
Degradation Linearity Determination and Temperature of  

Soiled Photovoltaic Modules in the Field 

by 

Adit Patankar 

 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree  

Master of Science  
 

 

 

 

 

 

 

 

 

Approved April 2017 by the 
Graduate Supervisory Committee:  

 
Govindasamy Tamizhmani, Co-chair 

Liping Wang, Co-chair 
Patrick Phelan 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

May 2017 

 



i 

 

ABSTRACT 

Photovoltaic modules degrade in the field. This thesis aims to answer two questions: 1. Do 

photovoltaic modules degrade linearly or not? 2. Do soiled modules operate at lower 

temperatures than clean modules? Answers to these questions are provided in part 1 and 

part 2 of this thesis respectively. 

Part 1:  Linearity determination in degradation: The electricity output from PV power 

plants degrades every year. Generally, a system’s life is considered to last for 20-25 years 

and rate of degradation is commonly assumed as 1% per year. PV degradation can be found 

out using Performance Ratio (PR), Performance Index (PI) and raw kWh output. The rate 

of degradation is considered linear for simplicity of calculations. In this thesis, statistical 

methods are used to check whether systems in Arizona are degrading linearly or not. Time 

series modeling such as Winters’ method and ARIMA are used to model the data. Winters’ 

method and Seasonal ARIMA consider the seasonality component and perform well for 

small data sets of about 10 years. Rate of degradation is found out as linear for all the 

evaluated systems.  

Part 2: Temperature analysis of clean and soiled modules: Soiling and temperature are 

important parameters in performance of PV modules. In this paper, an analysis is carried 

out on a soiling station located in Mesa, Arizona. The soiling station consists of 10 different 

c-Si coupons with tilt angles varying from 0° to 45° with the difference of 5°. These 

coupons are cut in half, one is cleaned periodically and the other is remained soiled 

naturally. The analysis involves data worth for 19 months. 6 dry spells in all four seasons 

within 19 months were analyzed. The temperature difference between a clean module and 
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a soiled module (ΔT) is compared with the soiling loss factor (SLF).  The analysis 

concludes stating in which season a soiled module is hotter or cooler than a clean module.  
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PART 1: DEGRADATION LINEARITY DETERMINATION  

1. INTRODUCTION  

1.1.1 Background:    

Commercial development of PV technology started in second half of the 20th century. 

Initially it was used in space applications. Later, from 1970s, PV was used to power 

residences and then it started growing rapidly on commercial scale. Now PV power plants 

are built at the capacity of over 500 MW. Performance of PV power plants depend upon 

many factors such as system efficiency, maintenance, reliability, and weather. Performance 

of a PV power plant degrades year by year in terms of output due to many reasons such as 

browning of encapsulant, leakage of current, mechanical damages and so on. The rate of 

degradation is an important factor that an owner or a developer of PV plant should know. 

A customer would purchase PV system or use PV electricity only if he knows how much 

it is worth. The degradation rate is helpful to predict or forecast performance. Also, it’s a 

crucial parameter to perform lifecycle analysis and payback period.   

There are two methods of calculating degradation rate of a power plant. One is to calculate 

I/V data of every module from time to time and then calculate the degradation rate using 

that data. The second method is to calculate rate of degradation using kWh output data 

from inverter. Performance Ratio (PR) is one common measure to calculate degradation. 

It’s a ratio of output energy and expected input energy [11]. This calculation can be done 

for yearly data and to find out how much the PR has degraded. Another, a better measure 

of calculating degradation is Performance Index (PI). It considers system losses in the input 
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energy and therefore the PI is slightly higher than the PR [11]. A simpler way to calculate 

the degradation rate is just to compare yearly kWh data and find the slope of degradation 

in output. Calculating degradation is important, but, finding nature of degradation is vital. 

It’s been assumed that the degradation of PV systems is linear and is close to 1% per year 

for simplicity of calculation. However, a statistical proof whether it is really linear or non-

linear is useful, because if it’s non-linear, the assumption would be wrong and then the 

forecasts would be wrong. ASU-PRL have done extensive research on the degradation of 

PV power plants. Chris Raupp et al [11] used PR, PI and raw kWh data to find out 

degradation rates of PV systems located in the Arizona State University, Tempe campus. 

He used box plots on the median values of monthly data to find out if the degradation trend 

is linear or non-linear. Chris et al [11] stated in his thesis that, in hot and dry climatic 

condition of Arizona, PV systems degrade in output at higher rate in first three years and 

at a lower rate after three years. The rate of degradation could be logarithmic in nature. 

Prasanna Sundarajan et al [12] used Holt Winters’ method to determine whether the 

systems degrade linearly or not. As mentioned earlier, the HoltWinters’ method 

decomposes the data into three parts, trend, seasonality and level. In order to determine the 

nature of degradation, trend component was considered for analysis and seasonality was 

ignored. Ultimately, the analysis is a regression analysis on trend data.  

1.1.2 Scope of work:  

A basic method to determine whether the degradation is linear or not, is to make a 

regression analysis on the output data. However, only regression is not enough, because 

the output from a PV system has components of seasonality and trend. Seasonality is a 
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phenomenon which shows that the output in summer is high when the angle of incidence 

is low and in winter, output is low when the angle of incidence is high. Time series is a 

specialized statistical method which can consider the effect of seasonality. There are 

various methods in time series such as moving average, exponential smoothing and their 

variations. A third order exponential smoothing is called “Holt Winters’” method which 

decomposes the data in three parts which are Level, Trend and Seasonality.  An advanced 

method of moving average is called autoregressive method and their combination is called 

Autoregressive Moving Average (ARMA) and even more advanced technique is called 

Autoregressive Integrated Moving Average (ARIMA) which also considers seasonality 

effect. In this research, six PV systems located in hot dry climate of Arizona are evaluated 

and modeled using Holt Winters’ method and ARIMA method. Difference between these 

two models is that the time series in Holt Winters’ model is not stationary where ARIMA 

makes a time series stationary to fit the data and model it. ARIMA is an advanced method 

of Holt-Winters’ method. In both methods, weights are used which have more importance 

to recent past data and less importance to older data. Both methods approximate linear 

models. Hence, in this research, PV systems are evaluated using these two methods and 

check whether they degrade linearly or not.   

Seasonal ARIMA is an advanced method which makes a time series stationary meaning 

that the mean and variance is constant. The model has two integrated components, seasonal 

and non-seasonal. In this analysis, seasonal component gives linear correlation between 

particular months of consecutive years; and the non-seasonal component gives linear 

correlation between consecutive months of a year. Although systems degrade linearly, 
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different systems have different correlations between months and years. For some systems, 

consecutive two months might be correlated, for some systems, consecutive three months 

might be correlated. A clear comparison between Winters’ method and Seasonal ARIMA 

is that Winters’ method could only tell you whether the system degradation is linear or not 

but seasonal ARIMA could tell you about linearity, model the data, draw correlations 

between years and months.  
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2. LITERATURE REVIEW  

1.2.1 Degradation of PV modules  

Reliability is probability of a product or a system to perform their function under certain 

conditions throughout their life. A PV system is said to be reliable if it performs above 

80% of its rated power after 20 years of its life. Degradation rates depend heavily on 

climatic conditions. Regions with humid and windy weather experience more degradation. 

Regions with cold and snowy climate face lowest rates of degradation. On the other hand, 

degradation is observed high in hot and dry desert climates. In northern United States, 

degradation rate is found as low as 0.2% per year. In deserts like Arizona, the rate of 

degradation is observed as high as 1% per year. Determination of degradation rate is 

important for site assessment and lifetime prediction of energy production. Also, it is 

important in calculation of payback period. Degradation due to different factors can be 

different in nature either linear or non-linear. Degradation in different PV technologies is 

different in nature.  

1.2.2 Statistical methods to determine linearity in degradation rate  

 Data consists of two components, signal and noise [12]. For a prediction or modeling of 

data, noise is removed and signal is predicted. Data smoothing is a statistical method which 

approximates a function of a signal and maintains it, removing or separating the noise from 

main signal. A smoother is a function which modifies signal which makes higher values 

reduce and points adjacent to these values are increased, to achieve a local mean . 

Seasonality in PV data is taken into account and worked upon using smoothers in Winters’ 

method. Winters’ method separates out seasonality component and predicts how much it 
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deviates from local mean due to seasonality effect. ARIMA makes the time series 

stationary and then uses smoothers such as moving average and auto-regression. Seasonal  

ARIMA uses periodic smoothing. It smooths periodic data and modifies it. ARIMA 

estimates parameters in a linear model. The significance level of these parameters explains 

whether the model fits the data adequately or not.  
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3. METHODOLOGY  

1.3.1 Preprocessing the data:  

• Hourly raw kWh data of ASU systems was taken from previous research of ASU- 

PRL. Data for high sun hours (9:00 am – 3:00 pm) is selected.  

• This data was converted to daily data using the pivot table tool in Microsoft Excel.  

• The daily data was converted to median monthly data by taking median values for every 

month. Hence, 12 data points per year are obtained.   

• Thus, a time series of monthly kWh data was created. The ASU systems have data available 

for about 6 years. Data available for Tempe warehouse is for 10 years.    

1.3.2 Time series plot:  

Following image shows time series plot of monthly median kWh data of PV system built 

on Hayden Library building.   

 

Figure 1.1: Time series plot of monthly median kWh  
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In the above plot, it is seen that kWh output is at its peak in summer months May and June. 

It is lowest in winter months December and January.   

1.3.3 Time series methods:  

Winters’ method (Additive): Holt-Winters’ method commonly known as Winters’ method 

is a third order exponential smoothing method. It separates out three components from the 

data which are Level, Trend and Seasonality. Level is a local mean or “level” of data 

generating process at this time [5]. Trend component gives current trend of the data, or 

change in data at current time. Seasonality component estimates deviation from mean due 

to  

seasonality effect.   

Out of these three components, trend is useful to determine the degradation rate in the 

system output. A previous research by Prasanna Sundarajan et al [12] in ASU-PRL 

developed a method for this. It consisted of data filtration of trend data and then regression 

analysis on the filtered trend data. The degradation rate was found out using the Y-intercept 

of regression analysis. Determination whether the degradation rate is linear or not was 

worked out using hypothesis making. A null hypothesis was made that said the rate of 

degradation is not linear. The hypothesis was accepted or rejected based on the regression 

parameters. This method is applied in this research to the PV systems built in ASU campus.   

JMP is a statistical tool which provides advanced time series modeling techniques. It 

facilitates to use Winters’ additive method. Following image shows JMP output of Winters’ 

method. It says the model is stable and not invertible. A model is invertible when past 

values can be predicted using current values. This phenomenon is crucial for forecasting. 
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Goal of this research is to model the existing data and find out whether the degradation rate 

is linear or not. Focus is not on forecasting. Therefore, this model of Winters’ method 

works just fine.   

   

Figure 1.2: JMP output window of Winters' method  

A new approach using a different time series method is involved in this thesis. 

Autoregressive Integrated Moving Average (ARIMA) is an advanced version of moving 

average. The moving average technique uses averages of current value with past values 

with certain weights associated with them. Autoregressive component of the method 

consists of exponentially decreasing weights associated with the values in the same time 

series. Hence the name “autoregressive”. Like Holt-Winters’ method, ARIMA also deals 

with seasonality component. ARIMA has a seasonal component and a non-seasonal 

component.   

1.3.4 Important facts about ARIMA: ARIMA is abbreviation for Autoregressive Integrated 

Moving Average. Both autoregressive (AR) and moving average (MA) terms estimate a 

linear model for a time series. ARIMA as a combination of both AR and MA terms also 
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therefore estimates a linear model because one term is added to the another. Hence, the 

linearity of model is not altered. ARIMA is linear in its parameters.  

1.3.5 Auto Correlation Function (ACF): In time series, current values of observation are 

dependent on previous values of observation. Hence there’s a possible relation between 

current observation and previous observations.   

If there’s a time series St = {St, St-1, St-2, St-3, …., St-s}. The values St-1, St-2 and so on 

represent previous observations are also called “lags”. They also represent different 

individual time series. To make it clear, St-1 represents time series with lag 1. It is known 

that there’s relation between St and its previous terms. Or, there’s relation between St and 

its lags.  

Autocovariance is covariance between two different time series.  

γs = E[(St - µt) (St-s – µt-s)] is autocovariance between St and St-s. γ function has a unit [2].  

However, a unit-less function is desired. Hence, γs is divided by γ0 where γ0 is variance of  

St.   

τs= 
γs

γ0
 Where τs autocorrelation function (ACF). It lies between -1 and +1. The term “auto” 

comes because both the time series St and St-s are part of same time series St. ACF plot 

suggests us MA process [2].  

Sample ACF plot:  
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Figure 1.3: Sample ACF plot  

  

In the above ACF plot on Hayden library kWh data, it is seen that there is one value which 

is cutting off the blue lines of “significance” or “limits”. This value is called significant 

value. Here, the y – axis represents ACF and x – axis represents lag. This means that first 

lag has significant ACF value. It means, the series yt is correlated with the series yt-1. After 

lag 1, the ACF behaves a sinusoidal and exponentially decaying pattern. It does not 

conclude yet anything. Hence, to identify a process, partial autocorrelation function is used.  

1.3.6 Partial Autocorrelation Function (PACF): If there are two series yt and yt-s, it is 

observed that there are intermediate series of yt-1, yt-2,…, yt-s+1. It is desired to take out the 

effect of these intermediate series on the correlation of yt and yt-s .   

For example, there are two series yt and yt-2. The goal is to take out the effect of yt-1 on the 

correlation of yt and yt-2.   
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PACF = 
Covariance (yt,yt−2|yt−1)

Square root of[variance(yt|yt − 1)variance(yt − 2|yt − 1)]
 

Sample PACF plot  

 

Figure 1.4: Sample PACF plot  

  

Above figure shows PACF plot for the kWh data of PV system on Hayden Library. In the 

PACF plot, it is observed that first two lags have significant PACF values and further lags 

have values below significance limits. Which means, the series yt is correlated 

independently with yt-1 and yt-2, with removal of effect of intermediate series. This suggests 

for an AR (2) process.  

1.3.7 Application of ARIMA: Now these concepts of ACF and PACF are applied to 

determine an ARIMA model. However, JMP makes this task easier. JMP has a tool in time 

series modeling named “ARIMA model group”. In this tool, a time series column is input 

on which analysis is to be carried out. In ARIMA model group, input is maximum limits 

of AR, difference and MA terms for seasonal and non-seasonal parts. This, after running 
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gives seasonal ARIMA models with all combinations of AR and MA terms. Following 

image shows input of parameters.  

 

Figure 1.5: JMP input window for ARIMA model group  

After clicking estimate, it gives a list of ARIMA models with all combinations of AR and  

MA terms and seasonal AR and MA terms. 

 

Figure 1.6: JMP output of Seasonal ARIMA model comparison 
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Out of these models, best model is selected based on R-square value and simplicity of the 

model. Seasonal ARIMA (0,0,0) (0,1,1) 12 is selected because it’s the simplest model 

with good value of R-square.   

 

Figure 1.7: JMP output of selected model of seasonal ARIMA 

A time series is stable when the residuals are normal and random, variance is constant. A 

model is stable means that the data fits the model.   

Invertibility: A model is invertible if the previous values can be predicted using current 

values. Invertibility is important for forecasting. Here, the focus is not on forecasting but 

an invertible model is always a better fit.   

1.3.8 Parameter analysis: The model only consists of one term: seasonal moving average. 

The estimated weight of this MA term is 1. The significance of this value is shown in the 

same table. The “prob” value is shown as 0.0019. Since, the probability of the parameter 

is less than the threshold value 0.05 (0.0019<0.05), it’s chance of being greater than the 
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statistical “t” ratio 3.27 is almost negligible. Therefore, the estimated weight constant “1” 

is a good fit and model fits a linear pattern. This means the degradation is linear.   

Calculation of degradation rate:  

Since, it is proved that the model fits adequately and the degradation rate is linear, the rate 

of degradation is calculated using the slope of modelled kWh data.  

Degradation rate is calculated for four selected months in summer which are April, May, 

June and July.  Reason behind this is that insolation in rest of the months is variable.  

The slope is calculated using Excel function “slope”, where y-values are degradation values 

and x-values are in the year numbers.  

The degradation rates and slopes are showed in Chapter 4.    
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4. RESULTS AND DISCUSSION  

1.4.1 Time series plot:  

Following plot is a time series plot of kWh output data from inverter of a PV system built 

on Hayden Library in ASU Tempe campus.   

 

Figure 1.8: Time series plot of kWh monthly data  

In this plot, it is observed that kWh output on Y axis and month number on the X axis. 

There’s a seasonal pattern seen in this plot. In winter months, the kWh output is low and 

in summer months, the kWh output is high. The reason for this is that the angle of incidence 

in winter months is high and therefore direct normal irradiance (DNI) is low in winter. 

However, the angle of incidence in summer months on the on the PV modules in winter 

months is low and DNI is high.   
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Another thing which is observed is that there is some trend in reducing the power output, 

which is same as the trend in degradation of output. The kWh output data is separated by 

equal number of intervals in time. One data point represents one month. Thus, this is a 

time series data. KWh output data is available for 5 years and the aim is to check whether 

this degradation of output is linear in nature or not. Another aim is to compare results 

obtained from Winters’ method and ARIMA method.   

1.4.2 Simple regression of kWh output:  

ASU-PRL have done research in finding out degradation rates of power output in hot-dry 

climate of Arizona. In that research, Chris et al [11] used different irradiance models, 

temperature models and Performance Index (PI) ratio. PI is the best method of calculating 

degradation rates because it is most accurate. Now, the task is to check that this PV output 

from the systems is degrading linearly or not.   

 

Figure 1.9: kWh degradation for April and May  
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Figure 1.10: kWh degradation for June and July  

  

 

                 Figure 1.11: kWh degradation for August and September  
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                      Figure 1.12: kWh degradation for October  

The above plots show kWh output over five years from 2011 to 2015 for seven selected 

months which are April, May, June, July, August, September and October. These are the 

major sunny months for which kWh output is high. It is observed that for months May, 

June and July, the plots are almost linear. For other months, the plots do not show a linear 

trend. Hence, regression is performed on plots of May, June and July  to check if the 

regression model fits.  

1.4.3 Regression Analysis:  

 

Figure 1.13: Residual plots for May  
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Figure 1.14: Residual plots for June  

 

Figure 1.15: Residual plots for July  

Above plots are generated by the software Minitab after performing Regression. Following 

results are observed from regression analysis.  

• Normal probability plot: For the data to be normal, it must be along the straight line in the 

normal probability plot. Except for June, the other two months poorly satisfy this condition.  
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• Histogram: An ideal histogram is a bell-shaped curve which means that the residuals are 

normally distributed. In this case, all three months have poor histograms.   

• Versus fits: This plot shows how scattered or skewed the residuals are. For the data to be 

normal, residuals should be randomly distributed. In this case, the number of data point is 

small, however any trend is not seen. So, the plots are adequately  

fitting.   

• Versus order: This plot shows if the variance remains constant through time. All three plots 

have changing variance. Hence, the regression model is not appropriate or it can be said 

this kWh degradation is non-linear.   

It is occurred that these systems have a non-linear power degradation. However, it’s not a 

conclusion based on regression model, since only 5 years of data is worked on. Further 

analysis is performed using time series methods. ASU-PRL have evaluated PV systems for 

degradation using Winters’ method, which is a third order exponential smoothing method. 

In this research, Winters’ method and ARIMA method are performed on kWh data of PV 

systems built in ASU Tempe campus.   

1.4.4 Application of time series methods on kWh pre-processed data:  

First, ARIMA method is performed on these systems.  
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Figure 1.16: JMP output window of selected model of seasonal ARIMA  

This model is invertible and fits the data. The R-square value is 0.971 which is highly 

favorable.   

 

Figure 1.17: JMP output showing parameter estimates of selected model  

In the above figure, output window shows parameter estimates. This model has only 

seasonal component of Moving Average term. The p value of moving average parameter 

and the intercept is less than 0.05 which is ideal. These values are shown in red and marked 

with asterisks. It means these values are highly acceptable.   
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Figure 1.18: JMP output showing residuals  

The above plot shows residual values of the model seasonal ARIMA (0,0,0) (0,1,1)12. A 

model is good if it has scattered residuals. This plot shows that the residuals are scattered 

and they do not show any trend.   

All the systems evaluated are located in ASU Tempe campus. All those systems are new, 

about 5-6 years old. For these systems, the ARIMA has worked well. However, it is 

essential to evaluate performance of older PV systems to check if they are degrading with 

the same rate and if they are still degrading in a linear manner.   

A PV system was built in Tempe warehouse, which is in Tempe, Arizona. It started 

producing power in November 2004 and researchers have collected data available till 

December 2013. It’s data worth for more than 9 years, precisely 110 months. Now, this 

data is analyzed using Winters’ and ARIMA. First, Seasonal ARIMA is performed.  
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Figure 1.19: JMP output showing seasonal ARIMA results  

It is seen in the above output window that the model seasonal ARIMA (1,0,0) (0,1,1)12 is 

stable and invertible. Also, the ‘p’ values of AR and MA parameters and the intercept are 

very good. These values are shown in red in the output window and marked with asterisk.  

It means those values are just perfect and the model fits the data properly.   

  

  

  

1.4.5 Summary of all the systems:  

Following table shows degradation rates, ARIMA models and linearity in degradation for 

all analyzed systems. 
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System 

name 

Degradation 

rate (% per 

year) 

ARIMA model 

fit 

Linearity of 

system 

degradation 

Hayden 

Library -1.55 

(0,0,0) 

(0,1,1)12 Yes 

Packard 

parking -2.9 

(0,0,0) 

(0,1,1)12 Yes 

Wrigley 

Hall -3 

(0,0,2) 

(1,1,0)12 (low 

R square) Yes 

Barret 

Honors 

College -1.3 

(0,0,0) 

(1,0,0)12 Yes 

Weathercup 

Center -1.64 

(0,0,0) 

(0,1,1)12 Yes 

Tempe 

Warehouse -1.69 

(1,0,0) 

(0,1,1)12 Yes 

Table 1.1: Summary of analysis   

Above tabulated models are analyzed further in the research. This analysis involves 

correlating data using the ARIMA model numbers.  

1.4.6 Analysis of seasonal ARIMA models:  

Seasonal ARIMA (0,0,0) (0,1,1) 12: First pair of parentheses represent non-seasonal part 

of the model and second pair of parentheses represent seasonal part of the model. “12” is 

the seasonal period in the model, which is number of months. Seasonal input is 12 because 

one month repeats after next 12 months. Which also means, this model correlates data of 

every month of consecutive years. For example, January of 1st month and January of 2nd 

year, January of 2nd year and January of 3rd year and so on. It does this for all months.  

Now let’s understand Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) and their relation with autoregressive and moving average terms.   
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Seasonal part (0,0,1): AR term is 0, Difference is 0 and MA term is 1. It means, 1st 

difference is taken to make the time series stationary; the ACF plot has 1 lag significant. 

This suggests that there’s a seasonal correlation between months of consecutive years. To 

be more clear, there’s a correlation between January of year1 and January of year2, January 

of year2 and January of year3 and so on.   

 

Figure 1.20: Parameter estimates of selected ARIMA model  

The parameters show a probability of t- statistics as 0.0016 and 0.0001 for MA term and 

intercept. These parameters are smaller than the threshold value of 0.05. Probability of the 

parameter values being greater than the t ratio is very low which means that the parameters 

have significant values, residuals are normally distributed and model fits the data 

adequately.   

Similarly, inferences are made with observation of results of other models.  

Wrigley hall [(0,0,2) (1,1,0)12]: Seasonal part: AR term is 1 which means seasonal every 

month of one year is correlated with corresponding month of next consecutive year. In the 

non-seasonal part, MA term is 2 which means in each year, every month is correlated with 

next two consecutive months. It suggests that output increases or decreases linearly for 
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three consecutive months. For example, Jan, Feb and March; Feb, March and April; and so 

on.  

Barret Honors college [(0,0,0) (1,0,0) 12]: This model suggests that the system behaves 

similarly as Hayden Library, only the linear degradation behavior is represented by 

autoregressive term instead of moving average term.   

Tempe warehouse [(1,0,0) (0,1,1)12]: Similar behavior as previous system, but also for 

every year, two consecutive months are linearly correlated.   

From above table, it is seen that Hayden Library, Packard Parking and WeatherCup Center 

systems behave exactly in the same manner. From above analysis, it is seen that ARIMA 

models are consistent in its parameters. ARIMA approximates a linear model. Hence, it 

can be concluded that all above systems which are located in hot and dry weather of 

Arizona degrade in a linear manner.  

1.4.7 Application of Winters’ method:  

ARIMA fits the degradation in kWh output data from PV systems in hot dry climate of 

Arizona in linear manner. Further, Winters’ method is used to evaluate these systems.  
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Figure 1.21: JMP output showing Winters' method results 

This is JMP output of Winters’ method performed on the kWh data of Tempe Warehouse 

system. It is the model is stable, invertible, the R square value is 0.953 which means the 

model fits good to the data. In parameter estimates and their significance values, it is seen  

that the P value for level smoothing weight is significant and the P values or trend 

smoothing weight and seasonal smoothing weight are not significant.   

  

 

Figure 1.22: JMP output of Winters' method  
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The above image shows output for Winters method performed on kWh data of Hayden 

Library. It says the model failed for forecasting. The goal is to determine whether the 

system is degraded linearly or not based on available data and not forecasting. Therefore, 

a comparative analysis between predicted kWh outputs of Holt-Winters’ and ARIMA with 

the raw kWh values is performed further in this report.  

 

Figure 1.23: Comparison of ARIMA and Winters' predicted kWh values with raw kWh 

values for Hayden Library  

 

 

Figure 1.24: Comparison of ARIMA and Winters' predicted kWh values with raw kWh 

values for Tempe Warehouse 
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In the above plots, we can see that the models have smoothed the data and removed any 

peaks present. First 12 data points are for reference used by both models to take seasonality 

into account. 

1.4.8 Degradation slopes:  

Following plot shows degradation slopes for selected summer months. The degradation 

rates for April, May, June and July are -1.12%, -1.34%, -1.86%, -1.8% respectively. 

 

Figure 1.25: Degradation slope lines for summer months for Hayden Library 

 

 

 

 



31 

  

 

 

The following plot shows an average degradation for Hayden library system, which is          -

1.53% per year. 

 

Figure 1.26: Average degradation slope for Hayden library PV system 

 

Degradation rate can be calculated more accurately by using PR and PI ratio. PR is 

Performance Ratio which corrects for hourly irradiance hence monthly energy. PI is 

Performance Index which corrects for hourly irradiance as well as temperature and other 

losses. PI is a better measure than PR.  
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5. CONCLUSION 

In the first part of this thesis, a statistical analysis is performed to model performance of 

PV power plants and determine whether the degradation rate is linear or not for those plants 

located in hot-dry climate of Arizona, consisting of c-Si modules.   

This part of thesis is an extended research of ASU-PRL’s previous work on climate specific 

degradation rate and linearity analysis using I/V, PR, PI and kWh data. This analysis is 

performed on the raw kWh data of the plants. The analyzed power plants of different ages 

are built in Arizona State University. Previously, it was stated that these power plants have 

tendency to degrade at different rates for first three years from the years after. This 

conclusion was based on standard deviation and box plots. In this research a statistical 

analysis using time series methods is performed. These methods are Winters’ method and 

ARIMA method which are exponential smoothing and an advanced version of moving 

average respectively.   

A measured value consists of two components, signal (a desired value) and white noise 

(random errors). Statistical methods such as Winters’ method and ARIMA separate out 

noise from data. Winters’ method, which is a third order exponential smoothing method 

uses smoothing weights and averages current data with previous data. ARIMA is an 

advanced method of a moving average which integrates moving average terms with 

autoregressive terms. The autoregressive weights are exponentially decreasing associated 

with historical data. Both methods estimate linear models. Winters’ method separates out 

data in three components level, trend and seasonality. A regression analysis on trend 

component helps us tell whether the model represents a linear degradation or not.  ARIMA 
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has two components seasonal and non-seasonal. Seasonal part of ARIMA explains 

correlation between yearly data, i.e. value of this year January can be predicted from 

value(s) of previous year(s) January. Non-seasonal ARIMA explains trends in the same 

year, i.e. value of August can be predicted from value(s) of previous month(s). Winters’ 

method and ARIMA both estimate a linear fit, however, the difference between two 

methods is that an ARIMA (p,d,q) (P,D,Q)S model is defined but There’s no definition for 

Winters’ model. Knowing an ARIMA (p,d,q) (P,D,Q)S model one can predict the data 

based on both seasonality and trend. Only trend component of Winters’ method is used to 

make analysis on linearity. Therefore, ARIMA could be more accurately modeling the data. 

In the output window from JMP shows significance values of parameters. These parameters 

are smoothing weights in case of Winters’ method and moving average or autoregressive 

weights in case of ARIMA. Winters’ method is not very sensitive to small trend or 

seasonality. Therefore, the smoothing weights are not significant. For small amounts of 

data of five-ten years both Winters’ and ARIMA are good fits and the fitted values for both 

methods are almost equal.   

In the seasonal ARIMA models, it is clearly observed that seasonal dependence and current 

monthly data is mainly depending upon previous year monthly data by a fixed constant. It 

means that the output is degrading linearly in hot and dry climate of Arizona. A future work 

using these methods in determining linearity in degradation of PV modules at different 

climates for example, cold and humid or hot and humid can be done which would help 

estimating behavior of c-Si modules in various climatic conditions.   
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Future work in this research may consist of calculating degradation rates using PR and PI 

ratio and analyzing time series of PR and PI using ARIMA. It would give a more accurate 

degradation rate. 
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PART 2: TEMPERATURE OF SOILED MODULES 

1. INTRODUCTION  

2.1.1 Background:  

Performance of PV modules is affected by different environmental parameters such as 

irradiance levels, ambient temperature, wind, soil, humidity, precipitation and so on [3]. 

Soil factor is mainly observed in hot and dry desert climatic conditions like in Arizona, 

Texas, New Mexico, Nevada and some parts of California. Dust storms are frequently 

observed in such deserts. After a dust storm, soil gets deposited on the PV modules and 

forms a layer. Besides in hot and dry desert climatic conditions, pollution also causes 

soil/dirt deposition of PV modules. This mainly occurs in highly dense cities such as 

Beijing, Hong Kong, Mumbai and New Delhi.  

Soil deposition reduces performance of PV in terms of power output by variable amounts. 

Typically, in Arizona, power loss due to soiling is considered as 3-5%. The soiling loss 

varies with different angles of tilt. Modules with 0° angle of tilt are considered to have 

maximum soil deposition and modules with increasing tilt angles would have lesser amount 

of soil because of gravity. A soiling station constructed by Sandia national labs with ASU-

PRL is located at ASU-PRL, Mesa, Arizona. This soiling station consists of 10 PV cell 

coupons tilted at different angles, ranging from 0° to 45° with difference of 5° in each 

coupon. All coupons are divided in two cells. One cell is cleaned periodically and the other 

is remained soiled naturally.   

2.1.2 Scope of work:  
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The temperature data of coupons is stored in a data logger system. Data for 19 months is 

collected and used for analysis. This research includes analysis of temperature difference 

between cleaned cell and soiled cell. It involves analysis of rain data, correlation of soiling 

loss factor (SLF) with the temperature difference and variations of temperature difference 

with seasons. A probability analysis is made to determine if clean module is hotter than a 

soiled module. Dry spells cause negative slope in SLF plots. Temperature analysis is 

performed on these periods. An analysis of temperature difference with different levels of 

irradiance in one day is made which represents dependability of temperature difference on 

irradiance as well as ambient temperature.   
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2. LITERATURE REVIEW  

2.2.1 Soiling loss analysis  

Soiling loss factor (SLF) is crucial in determining power loss due to soiling. It depends on 

dust frequency, intensity of site, humidity, wind speed, height of module installation and 

rain frequency [3]. Sandia National Laboratories in collaboration with Arizona State 

University (ASU) constructed five soiling stations around the country to analyze SLF. One 

of these soiling stations is located in ASU’s Photovoltaic Reliability Lab [1]. This soiling 

station consists of 10 c-Si coupons tilted at 10 different angles 0°, 5°, 10°, 15°, 20°, 25°, 

30°, 35°, 40°, 45° which are cut in half. One half is cleaned periodically and the other half 

is remained soiled naturally. It was observed that Arizona soiling station had the highest 

soiling loss factor amongst the other sites. The loss depends significantly on tilt angle.   

2.2.2 Temperature analysis  

Performance of PV is affected by irradiance, ambient temperature. For a crystalline Silicon 

module, voltage decreases by 1% for every 2.5° C rise in temperature and power decreases 

by 1% for every 2.2° C rise in temperature [10]. Also, temperature increases associated 

with thermal expansion; therefore, temperature is a significant factor affecting the 

performance of PV modules [10].   

Previously, a PV system in Phoenix was inspected for its performance and it was found 

that, at different locations in the same system, modules were behaving differently. Overall 

performance of system was 40% of its rated capacity, however, performance of a group of 

modules at a particular end of the system, where trees were present, was about 60% of the 
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rated capacity [9]. The reason suspected for this anomaly was air turbulence due to trees 

and hence, a cooler environment in that area. Therefore, temperature plays a major role in 

performance of PV modules.   
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3. METHODOLOGY 

2.3.1 Outdoor Soiling Station:  

Experiments and analysis were carried out on an outdoor soiling station located at 

ASUPRL, Mesa.   

Description: The soiling station is constructed such that coupons are facing south. There 

are 10 coupons in total. Each coupon is divided in two parts. Coupons are tilted at tilt angles 

0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° and 45°. These coupons are irradiance sensors. 

Thermocouples are also connected at the back of each sensor. All sensors are connected to 

data logger through metallic pipes to protect connections from weather.   

  

 

Fig 2.1: SANDIA soiling station located in outdoor testing field at ASU-PRL  

A special plastic structure was constructed on the soiling station to avoid bird drops.   
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Fig 2.2: Plastic structures to avoid bird drops 

 

Fig 2.3: Data logger 
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Fig 2.4: Back side of sensor showing attached thermocouples  

2.3.2 Experiment description:  

This soiling station was initially built to find out soiling loss in hot dry weather of Arizona. 

The right half part of every sensor was cleaned every Tuesday and Friday at 9:00 am. It 

was cleaned with distilled water and was dried with a dry paper towel. The left half part of 

the coupon is kept unclean or soiled. Following figure shows a coupon with left sensor 

soiled and right sensor cleaned.   
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Fig 2.5: Sensor showing left half soiled and right half clean  

Data collection and processing: Irradiance and temperature data are collected and stored in 

data logger. Irradiance and temperature are stored for every minute. These data are 

extracted and stored in server time to time. For this analysis, data are extracted in following 

manner:  

• Note down date for First Friday in December 2014  

• Select a time in morning (9-9:30) am (low irradiance and high angle of incidence)  

• Take average temperatures of these time spans and store them.  

• Do this for both soiled sensor and clean sensor for all 20 sensors  
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• Find ΔT = Tclean - Tsoiled  

• Now go to next Friday and repeat the whole process  

This process is followed from December 2014 to July 2016. The same process is repeated 

for afternoon (high irradiance and low angle of incidence) time and late afternoon (high 

irradiance and high angle of irradiance).  

  

2.3.3 Time series plot:  

ΔT = Tclean - Tsoiled is observed to be varying in nature. Following time series plot shows 

that the ΔT varies with a polynomial curve with order of 5.   

 

Fig 2.6: Time series plot of ΔT showing 5- degree variation  

The plot also shows some seasonal variation as shown in the following figure:  
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Fig 2.7: Time series plot showing seasonal variation  

2.3.4 Seasonal Analysis:  

It was observed that the ΔT has some influence of seasons on it. Therefore, the data were 

sorted seasonally as follows:  

• Winter 2014: December 23rd 2014 to March 20th 2015  

• Winter 2015: December 29th 2015 to March 15th 2016  

• Spring 2015: March 27th 2015 to June 19th 2015  

• Spring 2016: March 22nd 2016 to June 14th 2016  

• Summer 2015: June 26th 2015 to September 25th 2015  

• Summer 2016: June 21st 2016 to July 12th 2016  
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• Fall 2015: October 23rd to December 18th 2015  

For simplicity of analysis, seasons were combined as:  

• Combination of winter 2014 and 2015  

• Combination of spring 2015 and 2016  

• Combination of Summer 2015 and 2016  

• Fall 2015  

2.3.5 Collection of weather data:  

Weather data are important in this analysis to study impact of weather on ΔT. The data are 

collected by a weather station near Phoenix Sky Harbor Airport. These data are available 

at NOAA website.   

2.3.6 Calculating median ΔT:   

To know how much a clean cell is hotter or cooler than a soiled cell, median values of ΔT 

were calculated for every season for every tilt angle.   

2.3.7 Calculation of Angle of Incidence:   

Angle of incidence varies with different seasons as well as time. Arizona modules are 

popularly placed at an angle about 10° of tilt, facing south. Considering this, angle of 

incidence in winter is high and in summer it is low. Also, Angle of incidence in the morning 

is low and in the afternoon, it is high. This is important because it influences irradiance and 

in turn the temperature. Solar elevation is calculated using the calculator available on 

NOAA website. Angle of incidence is a function of solar elevation angle.   

Angle of incidence (AOI) = 90° - (angle of elevation) - (angle of tilt)  
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      Fig 2.8: Angle of incidence at 9:15 am from December 2014 to July 2016  

 

         Fig 2.9: Angle of incidence at 1:15 pm from December 2014 to July 2016  
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       Fig 2.10: Angle of incidence at 3:15 pm from December 2014 to July 2016  

2.3.8 Calculating probability:  

The main objective of this analysis is to state whether a clean module would be hotter or 

cooler. Calculating probability is one of the best measures to state or prove this 

mathematically.   

      

Probability of clean cell being hotter =   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝛥𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝛥𝑇
      

All positive ΔT’s are numbered as “1” and all negative ΔT’s are numbered as “0”. Number 

of positive ΔT’s are calculated using the “countif” function of Excel. Total number of ΔT’s 

are calculated using “count” function of Excel. Probabilities are calculated seasonally.  

Calculating Uncertainty in measurement of temperature: Uncertainty is the best estimate 

of how far the measured value can be from the actual value.  
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Accuracy of T type thermocouple: ±1°C 

Accuracy of CR 1000 data logger in temperature: ± (0.055 + 0.0057 x temperature) °C 

Accuracy of the data logger is of the order of 10-2 which is very small as compared to 

accuracy of T- type thermocouple. Hence it is justifiable to ignore the accuracy of data 

logger. Hence, uncertainty consists of only accuracy of thermocouple which is ±1°C. 

RMS value of uncertainty: 

Two uncertainties are present in measuring temperature. Hence, RMS (Root Mean Square) 

is more accurate measure of calculating uncertainty. The RMS value is: 1.05~1 (Order of 

10-2 is not significant for temperature difference and its effect on power drop). 
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4. RESULTS AND DISCUSSION 

2.4.1 Time series plot:  

Time series is a sequence of time-indexed observations, equally spaced in time. It depicts 

chronological relation of output. In this analysis, the data are in weekly order. This plot is 

for 10° angle of tilt, which is most commonly used in Arizona. Every point in the plot 

represents ΔT of Friday, as calculated in methodology chapter. Many crests and troughs 

are seen in this plot. X-axis shows week number. Some points are above the zero line and 

some points are below the zero line. A seasonal pattern is seen. ΔT is positive in certain 

period of year and it is negative in some period of year.   

 

Figure 2.11: Time series plot of ΔT  

It is observed that ΔT in winter and fall is positive and ΔT in spring and summer is negative. 

If a trendline is fit in this plot, it shows a 5th order polynomial curve.   
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Figure 2.12: Time series plot with trendline  

Following figures show time series plots of three tilt angles 0°, 20° and 35°.   

 

Figure 2.13: Time series plot for 0°  
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Figure 2.14: Time series plot of 20° 

 

Figure 2.15: Time series plot for 35°  

  

In above figures, it is seen that the time series plots of different angles have similar pattern 

for seasons. It is also see that 35° tilt angle has more negative values than 0° and 10° and 

20°.   

2.4.2 Median values of ΔT:   
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The ΔT varies with time and season. Further analysis shows how ΔT is influenced by 

certain parameters. Median is a good measure of statistical data. For every tilt angle, 

median value of ΔT in morning, afternoon and late afternoon is calculated.   

 

                        Figure 2.16: Median ΔT in morning and afternoon  

 

                    Figure 2.17: Median ΔT late in the afternoon  

Median ΔT in morning is negative for all angles. Median ΔT in afternoon is negative for 

0,5,10 degrees; positive for 15,20 and 25 degrees; negative for higher angles. Median ΔT 

is positive for all angles in the late afternoon. Hence, irradiance is one of the parameters 

which influences ΔT.   

Superimposing all these values in one plot helps us compare median ΔT values in the 

morning, afternoon and late afternoon. It is clearly seen that all values in the late afternoon 

are higher than the morning and afternoon.   
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Figure 2.18: Comparison of median ΔT at different time spans  

This is overall comparison throughout 2 years. However, it was initially seen that there’s a 

seasonal influence on ΔT values. Therefore, a seasonal median ΔT comparison was made. 

Seasonal values were combined for two years as described in methodology. Median values 

of combined years were calculated and plotted.   

 

Figure 2.19: Comparison of median ΔT in Winter  
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Figure 2.20: Comparison of median ΔT in spring 

 

Figure 2.21: Comparison of median ΔT in summer 
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Figure 2.22: Comparison of median ΔT in Fall  

In above plots showing median values of ΔT, it is observed that there’s a seasonal effect. 

Fig (a) shows winter values of median ΔT. The morning and late afternoon values are 

mainly negative and afternoon values are positive. Maximum absolute value of ΔT is 1. 

Fig (b) shows median ΔT in spring. Morning values are close to 0. Afternoon values are 

significantly negative. Some of them exceed -4°C and the tilt angle 40° has the greatest 

negative value of -6°C. Late afternoon values are all positive significantly. Highest median 

ΔT value is about 3. Fig (c) shows median ΔT values in summer. Spring and summer values 

appear similar. Though the morning values are mostly negative about -1°C. Fig (d) shows 

median ΔT values in Fall. All values are small in magnitude about 1°C. Except for 40° tilt 

angle. This could be an exception or an outlier.   

2.4.3 Probability plots:   

Goal of this research is to find out whether a clean module is hotter than a soiled module 

or is cooler than a soiled module. To achieve this, a probability analysis is performed.  
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Further results show probability that a clean module is hotter than a soiled module.  

 

        Figure 2.23: Probability of Tclean > Tsoiled in morning time  

 

            Figure 2.24: Probability of Tclean > Tsoiled in afternoon time  
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          Figure 2.25: Probability of Tclean > Tsoiled in late afternoon time  

From above plots, it is inferred that probability of clean module being hotter is low in 

morning time, it is moderate in the afternoon and it’s high late in the afternoon. This 

suggests a possibility of influence of ambient temperature and angle of incidence on ΔT.   

2.4.4 Soiling loss factor (SLF):   

Soling loss factor (SLF) is a measure to determine power loss due to soiling. Generally, 

in Arizona’s hot and dry climate, average soiling loss is about 3%. SLF is the ratio of 

short circuit current for a soiled module to the short circuit current of a clean module. 

Following plot shows weekly SLF for 10° tilt angle for 72 weeks of analysis. It is seen 

that average SLF is about 0.99. Some trends of SLF drops which are indicated using red 

lines.  

These drops are called ‘dry spells’.   
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Figure 2.26: Soiling factor plot showing dry spells  

Dry spell: In hot and dry weather of Arizona, soiling is an important issue in solar industry. 

Soiling loss factor (SLF) or Isc ratio is a measure to find out how much power is lost due 

to soiling. The SLF is about 0.99 which means, power loss is about 1%. However, 

sometimes, the SLF drops to 0.97 or even 0.95 in consecutive weeks as shown in the plot. 

More soiling has been recorded in these dry spell periods. In this research, particularly 

these dry spells are considered for analysis.   

 

Figure 2.27: Soiling factor v/s ΔT  
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Figure 2.30: Soiling factor v/s ΔT  
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Discussion on above plots:  

• Dry spells 1,2 and 6: These dry spells occurred in winter and ΔT tends to increase as soiling 

factor goes down. Soiling factor goes down when soiling density increases. Thus, in winter, 

a clean module is hotter than a soiled module.  

• Dry spell 3 is occurred in late spring and early summer. ΔT seems going down as soiling 

factor decreases. Thus, in late spring and summer, clean module is cooler than a soiled 

module.  

• Dry spell 4 is summer and ΔT is about same but negative. Clean module is cooler than a 

soiled module.  

• Dry spell 5 is in fall. Soiling factor decreases and ΔT seems constant. Clean module and 

soiled module seem to have about equal temperatures.   

• Dry spell 7 occurs in spring. As soiling factor decreases, ΔT is about same but negative. 

Thus, clean module is cooler than soiled module.   

2.4.5 Plotting ΔT against day hours:  

These plots give a more determining idea of relation of ΔT with irradiance levels as well 

as dry spells in different seasons.   
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2.4.5 Plotting ΔT against day hours 

Following plots show temperature variation for clean and soiled modules in a day starting 

from 9:00 AM to 3:30 PM. Y axis represents time in minutes and X axis represents 

temperature in °C. 

 

                    Figure 2.31: Temperature comparison with time  

 

                         Figure 2.32: Temperature comparison with time  
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                       Figure 2.33: Temperature comparison with time  

 

                         Figure 2.34: Temperature comparison with time  
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                    Figure 2.35: Temperature comparison with time  

 

                      Figure 2.36: Temperature comparison with time  

In above plots, Y-axis represents time in minutes starting from 9:00 AM in the morning till 

3:30 PM in the afternoon. X-axis represents Temperature in °C. Orange curve represents 

temperature of clean module. Blue curve represents temperature of soiled module. 
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Generally, temperature of module increases till 250 minutes (till about 1:00 PM) and then 

decreases till 3:30 PM.   

Inferences:  

• Clean module is hotter in December, February, March and September which means clean 

module is hotter in winter and fall.  

• Clean module is cooler in June and July, which means clean module is cooler in Summer.   
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5. CONCLUSION  

In the second part, an analysis on temperature of soiled modules is performed to determine 

whether a soiled module is hotter than a clean module or it is cooler than a clean module.   

This analysis was performed on the data from winter 2014 to July 2016. The experiment 

was carried out on a soiling station consisting of 10 different PV cell coupons, mounted at 

different tilt angles. A time series plot of temperature difference ΔT between a clean cell 

and a soiled cell against week number is generated. The trendline of this plot goes on 

decreasing as the tilt angle goes on increasing. It can be inferred that ΔT is low when angle 

of tilt is low and ΔT is higher when angle of tilt is high. This can be explained; a module 

with 0° tilt angle holds the most amount of soil and amount of soil deposition goes on 

decreasing as the tilt angle goes higher because the soil slides down due to gravity. This 

observation suggests that a module is cooler when soil deposition is high. A module is 

cooler when soil deposition is low.   

In addition to above observations, ΔT varies with seasons and irradiance. ΔT is low in the 

morning (9:00-9:30am), higher in the afternoon (1:00-1:30pm) and highest late in the 

afternoon (3:00-3:30pm). ΔT is positive in fall and winter and it is negative in spring and 

summer.   

In a dry spell, soil deposition goes on increasing and soiling loss factor (SLF) goes on 

decreasing. A temperature analysis was carried in dry spells. In winter, dry spell, a soiled 

module is cooler than a clean module. However, in late spring and summer, soiled module 

is hotter than a clean module. In further analysis of temperature comparison with time from 

morning to afternoon, the same observations are seen. In Arizona, typically, the modules 



66 

  

are installed at about 10° of tilt angle. For this condition, a clean module is hotter by (1 ± 

1° C) than a soiled module in winter. However, a clean module is cooler by (2 ± 1° C) than 

a soiled module in summer. 
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APPENDIX A  

SEASONAL ARIMA MODELS FOR OTHER SYSTEMS 
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JMP output of seasonal ARIMA for PV system on building of Barret Honors College  

  

 

JMP output of seasonal ARIMA for PV system on Packard Parking lot  
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JMP output of seasonal ARIMA for PV system on building of Weathercup center  

  

  

  

  

JMP output of seasonal ARIMA for PV system on building of Wrigley hall  

 

 

 

 



71 

  

 

Comparison of raw kWh, modelled ARIMA and Winters for Barret Honors College system 
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Comparison of raw kWh, modelled ARIMA and Winters for WeatherCup center system 

 

Comparison of raw kWh, modelled ARIMA and Winters for WeatherCup center system 
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Degradation slopes for Barret Honors college 

 

 

 

 

Degradation slopes for Packard Parking lot 
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Degradation slopes for Tempe Warehouse 

 

Degradation slopes for WeatherCup center 
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Degradation slopes for Wrigley Hall 

 

 

Average yearly degradation for Barret Honors college 
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Average yearly degradation for Hayden Library 

 

Average yearly degradation for Packard Parking lot 
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Average yearly degradation for Tempe warehouse 

 

 

Average degradation for WeatherCup center 
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Average degradation for Wrigley Hall 
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APPENDIX B 

ΔT, SLF AND SEASONAL PLOTS OF MEDIAN ΔT AND ANGLE OF INCIDENCE 
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Time series plot of ΔT for 5° of tilt angle  

  

 

  

Time series plot of ΔT for 10° of tilt angle  
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Time series plot of ΔT for 15° of tilt angle  
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Time series plot of ΔT for 35° of tilt angle  

  

  

 

Time series plot of SLF for 5° of tilt angle  
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Time series plot of SLF for 10° of tilt angle  

  

  

 

  

Median ΔT versus tilt angles for morning irradiance in winter  
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Median ΔT versus tilt angles for morning irradiance in spring  

  

 

  

Median ΔT versus tilt angles for morning irradiance in summer  
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Median ΔT versus tilt angles for morning irradiance in fall  

  

 

Median ΔT versus tilt angles for afternoon irradiance in winter  
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Median ΔT versus tilt angles for afternoon irradiance in spring  

 

Median ΔT versus tilt angles for afternoon irradiance in summer  
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Median ΔT versus tilt angles for afternoon irradiance in fall  

  

 

Median ΔT versus tilt angles for late afternoon irradiance in winter  
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Median ΔT versus tilt angles for late afternoon irradiance in spring  

 

  

Median ΔT versus tilt angles for late afternoon irradiance in summer  
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Median ΔT versus tilt angles for late afternoon irradiance in fall  

  

 

Comparison of Angle of incidence in morning, afternoon and late afternoon in winter  
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Comparison of Angle of incidence in morning, afternoon and late afternoon in spring  

 

  

  

Comparison of Angle of incidence in morning, afternoon and late afternoon in summer  
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Comparison of Angle of incidence in morning, afternoon and late afternoon in fall  

  

  

  

  

  

  72.54 

  59.04 

  69.73 

 

 

 

 

 

 

 

 

 

      

 

  

 

Afternoon 

 


