using focal 958 

sampling with duration coding to record either sedentary (sitting and lying down) or non- 959 

sedentary behaviors. In 2013, Lyden et al.,26 used direct observations as the criterion to 960 

develop and validate two machine-learning algorithms to estimate physical activity and 961 

sedentary behaviors in free-living settings. Participants were directly observed on three 962 
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separate occasions for 10-hours periods while wearing an ActiGraph GT3X on their 963 

right-hip. The criterion measure was direct observation using focal sampling with 964 

duration coding to record participant behavior by activity type, intensity, and duration. 965 

In summary, direct observation has been sparsely used for physical activity 966 

research in some specific contexts.112–116 Its use as a criterion measure for sedentary 967 

behaviors research is increasing in recent years.25,26 Some advantages of using direct 968 

observation for sedentary behaviors research includes, it provides detailed information 969 

about the type, duration, and the context in which the observed behaviors occur. 970 
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Chapter 3 

METHODS 

 

This chapter includes the methods used in the three separate studies that compose 

chapters 4 to 6 of this dissertation. These studies focused on the assessment of sedentary 

behaviors based on wearable monitors. Project one examined the validity for energy 

expenditure estimations during sedentary and light activities made by wearable monitors 

in laboratory conditions. Project two tested the accuracy of different uniaxial cut-points 

to classify sedentary and stationary time in free-living conditions and developed vector 

magnitude cut-points to classify sedentary and stationary time. Project three examined the 

accuracy of posture-based sedentary behavior estimates made by the sedentary sphere 

method in free-living settings. The independent variables are abbreviated as IV and the 

dependent variables as DV for the explanation of the analysis. 

Project One - Wearable monitors criterion validity for energy expenditure estimates 

in sedentary and light activities. 

Purpose 

To examine the validity of three wearable monitors (ActiGraph GT3X+, 

activPAL™, and SenseWear 2) to estimate intensity for sedentary-to-light activities in 

adults as compared with oxygen uptake measured in ml•kg-1•min-1 (1PA). 

Null Hypothesis 

There will be no difference between energy expenditure estimates for sedentary-

to-light activities made by the tested wearable monitors (ActiGraph GT3X+, activPAL™, 
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and SenseWear 2) and energy expenditure estimates from the criterion measure of 

indirect calorimetry (1HA). 

Sample 

A convenience sample of sixteen participants (n = 8 men, n = 8 women) with an 

age range 19-47 years (mean age 25.38 ± 8.58 years), body mass index (BMI) range 

18.8-35.0 kg/m2 (mean 24.6 ± 4.6 kg/m2) were enrolled in the study. 

Independent Variables 

Energy expenditure estimates were made by each monitor under assessment with 

their name and abbreviation as follows: 

• ActiGraph (IVA) 

• activPAL™ (IVB) 

• SenseWear Pro 2 (IVC) 

The independent variables were operationalized as dichotomous variables: 

sedentary behaviors (0) and light-intensity physical activities (1) levels. Sedentary 

behaviors values were assigned to energy expenditure estimates <1.5 METs while light-

intensity values were assigned to energy expenditure estimates ≥1.5 METs. 

Dependent Variables 

Energy expenditure measured by oxygen uptake in ml/kg/min for seven 

sedentary-to-light activities (Cleaning a kitchen; Standing while reading; Sitting while 

typing; Sitting while gaming; Treadmill walking at 1.0 mph (0.45 m/s), 1.5 mph (0.67 

m/s), and 2.0 mph (0.90 m/s)) performed by the participants in a randomly assigned order 
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during seven minutes each. The dependent variable was operationalized as a dichotomous 

variable: sedentary behaviors (0) and light-intensity physical activities (1) levels. 

Sedentary behaviors values were assigned to activities with an energy expenditure <1.5 

METs while light-intensity values were assigned to activities with an energy expenditure 

≥1.5 METs. 

Covariates 

No covariates were included in this study. 

Procedures Required to Test Hypotheses 

• The independent variables (IVA, IVB, and IVC) were standardized to METs and 

classified as sedentary or light-intensity for each activity performed. 

• The dependent variable (DV) was standardized to METs. 

• The first two minutes (minutes 1-2) and the final minute of data (minute 7) of 

each activity were dropped from the analysis. 

• Analyses were conducted by averaging the four 1-minute epochs of each activity 

into a one variable reflecting the average energy cost for the activity. 

Statistical Analyses 

• Computed Mean Percent Error (MPE) for each of the three wearable monitors 

relative to the criterion measure (IVA vs. DV, IVB vs. DV, and IVC vs. DV). 

• Performed Equivalency testing for each of the wearable monitors relative to the 

criterion value (IVA, IVB, and IVC vs. DV). 

• Prepared Bland-Altman plots for each of the three wearable monitors relative to 

the criterion measure (IVA vs. DV, IVB vs. DV, and IVC vs. DV). 
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• Computed kappa statistics for each of the three wearable monitors relative to the 

criterion measure (IVA vs. DV, IVB vs. DV, and IVC vs. DV). 

• Computed sensitivity and specificity for each of the wearable monitors relative to 

the criterion value (IVA vs. DV, IVB vs. DV, and IVC vs. DV). 

All analyses are statistically significant at P<.05. 

Inclusion and Exclusion Criteria 

Inclusion. Healthy adults with a BMI in the normal-to-obese type 1 category 

(BMI 18.5 to 34.9), ages 18-65, and able to walk unassisted on a motorized 

treadmill at 2.0 mph were included for study participation.  

Exclusion. Persons with any disability that could inhibit daily physical activity, 

vulnerable population such as cognitively impaired, persons unable to provide 

their own consent, and pregnant women were excluded from study participation. 

Project Two - Wearable monitors accuracy to classify sedentary and stationary time 

under free-living conditions. 

Purposes 

Purpose 1. To test the accuracy of time spent in free-living sedentary and 

stationary behaviors using selected cut-points obtained from ActiGraph GT3X+ uniaxial 

measures and GENEActiv vector magnitude measures as compared with the criterion 

measure of direct observation. 
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Purpose 2. To develop optimal vector magnitude cut-points from the ActiGraph 

and GENEActiv to classify sedentary and stationary time using data obtained under free-

living conditions. 

Null Hypotheses 

Null Hypothesis 1. There will be no difference between free-living sedentary and 

stationary behaviors classifications made by the selected cut-points and free-living 

sedentary and stationary behaviors classifications from the criterion of direct observation. 

Null Hypothesis 2. There will be no difference between free-living sedentary 

behavior classifications made by the developed vector magnitude cut-points and free-

living sedentary behavior classifications from the criterion of direct observation. 

Sample 

A convenience sample of twenty participants (n = 10 men, n = 10 women) with 

and age range 21-46 years (mean age 30.25 ± 6.43 years), body mass index range 18.51-

29.76 kg/m2 (mean 22.7 ± 3.1 kg/m2) was enrolled in the study. By chance all of the 

participants were right-handed. 

Independent Variables 

Independent variables for purpose 1 (IVA1 to IVA22). Sedentary and 

stationary time (1-minute) classifications for each monitor at selected body locations (left 

wrist, right wrist, right hip), and for varying cut-points (ActiGraph single axis cut-points 

of 50, 100, 150, 200, 250, and 500 counts per minute and GENEActiv vector magnitude 

cut-points of 217 and 386 counts per minute) for a total of 22 computed independent 
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variables. An example of combinations of independent variables for the ActiGraph and 

the GENEActiv are below. 

• ActiGraph Left Wrist 50 Counts per minute 

• ActiGraph Right Wrist 50 Counts per minute 

• ActiGraph Right Hip 50 Counts per minute 

• GENEActiv Left Wrist 217 Counts per minute 

• GENEActiv Right Wrist 386 Counts per minute 

Each of the independent variables (IVA1 to IVA22) were operationalized as a 

dichotomous variable having the levels of, non-sedentary (0) when the tested monitor had 

a value above the respective cut-point and sedentary (1) when the tested monitor had a 

value bellow the respective cut-point. For example, for an ActiGraph cut-point of 50 

counts per minute, an activity with 45 counts per minute would correspond to a computed 

variable equal to 1 and classified as sedentary. 

Independent variables for purpose 2 (IVB1 to IVB26). Cut-points used to 

classify time as sedentary or stationary for each monitor at selected body locations (left 

wrist, right wrist, right hip), and for varying epoch lengths (1-minute, 15-second, and 1-

second) for a total of 26 computed independent variables. An example of combinations of 

independent variables for the ActiGraph and the GENEActiv are below. 

• ActiGraph Left Wrist 1-minute sedentary epoch 

• ActiGraph Left Wrist 1-minute stationary epoch 

• ActiGraph Right Wrist 15-second sedentary epoch 

• ActiGraph Right Hip 15-second sedentary epoch 
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• GENEActiv Left Wrist 1-second sedentary epoch 

• GENEActiv Right Wrist 1-second sedentary epoch 

Independent sedentary variables (IVB1 to IVB13) were operationalized as a 

dichotomous variable having the levels of, non-sedentary (0) when the tested monitor had 

a value above the respective cut-point and sedentary (1) when the tested monitor had a 

value bellow the respective cut-point. For example, using a cut-point of 455, an 

ActiGraph worn on the left-wrist yields a 15-second epoch with 300 counts. The 

corresponding computed variable would be equal to 1 indicating the behavior is 

sedentary. 

Independent stationary variables (IVB14 to IVB26) were operationalized as a 

dichotomous variable having the levels of, non-stationary (0) when the tested monitor 

had a value above the respective cut-point and stationary (1) when the tested monitor had 

a value bellow the respective cut-point. For example, using a cu-point of 18 counts per 

second, an ActiGraph right-wrist 1-second epoch with 15 counts per second would be 

equal to 1 and that the behavior is stationary. 

Dependent Variables (Criterion Variables from Direct Observation) 

The criterion measure was direct observation with focal sampling and duration 

coding for conditions for six activity categories (walking, running, sports/exercise, 

household chores, standing, and sitting/lying down), in five different contexts (household, 

transportation, occupation, sports/conditioning and leisure). Activity types were coded as: 

walking = 1, running = 2, sports/exercise = 3, household chores = 4, standing = 5, 

sitting/lying down = 6, private = 7, unobserved = 8, and error = 9. Activity context were 

coded as: household = 1, transportation = 2, occupation = 3, sports/conditioning and 
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leisure= 4, and leisure = 5. The minimum duration for each code was one second. Each of 

the activity categories is described below: 

• Walking. This activity category included walking for all locomotion purposes, 

walking in flat or inclined surfaces, and walking up or down stairs. Incidental or 

incomplete steps that didn’t result in moving from one place to another were not 

included in this category (e.g., weight shifting). 

• Running. This activity category included continuous and short bouts of running or 

jogging (e.g., jogging for exercising or short runs to cross the street). 

• Sports and conditioning exercise. This activity category included playing sports or 

performing continuous or intermittent conditioning exercises. Other exercises 

different than running or jogging were included in this category (e.g., weight 

lifting, yoga, Pilates, or gym classes). 

• Household chores. This activity category included housekeeping activities such as 

dish washing, gardening, vacuuming, and doing the laundry. 

• Standing. This activity category included standing with or without upper body 

movements while bearing the body weight in one or both lower limbs. Incidental 

or incomplete steps that didn’t result in moving from one place to another were 

included in this category. 

• Sitting and lying down. This activity category included various body positions in 

which the body weight was not supported by the participant’s feet. Instead, the 

body weight was supported by the buttocks, thighs or back; this included sitting, 

sitting in a laboratory stool, reclining and lying down (supine and prone). 



	 68	

• Private. When during the data collection sessions the participant required private 

time (e.g., restrooms use), researchers recorded this time as ‘private’ and resumed 

the activity recording as soon as the participant finished the private activity. 

• Unobserved. When the participant was available to be observed but out of the 

sight of the researchers (e.g., turning corners), researchers recorded this time as 

‘unobserved.’ 

• Error. When researcher made an error or unable to determine an accurate coding 

for a given activity. 

Participants were observed directly in their free-living environment by two 

independent researchers for 6-hours on two days, a weekday and a weekend day. Each 

researcher independently recorded each activity performed on an IPad tablet. Every time 

a participant changed the activity, researchers made an annotation reflecting the new 

activity. A commercially available app, Timestamped Field Notes app was used to make 

annotations.118 

Six dichotomous dependent variables were computed from the direct observation 

data; 2 dichotomous 1-minute criterion variables (sedentary and stationary).2 

dichotomous 15-second criterion variables (sedentary and stationary), and 2 dichotomous 

1-second criterion variables (sedentary and stationary).  

The 1-minute sedentary variable (sedentary or non-sedentary) was created in 

which the seconds of sitting and lying down were considered sedentary activities; a 

minute was considered sedentary when most of its seconds where sedentary (i.e., between 

31-60 seconds per minute). The 1-minute sedentary variable was operationalized as 

dichotomous variable with values of (0) for non-sedentary minute and (1) sedentary 
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minute. The 1-minute stationary variable (stationary or non-stationary) was calculated 

using the same criteria as listed for the 1-minute sedentary variable except that standing, 

sitting and lying down were considered stationary type of activities. The 1-minute 

stationary variable was operationalized as dichotomous variable with values of (0) for 

non-stationary minute and (1) stationary minute. 

The two 15-second criterion variables (sedentary and stationary) were computed 

using the same criteria as listed for the 1-minute sedentary and 1-minute stationary 

variables, except that the duration was 15-second epoch rather than 1-minute epoch. 

The 1-second sedentary variable (sedentary or non-sedentary) was created in 

which the seconds of sitting and lying down were considered sedentary activities. The 1-

second sedentary variable was operationalized as dichotomous variable with values of (0) 

for non-sedentary second and (1) sedentary second. The 1-second stationary variable 

(stationary or non-stationary) was calculated using the same criteria as listed for the 1-

second sedentary variable, except that standing, sitting and lying down were considered 

stationary type of activities. The 1-second stationary variable was operationalized as 

dichotomous variable with values of (0) for non-stationary second and (1) stationary 

second. 

Covariates 

No covariates were included in the study analyses. 

Procedures Required to Test the Hypotheses.  

The observations obtained from the direct observation and the wearable monitors 

were randomly divided into a training dataset (50%) and a testing (50%) dataset. The 
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training dataset was used to develop new equations to measure sedentary behaviors. The 

testing dataset was used to determine the validity of the new equations. 

Statistical Analyses 

Several computations were made to test hypothesis 1, to determine the accuracy 

of the selected 1-minute cut-points to classify an activity obtained from direct observation 

as sedentary or stationary. 

• Percent Errors were computed for each of the tested wearable monitors, cut-points 

and locations relative to the criterion measures obtained from direct observation 

(IVA1 to IVA22 vs. 1-minute sedentary criterion variable, and IVA1 to IVA22 

vs. 1-minute stationary criterion variable). 

• Kappa statistics were computed for each of the tested wearable monitors, cut-

points and locations relative to the criterion measure obtained from direct 

observation (IVA1 to IVA22 vs. 1-minute sedentary criterion variable, and IVA1 

to IVA22 vs. 1-minute stationary criterion variable). 

• Sensitivity and specificity were computed for each of the tested wearable 

monitors, cut-points and locations relative to the criterion measure obtained from 

direct observation (IVA1 to IVA22 vs. 1-minute sedentary criterion variable, and 

IVA1 to IVA22 vs. 1-minute stationary criterion variable). 

To test hypothesis 2, the development of vector magnitude cut-points, the 

following procedures were used to analyze the data. 
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• Using the training dataset, receiver operating characteristic (ROC) curve analyses 

was conducted and optimal cut-points were obtained using the minimum distance 

method for 1-minute, 15-second, and 1-second epochs. 

• Using the testing data set, computed percent error for each of the tested wearable 

monitors, estimated cut-points and locations relative to the criterion measure 

obtained from direct observation (IVB1 to IVB26 vs. 1-minute sedentary criterion 

variable, IVB1 to IVB26 vs. 1-minute stationary criterion variable, IVB1 to 

IVB26 vs. 15-second sedentary criterion variable, IVB1 to IVB26 vs. 15- second 

stationary criterion variable, and IVB1 to IVB26 vs. 1-second sedentary criterion 

variable, IVB1 to IVB26 vs. 1-second stationary criterion variable). 

• Using the testing data set, computed kappa statistics for each of the tested 

wearable monitors, estimated cut-points and locations relative to the criterion 

measure obtained from direct observation (IVB1 to IVB26 vs. 1-minute sedentary 

criterion variable, IVB1 to IVB26 vs. 1-minute stationary criterion variable, IVB1 

to IVB26 vs. 15-second sedentary criterion variable, IVB1 to IVB26 vs. 15- 

second stationary criterion variable, and IVB1 to IVB26 vs. 1-second sedentary 

criterion variable, IVB1 to IVB26 vs. 1-second stationary criterion variable). 

• Using the testing data set, computed sensitivity and specificity for each of the 

tested wearable monitors, estimated cut-points and locations relative to the 

criterion measure obtained from direct observation (IVB1 to IVB26 vs. 1-minute 

sedentary criterion variable, IVB1 to IVB26 vs. 1-minute stationary criterion 

variable, IVB1 to IVB26 vs. 15-second sedentary criterion variable, IVB1 to 

IVB26 vs. 15- second stationary criterion variable, and IVB1 to IVB26 vs. 1-
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second sedentary criterion variable, IVB1 to IVB26 vs. 1-second stationary 

criterion variable). 

All analyses were regarded as statistically significant with a P <.05. 

Inclusion and Exclusion Criteria.  

Inclusion. Healthy adults with a BMI in the normal- to-overweight category (BMI 

18.5 to 29.9), ages 18-65, and able to freely ambulate by walking and/or running 

were included for study participation.  

Exclusion. Persons with any disability that could inhibit daily physical activity, 

vulnerable population such as cognitively impaired, persons unable to provide 

their own consent, and pregnant women were excluded from study participation. 

Project Three. Accuracy of posture-based sedentary behavior estimates made by the 

sedentary sphere method in free-living settings 

Purposes 

Purpose 1. To test the accuracy of posture-based sedentary time estimates made 

by the sedentary sphere method from GENEActiv and ActiGraph GT3X+ wearable 

monitors during free-living conditions in both dominant and non-dominant wrists. 

Purpose 2. To test the accuracy of posture-based sedentary time estimates made 

by the sedentary sphere method from GENEActiv and ActiGraph GT3X+ wearable 

monitors during free-living conditions with different angle configurations. 

Null Hypotheses 
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Null Hypothesis 1. There will be no difference between free-living sedentary 

behavior classifications made by the sedentary sphere method from GENEActiv and the 

ActiGraph GT3X+ wearable monitors in both dominant and non-dominant wrists and 

free-living sedentary behaviors classifications from the criterion measure of direct 

observation. 

Null Hypothesis 2. There will be no difference between free-living sedentary 

behavior classifications made by the different configurations of the sedentary sphere 

method from GENEActiv and the ActiGraph GT3X+ and free-living sedentary behavior 

classifications from the criterion measure of direct observation. 

Sample 

A convenience sample of twenty participants (n = 10 men, n = 10 women) with 

and age range 21-46 years (mean age 30.25 ± 6.43 years), body mass index range 18.51-

29.76 kg/m2 (mean 22.7 ± 3.1 kg/m2) participated in the study. By chance all of the 

participants enrolled in this study were right-handed. 

Independent Variables 

Independent variables for purpose 1 (IVA1 to IVA4). Sedentary time estimates 

made by the sedentary sphere method (15-second epoch) from each monitor under 

assessment (ActiGraph and GENEActiv) and location (non-dominant wrist and dominant 

wrist) for a total of 4 computed independent variables.  

• GENEActiv non-dominant (IVA1) 

• GENEActiv dominant (IVA2) 

• ActiGraph non-dominant (IVA3) 
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• ActiGraph dominant (IVA4) 

Independent variables were operationalized as a dichotomous variable having the 

levels of, non-sedentary (0) and sedentary (1) according to the sedentary sphere 

classifications. 

Independent variables for purpose 2 (IVB1 to IVB20). Sedentary time 

estimates made by different configurations of the sedentary sphere method (15-second 

epoch) from each monitor under assessment (ActiGraph and GENEActiv) and location 

(non-dominant-wrist and dominant wrist) for a total of 20 computed independent 

variables.  

• Configurations 2-5 (IVB1 to IVB16). Varying arm elevation thresholds (5, 10, 

20, 25 degrees below the horizontal plane, respectively) and with the intensity 

classified as light-to-moderate (<489 counts per 15-second epoch). 

•  Configuration 6 (IVB17 to IVB20). the arm elevation threshold is constant at 15 

degrees below the horizontal plane and applied vector magnitude sedentary cut-

points for 15-second epoch developed previously (GENEActiv non-dominant 65 

counts per 15-second epoch, GENEActiv dominant 61 counts per 15-second 

epoch, ActiGraph non-dominant 455 counts per 15-second epoch, and ActiGraph 

dominant 495 counts per 15-second epoch). 

Independent variables were operationalized as a dichotomous variable having the 

levels of, non-sedentary (0) and sedentary (1) according to the sedentary sphere 

classifications. 

Dependent Variables (Criterion Variables from Direct Observation) 
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The technique used to collect data was direct observation with focal sampling and 

duration coding for conditions for six activity categories (walking, running, 

sports/exercise, household chores, standing, and sitting/lying down), in five different 

contexts (household, transportation, occupation, sports/conditioning and leisure). Activity 

types were coded as: walking = 1, running = 2, sports/exercise = 3, household chores = 4, 

standing = 5, sitting/lying down = 6, private = 7, and unobserved = 8. Activity context 

were coded as: household = 1, transportation = 2, occupation = 3, sports/conditioning and 

leisure= 4, and leisure = 5. The minimum duration for each observation code was one 

second. 

A 15-second dichotomous sedentary criterion variable was created for each 

activity category in which sitting and lying down seconds were coded as sedentary 

activities. Each 15-second time period was considered sedentary when most of the 

seconds where in sedentary behaviors (i.e., between 9-15 seconds per 15-second epoch). 

The dependent variable was operationalized as dichotomous variable with values of (0) 

for non-sedentary and (1) sedentary. 

Covariates 

No covariates were included in this study. 

Procedures Required to Test Hypotheses 

A SAS program was created in order to replicate the data process made by the 

sedentary sphere Excel spreadsheets. 

Statistical analyses 
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• Performed Equivalency testing for each of the sedentary sphere configurations to 

the criterion value (IVA1 to IVA4 vs. dependent variable, and IVB1 to IVB20 vs. 

dependent variable). 

• Computed Percent Errors for each of the wearable monitors and configurations of 

the sedentary sphere relative to the criterion measure obtained from direct 

observation (IVA1 to IVA4 vs. dependent variable, and IVB1 to IVB20 vs. 

dependent variable). 

• Presented Bland-Altman plots for each of the wearable monitors and 

configurations of the sedentary sphere relative to the criterion measure obtained 

from direct observation (IVA1 to IVA4 vs. dependent variable, and IVB1 to 

IVB20 vs. dependent variable). 

• Computed kappa statistic for each of the wearable monitors and configurations of 

the sedentary sphere relative to the criterion measure obtained from direct 

observation (IVA1 to IVA4 vs. dependent variable, and IVB1 to IVB20 vs. 

dependent variable). 

• Computed sensitivity and specificity for each of the wearable monitors and 

configurations of the sedentary sphere relative to the criterion measure obtained 

from direct observation (IVA1 to IVA4 vs. dependent variable, and IVB1 to 

IVB20 vs. dependent variable). 

Inclusion and exclusion criteria 

Inclusion. Healthy adults with a BMI in the normal to overweight category (BMI 

18.5 to 29.9), ages 18-65, and able to freely ambulate by walking and/or running 

were included for study participation. 
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Exclusion. Persons with any disability that could inhibit daily physical activity, 

vulnerable population such as cognitively impaired, persons unable to provide 

their own consent, and pregnant women were excluded from study participation. 
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Chapter 4 

WEARABLE MONITORS CRITERION VALIDITY FOR ENERGY 

EXPENDITURE IN SEDENTARY AND LIGHT ACTIVITIES 

 

Abstract 

Background. Wearable monitors (WMs) are used to estimate the time spent in 

sedentary behaviors (SBs) and light-intensity physical activities (LPAs) and their 

associated energy cost; however, the accuracy of WMs in measuring behaviors on the 

lower end of the intensity spectrum is unclear. The aim of this study was to assess the 

validity of 3 WMs (ActiGraph GT3X+; activPAL, and SenseWear 2) in estimating the 

intensity of SB and LPA in adults as compared with the criterion measure of oxygen 

uptake measured by indirect calorimetry (oxygen uptake, VO2). 

Methods. Sixteen participants (age: 25.38 ± 8.58 years) wore the ActiGraph 

GT3X+, activPAL, and SenseWear devices during 7 sedentary-to-light activities. 

VO2 (mL/kg/min) was estimated by means of a portable gas analyzer, Oxycon Mobile 

(Carefusion, Yorba Linda, CA, USA). All data were transformed into metabolic 

equivalents and analyzed using mean percentage error, equivalence plots, Bland-Altman 

plots, kappa statistics, and sensitivity/specificity. 

Results. Mean percentage error was lowest for the activPAL for SB (14.9%) and 

LPA (9.3%) compared with other WMs, which were >21.2%. None of the WMs fell 

within the equivalency range of ±10% of the criterion mean value. Bland-Altman plots 
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revealed narrower levels of agreement with all WMs for SB than for LPA. Kappa 

statistics were low for all WMs, and sensitivity and specificity varied by WM type. 

Conclusion. None of the WMs tested in this study were equivalent with the 

criterion measure (VO2) in estimating sedentary-to-light activities; however, 

the activPAL had greater overall accuracy in measuring SB and LPA than did the 

ActiGraph and SenseWear monitors. 

Keywords: Accelerometers, Accuracy, Low intensity, Metabolic estimations, 

Objective measurement, Sedentary behaviors. 
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Introduction 

Sedentary behavior (SB) is an important determinant of health.24 Accurate 

assessment of this behavior is useful for epidemiological research and to evaluate changes 

for interventions and programs.35 Self-report has been the most common method to 

quantify SB, however, its validity is still under assessment.39,65 Therefore, objective 

measurement with sophisticated wearable monitors has emerged to overcome self-

reporting biases, yet, many challenges encompass its use.25,33,36,37,119 To date, the 

treatment and understanding of the data obtained from wearable monitors is still very 

limited.33,120 Further, most of the available wearable monitors have been extensively 

evaluated for accuracy to estimate moderate-to-vigorous physical activity (PA) and not 

SB or light intensity physical activity (LPA). 

As many of the adults from developed and developing countries spend most of 

their time in SB and LPA,121 it is critical to assess the validity of wearable monitors for 

SB and LPA. Early work in understanding energy expenditure (EE) has described the 

lack of ability for wearable monitors to measure EE in the sedentary-to-light intensity 

spectrum.72 More recently, Calabro et al.40 assessed the validity of a variety of wearable 

monitors to estimate EE during light- to- moderate intensity activities finding a percent 

error ranging from 9.5 to 30.5. Even though their work provides important information to 

consider a wearable monitor when there is interest in tracking low intensity activities, 

several questions remain related to what are the most valid and reliable objective 

wearable measures of SB and LPA. 

Currently, there are many types of wearable monitors’ brands available (e.g., 

ActiGraph, activPAL™, SenseWear) to measure PA and SB that have been extensively 
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evaluated for accuracy to estimate moderate-to-vigorous PA. However, their ability to 

estimate EE on the lower end of the intensity spectrum, such as SB and LPA, is less well 

known. For example, the ActiGraph, a triaxial accelerometer (ActiGraph LLC, 

Pensacola, FL, USA), measures acceleration in three individual axes (vertical, antero-

posterior, and medial-lateral) and provides activity counts for separate and for a 

composite vector magnitude of these three axes; however, the primary determination of 

SB using the ActiGraph is often based on only one axis using an intensity threshold of 

<100 counts per minute (cpm). There has been some concern about the accuracy of this 

threshold as it has underestimated sitting time by 5%. While a 150 cpm seems to be a 

more accurate cut-point for the Actigraph,25 there are several proposed cpm thresholds to 

classify SB: 50 cpm,35 100 cpm,65 150 cpm,25 and 500 cpm.38 In another example of a 

monitor to measure SB and LPA, the activPALTM PA logger (PAL™ Technologies Ltd, 

Glasgow, UK) is a uniaxial accelerometer and inclinometer that identifies walking, 

sitting, standing, steps, and instantaneous cadence.89 The activPAL™ has shown 

accuracy for distinguishing sitting/lying down from standing postures and classifying 

time stepping;25,122 however, the estimated metabolic equivalents (METs) values from the 

activPALTM at various speeds (2 mph to 4 mph) are significantly different (P <0.0001) 

from the criterion of oxygen uptake.31 A third example of a monitor to measure SB and 

LPA is the SenseWear Armband 2 (BodyMedia, Pittsburgh, PA, USA), that integrates 

information from a bi-axial accelerometer and other physiological sensors (heat flux, 

temperature, and galvanic skin response) to provide estimates of EE using a proprietary 

algorithm.123 This wearable monitor overestimates EE at various walking/running speeds 

ranging from 2 mph to 8 mph (P <0.0001) as compared to the criterion of oxygen 
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uptake.124 

The accuracy (validity) for each of these wearable monitors for estimating EE 

during sedentary-to-light activities is unclear. One way to assess validity of the wearable 

monitors is to compare their outputs against a criterion measure (criterion validity). The 

criterion validity describes the relationship between wearable monitors outputs and 

physiological measures that reflect more directly the energy cost of the activity. Thus the 

goal of this study was to examine the validity of three wearable monitors (ActiGraph 

GT3X+, activPAL™, and SenseWear 2) to estimate intensity for sedentary-to-light 

activities in adults as compared with oxygen uptake measured in ml•kg-1•min-1. We 

hypothesized that the validity of EE estimates made by the tested wearable monitors 

(ActiGraph, activPAL™, and SenseWear) would be low as most of the wearable 

monitors are validated for measuring moderate to vigorous PA but not SB nor LPA. 

Materials and methods 

Participants 

A convenience sample of sixteen participants (n = 8 men, n = 8 women) with an 

age range 19-47 years (mean age 25.38 ± 8.58 years), body mass index range 18.8-35.0 

kg/m2 (mean 24.6 ± 4.6 kg/m2), no contraindications for exercise (assessed with the 

physical activity readiness questionnaire - PAR-Q),125 and ability to walk unassisted on a 

motorized treadmill at 2.0 mph participated in the study. Prior to participation, all 

participants read and signed an informed consent document approved by the Arizona 

State University institutional review board. 

Procedures 
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Participants were instructed to avoid vigorous exercise the day before the testing 

and to eat their usual diet. Each participant performed seven sedentary-to-light activities 

in a randomly assigned order. Activities close to the light-intensity activity threshold of 

1.5 METs were selected based on values listed in the 2011 Compendium of Physical 

Activities.126 Every activity was performed for 7 min, with 4 min of rest between 

activities. Participants were instructed to be silent during the monitoring periods. The 

activities were performed twice, with at least 24 hours between trials. Participants were 

instructed to perform the activities as follows: 

1) Treadmill walking at 1.0 mph (0.45 m/s), 1.5 mph (0.67 m/s), and 2.0 mph (0.90 

m/s) – to walk using their normal gate at each speed, and not to use the handrails 

for support. 

2) Cleaning a kitchen (cleaning) – to simulate cleaning a kitchen and dishes using a 

dry rag. Tasks included clearing dishes off a counter space, simulating washing 

and drying dishes, placing dishes in a cupboard, and wiping the counter. 

3) Standing while reading (reading) – to stand in place and read a book silently. 

4) Sitting while typing (typing) – to sit at a computer to type a given a paragraph. 

Participants were instructed to sit up straight and maintain that posture while 

typing. 

5) Sitting while gaming (gaming) – to be seated and quietly play a board game, 

which required the participant to put five objects in a defined order. Participants 

also rolled a dice and moved their game piece a number of spaces based on their 

score obtained from ordering the objects. Participants competed against the 

researcher to more accurately simulate playing a board game. 
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Wearable Monitors 

Each participant wore the three wearable monitors under assessment and the 

criterion monitor simultaneously during the seven selected activities. The criterion 

measure, oxygen uptake in ml•kg-1•min-1, was measured with the Oxycon Mobile 

portable metabolic unit (CareFusion, Yorba Linda, CA, USA);127 the Oxycon Mobile was 

calibrated before each test according to the manufacturer's specifications. 

The ActiGraph was worn on an elastic belt on the right hip. The ActiGraph was 

initialized to collect data at 30 Hz. The activPAL™ was worn on the anterior and medial 

portion of the right thigh attached to the skin by a hypoallergenic medical tape. The 

SenseWear Armband was worn on the left upper arm of the individual using the factory 

elastic strap. 

Data management and processing 

Researchers kept a written record of the time each activity was performed; for 

example, walking 1 mph was performed 1:00 PM to 1:07 PM. Upon finishing data 

collection, data were downloaded from each of the wearable monitors to a desktop 

computer. Data from two trials performed by each of the sixteen participants were 

included for data analysis resulting in a maximum of 32 trials. 

To ensure that a steady state of VO2 had been attained during each activity and to 

avoid small discrepancies between start and stop times for each activity, the first two 

minutes (minutes 1-2) and the final minute of data (minute 7) were dropped from the 

analysis. Accordingly, minutes 3-6 of each activity were utilized to identify the activity 
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intensity for each wearable monitor. This process yielded four 1-minute-epochs for each 

subject in each activity. 

Capabilities for data summarizing and measurement units are different among the 

selected wearable monitors; as a result, data output lengths were standardized to a one-

minute epoch and the measurement units were standardized to METs. A MET is defined 

as the energy cost of a specific activity divided by a standard resting EE of 3.5 ml•kg-

1•min-1. Table 1 summarizes how the measurement units for the criterion and the 

wearable monitors output values were transformed into METs. 

 

Table 1 - Calculations used to obtain metabolic equivalents (METs) from 
monitors and the criterion measure 
Monitor Original Units Equation used to calculate METs 
Oxycon Mobile ml•kg-1•min-1 ml•kg-1•min-1 / 3.5 
Actigraph Counts Per Minute (CPM) 1.439008 + (0.000795 x CPM) a 
activPAL™ MET•h MET•h / 60 
SenseWear METs No conversion needed 
a From: Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, inc. accelerometer. 
Med Sci Sports Exerc. 1998 May;30(5):777-81. 

 
Statistical analysis 

Analyses were conducted by averaging the four 1-minute epochs of each activity 

into a one variable reflecting the average energy cost for the activity. The variables were 

stratified into two groups according to their MET values; SB (<1.5 METs: reading, 

typing, and gaming), and LPA (≥1.5 METs: walking 1 mph, walking 1.5 mph, walking 2 

mph, and cleaning). As each participant completed two trials for each activity, we 

performed a test-retest reliability analysis (ICC) for each wearable monitor prior to 

comparison to the criterion measure. 
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Mean Percent Error (MPE) was calculated to assess the proportion of error for 

each of the three wearable monitors relative to the criterion measure. MPE was calculated 

using the equation: MPE = [(Measured Score – True Score)/True Score] x 100. The true 

score was the criterion value (VO2 in METs) and the measured score was the MET value 

obtained from each wearable monitor. A positive MPE indicated a MET value 

overestimation for the wearable monitor whereas a negative MPE indicated a MET value 

underestimation for the wearable monitor.128 

Equivalency testing was used to examine whether the MET value for each of the 

wearable monitors was statistically equivalent to the criterion MET value. Equivalence 

testing is an alternative approach to testing for significant differences between means.129 

Equivalence testing requires researchers to identify a clinically-meaningful range (i.e., 

equivalence zone) which permits comparisons between the values for wearable monitors 

and the criterion values in the equivalence zone. If the full 90% CI range of a wearable 

monitor lies within the equivalence zone then it can be concluded (with an α <0 .05) that 

the wearable monitor value is equivalent to the criterion value. Based on previous 

published work,130 we established ±10% of the criterion mean MET value as the 

equivalence zone, by choosing the same values we will facilitate comparisons when 

needed. 

Bland-Altman plots131 were used to show the distribution of the error and to 

assess systematic variation between the criterion MET value and each wearable monitor 

MET value. The Bland-Altman plot is a graphical method to compare two measurement 

techniques. In this method, the difference score between two measures (i.e., criterion 

MET value- the wearable monitor MET value) is plotted against the averages of the two 
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measures. The error distribution can be observed within three horizontal reference lines 

that are drawn: mean difference (zero deviation line), upper limit of agreement (+1.96 

SD), and lower limit of agreement (-1.96 SD). In order to provide a statistical reference 

for systematic bias between the criterion MET value and each wearable monitor MET 

value, the difference score between methods is regressed upon the average of the two 

scores. Thus, the regression line provides information whether the wearable monitor 

value becomes more or less accurate at varying levels of the criterion value. A flat 

regression line in the Bland-Altman plot indicates that the MET estimate of the wearable 

monitor varies in the same manner as the criterion value, a positive slope indicates that 

the wearable monitor is positively biased when compared to the criterion MET value, and 

a negative slope indicates that the wearable monitor is negatively biased when compared 

to the criterion MET value. The White test was used to examine the presence of 

heteroscedasticity.132 

Kappa statistic was used to observe agreement between each wearable monitor 

and the criterion value for classifying activities while taking into account the agreement 

occurring by chance.133 Data were dichotomous indicator variables for SB (0) or LPA (1). 

The kappa value interpretation is based on recommendations from Landis and Koch134 as 

follows: 0–0.2 = slight agreement, 0.2–0.4 = fair agreement, 0.4–0.6 = moderate 

agreement, 0.6–0.8 = substantial agreement, and 0.8–1.0 = almost perfect agreement. 

Sensitivity and specificity were calculated to measure the accuracy of the 

wearable monitors to classify an activity as SB or LPA. Sensitivity is the proportion of 

true positives (i.e., correct MET category for the wearable monitor and the criterion 

value) that are correctly identified by the wearable monitor (true positive proportion). 
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Sensitivity was calculated using the formula: Sensitivity = True positives / (True 

positives + False negatives).135 A sensitivity value close to 1 shows that the wearable 

monitor is able to accurately classify a high proportion of the activities into the correct 

category; a sensitivity value close to 0 indicates that the wearable monitor fails to classify 

activities into the correct category. Specificity refers to the proportion of true negatives 

(i.e., correct exclusion of the wearable monitor and the criterion value from the incorrect 

category) that are correctly classified by the wearable monitor (true negative proportion). 

Specificity was calculated using the formula: Specificity = True negatives / (False 

positives + True negatives).135 A specificity value close to 1 shows that the wearable 

monitor is able to exclude a high proportion of the activities from being classified into the 

incorrect category. A specificity value close to 0 indicates that the wearable monitor is 

unable to exclude activities from being classified into the incorrect category. Significance 

was set at the p <0.05 probability level. All analyses were performed using SPSS Version 

21 (IBM Corporation, Armonk, NY, USA) and SAS Version 9.3 (SAS Institute Inc., 

Cary, NC, USA). 

Results 

ICC test-retest values were high for all wearable monitors (0.94, 0.97, 0.99, and 

0.85 for Oxycon Mobile, ActiGraph, activPALTM, and SenseWear, respectively). Tables 

2 and 3 present means, SD, and 95% CIs in METs for the criterion and all wearable 

monitors under assessment for SB and LPA respectively. MPE is presented for the 

ActiGraph, activPALTM, and SenseWear wearable monitors referenced to the criterion 

value. For both SB and LPA, MPEs were lowest for the activPALTM and highest for the 
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SenseWear monitors. When SB and LPA were combined, MPEs were lowest for the 

ActiGraph and highest for the SenseWear. 

 

Table 2 - Measured MET values for sedentary behaviors (<1.5 METs) and mean 
percent error (MPE) 

 METs 
 Criterion Actigraph activPAL™ SenseWear 

Standing 

reading 

na 30 21 15 29 
Mean 1.13 1.44 1.40 1.07 
(SD) (0.18) (0.00) (0.00) (0.07) 

[95% CI] [1.07 - 1.20] [1.44 - 1.44] [1.40 - 1.40] [1.05 - 1.10] 
MPE NA 32.48 32.34 -2.55 

Sitting 

 typing 

na 31 22 16 30 
Mean 1.25 1.44 1.25 1.96 
(SD) (0.17) (0.01) (0.00) (0.77) 

[95% CI] [1.19 - 1.32] [1.44 - 1.45] [1.25 - 1.25] [1.68 - 2.25] 
MPE NA 12.96 0.98 56.05 

Sitting  

board  

games 

na 30 21 15 29 
Mean 1.17 1.44 1.27 1.67 
(SD) (0.16) (0.01) (0.05) (0.63) 

[95% CI] [1.11 - 1.23] [1.44 - 1.45] [1.24 - 1.30] [1.42 - 1.91] 
MPE NA 21.67 12.36 41.05 

All  

Sedentary  

Combined 

na 91 64 46 88 
Mean 1.18 1.44 1.30 1.57 
(SD) (0.17) (0.01) (0.07) (0.68) 

[95% CI] [1.15 - 1.22] [1.43 - 1.44] [1.28 - 1.32] [1.42 - 1.71] 
MPE NA 22.22 14.89 31.79 

a The number of valid data points is different due to monitor error 

 

Table 3 - Measured MET values for light intensity activities (>1.5 METs) and 
mean percent error (MPE) 

 METs 
 Criterion Actigraph activPAL™ SenseWear 

Walking  

1 mph 

na 31 22 16 29 
Mean 2.19 1.55 2.22 3.06 
(SD) (0.27) (0.10) (0.44) (0.53) 

[95% CI] [2.09 - 2.28] [1.51 - 1.60] [1.98 - 2.46] [2.86 - 3.26] 
MPE NA -29.88 0.06 40.68 
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Table 3 - Measured MET values for light intensity activities (>1.5 METs) and 
mean percent error (MPE) 

 METs 
 Criterion Actigraph activPAL™ SenseWear 

Walking  

1.5 mph 

na 30 21 16 29 
Mean 2.46 1.80 2.94 3.45 
(SD) (0.28) (0.20) (0.50) (0.47) 

[95% CI] [2.35 - 2.56] [1.71 - 1.89] [2.68 - 3.21] [3.27 - 3.63] 
MPE NA -27.42 27.10 41.14 

Walking  

2 mph 

na 30 21 15 29 
Mean 2.74 2.35 3.41 3.86 
(SD) (0.30) (0.32) (0.06) (0.49) 

[95% CI] [2.63 - 2.85] [2.20 - 2.49] [3.38 - 3.45] [3.68 - 4.05] 
MPE NA -15.71 23.88 42.36 

Cleaning  

kitchen 

na 30 21 15 29 
Mean 1.68 1.47 1.43 3.04 
(SD) (0.32) (0.03) (0.04) (0.74) 

[95% CI] [1.56 - 1.80] [1.45 - 1.48] [1.41 - 1.46] [2.76 - 3.32] 
MPE NA -11.20 -13.17 82.18 

All  

Light  

Combined 

na 121 85 62 116 
Mean 2.26 1.78 2.50 3.35 
(SD) (0.48) (0.39) (0.81) (0.65) 

[95% CI] [2.17 - 2.35] [1.70 - 1.87] [2.29 - 2.71] [3.23 - 3.47] 
MPE NA -21.15 9.30 51.58 

a The number of valid data points is different due to instrument error 

 

Based upon the equivalence plots displayed in figure 1, none of the wearable 

monitors (and their associated CI) fell within the equivalency range of ±10% for the 

criterion mean. The ActiGraph fell above the equivalence zone for SB and below the 

zone for LPA; the activPALTM provided estimates closest to the equivalency range for 

both SB and LPA; and, the SenseWear was over the equivalence range for both SB and 

LPA. 
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Figure 1    Equivalence Plots for Sedentary Behaviors and Light Intensity 
Physical Activities Compared with the Criterion Measure. Grey area 
represents +/-10% for the criterion mean (equivalence zone), black bars 
represents 90% confidence interval for the test monitor 

 

Bland-Altman plots (Figure 2) revealed narrower levels of agreement for the 

wearable monitors when measuring SB (0.56, 0.55, and 1.62 METs for ActiGraph, 

activPAL™, and SenseWear, respectively) than when measuring LPA (1.42, 1.31, and 

2.20 METs for ActiGraph, activPAL™, and SenseWear respectively). For SB, the 

ActiGraph and the activPAL™ had no pronounced variation across the intensity range, 

meanwhile the SenseWear showed a slight cluster of data points below the mean 

difference line. The variation for LPA was greater for all of the devices compared to the 

variation observed in SB; the ActiGraph had greater variation at higher intensity levels 

with a negative slope indicating a negative bias for EE as the intensity levels increased. 
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Heteroscedasticity was found for the that activPAL™ (p = 0.11) and SenseWear (p = 

0.30) for SB but not for LPA. 

 

  

  

  
Figure 2    Bland-Altman plots for sedentary behaviors and light intensity physical 
activities MET values compared with the criterion value. Left panel shows sedentary 
behaviors, right panel shows light intensity physical activities. 
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Table 4 shows the kappa statistics for agreement between the wearable monitors 

and the criterion measure to classify SB and LPA as well as results for sensitivity and 

specificity. There was a slight overall agreement among the instruments for measuring 

SB. For LPA, the agreement was fair for the ActiGraph and moderate for the 

activPAL™. When data for SB and LPA were combined, the agreement increased 

markedly. For SB, both the ActiGraph and activPAL™ had high sensitivity but low 

specificity. For LPA, both the ActiGraph and activPAL™ had fair sensitivity and good 

specificity, meanwhile the SenseWear had good sensitivity but low specificity. 

 

Table 4 - Kappa statistics, sensitivity, and specificity for the monitors MET values 
compared to the criterion MET values 

   ActiGraph activPALTM SenseWear 

Sedentary 
Behaviors 

Kappa statistics -0.03 (p=0.02) 0 (p=NA) 0.11 (p=0.08) 
Sensitivity 0.98 1.00 0.65 
Specificity 0.00 0.00 0.66 

Light 
Intensity 
Activities 

Kappa statistics 0.37 (p=0.01) 0.53 (p=0.14) 0 (p=NA) 
Sensitivity 0.73 0.84 1.00 
Specificity 1.00 1.00 0.00 

Combined 
Kappa statistics 0.64 (p=0.06) 0.80 (p=0.06) 0.58 (0.05) 

Sensitivity 0.98 1.00 0.57 
Specificity 0.68 0.81 0.98 

 

Discussion 

The aim of the present study was to examine the accuracy of three wearable 

monitors (ActiGraph GT3X+, activPAL™ and SenseWear 2) to estimate EE during 

sedentary and light-intensity physical activities in adults as compared with oxygen uptake 

measured by indirect calorimetry. The results showed overall low accuracy of the three 

wearable monitors to estimate EE in METs. These findings emphasize the need for more 
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refinements in the low spectrum of the EE measurements given the necessity of 

accurately estimates of SB and/or LPA in the regard of its relation with mortality and 

chronic diseases.16 The analyses are relevant as estimations made by the tested wearable 

monitors are often used in PA research and commonly used to quantify behaviors in the 

lower range of intensity. While the wearable monitors validity and reliability has been 

demonstrated in the moderate-to-vigorous EE spectrum, the tested wearable monitors 

showed considerable limitations in measuring the metabolic cost of SB and LPA. For 

example, Calabró et al.40 examined the validity of EE estimates during sedentary-to-

moderate intensity activities for different monitors compared to the Oxycon Mobile. They 

reported a 25.5% and 22.2% underestimation for the ActiGraph and activPAL™ monitors 

respectively. Their magnitude of underestimation is similar to what we found in the 

current study for the ActiGraph (21.15%), but differs for the activPAL™ (9.30%), the 

discrepancies found may be explained by the fact that their protocol included less 

structured activities that could have increased the amount of error for the ActivPALTM 

monitor. Similarly, Kozey-Keadle et al.25 conducted a study to examine the validity of 

two monitors to classify SB against direct observation as the criterion. They found that 

both the ActiGraph and activPAL™ monitors underestimated time spent in SB by 4.9% 

and 2.8%, respectively. They also tested the monitors for their ability to detect changes 

between sedentary and active. They found that the activPAL™ was more precise in 

measuring time in SB and more sensitive in detecting reductions in sitting time. Even 

though the Kozey-Keadle et al.25 study and the current study used different metrics 

(Percentage Bias vs. MPE) and outcomes (time spent in SB vs. EE), the results are 

similar in the sense that the ActivPAL™ monitor performed best when estimating SB. 
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Possible explanations for the measurement error observed in the current study are 

that arm movements related to certain activities that might cause the SenseWear not to 

differentiate arm-movements (such as typing) from free ambulation. In addition, a small 

range of motion for the hip while walking at slow speeds on the treadmill may cause that 

the ActiGraph misclassified some LPA as SB. Another possible explanation of error 

measurement of the ActiGraph relates to the characteristics of the Freedson prediction 

equation used to estimate EE values.136 The Freedson equation was validated using 

treadmill walking and running activities ranging from 3-9 mph. The EE estimates may be 

less accurate with lower intensity activities. We acknowledge the availability of other 

equations to estimate METs from the ActiGraph cpm in adults;137–142 however, we are 

unaware of an equation to estimate EE during SB-to-LPA for the ActiGraph. Thus, we 

chose Freedson’s equation136 given its common use in the field and validity (R2 = 0.82; 

SEE = ± 1.12 METs). 

Among the three assessed wearable monitors, the activPALTM was located in the 

anterior and medial thigh. The activPALTM showed the lowest amount of error compared 

with the other wearable monitors (MPE = 14.89, MPE = 9.30 for SB and LPA, 

respectively). Thus, locating wearable monitors in the lower limbs seemed to be a more 

suitable location when measuring SB and LPA. These findings need further confirmation 

with wearable monitors placed in even more distal locations, such as the ankle. 

Alternatively, the activPAL™ may include a more sensitive transducer than the 

ActiGraph or SenseWear wearable monitors which may make it more suitable for SB and 

LPA.90 However, this assertion has to be tested as we investigated the validity of the 

equations of each monitor not the transducers itself. 
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Interestingly, less error distribution was observed in the tested wearable monitors 

for SB than LPA. This was demonstrated by the Bland-Altman plots which revealed 

narrower levels of agreement for SB than LPA. In particular, the lowest limits of 

agreement were for the activPAL™ as compared with the other wearable monitors (0.55 

METs for the SB and 1.31 METs for LPA). On the other hand, the heteroscedasticity test 

revealed that the variance of the residuals was not homogenous for the activPALTM and 

SenseWear in SB. These results suggest a systematic bias in the two wearable monitors 

for assessing SB. In other words, the activPAL™ and SenseWear wearable monitors 

seem to have positive bias with heterogeneous error variation when assessing SB. Future 

research should be conducted to assess the sources of variability on the measurement of 

SB. 

Despite the fact that all wearable monitors had high test-retest reliability 

(ICC=0.94, ICC=0.97, ICC=0.99, and ICC=0.85 for the OM, ActiGraph, activPAL™, 

and SenseWear respectively), all wearable monitors showed low agreement with the 

criterion measure to classify activities as either SB or LPA. When SB and LPA were 

combined into one category the agreement of the wearable monitors tended to be better 

than when evaluated separately (see kappa statistics in table 4). In a similar manner, the 

accuracy of the devices seemed to improve when SB and LPA were combined (see 

sensitivity and specificity results in table 4). This may have been due to having more data 

points with a greater range of values from low-to-light intensity EE. Also, it may be due 

to reduced variation in movement when performing SBs as compared with LPAs. These 

results highlight the importance of refining wearable monitors accuracy for the lower 

spectrum of the EE (sedentary-to-light). 
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When assessing the validity of wearable monitors for measuring SB, researchers 

should pay special attention to the criterion selection regarding the complexity of the 

behavior measured. Any waking behavior characterized by an EE ≤1.5 METs while in a 

sitting or reclining posture.10 As a consequence, and whenever possible, a combination of 

criterion measures, should be considered (e.g., VO2 for EE and direct observation for 

postural allocation). In the current study we aimed to examine the accuracy of wearable 

monitors to estimate EE of se dentary-to-light activities; thus, a criterion such as the VO2 

was needed to detect small differences between SB and LPA. However, a more 

comprehensive approach in classifying SB and LPA should include also the assessment 

of posture to fully address the ability of a device to detect SB. Among the selected 

activities for the current study there was one activity, standing while reading, that we 

classified as a SB. We considered that the very low EE of 1.13 METs and its lack of 

motion made this activity more an SB than an LPA type of activity. However, this 

assertion may not be applicable to everybody as the EE for standing may differ according 

to individual characteristics.121 

There were several strengths to this study. First, participants wore the three 

wearable monitors and the Oxycon Mobile simultaneously so each activity could be 

monitored within a laboratory setting. Second, activities were randomized to prevent 

systematic bias in the measurement, which allowed the results to improve in accuracy. 

Last, activities were selected to be near the light-intensity activity threshold of >1.5 

METs. This insured that activities performed would aid in understanding the accuracy of 

estimating EE in the lower end of the spectrum (sedentary-to-light). 
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With respect to the results for EE estimations for this study, it should be noted 

that the participants’ resting metabolic rates were not measured and we used the standard 

MET value of 3.5 ml•kg-1•min-1 to estimate resting EE units. This may have introduced 

error resulting in an overestimation of resting EE (10% and 15% for men and women, 

respectively) as reported for a recent systematic review.143 Also, we observed that the 

MET values in the lower levels of the intensity spectrum for SB activities were quite 

homogeneous, which implies reducing the variance needed to obtain a substantial 

agreement. Additionally, we would like to notice that the seven sedentary-to-light 

activities may not be representative of the whole spectrum of sedentary-to-light EE; 

however, they were thoughtfully selected and randomly assigned order to avoid 

introducing systematic error. We acknowledge that the participants comprised a 

convenience sample of healthy adults and data were obtained in a laboratory setting with 

staged activities limiting generalization of the results to other populations (e.g., older 

adults). Missing data were caused by problems with wearable monitors initialization and 

an inability to save data to a spreadsheet. Although having missing data is a limitation, 

the data loss was random and did not represent a systematic bias. 

Conclusion 

As growing evidence demonstrates the associations between SB and morbidity 

and mortality more research and refinements in EE estimations and in the ability of 

wearable monitors to record SB-to-LPA is needed. Based on equivalency testing none of 

the wearable monitors tested in this study was equivalent with the criterion measure of 

oxygen uptake for estimating EE in SB-to-LPA. However, among the wearable monitors 



	 99	

tested the activPAL™ had the highest overall criterion validity to measure both SB and 

LPA as compared with the ActiGraph and SenseWear wearable monitors. 



	 100	

Chapter 5 

WEARABLE MONITORS ACCURACY TO CLASSIFY SEDENTARY AND 

STATIONARY TIME UNDER FREE-LIVING CONDITIONS 

 
Abstract 

Background. Uni-axial cut points are commonly used to estimate sedentary time 

(ST) from wearable monitors. However, it is likely that cut-points reflect stationary time 

(StT) rather than exclusively ST. Tri-axial vector magnitude cut-points (VMCP) provide 

an opportunity to accurately measuring ST and StT; however, its accuracy in free-living 

is to be determined. The aims of this study were (1) to test the accuracy of selected cut-

points and VMCP to classify ST and StT in free-living conditions and (2) to develop 

optimal VMCP to classify ST and StT based upon data collected under free-living 

conditions. 

Methods. Twenty participants (mean age = 30.25 ± 6.43 years) wore five 

wearable monitors, ActiGraph GT3X+ (each wrist and waist) and GENEActiv (each 

wrist). Two criterion measures (ST and StT) were determined from direct observation 

during 1 weekday and 1 weekend day. Data were analyzed using mean percent error, 

Bland-Altman plots, kappa coefficient, sensitivity, and specificity as compared two both 

criterion. 

Results. Accuracy was low for tested cut-points regardless of the monitor location 

and criterion used. Across all accuracy metrics, ActiGraph 100 counts per minute, worn 

on the right-hip and ActiGraph 150 counts per minute, worn on the right-hip 

demonstrated moderate accuracy to identify StT but not ST. The ActiGraph right-hip cut-
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points had better accuracy to measure ST than left and right wrist cut-points. Estimated 

VMCP increased accuracy for measuring ST and StT regardless of the location worn. 

Conclusion. ActiGraph cut-points (50, 100, 150, 200, 250, and 500 counts per 

minute) and GENEActiv VMCP (217 and 386 counts per minute) had limited overall 

accuracy to assess ST in free-living settings. The ActiGraph 100 counts per minute, worn 

on the right-hip and ActiGraph 150 counts per minute, worn on the right-hip accurately 

identified StT but not ST. Estimated VMCP increased the accuracy of measuring ST and 

StT in free living settings; the ActiGraph 2000 counts per minute, worn on the left-wrist 

and the ActiGraph 63 counts per minute, worn on the right-hip were the most accurate 

thresholds to classify ST and StT, respectively. 

Key Words: Accelerometers, sedentary, objective measurement, cut-points, validity. 
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Introduction 

Accelerometer-based wearable monitors have gained a strong interest in sedentary 

behavior and public health research as they can be used to measure total volume and 

breaks in sedentary time .24 Cut-points traditionally have been used to assess sedentary 

time from wearable monitors. Cut-points are numerical values for the acceleration of 

movement intensity (activity counts) that reflect differences in the energy cost of 

movement. Higher numerical cut-points reflect higher energy costs and vice versa. Cut-

points are derived from prediction equations in which accelerometer counts are regressed 

against energy expenditure values in kilocalories or in oxygen uptake values.35 Cut-points 

that reflect sedentary behaviors have been established for activity counts equivalent to ≤ 

1.5 METs and are summarized using 1-minute data-collection epochs. To date, several 

uniaxial cut-points for classifying ST with a hip-mounted ActiGraph have been proposed 

including 50,35 100,12 and 150 counts per minute (CPM). Triaxial cut-points that classify 

sedentary time from a GENEActiv have been proposed including 217 and 386 CPM for 

left-wrist and right-wrist respectively.39 

Despite their extensive use, using cut-points to reflect sedentary time has 

limitations. There is no consensus on which threshold is the most accurate cut-point to 

classify sedentary time and few cut-points have been tested in free-living conditions.33 

The development of existing cut-points have been limited mainly to laboratory-based 

simulations of free-living behaviors, which implies less variability in behavior patterns as 

compared to free-living settings. While the most commonly used cut-point for sedentary 

time is 100 CPM, this cut point has been observed to underestimate sedentary time by 

5%.25 Further, while derived from waist-mounted wearable monitors,12 the 100 CPM has 
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been applied to data obtained from wrist-mounted wearable monitors.119 Other concerns 

about the use of the cut-points approach to estimate sedentary time is that it assumes a 

linear relationship between activity counts and energy expenditure estimates; however, 

cut-points-derived estimates of sedentary time reflect none or little movement and not all 

types of sedentary time. Accordingly, the cut-points can result in inaccurate estimates of 

sedentary time.35–37 For example, time spent in light intensity physical activities such as 

dusting or washing dishes is classified as sedentary time.120 Furthermore, there are recent 

findings of intra-individual variations in the energy cost of steady-state-standing with 

some individuals having little or no change in energy expenditure during standing relative 

to sitting.121 Thus, it is likely that existing uniaxial sedentary cut-points reflect stationary 

types of behaviors (e.g., sitting and standing) rather than exclusively sedentary behaviors 

(e.g., sitting, lying down). As one’s cardiometabolic health may be enhanced 

differentially by interrupting prolonged sitting time with frequent brief bouts of light-

intensity activity and standing,73 valid measurement of sedentary and stationary behaviors 

is likely important. 

Tri-axial wearable monitors provide an opportunity to refine cut-points to 

measure sedentary and stationary time. Tri-axial wearable monitors display activity 

counts for separate axes (vertical, anteroposterior, and mediolateral) and a composite 

vector magnitude of its three axes. Accurate vector magnitude cut-points have been 

developed to estimate physical activity intensities for tri-axial GENEActiv and the 

ActiGraph monitors.34,39,144 However, vector magnitude cut-points have not been 

developed to assess sedentary and stationary behaviors with the ActiGraph. Sedentary 

vector magnitude cut-points have been developed under laboratory settings for the 
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GENEActiv, however, the cut points have not been extensively tested in free-living 

settings.39 Therefore, the aims of this study were (1) to test the accuracy of selected 

uniaxial and vector magnitude cut-points to classify sedentary and stationary time in free-

living conditions and (2) to develop optimal vector magnitude cut-points to classify 

sedentary and stationary time based upon data collected under free-living conditions. 

Materials and methods 

Participants 

A convenience sample of 20 adults was recruited for the study. Eligible 

participants were (a) 18-65 years of age; (b) normal to overweight body mass index (18.5 

to 29.9 kg/m2); and (c) without disease or disability that could inhibit daily physical 

activity (assessed by completing the Physical Activity Readiness Questionnaire - PAR-

Q).125 Participants were recruited through e-mail announcements and fliers placed on the 

Arizona State University campus. All enrolled participants provided informed consent 

prior to participation and the study protocol was approved by the Arizona State 

University Institutional Review Board. 

Wearable monitors 

The ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL, USA) and the 

GENEActiv (ActivInsights, Cambs, United Kingdom) wearable monitors were used in 

this study. The ActiGraph is a triaxial wearable monitor capable of recording 

accelerations in three axes (vertical, anteroposterior, and mediolateral). The ActiGraph 

GT3X+ measures accelerations ranging from 30-Hz up to 100-Hz in response to a 

magnitude range of ± 3 g. The GENEActiv is a triaxial wearable monitor capable of 
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recording accelerations in three axes; it measures accelerations ranging from 10Hz up to 

100Hz in response to a magnitude range of +/-8 g. 

Participants wore five monitors simultaneously. One ActiGraph GT3X+ 

accelerometer on each wrist in the most proximal position using the manufacturer’s 

adjustable wrist band, the monitors were placed with the brand logo oriented to be read 

by the participant. One GENEActiv accelerometer on each wrist in the most distal 

position next to the ActiGraph accelerometer, the monitors were placed with the serial 

oriented to be read by the participant. One ActiGraph accelerometer was worn on the hip 

over the right anterior superior iliac spine mounted with an elastic belt and with the USB 

cap oriented towards the participant’s head. 

ActiLife® software 6.11.5 and GENEActiv software 2.9 for ActiGraph and 

GENEActiv respectively were used to initialize and download wearable monitors. 

Wearable monitors were initialized to collect data at the highest possible resolution 

(100Hz). Data from the worn monitors were downloaded to .csv files in 1-, 15-, and 60-

second epochs. 

Before field data collection, monitors were tested for inter-monitor reliability by 

placing them in the same body location (left arm) during five different activities 

performed in a 10-minute period. Intraclass correlation coefficients (ICC) were calculated 

for inter-monitor reliability in the vertical axis using 1-minute data-collection epochs 

(ICC = 0.95 for ActiGraph, and 0.96 for GENEActiv wearable monitors). 

Cut-points 
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To achieve the first aim of the study, we selected several uniaxial (vertical axis) 

cut-points for the ActiGraph wearable monitor to be tested (50,35 100,12 150,25 200, 250, 

and 50038 CPM). Each cut-point was tested in three different body locations: left-wrist, 

right-wrist, and right-hip. In addition, we selected two vector magnitude cut-points, 217 

and 386 CPM for the GENEActiv wearable monitors to be tested in the left and right 

wrist.39 

 For the second aim of the study, we estimated cut-points for 60-seconds epoch 

with ActiGraph (left, right wrist and right hip), 15-second epoch with ActiGraph (left, 

right wrist and right hip), 15-second epoch for GENEActiv (left, right wrist), 1-second 

epoch for ActiGraph (left, right wrist and right hip), and 1-second epoch for GENEActiv 

(left and right wrist) using receiver operating characteristic (ROC) curve analyses. 

Criterion Measure: Direct Observation 

Direct observation with focal sampling and duration coding were used to collect 

criterion data in real-time occurrence in free-living conditions for six activity categories 

(walking, running, sports and exercise, household chores, standing, and sitting and lying 

down), in five different contexts (household, transportation, occupation, sports and 

conditioning, and leisure). Each of the activity categories is described below: 

• Walking. This activity category included walking for all locomotion purposes, 

walking in flat or inclined surfaces, and walking up or down stairs. Incidental or 

incomplete steps that didn’t result in moving from one place to another were not 

included in this category (e.g., weight shifting). 

• Running. This activity category included continuous and short bouts of running or 
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jogging (e.g., jogging for exercising or short runs to cross the street). 

• Sports and conditioning exercise. This activity category included playing sports or 

performing continuous or intermittent conditioning exercises. Other exercises 

different than running or jogging were included in this category (e.g., weight 

lifting, yoga, Pilates, or gym classes). 

• Household chores. This activity category included housekeeping activities such as 

dish washing, gardening, vacuuming, and doing the laundry. 

• Standing. This activity category included standing with or without upper body 

movements while bearing the body weight in one or both lower limbs. Incidental 

or incomplete steps that didn’t result in moving from one place to another were 

included in this category. 

• Sitting and lying down. This activity category included various body positions in 

which the body weight was not supported by the participant’s feet. Instead, the 

body weight was supported by the buttocks, thighs or back; this included sitting, 

sitting in a laboratory stool, reclining and lying down (supine and prone). 

Additional observation categories were designed as follow: 

• Private. When during the data collection sessions the participant required private 

time (e.g., restrooms use), researchers recorded this time as ‘private’ and resumed 

the activity recording as soon as the participant finished the private activity. 

• Unobserved. When the participant was available to be observed but out of the 

sight of the researchers (e.g., turning corners), researchers recorded this time as 

‘unobserved.’ 
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• Error. When researcher made an error or unable to determine an accurate coding 

for a given activity. 

Enrolled participants were directly observed by two researchers in their free-

living environment for 6-hours on two days, a weekday and a weekend day. Each 

researcher independently recorded activities in an iPad tablet; thus, every time a 

participant changed the activity, researchers made an annotation reflecting the new 

activity. A commercially available app, Timestamped Field Notes app (TFNA) was used 

to make annotations.118 TFNA allows configuration of colored buttons for pre-defined 

observation categories. TFNA stores annotations in an offline database that later can be 

downloaded as a .txt file containing the timestamp and the observations made at each 

time point. Tablets were time synchronized with the same computer in which the 

wearable monitors were initialized and downloaded. At the end of each visit day, data 

from the tablet were downloaded and exported to a text file (.txt). 

The sedentary criterion variable was a dichotomous variable including sitting and 

lying down for those observations in which both researchers had 100% agreement. A 

minute was considered sedentary when most of its seconds were sedentary (i.e., between 

31-60 seconds per minute). The stationary criterion variable (stationary) was calculated 

with the same criteria except standing activities were included in the sedentary category. 

Researchers training 

Two researchers completed 24 hours of one-to-one supervised training consisting 

of: 
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• Two hours to become familiarized with the study protocols (including thorough 

explanations of activity categories), as well as tablets use. 

• Two hours of training in direct observation techniques designed not to disrupt, 

disturb or modify the participant’s natural behavior to every extent possible (e.g., 

in the case of reduced space locations where to place himself to be able to observe 

the participant without disturbing). 

• Ten hours of direct observation practice using the tablets to record observations 

while watching a set of training videos of different members of our lab while 

doing their own activities at work and home environments. 

• Ten hours of direct observation practice using the tablets in real-time occurrence 

with members of our lab while doing their own activities at work and home 

environments. 

After the training, researchers completed a testing session of direct observation on 

a set of 8 different video clips with a total duration of 40 minutes (testing video set). The 

testing set was previously coded by two senior researchers in our lab; it was the result of 

several independent trials of video coding until there was full agreement between the two 

senior researchers. To be able to collect field data, researchers were required to have high 

agreement with the testing set; the agreement was measured with an ICC greater than 

0.80. 

Statistical analysis 

Descriptive statistics were performed to characterize the sample by sex, age, and 

BMI. ICC was used to observe agreement between researchers’ field observations. 

Several computations were made to measure the accuracy (first aim) of the selected cut-
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points to classify an activity as sedentary for each one of the aforementioned wearable 

monitors and locations. Percent Error (PE) was calculated to assess the proportion of 

error for each of the selected cut-points relative to the sedentary criterion measure. PE 

was calculated using the equation: PE = [(Monitor Total Sedentary Minutes – Criterion 

Sedentary Minutes) / Criterion Sedentary Minutes] x 100. A positive PE indicated an 

overestimation of sedentary time whereas a negative PE indicated underestimation. 

Kappa was used to observe agreement between each cut-point and the sedentary 

criterion value for classifying activities as sedentary while taking into account the 

agreement occurring by chance.133 Landis and Koch published categories to interpret the 

kappa values as follows: 0–0.2 = slight agreement, 0.2–0.4 = fair agreement, 0.4–0.6 = 

moderate agreement 0.6–0.8 = substantial agreement, and 0.8–1.0 = almost perfect 

agreement.134 

Sensitivity and specificity were calculated to measure the accuracy of the selected 

cut-points to classify an activity as sedentary. Sensitivity measures the ability of a cut-

point to correctly classify an activity as sedentary (true positives proportion). Sensitivity 

was calculated using the formula: Sensitivity = True positives / (True positives + False 

negatives). A sensitivity value close to 1 shows that the cut-point can correctly classify a 

high proportion of the activities as sedentary; a sensitivity value close to 0 indicates that 

the cut-point fails to classify activities as sedentary. Specificity measures the ability of a 

cut-point to correctly classify an activity as non-sedentary (true negatives proportion). 

Specificity was calculated using the formula: Specificity = True negatives / (False 

positives + True negatives). A specificity value close to 1 shows that the cut-point can 

correctly classify a high proportion of the activities as non-sedentary. A specificity value 



	 111	

close to 0 indicates that the cut-point fails to classify activities as non-sedentary. PE, 

kappa, sensitivity, and specificity were also calculated to measure the accuracy (first aim) 

of the selected cut-points to classify an activity as stationary for each one of the 

aforementioned wearable monitors and locations as compared to the stationary criterion. 

To develop vector magnitude cut-points (second aim), the observations were 

randomly divided into training (50%) and testing (50%) datasets. Using the training 

dataset, receiver operating characteristic (ROC) curve analyses were conducted with both 

criteria (sedentary and stationary). To determine the cut-points we used the minimum 

distance method. The minimum distance refers to the closest value to the optimal point at 

the upper-left corner of the ROC plot where Sensitivity=1 and 1-Specificity=0. The area 

under the ROC curve (AUC) was also calculated for each of the estimated cut-points. The 

AUC is an index of the accuracy of the ROC curve.145 An AUC=1 means that the 

estimated cut-point is perfect in the classification of activities. An AUC=0.5 means that 

the estimated cut-point is no better than chance in the classification activities. An AUC=0 

means that the estimated cut-point incorrectly classify all activities. To further test the 

accuracy of the estimated cut-points, PE, simple kappa coefficient, sensitivity, and 

specificity were computed in the testing dataset to compare the classifications made from 

the estimated cut-points with direct observation. ROC curve analyses were conducted 

using ROCPLOT macro for SAS.146 All analyses were performed using SAS version 9.4. 

Results 

All 20 participants completed the study. Participants were 50% female. 

Participants’ mean age was 30.25 (± 6.43) years and mean BMI was 22.7 (± 3.1) kg/m2. 
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All of the participants enrolled in the study were right-handed. Due to device error 5.99 

hours were missing for the GENEActiv on right wrist. 

A total of 241.32 hours of free-living direct observation were conducted. The 

average length of free-living observation sessions was 5.97 ± 0.26 hours. Table 5 shows a 

breakdown for averages of the direct observation classification categories and contexts. 

There was a substantial agreement between researchers’ observations (ICC=0.76, 95% CI 

= 0.75-0.77). 

 

Table 5 - Minutes + standard deviation and percent of the observation period 
stratified by activity categories, context, and days of the week 
 Weekdays Weekends Combined 
Total observation 
 time (minutes) 7,180 7,314 14,494 

       
Activity 
categories 

Minutes 
(SD) 

 % 
(SD) 

Minutes 
(SD) 

 % 
(SD) 

Minutes 
(SD) 

 % 
(SD) Sitting/lying 

down 
187.4 

(102.1) 
52.3 

(28.8) 
140.5 
(69.1) 

38.5 
(19.0) 

163.9 
(89.3) 

45.4 
(25.1) Standing 64.6 

(68.4) 
18.1 

(19.8) 
79.0 

(51.2) 
21.6 

(13.7) 
71.7 

(60.1) 
19.8 

(16.9) Other non-
sedentary 

28.9 
(27.5) 

 8.0 
(7.5) 

23.8 
(22.2) 

 6.5 
(6.0) 

26.4 
(24.8) 

7.26 
(6.7) Unobserved 5.8 (6.8) 1.6 

(1.8) 
3.6 (7.5) 1.0 

(2.0) 
4.7 (7.2) 1.3 

(1.9) Private time 4.9 (6.0) 1.3 
(1.6) 

8.0 (13.9) 2.2 
(3.8) 

6.4 (10.7) 1.8 
(2.9)        

Context Minutes 
(SD) 

 % 
(SD) 

Minutes 
(SD) 

 % 
(SD) 

Minutes 
(SD) 

 % 
(SD) Sports/conditioni

ng 
15.9 

(38.4) 
4.4 

(10.5) 
19.8 

(44.4) 
5.2 

(11.4) 
17.9 

(41.0) 
4.7 

(10.9) Household 2.3 (8.8) 0.66 
(2.5) 

2.9 (13.2) 0.8 
(3.6) 

2.6 (11.1) 0.8 
(3.1) Transportation 16.4 

(27.1) 
 4.7 

(7.6) 
21.2 

(25.8) 
5.8 

(7.0) 
18.8 

(26.1) 
5.2 

(7.3) Occupation 241.9 
(115.1) 

67.4 
(31.9) 

88 
(140.9) 

23.9 
(38.4) 

164.9 
(148.9) 

45.7 
(41.3) Leisure 28.6 

(42.5) 
8.0 

(12.0) 
148.8 

(120.2) 
41.1 

(33.6) 
88.7 

(107.9) 
24.7 

(30.0)        
  Minutes 

(SD) 
 % 

(SD) 
Minutes 

(SD) 
 % 

(SD) 
Minutes 

(SD) 
 % 

(SD) Non-agreement 67.4 
(68.7) 

18.5 
(19.0) 

110.9 
(70.5) 

30.3 
(19.4) 

89.1 
(72.2) 

24.5 
(19.8)               

 

Cut-points accuracy 
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To assess the first study aim, we tested the accuracy of several selected uniaxial 

ActiGraph and vector magnitude GENEActiv cut-points to classify sedentary and 

stationary time as compared to the time spent in sedentary- (sitting and lying down) and 

stationary (sitting, lying, and standing) behaviors obtained from direct observation. 

Tables 6 and 7 show PE, kappa coefficient, sensitivity, and specificity for the tested cut-

points for the sedentary and stationary criteria, respectively. The variable names reflect 

combinations of the type of monitor used (ActiGraph (AG) and GENEActiv (GA)), cut-

point level (e.g., 50 CPM), and body location which the wearable monitors was worn on 

(e.g., left wrist). 

 

Table 6 - Percent error, simple kappa, sensitivity, and specificity for selected 
sedentary cut-points as compared to the sedentary criterion 

  Axis 
Percent 

error 
Kappa  

(95% CI) 
Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

AG50 left-wrist 1 -73.04 0.06 (0.05 to 0.07) 0.15 (0.15 to 0.16) 0.90 (0.90 to 0.91) 
AG50 right-wrist 1 -72.05 0.08 (0.06 to 0.09) 0.17 (0.16 to 0.17) 0.91 (0.90 to 0.91) 
AG50 right-hip 1 18.37 0.27 (0.26 to 0.29) 0.69 (0.68 to 0.70) 0.59 (0.58 to 0.60) 
AG100 left-wrist 1 -66.66 0.08 (0.07 to 0.10) 0.19 (0.18 to 0.20) 0.88 (0.88 to 0.89) 
AG100 right-wrist 1 -65.01 0.10 (0.09 to 0.11) 0.21 (0.20 to 0.22) 0.88 (0.88 to 0.89) 
AG100 right-hip 1 35.53 0.29 (0.28 to 0.31) 0.78 (0.77 to 0.79) 0.52 (0.51 to 0.53) 
AG150 left-wrist 1 -61.16 0.10 (0.09 to 0.12) 0.23 (0.22 to 0.24) 0.87 (0.86 to 0.88) 
AG150 right-wrist 1 -58.96 0.13 (0.11 to 0.14) 0.25 (0.24 to 0.26) 0.87 (0.86 to 0.88) 
AG150 right-hip 1 45.54 0.30 (0.28 to 0.31) 0.83 (0.82 to 0.84) 0.48 (0.47 to 0.49) 
AG200 left-wrist 1 -55.33 0.12 (0.11 to 0.14) 0.27 (0.26 to 0.28) 0.85 (0.84 to 0.86) 
AG200 right-wrist 1 -53.24 0.15 (0.14 to 0.17) 0.29 (0.28 to 0.30) 0.85 (0.85 to 0.86) 
AG200 right-hip 1 52.47 0.30 (0.29 to 0.31) 0.86 (0.85 to 0.87) 0.45 (0.44 to 0.46) 
AG250 left-wrist 1 -48.73 0.15 (0.14 to 0.17) 0.31 (0.30 to 0.32) 0.83 (0.83 to 0.84) 
AG250 right-wrist 1 -47.74 0.17 (0.16 to 0.19) 0.33 (0.32 to 0.34) 0.84 (0.83 to 0.85) 
AG250 right-hip 1 57.64 0.29 (0.28 to 0.30) 0.88 (0.87 to 0.89) 0.42 (0.41 to 0.43) 
AG500 left-wrist 1 -22.00 0.24 (0.23 to 0.26) 0.48 (0.47 to 0.50) 0.76 (0.75 to 0.76) 
AG500 right-wrist 1 -25.85 0.26 (0.24 to 0.27) 0.47 (0.46 to 0.49) 0.78 (0.77 to 0.79) 
AG500 right-hip 1 72.71 0.25 (0.24 to 0.26) 0.93 (0.92 to 0.94) 0.34 (0.33 to 0.35) 
GA217 left-wrist 3 -0.66 -0.29 (-0.31 to -0.28) 0.61 (0.60 to 0.62) 0.68 (0.67 to 0.69) 
GA217 right-wrista 3 -15.73 -0.26 (-0.28 to -0.25) 0.53 (0.52 to 0.54) 0.74 (0.73 to 0.75) 
GA386 left-wrist 3 39.16 -0.36 (-0.37 to -0.34) 0.82 (0.81 to 0.83) 0.53 (0.52 to 0.54) 
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Table 6 - Percent error, simple kappa, sensitivity, and specificity for selected 
sedentary cut-points as compared to the sedentary criterion 

  Axis 
Percent 

error 
Kappa  

(95% CI) 
Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

GA386 right-wrista 3 28.38 -0.36 (-0.38 to -0.35) 0.78 (0.77 to 0.79) 0.58 (0.57 to 0.59) 
a Due to device malfunctioning there was 5.99 missing hours on this device, accordingly analyses include only 
235.33 hours. 
The variable names reflect combinations of the type of wearable monitor used (ActiGraph (AG) and GENEActiv 
(GA)), and body location which the wearable monitor was worn on (e.g., left-wrist). 

 

Table 7 - Percent error, simple kappa, sensitivity, and specificity for selected 
sedentary cut-points as compared to the stationary criterion 

  Axis 
Percent 

error 
Kappa  

(95% CI) 
Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

AG50 left-wrist 1 -81.40 0.02 (0.01 to 0.03) 0.13 (0.12 to 0.14) 0.89 (0.88 to 0.90) 
AG50 right-wrist 1 -80.74 0.01 (0.00 to 0.01) 0.13 (0.12 to 0.14) 0.88 (0.87 to 0.89) 
AG50 right-hip 1 -18.26 0.20 (0.18 to 0.21) 0.61 (0.60 to 0.62) 0.60 (0.59 to 0.62) 
AG100 left-wrist 1 -77.00 0.03 (0.02 to 0.04) 0.16 (0.16 to 0.17) 0.87 (0.87 to 0.88) 
AG100 right-wrist 1 -75.90 0.02 (0.01 to 0.03) 0.17 (0.16 to 0.17) 0.86 (0.85 to 0.87) 
AG100 right-hip 1 -6.38 0.25 (0.23 to 0.26) 0.70 (0.69 to 0.71) 0.55 (0.54 to 0.57) 
AG150 left-wrist 1 -73.15 0.04 (0.03 to 0.05) 0.19 (0.19 to 0.20) 0.86 (0.85 to 0.87) 
AG150 right-wrist 1 -71.61 0.03 (0.02 to 0.04) 0.20 (0.19 to 0.21) 0.84 (0.83 to 0.85) 
AG150 right-hip 1 0.44 0.28 (0.26 to 0.29) 0.75 (0.75 to 0.76) 0.52 (0.51 to 0.54) 
AG200 left-wrist 1 -69.19 0.05 (0.04 to 0.06) 0.22 (0.22 to 0.23) 0.84 (0.83 to 0.85) 
AG200 right-wrist 1 -67.76 0.04 (0.03 to 0.05) 0.23 (0.22 to 0.24) 0.82 (0.81 to 0.83) 
AG200 right-hip 1 5.28 0.29 (0.28 to 0.31) 0.79 (0.78 to 0.80) 0.50 (0.48 to 0.51) 
AG250 left-wrist 1 -64.57 0.06 (0.05 to 0.07) 0.26 (0.25 to 0.27) 0.82 (0.81 to 0.83) 
AG250 right-wrist 1 -63.91 0.05 (0.04 to 0.06) 0.26 (0.25 to 0.27) 0.80 (0.79 to 0.81) 
AG250 right-hip 1 8.80 0.30 (0.29 to 0.32) 0.82 (0.81 to 0.82) 0.48 (0.46 to 0.49) 
AG500 left-wrist 1 -46.20 0.10 (0.09 to 0.12) 0.40 (0.39 to 0.41) 0.73 (0.72 to 0.74) 
AG500 right-wrist 1 -48.84 0.09 (0.08 to 0.10) 0.37 (0.36 to 0.38) 0.73 (0.72 to 0.75) 
AG500 right-hip 1 19.25 0.31 (0.30 to 0.33) 0.88 (0.87 to 0.89) 0.40 (0.39 to 0.42) 
GA217 left-wrist 3 -31.35 -0.14 (-0.15 to -0.12) 0.50 (0.49 to 0.51) 0.65 (0.63 to 0.66) 
GA217 right-wrista 3 -3.96 -0.18 (-0.19 to -0.16) 0.70 (0.70 to 0.71) 0.51 (0.50 to 0.52) 
GA386 left-wrist 3 -41.80 -0.11 (-0.12 to -0.09) 0.42 (0.41 to 0.43) 0.69 (0.68 to 0.70) 
GA386 right-wrista 3 -11.33 -0.16 (-0.17 to -0.14) 0.65 (0.64 to 0.65) 0.54 (0.52 to 0.55) 
a Due to device malfunctioning there was 5.99 missing hours on this device, accordingly analyses include only 
235.33 hours. 
The variable names reflect combinations of the type of wearable monitor used (ActiGraph (AG) and GENEActiv 
(GA)), and body location which the wearable monitor was worn on (e.g., left-wrist). 
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When compared to the sedentary criterion (sitting and lying down), none of the 

cut-points tested had outstanding accuracy (PE ranging from -73% to 72%; kappa <0.30; 

sensitivity <0.53; and specificity <0.91). Overall, ActiGraph hip cut-points showed better 

accuracy than wrist cut-points. The left-wrist cut-points tended to be less accurate than 

right-wrist and right-hip cut-points. Further, the left-wrist cut-points tended to have high 

negative percent error, (except for the GA217 and GA386), slight agreement (except for 

AG500), low-to-moderate sensitivity (except for GA217 and GA386), and high 

specificity (except for GA217 and GA386). With some exceptions, the right-wrist cut-

points tended to have high negative percent error in excess of -25%, slight agreement 

with kappa’s <0.17 (except for AG500), low-to-moderate sensitivity <0.53 (except for 

GA386), and high specificity > 0.74 (except for GA386). The right-hip cut-points tended 

to have moderate positive percent error (except for AG500), fair agreement, high 

sensitivity, and moderate specificity. 

When stationary activities (standing, sitting and lying down) were included in the 

criterion variable, the ActiGraph hip cut-points were more accurate than the wrist cut-

points. When compared to the wrist cut-points, the ActiGraph hip cut-points had a lower 

percent error and higher values for kappa, sensitivity, and specificity. The right-wrist 

GENEActiv cut-points were more accurate that the left-wrist cut-points. Among the 

tested cut-points AG150 right-hip was the most accurate stationary uniaxial cut-point. 

Developing vector magnitude cut-points 

To address the second aim, we estimated several vector magnitude cut-points to 

classify sedentary time based on the sedentary criterion (sitting + lying down) and 

stationary time based on the stationary criterion (standing + sitting + lying down). 
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Estimated cut-points included 1-minute epoch for the ActiGraph left-wrist, right-wrist, 

and right-hip. We also estimated a 15-second and a 1-second epoch for the ActiGraph 

left-wrist, right-wrist, and right-hip and the GENEActiv left-wrist and right-wrist. Tables 

8 and 9 show values for AUC, PE, kappa, sensitivity, and specificity for the estimated 

cut-points (sedentary and stationary, respectively). The ROC graphics for the estimated 

cut-points are presented as supplemental material. 

 

Table 8 - Percent error, kappa, sensitivity and specificity for estimated vector 
magnitude cut-points sedentary criterion 

 
VM
CP AUC 

Percent 
error 

Kappa 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

AG left-wristb 2,000 0.702 12.98 0.33 (0.30 to 0.35) 0.69 (0.68 to 0.71) 0.63 (0.62 to 0.65) 
AG right-wristb 2,358 0.723 13.86 0.35 (0.33 to 0.37) 0.71 (0.70 to 0.73) 0.64 (0.63 to 0.66) 
AG right-hipb 249 0.729 19.80 0.37 (0.35 to 0.39) 0.75 (0.74 to 0.77) 0.62 (0.61 to 0.64) 

AG left-wristc 455 0.672 16.17 -0.27 (-0.28 to -0.26) 0.67 (0.67 to 0.68) 0.60 (0.59 to 0.61) 
AG right-wristc 495 0.689 11.88 -0.30 (-0.31 to -0.29) 0.67 (0.66 to 0.68) 0.63 (0.62 to 0.64) 
AG right-hipc 15 0.699 16.72 0.31 (0.30 to 0.32) 0.70 (0.69 to 0.71) 0.62 (0.61 to 0.62) 
GA left-wristc 65 0.685 19.25 -0.29 (-0.30 to -0.28) 0.70 (0.69 to 0.71) 0.59 (0.59 to 0.60) 
GA right-wrista, c 61 0.686 3.08 -0.28 (-0.29 to -0.27) 0.62 (0.61 to 0.63) 0.66 (0.66 to 0.67) 
AG left-wristd 5 0.647 16.39 0.26 (0.26 to 0.26) 0.67 (0.67 to 0.67) 0.59 (0.59 to 0.60) 
AG right-wristd 8 0.666 11.77 0.29 (0.28 to 0.29) 0.66 (0.66 to 0.67) 0.63 (0.62 to 0.63) 
AG right-hipd 0 0.646 61.05 0.27 (0.26 to 0.27) 0.88 (0.88 to 0.88) 0.40 (0.40 to 0.40) 
GA left-wristd 2 0.664 14.41 -0.25 (-0.25 to -0.25) 0.65 (0.65 to 0.66) 0.60 (0.59 to 0.60) 
GA right-wrista,d 3 0.661 17.60 -0.25 (-0.26 to -0.25) 0.67 (0.67 to 0.67) 0.58 (0.58 to 0.59) 
a Due to device malfunctioning there was 5.99 missing hours on this device, accordingly analyses include only 235.33 
hours. b 1-minute epoch length. c 15-second epoch length. d 1-second epoch length. 
The variable names reflect combinations of the type of wearable monitor used (ActiGraph (AG) and GENEActiv 
(GA)), and body location which the wearable monitor was worn on (e.g., left-wrist). 
VMCP = Vector Magnitude Cut-Point, AUC = Area Under the curve. 

 
Table 9 - Percent error, kappa, sensitivity and specificity for estimated vector 
magnitude cut-points stationary criterion 

 
VM
CP AUC 

Percent 
error 

Kappa 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

AG left-wristb 2,365 0.611 -13.31 0.19 (0.17 to 0.21) 0.64 (0.63 to 0.65) 0.56 (0.54 to 0.58) 
AG right-wristb 2,411 0.601 -20.13 0.17 (0.15 to 0.19) 0.59 (0.57 to 0.60) 0.59 (0.58 to 0.61) 
AG right-hipb 423 0.645 -5.50 0.25 (0.22 to 0.27) 0.71 (0.70 to 0.72) 0.54 (0.52 to 0.56) 
AG left-wristc 523 0.603 -14.85 -0.15 (-0.16 to -0.14) 0.62 (0.61 to 0.62) 0.56 (0.55 to 0.57) 
AG right-wristc 630 0.598 -15.51 -0.15 (-0.16 to -0.14) 0.61 (0.60 to 0.62) 0.56 (0.55 to 0.57) 
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Table 9 - Percent error, kappa, sensitivity and specificity for estimated vector 
magnitude cut-points stationary criterion 

 
VM
CP AUC 

Percent 
error 

Kappa 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

AG right-hipc 63 0.638 -2.20 0.22 (0.21 to 0.23) 0.72 (0.71 to 0.72) 0.51 (0.50 to 0.52) 
GA left-wristc 77 0.620 -10.34 -0.16 (-0.17 to -0.15) 0.65 (0.64 to 0.66) 0.54 (0.53 to 0.55) 
GA right-wrista,c 91 0.602 -10.89 -0.15 (-0.16 to -0.14) 0.64 (0.64 to 0.65) 0.53 (0.53 to 0.54) 
AG left-wristd 6 0.600 -18.37 0.17 (0.17 to 0.18) 0.60 (0.59 to 0.60) 0.59 (0.59 to 0.59) 
AG right-wristd 18 0.599 -16.39 0.17 (0.17 to 0.17) 0.61 (0.61 to 0.61) 0.58 (0.57 to 0.58) 
AG right-hipd 0 0.626 11.77 0.24 (0.24 to 0.25) 0.81 (0.81 to 0.81) 0.42 (0.42 to 0.43) 
GA left-wristd 3 0.613 -11.00 -0.15 (-0.15 to -0.15) 0.64 (0.64 to 0.64) 0.53 (0.53 to 0.54) 
GA right-wrista,d 4 0.597 -11.44 -0.14 (-0.14 to -0.14) 0.63 (0.63 to 0.63) 0.53 (0.52 to 0.53) 
a Due to device malfunctioning there was 5.99 missing hours on this device, accordingly analyses include only 235.33 
hours. b 1-minute epoch length. c 15-second epoch length. d 1-second epoch length. 
The variable names reflect combinations of the type of wearable monitor used (ActiGraph (AG) and GENEActiv 
(GA)), and body location which the wearable monitor was worn on (e.g., left-wrist). 
AUC = Area Under the curve, VMCP = Vector Magnitude Cut-Point. 
 

For those vector magnitude cut-points estimated from the sedentary criterion 

(sitting + lying down), overall accuracy metrics tended to be better for 1-minute epochs 

and for wrist cut-points. As compared to the sedentary uniaxial cut-points, overall 

accuracy metrics were higher for the estimated vector magnitude cut-points. Among the 

estimated vector magnitude cut-points AG2000 left-wrist was the most accurate 

sedentary cut-point for the AUC of 0.702. 

Vector magnitude cut-points estimated from the stationary criterion (standing + 

sitting + lying down) had accuracy metrics that were similar across the different time 

epoch lengths ranging from 1 minute to 1 second. As compared to the stationary uniaxial 

cut-points, the overall accuracy metrics were higher for the estimated vector magnitude 

cut-points. Among the estimated stationary vector magnitude cut-points, AG63 right-hip 

seemed to be the most accurate stationary cut-point for the AUC= 0.638. 
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Discussion 

This study had two aims (1) to test the accuracy of selected cut-points to classify 

sedentary and stationary time in free-living conditions and (2) to develop vector 

magnitude cut-points to classify sedentary and stationary time. The major findings of this 

study were (a) an overall lack of accuracy for the tested uniaxial cut-points regardless of 

the location and criterion used, (b) AG100 right-hip and AG150 right-hip demonstrated 

moderate accuracy to differentiate stationary time but not sedentary time, (c) the tested 

ActiGraph right-hip uniaxial cut-points had better accuracy to measure sedentary time 

than left and right wrist cut-points, and (d) the estimated vector magnitude cut-points 

increased accuracy for measuring sedentary and stationary time regardless of the location 

and criterion used. 

There was a lack of accuracy to classify sedentary and stationary time for the 

tested uniaxial cut-points regardless of the location and criterion used. The results for the 

accuracy metrics used to test uniaxial cut-points were not in favor of using a specific cut-

point to measure sedentary time. All of the tested uniaxial cut-points demonstrated poor 

accuracy to classify sedentary time regardless the location. Overall the cut-points for the 

left-wrist wearable monitors tended to be less accurate than the cut-points right-wrist to 

measure sedentary time. This might be an effect of handedness; however, we could not 

test this hypothesis as all of the participants in our study were right-handed. We suggest 

that future studies consider testing whether handedness has an effect on the accuracy of a 

wrist mounted wearable monitors. 

The AG100 right-hip and AG150 right-hip uniaxial cut-points accurately 

differentiated stationary time (standing, sitting, and lying down) but not sedentary time 
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(sitting, and lying down). As wearable monitors measure body movements using changes 

in acceleration that are used to estimate the intensity of physical activities over time,45 

these findings are not surprising, on the contrary, suggest caution interpreting wearable 

monitors -derived measures of sedentary time and its associations to health-related 

outcomes. Interestingly, Kozey-Keadle et al.25 reported that the AG100 right-hip and 

AG150 right-hip cut-points had similar error magnitude and direction for measuring 

sedentary time as compared to what we found for the same cut-points when measuring 

standing time. Metrics used and methodological differences between Kozey-Keadle et al. 

and our study may explain some of the differences. For example, Kozey-Keadle et al. 

used the low-frequency extension for the ActiGraph while we did not apply additional 

filters to the wearable monitors’ signal. Another possible source for the differences is the 

sampling frequency which is not reported in their study. Finally, the criterion used by 

Kozey-Keadle et al. was derived from observations of a single researcher while ours were 

composed by two researchers. These conflicting findings add arguments to the ongoing 

debate on what is the most accurate uniaxial cut-point to classify sedentary time, and 

whether the cut-points approach is more reflective of stationary type of behaviors rather 

than sedentary behaviors. We suggest that future studies consider testing the accuracy for 

wearable monitors to assess sedentary time vs stationary time. 

All of the tested uniaxial cut-points for the ActiGraph placed on the hip showed 

better accuracy to measure sedentary time than those for wrist locations regardless the 

cut-point used. This reduced accuracy for cut-points for wrist mounted wearable monitors 

is likely a result of participants’ arms movements that occurred during sedentary 

activities (e.g., typing), resulting in an increment of false negative results for sedentary 
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time. Overall the GENEActiv cut-points had a lower PE as compared to the ActiGraph. 

We believe that as the GENEActiv cut-points were validated for wrist locations,39 it is 

understandable why the scores for PE were lower than those for the ActiGraph cut-points 

that were not specifically validated for wrist locations. These results might be an 

indicator that the hip is a better location to place wearable monitors when assessing 

sedentary time. The poor accuracy of the wrist-mounted ActiGraph wearable monitors to 

measure sedentary time is an issue that should be further investigated as data from wrist-

mounted ActiGraph wearable monitors are being used to make estimates of sedentary 

time at the population level in the US.119 Furthermore, when using the ActiGraph 

wearable monitors in a wrist-mounted fashion, it is important to use cut-points that have 

been validated for that specific location. 

As compared to uniaxial cut-points, the estimated vector magnitude ActiGraph 

cut-points improved the accuracy of measuring sedentary and stationary time 

considerably by reducing the overall PE and increasing kappa, sensitivity, and specificity 

values. Among the estimated vector magnitude cut-points, AG2000 left-wrist was the 

most accurate cut-point to measure sedentary time. On the other hand, AG63 right-hip 

was the most accurate stationary cut-point. We believe that having cut-points that 

accurately differentiate standing, sitting and lying down from other physical activity 

types may be of interest for some researchers depending on the goal of their research. We 

acknowledge the limited accuracy of using cut-points to assess sedentary time. However, 

the cut-point approach remains the method of choice for many researchers and 

practitioners due to its simplicity and relatively low cost. Thus, until more complex 
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approaches are easily accessible to researchers and practitioners to score wearable 

monitors data, the most accurate cut-points available should be used. 

As strengths of this study, we note that researchers had an intensive training that 

resulted in a substantial agreement between their field observations. This agreement 

yielded a valid criterion with less observer bias as compared to other studies that have 

included observations from a single researcher.25,100 In addition, we observed our 

participants in free-living settings for two days (weekday and weekend day) allowing us 

to capture a broad range of observations in different contexts. 

An important limitation of this study is that there was no energy expenditure 

measurement to classify sedentary time, which could have led to erroneous 

classifications. Also, the study sample was comprised of healthy right-handed adults 

limiting generalization of the results to other populations (e.g., left-handed, older adults, 

etc.). Last, missing data were caused by problems with a wearable monitors recording 

that resulted in the GENEActiv right-wrist analyses with only 235.33 hours as compared 

to the other wearable monitors that included 241.32 hours. 

Conclusion 

This study showed that ActiGraph single axis cut-points (50, 100, 150, 200, 250, 

and 500 CPM) and GENEActiv vector magnitude cut-points (217 and 386 CPM) had 

limited overall accuracy to assess sedentary time in free-living settings. The AG100 

right-hip and AG150 right-hip uniaxial cut-points demonstrated to be accurate to 

differentiate stationary time (standing, sitting, and lying down) but not sedentary time 

(sitting, and lying down). The estimated vector magnitude cut-points increased accuracy 

of measuring sedentary and stationary time in free living settings. The estimated AG2000 
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left-wrist and AG63 right-hip vector magnitude cut-points were the most accurate 

thresholds found to classify sedentary and stationary time respectively. 
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Supplemental Material 

Supplemental Material 1 - ROC Plot for ActiGraph Left Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 2 - ROC Plot for ActiGraph Right Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 3 - ROC Plot for ActiGraph Right hip 1-minute Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 4 - ROC Plot for ActiGraph Left Wrist 15-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 5 - ROC Plot for ActiGraph Right Wrist 15-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 6 - ROC Plot for ActiGraph Right hip 15-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 7 - ROC Plot for GENEActiv Left Wrist 15-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 8 - ROC Plot for GENEActiv Right Wrist 15-second Epoch 

Vector Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 9 - ROC Plot for ActiGraph Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 10 - ROC Plot for ActiGraph Right Wrist 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 
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Supplemental Material 11 - ROC Plot for ActiGraph Right hip 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 12 - ROC Plot for GENEActiv Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 13 - ROC Plot for GENEActiv Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Sedentary Criterion. 

Supplemental Material 14 - ROC Plot for ActiGraph Left Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 15 - ROC Plot for ActiGraph Right Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 16 - ROC Plot for ActiGraph Right hip 1-minute Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 17 - ROC Plot for ActiGraph Left Wrist 15-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 18 - ROC Plot for ActiGraph Right Wrist 15-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 19 - ROC Plot for ActiGraph Right hip 15-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 20 - ROC Plot for GENEActiv Left Wrist 15-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion. 



	 125	

Supplemental Material 21 - ROC Plot for GENEActiv Right Wrist 15-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 22 - ROC Plot for ActiGraph Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 23 - ROC Plot for ActiGraph Right Wrist 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 24 - ROC Plot for ActiGraph Right hip 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 25 - ROC Plot for GENEActiv Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion. 

Supplemental Material 26 - ROC Plot for GENEActiv Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion. 
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Supplemental Material 1    ROC Plot for ActiGraph Left Wrist 1-minute Epoch Vector 
Magnitude Cut-point - Sedentary Criterion   
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Supplemental material 2    ROC Plot for ActiGraph Right Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 3    ROC Plot for ActiGraph hip Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 4    ROC Plot for ActiGraph Left Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 5    ROC Plot for ActiGraph Right Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Sedentary Criterion
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Supplemental material 6    ROC Plot for ActiGraph Right hip 15-seconds Epoch Vector 

Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 7    ROC Plot for GENEActiv Left Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Sedentary Criterion   
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Supplemental material 8    ROC Plot for GENEActiv Right Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 9    ROC Plot for ActiGraph Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 10    ROC Plot for ActiGraph Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 11    ROC Plot for ActiGraph Right hip 1-second Epoch Vector 

Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 12    ROC Plot for GENEActiv Left Wrist 1-second Epoch 

Vector Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 13    ROC Plot for GENEActiv Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Sedentary Criterion  
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Supplemental material 14    ROC Plot for ActiGraph Left Wrist 1-minute Epoch Vector 

Magnitude Cut-point - Stationary Criterion  
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Supplemental material 15    ROC Plot for ActiGraph Right Wrist 1-minute Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 16    ROC Plot for ActiGraph Right hip 1-minute Epoch Vector 

Magnitude Cut-point - Stationary Criterion  
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Supplemental material 17    ROC Plot for ActiGraph Left Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 18    ROC Plot for ActiGraph Right Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 19    ROC Plot for ActiGraph Right hip 15-seconds Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 20    ROC Plot for GENEActiv Left Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 21    ROC Plot for GENEActiv Right Wrist 15-seconds Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 22    ROC Plot for ActiGraph Left Wrist 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion  
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Supplemental material 23    ROC Plot for ActiGraph Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 24    ROC Plot for ActiGraph Right hip 1-second Epoch Vector 

Magnitude Cut-point - Stationary Criterion  
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Supplemental material 25    ROC Plot for GENEActiv Left Wrist 1-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion  
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Supplemental material 26    ROC Plot for GENEActiv Right Wrist 1-second Epoch 

Vector Magnitude Cut-point - Stationary Criterion 
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Chapter 6 

ACCURACY OF POSTURE-BASED SEDENTARY BEHAVIOR ESTIMATES 

MADE BY THE SEDENTARY SPHERE METHOD IN FREE-LIVING 

SETTINGS 

 
Abstract 

Background. The sedentary sphere (SS) is a new method for the assessment of 

sedentary behaviors (SB) by posture classifications derived from the angle of a wrist-

worn triaxial wearable monitor in relation to the horizontal plane. The SS has had little 

testing in free-living settings, across monitor brands, and only in the non-dominant wrist. 

The primary aim of this study was to test the accuracy of ST estimates made by the SS 

with GENEActiv and ActiGraph GT3X+ data during free-living conditions on the 

dominant and non-dominant wrists. The secondary aim was to test the accuracy of the SS 

method with different angle configurations. 

Methods. Twenty participants (mean age = 30.25 ± 6.43 years) wore four 

monitors, one ActiGraph GT3X+ (each wrist) and one GENEActiv (each wrist). The 

sedentary criterion measure was established from participants’ direct observation 

including sitting and lying down. Data were analyzed using equivalence plots, mean 

percent error (MPE), Bland-Altman plots (BA), kappa coefficient (k), sensitivity (S), and 

specificity (SP). 

Results. None of the SS estimates fell within the equivalency range of ±10% of 

the criterion mean value. BA showed no trends in error distribution regardless of the 

wrist placement and monitor used; however, the overall range for the limits of agreement 
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between the criterion and the SS estimates were considerably wider (-238 to 179 

minutes). The most accurate estimates of the SS for the GENEActiv were observed on 

the dominant wrist with the original configuration (MPE=2.25 minutes; k=0.30, 95% 

CI=0.30 to 0.31; S=0.61, 95% CI=0,61 to 0.62; SP=0.69, 95% CI=0,68 to 0.69). The 

most accurate estimates of the SS for the ActiGraph worn on the non-dominant wrist with 

5° wrist angle and sedentary cut-point <489 counts per 15-second epoch (MPE=-0.49 

minutes; k=0.31, 95% CI=0.30 to 0.31; S=0.63, 95% CI=0.62 to 0.63; SP=0.68, 95% 

CI=0,68 to 0.69). 

Conclusion. The SS was not equivalent to the criterion measure of SB but showed 

moderate accuracy to classify SB from the GENEActiv dominant wrist data and from an 

alternative configuration of the SS using ActiGraph worn on the non-dominant wrist. 

Key Words: Accelerometers, posture, wrist, sitting, standing. 
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Introduction 

Sedentary behaviors are characterized by prolonged periods of inactivity and have 

shown to be a risk factor for multiple adverse health outcomes, independent of physical 

activity.6–9 Breaking up sedentary behaviors by periods of walking and standing can 

reduce some of the deleterious effects of continuous sedentary time.19,74 However, a 

question exists of how to best measure time spent in sedentary behaviors. Sedentary 

behaviors are defined as any waking behavior characterized by an energy expenditure of 

≤1.5 METs while in a sitting or reclining posture.10 Profiles of sedentary behavior types 

can be measured using self-report questionnaires while time spent in sedentary behaviors 

is usually measured with wearable monitors. The two most common types of wearable 

monitors used to measure sedentary time are the GENEActiv (ActivInsights, Cambs, 

United Kingdom) and ActiGraph (ActiGraph LLC, Pensacola, FL, USA). Challenges in 

measuring sedentary time with wearable monitors are considerations that can affect the 

accuracy; namely, the type of wearable monitor used, wearable monitor placement, 

compliance in wearing the wearable monitor, and the scoring method used to calculate 

sedentary time.147 

The most common method to score wearable monitors data is in the use of cut-

points. Cut-points are derived from prediction equations used to classify movement into 

different intensity levels (sedentary, light, moderate, vigorous) based upon the wearable 

monitors outputs (activity counts).147 The cut-points approach is satisfactory for 

locomotion, but poses several limitations in measuring time spent in sedentary behaviors. 

As cut-points rely on the magnitude of acceleration, the time spent in sitting and standing 

behaviors is similar as when there is no movement. Hence, misclassification can occur 
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between activities occurring without movement, regardless of postural differences. For 

example, the most common cut-point of 100 counts per minute has been shown to 

misclassify light-intensity physical activities as sedentary behaviors.37,120,148 A second 

limitation of the cut-point approach is that data are averaged over a specified period of 

time, usually one-minute. This eliminates rich features of the accelerometer’s signal that 

can aid in identifying movement and sedentary behaviors. For example, features of the 

accelerometer’s signal not used with the cut-points approach are standard deviation, 

percentiles, correlation between axes, total signal power, and frequency of the signal with 

the most power.92 Such features have the potential to refine wearable monitors measures 

of sedentary time. Lastly, the cut-point method relies on the principle that accelerations 

are linearly related to energy expenditure during motion; however, the relationship 

between sedentary behaviors and energy expenditure is not linear.99 Collectively, these 

limitations can increase the chance for misclassifications of time spent in specific types 

of sedentary behaviors. 

Compliance with wearing hip-mounted wearable monitors is low in both children 

and adults.13 Low compliance can reduce the accuracy of sedentary behavior estimates by 

excluding segments of the day. Such errors can result in underestimates of time spent in 

true sedentary behaviors and reflect time spent in sedentary behaviors only while wearing 

the wearable monitors. Placement on the wrist is known to increase compliance with 

wearing a wearable monitor as compared when worn on the waist. Accordingly, the U.S. 

National Health and Nutrition Examination Survey accelerometer 2011-2012 sub-study 

has participants wear wrist-mounted wearable monitors in an attempt to increase wear-

time compliance. Preliminary reports from the 2011-2012 sub-study cycle shows wear-
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time with wrist-mounted wearable monitors has increased to 70%-80% (>6 days of data 

and median wear time of 21–22 hours per day) as compared to the NHANES 2003-2006 

cycle in which wear-time was 40%-70% (> 6 days of data and >10 hours per day) with 

waist-mounted monitors.149 Thus, wrist-mounted wearable monitors are recommended 

when assessing sedentary behaviors. 

The tri-axial GENEActiv and ActiGraph wearable monitors have an inclinometer 

feature that provides the possibility of adding posture allocations to the cut-points method 

when assessing sedentary behaviors. In 2014, Rowlands et al.41 presented a method for 

classifying sedentary behaviors based on posture and activity counts from the 

GENEActiv. This method, referred to as the sedentary sphere, has been described in 

detail by Rowlands et al.41 Briefly, by using the gravitational component of the wearable 

monitor acceleration signal it is possible to determine the orientation of the monitor using 

the wrist position. In combination with activity counts, the sedentary sphere allows for 

estimates of a likely posture such as sitting, standing, or lying. The sedentary sphere uses 

the following directions to determine a sedentary posture: (1) if the arm is elevated to >15 

degrees above the horizontal plane and the activity counts are less than 489 counts per 

each 15-second epoch (light-to-moderate intensity), the posture is classified as siting 

and/or lying (sedentary); (2) if the arm is hanging to <15 degrees below the horizontal 

plane and the activity counts are less than 489 counts per each 15-second epoch, posture 

is classified as standing (non-sedentary); and (3) if the activity counts are greater than 

489 counts per each 15-second epoch regardless of wrist elevation, posture is classified as 

standing (non-sedentary). The sedentary sphere has been examined in a few studies 

deemed promising as a method to measure time spent in sedentary behaviors.41,44,102 
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The value of the sedentary sphere is that it avoids the limitations of using cut-

points solely to determine time spent in sedentary behaviors. The sedentary sphere has 

shown to be a valid method to determine sedentary time in free-living environments and 

laboratory settings and across brands (i.e., GENEActiv data and ActiGraph) when wore 

on the non-dominant wrist. However, the validity of the sedentary sphere has not been 

determined when the wearable monitors are worn on the dominant wrist and with 

different configurations of arm elevation angles and activity count thresholds. Identifying 

the validity of such differences provides flexibility for researchers and may improve the 

accuracy of identifying sedentary behaviors during free-living conditions. 

Thus, the primary aim of this study was to test the accuracy of posture-based 

sedentary time estimates made using the sedentary sphere method with data obtained 

from the GENEActiv and the ActiGraph GT3X+ wearable monitors during free-living 

conditions on the dominant and non-dominant wrists. The secondary aim was to test the 

accuracy of the sedentary sphere method with different angle configurations of the wrist 

held below the horizontal plane. 

Materials and methods 

Participants 

A convenience sample of 20 healthy adults was recruited for the study. Eligibility 

criteria were (1) adults 18-65 years of age; (b) normal to overweight body mass index 

(18.5 to 29.9 kg/m2); and (c) negative responses to all questions of the Physical Activity 

Readiness Questionnaire - PAR-Q;125 Participants were recruited through e-mail and 

fliers placed on the Arizona State University campus. All participants signed an informed 

consent before enrollment into the study. The study protocol was approved by the 
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Arizona State University Institutional Review Board. 

Wearable Monitors 

The GENEActiv and the ActiGraph GT3X+ wearable monitors were used in this 

study. Technical specifications of these wearable monitors are in Table 10. Participants 

wore four monitors simultaneously, two on each wrist. One GENEActiv accelerometer 

was attached by a strap in the most distal position of the wrist and oriented in a manner 

that allowed the monitor serial number to be read by the participant. One ActiGraph 

GT3X+ accelerometer was attached by an adjustable wrist band in the most proximal 

position of the wrist oriented in a manner that allowed the ActiGraph logo to be read by 

the participant. 

 

Table 10 - Technical specifications for the GENEActiv and ActiGraph GT3X+ 
wearable monitors 
 GENEActiv  ActiGraph GT3X+ 
Number of axes Three  Three 
Size 43mm x 40mm x 13mm  46mm x 33mm x 15mm 
Weight 16g (without strap)  19g 
Acceleration range +/- 8g  +/- 8g 
Sample rate Selectable 10-100 Hz in 10-

Hz increments 

 Selectable 30–100 Hz in 10-

Hz increments 
Resolution 12 bit  12-bit 
Water resistance 10 meters, 24 hours   1 meter, 30 minutes 

 

The inter-monitor reliability was tested before field data collection with the 

intraclass coefficient (ICC) (ICCGENEActiv= 0.96 and ICCActiGraph= 0.95). Methods used to 

obtain the ICCs have been previously reported.150 

Data Management and Processing 

The GENEActiv software 2.9 and ActiLife software 6.11.5 were used to initialize 
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and download data from the GENEActiv and the ActiGraph, respectively. The wearable 

monitors were initialized to collect data at 100Hz. Data from the wearable monitors were 

downloaded to .csv files in 15-second epochs for the GENEActiv and in raw format for 

the ActiGraph. To compute the posture-based sedentary time estimates, a SAS program 

was created (available upon request) to replicate the data process made by the sedentary 

sphere custom built Excel spreadsheets.41,44 

Criterion Measure 

The criterion variable of sedentary behavior during free-living time was obtained 

from direct observation with focal sampling and duration coding. Six different activity 

categories (walking, running, sports/exercise, household chores, standing, and 

sitting/lying down) were observed and independently coded by two researchers as they 

were performed in free-living conditions. An iPad tablet and a commercially available 

software which allowing for timestamped annotations over customized observation 

categories were used to record the behaviors.118 

 Researchers completed extensive training and testing before field observations. A 

detailed description of the training and testing procedures can be found elsewhere (See 

project 2). Briefly, researchers completed 24 hours of one-to-one supervised training 

consisting of familiarization with study protocols and tablet use, techniques to avoid 

disrupting, disturbing or modifying participant’s natural behavior, direct observation 

practice using the tablet to record observations while watching a set of videos, and direct 

observation practice using the tablet as persons performed fee-living behaviors. Upon 

completion of training, researchers completed a video testing session in which their 

observations were compared to observations previously coded by two senior researchers. 
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Researchers were required to achieve an ICC > 0.80 before collecting field data. 

To observe the participant’s behaviors, two researchers accompanied participants 

in their free-living environment for 6-hours, two days a week (one weekday and one 

weekend day). Pre-defined activity categories for direct observation notation are 

described in detail elsewhere (See project 2). Briefly, the categories used for field data 

collection are defined below: 

• Walking. Walking for all locomotion purposes. 

• Running. Continuous and short bouts of running and jogging. 

• Sports and conditioning exercise. Playing sports or performing continuous or 

intermittent conditioning exercises. 

• Household chores. Performing housekeeping activities. 

• Standing. Standing while bearing the body weight in one or both lower limbs. 

• Sitting/lying down. Having a body positions in which the body weight is 

supported by the buttocks, thighs or back; this includes sitting and lying down. 

Additional observation categories were designed as follow: 

• Private. When a participant required private time (e.g., restrooms use). 

• Unobserved. When the participant was available to be observed but out of the 

sight of the researchers. 

• Error. When researchers made an error or were unable to determine an accurate 

coding for a given activity. 
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Sedentary behaviors were coded as sedentary (sitting or lying = 1) or non-

sedentary (all other activities = 0) based on the predominant behavior during a15-second 

epoch. If the 15-second epoch included sitting or standing for >8 seconds, the epoch was 

recorded as sedentary (0). If the time was <8 seconds of sitting or standing, the epoch was 

recorded as non-sedentary (1). 

Data Analysis 

Descriptive statistics were computed to characterize the sample by sex, age, and 

body mass index. Several analyses were used to compare the sedentary sphere estimates 

obtained with the GENEActiv and ActiGraph for the dominant and non-dominant wrist 

(herein referred to as the wearable monitors under assessment) and the criterion direct 

observation. 

Equivalency testing was used to examine if the sedentary sphere estimates 

obtained from the wearable monitors under assessment were statistically equivalent to the 

criterion. As a brief overview, equivalency testing is used to assess the equivalence of 

two mean values as an alternative to testing for significant differences.129 Equivalency 

testing requires identification of a meaningful equivalence range (referred to as the 

equivalence zone) and to calculate 90% confidence intervals for independent measure 

scores. In the current study, the independent variables were the sedentary sphere 

estimated minutes for each wearable monitor under assessment. If the full 90% 

confidence interval of a sedentary sphere estimate falls within the equivalence zone, it is 

concluded with 95% confidence that the sedentary sphere value is equivalent to the 

criterion value. The equivalence zone was set at ±10% of the criterion sedentary minutes; 
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this value, while arbitrary, is consistent with other wearable monitors validation 

studies.130,151 

Percent Error (PE) was calculated to assess the proportion of error for the 

sedentary and non-sedentary minutes for each wearable monitor under assessment 

relative to the criterion measure. 

PE = [(Wearable Monitor Score – Criterion Score)/Criterion Score] x 100. 

The criterion score was the sum of the sedentary minutes recorded by direct observation. 

The wearable monitor score was the sum of sedentary sphere estimated minutes for each 

wearable monitor. A positive PE indicated an overestimate of sedentary time by the 

sedentary sphere and a negative PE indicated an underestimation of sedentary time.128 

Bland-Altman plots131 were used to display the error distribution and systematic 

variation between total sedentary minutes recorded by the direct observation and total 

sedentary minutes as created by the sedentary sphere for each wearable monitor under 

assessment. In the Bland-Altman plots, the difference score (bias) between direct 

observation sedentary time and the sedentary sphere time was plotted against the 

averages of the two measures. The error distribution is observed within three horizontal 

reference lines: the mean difference (zero deviation line), upper limit of agreement (+1.96 

standard deviation of the differences), and lower limit of agreement (-1.96 standard 

deviation of the differences). Bland-Altman plots were enhanced by regressing the 

difference score against the average of the two scores. The regression line provides a 

statistical reference for systematic variation between the direct observation and sedentary 

sphere estimates for each of the wearable monitors. A flat regression line in the Bland-

Altman plot indicates no measurement differences between the two methods for each 
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wearable monitor, a positive slope indicates that the sedentary sphere is positively biased 

when compared to direct observation, and a negative slope indicates that the sedentary 

sphere is negatively biased. 

The kappa statistic was used to observe epoch-by-epoch agreement between the 

sedentary sphere estimates for each wearable monitor under assessment and the criterion 

measure. Kappa scores are used to compare agreement between nominal and categorical 

variables while taking into account the agreement occurring by chance.133 Kappa values 

close to 1 indicate perfect agreement (high accuracy) and kappa values close to 0 indicate 

no agreement (low accuracy). Kappa values are interpreted as follows: 0–0.2 = slight 

agreement, 0.2–0.4 = fair agreement, 0.4–0.6 = moderate agreement 0.6–0.8 = substantial 

agreement, and 0.8–1.0 = almost perfect agreement.134 

Epoch-by-epoch sensitivity and specificity were calculated to measure the 

accuracy of the sedentary sphere to classify a behavior as sitting/lying for each wearable 

monitors under assessment. When a sensitivity is close to 1, it shows that the sedentary 

sphere accurately classified a high proportion of sitting/lying as compared with direct 

observation. A sensitivity value close to 0 indicates that the sedentary sphere failed to 

classify the behaviors as sitting/lying. Sensitivity was calculated using the formula, 

Sensitivity = True positives / (True positives + False negatives) 

Specificity measures the ability of the sedentary sphere to classify activities that 

are not sitting/lying. Specificity was calculated using the formula, 

Specificity = True negatives / (False positives + True negatives) 
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When specificity is close to 1, the sedentary sphere accurately classifies non-

sitting/lying activities as movement (not sitting/lying). Specificity close to 0 indicates that 

the sedentary sphere fails to exclude movement activities from being classified as 

sitting/lying. 

Equivalence testing, PE, Bland-Altman plots, kappa, sensitivity, and specificity 

were calculated for each wearable monitor on both wrists for six different configurations 

of the sedentary sphere as follows. 

• Configuration 1 – the original sedentary sphere configuration with an arm 

elevation threshold at 15 degrees below the horizontal plane and with a light-to-

moderate intensity threshold at <489 counts per 15-second epoch. 

• Configurations 2-5 – varying arm elevation thresholds (5, 10, 20, 25 degrees 

below the horizontal plane, respectively) and with the intensity classified as 

light-to-moderate (<489 counts per 15-second epoch). 

•  Configuration 6 – the arm elevation threshold is constant at 15 degrees below 

the horizontal plane and applied vector magnitude sedentary cut-points for 15-

second epoch developed previously (GENEActiv non-dominant 65 counts per 

15-second epoch, GENEActiv dominant 61 counts per 15-second epoch, 

ActiGraph non-dominant 455 counts per 15-second epoch, and ActiGraph 

dominant 495 counts per 15-second epoch).150 

All analyses were performed using SAS version 9.4. Graphics for the equivalence 

testing were made using a custom-built Excel spreadsheet. 



	 165	

Results 

A total of 20 adults completed the study protocol. Participants were 50% female, 

30.25 ± 6.43 years of age (range: 21-46 years), and body mass index = 22.7 ± 3.1 kg/m2 

(range: 18.51-29.76 kg/m2). All participants were right-handed. A total of 40 sessions and 

241.32 hours of free-living direct observation were observed. The average length of free-

living observation sessions was 5.97 (± 0.26) hours. Due to a monitor error, 5.99 hours 

were missing from one GENEActiv worn on a dominant wrist. 

Figure 3 presents equivalence plot for each configuration of the sedentary sphere 

under assessment as compared to the criterion measure. Table 11 presents results from 

total sedentary time, PE, kappa, sensitivity, and specificity for each configuration of the 

sedentary sphere under assessment. Supplementary material shows Bland-Altman plots 

for each configuration of the sedentary sphere under assessment. Total sedentary time as 

measured by the criterion was 164 ± 89 minutes. None of the sedentary sphere estimates 

were within the equivalence zone across all configurations, wearable monitors brands, 

and location (dominant wrist and non-dominant wrist; herein referred to as dominant and 

non-dominant). There was marginal equivalence for configuration 1 ActiGraph dominant, 

configuration 2 ActiGraph non-dominant, configuration 3 GENEActiv non-dominant and 

GENEActiv dominant, configuration 4 ActiGraph dominant, and configuration 6 

ActiGraph dominant. 
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Figure 3    Equivalence plots for each configuration of the sedentary sphere as compared 
to the criterion measure. Grey area represents +/-10% for the criterion mean (equivalence 
zone), black bars represents 90% confidence interval for the test sedentary sphere 
estimates by monitor and location. 
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Table 11 - Percent Error, kappa, sensitivity, and specificity for each sedentary 
sphere configuration 

  
Percent 
Error 

kappa  
(95% CI) 

Sensitivity  
(95% CI) 

Specificity 
 (95% CI) 

Configuration 
1 GENEActiv Non-dominant 6.51 0.30 (0.30, 0.31) 0.61 (0.61, 0.62) 0.69 (0.68, 0.69) 

GENEActiv Dominant 2.25 0.36 (0.35, 0.36) 0.65 (0.64, 0.66) 0.71 (0.70, 0.71) 

Actigraph Non-dominant 13.79 0.34 (0.34, 0.35) 0.62 (0.62, 0.63) 0.72 (0.72, 0.73) 

Actigraph Dominant -3.46 0.26 (0.25, 0.27) 0.61 (0.60, 0.61) 0.65 (0.65, 0.66) 
Configuration 

2 GENEActiv Non-dominant -11.06 0.26 (0.25, 0.27) 0.61 (0.61, 0.62) 0.65 (0.64, 0.65) 

GENEActiv Dominant -14.03 0.30 (0.29, 0.31) 0.65 (0.64, 0.65) 0.66 (0.66, 0.67) 

ActiGraph Non-dominant -0.49 0.31 (0.30, 0.31) 0.63 (0.62, 0.63) 0.68 (0.68, 0.69) 

ActiGraph Dominant -28.89 0.14 (0.13, 0.15) 0.57 (0.56, 0.57) 0.59 (0.58, 0.59) 
Configuration 

3 GENEActiv Non-dominant -1.09 0.19 (0.19, 0.20) 0.59 (0.58, 0.59) 0.62 (0.61, 0.62) 

GENEActiv Dominant -4.36 0.28 (0.28, 0.29) 0.61 (0.61, 0.62) 0.67 (0.67, 0.68) 

Actigraph Non-dominant 7.40 0.33 (0.32, 0.33) 0.62 (0.62, 0.63) 0.70 (0.70, 0.71) 

Actigraph Dominant -15.47 0.19 (0.19, 0.19) 0.59 (0.58, 0.59) 0.62 (0.61, 0.62) 
Configuration 

4 GENEActiv Non-dominant 11.8 0.31 (0.30, 0.32) 0.61 (0.60, 0.62) 0.70 (0.70, 0.71) 

GENEActiv Dominant 6.43 0.37 (0.36, 0.38) 0.65 (0.64, 0.65) 0.72 (0.72, 0.73) 

ActiGraph Non-dominant 18.69 0.35 (0.35, 0.36) 0.62 (0.62, 0.63) 0.74 (0.73, 0.74) 

ActiGraph Dominant 4.19 0.29 (0.28, 0.30) 0.61 (0.61, 0.62) 0.68 (0.67, 0.68) 
Configuration 

5 GENEActiv Non-dominant 15.64 0.32 (0.31, 0.32) 0.61 (0.60, 0.61) 0.71 (0.71, 0.72) 

GENEActiv Dominant 9.36 0.37 (0.36, 0.38) 0.64 (0.64, 0.65) 0.73 (0.72, 0.73) 

ActiGraph Non-dominant 22.24 0.36 (0.35, 0.37) 0.62 (0.61, 0.63) 0.75 (0.74, 0.75) 

ActiGraph Dominant 9.33 0.30 (0.30, 0.31) 0.62 (0.61, 0.62) 0.69 (0.69, 0.70) 
Configuration 

6 GENEActiv Non-dominant -47.02 0.18 (0.17, 0.19) 0.64 (0.63, 0.64) 0.60 (0.59, 0.60) 

GENEActiv Dominant -46.74 0.22 (0.21, 0.23) 0.68 (0.67, 0.68) 0.61 (0.60, 0.61) 

ActiGraph Non-dominant 13.1 0.34 (0.34, 0.35) 0.62 (0.62, 0.63) 0.72 (0.72, 0.73) 

ActiGraph Dominant -3.38 0.26 (0.25, 0.27) 0.61 (0.60, 0.61) 0.65 (0.65, 0.66) 
Configuration 1  Arm elevation threshold 15°, intensity threshold 489 counts per 15-sec epoch 
Configuration 2  Arm elevation threshold 5°, intensity threshold 489 counts per 15-sec epoch 
Configuration 3  Arm elevation threshold 10°, intensity threshold 489 counts per 15-sec epoch 
Configuration 4  Arm elevation threshold 20°, intensity threshold 489 counts per 15-sec epoch 
Configuration 5  Arm elevation threshold 25°, intensity threshold 489 counts per 15-sec epoch 
Configuration 6  GENEActiv Non-dominant, arm elevation threshold 15°, intensity threshold 65 counts per 15-sec epoch 
 GENEActiv Dominant, arm elevation threshold 15°, intensity threshold 61 counts per 15-sec epoch 
 ActiGraph Non-dominant, arm elevation threshold 15°, intensity threshold 455 counts per 15-sec epoch 

  ActiGraph Dominant, arm elevation threshold 15°, intensity threshold 495 counts per 15-sec epoch. 
 

 

Sedentary sphere estimates for configuration 1 showed higher PE for the non-

dominant wrist than dominant wrist regardless the wearable monitor; however, the 

ActiGraph had higher values of PE as compared to the GENEActiv in both dominant and 
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non-dominant wrists. Among the alternative tested configurations (2-6), PE tended to be 

higher as compared to configuration 1. Except for configuration 2 for the ActiGraph non-

dominant, configuration 3 GENEActiv non-dominant, and configuration 3 ActiGraph 

non-dominant showed lower PE (-0.49, -1.09, and 7.40 respectively). The Bland-Altman 

plots showed no trends in the error distribution regardless of the wrist and wearable 

monitor. However, the overall range between the 95% limits of agreement were 

considerably wider (-238 to 179 minutes). The GENEActiv dominant for the 

configuration 5 showed the narrowest limits of agreement (-111 to 148 minutes), while 

ActiGraph dominant for configuration 2 showed the widest (-238 to 144 minutes). 

Regression lines in the Bland-Altman plots had a negative slope regardless of the wrist 

and wearable monitor. Results for kappa, sensitivity, and specificity were similar; there 

was slight to fair agreement for kappa values and moderate sensitivity and specificity. 

Discussion 

The results showed that none of the sedentary sphere estimates obtained with the 

GENEActiv and the ActiGraph were equivalent to the criterion measure of direct 

observation. The original configuration of the sedentary sphere41 indicated moderate 

accuracy using the GENEActiv and the ActiGraph wearable monitors across all accuracy 

metrics used to compare the sedentary sphere with the criterion. The sedentary sphere 

estimates were more accurate using data from the dominant wrist as compared with the 

non-dominant wrist. The most accurate estimates of sedentary time were observed for the 

GENEActiv worn on the dominant wrist. With only the exception of configuration 2 

(ActiGraph, non-dominant wrist 5° below the horizontal plane and with the light-to-

moderate cut-points intensity threshold of <489 counts per 15-second) which was better 
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than the original sedentary sphere configuration proposed by Rowlands et al.,41 none of 

the alternative configurations of the sedentary sphere with varying wrist angles and cut-

points improved accuracy of estimates made by the sedentary sphere. 

Sedentary time estimates from the sedentary sphere revealed relatively small PE 

and bias (Bland-Altman plots). On the other hand, it showed wide limits of agreement 

(Bland-Altman plots), slight agreement (kappa) and moderate sensitivity and specificity. 

Collectively, these metrics indicate high inter-individual variability, which reinforce the 

utility of the sedentary sphere for group-level estimates of sedentary time.102 Physical 

activity measurement studies using wrist-worn wearable monitors on dominant and non-

dominant wrist have found no differences between time spent in different intensities of 

physical activity.152,153 To our knowledge, no studies have studied whether sedentary time 

estimates for the dominant wrist are equivalent to the non-dominant wrist. Testing for 

equivalences of sedentary time of the dominant vs. non-dominant wrists was out of the 

scope of this study and we suggest this be the focus of future studies of sedentary time 

measurement. 

Previous published research by Rowlands et al. demonstrated the sedentary sphere 

to be a valid method to measure sedentary time when wore on the non-dominant wrist41 

regardless the wearable monitor brand.44 In contrast, the current results showed that the 

dominant wrist was more accurate regardless of the wearable monitor brand and that 

configuration 2 with ActiGraph non-dominant data was more accurate than the original 

sedentary sphere configuration of Rowlands et al. These differences may be explained by 

Rowlands et al. using the activPALTM (PAL Technologies Ltd., Glasgow, UK) as the 

criterion instead of direct observation as used in the current study. Both the activPALTM 



	 170	

and direct observation, have shown to be valid measures of sedentary time.89,154 Direct 

observation is recognized as a valid posture criterion measure and it has been used by 

most of the validation studies involving the activPALTM.89,155 Accordingly, it is possible 

that the comparisons between the sedentary sphere and direct observation would be more 

precise than those made to the activPALTM. Another explanation for the differences may 

be that the current data were collected in free-living environments, while Rowlands et al. 

collected data in different settings (i.e., laboratory, free-living, and in hospital in-

patients). The current sample included adults performing their daily activities in a free-

living environment with the nature of the activities carried out by participants differing 

significantly from those done in other defined settings. Additional studies are needed to 

show consistency of results for the testing settings and the sedentary sphere 

configurations to identify the optimal method to estimate sedentary time. 

As noted earlier, there are limitations to the cut-point method to estimate time 

spent in sedentary behaviors and that a more comprehensive approach to scoring 

wearable monitors data is needed to obtain the most accurate assessment of sedentary 

time. Human activity recognition techniques based on machine learning have been 

proposed, but user-friendly methods have not yet been developed as yet. The sedentary 

sphere method holds promise as it has acceptable validity in controlled and free-living 

settings. It also overcomes some of the limitations of the uniaxial cut-point method to 

assess sedentary time. Notably, the sedentary sphere includes posture estimates allowing 

classification of sedentary time by posture and intensity. This is of substantial importance 

as allows the measurements to be in agreement with the prevailing conceptual definition 

of sedentary behaviors. Additionally, the shorter 15-second epoch may identify sporadic 
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non-sedentary behaviors and that can identify non-sedentary epochs that otherwise would 

be classified as sedentary when using longer epochs, such as 1-minute. 

This study has several strengths, including a robust criterion measure of sedentary 

behaviors obtained by the observations of two independent researchers monitoring 

participants in free-living settings for two days (weekday and weekend day). This 

allowed data collection of many behaviors that were not influenced by structured settings, 

such as the laboratory, where activity intensity and time do not vary considerably. This 

study is limited by a relatively small convenience sample and of all right-handed healthy 

adults. The sample was not stratified by handedness and by chance, all participants were 

right-handed. This may limit generalization of the results to other populations who are 

left-handed. 

Conclusion 

 The findings of this study indicate that none of the sedentary sphere 

configurations tested were equivalent to the criterion of direct observation. However, the 

original configuration of the sedentary sphere method showed moderate accuracy to 

classify sedentary time in free-living settings from wrist-worn GENEActiv wearable 

monitors when worn on the dominant wrist as compared with the non-dominant wrist. 

Among five different configurations of the sedentary sphere, 5° below the horizontal 

plane and light-to-moderate cut-point intensity threshold of <489 counts per 15-second, 

showed moderate accuracy to classify sedentary time in free-living settings from wrist-

worn ActiGraph wearable monitors when worn on the dominant wrist. 
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Supplemental Material 

Supplemental Material 1 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 1. 

Supplemental Material 2 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 2. 

Supplemental Material 3 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 3. 

Supplemental Material 4 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 4. 

Supplemental Material 5 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 5. 

Supplemental Material 6 - Bland-Altman Plots for Sedentary Sphere Estimates Compared 

with the Criterion Value Configuration 6. 
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Supplemental Material 1    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 1 
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Supplemental Material 2    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 2 
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Supplemental Material 3    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 3 
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Supplemental Material 4    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 4 
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Supplemental Material 5    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 5 
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Supplemental Material 6    Bland-Altman Plots for Sedentary Sphere Estimates 
Compared with the Criterion Value Configuration 6 
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Chapter 7 

DISCUSSION 

This dissertation was composed of three distinct research projects with the overall 

theme of wearable monitors-based measurement of sedentary behaviors. The studies were 

designed to: A) examine the validity of wearable monitors (ActiGraph GT3X+, 

activPAL™, and SenseWear 2) to estimate energy expenditure for sedentary-to-light 

activities; B) test the accuracy wearable monitors (GENEActiv and the ActiGraph 

GT3X+) to classify sedentary and stationary time in free-living using different cut-points 

and body locations (wrist and waist) and to develop optimal vector magnitude cut-points 

to classify sedentary and stationary time based upon data collected under free-living 

conditions; and C) test the accuracy of posture-based sedentary time estimates made by 

the sedentary sphere method from GENEActiv and the ActiGraph GT3X+ wearable 

monitors during free-living conditions in both dominant and non-dominant wrists and 

with different angle configurations. 

The conclusions from project one were that none of the wearable monitors tested 

(ActiGraph GT3X+, activPAL™, and SenseWear 2) was equivalent with the criterion 

measure of oxygen uptake to differentiate the energy cost of sedentary behaviors and 

light-intensity physical activities. Among the wearable monitors tested, the activPAL™ 

had the highest overall criterion validity to identify sedentary behaviors and light-

intensity physical activity as compared with the ActiGraph and SenseWear 2. 

Comparing of the ability of different monitors to assess the energy cost of 

movement with other studies is difficult as most of the existing validation studies have 

not considered the accuracy of energy expenditure estimates during sedentary-to-light 
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activities as compared to the criterion of indirect calorimetry. Furthermore, there are 

several equations that can be used to estimate moderate-to-vigorous physical activity 

METs from the ActiGraph in adults,137–142 but no prediction equations to estimate energy 

expenditure during sedentary-to-light physical activities. Only one study by Calabro40 has 

validated the Freedson equation136 to estimate energy expenditure during sedentary-to-

light activities. Similar to project 1 in this dissertation, the Freedson equation was used to 

estimate energy expenditure from the ActiGraph and the study showed poor validity as 

compared to indirect calorimetry. Similarly, most of the validation studies using the 

activPAL™ have compared the monitor’s accuracy in distinguishing sitting/lying, 

standing and stepping activities.25,32,89,103 The validity of the activPAL™ to estimate 

MET values has not been compared with indirect calorimetry. Calabro40 also examined 

the validity of the activPAL™ to assess energy expenditure for sedentary behaviors and 

light intensity physical activities and found poor validity to estimate the energy cost of 

sedentary and light-intensity behaviors as compared to indirect calorimetry. This differs 

from findings observed in project 1. Likewise, the SenseWear 2 has been validated to 

measure energy expenditure at rest,156–158 and during exercise.124,159 Only two studies40,160 

have compared the energy cost of sedentary-to-light intensity physical activities as 

compared with indirect calorimetry. Findings show considerable measurement error for 

MET estimates of sedentary-to-light activities as compared to indirect calorimetry 

(standing still mean percent difference = –8.62 ± 12.47, p<0.01; standing while doing 

office work mean percent difference = –18.64 ± 16.93, p<0.01; and sitting while doing 

office work mean percent difference = –19.09 ± 7.77, p<0.01). The results of project 1 

conclude that objective monitors have low ability to distinguish between the energy costs 
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of sedentary and light-intensity behaviors using traditional scoring methods. Thus, 

innovative ways to score accelerometers and other types of wearable monitors is needed 

to distinguish between sedentary behaviors and light-intensity physical activities. 

In projects two and three, innovative methods were applied in scoring wearable 

monitors to identify sedentary behaviors and to differentiate sedentary behaviors from 

stationary behaviors. The conclusions from project 2 were that the ActiGraph single axis 

cut-points of 50, 100, 150, 200, 250, and 500 counts per minute and GENEActiv vector 

magnitude cut-points of 217 and 386 counts per minute had limited overall accuracy to 

assess sedentary time in free-living settings. The ActiGraph worn on the right hip using 

100 and 150 counts per minute uniaxial cut-points was most accurate in differentiating 

stationary time (standing, sitting, and lying down) but not sedentary time (sitting and 

lying down). The estimated vector magnitude cut-points had better accuracy to measure 

sedentary and stationary time in free living settings. The ActiGraph worn on the left wrist 

with a vector magnitude cut-point of 2,000 counts per minute and the ActiGraph worn on 

the right hip with a vector magnitude cut-point of 63 counts per minute had the most 

accurate thresholds to classify sedentary and stationary time, respectively. 

Project 2 was inspired from the findings of Kozey-Keadle et al.,25 who showed 

that the ActiGraph worn on the right hip with cut-points of 100 and 150 counts per 

minute was most accurate in detecting sedentary behaviors. Interestingly, results for 

project 2 differed using the same cut-points where error magnitudes and directions were 

similar for measuring stationary time but not for sedentary time. The results may be due 

to differences in the metrics and methodological procedures used in Kozey-Keadle et 

al.’s study and project 2. Kozey-Keadle et al. used the low-frequency extension for the 
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ActiGraph whereas project 2 had no additional filtering applied to the monitors signal. It 

also is possible that there were differences in the ActiGraph sampling frequency, 

however Kozey-Keadle et al. did not report the sampling frequency used in their study. 

While both studies used direct observation as the criterion measure for time spent in 

sedentary behaviors, Kozey-Keadle et al.’s criterion value was derived from observations 

by a single researcher while project 2 had two observers. Based on the differences in the 

study methods, it is difficult to compare results directly between the Kozey-Keadle et al. 

study and project 2. Accordingly, differences in the validation methodologies may have 

contributed to the different study findings. It is recommended that a common protocol be 

used when validating monitor cut-points to assess time spent in sedentary behaviors so 

study results can be compared. Further, as no other studies have estimated vector 

magnitude cut-points for sedentary or stationary behaviors, additional studies are needed 

to confirm the findings observed to date. 

As interest in the study of sedentary behaviors increases, advances in 

measurement methods may increase the precision needed to distinguish sedentary 

behaviors from other movement types and intensities. The sedentary sphere is a concept 

created by Rowlands et al.41 which measures movement intensity and arm positions from 

a wrist-worn accelerometer to estimate time spent in sedentary behaviors. Project 3 

compared the accuracy of different configurations of movement intensities and arm 

positions with the GENEActiv wearable monitor to estimate sedentary time as compared 

with sedentary time observed by direct observation. Conclusions from project 3 were that 

none of the sedentary sphere configurations tested were equivalent to the criterion 

measure of direct observation and that Rowland et al.’s original configuration of the 
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sedentary sphere method showed moderate accuracy to classify sedentary time in free-

living settings when the GENEActiv was worn on the dominant wrist as compared with 

the non-dominant wrist. Among the five different configurations of the sedentary sphere 

tested in project 3, the configuration of the wrist at 5° below the horizontal plane with a 

light-to-moderate cut-point intensity threshold of <489 counts per 15-second showed 

moderate accuracy to classify sedentary time in free-living settings from wrist-worn 

ActiGraph wearable monitors when worn on the dominant wrist. 

To date, a perfect method has not been identified to measure time spent in 

sedentary behaviors using wearable monitors. The sedentary sphere is the most recent 

concept using wrist-worn wearable monitors with Rowlands et al. showing the sedentary 

sphere as valid in measuring sedentary time when a monitor is worn on the non-dominant 

wrist41, regardless the wearable monitor brand.44 Project 3 showed that the sedentary 

sphere was more accurate when a monitor was worn on the dominant wrist, regardless of 

the wearable monitor brand. Further, an alternative configuration of the sedentary sphere 

for the ActiGraph worn on non-dominant wrist was more accurate than the original 

sedentary sphere configuration. However, similar to project 2, methodological differences 

in Rowlands et al.’s study protocol and the one used in project 3 may have contributed to 

differences in the study findings. Rowlands et al. used an activPALTM as the criterion 

measure for sedentary behaviors while project 3 used direct observation as the criterion 

measure. While, the activPALTM and direct observation have shown to be valid measures 

of sedentary time,89,154 direct observation is recognized as a the preferred criterion 

measure to assess postural changes. Accordingly, direct observation has been used as the 

criterion measure validating the activPALTM.89,155 It is possible that the comparisons 
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between the sedentary sphere and direct observation were more precise in project 3 than 

those made by Rowlands et al. using the activPALTM. Such comparisons need 

examination in additional studies. Another explanation for the differences may be that 

project 3 collected data in free-living environments while Rowlands et al. collected data 

in laboratory, free-living, and hospital settings. As noted, consistency in methodology 

used in validation studies is needed to avoid differences in results arising from the 

protocol used rather than the accuracy of a monitor to assess sedentary behaviors. 

The findings from the three projects in this dissertation are relevant since 

wearable monitors are used more frequently to determine time spent in sedentary 

behaviors and physical activities in research studies. However, reflection of how methods 

may have been applied differently in the three projects suggests additional research may 

expand the scope of the results obtained. In project 1, the use of multiple monitors worn 

on different body locations would have allowed inter-monitor comparisons. For example, 

if the activPALTM and another monitor had been placed on the thigh, it would have been 

possible to compare if the activPALTM energy expenditure estimations were due to the 

location of the monitor or to the estimation equation. Another improvement would have 

been to include an additional criterion measure to assess the definition of sedentary 

behavior related to intensity and posture, not just one or the other. In projects 2 and 3, 

having participants in the study who were left-handed and right-handed (as opposed to 

having all participants being right-handed as in these studies) would have extended the 

results to make comparisons between dominant and non-dominant estimations more 

generalizable to the population. 
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Collectively, the findings on this dissertation indicate that the tested wearable 

monitors and methods used have limitations in assessing sedentary behaviors and light-

intensity physical activities and that there is considerable room for improvement in the 

wearable monitors-based measurement of sedentary behaviors and light-intensity 

physical activities. Additional research is required to show consistency of results and to 

further understand the scope and limitations of common wearable monitors and 

approaches to assess sedentary behaviors and light intensity physical activities. Future 

research topics on sedentary behaviors measurement may include testing alternative 

locations of monitors on the body to assess sedentary behaviors including the ankle and 

in pockets. Testing of the technical features of wearable monitors is needed as is testing 

the accuracy of the equations used to assess sedentary behaviors and light intensity 

physical activity. Last, in evaluating the sedentary sphere, tests of sedentary time 

estimations are needed to show that data are equivalent from monitors worn on dominant 

vs. non-dominant wrists and that the sedentary sphere results are applicable in different 

settings and populations. 
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