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ABSTRACT

Photovoltaic modules degrade in the field. This thesis aims to answer two questions: 1. Do
photovoltaic modules degrade linearly or not? 2. Do soiled modules operate at lower
temperatures than clean modules? Answers to these questions are provided in part 1 and
part 2 of this thesis respectively.

Part 1: Linearity determination in degradation: The electricity output from PV power
plants degrades every year. Generally, a system’s life is considered to last for 20-25 years
and rate of degradation is commonly assumed as 1% per year. PV degradation can be found
out using Performance Ratio (PR), Performance Index (PI) and raw kWh output. The rate
of degradation is considered linear for simplicity of calculations. In this thesis, statistical
methods are used to check whether systems in Arizona are degrading linearly or not. Time
series modeling such as Winters’ method and ARIMA are used to model the data. Winters’
method and Seasonal ARIMA consider the seasonality component and perform well for
small data sets of about 10 years. Rate of degradation is found out as linear for all the
evaluated systems.

Part 2: Temperature analysis of clean and soiled modules: Soiling and temperature are
important parameters in performance of PV modules. In this paper, an analysis is carried
out on a soiling station located in Mesa, Arizona. The soiling station consists of 10 different
c-Si coupons with tilt angles varying from 0° to 45° with the difference of 5°. These
coupons are cut in half, one is cleaned periodically and the other is remained soiled
naturally. The analysis involves data worth for 19 months. 6 dry spells in all four seasons

within 19 months were analyzed. The temperature difference between a clean module and



a soiled module (AT) is compared with the soiling loss factor (SLF). The analysis

concludes stating in which season a soiled module is hotter or cooler than a clean module.
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PART 1: DEGRADATION LINEARITY DETERMINATION
1. INTRODUCTION
1.1.1 Background:

Commercial development of PV technology started in second half of the 20" century.
Initially it was used in space applications. Later, from 1970s, PV was used to power
residences and then it started growing rapidly on commercial scale. Now PV power plants
are built at the capacity of over 500 MW. Performance of PV power plants depend upon
many factors such as system efficiency, maintenance, reliability, and weather. Performance
of a PV power plant degrades year by year in terms of output due to many reasons such as
browning of encapsulant, leakage of current, mechanical damages and so on. The rate of
degradation is an important factor that an owner or a developer of PV plant should know.
A customer would purchase PV system or use PV electricity only if he knows how much
it is worth. The degradation rate is helpful to predict or forecast performance. Also, it’s a

crucial parameter to perform lifecycle analysis and payback period.

There are two methods of calculating degradation rate of a power plant. One is to calculate
I/V data of every module from time to time and then calculate the degradation rate using
that data. The second method is to calculate rate of degradation using kWh output data
from inverter. Performance Ratio (PR) is one common measure to calculate degradation.
It’s a ratio of output energy and expected input energy [11]. This calculation can be done
for yearly data and to find out how much the PR has degraded. Another, a better measure

of calculating degradation is Performance Index (PI). It considers system losses in the input
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energy and therefore the PI is slightly higher than the PR [11]. A simpler way to calculate
the degradation rate is just to compare yearly kwh data and find the slope of degradation
in output. Calculating degradation is important, but, finding nature of degradation is vital.
It’s been assumed that the degradation of PV systems is linear and is close to 1% per year
for simplicity of calculation. However, a statistical proof whether it is really linear or non-
linear is useful, because if it’s non-linear, the assumption would be wrong and then the
forecasts would be wrong. ASU-PRL have done extensive research on the degradation of
PV power plants. Chris Raupp et al [11] used PR, Pl and raw kWh data to find out
degradation rates of PV systems located in the Arizona State University, Tempe campus.
He used box plots on the median values of monthly data to find out if the degradation trend
is linear or non-linear. Chris et al [11] stated in his thesis that, in hot and dry climatic
condition of Arizona, PV systems degrade in output at higher rate in first three years and
at a lower rate after three years. The rate of degradation could be logarithmic in nature.
Prasanna Sundarajan et al [12] used Holt Winters’ method to determine whether the
systems degrade linearly or not. As mentioned earlier, the HoltWinters’ method
decomposes the data into three parts, trend, seasonality and level. In order to determine the
nature of degradation, trend component was considered for analysis and seasonality was

ignored. Ultimately, the analysis is a regression analysis on trend data.

1.1.2 Scope of work:

A basic method to determine whether the degradation is linear or not, is to make a
regression analysis on the output data. However, only regression is not enough, because

the output from a PV system has components of seasonality and trend. Seasonality is a



phenomenon which shows that the output in summer is high when the angle of incidence
is low and in winter, output is low when the angle of incidence is high. Time series is a
specialized statistical method which can consider the effect of seasonality. There are
various methods in time series such as moving average, exponential smoothing and their
variations. A third order exponential smoothing is called “Holt Winters’” method which
decomposes the data in three parts which are Level, Trend and Seasonality. An advanced
method of moving average is called autoregressive method and their combination is called
Autoregressive Moving Average (ARMA) and even more advanced technique is called
Autoregressive Integrated Moving Average (ARIMA) which also considers seasonality
effect. In this research, six PV systems located in hot dry climate of Arizona are evaluated
and modeled using Holt Winters’ method and ARIMA method. Difference between these
two models is that the time series in Holt Winters’ model is not stationary where ARIMA
makes a time series stationary to fit the data and model it. ARIMA is an advanced method
of Holt-Winters’ method. In both methods, weights are used which have more importance
to recent past data and less importance to older data. Both methods approximate linear
models. Hence, in this research, PV systems are evaluated using these two methods and

check whether they degrade linearly or not.

Seasonal ARIMA is an advanced method which makes a time series stationary meaning
that the mean and variance is constant. The model has two integrated components, seasonal
and non-seasonal. In this analysis, seasonal component gives linear correlation between
particular months of consecutive years; and the non-seasonal component gives linear

correlation between consecutive months of a year. Although systems degrade linearly,



different systems have different correlations between months and years. For some systems,
consecutive two months might be correlated, for some systems, consecutive three months
might be correlated. A clear comparison between Winters’ method and Seasonal ARIMA
is that Winters’” method could only tell you whether the system degradation is linear or not
but seasonal ARIMA could tell you about linearity, model the data, draw correlations

between years and months.



2. LITERATURE REVIEW
1.2.1 Degradation of PV modules

Reliability is probability of a product or a system to perform their function under certain
conditions throughout their life. A PV system is said to be reliable if it performs above
80% of its rated power after 20 years of its life. Degradation rates depend heavily on
climatic conditions. Regions with humid and windy weather experience more degradation.
Regions with cold and snowy climate face lowest rates of degradation. On the other hand,
degradation is observed high in hot and dry desert climates. In northern United States,
degradation rate is found as low as 0.2% per year. In deserts like Arizona, the rate of
degradation is observed as high as 1% per year. Determination of degradation rate is
important for site assessment and lifetime prediction of energy production. Also, it is
important in calculation of payback period. Degradation due to different factors can be
different in nature either linear or non-linear. Degradation in different PV technologies is

different in nature.

1.2.2 Statistical methods to determine linearity in degradation rate

Data consists of two components, signal and noise [12]. For a prediction or modeling of
data, noise is removed and signal is predicted. Data smoothing is a statistical method which
approximates a function of a signal and maintains it, removing or separating the noise from
main signal. A smoother is a function which modifies signal which makes higher values
reduce and points adjacent to these values are increased, to achieve a local mean .
Seasonality in PV data is taken into account and worked upon using smoothers in Winters’

method. Winters” method separates out seasonality component and predicts how much it
5



deviates from local mean due to seasonality effect. ARIMA makes the time series
stationary and then uses smoothers such as moving average and auto-regression. Seasonal
ARIMA uses periodic smoothing. It smooths periodic data and modifies it. ARIMA
estimates parameters in a linear model. The significance level of these parameters explains

whether the model fits the data adequately or not.



3. METHODOLOGY

1.3.1 Preprocessing the data:

Hourly raw kWh data of ASU systems was taken from previous research of ASU-

PRL. Data for high sun hours (9:00 am — 3:00 pm) is selected.

This data was converted to daily data using the pivot table tool in Microsoft Excel.

The daily data was converted to median monthly data by taking median values for every
month. Hence, 12 data points per year are obtained.

Thus, atime series of monthly kwWh data was created. The ASU systems have data available

for about 6 years. Data available for Tempe warehouse is for 10 years.
1.3.2 Time series plot:

Following image shows time series plot of monthly median kWh data of PV system built

on Hayden Library building.

4 = Time Series Actual Column 1

1600

1500 & A & & N

4000 Po oL Ph. gt PO

12300-\ o & | & ¢ oy %0 | &
200X ¥4 1] |
100 % 4]
0004 || ¢ | ‘,
900 | 14 Ve
800 ¢,
700

Actual Column 1

Row

Figure 1.1: Time series plot of monthly median kWh
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In the above plot, it is seen that KWh output is at its peak in summer months May and June.

It is lowest in winter months December and January.
1.3.3 Time series methods:

Winters” method (Additive): Holt-Winters” method commonly known as Winters’ method
is a third order exponential smoothing method. It separates out three components from the
data which are Level, Trend and Seasonality. Level is a local mean or “level” of data
generating process at this time [5]. Trend component gives current trend of the data, or
change in data at current time. Seasonality component estimates deviation from mean due
to

seasonality effect.

Out of these three components, trend is useful to determine the degradation rate in the
system output. A previous research by Prasanna Sundarajan et al [12] in ASU-PRL
developed a method for this. It consisted of data filtration of trend data and then regression
analysis on the filtered trend data. The degradation rate was found out using the Y-intercept
of regression analysis. Determination whether the degradation rate is linear or not was
worked out using hypothesis making. A null hypothesis was made that said the rate of
degradation is not linear. The hypothesis was accepted or rejected based on the regression

parameters. This method is applied in this research to the PV systems built in ASU campus.

JMP is a statistical tool which provides advanced time series modeling techniques. It
facilitates to use Winters’ additive method. Following image shows JMP output of Winters’
method. It says the model is stable and not invertible. A model is invertible when past

values can be predicted using current values. This phenomenon is crucial for forecasting.
8



Goal of this research is to model the existing data and find out whether the degradation rate
is linear or not. Focus is not on forecasting. Therefore, this model of Winters’ method

works just fine.

4 + Model: Winters Method (Additive)
4 Model Summary

DF 48 Stable Yes
Sum of Squared Errors 175137.868 Invertible No
Variance Estimate 3648.70558
Standard Deviation 60.4045162

Akaike's ‘A’ Information Criterion 582.494448
Schwarz's Bayesian Criterion 588.289925

RSquare 0.88272622
RSquare Adj 0.87783981
MAPE 462394946
MAE 51.0375253
-2Loglikelihood 576.494448

Figure 1.2: JMP output window of Winters' method

A new approach using a different time series method is involved in this thesis.
Autoregressive Integrated Moving Average (ARIMA) is an advanced version of moving
average. The moving average technique uses averages of current value with past values
with certain weights associated with them. Autoregressive component of the method
consists of exponentially decreasing weights associated with the values in the same time
series. Hence the name “autoregressive”. Like Holt-Winters” method, ARIMA also deals
with seasonality component. ARIMA has a seasonal component and a non-seasonal

component.

1.3.4 Important facts about ARIMA: ARIMA is abbreviation for Autoregressive Integrated
Moving Average. Both autoregressive (AR) and moving average (MA) terms estimate a

linear model for a time series. ARIMA as a combination of both AR and MA terms also



therefore estimates a linear model because one term is added to the another. Hence, the

linearity of model is not altered. ARIMA is linear in its parameters.

1.3.5 Auto Correlation Function (ACF): In time series, current values of observation are
dependent on previous values of observation. Hence there’s a possible relation between

current observation and previous observations.

If there’s a time series St = {St, St-1, St2, St3, ...., Sts}. The values Si1, St2 and so on
represent previous observations are also called “lags”. They also represent different
individual time series. To make it clear, St.1 represents time series with lag 1. It is known
that there’s relation between St and its previous terms. Or, there’s relation between Stand
its lags.

Autocovariance is covariance between two different time series.

vs = E[(St- pt) (Sts — Mes)] is autocovariance between St and Sts. v function has a unit [2].
However, a unit-less function is desired. Hence, ys is divided by yo where yo is variance of
St.

Ts= I—Z Where tsautocorrelation function (ACF). It lies between -1 and +1. The term “auto”

comes because both the time series Stand St are part of same time series Si. ACF plot

suggests us MA process [2].

Sample ACF plot:
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Autocorrelation Function for kWh output
(with 5% significance limits for the autocorrelations)
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Figure 1.3: Sample ACF plot

In the above ACF plot on Hayden library kWh data, it is seen that there is one value which
is cutting off the blue lines of “significance” or “limits”. This value is called significant
value. Here, the y — axis represents ACF and x — axis represents lag. This means that first
lag has significant ACF value. It means, the series y; is correlated with the series yt.1. After
lag 1, the ACF behaves a sinusoidal and exponentially decaying pattern. It does not

conclude yet anything. Hence, to identify a process, partial autocorrelation function is used.

1.3.6 Partial Autocorrelation Function (PACF): If there are two series y: and Vi, it is
observed that there are intermediate series of yi.1, Yt-2,..., yts+1. It is desired to take out the

effect of these intermediate series on the correlation of y and yts.

For example, there are two series y: and yt». The goal is to take out the effect of yi.1 on the

correlation of yrand yt.o.
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Covariance (ytyt—2|yt—1)

PACF = Square root of[variance(yt|yt — 1)variance(yt — 2|yt — 1)]

Sample PACF plot

Partial Autocorrelation Function for kWh output
(with 5% significance limits for the partial autocorrelations)
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Figure 1.4: Sample PACF plot

Above figure shows PACF plot for the kWh data of PV system on Hayden Library. In the
PACEF plot, it is observed that first two lags have significant PACF values and further lags
have values below significance limits. Which means, the series y: is correlated
independently with yi.1 and yt.2, with removal of effect of intermediate series. This suggests

for an AR (2) process.

1.3.7 Application of ARIMA: Now these concepts of ACF and PACF are applied to
determine an ARIMA model. However, JMP makes this task easier. JMP has a tool in time
series modeling named “ARIMA model group”. In this tool, a time series column is input
on which analysis is to be carried out. In ARIMA model group, input is maximum limits

of AR, difference and MA terms for seasonal and non-seasonal parts. This, after running
12



gives seasonal ARIMA models with all combinations of AR and MA terms. Following

image shows input of parameters.

E% ARIMA Model Group b4
Specify ARIMA Model
ARIMA Seasonal ARIMA
p. Autoregressive Order 0 2 P, Autoregressive Order 01
d, Differencing Order 0 1 D, Differencing Order 0 1
g, Moving Average Order 0 2 Q, Moving Average Order | 0 1
Observations per Period 12 12

Prediction Interval 095 v

Intercept
Constrain fit

Total Number of Models 144

|Estimate || Cancel || Help [

Figure 1.5: JMP input window for ARIMA model group

After clicking estimate, it gives a list of ARIMA models with all combinations of AR and

MA terms and seasonal AR and MA terms.

4 Model Comparison
Report Graph ~ Model DF  Variance AlC SBC RSquare -2LoglH Weights 2 .4 .6 .8 MAPE MAE
v O Seasonal ARIMA(0, 1, 2)(0, 1, )12 47 27863385 577.73873 58546603 0893 569.73873 0.171454 i 4326479 47.757226
[0 [0  —Seasonal ARIMAQ2.1,2)(0,1,1)12 45 25684353 57827291 58986386 0898 56627291 0131266 ) 4286642 47.046064
-/ O — Seasonal ARIMA(1, 1, 1)(0, 1, 1)12 47 28349006 57849620 586.22351 0892 5704962 0.117399 [ 4357141 48368116
-] ] — Seasonal ARIMA(0, 1, 2)(1,1, )12 46 29873321 579.14427 588.80340 0894 569.14427  0.084906 Jj 4319548 47.832085
v[] O — Seasonal ARIMA(2, 1, 1)(0,1, )12 46 28281046 579.56283 589.22196 0893 569.56283 0.068873 jj 4350125 47.954083
«sdJ O Seasonal ARIMA(1,1,2)(0,1,1)12 46 28384617 57967164 58933077 0894 56967164 0.065226 4323266 47.645304
v[] O — Seasonal ARIMA(1,1, 1)(1,1, )12 46 29967079 580.22096 589.88009 0893 57022096 0049561 : 4370520 48642807
-] O — Seasonal ARIMA(0, 1, 1)(0, 1, 1)12 48 2981.8943 580.70744 586.50292 0886 57470744 0.038860 4554490 50810113
v[] (| — Seasonal ARIMA(2, 1, 1)(1,1, 1)12 45 30445056 580.82850 59241946 0894 5688285 0.036577 4332894 47.847342
«[] [  —Seasonal ARIMAQ,0,1)(0,1,1)12 47 24121538 58181913 59157535 0912 57181913 0022290 3968203 43680150
«[] O — Seasonal ARIMA(2,0, 1)(1,1, )12 46 2632465 58202280 59373026 0913 5700228 0.020131 3975232 43798114
w[] O — Seasonal ARIMA(2,0, 2)(0, 1, )12 46 25628595 58223773 593.94520 0913 57023773 0.018080 3890272 42.836982
»[] [ —Seasonal ARIMA(0,0,1)(0,1,1)12 49 27531334 58250935 58836308 0903 57650935 0015784 4111506 45212838
w[] O — Seasonal ARIMA(0, 1, 1)(1,1, )12 47 30929156 58265899 590.38630 0886 57465899 0.014646 4559396 50.893816
v O — Seasonal ARIMA(2, 1, 2)(1, 1, 1)12 44 31099493 58298908 59651186 0894 56898908 0.012418 4298384 47.531946
(] O Seasonal ARIMA(2, 1, 2)(1,1,0)12 45 41235912 583.28957 594.88052 0887 57128957 0.010686 | 4505747 49.346343
w1 [  —Seasonal ARIMA(1,0,0)(0,1,1)12 49 27987809 58332895 589.18268 0902 577.32895 0010477 4149136 45.894846
v O Seasonal ARIMA(0, 1, 2)(1,1,0)12 47 45585238 58362453 59135184 0881 57562453 0009038 | 4661167 51.623975
-l O — Seasonal ARIMA(0,0, 1)(1,1, )12 48 2940.0983 583.78253 591.58750 0904 57578253 0008351 | 4.093031 45.149087
v[] [[]  —— Seasonal ARIMA(1,0,2)(0,1,1)12 47 25529929 58398350 59373972 0909 5739835 0007553 | 4064699 44732979
w[] O — Seasonal ARIMA(2, 1, 2)(0,1,0)12 46 43402116 58399276 593.65189 0881 57399276 0.007518 | 4513101 49.845952
] (| — Seasonal ARIMA(2,0, 0)(0, 1, 1)12 48 27980786 58428275 592.08773 0904 57628275 0006503 | : 4131984 45418328
v[] O — Seasonal ARIMA(1, 1, 1)(1,1, 0)12 47 4599.1645 58435614 592.08344 0879 57635614 0.006269 | 4709706 52453912
»[] [  —Seasonal ARIMA(1,0,2)(1,1,1)12 46 27811232 58443079 59613825 0910 57243079 0006039 | 4045892 44601088
«[] | — Seasonal ARIMA(1,0, 1)(0, 1, )12 48 28057571 58443124 59223622 0903 57643124 0.006038 | 4105131 45.073003
v[] [ — Seasonal ARIMA(0,0, 2)(0, 1, 1)12 48 2806463 58443985 59224483 0903 57643985 0006012 | 4108433 45.116556
«J Od Seasonal ARIMA(1,0,0)(1,1,1)12 48 29557938 58496642 50277140 0902 57696642 0.004620 | 4149495 45992639
-] m — Seasonal ARIMA(2, 1, 1)(1,1,0)12 46 46313754 58536399 59502312 0881 57536399 0003787 | 4650413 51.358923
1 []  ——Seasonal ARIMA(2,0,0)(1,1,1)12 47 30044144 58536478 59512099 0904 57536478 0003786 ! 4115836 45348938

Figure 1.6: JMP output of Seasonal ARIMA model comparison
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Out of these models, best model is selected based on R-square value and simplicity of the
model. Seasonal ARIMA (0,0,0) (0,1,1) 12 is selected because it’s the simplest model

with good value of R-square.

4 » Model: Seasonal ARIMA(0, 0, 0)(0, 1, 1)12
4 Model Summary

DF 50 Stable Yes
Sum of Squared Errors 149263.165 Invertible Yes
Variance Estimate 2985.26331
Standard Deviation 54.6375632
Akaike's ‘A’ Information Criterion 585.647643
Schwarz's Bayesian Criterion 589.55013
RSquare 0.89550373
RSquare Adj 0.8934138
MAPE 434056402
MAE 483196907
-2Loglikelihood 581.647643
4 Parameter Estimates
Term Factor Lag Estimate Std Error tRatio Prob>|t|] Constant Mu
MA2,12 2 12 1.00000 0.305429 3.27 Estimate -17.690853
Intercept 1 0 -17.69085 4374456 -4.04 -17.690853

Figure 1.7: JMP output of selected model of seasonal ARIMA

A time series is stable when the residuals are normal and random, variance is constant. A

model is stable means that the data fits the model.

Invertibility: A model is invertible if the previous values can be predicted using current
values. Invertibility is important for forecasting. Here, the focus is not on forecasting but

an invertible model is always a better fit.

1.3.8 Parameter analysis: The model only consists of one term: seasonal moving average.
The estimated weight of this MA term is 1. The significance of this value is shown in the
same table. The “prob” value is shown as 0.0019. Since, the probability of the parameter

is less than the threshold value 0.05 (0.0019<0.05), it’s chance of being greater than the

14



statistical “t” ratio 3.27 is almost negligible. Therefore, the estimated weight constant “1”

is a good fit and model fits a linear pattern. This means the degradation is linear.

Calculation of degradation rate:

Since, it is proved that the model fits adequately and the degradation rate is linear, the rate

of degradation is calculated using the slope of modelled kWh data.

Degradation rate is calculated for four selected months in summer which are April, May,

June and July. Reason behind this is that insolation in rest of the months is variable.

The slope is calculated using Excel function “slope”, where y-values are degradation values

and x-values are in the year numbers.

The degradation rates and slopes are showed in Chapter 4.
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4. RESULTS AND DISCUSSION
1.4.1 Time series plot:

Following plot is a time series plot of KWh output data from inverter of a PV system built

on Hayden Library in ASU Tempe campus.

kWh monthly data
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Figure 1.8: Time series plot of kWh monthly data

In this plot, it is observed that kwWh output on Y axis and month number on the X axis.
There’s a seasonal pattern seen in this plot. In winter months, the kWh output is low and
in summer months, the kWh output is high. The reason for this is that the angle of incidence
in winter months is high and therefore direct normal irradiance (DNI) is low in winter.
However, the angle of incidence in summer months on the on the PV modules in winter

months is low and DNI is high.
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Another thing which is observed is that there is some trend in reducing the power output,
which is same as the trend in degradation of output. The kWh output data is separated by
equal number of intervals in time. One data point represents one month. Thus, this is a
time series data. KWh output data is available for 5 years and the aim is to check whether
this degradation of output is linear in nature or not. Another aim is to compare results

obtained from Winters’ method and ARIMA method.
1.4.2 Simple regression of kWh output:

ASU-PRL have done research in finding out degradation rates of power output in hot-dry
climate of Arizona. In that research, Chris et al [11] used different irradiance models,
temperature models and Performance Index (P1) ratio. Pl is the best method of calculating
degradation rates because it is most accurate. Now, the task is to check that this PV output

from the systems is degrading linearly or not.

April May
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5_1540 5-4
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Figure 1.9: kWh degradation for April and May
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Figure 1.10: kWh degradation for June and July
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Figure 1.11: kwWh degradation for August and September
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Figure 1.12: kWh degradation for October

The above plots show kWh output over five years from 2011 to 2015 for seven selected
months which are April, May, June, July, August, September and October. These are the
major sunny months for which kWh output is high. It is observed that for months May,
June and July, the plots are almost linear. For other months, the plots do not show a linear
trend. Hence, regression is performed on plots of May, June and July to check if the
regression model fits.

1.4.3 Regression Analysis:

Residual Plots for May
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Figure 1.13: Residual plots for May
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Residual Plots for June
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Figure 1.14: Residual plots for June
Residual Plots for July
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Figure 1.15: Residual plots for July

Above plots are generated by the software Minitab after performing Regression. Following

results are observed from regression analysis.

Normal probability plot: For the data to be normal, it must be along the straight line in the

normal probability plot. Except for June, the other two months poorly satisfy this condition.
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Histogram: An ideal histogram is a bell-shaped curve which means that the residuals are
normally distributed. In this case, all three months have poor histograms.

Versus fits: This plot shows how scattered or skewed the residuals are. For the data to be
normal, residuals should be randomly distributed. In this case, the number of data point is
small, however any trend is not seen. So, the plots are adequately

fitting.

Versus order: This plot shows if the variance remains constant through time. All three plots
have changing variance. Hence, the regression model is not appropriate or it can be said

this kwWh degradation is non-linear.

It is occurred that these systems have a non-linear power degradation. However, it’s not a
conclusion based on regression model, since only 5 years of data is worked on. Further
analysis is performed using time series methods. ASU-PRL have evaluated PV systems for
degradation using Winters’ method, which is a third order exponential smoothing method.
In this research, Winters” method and ARIMA method are performed on kWh data of PV

systems built in ASU Tempe campus.
1.4.4 Application of time series methods on kWh pre-processed data:

First, ARIMA method is performed on these systems.
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4 » Model: Seasonal ARIMA(0, 0, 0)(0, 1, 1)12

4Model Summary
DF 57 Stable ~ VYes
Sum of Squared Errors 542055197 Invertible Yes
Variance Estimate 95097403
Standard Deviation 308378668

Akaike's A" Information Criterion 578044908
Schwarz's Bayesian Citerion 582199983

RSquare 097183025
RSquare Adj 097133605
MAPE 200886978
MAE 230502316
-JlogLikelihood 574044908

Figure 1.16: JMP output window of selected model of seasonal ARIMA

This model is invertible and fits the data. The R-square value is 0.971 which is highly

favorable.

4 Parameter Estimates

Term  Factor Llag Estimate StdError tRatio Prob>|t| Constant Mu
MA2,12 2 12 053583 0161213 332 0001 Estimate -19.136074
Intercept 10 -1913607 2449237 -7.81 <0001* _19136074

AForecast
1600

1500 o
1400 %0 ||

Predicted Value

Figure 1.17: JMP output showing parameter estimates of selected model

In the above figure, output window shows parameter estimates. This model has only
seasonal component of Moving Average term. The p value of moving average parameter
and the intercept is less than 0.05 which is ideal. These values are shown in red and marked

with asterisks. It means these values are highly acceptable.
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Figure 1.18: JMP output showing residuals

The above plot shows residual values of the model seasonal ARIMA (0,0,0) (0,1,1)12. A
model is good if it has scattered residuals. This plot shows that the residuals are scattered

and they do not show any trend.

All the systems evaluated are located in ASU Tempe campus. All those systems are new,
about 5-6 years old. For these systems, the ARIMA has worked well. However, it is
essential to evaluate performance of older PV systems to check if they are degrading with

the same rate and if they are still degrading in a linear manner.

A PV system was built in Tempe warehouse, which is in Tempe, Arizona. It started
producing power in November 2004 and researchers have collected data available till
December 2013. It’s data worth for more than 9 years, precisely 110 months. Now, this

data is analyzed using Winters’ and ARIMA. First, Seasonal ARIMA is performed.
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4 » Model: Seasonal ARIMA(1, 0, 0)(0, 1, )12
4 Model Summary

DF 95 Stable  VYes
Sum of Squared Errors 262185026 Invertible Yes
Variance Estimate 275984238
Standard Deviation 166127733

Akaike's ‘A’ Information Criterion 849.839734
Schwarz's Bayesian Criterion 857.594637

RSquare 0.96066463

RSquare Adj 0.95983652

MAPE 3.72566251

MAE 13.9018345

-2loglikelihood 843.839734

4 Parameter Estimates

Term  Factor Lag Estimate StdError tRatio Prob>|t| Constant Mu
AR11 1 1 0403315 00983212 410 0 Estimate -5.0722743
MA2,12 2 12 0896660 02646604 339 00010 3026549

Intercept 1 0 -5072274 09817088 -5.17

Figure 1.19: JMP output showing seasonal ARIMA results

It is seen in the above output window that the model seasonal ARIMA (1,0,0) (0,1,1)12 is
stable and invertible. Also, the ‘p’ values of AR and MA parameters and the intercept are
very good. These values are shown in red in the output window and marked with asterisk.

It means those values are just perfect and the model fits the data properly.

1.4.5 Summary of all the systems:

Following table shows degradation rates, ARIMA models and linearity in degradation for
all analyzed systems.
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Degradation Linearity of

rate (% per  ARIMA model system
LiL degradation
Hayden (0,0,0)
Library -1.55 (0,1,1)12 Yes
Packard (0,0,0)
parking -2.9 (0,1,1)12 Yes
(0,0,2)
Wrigley (1,1,0)12 (low
Hall -3 R square) Yes
Barret
Honors (0,0,0)
College -1.3 (1,0,0)12 Yes
Weathercup (0,0,0)
Center -1.64 (0,1,1)12 Yes
Tempe (1,0,0)
Warehouse -1.69 (0,1,1)12 Yes

Table 1.1: Summary of analysis

Above tabulated models are analyzed further in the research. This analysis involves

correlating data using the ARIMA model numbers.
1.4.6 Analysis of seasonal ARIMA models:

Seasonal ARIMA (0,0,0) (0,1,1) 12: First pair of parentheses represent non-seasonal part
of the model and second pair of parentheses represent seasonal part of the model. “12” is
the seasonal period in the model, which is number of months. Seasonal input is 12 because
one month repeats after next 12 months. Which also means, this model correlates data of
every month of consecutive years. For example, January of 1% month and January of 2"
year, January of 2" year and January of 3" year and so on. It does this for all months.

Now let’s understand Autocorrelation Function (ACF) and Partial Autocorrelation

Function (PACF) and their relation with autoregressive and moving average terms.
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Seasonal part (0,0,1): AR term is 0, Difference is 0 and MA term is 1. It means, 1%
difference is taken to make the time series stationary; the ACF plot has 1 lag significant.
This suggests that there’s a seasonal correlation between months of consecutive years. To
be more clear, there’s a correlation between January of year1 and January of year2, January

of year2 and January of year3 and so on.

4 Parameter Estimates

Term Factor Lag Estimate StdError tRatio Prob>|t| Constant Mu
MA2,12 2 12 053583 0.161213 3.32 Estimate -19.136074
Intercept 10 -1913607 2449237 781 <0001* 19136074
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Figure 1.20: Parameter estimates of selected ARIMA model

The parameters show a probability of t- statistics as 0.0016 and 0.0001 for MA term and
intercept. These parameters are smaller than the threshold value of 0.05. Probability of the
parameter values being greater than the t ratio is very low which means that the parameters
have significant values, residuals are normally distributed and model fits the data

adequately.

Similarly, inferences are made with observation of results of other models.

Wrigley hall [(0,0,2) (1,1,0)12]: Seasonal part: AR term is 1 which means seasonal every
month of one year is correlated with corresponding month of next consecutive year. In the
non-seasonal part, MA term is 2 which means in each year, every month is correlated with

next two consecutive months. It suggests that output increases or decreases linearly for
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three consecutive months. For example, Jan, Feb and March; Feb, March and April; and so

on.

Barret Honors college [(0,0,0) (1,0,0) 12]: This model suggests that the system behaves
similarly as Hayden Library, only the linear degradation behavior is represented by

autoregressive term instead of moving average term.

Tempe warehouse [(1,0,0) (0,1,1)12]: Similar behavior as previous system, but also for

every year, two consecutive months are linearly correlated.

From above table, it is seen that Hayden Library, Packard Parking and WeatherCup Center
systems behave exactly in the same manner. From above analysis, it is seen that ARIMA
models are consistent in its parameters. ARIMA approximates a linear model. Hence, it
can be concluded that all above systems which are located in hot and dry weather of

Arizona degrade in a linear manner.

1.4.7 Application of Winters’ method:

ARIMA fits the degradation in KWh output data from PV systems in hot dry climate of

Arizona in linear manner. Further, Winters’ method is used to evaluate these systems.
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4 » Model: Winters Method (Additive)
4Model Summary

DF 94 Stable  Yes
Sum of Squared Errors 27957.779 Invertible Yes
Variance Estimate 297423181
Standard Deviation 17.2459613

Akaike's ‘A Information Criterion 857407197
Schwarz's Bayesian Criterion 865.13133

RSquare 095318715

RSquare Adj 095219113

MAPE 4.20441806

MAE 15.7607574

-2Loglikelihood 851407197
4 Parameter Estimates

Term Estimate Std Error tRatio Prob>|t|

Level Smoothing Weight 050682653 0.1232548 411 <0001
Trend Smoothing Weight ~ 1.5159%-10 58734e-9 003 09795
Seasonal Smoothing Weight 0.00000025 0.0000097 003 09795

Figure 1.21: JMP output showing Winters' method results

This is JMP output of Winters’ method performed on the kWh data of Tempe Warehouse
system. It is the model is stable, invertible, the R square value is 0.953 which means the
model fits good to the data. In parameter estimates and their significance values, it is seen
that the P value for level smoothing weight is significant and the P values or trend

smoothing weight and seasonal smoothing weight are not significant.

4 = Model: Winters Method (Additive)
4 Model Summary

DF 48 Stable Yes
Sum of Squared Errors 175137.868 Invertible No
Variance Estimate 3648.70558
Standard Deviation 60.4045162
Akaike's ‘A’ Information Criterion 582.494448
Schwarz’s Bayesian Criterion 588.289925
RSquare 0.88272622
RSquare Adj 0.87783981
MAPE 462394946
MAE 51.0375253
-2Loglikelihood 576.494448
Failed: Cannot Decrease Objective Function Hessian is not positive
definite.
4 Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|

Level Smoothing Weight 0.10722998 0.091840 117 0.2487
Trend Smoothing Weight 0.00000000 2 3 5
Seasonal Smoothing Weight 0.12681490 2.973304 0.04 0.9662

Figure 1.22: JMP output of Winters' method
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The above image shows output for Winters method performed on kWh data of Hayden
Library. It says the model failed for forecasting. The goal is to determine whether the
system is degraded linearly or not based on available data and not forecasting. Therefore,
a comparative analysis between predicted kWh outputs of Holt-Winters” and ARIMA with

the raw kWh values is performed further in this report.
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Figure 1.23: Comparison of ARIMA and Winters' predicted kWh values with raw kWh
values for Hayden Library
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Figure 1.24: Comparison of ARIMA and Winters' predicted kwWh values with raw kWh
values for Tempe Warehouse
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In the above plots, we can see that the models have smoothed the data and removed any

peaks present. First 12 data points are for reference used by both models to take seasonality

into account.

1.4.8 Degradation slopes:

Following plot shows degradation slopes for selected summer months. The degradation

rates for April, May, June and July are -1.12%, -1.34%, -1.86%, -1.8% respectively.
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Figure 1.25: Degradation slope lines for summer months for Hayden Library
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The following plot shows an average degradation for Hayden library system, which is -
1.53% per year.

Average Degradation Slope for Hayden Library
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Figure 1.26: Average degradation slope for Hayden library PV system

Degradation rate can be calculated more accurately by using PR and Pl ratio. PR is
Performance Ratio which corrects for hourly irradiance hence monthly energy. Pl is
Performance Index which corrects for hourly irradiance as well as temperature and other

losses. Pl is a better measure than PR.
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5. CONCLUSION

In the first part of this thesis, a statistical analysis is performed to model performance of
PV power plants and determine whether the degradation rate is linear or not for those plants

located in hot-dry climate of Arizona, consisting of c-Si modules.

This part of thesis is an extended research of ASU-PRL’s previous work on climate specific
degradation rate and linearity analysis using 1/V, PR, Pl and kWh data. This analysis is
performed on the raw kWh data of the plants. The analyzed power plants of different ages
are built in Arizona State University. Previously, it was stated that these power plants have
tendency to degrade at different rates for first three years from the years after. This
conclusion was based on standard deviation and box plots. In this research a statistical
analysis using time series methods is performed. These methods are Winters’ method and
ARIMA method which are exponential smoothing and an advanced version of moving

average respectively.

A measured value consists of two components, signal (a desired value) and white noise
(random errors). Statistical methods such as Winters’ method and ARIMA separate out
noise from data. Winters’ method, which is a third order exponential smoothing method
uses smoothing weights and averages current data with previous data. ARIMA is an
advanced method of a moving average which integrates moving average terms with
autoregressive terms. The autoregressive weights are exponentially decreasing associated
with historical data. Both methods estimate linear models. Winters’ method separates out
data in three components level, trend and seasonality. A regression analysis on trend

component helps us tell whether the model represents a linear degradation or not. ARIMA
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has two components seasonal and non-seasonal. Seasonal part of ARIMA explains
correlation between yearly data, i.e. value of this year January can be predicted from
value(s) of previous year(s) January. Non-seasonal ARIMA explains trends in the same
year, i.e. value of August can be predicted from value(s) of previous month(s). Winters’
method and ARIMA both estimate a linear fit, however, the difference between two
methods is that an ARIMA (p,d,q) (P,D,Q)S model is defined but There’s no definition for
Winters” model. Knowing an ARIMA (p,d,q) (P,D,Q)S model one can predict the data
based on both seasonality and trend. Only trend component of Winters” method is used to
make analysis on linearity. Therefore, ARIMA could be more accurately modeling the data.
In the output window from JMP shows significance values of parameters. These parameters
are smoothing weights in case of Winters’ method and moving average or autoregressive
weights in case of ARIMA. Winters’ method is not very sensitive to small trend or
seasonality. Therefore, the smoothing weights are not significant. For small amounts of
data of five-ten years both Winters’ and ARIMA are good fits and the fitted values for both

methods are almost equal.

In the seasonal ARIMA models, it is clearly observed that seasonal dependence and current
monthly data is mainly depending upon previous year monthly data by a fixed constant. It
means that the output is degrading linearly in hot and dry climate of Arizona. A future work
using these methods in determining linearity in degradation of PV modules at different
climates for example, cold and humid or hot and humid can be done which would help

estimating behavior of c-Si modules in various climatic conditions.
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Future work in this research may consist of calculating degradation rates using PR and Pl
ratio and analyzing time series of PR and Pl using ARIMA. It would give a more accurate

degradation rate.
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PART 2: TEMPERATURE OF SOILED MODULES
1. INTRODUCTION
2.1.1 Background:

Performance of PV modules is affected by different environmental parameters such as
irradiance levels, ambient temperature, wind, soil, humidity, precipitation and so on [3].
Soil factor is mainly observed in hot and dry desert climatic conditions like in Arizona,
Texas, New Mexico, Nevada and some parts of California. Dust storms are frequently
observed in such deserts. After a dust storm, soil gets deposited on the PV modules and
forms a layer. Besides in hot and dry desert climatic conditions, pollution also causes
soil/dirt deposition of PV modules. This mainly occurs in highly dense cities such as

Beijing, Hong Kong, Mumbai and New Delhi.

Soil deposition reduces performance of PV in terms of power output by variable amounts.
Typically, in Arizona, power loss due to soiling is considered as 3-5%. The soiling loss
varies with different angles of tilt. Modules with 0° angle of tilt are considered to have
maximum soil deposition and modules with increasing tilt angles would have lesser amount
of soil because of gravity. A soiling station constructed by Sandia national labs with ASU-
PRL is located at ASU-PRL, Mesa, Arizona. This soiling station consists of 10 PV cell
coupons tilted at different angles, ranging from 0° to 45° with difference of 5° in each
coupon. All coupons are divided in two cells. One cell is cleaned periodically and the other

is remained soiled naturally.

2.1.2 Scope of work:

35



The temperature data of coupons is stored in a data logger system. Data for 19 months is
collected and used for analysis. This research includes analysis of temperature difference
between cleaned cell and soiled cell. It involves analysis of rain data, correlation of soiling
loss factor (SLF) with the temperature difference and variations of temperature difference
with seasons. A probability analysis is made to determine if clean module is hotter than a
soiled module. Dry spells cause negative slope in SLF plots. Temperature analysis is
performed on these periods. An analysis of temperature difference with different levels of
irradiance in one day is made which represents dependability of temperature difference on

irradiance as well as ambient temperature.
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2. LITERATURE REVIEW
2.2.1 Soiling loss analysis

Soiling loss factor (SLF) is crucial in determining power loss due to soiling. It depends on
dust frequency, intensity of site, humidity, wind speed, height of module installation and
rain frequency [3]. Sandia National Laboratories in collaboration with Arizona State
University (ASU) constructed five soiling stations around the country to analyze SLF. One
of these soiling stations is located in ASU’s Photovoltaic Reliability Lab [1]. This soiling
station consists of 10 c-Si coupons tilted at 10 different angles 0°, 5°, 10°, 15°, 20°, 25°,
30°, 35°, 40°, 45° which are cut in half. One half is cleaned periodically and the other half
is remained soiled naturally. It was observed that Arizona soiling station had the highest

soiling loss factor amongst the other sites. The loss depends significantly on tilt angle.
2.2.2 Temperature analysis

Performance of PV is affected by irradiance, ambient temperature. For a crystalline Silicon
module, voltage decreases by 1% for every 2.5° C rise in temperature and power decreases
by 1% for every 2.2° C rise in temperature [10]. Also, temperature increases associated
with thermal expansion; therefore, temperature is a significant factor affecting the

performance of PV modules [10].

Previously, a PV system in Phoenix was inspected for its performance and it was found
that, at different locations in the same system, modules were behaving differently. Overall
performance of system was 40% of its rated capacity, however, performance of a group of

modules at a particular end of the system, where trees were present, was about 60% of the

37



rated capacity [9]. The reason suspected for this anomaly was air turbulence due to trees
and hence, a cooler environment in that area. Therefore, temperature plays a major role in

performance of PV modules.
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3. METHODOLOGY
2.3.1 Outdoor Soiling Station:

Experiments and analysis were carried out on an outdoor soiling station located at

ASUPRL, Mesa.

Description: The soiling station is constructed such that coupons are facing south. There
are 10 coupons in total. Each coupon is divided in two parts. Coupons are tilted at tilt angles
0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° and 45°. These coupons are irradiance sensors.
Thermocouples are also connected at the back of each sensor. All sensors are connected to

data logger through metallic pipes to protect connections from weather.

Fig 2.1: SANDIA soiling station located in outdoor testing field at ASU-PRL

A special plastic structure was constructed on the soiling station to avoid bird drops.
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Fig 2.3: Data logger

40



Fig 2.4: Back side of sensor showing attached thermocouples

2.3.2 Experiment description:

This soiling station was initially built to find out soiling loss in hot dry weather of Arizona.
The right half part of every sensor was cleaned every Tuesday and Friday at 9:00 am. It
was cleaned with distilled water and was dried with a dry paper towel. The left half part of
the coupon is kept unclean or soiled. Following figure shows a coupon with left sensor

soiled and right sensor cleaned.
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Fig 2.5: Sensor showing left half soiled and right half clean

Data collection and processing: Irradiance and temperature data are collected and stored in
data logger. Irradiance and temperature are stored for every minute. These data are
extracted and stored in server time to time. For this analysis, data are extracted in following

manner:

Note down date for First Friday in December 2014
Select a time in morning (9-9:30) am (low irradiance and high angle of incidence)
Take average temperatures of these time spans and store them.

Do this for both soiled sensor and clean sensor for all 20 sensors
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Find AT = Tclean - Tsoiled

Now go to next Friday and repeat the whole process

This process is followed from December 2014 to July 2016. The same process is repeated
for afternoon (high irradiance and low angle of incidence) time and late afternoon (high

irradiance and high angle of irradiance).

2.3.3 Time series plot:

AT = Tclean - Tsoiled IS ObServed to be varying in nature. Following time series plot shows

that the AT varies with a polynomial curve with order of 5.

AT trend for Soiling station at ASU PRL

1 [ ]
§ ) L] '
=~ 0 ) ‘ o —@— 10 degrees
:1 ¢ Dolel p © ° 40 R0 80
-1 e e e e Poly. (10 degrees)
(]
-2 72,-2.131
-3
-4

Week number

Fig 2.6: Time series plot of AT showing 5- degree variation

The plot also shows some seasonal variation as shown in the following figure:
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AT for Soiling station at ASU PRL from 1:00PM to 1:30
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Fig 2.7: Time series plot showing seasonal variation
2.3.4 Seasonal Analysis:

It was observed that the AT has some influence of seasons on it. Therefore, the data were

sorted seasonally as follows:

Winter 2014: December 23" 2014 to March 20" 2015
Winter 2015: December 29" 2015 to March 15" 2016
Spring 2015: March 27" 2015 to June 19" 2015
Spring 2016: March 22" 2016 to June 14" 2016
Summer 2015: June 26" 2015 to September 25™ 2015

Summer 2016: June 21% 2016 to July 12" 2016
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Fall 2015: October 23" to December 18™ 2015

For simplicity of analysis, seasons were combined as:

Combination of winter 2014 and 2015
Combination of spring 2015 and 2016
Combination of Summer 2015 and 2016

Fall 2015
2.3.5 Collection of weather data:

Weather data are important in this analysis to study impact of weather on AT. The data are
collected by a weather station near Phoenix Sky Harbor Airport. These data are available

at NOAA website.
2.3.6 Calculating median AT:

To know how much a clean cell is hotter or cooler than a soiled cell, median values of AT

were calculated for every season for every tilt angle.
2.3.7 Calculation of Angle of Incidence:

Angle of incidence varies with different seasons as well as time. Arizona modules are
popularly placed at an angle about 10° of tilt, facing south. Considering this, angle of
incidence in winter is high and in summer it is low. Also, Angle of incidence in the morning
is low and in the afternoon, it is high. This is important because it influences irradiance and
in turn the temperature. Solar elevation is calculated using the calculator available on

NOAA website. Angle of incidence is a function of solar elevation angle.

Angle of incidence (AOI) = 90° - (angle of elevation) - (angle of tilt)
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Fig 2.8: Angle of incidence at 9:15 am from December 2014 to July 2016
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Fig 2.9: Angle of incidence at 1:15 pm from December 2014 to July 2016
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Angle of incidence from December 2014 to July
2016
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Fig 2.10: Angle of incidence at 3:15 pm from December 2014 to July 2016
2.3.8 Calculating probability:

The main objective of this analysis is to state whether a clean module would be hotter or
cooler. Calculating probability is one of the best measures to state or prove this

mathematically.

Number of positive AT
Total number of AT
All positive AT’s are numbered as “1” and all negative AT’s are numbered as “0”. Number

Probability of clean cell being hotter =

of positive AT’s are calculated using the “countif” function of Excel. Total number of AT’s

are calculated using “count” function of Excel. Probabilities are calculated seasonally.

Calculating Uncertainty in measurement of temperature: Uncertainty is the best estimate
of how far the measured value can be from the actual value.
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Accuracy of T type thermocouple: £1°C
Accuracy of CR 1000 data logger in temperature: £ (0.055 + 0.0057 x temperature) °C

Accuracy of the data logger is of the order of 10 which is very small as compared to
accuracy of T- type thermocouple. Hence it is justifiable to ignore the accuracy of data

logger. Hence, uncertainty consists of only accuracy of thermocouple which is £1°C.

RMS value of uncertainty:

Two uncertainties are present in measuring temperature. Hence, RMS (Root Mean Square)
is more accurate measure of calculating uncertainty. The RMS value is: 1.05~1 (Order of

107 is not significant for temperature difference and its effect on power drop).
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4. RESULTS AND DISCUSSION
2.4.1 Time series plot:

Time series is a sequence of time-indexed observations, equally spaced in time. It depicts
chronological relation of output. In this analysis, the data are in weekly order. This plot is
for 10° angle of tilt, which is most commonly used in Arizona. Every point in the plot
represents AT of Friday, as calculated in methodology chapter. Many crests and troughs
are seen in this plot. X-axis shows week number. Some points are above the zero line and
some points are below the zero line. A seasonal pattern is seen. AT is positive in certain

period of year and it is negative in some period of year.

AT for Soiling station at ASU PRL from 1:00PM to
Winter 2014-15  Summer 20149:30 P|!I Sumr’ner 2016

4 Winter 2015-16
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M
3 — Fall 2015 >

Spring 2015-16
-4 i
Spring 2018bservati0n order

Figure 2.11: Time series plot of AT

It is observed that AT in winter and fall is positive and AT in spring and summer is negative.

If a trendline is fit in this plot, it shows a 5™ order polynomial curve.
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AT trend for Soiling station at ASU PRL

0 ' ( ‘ ° ' —@— 10 degrees

|
°
4 ¢ %3 40 0 80 4 eee Poly. (10 degrees)

AT (°C)

-2 72,-2.131

Week number

Figure 2.12: Time series plot with trendline

Following figures show time series plots of three tilt angles 0°, 20° and 35°.
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Figure 2.13: Time series plot for 0°
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Figure 2.14: Time series plot of 20°
35 degree (afternoon)
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Figure 2.15: Time series plot for 35°

In above figures, it is seen that the time series plots of different angles have similar pattern
for seasons. It is also see that 35° tilt angle has more negative values than 0° and 10° and
20°.

2.4.2 Median values of AT:
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The AT varies with time and season. Further analysis shows how AT is influenced by
certain parameters. Median is a good measure of statistical data. For every tilt angle,

median value of AT in morning, afternoon and late afternoon is calculated.

Morning Median AT Afternoon Median AT
0.5 2
= =
ER I I1<llz|2;30;540 E 0 I
8 S0 u 1 .
g-o.s ¥ Morning AT §_1 0 bo1520053040 ®Aftemoon AT
-1 -2 )
Tilt angle Tilt angle
Figure 2.16: Median AT in morning and afternoon
Late afternoon median AT
3
F
] 11
£ 1
g 0 - . — - . I M [ ate afternoon AT
0 5 10 1520 25 30 35 40

Tilt angle

Figure 2.17: Median AT late in the afternoon

Median AT in morning is negative for all angles. Median AT in afternoon is negative for
0,5,10 degrees; positive for 15,20 and 25 degrees; negative for higher angles. Median AT

is positive for all angles in the late afternoon. Hence, irradiance is one of the parameters

which influences AT.

Superimposing all these values in one plot helps us compare median AT values in the

morning, afternoon and late afternoon. It is clearly seen that all values in the late afternoon

are higher than the morning and afternoon.
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Median AT
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Figure 2.18: Comparison of median AT at different time spans

This is overall comparison throughout 2 years. However, it was initially seen that there’s a

seasonal influence on AT values. Therefore, a seasonal median AT comparison was made.

Seasonal values were combined for two years as described in methodology. Median values

of combined years were calculated and plotted.
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Figure 2.19: Comparison of median AT in Winter
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Spring comparison
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Figure 2.20: Comparison of median AT in spring

Summer comparison
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Figure 2.21: Comparison of median AT in summer

54



Fall comparison
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Figure 2.22: Comparison of median AT in Fall

In above plots showing median values of AT, it is observed that there’s a seasonal effect.
Fig (a) shows winter values of median AT. The morning and late afternoon values are
mainly negative and afternoon values are positive. Maximum absolute value of AT is 1.
Fig (b) shows median AT in spring. Morning values are close to 0. Afternoon values are
significantly negative. Some of them exceed -4°C and the tilt angle 40° has the greatest
negative value of -6°C. Late afternoon values are all positive significantly. Highest median
AT value is about 3. Fig (c) shows median AT values in summer. Spring and summer values
appear similar. Though the morning values are mostly negative about -1°C. Fig (d) shows
median AT values in Fall. All values are small in magnitude about 1°C. Except for 40° tilt

angle. This could be an exception or an outlier.
2.4.3 Probability plots:

Goal of this research is to find out whether a clean module is hotter than a soiled module
or is cooler than a soiled module. To achieve this, a probability analysis is performed.
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Further results show probability that a clean module is hotter than a soiled module.

Probability morning
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Figure 2.23: Probability of Tciean > Tsoiled in morning time
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Figure 2.24: Probability of Tciean > Tsoiled in afternoon time
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Figure 2.25: Probability of Tciean > Tsoiled in late afternoon time

From above plots, it is inferred that probability of clean module being hotter is low in
morning time, it is moderate in the afternoon and it’s high late in the afternoon. This

suggests a possibility of influence of ambient temperature and angle of incidence on AT.

2.4.4 Soiling loss factor (SLF):

Soling loss factor (SLF) is a measure to determine power loss due to soiling. Generally,
in Arizona’s hot and dry climate, average soiling loss is about 3%. SLF is the ratio of
short circuit current for a soiled module to the short circuit current of a clean module.
Following plot shows weekly SLF for 10° tilt angle for 72 weeks of analysis. It is seen
that average SLF is about 0.99. Some trends of SLF drops which are indicated using red
lines.

These drops are called ‘dry spells’.
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Figure 2.26: Soiling factor plot showing dry spells

Dry spell: In hot and dry weather of Arizona, soiling is an important issue in solar industry.
Soiling loss factor (SLF) or Is ratio is a measure to find out how much power is lost due
to soiling. The SLF is about 0.99 which means, power loss is about 1%. However,
sometimes, the SLF drops to 0.97 or even 0.95 in consecutive weeks as shown in the plot.
More soiling has been recorded in these dry spell periods. In this research, particularly

these dry spells are considered for analysis.
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Figure 2.27: Soiling factor v/s AT
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Figure 2.30: Soiling factor v/s AT
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Discussion on above plots:

Dry spells 1,2 and 6: These dry spells occurred in winter and AT tends to increase as soiling
factor goes down. Soiling factor goes down when soiling density increases. Thus, in winter,
a clean module is hotter than a soiled module.

Dry spell 3 is occurred in late spring and early summer. AT seems going down as soiling
factor decreases. Thus, in late spring and summer, clean module is cooler than a soiled
module.

Dry spell 4 is summer and AT is about same but negative. Clean module is cooler than a
soiled module.

Dry spell 5 is in fall. Soiling factor decreases and AT seems constant. Clean module and
soiled module seem to have about equal temperatures.

Dry spell 7 occurs in spring. As soiling factor decreases, AT is about same but negative.

Thus, clean module is cooler than soiled module.

2.4.5 Plotting AT against day hours:

These plots give a more determining idea of relation of AT with irradiance levels as well

as dry spells in different seasons.
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2.4.5 Plotting AT against day hours

Following plots show temperature variation for clean and soiled modules in a day starting
from 9:00 AM to 3:30 PM. Y axis represents time in minutes and X axis represents
temperature in °C.
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Figure 2.31: Temperature comparison with time
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Figure 2.32: Temperature comparison with time
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Tsoiled and Tclean
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Figure 2.33: Temperature comparison with time
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Figure 2.34: Temperature comparison with time
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Figure 2.35: Temperature comparison with time
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Figure 2.36: Temperature comparison with time

In above plots, Y-axis represents time in minutes starting from 9:00 AM in the morning till
3:30 PM in the afternoon. X-axis represents Temperature in °C. Orange curve represents

temperature of clean module. Blue curve represents temperature of soiled module.
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Generally, temperature of module increases till 250 minutes (till about 1:00 PM) and then

decreases till 3:30 PM.

Inferences:

« Clean module is hotter in December, February, March and September which means clean
module is hotter in winter and fall.

« Clean module is cooler in June and July, which means clean module is cooler in Summer.
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5. CONCLUSION

In the second part, an analysis on temperature of soiled modules is performed to determine

whether a soiled module is hotter than a clean module or it is cooler than a clean module.

This analysis was performed on the data from winter 2014 to July 2016. The experiment
was carried out on a soiling station consisting of 10 different PV cell coupons, mounted at
different tilt angles. A time series plot of temperature difference AT between a clean cell
and a soiled cell against week number is generated. The trendline of this plot goes on
decreasing as the tilt angle goes on increasing. It can be inferred that AT is low when angle
of tilt is low and AT is higher when angle of tilt is high. This can be explained; a module
with 0° tilt angle holds the most amount of soil and amount of soil deposition goes on
decreasing as the tilt angle goes higher because the soil slides down due to gravity. This
observation suggests that a module is cooler when soil deposition is high. A module is

cooler when soil deposition is low.

In addition to above observations, AT varies with seasons and irradiance. AT is low in the
morning (9:00-9:30am), higher in the afternoon (1:00-1:30pm) and highest late in the
afternoon (3:00-3:30pm). AT is positive in fall and winter and it is negative in spring and

summer.

In a dry spell, soil deposition goes on increasing and soiling loss factor (SLF) goes on
decreasing. A temperature analysis was carried in dry spells. In winter, dry spell, a soiled
module is cooler than a clean module. However, in late spring and summer, soiled module
is hotter than a clean module. In further analysis of temperature comparison with time from

morning to afternoon, the same observations are seen. In Arizona, typically, the modules
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are installed at about 10° of tilt angle. For this condition, a clean module is hotter by (1 +
1° C) than a soiled module in winter. However, a clean module is cooler by (2 + 1° C) than

a soiled module in summer.
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APPENDIX A
SEASONAL ARIMA MODELS FOR OTHER SYSTEMS
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4 ~ Model: Seasonal ARIMA(0, 0, 0)(1, 0, 0)12
4 Model Summary

DF 66 Stable Yes
Sum of Squared Errors 476110486 Invertible Yes
Variance Estimate 7213.79525
Standard Deviation 84.9340641

Akaike's ‘A" Information Criterion 810.134932
Schwarz's Bayesian Criterion 814573947

RSquare 0.50896569

RSquare Adj 0.50152578

MAPE 10.473287

MAE 724549773

-2LoglLikelihood 806.134932
4 Parameter Estimates

Term Factor Lag Estimate StdError tRatio Prob>|t] Constant Mu
AR2,12 2 12 077671  0.06650 1168 <0001*  Estimate 774.462598
Intercept 1 0 77446260 3052681 2537 <.0001* 172.929534

JMP output of seasonal ARIMA for PV system on building of Barret Honors College

4 ~ Model: Seasonal ARIMA(0, 0, 0)(0, 1, 1)12
4 Model Summary

DF 46 Stable Yes
Sum of Squared Errors 190156.425 Invertible Yes
Variance Estimate 4133.83532
Standard Deviation 64.2949089

Akaike's ‘A’ Information Criterion 557.176195
Schwarz's Bayesian Criterion 560.918597

RSquare 0.88821553

RSquare Adj 0.88578543

MAPE 4.23143689

MAE 57.912402

-2LogLikelihood 553.176195

4 Parameter Estimates

Term Factor Lag Estimate StdError tRatio Prob>|t| Constant Mu
MA2,12 2 12 0.99987 0.315442 317 00027 Estimate -51.452848
Intercept 1 0 -5145285 5745322 -896 <0001* _51452848

JMP output of seasonal ARIMA for PV system on Packard Parking lot
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4 » Model: Seasonal ARIMA(O, 0, 0)(0, 1, 1)12
4 Model Summary

DF 46 Stable Yes
Sum of Squared Errors 62455.5659 Invertible Yes
Variance Estimate 1357.72969
Standard Deviation 36.8473838

Akaike's ‘A’ Information Criterion 492.603422
Schwarz's Bayesian Criterion 496.345824

RSquare 0.8589229

RSquare Adj 0.855856

MAPE 43556149

MAE 29.27634

-2LogLikelihood 488.603422

4 Parameter Estimates

Term Factor Lag Estimate Std Error tRatio Prob>|t| Constant Mu
MA2,12 2 12 0.715452 0.293398 244 0.0187* Estimate -6.728296
Intercept 1 0 -672829 3.171201 -212 0.0393* _6728296

JMP output of seasonal ARIMA for PV system on building of Weathercup center

4 ~ Model: Seasonal ARIMA(O, 0, 2)(1, 1, 0)12
4 Model Summary

DF 56 Stable Yes
Sum of Squared Errors 8561.89088 Invertible Yes
Variance Estimate 152.890909
Standard Deviation 12.3649063

Akaike's ‘A" Information Criterion 481.963616
Schwarz's Bayesian Criterion 490.340994

RSquare 0.62403503

RSquare Adj 0.60389405

MAPE 9.45475201

MAE 9.64871561

-2LogLikelihood 473.963616

4 Parameter Estimates

Term Factor Lag Estimate StdError tRatio Prob>|t|] Constant Mu
AR2,12 2 12 -0585994 0.122118 -480 <.0001 Estimate -5.1402063
MA1,1 1 1 -0427393 0.118505 -3.61 -8.1523356

MA1,2 1 2 -0.654406 0.103058 -635 <.0001*

Intercept 1 0 -5140206 2.163637 -238 0.0210*

JMP output of seasonal ARIMA for PV system on building of Wrigley hall
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Raw vs Smoothed kWh for Barret Honors College
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Raw vs Smoohted kWh for WeatherCup
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Degradation Slopes for Barret Honors College
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Degradation Slopes for Wrigley Hall
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Average Degradation Slope for Hayden Library
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Average Degradation Slope for Tempe Warehouse
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L Average Degradation Slope for Wrigley Hall
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APPENDIX B
AT, SLF AND SEASONAL PLOTS OF MEDIAN AT AND ANGLE OF INCIDENCE
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Time series plot of AT for 20° of tilt angle
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