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ABSTRACT  

   

Statistical mediation analysis has been widely used in the social sciences in order to 

examine the indirect effects of an independent variable on a dependent variable. The 

statistical properties of the single mediator model with manifest and latent variables have 

been studied using simulation studies. However, the single mediator model with latent 

variables in the Bayesian framework with various accurate and inaccurate priors for 

structural and measurement model parameters has yet to be evaluated in a statistical 

simulation. This dissertation outlines the steps in the estimation of a single mediator 

model with latent variables as a Bayesian structural equation model (SEM). A Monte 

Carlo study is carried out in order to examine the statistical properties of point and 

interval summaries for the mediated effect in the Bayesian latent variable single mediator 

model with prior distributions with varying degrees of accuracy and informativeness. 

Bayesian methods with diffuse priors have equally good statistical properties as 

Maximum Likelihood (ML) and the distribution of the product. With accurate 

informative priors Bayesian methods can increase power up to 25% and decrease interval 

width up to 24%. With inaccurate informative priors the point summaries of the mediated 

effect are more biased than ML estimates, and the bias is higher if the inaccuracy occurs 

in priors for structural parameters than in priors for measurement model parameters. 

Findings from the Monte Carlo study are generalizable to Bayesian analyses with priors 

of the same distributional forms that have comparable amounts of (in)accuracy and 

informativeness to priors evaluated in the Monte Carlo study.  
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CHAPTER 1 

INTRODUCTION 

Sometimes a third variable can improve the understanding of the relation between 

two variables, X and Y. When a third variable is intermediate between X and Y in a 

causal chain, it is called a mediator (James & Brett, 1984; MacKinnon, 2008). Statistical 

mediation analysis consists of estimating the mediated effect, i.e., the indirect effect of X 

on Y through M. The single mediator model is the simplest model in statistical mediation 

analysis (Figure 1).  

Figure 1. Single mediator model with manifest X, M, and Y. 

 

With manifest variables, the single mediator model is often estimated using 

ordinary least squares (OLS) regression, and can be described using three equations 

(MacKinnon, 2008): 

1 1Y i cX e= + +                                                                                                                 (1) 

2 2M i aX e= + +                                                                                                              (2) 

3 3'Y i c X bM e= + + +                                                                                                     (3) 
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where X is the independent variable, M is the mediator, and Y is the dependent variable. 

Intercepts are i1, i2, and i3, c is the coefficient relating the independent variable to the 

dependent variable when the mediator is not taken into account, a is the coefficient 

relating the independent variable to the mediator, b is the coefficient relating the mediator 

to the dependent variable in the model containing the independent variable, c’ is the 

coefficient relating the independent variable to the dependent variable in the model 

containing the mediator, and e1, e2, and e3 are error terms assumed to follow a normal 

distribution with a mean of zero and variances of 
2

1σ , 
2

2σ , and 
2

3σ  (respectively). In OLS 

regression with continuous variables the mediated effect is most often computed as the 

product of coefficients ab, although it can also be computed as the difference between 

coefficients c-c’. In models with random slopes the coefficients a and b could be 

correlated (MacKinnon, 2008; Tofighi, West, & MacKinnon, 2013), and the formula for 

the mediated effect becomes ab + rabsasb, where rab is the correlation between coefficients 

a and b, sa is the standard error of the a coefficient, sb is the standard error of the b 

coefficient, and the product rabsasb equals the covariance of coefficients a and b (Craig, 

1936). For uncorrelated coefficients a and b, i.e., rab = 0, the computation of the mediated 

effect simplifies to equal the product ab (Craig, 1936). The square root of the variance of 

the product of two correlated normal variates, here a and b, is as follows (Craig, 1936): 

2 2 2 2 2 2 22 ( )ab b a ab a b a b ab a bs a s b s abr s s s s r s s= + + + + .                                                      (4)  

With uncorrelated a and b the formula in Equation 4 becomes
2 2 2 2 2 2

ab b a a bs a s b s s s= + + . 

The correlation between the a and b paths does not exist in the population where there is 

only one true value of a and only one true value of b, as is the case in the Monte Carlo 
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study in this dissertation. For this reason, the mediated effect in this project will be 

computed as the product ab. 

The standard error of the mediated effect is used in the construction of a 

confidence interval for the mediated effect, along with the estimate of the mediated effect 

ab and the critical value from the appropriate distribution, denoted 1 /2z α−  in Equation 5: 

1 /2 1 /2[ , ]ab abCI ab z s ab z sα α− −= − + .                                                                                  (5) 

For normal theory confidence limits the same critical value 1 /2z α− is used to compute both 

the lower and the upper confidence limit. However, the product of two normal 

distributions is not normal (Lomnicki, 1967; Springer & Thompson, 1966); instead it is 

symmetric with a kurtosis of six when the two variables have means equal to zero, and 

skewed with excess kurtosis when the two variables have means different from zero 

(Craig, 1936). For this reason, the confidence limits for the mediated effect based on the 

normal distribution have worse properties than confidence limits based on the distribution 

of the product and methods that make no distributional assumptions, such as the bootstrap 

(Cheung 2007, 2009; MacKinnon, Fritz, Williams, & Lockwood 2007; MacKinnon, 

Lockwood, & Williams, 2004; MacKinnon, Lockwood, Hoffmann, West, & Sheets, 

2002; MacKinnon, et al., 1995; Shrout & Bolger, 2002; Tofighi & MacKinnon, 2011; 

Valente, Gonzalez, Miočević, & MacKinnon, 2015).  

Unlike the normal distribution, the distribution of the product is not symmetric, 

and thus the critical values used to compute the upper and lower confidence limits often 

have different absolute values. The calculation of the confidence intervals for the 

mediated effect based on the distribution of the product has been simplified with 

programs called PRODCLIN and RMediation (MacKinnon, Fritz, Williams, & 
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Lockwood, 2007; Tofighi & MacKinnon, 2011). The bootstrap makes no distributional 

assumptions about the product ab, and can thus accommodate the nonnormality of this 

distribution and give asymmetrical confidence limits for the mediated effect (Manly, 

1997; Shrout & Bolger, 2002; MacKinnon, Lockwood, & Williams, 2004; MacKinnon, 

2008).  However, the bias-corrected bootstrap confidence limits for the mediated effect 

have elevated Type I error rates when the non-zero path is medium or large, and power 

stagnates when the a path increases and the b path is small (Fritz, Taylor, & MacKinnon, 

2012). The percentile bootstrap has comparable statistical properties to the distribution of 

the product method (MacKinnon, Lockwood, & Williams, 2004). Given the 

computational burden of bootstrap methods, the excessive Type I error rate of the bias-

corrected bootstrap in some parameter combinations, and the comparable statistical 

properties of the percentile bootstrap and the distribution of the product method, the 

distribution of the product method will be the only frequentist interval estimation method 

in this Monte Carlo study.  

Single Mediator Model with Latent Variables  

 With manifest (observed) X, M, and Y the single mediator model can be 

estimated in OLS regression. If at least one of the constructs in the model is latent and 

measured with multiple variables (indicators), then the simultaneous estimation of a 

measurement model for the latent variable and a structural model for latent variables 

requires using structural equation modeling (SEM). Modeling latent variables as manifest 

sums of their indicators can lead to the underestimation of the mediated effect due to 

measurement error (Hoyle & Kenny, 1999; MacKinnon, 2008; Ledgerwood & Shrout, 

2011), thus it is recommended to estimate such models in the SEM framework. 
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SEM is a family of statistical methods for modeling and evaluating relations 

between variables. The main advantages of SEM over other methods stem from the 

possibility of modeling latent variables, the simultaneous estimation of the measurement 

model (the relations between indicators and latent variables) and structural model (the 

relations between latent variables), and the possibility of having one variable be both a 

predictor and an outcome (Hoyle, 2012). The single mediator model with latent variables 

is estimated in the SEM framework, and has already been studied using simulation 

studies. There are two articles on the topic of mediation analysis with latent variables in 

the frequentist SEM framework that are relevant for the Monte Carlo study in this 

dissertation (Finch, West, & MacKinnon, 1997; Falk & Biesanz, 2015). The following 

section will highlight the most relevant design choices and findings in these articles. 

The single mediator model with latent variables and three indicators per latent 

variable, as described by Finch, West, and MacKinnon (1997), is the focus of this 

dissertation. Results of simulation studies using classical methods to fit this model have 

found that point estimates of the indirect and direct effects obtained using maximum 

likelihood (ML) and the asymptotically distribution free (ADF) method have less than 

10% relative bias for sample sizes ranging from 150 to 1000, however, the standard 

errors were affected by the nonnormality of the indicators (Finch, West, & MacKinnon, 

1997). The authors did not elaborate on how their findings inform confidence interval 

computation; however, by looking at the formula for the confidence interval of the 

mediated effect in Equation 5, it is clear that negatively biased standard errors can result 

in a confidence interval that is too narrow, which might affect coverage of the interval. 

The Monte Carlo study in this project will not evaluate effects of nonnormality of 
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indicators. However, Finch and coauthors selected model generating parameter values 

based on values commonly encountered in community research (Finch, West, & 

MacKinnon, 1997), so the same values are used for three out of four parameter 

combinations in this study. The fourth parameter combination was designed specifically 

for this study in order to investigate Type I error rates.  

The second set of relevant findings for the design of the Mote Carlo study in this 

project come from a study that evaluated statistical properties of 11 estimators of the 

mediated effect in latent variable models (Falk & Biesanz, 2015). The 11 estimators were 

compared based on power, Type I error rates, and 95% coverage. Findings indicated that 

the best methods for both interval estimation and inference are the likelihood-based 

confidence intervals, the percentile bootstrap, and the distribution of the product method. 

The findings of Falk and Biesanz (2015) suggest that the percentile bootstrap and the 

distribution of the product are two frequentist methods that ought to be used to assess the 

relative performance of Bayesian credibility intervals.  

Bayesian Mediation Models with Manifest Variables 

Frequentist and Bayesian statistics differ in their definition of probability, which 

in turn leads to different approaches to statistical analysis. In frequentist statistics, 

probability is seen as the long run frequency of an event, parameters are treated as fixed 

while data are seen as random, and the interpretation of estimates rests on the assumption 

of repeated sampling which is almost never satisfied. In Bayesian statistics, probability is 

seen as a degree of belief, data are treated as fixed while parameters are assigned 

distributions, and the result of an analysis is a posterior distribution used to construct 

point and interval summaries with probabilistic interpretations. Bayesian statistical 
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analysis consist of applying Bayes’ theorem to update the prior distribution of a set of 

parameters θ with observed data, modeled as p(data|θ), in order to obtain the posterior 

distribution, p(θ|data). Bayes’ theorem simply states that the posterior distribution equals 

the product of the prior distribution and the likelihood function divided by the marginal 

distribution of the data:
( ) ( | )

( | )
( )

p p data
p data

p data

θ θθ = . Since p(data) is a normalizing 

constant, this term can be omitted in order to obtain the following proportional 

relationship between the posterior and the product of the prior and the likelihood: 

( | ) ( ) ( | ).p data p p dataθ θ θ∝ The biggest controversy related to Bayesian statistics is the 

introduction of a prior distribution into the statistical analysis. However, if the prior 

distribution is diffuse (i.e., communicates no information), the numerical estimates in a 

Bayesian and frequentist analysis are often identical. The Bayesian single mediator model 

with latent variables builds on the Bayesian single mediator model with manifest 

variables. This section outlines steps in a Bayesian mediation analysis with manifest 

variables using two approaches (Yuan & MacKinnon, 2009; Enders, Fairchild, & 

MacKinnon, 2013). It is also possible to test for the presence of mediation using a third 

approach (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2015), however, the focus 

of this dissertation is on parameter estimation and not hypothesis testing, so this approach 

is not described. 

The goals of a Bayesian mediation analysis are the same as the goals of a classic 

mediation analysis: to determine whether a mediated effect is present, and/or to compute 

its numerical value. The mediated effect, denoted ab in the single mediator model with 

manifest variables, does not get assigned a prior distribution directly. Instead, priors are 
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assigned either to coefficients and error variances in equations 2 and 3 (Yuan & 

MacKinnon, 2009), or to the covariance matrix of variables X, M, and Y (Enders, 

Fairchild, and MacKinnon, 2013). In the following paragraphs, the two approaches are 

referred to as the method of coefficients (Yuan & MacKinnon, 2009), and the method of 

covariances (Enders, Fairchild, & MacKinnon, 2013). 

In the method of coefficients the analysis starts by assigning prior distributions to 

regression coefficients, intercepts, and error variances (Yuan & Mackinnon, 2009). 

Common options for regression coefficients and intercepts are uniform and normal priors, 

however uniform priors state that all values outside of the minimum and maximum 

values of the range are impossible and thus normal priors are recommended instead in 

order to incorporate more uncertainty into the analysis. Some possible priors for the 

variance parameter are the inverse-gamma prior, or a uniform prior if limiting values for 

the variance are available from prior sources (Yuan & MacKinnon, 2009). Another 

option would be to specify a joint uniform prior ranging between -∞ and ∞ for parameters 

a, b, and the log of the variance parameter. This prior is improper, but usually results in a 

proper posterior and correct inferences (Yuan & MacKinnon, 2009). The results of a 

Monte Carlo study indicated that both frequentist and Bayesian methods for the single 

mediator model are unbiased, as shown by values of empirical bias and relative mean 

square error (MSE) (note that this is not the same as the Root Mean Square Error, a 

criterion that is used in the Monte Carlo study for this project). Without prior 

information, Bayesian methods have relative MSE values comparable to those of 

frequentist methods, and with prior information the relative MSE values of Bayesian 

methods are noticeably smaller those of frequentist methods, especially at sample sizes 
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smaller than 200. Coverage of credible intervals tended to be higher than the nominal 

value when sample sizes were 200 and 1000 and the mediated effect was small, when the 

mediated effect was large and the sample size was 25 or 50, and when the mediated effect 

was zero (Yuan & MacKinnon, 2009).  

In the method of covariances the analysis starts by assigning a prior distribution to 

the covariance matrix of X, M, and Y (Enders, Fairchild, & MacKinnon 2013). The 

authors proposed an inverse-Wishart prior for the covariance matrix, and computed 

values of coefficients and residual variances in equations 2 and 3 using elements from the 

posterior covariance matrix: 

                                                                                                                             (6) 

                                                                                                         (7) 

                                                                                                         (8) 

                                                                                                                (9) 

                                             (10) 

Moving from the manifest to the latent variable framework requires the addition 

of a measurement model for all latent variables. The single mediator model with latent 

variables can also be estimated using the method of covariances and the method of 

coefficients, however, this project only uses the method of coefficients because it is more 

a =
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2

b =
σMYσX
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2

c'=
σMYσX

2 −σXMσXY
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2 −
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intuitive for substantive researchers to think about their prior knowledge in terms of 

structural paths and loadings than covariances between latent variables and manifest 

indicators. As of November 2016, there is only one published paper describing and 

evaluating the statistical properties of the mediated effect in a model similar to the one in 

this dissertation (Chen, Choi, Weiss, & Stapleton, 2014). Chen and colleagues (2014) 

examined the bias of point summaries and coverage of the equal-tail credibility intervals 

of the mediated effect in the single mediator model with latent variables with complete 

mediation at N = 50, 100, and 400. The findings indicate that for smaller sample sizes the 

maximum likelihood point estimates are preferred in terms of bias and the bias-corrected 

bootstrap has coverage closer to nominal levels of 0.95 than do MCMC methods, 

however, at N = 400 and with larger effects MCMC methods tend to produce intervals 

with coverage closer to the nominal level of 0.95 than the coverage of the bias-corrected 

bootstrap confidence intervals. Note that Chen and colleagues (2014) evaluated only 

diffuse prior distributions, and that not all priors were conjugate, i.e., uniform priors 

ranging from -1 to 1 were used for structural paths and loadings. Thus, even the condition 

with diffuse priors in the Monte Carlo study for this project adds new information about 

statistical properties of Bayesian methods, since this project makes use of conditionally 

conjugate (i.e., normal) priors for loadings and structural paths. 

The next section gives a general introduction to Bayesian SEM; this section is 

included for completeness, however, it is not required to understand the Monte Carlo 

study in this project. The subsequent section will describe the single mediator model with 

latent variables conceptualized as a Bayesian SEM; the content of this section is directly 

relevant to the Monte Carlo study in this project. 
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Bayesian Structural Equation Models (SEMs) 

SEMs are commonly estimated using ML estimation, and interpreted using 

frequentist terms and definition of probability. It is also possible, and sometimes more 

advantageous (Lee & Song, 2004; Rindskopf, 2012) to fit SEMs in a Bayesian 

framework (Kaplan & Depaoli, 2012; Levy & Choi, 2013; Scheines, Hoijtink, & 

Boomsma, 1999). The following sections briefly outline how Bayesian SEMs are 

specified, estimated, and evaluated. For more general and extensive accounts of Bayesian 

SEM, see chapters by Kaplan and Depaoli (2012), and Levy and Choi (2013). 

Model Specification 

By specifying a model the researcher is formalizing the mechanisms hypothesized 

to have produced the observed data. SEMs have a measurement model and a structural 

model. Building on methods that novices to SEM might be comfortable with, Song and 

Lee (2012) describe the measurement model as a confirmatory factor analysis, and the 

structural model as a regression equation with latent variables. In Bayesian SEM all 

parameters in the structural and measurement models have distributions. Before the 

analysis, parameters are assigned a prior distribution, and after the prior has been updated 

with the observed data, inferences about parameters are drawn from the posterior 

distribution. The prior distributions can have various levels of informativeness that exist 

on a spectrum, but are often labeled as either noninformative (also referred to as vague or 

diffuse) or informative. It is also possible to specify so-called weakly informative priors, 

which contain more information than diffuse priors, but do not reflect the actual amount 

of prior knowledge/ intuition the researcher possesses (Gelman, Carlin, Stern, & Rubin, 

2004). There is more than one way of conceptualizing what weakly informative means, 
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namely, a prior can be weakly informative if it is more dispersed (has a larger spread) 

than a prior elicited from expert opinion, or as defined by Evans and Jang (2011) a 

weakly informative prior is one that has less prior-data conflict (which occurs when the 

bulk of the prior density is in a space where the likelihood function is low) than an 

elicited prior that reflects the current state of knowledge. Another possible non-

informative prior specification is the so-called unit information prior, which carries the 

amount of prior information equivalent to what can be obtained from a prior sample size 

of 1 (Kass & Wasserman, 1995). With noninformative priors the point summaries (mean, 

median, and mode) of posterior distributions of the parameters are often numerically 

close to estimates obtained using ML. Another important consideration in the choice of 

prior is conjugacy: if a conjugate prior is selected, then the prior and the posterior 

distributions are from the same family. Conjugacy is desirable because it makes it easier 

to obtain analytical solutions, which was important historically, but is no longer 

necessary for model estimation since the invention of Markov Chain Monte Carlo 

(MCMC) methods for approximating the posterior. Both informativeness and conjugacy 

of prior distributions will be described in more detail in the section Bayesian Mediation 

with Latent Variables, as they are both crucial for the design of prior distributions for the 

Bayesian methods in the Monte Carlo study in this dissertation. 

The normal distribution is a conditionally conjugate prior distribution for 

measurement and structural intercepts, factor loadings, and structural coefficients in 

SEM, meaning that conditional on other model parameters this prior specification leads 

to posteriors that are also normal distributions (Kaplan & Depaoli, 2012). Covariance 

matrices of uniquenesses and structural disturbances are usually assigned inverse-gamma 
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distributions, if modeled individually, or an inverse-Wishart distribution, if modeled 

jointly. The inverse-gamma (IG) is a conditionally conjugate prior for variance 

parameters, meaning that if an inverse gamma prior is assigned to the variance parameter 

of a variable that is modeled as following a normal distribution conditional on the 

variance parameter, then the posterior for the variance, conditional on other model 

parameters, is also an inverse-gamma (Gelman, 2006).  

The parameters of a prior distribution are called hyperparameters. The 

hyperparameters of a normal prior distribution are the mean (location) parameter, and the 

scale parameter (usually the variance, precision, or standard deviation, depending on the 

software). The inverse-gamma (IG) distribution is specified using the shape (denoted α), 

and scale (denoted β) parameters. Since the hyperparameters of an inverse-gamma prior 

are not as easy to conceptualize as the hyperparameters of a normal prior, one can specify 

α and β by imagining a prior sample was observed. Using this approach, α equals one half 

of the variance of the prior pseudo-sample, and β equals one half of the product of the 

variance of the prior pseudo-sample and the sample size of the pseudo-sample (Gelman, 

Carlin, Stern, & Rubin, 2004). Thus, an inverse-gamma prior for a parameter can be 

specified either as: 

~ ( , )IGθ α β                                                                                                                    (11)  

where  is the parameter being assigned a prior, α is the shape parameter, and β is the 

scale parameter, or as   

2

0 0 0~ ( / 2, / 2)IGθ ν ν σ                                                                                                     (12) 

θ
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where is the sample size of the pseudo-prior sample, and is the variance of the prior 

pseudo-sample. A frequent recommendation for specifying a diffuse prior for the 

variance is to set the shape (α) and scale (β) parameters of the inverse-gamma to 0.001. 

However, the mean and variance for the inverse gamma with a scale parameter smaller 

than 1 and 2 (respectively) cannot be computed (Gelman, Carlin, Stern, & Rubin, 2004), 

and an IG(0.001, 0.001) prior can be problematic for variance parameters in hierarchical 

models (Gelman, 2006). 

The most common way to model covariance matrices (of uniquenesses, 

disturbances, and sometimes variables) is by using an inverse-Wishart prior. The 

hyperparameters of an inverse-Wishart are a degrees of freedom parameter, , and a 

symmetric, positive definite matrix S.  

1( ) ~ ( , )p W Sν−Σ                                                                                                          (13) 

In Equation 13 the degrees of freedom parameter is often thought of as the prior sample 

size, and the S matrix is often set equal to the matrix of sums of squares and cross-

products. The inverse-Wishart with a low degrees of freedom parameter (at least equal to 

the number of variables) and a fixed scale matrix S is often used as a reference (non-

informative) proper prior for the covariance matrix (Daniels & Kass, 1999). Even though 

the inverse-Wishart distribution is a conjugate prior for a covariance matrix, it is also 

restrictive in that it only allows for one parameter that quantifies the degrees of freedom, 

which implies the same amount of prior information for all elements of the covariance 

matrix (Gelman, Carlin, Stern, & Rubin, 2004). There have been several proposed 

reparameterizations of the covariance matrix along with priors for the parameters 
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0σ

ν

ν



  15 

(Barnard, McCulloch, & Meng, 2000; Daniels & Kass, 1999, 2001; Leonard & Hsu, 

1992; Yang & Berger, 1994), however, those will not be discussed here.  

Model Estimation 

Markov Chain Monte Carlo (MCMC) methods are necessary to estimate 

parameters in Bayesian SEMs because closed-form solutions are generally not available 

(Levy & Choi, 2013). Both ML and MCMC are iterative procedures, however, while ML 

seeks to maximize the likelihood function, MCMC seeks to approximate the entire joint 

posterior distribution of the parameters. MCMC methods are useful when it is not 

possible to sample parameter values directly from the posterior distribution, and a method 

that can approximate the posterior is needed. The target distribution of MCMC is set to 

be the posterior distribution of interest, and once the chains converge to the stationary 

(target) distribution, MCMC operates by using conditional distributions to draw values 

that, in limit, may be taken as draws from the desired distribution. These draws ultimately 

result in a joint (posterior) distribution of all model parameters. The key to the success of 

MCMC is not the Markov property but the improvement of the approximate distribution 

at each step of the simulation in the sense of convergence to the target distribution 

(Gelman, Carlin, Stern, & Rubin, 2004). 

If the conditional distribution is of a known form, then Gibbs sampling (also 

called alternating conditional sampling) can be used to approximate the posterior 

distributions (Gelman, Carlin, Stern, & Rubin, 2004). The Gibbs sampler is a computer-

intensive method for taking draws from a marginal distribution without having to 

calculate its density (Casella & George, 1992). The Gibbs sampler uses the full set of 

univariate conditionals to define a single iteration, meaning that all parameters for which 
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a conditional value is not being calculated are being conditioned on. Casella and George 

(1992) describe the Gibbs sampler as a practical application of the fact that conditional 

distributions are sufficient to determine the joint distribution, if it exists. 

A chain that moves well through the space of the posterior distribution is said to 

mix well. Initial draws from the posterior are referred to as burn-in iterations, and are 

discarded before the posterior distribution is summarized. One issue with iterative 

methods, MCMC included, is the within-chain correlation of the draws. Correlated draws 

make assessing convergence using the Potential Scale Reduction factor (PSR, described 

in the next paragraph) less precise (Lee, 2007). Autocorrelation between draws is dealt 

with by thinning, and by having multiple chains run in parallel (Levy & Choi, 2013). 

Thinning is the practice of retaining only every ith draw, where the thinning parameter i is 

chosen so that the retained draws are independent. However, thinning is not necessary, 

“as long as a sequence has converged and the number of iterations retained is substantial, 

it makes no practical difference if we keep all or every 25th or every 50th iteration” 

(Scheines, Hoijtink, & Boomsma, 1999). Furthermore, in some situations not thinning 

leads to more accurate values of the posterior mean and smaller standard deviations of the 

posterior (Link & Eaton, 2012). 

There is no way of confirming that a chain has converged to the target (here, 

posterior) distribution, but there are several techniques one can use to find evidence of 

convergence. Cowles and Carlin (1996) reviewed all of the available convergence 

diagnostics at the time, and more recently Sinharay (2004) conducted a similar review of 

convergence diagnostics for psychometrics. In the social sciences literature, the most 

commonly encountered convergence diagnostics are those offered by the majority of 
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software packages, which are the Potential Scale Reduction factor (Gelman & Rubin, 

1992), Geweke’s diagnostic (1992), and trace plots of draws plotted against the iteration 

number for each parameter (Brooks, 1998).  

Potential Scale Reduction (PSR) factor is computed as the square root of within 

and between chain variance divided by within chain variance (Gelman & Rubin, 1992; 

Brooks & Roberts, 1998). 

                                                                                                              (14) 

Values of PSR slightly above 1 (preferably below 1.1 according to Gelman et al., 2004) 

are considered evidence of convergence. In other words, convergence is achieved when 

there is little between-chain variance relative to within-chain variance. One criticism of 

PSR is that choosing overdispersed starting values (relative to the target distribution) for 

the chains requires knowledge about the target distribution, which the user does not have 

(Cowles & Carlin, 1996). Furthermore, Muthén and Asparouhov (2012) caution that PSR 

convergence after a certain number of iterations can be negated with additional iterations, 

and recommend that chains be run for longer after PSR convergence in order to assure 

that PSR remains only slightly larger than 1 even after additional iterations. Another 

convergence diagnostic measure was developed by Geweke (1992) and is calculated by 

computing the difference of the means of the first nA iterations and the last nB iterations 

(nA+nB < n, where n is equal to the total number of iterations) and dividing it by the 

square root of the asymptotic variance of the chain. As Cowles and Carlin (1996) point 

out, "by the central limit theorem, the distribution of this diagnostic approaches a 
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standard normal as n tends to infinity". Geweke (1992) recommends using nA = .1n and 

nB =.5n in the computation, but makes no recommendations about potential cut-off 

values that would indicate convergence. Zhang (2013) interpreted absolute values of the 

Geweke statistic below 1.96 as evidence of convergence. Another problem with 

Geweke's diagnostic measure is its sensitivity to the choices of nA and nB. One point made 

by Cowles and Carlin (1996) that has not changed to this day is that “automated 

convergence monitoring (as by a machine) is unsafe and should be avoided.”  

Other issues to consider with MCMC are the number of chains, starting values, 

and determining burn-in and stopping time (Gilks, Richardson, & Spiegelhalter, 1996). If 

the chain is irreducible, meaning that from any point in the distribution the chain has a 

positive probability of reaching any other point, the choice of starting values for a single 

chain does not matter very much (Roberts, 1996). It is a good idea to run at least three 

chains (Gelman & Shirley, 2011), and to have dispersed starting values for different 

chains in order to assist with the monitoring of convergence (Gelman & Rubin, 1992). 

Stopping time refers to ending the sampling and depends on time constraints, how long 

the chain(s) ran before convergence, the researcher’s confidence that convergence was 

reached, and the autocorrelation between draws (and thus how much thinning one 

chooses to do, and how many iterations one wishes to use for inference). Comparing the 

number of iterations to ESS, effective sample size (defined as the sample size if there was 

no autocorrelation), is a proxy measure for autocorrelation; the closer the ESS is to the 

number of iterations, the lower the autocorrelation in the chain (Zhang, 2013). A rule of 

thumb is to have ESS of at least 400. Once approximate convergence has been reached, 

Gelman and Shirley (2011) recommend mixing all of the non-discarded draws from all 
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chains (the authors suggest discarding the first half of each chain and using the second 

halves for this procedure) in order to summarize the target (posterior) distribution. In this 

project three chains will be run for each Bayesian analysis, and preliminary analyses of 

single samples for each Monte Carlo study condition will be run in order to select the 

number of burn-in samples. Trace plots and the PSR will be used as criteria for 

diagnosing convergence. 

MCMC is used for many Bayesian models with no analytical solutions, and thus 

the guidelines above apply regardless of whether one is seeking a posterior for a 

parameter as simple as a mean difference, or as complex as a cross-loading in SEM. 

There are several software options for specifying Bayesian SEMs, from programs for 

general Bayesian analysis that allow for the specification of SEMs such as WinBUGS 

(Lunn, Thomas, Best, & Spiegelhalter, 2000) also available online under the name 

WebBUGS (Zhang, 2014) and through a SAS interface (Zhang, McArdle, Wang, & 

Hamagami, 2008), various R packages (R core team, 2014), and the SAS procedure 

MCMC (SAS Institute Inc., 2009), to general SEM software that has Bayesian 

capabilities, such as AMOS (Arbuckle, 2007), Mplus (Muthén, & Muthén, 1998-2015), 

and Stata 14 (StataCorp, 2015). Stan (Stan development team, 2015), another program for 

Bayesian analysis, uses Hamiltonian Monte Carlo (HMC) to draw samples from the 

posterior (Neal, 2011; Stan development team, 2015). HMC chains tend to have low 

autocorrelation and to converge rapidly, and due to how the step in the chain is proposed, 

HMC draws tend to have high probability of acceptance which avoids the “exploration of 

the state space that occurs when Metropolis updates are done using a random-walk 

proposal distribution” (Neal, 2011). For more on HMC, see the Stan manual (Stan 
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development team, 2015). The R package R2WinBUGS (Sturtz, Ligges, & Gelman, 

2005) allows for specifying the kinds of priors proposed for the Monte Carlo study in this 

project, and will thus be used for all Bayesian methods in this project.  

Model Evaluation 

As in frequentist estimation, model estimation is followed up with model 

evaluation and model comparison in situations where there are several competing models. 

According to Kaplan and Depaoli (2012) Bayesian SEMs can be evaluated using 

posterior predictive checking (PPC), and compared using Bayes Factors (BF), the 

Bayesian Information Criterion (BIC), and the Deviance Information Criterion (DIC). 

Model evaluation is not a part of the proposed Monte Carlo study, thus for the sake of 

brevity the model evaluation and comparison indices will not be covered in this 

document. For information on posterior predictive checking (PPC), see Meng (1994), 

Gelman and Meng (1996), and Gelman, Meng, and Stern (1996). Details about Bayes 

Factors can be found in Raftery (1993) and Kass and Raftery (1995). For situations where 

the computation of the BF is too complicated Kass and Raftery (1995) recommend 

approximating it by computing the Bayes Information criterion (BIC; Schwartz, 1978). 

The Deviance Information Criterion (DIC) is another useful index for comparing 

competing models (Spiegelhalter, Best, Carlin, & van der Linde, 2002), however with 

missing data there are several ways of computing the DIC depending on the chosen 

representation of the missing data structure (Celeux, Forbes, Robert, & Titterington, 

2006; de la Torre & Douglas, 2008). Two additional indices for comparing models have 

been proposed, but not used as extensively as the measures above: the (called L-νL
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measure) for both parametric and semiparametric structural equation models (Song, Xia, 

Pan, & Lee, 2011), and model averaging described by Raftery (1993).  

Bayesian Mediation with Latent Variables 

In both frequentist and Bayesian frameworks with manifest variables it is possible 

to estimate single mediator models using regression and SEM. However, the single 

mediator model with latent variables needs to be specified as a SEM in order for the 

measurement and structural portions of the model to be estimated simultaneously. 

Two ways of doing Bayesian mediation with the goal of estimating the mediated 

effect (as opposed to significance testing alone, which in the Bayesian framework can be 

done using Bayes Factors) involve specifying priors for regression coefficients (Yuan & 

MacKinnon, 2009), and specifying priors for the covariance matrix of variables X, M, 

and Y (Enders, Fairchild, and MacKinnon, 2013). One benefit of specifying prior 

distributions for the covariance matrix versus specifying priors for coefficients and 

residual variances is the ease of adding more mediators, moderators, and covariates to the 

model by simply increasing the dimensionality of the prior for the covariance matrix. 

Another benefit of the method of covariances is the ability to interpret the degrees of 

freedom parameter as a prior sample size, and thus control the weight the prior carried in 

the analysis through changes in the degrees of freedom parameter. However, the method 

of coefficients allows for a more intuitive way of thinking about the priors specified for 

the parameters, e.g., it is much easier to think of the expected value of the a path in the 

single mediator model than about the expected covariance between variables X and M 

and the expected variance of X needed to compute the a path (Equation 6). The 
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remainder of this section will focus on steps and considerations when fitting a single 

mediator model with latent variables as a Bayesian SEM.  

In order to present the steps in estimation of a single mediator model with latent 

variables as a Bayesian SEM, a single data set was simulated inspired by a prevention 

study designed to evaluate and improve the health of law enforcement officers (Kuehl et 

al., 2014). The latent variables ξ, η1, and η2 stand for health, vitality, and activity 

(respectively). Each latent variable has three manifest indicators. The manifest indicators 

are scales (as opposed to scale items) with reliability 0.7. The model-generating 

parameter values equal those in combination 1 in the Monte Carlo study, and are as 

follows: all unstandardized loadings equal 1, all measurement error variances follow a 

normal distribution with a mean of 0 and a variance of 0.4286 (i.e., precision of 2.3332), 

and all three latent variables are normally distributed with means of 0 and variances 

(precisions) of 1. The structural paths equal γ11 = 0.60, β21 = 0.20, and γ21= 0.12, and 

residual terms 1ζ  and 2ζ  follow a normal distribution with a mean of 0 and variances of 

0.64 and 0.9168 (respectively) so latent variables η1 and η2 have variances (precisions) 

equal to 1. Note that for simulating data it was more intuitive to consider variances than 

precisions, however, R2WinBUGS uses the variance parametrization, thus the model 

fitting steps are discussed in terms of precision and not variance.   

The first step of a Bayesian SEM analysis is the specification of prior 

distributions for all freely estimated model parameters. As in the frequentist framework, 

the scale of the latent variables needs to be set, and the options are either fixing one 

loading per latent variable to 1, or fixing the variances of latent variables to 1. In the 

Bayesian framework, setting one loading to 1 is the more common choice (Kaplan & 
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Depaoli, 2012). Setting the variance of a latent variable to 1 imposes the restriction that 

the sum of squared loadings and residual variances of manifest indicators must equal the 

variance of the manifest indicator (MacCallum, Edwards, & Cai, 2012), which is not 

always easy to consider when specifying priors for loadings and residual variances. This 

project makes use of conjugate priors for all model parameters, which are normal priors 

for loadings and structural paths, and gamma priors for precision parameters (Gelman, 

Carlin, Stern, & Rubin, 2004). The hyperparameters of the priors in this analysis were 

selected to communicate very little information. For loadings, it was assumed that all 

scales are equally reliable, thus the mean hyperparameter was set to equal the same value 

that the first loading was fixed at, i.e., 1. It was assumed that positive and negative value 

of structural parameters were equally likely, so the mean hyperparameter was chosen to 

be zero. It was assumed that the precision of the exogenous variable, the measurement 

error precisions, and the residual precisions of the endogenous variables all equal 1. 

However, the assumption that all precision parameters are equal to each other and all 

equal to 1 is not very plausible, so these priors were unit-informative (Kass & 

Wasserman, 1995), i.e., they were assigned a weight of 1 prior observation. For gamma 

prior distributions the shape (α) and scale (β) hyperparameters were set to α = ½ = β = 

(1)½, thus representing the assumption that the best guess for the precision is 1, and that 

this value is given the weight of one observation (Gelman, Carlin, Stern, & Rubin, 2004). 

Two different approaches were used for determining the spread of normal priors. In the 

first scenario, the normal priors were assigned precision hyperparameters equal to .001, 

which is a very large spread given the expected values of loadings and structural paths in 

SEM. The priors in this scenario will be referred to as “diffuse generic priors” in the 
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remainder of the document. In the second scenario, the spread of normal priors was 

conditional on the corresponding precision parameter (for loadings, it was the 

measurement error precision of the manifest indicator, and for structural paths it was the 

residual precision of the endogenous variable). This specification yields a fully conjugate 

prior for the loading and corresponding measurement error precision, and the structural 

path and corresponding residual precision. These priors are referred to as “diffuse 

conjugate priors” in the remainder of the document. 

The second step of a Bayesian analysis is to update the prior with the observed 

data. Since latent variable models do not have analytical solutions (Aitkin & Aitkin, 

2005), this was done by using MCMC methods to approximate the posterior distribution. 

The use of MCMC requires specifying the number of chains (here 3 chains), burn-in 

iterations (1500 for these analyses), posterior draws after burn-in (3500 per chain, leading 

to 10500 total), and the thinning parameter (set to 1, i.e., no thinning for these analyses). 

The user can also specify starting values, as was done in this analysis, however, another 

option is to have WinBUGS generate starting values. In the case of mediation analysis, 

the parameter of interest is the mediated effect. In order to compute the marginal 

posterior of the mediated effect, the product γ11β21 was computed at each iteration, thus 

yielding an approximation of the marginal posterior based on 10500 draws from the three 

combined chains. The convergence of the chains was diagnosed using trace plots and 

PSR. Inferences can be made based on the marginal posteriors of the parameter(s) of 

interest, which in this case is the mediated effect.  

The posterior for the mediated effect is summarized using the mean and median 

as point summaries, and equal-tail and highest posterior density (HPD) intervals as 
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interval summaries. With diffuse generic priors the posterior mean and median were 

equal to 0.13, and the 95% equal-tail (0.043, 0.233) and HPD (0.038, 0.227) intervals did 

not include zero. The analysis with diffuse conjugate priors yielded comparable point and 

interval summaries; the mean and median of the posterior were equal to 0.13, and the 

95% equal tail (0.045, 0.232) and HPD (0.042, 0.229) intervals did not contain zero. 

Thus, the conclusion from analyses with both diffuse priors is that the mediated effect 

lies between 0.04 and 0.23 with 95% probability, and that the average of the posterior for 

the mediated effect equals .13. On average, one unit increase in health led to .13 units of 

increase in activity through vitality. Latent variables health, vitality, and activity are in 

units of the first indicator for each latent variable.  

The Present Study 

As of April 2016, there has been some published work suggesting the use of 

Bayesian methods to fit the single mediator model with latent variables in the SEM 

framework (Levy & Choi, 2013; Chen, Choi, Weiss, & Stapleton, 2014) as well as some 

literature on statistical properties of the single mediator model with latent variables 

estimated as a Bayesian SEM with continuous indicators (Chen, Choi, Weiss, & 

Stapleton, 2014) and with ordinal indicators (Chen, Zhang, & Choi, 2015). However, 

there are still several unanswered methodological questions about the statistical 

properties of point and interval summaries of the mediated effect in this model. First, it is 

unknown whether there are benefits of using diffuse normal priors in a Bayesian analysis 

relative to ML estimation (other than the probabilistic interpretation of the results). 

Second, the amount of improvement in Bayesian estimation of the mediated effect with 

accurate informative priors is unknown. Third, the detrimental effects of inaccurate 
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informative priors on Bayesian estimation of the mediated effect have yet to be 

quantified. Fourth, it is not known how the detrimental effects of inaccurate priors differ 

for measurement and structural model parameters. This dissertation examined these 

questions in a Monte Carlo study.  

Before describing the Monte Carlo study, it is important to define how the terms 

weight and direction of bias are used in this project. The prior and the likelihood function 

both contribute certain amount of information to the posterior. Here, weight refers to the 

relative contribution of the data and the prior to the posterior; e.g., saying that the prior 

has 25% of the weight of the likelihood means that the prior is contributing 4 times less 

information than the likelihood. Direction of bias is used synonymously with sign of bias; 

e.g., saying that the direction of bias in the posterior is the same as the direction of the 

bias in the prior means that both the prior and the posterior had either positive bias (the 

expectation about a parameter was higher than the true value) or negative bias (the 

expectation about a parameter was lower than the true value).  
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CHAPTER 2 

MONTE CARLO STUDY 

This Monte Carlo study explores four related questions pertaining to the statistical 

properties of the mediated effect in the single mediator model with latent variables: 1) are 

there benefits or problems with using Bayesian methods with diffuse priors instead of 

ML, 2) how pronounced are the benefits of using Bayesian methods in the best case 

scenario where informative priors for measurement and structural parameters are accurate 

and carry 50% of the weight of the likelihood, 3) how large are the risks of using 

Bayesian methods in the worst case scenario where informative priors for measurement 

and structural parameters are inaccurate and carry 50% of the weight of the likelihood, 

and 4)  is the change in statistical properties with the use of inaccurate priors more 

problematic for structural model parameters or measurement model parameters? 

Research questions 1 and 4 compare two options, and naturally lend themselves to being 

phrased as testable hypotheses. Research questions 2 and 3 deal with the extent to which 

statistical properties change with accuracy and informativeness in prior distributions, and 

are not appropriately answered by generating hypotheses. In the text below, questions 1 

and 4 have been converted to testable hypotheses, and questions 2 and 3 remained 

research questions.  

Hypotheses and Research Questions 

The first hypothesis deals with a comparison between Bayesian methods with 

diffuse priors to ML point estimates and distribution of the product interval estimates of 

the mediated effect. It is hypothesized that point and interval summaries from Bayesian 
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methods with diffuse priors will have comparable statistical properties to ML point 

estimates and interval estimates using the distribution of the product.  

The second research question focuses on the improvement of statistical properties 

in the “best case scenario” in this study, i.e., when Bayesian methods are used with 

accurate informative priors, relative to statistical properties using ML and distribution of 

the product.  Bayesian methods with most informative accurate priors for structural and 

measurement model parameters are expected to have the best statistical properties out of 

all methods in the study. However, the amount of improvement in bias and efficiency for 

point summaries, and power, Type I error rate, coverage, imbalance, and interval width 

for interval summaries is unclear. This study will explore the amount of improvement in 

statistical properties of point and interval summaries of the mediated effect with the 

addition of accurate prior information that carries 25% and 50% of the weight of the 

likelihood function. 

The third research question examines the “worst case scenario” in this study, i.e., 

the statistical properties of the mediated effect when Bayesian methods are used with 

inaccurate informative priors. Bayesian methods with the most informative inaccurate 

priors for the structural and measurement model parameters are expected to have the 

worst statistical properties out of all methods in the study. However, the amount of 

decline in statistical properties of the mediated effect with inaccurate priors is unknown. 

This study will quantify the risks of using inaccurate informative priors that have the 25% 

and 50% of the weight of the likelihood function. 

The fourth hypothesis deals with the impact of inaccuracy in priors for structural 

paths and loadings. The mediated effect is computed as the product of two structural 
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paths. Thus, it is expected that the prior information for structural paths will have more 

bearing on the statistical properties of the mediated effect than prior information for 

measurement model parameters. More specifically, it is hypothesized that the 

(in)accuracy and informativeness of priors for structural paths will have more bearing on 

the statistical properties of the point and interval summaries of the mediated effect than 

the (in)accuracy and informativeness of priors for loadings.  

 Method  

Data 

The single mediator model with latent variables and three indicators per latent 

variable, depicted in Figure 2, is the model studied in this research. The mediated effect is 

computed as the product of structural paths 11 21γ β .  

 

Figure 2. Single mediator model with latent X, M, and Y, and three manifest indicators 

per latent variable. 
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The model is described using equations 15-17: 
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Data were simulated in R (R Core Team, 2014) according to equations 15-16 for the 

measurement model, and equation 17 for the structural model. Appendix A contains 

analytical formulas for the covariance matrix of manifest and latent variables for the 

model. Measurement errors of manifest indicators were simulated to follow normal 

distributions with a mean of 0 and variances equal to .4286. The disturbances of 

endogenous variables 1ζ  and 2ζ  were simulated to follow normal distributions with a 

mean of 0 and variances equal to 
2

11 111ψ γ= −  and 
2 2

22 21 11 21 21 211 ( 2 )ψ γ γ β γ β= − + + so all 

latent variables have a variance equal to 1.  

 There were at least two ways to conceptualize reliability for this model. One way 

of considering (and calculating) reliability is on the level of the manifest variable, i.e., the 

reliability of the indicator j for latent variable i is equal to its common variance divided 

by its observed total variance which is equal to the sum of the common variance and 
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unique variance of the indicator  

2

11

2
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Xji

XX

Xji jδ

λ
ρ

λ θ
Φ

=
Φ +

where Xjiλ is the factor loading (the 

subscript i refers to latent variables, and the subscript j refers to manifest indicators), 11Φ

is the latent factor variance, and jδθ is the unique variance of the indicator j.  For 

simulating data, reliability was manipulated at the level of indicators. All of the loadings 

were simulated to equal 1, and reliability of 0.7 for each manifest indicator was obtained 

by setting the measurement error variances to 0.4286, since
1

0.7
(1 0.4286)

=
+

. Appendix 

B contains a more detailed description of how indicator reliability was manipulated. This 

choice made the assignment of accurate prior distributions for loadings more 

straightforward because the value of the accurate mean hyperparameter in the priors for 

freely estimated loadings and the value at which the loading of the first manifest variable 

was fixed were both 1. Had the unstandardized loadings been simulated to be equal to 

any value other than 1, the accurate priors for those loadings would have to be centered 

around the value to which the first loadings is being fixed (here, 1) and not the true value 

of that loading in the population. Thus, to avoid the confusion of specifying accurate 

priors without using the population parameter as the mean hyperparameter of the normal 

prior, the loadings were simulated to equal the value that the first loading for each latent 

variable was fixed at during estimation, i.e., 1.  

Another way of considering reliability is at the level of the composite of 

indicators for a given latent variable. Composite reliability can be calculated using 

Raykov’s (1997) formula for composite reliability of congeneric measures,
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, where XXρ is the composite reliability, iλ are the loadings of 

the indicators for a given latent variable (i = 1-3 in this model), ( )Var η is the variance of 

the latent variable, and εθΣ is the sum of the measurement error variances for the three 

indicators of a given latent variable. The accuracy of the priors for the measurement 

model was manipulated at the level of composite reliability, and is described in more 

detail in the next section.  

Independent Variables in the Simulation study 

The factors manipulated in the simulation study were parameter values for 

structural paths, method for computing point and interval estimates/summaries of the 

mediated effect, and different prior specifications for Bayesian methods. The details 

related to each factor are presented next.  

The parameter values for structural parameters in combinations 1-3 were modeled 

after parameter values in the paper by Finch, West, and MacKinnon (1997). The fourth 

parameter combination for this project was a modification of Combination 2 that was 

created in order to evaluate the Type I error rates of methods under examination. There 

are four different parameter combinations in this study, all with indicator reliability equal 

to 0.7, and true latent variable variances and true loadings equal to 1. The combinations 

were: 1) The structural parameters were γ11 = 0.60, β21 = 0.20, and γ21 = 0.12, which 

makes the direct (γ21 =.12) and indirect effect (γ11β21 =.12) equal; 2) The structural 

parameters were γ11 = 0.30, β21 = 0.40, and γ21 = 0.12, which makes the direct (γ21 =.12) 

and indirect effect (γ11β21 =.12) equal; 3) The structural parameters were γ11 = 0.30, β21 = 

0.40, and γ21 = 0.36, which makes the direct (γ21 =.36) effect three times larger than the 
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indirect effect (γ11β21 =.12); and 4) The structural parameters were γ11 = 0, β21 = 0.40, and 

γ21 = 0.12, which makes the indirect effect (γ11β21) zero. 

The Monte Carlo study featured both frequentist and Bayesian methods. In the 

frequentist analyses ML was used for point estimation, and the distribution of the product 

was used for interval estimation. In the Bayesian analyses the mean and median of the 

posterior for the mediated effect were used as point summaries, and HPD intervals were 

used as interval summaries. Because the distribution of the product of two random 

variables, such as 11γ  and 21β , is not always symmetric (Craig, 1936), HPD intervals 

were deemed a better choice than equal-tail credibility intervals as they have the property 

that no value outside of the interval has higher probability than values inside of the HPD 

interval (Gelman, Carlin, Stern, & Rubin, 2004), which makes them better at 

accommodating asymmetry of the mediated effect. 
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Table 1 

 

Prior specifications for Bayesian methods in the Monte Carlo Study 

 
In

fo
rm

at
iv

en
es

s 

Accuracy  

 

inaccurate 

loadings, 

inaccurate 

structural 

accurate 

loadings, 

inaccurate 

structural 

inaccurate 

loadings, 

accurate 

structural 

accurate 

loadings, 

accurate 

structural 

 Combination 1 (true values: γ11 = 0.60, β21 = 0.20, γ21 = 0.12) 

Nprior = 

100 

λi  ~ N(.90, 84.91) λi  ~ N (1, 84.91) λi  ~ N(.90, 84.91) λi  ~ N(1, 84.91) 

γ11 ~ N(.54, 80.21) γ11 ~ N(.54, 80.21) γ11 ~ N(.6, 80.21) γ11 ~ N(.6, 80.21) 

β21 ~ N(.13, 45.27) β21 ~ N(.13, 45.27) β21 ~ N(.2, 45.27) β21 ~ N(.2, 45.27) 

γ21 ~ N(.05, 45.72) γ21 ~ N(.05, 45.72) γ21 ~ N(.12, 45.72) γ21 ~ N(.12, 45.72) 

Nprior = 

200 

λi ~ N(.92, 169.8) λi  ~ N(1, 169.8) λi  ~ N(.92, 169.8) λi  ~ N(1, 169.8) 

γ11  ~ N(.56, 160.4) γ11 ~ N(.56, 160.4) γ11 ~ N(.6, 160.4) γ11 ~ N(.6, 160.4) 

β21 ~ N(.15, 90.5) β21 ~ N(.15, 90.5) β21 ~ N(.2, 90.5) β21 ~ N(.2, 90.5) 

γ21 ~ N(.07, 91.4) γ21 ~ N(.07, 91.4) γ21 ~ N(.12, 91.4) γ21 ~ N(.12, 91.4) 

 Combination 2 (true values γ11 = 0.30, β21 = 0.40, γ21 = 0.12) 

Nprior = 

100 

λi  ~ N(.90, 83.58) λi  ~ N(1, 83.58) λi  ~ N(.90, 83.58) λi  ~ N (1, 83.58) 

γ11 ~ N(.24, 77.31) γ11 ~ N(.24, 77.31) γ11 ~ N(.3, 77.31) γ11 ~ N(.3, 77.31) 

β21 ~ N(.34, 72.70) β21 ~ N(.34, 72.70) β21 ~ N(.4, 72.70) β21 ~ N(.4, 72.70) 

γ21 ~ N(.06, 79.77) γ21 ~ N(.06, 79.77) γ21 ~ N(.12, 79.77) γ21 ~ N(.12, 79.77) 

Nprior = 

200 

λi  ~ N(.92, 167.2) λi  ~ N(1, 167.2) λi  ~ N(.92, 167.2) λi  ~ N(1, 167.2) 

γ11 ~ N(.26, 154.6) γ11 ~ N(.26, 154.6) γ11 ~ N(.3, 154.6) γ11 ~ N(.3, 154.6) 

β21 ~ N(.36, 145.4) β21 ~ N(.36, 145.4) β21 ~ N(.4, 145.4) β21 ~ N(.4, 145.4) 

γ21 ~ N(.08, 159.4) γ21 ~ N(.08, 159.4) γ21 ~ N(.12, 159.4) γ21 ~ N(.12, 159.4) 

 Combination 3 (true values: γ11 = 0.30, β21 = 0.40, γ21 = 0.36) 

Nprior = 

100 

λi  ~ N(.90, 85.05) λi  ~ N (1, 85.05) λi  ~ N(.90, 85.05) λi  ~ N (1, 85.05) 

γ11 ~ N(.24, 77.36) γ11 ~ N(.24, 77.36) γ11 ~ N(.3, 77.36) γ11 ~ N(.3, 77.36) 

β21 ~ N(.35, 85.37) β21 ~ N(.35, 85.37) β21 ~ N(.4, 85.37) β21 ~ N(.4, 85.37) 

γ21 ~ N(.31, 87.22) γ21 ~ N(.31, 87.22) γ21 ~ N(.36, 87.22) γ21 ~ N(.36, 87.22) 

Nprior = 

200 

λi  ~ N(.92, 170.1) λi  ~ N(1, 170.1) λi  ~ N(.92, 170.1) λi  ~ N(1, 170.1) 

γ11 ~ N(.26, 154.7) γ11 ~ N(.26, 154.7) γ11 ~ N(.3, 154.7) γ11 ~ N(.3, 154.7) 

β21 ~ N(.36, 170.7) β21 ~ N(.26, 154.7) β21 ~ N(.4, 154.7) β21 ~ N(.4, 154.7) 

γ21 ~ N(.32, 174.4) γ21 ~ N(.32, 174.4) γ21 ~ N(.36, 174.4) γ21 ~ N(.36, 174.4) 

 Combination 4        (true values: γ11 = 0, β21 = 0.40, γ21 = 0.12) 

Nprior = 

100 

λi ~ N(1.08, 82.85) λi ~ N (1, 82.85) λi ~ N(1.08, 82.85) λi ~ N (1, 82.85) 

γ11 ~ N(.06, 76.56) γ11 ~ N(.06, 76.56) γ11 ~ N(0, 76.56) γ11 ~ N(0, 76.56) 

β21 ~ N(.46, 78.75) β21 ~ N(.46, 78.75) β21 ~ N(.4, 78.75) β21 ~ N(.4, 78.75) 

γ21 ~ N(.17, 87.15) γ21 ~ N(.17, 87.15) γ21 ~ N(.12, 87.15) γ21 ~ N(.12, 87.15) 

Nprior = 

200 

λi ~ N(1.04, 165.7) λi ~ N (1, 165.7) λi ~ N(1.04, 165.7) λi ~ N(1, 165.7) 

γ11 ~ N(.04, 153.1) γ11 ~ N(.04, 153.1) γ11 ~ N(0, 153.1) γ11 ~ N(0, 153.1) 

β21 ~ N(.44, 157.5) β21 ~ N(.44, 157.5) β21 ~ N(.40, 157.5) β21 ~ N(.40, 157.5) 

γ21 ~ N(.16, 174.3) γ21 ~ N(.16, 174.3) γ21 ~ N(.12, 174.3) γ21 ~ N(.12, 174.3) 

Note. This table contains eight specifications of informative prior distributions for 

loadings and structural paths in the Monte Carlo study. The first hyperparameter in the 

normal priors is the mean, and the second hyperparameter is the precision. True values of 

the structural paths for each combination were included for comparison. The true value of 

all loadings is 1. 
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There were 10 different prior distributions examined in the Monte Carlo study: 2 

diffuse prior specification, and 8 informative prior specifications, as shown in Table 1. 

The first type of prior specification in the Monte Carlo study was the briefly termed the 

“diffuse conjugate prior”. Conjugate prior distributions lead to posterior distributions of 

the same parametric form (Gelman, Carlin, Stern, & Rubin, 2004). The normal 

distribution is a conditionally conjugate prior for loadings and structural paths in SEM, 

given the relevant variance terms (Kaplan & Depaoli, 2012). A fully conjugate prior 

density for the mean and variance parameters of a normal distribution has the product 

form 2 2( ) ( | )p pσ µ σ  for which the marginal distribution of 
2σ is a scaled inverse-χ2 

(which is a special case of the inverse-gamma with α =  ν/2 and β = 1/2, where ν denotes 

the degrees of freedom parameter of the inverse-χ2) and the conditional distribution of μ 

given 
2σ is normal (Gelman, Carlin, Stern, & Rubin, 2004). Taking this in account and 

switching to the precision parametrization, the fully conjugate priors specified in this 

project were normal priors for loadings and structural paths centered at 0 with a precision 

equal to the corresponding residual precision, and gamma (G) priors with 

hyperparameters α= β= 0.5 for measurement error precisions of manifest indicators, 

residual precisions of endogenous latent variables, and the precision of the exogenous 

latent variable. Recall that the precision is the inverse of the variance, and that the 

conjugate prior for the variance is an inverse-gamma, whereas the conjugate prior for the 

precision is a gamma distribution (Gelman, Carlin, Stern, & Rubin, 2004). Thus, when 

conditioning on the precision to obtain full conjugacy, the loading and structural paths are 

assigned normal priors conditional on the corresponding residual precisions, which are 

assigned gamma priors. 
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The second prior specification is the “generic diffuse prior” and consists of a 

diffuse normal prior centered at 0 with a precision hyperparameter of 0.001 for all 

loadings and structural paths, and a G(0.001, 0.001) as a diffuse prior for all precision 

parameters. Note that this is a conditionally conjugate prior where the loadings and 

structural paths are still assigned normal prior distributions, however, the spread of these 

priors is not dependent on the corresponding residual precision parameters. The mean 

hyperparameter of 0 for normal priors and the α = β = 0.001 for the hyperparameters of 

the gamma prior were chosen because of the almost ubiquitous belief that such priors 

contribute no information to the analysis. These values were originally recommended in 

first programs for Bayesian analysis (Lunn, Thomas, Best, & Spiegelhalter, 2000) and are 

currently defaults in some software packages (Muthén, & Muthén, 1998-2015), however, 

there is evidence showing that gamma priors with these values of hyperparameters are 

not always uninformative (van Erp, Mulder, & Oberski, 2016).   

The remaining eight prior distributions in the Monte Carlo study were all 

informative with varying degrees of informativeness and accuracy (Figure 3). In this 

study, informativeness was defined in terms of Nprior, the prior sample size used to 

produce the spread hyperparameter of the normal prior distributions.  

Accuracy for normal priors was defined in terms of the departure of the mean 

hyperparameter from the simulated value for the given loading or structural path; the 

more different the hyperparameter from the true value, the less accurate the prior. Priors 

for precisions were not made inaccurate in any of the conditions.  
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Figure 3. Eight informative prior distributions that vary levels of accuracy and 

informativeness. The rectangle around the conditions with partially accurate prior 

information, i.e., either measurement or structural parameters have accurate priors, 

indicates that there is currently no proof that either of the two conditions can be 

considered more accurate.  

 

According to Boomsma (1982), ML estimation is robust with N = 100. Taking 

this information into account, as well as operating under the assumption that substantive 

researchers would have a hard time finding published SEM studies with N <100, the two 

sizes of the prior sample examined in this simulation study were Nprior = 100 and 200, and 

the size of the sample yielding the likelihood was 400. 

This means that accurate and inaccurate priors were designed to carry 25% and 

50% of the information carried by the likelihood. For gamma priors, the hyperparameters 

of accurate priors were computed analytically by plugging in the true value of the 

variance term and the size of the prior sample into the following formulas for the α and β 

hyperparameters of the gamma priors: 
2

0 0 0~ ( / 2, / 2)Gθ ν ν σ where is the sample size 

of the prior sample (Nprior), and is the variance of the prior sample (since all priors for 

precisions were accurate,  was the true value of the corresponding variance term). 

Unlike the gamma distribution, the normal distribution does not have a spread parameter 

with a direct interpretation in terms of sample size. Normal priors that carry Nprior worth 

0ν

2

0σ

2

0σ
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of information were obtained using a series of steps. First, one sample of size Nprior was 

drawn from the population, and the Bollen-Stine (1992) transformation was used to 

transform the sample covariance matrix into the population (i.e., simulated) covariance 

matrix. The true model was then estimated using ML on the population covariance 

matrix. The standard errors of the structural parameters and loadings from the ML results 

were then used to compute the spread hyperparameters of the priors for the corresponding 

parameters, i.e. the value of the standard error was used as the standard deviation for the 

corresponding normal prior, so the precision hyperparameter for the prior being 

constructed was computed as the inverse of the squared standard error from the ML 

results. Note that the fully Bayesian version of this approach would use Bayesian 

methods to fit the model on the sample generating the prior, and would use standard 

deviations of the posteriors instead of ML standard errors to compute the spread of the 

priors for the main analysis. Results from ML estimation are numerically equivalent to 

results from a Bayesian analysis with a maximally diffuse prior, and the ML standard 

error is thus an approximation to the posterior standard deviation. Furthermore, point 

estimates and standard errors are more widely available to substantive researchers, which 

was another reason for choosing ML results instead of Bayesian results to create priors 

for the Monte Carlo study. 

One of the questions that the Monte Carlo study aims to answer is whether bias in 

the measurement or in the structural model parameters has more severe consequences on 

the statistical properties of the point and interval summaries of the mediated effect. In 

order to directly compare the consequences of inaccurate priors in the structural and 

measurement parts of the model, the bias in the two sets of model parameters would have 
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to be equated (Cooper & Richardson, 1986). However, equating inaccuracy in the two 

parts of the model is a challenge for several reasons, the most important one being the 

different nature of the structural and measurement model parameters. It has been noted in 

SEM literature that “every free parameter does not contribute equally to a model’s ability 

to fit data” (Preacher, 2006), and even commonly used fit indices have differential 

sensitivity to model misspecifications for factor covariances and factor loadings (Hu & 

Bentler, 1998). Thus, not only is there a different number of freely estimated loadings 

and structural paths in this model, but even if the number was the same these parameters 

play different roles in the model and thus it is hard to conceptualize what “equated” bias 

means. Furthermore, when conducting simulation studies the findings are as relevant to 

substantive researchers as the factors of the simulation study are representative of real 

data situations. Even if inaccuracy of priors for the structural and measurement models 

were statistically equated, this could make priors less grounded in real-life research 

situations, and the findings of the simulation study using such statistically equated 

inaccurate priors would not yield any practically useful information about these methods. 

For these reasons, instead of focusing on statistically equating the inaccuracy in the 

structural and measurement model parameters, the inaccuracy in the two sets of model 

parameters was made comparable by using the same mechanism to generate it. When 

interpreting findings, no conclusions are made about inaccuracy in one set of model 

parameters being more or less detrimental to the statistical properties of the mediated 

effect; instead, findings are discussed in terms of the way inaccuracy was induced. 

The (in)accuracy of a normal prior distribution is manipulated through the mean 

hyperparameter, and several potential definitions of equated inaccuracy in the 
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measurement and structural models were considered, e.g., making the mean 

hyperparameters of normal priors the same number of standard deviations away from the 

truth, inducing the same amount of relative bias in the mean hyperparameters, and 

inducing the same amount of change in the chi-square statistic due to inaccurate 

assumptions about parameters. The definition of comparable inaccuracy chosen for this 

project was a prior with the mean hyperparameter that is .5 standard deviations away 

from the true value (note that the value of the standard deviation differs between different 

sizes of Nprior, between the loadings and structural paths, and also between different 

structural paths). For structural paths the mean hyperparameters of the inaccurate priors 

was .5 standard deviations away from the true value of the parameter. For loadings the 

bias of .5 standard deviations was induced in the composite reliability of a given latent 

variable; that is, the priors for each of the loadings had an inaccurate mean 

hyperparameter that when plugged into Raykov’s (1997) formula for composite 

reliability led to the corresponding latent variable seeming like it was measured with .5 

standard deviations more or less reliability compared to its reliability in the simulated 

model. The computation of inaccurate mean hyperparameters for the normal priors for 

structural parameters consists of adding/subtracting half of a standard deviation from the 

accurate prior, .5sd(γ11), to/from the true value of the parameter, γ11, in order to obtain a 

positively/negatively biased mean hyperparameter, γ11’: 11 11 11' .5 ( )sdγ γ γ= ± .  

The computation of biased mean hyperparameters for loadings is slightly more 

complex, as the .5sd bias was induced in the composite reliability, and the loadings that 

produce this amount of relative bias were then obtained using Raykov’s (1997) formula 

for composite reliability. Recall that he formula for the composite reliability of 
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congeneric measures by Raykov (1997) states that 
2

2

( ) ( )

( ) ( )

i
XX

i

Var

Var ε

λ ηρ
λ η θ

Σ=
Σ + Σ

, where 

XXρ is the composite reliability, iλ are the loadings of the indicators for a given latent 

variable (i = 1-3 in this model), ( )Var η is the variance of the latent variable, and εθΣ is 

the sum of the measurement error variances for the three indicators of a given latent 

variable. In order to induce bias in the prior distribution for the loading, iλ , needs to 

change in a way that makes XXρ have .5sd bias. In the simulated population all three 

indicators have reliability equal to 0.7 (this was accomplished by simulating the true

( ) 1Var η = , and the true .4286εθ = ), and the composite reliability of each latent variable 

is 0.8750. Since composite reliability and its standard error are not obtained in ML 

estimation of the model, the distribution of the composite reliability at Nprior = 100 and 

200 had to be approximated in order to compute the standard deviation. This was done by 

simulating 1000 values of the two freely estimated loadings (using the true value as the 

mean of the normal distribution of the loading and standard deviations of .153 for Nprior = 

200 and .216 for Nprior = 100), the variance of the latent variable, and measurement error 

variances from their true distributions based on Nprior = 100 and 200, plugging the values 

into Raykov’s formula, and obtaining 1000 values of the composite reliability for the true 

model. The standard deviation of this empirical distribution of composite reliability 

became the standard deviation for the informative priors based on Nprior = 100 and 200. 

Once the standard deviation was computed, the mean hyperparameters for inaccurate 

priors for loadings were created by adding/subtracting .5sd from the true composite 

reliability (0.87) and calculating the values of loadings that would produce this value of 
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composite reliability. The calculation of the mean hyperparameter for loadings with 

positive bias and informativeness based on Nprior = 100 is illustrated next. 

 At Nprior = 100 the true composite reliability is .87, and the standard deviation of 

the distribution of composite reliability is 0.0407. The positively biased central tendency 

for the inaccurate priors for composite reliability with .5sd of bias in the expectation at 

Nprior = 100 is computed as .87+.5(0.0407) = 0.89. Plugging in 0.89XXρ = , ( ) 1Var η = , 

and .4286εθ =  into 
2

2

( ) ( )

( ) ( )

i
XX

i

Var

Var ε

λ ηρ
λ η θ

Σ=
Σ + Σ

 yields the following equation to be solved 

for iλ :
2 2

2 2

( ) 1 (3 )
0.89

( ) 1 .4286 (3 ) 1.2585

i i

i i

λ λ
λ λ

Σ= =
Σ + Σ +

2 2(3 ) .89[(3 ) 1.2585]i iλ λ⇒ = +  

2 2 2 29 .89 9 .89 1.2858 (9 .89 9) 1.120 0.99 1.120i i i iλ λ λ λ⇒ = ⋅ + ⋅ ⇒ − ⋅ = ⇒ =  

2 1.120
1.08 1.08

0.99
i iλ λ= = ⇒ = . The mean hyperparameter for inaccurate priors for 

loadings that produces composite reliability with .5sd bias at Nprior = 100 is 1.08. In the 

model fitting step in each replication the loading of the first indicator for each latent 

variable was set to equal the mean hyperparameter of the prior for freely estimated 

loadings. Thus, for conditions with accurate priors for loadings the first loading was fixed 

to 1, and with inaccurate priors the first loading was fixed to the inaccurate expectation 

for all loadings that stems from an inaccurate expectation of composite reliability.  

In a given condition, the direction (sign) of the relative bias was the same for the 

measurement model and the structural model. For the conditions 1-3 where the mediated 

effect γ11β21>0 the bias in mean hyperparameter of the inaccurate priors was negative, 
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whereas in condition 4 where γ11β21=0 the bias was positive. This way the simulation 

study answers questions about changes in power with negatively biased inaccurate priors 

for γ11β21>0, and changes in Type I error rate with positively biased inaccurate priors for 

γ11β21=0. Each Bayesian analysis had 1500 burn-in iterations, 3 chains, and 5000 total 

iterations per chain.  

Dependent Variables in the Simulation study 

The statistical properties used to assess point estimates and summaries of the 

mediated effect are bias, relative bias (for 11 21γ β ≠0), efficiency (conceptualized both as 

the standard error of the ML estimate and standard deviation of the posterior, and as the 

standard deviation of the point estimate/summary of 11 21γ β  over 500 replications), mean-

squared error (MSE) computed as the sum of variance and the bias squared of an 

estimator, and root mean-squared error (RMSE) computed as MSE .  

The interval estimators of the mediated effect were evaluated in terms of Type I 

error rate, power, coverage, and interval width. Type I error rate and coverage were 

assessed according to Bradley’s robustness criterion (1978). Type I error rates between 

0.025 and 0.075 were deemed reasonably close to the nominal level of 0.05, and values 

above 0.075 were considered excessive. Coverage between 0.925 and 0.975 was 

considered close enough to the nominal level of 0.95, and coverage below 0.925 was 

deemed problematic. Imbalance was computed as the difference in the number of times 

the true value fell above the upper interval limit versus below the lower interval limit, and 

was a measure of whether a method systematically overestimates or underestimates the 

value of the mediated effect. 
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Steps in the Simulation study 

The Monte Carlo study was carried out in R. A program was written to draw and 

store 500 samples from the four populations based on parameter values in Combinations 

1-4.  For each of the 500 samples per condition, ML point estimation using the package 

lavaan (Rosseel, 2012), interval computation using the package RMediation (Tofighi & 

MacKinnon, 2011), and Bayesian estimation using the packages R2WinBUGS (Sturtz, 

Ligges, & Gelman, 2005), coda (Plummer, Best, Cowles, & Vines, 2006), and WinBUGS 

(Lunn, Thomas, Best, & Spiegelhalter, 2000) were used to obtain point estimates, 

distribution of the product confidence limits, and the means, medians and HPD intervals 

from the posterior distributions.  

In addition to point and interval estimates/ summaries of the mediated effect, the 

code also computed bias, relative bias for combinations with 11 21γ β >0, and binary 

indicators for power (1 if the lower limit of the confidence/credibility interval is greater 

than zero, and 0 if zero is in the confidence/credibility interval) for combinations where 

11 21γ β >0, Type I error rate (1 if the confidence/credibility interval includes zero, and 0 if 

it doesn’t) for combinations where 11 21γ β =0, coverage (1 if the confidence/credibility 

interval includes the true value, and 0 if it doesn’t), and imbalance (there was two binary 

indicators, one if the true value is above the upper interval limit and one if the true value 

is below the interval limit, and imbalance is conceptualized as the difference in averages 

of these two binary indicators over 500 replications).  

The standard error of the estimate of 11 21γ β  and the standard deviation of the 

posterior of 11 21γ β  were recorded at each iteration (as measures of efficiency), and so 
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were the width of the confidence/credibility intervals. The second way of measuring 

efficiency of point estimates/summaries was through the standard deviation of the point 

estimates/summaries of 11 21γ β computed over the 500 replications. The MSE of an 

estimator was computed using the outputted outcome values as the sum of the variance 

and the bias squared of that estimator
2varMSE bias= + , and the RMSE was computed as

MSE . The steps in the simulation study are shown in a diagram in Figure 4. Appendix 

C contains sample code from the Monte Carlo study. 

 

Figure 4. Diagram of steps in the Monte Carlo Study. 

Results  

The findings are described by hypothesis. Within each of the four sections the 

findings for the point estimates/ summaries are described first, followed by the results for 

the interval estimates/ summaries.  
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Bayesian methods with diffuse priors versus ML and distribution of the product 

It was hypothesized that point and interval summaries obtained using Bayesian 

methods with diffuse priors will have comparable statistical properties to ML point 

estimates and interval estimates obtained using the distribution of the product. Statistical 

properties of point estimates/summaries are presented and described first (Table 2), 

followed by a display and description of statistical properties of interval 

estimates/summaries (Table 3). 
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Table 2 

 

Statistical properties of point estimates/ summaries of the mediated effect 

using ML and Bayesian methods with diffuse priors 

 

 bias 
relative 

bias 

efficiency 

(SE/ SD) 

efficiency  

(SD over 

reps) 

MSE RMSE 

ML 

-.000 

 .001 

-.001 

 .002 

-.001 

 .008 

-.008 

N/A 

.046 

.029 

.027 

.023 

.047 

.028 

.026 

.022 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

mean 

diffuse 

conjugate 

-.000 

 .001 

-.001 

 .002 

-.001 

 .011 

-.006 

N/A 

.046 

.029 

.027 

.023 

.047 

.029 

.026 

.022 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

median 

diffuse 

conjugate 

-.001 

-.000 

-.002 

 .002 

-.001  

-.003   

-.017 

N/A 

- 

.046 

.028 

.026 

.021 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

mean 

diffuse 

generic 

-.004 

 .002 

-.007 

 .001 

-.030  

 .014  

-.056 

N/A 

.053 

.029 

.037 

.028 

.099 

.029 

.106 

.031 

.010 

.001 

.011 

.001 

.100 

.032 

.105 

.032 

median 

diffuse 

generic 

-.001 

 .000 

-.002 

 .002 

-.007  

 .001  

-.014 

N/A 

- 

.047 

.029 

.027 

.021 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

Note. This table contains statistical properties of point estimates of the mediated effect 

using ML and point summaries of the posteriors for the mediated effect using Bayesian 

methods with diffuse (fully) conjugate and diffuse (conditionally conjugate) “generic” 

priors. The four entries in each cell pertain to the 4 parameter combinations. There is no 

relative bias for combination 4 because the true mediated effect equals 0, and there is 

only one numerical value per posterior distribution for the first definition of efficiency 

(standard deviation of the posterior). 

 

Findings for the point estimate of the mediated effect obtained using diffuse fully 

conjugate (“diffuse conjugate”) and diffuse conditionally conjugate (“diffuse generic”) 

indicate that for this set of parameter values the mean and median obtained using diffuse 

conjugate and the median obtained using diffuse generic priors have almost identical 
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bias, relative bias, efficiency, and MSE to ML estimates of the mediated effect. The mean 

of the posterior obtained using diffuse generic priors has higher bias and relative bias 

than the ML estimate and was less efficient than other point estimators/summaries in 

combinations 1, 3, and 4. All methods had identical RMSE values for the four 

combinations, except the mean of the posterior obtained using diffuse generic priors, 

which had a higher RMSE in combinations 1, 3, and 4 (Figure 5). 

 
Figure 5. Plot of RMSE of the point estimates and summaries (mean and median) of the 

posterior for the mediated effect. The mean and median of the posterior with diffuse 

conjugate priors (“Diff Conj”) and the median of the posterior with diffuse generic priors 

(“Diff Gen”) have identical RMSE to ML estimates. The mean of the posterior with 

diffuse generic priors has the highest RMSE. 

 

The mean is more influenced by outliers than the median, and one concern 

regarding this finding was that the iterations used to approximate the posterior contained 

some draws before the chains had converged. In order to verify if this was the case, the 

condition with the highest relative bias (combination 3) and diffuse generic priors was 

rerun with 3 chains, 15000 burn-in iterations per chain (instead of 1500), and 50000 total 
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iterations per chain (instead of 5000). The values of bias (-.006) and relative bias (-.053) 

in the posterior mean from the analyses with 15000 burn-in iterations and 50000 retained 

draws were almost identical between to those reported in Table 2 for those with 1500 

burn-in iterations and 5000 retained draws (-.007 and -.056 for bias and relative bias, 

respectively). Thus the finding that the posterior mean is a more biased point summary of 

the mediated effect than the posterior median was not due to the mean of the posterior 

being computed from a mixture of draws including draws before convergence, and/or an 

insufficient number of MCMC total draws. A visual inspection of posterior distributions 

of the mediated effect obtained with diffuse generic priors revealed a positive skew, thus 

explaining why the posterior mean is further away from the bulk of the posterior than the 

posterior median. Note that the largest value of relative bias for all point summaries is 

still less than 2%, and that the mean of the posterior obtained using diffuse generic priors 

did not have excessive relative bias, i.e., relative bias above 10% as defined by Kaplan 

(1988), however the mean of the posterior using diffuse generic priors was a worse 

choice relative to the median of the same posterior, both point summaries of posteriors 

using diffuse conjugate priors, and the ML estimate. Thus, if deciding between ML and 

Bayesian methods with diffuse priors for computing point summaries for the mediated 

effect, it is possible to attain the same statistical properties that ML has at N = 400 by 

using Bayesian methods with diffuse priors, however, the choice of diffuse prior and 

point summary makes a small difference.  
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Table 3  

 

Properties of interval estimates/ summaries of the mediated effect using 

the distribution of the product and Bayesian methods with diffuse priors 

 

 power 
Type I 

error rate 
Coverage 

Interval 

width 
Imbalance 

distribution 

of the 

product 

.774 

1 

1 

N/A 

N/A 

N/A 

N/A 

.030 

.948 

.960 

.966 

.962 

.184 

.115 

.110 

.092 

.008 

.008 

.022 

-.022 

diffuse 

conjugate 

.770 

1 

1 

N/A 

N/A 

N/A 

N/A 

.018 

.948 

.952 

.954 

.974 

.181 

.112 

.106 

.092 

.012 

.014 

.036 

-.010 

diffuse 

generic 

.760 

1 

.996 

N/A 

N/A 

N/A 

N/A 

.022 

.952 

.956 

.956 

.972 

.201 

.113 

.132 

.112 

.008 

.016 

.032 

-.016 

Note. This table contains the statistical properties of interval estimates of the mediated 

effect using the distribution of the product and interval summaries of the posteriors for 

the mediated effect using Bayesian methods with diffuse (fully) conjugate and diffuse 

(conditionally conjugate) “generic” priors. The four entries in each cell pertain to the 4 

parameter combinations. In combination 4 the true mediated effect equals 0, so it is the 

only combination with values for Type I error rate instead of power. 

 

Results for interval properties show that Bayesian HPD intervals obtained using 

diffuse conjugate and diffuse generic priors have comparable power and coverage values 

to confidence intervals obtained using the distribution of the product. Note that the 

findings for power come from combination 1 where the distribution of the product had 

power of .774, and in the remaining two combinations where the mediated effect was 

nonzero power for distribution of the product confidence limits was equal to 1 so there 

was no room for Bayesian HPD intervals to have higher power than the distribution of 

the product. Findings from combination 4 where the true mediated effect was zero show 

that Type I error rates for the distribution of the product confidence intervals were 
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already below 0.05, however, they were even lower for Bayesian HPD intervals with 

diffuse conjugate and diffuse generic priors. Interval width values are identical for 

distribution of the product confidence intervals and Bayesian HPD intervals with diffuse 

conjugate priors, but higher for HPD intervals with diffuse generic priors. Imbalance was 

the only outcome for which distribution of the product confidence limits had the best 

performance, however, this was only the case when the true mediated effect was positive. 

When the true mediated effect was positive, all methods tended to produce intervals for 

which the true value of the mediated effect was above the upper limit more often than it 

was below the lower limit, but confidence intervals using the distribution of the product 

had fewer instances of this imbalance than Bayesian HPD intervals. When the true 

mediated effect was zero, Bayesian HPD intervals with diffuse conjugate and diffuse 

generic priors had lower absolute values of imbalance than distribution of the product 

confidence limits. 

Overall, the findings suggest that the distribution of the product confidence 

intervals and Bayesian HPD intervals for the mediated effect have comparable statistical 

properties. However, the mean of the posterior obtained using “diffuse generic” priors as 

a point summary of the mediated effect leads to more bias and less efficiency than ML 

point estimation. Thus, when using diffuse priors, it is recommended to use the median as 

a point summary, and to opt for “diffuse conjugate” priors when possible. These choices 

yield comparable statistical properties to estimates using ML and the distribution of the 

product, while offering the benefit of a probabilistic interpretation. 
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Bayesian methods with accurate informative priors versus ML and distribution of 

the product 

It is clear without a simulation study that Bayesian methods with accurate 

informative priors for the structural and measurement parameters with Nprior = 200 worth 

of information should have the best statistical properties out of all methods in the study. 

However, it is not known by how much prior information improves bias and efficiency 

for point summaries, and power, Type I error rate, coverage, imbalance, and interval 

width for interval summaries. This study explored the amount of improvement in 

statistical properties of point and interval summaries of the mediated effect with the 

addition of accurate prior information about both measurement and structural parameters. 

A comparison of statistical properties of point estimates using ML and the mean 

and median of posteriors obtained using accurate priors showed that Bayesian point 

summaries were more efficient, but ML estimates had lower bias and relative bias in the 

majority of cases, although not always (Table 4). This led to ML and Bayesian methods 

having comparable levels of MSE = 0 for the four combinations. RMSE values of 

Bayesian methods were slightly lower than RMSE values of ML estimates. The relative 

bias for all methods never exceeded 3%, but in the majority of combinations was slightly 

higher for Bayesian methods relative to ML. Furthermore, there was no consistent pattern 

of differences between the posterior mean and the median for a given combination at 

fixed Nprior; the posterior mean was less biased than the posterior median in combination 

1, the median was less biased than the mean in combinations 2 and 3, and the mean and 

median point summaries had comparable bias in combination 4. From these results it 

would appear that on average, the median is less biased than the mean, however, in the 
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absence of a clear pattern it is difficult to make recommendations about which point 

summary to use to avoid bias in the mediated effect. Findings for these parameter values 

suggest that ML has lower bias than Bayesian methods with accurate informative priors, 

Bayesian methods with accurate informative priors are more efficient than ML, and if the 

MSE and RMSE are the only criteria then Bayesian methods with accurate informative 

priors are only slightly better than ML estimation. 
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Table 4  

 

Properties of point estimates/ summaries of the mediated effect using 

ML and Bayesian methods with accurate priors 

 

 bias 
relative 

bias 

efficiency 

(SE/ SD) 

efficiency  

(SD over 

reps) 

MSE RMSE 

ML 

-.000 

  .001 

-.001 

  .002 

-.001 

 .008 

-.008 

N/A 

.046 

.029 

.027 

.023 

.047 

.028 

.026 

.022 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

mean 

accurate 

Nprior = 

100 

 .000 

 .003 

 .002 

 .002 

.000 

.022 

.014 

N/A 

.040 

.025 

.024 

.020 

.035 

.023 

.021 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

median 

accurate 

Nprior = 

100 

-.001 

 .001 

 .001 

 .002 

-.005 

.012 

.004 

N/A 

- 

.035 

.023 

.021 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

mean 

accurate 

Nprior = 

200 

-.000 

 .003 

 .002 

 .001 

-.002 

.023 

.016 

N/A 

.036 

.023 

.022 

.018 

.028 

.019 

.018 

.016 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

median 

accurate 

Nprior = 

200 

-.001 

 .002 

 .001 

 .001 

-.008 

.014 

.007 

N/A 

- 

.028 

.019 

.018 

.015 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

Note. This table contains statistical properties of point estimates of the mediated effect 

using ML and point summaries of the posteriors for the mediated effect using Bayesian 

methods with accurate priors based on Nprior = 100 and 200. The four entries in each cell 

pertain to the 4 parameter combinations. There is no relative bias for combination 4 

because the true mediated effect equals 0, and there is only one numerical value per 

posterior distribution for efficiency defined as the average standard error of the mediated 

effect or average standard deviation of the posterior for the mediated effect. 

 

As expected, Bayesian HPD intervals obtained using accurate priors had more 

power, lower Type I error rates, higher coverage, lower interval width, and less 

imbalance than distribution of the product confidence intervals (Table 5). As in the 

diffuse case, there was no way of evaluating whether Bayesian methods with accurate 
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priors have higher power than ML in combinations 2 and 3 because power using ML was 

equal to 1. Thus the finding that Bayesian methods can increase power by .132 (17%) 

when the accurate prior has the weight of 25% of the likelihood, and by .192 (25%) when 

the accurate prior has the weight of 50% of the likelihood is based on only one parameter 

combination. Also, it is worth noting that whereas the Type I error rates and coverage of 

the distribution of the product confidence limits were within Bradley’s (1978) robustness 

criterion (i.e., between 0.025 and 0.075 for Type I error rate, and between 0.925 and 

0.975 for coverage), the Type I error rates of HPDs with accurate priors was lower than 

the robustness criterion (i.e., below 0.025) and coverage was above the robustness 

criterion (i.e., above 0.975) in three out of the four parameter combinations. The 

decreases in interval width for HPDs relative to distribution of the confidence limits were 

between 13-15% when the accurate prior had 25% of the weight of the likelihood, and 

between 20-24% when the accurate prior had 50% of the weight of the likelihood. 
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Table 5  

 

Properties of interval estimates/ summaries of the mediated effect using the distribution 

of the product and Bayesian methods with accurate priors 

 

 power 
Type I 

error rate 
Coverage 

Interval 

width 
Imbalance 

distribution 

of the 

product 

.774 

1 

1 

N/A 

N/A 

N/A 

N/A 

.03 

.948 

.960 

.966 

.962 

.184 

.115 

.110 

.092 

.008 

.008 

.022 

-.022 

accurate 

Nprior = 100 

.906 

1 

1 

N/ A 

N/A 

N/A 

N/A 

.008 

.972 

.968 

.980 

.990 

.156 

.099 

.095 

.080 

.004 

.000 

.012 

-.006 

accurate 

Nprior = 200 

.966 

1 

1 

N/ A 

N/A 

N/A 

N/A 

.008 

.972 

.982 

.984 

.990 

.140 

.090 

.087 

.072 

.004 

-.002 

.012 

-.006 

Note. This table contains the statistical properties of interval estimates of the mediated 

effect using the distribution of the product and interval summaries of the posteriors for 

the mediated effect using Bayesian methods with accurate priors based on Nprior = 100 

and 200. The four entries in each cell pertain to the 4 combinations. Note that only 

combination 4 has a mediated effect equal to 0, thus it is the only combination with 

values for Type I error rate instead of power.  

 

Findings suggest that using Bayesian methods with accurate informative priors 

led to slightly more bias and higher efficiency of point summaries of the posterior for the 

mediated effect relative to ML estimates of the mediated effect. Bayesian HPD intervals 

with accurate priors had Type I error rates closer to 0, power and coverage closer to 1, 

interval width that was at least 13% lower, and less imbalance relative to distribution of 

the product confidence limits. An examination of bias in the posterior mean and median 

for a given parameter combination showed that the mean was less biased then the median 

in combination 1, in combinations 2 and 3 the median was less biased than the mean, and  

in comb 4 they were equivalent. From these results it would appear that the median is 

might be less biased than the mean, however, more parameter combinations would need 
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to be studied in order to make any recommendations about which point summary is less 

biased with accurate informative priors. 

Bayesian methods with inaccurate informative priors versus ML and distribution of 

the product 

Conversely, it appears intuitive that Bayesian methods with inaccurate 

informative priors for the structural and measurement parameters with Nprior = 200 worth 

of information would have the worst statistical properties out of all the methods in the 

study. It is also unclear how bad the statistical properties of the mediated effect are with 

Nprior = 100 and 200 with inaccurate priors for the measurement and/or structural 

parameters. This study quantified the risks of using inaccurate informative priors that 

have the weight of a quarter and a half of the likelihood. 

Similar to the accurate prior case, the comparison of ML to Bayesian methods 

with inaccurate priors suggests that ML point estimates had less bias and relative bias, 

but the Bayesian methods were more efficient (Table 6). However, even with inaccurate 

priors that carried half of the weight of the likelihood, the relative bias for Bayesian point 

summaries did not exceed 5% for any of the parameter combinations. If MSE and RMSE 

are the only criteria for selecting between the two methods, then Bayesian methods with 

inaccurate priors would be a better choice than ML in most parameter combinations. 

However, the range of differences between RMSE of ML and Bayesian methods in Table 

6 is between 0 and .032, and in the absence of guidelines about differences in RMSE that 

make on method superior to another, such differences in RMSE could be considered 

negligible, thus implying that the two methods have comparable bias and efficiency. 
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Table 6  

 

Statistical properties of point estimates/ summaries of the mediated effect 

using ML and Bayesian methods with inaccurate priors for structural and 

measurement parameters 

 

 bias 
relative 

bias 

efficiency 

(SE/ SD) 

efficiency  

(SD over 

reps) 

MSE RMSE 

ML 

-.000 

  .001 

-.001 

  .002 

-.001 

 .008 

-.008 

N/A 

.046 

.029 

.027 

.023 

.047 

.028 

.026 

.022 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

mean 

inaccurate 

Nprior = 

100 

-.003 

-.001 

-.003 

.006 

-.023 

-.012 

-.021 

N/A 

.040 

.025 

.024 

.021 

.035 

.023 

.022 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

median 

inaccurate 

Nprior = 

100 

-.003 

-.003 

-.004 

.006 

-.028 

-.022 

-.030 

N/A 

- 

.035 

.023 

.022 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

mean 

inaccurate 

Nprior = 

200 

-.004 

-.002 

-.003 

.006 

-.036 

-.020 

-.027 

N/A 

.036 

.023 

.022 

.019 

.029 

.019 

.018 

.016 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

median 

inaccurate 

Nprior = 

200 

-.005 

-.003 

-.004 

.006 

-.042 

-.029 

-.035 

N/A 

- 

.029 

.019 

.018 

.016 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

Note. This table contains statistical properties of point estimates of the mediated effect 

using ML and point summaries of the posteriors for the mediated effect using Bayesian 

methods with inaccurate priors for both measurement and structural parameters based on 

Nprior = 100 and 200. The four entries in each cell pertain to the parameter 4 

combinations. There is no relative bias for combination 4 because the true mediated 

effect equals 0, and there is only one numerical value per posterior distribution for the 

first definition of efficiency. 

 

Even though the inaccurate priors in combinations 1-3 that had a positive true 

mediated effect had negatively biased mean hyperparameters, Bayesian HPDs still had 

higher power than the distribution of the product confidence limits (Table 7). Also, in 

combination 4 where the true mediated effect was zero, the Type I error rates became 
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lower with more informativeness, despite the fact that the inaccurate priors in this 

combination were positively biased. Thus, it appears that .5sd of negative bias did not 

produce lower power, nor did .5sd of positive bias produce excessive Type I error rates.  

Table 7  

 

Properties of interval estimates/ summaries of the mediated effect using the 

distribution of the product and Bayesian methods with inaccurate priors for 

structural and measurement parameters 

 

 power 
Type I 

error rate 
Coverage 

Interval 

width 
Imbalance 

distribution 

of the 

product 

.774 

1 

1 

N/A 

N/A 

N/A 

N/A 

.03 

.948 

.960 

.966 

.962 

.184 

.115 

.110 

.092 

 .008 

 .008 

 .022 

-.022 

inaccurate 

both 

Nprior = 100 

.890 

1 

1 

N/A 

N/A 

N/A 

N/A 

.028 

.960 

.954 

.968 

.972 

.155 

.097 

.093 

.082 

.012 

.018 

.022 

-.028 

inaccurate 

both 

Nprior = 200 

.952 

1 

1 

N/A 

N/A 

N/A 

N/A 

.018 

.976 

.968 

.978 

.982 

.139 

.088 

.085 

.074 

.012 

.020 

.018 

-.018 

Note. This table contains statistical properties of interval estimates of the mediated effect 

using the distribution of the product and interval summaries of the posteriors for the 

mediated effect using Bayesian methods with inaccurate priors for both measurement and 

structural parameters based on Nprior = 100 and 200. The four entries in each cell pertain 

to the 4 parameter combinations. The true mediated effect in combination 4 equals 0, thus 

it is the only combination with values for Type I error rate instead of power.  

 

Coverage for Bayesian methods with inaccurate priors was within Bradley’s 

robustness criterion (1978), i.e., between .925 and .975, which is lower than coverage for 

Bayesian methods with accurate priors and the same levels of informativeness. Thus, the 

inaccuracy in the priors seems to have reduced the tendency Bayesian methods have that 

with more informative accurate priors coverage goes to 1. Interval width was lower for 
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Bayesian methods with informative priors than for distribution of the product confidence 

limits, but imbalance tended to be higher in the majority of combinations. 

The findings suggest that inaccuracy in the mean hyperparameters of informative 

priors has undesirable effects in terms of bias and relative bias for point summaries and 

imbalance (and potentially coverage) for interval summaries of the mediated effect, 

however, even with inaccurate priors that have 50% of the weight of the likelihood the 

relative bias remained below 5% and imbalance was below 4%. Despite the inaccuracy of 

the mean hyperparameters, more informativeness in the prior decreased interval width 

and led to Type I error rates tending toward zero, and power tending toward 1.  

Information in the priors for structural paths versus loadings 

It is expected that a .5sd inaccuracy in the expectation for structural paths will 

have more bearing on the statistical properties of the point and interval summaries of the 

mediated effect than a .5sd inaccuracy in the expectation for composite reliability. A 

comparison of statistical properties of the point summaries for the mediated effect at a 

given size of Nprior partially supported the hypothesis that inaccurate priors for structural 

parameter lead to worse statistical properties than inaccurate priors for measurement 

model parameters when the prior expectations for structural parameters and composite 

reliability are .5sd away from the simulated values (Table 8). At a fixed value of Nprior 

and for a given point summary (mean or median), the amount of bias and relative bias 

was larger if the inaccurate priors were assigned to structural than to measurement model 

parameters.  
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Table 8  

 

Properties of point estimates/ summaries of the mediated effect using ML and Bayesian methods with 

inaccurate priors 

 bias relative bias efficiency (SE/ SD) 
efficiency  

(SD over reps) 
MSE RMSE 

ML 

-.000 

  .001 

-.001 
  .002 

-.001 

 .008 

-.008 
N/A 

.046 

.029 

.027 

.023 

.047 

.028 

.026 

.022 

.002 

.001 

.001 

.000 

.045 

.032 

.032 

.000 

 Nprior = 100  

mean 

inaccurate 

measurement 

.002 

.005 

.004 

.002 

.021 

.042 

.032 

N/A 

.040 

.026 

.024 

.020 

.036 

.023 

.022 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

median inaccurate 

measurement 

.002 

.004 

.003 

.001 

.016 

.032 

.023 

N/A 

- 

.036 

.023 

.022 

.017 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

mean 

inaccurate 

structural 

-.005 

-.004 
-.005 

.006 

-.044 

-.032 
-.040  

N/A 

.039 

.025 

.024 

.021 

.034 

.022 

.021 

.019 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

median inaccurate 

structural 

-.006 

-.005 

-.006 
.006 

-.048 

-.042 

-.049 
N/A 

- 

.034 

.022 

.021 

.018 

.001 

.001 

.000 

.000 

.032 

.032 

.000 

.000 

 Nprior = 200  

mean 

inaccurate 

measurement 

.002 

.005 

.004 

.001 

.019 

.045 

.036 

N/A 

.036 

.023 

.022 

.018 

.030 

.020 

.019 

.015 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

median inaccurate 

measurement 

.002 

.004 

.003 

.001 

.013 

.035 

.028 
N/A 

- 

.029 

.020 

.019 

.015 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

mean 

inaccurate 

structural 

-.007 

-.005 
-.006 

.006 

-.058 

-.042 
-.048 

N/A 

.035 

.023 

.022 

.019 

.028 

.019 

.018 

.017 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

median inaccurate 

structural 

-.008 

-.006 
-.007 

.006 

-.063 

-.051 
-.056 

N/A 

- 

.028 

.019 

.018 

.016 

.001 

.000 

.000 

.000 

.032 

.000 

.000 

.000 

Note. Table 8 contains statistical properties of point estimates of the mediated effect using ML and point 

summaries of the posteriors for the mediated effect using Bayesian methods with inaccurate priors for 

measurement or structural parameters based on Nprior = 100 and 200. The four entries in each cell pertain to 

the 4 parameter combinations. There is no relative bias for combination 4 because the true mediated effect 

equals 0, and there is only one numerical value per posterior for the first definition of efficiency (standard 

deviation of the posterior). 
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However, the direction (sign) of the bias was different too. Inaccurate priors in the 

measurement model led to positive bias for all four combinations, even in combination 4 

where the bias in the priors was negative. Inaccurate priors in the structural model always 

led to bias in the same direction as the bias of the mean hyperparameter of the normal 

prior. Figure 6 shows values of bias of the mean and median of the posterior for the 

mediated effect as a function of the sign of the bias in the mean hyperparameter of the 

normal priors for structural paths and loadings. Black dots represent combinations where 

only measurement model parameters had inaccurate priors, and red dots represent 

combinations where only structural parameters had inaccurate priors.  

 
Figure 6. Bias due to inaccurate priors for structural and measurement model parameters. 

This plot contains values of bias in the point summaries (mean and median) of the 

mediated effect at Nprior = 100 and 200 as a function of the sign of the bias in the mean 

hyperparameter of the normal priors for loadings (“Measurement”, black dots) and 

structural (“Structural”, red dots) parameters. 

 

Recall that in combinations 1-3 the bias in the normal priors was negative in order 

to evaluate the reduction in power with negatively biased prior expectations for structural 

parameters and composite reliability. In combination 4 the bias in the normal priors was 
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positive in order to evaluate the increase in Type I error rates with positive bias in the 

prior expectations about structural parameters and composite reliability. With negatively 

biased prior expectations for structural parameters, the bias in the point summaries for the 

mediated effect is also negative. Conversely, with positively biased prior expectations for 

structural parameters, the bias in the mediated effect is positive. However, regardless of 

whether the expectation for composite reliability (i.e. measurement model parameters) is 

positively or negatively biased, the resulting bias in point summaries for the mediated 

effect is always positive. For example, recall that inaccurate priors in combinations 1-3 

have negatively biased mean hyperparameters that underestimate composite reliability 

and underestimate values of structural paths; looking at the part of table 8 pertaining to 

combination 1 at Nprior = 200, the bias for the posterior mean of the mediated effect when 

the measurement model parameters have inaccurate priors is positive (0.002), and the 

bias for the posterior mean of the mediated effect when the structural parameters have 

inaccurate priors is negative (-0.007). In other words, with negative bias in the inaccurate 

priors (conditions 1-3), point summaries obtained using inaccurate priors for the 

measurement model have positive bias (i.e. bias in the opposite direction than bias in the 

prior), and point summaries obtained using inaccurate priors for the structural model have 

negative bias (i.e., bias in the same direction as bias in the prior).  

The biggest difference in absolute value of relative bias produced by inaccurate 

priors in the measurement versus structural parameters was 5%, and even for this 

parameter combination all point summaries had relative bias below 10%. Thus, .5sd of 

bias in the hyperparameters of priors for measurement and structural model parameters 

does produce more bias if the inaccurate priors are for structural instead of measurement 
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model parameters. Point summaries following estimation with inaccurate priors for the 

measurement versus structural parameters were equally efficient, and even though 

Bayesian methods had lower values of RMSE, the difference in RMSE between ML and 

Bayesian methods with inaccurate priors was at most .032. Bayesian point summaries 

with inaccurate priors were more biased and more efficient than ML estimates. 

Findings for point summaries partially support the hypothesis that .5sd of bias has 

more severe consequences for prior expectations for structural parameters than prior 

expectations about composite reliability (i.e., measurement model parameters). That is, 

inaccurate priors for structural parameters led to more bias and relative bias than 

inaccurate priors for loadings, however the efficiency of Bayesian point summaries 

remained comparable regardless of which part of the model was assigned inaccurate 

priors. Another important finding that emerged is that inaccurate priors for loadings led to 

positive bias regardless of the sign of the bias in the hyperparameter of the prior, whereas 

the direction of the bias in the point summary following estimation with inaccurate priors 

for structural parameters is the same as the direction of bias in the mean hyperparameter 

of the inaccurate prior for the structural path. 

 The hypothesis that structural bias is more detrimental than measurement bias for 

interval summaries of the mediated effect was partially supported. Inaccurate priors for 

structural parameters led to lower power in combination 1 (in combinations 2 and 3 all 

methods had power of 1) and more imbalance than inaccurate priors for measurement 

parameters (Table 9). The inaccurate priors of .5sd did not produce any instances of 

power below 0.8 or of Type I error rates above 0.05; recall that the direction of the 

inaccuracy in the mean hyperparameters was designed to decrease power in combinations 
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with the true mediated effect above 0, and to increase Type I error rate in the combination 

with the true mediated effect equal to zero. The inaccuracy of priors for the structural 

parameters led to Type I error rates and coverage either within or closer to limits 

Bradley’s robustness criterion. The Type I error rates with inaccurate priors for 

measurement parameters was practically zero, and the coverage was closer to 1 than 

when priors were inaccurate for the structural parameters. Thus, the inaccuracy in the 

structural model combated the tendency of Bayesian methods with accurate informative 

priors to have Type I error rates of 0 and coverage of 1. The inaccuracy in the 

measurement model did not change this tendency. Bayesian HPDs with inaccurate priors 

for structural parameters had lower interval width than HPDs with inaccurate priors for 

measurement parameters. Finally, even with inaccurate priors for either measurement or 

structural parameters, Bayesian HPDs had higher power and lower interval width than the 

distribution of the product confidence limits. 
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Table 9  

 

Properties of interval estimates/ summaries of the mediated effect using the 

distribution of the product and Bayesian methods with inaccurate priors 

 

 power 
Type I 

error rate 
Coverage 

Interval 

width 
Imbalance 

distribution 

of the 

product 

.774 

1 

1 

N/A 

N/A 

N/A 

N/A 

.03 

.948 

.960 

.966 

.962 

.184 

.115 

.110 

.092 

 .008 

 .008 

 .022 

-.022 

 Nprior = 100 

inaccurate 

measurement 

.904 

1 

1 

N/A 

N/A 

N/A 

N/A 

.010 

.966 

.968 

.974 

.988 

.157 

.099 

.095 

.080 

-.002 

.000 

.006 

-.008 

inaccurate 

structural 

.892 

1 

1 

N/A 

N/A 

N/A 

N/A 

.032 

.964 

.956 

.962 

.966 

.153 

.096 

.092 

.082 

.014 

.028 

.034 

-.030 

 Nprior = 200 

inaccurate 

measurement 

.966 

1 

1 

N/A 

N/A 

N/A 

N/A 

.004 

.974 

.978 

.978 

.994 

.142 

.091 

.087 

.072 

.002 

-.010 

.006 

-.002 

inaccurate 

structural 

.950 

1 

1 

N/A 

N/A 

N/A 

N/A 

.028 

.978 

.964 

.976 

.972 

.138 

.087 

.084 

.074 

.018 

.028 

.024 

-.028 

Note. This table contains statistical properties of interval estimates of the mediated effect 

using the distribution of the product and interval summaries of the posteriors for the 

mediated effect using Bayesian methods with inaccurate priors for measurement or 

structural parameters based on Nprior = 100 and 200. The four entries in each cell pertain 

to the 4 combinations. In combination 4 the true mediated effect equals 0, thus it is the 

only combination with values for Type I error rate instead of power.  

 

 Overall findings suggest that .5sd of inaccuracy is more detrimental when it 

occurs in the prior expectations for structural parameters than in prior expectations for 

composite reliability: point summaries have more bias and relative bias, power is lower, 

and imbalance increases. Bias in priors for structural parameters led to lower coverage 
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and higher Type I error rate than bias in the loadings; however, for the amount and type 

of bias tested in this study this decrease did not produce Type I error rate above 0.05 nor 

coverage below 0.95. Another important findings is that the direction of bias in the 

mediated effect reflects the direction of the bias in the mean hyperparameters of the 

structural parameters, and the bias in the mediated effect was positive regardless of the 

direction of inaccuracy in the expectation about measurement parameters.  
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CHAPTER 3 

DISCUSSION 

The Monte Carlo study was designed to answer four questions about the statistical 

properties of the mediated effect in the single mediator model with latent variables: what 

are the risks and benefits of switching to the Bayesian framework for computing the 

mediated effect, what are the benefits in the best case scenario in this study when priors 

are accurate and most informative, what are the risks in the worst case scenario when 

priors are innaccurate and most informative, and does the same amount of bias in the 

expectations about structural or measurement model parameters have more bearing on 

the statistical properties of the point and interval summaries of the mediated effect? 

Bayesian methods with diffuse fully conjugate priors had statistical properties that 

were as good as those using ML estimation, but switching to the Bayesian framework 

gives the benefit of probabilistic interpretations. However, it is not possible to specify 

fully conjugate priors in all software packages. Findings from this study show that when 

using diffuse generic priors (as defined in this study), it is better to use the posterior 

median instead of the posterior mean as the point summary for the mediated effect.  

In the best case scenario tested in this study, point summaries from Bayesian 

methods with accurate priors that carry 25% and 50% of the weight of the likelihood 

were more biased and more efficient than ML estimates, and interval summaries were at 

least 13% and up to 24% narrower than distribution of the product confidence limits. The 

increases in power with the use of accurate informative priors described in this study 

ranged between .132 (17%) and .192 (25%). Type I error rates tended toward zero while 

coverage tended toward 1 with increases in the amount of accurate prior information. The 
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tendency of Bayesian credibility intervals with accurate informative priors to have Type I 

error rates equal to zero and coverage equal to 1 also occurs in the single mediator model 

with manifest variables (Miočević, MacKinnon, & Levy, 2016). Even though Type I 

error rates below 0.025 and coverage above 0.975 are outside of what this study defines 

as nominal values, this is not necessarily a limitation of Bayesian methods. It is easy to 

understand why Type I error rates above 0.075 and coverage below 0.925 are a problem, 

however, it is harder to decide whether lower than nominal Type I error rates and 

overcoverage are undesirable. If one considers it important that the method has nominal 

values of criteria, then Type I error rates below nominal values and overcoverage are a 

problem, however, if the goal is to minimize false positives and produce accurate 

intervals for a parameter, then this situation is more desirable than having empirical Type 

I error rates and coverage equal to nominal values.  

The hypothesis that Bayesian methods with the most informative inaccurate priors 

would have the worst statistical properties was only partly supported: bias and relative 

bias increased with inaccurate priors, but relative bias was never above 4.2%, and HPD 

intervals had higher imbalance than distribution of the product confidence limits. 

Somewhat surprisingly, even with inaccurate priors, Bayesian methods had higher power 

than ML estimation, and satisfactory Type I error rates and coverage. This finding makes 

sense given that even the inaccurate priors in conditions where power was tested had 

positive mean hyperparameters. Accurate and inaccurate priors for the mediated effect, 

computed as the product of draws from priors for γ11 and β21, were visually inspected for 

combination 1 at Nprior = 100 and Nprior = 200 (Figure 7). The goal was to evaluate the 

difference these priors place on negative and zero values of γ11β21. At Nprior = 100, the 
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induced accurate prior for γ11β21 places 10% of its weight on the area γ11β21. ≤ 0, and the 

inaccurate prior places 20% on the same area. At Nprior = 200 the accurate prior for γ11β21 

places 2% on the area γ11β21. ≤ 0, and the inaccurate prior places 9% of its weight on the 

same area. Even though the “inaccurate prior” is inaccurate in the sense that the central 

tendency is not correct, it still places most of the density above 0, so it’s actually correct 

in saying that the mediated effect is most likely positive. Thus, one conclusion that 

emerged from this finding is that the accuracy of a prior distribution depends on the 

inferential goals of the analysis. In this case, the goals were to test the bias of the point 

summary of the mediated effect, and to evaluate power (i.e., test whether the 0 is in the 

credibility interval for the mediated effect) with inaccurate priors. The “inaccurate priors” 

in this study were inaccurate for the purposes of estimating the value of the mediated 

effect without bias, but not for the purposes of testing whether the credibility interval for 

the mediated effect contains 0.  

  
Figure 7. Induced accurate and inaccurate priors for the mediated effect. Induced priors 

on the mediated effect for combination 1 were computed from 1000 simulated draws 

from accurate and inaccurate priors for paths γ11 and β21. Vertical lines indicate γ11β21 = 0, 

and the difference in the area to the left of the line for the blue and the red lines indicates 

the difference in the weight these priors place on values of the mediated effect less than 

and equal to zero. 
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When looking at the statistical properties of the mediated effect with accurate and 

inaccurate priors holding condition and Nprior constant, it seems that certain statistical 

properties, such as efficiency for point estimates/summaries (Figure 9) and power (Figure 

10) and interval width (Figure 12) for interval estimates/summaries, are not as influenced 

by the accuracy of the priors (at least with the levels of inaccuracy tested in this study) as 

they are influenced by their informativeness. Relative bias (Figure 8) and imbalance 

(Figure 13), on the other hand, appear to be more dependent on the (in)accuracy in the 

hyperparameters for normal priors, and Type I error rates (Figure 10, and Tables 5 and 7) 

and coverage (Figure 11) seem to be influenced by both accuracy and informativeness. It 

is important to emphasize that all conclusions from the Monte Carlo study hold only for 

the parameter values and prior specifications used in this study, and that the statistical 

properties of posterior summaries produced with a given inaccuracy in the prior are 

dependent on the informativeness, and the statistical properties of posterior summaries 

produced with a given informativeness in the prior are dependent on the accuracy. In 

other words, accuracy and informativeness were considered separately when constructing 

the priors, however, their impact on the statistical properties of the posterior summaries 

cannot be disentangled. 
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Figure 8. Relative bias of point summaries of the mediated effect with accurate 

and inaccurate priors. DP refers to the distribution of the product. Inaccurate 

priors led to point summaries with higher absolute relative bias than accurate 

priors. 

 

 
Figure 9. Efficiency of point summaries of the mediated effect with accurate and 

inaccurate priors. DP refers to the distribution of the product. More 

informativeness in the prior led to lower efficiency. 
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Figure 10. Power and Type I error rates of interval summaries for the mediated 

effect with accurate and inaccurate priors. DP refers to the distribution of the 

product. More informativeness in the prior led to more power, and more accuracy 

and informativeness in the prior led to lower Type I error rates. 

 

 
Figure 11. Coverage of interval summaries for the mediated effect with accurate 

and inaccurate priors. DP refers to the distribution of the product. Higher accuracy 

and more informativeness led to higher coverage. 
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Figure 12. Interval width of interval summaries of the mediated effect with 

accurate and inaccurate priors. DP refers to the distribution of the product. More 

informativeness led to lower interval width. 

 

 
Figure 13. Imbalance of interval summaries of the mediated effect with accurate 

and inaccurate priors. DP refers to the distribution of the product. More accuracy 

led to less imbalance. 
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Finally, the statistical properties of the mediated effect were more affected by .5 

standard deviations of inaccuracy in the expectations about structural parameters than by 

the same amount of inaccuracy in the expectations about composite reliability of manifest 

indicators. The direction of the bias in the point summaries and of power, Type I error 

rate, and imbalance of the mediated effect followed (i.e. was the same as) the direction of 

the inaccuracy in the expectations about structural parameters, but did not follow the 

direction of the inaccuracy in the expectations about measurement parameters. In order to 

examine this finding further, the bias in the posterior summaries for the loadings was also 

inspected, and it follows the direction of the bias in the prior for loadings. It is unclear 

why the point summaries of the mediated effect have positive bias when the point 

summaries of the loadings have both positive and negative bias due to inaccurate priors. 

It is possible that the inaccurate priors for loadings induce bias in the posterior 

covariances between latent variables, and the bias in the mediated effect is due to the fact 

that the mediated effect are a function of these covariances. It would be important to 

follow up on this unusual finding and examine the mechanism behind it and find out 

whether this finding is specific to parameter combinations tested in this study or if it is a 

more general occurrence. 

One limitation of this study is that statistical properties of ML estimation were 

already fairly satisfactory at N = 400, thus there may not have been enough “room” for 

improvement to occur with Bayesian methods with accurate informative priors. 

Furthermore, the finding that inaccurate informative priors do not lead to the worst 

performance for all statistical properties of the mediated effect may not generalize to 
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situations with more than .5sd of inaccuracy in the expectations about structural paths and 

composite reliability. 

Some future directions for this line of research are to examine the benefits and 

risks of using accurate and inaccurate informative prior distributions in the same model 

with samples smaller than 400. Furthermore, it is important for the applicability of 

methodological research to consider different ways bias occurs in the measurement and 

structural models and to describe how to design factors for simulation studies that closely 

match the types of inaccurate priors that might occur in practice. Finally, some ideas that 

emerged during the writing of this dissertation, but were not pursued immediately, are to 

examine statistical properties of Bayesian methods for SEM with nonnormal indicators, 

and to explore ways of creating prior information from mediation models with manifest 

variables for Bayesian analyses of mediation models with latent variables. Bayesian SEM 

is an active area of research, and as of now, there are still no clear guidelines for 

substantive researchers about how prior information ought to be used in Bayesian 

estimation of these models without biasing the results. This dissertation is the beginning 

of a line of research aiming to create such guidelines. 
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APPENDIX A  

COVARIANCE MATRICES OF MANIFEST INDICATORS AND LATENT 

VARIABLES FOR THE SINGLE MEDIATOR MODEL WITH LATENT VARIABLES 
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Covariance matrix of manifest indicators 

 X1 X2 X3 

X1 
11

2

11 11X δλ ϕ θ+    

X2 
11 11 21X Xλ ϕ λ  

22

2

21 11X δλ ϕ θ+   

X3 
11 11 31X Xλ ϕ λ  21 11 31X Xλ ϕ λ  

33

2

31 11X δλ ϕ θ+  

Y1 
11 11 11 11X Yλ ϕ γ λ  21 11 11 11X Yλ ϕ γ λ  31 11 11 11X Yλ ϕ γ λ  

Y2 
11 11 11 21X Yλ ϕ γ λ  21 11 11 21X Yλ ϕ γ λ  31 11 11 21X Yλ ϕ γ λ  

Y3 
11 11 11 31X Yλ ϕ γ λ  21 11 11 31X Yλ ϕ γ λ  31 11 11 31X Yλ ϕ γ λ  

 

 Y1 Y2 Y3 

Y1 
11

2 2

11 11 11 11( )Y ελ γ ϕ ψ θ+ +    

Y2 2

11 11 11 11 21( )Y Yλ γ ϕ ψ λ+  
22

2 2

21 11 11 11( )Y ελ γ ϕ ψ θ+ +   

Y3 2

11 11 11 11 31( )Y Yλ γ ϕ ψ λ+  
2

21 11 11 11 31( )Y Yλ γ ϕ ψ λ+  
33

2 2

31 11 11 11( )Y ελ γ ϕ ψ θ+ +  

 

 Y4 

X1 
11 11 11 21 21 42( )X Yλ ϕ γ β γ λ+  

X2 
21 11 11 21 21 42( )X Yλ ϕ γ β γ λ+  

X3 
31 11 11 21 21 42( )X Yλ ϕ γ β γ λ+  

Y1 
11 42 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y2 
21 42 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y3 
31 42 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y4 

44

2 2 2 2

42 21 11 11 21 21 11 21 11 11 11 22( 2 ( ) )Y

ε

λ γ ϕ γ β γ ϕ β γ ϕ ψ ψ
θ

+ + + +
+
 

Y5 2 2 2

42 21 11 11 21 21 11 21 11 11 11

22 52

( 2 ( )

)

Y

Y

λ γ ϕ γ β γ ϕ β γ ϕ ψ
ψ λ

+ + +

+
 

Y6 2 2 2

42 21 11 11 21 21 11 21 11 11 11

22 62

( 2 ( )

)

Y

Y

λ γ ϕ γ β γ ϕ β γ ϕ ψ
ψ λ

+ + +

+
 

 

 

 Y5 

X1 
11 11 11 21 21 52( )X Yλ ϕ γ β γ λ+  
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X2 
21 11 11 21 21 52( )X Yλ ϕ γ β γ λ+  

X3 
31 11 11 21 21 52( )X Yλ ϕ γ β γ λ+  

Y1 
11 52 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y2 
21 52 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y3 
31 52 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y4 2 2 2

42 21 11 11 21 21 11 21 11 11 11 22 62( 2 ( ) )Y Yλ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ+ + + +  

Y5 
55

2 2 2 2

52 21 11 11 21 21 11 21 11 11 11 22( 2 ( ) )Y ελ γ ϕ γ β γ ϕ β γ ϕ ψ ψ θ+ + + + +  

Y6 2 2 2

52 21 11 11 21 21 11 21 11 11 11 22 62( 2 ( ) )Y Yλ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ+ + + +  

 

 

 Y6 

X1 
11 11 11 21 21 62( )X Yλ ϕ γ β γ λ+  

X2 
21 11 11 21 21 62( )X Yλ ϕ γ β γ λ+  

X3 
31 11 11 21 21 62( )X Yλ ϕ γ β γ λ+  

Y1 
11 62 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y2 
21 62 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y3 
31 62 11 21 21 11 11( )Y Yλ λ γ β γ γ ϕ+  

Y4 2 2 2

42 21 11 11 21 21 11 21 11 11 11 22 62( 2 ( ) )Y Yλ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ+ + + +  

Y5 2 2 2

52 21 11 11 21 21 11 21 11 11 11 22 62( 2 ( ) )Y Yλ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ+ + + +  

Y6 
66

2 2 2 2

62 21 11 11 21 21 11 21 11 11 11 22( 2 ( ) )Y ελ γ ϕ γ β γ ϕ β γ ϕ ψ ψ θ+ + + + +  

 

Covariance matrix of latent variables 

 ξ η1 η2 

ξ 11ϕ    

η

1 
11 11γ ϕ  2

11 11 11γ ϕ ψ+   

η

2 
11 21 21 11( )γ β γ ϕ+

 

11 21 21 11 11( )γ β γ γ ϕ+
 

2 2 2

21 11 11 21 21 11 21 11 11 11 222 ( )γ ϕ γ β γ ϕ β γ ϕ ψ ψ+ + + +
 

 

 

Covariance algebra for the covariance matrix of manifest indicators 
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11

2

1 1 11 1 11 1 11 11( , ) ( , )X X XCov X X Cov δλ ξ δ λ ξ δ λ ϕ θ= + + = +  

1 2 11 1 21 2 11 11 21( , ) ( , )X X X XCov X X Cov λ ξ δ λ ξ δ λ ϕ λ= + + =  

1 3 11 1 31 3 11 11 31( , ) ( , )X X X XCov X X Cov λ ξ δ λ ξ δ λ ϕ λ= + + =  

1 1 11 1 11 1 1 11 1 11 11 11 11 11( , ) ( , ) ( , ) ( )X Y X Y X YCov X Y Cov Covλ ξ δ λ η ε λ ξ η λ λ γ ϕ λ= + + = =  

1 2 11 1 21 1 2 11 1 21 11 11 21( , ) ( , ) ( , ) ( )X Y X Y X YCov X Y Cov Cov aλ ξ δ λ η ε λ ξ η λ λ ϕ λ= + + = =  

1 3 11 1 31 1 3 11 1 31 11 11 11 31( , ) ( , ) ( , ) ( )X Y X Y X YCov X Y Cov Covλ ξ δ λ η ε λ ξ η λ λ γ ϕ λ= + + = =  

1 4 11 1 42 2 4 11 2 42 11 11 21 21 11 42( , ) ( , ) ( , ) ( )X Y X Y X YCov X Y Cov Covλ ξ δ λ η ε λ ξ η λ λ γ β γ ϕ λ= + + = = +  

1 5 11 1 52 2 5 11 2 52

11 11 21 21 11 52

( , ) ( , ) ( , )

( )

X Y X Y

X Y

Cov X Y Cov Covλ ξ δ λ η ε λ ξ η λ
λ γ β γ ϕ λ

= + + =
= +

 

1 6 11 1 62 2 6 11 2 62

11 11 21 21 11 62

( , ) ( , ) ( , )

( )

X Y X Y

X Y

Cov X Y Cov Covλ ξ δ λ η ε λ ξ η λ
λ γ β γ ϕ λ

= + + =
= +

 

Note: covariance algebra for indicators X2 and X3 is omitted, as it is identical to the 

covariance algebra for X1, but with different subscripts 

11

2 2

1 1 11 1 1 11 1 1 11 11 11 11( , ) ( , ) ( )Y Y YCov Y Y Cov ελ η ε λ η ε λ γ ϕ ψ θ= + + = + +  

2

1 2 11 1 1 21 1 2 11 11 11 11 21( , ) ( , ) ( )Y Y Y YCov Y Y Cov λ η ε λ η ε λ γ ϕ ψ λ= + + = +  

2

1 3 11 1 1 31 1 3 11 11 11 11 31( , ) ( , ) ( )Y Y Y YCov Y Y Cov λ η ε λ η ε λ γ ϕ ψ λ= + + = +  

1 4 11 1 1 42 2 2 11 11 21 21 11 11 42( , ) ( , ) ( )Y Y Y YCov Y Y Cov λ η ε λ η ε λ γ β γ γ ϕ λ= + + = +  

1 5 11 1 1 52 2 5 11 11 21 21 11 11 52( , ) ( , ) ( )Y Y Y YCov Y Y Cov λ η ε λ η ε λ γ β γ γ ϕ λ= + + = +  

1 6 11 1 1 62 2 6 11 11 21 21 11 11 62( , ) ( , ) ( )Y Y Y YCov Y Y Cov λ η ε λ η ε λ γ β γ γ ϕ λ= + + = +  

Note: covariance algebra for indicators Y2 and Y3 is omitted, as it is identical to the 

covariance algebra for Y1, but with different subscripts 
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4

4

2

4 4 42 2 4 42 2 4 42 2

2 2 2 2

42 21 11 11 21 21 11 21 11 11 11 22

( , ) ( , ) ( )

( 2 ( ) )

Y Y Y

Y

Cov Y Y Cov Var ε

ε

λ η ε λ η ε λ η θ

λ γ ϕ γ β γ ϕ β γ ϕ ψ ψ θ

= + + = + =

+ + + + +
 

4 5 42 2 4 52 2 5 42 2 52

2 2 2

42 21 11 11 21 21 11 21 11 11 11 22 52

( , ) ( , ) ( )

( 2 ( ) )

Y Y Y Y

Y Y

Cov Y Y Cov Varλ η ε λ η ε λ η λ
λ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ

= + + = =

+ + + +
 

4 5 42 2 4 62 2 6 42 2 62

2 2 2

42 21 11 11 21 21 11 21 11 11 11 22 62

( , ) ( , ) ( )

( 2 ( ) )

Y Y Y Y

Y Y

Cov Y Y Cov Varλ η ε λ η ε λ η λ
λ γ ϕ γ β γ ϕ β γ ϕ ψ ψ λ

= + + = =

+ + + +
 

Note: covariance algebra for indicators Y5 and Y6 is omitted, as it is identical to the 

covariance algebra for Y4, but with different subscripts 

Covariance algebra for the covariance matrix of latent variables 

11( )Var ξ ϕ=  

1 11 1 11 11( , ) ( , )Cov Covξ η ξ γ ξ ζ γ ϕ= + =  

1 21 21 1 2 21 11 21 1

21 11 11 21 11 11 21 21 11

( , ) ( , ) ( , )

( )

Cov Cov Covξ η ξ γ ξ β η ζ γ ϕ β ξ η
γ ϕ γ β ϕ γ β γ ϕ

= + + = +
= + = +

 

2

1 11 1 11 1 11 11 11( ) ( , )Var Covη γ ξ ζ γ ξ ζ γ ϕ ψ= + + = +  

1 2 11 1 21 21 1 2 11 21 11 11 21 1

11 21 11 11 21 11 11 11 21 21 11 11

( , ) ( , ) ( , )

( )

Cov Cov Covη η γ ξ ζ γ ξ β η ζ γ γ ϕ γ β ξ η
γ γ ϕ γ β γ ϕ γ β γ γ ϕ

= + + + = +
= + = +

 

2 21 21 1 2 21 21 2 2

2 2 2

21 11 11 21 21 11 21 11 11 11 22

( ) ( , )

2 ( )

Var Covη γ ξ β η ζ γ ξ β η ζ
γ ϕ γ β γ ϕ β γ ϕ ψ ψ

= + + + +

= + + + +
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APPENDIX B  

COMPUTING AND MANUPULATING INDICATOR RELIABILITY IN THE 

MONTE CARLO STUDY 
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In order to determine the appropriate model parameters for generating a 

population with latent X, M, and Y, with three indicators per latent variable and 

indicators of the desired reliability level ρ , it was necessary to derive the variances of 

the indicators and latent variables, and to express the residual variances of indicators as 

functions of the remaining model parameters. Appendix A contains details of the 

derivation using covariance algebra and Wright’s (1934) path tracing rules expanded to 

describe tracing rules for unstandardized variables (Heise, 1975). This appendix contains 

the calculations for manipulating reliabilities of manifest indicators for a population 

where all latent variables in the model, i.e., ξ, η1, and η2 all have variances of 1, and 

where the structural coefficients γ11, β21, and γ21 are selected by the researcher. The 

desired level of reliability for a given indicator was obtained by adjusting the true values 

of residual variances ψ11 and ψ22. 

11( )Var ξ ϕ=  

2

1 11 11 11( )Var η γ ϕ ψ= +  

2 2 2

2 21 11 11 21 21 11 21 11 11 11 22( ) 2 ( )Var η γ ϕ γ β γ ϕ β γ ϕ ψ ψ= + + + +  

11

2

1 11 11( ) XVar X δλ ϕ θ= +  

22

2

2 21 11( ) XVar X δλ ϕ θ= +  

33

2

3 31 11( ) XVar X δλ ϕ θ= +  

11

2

1 11 1( ) ( )YVar Y Var ελ η θ= +  

22

2

2 21 1( ) ( )YVar Y Var ελ η θ= +  

33

2

3 31 1( ) ( )YVar Y Var ελ η θ= +  
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44

2

4 42 2( ) ( )YVar Y Var ελ η θ= +  

55

2

5 52 2( ) ( )YVar Y Var ελ η θ= +  

66

2

6 62 2( ) ( )YVar Y Var ελ η θ= +  

The formula for reliability of the indicator X1 then becomes: 

1

11

2

11 11

2

11 11

X
X

X δ

λ ϕρ
λ ϕ θ

=
+

 

Note, the formula for the reliability of indicators X2 and X3 is the analogous, so for the 

case of equally reliable indicator variables only the computation for 
11δθ from already 

chosen 11Xλ , 11ϕ , and 
1Xρ is presented. For 11 1Xλ = , 11 1ϕ = , and 

1
.7Xρ = the calculation 

of 
11δθ becomes: 

 

11

1 1
.7

1 1 δθ
⋅=

⋅ +
 

11

1
1

.7
δθ+ =  

11

1
1 .4286

.7
δθ = − =  

The formula for reliability of the indicators Y1 and Y4 then become: 

1

11

2

11 1

2

11 1

( )

( )

Y
Y

Y

Var

Var ε

λ ηρ
λ η θ

=
+

 

4

44

2

42 2

2

42 2

( )

( )

Y
Y

Y

Var

Var ε

λ ηρ
λ η θ

=
+

 

Note, the formula for the reliability of all of the manifest indicators in the model is the 

same, so the residual variances of all indicators when reliability is 0.7 is 0.4286. The 
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parameters that changes in order to maintain the variance of 1 for latent variables LM, 

and LY are the residual variances ψ11 and ψ22. The formulae for computing their values 

for the population-generating model are: 

2

11 111ψ γ= −   for 11 1ϕ =  

2 2

22 21 11 21 21 211 ( 2 )ψ γ γ β γ β= − + + for 11 1ϕ =  and 1( ) 1Var η =  
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APPENDIX C  

SAMPLE CODE FROM THE MONTE CARLO STUDY 

  



  95 

# This code was used in the Monte Carlo study for this project to generate data, separate 

# data into samples for iterations, to obtain parameter estimates using ML and the  

# distribution of the product, to obtain parameter summaries in the Bayesian framework  

# with diffuse conjugate priors, and to obtain parameter summaries in the Bayesian  

# framework with accurate informative priors for Nprior = 100.  

# The example code comes from Combination 1 of the Monte Carlo study. 

# The structure of the code is based on syntax by Dr. Roy Levy. 

 

# Data Generation 

 
# Call the packages 
 
library(MASS) 
library(lavaan) 
 
# Define the covariance matrix of the latent variab les 
 
elphi <-c(1,a,(a*b+cp),a,1,(a*cp+b),a*b+cp,(a*cp+b) ,1) 
phi <- matrix(elphi, nrow = M, ncol = M) 
 
# Define the loading matrix 
 
load<-c(loading, loading, loading, 0,0,0,0,0,0, 
        0,0,0,loading,loading,loading,0,0,0, 
        0,0,0,0,0,0,loading,loading,loading) 
lambda <- matrix(load, nrow=J,ncol=M) 
 
# Define the structural coefficients matrix 
 
cols <- c(0,a,cp,0,0,b,0,0,0) 
 
beta <- matrix(cols, nrow=M, ncol=M) 
 
# Define the covariance matrix of the errors for th e indicators 
 
miresvar <- .4286 
indresvar<-c(miresvar, 0, 0, 0,0,0,0,0,0, 
        0,miresvar,0,0,0,0,0,0,0, 
        0,0,miresvar,0,0,0,0,0,0, 
        0,0,0,miresvar,0,0,0,0,0, 
        0,0,0,0,miresvar,0,0,0,0, 
        0,0,0,0,0,miresvar,0,0,0, 
        0,0,0,0,0,0,miresvar,0,0, 
        0,0,0,0,0,0,0,miresvar,0, 
        0,0,0,0,0,0,0,0,miresvar) 
psi.x <- matrix(indresvar, nrow=J,ncol=J) 
 
var.ind <- lambda%*%phi%*%t(lambda)+psi.x 
 
# Define the model implied covariance structure of the observables 
 
cov.lat.ind<-lambda%*%phi 
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# Define the model implied covariance structure of the ALL the  
# variables 
 
  # Initiate matrix 
  covariance.latent.and.observables <- matrix(NA, n row=M+J, ncol=M+J) 
   
  # Fill in cov matrix of latents 
  covariance.latent.and.observables[1:M, 1:M] <- ph i  
   
  # Fill in cov matrix of latents with observables 
  covariance.latent.and.observables[1:M, (M+1):(M+J )] <- t(cov.lat.ind) 
  covariance.latent.and.observables[(M+1):(M+J), 1: M] <- cov.lat.ind 
   
  # Fill in cov matrix of observables 
  covariance.latent.and.observables[(M+1):(M+J), (M +1):(M+J)] <- 
 var.ind 
 
# Loop over replications and generate the data 
 
which.rep=0 
which.rep=which.rep+1 
 
for(which.rep in 1:n.reps){ 
 
# Generate multivariate normal of right size 
   
generated.data.raw <- mvrnorm(n=n, mu=rep(0, M+J), 
Sigma=covariance.latent.and.observables) 
   
# Store the generated data   
generated.data <- generated.data.raw   
   
# Label the columns  
  column.names <- c( 
    paste("Ksi", seq(1:M), sep=""), 
    paste("x", seq(1:J), sep="") 
  ) 
  colnames(generated.data) <- column.names 
   
data.file.name <- paste("gen.data.", which.rep, ".c sv", sep="") 
 
  write.csv( 
    x=generated.data, 
    file=data.file.name, 
    row.names=FALSE, 
    col.names=TRUE 
  ) 
 
} # closes loop over replications 
 

# Data Separation 

 
# Code to read in and separate the data 
# Should be called by another file 
# where the replication is contained in "which.rep"  
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# and the data folder has already been defined 
 
# Name the data file based on the replication 
data.file.name <- paste("gen.data.", which.rep, ".c sv", sep="") 
 
# Read in all the variables 
all.variables <- read.csv(paste(condition.data.fold er, data.file.name, 
sep=""), header=TRUE) 

 

 

# Analysis using ML and distribution of the product 

 
# Call the 'lavaan' library 
 
library(lavaan) 
 
# Loop over replications  
 
which.rep=0 
which.rep=which.rep+1 
 
sum.stats.all = data.frame(which.rep=rep(0, n.reps) , ab.ml=rep(0, 
n.reps), ab.ml.se=rep(0, n.reps),  
                           bias.ml=rep(0, n.reps), rel.bias.ml=rep(0, 
n.reps), ab.low.ml=rep(0, n.reps),  
                           ab.up.ml=rep(0, n.reps),  pow.ml=rep(0, 
n.reps), coverage.ml=rep(0, n.reps),  
                           typei.ml=rep(0, n.reps),  imb.ml=rep(0, 
n.reps), int.width.ml=rep(0, n.reps)) 
 
 
for(which.rep in 1:n.reps){ 
   
# Read in the data 
 
if(1==1){ 
    file.name <- "Read in and Separate Data.R" 
    source(paste(drive.letter, file.name, sep=""))   
  } 
   
# Data 
 
raw.data = read.csv(data.file.name) 
 
model <- '  
            X =~ x1 + x2 + x3 
            M =~ x4 + x5 + x6 
            Y =~ x7 + x8 + x9 
 
# direct effect 
             Y ~ c*X 
           # mediator 
             M ~ a*X 
             Y ~ b*M 
           # indirect effect (a*b) 
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             ab := a*b 
           # total effect 
             total := c + (a*b) 
         ' 
fit.ml <- sem(model, data = raw.data) 
summary(fit.ml, fit.measures = TRUE) 
 
ab.ml <- parameterEstimates(fit.ml)$est[25]  
ab.ml.se <- parameterEstimates(fit.ml)$se[25]  
 
true.ab<-t.a*t.b 
 
# bias 
bias.ml<-ab.ml-true.ab 
 
# relative bias 
rel.bias.ml<-bias.ml/true.ab 
 
 
# Distribution of the product confidence limits  
 
library(RMediation) 
 
a.ml <- parameterEstimates(fit.ml)$est[11] 
a.ml.se <- parameterEstimates(fit.ml)$se[11] 
b.ml <- parameterEstimates(fit.ml)$est[12] 
b.ml.se <- parameterEstimates(fit.ml)$se[12] 
 
dop.obj<-medci(a.ml, b.ml, a.ml.se, b.ml.se, rho = 0, alpha = 0.05, 
type = "dop", 
      plot=FALSE, plotCI=FALSE) 
 
 
ab.low.ml <- dop.obj$`97.5% CI`[[1]] 
ab.up.ml <- dop.obj$`97.5% CI`[[2]] 
 
 
# interval outcomes 
pow.ml <- NA 
if (ab.low.ml > 0 & ab.up.ml > 0) { 
  pow.ml <- 1 
} else { 
  pow.ml <- 0 
} 
coverage.ml <- NA 
if (true.ab > ab.low.ml & true.ab < ab.up.ml) { 
  coverage.ml <- 1 
} else { 
  coverage.ml<-0 
} 
typei.ml <- NA 
imb.ml <- NA 
imb.r.ml <- NA 
imb.l.ml <- NA 
  if (true.ab > ab.up.ml) { 
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    imb.r.ml <- 1  
  } else { 
    imb.r.ml <- 0 
  } 
if (true.ab < ab.low.ml) { 
  imb.l.ml <- 1  
} else { 
  imb.l.ml <- 0 
} 
imb.ml <- imb.r.ml-imb.l.ml 
int.width.ml <- ab.up.ml - ab.low.ml 
 
sum.stats <- cbind(which.rep, ab.ml, ab.ml.se,  
                   bias.ml, rel.bias.ml, ab.low.ml,   
                   ab.up.ml, pow.ml, coverage.ml,  
                   typei.ml, imb.ml, int.width.ml) 
 
sum.stats.name <- paste("sum.stats",which.rep,sep=" ") 
assign(sum.stats.name, sum.stats) 
names(sum.stats) <- sum.stats.name 
 
sum.stats.all[which.rep, ] <- sum.stats 
 
} # closes loop over replications 
 
# Write out the summary statistics 
 
write.csv( 
  x=sum.stats.all, 
  file="Summary Statistics ML Comb1.csv" 
) 

 

# Analysis using Bayesian methods with diffuse conjugate priors 

 
# Call the 'R2WinBUGS' library 
library(R2WinBUGS) 
# Loop over replications  
 
which.rep=0 
which.rep=which.rep+1 
 
sum.stats.all = data.frame(which.rep=rep(0, n.reps) , 
ab.mean=rep(0,n.reps), ab.med=rep(0,n.reps), 
                           ab.low.hpd=rep(0,n.reps) , 
ab.up.hpd=rep(0,n.reps), try.mean=rep(0,n.reps), 
                           bias.mean=rep(0,n.reps),  
bias.med=rep(0,n.reps), ab.sd=rep(0,n.reps), 
                           rel.bias.mean=rep(0,n.re ps), 
rel.bias.med=rep(0,n.reps), 
                           pow=rep(0,n.reps), typei =rep(0,n.reps), 
coverage=rep(0,n.reps), 
                           imb=rep(0,n.reps), int.w idth=rep(0,n.reps)) 
 
for(which.rep in 1:n.reps){ 
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# Read in the data 
   
  if(1==1){ 
    file.name <- "Read in and Separate Data.R" 
    source(paste(drive.letter, file.name, sep=""))   
  } 
# Define the model 
# by creating a string that is the BUGS code 
 
modelstring <- as.character(" 
 
model{ 
 
# Prior distributions 
 
# Measurement model 
 
lam.x2 ~ dnorm(0, tau.x2); 
lam.x3 ~ dnorm(0, tau.x3); 
 
lam.m2 ~ dnorm(0, tau.m2); 
lam.m3 ~ dnorm(0, tau.m3); 
 
lam.y2 ~ dnorm(0, tau.y2); 
lam.y3 ~ dnorm(0, tau.y3); 
  
tau.x1 ~ dgamma(.5, .5);  
tau.x2 ~ dgamma(.5, .5);  
tau.x3 ~ dgamma(.5, .5);  
 
sigma.x1 <-1/tau.x1;  
sigma.x2 <-1/tau.x2;  
sigma.x3 <-1/tau.x3;  
 
tau.m1 ~ dgamma(.5, .5);  
tau.m2 ~ dgamma(.5, .5);  
tau.m3 ~ dgamma(.5, .5);  
 
sigma.m1 <-1/tau.m1;  
sigma.m2 <-1/tau.m2;  
sigma.m3 <-1/tau.m3;  
 
tau.y1 ~ dgamma(.5, .5);  
tau.y2 ~ dgamma(.5, .5);  
tau.y3 ~ dgamma(.5, .5);  
 
sigma.y1 <-1/tau.y1;  
sigma.y2 <-1/tau.y2;  
sigma.y3 <-1/tau.y3;  
 
# Structural model 
tau.latx ~ dgamma(.5, .5);  
tau.res.latm ~ dgamma(.5, .5);  
tau.res.laty ~ dgamma(.5, .5);  
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a ~ dnorm(0, tau.res.latm); 
b ~ dnorm(0, tau.res.laty); 
cp ~ dnorm(0, tau.res.laty); 
 
ab <-a*b 
 
# Conditional probability of the data 
# A regression model 
 
for(i in 1:n){ 
x1.mean[i] <- 1*Ksi1[i]; 
x2.mean[i] <- lam.x2*Ksi1[i]; 
x3.mean[i] <- lam.x3*Ksi1[i]; 
 
x4.mean[i] <- 1*Ksi2[i]; 
x5.mean[i] <- lam.m2*Ksi2[i]; 
x6.mean[i] <- lam.m3*Ksi2[i]; 
 
x7.mean[i] <- 1*Ksi3[i]; 
x8.mean[i] <- lam.y2*Ksi3[i]; 
x9.mean[i] <- lam.y3*Ksi3[i]; 
 
Ksi1[i] ~ dnorm(0,tau.latx) 
 
x1[i] ~ dnorm(x1.mean[i], tau.x1); 
x2[i] ~ dnorm(x2.mean[i], tau.x2); 
x3[i] ~ dnorm(x3.mean[i], tau.x3); 
 
x4[i] ~ dnorm(x4.mean[i], tau.m1); 
x5[i] ~ dnorm(x5.mean[i], tau.m2); 
x6[i] ~ dnorm(x6.mean[i], tau.m3); 
 
x7[i] ~ dnorm(x7.mean[i], tau.y1); 
x8[i] ~ dnorm(x8.mean[i], tau.y2); 
x9[i] ~ dnorm(x9.mean[i], tau.y3); 
 
Ksi2.mean[i] <- a*Ksi1[i]; 
Ksi3.mean[i] <- cp*Ksi1[i] + b*Ksi2[i]; 
 
Ksi2[i] ~ dnorm(Ksi2.mean[i],tau.res.latm) 
Ksi3[i] ~ dnorm(Ksi3.mean[i],tau.res.laty) 
 } 
} 
 
")  
 
# Write out the BUGS code to a file 
 
BUGS.code.file.name <- "Diffuse.txt" 
write(modelstring, BUGS.code.file.name) 
write(modelstring, "temp.bug") 
 
# Define data to give to BUGS 
 
raw.data = read.csv(data.file.name) 
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n <- nrow(raw.data) 
x1 = raw.data$x1 
x2 = raw.data$x2 
x3 = raw.data$x3 
x4 = raw.data$x4 
x5 = raw.data$x5 
x6 = raw.data$x6 
x7 = raw.data$x7 
x8 = raw.data$x8 
x9 = raw.data$x9 
 
data <- list("n", "x1", "x2", "x3", "x4", "x5", "x6 ", "x7", "x8", "x9") 
 
# Define parameters to monitor in BUGS 
 
parameters <- c("lam.x2", "lam.x3", "tau.x1", "tau. x2", "tau.x3", 
                "lam.m2", "lam.m3", "tau.m1", "tau. m2", "tau.m3", 
                "lam.y2", "lam.y3", "tau.y1", "tau. y2", "tau.y3", 
                "tau.latx", "tau.res.latm", "tau.re s.laty", "a", "b", 
"cp", "ab") 
 
# Define initial values to give to BUGS for each of  3 chains 
 
lam.x2.inits.1 = 0 
lam.x3.inits.1 = 0.3 
tau.x1.inits.1 = 2 
tau.x2.inits.1 = 1 
tau.x3.inits.1 = .5 
 
lam.m2.inits.1 = 0 
lam.m3.inits.1 = 0.3 
tau.m1.inits.1 = 2 
tau.m2.inits.1 = 1 
tau.m3.inits.1 = .5 
 
lam.y2.inits.1 = 0 
lam.y3.inits.1 = 0.3 
tau.y1.inits.1 = 2 
tau.y2.inits.1 = 1 
tau.y3.inits.1 = .5 
 
tau.latx.inits.1= .5 
tau.res.latm.inits.1= .5 
tau.res.laty.inits.1= .5 
a.inits.1= .3 
b.inits.1= .4 
cp.inits.1= .7 
 
inits1 <- list(lam.x2=lam.x2.inits.1, lam.x3=lam.x3 .inits.1, 
               tau.x1=tau.x1.inits.1, tau.x2=tau.x2 .inits.1, 
tau.x3=tau.x3.inits.1, 
               lam.m2=lam.m2.inits.1, lam.m3=lam.m3 .inits.1, 
               tau.m1=tau.m1.inits.1, tau.m2=tau.m2 .inits.1, 
tau.m3=tau.m3.inits.1, 
               lam.y2=lam.y2.inits.1, lam.y3=lam.y3 .inits.1, 
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               tau.y1=tau.y1.inits.1, tau.y2=tau.y2 .inits.1, 
tau.y3=tau.y3.inits.1, 
               tau.latx=tau.latx.inits.1, 
tau.res.latm=tau.res.latm.inits.1,  
               tau.res.laty=tau.res.laty.inits.1, a =a.inits.1, 
b=b.inits.1, cp=cp.inits.1) 
 
lam.x2.inits.2 = 0.3 
lam.x3.inits.2 = 0.1 
tau.x1.inits.2 = .5 
tau.x2.inits.2 = 2 
tau.x3.inits.2 = 1 
 
lam.m2.inits.2 = 0.3 
lam.m3.inits.2 = 0 
tau.m1.inits.2 = 1 
tau.m2.inits.2 = .5 
tau.m3.inits.2 = 2 
 
lam.y2.inits.2 = 0.3 
lam.y3.inits.2 = 0 
tau.y1.inits.2 = 1 
tau.y2.inits.2 = .5 
tau.y3.inits.2 = 2 
 
tau.latx.inits.2= 1 
tau.res.latm.inits.2= 1 
tau.res.laty.inits.2= 1 
a.inits.2= .7 
b.inits.2= .3 
cp.inits.2= .4 
 
inits2 <- list(lam.x2=lam.x2.inits.2, lam.x3=lam.x3 .inits.2, 
               tau.x1=tau.x1.inits.2, tau.x2=tau.x2 .inits.2, 
tau.x3=tau.x3.inits.2, 
               lam.m2=lam.m2.inits.2, lam.m3=lam.m3 .inits.2, 
               tau.m1=tau.m1.inits.2, tau.m2=tau.m2 .inits.2, 
tau.m3=tau.m3.inits.2, 
               lam.y2=lam.y2.inits.2, lam.y3=lam.y3 .inits.2, 
               tau.y1=tau.y1.inits.2, tau.y2=tau.y2 .inits.2, 
tau.y3=tau.y3.inits.2, 
               tau.latx=tau.latx.inits.2, 
tau.res.latm=tau.res.latm.inits.2,  
               tau.res.laty=tau.res.laty.inits.2, a =a.inits.2, 
b=b.inits.2, cp=cp.inits.2) 
 
lam.x2.inits.3 = 0.01 
lam.x3.inits.3 = 0 
tau.x1.inits.3 = 1 
tau.x2.inits.3 = .5 
tau.x3.inits.3 = 2 
 
lam.m2.inits.3 = 0.3 
lam.m3.inits.3 = 0.7 
tau.m1.inits.3 = 2.4 
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tau.m2.inits.3 = 1.7 
tau.m3.inits.3 = .2 
 
lam.y2.inits.3 = 0.3 
lam.y3.inits.3 = 3 
tau.y1.inits.3 = 2.5 
tau.y2.inits.3 = 1.7 
tau.y3.inits.3 = .85 
 
tau.latx.inits.3= .15 
tau.res.latm.inits.3= .75 
tau.res.laty.inits.3= 3.5 
a.inits.3= 2.3 
b.inits.3= 1.4 
cp.inits.3= .2 
 
 
inits3 <- list(lam.x2=lam.x2.inits.3, lam.x3=lam.x3 .inits.3, 
               tau.x1=tau.x1.inits.3, tau.x2=tau.x2 .inits.3, 
tau.x3=tau.x3.inits.3, 
               lam.m2=lam.m2.inits.3, lam.m3=lam.m3 .inits.3, 
               tau.m1=tau.m1.inits.3, tau.m2=tau.m2 .inits.3, 
tau.m3=tau.m3.inits.3, 
               lam.y2=lam.y2.inits.3, lam.y3=lam.y3 .inits.3, 
               tau.y1=tau.y1.inits.3, tau.y2=tau.y2 .inits.3, 
tau.y3=tau.y3.inits.3, 
               tau.latx=tau.latx.inits.3, 
tau.res.latm=tau.res.latm.inits.3,  
               tau.res.laty=tau.res.laty.inits.3, a =a.inits.3, 
b=b.inits.3, cp=cp.inits.3) 
 
inits <- list(inits1, inits2, inits3) 
 
# Choose  
# the number of chains 
# the number of iterations to burn-in,  
# the number of iterations to thin by, 
# the total number of iterations 
 
n.chains = 3 
n.burnin = 1500 
n.thin = 1 
n.iters.total.per.chain = 5000 
 
# Call WinBUGS to run the model, returning a BUGS o bject 
 
model.in.winbugs <- bugs( 
  data=data,  
  inits=inits,  
  parameters.to.save=parameters,  
  model.file=BUGS.code.file.name,  
  n.chains=n.chains,  
  n.iter=n.iters.total.per.chain,  
 n.burnin=n.burnin,  
 n.thin=n.thin,  
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 debug=FALSE,  
 codaPkg=TRUE, 
  working.directory=getwd(), 
  bugs.directory = 'C:\\Program Files\\WinBUGS14', 
 DIC=FALSE, 
) 
 
# This code reads in the draws from BUGS 
 
library(coda) 
 
# Define the R object with the names of the coda fi les 
coda.file.names <- model.in.winbugs 
# Read the files into coda 
draws.from.bugs <- read.bugs(coda.file.names) 
# Convert the draws to a matrix 
draws.from.bugs.as.matrix <- as.matrix(draws.from.b ugs) 
 
# This code summarizes the draws  
# Combine chains for summaries 
 
coda.options(combine.stats=TRUE, combine.plots=TRUE ) 
 
# Extract the summary statistics 
#   Usual 
#   Percentiles 
#   HPD 
 
export.draws <- do.call(rbind.data.frame, draws.fro m.bugs) 
export.draws.name <- paste("diffuse_conjugate_draws .", which.rep, 
".csv", sep="") 
 
write.csv(x=export.draws, 
  file=export.draws.name, 
  row.names=FALSE, 
  col.names=TRUE) 
summary.stats <- summary(draws.from.bugs) 
 
stats<- as.data.frame(summary.stats$statistics) 
ab.mean <- stats$Mean[2] # this is the post mean of  ab 
 
#summary.stats$statistics 
quant <-as.data.frame(summary.stats$quantiles) 
 
ab.med <- quant[2,3] #post median of ab 
 
true.ab<-a*b 
# bias 
bias.mean<-ab.mean-true.ab 
bias.med<-ab.med-true.ab 
# relative bias 
rel.bias.mean<-bias.mean/true.ab 
rel.bias.med<-bias.med/true.ab 
# efficiency 
ab.sd<-stats$SD[2] 
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# Combine chains for HPD 
if(n.chains>1){ 
  str(draws.from.bugs) 
  draws.to.analyze.as.one.list <- 
as.mcmc(do.call(rbind,draws.from.bugs))  
  str(draws.to.analyze.as.one.list)  
} # closes if n.chains > 1 
 
if(n.chains==1){ 
  draws.to.analyze.as.one.list <- as.mcmc(draws.fro m.bugs.as.matrix) 
}  
 
# HPDs for each parameter 
probability.for.HPD=.95 
HPD.interval <- HPDinterval(draws.to.analyze.as.one .list, 
prob=probability.for.HPD) 
ab.low.hpd <- HPD.interval[2,1] 
ab.up.hpd <- HPD.interval[2,2] 
 
# interval outcomes 
pow <- NA 
if (ab.low.hpd > 0 & ab.up.hpd > 0) { 
  pow <- 1 
} else { 
  pow <- 0 
} 
coverage <- NA 
if (true.ab > ab.low.hpd & true.ab < ab.up.hpd) { 
  coverage <- 1 
} else { 
  coverage<-0 
} 
typei <- NA 
imb <- NA 
imb.r <- NA 
imb.l <- NA 
  if (true.ab > ab.up.hpd) { 
    imb.r <- 1  
  } else { 
    imb.r <- 0 
  } 
if (true.ab < ab.low.hpd) { 
  imb.l <- 1  
} else { 
  imb.l <- 0 
} 
imb <- imb.r-imb.l 
int.width <- ab.up.hpd - ab.low.hpd 
try.mean<- mean(raw.data$x1) 
 
sum.stats <- cbind(which.rep,ab.mean, ab.med, ab.lo w.hpd, 
ab.up.hpd,try.mean, 
                   bias.mean, bias.med, ab.sd, rel. bias.mean, 
rel.bias.med,  



  107 

                   pow, typei, coverage, imb, int.w idth                   
) 
 
sum.stats.name <- paste("sum.stats",which.rep,sep=" ") 
assign(sum.stats.name, sum.stats) 
names(sum.stats) <- sum.stats.name 
 
sum.stats.all[which.rep, ] <- sum.stats 
rm(model.in.winbugs) 
rm(sum.stats) 
} # closes loop over replications 
 
# Write out the summary statistics 
 
write.csv( 
  x=sum.stats.all, 
  file="Summary Statistics Diffuse Conjugate.csv" 
) 

 

# Analysis using Bayesian methods with accurate informative priors with Nprior = 100 

 
# Call the 'R2WinBUGS' library 
 
library(R2WinBUGS) 
 
# Loop over replications and generate the data 
 
which.rep=0 
which.rep=which.rep+1 
 
sum.stats.all = data.frame(which.rep=rep(0, n.reps) , 
ab.mean=rep(0,n.reps), ab.med=rep(0,n.reps), 
                           ab.low.hpd=rep(0,n.reps) , 
ab.up.hpd=rep(0,n.reps), try.mean=rep(0,n.reps), 
                           bias.mean=rep(0,n.reps),  
bias.med=rep(0,n.reps), ab.sd=rep(0,n.reps), 
                           rel.bias.mean=rep(0,n.re ps), 
rel.bias.med=rep(0,n.reps), 
                           pow=rep(0,n.reps), typei =rep(0,n.reps), 
coverage=rep(0,n.reps), 
                           imb=rep(0,n.reps), int.w idth=rep(0,n.reps)) 
 
 
for(which.rep in 1:n.reps){ 
   
  
# Read in the data 
 
  if(1==1){ 
    file.name <- "Read in and Separate Data.R" 
    source(paste(drive.letter, file.name, sep=""))   
  } 
 
# Define the model 
# by creating a string that is the BUGS code 
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modelstring <- as.character(" 
 
model{ 
 
# Prior distributions 
 
# Measurement model  
 
lam.x2 ~ dnorm(1, 84.9087); 
lam.x3 ~ dnorm(1, 84.9087); 
 
lam.m2 ~ dnorm(1, 84.9087); 
lam.m3 ~ dnorm(1, 84.9087); 
 
lam.y2 ~ dnorm(1, 84.9087); 
lam.y3 ~ dnorm(1, 84.9087); 
  
tau.x1 ~ dgamma(50, 21.43);  
tau.x2 ~ dgamma(50, 21.43);  
tau.x3 ~ dgamma(50, 21.43);  
 
sigma.x1 <-1/tau.x1;  
sigma.x2 <-1/tau.x2;  
sigma.x3 <-1/tau.x3;  
 
tau.m1 ~ dgamma(50, 21.43);  
tau.m2 ~ dgamma(50, 21.43);  
tau.m3 ~ dgamma(50, 21.43);  
 
sigma.m1 <-1/tau.m1;  
sigma.m2 <-1/tau.m2;  
sigma.m3 <-1/tau.m3;  
 
tau.y1 ~ dgamma(50, 21.43);  
tau.y2 ~ dgamma(50, 21.43);  
tau.y3 ~ dgamma(50, 21.43);  
 
sigma.y1 <-1/tau.y1;  
sigma.y2 <-1/tau.y2;  
sigma.y3 <-1/tau.y3;  
 
# Structural model  
 
tau.latx ~ dgamma(50, 50);  
tau.res.latm ~ dgamma(50, 32);  
tau.res.laty ~ dgamma(50, 45.84);  
 
a ~ dnorm(0.6, 80.20726); 
b ~ dnorm(0.2, 45.27113); 
cp ~ dnorm(0.12, 45.72357); 
 
ab <-a*b 
 
# Conditional probability of the data 
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 for(i in 1:n){ 
    x1.mean[i] <- 1*Ksi1[i]; 
  x2.mean[i] <- lam.x2*Ksi1[i]; 
  x3.mean[i] <- lam.x3*Ksi1[i]; 
 
    x4.mean[i] <- 1*Ksi2[i]; 
  x5.mean[i] <- lam.m2*Ksi2[i]; 
  x6.mean[i] <- lam.m3*Ksi2[i]; 
 
    x7.mean[i] <- 1*Ksi3[i]; 
  x8.mean[i] <- lam.y2*Ksi3[i]; 
  x9.mean[i] <- lam.y3*Ksi3[i]; 
 
  Ksi1[i] ~ dnorm(0,tau.latx) 
 
   x1[i] ~ dnorm(x1.mean[i], tau.x1); 
  x2[i] ~ dnorm(x2.mean[i], tau.x2); 
  x3[i] ~ dnorm(x3.mean[i], tau.x3); 
 
    x4[i] ~ dnorm(x4.mean[i], tau.m1); 
   x5[i] ~ dnorm(x5.mean[i], tau.m2); 
  x6[i] ~ dnorm(x6.mean[i], tau.m3); 
 
    x7[i] ~ dnorm(x7.mean[i], tau.y1); 
    x8[i] ~ dnorm(x8.mean[i], tau.y2); 
  x9[i] ~ dnorm(x9.mean[i], tau.y3); 
 
    Ksi2.mean[i] <- a*Ksi1[i]; 
  Ksi3.mean[i] <- cp*Ksi1[i] + b*Ksi2[i]; 
 
  Ksi2[i] ~ dnorm(Ksi2.mean[i],tau.res.latm) 
  Ksi3[i] ~ dnorm(Ksi3.mean[i],tau.res.laty) 
 } 
} 
 
")  
 
# Write out the BUGS code to a file 
 
BUGS.code.file.name <- "Accurate.txt" 
write(modelstring, BUGS.code.file.name) 
write(modelstring, "temp.bug") 
 
# Define data to give to BUGS 
 
raw.data = read.csv(data.file.name) 
n <- nrow(raw.data) 
x1 = raw.data$x1 
x2 = raw.data$x2 
x3 = raw.data$x3 
x4 = raw.data$x4 
x5 = raw.data$x5 
x6 = raw.data$x6 
x7 = raw.data$x7 
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x8 = raw.data$x8 
x9 = raw.data$x9 
 
data <- list("n", "x1", "x2", "x3", "x4", "x5", "x6 ", "x7", "x8", "x9") 
 
# Define parameters to monitor in BUGS 
 
parameters <- c("lam.x2", "lam.x3", "tau.x1", "tau. x2", "tau.x3", 
                "lam.m2", "lam.m3", "tau.m1", "tau. m2", "tau.m3", 
                "lam.y2", "lam.y3", "tau.y1", "tau. y2", "tau.y3", 
                "tau.latx", "tau.res.latm", "tau.re s.laty", "a", "b", 
"cp", "ab") 
 
# Define initial values to give to BUGS for each of  3 chains 
 
lam.x2.inits.1 = 0 
lam.x3.inits.1 = 0.3 
tau.x1.inits.1 = 2 
tau.x2.inits.1 = 1 
tau.x3.inits.1 = .5 
 
lam.m2.inits.1 = 0 
lam.m3.inits.1 = 0.3 
tau.m1.inits.1 = 2 
tau.m2.inits.1 = 1 
tau.m3.inits.1 = .5 
 
lam.y2.inits.1 = 0 
lam.y3.inits.1 = 0.3 
tau.y1.inits.1 = 2 
tau.y2.inits.1 = 1 
tau.y3.inits.1 = .5 
 
tau.latx.inits.1= .5 
tau.res.latm.inits.1= .5 
tau.res.laty.inits.1= .5 
a.inits.1= .3 
b.inits.1= .4 
cp.inits.1= .7 
 
inits1 <- list(lam.x2=lam.x2.inits.1, lam.x3=lam.x3 .inits.1, 
               tau.x1=tau.x1.inits.1, tau.x2=tau.x2 .inits.1, 
tau.x3=tau.x3.inits.1, 
               lam.m2=lam.m2.inits.1, lam.m3=lam.m3 .inits.1, 
               tau.m1=tau.m1.inits.1, tau.m2=tau.m2 .inits.1, 
tau.m3=tau.m3.inits.1, 
               lam.y2=lam.y2.inits.1, lam.y3=lam.y3 .inits.1, 
               tau.y1=tau.y1.inits.1, tau.y2=tau.y2 .inits.1, 
tau.y3=tau.y3.inits.1, 
               tau.latx=tau.latx.inits.1, 
tau.res.latm=tau.res.latm.inits.1,  
               tau.res.laty=tau.res.laty.inits.1, a =a.inits.1, 
b=b.inits.1, cp=cp.inits.1) 
 
lam.x2.inits.2 = 0.3 



  111 

lam.x3.inits.2 = 0.1 
tau.x1.inits.2 = .5 
tau.x2.inits.2 = 2 
tau.x3.inits.2 = 1 
 
lam.m2.inits.2 = 0.3 
lam.m3.inits.2 = 0 
tau.m1.inits.2 = 1 
tau.m2.inits.2 = .5 
tau.m3.inits.2 = 2 
 
lam.y2.inits.2 = 0.3 
lam.y3.inits.2 = 0 
tau.y1.inits.2 = 1 
tau.y2.inits.2 = .5 
tau.y3.inits.2 = 2 
 
tau.latx.inits.2= 1 
tau.res.latm.inits.2= 1 
tau.res.laty.inits.2= 1 
a.inits.2= .7 
b.inits.2= .3 
cp.inits.2= .4 
 
inits2 <- list(lam.x2=lam.x2.inits.2, lam.x3=lam.x3 .inits.2, 
               tau.x1=tau.x1.inits.2, tau.x2=tau.x2 .inits.2, 
tau.x3=tau.x3.inits.2, 
               lam.m2=lam.m2.inits.2, lam.m3=lam.m3 .inits.2, 
               tau.m1=tau.m1.inits.2, tau.m2=tau.m2 .inits.2, 
tau.m3=tau.m3.inits.2, 
               lam.y2=lam.y2.inits.2, lam.y3=lam.y3 .inits.2, 
               tau.y1=tau.y1.inits.2, tau.y2=tau.y2 .inits.2, 
tau.y3=tau.y3.inits.2, 
               tau.latx=tau.latx.inits.2, 
tau.res.latm=tau.res.latm.inits.2,  
               tau.res.laty=tau.res.laty.inits.2, a =a.inits.2, 
b=b.inits.2, cp=cp.inits.2) 
 
lam.x2.inits.3 = 0.01 
lam.x3.inits.3 = 0 
tau.x1.inits.3 = 1 
tau.x2.inits.3 = .5 
tau.x3.inits.3 = 2 
 
lam.m2.inits.3 = 0.3 
lam.m3.inits.3 = 0.7 
tau.m1.inits.3 = 2.4 
tau.m2.inits.3 = 1.7 
tau.m3.inits.3 = .2 
 
lam.y2.inits.3 = 0.3 
lam.y3.inits.3 = 3 
tau.y1.inits.3 = 2.5 
tau.y2.inits.3 = 1.7 
tau.y3.inits.3 = .85 
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tau.latx.inits.3= .15 
tau.res.latm.inits.3= .75 
tau.res.laty.inits.3= 3.5 
a.inits.3= 2.3 
b.inits.3= 1.4 
cp.inits.3= .2 
 
 
inits3 <- list(lam.x2=lam.x2.inits.3, lam.x3=lam.x3 .inits.3, 
               tau.x1=tau.x1.inits.3, tau.x2=tau.x2 .inits.3, 
tau.x3=tau.x3.inits.3, 
               lam.m2=lam.m2.inits.3, lam.m3=lam.m3 .inits.3, 
               tau.m1=tau.m1.inits.3, tau.m2=tau.m2 .inits.3, 
tau.m3=tau.m3.inits.3, 
               lam.y2=lam.y2.inits.3, lam.y3=lam.y3 .inits.3, 
               tau.y1=tau.y1.inits.3, tau.y2=tau.y2 .inits.3, 
tau.y3=tau.y3.inits.3, 
               tau.latx=tau.latx.inits.3, 
tau.res.latm=tau.res.latm.inits.3,  
               tau.res.laty=tau.res.laty.inits.3, a =a.inits.3, 
b=b.inits.3, cp=cp.inits.3) 
 
 
inits <- list(inits1, inits2, inits3) 
 
# Choose  
# the number of chains 
# the number of iterations to burn-in,  
# the number of iterations to thin by, 
# the total number of iterations 
 
n.chains = 3 
n.burnin = 1500 
n.thin = 1 
n.iters.total.per.chain = 5000 
 
# Call WinBUGS to run the model, returning a BUGS o bject 
 
model.in.winbugs <- bugs( 
  data=data,  
  inits=inits,  
  parameters.to.save=parameters,  
  model.file=BUGS.code.file.name,  
  n.chains=n.chains,  
  n.iter=n.iters.total.per.chain,  
 n.burnin=n.burnin,  
 n.thin=n.thin,  
 debug=FALSE,  
 codaPkg=TRUE, 
  working.directory=getwd(), 
  bugs.directory = 'C:\\Program Files\\WinBUGS14', 
 DIC=FALSE, 
) 
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# This code reads in the draws from BUGS 
 
library(coda) 
 
# Define the R object with the names of the coda fi les 
 
coda.file.names <- model.in.winbugs 
 
# Read the files into coda 
 
draws.from.bugs <- read.bugs(coda.file.names) 
 
# Convert the draws to a matrix 
 
draws.from.bugs.as.matrix <- as.matrix(draws.from.b ugs) 
 
# This code summarizes the draws  
# Combine chains for summaries 
 
coda.options(combine.stats=TRUE, combine.plots=TRUE ) 
 
# Extract the summary statistics 
#   Usual 
#   Percentiles 
#   HPD 
 
# Exporting the iterations 
 
export.draws <- do.call(rbind.data.frame, draws.fro m.bugs) 
export.draws.name <- paste("accurate_both_n100_draw s.", which.rep, 
".csv", sep="") 
 
write.csv(x=export.draws, 
  file=export.draws.name, 
  row.names=FALSE, 
  col.names=TRUE) 
 
summary.stats <- summary(draws.from.bugs) 
 
stats<- as.data.frame(summary.stats$statistics) 
ab.mean <- stats$Mean[2] # this is the post mean of  ab 
 
quant <-as.data.frame(summary.stats$quantiles) 
 
ab.med <- quant[2,3] #post median of ab 
 
true.ab<-a*b 
 
# bias 
bias.mean<-ab.mean-true.ab 
bias.med<-ab.med-true.ab 
 
# relative bias 
rel.bias.mean<-bias.mean/true.ab 
rel.bias.med<-bias.med/true.ab 
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# efficiency 
ab.sd<-stats$SD[2] 
 
# Combine chains for HPD 
 
if(n.chains>1){ 
  str(draws.from.bugs) 
  draws.to.analyze.as.one.list <- 
as.mcmc(do.call(rbind,draws.from.bugs))  
  str(draws.to.analyze.as.one.list)  
} # closes if n.chains > 1 
 
if(n.chains==1){ 
  draws.to.analyze.as.one.list <- as.mcmc(draws.fro m.bugs.as.matrix) 
}  
 
# HPDs for each parameter 
 
probability.for.HPD=.95 
HPD.interval <- HPDinterval(draws.to.analyze.as.one .list, 
prob=probability.for.HPD) 
ab.low.hpd <- HPD.interval[2,1] 
ab.up.hpd <- HPD.interval[2,2] 
 
# interval outcomes 
 
pow <- NA 
if (ab.low.hpd > 0 & ab.up.hpd > 0) { 
  pow <- 1 
} else { 
  pow <- 0 
} 
coverage <- NA 
if (true.ab > ab.low.hpd & true.ab < ab.up.hpd) { 
  coverage <- 1 
} else { 
  coverage<-0 
} 
typei <- NA 
imb <- NA 
imb.r <- NA 
imb.l <- NA 
  if (true.ab > ab.up.hpd) { 
    imb.r <- 1  
  } else { 
    imb.r <- 0 
  } 
if (true.ab < ab.low.hpd) { 
  imb.l <- 1  
} else { 
  imb.l <- 0 
} 
imb <- imb.r-imb.l 
int.width <- ab.up.hpd - ab.low.hpd 
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try.mean<- mean(raw.data$x1) 
 
sum.stats <- cbind(which.rep,ab.mean, ab.med, ab.lo w.hpd, 
ab.up.hpd,try.mean, 
                   bias.mean, bias.med, ab.sd, rel. bias.mean, 
rel.bias.med,  
                   pow, typei, coverage, imb, int.w idth                   
) 
 
sum.stats.name <- paste("sum.stats",which.rep,sep=" ") 
assign(sum.stats.name, sum.stats) 
names(sum.stats) <- sum.stats.name 
 
sum.stats.all[which.rep, ] <- sum.stats 
rm(model.in.winbugs) 
rm(sum.stats) 
} # closes loop over replications 
 
# Write out the summary statistics 
 
write.csv( 
  x=sum.stats.all, 
  file="Summary Statistics Comb1 N100 Accurate Both .csv" 
) 

 


