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ABSTRACT

Functional magnetic resonance imaging (fMRI) is used to study brain activity due

to stimuli presented to subjects in a scanner. It is important to conduct statistical

inference on such time series fMRI data obtained. It is also important to select opti-

mal designs for practical experiments. Design selection under autoregressive models

have not been thoroughly discussed before. This paper derives general information

matrices for orthogonal designs under autoregressive model with an arbitrary number

of correlation coefficients. We further provide the minimum trace of orthogonal cir-

culant designs under AR(1) model, which is used as a criterion to compare practical

designs such as M-sequence designs and circulant (almost) orthogonal array designs.

We also explore optimal designs under AR(2) model. In practice, types of stimuli can

be more than one, but in this paper we only consider the simplest situation with only

one type of stimuli.
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Chapter 1

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a technique to illustrate brain

activity. The magnetic resonance (MR) scanner will scan the brain when a series

of mental stimuli (such as sound and picture) is presented. A change of an oxy to

deoxy concentration at some brain voxels (small cuboid of size 3x3x5 mm3, Lazar

(2008)) will be caught by the scanner. A fMRI experiment can contain several types

of stimuli. This paper discusses the simplest case, one type of stimuli. This stimuli

will be presented to the human subject repeatedly with rest time between two stimuli

onsets when no stimuli is given. Thus, the design of a fMRI experiment will be a

sequence 1001010010011110..., of which ”0” represents rest time and ”1” represents

that stimuli is given at that time. The length of series (run size) of stimuli can be

several hundred.

The main objective of a fMRI experiment is to study the response of the brain

to mental stimuli. The response of every voxel will lead to a time series from the

brain. This response is described by a smooth function over time called Hemodynamic

Response Function (HRF). If there were only one stimuli, HRF would just have one

peak and return to the baseline after some seconds. Since lots of stimuli are presented,

the accumulated HRF will look like a long wave with lots of peaks. The linear model

is popularly used to describe this function (Worsley and Friston (1995);Dale (1999)).

In the linear model, the errors are usually assumed to be uncorrelated. This paper

will discuss the autoregressive model where error terms are correlated.

There are several standard ways to obtain fMRI design. M-sequence is widely used

to construct fMRI designs. This type of design has good mathematical properties
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(Liu (2004) and Jansma et al. (2013) ). A good property of an M-sequence is any

non-zero 2-tuples, 11, 10, 01 (2 is specifically for one type of stimuli) occurs equally

frequently. The main drawback is that the length (run size n) of M-sequences is

restricted to n = (p + 1)l − 1, where l is an positive integer, p + 1 is prime and p is

the number of type of stimuli, which is 1 in this paper. For example, 0111001 is an

M-sequence. Thus, the gap between adjacent run sizes can be large. In order to make

run size flexible, an extended m-sequence (Kao (2013)) and CAOA (circulant almost

orthogonal array)( Lin et al. (2016)) are used. An extended M-sequence is to insert

one additional 0 such that any 2-tuple (including 00) occurs equally. For example,

the M-sequence 0111001 will change to an extended M-sequence 00111001 if another

0 is added at the beginning of the sequence.

CAOA designs in Lin et al. (2016) have more flexible run sizes such as n ≡ 1(mod4)

and n ≡ 3(mod4). This type of design has a small deviation from a special type of

design, orthogonal design, which will be discussed later. Another popular way to find

an optimal design is using the computational method. Genetic algorithm is used to

generate optimal designs (Kao (2009)). Kao’s genetic algorithm allows generation of

optimal designs under the autoregressive(AR) model with one correlation coefficient.

This process is done by using a whitening matrix to make the error uncorrelated.

However, there is not much theoretical work on AR model. In the next section we

will evaluate performance of these different types of designs under AR models.

2



Chapter 2

RESULT

1. Information matrices under autocorrelation models and orthogonal de-

signs

Let y be a n by 1 vector of bold signals collected by a fMRI scanner on a single

voxel of the brain. It is assumed that once a stimuli occurs, after k time periods (for

example, 4 seconds), the HRF returns to the baseline if no other stimuli follow. k=9

and 17 are commonly selected in practice (Cheng et al. (2017)).

Consider the autocorrelation model as follows: y =1nµ + Xτ + ε, where X is a n by

k design matrix with entries 1 or 0. The reason that X has k columns is that after k

time periods, since the HRF will completely drop down to baseline, there is no need

to estimate parameters besides k time periods. The first column of X is the sequence

of stimuli presented to subject. Every other column is a permutation of first column.

Such design is called circulant design.

X =



x1 xn xn−1 ... xn−k+2

x2 x1 xn ... xn−k+3

...
...

...
...

...

xn xn−1 xn−2 ... xn−k+1


Under the case of one stimuli, design of which any 2 tuples (combination of 1 and

0: 11,10,01,00) occurs equally, is called orthogonal design. Orthogonal designs have

properties such as Σx2
i = Σxi = n/2 and Σxixi−l = n/4, 1≤ l ≤ k−1. We also denote

that x−1 = xn and x−j = xn−j+1. Assuming ε are autocorrelated, we need to estimate
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τ . Starting from simplest AR model, AR(1) model with correlation coefficient λ1, the

whitening matrix is as follows:

H =



1 0 0 ... 0 −λ1

−λ1 1 0 ... 0 0

...
. . .

. . .
. . .

...
...

0 0
. . .

. . . 0 0

0 0 ... −λ1 1 0

0 0 ... 0 −λ1 1


The reason to choose this whitening matrix is that we assumed any two adjacent

data points are correlated with coefficient λ1. It is mathematically simple to arrange

the whitening matrix like this. However, the first data point and last data point are

not correlated in practice.

Under least squares estimation, the variance of τ is:

σ2[XTHTHX − (1/(1TnH
TH1n))XTHTH1n1TnH

THX]−1. Thus, the information ma-

trix of τ is the subtraction of two matrices:

C = XTHTHX − (1/(1TnH
TH1n))XTHTH1n1TnH

THX. Observe that:

XTHTHX =



d e1 e2 ... ej ... ... .. ... ek−2 ek−1

e1 d e1 e2 ... ej ... ... ... ... ek−2

e2 e1 d e1 e2 ... ... ... ... ... ...

... e2 e1 d e1 e2 ... ej ... ... ...

ej ... e2 e1 d e1 ... ... ej ... ...

... ej ... e2 e1 d ... ... ... ej ...

... ... ... ... ... ... ... ... ... ... ...

... ... ... ej ... ... ... d e1 e2 ...

... ... ... ... ej ... ... e1 d e1 e2

ek−2 ... ... ... ... ej ... e2 e1 d e1

ek−1 ek−2 ... ... ... ... ... ... e2 e1 d


where d = Σn

i=1(xj − λ1xi−1)2 and ej = Σn
i=1(xi − λ1xi−1)(xi−j − λ1xi−1−j) =
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(1 + λ2
1)Σn

i−1xixi−j − λ1Σn
i=1xixi−j+1 − λ1Σn

i=1xixi−j−1.

For an orthogonal design,

d = (1 + λ2
1)n

4
− λ1

n
4
− λ1

n
4

= (1− λ1 + λ2
1)n

4
. For the ej, there are three cases,

Case 1: j=1

e1 = (1 + λ2
1)Σn

i−1xixi−1 − λ1Σn
i=1x

2
i − λ1Σn

i=1xixi−2 = (1 + λ2
1)n

4
− λ1

n
2
− λ1

n
4

=

(1− 3λ1 + λ2
1)n

4
.

Case 2: 2 ≤ j ≤ k − 2

In this case, i−1 ≤ i−j+1 and i−j−1 ≥ i−k+1. Hence, Σxixi−j+1 = Σxixi−j−1 = n
4

for an orthogonal design. Therefore, ej = (1 + λ2
1)n

4
− λ1

n
4
− λ1

n
4

= (1− λ1)2 n
4
.

Case 3: j=k-1

ek−1 = (1− λ1 + λ2
1)n

4
− λ1Σxixi−k.

We also observe that H1n = (1 − λ1)1n and 1TnH
TH1n = n(1 − λ1)2. Thus, for

orthogonal design,

XTHTH1n = (1− λ1)2 n
2
1k.

The matrix after minus sign of the information matrix is

(1/(1TnH
TH1n))XTHTH1n1TnH

THX = n(1−λ1)−2[(1−λ1)2 n
2
]21k1

T
k = (1−λ1)2 n

4
1k1

T
k ,

of which every entry equals (1− λ1)2 n
4
, the same quantity in Case 2.

The information matrix of orthogonal design under AR(1) model is shown as below.

Following the same derivation of that of AR(1) model, the general form of infor-

mation matrix under AR(p) model, where p ≤ (k − 1)/2, is as in Table 2.2. This

matrix is also symmetric for any k. In this k by k matrix, the diagonal entries are

d = (Σp
i=1λ

2
i + 1)n/4. Some off-diagonal entries are ej = (−λj + λj+1λ1 + λj+2λ2 +

... + λp−jλp)n/4 for j = 1, 2, ..., p (specially, ep = −λpn/4). For those entries below

zero’s on the lower left of the matrix, they depend on different designs. ek−1 will con-

tain p uncertainties, Σxixi−k, Σxixi−k−1, Σxixi−k−2,..., Σxixi−k−p+1. ek−2 will contain

p − 1 uncertainties, Σxixi−k, Σxixi−k−1, Σxixi−k−2,..., Σxixi−k−p+2. ek−p is equal to
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Table 2.1: Information Matrix of Orthogonal Design under AR(1) Model

C =



(1 + λ21)n/4 −λ1n
4 0 ... 0 λ1[(n/4)− Σxixi−k]

−λ1n
4 (1 + λ21)n/4 −λ1n

4 ... 0 0

...
. . .

. . .
. . .

...
...

0 0
. . .

. . . −λ1n
4 0

0 0 ... −λ1n
4 (1 + λ21)n/4 −λ1n

4

λ1[(n/4)− Σxixi−k] 0 ... 0 −λ1n
4 (1 + λ21)n/4


Table 2.2: Information Matrix of Orthogonal Designs under AR(p) Model

C =



d e1 e2 ... ej ... ep ~0′k−2p−1 ... ek−2 ek−1

e1 d e1 e2 ... ... ... ... ... ... ek−2

e2 e1 d e1 ... ... ... ... ... ... ...

... e2 e1 d e1 ... ... ... ... ep ...

ej ... e2 e1 d e1 ... ... ej ... ep

... ej ... e2 e1 d ... ... ... ej ...

ep ... ej ... e2 e1 ... ... ... ... ej

~0k−2p−1

...
...

...
...

...
...

...
...

...
...

... ... ... ... ... ... ... ... ... ... ...

ek−2 ... ... ... ... ... ... ... e1 d e1

ek−1 ek−2 ... ... ep ... ej ... e2 e1 d



λp[(n/4)− Σxixi−k].

2. AR(1) model

A-optimality is used in this paper. To get an optimal design, we need to mini-

mize the variance of τ . But its variance is a matrix. Evaluating trace of this vari-

ance/covariance matrix is called A-optimality criterion (Dale (1999) and Friston et al.

(1999)). Hence, the goal is to find a design which minimizes the trace of C−1.

In this section, we explore the trace of C−1 in AR(1) model using calculus. Since
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Σxixi−k is the only uncertainty in the information matrix, it is convenient to set

λ1[(n/4)−Σxixi−k] = (n/4)λ1b1, i.e., Σxixi−k = (1− b1)(n/4). Note that b1 ∈ [−1, 1]

because n/4 ≤ Σxixi−k ≤ n/2.

The table below shows the trace of inverse information matrix computed by Maple,

for k = 3, 4, 5, 6, 7 and 8. Correlation coefficient λ1 is denoted as a in this table while

b1 is noted as b.

k the trace of inverse information matrix

3
3+3 a4+(−b2+4)a2

(a4+a3b+ab+1)(a2−ab+1)

4
4+4 a6+(−2 b2+6)a4+(−2 b2+6)a2

1+a8+(−b2+1)a6+(−b2+2 b+1)a4+(−b2+1)a2

5
5+5 a8+(−3 b2+8)a6+(−4 b2+9)a4+(−3 b2+8)a2

(a6+a5b+ab+1)(a4−a3b+a2−ab+1)

6
6+6 a10+(−4 b2+10)a8+(−6 b2+12)a6+(−6 b2+12)a4+(−4 b2+10)a2

1+a12+(−b2+1)a10+(−b2+1)a8+(−b2+2 b+1)a6+(−b2+1)a4+(−b2+1)a2

7
7+7 a12+(−5 b2+12)a10+(−8 b2+15)a8+(−9 b2+16)a6+(−8 b2+15)a4+(−5 b2+12)a2

(a8+a7b+ab+1)(a6−a5b+a4−a3b+a2−ab+1)

8
8+8 a14+(−6 b2+14)a12+(−10 b2+18)a10+(−12 b2+20)a8+(−12 b2+20)a6+(−10 b2+18)a4+(−6 b2+14)a2

1+a16+(−b2+1)a14+(−b2+1)a12+(−b2+1)a10+(−b2+2 b+1)a8+(−b2+1)a6+(−b2+1)a4+(−b2+1)a2

From the table above, the trace of C−1 follows a pattern. We assume that trace for any

k will follow this pattern. Thus, trace of C−1 will be in the form of
num

den
, where num =

c1−c2b
2
1 and den = c3 +2c4b1−c5b

2
1. This denotes that c1 = Σk

i=1(λ
2(k−i)
1 )(i(k−i+1)),

c2 = Σk
i=1(λ

2(k−i)
1 )((i− 1))(k − i)), c3 = Σk

i=0λ
2i
1 , c4 = λk1, c5 = Σk−1

i=0 λ
2i
1 .

By taking the derivative of trace with respect to b1, and set it zero, we can get a

root b1 = r1 =
d1 −

√
d2

2d3

where d1=c1c5 − c2c3, d2 = d2
1 − 4c1c2c

2
4. It is proved in the

appendix that the trace obtains a global minimum at this r1. r1 is larger than zero

and is very close to zero when λ1 is small. Table 2.3 shows efficiency of extended

orthogonal designs (i.e. designs when b1 = 0) compared to optimal designs when

b1 = r1. For some specific run sizes (such as extended M-sequence discussed later),

extended orthogonal designs exist, but it is usually hard to construct optimal designs

(they might not exist) when b1 = r1. As shown, extended orthogonal designs are
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already very efficient.

The minimum trace at b1 = r1 might not be obtained by any orthogonal designs

in practice. Therefore, the minimum of trace formed above only serves as a criterion

to evaluate other practical designs in this paper. There might be a way to construct

or search optimal orthogonal design at b1 = r1, but it will be very difficult.

a. Extended orthogonal design;

We define extended orthogonal designs as designs that Σn
i=1xixi−l = n/4 for arbi-

trary integer l ≤ k. It follows that b1 = 0 for extended orthogonal design. Designs

generated from extended M-sequence have the property that Σn
i=1xixi−l = n/4 for

arbitrary integer l ≤ n. Hence, under AR(1) model, extended M-sequence design will

make b1 zero. The efficiencies of extended orthogonal designs are shown in Table

2.3. Therefore, extended M-sequence designs are highly efficient, but run size n is

limited to specific numbers such as 32, 64, 128, i.e. 2m, m ∈ N (p = 1 in this case

due to one type of stimuli).

b. Circulant-almost-orthogonal array(CAOA);

We also consider the non-orthogonal designs explained in Lin et al. (2016). Table

2.4 shows the efficiency of some non-orthogonal designs. One design is generated by

M-sequence with run size n = 7. By exploring the non-orthogonal designs, we can

see some efficiencies are greater than 1. Thus, orthogonal designs are not necessarily

optimal under AR(1) model. Some non-orthogonal designs perform better than op-

timal orthogonal design. There are several types of designs in the paper of Lin et al.

(2016), where T2 is a special design where n ≡ 2(mod4). T2 designs are claimed to

be very efficient under error-uncorrelated model. But under AR(1) model, T2 designs

are not efficient.

8



3. AR(2) model

From previous empirical study(Lenoski et al. (2008)), AR(2) model fits the result

better. Thus, we also explore the AR(2) model a little bit. The information matrix

of orthogonal design under AR(2) model is shown in Table 2.5.

Since there are two design dependent uncertainties Σxixi−k and Σxixi−(k+1) for

the information matrix of of τ under orthogonal design and the AR(2) model, the

trace will be a bi-variate function of Σxixi−k and Σxixi−(k+1). It is hard to compute

a general form of minimum trace, like what is done for the AR(1) model. We only

consider the case when λ1 = 0.3 and λ2 = 0.2. We chose a smaller λ2 while correla-

tion between two adjacent errors should be stronger than that between nonadjacent

errors. We use fmincon function with 1000x1000 starting points in Matlab to search

the minimum trace in the range of b1 ∈ [−1, 1] and b2 ∈ [−1, 1]. The optimal b1 and

b2 are shown in Table 2.6. From this table, the optimal b1 and b2 are approach-

ing zero from two directions when k increases. Therefore, the extended orthogonal

(i.e. b1 = b2 = 0) designs obtain higher efficiency with larger k. It is also true that

extended orthogonal design (i.e. b1 = b2 = 0) for some run size might not exist.

We use this minimum trace to compare practical designs for run size 240, which is

a commonly used run size in experiments. CAOA (circulant orthogonal (almost-)

array) designs were not considered since we did not find a CAOA design of run size

n = 240. We also compute the efficiencies of designs from genetic algorithm for run

size n = 240. All of these designs are non-orthogonal. The efficiencies are very high

for k = 16, ..., 20. Some efficiencies are larger than 1. Thus, non-orthogonal designs

can be better than orthogonal design in terms of A-optimality.
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Table 2.3: Efficiency of Extended Orthogonal Design under AR(1) Model

k λ1 = 0.1 λ1 = 0.3 λ1 = 0.5 λ1 = 0.8

3 0.999 0.990421009 0.951164055 0.875960998

4 1 0.998849113 0.984453376 0.923333999

5 1 0.999869495 0.995142309 0.948984005

6 1 0.999985813 0.998525345 0.9648162

7 1 0.999998503 0.999564187 0.975308658

8 1 0.999999845 0.99987403 0.982539416

9 1 0.999999984 0.99996423 0.987626607

10 1 0.999999998 0.999989986 0.991240995

11 1 1 0.999997228 0.993817469

12 1 1 0.99999924 0.995653008

13 1 1 0.999999793 0.996956959

14 1 1 0.999999944 0.997879464

15 1 1 0.999999985 0.998529007

16 1 1 0.999999996 0.998984071

17 1 1 0.999999999 0.999301292

18 1 1 1 0.999521353

19 1 1 1 0.999673309

20 1 1 1 0.999777783

10



Table 2.4: Efficiency of CAOA(Circulant (Almost) Orthogonal Array) Design under
AR(1) Model

k n λ1 = 0.1 λ1 = 0.3 λ1 = 0.5 Type of design Generating vector of CAOA design

6 17 0.9897 1.0017 1.0098 Not T2 1110100001001110

7 14 ∗∗ 0.5344 ∗∗ T2 1001111101000

8 21 0.9913 1.0013 1.0121 Not T2 10101101111100100000

9 25 0.9941 1.006575 1.0222 Not T2 0011101011111011000100100

10 30 0.8824 0.9971 1.0177 Not T2 000000111001101111101011010001

11 29 ∗∗ 1.005156 ∗∗ Not T2 00010001001111001111110100101

12 33 ∗∗ 1.0057 ∗∗ Not T2 000100001111011001111101011010001

13 37 ∗∗ 1.1478 ∗∗ Not T2 0010000101000100110001111101011011111

14 41 ∗∗ 1.1432 ∗∗ Not T2 01011100001011011101110111100101100010000

15 39 ∗∗ 0.9596 ∗∗ Not T2 000111010100110010111001111010110110000

16 45 ∗∗ 1.1351 ∗∗ Not T2 011010110100000101000100110011110011111110100

17 49 ∗∗ 1.1328 ∗∗ Not T2 0000000101100100101111010011100111110101011100110

18 42 ∗∗ 0.681 ∗∗ T2 001011000010101110110011110000100011011101

19 38 ∗∗ 0.4802 ∗∗ T2 01100001010111100100110000101011110011

23 46 ∗∗ 0.4749 ∗∗ T2 0000101001100110101111000001010011001101011111

11
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Table 2.6: Optimal b1 and b2 and Efficiencies of Selected Design under AR(2) Model
(run size n=240, ρ1 = 0.3 and ρ2 = 0.2)

k b1 b2 Extended Orthogonal designs Genetic Algorithm designs

9 0.2377 −0.3436 0.998714513 ∗∗

10 0.1673 −0.2446 0.999434854 ∗∗

11 0.1153 −0.1692 0.999760697 ∗∗

12 0.0791 −0.1166 0.999890897 ∗∗

13 0.0537 −0.0793 0.999959894 ∗∗

14 0.0362 −0.0537 0.99998145 ∗∗

15 0.0243 −0.0362 0.999988496 ∗∗

16 0.0162 −0.0241 0.999994623 0.990245426

17 0.0107 −0.016 1 0.9921242

18 0.0071 −0.0106 1 1.002165974

19 0.0047 −0.007 1 0.991557547

20 0.0031 −0.0045 1 1.017984105
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Chapter 3

CONCLUSION

Under AR(1) model, orthogonal designs are not necessarily optimal for arbitrary

correlation coefficient λ1 ∈ (−1, 1). Designs of CAOA can be more statistically effi-

cient than orthogonal design. Under AR(2), it is hard to determine a minimum trace

as in AR(1) model, but we can see from the typical case listed above, extended or-

thogonal designs are very efficient for common k’s used in practice. Non-orthogonal

designs generated by genetic algorithm are also very efficient. Non-orthogonal de-

signs can be better than orthogonal designs under AR model. It is no surprise to see

that extended M-sequence design, CAOA design and designs from genetic algorithm

which perform well under uncorrelated error model, retain good performance under

autoregressive model.

This paper only discussed designs with one type of stimuli. More types of stimuli

should be considered in the future. Further discussion on AR model with three or

more correlation coefficients might not be practical.
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APPENDIX A

PROOF OF MINIMUM OF TRACE UNDER AR(1) MODEL
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The general form is the pattern we found when listing the trace of information
matrix for orthogonal designs in cases k=3,4,...,20. They are the general form for
k ≤ 20. In practice, k will not be larger than 20. We make a conjecture that it is
the general form for all integer k ≥ 3. We assume that this form is true for any k.
To simplify notation, denote the correlation coefficient as a, and b1 as b. The trace of

C−1 will be in the form of
num

den
, where num = c1 − c2b

2 and den = c3 + 2c4b− c5b
2.

This denotes that c1 = Σk
i=1(a2(k−i))(i(k− i+ 1)), c2 = Σk

i=1(a2(k−i))
(

(i− 1))(k− i)
)

,

c3 = Σk
i=0a

2i, c4 = ak, c5 = Σk−1
i=0 a

2i.
Differentiating this expression with respect to b and setting it to be zero gives

two roots:
d1 ±

√
d2

2d3

where d1=c1c5 − c2c3, d2 = d2
1 − 4c1c2c

2
4, and d3=c2 × c4. Since

d2 ≤ d2
1 and consequently d1 −

√
d2 ≥ 0, both roots are greater than zero. However,

both roots exist if and only if d2 ≥ 0. Denote the smaller root as r1 and the other
root r2. The first step to prove d2 ≥ 0 is to find the general pattern of d2. After a lot
of trial and error, we found a general form of d2 . d2 can be expressed as a product
of two non-negative terms, t1 and t2 where

t1 = 2 a4
(∑k−2

i=1

(∑i
j=1 j (j + 1) a2 i−2

)
+
∑k−1

i=1

(∑i
j=1 j (j + 1) a4 k−6−2 i

))
, and

t2 =
∑k

i=1 ia
2 i−2 +

∑k−1
i=1 ia

4 k−2−2 i, i.e.

d2 =

(
2 a4

(
k−2∑
i=1

(
i∑

j=1

j (j + 1) a2 i−2

)
+

k−1∑
i=1

(
i∑

j=1

j (j + 1) a4 k−6−2 i

)))
× (A.1)

( k∑
i=1

ia2 i−2 +
k−1∑
i=1

ia4 k−2−2 i

)
(A.2)

Following the same way as finding d2, the general form of d1 is:

d1 = Σk−1
i=1

(
(i(i+ 1))a4k−2−2i + (i(i+ 1))a2i

)
(A.3)

Obviously, t1 and t2 are summations of some non-negative terms. Under the help of
Maple, we verified that t1 ∗ t2 = d2

1 − 4c1c2c
2
4. As indicated above, d2 = t1 ∗ t2, t1, t2

≥ 0, hence, d2 ≥ 0. Actually, under AR(1) model, a 6= 0, t1 and t2 are both positive.
Therefore, d2 > 0. Now we can draw the conclusion that both roots exist and are
positive.

The next step is to prove that the trace at the smaller root r1 is the global
minimum. The derivative of the trace with respective to b, equals
−(b2c1c4 − bc1c5 + bc2c3 + c1c4)

(b2c5 − 2bc4 − c3)2
. Observe that the denominator is greater than zero

and the numerator is a polynomial of b of degree two. From -1 (b ∈ [−1, 1]) to r1, the
derivative is negative, and becomes positive between the range of r1 and r2. In other
words, the trace decreases from -1 to r1 and increases between r1 and r2. Hence,
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the trace reaches local minimum at r1. On the other hand, r1 is smaller than 1 for
k = 3, 4, ..., 20 The other possible minimum occurs at the boundary b = 1.

Now consider r2 is a function of a. r2 is always larger than 1 in the range of a ∈
(0, 1). This is because the numerator of r2 has terms of degree 2 and the denominator
2d3 is of degree 3k − 4. 2d3= c2 × c4, does not have constant terms. Thus, r2 will
rise greatly near zero and reach its minimum near 1 because r2 is a function of a of
negative powers. All the traces at b = 1, for k = 3, 4, ..., 20 are checked, and they
are all larger than 1. On the other hand, all the plots of r1 versus a are checked, the
maximum of r1’s are smaller than 1. Therefore, 1 is always between r1 and r2. Hence,
the trace obtained at b = 1 is larger than trace at r1. We draw the conclusion that
trace has global minimum at r1 for any a ∈ (−1, 1).
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