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ABSTRACT

This article proposes a new information-based subdata selection (IBOSS) algorithm,

Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the

determinant of the information matrix under orthogonal transformations, especially

rotations. Extensive simulation results show that the new IBOSS algorithm retains

nice asymptotic properties of IBOSS and gives a larger determinant of the subdata

information matrix. It has the same order of time complexity as the D-optimal IBOSS

algorithm. However, it exploits the advantages of vectorized calculation avoiding for

loops and is approximately 6 times as fast as the D-optimal IBOSS algorithm in R.

The robustness of SSDA is studied from three aspects: nonorthogonality, including

interaction terms and variable misspecification. A new accurate variable selection

algorithm is proposed to help the implementation of IBOSS algorithms when a large

number of variables are present with sparse important variables among them. Ag-

gregating random subsample results, this variable selection algorithm is much more

accurate than the LASSO method using full data. Since the time complexity is asso-

ciated with the number of variables only, it is also very computationally efficient if the

number of variables is fixed as n increases and not massively large. More importantly,

using subsamples it solves the problem that full data cannot be stored in the memory

when a data set is too large.
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Chapter 1

Introduction

1.1 Background

As data grows larger and larger due to advances of technologies, a new challenge is

how to analyze these big data. For high-dimensional big data where p� n, multiple

methods have been proposed and studied, such as the LASSO (Tibshirani (1996),

Meinshausen and Yu (2009)), Dantzig selector (Candes and Tao (2007)), and sure

independence screening (Fan and Lv (2008)), among others. The focus of this paper

is on situations where data are massive in data size n but not massive in number

of variables p (n � p) and linear regression is used as the model. One challenge is

that when n is too large, the size of data could exceed computer memory. Direct

analysis of these data using ordinary least-squares (OLS) is not applicable. Also,

with time complexity O(np2) for OLS, the computing times are intimidating when n

is too large. Limited by computational resources, taking a subsample from the full

data and estimating parameters based on the subsample can be a solution.

Several subsampling methods have been proposed including leveraging sampling

methods (Drineas et al. (2006), Drineas et al. (2011), Ma et al. (2014), Ma and Sun

(2015), Ma et al. (2015) ) and information-based optimal subdata selection (IBOSS)

(Wang et al. (2017)). This paper is based on the ideas from IBOSS. Compared to

other subsampling methods, IBOSS has several advantages. First of all, the time
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complexity of existing IBOSS algorithms is O(np), which is considerably faster than

other subsampling methods. Secondly, IBOSS algorithms are suitable for parallel

computing, which could improve the computation time of IBOSS algorithms even

more. Thirdly, the variances of parameter estimators from IBOSS subdata have

asymptotic properties as full data size n increases even though the subdata size k is

fixed.

1.2 IBOSS Framework

In Wang et al. (2017), they propose the IBOSS framework, which will be restated

in this section for a better understanding of proposed algorithms in this paper.

Assume the full data is (y,Z), where y = (y1, y2, . . . , yn)T is the vector of re-

sponses, Z = (zT1 , z
T
2 , . . . , z

T
n )T is the covariate matrix with p by 1 vectors zi =

(zi1, zi2, . . . , zip)
T , i = 1, . . . , n. Also, the linear model is used:

y = Xβ + ε = β0jn + Zβ1 + ε, (1.1)

where jn is a vector of ones with length n, X = (jn,Z) is the model matrix, β =

(β0,β1)
T = (β0, β1, β2, . . . , βp)

T is a p+1 by 1 vector of the unknown parameters with

β0 as the intercept parameter and β1 as the p-dimensional vector of slope parameters

and ε = (ε1, ε2, . . . , εn)T is the vector of error terms with E(ε) = 0 and cov(ε) = σ2In

Under model 1.1, the OLS estimator of β is given by

β̂ = (XTX)−1XTy,

which is also the best linear unbiased estimator (BLUE) of β. The covariance matrix

of this BLUE can be easily found as:

cov(β̂) = σ2(XTX)−1.

2



If ε is normally distributed, the observed fisher information matrix is the inverse

of cov(β̂), which is:

M =
1

σ2
XTX =

1

σ2

n∑
i=1

xix
T
i .

For simplicity we will call it information matrix for the rest of this paper.

In IBOSS algorithms, subdata are selected deterministically from the full data.

Assume the subdata selected from full data above are (y∗,Z∗), where y∗ = (y∗1, y
∗
2, . . . , y

∗
k)
T

is the vector of responses, Z∗ = (z∗T1 , z∗T2 , . . . , z∗Tk )T is the covariate matrix for sub-

data with p by 1 vectors z∗i = (z∗i1, z
∗
i2, . . . , z

∗
ip)

T , i = 1, . . . , k. Then (y∗,Z∗) = f(Z)

meaning that whether or not a point is selected depends on the covariate matrix Z

only. The subdata also follows linear model:

y∗ = X∗β + ε∗ = β0jk + Z∗β1 + ε∗, (1.2)

where jk is a vector of ones with length k, X∗ = (jk,Z
∗) is the model matrix for

subdata, β is the same vector of unknown parameters as in model 1.1 and ε∗ =

(ε∗1, ε
∗
2, . . . , ε

∗
k)
T is the vector of error terms with E(ε∗) = 0 and cov(ε∗) = σ2Ik

The covariance of OLS estimator (BLUE) and information matrix under model

1.2 are given by similar reasonings as model 1.1:

cov(β̂∗) = σ2(X∗TX∗)−1 (1.3)

Ms = cov(β̂∗)−1 =
1

σ2
X∗TX∗ =

1

σ2

n∑
i=1

x∗ix
∗T
i . (1.4)

Among all unbiased estimators of β based on the subdata, OLS estimator gives

the smallest variance thus is the BLUE. However, as shown in equation 1.3, the

covariance matrix of this BLUE depends on how the subdata is selected. In IBOSS

algorithms, we aim to select subdata which optimize an objective function. In an

optimization problem, the information matrix of subdata can be written as follows:

M(δ) =
1

σ2

n∑
i=1

δixix
T
i ,

3



where δ = (δ1, δ2, . . . , δn), δi = 1 if point i is selected in the subdata and δi = 0

if point i is not selected in the subdata, i = 1, 2, . . . , n,
∑n

i=1 δi = k. Suppose ψ

is an optimality criterion function. The optimization problem of selecting subdata

becomes:

δopt = arg max
δ

ψ{M(δ)}, subject to
n∑
i=i

δi = k.

1.3 D-Optimal IBOSS

Under linear regression model, the D-optimal IBOSS uses determinant as op-

timality criterion function and aims to select the subdata that maximize |M(δ)|.

Although exact solution for this optimization problem is not feasible, inspired by the

upper bound

|M(δ)| ≤ kp+1

4p

p∏
j=1

(z(n)j − z(1)j), (1.5)

Wang et al. (2017) develops the D-optimal IBOSS algorithm by selecting points with

extreme covariate values, which gives a good approximation of max
δ
|M(δ)| . Suppose

r = k/2p is an integer and for each variable, it selects r points with the r largest

covariate values and r points with the r smallest covariate values. Parameters are

estimated by β̂D = (XT
DXD)−1XT

DyD. To get a better estimation of the intercept,

β̂D0 is calculated as follows:

β̂D0 = ȳ − z̄T β̂D1 . (1.6)

D-optimal IBOSS algorithm enjoys many nice properties and the most important two

of them are O(np) time complexity and the asymptotic properties. As the full data

size n grows large with fixed subdata size k, |MD(δ)| increases as the same order

as the upper bound of |M(δ)|. Also the rates of convergence of variances of slope

estimators are

V (βDj |Z) �P 1/(z(n)j − z(1)j)2, j = 1, . . . , p. (1.7)
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The estimator β̂D0 has a similar convergence rate to that of slope estimators. This is

because β̂D0 − β0 = (β̂full0 − β0) + z̄T (β̂full1 − β1)− z̄T (β̂D1 − β1) and the last term is

the dominating term if E(z) 6= 0. If E(z) = 0, the convergence may be faster.

1.4 Improvement of D-Optimal IBOSS

In this paper, a new IBOSS algorithm, Squared Scaled Distance Algorithm (SSDA),

is developed based on D-optimal IBOSS algorithm and a suitable variable selection

algorithm is proposed to deal with the variable selection problem before using IBOSS

algorithms. In Chapter 2, Squared Scaled Distance Algorithm is presented together

with the time complexity analysis, simulation study and robustness study. D-optimal

IBOSS Algorithm is compared with SSDA in all these aspects. In Chapter 3, an ac-

curate variable selection algorithm is proposed and compared with the lasso on full

data. Conclusions are offered in Chapter 4.

5



Chapter 2

Squared Scaled Distance Algorithm

2.1 Motivation

The core of D-optimal IBOSS algorithm is selecting extreme values of variables

to approximate the upper bound of |M(δ)|. Well performed as it is, it only considers

one variable at a time. The squared scaled distance algorithm (SSDA) proposed

in this chapter will consider all variables simultaneously and share the same nice

properties as those of D-optimal IBOSS. It is motivated by the invariance of |XTX|

under rotation which will be explained by Theorem 1.

Suppose we have a p by p rotation matrix R with property RT = R−1. Our

original model matrix is an n by (p+ 1) matrix: X = (j ,Z). After rotating each data

, we can obtain a new model matrix X1 = (jn,ZRT )

Theorem 1 (Invariance of the Determinants of Information Matrices Under Rota-

tion). The determinant of the original information matrix is the same as that of the

information matrix after rotation transformation. This is equivalent to |XT
1 X1| =

|XTX|. The invariance also carries to |M(δ)| meaning |M(δ)| = |M1(δ)|, where

|M1(δ)| is the information matrix of subdata under the rotated coordinates.

6



Proof. Let’s suppose we have an n by p covariate matrix

Z =



zT1

zT2
...

zTn


and a p by p rotation matrix R with property RT = R−1. The model matrix is

X = (jn,Z). After rotation, data entry zi, i = 1, . . . , n becomes Rzi, i = 1, . . . , n

respectively. Therefore, the new covariate matrix is

ZR =



(Rz1)
T

(Rz2)
T

...

(Rzn)T


= ZRT

and the new model matrix is X1 = (jn,ZRT ).

The information matrix under original coordinates and its determinant are:

XTX = (jn,Z)T (jn,Z) =

 n jTnZ

ZTjn ZTZ


Since n is invertible, |XTX| = |n||ZTZ − ZTjnj

T
nZ/n| = |ZT (nIn − Jn)Z|, where

Jn = jnj
T
n .

The information matrix under rotated coordinates and its determinant are:

XT
1 X1 = (jn,ZRT )T (jn,ZRT ) =

 n jTnZRT

RZTjn RZTZRT


|XT

1 X1| = |n||RZTZRT −RZTjnj
T
nZRT/n| = |RZT (nIn−Jn)ZRT | = |R||ZT (nIn−

Jn)Z||RT | = |ZT (nIn − Jn)Z| = |XTX|, where |RT | = |R−1| = 1/|R|

Therefore, |XT
1 X1| = |XTX|. With similar reasoning we can prove |M(δ)| =

|M1(δ)|.
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Under this rotated coordinate system, we can performD-optimal IBOSS algorithm

to the full data, which is selecting those points with extreme values in each rotated

coordinate. These extreme values will also make contributions to the approximation

of the upper bound of |M(δ)|. Since there are infinite number of rotations, we can

generalize D-optimal IBOSS under all these rotations to a method that selects points

with the largest scaled distances to center. In this way, more points with influential

effect on |M(δ)| will be included in our subdata. Based on this motivation, we create

a new IBOSS algorithm which will be introduced in Section 2.2.

Remark 1. The invariance of the determinants of information matrices is not limited

to rotation transformation. Actually, |XTX| is invariant to any orthogonal transfor-

mation. We emphasize on rotation because it is easier to be interpreted geometrically.

2.2 Algorithm

Algorithm 1 (Squared Scaled Distance Algorithm). Suppose that the covariate ma-

trix is an n by p matrix Z and we would like to select subdata with size k from the

original data by performing the following steps:

Step 1 Find the center of original data. Here sample mean is used to represent the

center. z̄ = (z̄1, z̄2, . . . , z̄p)
T , where z̄i =

∑n
l=1 zl/n, i = 1, . . . , n.

Step 2 Calculate the sample variances for each variable:

Sj =

√√√√ n∑
l=1

(zlj − z̄j)2/(n− 1), j = 1, . . . , p

Step 3 For each zi, i = 1, . . . , n, calculate its squared scaled euclidean distance to the

center:

D2
i =

p∑
j=1

(
zij − z̄j
Sj

)2

, i = 1, . . . , n

8



Step 4 Use quick-select algorithm to select the k points with largest square scaled eu-

clidean distances to the center as our subdata Z∗.

Step 5 Calculate β̂∗ = (X∗TX∗)−1X∗Ty∗, where X∗ = (jk, Z∗) and β̂∗ = (β̂∗0 , β̂
∗
1).

Replace β̂∗0 with β̂∗∗0 = ȳ − z̄T β̂∗1.

Remark 2. The reason we use scaled distances instead of unscaled ones is that we

want to make each variable dimensionless and eliminate the scale effects on the dis-

tances. To reduce computation time, square roots are not taken to these squared scaled

distances.

Remark 3. In real world problem we don’t know the correlation between variables,

therefore we assume they are uncorrelated to each other and use the squared scaled

euclidean distance under orthogonal (Cartesian) coordinates. In section 2.5.1, we will

discuss the robustness of SSDA when there are correlations among variables.

Remark 4. There are many choices for defining data center. Sample mean is used

here because it is simple to calculate. Other alternatives such as various concepts of

data depth are so time expensive that they have the same time complexity as using

full data.

Remark 5. We don’t use statistical distance (x− x̄)TΣ̂−1(x− x̄) because the time

complexity of estimating Σ−1 is O(np2), which is no better than using the full data

with OLS. Instead, sample variance of each variable is used to scale the euclidean

distances. The time complexity is O(np) for calculating all p sample variances.

Remark 6. Using β̂∗∗0 instead of β̂∗0 endows the estimation of the intercept with a good

asymptotic property without increasing the order of time complexity of the algorithm.

Remark 7. More informative points are included in the subdata Using SSDA. There-

fore we expect a larger information matrix of SSDA subdata than that of D-optimal

9



IBOSS subdata.

2.3 Time Complexity and Advantages

The time complexity analysis of SSDA is as follows:

The time to calculate z̄T = (z̄1, z̄2, . . . , z̄p) is O(np). Calculating the squared scaled

euclidean distances has the time complexity of O(4np). The average time complexity

of quick-select algorithm is O(n). Time complexities to get β̂∗ and β̂∗∗0 are O(kp2+p3)

and O(np) respectively. Thus the time complexity of SSDA is O(6np+n+ kp2 + p3).

When kp is less than or in the same order as n, The time complexity of algorithm 1

is O(np).

As we can see, SSDA has the same level of time complexity as the D-optimal

IBOSS does. Meanwhile it enjoys the following advantages:

a It exploits the advantages of vectorized calculation. Since all the calculations

in SSDA are based on vector, it can be really fast in languages such as R and

Python, which take advantages of vectorized calculation. On the other hand, the

D-optimal IBOSS inevitably uses loops to search in each variable for extreme

values, causing the running time much slower than SSDA in those languages.

b It suffers much less from the instability of quick-select algorithm. Just as the

quick-sort algorithm, quick-select is also an unstable algorithm with the worst

case time complexity of O(n2). Quick-select algorithm is used p times in the

D-optimal IBOSS but only once in SSDA. Therefore, the distribution of com-

putation time of D-optimal IBOSS has the same mean but a much heavier tail

than that of SSDA. In an extreme case, if one of p quick-select processes has

the worst time complexity O(n2), then time complexity of the whole D-optimal

IBOSS algorithm will become O(n2). The worst case may happen to SSDA. But

10



using quick-select algorithm only once, SSDA has a much smaller probability

to be slow than the D-optimal IBOSS.

2.4 Simulation Study and Comparison to D-optimal IBOSS

In this section, simulations focus on two aspects of SSDA: asymptotic property

and computation time.

2.4.1 Simulation on Asymptotic Properties of Parameter Estimation, Prediction

Error and |M(δ)|

Including more informative points in the subdata, SSDA should result in a larger

determinant of information matrix compared to that of D-optimal IBOSS. Mean-

while, applying D-optimal IBOSS to rotated coordinate systems, we expect SSDA to

preserve the same asymptotic properties of estimation, prediction error and |M(δ)|

as D-optimal IBOSS. We will find out these properties by simulations with following

settings:

Data The full data sizes are n = 5 × 103, 1 × 104, 1 × 105, 1 × 106 with 50 variables

(p = 50). The subdata size is fixed k = 1000.

The covariance structure used here is a mutually moderately correlated covari-

ance structure with Σij = 0.5I(i 6=j), where i, j = 1, . . . , p and I(i 6= j) = 1 if

i 6= j and 0 otherwise. We generate the covariate matrices Z’s according to the

following cases: for each entry zi, i = 1, . . . , n

Case 1 zi ∼ N(0,Σ) has a multivariate normal distribution.

Case 2 zi ∼ LN(0,Σ), has a multivariate lognormal distribution.

Case 3 zi ∼ t2(0,Σ), has a multivariate t distribution with degrees of freedom

υ = 2.

11



Case 4 zi has a mixture distribution of five different distributions, N(1,Σ), t2(1,Σ),

t3(1,Σ), U [0,2], LN(0,Σ) with equal proportions of variables. Where

U [0,2] means its component are independent uniform distributions be-

tween 0 and 2.

A test data set with ntest = 5 × 103 are created for calculating the prediction

errors.

Model The following linear model is used: y = Xβ+ ε, where X = (jn,Z), β is a 51

by 1 vector of ones and εi
i.i.d∼ N(0, σ2), i = 1, . . . , n, σ2 = 9.

Simulation The simulation is repeated S = 100 times and the MSE’s are calculated us-

ing MSEβ0 = S−1
∑S

s=1(β̂
∗(s)
0 − β0)

2 and MSEβ1 = S−1
∑S

s=1 ||β̂
∗(s)
1 − β1||2.

For prediction errors, we use mean squared prediction error (MSPE), MSPE =

E[{E(ynew)− ŷnew}2] = E[{xTnew(β̂− β)}2]. Also, |M(δ)|, determinants of the

selected information matrices, are calculated. The means of MSPEs and |M(δ)|s

over S simulations are calculated for plotting purpose. Three approaches in-

cluding D-optimal IBOSS, SSDA and Full Data OLS are compared using the

same full data set and response variable.

Graphics In each case, we plot log10MSEβ0 , log10MSEβ1 , log10MSPE and log10|M(δ)|

against log10n with respect to the three approaches.

The simulation results are as follows:

Estimators

Figure 2.1 suggests that SSDA retains the asymptotic property for β̂1 of D-optimal

IBOSS. As shown in Figure 2.1(a), when zi ’s are normally distributed, the decreases

of MSEs for D-optimal IBOSS as well as those for SSDA are not as significant as
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that of MSEs for Full Data. This is because the rates of convergence of variances

are only 1/log(n). In Figure 2.1(d), the rates of convergence of SSDA and D-optimal

IBOSS are bounded by the rates of convergence of the slowest covariates, uniform

distribution which dose not converge at all according to equation 1.7. Figure 2.1(b)

and (c) show drastic decreases of MSEs as the full sample size n increases. When the

distribution is multivariate t2 , SSDA and D-optimal IBOSS have almost the same

results. While in Figure 2.1(c), SSDA performs better than D-optimal IBOSS.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are multivariate t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.1: Simulations of Asymptotic Property of β̂∗1 with changing n and fixed k

The simulation results of the asymptotic property for β̂∗0 show similar conclusions

except for Figure 2.2(c). As shown in Figure 2.2(a) and (b), Full data, SSDA and

D-optimal IBOSS have almost the same behaviors. This is consistent with theoretical
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analysis when E(zi) = 0, i = 1, . . . , n, the rate of convergence of β̂∗0 can be faster

than that of β̂∗1. In Figure 2.2(c) where zi’s are lognormal, there are obvious gaps

among the three methods. The slower rates of D-optimal IBOSS and SSDA are

because E(zi) = 1, i = 1, . . . , n. In Figure 2.2(d), SSDA and D-optimal IBOSS

behave similarly and the rates of convergence is bounded by the uniformly distributed

covariates. The result of Full Data converges.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are multivariate t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.2: Simulations of Asymptotic Property of β̂∗0 with changing n and fixed k

Prediction Error

As can be seen from Figure 2.3, SSDA retains the the same asymptotic proper-

ties as D-optimal IBOSS. The relative behavior of SSDA in prediction compared to
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D-optimal IBOSS and full data are similar to that of SSDA in slope parameter esti-

mation. In Figure 2.3(a), (b) and (d), SSDA and D-optimal IBOSS have almost the

same performance. Figure 2.3(c) suggests that under lognormal distribution, SSDA

is a better way for subdata selection than D-optimal IBOSS. Note that the intercept

should be estimated using β̂0 = ȳ − z̄T β̂D1 for better prediction errors.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are multivariate t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.3: Simulations of Asymptotic Property of MSPEs with changing n and
fixed k

Determinant of M(δ)

Rather than considering variables one by one as D-optimal IBOSS does, SSDA em-

phasizes on the combined effect of all variables. Therefore we expect SSDA gives

a larger or at least almost equal determinant as D-optimal IBOSS does. Shown in
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Figure 2.4 are the simulation results on |M(δ)|. In Figure 2.4(c) and (d), the de-

terminants of SSDA are larger than those of D-optimal IBOSS, as we expected. In

2.4(b), the determinants are equal. Maybe it is because the t2 distribution has such

heavy tails that the extreme points selected by the two algorithms are almost the

same. In Figure2.4(a), D-optimal IBOSS presents slightly larger determinants than

SSDA. Both of the algorithms show asymptotic properties of |M(δ)| as n increases.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.4: Simulations of Asymptotic Property of |M(δ)|

Remark 8. When covariates are mutually moderately correlated as shown in the

above settings, SSDA and D-optimal IBOSS perform similarly. This is because when

selecting a point with extreme value for one variable, the values of other variables of

this point tend to be extreme due to the correlations. And this point is a potential
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choice for the subdata selected by SSDA. As the correlation coefficients increase, SSDA

and D-optimal IBOSS become more and more similar to each other. When covariate

not correlated, we believe SSDA performs better than D-optimal IBOSS. To verify the

above discussed ideas, we conduct similar simulations with two different covariance

structures. he first one is mutually uncorrelated structure with Σ = In. The second

one is mutually highly correlated structure with Σij = 0.9I(i 6=j), where i, j = 1, . . . , p

and I(i 6= j) = 1 if i 6= j and 0 otherwise. Only Case 1: normal distribution is used.

Simulation results are shown in Figure 2.5 and Figure 2.6. The results support our

discussions here.

(a) β̂0 (b) β̂1

(c) Prediction Errors (d) Determinants

Figure 2.5: Simulations of Different Asymptotic Properties Under Uncorrelated
Multivariate Normal Distribution
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(a) β̂0 (b) β̂1

(c) Prediction Errors (d) Determinants

Figure 2.6: Simulations of Different Asymptotic Properties Under Mutually Highly
Correlated Multivariate Normal Distribution

Remark 9. As we have noticed in the simulations, when data are lognormally dis-

tributed SSDA performs noticeably better than D-optimal IBOSS except for the esti-

mation of β̂0. The better performances are because lognormal distribution is a one

tail distribution. Besides selecting points in the heavy tail, D-optimal IBOSS will also

select those less influential points near zero. While SSDA will only select points with

extreme values in the heavy tail. Therefore, SSDA includes twice as many influential

points as D-optimal IBOSS. The worse performance of SSDA when estimating the

intercept in lognormal distribution is due to the same reason. Only selecting points

far from the origin point will make the estimation of intercept inaccurate. But the

overall effect in prediction shows that SSDA is still a better choice than D-optimal
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IBOSS.

Conclusion From the simulations, we can see that the asymptotic behaviors of

D-optimal IBOSS and SSDA are similar. In estimation of parameters, SSDA

performs better than D-optimal IBOSS in estimating the slopes but worse in

estimating intercept. When it comes to prediction and giving larger determinants of

information matrices, SSDA is a better option. Correlation coefficients have effects

on the relative performs on SSDA and D-optimal IBOSS.

2.4.2 Simulation on Computation Time

As we analyzed in Section 2.3, SSDA has the same time complexity as D-optimal

IBOSS. However, it may perform much better than D-optimal IBOSS due to some

features. The following simulations are conducted to help us understand how SSDA

and D-optimal IBOSS perform in real computations.

The settings of the simulations are:

Case 1 The full data sizes are n = 5×103, 5×104, 5×105 with fixed p = 500, k = 1000.

Case 2 The numbers of variables are p = 10, 100, 500 with fixed n = 5× 105, k = 1000.

All the simulations are conducted using R programming language on a desktop

Windows 10 with an I5 laptop processor and 8GB memory.

At the beginning of simulation a random covariate matrix is generated. SSDA

and D-optimal IBOSS method are wrapped in two functions. Using R function

microbenchmark, we can apply each function to the covariate matrix 100 times and

get the quantiles of CPU time (in milliseconds). The results are as follows:

The two tables on computation time show that SSDA is a significant improvement

over D-optimal IBOSS method in computation efficiency, especially when n � kp.
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n Method Min LQ Median UQ Max

5× 103
SSDA 61.56 67.10 69.68 72.51 147.20

D-OPT 258.07 264.59 268.23 271.95 350.27

5× 104
SSDA 487.66 515.24 534.94 565.70 691.17

D-OPT 1998.60 2034.31 2084.47 2188.47 2685.26

5× 105
SSDA 5477.78 6278.06 7154.60 7406.64 9437.10

D-OPT 31142.27 36794.27 40274.22 42449.30 50526.69

Table 2.1: Computation Comparison Case 1: n changes while p and k are fixed 500
and 1000 respectively

p Method Min LQ Median UQ Max

10
SSDA 97.98 103.36 107.06 137.02 270.64

D-OPT 530.17 630.26 659.78 694.81 889.93

100
SSDA 922.59 1006.41 1096.28 1179.93 1504.53

D-OPT 6066.83 6188.31 6260.32 6411.80 6946.96

500
SSDA 5477.78 6278.06 7154.60 7406.64 9437.10

D-OPT 31142.27 36794.27 40274.22 42449.30 50526.69

Table 2.2: Computation Comparison Case 2: p changes while n and k are fixed
5× 105 and 1000 respectively

The ratio rt of D-optimal IBOSS median computation time over SSDA median com-

putation time are approximately in the range from 3.85 to 6.16. In Table 2.1, as n

grows from 5 × 103 to 5 × 105 and kp = 5 × 105 stays the same, rt grows from 3.85

to 5.63. Table 2.2 shows that with p increasing from 10 to 500, rt decreases from

6.16 to 5.63. This is because as n/kp increases, the dominant part of time complexity

O(np+kp2) changes from O(kp2) to O(np). This is when the computation time shown

in the tables truly reveals how well the two algorithms perform because the O(kp2) is

the time complexity of OLS estimation process. Thus, we can draw conclusion that
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SSDA is approximately 6 times faster than D-optimal IBOSS in this setting.

2.5 Robustness

When talking about the robustness of SSDA in this section, we focus on three

issues, nonorthogonality, interaction terms and variable misspecification.

2.5.1 Nonorthogonality

One of the assumptions of SSDA is that the distances are calculated under the

Cartesian Coordinate system, which means the variables are uncorrelated. In this

subsection we will try to simulate under different covariance structures to see how

these structures affect the performance of SSDA.

Remark 10. The cosine of angle θ between two coordinates is related to their corre-

lations with cos θ = 1 for 0 degree and cos θ = 0 for 90 degrees.

As the covariances increase, the Euclidean distances we use become more and

more misleading compared to the true Euclidean distances which take nonorthogo-

nality (correlations) into consideration. This results in selecting those points with

less contributions to maximizing the information matrix and leaving out those that

really matter.

The settings of this simulation are the same as that of Section 2.4.1 except for the

following:

The distributions now have means 1 instead of 0 and the covariance structures are

matrices with the same diagonal elements 1 but different off-diagonal elements 0, 0.25,

0.5, 0.75, 0.9 respectively. Determinant ratios, |M(δ)|/min{|XTX|,upperbound},

are calculated in each simulation, where upperbound refers to the upper bound in

equation 1.5 and min{|XTX|,upperbound} provides an upper bound for the largest
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value |M(δ)| can reach. The median of these ratios for a specific combination of n

and covariance structure are used. The ratio here represents how well the subdata

approximate full data with respect to maximizing the determinant of the information

matrix.

Remark 11. Medians of the determinant ratios are used here because the ratios are

very small values. Thus, outliers will have big influence on the results. To capture the

essential characteristic of the data with the robustness to outliers, medians are used

instead of means.

Plots of determinant ratios with different covariance structures but the same dis-

tributions are presented in Figure 2.7.

All of the four plots in Figure 2.7 show that the determinant ratio decreases

as full data size increases. This means min{|XTX|,upperbound} converges faster

than |M(δ)| with respect to full data size n. But the story is slightly different for

the relationship between determinant ratio and covariance structures. Figure 2.7(a)

and (b) show the same pattern: as the covariances among variables increase, the

determinant ratio decreases. This is exactly what we expected. The less correlated

variables are the less deviation from our assumptions and thus the more effectively

SSDA performs. However, Figure 2.7(c) shows an opposite trend of the determinant

ratio. When the covariance increases, the determinant ratio increases. This may be

because the covariate values of lognormal distribution are all positive. Let’s denote

the region where all covariate values are positive as region 1. Since all the variables

are positively correlated, the distance to center of region 1 points are not heavily

affected by nonorthogonality. The results for the mixed distribution can be viewed as

a balance of the distributions. The plot shows the same patterns as in Figure 2.7(c)

but the differences among the lines are really slight. We can notice that when n
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(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.7: Simulations of Determinant Ratios Using SSDA Under Different Covari-
ance Structures and Different Distributions

reaches 1× 106, there is a reversal of the pattern. This may be because at this point,

|XTX| > upperbound in some covariance structures while |XTX| < upperbound

in the other ones.

Conclusions: From Figure 2.7, we can see that nonorthogonality does influence the

performance of SSDA and the patterns are in the order of covariance. In real world

cases where the covariance structures are much more complicated than what we

have in this section, relationship between the determinant of an information matrix

and corresponding covariance structure is a combined effect of the covariance

structure and the distribution of covariate matrix.
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Remark 12. As is shown in Figure 2.8, D-optimal IBOSS is also influenced by

nonorthogonality with similar patterns as SSDA. Therefore, SSDA is an excellent

alternative to D-optimal IBOSS despite its lack of robustness in nonorthogonality.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.8: Simulations of Determinant Ratios Using D-optimal IBOSS Under Dif-
ferent Covariance Structures and Different Distributions

2.5.2 Interaction Terms

In this section, two models with interaction terms will be considered and interac-

tion terms are not used in subdata selection but are used in parameter estimation.

Model 1 This model is the one discussed by Wang et al. (2017). The number of vari-

ables p = 20 and each zi ∼ N(0,Σ), i = 1, . . . , n has a multivariate normal
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distribution. Σ is the covariance matrix with 1 as diagonal elements and 0.5

as off-diagonal elements. The model matrix contains interaction and quadratic

terms with xi = (zT, z1z
T, z2z11, z2z12, . . . , z2z20)

T, i = 1, . . . , n. Other settings

are the same as those in Section 2.4.1.

Model 2 This model contains all the main effects and pairwise interaction terms. The

number of variables p = 10 and other settings are the same as in Section 2.4.1.

Case 1, 2, 3 and 4 are studied respectively.

The results from Figure 2.9 are in accordance with theoretical results. In Figure

2.9(a), both of the rates of convergence of β̂∗1’s are pretty slow and D-optimal IBOSS

gives slightly better estimations than SSDA does. This is similar as the result from

Figure 2.1(a), where interaction terms are not in the model. Figure 2.9(b) presents

different behaviors of β̂∗0 compared to Figure 2.2(a). In Figure 2.2, both of the methods

converge at the same rates as full data while in Figure 2.9(b) they converge at much

slower rates. Weird as it seems, it actually comply with the theory. Let’s suppose

that Z is the covariate matrix and Z1 is the model matrix without intercept. Since

E(zizj) = E(zi)E(zj)+Cov(zi, zj) = Cov(zi, zj) 6= 0, E(z̄1) 6= 0. Therefore, the rates

of convergence of β̂∗0 are dominated by the rates of β̂∗
1 . So SSDA is robust under

model 1.

From Figure 2.10 we can see that under normal and mixed distributions, SSDA

does not converge while D-optimal IBOSS converges in a very slow rate. Under t2 and

lognormal distributions, D-optimal IBOSS and SSDA converges at similar rates as in

Figure 2.1. Therefore, when estimating the slopes, SSDA is not robust under Model

2 with normal or mixed distributions but it is robust under heavy-tailed distributions

such t2 and lognormal. As a conclusion, it is comparable method to D-optimal IBOSS

under Model 2.
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(a) The asymptotic property of β̂∗1 (b) The asymptotic property of β̂∗0

Figure 2.9: Simulations of β̂∗1 and β̂∗0 under Model 1

(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.10: Simulations of β̂∗1 under Model 2

As for β̂∗0 , from Figure 2.11 we can see that D-optimal IBOSS and SSDA converge

at similar rates as in Figure 2.2 except Figure 2.11(a). As analyzed previously, the
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result of Case 1 agrees with the theory. Also, in Figure 2.11(b), all of the three rates

of convergence of β̂∗0 are the same even though E(z̄1) 6= 0. This is because the two

rates of convergence of β̂∗1 using D-optimal IBOSS and SSDA are almost the same as

that using full data. Above all, we can draw the conclusion that when estimating the

intercept, SSDA is robust under Model 2.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal (d) Case 4: zi’s are mixtures

Figure 2.11: Simulations of β̂∗0 under Model 2

2.5.3 Variable Misspecification

Both IBOSS and SSDA select subdata basing on variables. When the number

of variables is large, true variables that is in the model and fake ones that is not in

the model may be mixed in the full data. Variable selection is necessary. However,
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inaccurate variable selection algorithms will result in excluding the true variables

or/and including the fake variables. In this section, we will study how these two

situations: excluding the true variables and including the fake variables affect the

behavior of IBOSS and SSDA.

Simulation Settings:

Situations 1. Excluding one the true variables but not including fake variables.

2. Including all the true variables and 200 other fake variables.

Data The full data sizes are n = 5×103, 1×104, 1×105, 1×106 with p variables (p =

50 in Situation 1 and 250 in Situation 2). The subdata size is fixed at k = 1000.

Suppose Σ is the covariance matrix with Σij = 0.5I(i 6=j), where i, j = 1, . . . , p

and I(i 6= j) = 1 if i 6= j and 0 otherwise. A test data set with ntest = 5× 103

are created for calculating the prediction errors. The covariate matrices Z’s are

generated according to the following cases: for each entry zi, i = 1, . . . , n

Case 1 zi ∼ N(0,Σ) has a multivariate normal distribution.

Case 2 zi ∼ LN(0,Σ), has a multivariate lognormal distribution.

Case 3 zi ∼ t2(0,Σ), has a multivariate t distribution with degrees of freedom

υ = 2.

Model The Models are different for the two situations:

Situation 1: Since the 50 variables are equivalent to each other, without loss of

generality we can choose the first variable to be excluded in variable selection.

Then Zselected is the other 49 columns of Z. The following linear model is

used: y = Xβ + ε, where X = (jn,Z), β is a 51 by 1 vector of ones and

εi
i.i.d∼ N(0, σ2), i = 1, . . . , n, σ2 = 9.
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Situation 2: The first 50 variables are set to be true variables and the remaining

ones are set to be fake. Then Ztrue is the first 50 columns of Z. The following

linear model is used: y = Xtrueβ+ ε, where Xtrue = (jn,Ztrue), β is a 51 by 1

vector of ones and εi
i.i.d∼ N(0, σ2), i = 1, . . . , n, σ2 = 9.

Simulation In each simulation, we use the selected data to calculate the parameter esti-

mates. We have 49 parameter estimates in Situation 1 and 250 in Situation 2.

Prediction errors MSPEs are then calculated using test sets. The simulation

is repeated S = 100 times and the means of MSPEs over S simulations are

calculated for plotting purpose. Five approaches including D-optimal IBOSS,

SSDA, SSDA with true variables, Full Data OLS and Full Data OLS with true

variables are compared using the same full data set and response values.

Graphics In each case, we plot log10MSPE and against log10n with respect to the five

approaches.

In Figure 2.12, we can clearly see that none of D-optimal IBOSS, SSDA and Full

Data OLS are robust when a true variable is excluded from the model matrix. The

Asymptotic properties are not preserved.

Figure 2.13 shows that both D-optimal IBOSS and SSDA are robust when fake

variables is included in the model. Including fake variables, they converge at the same

rate as SSDA with true variables. But the prediction accuracies of these two methods

in Situation 2 are much worse than that of SSDA with true variables. When the tail

of the distribution of covariate matrix is heavy enough, SSDA with true variables

even out perform Full Data OLS in Situation 2. This can be seen from Figure 2.13(c)

and part of 2.13(b).

As a conclusion, both D-optimal IBOSS and SSDA are robust when fake variables

are included but not when true variables are excluded. Conducting an accurate
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variable selection algorithm before selecting subdata with SSDA or D-optimal IBOSS

can improve the prediction errors significantly.

(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal

Figure 2.12: Simulations of MSPEs in Situation 1: Excluding True Variables
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(a) Case 1: zi’s are normal (b) Case 2: zi’s are t2

(c) Case 3: zi’s are lognormal

Figure 2.13: Simulations of MSPEs in Situation 2: Including Fake Variables
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Chapter 3

A Suitable Variable Selection Method for Large Data Size

3.1 Motivation

From Section 2.5.3, we can see that both D-optimal IBOSS and Squared Scaled

Distance Algorithms are sensitive to variable misspecification. Therefore, in situations

where both the number of variables p and full data size n are large, an accurate

variable selection algorithm must be implemented before subdata are selected using

these two algorithms. Penalized regression models such as the LASSO have been

extensively used in variable selection. However, when the data are too massive to be

stored in the memory, fitting LASSO-type models is not feasible. Also, the LASSO

does not perform well when multicollinearity is present between true variables and

fake variables.

In this chapter, we will propose a variable selection algorithm when p is large but

not massively and n� p. The motivation comes from random forest algorithms where

small incomplete trees are built and the final results depend on the votes of all the

trees. Our variable selection algorithm is based on the votes of multiple small random

selected subsets to decide which variables are to be selected. A LASSO regression is

conducted for each subset and we count the number of times each variable is selected.

We believe that the true variables will be consistently selected and thus will have

larger counts than fake variables do. Then the counts are clustered into two groups
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using k-means algorithm. The group of variables with higher average counts will be

selected. We will show that our algorithm can break the multicollinearity among

variables and select variables accurately even when they are highly correlated. Also,

using less computational resources, our method performs far better than the LASSO

using the full data (James et al. (2013)). Furthermore, this algorithm is feasible

when the full data is too large to be stored in memory because we only use small

subsamples.

3.2 Algorithm

Algorithm 2 (Variable Selection via the Votes of Random Subsamples). Suppose that

the covariate matrix is an n by p matrix and we will randomly select g subsamples

with the same subsample size ns > p.

Step 1 Create a p by 1 count table with initial value 0. Each element of the count table

corresponds to a variable from the covariate matrix.

Step 2 Randomly select a subsample of size ns from the full data set with Replacement.

The full data is treated as the population here.

Step 3 Perform the LASSO on the selected subsample. If a variable is selected by the

LASSO, add 1 to the corresponding variable in the count table.

Step 4 Repeat Steps 2 and 3 g-1 times and get the counts.

Step 5 Cluster the counts into two groups using k-means algorithm.

Step 6 Select the group of variables with larger average counts.

Remark 13. The choice of g is important. From simulations we find that Algorithm 2

works well if g is of the same order as the number of true variables. But in practice we
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may not know the exact number of true variables. One way to solve this problem is to

set g to a guess for number of true variables if we have historical data. Alternatively,

we can set g to an initial value (can be really small) and conduct Algorithm 2 on the

full data. Set g to the number of selected variables. Empirically, the g value from the

second method will be of the same scale but larger than the number of true variables.

Thus it will increase the computing time but will not do harm to the accuracy. Better

ways to find optimal g values are to be found in future studies.

Remark 14. For efficiency purposes, the subsample size ns is set to be just slightly

larger than p+ 1 so that the LASSO can be performed. Thus Algorithm 2 works best

when n � p. When ns < p, we may perform variable selection algorithms that are

suitable for this situation instead. But it is outside the scope of this paper.

Remark 15. The time complexity of iterative convex optimization problems such

as the LASSO is complicated and tricky to analyze. Therefore, we will only show

that the computing time of Algorithm 2 depends on the number of variables p only.

Taking a subsample of size ns with replacement has a time complexity of O(ns). The

time complexity of LASSO on each subsample is related to ns and p and in our

setting ns ≈ p. The number of subsample g is only related with the number of true

variables which is a proportion of p. When the number of clusters is less than five, the

upper bound for time complexity of k-means on one dimension p data points is O(p)

(Dasgupta (2003)). As a conclusion, the time complexity of Algorithm 2 depends on

the number of variables p only. Since it does not depend on n, Algorithm 2 has a

big advantage when p is large but not massive and massive data size n is the major

challenge. Another advantage of Algorithm 2 is that parallel computing can be easily

implemented because the analysis of each subsample is independent.
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3.3 Simulation Study and Comparison with the Lasso on Full data

The setting of simulations are as follows:

Data The full data size is fixed at n = 1 × 105 with 50 true variables (ptrue = 50)

and the numbers of fake variables (pfake) are 100, 500, 1000, representing dense,

moderate and sparse situation respectively. p = ptrue+pfake is the total number

of variables. The number of subsamples is taken as g = 50. Three covariance

structures are studied. The first one is mutually uncorrelated structure with

Σ(1) = I. The second one is highly mutually correlated structure with Σ
(2)
ij =

0.8I(i 6=j), where i, j = 1, . . . , p and I(i 6= j) = 1 if i 6= j and 0 otherwise. The

third one is a structure with elements Σ
(3)
ij = 0.8|i−j|, i, j = 1, . . . , p. The n by

p covariate matrices Z are generated according to the following two cases: for

each entry zi, i = 1, . . . , n

Case 1 zi ∼ N(0,Σ) has a multivariate normal distribution.

Case 2 zi ∼ t2(0,Σ), has a multivariate t distribution with degrees of freedom

υ = 2.

Model The following linear model is used: y = Xtrueβ+ ε, where Xtrue = (1,Ztrue),

β is a 51 by 1 vector of ones and εi
i.i.d∼ N(0, σ2), i = 1, . . . , n, σ2 = 9. The n by

ptrue matrix Ztrue is a part of Z with each column representing a true variable.

In covariance structure one and two, true variables are selected as the first ptrue

variables of Z. In covariance structure three, we select the columns for Ztrue

as close to equally spaced as possible in Z. In this way, the true variables are

slightly correlated with each other but they are more highly correlated with

some fake variables near them.

Simulation The simulation is repeated S = 10 times. In each simulation, A covariate matrix
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is generated for each possible pfake value listed above. Algorithm 2 and Full

Data Lasso Regression are conducted on it. Two misspecification errors are

used to evaluate the performances. The first kind of error is not including true

variables, denoted as E1. The second kind of error is including fake variables

in the model, denoted as E2. The mean numbers of appearances of E1 and E2

are recorded. The results are presented in Table 3.1-3.3.

From Table 3.1-3.3, we show that Algorithm 2 is extremely accurate. The only

mistake it makes is in Table 3.2 where the variables are highly correlated in a dense

situation, ptrue = 33.33%p. And the mistake is minor, including 0.3 fake variable on

average. In moderate and sparse situations (ptrue = 9.09%p and 4.76% respectively),

Algorithm 2 perfectly includes all true variables and excludes all fake ones in all

combinations of the three covariance structures and two distributions. It performs

significantly better than full data LASSO in all cases. To some degree, the full data

LASSO performs excellently in including true variables but does a terrible job in

excluding fake variables. According to Section 2.5.3, Algorithm 2 is a much better

choice than full data LASSO if we want to combine variable selection with IBOSS

algorithms.

Although computing time is not recorded, we have shown that the time complexity

of Algorithm 2 depends on p only while full data LASSO depends on n and p. Thus

Algorithm 2 is much more efficient than full data LASSO when n is massively large.

Also, thanks to the using of subsamples, Algorithm 2 is applicable to the situation

where data size n is too large for the data to be stored in memory while full data

LASSO is not feasible in this situation.

As a conclusion, When n is massively large and p is large, Algorithm 2 is a much

better choice than full data LASSO in accuracy, efficiency and practicability. These

nice properties of Algorithm 2 make it an excellent variable selection method before
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using IBOSS algorithms.

Number

of Fake

Variables

t2 Normal

Algorithm 2 Full Lasso Algorithm 2 Full Lasso

E1 E2 E1 E2 E1 E2 E1 E2

100 0 0 0 3.5 0 0 0 49

500 0 0 0 22.4 0 0 0 103.2

1000 0 0 0 49.0 0 0 0 141.2

Table 3.1: Covariance Structure I

Number

of Fake

Variables

t2 Normal

Algorithm 2 Full Lasso Algorithm 2 Full Lasso

E1 E2 E1 E2 E1 E2 E1 E2

100 0 0.3 0.7 36.3 0 0 0 6.4

500 0 0 1.2 110.8 0 0 0 17

1000 0 0 2.3 161.7 0 0 0 25.1

Table 3.2: Covariance Structure II

Number

of Fake

Variables

t2 Normal

Algorithm 2 Full Lasso Algorithm 2 Full Lasso

E1 E2 E1 E2 E1 E2 E1 E2

100 0 0 0 14.6 0 0 0 44.5

500 0 0 0 31.6 0 0 0 98.9

1000 0 0 0 64.0 0 0 0 140.1

Table 3.3: Covariance Structure III
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Chapter 4

Conclusions

In this paper, we have created a new IBOSS algorithm (SSDA) for linear regression.

It considers all the variables simultaneously instead of one by one as in D-optimal

IBOSS. Through extensive simulation studies, we have shown that parameter esti-

mates from SSDA retains the same asymptotic properties as those from D-optimal

IBOSS while it performs approximately six times as fast as D-optimal IBOSS. When

it comes to the determinant of information matrix of subdata, SSDA performs better

than D-optimal IBOSS. In robustness study, we discover that the nonorthogonality is

an influential factor for both D-optimal IBOSS and SSDA. Both of the algorithms are

robust when interaction terms are present in the model. Excluding true variables is a

critical problem for both D-optimal IBOSS and SSDA. But they are robust when fake

variables are included. As a conclusion, SSDA is a good alternative for D-optimal

IBOSS.

Further studies are necessary for better understanding of SSDA as well as D-

optimal IBOSS. For example, the asymptotic properties of SSDA should be proved

theoretically. Theoretical explanations for the behaviors under different covariance

structures (nonorthogonality) should also be made.

The variable selection algorithm we have developed in Chapter 3 is a promising

tool not only in the scenario where it selects variables for IBOSS algorithms but also in

all the suitable situations where n is massive and p is moderately large. Its consistent
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accuracy under different covariance structures is its advantage for broad applications.

Also, only correlated with p, its computation time is efficient when massive full data

size n is the main challenge for analyzing the data. Using subsamples makes Algorithm

2 suitable for parallel computing.

The version of the variable selection algorithm here is a basic one. Further im-

provement can be made. For example, how to determine the value of g in a more

efficient way and how to further improve the time complexity of Algorithm 2 are

important questions to be solved.

We hope our work here can intrigue interests in further researches in both IBOSS

and variable selection algorithms.

39



BIBLIOGRAPHY

Candes, E. and T. Tao, “The dantzig selector: statistical estimation when p is much
larger than n”, The Annals of Statistics pp. 2313–2351 (2007).

Dasgupta, S., “How fast is k-means?”, COLT Computational Learning Theory, 2777,
735 (2003).

Drineas, P., M. Mahoney, S. Muthukrishnan and T. Sarlos, “Sampling algorithms for
l2 regression and applications”, Numerische Mathematik 117, 219–249 (2011).

Drineas, P., M. W. Mahoney and S. Muthukrishnan, “Faster least squares approx-
imation”, In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm pp. 1127–1136 (2006).

Fan, J. and J. Lv, “Sure independence screening for ultrahigh dimensional feature
space”, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
70, 5, 849–911 (2008).

James, G., D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical
Learning (Springer Science, 2013).

Ma, P., M. Mahoney. and B. Yu, “A statistical perspective on algorithmic leveraging”,
In Proceedings of the 31st International Conference on Machine Learning (ICML-
14) pp. 91–99 (2014).

Ma, P., M. Mahoney. and B. Yu, “A statistical perspective on algorithmic leveraging”,
Journal of Machine Learning Research 16, 861–911 (2015).

Ma, P. and X. Sun, “Leveraging for big data regression”, Wiley Interdisciplinary
Reviews: Computational Statistics 7, 1, 70–76 (2015).

Meinshausen, N. and B. Yu, “Lasso-type recovery of sparse representations for high-
dimensional data”, The Annals of Statistics 37, 1, 246–270 (2009).

Tibshirani, R., “Regression shrinkage and selection via the lasso”, Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996).

Wang, H., M. Yang and J. Stufken, “Information-based optimal subdata selection for
big data linear regression”, Under Review for Journal of the American Statistical
Association (2017).

40


