
iGen: Toward Automatic Generation and

Analysis of Indicators of Compromise (IOCs)

using Convolutional Neural Network

by

Anupam Panwar

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2017 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair
Adam Doupé
Ziming Zhao

ARIZONA STATE UNIVERSITY

May 2017



ABSTRACT

Field of cyber threats is evolving rapidly and every day multitude of new infor-

mation about malware and Advanced Persistent Threats (APTs) is generated in the

form of malware reports, blog articles, forum posts, etc. However, current Threat

Intelligence (TI) systems have several limitations. First, most of the TI systems ex-

amine and interpret data manually with the help of analysts. Second, some of them

generate Indicators of Compromise (IOCs) directly using regular expressions without

understanding the contextual meaning of those IOCs from the data sources which

allows the tools to include lot of false positives. Third, lot of TI systems consider

either one or two data sources for the generation of IOCs, and misses some of the

most valuable IOCs from other data sources.

To overcome these limitations, we propose iGen, a novel approach to fully auto-

mate the process of IOC generation and analysis. Proposed approach is based on

the idea that our model can understand English texts like human beings, and ex-

tract the IOCs from the different data sources intelligently. Identification of the IOCs

is done on the basis of the syntax and semantics of the sentence as well as context

words (e.g., “attacked”, “suspicious”) present in the sentence which helps the approach

work on any kind of data source. Our proposed technique, first removes the words

with no contextual meaning like stop words and punctuations etc. Then using the

rest of the words in the sentence and output label (IOC or non-IOC sentence), our

model intelligently learn to classify sentences into IOC and non-IOC sentences. Once

IOC sentences are identified using this learned Convolutional Neural Network (CNN)

based approach, next step is to identify the IOC tokens (like domains, IP, URL) in

the sentences. This CNN based classification model helps in removing false positives

(like IPs which are not malicious). Afterwards, IOCs extracted from different data

sources are correlated to find the links between thousands of apparently unrelated
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attack instances, particularly infrastructures shared between them. Our approach

fully automates the process of IOC generation from gathering data from different

sources to creating rules (e.g. OpenIOC, snort rules, STIX rules) for deployment on

the security infrastructure.

iGen has collected around 400K IOCs till now with a precision of 95%, better than

any state-of-the-art method.
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Chapter 1

INTRODUCTION

According to Verizon’s 2016 Data Breach Investigations Report [20], over 100,000

security incidents were reported in 2016 across 82 countries, which is a 25% increase

over the prior year. Because the number of security threats and breaches is rapidly in-

creasing over time, every organization is attempting to protect their systems and their

data. The threat landscape is always progressing, and the information security risk

is increasing because of the organization’s dependence on computing systems. This

constantly shifting and constantly increasing number of threats results in tremendous

pressure on organizations to manage threats. Though abundant information is avail-

able in the form of unstructured data, it is very difficult and time-consuming to mine

meaningful information based on which preemptive measures can be established. This

attracts more and more researchers towards Threat Intelligence (TI) as it helps to

understand threats using the deluge of data and provides actionable insights.

Threat intelligence (TI) is proof-based knowledge, which includes reasoning, con-

text, mechanism, indicators, implications, and actionable advice, about an existing or

evolving cyber-attack that can be used to create preventive measures in advance [51].

Attackers consistently exploit systems and networks to steal sensitive information, to

take control of the target system, or for ransom (using ransomware) [57]. TI allows

an organization to expand its visibility into the fast-growing threat landscape, can

allow early identification of an attack, and successfully prevent the attack.

Indicators of Compromise (IOCs) are forensic artifacts that are used as signs that

a system has been compromised by an attacker or that a system has been infected

with a particular piece of malware [27]. The intent of accumulating IOCs related to
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Iterative Process
Initial Trigger

Figure 1: IOC Lifecycle. The process starts from the collection of data from internal

(e.g., malware analysis reports, network logs, etc.) and external (e.g., security blogs,

security white-papers, etc.) sources. Data analysis identifies the IOCs using

classification techniques, log analysis, forensics analysis, false positive identification,

etc. All IOCs are converted into security formats such as OpenIOC [18], snort [13],

etc., during the IOC creation step. Then, these IOCs are deployed on security tools

such as Intrusion Detection Systems (IDS), Host based Intrusion Detection Systems

(HIDS), Security Information and Event Management (SIEM), and other

investigative systems [49]. During the 5th stage, suspected systems are identified.

Then, log data and forensic images of suspected systems are provided to the data

collection step for the creation of new IOCs.

malware or an attack is to be able to state, with a relatively high degree of confidence,

whether or not such artifacts are present in a given environment. The goal of TI
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is to help security professional provide data-backed reasoning of why an artifact is

identified as an IOC or not. Concretely, IOCs are composed of some combination of

IP addresses, hostnames, filenames, processes, services, Windows registry entries, or

hashes [23].

Figure 1 explains the typical life cycle for the use of IOCs in an organization.

This life cycle consists of five steps: data collection, data analysis, IOC creation,

deployment of IOCs on security infrastructure, and identification of affected systems

using deployed IOCs. During data collection step, unstructured data is collected from

different data sources. Data is analyzed manually or automatically during the data

analysis step. Based on the analysis, IOC rules are created from the IOCs. Then, IOC

rules are deployed on security infrastructure like Network Intrusion Detection Systems

(NIDS) etc. As a final step, log data of these compromised systems is collected and

used for the creation new IOCs, which feeds back into the IOC life cycle in a cyclical

way.

Several standards are commonly used to represent IOCs for expressing cyber-

threat intelligence information such as: OpenIOC [18], Structured Threat Informa-

tion eXpression (STIX) [14], Cyber Observable eXpression (CybOX) [6], Trusted

Automated eXchange of Indicator Information (TAXII) [19], snort rules [13], suri-

cata rules [15], YARA rules [21], Malware Attribute Enumeration and Character-

ization (MAEC) [8], and Common Attack Pattern Enumeration and Classification

(CAPEC) [4].

IOCs can help an organization’s security personnel to attain full automation: Given

a set of IOCs for a particular security event, security tools scan through an environ-

ment or infrastructure to identify the existence of any IOC on the systems in question.

IOCs complement and augment existing solutions, such as Intrusion Detection Sys-
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tems (IDS) or Security Information and Event Managements (SIEMs), by providing

an additional and important set of information that can be used to decide whether

a particular artifact being examined is malicious or not. IOCs provide a rapid route

to detect new or zero-day attacks for which virus signatures or detection rules have

yet to be developed for existing security tools. Thus, timely generation of IOCs is

important. Also, IOC formats document a threat in a consistent fashion, thus it

becomes easier for organizations to share this threat information.

However, effective collection and sharing of threat information is a challenge. Most

of the current threat intelligence systems have following limitations:

• Threat data received from different sources, such as malware reports, APT

white-papers, etc., is examined and interpreted by security analysts manually,

a procedure that is timely and error-prone, which limits the practical usefulness

of this data in an organizations’ security infrastructure.

• Most of the traditional approaches consider either one or two data sources for

the generation of Indicators of Compromises (IOCs) and miss valuable IOCs

from alternative data sources, such as blog articles about recent attacks.

• Current state-of-the-art lacks support of diverse IOC formats (e.g., STIX, Ope-

nIOC, or snort rules) which further reduces the effectiveness of these tools.

• Most importantly, many TI tools generate IOCs directly using regular expres-

sions and white-listings from security reports or blog articles [1] without un-

derstanding the contextual meaning of those IOCs from the data sources which

allows the tools to include lot of false positives during the process of IOCs

creation.
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In this project we present iGen, which is a system that tackles all of these limitation

by intelligently collecting threat information from publicly available security resources

(e.g., security whitepapers, blog articles etc.) and sharing the threat information

in the form of IOCs (e.g., virus signatures, IPs, domains, or MD5 hashes). iGen

automates the entire process of collecting publicly available data (data collection)

to IOC generation. iGen supports a flexible system to collect data from diverse

data sources. Currently, iGen collects data from 20 security blogs, an APT reports

database [2], and a malware analysis system. The flexible nature of the system

means that new data sources can be easily added. Note that the input to iGen is

in unstructured English text, therefore iGen must understand the semantics of the

sentences present in the input data to categorize IOC-alike strings into IOC or non-

IOCs. Also, we added a practical improvement to iGen that allows transforming these

IOCs into various threat information sharing standards.

First module in iGen is data acquisition module which collects key observations

from the data sources like APT reports, malware analysis reports and blog articles.

This module collects these reports in real-time and keep iGen updated with new IOCs

from recent malware and APTs. In parallel, malware analysis system looks for new

malware on web and generate malware analysis report for those samples. All the

different kinds of reports accumulated from different data sources are then presented

to machine learning based IOC extractor. IOC extractor module decides the parsing

strategy based on the type of report. Since, malware analysis reports are based on real

malware and available in machine readable format (e.g. JSON file). In this case, IOC

extraction was done using a parser which accrue IOCs based on the JSON schema.

But security reports or blog articles are relatively complex which tend to describe

IOCs in intricate manner in English text using some context terms like “download”,

“malware” etc. Google’s tensorflow [22] based Convolutional Neural Netowrk [45]
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model was used to classification all the sentences in these reports into IOC or non-

IOC sentences [25, 67, 52, 29]. Once sentence classification is done, next step is to

identify IOCs intelligently. More explicitly, after classifying the sentence in the article

into IOC and non-IOC sentences. iGen utilizes a set of regular expressions (regex) to

locate IOC tokens (e.g., IP, hostname, domain, md5 etc.) within the sentence. Then,

iGen extract these IOC tokens and convert them to machine-readable formats (IOC

formats) which can be used directly by security tools.

Simple extraction of IOCs from publicly available security resources is straightfor-

ward: regular expressions can extract MD5s, URLs, filenames, filepaths, etc. How-

ever, this naïve approach will result in a significant amount of false positives: these

security resources will include MD5s, URLs, and filenames that are relevant to the

security incident but are not malicious, and thus not an IOC. Therefore, we need

an approach that can automatically filter these potential IOCs based on the context.

While prior work has shown that filtering potential IOCs can be done with manual

creation of features [47], iGen leverages a Convolutional Neural Network, which se-

lects features automatically. This enables iGen to be more effective and to use diverse

data sets.

The main contributions of this paper are the following:

• We present the design of a novel system for intelligently generating IOCs, with

high confidence, from different data sources using Convolutional Neural Net-

works (CNNs) (Chapter 4 and 5).

• A prototype implementation of our design as a tool called iGen (Chapter 5).
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• An evaluation of iGen with other state-of-the-art methods. iGen identified

around 400,000 IOCs with a precision and recall of 95% and 99% respectively

(Chapter 6).

Structure of document This thesis document is grouped into the following sec-

tions:

• Chapter 2 discusses the basics of Threat Intelligence (TI) as well as different

formats for sharing threat intelligence. This chapter also describes the Convo-

lutional Neural Networks (CNN) which is a core of iGen system.

• Chapter 3 discusses the data collection from different sources.

• Chapter 4 discusses the system design, the architecture, and the components of

iGen system.

• Chapter 5 discusses the implementation details of iGen system.

• Chapter 6 presents our findings and comparative analysis of the results.

• Chapter 7 continues the discussion of the results; the lessons learned, limita-

tions, and improvements that are possible on current iGen system.

• Chapter 8 explores related work in the area.

• Chapter 9 concludes this thesis, with ideas to develop the research in this area.
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Chapter 2

BACKGROUND

In this section, we provide the background necessary for understanding the design

of iGen. In Section 2.1, we describe Threat intelligence and how it is consumed

by security tools. Then, in Section 2.2, we describe Convolutional Neural Network

(CNN) and how it can be used in iGen.

2.1 Threat Intelligence

Given the increasing number and rapidly evolving nature of current threats, quick

sharing and exchange of relevant threat information is the key to swiftly detecting,

understanding, and responding to cyber-attacks. Threat intelligence is two things:

(1) a process of collection of knowledge that defines security threats, which empowers

an organization to determine its responses at the strategic, operational, and tactical

levels, and (2) information that has been analyzed to discover actionable insights.

Actionable threat intelligence is insight that an organization can act on–it enables

informed decision-making that results in improved outcomes.

Threat intelligence consists of two words: “Threat” and “Intelligence”. “Threat”

is an agent (that is, a menace or hazard) that takes advantage of the vulnerability.

Whereas, “Intelligence” can be defined as:

• Act of generating new information by correlating information from different

sources.

• Capacity to know or understand.

• Knowledge imparted through study, research or experience.
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2.1.1 Consumption of Threat Intelligence

Indicators of Compromise (IOCs) are used by organizations to exchange threat

intelligence. There are different standards for IOCs which includes OpenIOC, STIX,

and snort rules. OpenIOC was introduced by Mandiant in 2011. It is primarily used

in Mandiant products, but has also been released as an open standard. OpenIOC

provides definitions for specific technical details including over 500 indicator terms.

Adding new terms is easy because the terms are separated from the main schema.

Most of the terms are host-centric.

Similarly, STIX is another format for storing IOCs. STIX allows defining threat

information, including threat details, as well as the context of the threat. STIX is

developed by Mitre [10], and is designed to support four cyber threat use cases: in-

vestigating cyber threats, stating indicator patterns, response activities management,

and sharing threat information. STIX uses XML to define threat-related constructs

such as exploit target, campaign, indicator, threat actor, and Tactics, Techniques and

Procedures ()TTP).

Snort is an open-source network intrusion prevention system (IPS) [63], which

executes real-time traffic analysis and packet-logging on IP networks. It is also capable

of performing protocol analysis, content searching, and matching, and can be used to

detect a variety of attacks and probes, such as buffer overflows, stealth port scans,

CGI attacks, SMB probes, OS fingerprinting attempts, and more. Snort uses a rule

language to describe traffic that it should collect or pass, as well as a detection engine

that uses a modular plug-in architecture. Rules created using this language are called

snort rules.
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Suricata rules are the defacto method for sharing and matching threat intelligence

against network traffic. A suricata rule has three components: The action, header

and rule-options.

2.2 Convolutional Neural Network Architecture

Recently, different models based on deep learning have achieved significant results

in computer vision and speech recognition. Convolutional Neural Networks (CNNs)

were responsible for major breakthroughs in image classification [45] and are the core

of most computer vision systems today, from Facebook’s automated photo tagging [65]

to self-driving cars [26].

In the case of Natural Language Processing (NLP), much of the work that uses

deep learning methods involves learning word vector representations through neural

language models and performing composition over the learned word vectors for classi-

fication tasks. Words are mapped into a lower dimensional vector space via a hidden

layer. Hidden layer extracts the semantic features of the word and map them into

the word vectors. Euclidean or cosine similarity is high between the word vectors of

semantically close words.

Recently, researchers have also started applying CNNs with word embeddings to

problems in Natural Language Processing (NLP) and got some interesting results.

CNNs utilize layers with convolving filters that are applied to local features. CNNs

are effective for NLP and have achieved excellent results in semantic parsing, search

query retrieval, sentence modeling, and other traditional NLP tasks.

2.2.1 Convolution

Convolution [41] is a sliding window function applied to a matrix. The sliding

window is called a kernel, filter, or feature detector. Here we use a N × N filter,
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multiply its values element-wise with the original matrix, then sum them. To get

the full convolution we do this for each element by sliding the filter over the whole

matrix. Final matrix created after applying the filter is called convolved feature.

2.2.2 Convolution Neural Network

CNNs are fundamentally several layers of convolutions with nonlinear activation

functions like rectified linear unit (ReLU) [54] or hyperbolic tangent (tanh) [37] ap-

plied to the results. In a traditional feedforward neural network, each input neuron

is connected to each output neuron in the next layer. It is called as fully connected

layer, or affine layer. But it’s different in case of CNNs. CNNs use convolutions over

the input layer to compute the output. This results in local connections, where each

region of the input is connected to a neuron in the output. Each convolution layer

applies different filters, characteristically hundreds or thousands, and combines their

results. Then pooling is performed using the pooling (subsampling) layer. We will

discuss more in Chapter 4. CNN automatically learns the values of its filters based

on the task during the training phase. For example, in image classification a CNN

learns to detect edges from raw pixels in the first layer, then uses the edges to detect

simple shapes in the second layer, and then uses these shapes to deter higher-level

features, such as facial shapes in higher layers. The last layer is then a classifier that

uses these high-level features.

In the case of iGen, input to a CNN is sentences extracted from blog articles and

security reports instead of image pixels. Each sentence is represented as a matrix.

Each row vector of the matrix corresponds to one token, typically a word. That is,

each row is vector that represents a word. These vectors might be, e.g., outputs from

trained word2vec or GloVe [59] models. We will discuss more about the iGen CNN

in Section 3.2.
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Chapter 3

DATA COLLECTION

There are two sources of TI data: internal, e.g., malware analysis reports or net-

work traces, or external, such as technical blogs or security reports. Examples of

external sources include the Kaspersky whitepapers [7], Symantec blog [16] etc. Re-

cently, thousands of threats are reported every day, which has been broadly reported

by the security companies in the form of APT/security reports [31] or blog articles

and aggressively collected by different organizations. For the scope of our research,

we collected 1000 security reports and 1500 blog articles from different security orga-

nizations. All these reports and articles are published from year 2011 to 2017. Our

scrapper collected information from more than 20 prominent security organization

like Verizon, Symantec etc.

To bootstrap our research, we also collected around 35,000 malware reports from

our in-house Cuckoo Malware Analysis System (CMAS) [58]. MAS provided some

detailed results outlining what malware did when executed inside an isolated environ-

ment. While substantial volume of security reports, blog articles and malware reports

Table 1: Summary of Dataset

Dataset Type Dataset Source Number of articles/ reports

Security Reports External 1000

Technical Blog Articles External 1500

Malware Analysis Reports Internal 35000
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are collected and analyzed, however it only constitutes a small part of the bigger IOC

landscape. Summary of our dataset is in Table 1.

13



Chapter 4

SYSTEM DESIGN

Human are very intelligent in understanding natural language text and finding the

information using reasoning. In our case, this information is IOCs from security

reports, articles, and malware reports. However, it is very hard for the machines to

do the information extraction with high accuracy and coverage.

iGen identifies sentences likely containing IOCs using a set of regular expressions.

Then, IOCs are efficiently captured with high accuracy using CNN-based model. iGen

tries to automatically identify the patterns or features which are frequent in IOC and

non-IOC sentences. Architectural design of the iGen is shown in Figure 2.

Blog 
Scrapper

Data Acquisition Module

Malware 
Analysis 
System

APT Report 
Collector

Blog Articles 
and Security 

Report

Malware 
Reports

Relevent 
Content 
Picker

IOC Extractor

 Sentence 
Classification 

IOC 
Formatter

IOC 
Generator

 IOC Extraction Module Rule Generation Module

OpenIOC

STIX

Snort

Figure 2: iGen Architecture Overview.
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4.0.1 Architecture Overview

iGen consists of 3 modules from left to right: 1) data acquisition module, 2) IOC

extraction module, and 3) rule generation module. Data acquisition module consists

of three sub-module: Blog Scrapper (BS), APT Report Collector (ARC), and Cuckoo

Malware Analysis System (CMAS). BS is a collection of crawlers based on the HTML

structure of the different blogs. For instance, we designed a dedicated crawler which

is continuously looking for new articles on Symantec public blog [16]. Similarly,

ARC continuously looks for new whitepapers and reports about APT campaigns at

“APTNotes” [2] database. CMAS collects malware reports from Cuckoo [24], which

is an open source malware analysis system.

Then, these reports are passed to an IOC extraction module based on the type of

the report. Because blog articles and security reports are written in English and follow

natural language semantics, these are given as input to the Relevant Content Picker

(RCP) component for further processing. RCP parses those reports, cleans the text,

and selects the sentences having likely IOCs using regular expressions. Then, these

sentences are fed to the Sentence Classification (SC) module for classification into two

classes: IOC and non-IOC sentences. Whereas, malware reports follow JSON format

with no natural language semantics involved. This makes it easier for IOC Extractor

(IE) to extract IOCs based on the structure of the JSON report. Simultaneously, IE

also performs regular expressions based extraction of IOCs from the sentences that

are classified by Sentence Classifier (SC) as IOC sentences.

Next step is to organize IOCs extracted from each report into one event (malware

or APT campaign) is done by IOC Generator (IG). For example, “Monkeys.exe” and

“200.125.133.28” are the IOCs related to the event CozyDuke APT campaign [5].

Then, these events are stored and managed by IOC Formatter (IF) [9]. IF also
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provide an additional functionality to iGen by converting these event into different

output formats like STIX, OpenIOC, Snort etc.

4.1 Data Acquisition Module

This module collects information from different sources. Because of the scalable

nature of the module, new data sources can be added as well. This module scrap

related web pages, APT report from different sites. Simultaneously, it continuously

collects malware reports from our internal CMAS as well. All the sub-modules of

data acquisition module are described in the following.

4.1.1 Blog Scrapper (BS)

iGen blog scraper is designed to continuously monitor a list of security blogs and

collect their articles. BS first scraps all its current articles before it is set to monitoring

mode to identify new ones for each blog site. Most of the blog articles on most of the

blog sites have a particular page id associated with it. BS keep track of the range of

page ids that are already scrapped by it. In monitor mode, it looks for new articles.

If there are no new articles posted on the blog sites, then BS changes its mode to idle

and want back to monitor mode after n days. For our research, we have set the n as

7 days. BS also collects the reports if there is any PDF report link within the blog

article.

4.1.2 APT Report Collector (ARC)

APT report collector consists of autonomous data crawler, which continuously

check for new reports and whitepapers at APTNotes database. It also keeps track

of the already scrapped reports to avoid duplication. Around 1000 APT campaign

report are collected till date.
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4.1.3 Cuckoo Malware Analysis System (CMAS)

For our research, we have a Cuckoo malware analysis system (CMAS) [24] for

automating analysis of suspicious files. CMAS monitors the behaviour of the ma-

licious processes while running in an isolated environment. In other words, if we

submit any suspicious file to it and in a matter of seconds CMAS will provide us back

some detailed results outlining what such file did when executed inside an isolated

environment. Features of CMAS are :

• Analyze different type of malicious files (executables, document expoits, mali-

cious websites etc.).

• Dump and analyze network traffic, even when encrypted.

• Trace API calls and general behavior of the file.

For scope of this research, around 35000 malware were submitted and analyzed

by CMAS. Later, these reports were further used for IOCs extraction.

4.2 IOC Extraction Module

After the collection of dataset, the next step is to clean the data, select relevant

content, and find IOCs with high degree of confidence. In this module, Relevant Con-

tent Picker (RCP) cleans the data by removing the terms with no semantic meaning

such as stop words, etc. RCP also finds sentences which are likely to contain IOCs.

Afterwards, Sentence Classification (SC) and IOC Extractor (IE) identify the IOC

sentences and extract the IOCs from them respectively.
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4.2.1 Relevant Content Picker (RCP)

Relevant Content Picker extracts text from PDF and HTML documents. In our

implementation, the RCP uses the python library “pdfminer” [12] to extract the text

from the PDF reports and “beautifulsoup” [3] to obtain content from HTML pages

as well to find links to security reports in blog articles. RCP scans for URLs with

an extension “.pdf” in the blog articles to identify security reports linked with the

blog articles. If RCP finds any PDF report linked with blog article, it sends it to

PDFminer for further processing. After the collection of content, the next step is to

remove the terms or token with no semantic meaning. These words such as auxiliary

verbs, conjunctions and articles can be ignored. These words are called stopwords.

Stop words extremely common words which would appear to be of little value in terms

of semantic significance like “a”, “an”, “the” etc. Stopwords are removed as a part of

the data cleaning process.

Stemming is another very important pre-processing step. Size of feature set can

be reduced by removing misspelled or words with the same stem. Algorithm called

stemmer, removes words with the same stem and keeps the stem or the most common

of them as feature. For example, the words "download", "downloads", "downloading"

and "downloaded" can be replaced with "download".

Final step is to look for sentences which are likely to have IOCs. This part is

done by finding the sentences which have patterns like IP, hostname, URL, filename,

registry, email, filepath etc. These are patterns are identified using the set of total

eleven regular expressions. Sample regular expressions are shown in Table 2.
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Type of Regular Expression Regular Expression

CVE \b(CVE\-[0-9]{4}\-[0-9]{4,6})\b

Email \b([a-z][_a-z0-9-.]+@[a-z0-9-]+\.[a-z]+)\b

Filepath \b[A-Z]:\\[A-Za-z0-9-_\.\\]+\b

IP \b(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\b

MD5 \b([a-f0-9]{32}|[A-F0-9]{32})\b

Registry \b((HKLM|HKCU)\\[\\A-Za-z0-9-_]+)\b

SHA1 \b([a-f0-9]{40}|[A-F0-9]{40})\b

SHA256 \b([a-f0-9]{64}|[A-F0-9]{64})\b

Table 2: Sample Regular Expressions used by Relevant Content Picker (RCP) and

IOC Extractor (IE).

4.2.2 Sentence Classification (SC)

Sentence classification sub-module takes sentences and output labels (IOC sen-

tence or non-IOC sentence) for training. Training data is generated by manual label-

ing of sentences into IOC and non-IOC sentences. This task of sentence tagging was

done by the security experts.

A sentence is a sequence of words [42]. So each sentence is usually represented by

an array of words. The set of all the words of a training set is called vocabulary, or

feature set. So a sentence can be presented by a binary vector, assigning the value

1 if the sentence contains the feature-word or 0 if the word does not appear in the

sentence.

Feature selection is the next step in the sentence classification task. Feature

selection can be done automatically or manually. Automatic feature selection is done

by classifier like Convolutional Neural networks. Whereas, manual feature selection
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is done using exploratory analysis, then these generated features and output labels

are presented to the classifier.

The aim of manual feature-selection methods is to resolve the curse of dimension-

ality by removing features that are considered irrelevant for the classification. These

procedures have several advantages like smaller dataset size, smaller computational

requirements for the text categorization algorithms and considerable shrinking of the

search space. The goal is the to reduce dimension to yield improved classification

accuracy. Another advantage of feature selection is to reduce over-fitting, i.e. the

phenomenon by which a classifier is tuned also to the contingent characteristics of

the training data rather than the constitutive characteristics of the categories.

After feature selection, final step is to train the classification model on the training

data consists of features and output labels. In our approach, we evaluated different

classifiers like Naive Bayes [46], Support Vector Machines (SVM) [42], K-Nearest

Neighbour (KNN) [38], and Convolution Neural Network [45].

Naive Bayes (NB) classifier is one of the popular approach in sentence classification.

NB Classifier assign each sentence s the class c∗ = argmaxc P (c | s). Naive Bayes

classifier is based on the Bayes’ rule,

P (c | s) = P (c)P (s | c)
P (s)

,

where P (s) has zero influence in selecting c∗. Estimation of the term P (s | c) is done

using Naive Bayes decomposition by assuming the fi’s are conditionally independent

given s’s class:

PNB(c | s) =
P (c) (

∏m
i=1 P (fi | c))
P (s)

.

Training phase consists use of add-one smoothing for relative-frequency estimation

of P (c) and P (fi | c).

20



Despite its simplicity and the fact that its conditional independence assumption

clearly does not hold in real-world situations, Naive Bayes-based sentence categoriza-

tion still tends to perform well.

Support vector machines (SVMs) have been proved to be highly accurate at sen-

tence classification task, generally outperforming Naive Bayes [42]. They are margin

based classifier, rather than probabilistic classifiers, in contrast to Naive Bayes. In

our two-category (IOC or non-IOC sentence) case, the basic idea behind the training

phase is to estimate a hyperplane, represented by vector w⃗, that not only separates

the sentence vectors in one class from those in the other, but for which the separation,

or margin, is maximum.

This search corresponds to a constrained optimization problem; letting cj ∈ {1, 0}

(corresponding to IOC and non-IOC sentence) be the correct class of sentence sj, the

solution can be written as

w⃗ :=
∑
j

αjcj s⃗j, αj ≥ 0,

where the αj’s are obtained by solving a dual optimization problem. Those s⃗j such

that αj is greater than zero are called support vectors, since they are the only doc-

ument vectors contributing to w⃗. Classification of test instances consists simply of

determining which side of w⃗’s hyperplane they fall on.

Similarly, K-Nearest Neighbour (KNN) method is considered one of the simplest

and most effective sentence classification algorithms. It is based on the principle that

given set of instances in a training set, the class of a new yet unseen occurrence is likely

to be the same as the majority of its closest neighbour instances from the training set.

Thus the k-Nearest Neighbour algorithm works by inspecting the k closest instances in

the data set to a new occurrence that needs to be classified, and making a prediction
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based on the k nearest neighbours. The notion of closeness is formally given by a

distance function between two points in the attribute space. An example of distance

function typically used is the standard Euclidean distance between two points in an

n-dimensional space, where n is the number of attributes in the data set.

Recently, several researchers have used word embeddings and Convolution Neural

networks (CNN) for sentence classification. These CNN based classifiers have out-

performed other classifiers in most of the classification tasks. We will discuss more

about CNN in the Chapter 5.

4.2.3 IOC Extractor (IE)

As shown in Figure 2, IOC extractor takes malware report as well the sentences

which are classified as IOC sentences by SC sub-system as input. Since, malware

reports doesn′t have any natural language semantics, we skipped running RCP and

SC sub-systems on them. Additionally, MAS is run only on the malware files and all

the malicious indicator/tokens (e.g., file hashes, emails, etc.) are defined in a machine

readable format.

In case of malware reports, structure of JSON file is used to extract the IOCs.

Whereas, regex as shown in Table 2 were used to extract the IOC from the sentences.

These are different type of IOCs collected by the IE: URL, host, IP, email, MD5,

SHA1, SHA256, CVE, registry, filename, and filepath. Next step is to bundle the

IOCs related to one event/malware together.

4.3 Rule Generation System

This system works on the managing the related IOCs and convert them into

different output formats so that these IOCs based formats can be directly deployed on
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the security infrastructure. Currently, iGen supports STIX, OpenIOC, snort, suricata,

and BRO formats. Rule generation system has two sub-systems: IOC Generator (IG)

and IOC Formatter (IF).

4.3.1 IOC Generator (IG)

IOC generator takes IOCs from IE and bind them together into one IOC event

if they are coming from the same report (e.g., malware report, security whitepapers,

blog article etc.). This sub-system creates event into IF acceptable JSON format.

Then, this JSON is submitted to IF.

4.3.2 IOC Formatter (IF)

Malware Information Sharing Platform (MISP) [9] is used as IOC Formatter in

iGen. MISP is an open source software for sharing, storing and correlating IOCs of

targeted attacks. MISP benefits security community by showing collaborative knowl-

edge about existing malware or threats. The aim of this trusted platform is to help

improving the counter-measures used against targeted attacks and set-up preventive

actions and detection. It stores data in a structured format and allows automated

use of the database to feed detection systems or forensic tools. For example, it gen-

erates rules from IOCs (e.g. IP addresses, domain names, hashes of malicious files,

filenames, filepath etc.) for different Network Intrusion Detection Systems (NIDS)

like snort, suricata etc. MISP adds an extra feature of generating diverse rules from

the IOCs collected from different data sources.
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Chapter 5

IMPLEMENTATION

We implemented iGen that collects IOCs from various external and internal IOC data

sources. The automatic crawling and analysis systems were implemented in Python.

For example, Blog Scrapper (BS) and APT report Collector (ARC) were built using

Python based libraries like pdfminer, beautifulsoup and textblob. Additionally, we are

generating the malware reports using our in-house Cuckoo malware analysis system.

Relevant Content Picker (RCP), IOC Extractor (IE) and IOC Generator (IG) uses

re and nltk for information extraction. Sentence Classification (SC) uses numpy and

Google’s tensorflow library. Different output formats are generated using the open-

source tool Malware Information Sharing Platform (MISP).

We deployed our system iGen modules on our Openstack [11]. Data acquisition

module and IOC extraction module on a dedicated Openstack instance with 8GB

RAM. Whereas, rule generation module runs on other instance with 4GB RAM.

5.1 CNN based Sentence Classification

The model architecture of Sentence Classification (SC), shown in figure 3, is a

minor variant of the CNN architecture suggested by Kim [44]. First step of SC

involves converting all the words in the sentences into their respective word vector or

embedding. Let Si ∈ Rd be the word vector of dimensionality d corresponding to the

i-th word or token in the sentence. A sentence of length l is characterized as

S1:l = S1 ⊕ S2 ⊕ . . .⊕ Sl, (5.1)

where concatenation operator is defined as ⊕.
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Figure 3: Architecture of iGen CNN based sentence classification model. We show

two filter region sizes: 4 and 5, each of which has 2 filters. Filters accomplish

convolutions and apply activation functions on the sentence matrix (formed using

word embeddings of all the words in sentence) and generate (variable-length)

feature maps; the largest number from each feature map is recorded using 1-max

pooling function. Then scalar values generated from all 4 maps are concatenated to

form a feature vector for the second to last layer. This feature vector is used by final

softmax layer to classify the sentences; since iGen CNN is a binary classifier, only

two output values (IOC sentence or non-IOC sentence) are possible [68].

The first step is to calculate word embedding of Si based on our dataset. We

call this layer as embedding layer, which maps vocabulary word indices into low-

dimensional vector representations. X is our embedding matrix that we learn during

training. We initialize it using a random uniform distribution [28]. tf.nn.embedding_lookup

[17] function in tensorflow creates the actual embedding operation. The result of the
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embedding operation is a 3-dimensional tensor of shape [None, sequencelength, em-

beddingsize]. TensorFlow’s convolutional conv2d [17] operation expects a 4-dimensional

tensor with dimensions corresponding to batch, width, height, and channel. The re-

sults of our embedding does not contain the channel dimension, so we add it manually,

leaving us with a layer of shape [None, sequencelength, embeddingsize, 1].

A word embedding X : words → Rn is a paramaterized function mapping words

in some language to high-dimensional vectors (perhaps 200 to 500 dimensions). For

example

X(“malware”) = (0.2,−0.4, 0.7, . . .) (5.2)

Characteristically, the function is a lookup table, parameterized by a matrix, θ,

with a row for each word: Xθ(wn) = Xn = θn.

X is initialized to have random vectors for each word. It learns to have meaningful

vectors in order to classify the sentences into IOC and non-IOC sentences.

Let Si:j refer to a sentence of length j− i+1 or the concatenation of words vectors

Si = Xθ(wi),Si+1 = Xθ(wi+1), . . . ,Sj = Xθ(wj). Single convolution consist of a filter

w ∈ Rh×d, which is applied to a window of h words to automatically generate a new

feature. For example, a feature fi is generated from a window of words Si:i+h−1 by

fi = f(w · Si:i+h−1 + c). (5.3)

Here bais term c ∈ R is added and f is a non-linear function such as the rectified

linear unit (ReLU) or hyperbolic tangent (tanh). Filter is applied to each possible

window of words in the sentence {S1:h,S2:h+1, . . . ,Sl−h+1:l} to produce a feature map

f = [f1, f2, . . . , fl−h+1], (5.4)

where f ∈ Rl−h+1. We then apply a 1-max pooling operation [60] over the feature

map and take the maximum value ḟ = max{f} as the feature corresponding to this
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particular filter. Intuition behind this is to capture the most important feature—one

with the highest value—for each feature map. This kind of approach works naturally

with variable sentence lengths.

Above described process extracts one feature from one filter. The model uses

multiple filters with different region size to obtain multiple features. These features

creates the penultimate layer and the final layer is a fully connected softmax layer

whose output is the probability distribution over labels (in our case, “IOC sentence”

or “non-IOC sentence”).

In our model, we have fine-tuned word vectors via backpropagation [62]. For

regularization [70] we used dropout [64] on the penultimate layer with a constraint

on l2-norms [55] of the weight vectors [40]. Dropout helps in co-adaptation of hid-

den units by randomly dropping out—i.e., setting to zero—a proportion p of the

hidden units during foward-backpropagation. That is, given the penultimate layer

y = [ḟ1, . . . , ḟn] where n is total number of filters). Instead of using

z = w · y + b (5.5)

during forward propagation for output unit y, dropout uses

z = w · (y ◦ r) + b, (5.6)

where ◦ is the element-wise multiplication operator and r ∈ Rn is a ‘masking’ vector

of Bernoulli random variables with probability p of being 1. During the training,

gradients[35] are backpropagated only through the unmasked units. During the test-

ing, all learned weight vectors are scaled by p such that ẇ = pw, and ẇ is used to

score new sentences without dropout.
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Chapter 6

EVALUATION

6.1 Experiments

Datasets used in the experiments are shown in Table 1. For sentence classification,

only blog articles and security reports were used. From these articles, we further

extracted two kinds of sentences, those with IOCs (IOC sentences) and those without

but involving non-malicious IOC-like strings (non-IOC sentences). More specifically,

the 5,000 IOC sentences and 2,500 non-IOC sentences were used in the experiments.

These sentences are manually tagged by security experts to maintain the quality of

data.

In the experiments, the parameters of our iGen (most of them related to CNN

sub-module) system were set as follow:

• Sequence length. The length of our sentences before inputting them for classi-

fication. Remember that we padded all our sentences to have the same length

of 70. We selected 70 as sequence length, since longest sentence in our dataset

has 60 word length.

Embedding Size(d) Accuracy

64 89.3%

128 95.1%

256 95.1%

Table 3: Change in accuracy with embedding size.
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Number of Filters Accuracy

32 88.5%

64 95.1%

128 94.6%

Table 4: Change in accuracy with number of filters.

• Embedding Size. The dimensionality of our word embeddings or word vectors is

kept as 128. Word embedding dimensionality was chosen as 128 based on the

experiments where we compared accuracy with dimensionality of word embed-

dings as shown in Table 3. We did not increased the dimensionality beyond 128

as it has bad effect on the performance.

• Filter Sizes. Filter size is the number of words we want our convolutional filters

to cover. We have used three type of filter 3, 4 and 5 that slide over 3, 4 and 5

words respectively.

• Number of Filter. It is number of filters per filter size. Based on the experiments

shown in Table 4, it is chosen as 64. Total 3 ∗ 64 filters are used with 64 filters

each of size 3, 4, and 5.

• Dropout Keep Probability. Dropout is the most popular method to regularize

convolutional neural networks.A dropout layer stochastically disables a fraction

of its neurons. This prevent neurons from co-adapting and forces them to learn

individually useful features. The fraction of neurons we keep enabled is defined

by the dropout_keep_prob input to our network. Based on the experiments,

we set this to 0.5 during training, and to 1 (disable dropout) during evaluation.
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Figure 4: Change in loss function over steps (blue is training data, red is 10% dev

data).

6.2 Results

6.2.1 Loss Function and Accuracy

The loss is a measurement of the error our network makes, and our goal is to

minimize it. The loss function for categorization problems is the cross-entropy loss.

tf ·nn ·softmax · cross_entropy_with_logits is a function that calculates the cross-

entropy loss for each class, given our scores and the correct input labels. We have

then taken the mean of the losses. We could also use the sum, but that makes it

harder to compare the loss across different batch sizes and train/dev data. Figure 4

shows the change cross-entropy loss over steps.

We also used an expression for the accuracy, which is a useful quantity to calculate

the performance during training and testing. Change in accuracy over steps is shown

in Figure 5.
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Figure 5: Change in accuracy over steps (blue is training data, red is 10% dev data).

6.2.2 Method Comparison

We compared iGen with other state-of-the-art methods like Support Vector Ma-

chine (SVM) [30], Naïve Bayes Classifier [36], and KNN (K-Nearest Neighbour) [48]

classifier used for IOC sentence categorization. Three type of feature vector are used

for each of the classifier described above. 10-fold cross validation technique is used

to compare precision, recall and F-measure. Our comparative analysis is shown in

Table 5.

iGen outperformed other methods by generating IOCs with a precision of 95%

and a recall of 99%, while among other SVM with tfidf as feature vector performed

well with a precision and recall of 90%.

Similarly, another approach iACE [47] proposed by Liao gave promising result in

extracting IOC with high accuracy. But iACE used around 5,283 terms as features

which were manually gathered from the dataset. This implies that it will work very
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Methods Precision Recall F-measure

iGen 95% 97% 96%

SVM 1 (Bag of words) 89% 88% 88%

SVM (tf 2) 90% 89% 89%

SVM (tfidf 3) 90% 90% 90%

Naive Bayes (Bag of words) 81% 78% 79%

Naive Bayes (tf) 83% 79% 81%

Naive Bayes (tfidf) 85% 83% 83%

5-NN 4 (Bag of words) 80% 80% 80%

5-NN (tf) 81% 81% 80%

5-NN (tfidf) 83% 82% 82%

Table 5: Results of our iGen models against other methods. SVM (Support Vector

Machine), NB (Naive Bayes), and 5−NN (5-Nearest Neighbours) classifiers were

compared with feature vectors as bag of words (BOW), term frequency (tf), and

term frequency - inverse document frequency (tfidf).

accurately on one dataset but may fail on sentences where different terminologies were

used while writing the article. In case of iGen, features were not selected manually

but features were selected by CNN automatically. This property makes iGen more

adaptive towards any kind of data.

1SVM — Support Vector Machine.
2tf — Term Frequency.
3tfidf — Term Frequency Inverse Document Frequency.
45-NN — 5-Nearest Neighbour
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Chapter 7

DISCUSSION AND FUTURE WORK

Our experiments show that iGen not only fully automated the process of cyber threat

intelligence collection but also generates deployable security rules from the unstruc-

tured data. With a large amount of IOCs automatically recovered from the wild and

converted into a machine-readable form, these can be quickly and effectively utilized

to counter emerging threats. For example, knowing the IP of C&C server from APT

report and then finding the email associated with IP address from malware report

can help us find the actor behind the attack. This will enable the defender to disable

or block the servers associated with that email to stop future attacks. On the other

hand, our current design is still preliminary. Here, we discuss the limitations of iGen

and potential follow-up research.

7.0.1 Limitations

Although iGen extracts IOC with high accuracy, precision and recall, but it’s

necessary to recognize our system limitations. Some of the future work to enhance

iGen framework is given below:

• First, iGen currently considering data sources like security reports, blog articles

that are written in English. But lots of security documents are written in other

language as well such as Arabic, Persian etc. Next step is to consider data

sources that are written in other langauges.

• Second, integration of more sources of data like social networks, open sources

threat feeds, etc. More sources of data will help us to collect more threat
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information about the attacks and malwares. More data will help iGen to build

more accurate IOC rules .

• Third, test sentence classification sub-module with other state-of-the-art classi-

fiers like random forest, decision tress etc. It will help to select the best classfier

based on the evaluation metrices like precision, recall, f-measure etc.

• Fourth, expansion of iGen to accommodate other standards like TAXII, YARA

rules, etc.

Further efforts are required to enhance the functionality of iGen framework.
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Chapter 8

RELATED WORK

8.1 Knowledge discovery

The recent decades witnesses a rapid flow of information available in digital form

on the Internet and intranets. Most of this information is present in the form of

reports, blog posts, news articles, etc. This information is transmitted through un-

structured documents and is thus difficult for machine to search in. This created

a need for automatic, effective and efficient methods for analyzing the unstructured

data and discovering relevant knowledge from it in the form of structured information,

and led to more research in Information Extraction (IE) techniques. In particular,

recent advances in the field of Natural Language Processing (NLP), specifically in the

field of text processing techniques, have resulted to the spread of deployment of IE

techniques in real-world applications for processing of vast amount of textual data.

One of the strong application of IE was discovered in 1986. Lytinen et.al. pre-

sented ATRANS system [50] which applies IR in the financial domain to extract

information from messages regarding money transfers between banks. In particular,

ATRANS tries to solve the problem of context localization in the absence of reliable

syntactic clues, such as sentence boundaries.

Recently, NLP techniques are widely used in different fields of security. Darling

et al. [33] developed a classification system based on lexical features of URLs for

detecting phishing and malicious domains. Similarly, N-Gram based techniques is

used to detect unknown network attacks [61]. System proposed by Zhu et al. [69]

automatically engineers features for Android malware detection by mining scientific
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papers. Some of the recent techniques also tried to extract IOCs using manual fea-

ture selection and graph similarity comparison [47]. Instead, we focus on automated

feature selection using CNN for IOC identification and we created security rules using

those IOCs.

8.2 Convolutional Neural Network

Deep learning has been used in different area for multiple applications recently,

including object recognition [45], speech recognition [39] and natural language pro-

cessing [44]. Among the different deep learning strategies, Convolutional Neural Net-

works (CNNs) have been successfully applied to different NLP tasks such as sentiment

analysis [34], question classification [43], and hashtag prediction [66]. Kim [44] pro-

posed an approach for sentence classification model which uses CNN trained on top of

pre-trained word vectors. Their simple CNN with one layer of convolution performs

remarkably well. Similar experiments for sentence classification task were performed

by Zhang et al [68]. Similarly, iGen uses CNN for classification of sentences into

IOC and non-IOC sentences. iGen is one of the few systems that is using CNN for

information extraction in the field of security.

8.3 Sharing Threat Intelligence

Sharing TI is very important to help the organizations defend against the fast-

evolving threat landscape. Big organization like IBM, Crowdstrike, McAfee, etc. are

integrating their TI with existing products. Dandurand et al. [32] discussed that

cyber security community requires efficient systems to facilitate threat information

sharing and automation. Murdoch et al. [53] discussed the challenges and motivation

for threat information sharing; like trust issues and other challenges like keeping

the online community active to contribute. Evaluation and representation of large
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quantities of information is also a major challenge in the management of threat sharing

platforms.

Haass et al. performed a case study for threat information sharing to identify

challenges and problems in organizational, technical and legal domains. Experiments

indicated that there is a real need to reduce the number of false positives. Importance

of multi-sector sharing to improve threat visibility is also discussed.

For sharing threat information, a lot of research has already been done in struc-

turing information by proposing different data formats and transport mechanisms like

STIX, IODEF, TAXII, etc.
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Chapter 9

CONCLUSION

In this thesis, we introduced — iGen, a novel system for automatic extraction of

IOCs from different sources of unstructured data. Our approach starts from collection

of security data from diverse sources. Then, it cleans the data using advanced NLP

techniques. CNN based IOC identification technique is found to be highly effective,

immensely outperforming the top industry IOC analyzer tool in terms of accuracy,

precision and recall. iGen generates ready-to-deploy rules from these IOCs that can

be directly deployed on security infrastructure like NIDS etc.

iGen uses different sources for data to make fully automated cyber threat intel-

ligence gathering more collaborative. iGen has collected around 400K IOCs till now

with a precision of 95%, better than any state-of-art method.
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APPENDIX A

LIST OF LINKS TO WEBSITES
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Some quick links to the project website, and to this document:

• Project Repository

– URL: http://10.90.90.103/threatintelligenceanalytics/iGen-CNN

• Links to this Document on the Web

– URL: http://10.90.90.103/threatintelligenceanalytics/iGen-Paper
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