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ABSTRACT

In recent years, several methods have been proposed to encode sentences into fixed

length continuous vectors called sentence representation or sentence embedding. With

the recent advancements in various deep learning methods applied in Natural Lan-

guage Processing (NLP), these representations play a crucial role in tasks such as

named entity recognition, question answering and sentence classification.

Traditionally, sentence vector representations are learnt from its constituent word

representations, also known as word embeddings. Various methods to learn the dis-

tributed representation (embedding) of words have been proposed using the notion of

Distributional Semantics, i.e. “meaning of a word is characterized by the company it

keeps”. However, principle of compositionality states that meaning of a sentence is a

function of the meanings of words and also the way they are syntactically combined.

In various recent methods for sentence representation, the syntactic information like

dependency or relation between words have been largely ignored.

In this work, I have explored the effectiveness of sentence representations that are

composed of the representation of both, its constituent words and the relations be-

tween the words in a sentence. The word and relation embeddings are learned based

on their context. These general-purpose embeddings can also be used as off-the-

shelf semantic and syntactic features for various NLP tasks. Similarity Evaluation

tasks was performed on two datasets showing the usefulness of the learned word

embeddings. Experiments were conducted on three different sentence classification

tasks showing that our sentence representations outperform the original word-based

sentence representations, when used with the state-of-the-art Neural Network archi-

tectures.
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Chapter 1

INTRODUCTION

1.1 Motivation

Sentence representations play an important part in various Natural Language Pro-

cessing (NLP) applications. Traditionally, many of the advances in NLP were based

on using this meaningful representation of sentences. A representation of a sentence

could be sequence of part-of-speech tags of a sentence, parse tree from syntactic parser

Chen and Manning (2014), semantic representation from semantic parsers Sharma

et al. (2015) or a vector representations of a sentence.

Deep learning NLP systems use the vector representation of the sentence as an

input to perform various classification or prediction based tasks. Recently, with

the advent of various deep learning architectures in NLP, various NLP tasks have

achieved state-of-the-art performance like part-of-speech tagging, chunking, named

entity recognition, semantic role labelling, syntactic parsing( Chen and Manning

(2014), Dyer et al. (2015)), sentiment analysis( Socher et al. (2013), Kalchbrenner

et al. (2014)), machine translation( Sutskever et al. (2014), Tai et al. (2015), Luong

et al. (2015), Cho et al. (2014)), and question answering( Bordes et al. (2015), Kumar

et al. (2015)).

One major reason for the success achieved by these deep learning architectures

is due to the learning distributed word representation in vector space (Bengio et al.

(2003), Mikolov et al. (2013a), Pennington et al. (2014)). Word representation is a

vector for the word and is also termed as word embedding. The distributed represen-

tation (embedding) of words are learnt using the notion of distributional Semantics
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Firth (1957). In this formulation, instead of using one-hot vectors by indexing words

into a vocabulary, word embeddings are learnt by the surrounding words onto a low

dimensional and dense vector space that encodes both semantic and syntactic fea-

tures.

There also have been research to learn the representation of relation, which pro-

vides information of how two words are linked in a sentence using the similar meth-

ods after parsing the large textual data using dependency parsers Chen and Manning

(2014). These relation embeddings have shown to capture rich linguistic and syntactic

information Mikolov et al. (2013b). The effectiveness of using both word and rela-

tion embedding together have also been observed in tasks like knowledge extraction

Bordes et al. (2011) and aspect term extraction Yin et al. (2016)).

The learnt word embeddings are then used to form the sentence representation of a

sentence. One simple and common approach for representing a vector of a sentence is

by summing or averaging the word embeddings of words participating in the sentence.

Various other neural network based modelling methods like Recurrent Neural Network

Elman (1990), Convolutional Neural Network LeCun et al. (1998), Recursive Neural

Network Socher et al. (2010) has also been used to form the vector representation of

the sentence. But most of the models use word embeddings as the fundamental unit

to encode sentence in vector space. There have been few attempts but it still lacks

clarity about the effectiveness of using a composite model of both word and relation

embeddings for sentence representation.

In our work, we jointly learn the distributed representation of words and relations

in the same vector space. The representation of words are learned from its linear

context of words and the representation of relations are learned by the word it links

after parsing using Stanford dependency parser Chen and Manning (2014). Then

using the learnt word and relation embedding we experiment with various composition

2



methods for sentence representation and perform evaluation using three common

sentence classification tasks Question classification Li and Roth (2002), Sentiment

classification Socher et al. (2013) and Subjectivity classification Pang and Lee (2004)

on state-of-the-art classification techniques (SVM Cortes and Vapnik (1995), CNN

LeCun et al. (1998) and LSTM Hochreiter and Schmidhuber (1997)).

1.2 Contribution

To the best of our knowledge, this is the first attempt to explore the effectiveness

of the composition based model for sentence representation using word and relation

embeddings. To summarize, we make the following contributions:

• We put forward a model to jointly learn the word and relation embeddings

which could be used as off-the-shelf features in various NLP tasks.

• We propose a sentence representation, composed of the learnt word and relation

embedding and we empirically demonstrate that the composition-based repre-

sentation outperforms the original skip-gram based word-embedding for various

classification tasks across models.

• We make the word and relation embeddings publicly available for the commu-

nity.

3



Chapter 2

BACKGROUND

The work presented in this thesis is related to two main research areas: Artificial

Neural Networks, Vector space modelling. Below is a brief introduction about these

topics.

2.1 Artificial Neural Networks

Neuron

A neuron is the basic computational unit in deep neural network architectures, which

is loosely inspired by a biological neuron. It receives n scalar inputs, x1, x2, x3..., xn

and the neuron consist of corresponding weights, w1, w2, w3..., wn and a bias b. The

output y of the neuron is the computed by:

y = f(z) (2.1)

z =
n∑
i=1

wi.xi + b (2.2)

Where f is the activation function. The most common activation functions are the

Sigmoid, Tanh or ReLu.

The above could also be written in vector form as follows.

z = wTx+ b (2.3)

Where x is n dimensional vector input, corresponding to the w, n dimensional

weight vector and a bias b associated with the neuron.
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Figure 2.1: Neuron

Multilayer Neural Network

If k neurons share the same input, this is called one-layer neural network with k neu-

rons in its first layer. Now if you stack another layer with l neurons whose input is

the output from the first layer then we have a two layer neural network. Theoretical

proofs Cybenko (1989) have existed that using two layer neural network with non-

linear activation functions are universal approximators i.e. any continuous function

can be approximated using this neural network. Now we can perform N-class classifi-

cation using this neural network with a special output layer called the softmax layer:

each neuron in this output layer calculates the probability of the class given an input.

Given a training dataset Dtrain = {(x1, t1), (x2, t2), ..., (xn, tn)}. We decide a cost

function J(θ), where θ are the parameters i.e weights and bias of the neural network

to be optimized to approximate the functional mapping of x→ t. J(θ) is often taken

as squared error for regression problems or cross entropy for classification problems.

A training algorithm called backpropagation method is employed in order to optimize

the w and b of the neural network to reduce the value of cost function. The figure 2.2,

shows a neural network with an input x, then two hidden layers with weights W1 and

5



Figure 2.2: Multilayer Neural Network

W2 respectively. The final softmax layer with weight W3 to perform classification.

Recurrent Neural Network

This is a popular neural network architecture which is used to tackle sequence learn-

ing problems. As sentence is sequence of words, this architecture is quite popular for

various NLP tasks proposed by Elman (1990). A recurrent neural network architec-

ture has at least one directed ring in its structure. This has been used in tasks like

machine translation (Sutskever et al. (2014) and language modelling (Mikolov et al.

(2010)).

In simple RNN, a vector xt is input to the network at time t. The hidden layer h,

which has activation ht−1 before xt, which plays a role to capture memory of whole

previous input history (x0, x1, x2, x3, ..., xt−1). At time t, the hidden layer updates

the activation by:

ht = tanh(Wxt + Uht−1 + b) (2.4)

Where W, U and b are the parameters of the network, tanh is a non linear

6



Figure 2.3: Simple Recurrent Neural Network

activation function also called hyperbolic tangent function. The figure 2.3, describes

the RNN unit.

Traditional RNN suffer from the problem of vanishing or the exploding gradient,

where the gradients decay or can grow exponentially as they propagate over time. To

address these problem a variant of this model was proposed, Long Short Term Memory

(LSTM) by Hochreiter and Schmidhuber (1997). This new model introduced gating

mechanism and vector of memory cells. We thus have the input gate it, the forget

gate ft , the output gate ot, the memory cell ct, input at time t as xt, and the hidden

state ht. The LSTM unit manipulates a collection of vectors described by following

7



equations:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + U fht−1 + bf )

ot = σ(W oxt + U oht−1 + bo)

ut = tanh(W uxt + Uuht−1 + bu)

ct = it � ut + ft � ct−1

ht = ot � tanh(ct−1)

Where � is the element wise multiplication. σ is the sigmoid function.

Gates it, ft, ot ∈ [0, 1]d, control at timestep t how the input is updated, how much

previous cell is forgotten, and the exposure of the memory to form the hidden state

vector respectively.

Convolutional Neural Network

Originally invented for computer vision, CNN models have shown effectiveness in

NLP and have achieved great success for various tasks as in semantic parsing, search

query retrieval Shen et al. (2014) and sentence modeling Kalchbrenner et al. (2014).

Convolutional neural networks (CNN) utilize layers with convolving filters that are

applied to local features LeCun et al. (1998).
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Figure 2.4: Convolutional Neural Network

Let xi ∈ Rk be the k-dimensional word vector corresponding to the i-th word in

the sentence. A sentence of length n is represented as

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (2.5)

Where ⊕ is the concatenation operator. A convolution operation involves a filter

w ∈ Rhk, which is applied to a window of h words to produce a new feature. A feature

ci is generated from a window of words xi:i+h1 by:

ci = f(w.xi:i+h−1 + b) (2.6)
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Here b is the bias term; f is a non-linear function such as tanh or Relu. This filter

is applied to each possible window of words in the sentence to produce a feature map:

c = [c1, c2, ...., cn−h+1] (2.7)

Max-pooling operation Collobert (2011) over the feature map is taken to take the

maximum value

ĉ = max(c) (2.8)

ĉ is the feature corresponding to this particular filter. The idea is to capture the

most important feature with the highest value for each feature map. This pooling

scheme deals with variable sentence lengths. Multiple filters (with varying window

sizes) obtain multiple features. These features from this layer are then passed to a

fully connected softmax layer whose output is the probability distribution over labels.

2.2 Vector space modelling for NLP

The notion of distributional semantics was introduced by Firth (1957), which

means that the meaning of the word is determined by its context words. Building word

meaning with distributional semantics is always in an unsupervised learning fashion

and done using large textual data. Many approaches to represent word meaning

by vectors have been proposed, from simple counting to recent advanced machine

learning techniques Collobert et al. (2011), Collobert (2011), Mikolov et al. (2013b).

Co-occurence count method

Context of a target word in a sentence are all words standing before or after the

target word not exceeding k positions. This is called a window context. A very

simple method is to count how many times a word u co-occurs with the target word

10



w. This is equivalent to estimating the conditional distribution P (U = u|W = w)

using maximum likelihood. For each word u count the times w co-occurs within a

defined window size k. The count vector is extracted containing all of those counts,

which is used to represent the target word w. The conditional distribution is simple

by:

P (U = u|W = w) =
#u and w co− occur

#w
(2.9)

Function words (e.g., a, an, how, what), which are extremely frequent, carry little

information about the meanings of target words. But in the above approach, every

word plays an equal role. Thus a popular weighting scheme is used called point-wise

mutual information:

PMI(u,w) =
P (U = u|W = w)

P (U = u)
(2.10)

Where P (U = u) is the probability that u appears in the corpus. The vectors

produced are high dimensional (e.g. 2000 or more). Dimensionality is reduced is

using method like PCA or non-negative matrix factorization.

Prediction based method

Various approaches to learn the embeddings based on prediction have been explored

by Bengio et al. (2003), Mikolov et al. (2013b). In this section we explain the most

commonly used and considered state-of-art model for word embeddingst the Skipgram

and CBOW model by Mikolov et al. (2013b).

Skipgram and CBOW These two model are very similar in their approaches

and work in a linear context. For example for the sentence given as a sequence

of words: Wi−2,Wi−1,Wi,Wi+1,Wi+2. If we want to learn the representation of

11



Figure 2.5: CBOW and Skipgram model

the Wi: Skipgram model tries to optimize the probability of the context words i.e

Wi−2,Wi−1,Wi+1,Wi+2 given the center word i.e. Wi; CBOW model tries to optimize

the probability of the center word Wi given the context words Wi−2,Wi−1,Wi+1,Wi+2.

This is shown in the 2.5

We explain the skipgram model in detail below. Skipgram tries to optimize the

probability of context word(c) given the center word(t). The training is performed

on large corpus of data based on linear context i.e the prediction of words is done

on a small window of linear context. A simple optimization technique is used to

simplify the computation by using negative sampling i.e to maximize the probability

12



of word and context from the same data D, and minimizing the probability of word

and context not from the same data D.

The probability of target context pair (t, c), being observed in the data is given

by :

P (D = 1|t, c) = σ(vt.vc) (2.11)

where vt and vc are the target and context word embeddings, and σ is the sigmoid

function. For a negative sampled pair (t, c) not being observed in the data is given

by:

P (D = 0|t, c) = 1− σ(vt.vc) (2.12)

The objective function of the model becomes:

arg max
vt,vc

∑
t,cεD

logσ(vt.vc) +
∑
t,cεD′

logσ(−vt.vc) (2.13)

The model with one hidden layer learns two sets of weights for each word: one

for embedding the words to a low dimensional space in the hidden layer weights, it is

referred as embedding layer weights, and the other in the projection layer referred as

projection layer weights. The resulting word vectors have shown to capture linguistic

regularities like

−−→
king −−−→man+−−−−→woman = −−−→queen

This embedding method is considered as the state-of-the-art and various deep

learning methods have used the pretrained word embeddings as input for various

NLP tasks. In our work, we use a variant of this model to encode the representation

of word and relation in the same vector space.
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Chapter 3

RELATED WORK

3.1 Word and relation embedding

There have been many methods of deriving word embeddings in the NLP com-

munity. Most recently, many neural-network based language modelling methods

have been proposed to generate dense representations of words (Bengio et al. (2003),

Mikolov et al. (2013a)). These methods of word embeddings have shown to capture

semantic and syntactic properties (Turney and Pantel (2010). Most common and

considered the state of the art are the Skipgram and CBOW based word2vec model

Mikolov et al. (2013b) and Glove model by Pennington et al. (2014) which performs

training based on word co-occurrence statistics from a corpus. Both of these models

have been explained in section 2.2

There also have been various other works, which are variant of the word2vec

based model. Dependency based word embedding by Levy and Goldberg (2014),

is one such work which learns the embedding of words not with a linear context,

but using the syntactic contexts that are derived from produced dependency parse

tree of a sentence. The embedding of the words capture more functional and less

topical similarity and showed to perform much better on the WordSim-353 dataset

Finkelstein et al. (2001). Another work to capture word embedding based on the

syntactic structure of the sentence called the C-PHRASE model Pham et al. (2015),

which uses a CBOW based word2vec model. For example (taken from the same

paper), given the sentence: ”A sad dog is howling in the park”, C-PHRASE model

optimizes the context prediction for: dog, sad dog, a sad dog, a sad dog is howling

14



but not for: ”howling in”, as these two words do not form a syntactic constituent.

They showed that training the words using the syntactic structure performs better

on various lexical tasks as well as many sentential tasks like sentiment classification.

In our approach, we have also adopted similar methods discussed to train the word

embedding based on the syntactic structure of the sentence.

Various approaches to learn the representation of relations have also been inves-

tigated and used in knowledge bases Bordes et al. (2011), Neelakantan et al. (2015),

Lin et al. (2015), relation classification Liu et al. (2015), aspect term extraction Yin

et al. (2016) and dependency parsing Bansal (2015). As per the work done by Bordes

et al. (2011), in which they learn the representation of both the relation and entities.

The relation is modelled as a translation vector that connects the vectors of two en-

tities. Rather than using raw textual data to learn the representation, it optimizes

an objective over all the facts in a knowledge base. These embeddings are then used

for fact extraction in knowledge bases and also for reasoning missing facts.

Bansal (2015) proposed a method to learn dependency link embedding using the

skipgram based model. The dependency links between words in a sentence were

extracted using the MST parser McDonald et al. (2005). They used these learnt

link embeddings as features and reported strong accuracy for dependency parsing

experiments and constituent parsing re-ranking task. In this work, the representation

of the links are learnt using the context of words they link but as a concatenated unit

of parent(p) and child(c) i.e. p c and also their grandparent dependency relation.

They serialize a tuple in the following manner :

“d<D> gl<GL> p c l<L> d<D>”

Where l is the relation label, gl is the grand parent relation label, p c is the parent

and child word as a concatenated unit and signed bin distance d. The model is learnt

using the skipgram model with window-size of 2 and dimension size of 100.
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Yin et al. (2016), proposed a method to jointly learn the word and relation rep-

resentation by parsing huge amount of raw textual data using stanford dependency

parse and extracting Chen and Manning (2014) all triples (w1, w2, r), where w1 and

w2 denote two words and r is the dependency link between them. Their method

optimized the objective function w1 + r = w2, to learn the representation of words

and relation, then enhanced the word embeddings by leveraging the linear context in

a multi-task learning manner. They reported state-of-the-art performance on aspect

term extraction tasks using semeval dataset. Their best model was using a composi-

tion model of word and relations embedding. They also reported better results than

the dependency based embedding Levy and Goldberg (2014) and skipgram based

embeddings Mikolov et al. (2013b).

3.2 Sentence representation using syntactic information

The above mentioned approaches to learn the representation of words have also

been applied to learn the representation of phrases and sentences. Le and Mikolov

(2014) introduced paragraph vector, which was based on the above mentioned skip-

gram model to learn representations of sentences, paragraphs, and documents. In

this work a sentence or a paragraph is represented by a vector and trained to predict

the words in the document. They showed performance better than the bag of words

approach earlier adopted for various tasks. There also have been methods to create

an internal representation of a sentence directly using deep learning methods like

Recurrent Neural Networks and Convolutional Neural Networks as discussed in 2.1.

These models have shown to be highly successful for various NLP task. But in these

mentioned approaches, linguistic or syntactic information for sentence representation

was largely ignored.

There have been prior research using deep learning methods to represent sentences
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using these linguistic or syntactic information. Recursive neural network(RNN), a

model proposed by Pollack (1990) and popularized in NLP with a series of work done

by Socher et al. (2010), Socher et al. (2011),Socher et al. (2012) have been highly

successful and shown better performance in various sentence classification tasks like

sentiment analysis. The RNN model takes a sentence, syntactic tree and the vector

representations for the words in the sentence as input, and applies neural network to

compute recursively, the vector representation for all phrases in a tree to a sentence

representation in the final step.

Ma et al. (2015), in his work proposed a neural network architecture called the

Dependency based Convolutional neural network (DCNNs), to use the linguistic in-

formation in the Convolutional Neural Network. The modifications was brought to

the sequence of the input in the sentence. While the other CNN models Kim (2014),

put word in its sequential context, this model considered word and its parent, grand-

parent, great-great grand parent, and siblings using a dependency tree. With this

approach the long distance information in the sentence was preserved. They demon-

strated superior performance over the previous CNN based methods. In our work,

we do not use the syntactic structure of the sentence but the relation information

between the words. Thus our work is parallel to these previous work and could be

applied to them.

Komninos and Manandhar (2016), in his work proposed a method jointly learn

the embeddings of word and dependency context and use the embedding of words and

also the dependency context to form a sentence representation, which is one similar

work to ours. Every sentence is first parsed using the Stanford parser Chen and Man-

ning (2014), and then the embeddings of word and dependency contexts are trained.

For example

Sentence: John loves Mia

17



Dependency structure: nsubj(loves, John); dobj(loves,Mia)

Dependency context of word loves: nsubj John, dobj Mia

Dependency context is defined as dependency (d) concatenated with the word (w) as

d w. In this work, the authors show the effectiveness of the composition model for

enriching sentence representation using the dependency context. They showed that

using the extra syntactic information i.e dependency context embedding improved

performance on various sentence classification tasks. In our work we explore the

joint learning of the embeddings of words and relations from the Stanford depen-

dency parser (nsubj, dobj). Joint learning of these fundamental units of a structured

representations offers more flexibility in terms of its usages in different composition

methods for sentence representation. In our work, we also explored some of these

composition methods proposed in the previous work by Komninos and Manandhar

(2016) and also experimented with some new composition methods. The proposed

method of learning embeddings of words and relations is general and can applied to

learn the same for outputs of different semantic parsers such as K-Parser (Sharma

et al. (2015), Scene Graph Parser Schuster et al. (2015)).
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Chapter 4

METHODOLOGY AND IMPLEMENTATION

In this chapter, we have provided with a brief overview of the various methodology

adopted and with their implementation details. This work can be seen as a three step

process: model to implement the embedding of the words and relations, representing

sentence using these word and relation embeddings and developing various classifi-

cation methods for performing sentence classification. The overview can be seen as

in figure 4.1. Firstly, raw text from Wikipedia is parsed using the Stanford parser

Chen and Manning (2014), with this parsed output the context of word and relations

are extracted. With the extracted context the embeddings of word and relations are

trained as described in section 4.1. These embeddings can then be used with various

composition models for sentence representation as described in section 4.2. The sen-

tence representation is then used with the various classification models described in

section 4.3 to perform classification.

4.1 Embedding Models

Our approach to learn the word embeddings is built on top of the SkipGram based

model as explained in 2.2. In this section we discuss two methods based on Skipgram

model one for learning only the word embedding based on linear context, which serves

as our baseline and other for jointly learning the word and relation embedding based

on output of the dependency graph. In the word and relation model we also explain

the modification made to the Skipgram model to jointly learn word and realtion

embeddings.
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Figure 4.1: Methodology Overview
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Figure 4.2: Window based Skipgram Model

Window based Skipgram model (Win5)

This is the standard skipgram model that considers target-context word pairs inside

a windows of 5 words to the right and to the left of the target word. The window

size for every target instance in the corpus is uniformly sampled from [1,5], range ,

effectively providing a weighting scheme for context words according to their distance

from the target word. A negative sampling of 15 words is considered while training.

The sentence representation using these word embeddings are considered as baseline

for sentence classification evaluation.

An example of training context for this model if window of 1 is considered also

described in Figure 4.2:

Sentence: John loves his wife.

Context of “loves”: John, his

Context of “his”: loves, wife
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Figure 4.3: Dependency graph

Word and relation model (WR)

We train our word and relation embedding based on their contexts. We take all edges

of the dependency tree to form logical triplets of the format (w1 r w2) e.g. (cup

of:nmod coffee). We train the word embeddings similar to as done in the Win5 but

the context of the target words are the words which are one or two hop distance away

in the dependency tree. The relations are trained with the context of words it links

i.e. for r the context is w1 and w2. The negative sampling parameter for words and

relations are also chosen differently. An example of training context for this model is

considered using the parse of the sentence as given in Figure 4.3. The context is also

described in Figure 4.4 .

Sentence: John loves his wife.

Context of “loves”: John, wife

Context of “his”: wife

Context of “nsubj”: John, loves

Context of “dobj”: loves, wife

Corpus

A lot of previous embedding skipgram models (Levy and Goldberg (2014), Komninos

and Manandhar (2016), have performed the training of word and sentence evaluations
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Figure 4.4: Word and Relation Skipgram Model

using the English Wikipedia dumps. For our model, we also performed the training

on the first 500 million words of English Wikipedia 2016 dump. We removed the

words that appeared less than 100 times in the corpus.

Implementation Details

We trained 300 dimensional vectors using skipgram variants on the above mentioned

dataset 4.1. Preprocessing was done to remove words appearing less than 50 times.
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Training was done by applying negative sampling with 15 for words and 20 for rela-

tions. 10 iterations over the entire corpus was done using stochastic gradient descent

method. We applied the following commonly used methods during training: negative

samples were drawn according to their unigram distribution raised to the power of 3
4
,

linear decay of learning rate with initial α = 0.25, and subsampling of target words

with probability given by p = f−10−5

f
−

√
10−5

t
, where f is the words frequency. De-

pendency parsing for WR was done with the Stanford Neural Network dependency

parserChen and Manning (2014) using Enhanced Universal Dependency tags Schuster

and Manning (2016).

For implementation of this model, we used the word2vec 1 software as the base

code to implement the basic skipgram. We built the arbitrary context and arbitrary

negative sampling functionality on top of it.

4.2 Sentence feature representation

We create different sentence representation for three different embeddings Win5

and WR. Vw is the vector of word w trained for using Win5 and WR. Vr is the vector

of relation r trained using the WR method.

Win5: Every word is represented as the vector of the Vw trained by the Win5 based

method

X = Vw (4.1)

WR Words: Every word is represented as the vector of the Vw trained by our method

X = Vw (4.2)

WR WavgR : Every word is represented as the weighted average of word and its

1code.google.com/p/word2vec/
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relations

X =
1

2
Vw +

1

2k

k∑
i=1

Vri (4.3)

i.e. For example given in Figure 4.3, for the sentence ”John loves his wife”, the

representation of ”John” is found formed using the above equation as:

XJohn =
1

2

−−−→
John+

1

2

−−−→
nsubj

WR WavgWR : Every word is represented as the weighted average of word and

dependency context

X =
1

2
Vw +

1

4k

k∑
i=1

(Vri + Vwi) (4.4)

i.e. For example given in Figure 4.3, for the sentence ”John loves his wife”, the

representation of ”John” is found formed using the above equation as:

XJohn =
1

2

−−−→
John+

1

4
(
−−−→
nsubj +

−−−→
loves)

WR WConc: Every word is represented as the concatenated vector of word and

dependency context, forming a 600 dimensional vector

X = Vw ⊕
1

2k

k∑
i=1

(Vri + Vwi) (4.5)

i.e. For example given in Figure 4.3, for the sentence ”John loves his wife”, the

representation of ”John” is found formed using the above equation as :

XJohn =
−−→
john⊕ 1

2
(
−−−→
nsubj +

−−−→
loves)

WR Triplet: In this section rather than representing every word in sentence, we

represent every triplet from the dependency graph of the sentence. Every triplet i.e.
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(word, relation, word) from the stanford parse of a sentence is concatenated creating

a 900 dimension vector. For example given in Figure 4.3, for the sentence ”John loves

his wife”, this could also be represented in the triplet format as follows:

(loves, nsubj, John)

(wife, nmod:poss, his)

(loves, dobj, wife)

Every triplet is hence represented as per the below equation:

X = Vw1 ⊕ Vr ⊕ Vw2 (4.6)

For example (loves, nsubj, John) is represented as :

X =
−−−→
loves⊕

−−−→
nsubj ⊕

−−−→
John

For all the above models except the triplet representation (WR Triplet) all word

representations (X) are used as a sequence of embeddings respecting the order of

the sentence to become the input for the CNN and LSTM. For the SVM BoE, all

the vectors of the words in the sentence are averaged. During our evaluation of

embeddings, we did not perform any updates during training of CNNs and LSTMs.

4.3 Classification Methods

SVM with averaged embeddings

We create a sentence representation by averaging embeddings of sentence features

(words and dependency contexts). This can be considered the equivalent of a Bag-of-

Words sentence representation in the embedding space, hence called Bag-of-Embeddings

(BoE). We then train a classifier by applying a Support Vector Machine with a Gaus-

sian kernel:
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K(x, x′) = exp(−γ‖x− x′‖2) (4.7)

Sentence is parsed and all its relations are extracted. Using the process described

in section 4.2, it is transformed with a sequence of
−→
X , of words or triplets. The below

equation describes the input vector of the sentence:

−−−−−−→
Sentence =

1

n

n∑
i=1

(
−→
Xi) (4.8)

Where n is the number of X’s for the sentence.

Implementaion and Parameters: For hyperparameter tuning, we set param-

eter γ of the kernel to 1/k, where k is the number of features (dimensionality of

embeddings), and then perform cross validation for the c parameter using the stan-

dard Win5 word embeddings in the question classification task. The SVM model was

implemented in python using scikit-learn library Pedregosa et al. (2011). The figure

4.5, describes the above process.

Convolutional Neural Network

We have used the simple Convolutional Neural Network of Kim (2014) that has shown

to perform well in multiple sentence classification tasks. The input to the network is

a sentence matrix X formed by the concatenating k-dimensional word embeddings.

Then convolutional filters W ∈ Rh×k is applied to every possible sequence of length

h to get a feature map:

Ci = tanh(W.X + b) (4.9)

The output of the filters is followed by a max pooling operation to get the feature
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Figure 4.5: SVM sentence classification

with the highest value:

ĉ = maxci (4.10)

Where c is the output from all the filters.

Sentence is parsed and all its relations are extracted. Using the process described

in section 4.2, it is transformed with a sequence of
−→
X , of words or triplets. The

sequence of X’s is concatenated to form a N×K matrix. The below equation describes

the input vector of the sentence:

−−−−−−→
Sentence =

−→
X1 ⊕

−→
X2 ⊕

−→
X3 ⊕ ...⊕

−→
XN (4.11)

Where n is the number of X’s for the sentence.
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Figure 4.6: CNN sentence classification

Implementation and Parameter: The network uses multiple filters with dif-

ferent sequence sizes covering different size of windows in the sentence. All hyper-

parameters of the network are the same as used in the original paper Kim (2014):

stochastic dropout Srivastava et al. (2014) with p = 0.5 on the last layer, 100 fil-

ters for each filter region with filter regions of width 2,3 and 4. We perform pooling

operation, the pooled features of different filters are then concatenated and passed

to a fully connected softmax layer to perform the classification. We performed the

optimization with Adam ( Kingma and Ba (2014)) on minibatches of size 50. The

CNN model was implemented in python using Theano Theano Development Team

(2016) library on GPU cluster. The figure 4.6, describes the above process.

Long Short Term Memory(LSTM)

LSTM networks Hochreiter and Schmidhuber (1997) are recurrent neural networks

where recurrent units consist of a memory cell c and three gates i, o and f . A sequence

of input embeddings x, LSTM outputs a sequence of states h for each time step.

The distribution of labels for the whole sentence is computed by a fully connected

softmax layer on top of the final hidden state. Sentence is parsed and all its relations

are extracted. Using the process described in section 4.2, it is transformed with a
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Figure 4.7: RNN sentence classification

sequence of
−→
X , of words or triplets. The below equation describes the input vector

of the sentence as a sequence to RNN:

−−−−−−→
Sentence =<

−→
X1,
−→
X2,
−→
X3, ...,

−→
XN > (4.12)

Where n is the number of X’s for the sentence.

Implementation and Parameter: The parameters used in the network are:

stochastic dropout with p = 0.25; 150 dimensions for the size of hidden layer h; Op-

timization is performed using Adagrad Duchi et al. (2011) and mini-batch size of

100. The RNN model was implemented in python using Theano Theano Develop-

ment Team (2016) library on GPU cluster. The figure 4.7, describes the above process.

4.4 Implementation Challenges

At first, the implementation for training of word and relation embedding was done

using NumPy Jones et al. (01 ), which is a fundamental package for scientific comput-

ing with Python. Numpy offers a fast implementation for various scientific operations.
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However, due the limitation of global interpreter lock (GIL), which prevents multi-

ple native threads from executing Python bytecodes at once, we could not achieve

multithreading in Python and the rate of training of words was 20x slower than the

original C code. We had to reimplement the desired functionalities of training word

and relation embedding with arbitrary context and arbitrary negative sampling, with

modifications made to the original word2vec software. With the C based implementa-

tion, the rate of training became 27,000 words/thread, which was 20x faster than the

Python implementation. This was run on a system with 2.3GHz CPU on Linux OS

with 8 cores. The total time to perform preprocessing and training on the Wikipedia

corpus described in section 4.1, was about 14 hours.

One of the other challenges was to parse the complete corpus using Stanford

parser. We first parsed the complete corpus to individual sentences using NLTK’s

Bird (2006) punct sentence tokenizer. We then split the complete corpus into 2 parts

to run on two different systems using the Java based Stanford core NLP Manning

et al. (2014) package. We parsed all the lines in the file using a total of 12 CPU cores,

which took a total of 2 weeks to parse the complete corpus.

Our sentence classification evaluations was performed on: Two Neural Network

Architectures i.e. LSTM and CNN; Three sentence classification datasets; and with

6 different variations of embeddings or composition based on embeddings. For each

we performed 20 iterations to report the best result. Thus the total number of neural

network iterations were 2× 3× 6× 20 = 720. The total time to run each iteration on

GPU was on an average of 30 minutes and the total evaluation took about 14 days

of running time.
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Chapter 5

EXPERIMENTS AND RESULTS

We perform two kinds of evaluations one for evaluating the quality of the word embed-

ding produced and the other for evaluating our sentence representation for sentence

classification tasks. In addition to this, we also performed evaluation for sentence

pairs on textual entailment task.

5.1 Word similarity

This is one of the classic lexical tasks, different embedding methods are required

to quantify the degree of similarity of relatedness of word pairs in terms of the co-

sine similarity between the corresponding word vectors. Performance was calculated

using the Spearman correlation between the model and the human score. Higher the

correlation, better is the performance. Below is the formula for calculating Spearman

correlation:

ρ = 1− 6
∑
d2

n(n2 − 1)

Where d is the difference between cosine similarity of words to the human score.

n is the number of word pairs

In our case, We performed evaluation to compare the quality of word embeddings

produced from jointly learning word and relation representation to the word embed-

dings produced by the skipgram model. The evaluation was performed using two

word similarity datasets namely: WordSim-353 Finkelstein et al. (2001) and SimLex-

999 Hill et al. (2016). The two datasets use a different notion of word similarity.

Wordsim-353 mostly captures topical similarity (or relatedness), giving high similar-
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Word1 Word2 Human Score

tiger cat 7.35

book paper 7.46

computer keyboard 7.62

computer internet 7.58

plane car 5.77

Table 5.1: WordSim353 dataset

Word1 Word2 Human Score

old new 1.58

smart intelligent 9.2

hard difficult 8.77

happy cheerful 9.55

hard easy 0.95

fast rapid 8.75

Table 5.2: SimLex-999 dataset

ity to pair of words like cup-tea. SimLex-999 uses a more strict version of similarity,

often called substitutional similarity, where the pair clothes-closet has a low similarity

score and pairs like cup-glass have high similarity. Few examples of word pairs and

their human scores for SimLex-999 and WordSim-353 are provided in table 5.2 and

5.1 respectively. The dataset for SimLex-999 and WordSim-353 can be found here 1

and 2 respectively.

Our model WR skipgram version achieves a higher correlation for WordSim-353

1www.cl.cam.ac.uk/ fh295/simlex.html

2www.cs.technion.ac.il/ gabr/resources/data/wordsim353/wordsim353.html
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Embedding WordSim-353 SimLex-999

Win5 0.627 0.352

WR 0.664 0.329

Table 5.3: Spearman correlation on WordSim-353 and SimLex-999 word similarity

evaluation tasks.

compared to Win5, but the results are reversed for SimLex-999. This is also observed

in the case of model trained on dependency context by Levy and Goldberg (2014).

While similarity based evaluation makes obvious that different contextual features

capture different properties of words, it is not clear which kind similarity notion

is more useful when word representations are used as features for NLP tasks. For

various tasks like sentence classification using word embeddings, this evaluation has

not shown much correlation.

5.2 Sentence Classification

5.2.1 TREC Question Classification

The TREC Question Classification dataset Li and Roth (2002), which consists of

5452 training questions and 500 test questions. The task is to classify each question

with one of six classes {location, definition, abbreviation, entity, numeric} depending

on the answer they seek in the sentence. The average length of the sentence is 10

words. Some examples of this dataset is provided in table 5.4. The dataset could

be found here 3 . For CNNs and LSTMs 10% of the training data were used as

the validation set to select the best model among different iterations. Classification

accuracy results for each input representations and classification method has been

3http://cogcomp.cs.illinois.edu/Data/QA/QC/
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Sentence Label

When was Ozzy Osbourne born NUM

Which two states enclose Chesapeake Bay LOC

Name a golf course in Myrtle Beach ENTY

How did serfdom develop in and then leave Russia DESC

What is the full form of .com ABBR

Table 5.4: TREC dataset examples

Embedding SVM CNN LSTM

Win5 88.60 93.4 94.2

WR Words 87.40 93.2 93.8

WR WavgR 89.00 92.2 92.2

WR WavgWR 84.80 94.0 95.0

WR WConc 87.80 95.0 94.6

WR Triplet 87.40 96.2 95.2

Table 5.5: TREC dataset results

reported in 5.5. The state of the art result has been achieved by using the dependency

based convolutional neural network of Mou et al. (2015). Their model consists of a

convolutional neural network that takes a dependency tree at the input layer after

parsing the sentence instead of a sequence as in the LSTM based model.

5.2.2 SST-2 Sentiment Classification

The Stanford Sentiment Treebank dataset Socher et al. (2013) provides with fine

grained sentiment polarity scores for movie reviews on the phrasal and sentence

level. In our evaluation we evaluate on the binary version of the task, which con-
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Sentence Label

this is one of polanski’s best films POS

even as lame horror flicks go, this is lame NEG

as a singular character study, it’s perfect POS

a turgid little history lesson, humourless and dull NEG

the cast is uniformly excellent and relaxed POS

Table 5.6: SST-2 dataset examples

siders only positive and negative sentiment classes. The dataset is provided with the

split required for training, validation and testing i.e. 6920/872/1821 split for train-

ing/validation/testing sets. Some examples of this dataset is provided in table 5.6.

We performed our evaluations on sentence level annotations. Classification accuracy

results for each input representations and classification method has been reported in

5.7. The dataset could be found here 4 .

The state of the art for this dataset has reported to achieve 88% accuracy from

Kim (2014), which uses the same Convolutional neural network as we have used for our

evaluations. But the best model utilizes the phrasal level annotations and not sentence

level annotation. Also in this specific configuration, the network (multichannel) uses

two channels at the input layer, one updating the word embeddings during training

and one that keeps them static as we do in our experiments. All our model for this

dataset uses static versions i.e. the embeddings are not updated during the training.

4https://nlp.stanford.edu/sentiment/treebank.html
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Embedding SVM CNN LSTM

Win5 77.42 77.92 81.60

WR Words 76.77 83.96 82.70

WR WavgR 76.16 77.15 75.50

WR WavgWR 74.68 78.52 76.22

WR WConc 75.34 79.60 77.26

WR Triplet 76.83 80.25 79.88

Table 5.7: SST-2 dataset results

5.2.3 Subjectivity Classification

In subjectivity classification, the task is to classify a sentence as being subjective or

objective Pang and Lee (2004). A subjective sentence is a statement which expresses

an opinion or emotion and not necessarily a fact, whereas a objective sentence presents

a perspective based on facts. The subjective statements are taken from reviews of

rottentomatoes.com and the objective statements are taken from plots of movies from

IMDB. The sentences are movie review snippets of length of atleast 10 words. The

dataset contains, 5000 subjective and 5000 objective sentences. Some examples of this

dataset are provided in table 5.9. We performed our evaluations on sentence level

annotations. The dataset could be found here 5 . Classification accuracy results

for each input representations and classification method has been reported in 5.8

We performed 10 cross validation on the dataset containing total of 10000 sentences.

The best accuracy reported on this dataset comes from the Dependency sensitive

Convolutional Neural Network model by Zhang et al. (2016), at 93.9 %. This model

uses a combination of Long Short Term Memory networks and Convolutional neural

5www.cs.cornell.edu/people/pabo/movie-review-data/
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Sentence Label

when it could have been so much more SUBJ

a work that lacks both a purpose and a strong pulse SUBJ

a movie that doesn’t aim too high , but doesn’t need to SUBJ

television made him famous , but his biggest hits happened off screen OBJ

his father and brother are dead for so many years OBJ

Table 5.8: Subjectivity dataset examples

Embedding SVM CNN LSTM

Win5 91.60 91.70 91.45

WR Words 90.90 92.15 93.05

WR WavgR 90.15 90.95 90.35

WR WavgWR 89.15 90.20 90.15

WR WConc 89.60 89.95 91.30

WR Triplet 90.30 92.00 92.90

Table 5.9: Subjectivity dataset results

network to build the sentence representation hierarchically.

5.3 Sentence Entailment

In this entailment task (Marelli et al. (2014)), given two sentences A and B, model

has to classify into three classes: (i) Entailment (A entails B), (ii) Contradiction (A

contradicts B) and (iii) Neutral (A neither contradicts nor entails B). The dataset 6 is

provided with the split required for training, validation and testing i.e. 4439/495/4906

6http://alt.qcri.org/semeval2014/task1/
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Sentence Label

A: Two teams are competing in a football match

B: Two groups of people are playing football
Entailment

A: The brown horse is near a red barrel at the rodeo

B: The brown horse is far from a red barrel at the rodeo
Contradiction

A: A man in a black jacket is doing tricks on a motorbike

B: A person is riding the bicycle on one wheel
Neutral

Table 5.10: Sentence entailment dataset examples

Embedding CNN

Win5 64.6

WR Words 65.1

WR Triplet 67.2

Table 5.11: Sentence entailment results

respectively. Some examples of this dataset is provided in table 5.10. For this task

we used the the same CNN as described in section 4.3, with the sentence feature

representation for each sentence pair concatenated to form the 2D input matrix.

We have performed comparison with only our previous best performing composition

technique of words and relations i.e. WR Triplet. The results have been shown in

table 5.11.

The best accuracy reported on this dataset comes from the Attention Based CNN

model by Yin et al. (2015), at 86.2 %. In their work, they have used a CNN which

models the sentence representation based on the mutual influence between sentences.
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5.4 Sentence representation methods and Classification benchmarks

In this section, we have described the commonly used sentence represenation learn-

ing methods. We have reported the best results of these representation learning meth-

ods on the three classification tasks in table 5.12. We also report the results from our

method i.e. Word and Relation embedding.

NB-SVM Wang and Manning (2012): In this method a Naive Bayes SVM is applied

with unigram and bigram as features for representing the sentence.

MNB: In this method a Multinomial Naive Bayes is applied with unigram and bigram

as features for representing the sentence.

CBoW: In this method an average of the word vectors of the sentence is performed to

get the fixed length sentence vector. The word vectors are taken from the Skipgram

based word2vec model.

BRNN: Schuster and Paliwal (1997): Bidirectional recurrent neural networks is a

work which uses a variant of recurrent neural network. In this network it connects

two hidden layers of opposite directions to the same output. By this structure, the

output layer gets information from past and future words.

CNN Kim (2014): Convolutional neural network for sentence modeling. This is the

same neural network which we have used in our method for sentence representation

as described in 4.3

AdaSent Zhao et al. (2015): In this work, sentence representation is learnt by forming

a hierarchy of representations from words to phrases through recursive gated local

composition of adjacent segments.

Paragraph Vector Le and Mikolov (2014): This is an unsupervised model to learn

distributed representations of words and paragraphs. This method learns the repre-

sentation of each document(sentence or paragraph) by a dense vector which is trained
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Method TREC SST-2 SUBJ

NB-SVM - 79.4 93.2

MNB - 91.7 91.4

CBoW 87.3 77.2 91.3

RNN 90.2 82.3 93.7

CNN 93.6 81.5 93.4

AdaSent 92.4 83.1 93.5

Paragraph Vector 91.8 74.8 90.5

Skip-Thought 92.2 76.5 93.6

Word & Relation 96.2 80.2 92.9

Table 5.12: Classification accuracy of various sentence representation learning meth-

ods

to predict words in the document.

Skip-Thought Vector Kiros et al. (2015): This is an unsupervised model to learn

distributed representations of sentences. The sentence representation is learnt using

a RNN based encoder-decoder network. The encoder-decoder network is trained to

reconstruct the surrounding sentences given a target sentence.

5.5 Result Analysis

Overall our evaluation shows that the sentence representation using our model

of trained word and relation embeddings outperformed the baseline skipgram based

model(Win5). Using the sentence representation composed of both word and re-

lation embeddings, TREC question classification task showed great improvements

across the three classification methods. For this dataset we observe that, the 600
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dimensional embedding(WR Conc) and the 900 dimensional embedding(WR Triplet)

performed consistently well across classification methods. Our 900 dimensional com-

position method(WR Triplet) also achieves state-of-the-art with 96.2% accuracy on

this dataset.

For the other two tasks of Sentiment classification and Subjectivity classification,

the composition based method worked better than the skipgram based word repre-

sentation (Win5) model but showed decrease in performance than the word based

representation (WR Words). There has been prior research Liu et al. (2015) of using

syntactic information using the tree structured networks for the SST dataset, which

also confirmed that syntax does not provide much improvement on this dataset. For

subjectivity classification, we observe similar behavior that adding syntactic informa-

tion does not improve the performance. For the above two tasks we observed that,

using only the word embedding based sentence representation, our representation

(WR Words) greatly outperformed the window based skipgram (Win5) in the neural

network based classification methods (LSTM, CNN) and comparable results in the

SVM based classification method.

From the various composition methods for sentence representation, we observe

that triplet based composition model (WR Triplet) shows the best performance for

all classification tasks across classification methods. Hence this could be a general

composition method of sentence representation for providing syntactic information for

several classification tasks. We also observe that composition method with weighted

average of word and relation (WR WavgR) performs better for SVM model but per-

formance does not show much improvement for the neural network based methods

(CNN, LSTM). The composition method (WR Conc) with concatenation of word

and it’s dependency context i.e. relation and word has comparable performance as

the WR triplet method. This shows that increasing the feature space with syntactic
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information has better performance than adding it to the same feature space.

For the task of sentence entailment, the composition based method WR Triplet

showed the best performance as compared to the two word based sentence represen-

tations (Win5 and WR Words). The evaluation on this dataset provides us further

evidence to use both word and relation embeddings for modeling sentence represen-

tation.
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Chapter 6

CONCLUSION AND FUTURE WORKS

6.1 Summary

We presented a methodology to jointly learn the dense representation of words

and relations. We presented various composition models for enriching the sentence

representation using both the word and relation embeddings. We performed com-

parison of this enriched sentence representation to the sentence representation with

only the word embedding using two sentence classification tasks, namely Question

Category classification and, Sentiment Analysis. The sentence classification was done

using the three state-of-the-art supervised classification techniques (SVM Cortes and

Vapnik (1995), CNN Kim (2014) and LSTM Dyer et al. (2015)). For the task of

Question Classification, we observe a noticeable improvement in prediction accuracy

for most cases using the composite sentence embeddings. When used with tradi-

tional neural network architectures, the triplet-based composition model outperforms

both the original skip-gram based word-embedding and our relation-enhanced word-

embeddings. For the Sentiment Analysis task, we observe that using only the word

embeddings gives higher accuracy than the composition models of word and relation.

But the word embeddings which are jointly trained with relations, outperforms the

original skip-gram based word embeddings. The triplet based composition model is

still the second best performing model for this dataset.
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6.2 Future Work

In our work, for the purpose of comparison with different embedding and compo-

sition techniques, little hyperparameter tuning was done on the three classification

methods. The best reported results with specifically engineered systems for these

tasks are: 96.0% for Question classification Mou et al. (2015) and 93.9% for Sub-

jectivity classification. Even with a limited hyperparameter tuning, we beat the

current state of the art for question classification task with 96.2% using WR Triplet

representation with CNN and we achieve a comparable performance for subjectivity

classification task with an accuracy of 92.9% using WR Triplet with LSTM. Our rep-

resentation does not depend on the classification setting and it would be interesting

to see if with some more hyperparameter tuning any improvement in performance.

Also for the scope of this work, we did not perform evaluations on various state of

the art neural network architectures which considers the structure of the sentence as

well such as Ma et al. (2015) and Socher et al. (2013). We believe these neural network

architectures with the added information of relation may improve the performance

The proposed method is independent of the adopted dependency parsing tech-

nique used in our work, and can be generalized to learn embeddings for relations; as

produced by other syntactic Chen and Manning (2014) or semantic parsers Sharma

et al. (2015). It would be interesting to see the effects of using different or more

relations provided by other parsers, which can further be helpful in improving the

performance of downstream tasks.
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