
Multi-Tenancy and Sub-Tenancy Architecture in Software-As-A-Service (Saas)

by

Peide Zhong

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the
Graduate Supervisory Committee:

Hasan Davulcu, Chair
Hessam Sarjoughian

Dijiang Huang
Wei-Tek Tsai

ARIZONA STATE UNIVERSITY

May 2017

ABSTRACT

Multi-tenancy architecture (MTA) is often used in Software-as-a-Service (SaaS) and

the central idea is that multiple tenant applications can be developed using compo-

nents stored in the SaaS infrastructure. Recently, MTA has been extended where

a tenant application can have its own sub-tenants as the tenant application acts

like a SaaS infrastructure. In other words, MTA is extended to STA (Sub-Tenancy

Architecture). In STA, each tenant application not only need to develop its own

functionalities, but also need to prepare an infrastructure to allow its sub-tenants to

develop customized applications. This dissertation formulates eight models for STA,

and proposes a Variant Point based customization model to help tenants and sub-

tenants customize tenant and sub-tenant applications. In addition, this dissertation

introduces Crowd- sourcing to become the core of STA component development life

cycle. To discover fit tenant developers or components to help building and com-

posing new components, dynamic and static ranking models are proposed. Further,

rank computation architecture is presented to deal with the case when the number of

tenants and components becomes huge. At last, an experiment is performed to prove

rank models and the rank computation architecture work as design.

i

DEDICATION

Firstly, I dedicate my dissertation work to my family and many friends. A special

feeling of gratitude to my loving parents, Jiacan and Zhuowen and elder sister,

Xiaoling who were always supporting me and encouraging me with their best wishes.

Secondly, I dedicate this dissertation to my wife, Zhixin Dong who was always there

cheering me up and stood by me through the good and bad times, my son, Arthur

Zhong who was always bringing me lots of funs and interesting stories, and my little

baby Annie who gives me hope and courage.

Finally, I dedicate this dissertation to my many friends, Song Xiang, Feng Guo,

Wei Lu, Ke Bai, Chong Sun, Jun Xie, Frank Yang, Xiaoyong Chai, Sha Liu, Tianyi

Xing who have supported me throughout the process. I will always appreciate all they

have done and extraordinary suggests they made.

ii

ACKNOWLEDGMENTS

I would never have been able to finish my dissertation without the guidance of my

committee members, help from friends, and support from my family, my wife, my

son and another little baby on the way. I would like to express my deepest gratitude

to my advisor, Professor Hasan Davulcu, for his excellent guidance, caring,

patience, and providing me with excellent research topics. I also would like to thank

him to patiently corrected my writing and financially supported my research. I would

also like to thank Professor Sarjoughian, Professor Huang and Professor Tsai for

guiding my research for the past several years and helping me to develop my

background in software engineer and are willing to participate in my committee. I

would like to thank Jay Elston, who as a good friend, was always willing to help and

give his best suggestions. It would have been a lonely research journey without him.

Many thanks to Qian Huang, Xin Sun, Guanqiu Qi, Wu Li, Xingyu Zhou, Le Xu,

Zhibin Cao and JingJing Xu for helping me and giving me suggests. My research

would not have been possible without their helps.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION AND RELATED WORK. 1

1.1 Introduction . 1

1.2 Related Work . 2

1.2.1 MTA in SaaS . 2

1.2.2 Crowdsourcing . 3

1.2.3 Scalability in SaaS . 4

1.2.4 Security in SaaS . 5

1.2.5 Variation Point . 5

1.2.6 Customization in SaaS . 6

2 STA MODELS . 7

2.1 SSTA Models . 9

2.2 Two Level STA Models (TSTA): . 10

2.3 Multi-level STA (MSTA) . 15

2.4 STA Properties . 18

3 STA SECURITY CONSIDERATION AND ACCESS PERMISSION MOD-

ELS . 20

3.1 STA Security Consideration . 20

3.1.1 SSTA . 20

3.1.2 TSTA . 20

3.1.3 MSTA . 21

3.2 Permission Access Models . 21

iv

CHAPTER Page

3.2.1 Permission Access Model for Applications. 21

3.2.2 Permission Access Model for Data . 22

4 STA CUSTOMIZATION MODELS . 24

4.1 STA Customization Techniques . 24

4.1.1 For SSTA . 26

4.1.2 For TSTA . 26

4.1.3 For MSTA. 28

4.2 STA Customization Deduction . 29

4.3 Variant Point Model . 31

4.3.1 VP Classification . 31

4.3.2 VP Relationships . 34

4.3.3 VP Properties . 38

4.3.4 VP Options and Rules Deduce Algorithm 38

4.4 STA Customizations with VP models . 40

4.4.1 Server-Customers STA Customization . 41

4.4.2 Software-Data STA . 41

4.4.3 Master-Slaves STA . 43

4.4.4 Slave-Masters STA . 45

4.4.5 Partner-Partner STA . 46

5 STA IMPLEMENTATION STRATEGIES . 48

5.1 By Traditional Approaches . 48

5.2 By Template with VPs . 49

5.2.1 Service Management and Composition . 49

5.2.2 SaaS Application Templates . 51

v

CHAPTER Page

5.2.3 Extensions to Allow Users Designate Specific Services 53

5.2.4 Code Generation Support . 55

5.2.5 Testing Workflows Of Service Composition 55

5.2.6 Oracle Generation of Composite Services 55

5.2.7 Unit Testing . 56

5.2.8 Integration Testing . 56

5.2.9 Continuous Testing . 57

5.2.10 Metadata-Driven Test Input Generation 57

5.2.11 Execute Testing Processing by Service-Level MapReduce Way 58

6 TENANT-CENTRIC STA . 60

6.1 Life Cycles of Tenant-Centric Application Development 60

6.2 Component and Tenant Rank. 63

6.2.1 Static Ranking Model . 63

6.2.2 Dynamic Ranking Model . 65

6.2.3 Rank Computation Architecture . 72

6.3 Feature Implementation Selection Model . 74

6.4 Rapid Application Building Process . 77

6.5 Experiment . 78

6.6 Conclusion . 82

7 DEPENDENCY-GUIDED SERVICE COMPOSITION 83

7.1 Introduction . 83

7.2 Related Work . 85

7.3 Ontology Relationships . 88

7.3.1 Relationships in Ontology . 89

vi

CHAPTER Page

7.3.2 Relationships Representation . 89

7.4 Dependency Analysis . 90

7.4.1 Axioms . 91

7.4.2 Property Definitions . 92

7.4.3 Formal Notation Definition . 93

7.4.4 Operations . 94

7.4.5 Theorems . 95

7.4.6 Algorithms . 96

7.5 Composition With Dependency Support . 97

7.5.1 Composition Process . 101

7.5.2 Key Techniques . 103

7.6 Case Study - Shipping Domain Tracking System 106

7.6.1 Existing Items . 107

7.6.2 Specifications . 108

7.6.3 Notification Way Change Workflow. 108

7.7 Conclusion . 109

8 SERVICE REPLICATION WITH MAPREDUCE IN CLOUDS 110

8.1 Introduction . 110

8.2 Related Work . 112

8.3 Cloud Architecture . 113

8.4 Service Replication Strategies . 116

8.4.1 Service-Level MapReduce . 116

8.4.2 Number of Replications Needed . 118

8.4.3 Passive Service Replication Strategy . 119

vii

CHAPTER Page

8.4.4 Active Service Replication Strategy . 121

8.5 Application Illustration . 124

8.5.1 Data Sorting . 124

8.5.2 Keyword Search in Large Documents . 124

8.6 Case Study . 125

8.7 Conclusion . 127

9 STA EXPERIMENT AND CASE STUDY . 128

9.1 Experiment - STA Online Shopping System . 128

9.1.1 STA Online Shopping System Requirements 128

9.1.2 STA Online Shopping System Experiment 129

9.2 STA Online Shopping System Case Study . 131

9.2.1 VP Experiment . 143

REFERENCES . 146

viii

LIST OF TABLES

Table Page

2.1 TSTA Summary . 12

2.2 TSTA Model Comparison . 16

2.3 Examples of STA Properties . 19

4.1 Server-Customers STA Customization . 42

4.2 Software-Data STA Customization . 44

4.3 Master-Slave STA Customization . 45

4.4 Slave-Master STA Customization . 46

4.5 Partner-Partner STA Customization . 47

6.1 Connected Graph with Weights . 78

6.2 Subgraph with Weights . 80

7.1 Corresponding Relationship . 93

7.2 Existing Items in Different Applications . 107

9.1 Tenant Information . 132

9.2 SubTenantSharingPermissions . 136

9.3 Tenant - Subtenants . 136

9.4 Tenant- Subtenants . 137

ix

LIST OF FIGURES

Figure Page

2.1 Single Level STA Example . 7

2.2 SingleOrg-STA Example . 8

2.3 Tenant and Sub-tenant Relationship Example . 9

2.4 MultiOrg-STA Example . 10

2.5 Server-Customers Example . 11

2.6 Software-Data Example . 11

2.7 Master-Slaves Example . 14

2.8 Slave-Masters Example . 15

2.9 Partner-Partners Example . 17

2.10 Server-Customers MSTA Example. 17

2.11 STA Property Relationships . 19

4.1 E-Science Ontology Example. 25

4.2 UI VP Example . 33

4.3 Service VP Example . 33

4.4 Workflow VP Example . 33

4.5 Data VP Example . 34

4.6 Restrict Relationship . 34

4.7 Inherit Relationship . 35

4.8 Extend Relationship . 36

4.9 Compose Relationship . 37

4.10 Implement Relationship . 37

4.11 VP Properties . 39

4.12 VP Relationship DAG Example . 39

5.1 STA Architecture Overview . 49

x

Table Page

5.2 Domain Ontology Example . 50

5.3 Workflow Example . 51

5.4 Service Template Example Mapping . 52

5.5 Template Example in PSML-S . 52

5.6 Service Binding by Programming Example . 53

5.7 Ground Service Binding Example . 54

5.8 A GroundProfile Example . 54

5.9 Generated Source Code of Workflow . 55

5.10 Oracle Generation Service Level MapReduce process 59

6.1 Application Development Life Cycle . 60

6.2 Community of Interests Example . 62

6.3 Static Ranking Example . 63

6.4 Component Rank Example . 66

6.5 Tenant Rank Example . 67

6.6 Rank Computation Architecture . 72

6.7 Feature Implementation Selection Model . 75

6.8 Result of Static Rank . 79

6.9 Staic Rank With Dynamic Rank Update. 79

6.10 Result of Dynamic Rank . 81

6.11 Final Score vs Final Static Score . 81

7.1 Shipping Domain Service Ontology . 88

7.2 Property Illustration . 90

7.3 User Centric SOA Composition Architecture . 97

7.4 A Composition Operation Sequence . 101

xi

Table Page

7.5 Services with Dependencies . 104

7.6 Initial Dependency Likelihood Estimates . 106

7.7 Dependency Information . 107

7.8 Notification Way Change Workflow. 108

7.9 Notification Way Change Workflow with Its Dependency 108

7.10 Notification Way Change Workflow and Its Mapping 109

8.1 High Level Cloud Architecture . 114

8.2 Service-Level MapReduce Process . 116

8.3 Details of passive SRS process . 119

8.4 Details of active SRS process . 121

8.5 Instantiated Framework of SLMR . 126

9.1 STA Online Shopping Data Model . 130

9.2 SingleOrg-SSTA Flow Example . 131

9.3 STA Architecture Overview . 132

9.4 STA Provider’s Default Templates . 137

9.5 SingleOrg-SSTA Tenant’s Templates . 139

9.6 SC-STSTA Tenant’s Templates . 139

9.7 SD-STSTA Tenant’s Templates . 139

9.8 STA Customization Data Models . 143

xii

Chapter 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

Cloud platforms often have three main components: Software-as-a-Service (SaaS),

Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). SaaS is the soft-

ware deployed over the internet [126], where users subscribe services from SaaS

providers and pay by a way of ”pay-as-you-go”. In SaaS, software is maintained and

updated on a cloud, and presented to the end users as services on demand. Multi-

Tenancy Architecture (MTA) of saaS allows tenant developers to develop applications

using the same code based stored in the SaaS infrastructure. MTA is often designed

by integration with databases. MTA supports tenant application customization by

composition of existing or new software components stored in the SaaS or supplied

by tenant developers.

However, current MTA has the following limitations:

1. While a SaaS infrastructure support tenant applications using services and data

stored in the infrastructure, a tenant application does not allow its users to use

its own services or data to develop new applications.

2. It is difficult for a tenant application to share service or data with other tenant

applications. Often, a SaaS platform provides security mechanisms to isolate

tenant applications so that tenants cannot access data that belong to other

tenants. Even though tenant code and data are stored in the same database,

the SaaS security mechanism isolates a tenant from other tenants.

1

3. Most SaaS systems do not support tenants to customize their applications al-

ready customized by other tenants.

To address those issues, Tsai in [104] introduced a STA (Sub-Tenancy Architec-

ture) to allow tenants to offer services for sub-tenant developers to customize their

applications. As SaaS component building often needs different technologies such as

frontend UI and database, tenants or sub-tenants often not good at all those technolo-

gies. Therefore, it is still difficult for them to build SaaS components from the scratch.

Hence, this paper introduce Crowdsourcing to make use of public wisdom and assign

tasks to specific experts who are good at. To help find fit tenants, sub-tenants and

components to complete component building, ranking models are introduced.

1.2 Related Work

1.2.1 MTA in SaaS

MTA may be implemented via the following ways:

1. Integration with Databases: Weissman and Bobrowski proposed a database-

based and metadata-driven architecture to implement MTA in [120]. In [120],

heavy indexing is used to improve the performance, and a runtime application

generator is used to dynamically build applications in response to specific user

requests. As all tenants share the same database, flexible schema design is used.

Aulbach [11] experiments five techniques for implementing flexible schemas for

SaaS.

2. Middleware Approach: In this approach, an application request is sent to a

middleware that passes the request to databases behind the middleware. As all

databases are behind the middleware and all application requests to databases

are managed and directed by the middleware, applications can be transformed

2

into a MTA SaaS rapidly with minimum changes to the original applications.

Cai [21] described a transparent approach of making existing Web applications

to support MTA and run in a public cloud.

3. Service-oriented SaaS: This is an approach to implement MTA by SOA. SaaS

domain knowledge is separated from SaaS infrastructure to facilitate different

domains. EasySaaS [95] proposed a development framework to simplify SaaS

development by harnessing both SOA and SaaS domain ontology. Azeez [12]

proposed an architecture for achieving service-oriented MTA that enables users

to run their services and other SOA artifacts in a MTA service-oriented frame-

work as well as provides an environment to build MTA applications. As this

MTA is based on SOA, it can harness both middle and SOA technology.

4. PaaS-based approach: The SaaS developers use an existing PaaS such as GAE

[41], Amazon EC2 [3], or Microsoft Azure [61] to develop SaaS applications. In

this approach, developers use the MTA features provided by a PaaS to develop

SaaS applications, and most of SaaS features such as code generation, and

database access are implemented by the PaaS. Tsai [97] proposed a model-

driven approach on a PaaS to develop SaaS.

5. OO approach: Workday [129] proposed an object-oriented approach for tenant

application development and configuration. In addition, [129] also conducts a

study on MTA models, specifically it addresses the architecture of MTA and its

impact on customization, scalability, and security.

1.2.2 Crowdsourcing

The purpose of Crowdsourcing is to make use of public wisdom and let crowd

with domain knowledge complete specific tasks. Howe first defined the term ”crowd-

3

sourcing” in a companion blog post [43]. [60] defines Crowdsourcing as the practice

of obtaining needed services, ideas, or content by soliciting contributions from a large

group of people, and especially from an online community, rather than from tradi-

tional employees or suppliers. Kittur in [52] investigated the utility of a micro-task

market for collecting user measurements, and discussed design considerations for de-

veloping remote micro user evaluation tasks. Peng in [73] provided an overview of

current technologies for crowdsourcing.

1.2.3 Scalability in SaaS

In MTA SaaS, components may be shared by tenants. In addition, each tenant

may have a large number of users, and the number of concurrent accesses from users

can be huge. Therefore, scalability in SaaS is important. In general, there are two

solutions to scale a software system: scale-up and scale-out. In [100], scale-up is

defined as running the application on a machine with a better configuration, including

more computing resource, more memory, higher disk bandwidth and larger disk space;

and scale-out is defined as running the application distributed on multiple machines

with similar configurations. Tsai [94] identified scalability factors and discuss their

impacts on the scalability of SaaS applications. In addition, evaluating scalability of

SaaS application is also an important topic. Tsai [96] described unique features and

challenges in testing SaaS applications, and introduce scalability metrics that can be

used to test the scalability of SaaS applications. Service replication is another way to

scale SaaS applications. Therefore, Tsai [110] proposed a way to replicate services for

making use of MapReduce. Resource allocation becomes an issue as all tenants share

same SaaS applications. Therefore, Espadas [36] proposed a resource allocation model

to deploy SaaS applications over cloud computing platforms to create a cost-effective

scalable environment. In addition, each tenant may have different SLA requirements.

4

Take SLA into account, Wu [130] proposed resource allocation algorithms for SaaS

providers to minimize infrastructure cost.

1.2.4 Security in SaaS

Security is an important topic in SaaS as all tenants share the same SaaS infras-

tructure. Compare to tradition software engineer, it introduce new challenges such as

authorization and authentication. Rashmi [74] analyzed the status of cloud computing

security. Data protection is also important as all tenants may share same database

schema in some SaaS implementations. Chou [26] introduced security policies for

SaaS data protection.

As STA requires supports for multi-level tenants, all methods including MTA

implementations, customization and scalability discussed need to be extended.

1.2.5 Variation Point

Variation points are locations that variation occurs, and variants are the alter-

natives that can be selected. Software product families introduce variability man-

agement to deal with these difference by handling variability. Kang [50] describes

a method for discovering commonality among different software systems. Coplien

[27] describes how to perform domain engineering by identifying the commonalities

and variabilities within a family of products. Webber [118] describes a systematic

method for providing components that can be extended through variation points,

which allows the reuser or application engineer to extend components at pre-specified

variation points to create more flexible set of components. Mietzner [63] presented a

variability descriptor and describe they can be transformed into a WS-BPEL process

model to guide customizations. In addition, Mietzner [65] explained how variability

modeling techniques can support SaaS providers in managing the variability of SaaS

5

applications and proposed using explicit variability models to derive customization

for individual SaaS tenants.

1.2.6 Customization in SaaS

Customization is an important SaaS feature as tenants may have different business

logic and interface yet they share the same code base. Chong [25] proposed a SaaS

maturity model that classifies SaaS into four levels including ad-hoc/custom, cus-

tomizable or configurable, multi-tenant efficient, and scalable. Tsai [101] introduced

ontology into SaaS to help customize applications. In [101], a SaaS tenant application

has components from four layers: GUI, workflow, service and data. For each layer,

there is an ontology to help tenants customize SaaS applications. Variability model-

ing and management techniques have been widely employed in software product-line

engineering and SaaS providers can potentially use those technologies. SaaS cus-

tomization not only affects tenants but also provide new requirements for SaaS ven-

dors that tenant-specific configuration may become an issue as all SaaS tenants share

the same code base. Therefore, Sun [85] proposed a methodology framework to help

SaaS vendors to plan and evaluate their capabilities and strategies for service con-

figuration and customization. Truyen [89] proposed a context-oriented programming

model to overcome tenant-specific variations so that all tenants can share the same

code base. Service composition is another important approach for implementing SaaS

application customization. Through service composition, tenants can quickly build

new customized SaaS application. Tsai [105, 93] proposed a dependency-guided user

centric service composition approach.

6

Chapter 2

STA MODELS

A SaaS application can have multi-level tenants with following models:

• Single-Level STA (SSTA): One SaaS infrastructure supports multiple tenant

applications, and each tenant application supports multiple end users. This is

the same as tradition MTA.

• Two-Level STA (TSTA): One SaaS infrastructure supports multiple tenant ap-

plications, and a tenant application supports multiple sub-tenants. Both tenant

and sub-tenant applications may support multiple end users.

• Multi-Level STA (MSTA): This is an extension of TSTA where a sub-tenant

SaaS Platform

Tenant2

Tenant2 App

Tenantn
Tenant1

Tenant1 App Tenantn App

Figure 2.1: Single Level STA Example

7

SaaS Platform

Tenant1

User1 User2

Sales Service
Marketing Service

Tenant App

Figure 2.2: SingleOrg-STA Example

application can have its own tenants (sub-sub-tenants).

Tenants and their components and data are represented as T = {TC1...TCn}⋃
{TD1...TDn}. Then, sub-tenants are presented as S = {SC1...SCn}

⋃
{SD1...SDn}.

Here, TC1 represents tenant T has component C1 and TD1 represents tenant T has

data D1. SC1 and SD1 have similar concept except they represent sub-tenants. Addi-

tionally, T̂C1SC2 represents tenant T’s component C1 shares the same instance with

sub-tenant S’s component C2; and C2 is a customized version of C1 while T̃C1SC2

represents the two components C1 and C2 do not share the same instance. Further,

−−−−→
TC1SC2 represents components C1 and C2 share the same component but have differ-

ent component instances. Tenant and sub-tenant relationships are shown in Figure

2.3.

8

TC1

SC2

TC1

SC2

TC1

SC2

Figure 2.3: Tenant and Sub-tenant Relationship Example

2.1 SSTA Models

One SSTA model example is shown in Figure 2.1 with the following models:

1. Single-Organization Model (SingleOrg-SSTA): In this case, all tenants belong

to the same organization with different customizations. This model is suitable

when the organization is large with many divisions, and each division needs cus-

tomized applications, but the resources can be shared among all these tenants as

they belong to the same company. Furthermore, this approach is suitable if the

company wishes to enforce overall company policies by supplying standardized

services that tenants must use but cannot modify. Formally, this can be de-

scribed as ∃C ∈ T1C ,∃C ′ ∈ T2C | ĈC ′ or ∃D ∈ T1D,∃D′ ∈ T2D | D ∩D′ 6= ∅.

A SingleOrg-SSTA example is shown in Figure 2.2.

2. Multi-Organization Model (MultiOrg-SSTA): This is the case where each tenant

may belong to different organizations. In this model, each tenant may compose

its applications by customizing services in the SaaS infrastructure. This is

traditional MTA. Formally, this can be described as ∀C ∈ T1C ,∀C ′ ∈ T2C |

C̃C ′ and ∀D ∈ T1D,∀D′ ∈ T2D | D ∩ D′ = ∅. A MultiOrg-SSTA example is

shown in Figure 2.4.

9

SaaS Platform

Tenant1

User1 User2

Tenant2

User3 User4

Sales Service
Marketing Service

Tenant App

Figure 2.4: MultiOrg-STA Example

2.2 Two Level STA Models (TSTA):

TSTA is a model where a tenant can have both sub-tenants and end users as its

customers while a sub-tenant can have end users as its customers only. There are

mainly three actors in this model and their responsibilities are shown in Table 2.1.

Depending on the sharing content between tenants and sub-tenants, this model has

the following five sub-models.

1. Server-Customers Model (SC-TSTA): In this model, the server is a tenant of a

SaaS component, distributes and supports its components. Sub-tenant devel-

opers can develop their own components using services provided by tenant com-

ponents. An example shown in Figure 2.5 is ISVForce with Distributed Organi-

zation Model [10] where ISVForce supports Salesforce.com partners or Indepen-

10

SaaS Platform

Tenant1

Tenant1 App

Sub-Tenant1
Sub-Tenant2

Sub-Tenant2 App

Sub-Tenant1 App

Tenant2 App Tenant3 App

Figure 2.5: Server-Customers Example

SaaS Platform

Tenant1

Tenant1 App

Sub-Tenant1
Sub-Tenant2

Sub-Tenant2 App

Sub-Tenant1 App

Tenant3 AppTenant1 Data

Figure 2.6: Software-Data Example

11

Table 2.1: TSTA Summary

Role Responsibility

SaaS Platform

• Allows tenant and sub-tenants developers to develop applications.

• Allows tenants to grant/remove/extend sub-tenants license to use tenant appli-

cations and data.

• Allows tenants to upgrade their tenant applications to support sub-tenants.

• Allows tenants to bill their sub-tenants.

• Gives the tenant the ability to support its customers.

Tenant Developers

• Develop and customize tenant applications on the SaaS platform.

• Publish customized applications to the platform to be used by both tenants and

end users.

• Upgrade tenant applications and automatically push the update to all sub-tenant

applications without interfering sub-tenants.

• Provide the license agreement for sub-tenants to use their tenant applications.

• Bill end users and sub-tenants.

• Support customers.

Sub-Tenant Developers

• Use the platform to develop sub-tenant applications.

• Subscribe customized tenant applications and data.

• Need both tenant applications and data with sub-tenant’s data to complete ap-

plications.

12

dent Service Vendors (ISVs) to build, sell and distribute their SaaS components

and ISVs serve their customers and push upgrades to all of them automatically

[11]. Its formal definition can be described as ∃C ∈ TC ,∃C ′ ∈ SC | ĈC ′ and

∀D ∈ TD,@D′ ∈ SD | D ∩ D′ 6= ∅. This model is suitable when the SaaS

provider wants to support its partners or ISVs to build, sell and support their

customized SaaS components.

2. Software-Data Model (SD-TSTA): In this model, the tenant owns SaaS com-

ponents and data, shared by its sub-tenants, and sub-tenants can customize

tenant’s components. One SD-TSTA is shown in Figure 2.6. Its formal defini-

tion can be described as ∃C ∈ SC ,∃C ′ ∈ TC | ĈC ′ and ∃D ∈ TD,∃D′ ∈ SD |

D ∩ D′ 6= ∅. This model is suitable when an organization who sells products

has sub-organizations and the sub-organizations share same sale process and

can sell the organization’s products.

3. Master-Slaves Model (MS-TSTA): In this model, both the tenant and its sub-

tenants have their isolated SaaS instances but share the same code base. How-

ever, the tenant can access the sub-tenants’ data and sub-tenants can cus-

tomize tenant components. One MS-TSTA example is shown in Figure 2.7.

Its formal definition can be described as ∃C ∈ TC ,∃C ′ ∈ SC |
−−→
CC ′ and

∀D′ ∈ SD,∃D ∈ TD | D ∩ D′ 6= ∅. This model is suitable when an organi-

zation has sub-organizations and wants to manage sub-organizations’ data such

as human resource information.

4. Slave-Masters Model (SM-TSTA): SM-TSTA is similar to MS-TSTA except sub-

tenants can access tenant’s data. Therefore, the data sharing flow will be top

down, not bottom up as in MS-TSTA model. One SM-TSTA example is shown

in Figure 2.8. Its formal definition can be described as ∃C ∈ TC ,∃C ′ ∈ SC |
−−→
CC ′

13

SaaS Platform

Tenant1

Tenant1 App

Sub-Tenant1
Sub-Tenant2

Tenant1 Data

Tenant1 App

Sub-Tenant1 Data

Tenant1 App

Sub-Tenant2 Data

Sub-Tenant1 App

Sub-Tenant2 App

Figure 2.7: Master-Slaves Example

and ∃D ∈ TD,∃D′ ∈ SD | D ∩ D′ 6= ∅. This model is suitable when an

organization does not have any products but wants to sell other’s products, so

it needs the product data to complete the sale process.

5. Partner-Partners STA (PP-TSTA): In this model, both the tenant and its sub-

tenants have their isolated SaaS instances and data. In addition, both tenants

and sub-tenants can customize each other’s components and data. One PP-

TSTA is shown in Figure 2.9. Its formal definition can be described as ∃C ∈

TC ,∃C ′ ∈ SC |
−−→
CC ′ and ∃C ′ ∈ SC , ∃C ∈ TC |

−−→
C ′C and ∃D ∈ TD,∃D′ ∈ SD |

D ∩D′ 6= ∅ and ∃D′ ∈ SD,∃D ∈ TD | D′ ∩D 6= ∅. This model is suitable when

an organization is a partner with another organization that they want to share

some components and data from each other.

All five TSTA models are different in sharing components and data between the

tenant and its sub-tenants. A comparison of these five TSTA models is shown in

14

SaaS Platform

Tenant1

Tenant1 App

Sub-Tenant1
Sub-Tenant2

Tenant1 Data

Tenant1 App

Tenant1 App

Sub-Tenant1 App

Sub-Tenant2 App

Figure 2.8: Slave-Masters Example

Table 2.2.

2.3 Multi-level STA (MSTA)

The MSTA model can be obtained by extending TSTA into more levels, and this

means the sub-tenants can also have sub-tenants. Therefore, MSTA can be classified

as following sub-models. Following the TSTA models, MSTA can have SC-MSTA,

SD-MSTA, MS-MSTA, SM-MSTA, and PP-MSTA models. In these models, a tenant

and its sub-tenants, a sub-tenant and its sub-sub-tenants share SaaS applications and

data consistent with the corresponding TSTA models. Hybrid models are possible,

but due to its complexity, they will not be emphasized. One SC-MSTA example is

shown in Figure 2.10.

15

Table 2.2: TSTA Model Comparison

Models Tenant components Data Customization
Upgrade & Distribu-

tion

Server-

Customers

• Tenants build, sell

and distribute SaaS

components.

• Tenants share the

same component

instance with their

sub-tenants.

Tenants do not share

their data with their

sub-tenants and have no

accesses to sub-tenants’

data.

Sub-tenants can cus-

tomize the tenant’s

components.

Tenants upgrade their

components then propa-

gate them to their sub-

tenants.

Software-

Data

• Tenants develop and

own the SaaS compo-

nent.

• Tenants share the

same component

instance with their

sub-tenants.

• Sub-tenants can ac-

cess the tenant’s shar-

ing data.

• Sub-tenants can only

access the data re-

lated to them.

• Tenants can cus-

tomize SaaS compo-

nents.

• Sub-tenants can cus-

tomize SaaS compo-

nents and their ten-

ant components.

• Tenants can de-

fine the scope that

sub-tenants can

customize.

Tenants upgrade the

tenant applications

and the SaaS platform

propagates the update.

Master-

Slaves

The tenants share

components with sub-

tenants but they have

different component

instances.

Tenants have access to

the sub-tenants data

and sub-tenants can not

have access to the tenant

data.

Sub-tenants can cus-

tomize the shared tenant

components.

Tenants upgrade their

components and propa-

gate them to their sub-

tenants as they do not

share the same compo-

nent instance.

Slave-

Masters

The tenants share

components with sub-

tenants but they have

different component

instances.

Tenants do not have ac-

cess to the sub-tenants

data but sub-tenants can

have access to the ten-

ants’ sharing data.

Sub-tenants can cus-

tomize the shared tenant

components.

Tenants upgrade their

components and propa-

gate them to their sub-

tenants as they do not

share the same compo-

nent instance.

Partner-

Partner

• Tenants share compo-

nents and data with

sub-tenants.

• Sub-tenants share

components and data

with their tenants.

• Tenants share some

data with their sub-

tenants.

• Sub-tenants share

some data with their

tenants.

Both tenants and sub-

tenants can customize

shared SaaS components.

• Tenants upgrade

their components and

propagate them to

their sub-tenants as

they do not share

the same component

instance.

• Sub-tenants upgrade

their SaaS compo-

nents and propagate

them to their tenant

as they do not share

the same component

instance.

16

SaaS Platform

Tenant1

Tenant1 App

Tenant2

Tenant1 Data

Tenant2 App Tenant2 Data

Tenant3 App

Figure 2.9: Partner-Partners Example

SaaS Platform

Tenant1

Tenant1 App

Sub-Tenant1
Sub-Sub-Tenant2

Sub-Tenant1 App

Sub-Sub-Tenant2 App

Figure 2.10: Server-Customers MSTA Example

17

2.4 STA Properties

There are four types of properties among STA models: transitive sub-tenant,

symmetric reflective sub-tenant, implied sub-tenant and equivalent sub-tenant shown

in Figure 2.11. And examples of each STA properties are shown in Table 2.3.

1. Transitive sub-tenants: a tenant, its sub-tenants and sub-sub-tenants have a

transitive sub-tenant property if they have the following characteristics: If

A
<M,P,D>−−−−−−→ B and B

<M,P ′,D′>−−−−−−−→ C then A
<M,P ′′,D′′>−−−−−−−→ C. Here, A

<M,P,D>−−−−−−→ B

means A and B sharing application P and data D in a way of model M. Ad-

ditionally, P ∩ P ′ 6= ∅, P ′′ = P ∩ P ′ and D′′ = D ∩ D′. M can be SC-TSTA,

SD-TSTA, MS-TSTA, SM-TSTA or PP-TSTA.

2. Symmetric reflective sub-tenants: a tenant, its sub-tenants and sub-sub-tenants

have a symmetric reflective sub-tenant property if they have the following char-

acteristics: If A
<M,P,D>−−−−−−→ D then D

<M,P ′,D′>−−−−−−−→ A. Here, P ′ = P and D′ = D.

M can only be PP-TSTA.

3. Implied sub-tenants: a tenant, its sub-tenant, and sub-sub-tenants have an im-

plied sub-tenant property if they have the following characteristics: IfA
<M,P,D>−−−−−−→

E and F
<M ′,P ′,D′>−−−−−−−→ E then A

<M ′′,P ′′,D′′>−−−−−−−−→ F . Here,
−−→
PP ′,

−−−−→
PP ′P ′′ and D′′ =

D ∪D′. M, M’ and M” can be PP-TSTA.

4. Equivalent sub-tenants: a tenant, its sub-tenants, and sub-sub-tenants have

an equivalent sub-tenant property if they have the following characteristics: If

B
<M,P,D>−−−−−−→ G and G

<M ′,P ′,D′>−−−−−−−→ B then B
<M ′′,P ′′,D′′>−−−−−−−−→ G. Here,

−−→
PP ′,

−−−−→
PP ′P ′′

and D′′ = D ∪D′. M can be MS-TSTA, M’ can be SM-TSTA and M” can be

PP-TSTA only.

18

Table 2.3: Examples of STA Properties

Property Names Examples Models With This Property

Transitive sub-tenants

In Figure 2.11, tenant A has Master-Slaves relationship

with sub-tenant B; sub-tenant B has Master-Slaves rela-

tionship with sub-sub-tenant C. When the components

and data shared by A and B, and B and C are the same,

A also has Master-Slaves relationship with C.

• Server-Customers

• Software-Data

• Master-Slaves

• Slave-Masters

• Partner-Partners

Symmetric reflective sub-tenants

In Figure 2.11, tenant A has Partner-Partners rela-

tionship with sub-tenant D, which D automatically has

Partner-Partners relationship with A.

• Partner-Partners

Implied sub-tenants

In Figure 2.11, tenant A has Partner-Partners relation-

ship with sub-tenant E; tenant F has Partner-Partners

relationship with sub-tenant E. When the components

and data shared by A and E, and F and E are the same,

A also has Partner-Partners relationship with F.

• Partner-Partners

Equivalent sub-tenants

In Figure 2.11, tenant B has Master-Slaves relation-

ship with sub-tenant G. At same time, G has Slave-

Masters relationship with sub-tenant B. By this way, B

has Partner-Partners relationship with G.

• Master-Slaves

• Slave-Masters

• Partner-Partners

A

B

C

Transitive

D
Symmetric

E

F

Implied

G

Equivalent

Real Relationship Deduced Relationship

Figure 2.11: STA Property Relationships

19

Chapter 3

STA SECURITY CONSIDERATION AND ACCESS PERMISSION MODELS

STA has significant impact on both SaaS security and SaaS application and data

access.

3.1 STA Security Consideration

3.1.1 SSTA

As this is the regular MTA, any security mechanism used in current SaaS can be

applied.

3.1.2 TSTA

Tenants can use the SaaS provider’s market to sell and distribute their SaaS

applications. Normally, to protect the SaaS provider’s reputation and customers,

he has to review each SaaS application to make sure it follows the SaaS provider

security standards and policies. The SaaS provider should publish those standards

in the website so they can be easily accessed by tenants. They should also give the

tenants a guidance on how to test the security of their SaaS applications, and point

out where the SaaS provider will check on the SaaS applications. The SaaS provider

may accept, reject, and require tenants to make changes to their SaaS applications. In

addition, the sub-tenants can use built-in security of SaaS applications to define their

end users and give them permissions when subscribe to the tenants’ applications. At

last, the best practices for building secure SaaS applications should be applied and

the SaaS providers should make sure that the tenant and sub-tenant developers follow

their security or policies on each SaaS application development.

20

3.1.3 MSTA

This model is same as two-level STA except it has more level sub-tenancy. There-

fore, both tenants developers and sub-tenant developers should follow the same pro-

cess. In addition, they also need to follow the same security guidelines and policies of

the SaaS provider when they build applications, make any customizations, and even

define end users and assign permissions.

3.2 Permission Access Models

There are two types of permission access models: for applications and data.

3.2.1 Permission Access Model for Applications

Both tenants and sub-tenants can own (O), subscribe (S) and use (U) SaaS ap-

plications. TAiU and TAiO are tenant T’s access values for application Ai. Similarly,

SAiU , SAiS and SAiO are sub-tenant S’s access values for application Ai. TAiU , TAiO ,

SAiU and SAiS can be used to deduce sub-tenants’ possible use permission of the ten-

ant’s applications. The STA application access formulas for an application A can be

presented as equation (3.1).

SAiU = ((TAiU ∪ TAiO) ∩ SAiS) ∪ SAiO (3.1)

The formula shows that sub-tenant S has use permission of application Ai when

one of following case happens:

• ((TAiU ∪ TAiO) ∩ SAiS) means the tenant T has own or use permission of the

application Ai and sub-tenant S subscribes application Ai.

• SAiO means sub-tenant S has own permission.

21


SDiR = ((TDiR ∪ TDiW ∪ TDiD ∪ TDiO) ∩ SDiS) ∪ SDiO

SDiW = ((TDiW ∪ TDiO) ∩ SDiS) ∪ SDiO

SDiD = ((TDiW ∪ TDiD ∪ TDiO) ∩ SDiS) ∪ SDiO

(3.2)

3.2.2 Permission Access Model for Data

Both tenants and sub-tenants can own (O), read (R), write (W) and delete (D)

data represented as O, R, D. TDiR , TDiW , TDiD and TDiO are tenant T’s access values

of data. As well, SDiR , SDiW , SDiD and SDiO are sub-tenant S’s access values of

data Di. In addition, SDiS means sub-tenant subscribes the data Di. The formula

shown in (3.2) is to deduce the data permission of a sub-tenant and is based on three

assumptions below:

• When tenant or sub-tenant has own permission of a data, it also has read, write

and delete permissions.

• When tenant or sub-tenant has write permission of a data, it also has delete

and read permissions.

• When tenant or sub-tenant has delete permission of a data, it also has read

permission.

Based on previous three assumption, the STA data access formulas of a data Di

for sub-tenant S can be presented as equation (3.2):

The formula can be described as following:

• ((TDiR ∪ TDiW ∪ TDiD ∪ TDiO) ∩ SDiS) ∪ SDiO means sub-tenant S has read per-

mission of data Di when its tenant T has read, write, delete or own permissions

and S subscribes Di from T. In addition, SDiO means sub-tenant S also has read

permission when S owns the data Di.

22

• ((TDiW ∪ TDiO) ∩ SDiS) means sub-tenant S has write permission of data Di

when its tenant T has write or own permissions and S subscribes Di from T. In

addition, SDiO means sub-tenant S also has write permission when S owns the

data Di.

• ((TDiW ∪TDiD ∪TDiO)∩SDiS) means sub-tenant S has delete permission of data

Di when its tenant T has write, delete or own permissions and S subscribes Di

from T. In addition, SDiO means sub-tenant S also has delete permission when

S owns the data Di.

23

Chapter 4

STA CUSTOMIZATION MODELS

In STA, the tenants in upper STA hierarchy levels can specify the customization

options and define what can be customized for the sub-tenants in lower levels.

4.1 STA Customization Techniques

SaaS application customization can be achieved by the following ways:

1. By coding: the developers develop the code, then they publish the code to the

SaaS platform. An example of a SaaS application that uses this technique is

Force.com [77] where Apex routines are written by the developers to add custom

business logic for the application.

2. By variability points and options: the developers can choose several options of

customization only and those options are called variability points. There are

several types of variability points:

(a) Fixed variability points with fixed options such that the options are already

verified by SaaS infrastructure before deploying.

(b) Fixed variability points that tenants can provide their options with verifi-

cation mechanisms.

(c) The SaaS provider provides list of templates for variation points with list

of options and constraints. The tenant can create his variation points and

options for the selected template. The variation template is stored in the

SaaS database for other tenants to reuse. One approach for variability

24

chemistry

bioinformatics

computer

science

e-science

chemical actions

and uses

nucleus

ConsistOf

Nuclear

envelope

nucleolus

nucleoplasm

chromosome

chromatin

ConsistOf

DNA

proteins

ConsistOf

ConsistOf

ConsistOf

Service

Data Mining

classification

feature selection

clustering

ConsistOf

ConsistOf

ConsistOf

monitoring

isolating

detecting

regression

knn

K-means

ConsistOf

ConsistOf

ConsistOf

ConsistOf

ConsistOf

ConsistOf

ConsistOfConsistOf

ConsistOf

organic

Consist of

inorganic

chemistry

Consist of

simulationConsistOf

gene

ConsistOf

ConsistOf

ConsistOf

ConsistOf

ConsistOf

Dominant_gene

Recessive_gene

Superclass of

Superclass of

ConsistOf

Consist of

securityConsistOf

Figure 4.1: E-Science Ontology Example

points uses ontology information so that uses available variability points

and their options can be discovered by other tenants [95]. One ontology

example is shown in Figure 4.1 built on the data from myexperiment.org

[66].

3. By composition: the developers build the entire tenant application in a service-

oriented manner by composing GUI, workflow, service and data components

with a recommendation system. An example of this approach is the OIC model

25

[13]. In addition, this approach is further improved by using the previous tenants

applications to recommend components this is the Grapevine model [14].

4. By configuration: the developers do not need to make any coding. Metadata

definitions are used to define the logic and the options that the customers can

change. When the tenant selects or changes an option, the SaaS platform

generates the application by interpreting the metadata. The key difference

between the changes to metadata-based logic and changes made by code is that

the SaaS application provider determines the various options or the ways the

metadata can be changed.

5. By hybrid: The developer can customize their applications by using one or more

of the previous approaches. In this way, the SaaS provider gives the tenants

flexibility of customizations.

Depending on the relationship between tenant and sub-tenants, different cus-

tomization techniques may be offered in different STA models. Following is a dis-

cussion of the customization options for each STA model.

4.1.1 For SSTA

In both the SingleOrg-SSTA and MultiOrg-SSTA models, a tenant can customize

its application by using the customization techniques offered by the SaaS provider

where the customization can use configuration, coding or other techniques.

4.1.2 For TSTA

TSTA have different customization options.

1. SC-STA: In this model, the tenant either initially customize the SaaS provider’s

base application and templates or creates his SaaS application from the scratch.

26

Then, he sells licenses of his SaaS applications to sub-tenants. In addition, sub-

tenants can further customize their applications. The way that the tenant cus-

tomizes the base application and templates affects the flexibility of customiza-

tion that the sub-tenants can have. The tenant can make customizations in

three ways:

(a) Using customization techniques offered by SaaS providers: as these cus-

tomization options provided by SaaS provider, it gives sub-tenants to reuse

them. However, other factors such as the license or the edition the sub-

tenants making agreement with the tenant, also affect the customization

that sub-tenants can make.

(b) Coding: Customization techniques offered by SaaS providers sometimes

does not satisfy the tenant’s needs. Therefore, they develop custom code.

However, using the coding to make customization leads to the limited

options of customizations for the sub-tenants as they often cannot reuse

customization options provided by the SaaS.

2. SD-STA: The customization options that applied to CS-STA can also be used in

this model as sub-tenants share the same tenant’s SaaS application. However,

in this model, the tenant’s data can also be shared by his sub-tenants. The

changes to data object need be distributed to the sub-tenants that the tenant

assigns. This process can be achieved or by using tools and code.

3. MS-STA: In this model, sub-tenants inherit their SaaS applications from the

tenants SaaS application but have isolated application instances. Therefore,

each sub-tenant can have any customization options inherited from the tenant

application. The tenant can define the customization options for sub-tenants.

In addition, the tenant may customize the SaaS application and have extra

27

logic, workflows, reports and dashboards that do not show to sub-tenants but

share a different customized application to his sub-tenants. Due to inheritance

relationship between the tenant and his sub-tenants, customizations to the ten-

ant application logic, workflows, reports, and data may automatically affect

the sub-tenants’ applications. However, the tenant can select customizations to

only apply to a selected group of sub-tenants. Thus, not all sub-tenants see the

same customization. At last, any customizations made by the tenant should

not change or affect the sub-tenants’ UI customizations.

4. SM-STA: The customization options that applied to CS-STA can also be used in

this model as sub-tenants inherit tenant’s SaaS application with different appli-

cation instances. In addition, sub-tenants need data from the tenant. Therefore,

any customizations of the tenant data may be shared as the tenant can define

the sub-tenants get which data customization. The changes to data object need

be distributed to the sub-tenants that the tenant assigns. This process can be

achieved or by using tools and code.

5. PP-STA: As one knows in STA property, two tenants imply PP-STA if they

are MS-STA and SM-STA respectively. Therefore, any customization options

applied in MS-STA and SM-STA can also be used in this model.

4.1.3 For MSTA

In this model, due to the sharing between low and high levels’ tenants, any cus-

tomization made by low level tenants will affect the high-level tenants. Any cus-

tomization made on data, workflows, or UI, program or tools should be distributed

to other tenants. If the new customizations made by low level’s tenant are not broad-

cast, other tenants in high levels may have data schema inconsistency problems when

28

SAiFC
= ((TAiFC

∪ TAiO) ∩ SAiS) ∪ SAiO (4.1)

they want to share data.

4.2 STA Customization Deduction

The following three customization models will be used:

1. No customization model (NC): Tenant and sub-tenants cannot make any cus-

tomizations to their applications.

2. Partial customization model (PC): Tenant and sub-tenants can customize some

features in their applications such as GUI, workflow, services, and data but they

cannot customize all these features.

3. Full customization model (FC): Tenant and sub-tenants can fully customize

their applications.

The formula shown in (4.1) that is used to deduce full customization permission

of an application and (4.2) that is used to deduce the Gui, workflow, service and

data customization permission of an application for a sub-tenant and is based on two

assumptions below:

• When tenant or sub-tenant has own permission of an application, it also has

full customization permissions.

• When tenant or sub-tenant has full customization of an application, it also has

all partial customizations for application’s GUI, workflow, service and data.

Based on previous two assumption, the full customization permission of an appli-

cation Ai for sub-tenant S is introduced at Equation 4.1.

From Equation 4.2, one can see follows:

29



SAiPCG
= ((TAiPCG

∪ TAiFC
∪ TAiO) ∩ SAiS) ∪ SAiFC

∪ SAiO

SAiPCW
= ((TAiPCW

∪ TAiFC
∪ TAiO) ∩ SAiS) ∪ SAiFC

∪ SAiO

SAiPCS
= ((TAiPCS

∪ TAiFC
∪ TAiO) ∩ SAiS) ∪ SAiFC

∪ SAiO

SAiPCD
= ((TAiPCD

∪ TAiFC
∪ TAiO) ∩ SAiS) ∪ SAiFC

∪ SAiO

(4.2)

1. (TAiFC
∪TAiO)∩SAiS) means sub-tenant has full customization permission of the

application Ai when its tenant has full customization or own permission and S

subscribe the application Ai.

2. SAiO means sub-tenant also has full customization permission of the application

Ai when S has own permission of the application Ai.

In addition, the partial customization permission of an application Ai for sub-

tenant S is presented at Equation 4.2

From Equation 4.2, one can see follows:

1. ((TAiPCG
∪ TAiFC

∪ TAiO)∩SAiS) represents a sub-tenant S has partial GUI cus-

tomization permission of the application Ai when its tenant has partial GUI cus-

tomization permission, full customization permission or own permission of the

application Ai and it also subscribes the application Ai. In addition, sub-tenant

S also has partial GUI customization permission when it has full customization

permission or own permission of the application Ai.

2. ((TAiPCW
∪TAiFC

∪TAiO)∩SAiS) represents a sub-tenant S has partial workflow

customization permission of the application Ai when its tenant has partial work-

flow customization permission, full customization permission or own permission

of the application Ai and it also subscribes the application Ai. In addition,

sub-tenant S also has partial workflow customization permission when it has

full customization permission or own permission of the application Ai.

30

3. ((TAiPCS
∪ TAiFC

∪ TAiO) ∩ SAiS) represents a sub-tenant S has partial service

customization permission of the application Ai when its tenant has partial ser-

vice customization permission, full customization permission or own permission

of the application Ai and it also subscribes the application Ai. In addition,

sub-tenant S also has partial service customization permission when it has full

customization permission or own permission of the application Ai.

4. ((TAiPCD
∪TAiFC

∪TAiO)∩SAiS) represents a sub-tenant S has partial data cus-

tomization permission of the application Ai when its tenant has partial data cus-

tomization permission, full customization permission or own permission of the

application Ai and it also subscribes the application Ai. In addition, sub-tenant

S also has partial data customization permission when it has full customization

permission or own permission of the application Ai.

4.3 Variant Point Model

STA allows sub-tenant to customize tenant’s applications, which introduces new

challenges. Therefore, a Variant Point model is introduced.

4.3.1 VP Classification

Variation point (VP) is the place that can have multiple choices. One VP is

composed by options that developers can select from and rules that options must

obey. Normally, tenant developers define the options and rules that each VP can have

and sub-tenant can only choose values from the options according to the rules. VP

can be described by VP specification (VPs) and VP instance (VPi). VPs describe the

interface of VP and VPi implements VPs. There are three types of VP to implement

STA customizations: by fixed variation points and fixed options, by fixed variations

but allow tenant options and by flexible variation points and options.

31

1. By fixed variation points and fixed options (FVPFO): this is an easy way for

sub-tenants to customize applications but with less flexibility.

2. By fixed variations but allow tenant options (FVATO): this is the place in SaaS

application that sub-tenant developers can add more options such as adding

attributes and rules for data or fields for UI.

3. By flexible variation points and options (FVPO): there are multiple places where

variation point can be put.

According to [101], a SaaS application can be classified into four layers, UI, Work-

flow, Service and Data. Based on the place where VP is set, VP has different content.

1. GUI: Tenant and Sub-tenant are able to add new attributes to the GUI forms

as fields. The fields can be simple editable text or media object such as image

and video. One example is shown in figure 4.2 on the following page. From

figure 4.2 on the next page, one can see tenant developer or sub-tenant developer

can choose different fields combination from user id, password, validation code,

email address and cell phone for registration VP.

2. Service: Tenant and Sub-tenant are able to choose different services or compose

services. Tsai proposes a dependency-guided service composition in [107] to

compose services. One example is shown in figure 4.3 on the following page.

From figure 4.3 on the next page, one can see tenant developers or sub-tenant

developers can choose some features for shipping service VP such as choosing

validation zip and address.

3. Workflow: Tenant and Sub-tenant are able to edit the business process by

adding or deleting the steps that workflow has. One example is shown in fig-

ure 4.4 on the following page. From figure 4.4 on the next page, one can see

32

Registration

User Id

Password

Validation Code

Email Address

Cell Phone

Figure 4.2: UI VP Example

Address
Service

Validate Zip

Validate Address

Get State and City by Zip

Figure 4.3: Service VP Example

tenant developers or sub-tenant developers can choose some steps such as fill

address and validate address.

4. Data: Tenant and Sub-tenant are able to add new properties to the data and

define rules for them. One example is shown in figure 4.5 on the following page.

From figure 4.5 on the next page, one can see tenant developers or sub-tenant

developers can choose blue for Color data VP.

Shipping

Fill Address

Validate Address

Choose Shipping Way

Choose Carrier

Calculate Shipping Cost

Figure 4.4: Workflow VP Example

33

Color

Blue

Yellow

White

Red

Green

Figure 4.5: Data VP Example

VP1

VP2

Option1

Option2

Rule1

Option1

Option2

Rule1

Existing

May exist

Restrict

Figure 4.6: Restrict Relationship

4.3.2 VP Relationships

There are five relationships among VPs.

1. Restrict Relationship: when two VPs have this relationship, child VP has less or

equal options but may have more rules than parent VP. One example is shown

in figure 4.6. From figure 4.6, one can see VP2 has less options than VP1 as

VP2 is restricted to VP1.

2. Inherit Relationship: when two VPs have this relationship, child VP has all

parent VP’s options and rules. In addition, child VP can add more options

or overwrite parent VP’s options. One example is shown in figure 4.7 on the

following page. From figure 4.7 on the next page, one can see VP2 has more

options tham VP2 as VP2 inherit VP1.

34

VP1

VP2

Option1

Option2

Rule1

Option1

Option2

Option3

Existing

May exist

Inherit

Rule2

Rule1

Figure 4.7: Inherit Relationship

3. Extend Relationship: this relationship has all features that inherit relationship

has. In addition, it can change the type of VP from FVATO to FVPO or from

FVPFO to FVPO by allowing change the place of VP. One example is shown

in figure 4.8 on the following page. From figure 4.8 on the next page, one can

see VP2 not only has more options than VP1 but also becomes a FVPO.

4. Compose Relationship: this relationship compose two or more VPs to become

a new VP. The new composed VP has all VPs’ options and rules except the

types. There are two scenarios that affect the type of VP.

(a) One of the composed VPs is fixed VP: the new composed VP becomes a

fixed VP. In addition, if there is one of the composed VPs is FVATO or

FVPO, the new comopose VP is FVATO. Otherwise, the composed new

VP is FVPFO.

(b) All composed VPs are FVPO: the new composed VP becomes a FVPO.

One example is shown in figure 4.9 on page 37. From figure 4.9 on page 37,

one can see one FVPFO VP1 and one FVPO VP2 compose VP1. Therefore,

35

VP1

VP2

Option1

Option2

Rule1

Option1

Option2

Option3

Existing

May exist

Extend

Rule2

Rule1

Flexible VP

Figure 4.8: Extend Relationship

VP1 has all options and rules from both VP2 and VP1. At same time, VP1 is

a FVPFO.

5. Implement Relationship: This relationship is between VP specification and VP

instance. VP specification define what the VP is while VP instance implement

VP specification. One example is shown in figure 4.10 on the following page.

From figure 4.10 on the next page, one can see one VP specification can be

implemented by more than one VP instances.

36

VP1VP2

Option1

Option2

Rule1

Option3

Option4

Rule2

Existing

May exist

Compose

Rule3

VP3

Option1

Option2

Rule1

Option3

Option4

Rule2

Rule3

Figure 4.9: Compose Relationship

VP1

VP2

Option1

Option2

Rule1

Option1'

Option2'

Rule1'

Existing

Need implement

Implement

VP3

Option1'

Option2'

Rule1'

Figure 4.10: Implement Relationship

37

4.3.3 VP Properties

There are following properties when VPs have relationships above. One example

is shown in figure 4.11 on the following page.

1. Transitive: VP and another VP have a transitive property if they have following

characters: A
<L,R>−−−−→ B and B

<L,R′>−−−−→ C, then A
<L,R′′>−−−−−→ C. Here, A

<L,R>−−−−→ B

means VP A and VP B have R relationship in level R. R, R’ and R” can be

Inherit and Extend relationships. L can be UI, Service, Workflow and Data.

2. Weakest link effect: VP has a weakest link effect if this VP is composed by

other VPs. If A
<L,R>−−−−→ B and A

<L,R>−−−−→ C, then type weakest type of B and

C determines type of A. Here defines FVPFO ¡ FVATO ¡ FVPO. L can be UI,

Service, Workflow and Data. R can only be Compose relationship. For example:

A can be FVATO if B is FVATO and C is FVPO.

3. Type changes: VP changes type if this VP has following characters: A
<L,R>−−−−→ B.

Here, R can be Extend and Compose relationship.

4. Override: VP and another VP have a override property if they have following

character A
<L,R>−−−−→ B. Here, override means options in A override options in B

if the options have same name but different values. R can be Restrict, Inherit,

Extend and Compose. L can be UI, Service, Workflow and Data. For example,

B has a option name color and value is blue. Then, A has the option name

color but can have value {white} or {blue, white}.

4.3.4 VP Options and Rules Deduce Algorithm

VPs and their relationships can be described by a directed acyclic graph (DAG).

One example is shown in figure 4.12 on the next page. From figure 4.12 on the

38

VP1

VP4VP5

VP3VP2

Inherit

Restrict

Extend

Implement

VP6

VP5

Compose

Figure 4.11: VP Properties

VP1

VP4VP5

VP3VP2

Inherit

Restrict

Extend

Implement

VP6

VP5

Compose

Figure 4.12: VP Relationship DAG Example

following page, one can see each node represents a VP and each edge represents a VP

relationship. What is VP’s options and rules can be deduced by Algorithm 1. In the

Algorithm 1, the input is a DAG (G(V,E)) represents a VP relationship graph and

the VP that need to look for options and rules.

From Algorithm 1, one can see followings:

1. The algorithm is implemented in a recursive way and it ends when the edge

type is implement or restrict.

39

Algorithm 1: Deduce VP Options

Algorithm algo(G(V, E), vp)

1 Map < String, Set < Options >> vpOptions;

2 Map < String, Set < Rules >> vpRules;

3 proc(G(V, E), vp, vpOptions, vpRules);

4 return vpOptions and vpRules;

Procedure proc(G(V,E), VP, Map < String, Set < Options >> vpOptions,

Map < String, Set < Rules >> vpRules)

1 vpOptions.get(vp.name).addAll(all vp’s options);

2 vpRules.get(vp.name).addAll(all vp’s rules);

3 foreach(Edge e : vp.edges) {

4 if(e.type == restrict || e.type == implement) return;

5 myproc(G(V,E), e.parent, vpOptions, vpRules);

6 }

7 return;

2. The complexity of the algorithm equals the number of VPs related to the input

VP.

4.4 STA Customizations with VP models

Different STA Models have different way to implement customizations. To achieve

STA customizations, all three VP models with five VP relationship models can be

applied. In addition, three roles of SaaS application, infrastructure developers, tenant

developers and sub-tenant developers are discussed.

40

4.4.1 Server-Customers STA Customization

In Server-Customers STA model, the server is a tenant of a SaaS component,

distributes and supports its components. One Server-Customers STA model example

is shown in Figure 2.5. It has following characters:

1. Tenants develop, sell and distribute tenant components for sub-tenants, and

sub-tenants share the same component instances.

2. Tenants do not share their data with their sub-tenants and have no accesses

to sub-tenants data. For SOASaaS, this means that data components will be

encrypted, thus invisible by infrastructure developers. Furthermore, sub-tenant

developers will encrypt their data components, so that tenants or infra people

will not be able to read.

3. Sub-tenants can customize the tenants components.

4. If a tenant upgrades its components, the changes will be propagated to its

sub-tenants.

Server-Customers STA customization is shown in Table 4.1.

4.4.2 Software-Data STA

In Software-Data STA model, both the tenant and its sub-tenants have their

isolated SaaS instances but share the same code base. One software-Data STA model

example is shown in Figure 2.6. It has following characters:

1. A tenant owns tenant components and data, and these are shared by its sub-

tenants; furthermore sub-tenants can customize tenants components.

41

Table 4.1: Server-Customers STA Customization

VP Type SaaS Components Tenant Components
Sub-tenant Compo-

nents

Applied Relation-

ships

Fixed variation

points and fixed

options

These are provided by

infrastructure developers,

but those options provided

cannot be changed by ten-

ant or sub-tenant develop-

ers.

1. Tenant developers can choose

those fixed options if the com-

ponents are supplied by infra

developers or other tenant de-

velopers (assuming the com-

ponents can be shared).

2. Tenant developers can develop

and upload their components

with fixed variation and fixed

options. But those uploaded

components may be verified

by infra developers to ensure

system correctness. All com-

ponents that can be used by

sub-tenants do NOT touch the

tenant data to ensure item (b)

is satisfied.

As all variations points

and options are fixed, sub-

tenants can select options

specified by infra or tenant

developers only.

restrict and imple-

ment

Fixed varia-

tions but allow

tenant options

Components and variations

points may be provided

by infrastructure develop-

ers, but tenant and sub-

tenant developers can up-

load their software as op-

tions. Infra developers

need to verify those options

to ensure correctness, par-

ticularly related to item (b)

above.

1. Tenant developers can upload

their components , but in-

frastructure people need to

check if the tenant compo-

nents follow the rules of varia-

tion points (such as input and

output compatibility), specif-

ically related to item (b)

above.

2. Those options supplied by

sub-tenants need to be verified

by tenant developers first, and

infra developers then. In addi-

tion, item (b) above should be

verified.

As options may be pro-

vided by tenants or sub-

tenants: in this case, both

infra and tenant develop-

ers need to verify those

new components satisfy the

variation point rules be-

fore the options can be ac-

cepted, as related to item

(b) above.

restrict and imple-

ment

Flexible varia-

tion points and

options

This is similar to the cell

above, except now the infra

developers need to verify

that the variation points

can be placed as not all the

variations can be placed ar-

bitrarily.

This is similar to the cell above,

except now the infra and ten-

ant developers need to verify that

the variation points can be placed

as not all the variations can be

placed arbitrarily.

This is similar to the cell

above, except now the in-

fra and tenant developers

need to verify that the vari-

ation points can be placed

as not all the variations can

be placed arbitrarily.

restrict and imple-

ment

42

2. Tenants develop and own the tenant components, and share the same compo-

nent instance with their sub-tenants.

3. Sub-tenants can access the tenants sharing data and their own data.

4. Tenants can customize SaaS components, and sub-tenants can customize SaaS

and tenant components.

5. Tenants can define the scope that sub-tenants can customize.

6. If a tenant upgrades its application, the changes will be propagated to sub-

tenants.

Software-Data STA customization is shown shown in Table 4.2.

4.4.3 Master-Slaves STA

In Master-Slaves STA, both the tenant and its sub-tenants have their isolated

SaaS instances but share the same code base. One example is shown in Figure 2.7.

It has following characters:

1. Both the tenant and its sub-tenants have their isolated SaaS instances but share

the same code base.

2. The tenants share components with sub-tenants but they have different com-

ponent instances.

3. Tenants have access to the sub-tenants data and sub-tenants can not have access

to the tenant data.

4. Sub-tenants can customize the shared tenant components.

5. If a tenant upgrades its components, the changes will be propagated to sub-

tenants as they do not share the same component instances.

43

Table 4.2: Software-Data STA Customization

VP Type SaaS components Tenant Components
Sub-tenant compo-

nents

Applied Rela-

tionships

Fixed variation

points and fixed

options.

These are provided

by infrastructure

developers, but

those options

provided can be

changed by ten-

ant or sub-tenant

developers.

This cell is same to

corresponding cell

in Server-Customers

model except all com-

ponents that can be

used by sub-tenants

can touch the tenant

data.

This cell is same to

corresponding cell

in Server-Customers

model.

inherit

Fixed variations

but allow tenant

options.

This cell is same

to corresponding

cell in Server-

Customers model.

This cell is same to

corresponding cell

in Server-Customers

model.

This cell is same to

corresponding cell

in Server-Customers

model.

inherit

Flexible variation

points and options

This cell is same

to corresponding

cell in Server-

Customers model.

This cell is same to

corresponding cell

in Server-Customers

model except ten-

ant developers can

customize or replace

options or rules devel-

oped by infrastructure

developers or other

tenant developers.

This cell is same to

corresponding cell

in Server-Customers

model except sub-

tenant developers can

select, replace and

customize options and

rules.

inherit and extend

44

Table 4.3: Master-Slave STA Customization

VP Type SaaS components Tenant Components Sub-tenant components
Applied Relation-

ships

Fixed variation

points and fixed

options

These are provided by

infrastructure develop-

ers, but those options

provided can be changed

by tenant or sub-tenant

developers.

This cell is similar to the cor-

responding cell in Software-

Data STA model except it is

tenant developers that need

to verify those options to en-

sure correctness.

This cell is similar to the cor-

responding cell in Software-

Data STA model except it

is sub-tenant developers that

need to verify those options

to ensure correctness.

tenant VPs inherit

sub-tenant VPs

Fixed variations

but allow tenant

options

Components and varia-

tions points may be pro-

vided by infrastructure

developers, but tenant

and sub-tenant develop-

ers can upload their soft-

ware as options. Infra

developers need to verify

those options to ensure

correctness.

This cell is similar to the cor-

responding cell in Software-

Data STA model except it is

tenant developers that need

to verify those options to en-

sure correctness.

This cell is similar to the cor-

responding cell in Software-

Data STA model except it

is sub-tenant developers that

need to verify those options

to ensure correctness.

tenant VPs inherit

sub-tenant VPs

Flexible varia-

tion points and

options

This is similar to the cell

above, except now the

infra developers need to

verify that the variation

points can be placed as

not all the variations can

be placed arbitrarily.

This is similar to the cell

above, except now the in-

fra and tenant developers

need to verify that the vari-

ation points can be placed

as not all the variations can

be placed arbitrarily. In

addition, tenant developers

can fix the flexible varia-

tion points and change it to

a fixed variations but allow

tenant options.

This is similar to the cell

above, except now the in-

fra and tenant developers

need to verify that the vari-

ation points can be placed

as not all the variations can

be placed arbitrarily. In ad-

dition, sub-tenant develop-

ers can fix the flexible varia-

tion points and change it to

a fixed variations but allow

tenant options or fixed vari-

ations and fixed tenant op-

tions.

tenant VPs inherit or

extend sub-tenant VPs

Master-Slave STA customization is shown in Table 4.3.

4.4.4 Slave-Masters STA

Slave-Masters STA model is similar to Master-Slaves STA model except sub-

tenants can access tenant’s data. One example is shown in Figure 2.8. It has following

characters:

1. Tenants share components with their sub-tenants, but they have different com-

ponent instances.

45

Table 4.4: Slave-Master STA Customization

VP Type SaaS components Tenant Components Sub-tenant components
Applied Relation-

ships

Fixed variation

points and fixed

options

This cell is similar to

the corresponding cell

in Slave-Masters STA

model.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

inherit and extend

Fixed variations

but allow tenant

options

This cell is similar to

the corresponding cell

in Slave-Masters STA

model.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

inherit and extend

Flexible varia-

tion points and

options

This cell is similar to

the corresponding cell

in Slave-Masters STA

model.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

This cell is similar to the

corresponding cell in Slave-

Masters STA model except

sub-tenant developers can

access tenants’ data.

inherit and extend

2. Tenants do not have access to the sub-tenants data but sub-tenants can have

access to the tenants sharing data.

3. Sub-tenants can customize the shared tenant components.

4. If a tenant upgrades its components, the changes will be propagated to sub-

tenants as they do not share the same instances.

Slave-Master STA customization is shown in Table 4.4.

4.4.5 Partner-Partner STA

In Partner-Partner STA, both the tenant and its sub-tenants have their isolated

SaaS instances and data. One example is shown in 2.9. It has following characters:

1. Tenants share components and data with sub-tenants.

2. Sub-tenants share components and data with their tenants.

3. Tenants share some data with their sub-tenants.

46

Table 4.5: Partner-Partner STA Customization

VP Type SaaS components Tenant Components Sub-tenant components
Applied Relation-

ships

Fixed variation

points and fixed

options

These are provided by

infrastructure develop-

ers, but those options

provided can be changed

by tenant or sub-tenant

developers.

This cell is similar to the

corresponding cell in Slave-

Masters model except ten-

ant can access sub-tenant

data.

This cell is similar to the

corresponding cell in Slave-

Masters model except sub-

tenant can access tenant

data.

restrict, inherit and

compose

Fixed variations

but allow tenant

options

This cell is similar to

the corresponding cell in

Slave-Masters model.

This cell is similar to the

corresponding cell in Slave-

Masters model except ten-

ant can access sub-tenant

data.

This cell is similar to the

corresponding cell in Slave-

Masters model except sub-

tenants can access tenants’

data.

restrict, inherit

and compose

Flexible variation

points and options

This is similar to the cell

above, except now the

infra developers need to

verify that the variation

points can be placed as

not all the variations can

be placed arbitrarily.

This cell is similar to

the corresponding cell in

Slave-Masters model ex-

cept tenants can access

sub-tenants’ data.

This cell is similar to the

corresponding cell in Slave-

Masters model except sub-

tenants can access tenants’

data.

restrict, inherit, ex-

tend, compose

4. Sub-tenants share some data with their tenants.

5. Sub-tenants share some data with their tenants.

6. If a tenant upgrades their components, the changes will be propagated to their

sub-tenants as they do not share the same component instances.

7. If a sub-tenant upgrades its components, the changes will be propagated to their

tenant as they do not share the same component instance.

Partner-Partner STA customization is shown shown in Table 4.5.

47

Chapter 5

STA IMPLEMENTATION STRATEGIES

There are two ways to implement STA: by traditional approaches and template

with VPs.

5.1 By Traditional Approaches

By using traditional approaches, STA can be implemented by following ways:

1. Integration with DB: This supports customization (by coding), MTA (by de-

normalization), scalability on top of a modified DB with two-levels of scalability

mechanisms. One SaaS DB approach is proposed by Force.com [4].

2. SOASaaS: This is an SOA approach to STA, which provides model-driven code

generation, and map code and data into different PaaS systems with different

scalability mechanisms. One SOA SaaS example is shown in [95].

3. PaaS-based approach: This uses the existing PaaS such as GAE, EC2, and

Azure as the infrastructure to develop STA.

4. OO approach: This uses an object-oriented approach for tenant application

development and configuration. One SaaS OO approach example is proposed

by Workday [129].

A STA architecture overview is shown in Figure 5.1. From Figure 5.1, one can see

STA architecture needs to execute the following three tasks:

1. Route tenant requests: STA needs to distribute tenant application and data re-

quests to right servers. Servers can be replicated and migrated for load balance.

48

Request Routing

Servers Servers

Request Routing

SaaS Application Servers

SaaS Data Servers

Figure 5.1: STA Architecture Overview

2. Add SaaS application servers: STA needs a way to add application servers or

cloud application servers without interrupting existing applications and servers.

In addition, SaaS servers are designed to be stateless that applications can be

easily replicated.

3. Add SaaS data servers: STA can dynamically add data servers without inter-

rupting other data servers and application servers. Data can be easily replicated

when they need to be scaled.

5.2 By Template with VPs

With the help of template and VPs, the process of building SaaS application

becomes building or discovering application templates with VPs and customize VPs.

Application template with VPs are implemented by the way of SOA [23] to make use

of its many good features.

5.2.1 Service Management and Composition

Service specifications (SS) describe VP interfaces, and they may include the ser-

vices’ input, output, specification, test cases, and use scenarios. Services can be

49

Change service

Exception

change service

Location

change service

Status change

service

Tracking

service

Tracking

system service

SubClassOf

Notification

service
Exception

service

System Exception

Service

Tracking

Exception Service

Implementation

Abstract Service

Instance Service

Company A

Notification Service
Company B

Notification Service

Company C

Notification Service

Company A

Change Service

Company B

Change Service

Company C

Change Service

Company A

Exception Service

Company B

Exception Service

Company C

Exception Service

Test Case

TestingCaseOf

Test Case For

Notification Service

Test Case For

Change Service

Use Scenario

UseScenarioOf

Use Scenario For
Notification Service

Use Scenario For
Change Service

Test Case For

Exception Service

Figure 5.2: Domain Ontology Example

organized by a domain ontology, which maintains relationships among service inter-

faces and service implementations. The relationship between service specification

and service instances is one-to-many. Service Instances (SI) implement an service

specification.

Domain ontology: Domain ontology expresses domain information and represents

entities (as nodes), relationships and constraints. It can organize and manage service

interfaces. One example is illustrated as figure 5.2.

1. Nodes: A node is a unique entity that represent an service interface in domain

ontology. Every node has zero or more corresponding implementations that

have been verified. In addition, each nodes implementation must have the same

input and output so that they can be dynamically replaced by each other.

2. Relationships: It is a connection between two nodes in the domain ontology.

3. Service Workflow or Application Template: they are composed by service inter-

faces represented by a domain ontology and control structures as illustrated as

figure 5.3 on the following page.

50

Figure 5.3: Workflow Example

5.2.2 SaaS Application Templates

STA can use templates for static, dynamic, or hybrid composition approaches.

Templates can be populated by service specification or service instances that come

from service nodes of domain ontology. To be useful for actual execution, a template

must be populated only by service instances. If a template is populated only by

service instances, the composition is static. That is, it can be run without any

further interaction by STA. If a template consists of only service specifications, STA

needs to create an executable template by replacing service specifications with service

specifications. This is a dynamic composition. Finally, if a template is populated by

a mixture of implementation and interface services, a hybrid composition approach

is taken where only service instances are replaced with service instances.

An application template of dynamic composition represented by domain ontol-

ogy and control structures is shown in figure 5.4 on the next page. One benefit of

this template-based approach is that service and test scripts or cases share the same

template and it can be automatically completed with dependency support. STA can

dynamically replace service specification with service instances. The service speci-

fications that are used to compose the template can also be a template, as long as

51

Change service

Exception

change service
Location change

service

Status change

service

Tracking
service

Tracking
system service

SubClassOf

Notification
service Change Service

Any exception?

Notification
Service

No

Exception serviceYes

Exception
service

Mapping

Figure 5.4: Service Template Example Mapping

Change
Service

Exception
Exception
Service

Notify
Service

Figure 5.5: Template Example in PSML-S

this template has been registered and passed all tests. As a template is composed

by service specifications, tenants or sub-tenants with limited programming knowl-

edge can revise it. They can change the control flow in the template by adding or

removing control structures or replace service instances with their implementations.

In STA, templates can be described by PSML-S [99]. PSML-S provides many control

constructs to help tenants to revise templates easily such as condition, parallel and

sequence. Tenants or sub-tenants can revise the templates by drag and drop. One

PSML-S template is shown in figure 5.5.

52

[WebMethod]
public void bind(Object IntS, Object ImpS)
{
 Bind binder = new Bind();
 binder.bind(Ints).to(ImpS);
}

Figure 5.6: Service Binding by Programming Example

5.2.3 Extensions to Allow Users Designate Specific Services

In [111], service instances’ selection mainly depends on dependency information

among service specification and users’ service selection history. Both of them do not

allow user to designate specific service instance programmatically. This paper extends

service selection mechanism using Service Injection (SI) that allows users to compose

workflow or application templates by service specifications and inject service instance

later. Developers have two options to specify SI:

1. By Configuration: Developers can fill all service selection information such as

service name and method names. Inputs and other related information can be

added into the the configuraion file groundProfile.xml. This approach is based

on the Spring tool. It is convenient for users who want to do configuration

rather than programming. figure 5.8 on the next page gives an example of

the groundProfile.xml. In the upper part of groundProfile, a service interface

NotificationService is mapped to the method notification of Company A Noti-

fication Service. Its input parameter is username whose value is Tommy. In

the bottom part of this file, a workflow ChangeNotificationWay is defined. It

uses the reference notificationServiceByCompanyA defined in the upper part. If

developers want to use different service implementations, they can add another

service interface mapping like Company A Notification Service and change the

reference. By this way, developers can select service by injecting service into

53

CompanyANotification ImpS = new CompanyANotification();
GroudService myBinder = new GroudService();
myBinder.bind(NotificationService,ImpS.notification(Manager));

Figure 5.7: Ground Service Binding Example

Figure 5.8: A GroundProfile Example

a configuration file. The composed workflows or application templates can be

reused by others.

2. By Programming: Developers can fill service selection information by calling

GroundService.bind() method shown in figure 5.6 on the preceding page.

From figure 5.6 on the previous page, one can see that, it mainly binds service

interface to the service implementation. Developers can use GroundService like

normal web service and fill in service specification and service instance shown

in figure 5.7.

In this way, application developers can designate their service implementations.

This is similar to the class injection mechanism used in Google Guice [113].

54

Figure 5.9: Generated Source Code of Workflow

5.2.4 Code Generation Support

In [111], developers compose workflows by dragging and dropping services from

domain ontology, which is implemented by a tool [99]. One workflow example is illus-

trated as shown in Figure 3 and the generated source code is presented as figure 5.9.

How to generate source codes of SI is similar with Spring [49] and Guice [113]. And

it can be easily implanted by PSML-S.

5.2.5 Testing Workflows Of Service Composition

Both the number of cloud services available and the size of data that cloud services

need to handle are often large. Testing workflows composed of those cloud services is

a challenge. This paper follows the service group testing [112, 20] to test workflows.

5.2.6 Oracle Generation of Composite Services

A test case is a pair (test input, expected output), but often the expected output

is difficult to obtain. As users compose services by using SInts and each SInts can be

implemented by different providers (SImps), there is a large number of combinations

for the same workflow if the cloud chooses different SImps. Oracle generation mech-

anisms in [112, 20] can be used to determine the expected output. Oracle generation

uses a voting mechanism to establish an oracle with a confidence level, and if the

confidence level is high enough, the corresponding oracle can be used to determine

55

the pass/fail of subsequent tests, i.e., a test case is established (input, established

oracle with a confidence level).

5.2.7 Unit Testing

Once a test case is formed with an established oracle, it can be used to test new

service implementation. Test cases can also be ranked to help the cloud and users to

select the most potent test cases to run first and often. After an oracle for a test input

has been set up for a workflow, integration testing can be used to test each service

by changing one service implementation at a time. If testing results are consistent,

the new service is considered as correct with a confidence level with respect to the

test case. When a sufficient large number of test cases pass the test, the new service

implementation is considered as validated with another confidence level, otherwise

the new implementation will be rejected.

5.2.8 Integration Testing

Once the workflow is completed, one can apply its use scenarios [98] as test scripts

to test the workflow. A user scenario of a workflow or a service is essentially an

application that uses the workflow or the service respectfully. One can say that the

workflow in figure 5.9 on the preceding page is a use scenario of all the participating

services such as notification service. Use scenarios for a service can be collected

and served as a part of the service specification, and they can be used for service

composition. A use scenario for a service may involve other services, and thus this use

scenario provides a relationship between these two services, the relationship indicates

these two services are linked to each other. During service composition, once a service

is selected, the linked service becomes a candidate for composition. Furthermore, the

use scenarios for a workflow can be collected and used later for service composition

56

or as the basis for test scripts.

5.2.9 Continuous Testing

Continuous testing can be a part of the TDD (Test-Driven Development) process.

Continuous testing is a testing process that is being applied during the development

and execution stages. In traditional continuous testing, testing mostly in the form of

regression testing is applied during the entire development time 24 hours a day [82].

In clouds, as new applications may be composed from existing services, continuous

testing can be applied before and after application and service composition, and even

during execution as a part of the service monitoring and/or policy enforcement pro-

cesses. Continuous testing can be used to test SaaS applications [100] by embedding

built-in test case generation with the metadata database associated with a tenant

in the SaaS. In this case, test cases can be selected to test the SaaS applications

continuously. If a test script detects a failure, the ranking of the test script with its

associated test case will be increased so that it will be used early and more often

in continuous testing. The cloud platform can run those test scripts continuously

selecting most potent test case with dynamic ranking of test cases.

5.2.10 Metadata-Driven Test Input Generation

For inputs and outputs of service interfaces, one can use metadata to define test

inputs [100]. For example, if the length of user ID for a website must be 64 bits, the

simple test inputs can be generated by randomizing the 64 bits. One can generate a

collection of user IDs of 64 bits, another collection with 128 bits or any other bits.

57

5.2.11 Execute Testing Processing by Service-Level MapReduce Way

As the number of SImp can be large on a cloud, testing needs to be effective and

efficient. So, group testing can be applied using service-level MapReduce [110] to run

tests in parallel. The idea is to use different combinations of service implementations

for the same workflow in the map step. The input of the workflow is either produced

by developers or generated from the metadata. The majority of immediate results

from the map step is reduced to generate an oracle in the reduce step by the voting

mechanism [112]. It is shown in figure 5.10 on the next page. From figure 5.10 on the

following page, one can see followings:

1. Each service combination for the workflow is running on different worker ma-

chine of the cloud with same inputData service.

2. All service combinations can be run in parallel.

3. Cache service can be used to shuffle the immediate results of map process and

dispatch them to different reduce services to get final result. This process is

controlled by service-level MapReduce [110].

4. If output data produced are consistent with limited deviation [82], i.e., a ma-

jority can be established, an oracle can be established with a confidence level.

Otherwise, no such oracle can be established, and another test input need to be

run to establish its own oracle.

The testing excution process is described as followings:

1. Users submit the composed service to the cloud;

2. Cloud management service (CMS) calculates how many workers needed based

on configurations;

58

Figure 5.10: Oracle Generation Service Level MapReduce process

3. CMS finds enough available workers to run services.

4. CMS discovers service combinations for the composed service and dispatches

them to the workers;

5. CMS calls the input service or provides test input from developers to start

service-level MapReduce;

6. In the map step, service combinations are executed; results are sent to cache

services for shuffling;

7. In the reduce step, the voting is done to establish an oracle;

8. If an oracle is found, it is sent back to users as an validated oracle. If not, the

composed service fails to establish an oracle with this test input.

59

Chapter 6

TENANT-CENTRIC STA

In [109], MTA has been extended to allow a tenant application to have its own

sub-tenants, where the tenant application acts like a SaaS infrastructure.

6.1 Life Cycles of Tenant-Centric Application Development

The purpose of tenant-centric application development is to help tenants find

experts to develop components with domain knowledge requirements and facilitate

components created and reused. Normally, there are six steps in general cases shown

in figure 6.1: requirements, modeling, implementation, assembling, deployment and

management

1. Requirements: they are the processes that tenants propose their business ob-

jectives. There are two types of requirements:

CrowdSourcing

Assembling

Requirements

Modeling

Implementation

Deployment

Monitoring &&
Management

Figure 6.1: Application Development Life Cycle

60

(a) Feature requirements: they are all required features that tenants want to

implement.

(b) Formal requirements: they are formal technique requirements that devel-

opers can implement.

2. Modeling: it is the process that translates tenant business requirements into

a specification of business process and constraints. It may include following

sub-steps:

(a) Validating feature requirements: It is the process that verifies if feature

requirements cover all business requirements.

(b) Discovering current components: It is the process that discovers existing

components to implement feature requirements.

(c) Modeling feature and performance requirements: It is the process that sim-

ulate the feature and performance requirement. Any traditional simulation

techniques can be applied.

3. Implementation: it is the process that implements all the features, functions,

services and their testing cases that modeling step proposes.

4. Assembling: it is the process that integrates all tenant applications, features,

services and does integration testing.

5. Deployment: it is the process that creates hosting environments and deploys

assembled applications to different servers.

6. Monitoring && Management: it is the process that monitor the service exe-

cution and maintains operational environments and policies expressed in the

assembling.

61

Figure 6.2: Community of Interests Example

7. Crowdsourcing: it is the process that tenant assigns tasks to tenants with do-

main knowledge. In other words, tenants do not need to develop applications by

themselves but outsource some tasks to experts. Crowdsourcing is the center of

all seven steps. All tasks in each step can be outsource to tenants in the same

SaaS environment.

There are many ways that tenants can publish their requirements. One of the way

is through community of interests (COIs) shown in Figure 6.2. COIs are composed

by tenants in one or more domains that have common interests to exploit intelligence

of crowd. Therefore, COIs are able to quickly finish domain related tasks with good

quality. To get better quality, some tenants in the COI can implement the features

while the others in the same COI can propose test cases. In addition, key words are

used to describe COIs so STA can discover and recommend them when tenants have

tasks.

62

2 3

1

5

4

Tenant or
Sub-tenant

Component

Implement Subscribe

Refer Sub-tenant

Figure 6.3: Static Ranking Example

6.2 Component and Tenant Rank

Normally, tenant proposes required technologies such as (Java and Cassandra) and

let the STA system discover fit candidates. Machine learning technology such as KNN

[2, 28] and Neural network [32, 16] can be applied to discover candidates. However, it

is still difficult for a tenant to select candidate tenants if they are not ranked. It is also

difficult for tenants to select components if components are not ranked. Therefore,

this session propose a method to rank component and rank. There are two types of

ranking models.

6.2.1 Static Ranking Model

In STA, tenant, sub-tenant and their components form an relationship graph based

on their implementation, subscription and reference relationships. One example is

shown in figure 6.3.

In figure 6.3, one can see followings:

63


R(r) = c×

∑
s∈Br′

R(s)

Ns

R(u) = α×
∑

v∈Bu′

R(v)

Nv
+ β ×

∑
w∈Bu′′

R(w)

Nw
+ γ ×

∑
w∈Bu′′′

R(x)

Nx

(6.1)

1. Tenant1 implements component2 and subscribes component5.

2. Tenant2 implements component5 and subscribes component2.

3. Component3 refers to component2. In this paper, reference can be translated as

dependency, extending or other relationships existing between two components

in STA.

By revising page rank algorithm [72], tenants, sub-tenants and components can

get scores called static scores. Comparing to page rank model, this static ranking

model has following characters:

1. There are two types of nodes in the relationship graph, tenants or sub-tenants

and components while there is only page in page graph.

2. There are three types of links, implementation, subscription and reference.

To accommodate those characters, a simple revised page rank model is introduced

in Equation (6.1).

Equation (6.1) can be described as following:

1. r is a component; u is a tenant or sub-tenant.

2. Br represents the sets of components that have reference relationships with

component r.

3. Bu′ represents the sets of components that tenant or sub-tenant u has imple-

mentation relationships; Bu′′ represents the sets of components that tenant or

64


R′(r) = d× (c×

∑
s∈Br′

R(s)

Ns
) + (1− d)×

E1

k

R′(u) = d× (α×
∑

v∈Bu′

R(v)

Nv
+ β ×

∑
w∈Bu′′

R(w)

Nw
+ γ ×

∑
w∈Bu′′′

R(x)

Nx
) + (1− d)×

E2

l

(6.2)

sub-tenant u has subscription relationships or component u has reference rela-

tionship with; Bu′′ represents the sets of sub-tenants or sub-sub-tenants that

tenant or sub-tenant u has sub-tenant relationship.

4. α, β, γ and c are the weight factors to affect the importance of each types. For

example, if α = 3 and β = 1, the importance of tenant implementation is three

times that of tenant subscription.

Considering components that have no relationship, this paper assumes those com-

ponents have equally opportunity reference relationship with all other components

in STA. For tenants and sub-tenants without sub-tenants or sub-sub-tenants, this

paper assumes they have equally sub-tenant relationships with all other tenants or

sub-tenants in STA. Therefore, Equation (6.1) can be revised to Equation (6.2).

In Equation (6.2), E1 represents all components that have no reference relation-

ships with other components and E2 represents all tenants or sub-tenants have no

sub-tenants and sub-sub-tenants. All elements of both E1 and E2 are ones. The

parameter d is a factor that indicates components do not have reference relation-

ships with other components or tenants and sub-tenants have no sub-tenants and

sub-sub-tenants, which can be set between 0 and 1.

6.2.2 Dynamic Ranking Model

There are two types of ranks: component and tenant ranks.

1. Component rank: there are two important factors, importance (I) and goodness

(G), to describe a component.

65

1

Implement Subscribe

Refer

1

2

3

4

5

6

7

Figure 6.4: Component Rank Example

2. Tenant rank: same to component rank, importance (I) and goodness (G) are

used to describe a tenant.

figure 6.4 shows how to calculate component’s importance and goodness. From

figure 6.4, one can see followings:

1. There are two tenants implement and subscribe a component 1; One component

has reference relationship with the component 1; the component 1 has reference

relationships with other three components.

2. Outdegree: number of components that a given component has reference rela-

tionship with, here it is used to measure the importance.

3. Indegree: number of tenants that implement or subscribe a given component

and components that have reference relationship with the give component, used

to measure the component’s goodness.

figure 6.5 on the following page shows how to calculate tenant’s importance and

goodness. From figure 6.5 on the next page, one can see followings:

1. A tenant 1 has two sub-tenants; tenant 1 implements and subscribe one com-

ponent; tenant 1 is sub-tenant of another tenant.

66

Implement Subscribe

2

3

4

5

6

Sub-tenant

11

Figure 6.5: Tenant Rank Example

2. Indegree: number of sub-tenants to a give tenant, used to measure the tenant’s

importance.

3. Outdegree: number of components that a given tenant implements or subscribes

and or tenants that the given tenant sub-tenant to, here it is used to measure

the tenant’s goodness.

Comparing the figure 6.4 on the preceding page and figure 6.5, one can see fol-

lowings:

1. More good tenants implement the component, more importance the component

has; more good tenants subscribe or components refer to the component, more

goodness the component has.

2. More important tenants becomes sub-tenant of the given tenant, more goodness

the tenant has; more good components the tenant subscribes and implements,

more goodness the tenant has.

Formally calculating ranks are shown in Equation (6.3). And it can be describes

as followings:

In upper part of Equation (6.3), a component’s importance and goodness score is

introduced.

67


CI =

n∑
i=1

CGi
and CG = α ∗

n∑
i=1

TIi + β ∗
m∑
i=1

T ′Ii + γ ∗
k∑
i=1

CIi

TI =
l∑

i=1

TGi
and TG = α×

j∑
i=1

CGi
+ β ×

o∑
i=1

C ′Gi
+ γ ×

p∑
i=1

TGi

(6.3)

1. A component’s importance scores represented by CI are introduced by compo-

nents that the component has reference relationships with represented by CGi
.

2. A component’s goodness scores represented by CG are introduced by following

three parts:

(a) TIi are tenant’s importance scores introduced by tenants implement the

component.

(b) T ′Ii are tenant’s importance scores introduced by tenants subscribe the

component.

(c) CIi are component C’s goodness scores introduced by components that the

component has reference relationships with.

In lower part of Equation (6.3), a tenant’s importance and goodness score is

introduced.

1. A tenant’s importance scores represented by TI are introduced by tenants or

sub-tenants that are sub-tenants of a given tenant represented by TGi
.

2. A tenant’s goodness scores represented by TG are introduced by following three

parts:

(a) CIi are component’s importance scores introduced by the given tenant

implements.

68

(b) C ′Ii are component’s importance scores introduced by the given tenant

subscribes.

(c) TIi are tenant’s importance scores introduced by tenants that the given

tenant has sub-tenant relationships with.

From the equation (6.3), one can see following objectives.

1. Initialization achieved by selecting set of components and tenants.

2. Importance and goodness of tenants and components can be set as a nonzero

constant.

3. It is an iteration process to get importance and goodness of tenants and com-

ponents. In other words, tenants and components get new values of importance

and goodness each iteration.

4. The importance is computed from the current goodness weights, which are

computed from the previous importance weights.

5. It can be proved that importance and goodness of tenant and application con-

verge [53].

Base on the equation (6.3), Algorithm 2 is introduced. The Algorithm 2 performs

a series of iterations and each consists of two basic steps:

1. Component Importance Update: Update each component’s importance score

to be equal to the sum of the goodness scores of components that the com-

ponent has reference relationships with. That is, a component is given a high

importance score by referring to components with high goodness scores.

69

Algorithm 2: Tenant and Application Rank
Input: n tenants T and m components C

Output: Goodness and importance of tenants and components

1 Initialize for all c ∈ C, Ci = Cg = 1
n

2 e = 0.000001;

3 while |CIi − CIi−1
|+ |CGi

− CGi−1
|+ |TIi − TIi−1

|+ |TGi
− TGi−1

| > e do

4 foreach components in C do

5

CI =

n∑
i=1

TGi

CG = α ∗
n∑

i=1

TIi + β ∗
m∑
i=1

T ′Ii + γ ∗
k∑

i=1

CICi

CI = CI/c

// normalize CI such that

m∑
i=1

(CI/c)
2 = 1

6

CG = CG/d

// normalize CG such that

m∑
i=1

(CG/d)2 = 1

7 foreach tenants in T do

8

TI =
l∑

i=1

TGi

TG = α×
j∑

i=1

CGi
+ β ×

o∑
i=1

C′Gi
+ γ ×

p∑
i=1

TGi

TI = TI/e

// normalize TI such that

n∑
i=1

(TI/e)
2 = 1

9

TG = TG/f

// normalize TG such that

n∑
i=1

(TG/f)2 = 1

10 return all AI , AG, TI and TG

70

2. Component Goodness Update: Update each component’s goodness score to

be equal to the sum of the importance scores of tenants that implement and

subscribe it or components that have reference relationships with the given

component. That is, a component is given a high goodness score by being

implemented and subscribed by tenants with high importance scores or referred

by components with high importance scores.

3. Tenant Importance Update: Update each tenant’s importance score to be equal

to the sum of the goodness scores of tenants that the given tenant has sub-

tenant relationships. That is, a tenant is given a high goodness score by being

sub-tenant to tenants with high goodness score.

4. Tenant Goodness Update: Update each tenant’s goodness score to be equal

to the sum of the goodness scores of components the tenant implements or

subscribe and tenants that are sub-tenants to the tenant. That is, a tenant is

given a high goodness score by implementing or subscribing many components

with high importance scores or by tenants with high importance scores that are

subtenants of the given tenant.

The Importance score and Goodness score for a component and a tenant is calcu-

lated with the Algorithm 2:

1. Start with each component having a Importance score and Goodness score of

1
n
.

2. For components, run the Component Importance Update; for tenants, run the

Tenant Importance Update.

3. For components, run the Component Goodness Update; for tenants, run the

Tenant Goodness Update.

71

Figure 6.6: Rank Computation Architecture

4. Normalize the values by dividing each Importance score by square root of the

sum of the squares of all Importance scores, and dividing each Goodness score

by square root of the sum of the squares of all Goodness scores.

5. Repeat from the second step until there are small changes represented by e for

both tenant and component importance and goodness scores.

6.2.3 Rank Computation Architecture

In the tenant and component rank algorithm, there are types of scores, static score

and dynamic scores. However, the number of tenants and components can become

huge. Therefore, it is difficult to calculate both static and dynamic score in realtime.

As a result, a computation architecture is introduced to calculate both static and

dynamic scores shown in figure 6.6.

From figure 6.6, one can see followings:

1. There are two layers to compute goodness and importance, batch layer and

realtime layer. In this paper, batch layer means STA does the calculation after

some period of time and does it in a batch way. Realtime layer means STA does

the calculation when tenants and components need to change their rank scores.

72

2. Batch based calculation can compute large number of tenants or components

and get very accurate results as it can take long time to finish calculation. In

this layer, static ranking model is applied. After passing this layer, all tenants

and components have static scores. As the number of tenants and components

can become huge, famous big data framework such as hadoop [5] or spark [7]

can be applied to accelerate computation.

3. Realtime based calculation can do calculation very fast but can only get prox-

imate result. Only tenants and components that have relationships to tenants

who implement or subscribe components and become sub-tenant to other ten-

ants need to update their scores. Therefore, dynamic ranking model is applied.

To apply dynamic ranking model, the first step is to retrieve the most relevant

components and tenants by searching STA database and fetching tenants and

components with changes. This set is called the root set and can be achieved

by taking the top n tenants and components, where n can be huge. A base set

is generated by augmenting the root set with all the tenants and components

that subscribe, implement or refer to those components and tenants in root set.

The tenants and components in the base set and all subscription, implementa-

tion and reference among those components and tenants form a subgraph. The

subgraph can become large and complicate when the number of tenants and

components is huge. Therefore, key words based search engine such as solr [81]

and elastic search [35] can be introduced when searching tenant and component

candidates or find augmenting information. In addition, graph databases such

as neo4j [119] can be used to save subgraph information of the base set. In

realtime environment, the time of computation must be short. Hence, famous

realtime big data framework such as Apache Kafka [6] and storm [8] can be

73

S(i) =


α×R(i) + β × (γ × CI + ξ × CG) if i is a component

α×R(i) + β × (γ × TI + ξ × TG) if i is a tenant

(6.4)

integrated.

4. Batch based calculation can get static scores of all tenants and components.

Realtime based calculation can get dynamic scores of tenants and components

have changes. To integrate both static scores and dynamic scores, Equation

(6.4) is applied. In Equation (6.4), α, β, γ and ξ are weights to make static

scores and dynamic scores comparable that can be adjusted.

6.3 Feature Implementation Selection Model

In STA, one component may have many features to be implemented. As one

feature may be implemented by many tenants if Crowdsourcing is applied, it becomes

import to choose fit tenants to implement features (X) of a component (τ). This paper

make following assumptions:

1. Feature is the smallest unit that cannot be further split.

2. Implementing feature X need time T and cost C.

3. A component τ∗ can be split into n features.

4. One tenant can implement more than one features for the same component.

One feature example is shown in figure 6.7 on the following page. In figure 6.7 on

the next page, one can see followings:

1. One component can be split into n features presented by X1, X2...Xn.

74

Figure 6.7: Feature Implementation Selection Model

2. One feature can be implemented by more than two tenants.

3. One tenant can implement many features at same time.

Formal feature implementation selection model can be shown in Equation 6.5.

From Equation 6.5, one can see followings:

1. τ∗ represents an SaaS application.

2. The purpose of this equation is to find the minimal cost solution with time

constraint.

3. ti,j represents if tenanti can implement the jth feature.

4. xj represents the jth feature.

5.
n∑
i=1

ti,j × xj = 1 means only one tenant can implement the jth feature xj.

6.
n∑
j=1

ti,j = m means n tenants can implement m features.

7.
n∑
j=1

ti,j × t(xj) < t means the total time that n tenants implement m features is

less than the required time.

75



τ ∗ = argmin(
m∑
i=1

n∑
j=1

ti,j × c(xj))

subject to :
n∑
i=1

ti,j × xj = 1,
m∑
i=1

n∑
j=1

ti,j = m and

m∑
i=1

n∑
j=1

ti,j × t(xj) < t

(6.5)

Algorithm 3: Algorithm for Feature Selection Problem
Input: m,n,c1,...,cn,t1,...tn,f1,...fm

Output: min cost, selected tenants

for i← 1 to m do

for j ← 1 to n do

M[i,j] = 0 ;

OPT(i,j,ms,s) {

if i = 0 or j = 0 then

if i = 0 then

return 0 ;

else

return MaxNumber ;

else

if ti not implement fi then

M[i,j] = 0 ;

return OPT(i,j-1,f,t-{ tj }) ;

else

m1 = OPT(i,j-1,f,t-{ tj }) ;

m2 = cj + OPT(i,j-1,f-{ fi },t-{ tj }) ;

if m1 < m2 then

M[i,j] = 0 ;

return m1 ;

else

M[i,j] = 1 ;

return m2 ;

}

76

To solve feature selection problem, Algorithm 3 is introduced.

The basic idea of Algorithm 3 is exhausting all possible solutions and find the best

solution with minimal cost. Algorithm 3 can be described as followings:

• Algorithm 3 is a recursive algorithm and it explores every possible solutions.

• τ ∗ does not select nth tenant to implement the mth feature. So, τ ∗ will select

the best tenant from {t1, t2, ..., tn−1} .

• τ ∗ select nth tenant for themth feature. τ ∗ will choose tenants from {t1, t2, ..., tn−1}

for {f1,...,fm−1} .

• There is no features left. τ ∗ is optimized.

6.4 Rapid Application Building Process

This paper inherits those approaches proposed by Tsai in [111, 101, 108] to build

application templates. When tenants or sub-tenants build application templates, the

key words of those templates can be indexed by both elastic search [35] and solr [81].

By combining the relevance algorithm of elastic search and solr with components’

rank discussed in 6.2.2, tenants or sub-tenants can quickly discover fit application

templates. After selecting the application template, tenant or sub-tenants can cus-

tomize or extend the application template to become an application or application

template. The built application and application template can be published so that

sub-tenants can subscribe and reuse. Therefore, the process of rapid application

building become following two steps:

1. Tenants or sub-tenants discover fit application templates through key words

based search engines.

77

Table 6.1: Connected Graph with Weights

1 2 3 4 5

1 0 3 0 0 1

2 0 0 0 0 0

3 0 1 0 0 0

4 2 1 0 0 0

5 0 0 0 0 0

2. Tenants or sub-tenants customize or extend the selected application templates.

In addition, tenants or sub-tenants can publish customized applications or ex-

tended application templates so other sub-tenants can subscribe or reuse them.

6.5 Experiment

In this section, one experiment is to illustrate static and dynamic models. In

static model, the relationships, implement, subscribe, reference and sub-tenant have

different influence. In this experiment, implement is considered to have most influence

and its weight is set to three. Sub-tenant is considered to have second influence and

its weight is set to two. Both subscription and reference are considered to be equaled

and their weights are set to one. Based on this assumption, figure 6.3 on page 63 can

be translated to the connected graph with weights shown in Table 6.1.

Applying static model introduced by Equation (6.2), the result is shown in fig-

ure 6.8 on the next page.

From the static scores, one can see both tenant1 and tenant2 have higher static

scores than those of components. By changing weights that changes the α, β and γ

in Equation (6.2), it will have different static scores.

Later, one tenant subscribes both component3 and component5. Applying dy-

78

Figure 6.8: Result of Static Rank

3

5

Tenant or
Sub-tenant

Component

Subscribe

6

(a) Root Set

2 3

1

5

Tenant or
Sub-tenant

Component

Implement Subscribe

Refer

6

(b) Subgraph

2 3

1

5

4

Tenant or
Sub-tenant

Component

Implement Subscribe

Refer Sub-tenant

6

(c) Static Ranking With

Update

Figure 6.9: Staic Rank With Dynamic Rank Update

79

Table 6.2: Subgraph with Weights

1 2 3 4 5 6

1 0 3 0 0 1 0

2 0 0 0 0 0 0

3 0 1 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 1 0 1 0

namic model introduced by Equation (6.2), root set is shown in figure 6.9a on the

preceding page. By augmenting relationships of component3 and component5, base

set is discovered and it is composed of tenant1, tenant6, component2, component3

and component5. By adding their relationships, subgraph is shown in figure 6.9b on

the previous page. To follow the same weights in static model, subgraph with weights

is shown in Table 6.2. According to Algorithm 2, their importance and goodness

scores are shown in figure 6.10 on the following page.

In figure 6.10 on the next page, tenant1 has highest importance score as tenant1

implements component1 and subscribes component5 where implement relationship

has highes weight according to the assumption; component2 has highest goodness

score as component2 is implemented by tenant1 with the highest importance score

and referred by component3.

Combining static and dynamic scores, final scores are shown in figure 6.11a on

the following page. Although static score, importance score and goodness score share

same weights in this experiment, they can be different based on different requirements.

Finally, the final graph is formed by adding tenant6 and its subscriptions back to

80

Figure 6.10: Result of Dynamic Rank

(a) Result of Final Rank (b) Result of Final Static Rank

Figure 6.11: Final Score vs Final Static Score

the whole graph shown in fig:finalRankExample. And its corresponding final static

scores are shown in figure 6.11b. Comparing final score with final static in figure 6.11,

one can see followings:

1. Dynamic model boosts tenants or components with most relationships.

2. Static model boosts tenants with implementation relationships.

3. For other tenants or components, both dynamic model and static model have

similar scores.

81

From the analysis of experiment result, both dynamic model and static model work

as expect. Therefore, it proves rank computation architecture works well by applying

static model to batch layer and dynamic model to realtime layer in figure 6.6 on

page 72.

6.6 Conclusion

This paper provides a tenant centric STA to assist tenants to fast and easily

build and publish customized components and data. To make use of public wisdom,

Crowdsourcing is introduced to be the core of STA component development life cycle.

In addition, static and dynamic models are proposed to rank tenants and components.

Further, rank computation architecture is presented to handle the case when the

number of tenants and components becomes huge. At last, an experiment is shown

to demonstrate static model, dynamic model and rank computation architecture work

as expected.

82

Chapter 7

DEPENDENCY-GUIDED SERVICE COMPOSITION

7.1 Introduction

Service-Oriented Architecture (SOA) [55, 64, 132, 29] imposes a composition-based

approach for software application development by reusing existing software compo-

nents available in the Internet which are wrapped into services and accessible through

standard protocols. Service discovery and composition are central to service-based

software development. Service discovery identifies a set of candidate services to meet

the specified interface requirements. Composition is the process of creating an ap-

plication by reusing and integrating the discovered services following the workflow

requirements [57]. Various SOA protocols such as orchestration, chorography, and

coordination have been designed for service composition, and many approaches have

been proposed including model-based approaches [134, 46, 135], semantic-based ap-

proaches [38, 54, 19], or QoS-driven approaches [121, 58, 116]. In addition, SOA

technology has been widely used by industry and research such as medical [131],

healthcare [33], business process [79] and data mining [115, 24]. However, issues exist

in current practices of service discovery and composition. First, it is hard to specify

the needs of service. In the standard web services protocols, it often uses a static

binding to pre-defined service implementations. It does not have a mechanism for

the service users and applications builders to define their requirements. Second, it is

difficult to match the service implementation to the application requirements. The

services, published with XML-specified interface, may not have sufficient semantic

information of their interface operations. Thus, even a direct XML-based syntac-

83

tic matching may not ensure the services’ functions meet the users’ expectations.

In addition, the services discovered individually need to collaborate with others in

an application context. To address these issues, Consumer-Centric SOA (CCSOA)

and User-Centric SOA (UCSOA) framework [22, 102] have been proposed, on top of

SOA, to allow the users to specify and publish their requirements with application

templates. Taking the published requirements as domain knowledge, this paper ex-

tends the UCSOA framework to identify service dependencies from the domain model

and the dependency information can be used to improve the intelligence and efficiency

of service discovery and composition.

CCSOA allows the publishing of application, collaboration, and workflow tem-

plates that define the expected service functionalities and business processes. UCSOA

further organizes the requirements into different groups called Community of Inter-

ests (COI) so that common solutions related to a certain domain can be reused for

community members for rapid application development. In the UCSOA framework,

the application builders select the application template first and modify the service

and workflow to meet specific application requirements. The services implementa-

tions associated with the templates can be reused together as a package, together

with the templates. In this paper, the ontology-based template specification is used

to identify the potential dependencies between service functionalities. Relationships

like hasInput, hasOutput, before, after, calledBy, hasCall are defined and presented,

as complementary information to the domain model. The likelihood property is used

to address uncertainties in dependency relationships. The algorithms are defined to

calculate the dependencies between any two nodes. Such dependency information

can be used to guide the process of service composition in the UCSOA framework.

In spite of individual service matching and discovery, a group of dependent services

can be identified together, evaluated and integrated into the composite workflow as

84

a whole.

Service-oriented techniques have been used in many critical systems including real-

time mission-critical command-and-control systems. Specifically, the U.S. Depart-

ment of Defense (DoD) has used service-oriented techniques to develop her network-

centric operations since 2001. In fact, almost all major initiatives since then such as

FCS (Future Combat Systems) [78], JBMC2 (Joint Battle Management Command

and Control) [86], FORCEnet [68] are based on service-oriented computing. For

those systems, service-oriented system engineering [90] is critical where systems need

to be specified in a service-oriented manner, have an operational architecture that is

compatible with service-oriented concepts, code can be deployed and executed in a

service-oriented infrastructure, and system must be subject to service-oriented test-

ing [14? , 108, 91]. Service-oriented system engineering is a new effort in system

engineering [117, 15] where the system developed uses service-oriented specification

techniques, design, languages, simulation, testing, verification and validation, and

monitoring as well as other attributes such as reliability and security modeling and

analysis.

This paper is organized as follows. Section II briefly reviews related SOA and

service composition techniques. Section III analyzes the ontology relationships. Sec-

tion IV introduces the definition and analysis algorithms of dependencies based on

the ontology-specified domain model. Section V presents the process of service dis-

covery and composition in the UCSOA framework. Section VI presents a case study

to illustrate the proposed composition approach. Section VII concludes this paper.

7.2 Related Work

Current standard for describing Web services, WSDL, does not provide semantic

information. WSDL 2.0, defines a set of extension attributes for the WSDL and XML

85

Schema definition language that allows description of additional semantics of WSDL

components. As the Internet does not guarantee performance, Web services do not

guarantee performance as they depend on the Internet to transfer messages between

services

Dependency information is often used for compiler optimization and change man-

agement [75]. This paper further extends dependency with likelihood information to

assess the weight of dependency relationships. The information is useful in identifying

those items that are most likely to be selected for composition.

Service composition has been a difficult task. Dustdar [34] classified composition

strategies into five categories: 1) static and dynamic composition strategies, 2) model-

driven service composition, 3) business rule driven service composition, 4) declarative

composition; and 5) automated and manual service composition. Static and dynamic

composition concerns the time when services are composed. Static composition oc-

curs at design time. Services are chosen, combined together, and finally compiled and

deployed. Sun [84] defines Microsoft Biztalk and Bea WebLogic as examples of static

composition engines and Stanford’s Sword and HP’s eFlow as examples of dynamic

service composition. In static composition, it is difficult to replace services with

equivalent new services. Dynamic composition was introduced to allow service com-

position to replace services dynamically. However, dynamic composition is difficult

and one issue is identification of appropriate services at runtime.

Orriens [70] introduced model-driven dynamic service composition where UML is

used to provide a high-level of abstraction that can be directly mapped to other stan-

dards, such as BPEL4WS. They use OCL (Object Constraint Language) to express

business rules and describe the process flow. Gronmo [42] proposed a model-driven

semantic web service composition. They use OWL-S and WSML as semantic web

service description languages, and their method guides developers to compose ser-

86

vices through four phases, starting with the initial modeling, and ending with a new

composite service that can be deployed and published. Aldin [1] proposes a sur-

vey to discuss the existing literature on the problem of business processing modeling

reusability.

Ontology is often used for knowledge representation, sharing, classification, rea-

soning, and interoperability. [92] presents an ontology-based dynamic process collab-

oration and proposes a service collaboration ontology to exchange meaningful infor-

mation between collaboration parties and perform collaboration workflow matching.

Oh [69] proposes a novel metrics to measure ontology modularity. Ontology-based

service composition is introduced in [87, 37]. Tosic [88] discussed the need for require-

ments for ontology, and provided ontology systems for the management of services

and for Quality-of-Service (QoS) metrics. Process mining relates to the extraction

of information is an important research discipline. Ingvaldsen [45] presents a frame-

work to evaluate different aspects of enterprise process flows and address practical

challenges of state-of-the-art industrial process mining.

This paper uses ontology systems to express domain information and ontology

systems cross reference each other with dependency relationships. Ernestas [114]

proposed a method of transforming ontology representation from OWL to relational

databases and algorithms for transformation of domain ontology to relational databases.

Bianchini [17] described an ontology design approach defined in the framework of the

VISPO (Virtual-district Internet-based Service Platform) project to support knowl-

edge sharing and service composition in virtual districts. Kim [51] presented a task

dependency approach for Web service composition driven by business rules statically.

Current SOA composition emphasizes publishing and discovering services, and

most of support is for service providers. UCSOA and CCSOA [22, 102] that run on

top of SOA also support service consumers. These SOA allow various items such as

87

Change service

Exception

change service

Location

change service

Status change

service

Monitor

service

Checking

service

Tracking

service

Tracking

system service

ImplementBy

Input service
Notification

service

Monitor

service A
Monitor

service B

SubClassOf

Abstract Service Service Implementation

Figure 7.1: Shipping Domain Service Ontology

user requirements to be published so that service providers can discover and supply the

needed services or workflows. UCSOA also allows end users to compose applications

in a community. In this way, a non-technical person can compose applications easily

like they use mashup. The proposed process is also useful for requirement analysis.

An application engineer, who is developing the specification of a certain application,

can discover similar application templates, workflows, and services. These provide

significant guidance to all the needed features including services and workflows needed

in the current project. The engineer may realize that other similar projects have

features that were initially missing in the project requirements, and these missing

requirements can be added to the current project requirements. Furthermore, those

similar templates, workflows, or services identified may be reused or modified for the

current application.

7.3 Ontology Relationships

Domain ontology is often used to express domain information and it represents

entities, relationships and constraints. One kind of relationships is dependency rela-

tionship. A service ontology example is illustrated in figure 7.1.

88

7.3.1 Relationships in Ontology

Nodes in a ontology system may have some relationships with other nodes. At

same time, nodes in different ontology systems may also be related to each other, i.e.,

an application node in an application ontology may use services in a service ontology.

The following relationships can be in ontology systems:

• hasInput(A,B): This shows the input relationship between services, specifically

A’s output is the input of another service B.

• hasOutput(A,B): This shows output relationship between services, and A’s out-

put is the input of B, and this is the inverse relationship to hasInput.

• before(A,B): This shows service A must execute before service B.

• after(A,B): This shows service A must execute after service B. It is the inverse

relation of before.

• calledBy(A,B): This shows service A is called by service B.

• hasCall(A,B): This shows service A call service B. It is the inverse relation of

calledBy.

• mutualExclusion(A,B): This shows services A and B cannot be executed con-

currently in one application.

• Concurrent(A,B): This shows services A and B can be executed concurrently.

Other relationships are also possible.

7.3.2 Relationships Representation

This relationship can be expressed as following formal notation: A
<N,<,L>−−−−−→ B.

89

A

B

C

D E

F

G

Redundant transitive

Symmetric or Asymmetric

Transitive

Figure 7.2: Property Illustration

• A , B represent service, workflow, application template or collaboration tem-

plate, that have dependency relationship.

• N represents domain, that can be a service, workflow, application template or

collaboration template and their subclasses

• < represents one of relationships.

• L represents what is the likelihood that A has relationship < with B at given

domain N .

• A <N,<,L>−−−−−→ B indicates that A and B have dependencies on each other in the

domain .

7.4 Dependency Analysis

Three types of operation dependencies can be analyzed: Input Dependency (ID),

Input/Output Dependency (IOD), and Output Dependency (OD) [46]. Service de-

pendency was expressed as an AND/OR graph called Service Dependency Graph

(SDG) [56]. SDG considers IOD and performs composition based on it. However,

90

these dependencies are not sufficient to express dependencies among services. These

dependencies can be identified only in a composed application where the workflow

is specified. If the workflow is not available, service dependencies cannot be de-

duced. However, if SOA follows the CCSOA (Consumer-Centric SOA) [102] in which

application templates, workflows and collaboration templates can be published and

discovered (in addition to services). In CCSOA, dependencies between services can

be discovered by their association with workflows and templates. Thus, these two

services have IOD. Dependency information is also useful in placing sensors for in-

strumentation [13]. As dependency is domain related, the same service may have

different dependencies in different domains. For example, two services, multimedia

trans-coding and slice services are related to each other because in a workflow, mul-

timedia trans-coding service is called before slice service.

7.4.1 Axioms

1. Nodes: A node represents an abstract service in an ontology. It is a unique

entity.

2. Relationships: It is denoted as a connection between two nodes in an ontology.

Relationships are directional. A relationship consists of the dependent node, the

relationship, and the target node.

3. Dependency: For a designated relationship, it denotes that this relationship

implies a dependency between one node and the other.

4. Dependency Domains: It represents collections of dependencies that share

an analytical interest.

91

5. Dependency Likelihood: It is a measure of how likely a relationship is to

induce a dependency.

6. Likelihood estimation functions: It is a collection of functions that esti-

mate likelihoods. These can be initial estimation functions (for providing ini-

tial estimates), asymmetric initial estimation functions and estimation update

functions.

7.4.2 Property Definitions

Transitive Dependent Relationship

Two relationships have a transitive dependency through an intermediate node if they

following characters: If A
<N,<,L1>−−−−−−→ B and B

<N,<′ ,L2>−−−−−−→ C then A
<N,<′′ ,L3>−−−−−−−→ C. <

, <′ and <′′ can be any item of relationship set R. Here, A and B have relation <

in given domain N with likelihood L1. B and C have relation <′ with likelihood L2

in same domain. So A and C have relation <′′ in same domain with likelihood L3.

Here, < can be same as <′ . And <′′ must be < if < dominant <′ . Or <′′ should be

same as <′ .

Symmetric Reflective Dependency

Two relationships have a symmetric reflective dependency if they have following char-

acters: If A
<N,<,L1>−−−−−−→ B then B

<N,<,L2>−−−−−−→ A. < can be relationship parallelWith.

Here, if A and B have relationship < in a given domain N with likelihood L1, B should

have the same relationship with A in the same domain with likelihood L2.

92

Table 7.1: Corresponding Relationship

< hasInput before subOf calledBy

< hasOutput after parentOf hasCall

Asymmetric Reflective Dependency

Two relationships have an asymmetric reflective dependency if they have following

characters: If A
<N,<,L1>−−−−−−→ B then B

<N,<′ ,L2>−−−−−−→ C. < and <′ can be any item

illustrated as table 7.1, where < and <′ are corresponding to each other. Here, A

and B has relationship < in a given domain with likelihood L1, which means B has

relationship <′ with A in the same domain with likelihood L2.

Redundant Transitive Dependency

This type of dependency is where there are multiple transitive dependency paths be-

tween two nodes such that the likelihood that the two nodes are dependent increases,

but the number of relationships between the nodes decreases. It has following char-

acter: If A
<N,<,L1>−−−−−−→ B,A

<N,<′ ,L2>−−−−−−→ D,D
<N,<′′ ,L3>−−−−−−−→ B and B

<N,<′′′ ,L4>−−−−−−−→ C then

A
<N,<′′′′ ,L5>−−−−−−−→ C . Here, A and B have relation < in given domain N with likelihood

L1 . A and D have relation <′ with likelihood L2 in same domain. D and B have rela-

tion <′′ with likelihood L3 in same domain. B and C have relation <′′′ with likelihood

L4 in same domain. So A and C have relation in same domain with likelihood L5.

Here <,<′ ,<′′ ,<′′′ and <′′′′ have same meaning in Transitive character. These three

properties can be illustrated as Fig.7.2.

7.4.3 Formal Notation Definition

Some formal notation will be defined here:

93

Complete Dependency Set

A dependency set in which all dependencies and derived dependencies have been

added.

Dependency Likelihood Threshold

The minimum likelihood value of dependencies in a complete dependency set.

Complete Dependency Set at Level Z

A dependency set that has all dependencies and derived dependencies that are above

this value. Derived dependencies below this threshold are not in the set.

Degree of Dependency

the smallest number of intermediate dependency relationships between two nodes.

That is, if A
<N,<1,L1>−−−−−−→ B , then A is 1 degree from B. If A

<N,<1,L1>−−−−−−→ B and

B
<N,<2,L2>−−−−−−→ C, then A is 2 degrees from C.

7.4.4 Operations

Create Transit Dependency Relation

A
<N,<3,L1×L2>−−−−−−−−−→ B=A

<N,<1,L1>−−−−−−→ B < t > B
<N,<2,L2>−−−−−−→ C. Here, < t > represents

two relations have transitive dependency property.

Create Symmetric Dependency

B
<N,<2,L1>−−−−−−→ A = < s > A

<N,<1,L1>−−−−−−→ B. Here, < s > represents two relations have

symmetric dependency property.

94

Create Asymmetric Dependency

B
<N,<2,L1>−−−−−−→ A = < a > A

<N,<1,L1>−−−−−−→ B. Here < a > represents two relations have

asymmetric dependency property.

Use Node

This operation (or these operations) updates likelihood estimates based on node us-

age. This includes rules reporting actual dependencies and for updating likelihood

estimates. It will be detailed in section VI.

7.4.5 Theorems

• Transitivity is associative: If A
<N,<1,L1>−−−−−−→ B < t > B

<N,<2,L2>−−−−−−→ C and

B
<N,<3,L3>−−−−−−→ C < t > D

<N,<4,L4>−−−−−−→ E , then A
<N,<1,L1>−−−−−−→ B < t > B

<N,<2,L2>−−−−−−→

C < t > D
<N,<4,L4>−−−−−−→ E

• When adding a new node to a complete dependency set, only the nodes within

1 or 2 degrees must be evaluated when adding the new node. Because all de-

pendencies and derived dependencies have been added to complete dependency

set, only 1 or 2 degrees are possible new. Nodes that have more than 3 degrees

are already in the complete dependency set.

• If two relations have symmetric dependency property B
<N,<1,L1>−−−−−−→ A = < s >

A
<N,<2,L2>−−−−−−→ B, then <2 must equal <2, L2 must equal L1.

• If two relations have asymmetric dependency property B
<N,<1,L1>−−−−−−→ A = < a >

A
<N,<2,L2>−−−−−−→ B, then <2 must not equal <2, L2 may equal L1.

• <,<′ ,<′′ ,<′′′ and <′′′′ in redundant dependency property can be same, which

means < = <′ = <′′=<′′′ = <′′′′ .

95

7.4.6 Algorithms

The Algorithm 1 identifies all the relationships between node A and B based on

transitive, symmetric and asymmetric properties on relationships. In other words, it

will identify those dependency relationship not specified but can be derived by the

existing relationships. The algorithm can be used in a modified Warshall’s algorithm

to identify all the dependency relationship in a set of ontology systems.

Algorithm 4: identifies all the relationships between node A and B

Input: Starting Node A, Target B, a likelihood threshold z, Set of Dependency

Relationship D, where di ∈ D is a dependency x
<N,<,L>−−−−−→ y

Output: D
′
= D

⋃
D+
AB

set R= D

while there is a path between A and B do

Put all the nodes in the path into S1 while a ∈ S1 do

while b ∈ S1 do

if r = a
<n,r,l>−−−−→ b then

if r has Reflexive character then

add b
<n,r,l>−−−−→ a into R

if r has Symmetric character then

add b
<n,r,l>−−−−→ a into R

if r has Transitive character then

if A
<n,r,l1>−−−−−→ a ∈ R and B

<n,r,l2>−−−−−→ a ∈ R has Transitive

character and l × l1 × l2 > z then

add A
<n,r,l×l1×l2>−−−−−−−−→ B into D

The Algorithm 2 is used to merge two dependency sets. The Algorithm 3 is used to

merge two complete dependency sets. The Algorithm 4 is used to make an incomplete

96

User-Centric Composition

End User

user1 user2 user3 userN

COI1

…….

COI2 COI3 COIN…….

Communities of Interest

Personal

Profile

Personal

Profile

AO<->CO<->WO<->SO with Dependency

SOA

CCSOA

UCSOA

Figure 7.3: User Centric SOA Composition Architecture

dependency set to complete dependency set.

7.5 Composition With Dependency Support

This proposed framework is shown in figure 7.3. The architecture has six layers:

• Dependency layer: This provides dependency among services, application and

workflow. Some of them directly come from ontology. The others are derived

from those dependencies.

• Ontology layer: This classifies and represents relationships among templates,

workflows and services. In figure 7.3, AO is Application Ontology, CO Collab-

oration Ontology, WO Workflow Ontology, and SO Service Ontology.

• SOA layer: This layer provides conventional SOA services such as publishing,

discovery and broker services.

97

Algorithm 5: Add new node to a complete dependency set

Input: A set of nodes N Complete Dependency Set D that covers N which has

a likelihood threshold z new node A, where A /∈ N with a set of

dependencies Dnew to nodes in N Note that D and Dnew are sets of

dependencies where each di ∈ (D
⋃
Dnew) is a dependency between

two nodes X and Y of the form: di = X
<D,<,L>−−−−−→ Y , where X ∈ N or

X = A, Y ∈ N or Y = A , D is the domain of the dependency

relationship, < is the relationship, and L is the likelihood that the

relationship is dependent.

Output: D
′
= D

⋃
Dnew

⋃
DA, where DA is the set of derived dependencies

of node A. that exceed the given likelihood threshold z.

Assumptions: fprop(R1, R2, p) is a relationship property function where R1,

R2 and p is one of the relationship properties { Transitive, Symmetric,

Asymmetric }. fprop(R, p) is defined to be 1 if the relationship R has property

p, 0 otherwise.

steps:

1. Add symmetric and asymmetric dependencies between A and nodes that

are 1 degree from it

2. Add transitive dependencies between A and the nodes 2 degrees from A

3. Add any symmetric and asymmetric dependencies that can be derived

from the new transitive dependencies.

98

Algorithm 6: Merge two complete dependency sets

Input: A set of nodes M and N Dependency Set D that covers M which has a

likelihood threshold z and Dependency Set E that covers N which has

a likelihood threshold z.

Output: D
′
= D

⋃
E and M

′
= M

⋃
N .

Assumptions: fprop(R1, R2, p) is a relationship property function where R1,

R2 and p is one of the relationship properties { Transitive, Symmetric,

Asymmetric }. fprop(R, p) is defined to be 1 if the relationship R has property

p, 0 otherwise.

Steps:

1. Take two nodes A,B from nodes M

2. if DAB ∈ D and DAB /∈ E

3. Add DAB to E

4. Call add a new node to a complete dependency set algorithm to add node A

and B to N

5. repeat 1 to 4 steps until M is empty or one node left

6. if there is one node in M, Call add a new node to a complete dependency set

algorithm to add the left node

7. return set D
′

and M
′

99

Algorithm 7: Make an incomplete dependency set to a complete dependency

set
Input: A set of nodes M Dependency Set D that covers M which has a

likelihood threshold z.

Output: D
′
, D

′
is the complete set of D

Assumptions: fprop(R1, R2, p) is a relationship property function where R1,

R2 and p is one of the relationship properties { Transitive, Symmetric,

Asymmetric }. fprop(R, p) is defined to be 1 if the relationship R has property

p, 0 otherwise.

Steps:

1. Create an empty set D
′

and M
′

2. Take two nodes A,B from nodes M

3. if DAB ∈ D and DAB /∈ D′

4. Add DAB to D
′

5. Call add a new node to a complete dependency set algorithm to add node A

and B to M
′

6. repeat 1 to 4 steps until M is empty or one node left

7. if there is one node in M, Call add a new node to a complete dependency set

algorithm to add the left node

8. return set D
′

100

Requester

Requirement

Parser

Composition

Processor

Ontology Templates,

Workflow and Services

Simulation

&&Testing

Code

Generation

Provider

Publish

Service Broker

1
5

6

7

8

11

12

10

9

23

4

Figure 7.4: A Composition Operation Sequence

• CCSOA layer: CCSOA publishes not only service specification, but also appli-

cation, collaboration, and workflow templates.

• Community of Interests (COI) layer: This is the place where common solutions

related to a domain are stored and classified for community members to reuse.

• User profiling layer: Each individual user has his or her preference and behav-

iors, and thus each user may have customized solutions. This information helps

in identifying best fit services.

7.5.1 Composition Process

An operational sequence for the composition process is shown in figure 7.4. Note

that the framework allows many different ways for composition, and this is just one

of many possible ways.

The process has following steps:

1. A user submits a specific application requirement and it may include specific

workflow processes, potential service description and attributes, and related

information to an appropriate COI.

2. The requirement parser analyzes user’s requirements and identifies those related

application, collaboration and workflow templates in the ontology that closely

101

match the needs of the requirements using dependency analysis. The system

returns a set of candidate application templates, ranked by closeness and other

factors to the user. These templates come with a set of associated workflows

and services.

3. The candidate templates are presented to the user, and the user can make

informed decisions on the selection or modification of these templates. If no

such application template is available, a new application template needs to

be created. The user may need to modify a candidate template to fit the

current application. In this step, a set of application, collaboration and workflow

templates will be chosen to fit the application. Simulation can be performed

to evaluate the overall system at this time even though not all the services and

workflows have been finalized.

4. Once the templates are obtained, the set of candidate workflows and services are

automatically identified by dependency analysis. The set of candidate workflows

and services (stored in workflow ontology and service ontology) with their

likelihood information are presented to the user for final selection. The user

finalizes the selection based on various criteria. It may be necessary to create

new services and/or workflows, or modify existing services and/or workflows to

meet the user requirements. Those new or modified services and workflows can

be published with dependency information updated.

5. After all the decisions are made, the selected application template with all

the selected workflows and services will be packaged together to form a new

application.

6. The composed application will be sent back to requirement parser.

102

7. The composed application will be simulated and tested before making final

decision. If there is any problem, repeated the previous steps to obtain a new

composition.

8. Finally, the code can be generated from the final packaged composition.

9. The code will be returned to the user with links to published items such as

services.

10. The user may decide that the newly composed application will be a good can-

didate for reuse, and publish the application as an application template.

11. The system will save this application template, map it to application ontology

and update dependency likelihoods related to this.

12. After seeing the newly published application template, a provider can submit

services and workflows to be associated with this application template. The

dependency analysis can be used to verify the validity of these associations.

Note that the proposed 2-steps composition process is described as steps 2, 3

and 4 in the above process. Also, a service consumer may become a contributor

in the community if the consumer performs step 10. Furthermore, this consumer

acts as a virtual service provider by publishing an application template.

7.5.2 Key Techniques

The proposed framework needs many techniques to implement the design. Note

that UCSOA already provides COI organization and management including verifi-

cation and validation, rapid application generation, and publishing and discovery

mechanisms.

103

Company A

Notification

Service

Notification

Service

instanceOf

Tracking Service

hasCall

calledBy

Company B

Notification

Service

instanceOf

Company A

Tracking

Service

Company B

Tracking

Service

instanceOf instanceOf

Figure 7.5: Services with Dependencies

Initialize and Update Likelihood

Section 7.4 introduced the dependency likelihood L. This section defines how L can

be initialized and updated. Consider an example show in figure 7.5.

In this example, Notification services collaborate with Tracking services to get

tracking information to their customers. This example show 6 direct dependencies:

NotificationService calls TrackingService, NotificationService hasCall from TrackingSer-

vice, CompanyANotificationService and CompanyBNotificationServices are instances

of NotificationService, and CompanyATrackingService and CompanyBTrackingSer-

vice are instances of TrackingService. Likelihoods for these 6 dependencies are ini-

tialized and updated using a recursive Bayes filter. Initializing the Filter. The initial

likelihood for dependencies can be assigned to a predefined constant such as 0.5. Note

that this assumes 50service is selected, the other service will be selected in the same

application. In the example shown in figure 7.5, the direct dependency likelihood es-

timates will be initialized as shown in figure 7.6 on page 106. Where T is the shipping

service application domain. Updating the Filter. As services selected to be packaged

into an application, the likelihood dependency estimate can be updated based on

historical usage patterns. Consider the dependency:

After n usages of item A and the next time A is used, L can be updated using

follows:

104

Ln+1 = n∗Ln+un+1

n+1
, where un+1 is 1 if A is dependent on B, 0 otherwise.

In other words, as two services are selected to participate in an application, their

dependency likelihood increases. Furthermore, this information can be customized

with respect to a community of users or individual users. For example, a specific

user prefers CompanyA over other companies, thus with respect to this user, the

dependency likelihood between CompanyATrackingService and other shipping-related

services is high, but the dependency likelihood between other tracking services and

shipping-related services will be low. If the user decides to change the preferred

company, the user can either reset the likelihood to the initial value or let the system

corrects itself by following the update process.

Ranking

Once an item is published, it can be ranked by all the users including service con-

sumers, brokers, and providers. Not only instance services of each abstract service

can be ranked, but also test scripts, test cases and templates. Ranking can be based

on test and evaluation such as reliability evaluation or personal opinions, i.e., social

ranking. Furthermore, trust information is also important for ranking and ordering.

In [106] that talks how to build service trust model. These ranking information can

be used together with dependency information in composition.

Publication with Dependency Analysis

Published items can be analyzed by dependency analysis at publication time. For

example, a published service specifies its attributes such as inputs, outputs, pre-

conditions, effects, grounding, and description. Similar existing services can be dis-

covered based on these attributes. These existing services can be used as a basis

for performing dependency analysis on the newly published service. In this way, a

105

Notification

Service

<T, calledBy, 0.5>
Tracking

Service

Notification

Service

<T, hascalled, 0.5>
Tracking

Service

CompanyANotifica

tionService
Notification

Service

<T, instanceOf, 0.5>

<T, instanceOf, 0.5>

CompanyBNotifica

tion
Notification

Service

<T, instanceOf, 0.5>

CompanyATrackin

gService TrackingService

<T, instanceOf, 0.5>

CompanyBTrackin

gService TrackingService

Figure 7.6: Initial Dependency Likelihood Estimates

newly published service may be associated with workflows, collaboration templates,

and application templates automatically. These associations can be re-confirmed by

contributing providers or by users. Furthermore, dependency analysis can be used

as a T&E (Test and Evaluation) mechanism to support service publication. For ex-

ample, if a provider publishes a service, and indicates that it is useful for certain

applications and/or collaboration templates. However, dependency analysis on the

service does not match well with the indicated templates. Thus, the associations with

these templates need to be rejected. This can be done automatically if tool support

is available. If this mechanism is available for every party, a provider can perform

dependency analysis before publishing their services or workflows.

7.6 Case Study - Shipping Domain Tracking System

This section uses a shipping domain service composition system example to illus-

trate the composition process. We get the system requirements from three different

companies. According to applications’ requirement, three different application sys-

106

Table 7.2: Existing Items in Different Applications

Company A Company B Company C

Service 16 17 13

Workflow 20 21 17

Application Template 5 6 5

Change service

Exception

change service

Location

change service

Status change

service

Tracking

service

Tracking

system service

SubClassOf

Notification

service
Exception

service

System Exception

Service

Tracking

Exception Service

Dependency

40%

90%
30%

100%

100%100%

100%

20%

50% 50%

Figure 7.7: Dependency Information

tems have been developed. Many services, application template, workflows and on-

tology have been published in [23]. For illustrating, a fourth company’s requirements

have been proposed. The system consists of four participants, a company manager

who wants to see statistics data such as the profit of the company in the most recent

month, a system administrator who will manage the system need to make sure that

system works well, a carrier who wants to change the status of shipment and a user

who wants to track the status of shipment.

7.6.1 Existing Items

Forty-six services, fifty-eight workflows and sixteen application templates have

been published, which table 7.2 illustrates how they distribute.

Shipping domain ontology has been presented as 7.1. Dependency information of

the service ontology can be illustrated as figure 7.7.

107

ACTION:Manager.Change_

Service

ACTION:Manager.Notification_

Service

Start

Figure 7.8: Notification Way Change Workflow

ACTION:Manager.

Change_ Service

CONDITION:Manager

.Exception?

ACTION:Manager.N

otification_Service

True

False

Start

ACTION:Manager.Syste

m_Exception_Service

Figure 7.9: Notification Way Change Workflow with Its Dependency

7.6.2 Specifications

The mission is to let a manager, Jerry quickly composes an application according

to their requirements. Jerry wants to get informed by cell phone if there is any

tracking exception happens in the system. The key point is he does not know about

software design or programming and the system does not have any available service or

application that can be used. They will use PSML-S [99] to publish their requirements

or compose their applications.

7.6.3 Notification Way Change Workflow

The notification way change workflow can be constructed by PSML-S and the

shipping domain ontology. For demonstration, manager’s notification way change is

illustrated as figure 7.8.

As manager does not need to consider any dependency information, he can focus

108

ACTION:Manager.

Change_ Service

CONDITION:Manager

.Exception?

ACTION:Manager.N

otification_Service

True

False

Start

Change service

Exception

change service

Location

change service

Status change

service

Tracking

service

Tracking

system service

SubClassOf

Notification

service
Exception

service

Mapping

ACTION:Manager.Syste

m_Exception_ServiceSystem Exception

Service

Tracking

Exception Service

Dependency

40%

90%
30%

100%

100%100%

100%

20%

50% 50%

Figure 7.10: Notification Way Change Workflow and Its Mapping

on what he wants to do. He can ask system to do the work. The composition system

analysis the Change Service and finds that has dependency. So, composition system

will automatically choose its dependency with Change Service for the workflow. It

can be illustrated as figure 7.9 on the previous page.

According to the description before, user-centric composition process allow users

focus on what they need and let the composition system select their dependent com-

ponents automatically. So, the system will help users with not much programming

background to do composition. Notification way change workflow and its correspond-

ing mapping service can be illustrated as Fig.7.10.

7.7 Conclusion

This paper provides a user-centric service composition process to assist people to

compose applications. One key technique is dependency analysis among published

application templates, collaboration templates, workflows, and services. The depen-

dencies identify those associated items quickly. The dependency relationships can be

formalized and analyzed to ensure coverage.

109

Chapter 8

SERVICE REPLICATION WITH MAPREDUCE IN CLOUDS

In a typical cloud environment, services wait to serve users’ request. If a service

receives more requests than it can handle, it needs to acquire additional resources.

This paper proposes a new service replications that allows a cloud to adjust its ser-

vice instance deployments in response to existing and projected service requests.

This approach is called Service-Level MapReduce (SLMR) as it is based on MapRe-

duce, a parallel processing mechanism commonly used in cloud environments such

as GAE(Google App Engine). SLMR includes dynamic service replication and pre-

deployed service replication. Furthermore, a passive SLMR approach that depends

on the cloud management service (CMS) and an active SLMR approach that does

not need the support from CMS will be introduced.

8.1 Introduction

Recently, cloud computing has received significant attention. Many companies

have started their cloud projects including Software-as-a-Service (SaaS) [126], Platform-

as-a-Service (PaaS) [125], and Infrastructure-as-a-Service [124]. Some example sys-

tems include Microsofts Azure [61], Googles App Engine (or GAE) [41], Amazons

EC2 [3] and SimpleDB [4]. Traditional service replication is passive, i.e., the service

being replicated does not participate in the decision on where to replicate, when to

replicate, or the number of copies to replicate. This passive service replication is

useful from the separation of concerns point of view, as it separates service deploy-

ment from service functionality. Thus, service replication is not a standard feature

in service-oriented architecture (SOA) [23]. However, services deployed in a cloud

110

can be replicated as service replication is common to support scalability and elastic

computing. Furthermore, cloud platforms often have mechanisms for distributing and

replicating data among many processors in the cloud. For example, cloud platforms

such as GAE provide automated triplicate redundancy to support data and service

availability and reliability. In a cloud, users can request services to deal with a large

amount of data. In this case, a service may not be able to complete users’ requests

in a timely manner, and thus the service may be unavailable for other users. For

the users’ requests that have timing constraints, this can be an issue. Traditional

passive service replication may not be able to guarantee that a request will be han-

dled with a timing constraint. This paper introduces a MapReduce-based approach

to service replication that addresses this problem. The MapReduce splits a task to

smaller tasks, and executes them in distributed nodes in parallel. There are two main

phases in MapReduce: map and reduce. An input set is split into certain number

of segments. For each segment, a job is created to run the map function on that

segment. The map function produces intermediate results. Once the map phase is

complete, the reduce phase starts by handling a portion of the intermediate results.

MapReduce has been widely used in cloud computing. Furthermore, the map and

reduce functions are implemented as library functions at the code level. They are

written by programmers for a specific MapReduce platform in a specific language.

For Googles MapReduce functions are written in C++ [30]. Ideally, in a cloud, every

computation is a service, rather than just code. A service has its code, but it also

has service specification (such as IOPE or input, output, preconditions, and effects)

that can be published, discovered, and composed visually. Map and reduce functions

can be implemented as services. This paper develops the following strategies for com-

posing service-level MapReduce (SLMR) Applications: i. Passive Service Replication

Strategy (SRS): In this approach, a management service controls the composition

111

and service replication, as well as manages MapReduce service requests. ii. Active

SRS: In this strategy, services manage themselves. For both strategies, the following

problems for MapReduce are studied: Splitting the input set for performance, and

Fault Tolerance.

8.2 Related Work

Many commercial cloud platforms are available. For example, Google has GAE

and it is a platform for Web applications. Developers do not need to worry about

the load of web applications, and they can be balanced by GAE. Based on the ser-

vice agreement, GAE can impose storage size and computing usage limitations [41].

Microsoft Azure provides a cloud environment for .NET-based web applications [61].

Amazon has a range of cloud-based products including EC2 and SimpleDB. EC2 is

a web service platform that provides resizable compute capacity in a cloud [3]. Sim-

pleDB is also a web service providing core database functions of data saving, indexing

and querying in a cloud [4]. MapReduce is widely used to support parallel computing

on large data sets in distributed systems. It was inspired by map and reduce function

in functional programming such as Lisp [128] and ML [127]. However, MapReduce

has a different meaning. Here, the map is initiated by a master node, the input is split

into many small sub-problems, and then distributed to worker nodes. Worker nodes

process the sub-problems and produce intermediate results in the form of key-value

pairs. Once the map step is complete, the reduce step begins. The master creates

certain number of workers to perform the reduce operations. Intermediate data from

the map step is processed by the reduce workers based on the keys. Intermediate

data with the same key is handled by the same reduce worker. The main advan-

tage of MapReduce is that it allows map and reduce operations to be distributed so

they can occur on different processors in parallel. This can substantially decrease the

112

processing time required for large data sets [30]. Service replication is an important

concept in cloud computing. It can occur when there is a large backlog of queued

requests in the service queue. The service can be replicated so as to provide addi-

tional processing capacity. In service replication, data replication can be an issue as

data will be processed by different copies of the same service. Gao [39] proposed an

application-specific data replication for edge services e-commerce. It took advantage

of application-specific semantics to design distributed objects to manage a specific

subset of shared information using simple and effective consistency models. Another

issue is to choose replicated services to serve users’ request. Zegura [133] proposed

an application layer approach to choose servers. It does not replicate services but

replicate servers so as to replicate services as services hosted by different servers.

Stantchev [83] proposed an OS-level replication strategy to handle dynamic service

replication. They proposed two ways to replicate web services: per-process repli-

cation and per-thread replication. Nevertheless, dynamic service replication is still

difficult because services normally cannot get a full authorization of servers. However,

pre-deployed services strategies can be useful. In this strategy, replicated services are

pre-deployed on different servers but remain hibernating until they are needed. Ser-

vice replication is also used for other purposes. For example, Zheng [136] proposed a

distributed replication strategy evaluation for fault-tolerant web services. Their pur-

pose is to provide reliable services by replicate services when service cannot perform

well. Service replication is a useful strategy. In most cases, service replication is a

passive selection.

8.3 Cloud Architecture

This section presents a high-level cloud architecture containing elements that sup-

port service replication and dispatching. This is not a complete architecture; instead,

113

Figure 8.1: High Level Cloud Architecture

it focuses on the dispatching and replication services. The dispatching, replication,

and the related services in the cloud infrastructure are illustrated in Figure 8.1.

1. Cloud Management Service (CMS) has the following functions:

(a) Monitoring services: The CMS monitors the execution of services to ensure

that they are functioning, making progress, and completing normally. If it

detects certain services are overloaded, it can replicate additional services

and dispatch requests to relieve their loads.

(b) Dispatching services: When services have been replicated, the CMS de-

termines the location replicated services to be deployed, replicates them,

and updates the service information so that computation requests can be

directed to the newly replicated services.

(c) Complete the map process: In passive SRS, the CMS manages the map and

reduce processes. For the map process, the CMS manages splitting, and

the map service replication, and dispatches data to the replicated services.

(d) Complete the reduce process: After the map step is completed, the CMS

114

collates the results, replicates the reduce services, and dispatches requests

to the reduce services.

2. Replication Service manages service replication in two ways:

(a) Dynamic Service Replication: Services will be dynamically replicated and

deployed as determined by the CMS. As a cloud often duplicates or trip-

licate data already [40, 18], a cloud can duplicate a service by deploying

another copy of code in one server, and distinguish the new copy from

existing ones. However, the cloud often does not allow services to make its

own decision to duplicate itself as this can be a source of computer virus.

Thus, any service duplication will be managed by the CMS to prevent this

kind of security attack.

(b) Pre-deployed Service Replication: Services are pre-deployed on specific

servers. Services remain in a hibernating state when they are not pro-

cessing any tasks. When the CMS needs to replicate services, it activates

hibernated services to complete the replication process.

After replicating services, they can be released. As the cost of dynamic service

replication may be high, so a replicated service created by dynamic service

replication can enter a hibernation state once it has no tasks to execute so that

it can be re-activated later.

3. Gateway Service: This serves as the entry point of the cloud, and it gets users

requests and transfers them to a specific server for proceeding.

4. Dispatch Service: When the CMS performs dynamic service replication , repli-

cated services need to be deployed onto different servers in the cloud. This

service performs this task.

115

Figure 8.2: Service-Level MapReduce Process

8.4 Service Replication Strategies

8.4.1 Service-Level MapReduce

MapReduce [30, 122] is popular, and it can be extended so that it can work at

the service level. Figure 8.2 illustrates SLMR:

1. The CMS manages the SLMR process. The CMS will create an appropriate

number of map services, split services, shuttle services, cache services, reduce

services and output services dynamically based on processor capacity and timing

constraints.

2. Data Split Services: These will split input into n partitions according to users

requirements, and current cloud status such as server availability.

3. Map Services: These will perform the map method

4. Shuffle Services: These will reorder the intermediate data and send them to

suitable cache services. Normally, the cloud will provide a shuffle service to

data of key-value structure. In addition, users can provide their shuffle services

116

for specific data type.

5. Cache Services: These will store intermediate data from the map services but

not necessarily in the form of key-value pairs. Before these data come to cache

services, they would be sent to shuttle services to reorder. Users may select or

provide their own cache services.

6. Reduce Services: These services take data from cache services, collate them and

send them to an output service.

SLMR has the following features:

1. Map and reduce services can be replaced by other similar services. That is, the

map and reduce are not coupled at a code level, only at the interface level.

2. Service providers can focus their concern with their services and may be less

concerned with the overall MapReduce process. In Hadoop [122], users need to

write map and reduce functions, while Hadoop finds workers to run map and

reduce functions. In SLMR, the CMS is in charge of the MapReduce process.

3. SLMR is service-oriented. This makes it more flexible, and services can be pub-

lished, discovered, and composed. This feature also enables dynamic composi-

tion of MapReduce operations, as long as map and reduce services are available.

In this way, all SLMR services can be published, and reused by others.

4. Users that used to write map and reduce functions can now compose these

services or use existing services from service providers.

5. SLMR can support more data types than the traditional MapReduce. In the

MapReduce framework, users must design data carefully so that they can match

the key-value structure. However, sometimes, data cannot be easily represented

117

by the key-value structure such as multimedia data. Here, input data of service

can be any type, not necessarily key-value pair. If users need to handle special

data, they can write split services and shuffle services.

6. Map service and reduce service can be same. So, the cloud can clone services

and let them play as map and reduce services. In this way, execution can be

accelerated.

7. The framework allows different reduce services so that more than two types of

results can be introduced while traditional MapReduce can have only one type

of results.

8. Both dynamic service replication and pre-deployed service replication can tol-

erate some faults. When services are replicated, redundant services are created,

and these redundant services can replace those failed services in case of faults.

SLMR also can allow these extra services to run concurrently.

9. Both dynamic service replication and pre-deployed service replication can get

better accuracy by a voting mechanism [103]. The idea is to take majority result

from all responses that running replicated services.

8.4.2 Number of Replications Needed

It is not good if replicas are over supplied, as they consume more resources than

needed in a cloud. However, if services replicas are insufficient, the MapReduce pro-

cess may not perform well. So, it is necessary to determine the number of replication

services needed. The following formula is a possible solution:

N =
RD

SPC ∗ T

118

Figure 8.3: Details of passive SRS process

Here, RD represents the size of request data (in number of records). SPC repre-

sents the rate at which a service processes records. T represents users timing con-

straints. N represents the number of services needed. If formula gets a float number,

N must be up-bounded. For example, if the calculation result is 2.01, N should equal

3. Here, three constraints, size of request data, service processing capability and time

are considered as major reasons affecting the number of replications.

8.4.3 Passive Service Replication Strategy

This strategy has three sub-processes as illustrated in Figure 8.3.

1. The CMS controls service replication and data splitting. Service replication is

managed by replication service while data partition is charge.

2. Replicated services work alone, get input data from the CMS and return results

to CMS for completing the Map process.

3. CMS collates results from replicated services to get final results by completing

reduce process.

Figure 8.3 shows the eight steps for completing the whole process.

1. Users submit their requests to the cloud. A gateway service at the cloud bound-

ary receives these requests.

119

2. The gateway service transfers users requests to the CMS. If users have special

requirements such as users have preferred services, the gateway service will pre-

process these requests before passing to the CMS.

3. The CMS asks the replication service to replicate specific services, and dispatch

service to dispatch the service requests. This process can use Formula 1 to

calculate the number of replicated services needed based on the requests timing

constraints. The original service then asks the replication service to replicate

N-1 copies of the map services.

4. After the replication service finishes map service replication, the dispatch service

will deploy the replicated services (if dynamic service replication is being used)

or activate the replicated services (if passive SRS is being used).

5. The dispatch service deploys or activates the replicated services.

6. The CMS splits the request data into N parts and dispatches them to N map

services. After that, it calls replicated services to work on the data and wait

until it gets all the results.

7. The CMS collates the results to complete the reduce process.

8. The CMS returns the final results to the gateway service and it in turn returns

them to the users.

he CMS is responsible for managing the map and reduce services in case of faults.

If a replicated map service stops working, The CMS can detect this, replicate another

service to replace the failed service. Here, one can see passive SRS is a centralized

process strategy, and it has advantages and disadvantages of a centralized architec-

ture. It is easier to manage because the MapReduce services are managed by a central

120

Figure 8.4: Details of active SRS process

manager. However, the CMS becomes a critical service of the cloud. If the CMS be-

comes overloaded, it will degrade the performance of the cloud. This is the similar

problem that the original GFS (Google File System) [40] faced before. One common

solution is to use some P2P technology such as DHT [67], where several CMS services

are provided and DHT is used to dispatch services onto those services.

8.4.4 Active Service Replication Strategy

The active SRS has three sub-processes as shown in Figure 8.4:

1. Each service determines its data partitioning strategies and service replication

strategies. The CMS still manages the actual replication and dispatching, but

is does so at the behalf of the services in the composed MapReduce application.

2. The CMS manages service replication and service deployment if dynamic service

replication is used, or the activation of hibernating services if passive SRS is

used.

3. Replicated services communicate with the original services to get input data and

finish the map process. Then, the original service collates results from services

and completes the reduce step in a similar manner. As shown in Figure 8.4,

this process has nine steps:

121

(a) Users submit their requests to the gateway service, and this that is similar

as passive SRS Step A.

(b) The gateway service transfers users requests to the CMS, and this is similar

as passive SRS Step B.

(c) Instead of replicating original service in passive SRS Step C, The CMS

calls the original service to deal with users requests.

(d) After the original service determines the partitioning strategy using a strat-

egy such as Formula 1, splits the data, and requests that the CMS replicate

and dispatch the map services.

(e) The CMS asks the replication service to finish service replication or activate

the required number of services.

(f) After the replication service finishes services replication, it asks the dis-

patch service to dispatch the replicated services.

(g) The dispatch service deploys replicated services. This step is same as steps

E and F.

(h) Each service communicates with the original service and gets input data

to finish the map process. After that, all of them return results to the

original service. It is the original service that initiates the reduce step in

a similar manner.

(i) After the original service collates all returned results for getting final result,

it will return the final results to the gateway service and in turn to the

user.

In active SRS, fault tolerance is the services responsibility. This responsibility can

be shared across one or more of the replicated services. Similar to a centralized fault

122

tolerance strategy, if individual map services fail, new map services are replicated and

processing is requested of them.

Active SRS has its own advantages and disadvantages. It is a hybrid architecture

in between a centralized architecture and a distributed architecture. It alleviates

the burden of the CMS, which requires the original service to be in charge of map

and reduce processes instead. It will also make the original service complicated to

finish the MapReduce process. However, as this functionality can be packaged as a

service, MapReduce compositions can include this functionality from previous pub-

lished MapReduce management services. While passive SRS and active SRS share

similar strategies such as service replication, and the ability to support service-level

MapReduce, they are different with respect to the following aspects:

1. The main difference between passive SRS and active SRS is the location of the

management of MapReduce process. passive SRS places the responsibility with

the CMS, while active SRS with the services implementing the MapReduce.

2. The algorithms behind the passive SRS and active SRS are different, as illus-

trated in Sections 8.4.3 and 8.4.4.

3. The algorithm and logic of the original service are different. Active SRS requires

additional logic for management and fault tolerance. However, with active SRS,

this logic can be packaged as services, providing flexibility with respect to the

level of fault tolerance needed.

123

8.5 Application Illustration

8.5.1 Data Sorting

In this scenario, a user request contains a large number of data records that need

be sorted by a sorting service. A service-level MapReduce service can reduce the

overall time of sorting using the algorithm 8:

Algorithm 8: Data Sorting

Input: D is an input set that has a large number of records, service processing

rate SPC and timing constraints T

Output: The sorted data

1 Calculate the number

2 Replicate N map services

3 Split data according to D1......DN = D
N

4 Deliver the splitting data and call the replicated service to sort sub-data

5 Collate the sub-data to final sorted data

6 Return the final sorted data

From this algorithm, one can see the time complexity is O(nlogn), and this depends

on how one sorts the sub-data and collate the sub-data. If one uses O(nlogn) sorting

algorithm such as merge sort, the time complexity is O(n log n). If one uses O(n2)

sorting algorithm such as Bubble sort [10], the time complexity will be O(n2).

8.5.2 Keyword Search in Large Documents

In this scenario, a user requests a number of items matching certain keywords.

This problem does not require much computation but requires service to handle a

large number of documents. Just as the scenario given in Section 5.1, it is difficult

124

from a single service to finish keyword searching in a short time in traditional ways.

Therefore, algorism 9 is introduced.

Algorithm 9: Keyword Search

Input: Large number of documents D that need to be searched, keywords K,

service processing rate SPC and timing constraints T.

Output: The list of matching documents

1 Calculate the number

2 Replicate N Keywords Searching Services

3 Split documents D according to D1......DN = D
N

4 Deliver the splitting documents and call the replicated service to search

keywords in the splitting documents

5 Collate the sub-documents from replicated services to final sub-documents

6 Return the final sub-documents

From the basic ideas, one can see the time complexity depends on the search

keywords in sub-documents and collate the sub-documents, which can be O(n) if

comparing keywords with each string in documents, O(log n) if using search algorithm

such as binary search tree [80] while not consider how to build up binary search tree.

Search speed is also related to the document types. If document types are XML,

some useful package such as JAXP [48], JAXB [71], JDOM [44] and JAX-RPC [47]

in java and namespace such as System.XML [62] in C# can be helpful.

8.6 Case Study

In this section, word counting and inverted table for words will be used to il-

lustrate service replication strategies for MapReduce in clouds. For demonstration

purposes, passive SRS will be used. Replicated services can be pre-deployed onto

125

Figure 8.5: Instantiated Framework of SLMR

several windows servers using windows communication foundation (WCF) [59]. By

using SLMR, one can design reduce services elaborately to get two results at same

time.

1. We designed a map service S1 to count words in documents and get the result

by list of ¡word, counts, and document¿.

2. We designed a shuttle service S2 so it can reorder the lists based on keyword

word.

3. We designed two reduce services, S31 and S32, which service S31 is used to

collate counts of words and other service S32 is used to get list of documents

for the same word.

4. We also designed an output service, S4, so it can collate all results from reduce

services and output the result.

Now, instantiated framework of SLMR can be illustrated as Figure 8.5. From

Figure 8.5, one can see:

1. Users do not need to write split service but just use default service provided by

SLMR.

2. Users can reuse other services provided by SLMR or service providers.

126

3. Designing the MapReduce process becomes service composition.

4. Intermediate data type do not necessarily be ¡key, value¿ structure. In this case,

it is a list.

5. Reduce services can be different and all of them can be replicated.

6. Through service replication and running them in parallel, service execution can

be accelerated.

8.7 Conclusion

This paper proposed services replication strategies for the MapReduce process

in a cloud environment. The strategies focus on efficient use of the cloud resources

with large requests. This problem cannot be addressed only by allocating more com-

putation resource to the service from the cloud or simply replicating services and

let the cloud balance the load. This paper proposed a SLMR, and introduces two

strategies: passive SRS and active SRS, and illustrated these with examples. The ex-

amples demonstrate that SLMR service replication can decrease the execution time

in a cloud.

127

Chapter 9

STA EXPERIMENT AND CASE STUDY

As Force.com cannot support all STA models, MultiOrg-SSTA, MS-TSTA, SM-

TSTA, PP-TSTA and MSTA are introduced in the case study while SingleOrg-SSTA,

SC-TSTA and SD-TSTA are implemented on Force.com. In addition, VP model is

also implemented in Force.com.

9.1 Experiment - STA Online Shopping System

A STA online shopping system is introduced and built to illustrate STA mod-

els including requirements, implementation and customizations. Three STA models,

SigleOrg-SSTA, SC-TSTA and SD-TSTA, are implemented in Force.com platform.

Currently, not all the STA models can be implemented in Force.com easily, for ex-

ample, Force.com does not provide a way to run the same application in different

instances.

9.1.1 STA Online Shopping System Requirements

In this STA online shopping system, tenants, sub-tenants and end users can per-

form following actions:

1. Tenant and its sub-tenants can add, update, delete and sell items.

2. End users can browse, search and buy items.

3. Tenant and its sub-tenants can customize buying process. And buying process

includes following styles:

(a) Make order → shipping → pay when deliver the order

128

(b) Add items to cart → Make order → shipping → pay when deliver the

order.

(c) Add items to cart → Make order → pay online → shipping

9.1.2 STA Online Shopping System Experiment

In this experiment, an application on Force.com called STA online shopping is

built. To build the application, following custom objects are created.

1. Merchandise: it is used to describe what products tenants can sell including

two fields: price and quantity.

2. Cart: it is used to describe the number of products and products that end users

want to buy including three fields: product id, product name and quantity.

3. Order: it is used to describe the detail information about the products that end

users have bought including four fields: product id, product name, quantity and

customer id.

4. Payment: it is used to describe how the end users pay their orders including pay

online and pay when deliver the order including two fields: pay online and pay

when deliver. In addition, another custom object is created to support online

payment that includes credit card number, expire date and billing address.

5. Shipping: it is used to describe how the end users want tenants provide their

orders including shipping address.

Their relationships are showed in Figure 9.1. In Force.com, one can achieve role-based

permission control by some tenant’s applications such as the permissioner [9]. As this

experiment employ the permissioner, the SC-TSTA is applied. In this experiment,

roles, SingleOrg-SSTA tenant, SC-TSTA sub-tenant and SD-TSTA, are created to

129

Figure 9.1: STA Online Shopping Data Model

manage all permissions. Permission sets, merchandise, cart, order, payment and

shipping are built to assign corresponding permissions. According to requirement,

three workflows are created:

1. W1:order → shipping → pay when deliver.

2. W2:cart → order → shipping → pay when deliver.

3. W3:cart → order → pay online → shipping.

By using the permissioner, permissions are assigned to different roles which W1 is

assigned to SingleOrg-SSTA tenant, W2 is assigned to SC-TSTA sub-tenant and W3

is assigned to SD-TSTA sub-tenant. As workflow has multiple meanings in Force.com

such as workflow rules [77], like events in event-driven architecture[123], and flows [76]

that equals to workflow in this experiment. SingleOrg-SSTA flow example is showed

in Figure 9.2. The customization options are achieved by combination of roles and

their permission sets.

130

Figure 9.2: SingleOrg-SSTA Flow Example

9.2 STA Online Shopping System Case Study

In this case study, the STA online shopping system is built on extending the

OIC architecture [101] to support the tenant and its sub-tenants, which adds sub-

tenancy management related core system services shown in Figure 9.3. The sub-

tenancy management services are a set of services such as subtenant information,

management services, data sharing management services, upgrade and distribute ser-

vices, subtenant subscriptions management services, subtenant monitoring services

and subtenant billing services. Compare to tradition SaaS, STA need more tenant

information such as tenant type. In this paper, the TenantType field is added to

the Tenant table and the license type is also stored for the subtenants of ISV. One

example of the tenant table is shown in Table 9.1.

The tenant type decides whether the tenant can use subtenancy management

services. In this paper, the tenant type could be one of the following types:

1. Tenant: the customer will be assigned this type when it is an isolated organi-

zation with no relation to other organizations, or it could be an organization

that has sub-tenants which makes it the parent tenant. Therefore, a tree can be

used to describe the relationships between the tenant and other organizations

where the tenant will be in the root of the tree. In this tree, the tenant has no

131

Figure 9.3: STA Architecture Overview

Table 9.1: Tenant Information

Tenant ID Name Tenant type Enable Sharing License type

00001 Company ABC Tenant NO -

00002 Company ABC 1 Sub-tenant NO -

00003 Company ABC 2 Sub-tenant NO -

00004 Company ABC 3 Sub-tenant NO -

00005 Company ABC 4 Sub-tenant NO -

00006 Company DEF ISV - -

00007 Company HIJ Sub-tenant NO Enterprise

00008 Company KLM Sub-tenant NO Basic

00009 Company OPQ Tenant NO -

00010 Company RST Sub-tenant YES -

00011 Company UVW Tenant YES -

00012 Company X Sub-tenant NO -

00013 Company Y Sub-tenant NO -

132

parent but it may have children and grandchildren.

2. Independent Service Vendors (ISV): The customer will be assigned this type

when they are partners of the SaaS provider, and use the SaaS provider platform

to develop, sell, distribute, and support their SaaS applications.

3. Sub-tenants: This type can be assigned to different type of customers such as:

(a) An external organization that has a sharing relationship with another ten-

ant.

(b) An internal department inside the tenant’s organization.

(c) Customers of an ISV.

Each tenant type will have different sub-tenant management services, which is

achieved by adding permissions for each tenant type in the SaaS application security

system, the followings are examples of required roles and permissions:

1. Tenants or Subtenants Administrators: they perform the following operations:

(a) Manage SaaS application security: the administrators are able to add new

end users, assign roles, data, and make field level access control.

(b) Customize the SaaS application: the administrators are able to customize

the SaaS application based on the tenant license agreement type with the

SaaS provider. For example: the SaaS provider could have three license

types:

i. Basic: it offers simple customization on small number of features.

ii. Enterprise: it offers full customization to all the features.

iii. Professional: it offers partial customization by the tenant. In addi-

tion, by using the subtenant management services in some multilevel

133

MTA models, the tenant can control the customization level of its

sub-tenants that it can select the components that its sub-tenants can

customize and what type of customization it can do.

(c) Enable data sharing with their sub-tenants: data sharing services should be

added to the system and the administrator has the permissions to manage

the data sharing with other tenants. This can be achieved by enabling or

disabling the data sharing that could be implemented by adding a field

called EnableSharing to the tenant data permission table shown in Table

9.1. In some STA models, the data sharing is needed between tenants and

sub-tenants. When sharing data, the tenant selects the fields to be shared

in each data object, and it can also select the type of sharing offered

on each object or field to the other tenants. Examples of the sharing

types are read only, or read and write. This can be achieved by adding

SubTenantSharingPermissions table that contains each shared field and

the subtenant sharing type on them shown in Table 9.2.

(d) Sub-tenant management: the tenant administrator adds sub-tenants in-

formation and links it to the tenant by using this service. A new table

Tenant-Subtenants is created to store this information in the database

where Table 9.3 is the relational database schema example, and Table 9.4

is the MTA database example. In addition, they can build the compo-

nents and templates that are inherited by the sub-tenants in some STA

models. Further, for each inherited component, the administrators can

set the permissions and the level of customization that the sub-tenants

have. An example of customization levels are full customization, partial

customization, or no customization permissions.

134

(e) Distribute customization upgrades to the sub-tenants: The tenant makes

customizations to its SaaS application and select some components of these

customizations to push them to its sub-tenants. In a meta data driven

MTA, the customizations are described by meta data tables so that the up-

grade process can be achieved by simply running a database script job that

copies the updated components data from the tenant to its sub-tenants. In

some STA models, the sub-tenant approval is needed before the upgrade

is performed. However, in other STA models, the approval is not needed

and upgrade is performed automatically.

(f) Integrate SaaS application with external systems: The tenant uses this

service to integrate the SaaS application with external systems. Here,

external systems are systems where other SaaS providers or organizations

in internal system offer applications.

2. ISV administrators: they have the same permissions of the tenants or subtenants

administrators as they are able to customize the SaaS applications, manage sub-

tenants, and to distribute customization upgrades. In addition, they also have

permissions to perform following tasks:

3. Mange subtenants subscriptions: ISV needs to add extra information related to

its customers subscriptions that include the start and end date of subscription,

the type of subscription, license type. SubTenantSubscription table is created

in the database to store this information.

4. Monitor sub-tenants: ISV is able to monitor its sub-tenants’ activity on the

SaaS applications. The information monitored can be related to security, per-

formance, etc.

135

Table 9.2: SubTenantSharingPermissions

Tenant ID Sub-Tenant ID Object ID FieldId Read Write

00001 00002 00002 00001 Yes NO

00001 00002 00002 00002 Yes Yes

00001 00002 00002 00003 NO NO

00001 00002 00002 00004 NO NO

00001 00002 00002 00005 Yes Yes

00001 00002 00002 00006 Yes No

Table 9.3: Tenant - Subtenants

Tenant ID Sub-Tenant ID

00001 00002

00001 00003

00001 00004

00001 00005

00006 00007

00006 00008

00009 00010

5. Billing services: The ISV is responsible for entering the billing information and

registering all payments to its subtenants. This can be achieved by adding one

or more tables to store sub-tenants billing information.

Different scenarios of customization for STA models are illustrated in this section.

It is assumed that the SaaS provider of STA online shopping system has a set of

default templates for UI, workflow, services, and data schema and those templates

136

Table 9.4: Tenant- Subtenants

Tenant ID

Sub-

Tenant

ID1

Sub-

Tenant

ID2

Sub-

Tenant

ID3

Sub-

Tenant

ID4

Sub-

Tenant

IDn

00001 00002 00003 00004 00005

00006 00007 00008

00009 00010

Figure 9.4: STA Provider’s Default Templates

are used to create shopping applications.

Here, the SaaS provider default templates can be described as followings:

• UI template set U = {UI1, UI2, UI3, UI4, UI5}.

• Workflow template set W={W1, W2, W3, W4}.

• Service template set S= {S1, S2, S3, S4, S5, S6}.

• Data template set D= {D1, D2, D3}.

Figure 9.4 shows an example for each layer the set of the SaaS providers’ default

templates. It is also assumed that several companies are using the STA system

to customize their SaaS application with diverse requirements. The customization

options are achieved by combination of roles and their permission sets.

137

1. SingleOrg-SSTA Customization: In this scenario, it is assumed that tenent1 is

a small company that needs a making order application, in the initial phase

tenant1’s administrator selects the required templates from the SaaS provider

default templates. Then, the system composes the required making order appli-

cation based on the selected templates. Tenant1 select the following templates:

• UI1= {UI1, UI2} ⊆ UI.

• W1= {W1} ⊆ W.

• S1= {S1, S2, S3, S4} ⊆ S.

• D1= {D1} ⊆ D.

Tenant2 is another company that needs the adding item to cart and making

order services. At same time, the company want to share an application in-

stance as some of its employees may need to access both services. As well,

some collaboration is needed between the two services. Therefore, both of the

services are created in the same application instance and the customization is

made according to tenant2’s requirements. The administrator selects following

templates to create the two required services.

• UI2= {UI2, UI3, UI4, UI5} ⊆ UI.

• W2= {W3, W4} ⊆ W.

• S2= {S1, S2, S3, S4, S5, S6} ⊆ S.

• D2= {D2, D3} ⊆ D.

Figure 9.5 shows template choices of each layer for the SingleOrg-SSTA model.

In this scenario, both tenants have subsets of the SaaS provider templates.

However, there is a possible case that two tenants have the same subset or need

138

Figure 9.5: SingleOrg-SSTA Tenant’s Templates

UI2

Tenant5 - ISV

UI3 UI4 UI5 UI6

W3
W5

S1 S2 S3

S4 S5 S6

D2 D4

UI2

Sub-Tenant6

UI4 UI7

W3

S4 S5 S6

D1

Sub-Tenant7

UI3 UI5 UI6

W5

S1 S2 S3

S4

D3

Figure 9.6: SC-STSTA Tenant’s Templates

UI2

Tenant8

UI3 UI4 UI5 UI8

W3
W6

S1 S2 S4

S5 S6 S8

D2 D3

UI2

Sub-Tenant9

UI4 UI9

W3

S5 S6

D2

Sub-Tenant10

D3

W6

UI2 UI4

S4 S6S4 S8

D9

Figure 9.7: SD-STSTA Tenant’s Templates

139

to create their own custom templates which is different from the SaaS provider

templates as the two tenants represents different organizations.

2. SC-TSTA Customization: In this scenario, the tenant is an ISV, the ISV ad-

ministrator customizes its SaaS application by selecting the proper templates

from the SaaS provider’s default templates or creates new one. Then, it starts

selling subscriptions of its customized application to its subtenants, Figure 9.6

shows an example of template choices in each layer for the SC-TSTA model.

The tenant5 selected some of the SaaS provider templates and added some new

templates which may be one of the SaaS provider templates but with some

extended functionality, the following are the tenant5 templates:

• UI5= {UI2, UI3, UI4, UI5, UI6} ⊆ UI.

• W5= {W3, W5} ∩ W = {W3}.

• S5= {S1, S2, S3, S4, S5, S6} ⊆ S.

• D5= {D2, D4} ∩ D = {D2}.

Tenant templates UI6, W5, and D4 are a customized templates created by the

tenant5, the sub-tenants of the tenant5 can use those templates to customize

their SaaS application. At same time, sub-tenants can add their customized

templates. In this scenario, sub-tenant6 used the following templates:

• UI6= {UI2, UI4, UI7} ∩ UI5= {UI2, UI4}.

• W6= {W3} ⊆ W5.

• S6= {S4, S5, S6} ⊆ S5.

• D6= {D1} ∩ D5 = ∅.

140

Sub-tenant6 adds UI7 as a customized template as it does not exist as a part

of the tenants templates. All other sub-tenant6’s templates are subsets of the

tenant templates. In this scenario, the sub-tenant6 adds only one template in

UI layer but in some scenarios it may add more custom templates to other layers

if needed. As well, sub-tenant7 has the following templates:

• UI7= {UI3, UI5, UI6} ⊆ UI5.

• W7= {W5} ⊆ W5.

• S7= {S1, S2, S3, S4} ⊆ S5.

• D7= {D3} ∩ D5 = ∅.

This scenario shows that sub-tenant6 and sub-tenant7 selects different subsets

of templates for each layer and sub-tenant6 adds some customized templates but

both of them do not use tenant5’s data. At same time, they can also have the

same templates to the tenant (ISV) or extend their selected templates based on

their requirements and the type of licenses they make with the tenant. In this

scenario, the tenant uses templates from the same template subsets of the SaaS

provider’s but it can create its custom templates on all the layers when the SaaS

applications provided by the SaaS provider cannot satisfy its requirements.

3. SD-TSTA Customization: In this scenario, sub-tenants not only inherit the ten-

ant’s templates and components but also use the tenant’s data. They can cus-

tomize their own SaaS application from the default templates of SaaS provider

or can create new custom templates. In this scenario, the tenant has to enable

data sharing and give its sub-tenant the permissions on a selected data objects.

As a result of enabling data sharing, the sub-tenants are able to view and use

the data related to them inside SaaS application to complete its work or to

141

make decisions depending on. Figure 9.7 shows example of template choices in

each layer for the SD-TSTA model. In this scenario, the followings are tenant8

templates:

• UI8= {UI2, UI3, UI4, UI5, UI8} ∩ UI = {UI2, UI3, UI4, UI5}.

• W8= {W3, W6} ∩ W = {W3}.

• S8= {S1, S2, S4, S5, S6, S8} ∩ S ={S1, S2, S4, S5, S6}.

• D8= {D2, D3} ⊆ D.

Some components of tenant8 are subset of the SaaS provider’s templates but it

also created extra templates like UI8, W6, S8 that those templates may relate to

the operations of sharing data to its sub-tenants. Sub-tenant9 uses the following

templates:

• UI9= {UI2, UI4, UI9} ∩ UI8= {UI2, UI4}.

• W9= {W3} ⊆ W8.

• S9= {S4, S5, S6} ⊆ S8.

• D9= {D2} ⊆ D8.

In this scenario, sub-tenant9 subscribes tenant8’s templates and creates its cus-

tomized templates UI9 that is not a subset of the tenant’s or the SaaS provider’s

templates. At same time, it also uses some of data objects from tenant8. Sub-

tenant10 also uses some data from tenant8 but it uses the following subset

templates from the tenant8’s templates:

• UI10= {UI2, UI4} ⊆ UI8.

• W10= {W6} ⊆ W8.

• S10= {S4, S6, S8} ⊆ S8.

142

Figure 9.8: STA Customization Data Models

• D10= {D3, D9} ∩ D8 = {D3}.

In this scenario, sub-tenant10 inherit all templates from tenant8 except it has its

own data D3. Compare previous two scenarios, one can see the major difference

between CS-TSTA and SD-TSTA is sub-tenants of CS-TSTA do not use their

tenant’s data.

9.2.1 VP Experiment

In this experiment, STA VP models are proposed. With the help of VP models,

STA customization can be easily achieved. Here, an application shown in figure 9.8

on Force.com called STA variant point models. To build the application, following

custom objects are created.

143

1. variant point: it defines VP properties including name, id, tenant id that owns

this VP, rules, options and types. What are rules, options and types are de-

scribed in Section 4.3.1.

2. vp type: it defines VP type properties and there are mainly three VP types,

fixed variation points and fixed options, fixed variations but allow tenant options

and flexible variation points and options that are introduced in Section 4.3.1.

3. vp rule: it defines rule properties that describe constraints of VP and its options.

4. option: it defines option properties that describe VP options. Both VP rules

and options are introduced in Section 4.3.4.

5. relationship: it defines relationship properties that describe the relationship

among VPs. This paper introduces five relationships: restrict, inherit, extend,

compose and implement introduced in Section 4.3.2.

6. sta component vp: it describes the VPs of components including GUI, service,

workflow and data.

By joining different table, one can easily achieve his purpose such as searching

what options a VP has. To get full list of a VP’s options and rules, the algorithm

introduced in Section 4.3.4 is needed. Followings are steps to deduce the VP’s options

and rules.

1. Step 1: Find all VPs has direct relationships with the VP need to be searched

and build or add VPs and their relationships to the graph.

2. Step 2: Recursively do previous steps until meet relationship restrict or imple-

ment.

144

3. Step 3: Apply the deduction algorithm introduced in Section 4.3.4.

If VP, options, rules and their relationships are stored in graph database such as

Neo4j [31], Step 1 and 2 can be omitted as graph information has been saved.

145

REFERENCES

[1] L. Aldin and S. de Cesare. A literature review on business process modelling:
new frontiers of reusability. In Enterprise Information Systems, volume 5, pages
359–383. Taylor & Francis, 2011.

[2] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992.

[3] Amazon. EC2. http://aws.amazon.com/ec2/.

[4] Amazon. SimpleDB. http://aws.amazon.com/simpledb/.

[5] Apache. Apache Hadoop. http://hadoop.apache.org/.

[6] Apache. Apache Kafka. http://kafka.apache.org/.

[7] Apache. Apache Spark. http://spark.apache.org/.

[8] Apache. Apache Storm. http://storm.incubator.apache.org/.

[9] I. Arkus. The Permissioner. https://appexchange.salesforce.com/
listingDetail?listingId=a0N30000008XYMlEAO.

[10] O. Astrachan. Bubble sort: an archaeological algorithmic analysis. In ACM
SIGCSE Bulletin, volume 35, pages 1–5. ACM, 2003.

[11] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. A comparison of flexible
schemas for software as a service. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, pages 881–888. ACM, 2009.

[12] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne,
S. Weerawarana, and P. Fremantle. Multi-tenant SOA middleware for cloud
computing. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Con-
ference on, pages 458–465. IEEE, 2010.

[13] X. Bai, S. Lee, W. Tsai, and Y. Chen. Collaborative Web services monitor-
ing with active service broker. In 32nd Annual IEEE International Computer
Software and Applications, COMPSAC’08, pages 84–91, 2008.

[14] X. Bai, M. Li, B. Chen, W. Tsai, and J. Gao. Cloud testing tools. In IEEE
6th International Symposium on Service Oriented System Engineering (SOSE),
pages 1–12, 2011.

[15] H. R. Berenji and M. Jamshidi. Fuzzy reinforcement learning for system of
systems (SOS). In FUZZ-IEEE, pages 1689–1694, 2011.

[16] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview.
In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on,
volume 1, pages 560–564. IEEE, 1995.

146

[17] D. Bianchini and V. De Antonellis. Ontology-based integration for sharing
knowledge over the web. In CAiSE International Workshop on Data Integration
over the Web, pages 82–89, 2004.

[18] D. Borthakur. The hadoop distributed file system: Architecture and
design. ”http: // hadoop. apache. org/ common/ docs/ r0. 18. 0/ hdfs_
design. pdf ”, 2007.

[19] A. Brogi, S. Corfini, and R. Popescu. Semantics-based composition-oriented dis-
covery of Web services. In ACM Transactions on Internet Technology (TOIT),
volume 8, pages 1–39, 2008.

[20] R. C. Bryce, Y. Chen, and C. J. Colbourn. Biased covering arrays for progressive
ranking and composition of web services. International Journal of Simulation
and Process Modelling, 3(1):80–87, 2007.

[21] H. Cai, N. Wang, and M. J. Zhou. A transparent approach of enabling
SaaS multi-tenancy in the cloud. In Services (SERVICES-1), 2010 6th World
Congress on, pages 40–47. IEEE, 2010.

[22] M. Chang, J. He, W. Tsai, B. Xiao, and Y. Chen. UCSOA: User-centric service-
oriented architecture. In IEEE International Conference on e-Business Engi-
neering, 2006. ICEBE’06., pages 248–255, 2006.

[23] Y. Chen and W. Tsai. Service-Oriented Computing and Web Software Integra-
tion (Fourth Edition). Kendall Hunt Publishing, 2014.

[24] D. Chiang, C. Lin, and M. Chen. The adaptive approach for storage assignment
by mining data of warehouse management system for distribution centres. In
Enterprise Information Systems, volume 5, pages 219–234, 2011.

[25] F. Chong and G. Carraro. Architecture strategies for catching the long tail.
MSDN Library, Microsoft Corporation, pages 9–10, 2006.

[26] Y. Chou, J. Oetting, and O. Levina. Building the security foundation to embrace
public Software-as-a-Service (SaaS) - security policies for SaaS data protection.
In SECRYPT, pages 227–232, 2012.

[27] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software
engineering. Software, IEEE, 15(6):37–45, 1998.

[28] T. Cover and P. Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967.

[29] L. Da Xu. Information architecture for supply chain quality management. In
International Journal of Production Research, volume 49, pages 183–198, 2011.

[30] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[31] N. Developers. Neo4j. Graph NoSQL Database [online], 2012.

147

[32] S. Dominic, R. Das, D. Whitley, and C. Anderson. Genetic reinforcement learn-
ing for neural networks. In Neural Networks, 1991., IJCNN-91-Seattle Interna-
tional Joint Conference on, volume 2, pages 71–76. IEEE, 1991.

[33] L. Duan, W. Street, and E. Xu. Healthcare information systems: data min-
ing methods in the creation of a clinical recommender system. In Enterprise
Information Systems, volume 5, pages 169–181, 2011.

[34] S. Dustdar and W. Schreiner. A survey on Web services composition. In Inter-
national Journal of Web and Grid Services, volume 1, pages 1–30, 2005.

[35] Elasticsearch. Elasticsearch. http://www.elasticsearch.org/.

[36] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramı́rez, and D. Concha.
A tenant-based resource allocation model for scaling software-as-a-service ap-
plications over cloud computing infrastructures. Future Generation Computer
Systems, 29(1):273–286, 2013.

[37] R. Fileto, L. Liu, C. Pu, E. Assad, and C. Medeiros. POESIA: An ontological
workflow approach for composing Web services in agriculture. In The VLDB
Journal - The International Journal on Very Large Data Bases, volume 12,
pages 352–367, 2003.

[38] K. Fujii and T. Suda. Semantics-based context-aware dynamic service compo-
sition. In ACM Transactions on Autonomous and Adaptive Systems (TAAS),
volume 4, pages 1–31, 2009.

[39] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application spe-
cific data replication for edge services. In Proceedings of the 12th international
conference on World Wide Web, pages 449–460. ACM, 2003.

[40] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In ACM
SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[41] Google. Google App Engine. https://developers.google.com/appengine/.

[42] R. Grønmo and M. Jaeger. Model-driven semantic Web service composition. In
12th Asia-Pacific Software Engineering Conference, APSEC’05, pages 79–86,
2005.

[43] J. Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[44] J. Hunter. Jdom makes xml easy. In Suns 2002 Worlwide Java Developer
Conference, 2002.

[45] J. Ingvaldsen and J. Gulla. Industrial application of semantic process mining.
In Enterprise Information Systems, volume 6, pages 139–163, 2012.

[46] E. Jackson, D. Seifert, M. Dahlweid, T. Santen, N. Bjørner, and W. Schulte.
Specifying and composing non-functional requirements in model-based devel-
opment. In Software Composition, pages 72–89, 2009.

148

[47] A. Java. for xml-based rpc (jax-rpc), 2005.

[48] A. Java. for xml processing (jaxp). Sun Microsystems http://java. sun.
com/webservices/jaxp/. Access April, 2006.

[49] R. Johnson, J. Hoeller, A. Arendsen, and R. Thomas. Professional Java Devel-
opment with the Spring Framework. John Wiley & Sons, 2009.

[50] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, DTIC Doc-
ument, 1990.

[51] J. Kim and R. Jain. Web services composition with traceability centered on
dependency. In Proceedings of the 38th Annual Hawaii International Conference
on System Sciences, HICSS’05, pages 89–89, 2005.

[52] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI conference on human factors in computing
systems, pages 453–456. ACM, 2008.

[53] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[54] S. Kona, A. Bansal, L. Simon, A. Mallya, and G. Gupta. USDL: A service-
semantics description language for automatic service discovery and composition.
In International Journal of Web Services Research (IJWSR), volume 6, pages
20–48, 2009.

[55] S. Li, L. Xu, X. Wang, and J. Wang. Integration of hybrid wireless networks in
cloud services oriented enterprise information systems. In Enterprise Informa-
tion Systems, volume 6, pages 165–187, 2012.

[56] Q. Liang and S. Su. AND/OR graph and search algorithm for discovering
composite Web services. In International Journal of Web Services Research
(IJWSR), volume 2, pages 48–67. IGI Global, 2005.

[57] C. Lin, L. Minglu, and C. Jian. Eca rule-based workflow modeling and imple-
mentation for service composition. In IEICE transactions on information and
systems, volume 89, pages 624–630, 2006.

[58] B. Liu, S. Cao, and W. He. Distributed data mining for e-business. In Infor-
mation Technology and Management, volume 12, pages 67–79, 2011.

[59] A. Mackey. Windows communication foundation. In Introducing. NET 4.0,
pages 159–173. Springer, 2010.

[60] Merriam-Webster.com. Crowdsourcing - definition and more, August 31, 2012.

[61] Microsoft. Azure. http://www.windowsazure.com/en-us/.

149

[62] Microsoft. System.XML. http://msdn.microsoft.com/enus/library/
system.xml(VS.71).aspx.

[63] R. Mietzner and F. Leymann. Generation of BPEL customization processes for
SaaS applications from variability descriptors. In Services Computing, 2008.
SCC’08. IEEE International Conference on, volume 2, pages 359–366. IEEE,
2008.

[64] R. Mietzner, F. Leymann, and T. Unger. Horizontal and vertical combina-
tion of multi-tenancy patterns in service-oriented applications. In Enterprise
Information Systems, volume 5, pages 59–77, 2011.

[65] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to
support customization and deployment of multi-tenant-aware software as a ser-
vice applications. In Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pages 18–25. IEEE Computer Society,
2009.

[66] Myexperiment. My Experiment. http://www.myexperiment.org/.

[67] M. Naor and U. Wieder. A simple fault tolerant distributed hash table. In
Peer-to-Peer Systems II, pages 88–97. Springer, 2003.

[68] National Research Council (US) Committee on the FORCEnet Implementation
Strategy. FORCEnet implementation strategy. Natl Academy Pr, 2005.

[69] S. Oh, H. Yeom, and J. Ahn. Cohesion and coupling metrics for ontology
modules. In Information Technology and Management, volume 12, pages 81–
96, 2011.

[70] B. Orriëns, J. Yang, and M. Papazoglou. Model driven service composition. In
Service-Oriented Computing - ICSOC 2003, pages 75–90, 2003.

[71] E. Ort and B. Mehta. Java architecture for xml binding (jaxb). Sun Developer
Network, 2003.

[72] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. 1999.

[73] X. Peng, M. A. Babar, and C. Ebert. Collaborative software development
platforms for crowdsourcing. IEEE software, 31(2):30–36, 2014.

[74] R. Rai, G. Sahoo, and S. Mehfuz. Securing software as a service model of cloud
computing: Issues and solutions. arXiv preprint arXiv:1309.2426, 2013.

[75] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
In IEEE Transactions on Software Engineering, volume 27, pages 58–93, 2001.

[76] Salesforce.com. Flows. https://help.salesforce.com/HTViewHelpDoc?id=
vpm_designer_overview.htm&language=en_US.

150

[77] Salesforce.com. Workflow Rules. https://help.salesforce.com/apex/
HTViewHelpDoc?id=creating_workflow_rules.htm&language=en.

[78] J. Schroeder. Future combat systems. Department OF The Army Washington
DC, 2001.

[79] C. Shen and C. Chou. Business process re-engineering in the logistics industry:
a study of implementation, success factors, and performance. In Enterprise
Information Systems, volume 4, pages 61–78, 2010.

[80] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of
the ACM (JACM), 32(3):652–686, 1985.

[81] D. Smiley and E. Pugh. Solr 1.4 Enterprise Search Server. Packt Publishing
Ltd, 2009.

[82] E. Smith. Continuous testing. In Proceedings of the 17th International Confer-
ence on Testing Computer Software, 2000.

[83] V. Stantchev and M. Malek. Addressing web service performance by replication
at the operating system level. In Internet and Web Applications and Services,
2008. ICIW’08. Third International Conference on, pages 696–701. IEEE, 2008.

[84] H. Sun, X. Wang, B. Zhou, and P. Zou. Research and implementation of dy-
namic Web services composition. In Advanced Parallel Processing Technologies,
pages 457–466, 2003.

[85] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su. Software as a service:
Configuration and customization perspectives. In Congress on Services Part II,
2008. SERVICES-2. IEEE, pages 18–25. IEEE, 2008.

[86] A. Technology, Logistics, and USJFCOM. Joint battle management command
and control (jbmc2) roadmap. Technical report, Office of the Under Secretary
of Defenseand U.S. Joint Forces Command, 2004.

[87] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On requirements for on-
tologies in management of Web services. In Web services, E-business, and the
semantic web, pages 237–247, 2002.

[88] V. Tosic, K. Patel, and B. Pagurek. WSOL - Web service offerings language.
In Web Services, E-Business, and the Semantic Web, pages 57–67, 2002.

[89] E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha, S. Günther,
T. D’Hondt, and W. Joosen. Context-oriented programming for customizable
SaaS applications. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pages 418–425. ACM, 2012.

[90] W. Tsai. Service-oriented system engineering: a new paradigm. In IEEE Inter-
national Workshop on Service-Oriented System Engineering, SOSE 2005, pages
3–6, 2005.

151

[91] W. Tsai, Z. Cao, X. Wei, R. Paul, Q. Huang, and X. Sun. Modeling and
simulation in service-oriented software development. In Simulation, volume 83,
pages 7–32, 2007.

[92] W. Tsai, Q. Huang, J. Xu, Y. Chen, and R. A. Paul. Ontology-based dy-
namic process collaboration in service-oriented architecture. In IEEE Inter-
national Conference on Service-Oriented Computing and Applications, SOCA
2007, pages 39–46, 2007.

[93] W. Tsai, Y. Huang, and X. Bai. Grapevine model for template recommendation
and generation in SaaS applications. Arizona State University, Tempe, AZ,
USA, 2011.

[94] W. Tsai, Y. Huang, X. Bai, and J. Gao. Scalable architectures for SaaS.
In 2012 15th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), pages 112–
117. IEEE, 2012.

[95] W. Tsai, Y. Huang, and Q. Shao. EasySaaS: A SaaS development framework.
In 2011 IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), pages 1–4. IEEE, 2011.

[96] W. Tsai, Y. Huang, and Q. Shao. Testing the scalability of SaaS applications.
In 2011 IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), pages 1–4. IEEE, 2011.

[97] W. Tsai, W. Li, B. Esmaeili, and W. Wu. Model-driven tenant development
for PaaS-based SaaS. In 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), pages 821–826. IEEE, 2012.

[98] W. Tsai, R. Paul, H. Huang, B. Xiao, and Y. Chen. Semantic interoperabil-
ity and its verification & validation in c2 systems. Technical report, DTIC
Document, 2005.

[99] W. Tsai, R. Paul, B. Xiao, Z. Cao, and Y. Chen. PSML-S: A Process Speci-
fication and Modeling Language for Service-Oriented Computing. In Software
Engineering and Applications, pages 160–167, 2005.

[100] W. Tsai, Q. Shao, Y. Huang, and X. Bai. Towards a scalable and robust
multi-tenancy SaaS. In Proceedings of the Second Asia-Pacific Symposium on
Internetware. ACM, 2010.

[101] W. Tsai, Q. Shao, and W. Li. Oic: Ontology-based intelligent customiza-
tion framework for SaaS. In 2010 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA), pages 1–8. IEEE, 2010.

[102] W. Tsai, B. Xiao, R. Paul, and Y. Chen. Consumer-centric service-oriented
architecture: a new approach. In The Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, 2006 and the 2006
Second International Workshop on Collaborative Computing, Integration, and
Assurance. SEUS 2006/WCCIA 2006, pages 175–180, 2006.

152

[103] W. Tsai, D. Zhang, P. Raymond, and Y. Chen. Stochastic voting algorithms
for Web services group testing.

[104] W. Tsai and P. Zhong. Multi-Tenancy and Sub-Tenancy Architecture in
Software-as-a-Service (SaaS). In 8th international Symposium on service-
Oriented System Engineering (SOSE), Oxford, 2014.

[105] W. Tsai, P. Zhong, X. Bai, and J. Elston. Dependency-guided service compo-
sition for user-centric SOA. In IEEE International Conference on e-Business
Engineering, ICEBE’09, pages 149–156. IEEE, 2009.

[106] W. Tsai, P. Zhong, X. Bai, and J. Elston. Role-based trust model for community
of interest. In IEEE International Conference on Service-Oriented Computing
and Applications (SOCA), pages 1–8, 2009.

[107] W. Tsai, P. Zhong, X. Bai, and J. Elston. Dependence-guided service compo-
sition for user-centric soa. Systems Journal, IEEE, PP(99):1–11, 2013.

[108] W. Tsai, P. Zhong, J. Balasooriya, X. Chen, Y.and Bai, and J. Elston. An ap-
proach for service composition and testing for cloud computing. In in 10th Inter-
national Workshop on Assurance in Distributed Systems and Networks (ADSN),
pages 631–636, March 2011.

[109] W. Tsai, P. Zhong, and Y. Chen. Tenant-centric sub-tenancy architecture in
software-as-a-service. In CAAI Transactions on Intelligence Technology, Vol-
ume 1, Issue 2, Pages 150-161, 2016.

[110] W. Tsai, P. Zhong, J. Elston, X. Bai, and Y. Chen. Service replication strate-
gies with mapreduce in clouds. In 2011 10th International Symposium on Au-
tonomous Decentralized Systems (ISADS), pages 381–388. IEEE, 2011.

[111] W. Tsai, P. Zhong, J. Elston, Y. Chen, and X. Bai. Ontology-Based
Dependency-Guided Service Composition for User-Centric SOA. In SEKE,
pages 462–467, 2010.

[112] W. Tsai, X. Zhou, R. A. Paul, Y. Chen, and X. Bai. A coverage relationship
model for test case selection and ranking for multi-version software. In High
Assurance Services Computing, pages 285–311. Springer, 2009.

[113] R. Vanbrabant. Google Guice: Agile Lightweight Dependency Injection Frame-
work. Apress, 2008.

[114] E. Vysniauskas and L. Nemuraite. Transforming ontology representation from
owl to relational database. In Information Technology and Control, volume 35,
pages 333–343, 2006.

[115] K. Wang, X. Bai, J. Li, and C. Ding. A service-based framework for phar-
macogenomics data integration. In Enterprise Information Systems, volume 4,
pages 225–245, 2010.

153

[116] P. Wang, K. Chao, C. Lo, and R. Farmer. An evidence-based scheme for Web
service selection. In Information Technology and Management, volume 12, pages
161–172, 2011.

[117] J. Warfield. A proposal for systems science. In Systems Research and Behavioral
Science, volume 20, pages 507–520, 2003.

[118] D. L. Webber and H. Gomaa. Modeling variability in software product lines
with the variation point model. Science of Computer Programming, 53(3):305–
331, 2004.

[119] J. Webber. A programmatic introduction to neo4j. In Proceedings of the 3rd
annual conference on Systems, programming, and applications: software for
humanity, pages 217–218. ACM, 2012.

[120] C. D. Weissman and S. Bobrowski. The design of the Force.com multitenant
internet application development platform. In SIGMOD Conference, pages 889–
896, 2009.

[121] B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Leymann. Iden-
tifying influential factors of business process performance using dependency
analysis. In Enterprise Information Systems, volume 5, pages 79–98, 2011.

[122] T. White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[123] Wikipedia. Event Driven Architecture. http://en.wikipedia.org/wiki/
Event-driven_architecture.

[124] Wikipedia. Infrastructure As a Service. http://en.wikipedia.org/w/index.
php?title=Infrastructure_as_a_service&oldid=341154594.

[125] Wikipedia. Platform as a service. http://en.wikipedia.org/wiki/
Platform_as_a_service.

[126] Wikipedia. Software as a service. http://en.wikipedia.org/w/index.php?
title=Software_as_a_service&oldid=578705617.

[127] Å. Wikström. Functional programming using Standard ML. Prentice Hall In-
ternational (UK) Ltd., 1987.

[128] P. H. Winston and B. K. Horn. Lisp. Addison-Wesley Longman Publishing
Co., Inc., 1988.

[129] Workday. Workday’s technology strategy. http://www.workday.com/landing_
page/workday_technology_strategy_whitepaper.php.

[130] L. Wu, S. K. Garg, and R. Buyya. SLA-based resource allocation for software
as a service provider (SaaS) in cloud computing environments. In Cluster,
Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on, pages 195–204. IEEE, 2011.

154

[131] E. Xu, M. Wermus, and D. Bauman. Development of an integrated medical
supply information system. In Enterprise Information Systems, volume 5, pages
385–399, 2011.

[132] L. Xu. Enterprise systems: state of the art and future trends. In Industrial
Informatics, IEEE Transactions on Industrial Informatics, number 99, pages
630–640, 2011.

[133] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee. Application-layer
anycasting: a server selection architecture and use in a replicated web service.
Networking, IEEE/ACM Transactions on, 8(4):455–466, 2000.

[134] H. Zhao and H. Tong. A dynamic service composition model based on con-
straints. In Sixth International Conference on Grid and Cooperative Computing,
GCC 2007, pages 659–662, 2007.

[135] X. Zheng and Y. Yan. An efficient syntactic Web service composition algorithm
based on the planning graph model. In IEEE International Conference on Web
Services, ICWS’08, pages 691–699, 2008.

[136] Z. Zheng and M. R. Lyu. A distributed replication strategy evaluation and
selection framework for fault tolerant web services. In Web Services, 2008.
ICWS’08. IEEE International Conference on, pages 145–152. IEEE, 2008.

155

