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ABSTRACT 

This work describes the investigation of novel cathode and anode materials. 

Specifically, several mixed polyanion compounds were evaluated as cathodes for Li and 

Na-ion batteries. Clathrate compounds composed of silicon or germanium arranged in 

cage-like structures were studied as anodes for Li-ion batteries. 

Nanostructured Cu4(OH)6SO4 (brochantite) platelets were synthesized using polymer-

assisted titration and microwave-assisted hydrothermal methods. These nanostructures 

exhibited a capacity of 474 mAh/g corresponding to the full utilization of the copper redox 

in an conversion reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy 

(XPS) studies were preformed to understand the mechanism and structural changes. 

A microwave hydrothermal synthesis was developed to prepare a series compounds 

based on jarosite, AM3(SO4)2(OH)6 (A = K, Na; M = Fe, V). Both the morphology and 

electrochemical properties showed a compositional dependence. At potentials >1.5 V vs. 

Li/Li+, an insertion-type reaction was observed in Na,Fe-jarosite but not in K,Fe-jarosite. 

Reversible insertion-type reactions were observed in both vanadium jarosites between 1 – 4 

V with capacities around 40 - 60 mAh/g. Below 1 V vs. Li/Li+, all four jarosite compounds 

underwent conversion reactions with capacities ~500 mAh/g for the Fe-jarosites. 

The electrochemical properties of hydrogen titanium phosphate sulfate, 

H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure 

was reported. A capacity of 148 mAh/g corresponding to2 Li+ insertion per formula unit 

was observed. XRD and XPS were used to characterize the HTPS before and after cycling 

and to identify the lithium sites. Evaluation of the HTPS in Na-ion cell was also performed, 

and a discharge capacity of 93 mAh/g was observed. 
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A systematic investigation of the role of the processing steps, such as ball-milling and 

acid/base etching, on the electrochemical properties of a silicon clathrate compound with 

nominal composition of Ba8Al16Si30 was performed. According to the transmission electron 

microscope (TEM), XPS, and electrochemical analysis, very few Li atoms can be 

electrochemically inserted, but the introduction of disorder through ball-milling resulted in 

higher capacity, while the oxidation layer made by the acid/base treatment prevented the 

reation. The electrochemical property of germanium clathrate was also investigated, unlike 

the silicon clathrate, the germanium one underwent a conversion reaction.  
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1: INTRODUCTION 

1.1 Lithium-ion Batteries 

As the world becomes increasingly reliant on electronic devices, it also comes more 

dependent on the batteries, especially the rechargeable batteries. A rechargeable battery is 

known as a secondary cell because its electrochemical reactions are electrically reversible 

and can recharged and used multiple times. In the rechargeable battery, several different 

types have been commercialized and used in all aspects of human life, including: lead-acid, 

nickel cadmium (NiCd), nickel metal hydride (NiMH), lithium-ion, and lithium ion 

polymer batteries. Among them, Lithium-ion batteries will become the world’s leading 

rechargeable battery technology, particularly because of the high energy density and low 

self-discharge. The comparison of the energy density of the different kinds of batteries is 

listed in Figure 1.1.1 

 

Figure 1. 1 Comparison of energy density in battery cells. 
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Lithium was incorporated into battery technology as it is the most electropositive (-

3.04 V vs. standard hydrogen electrode) and lightest (specific gravity 0.53 g.cm-3) metal 

which benefits the high energy density2. In 1970, the reversible Li intercalation reaction 

with layered transition-metal sulfides and selenides were first explored by Jean Rouxel3. 

Since the reversible reaction is needed in the rechargeable battery, Brian Steele4 suggested 

that TiS2 could be a candidate for a rechargeable lithium-ion battery, and in 1976, TiS2 was 

used as a cathode with lithium metal as an anode for the first time by Whittingham5. Due 

to side reactions caused mainly by reduction or oxidation of solvents at the surface of 

anodes and cathodes, a solid electrolyte interfaces (SEI) layer will be formed, unfortunately, 

the SEI layer prevents uniform plating of Li and forms dendrites on repeated charging, 

which can grow across the separator and cause an internal short-circuit, or even explosion, 

so that the Li cell cannot be used safely. However, the fabrication of a discharged cathode 

LiMO2 (M = Cr, Co, Ni) by Goodenough6–8 and the exploration of Li intercalation into 

graphite by Yazami9 avoids the problem of dendrite formation, therefore the Li metal is no 

longer needed, and the concept of the Li-ion battery was established. 

There are three primary functional components in a lithium-ion battery, which are the 

cathode, anode and the electrolyte, which provides a conductive medium for lithium ions 

to move between the electrodes. Electrical energy flows out of or into the battery when 

electrons flow though the external circuit during discharge or charge. Both electrodes allow 

lithium ions to move in and out of their structure. During discharge, the lithium ions move 

from the anode to cathode, and when the cell in charging, the reverse occurs as shown in 

Figure 1.2.10    
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Figure 1. 2 Schematic illustration of a typical lithium-ion battery.10 

In order to value the electrochemical properties of an electrode material, parameters 

such as voltage, capacity and energy density are used.  

The voltage across the cell under open circuit conditions can be calculated from the 

balance between the chemical and electrical driving forces according to the Nernst 

equation11: 

E = −(𝑅𝑇 𝑧𝑖𝐹
⁄ )ln[

𝑎𝑖(+)
𝑎𝑖(−)⁄ ]                    (1.1) 

Where R is the gas constant (8.315J•mol-1•K-1), T is the absolute temperature, zi is the 

number of charge carried by species i, F is the Faraday constant (96485 C•mol-1), ai(+) is 

the activity in the positive electrode and ai(-) for the activity in the negative electrode.  

By applying the Gibbs Phase Rule, the voltage across an electrochemical cell with the 

state of charge has been investigated11.  

𝐹 = 𝐶 − 𝑃 + 2                          (1.2) 
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In which F is the number of degrees of freedom, C is the number of components, and 

P is the number of phases. The thermodynamic parameters considered are intensive 

variables, which are temperature, overall pressure, and the chemical potential or chemical 

composition of each of the phases present. For instance, for a reaction involving two phases: 

A+B→ AB, there are two phases: B and AB, and two elements A and B present in an 

electrode, so P is 2 and C also equals to 2; thus F is equal to 2. That means if the values of 

two intensive thermodynamic parameters, like temperature and pressure are specified, no 

degrees of freedom are left, suggesting that all the intensive properties are all defined, so 

the potential of the electrode does not vary with the state of charge as shown in Figure 

1.3A (Adapted from ref11). 

 

Figure 1. 3 Schematic representation of the potential as a function of its composition for a 

(A) two phase reaction (B) one phase reaction. 

If some guest species could dissolve in the host phase, forming a solid solution, the 

number of components would be two, and in a solid solution, there is only one phase; 

therefore, the degree of freedom equals three. That means after defining two 

thermodynamic parameters, temperature and pressure, there is a residual of F, which should 
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be the potential; thus the potential should change with the different state of charge, as 

shown in Figure 1.3B. 

Another parameter is capacity, which shows the amount of Li that can be stored 

reversibly in the electrode material. The gravimetric specific capacity (1.3) is typically used, 

but the volumetric specific capacity is also evaluated (1.4) when design a commercial 

battery. 

   𝐶𝑔 =
1000𝑥𝐹

3600𝑀⁄ 𝑚𝐴ℎ/𝑔                     (1.3) 

  𝐶𝑣 =ρ𝐶𝑔          Ah/L or mAh/cm3              (1.4) 

Where x is the number of Li carried per unit formula, F is Faraday’s constant (96485 

C.mol-1), M is the molar mass, ρ is the density. 

The energy density, E, can be calculated by the reaction voltage and specific capacity: 

            𝐸 = 𝑉𝐶     Wh/kg or Wh/L                    (1.5) 

Therefore, it is important to consider both reaction potential and capacity when 

developing new electrode materials for energy density improvement. 

1.2 Cathodes 

Existing Li-ion battery (LIB) technology is reaching its limit in energy density (per 

volume) and specific energy (per weight)12. The relatively low capacity of the electrodes 

(370 mAh/g for graphite carbon and 140–170 mAh/g for lithium metal oxide/phosphate) 

limit the total specific energy of the cell. To increase the energy density, great work has 

been devoted to finding high capacity electrode materials. On the anode side, silicon 

(highest known theoretical charge capacity 4,200mAh/g) has achieved the theoretical 
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charge capacity and maintain a discharge capacity close to 75% of this maximum by 

overcoming the structural degradation problems13. But the energy density gain of the 

battery utilizing silicon is limited to 30% due to the low capacity of cathode. 

Since the commercialization of lithium-ion batteries in the 1990s14, almost all of the 

research and commercialization of cathode materials has centered on two classes of 

materials15. The first class of materials contains LiTiS2, LiCoO2, LiNi1-yCoyO2 and 

LiNiyMnyCo1-2yO2 etc.. Those materials are layered compounds with an anion close-packed 

lattice. In the alternate layers between the anion sheets are occupied by a transition metal 

and lithium then inserts into the empty remaining layers, while in the spinels the transition-

metal are ordered in all the layers. Due to the compact lattices, the first group of materials 

have an inherent advantage of energy density per unit of volume. As shown in Table 1.1, 

the layered materials exhibit a theoretical capacity of 230 – 460 mAh/g (700 – 1300 

mAh/cm3), but the achieved capacities in the typical commercial cell are about half, with 

capacities of 180 – 210 mAh/g. The spinel materials shows an even lower capacity about 

150 mAh/g theoretically, with achieved capacities of 84 – 120 mAh/g in commercial cells.   

The second group of materials have more open structures, such as the vanadium 

oxides, manganese dioxides, and the transition-metal phosphates. Studies on 

fluorophosphates16 , fluorosulfates17,18, orthosilicates19 and pyrophosphates20 show that 

these materials have advantages such as environmental benignity, low cost, thermal 

stability, high voltage, and good cycle stability for LIBs. However, the theoretical 

capacities are even lower than the first group, about 150 - 170 mAh/g.   

The capacity of cathode material has been improved as when it was first studied in 

1970s, but is still well below the goal of one lithium per transition-metal ion21. Because of 
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the drawbacks of the intercalation-based cathode materials such as high cost, low actual 

capacity, toxicity and so on, there is a big need to replace it. 

Table 1. 1 Theoretical and actual capacities, voltage of common cathode materials.22 

Structure Formula 

Gravimetric 

capacity (mAh.g-1) 

(theoretical/actual) 

Volumetric 

capacity 

(mAh.cm-3) 

(theoretical/actual) 

Average 

voltage 

(V)23 

 

Layered 

LiTiS2 225/210 24 697 1.9 Commercialized 

LiCoO2 274/148 25 1363/550 3.8 Commercialized 

LiNiO2 275/150 26 1280 3.8 Research 

LiMnO2 285/140 27 1148 3.3 Research 

LiNi0.33Mn0.33Co0.33O2 280/160 22 1333/600 3.7 Commercialized 

LiNi0.8Co0.15Al0.05O2 279/199 28 1284/700 3.7 Commercialized 

Li2MnO3 458/180 29 1708 3.8 Research 

Spinel 

LiMn2O4 148/120 22 596 4.1 Commercialized 

LiCo2O4 142/84 30 704 4.0 Research 

Olivine 

LiFePO4 170/165 31 589 3.4 Commercialized 

LiMnPO4 171/168 32 567 3.8 Research 

LiCoPO4 167/125 33 510 4.2 Research 

Tavorite 

LiFeSO4F 151/120 34 487 3.7 Research 

LiVPO4F 156/129 16 484 4.2 Research 

 

Recently, there has been much interest in materials that undergo conversion reactions 

upon reaction with lithium since these multi-electron processes can result in higher 
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theoretical capacities than conventional insertion electrodes. The generic form of a 

conversion reaction is shown in equation (1.6)35: 

MaXb + (b · n) Li ↔ aM + bLinX               (1.6) 

Where M is a transition metal, X is the anion, and n is the formal oxidation state of X. 

This reaction can be described as conversion of the parent phase, MaXb, to the reduced 

metal, which is interspersed in a matrix phase, LinX,is typically electronically insulating.   

Many Cu-containing materials such as copper oxides36, vanadates37–39, fluoride40,41, 

chloride42, thiospinels43, phosphide44,45, sulfate46, and borate47 have demonstrated 

conversion reactions upon lithiation with many varying results, while Fe-based conversion 

materials such as iron fluorides have shown promising cyclability when prepared as 

nanocomposites41,48 or nanostructures49,50. 

 For FeF3 electrodes, Amatucci's group demonstrated a reversible conversion reaction 

with appreciable energy capacity48,51,52. They have proposed the following reaction 

schemes: 

FeF3 + Li → LiFeF3 (4.5–2.5 V)                   (1.7) 

LiFeF3 + 2Li → 3LiF + Fe (2.5–1.5 V)               (1.8) 

With reduction to the zero valence state of the metal, the capacity of FeF3 can be as 

high as 700 mAh/g. However, these materials undergo large structural changes and 

experience voltage hysteresis that may impede commercial application.  
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1.3 Anode 

Anode materials are required in Li-ion batteries as the dendrites formation from 

lithium metal batteries and the short-circuit and saftey issues make them unsuitable for 

commercial applications. According to the reaction machnism, anode materials can be 

classified to three groups: alloying, insertion and conversion, as shown in Figure 1.4.

 

Figure 1. 4 Different groups of anode materials and the current issues.53 

Li metal has the highest energy density per unit volume and mass, but because of the 

safety issue, it is not a good choice for anode material. In the case of Li alloy materials (Si, 

Ge, Sn, Al etc.) and conversion-based materials (CoO, Fe2O3 etc.), they are suffering the 

formation of SEI layers, large volume changes and poor cycle life. For the insertion-based 

materials (e.g. carbon and Li4Ti5O12), the low capacity is the key factor which need to be 

improved (Table 1.2). The graphite carbon anode enabled the Li-ion battery to be used 

commercially more than 20 years ago, and still is the anode material of choice with the 
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advantages of long cycle life, abundant material supply and relatively low cost. However, 

the graphite anode is also suffering the disadvantages of low gravimetric (375 mAh/g)54 

and volumetric (330 – 430 mAh/cm3) capacities, and safety issues related to lithium 

deposition. So, there has been a growing interest to develope new anode materials with 

higher energy density, low cost and long cycle life. 

Table 1. 2 Comparison of the theoretical capacities, charge density, volume change and 

potential of different kinds of anode materials.22,55 

Material 
Lithiated 

phase 

Theoretical 

capacity 

(mAh/g) 

Potential vs. Li 

(V) 

Volume change 

（%） 

Li Li 3862 0 100 

C LiC6 372 0.05 12 

Si Li4.4Si 4200 0.4 320 

Ge Li4.4Ge 1623 0.5 240 

Sn Li4.4Sn 994 0.6 260 

Al LiAl 993 0.3 96 

Li4Ti5O12 Li7Ti5O12 175 1.6 1 

1.4 Materials Characterization Techniques 

1.4.1 X-ray Diffraction 

X-ray diffraction is a unique technique for the determination of crystallinity in a 

compounds and can be primarily used for (1) characterization of crystalline materials, (2) 
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identification of fine-grained minerals such as clays and mixed layer clays that are difficult 

to determine optically, (3) determination of unit cell dimensions and (4) measurement of 

sample purity.56 With specialized techniques, XRD is also used for the Rietveld refinement 

to obtain the detailed information such as element occupancies, cell parameters and 

isothermal parameters, and the crystallite size determination using the Scherrer equation. 

In 1913, W. H. Bragg and his son W. L. Bragg developed a relationship to explain 

why the cleavage faces of crystals reflect X-ray beams at certain angles, which is know as 

the Bragg’s law (1.9).  

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛 𝜃                            (1.9) 

Where n is an integer, λ is the wavelength of the incident x-ray beam, d is the distance 

between atomic layers in a crystal. For a crystalline sample with long range order structure, 

the signals will be shown as peaks in the XRD pattern, and for an amorphous material, X-

rays will be randomly scattered which form a broad peak or even flat signal in a XRD 

pattern.  

All the XRD analyses in this work were performed using a PANalytical X’Pert Pro 

high resolution X-ray diffractometer with the CuKα radiation. Powder samples were held 

by a zero background substrate, and the electrodes were stuck to the substrate. The lowest 

angle is 10° (2θ), with a step size of 0.025°. 

1.4.2 Electron Microscopy 

To evaluate the sample’s morphology, scanning electron microscopy (SEM) was used. 

A SEM scans a focused electron beam over a surface to create an image. The beam of 

electrons is produced at the top of microscope by an electron gun. Once the beam hits the 
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sample, primary back-scattered electrons, secondary electrons, Auger electrons and X-

rays57 will be generated, which can be used to obtain the information such as the surface 

topography and composition. In this work, an XL30 Environmental FEG equipped with 

EDAX system was used. The powder samples were dispersed in ethanol by sonication. 

Then, several drops of the suspension were pipetted onto the surface of a clean Si wafer 

and dried. The electrodes samples were stuck to the sample tab using conducting carbon 

tape. 

Transmission electron microscopy (TEM) collects transmitted electrons to obtain 

structure information. The TEM operates on the same basic principle as the light 

microscope but uses electrons whose wavelength is much smaller, so that the resolution is 

many orders of magnitude better than that from a light microscope. Thus, TEMs can reveal 

the finest details of internal structure, even the individual atoms. Therefore, TEM is very 

helpful to distinguish the amorphous and crystalline regions. 

1.4.3 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is the most widely used surface analysis 

technique which can provide the information such as the empirical formula, chemical state 

and electronic state. By combining XPS measurements with ion milling (sputtering), depth 

distribution information can be obtained.  

XPS spectra are obtained by irradiating a surface with a beam of X-rays while 

measuring the kinetic energy and electrons emitted. The spectrum records the counts of the 

ejected electrons over a region of kinetic energies or binding energy, as shown in equation 

(1.10). 
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Ebinding = Ephoton – (Ekinetic + Φ)                    (1.10) 

Where Ebinding is the binding energy of the electron, Ephoton is the energy of X-ray 

photons, Ekinetic is the kinetic energy of the electron being measured and Φ is the work 

function. The peaks that appear in the spectrum are used to identify the elements 

quantitatively. In this work, XPS was performed on a VG ESCALAB 220i-XL with Al Kα 

anode (Ephoton = 1486.6 eV) operating at 60 W and 12 kV. A pass energy of 20 eV was used 

for high-resolution spectra. The spectra were calibrated to the hydrocarbon peak at 284.5 

eV. Peak fitting was performed using CasaXPS processing software. 

1.4.4 Wavelength-dispersive Spectroscopy 

Wavelength-dispersive X-ray spectroscopy (WDS) is a technique used to count the 

number of X-rays of a specific wavelength diffracted by a crystal. The wavelength of the 

X-ray and the crystal are related by Bragg’s law. Unlike the energy-dispersive X-ray 

spectroscopy, WDS only detects one wavelength a time, which can give more detailed and 

accurate information (Fig. 1.5). Because only X-rays of a given wavelength will enter the 

detector at one time, the electron microprobes typically have five spectrometers in order to 

work efficiently, allowing them to measure five elements simultaneously. 

In this work, WDS was performed on a JEOL JXA-8530Ff equipped with five 

wavelength-dispersive spectrometers. The powder sample was mixed with epoxy and cured 

for two days at room temperature in a chemical hood. Then the sample was ground and 

polished to a flat surface for subsequent analysis. A 10 nA current with a 20 keV 

accelerating potential was used for the analysis. Seven spots were tested for each sample 

and the average values were discussed. 
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Figure 1. 5 A comparison of spectra collected form a Pt-Au-Nb alloy on an EDS/WDS 

system. 

1.5 Electrochemical Characterization Techniques 

1.5.1 Potentiodynamic Cycling with Galvanostatic Acceleration 

Potentiodynamic cycling with galvanostatic acceleration (PCGA) is a technique in 

which the electrode cycles under stepwise potentiodynamic mode. The potential between 

the working electrode and reference electrode changes for a constant potential step, dEs. 

The potential step amplitude (dEs) and duration (dts) define the potential sweeps. By 

limiting the current or amount of charge, it is possible to go to the next step before the end 

of the last potential sweep (Fig. 1.6). The process is repeated until to the maximum set-up 

value, then the potential steps back to the minimum set-up value. If the potential step is 

small enough, the capacity of the tested material can be calculated. 
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Figure 1. 6 One potential sweep of PCGA technique.58 

PCGA can also be used to obtain the differential plots, -dQ/dV, as a function of 

potential. In a differential plot, there will be peaks at the voltage where the reaction occurs, 

providing a qualitative analysis of an electrochemical reaction.  

1.5.2 Galvanostatic Cycling with Potential Limitation 

Galvanostatic cycling with potential limitation (GCPL) is another technique which 

can be used to obtain the capacity of the electrode materials. Instead of potential steps, a 

constant current is applied between the working and reference electrodes (Fig. 1.7). After 

reaching the limit voltage or amount of charge, the current applies on the opposite direction, 

until reaching the other voltage limit or amount of charge. Because of the constant current, 

the capacity calculated from GCPL is more accurate than the value obtained by PCGA. 
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Figure 1. 7 A schematic representation of current applied in a GCPL measurement. 

1.5.3 Galvanostatic Intermittent Titration 

First described by Huggins and Weppner59, the galvanostatic intermittent titration 

(GITT) technique is a powerful tool which can be employed to determine kinetic and 

thermodynamic information. The cell is discharged/charged with a constant current flux 

for an interval time followed by an open circuit rest, allowing the cell voltage to relax to 

its steady-state value. Assuming that the guest species transport in the electrode obeys 

Fick’s second law, the chemical diffusion coefficients can be obtained by the following 

equation: 

𝐷 = 
4

πτ
(
mVM

MwS
)
2

(
∆𝐸𝑠

∆𝐸𝑡
)
2

, 𝑡 ≪ L2 𝐷⁄                    (1.11) 

where D (cm2 s-1) is the chemical diffusion coefficient, m is the mass of active material, 

VM and Mw are the molar volume and weight, S is the active surface area of the electrode, 

τ was the time duration of the applied current, ΔEs is the change in the steady-state voltage 

over the titration step, E is the voltage, t is the time and L is the thickness of the electrode. 
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1.5.4 Electrochemical Impedance Spectroscopy 

Among the modern computational techniques, electrochemical impedance 

spectroscopy (EIS) has proven to be a powerful tool for examining many chemical and 

physical processes in solution as well as in solids. There are two types of impedance 

measurements: potentiostatic impedance (PEIS) and galvanostatic impedance (GEIS). The 

PEIS performs impedance measurements in potentiostatic mode by applying a sinus around 

a potential E that can be set to a fixed value relatively to the cell equilibrium potential. 

GEIS is very close to PEIS, except that the current is controlled instead of the potential. 

The impedance spectra are usually evaluated by an equivalent circuit model to extract 

physically meaningful properties of the electrochemical system by modeling the data in 

terms of an electrical circuit composed of ideal resistor (R), capacitors (C), and Warburg 

(W). And for applications in lithium-ion batteries, the information such as solid state 

diffusion, charge transfer in the electrode and electrolyte interface, transfer through the SEI, 

electrode and current collector, electronic conductivity and lithium ion migration in the 

electrolyte can be obtained. 
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2: BROCHANTITE NANOPLATES AS CATHODE ELECTRODES FOR LITHIUM-

ION BATTERIES 

2.1 Introduction 

Recently, there has been much interest in materials that undergo conversion reactions 

upon reaction with lithium since these multi-electron processes can result in higher 

theoretical capacities than conventional insertion electrodes. Many Cu-containing 

materials such as copper oxides36, vanadates37–39, fluoride40,41, chloride42, thiospinels43, 

phosphide44,45, sulfate46, and borate47 have demonstrated conversion reactions upon 

lithiation with many varying results. While Fe-based conversion materials such as iron 

fluorides have shown promising cyclability when prepared as nanocomposites41,48 or 

nanostructures49,50, the Cu analogs tend to show poorer reversibility. In some cases, the 

formation of large Cu nanoparticles60 or even Cu dendrite extrusion is observed during 

discharge39,43,61. The formation of Cu metal deposits can improve the conductivity of the 

electrodes after discharge, but it can also promote irreversibility due to risk of Cu isolation 

from the electrode or dissolution into the electrolyte as soluble species during charging. 

For instance, the lithiation of CuF2 is not reversible40,41,60. Recent studies on conversion 

reactions in nanostructured binary oxides and fluorides have shed new light on the role of 

electronic conductivity and relative diffusion rates of mobile cations (e.g. Cu1+/Cu2+ vs. Li+ 
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mobility) and anions in the initial, intermediate and final phases found in conversion 

reactions, including the nucleation and growth mechanisms and the resulting morphologies 

found in the products41,60. For instance, in CuF2, it is believed that the transport of F- anions 

away from the Cu/CuF2 interface may lead to formation of Cu nanoparticles completely 

isolated in the LiF matrix, which are unable to be oxidized during charging60. In contrast, 

CuO electrodes show much better reversibility and form only small 3 nm particles at the 

end of discharge, which may be attributed to the lower mobility of O2- anions and Cu 

cations in CuO preventing large Cu dendrite formation. Despite the better cycling 

characteristics in CuO, its discharge potential of ~ 1.35 V vs. Li/Li+62 is too low for its 

application as a cathode and too high to be used as an anode in lithium-ion battery 

applications.   

It is well established that the redox energies of metal ions can be tuned by an inductive 

effect introduced by the counter anions, with the electronegativity of X and the strength of 

the M−X bond playing a role in controlling the cell voltage. This has been frequently 

studied in polyanion and mixed anion materials such as Fe2(SO4)3
63,64 and Li(Fe1-

δMnδ)SO4F
17. In general, the less polarizable the anion (or ionic the M-X bonding), the 

higher the potential. The use of nanostructured materials has been found to be effective for 

promoting electron transport through these poorly conducting materials65. In this work, we 
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apply these strategies in order to obtain a more reversible, higher voltage Cu conversion 

electrode.  

 

 

Figure 2. 1 Crystal structure of brochantite (A) ball-and-stick and (B) polyhedron 

representation. 

Materials with sulfate and phosphate anions have been known to form a wide range 

of structural arrangements. For example, naturally occurring copper hydroxysulfate 

minerals of the form Mx(OH)y(SO4)n are found in a variety of expanded frameworks, tunnel, 

and layered structures66. Such structures may provide pathways for effective Li+ diffusion, 

and the presence of mixed anions may be used to tune the redox potential of the metal and 

create different environments for Li+ insertion. As a starting point, we have chosen to study 

the electrochemical properties of Cu4(OH)6SO4 (Fig. 2.1). Also written as 

CuSO4·3Cu(OH)2 and known as the mineral brochantite67,68, this material is mostly 
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associated with corrosion products that impart the green color in patina layers69–71, such as 

that found on the Statue of Liberty70. Brochantite has recently been studied for its magnetic 

properties72,73 and as an electrocatalyst for oxidation of ascorbic acid74, but has never been 

investigated as an electrode for lithium-ion battery applications.  

Here we report the synthesis of brochantite using precipitation and microwave-

assisted hydrothermal methods to produce different particle sizes and morphologies, 

including nanoplates. The electrochemical properties of the materials were evaluated in 

half-cells with Li metal counter electrodes. Capacities >400 mAh/g were observed for 

brochantite with nanoplate morphology. Ex situ X-ray diffraction (XRD), scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray 

photoelectron spectroscopy (XPS) were performed in order to characterize the structure 

and identify changes occurring during the electrochemical reactions. The fundamental 

knowledge gained from this study can be applied to better understanding of the 

electrochemical properties other mixed anion materials and add to the existing knowledge 

base related to Cu-based conversion electrodes for lithium-ion batteries.  
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2.2 Experimental Methods 

2.2.1 Synthesis of Brochantite 

Brochantite particles were synthesized using precipitation (P) or microwave 

hydrothermal (HT) techniques using as described as follows. After the synthesis, the blue-

green powder was collected, washed with ethanol and water several times and dried at 50 

oC overnight. Copper(II) sulfate, sodium hydroxide, and polyvinylpyrrolidone (MW = 

29000) were obtained from Sigma-Aldrich and used as received. 

2.2.1.1 Titration Method 

Sample P: 15 mL of 0.1 M NaOH was titrated with stirring into a 15 mL solution of 

copper sulfate of the same concentration, based on the procedures in ref.75.  

Sample P-BM: Sample P was ball-milled for 10 min using a stainless steel grinding 

vial set.  

Sample P-PVP1: 15 mL of 0.1M NaOH was titrated with stirring against a 15 mL 

solution of copper sulfate of the same concentration containing 0.621 g of PVP 

(nCu2+:nPVP=70:1). Sample P-PVP2:  15 mL of 0.1 M NaOH was titrated with stirring 

against a solution of copper sulfate of the same concentration with 1.243 g PVP 

(nCu2+:nPVP=35:1).  

2.2.1.2 Microwave-assist Hydrothermal 

Sample HT: Microwave-assisted hydrothermal treatment was performed on an 

aqueous suspension of CuSO4·5H2O and NaOH in molar proportions of Cu/Na/H2O = 
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1/1.333/2222. The reactions were performed in vessels of volume 33 cm3 with a 1/3 filling 

ratio. The precursor suspensions were heated to 170 oC within 10 min and were held for 5 

min using a CEM Discover SP Reactor. 

2.2.2 Materials Characterization 

X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to perform 

structural characterization on the prepared brochantite powders, as well as the composite 

electrodes before and after cycling. 

2.2.2.1 X-ray Diffraction 

The electrodes were rinsed several times with ethanol and dried at 50℃ overnight. 

XRD data was collected using a Panalytical X’pert Pro with CuKα radiation operated at 40 

kV/40 mA. 

2.2.2.2 Electron Microscopy 

Electron microscopy studies were performed using a XL 30 ESEM-FEG and a JEOL 

2010F TEM. Powder samples were dispersed into ethanol with ultrasonication for 5 

minutes and then dropped onto a Si wafer for SEM imaging or TEM grid. To mitigate 

charging, the brochantite samples were sputter coated with a thin layer of Au prior to SEM 

observation. 

2.2.2.3 X-ray Photoelectron Spectroscopy 

XPS was performed on a VG ESCALAB 220i-XL with Al Kα anode (1486.6eV) 

operated at 60 W and 12 kV. The X-ray takeoff angle was 45o and the data was acquired 
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from the region within ~500μm of the outer surface of the sample. Charge compensator 

was used because brochantite is an insulator. A pass energy of 20 eV was used for high-

resolution spectra (energy resolution 0.7 eV). The spectra were calibrated to the oxygen 2p 

peak at 531.8 eV instead of the typically used hydrocarbon peaks at 284.5 eV due to many 

different chemical environments for carbon in the electrodes (e.g. from PVDF, carbon black, 

dried electrolyte). Peak fitting was performed using CasaXPS processing software. 

2.2.3 Electrochemical Measurement 

Brochantite composite electrodes were prepared by mixing the brochantite active 

material with polyvinylidene difluoride (PVDF) binder (Kynar) and SuperP Li carbon 

black (TimCal) with a ratio of 70:10:20 by weight. N-methyl-2-pyrrolidone was added 

dropwise and the slurry was then stirred overnight to form a homogenous free-flowing 

paste. This slurry was then coated onto a piece of Al foil using an automated film coater 

equipped with a Meyer rod and dried in an oven at 110 OC for 1 h. The foil was then 

punched into disks and weighed prior to electrochemical testing. 

Half cells were assembled in an argon-filed glove box using lithium metal foil as the 

anode, Celgard 2500 as separator, and 1 M LiPF6 in EC: DMC (1:1 by vol, MTI) as 

electrolyte. Galvanostatic or potentiodynamic measurements were performed on a 

BioLogic VMP3 between 1 – 4 V vs. Li/Li+. For galvanostatic measurements, C-rates were 

determined using a theoretical capacity of 474.13 mAh/g according to the 2 electron 

reduction for each of the 4 Cu (insertion of 8 Li+) per brochantite formula unit. The current 

densities corresponding to the C-rates are as follows: C/20 (23.71 mA/g), C/10 (47.41 
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mA/g), C/5 (94.83 mA/g), C/2 (237.07 mA/g), 1C (474.13 mA/g). For potentiodynamic 

measurements, a 5 mV voltage step was used with a threshold current of 25 mA/mg of 

brochantite. 

2.3 Results and Discussion 

2.3.1 Structural Characterization 

Synthetic brochantite is typically prepared using precipitation in alkaline solutions76–

78, although hydrothermal72,79 and sonochemical methods80 have also been reported. 

Because brochantite is a basic copper salt, it is easily obtained by precipitation from the 

titration of NaOH into a CuSO4 solution. The morphologies of the as-prepared brochantite 

powders made by the precipitation method (sample P, Fig. 2.2A) were not uniform and 

ranged from hundreds of nanometers to as large as hundreds of microns. Ball-milling the 

material (sample P-BM, Fig. 2.2B) decreased the particle size to less than 10 microns.  

 

 

Figure 2. 2 SEM image of (A) sample P. (B) sample P-BM. 
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Since the uniformity and range of particle sizes was hard to control, 

polyvinylpyrrolidone (PVP) was applied as a structure directing agent at two different 

molar ratios with respect to the Cu2+. PVP was chosen because it is a common polymer 

used to make shape-controlled nanostructures for many different materials, including 

brochantite nanorods74. Sample P-PVP1 (nCu2+ : nPVP  = 70:1) consisted of thin plate-like 

nanostructures, but the sample was not very uniform (Fig. 2.3A). Some of the brochantite 

displayed tapered nanoplate morphology with triangular shaped ends, while other 

structures displayed hexagonal nanosheet morphology. Increasing the amount of PVP 

(nCu2+ : nPV P= 35:1 for sample P-PVP2) improved the sample uniformity (Fig. 2.3B). The 

sample was composed of tapered nanoplates with approximate dimensions of 100 nm in 

width, 600 nm in length, and 25 nm in thickness. Brochantite powders synthesized using 

microwave assisted hydrothermal reaction (sample HT) are shown in Figure 2.3C. These 

powders had a nanoplate morphology with an average length of 430 nm and thickness of 

about 40 nm. Compared to the samples prepared with PVP, the nanostructures in sample 

HT were thicker and did not have such tapered ends. The plate-like structures observed in 

samples P-PVP1 and P-PVP2 can be explained by the presence of PVP adsorbing onto 

certain crystallographic planes of brochantite to affect the crystal growth kinetics. The 

mechanism of shape control with PVP may be due to Cu2+ coordination to the polar oxygen 

or nitrogen groups of the PVP mers81 or interaction with the hydroxyl groups82 on the 
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terminal end of the PVP chains, as has been seen in other nanoparticle systems. The 

anisotropic particle morphology observed in the hydrothermal synthesis without requiring 

PVP or other structure directing agent indicates a preferred crystallographic growth 

direction. 

 

 

Figure 2. 3 (A)-(B) SEM images of brochantite made by precipitation with PVP (A) P-

PVP1 (nCu2+ : nPVP = 70:1, (B) P-PVP2 (nCu2+ : nPVP = 35:1); (C) Brochantite nanoplates 

prepared using hydrothermal synthesis (HT). (D) XRD comparing brochantite prepared 
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using precipitation and hydrothermal synthesis compared to the two polytypes of 

brochantite. Only major reflections were labeled for clarity. 

Brochantite is classified as a sheet-type sulfate mineral, with corner-linked and edge-

linked chains consisting of distorted Cu(OH)4O2 and Cu(OH)5O octahedra that are 

connected with SO4 tetrahedra to form corrugated layers parallel to the (100) plane66,83. 

Brochantite minerals typically display cleavage on the {100} planes due to the weak apical 

Cu-O bonds and H-bonds that form between these layers (Fig. 2.1). Planes propagating in 

the a-direction of brochantite require sulfate ions, while those propagating in the b- and c-

directions require hydroxide ions in order to grow the double Cu polyhedra chains. The 

production and addition rates of these two anions compete and determine the shape of the 

crystal. Previous studies showed that anisotropic brochantite structures such as plates and 

needles can be synthesized using ultrasonication80, but here we show that use of PVP as a 

structure directing agent or microwave assisted hydrothermal reaction can result in much 

smaller nanostructures with high surface area for Li+ insertion into the interlayer space. 

Brochantite is considered an order-disorder (OD) material68, in which different ways of 

stacking neighboring layers allows for disordered and ordered polytypes to exist.  

Figure 2.3D shows the XRD pattern for sample P, which was prepared using 

precipitation, and sample HT prepared by microwave-hydrothermal reaction. The 

precipitated samples prepared with PVP showed identical XRD patterns to sample P. 
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Reference patterns for the MDO1 and MDO2 polytypes of brochantite are shown for 

comparison68. Both polytypes are monoclinic and have very similar structures. MDO1 

adopts the P121/a1 space group and has lattice constants of a = 13.140 Å, b = 9.863 Å, c = 

6.024 Å, and β = 103.16o. MDO2 adopts the P21/n11 space group and has lattice parameters 

of a = 12.776 Å, b = 9.869 Å, c = 6.026 Å, α = 90.15o. The XRD pattern for sample P 

showed reflections that matched both polytypes, which may explain the broadness of some 

of the peaks. No characteristic diffraction peaks from other phases or impurities were 

detected. The XRD pattern of sample HT showed sharper and narrower peaks, with 

enhanced intensity for the (200) and (400) reflections compared to both reference patterns 

and also the samples prepared with precipitation. Compared to sample P, there were also 

fewer reflections, while the peaks that were present are common to both polytypes. The 

absence of reflections in addition to those expected based on the space group (i.e., non-

space group absences) has been observed in brochantite and is a characteristics of its OD 

properties68. These results suggest that the microwave-hydrothermal synthesis may favor 

formation of brochantite with a different atomic connectivity than precipitation methods. 

The strong (200) and (400) reflections in sample HT indicate a preferred orientation and 

suggest that the layer-stacking direction, or a-axis, is along the thickness direction of the 

nanoplates, which tend to lay flat on the substrate (Fig. 2.3C). 
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To better understand the structure of the sample HT nanoplates, TEM characterization 

was performed (Fig. 2.4). Selected-area electron diffraction (SAED) of an individual 

brochantite nanoplate (Fig. 3A-B) showed d-spacings consistent with a [100] zone axis for 

the MDO1 polytype, with the nanoplate long-axis (growth direction) in the [020] and a-axis 

along the layer-stacking direction, consistent with the XRD results. However, we cannot 

rule out that there might also be nanoplates with the MDO2 structure. The nanoplates were 

beam-sensitive and could easily decompose under electron beam irradiation, making 

careful observation by TEM difficult. As soon as the electron beam hit the sample, pores 

started to appear within the nanoplates (Fig. 2.4C) and became larger over time (Fig. 2.4D) 

due to beam damage. The speed of this deterioration was dependent on the intensity of 

illumination. Some wave-like fringes swept across the particles, indicating that the internal 

structure was being altered by the beam. This was evident by another observation in which 

an amorphization process could clearly be seen. Initially the particles were crystalline, but 

after prolonged exposure to the incident beam, the lattice fringes of the outermost layer 

disappeared, enveloping the nanoplate with an amorphous shell (Fig. 2.4E). The shell grew 

inwards and the amorphous-crystalline interface advanced towards the core of the 

nanoplate until it turned completely amorphous. This process was also observed in the 

electron diffraction pattern, in which the diffraction spots gradually faded away with longer 

irradiation times. Thermal analysis of brochantite has suggested that it can decompose 
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following equation (1) between 325-500 oC, followed by a second decomposition step at 

650-780 oC following equation (2)84.  

Cu4(OH)6SO4 → Cu2OSO4 + 2CuO + 3H2O            (1) 

 Cu2OSO4 → 2CuO + SO3                 (2) 

The removal of H2O and SO3 from the structure during these decomposition reactions 

can explain the formation of the pores in the brochantite upon heating from the electron 

beam. Based on these equations, the resulting material is likely amorphous CuO.  

 

Figure 2. 4 TEM of HT brochantite nanoplates. (A) Selected-area electron diffraction 

pattern of nanoplate in (B). (C) Low-magnification TEM images of nanoplates showing 
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decomposition under exposure to electron beam, (D) same nanoplates in (C) after 1 min 

longer exposure. (E) High-magnification image of nanoplate showing amorphous surface 

region. The dashed line shows the amorphous-crystalline interface. (F) After 1 min longer 

exposure, the amorphous shell became thicker and the amorphous-crystalline interface 

moved towards the core of the particle. 

2.3.2 Electrochemical Characterization 

2.3.2.1 Brochantite made by Different Methods 

To evaluate the electrochemical properties of the brochantite samples prepared using 

the various synthesis methods, potentiodynamic cycling was performed on composite 

electrodes made from brochantite, carbon black conducting additive, and polyvinylidene 

difluoride binder. The voltage profiles for the first discharge (lithiation) and charge 

(delithiation) cycles for the different samples and the corresponding differential plots are 

shown in Figure 2.5 A. 
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Figure 2. 5  (A) Voltage profiles of first discharge and charge and (B) differential charge 

plot for half-cells prepared with brochantite made by different methods. The inserted is the 

differential charge plot for first 2 cycles for HT brochantite. 

The brochantite particles prepared by precipitation (sample P) displayed about 68 

mAh/g of discharge capacity and 23 mAh/g of charge capacity, resulting in a Coulombic 

efficiency (CE) of 34%. After ball-milling the samples for 10 minutes (sample P-BM), the 

discharge capacity was increased to 191 mAh/g while the CE was about the same (27%), 

which indicated that decreasing the particle size can help the electrochemical reactivity due 

to the poor conductivity of the brochantite active material. The precipitated samples 

prepared with PVP showed even higher capacities and CE, with a discharge capacity of 

238 mAh/g for P-PVP1 and 408 mAh/g for P-PVP2. The CE were 78% and 89%, 

respectively. This indicates that the nanoscale particle sizes can greatly improve the 

electrochemical performance by decreasing the electron and Li+ transport distances.  



34 

 

The sample HT nanoplates showed the highest discharge capacity of 478 mAh/g, 

which is slightly higher than the theoretical capacity of 474 mAh/g corresponding to 

insertion of 8 Li+ and electrons per brochantite formula unit, i.e. the 2 electron reduction 

of Cu2+. It supports the conversion reaction mechanism. The charge capacity of 398 mAh/g 

corresponds to extraction of 1.68 Li+/Cu. Furthermore, the discharge potentials of the 

nanostructured brochantite were slightly higher than that for bulk brochantite, which can 

be seen in Figure 2.5B. The discharge potential increased from 1.55 V vs. Li/Li+ in sample 

P to 1.6-1.8 V in the PVP samples and 1.7 V for sample HT. The increase in discharge 

potential can be explained by a lower internal resistance in the nanostructured samples, 

since the electron transport distances are small and there is more contact area between the 

brochantite and the conducting carbon black in the composite. The values of the discharge 

potentials can be explained by the induction effect63. For instance, the discharge voltage of 

brochantite is higher than that for CuO (1.35 V)60,62 and Cu2O (1.5 V)36 but lower than that 

for CuSO4·5H2O (3.2 V)46. The discharge voltage for brochantite is slightly higher than 

that for copper oxides due to the presence of the more ionic sulfate and hydroxyl groups, 

but its lower number of sulfate anions gives it a lower voltage than for copper sulfate. The 

plateaus in the discharge profiles suggest a two-phase reaction mechanism, whereby 

growth of a new phase occurred at the expense of the initial phase, and not a single-phase 

reaction (i.e. lithiation in the form of solid solution). Also, as the brochantite particle size 
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decreased, the discharge profiles became flatter, which is similar to what has been observed 

for particle size reduction in CuSO4·5H2O
46 and CuO conversion electrodes62, indicating 

improved kinetics. At higher depths of discharge, the voltage followed a sloped profile 

from 1.5-1 V. This is similar to the sloped profile observed in Cu2O, which has been 

attributed to formation of Li2O and Cu0 36.  

In contrast, all of the charging profiles showed sloped features. Inspection of the 

differential charge plots for the nanostructured brochantite (Fig. 2.5B insert) suggests there 

could be major phase changes at 2.18 and 2.71 V vs. Li/Li+ due to the presence of larger 

peaks at those potentials, there were also numerous small peaks from 2.71 to 4 V vs. Li/Li+, 

suggesting other smaller phase transitions at these higher charging potentials. The 

electrochemical data are more complicated for the charging of brochantite compared to 

other similar compounds. Due to the mixed anion nature of brochantite, the electrochemical 

mechanism for its reaction with lithium may be a combination of reactions similar to those 

seen in CuO, LiCuO2, or CuSO4. This may explain the presence of so many peaks in the 

differential charge plots. Delithiation occurs as a two-phase reaction at 3.5 V in anhydrous 

CuSO4 and at 3.65 V for CuSO4.5H2O, with well-defined plateaus at those potentials in the 

voltage curves46. In contrast, the sloped charging profile for brochantite might be more 

similar to processes in the copper oxides. The initial charging process seen as the sloped 

region in the voltage profile from 1-2 V is similar to that found when charging Li2O/CuO 
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composites after full lithiation85 and has been attributed to the oxidation of Cu0 to Cu+. The 

formation of multiple peaks during charging at higher potentials is similar to the 

delithiation of LiCuO2, which is characterized by 4 small peaks between 3 – 3.6 V86. The 

nanoscale size of the brochantite particles may also lead to other phases and reactions not 

observed in the bulk counterparts, such as small structural changes or solid solution 

formation over small potential regions. 

2.3.2.2 Brochantite made by Microwave-assisted Hydrothermal method 

To better understand the structural changes upon cycling that occur in brochantite, the 

nanoplates (sample HT) were used for further electrochemical studies as well as ex situ 

SEM, XRD, and XPS investigation. The first 5 cycles of the brochantite nanoplates using 

galvanostatic cycling with a C/20 rate are shown in Figure 2.6A. The potential decreased 

then increased slightly in the first discharge (Fig. 2.6A, inset). This feature has been 

attributed to nucleation and growth of new phases and is frequently seen in materials that 

undergo conversion reactions60. Figure 2.6C shows the capacity as a function of cycle 

number and CE for each cycle. The capacities were observed to decrease quite rapidly, 

with less than 150 mAh/g capacity remaining at the 10th cycle. The differential charge plot 

of the second cycle (Fig. 2.5B insert), shows that lithiation occurs at higher potentials in 

the 2nd cycle, suggesting a structural change in the first discharge that is not reversible. 

Galvanostatic cycling at different C-rates (Fig. 2.6B) showed that the brochantite could 

maintain a high first cycle capacity until 1C, at which the observed capacity was about 50% 

lower.  
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Figure 2. 6 (A) Cycling of HT brochantite using C/20 rate. The inset shows a zoomed in 

region in the first discharge. (B) First discharge and charge of HT at different C-rates. (C) 

Capacity and Coulombic efficiency for cycling of HT brochantite. 

2.3.3 Structural Characterization during Electrochemical Reaction 

To better understand the origin of the poor capacity retention, SEM, XRD, and XPS 

studies were performed on the unlithiated (as made), lithiated, and delithiated brochantite 

films. 
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2.3.3.1 Scanning Electron Microscopy 

The brochantite nanoplates were well dispersed with the carbon black (Fig. 2.7A) in 

the prepared electrodes and were observed to maintain their morphology after lithiation to 

447 mAh/g (Fig. 2.7B). No obvious signs of Cu metal dendrite extrusion were observed. 

 

Figure 2. 7 (A) SEM of HT brochantite film before and (B) after lithiation. 

2.3.3.2 X-ray Diffraction 

XRD of the as-prepared film only showed peaks from the Al foil current collector and 

the brochantite (Fig. 2.8). After lithiation to a capacity of 447 mAh/g, the XRD pattern 

showed very weak reflections from the brochantite, suggesting the structure became 

amorphous after discharge. This also supports the conversion reaction mechanism, despite 

the feasibility of topotactic Li+ insertion based on the occupiable volume calculations. No 

obvious peaks from Cu metal, Li2SO4 or other Li salts were observed. It is possible that the 

dispersed nature and small size of these phases make XRD observation difficult unless 

using high resolution XRD at a synchrotron source, which has been used for investigating 

discharge products in other Cu containing conversion materials60. Although the presence 
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of metallic Cu was not observed in the XRD patterns of discharged brochantite, the full 

reduction of Cu2+ to Cu0 is expected based on the high capacities observed. Without more 

structural characterization, it is difficult to determine what the other discharge products 

could be. Based on the formula of brochantite, LiOH, Li2O, and Li2SO4 are all reasonable 

compounds, and they likely form an amorphous matrix.  

 

 

Figure 2. 8 XRD pattern of (A) as-made film, and (B) after lithiation. 

2.3.3.3 X-ray Photoelectron Spectroscopy 

In order to better characterize the oxidation state of the Cu in brochantite during 

electrochemical reaction, XPS measurements were performed. The instability of LiOH 

under X-ray irradiation under high vacuum87 made it difficult to use XPS to better 

characterize the matrix products. Figure 2.9 shows the high resolution scans from the Cu 

2p region from different samples to identify the chemical states of the brochantite. Figure 

2.9A shows the XPS spectrum for the sample HT brochantite powder as a reference. Peaks 
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associated with the Cu 2p3/2 and Cu 2p1/2 shells were observed along with shake-up satellite 

bands at higher binding energies to each of the peaks (centered at 942.3 eV for Cu 2p3/2 

and 962.3 eV for Cu 2p1/2). These satellite peaks are characteristic of Cu2+ compounds and 

arise due to charge transfer transitions from the bound ligands into the unfilled d9 valence 

level of Cu2+  88. The broader Cu 2p peaks in Cu2+ containing compounds compared to Cu+ 

and Cu0 compounds is due to the coupling between unpaired electrons in the paramagnetic 

Cu2+. The peaks were deconvoluted and could each be fitted to two peaks as noted by the 

black dotted lines (approximately 935.2 eV and 933.2 eV for Cu 2p3/2, 955.1 eV and 953.0 

eV for Cu 2p1/2). Because of the two types of Cu-O bonds in brochantite (i.e., Cu-O-Cu 

and Cu-O-SO3), the Cu 2p peaks represent a combination of CuSO4 (936.0 eV) and CuO 

(933.1 eV) type contributions89, which can also contribute to the broadness of the peaks. 

The XPS spectrum of the HT brochantite nanoplates is in close agreement to that obtained 

for naturally occurring brochantite mineral89.  

In Figure 2.9B, the XPS spectrum for the HT brochantite electrode (with carbon black 

and PVDF) prior to electrochemical cycling is shown. Deconvolution of the Cu 2p3/2 peaks 

indicated an increase in peak area for the higher binding energy chemical environment 

compared to the brochantite powder. Because the XRD pattern of the electrodes showed 

the brochantite structure did not change after film preparation, this small difference may 

reflect interactions between the Cu and the fluorides in PVDF.   
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Figure 2. 9 XPS on HT brochanite (A) powder, (B) untested film, (C) after lithiation to 

200 mAh/g, (D) after lithiation to 447 mAh/g, (E) after lithiation to 474 mAh/g followed 

by delithiation (charge capacity of 343 mAh/g). 

After the film was lithiated to a capacity of about 200 mAh/g (corresponding to 

insertion of 0.85 Li+/Cu), shoulders appeared at lower binding energies at 932.5 eV for Cu 

2p3/2 and 952.4 eV for Cu 2p1/2, as noted by the red dotted lines (Fig. 2.9C). The intensity 

of the shake-up bands also decreased significantly. Both of these observations indicate the 

presence of lower valence species such as Cu+ or Cu0. Because the binding energies and 

peak widths for Cu+ and Cu0 are very similar (932.3 eV for Cu and 932.4 eV for Cu2O), it 

is difficult to identify which oxidation state is present90,91. Deconvolution of the Cu 2p3/2 

peak (Fig. 2.9C) showed a much lower CuSO4-type contribution to the chemical 
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environment compared to CuO. The peak attributed to Cu+ or Cu0 had the highest intensity 

of the three contributions.  

Lithiation of a film to a capacity of 447 mAh/g (1.89 Li+ inserted/Cu) resulted in a 

spectrum as shown in Figure 2.9D, where the satellite bands completely disappeared and 

only the Cu 2p peaks associated with Cu+ or Cu0 remained. Deconvolution of the Cu2p3/2 

peak showed contributions from three peaks at 931.3 eV, 932.5 eV and 933.5 eV (Fig. 

2.9D). Since the discharge capacity for the film was 94.3% of the theoretical capacity for 

brochantite, it is likely that most of the copper is in the form of Cu0. Hence, the large peak 

at 932.5 eV is assigned to Cu0. Because of the disappearance of the satellite peaks, the 

small peak at 933.5 eV may be due to Cu+, while the peak at the lowest binding energy 

may be due to Cu interactions with Li. Since these XPS results suggest that the Cu in the 

fully discharged brochantite is completely reduced, but no Cu0 reflections were observed 

in the XRD after lithiation (Fig. 2.9D), this suggests that the Cu must be in the form of very 

small nanoparticles. Unfortunately, the extreme beam sensitivity of the lithiated 

brochantite made it difficult for visualization of these particles using TEM. 

Figure 2.9E shows the XPS spectrum of a brochantite film after one 

lithiation/delithiation cycle. The presence of Cu2+ after charging is apparent due to the large 

peak at 934.9 eV, which is associated with Cu bonding to sulfate. Other XPS studies on 

lithiation of CuO92 and Cu3B2O6
47 did not observe recovery of Cu2+ after charging. In the 
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case of Cu3B2O6, improving the electronic conductivity by adding 65 wt% of carbon in the 

electrode was effective in improving reversibility and resulted in recovery of the Cu2+ peaks 

after charging47. Since the Cu2+ peaks were observed in our electrodes with only 20 wt% 

carbon, this suggests that the nanostructured morphology facilitated good reversibility in 

the conversion reaction, even for a poorly conducting material like brochantite. The 

discharge capacity observed in this sample was 474 mAh/g and charge capacity was 343 

mAh/g, indicating the electrode was almost fully lithiated but during charging the copper 

was not fully re-oxidized to Cu2+. The XPS spectrum is consistent with these results since 

the peak from Cu0 (or Cu+) is still present.  

2.3.3.4 Energy Dispersive Spectrometer 

Given that the XPS results indicate that the conversion reaction does have some 

reversibility due to the presence of Cu2+ after the electrode was fully lithiated and then 

charged, the poor capacity retention observed in the brochantite electrodes is likely due to 

some other reason. Upon disassembly of a cell that was cycled 20 times, the Li metal 

counter electrode was observed to have some brown coloration. Figure 2.10 shows the 

SEM micrograph and energy dispersive x-ray spectroscopy (EDS) analysis of the Li metal 

once removed from the cell. Under backscattered electron imaging mode, a phase clearly 

distinctive from the background can be observed. EDS analysis of this region confirmed 

this phase to be copper metal. Therefore, we believe that the poor capacity retention upon 
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extended cycling of the brochantite nanoplates is due to copper dissolution into the 

electrolyte and re-deposition on the Li counter electrode. This would result in fewer Cu 

atoms available in the electrode to participate in the electrochemical reaction and coating 

of the Li electrode, both of which would affect the cycling performance. The oxidation of 

Cu0 to Cu+ species that dissolve in the electrolyte has been observed in other Cu-containing 

conversion materials46,93.   

 

 

Figure 2. 10 SEM and EDS of Cu metal deposition on Li counter electrode after cycling. 

2.4 Conclusion 

In conclusion, we found that brochantite can undergo an electrochemical reaction with 

lithium, with nanostructured morphologies demonstrating the theoretical discharge 

capacity based on the 2 electron reduction of Cu2+. Despite occupiable volume calculations 

that show topotactic Li+ insertion into brochantite might be feasible, we found that 
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brochantite with nanoplate structure underwent a conversion reaction based on XPS results 

showing formation of Cu0 after lithiation. XRD characterization suggested that the 

discharge products consist of Cu nanoparticles too small to be detected by X-rays within 

an amorphous matrix. High Coulombic efficiencies indicate that the conversion reaction in 

brochantite nanoplates has high reversibility, unlike other Cu conversion materials such as 

CuF2. However, poor capacity retention was observed due to Cu dissolution from 

brochantite during charging. The results indicate that copper hydroxysulfate materials such 

as brochantite may be promising electrode materials for lithium-ion batteries if this 

dissolution problem is addressed. Further work on similar materials containing different 

transition metals may lead to other promising targets with improved cycling performance 

and higher discharge potentials.   

 



46 

 

 3: JAROSITE AS CATHODE ELECTRODES FOR LITHIUM-ION BATTERY 

3.1 Introduction 

Recently, there has been a great deal of interest in polyanion [(XOn)
m-] materials for 

Li-ion battery electrodes due to their low cost, good stability, and safety. Materials with 

sulfate and phosphate anions have been known to form a wide range of structural 

arrangements. For example, naturally occurring metal copper hydroxysulfate minerals of 

the form Mx(OH)y(SO4)n are found in a variety of expanded framework, tunnel, and layered 

structures66. Such structures may provide pathways for effective Li+ diffusion and the 

presence of mixed anions may be used to tune the redox potential of the metal and create 

different environments for Li+ insertion. In our previous work94, we reported the 

electrochemical study of the mixed anion material Cu4(OH)6SO4, also known as the 

mineral brochantite. We found that microwave hydrothermal synthesis was effective for 

obtaining nanostructured brochantite with a nanoplate morphology using short reaction 

times. The brochantite materials underwent a conversion reaction upon reaction with 

lithium, but capacity retention was limited due to Cu dissolution from brochantite during 

charging.  

To expand this work, we have chosen to study the morphology and electrochemical 

properties of materials in the jarosite family of compounds prepared using microwave 
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hydrothermal reaction. Jarosite, which has a chemical formula of KFe3(OH)6(SO4)2, is a 

widespread mineral on Earth95–97 and is found in the oxidized zones of sulfide ore deposits, 

acid sulfate soils, hydrometallurgical and bioleaching systems, and fluvial environments 

contaminated by acid mine drainage95,98,99. It was also identified via Mössbauer 

spectroscopy at the Eagle crater landing site of the Mars Opportunity rover100,101, which is 

mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate 

conditions102. The precipitation of jarosite-type compounds is commonly used in the 

metallurgical industry to eliminate dissolved ions and is especially effective for removing 

certain trivalent ions such as Al3+, Cr3+, In3+, and Ga3+, which substitute Fe3+ in the jarosite 

structure103. Jarosites have also attracted considerable attention as prominent models of a 

Kagomé Heisenberg-type antiferromagnet because of their unusual magnetic property of 

spin frustration104.  

 

Figure 3. 1 (A) Polyhedron representation of jarosite KFe3(SO4)2(OH)6 unit cell; (B) 

layered structure when viewing along the [210] direction; (C) vacant channels when 
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viewing along the [-1-21] direction. The hydroxyl group is represented as one unit in 

turquoise. 

Recently, jarosite compounds have been investigated as electrodes for Li-ion batteries 

due to their interesting structure105–108. The jarosite family belongs to the rhombohedral 

space group 𝑅3̅𝑚 and has a general chemical formula of AM3(SO4)2(OH)6  where A is 

typically a monovalent ion such as K+, Na+, Ag+, NH4
+ and H3O

+, and M is a trivalent 

cation (Fig. 3.1A)109. The trivalent ions adopt a slightly distorted octahedral geometry in 

the jarosite framework110 and these octahedral layers are well separated by layers of sulfate, 

hydroxide, and A cations along the c-axis (Fig. 3.1B). Jarosite can also be classified as a 

layered mineral with Kagomé layers110. The triangular subunit of the Kagomé lattice is 

composed of a sulfate anion, which caps three vanadium-oxygen octahedra that form a 

layered corner-sharing triangular network, and this basic building block is not perturbed by 

the alkali ion102. Jarosites can be considered tunnel structures as well, since channels 

containing the A cations can be observed along the [-1-21] direction (Fig. 3.1C). The open 

channel structure may allow for effective Li+ diffusion when using jarosite materials as 

electrodes in Li-ion batteries. 

So far, most of the investigations have focused on the electrochemical properties of 

KFe3(OH)6(SO4)2, which demonstrated reversible capacities of 117 mAh/g at 0.2 C when 

used as an insertion-type cathode (cycling between 1.6 – 4.0 V vs. Li/Li+)106, and capacities > 
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1300 mAh/g when used as a conversion-type anode (cycling between 0.005 – 3 V vs. 

Li/Li+)108 when prepared in a 2D nanosheet morphology. These studies demonstrate the 

potential that jarosite-based electrodes have as high performance electrodes for Li-ion 

batteries. However, a systematic study of the effect of composition (i.e. the choice of A, 

M3+, and also presence of intercalated H3O
+ or H2O molecules) on the electrochemical 

properties has yet to be performed. As the jarosite structure can accommodate many 

different ions, it may be also a good starting point for developing cathodes for the storage 

of larger cations, such as Na+.  

Here we report the synthesis of several jarosite compounds using microwave-assisted 

hydrothermal methods for the first time, in order to control the particle size and shorten the 

reaction time compared to conventional hydrothermal reaction. Besides NaFe3(SO4)2(OH)6 

(Na,Fe-jarosite) and KFe3(SO4)2(OH)6 (K,Fe-jarosite), we also investigated the V3+ 

analogues NaV3(SO4)2(OH)6 (Na,V-jarosite) and KV3(SO4)2(OH)6 (K,V-jarosite) to 

further study the effects of the trivalent and alkali metals on the observed electrochemical 

properties for Li+ insertion. To our knowledge, this is the first time the electrochemical 

properties of the vanadium jarosites have been studied. Na,Fe-jarosite was also evaluated 

in half-cells with Na metal counter electrodes to determine if electrochemical 

desodiation/sodiation could be possible. Ex-situ X-ray diffraction (XRD) and scanning 

electron microscopy (SEM) were performed in order to characterize the structure and 
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identify changes occurring during the electrochemical reactions. The fundamental science 

gained from this study will add to the existing knowledge base related to iron and 

vanadium-based electrodes for lithium-ion batteries and can be applied to obtain better 

understanding of the electrochemical properties other mixed anion materials.  

3.2 Experimental Methods 

3.2.1 Synthesis of Jarosite 

Jarosite particles were prepared in a microwave hydrothermal reactor (CEM Discover 

SP) using CEM 35 mL quartz vessels containing Teflon PFA liners, with vigorous 

magnetic stirring during the reaction. Iron (III) chloride, vanadium (III) chloride, potassium 

sulfate, sodium sulfate, and sulfuric acid were obtained from Sigma-Aldrich and used as 

received. After the reaction, the precipitates were separated using vacuum filtration and 

dried at 100 oC. Afterwards, the powder was collected, washed with ethanol and water 

several times and dried at 60 oC overnight. 

3.2.1.1 NaFe3(SO4)2(OH)6 

A mixture was prepared containing 5 mL of a 0.3 M FeCl3 solution and 5 mL of a 0.6 

M Na2SO4 solution. The pH of the mixture was adjusted to 1.6 by adding H2SO4 and then 

transferred to the reaction vessel. The suspension was heated to 100 ℃ within 10 min in 

the microwave reactor and held for 10 min. The obtained precipitate was yellow in color. 
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3.2.1.2 KFe3(SO4)2(OH)6 

Identical procedures were performed as for Na,Fe-jarosite except the precursor 

consisted of 5 mL of 0.6 M K2SO4 added to 5 mL of 0.3 M FeCl3 solution. The obtained 

precipitate was yellow in color. 

3.2.1.3 NaV3(SO4)2(OH)6 

The precursor mixture contained 5 mL of a 0.3 M VCl3 solution and 5 mL of a 0.6 

M Na2SO4 solution, which was heated to 150 ℃ within 10 min and held for 5 min. The 

obtained precipitate was brown in color. 

3.2.1.4 KV3(SO4)2(OH)6 

Identical procedures were performed as for Na,V-jarosite except the precursor 

consisted of 5 mL of 0.6 M K2SO4 added to 5 mL of 0.3 M VCl3 solution. The obtained 

precipitate was brown in color. 

3.2.2 Materials Characterization 

3.2.2.1 X-ray Diffraction 

XRD was used to perform structural characterization on the prepared jarosite powders. 

XRD data was collected using a Panalytical X’pert Pro with CuKα radiation operated at 40 

kV/40 mA. Electrodes characterized after electrochemical tests were rinsed several times 

with ethanol and dried at 60 oC overnight prior to XRD measurements. Rietveld refinement 

was performed using HighScore Plus. Reference XRD patterns were obtained from the 

International Centre for Diffraction Data (ICDD) database or calculated from CIF files 

using Diamond 3.2. The following reference patterns were used: NaFe3(SO4)2(OH)6 (PDF 

00-036-0425), K0.81(H3O)0.19Fe2.88(OH2)0.36(OH)5.64(SO4)2 (pattern calculated in Diamond 
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using the structure from ref.111 and referred to as (K,H3O)Fe3(SO4)2(OH)6 for convenience), 

KFe3(SO4)2(OH)6 (PDF 01-076-0629), NaV3(SO4)2(OH)6  (pattern calculated in Diamond 

using the structure from ref.112), and KV3(SO4)2(OH)6 (PDF 00-056-0863). 

3.2.2.2 Scanning Electron Microscopy 

SEM studies were performed using a XL 30 ESEM-FEG. Powder samples were 

dispersed into ethanol with ultrasonication for 5 minutes and then dropped onto a Si wafer 

for SEM imaging. To mitigate charging, the jarosite samples were sputter coated with a 

thin layer of Au prior to SEM observation. 

3.2.3 Electrochemical Measurement 

Jarosite composite electrodes were prepared by mixing the jarosite active material 

with polyvinylidene difluoride (PVDF) binder (Kynar) and SuperP Li carbon black 

(TimCal) with a ratio of 80:10:10 by weight. N-methyl-2-pyrrolidone was added dropwise 

and the slurry was then stirred overnight to form a homogenous free-flowing paste. This 

slurry was then coated onto a piece of Al foil using an automated film coater equipped with 

a Meyer rod and dried in an oven at 120 oC for 3 h. The foil was then punched into disks 

and weighed prior to electrochemical testing. 

Pouch cells were assembled in an argon-filed glove box using lithium metal foil as 

the counter electrode, Celgard 2500 as separator, and 1 M LiPF6 (EC:DMC:DEC, 4:2:4 in 

volume, LBC 3051C, MTI) as electrolyte. Galvanostatic or potentiodynamic 

measurements were performed on a BioLogic VMP3. For galvanostatic measurements, C-
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rates were determined using a theoretical capacity of 160.54 mAh/g according to the 1 

electron reduction for each of the 3 Fe (insertion of 3 Li+) per KFe3(OH)6(SO4)2 formula 

unit. The current density corresponding to a C/20 rate is 8 mA/g. As the theoretical 

capacities of the four types of jarosite were all around 160 -170 mAh/g, 8 mA/g was used 

as the current density for the galvanostatic measurements of all four jarosites. For 

potentiodynamic measurements, a 5 mV voltage step was used with a threshold current 

density of 8 mA/g of jarosite. 

The Na,V-jarosite was also evaluated in Na-half cells using Na metal as the anode, 

Celgard 2500 as separator, and 1 M NaClO4 in propylene carbonate (PC) as electrolyte. 

Galvanostatic measurements were performed on a BioLogic VMP3 between 1 – 4 V vs. 

Na/Na+ and current density of 8 mA/g. 

3.3 Results and Discussion 

3.3.1 Structural Characterization of Synthesized Jarosites 

Synthetic jarosite is typically prepared using precipitation in acid solutions104,113,114. 

The iron jarosites can be prepared by adding ferric ion into acidic sulfate solutions as shown 

in Equation (1)102: 

3M3+ + A+ + 2SO4
2- + 6H2O → AM3(SO4)2(OH)6 + 6H+      (1) 
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with A = Na, K, Rb, NH4, Ag, H3O, etc. Although ionic size considerations115 suggest that 

the end-member lithium jarosite, i.e. LiM3(SO4)2(OH)6, does not exist, some solid 

solubility of lithium may occur in other jarosite species. For instance, trace amounts of 

lithium (~0.2 wt%) were observed incorporated into KFe3(SO4)2(OH)6
116.  

Previous synthetic methods to prepare jarosites required long reaction times and the 

morphology of the resulting particles was hard to control. Bigham et al. used a thermal 

gradient incubator over a temperature span of 2 to 40 oC and reaction time of 10 days; the 

K,Fe-jarosite particles formed mostly aggregates composed of smooth, rounded particles 

with diameters on the order of 2-5 µm that were overlaid with a H3O,Fe-jarosite crust113. 

Sandré and Gaunand used semi-batch reactors to precipitate Na,Fe-jarosite and obtained 

“cauliflower-like” materials about 30 µm in size after about 23 h114. To synthesize the 

vanadium analogues of the jarosite-group minerals, Dutrizac and Chen heated the reactants 

to 100 oC for 24 h and obtained precipitates as spheroidal or cauliflower-like aggregates of 

individual crystals about 3 µm103.  
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Figure 3. 2 SEM images of jarosite made using microwave-assisted hydrothermal method 

(A) Na,Fe-jarosite, (B) K,Fe-jarosite, (C) Na,V-jarosite, (D) K,V-jarosite. 

Here, we used microwave-assisted hydrothermal synthesis to obtain jarosite with 

more uniform morphology using a shorter reaction time. SEM images showed that the 

Na,Fe-jarosite powders (Fig. 3.2A) were faceted polyhedra with smooth surfaces and 

diameters around 2-3 µm. Some of the particles were observed in aggregates. When 

changing the alkali metal from Na+ to K+, the morphology was quite different. The obtained 

K,Fe-jarosite particles (Fig. 3.2B) were found mostly as aggregates composed of smooth, 

rounded particles with diameters smaller than 2 µm. Similarly, the morphologies of Na,V-

jarosite and K,V-jarosite (Fig. 3.2C and Fig. 3.2D) were quite different. The Na,V-jarosite 

powder consisted of rose-like aggregates with diameters of about 2 µm, while the K,V-
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powders were rounded and pill-shaped with smooth surfaces. From these results, we can 

see that the composition plays an important role in the morphological variation of the 

jarosite samples. However, the morphology within each type of jarosite was fairly uniform 

using microwave hydrothermal reaction. 

 

 

Figure 3. 3 XRD pattern of synthesized materials, brackets indicate composition from 

corresponding reference pattern(s). (A) Na,Fe-jarosite [NaFe3(SO4)2(OH)6]; (B) K,Fe-

jarosite [(K,H3O)Fe3(SO4)2(OH)6] and [KFe3(SO4)2(OH)6]; (C) Na,V-jarosite 

[NaV3(SO4)2(OH)6]; (D) K,V-jarosite [KV3(SO4)2(OH)6]. 
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To identify the crystal structures of the synthesized samples, XRD was performed. 

Figure 3.3 shows the XRD patterns with the reference patterns described in the 

Experimental Section shown for comparison. The powder XRD analysis showed that the 

jarosite mineral was the dominant phase in all compositions, with no other impurity phases 

observed. As shown in Figure 3.3A and Figure 3.3C, the reflections from the Na-

containing powders showed good agreement to the peak positions and intensities in the 

reference patterns112,117. Figure 3.3B shows the XRD pattern of the as-synthesized K,Fe-

jarosite powder. By comparing with the reference patterns for (K,H3O)Fe3(SO4)2(OH)6
117 

and KFe3(SO4)2(OH)6
118, we found that instead of pure K,Fe-jarosite, some K+ was 

substituted by H3O
+ in the as-synthesized sample, as indicated by the greater peak 

separation between the (101) and (003) peaks and confirmed by performing the refinement 

(Table 3.1). The XRD pattern of the K,V-jarosite (Fig. 3.3D) showed a good match in the 

peak positions to KV3(SO4)2(OH)6
103 with enhanced intensity in the (003), (006), and (009) 

reflections compared to the reference pattern. The strong (00l) reflections indicate a 

preferred orientation and suggest that the c-axis is along the thickness direction of the pill 

structures, which tend to lay flat on the substrate (Fig. 3.2D).  
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Table 3. 1 Refined site occupancy and lattice constants for jarosites. 

 

 Na,Fe-jarosite K,Fe-jarosite Na,V-jarosite K,V-jarosite 

Wyckoff  

Position 

a = b = 7.337 

c = 16.638 

a = b = 7.320 

c = 16.989 

a = b = 7.306 

c = 16.881 

a = b = 7.273 

c = 17.387 

Element Occupancy Element Occupancy Element Occupancy Element Occupancy 

3a Na 0.815 K 0.762 Na 0.866 K 0.847 

3a H3O 0.185 H3O 0.238 H3O 0.134 H3O 0.153 

9d Fe 0.977 Fe 0.811 V 0.909 V 1 

6c S 1 S 1 S 1 S 1 

6c O1 1 O1 1 O1 1 O1 1 

18h O2 1 O2 1 O2 1 O2 1 

18h O3 1 O3 1 O3 1 O3 1 

18h H 1 H 1 H 1 H 1 

 

The lattice parameters and c/a values for the reference and synthesized jarosites are 

listed in Table 3.2, with the values for the synthesized powders obtained from the Rietveld 

refinement allowing for the possibility of H3O
+ insertion in the structure (Table 3.1).  
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Table 3. 2 Lattice parameters a, c and c/a values from references and as-made Na,Fe-

jarosite, (K,H3O),Fe-jarosite, Na,V-jarosite and K,V-jarosite.  

Jarosite 
Reference (Å) Synthesized (Å) 

a c c/a a c c/a 

Na,Fe 7.32 16.59 2.27 7.34 16.64 2.27 

K,Fe 7.33 17.14 2.34 7.32 16.99 2.32 

Na,V 7.28 16.89 2.32 7.31 16.88 2.31 

K,V 7.27 17.40 2.39 7.27 17.39 2.39 

 

The compositions obtained from the refinement results are shown in Table 3.3. 

According to the results, both sodium compounds had a small amount of Na+ and M3+ 

deficiency, with the iron compound showing more Na+ deficiency but the vanadium one 

showing more M3+ deficiency.  

 

Table 3. 3 Compositions of jarosite compounds derived from refinement results 

Jarosite Composition 

Na,Fe Na0.815(H3O)0.185Fe2.931(OH2)0.207(OH)5.793(SO4)2 

K,Fe K0.762(H3O)0.238Fe2.432(OH2)1.704(OH)4.296(SO4)2 

Na,V Na0.866(H3O)0.134V2.728(OH2)0.815(OH)5.185(SO4)2 

K,V K0.847(H3O)0.153V3(OH)6(SO4)2 
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The composition of the jarosites can deviate from the stoichiometric AM3(SO4)2(OH)6 

formula due to deficiencies in A+ and/or M3+. The hydronium ion (H3O
+) can substitute for 

the interlayer A+ cation, as shown in Equation (2)102: 

AM3(OH)6(SO4)2+ x H3O
+ → A1-x(H3O)xM3(OH)6(SO4)2  (2) 

For jarosites with M3+ deficiencies, H2O can form from protonation of an intralayer 

hydroxyl group to maintain charge neutrality of the compound, as shown in Equation (3)102: 

AM3(OH)6(SO4)2+ 3x H+→ AM3-x(OH2)3x(OH)6-3x(SO4)2  (3) 

For the K,Fe-jarosite, 0.238 H3O
+ was substituted for the interlayer K+ per unit 

formula according to the Rietveld refinement. For (K,H3O),Fe-jarosite, when 0.19 K+ ions 

were substituted by H3O
+, c/a = 2.3492111, whereas for (K,H3O),Fe-jarosite with 0.49 K+ 

substituted by H3O
+, c/a = 2.3192119. Due to the difference in ionic radii (K+ is 138 pm 

while H3O
+ is 99 pm)120, the bigger K+ increases the c value of the unit cell. Accordingly, 

the increase in a and decrease in c (and the ratio c/a) in this system reflects the replacement 

of K+ by H3O
+. The ratio of c/a = 2.3208 and composition obtained for the synthesized 

K,Fe-jarosite is consistent with these trends from the literature113. 

According to Figure 3.1, the c-axis is along the layer-stacking direction for the 

trivalent ion octahedra. From Table 3.2, the c/a value of the synthesized K,V-jarosite is 

the highest. This could reflect a slower growth rate in the c-direction due to the larger 

interlayer spacing, which may be why the K,V-jarosite forms the pill morphology with 

preferred orientation but the other compounds do not. 
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3.3.2 Electrochemical Characterization 

To evaluate the electrochemical properties of the different jarosite samples, 

galvanostatic testing using a C/20 C-rate and potential limitation was performed on the 

composite electrodes.  

3.3.2.1 Na,Fe Jarosite 

The electrochemical properties of Na,Fe-jarosite in Li cells were previously 

investigated in materials prepared using conventional precipitation105 and with nanosheet 

morphology106. In the samples prepared using the conventional precipitation method, a 

sloped voltage discharge (lithiation) profile with capacity ~110 mAh/g was observed 

between 4 – 2.0 V vs. Li/Li+; in the nanosheets case, ~130 mAh/g was observed between 

4 – 1.6 V vs. Li/Li+ attributed to the insertion of < 3 Li+ per formula unit, corresponding to 

the 1 electron reduction of each Fe3+. As shown in the voltage profile and differential 

charge (dQ) plot (Fig. 3.4A), the Na,Fe-jarosites synthesized using microwave 

hydrothermal reaction also displayed similar characteristics in the first discharge. Ding et 

al. showed that the morphology of jarosite influence the electrochemical performance 

dramatically, the capacity of bulk jarosite is 4-13 times lower than the jarosite nanosheet106.  
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Figure 3. 4 Na,Fe-jarosite voltage profiles when (A) discharged to 1.5 and (B) 1.0 V vs. 

Li/Li+; inset shows differential plot for first discharge; (C) XRD patterns of pristine Na,Fe-

jarosite pristine electrode, after lithiation to different voltages, and after one full 

discharge/charge cycle. Peaks labelled with ○ are from the Al substrate. (D) Charge profiles 

after discharge to 1 V vs. Li/Li+.  

The capacity retention over many cycles (Fig. 3.5A) was not as good as those 

previously reported, likely because of the lower fraction of conducting carbon black used 
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in our composites (10 wt% rather than 20 wt% in the other studies105,106) as well as the 

large particle sizes. Detailed XRD and transmission electron microscopy (TEM) studies 

showed that lithiation of Na,Fe-jarosite caused a transformation to a disordered, amorphous 

structure after discharge to 2 V vs. Li/Li+ 105. As a result of this phase transformation, the 

active material could become disconnected and less electronically conducting, explaining 

the lower capacities after the first cycle. The slightly more sloped voltage curves starting 

from the second cycle are also consistent with previous observations105. Ex-situ XRD 

examination of our electrodes after discharge to 2 and 1.5 V (Fig. 3.4C) showed a large 

decrease in peak intensity, consistent with the amorphization of the Na,Fe-jarosite.  

 

 

Figure 3. 5 Capacity retention of (A) Na,Fe-jarosite at 1.5 V- 4 V; (B) Na,V-jarosite at 1 

V- 4 V; (C) K,V-jarosite at 1 V- 4 V. 

The previous studies did not investigate the characteristics of Na,Fe-jarosite when 

lithiated to lower potentials. When decreasing the discharge cutoff to 1 V, the voltage curve 

became more sloped and the dQ plot showed new peaks centered at 1.5 and 1.2 V vs. Li/Li+ 
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(Fig. 3.4B). A flat plateau was then observed at 1.17 V. The total capacity for the first 

discharge was 516 mAh/g, which is slightly higher than the theoretical capacity of 498 

mAh/g corresponding to insertion of 9 Li+ per jarosite formula unit, i.e. the 3 electron 

reduction of Fe3+ to Fe0. This suggests that Li may be first intercalated into the Na,Fe-

jarosite structure at high potentials, followed by the conversion reaction at lower voltages. 

The observed overcapacity may be from side reactions related to the formation of a solid 

electrolyte interface (SEI) layer during the lithiation, which was also observed in FeFx 

electrodes during discharge within the conversion reaction step between 1.7 and 1.0 V121. 

The XRD pattern of the Na,Fe-jarosite discharged to 1 V did not have reflections from 

jarosite or the conversion reaction products, indicating that they were amorphous. After 

lithiation to 1 V, the first charge capacity was 323 mAh/g, corresponding to removal of 

5.84 Li+ per jarosite (Fig. 3.4D). The XRD pattern of the electrode after discharge to 1 V 

and charging to 4 V showed the material remained amorphous (Fig. 3.4C).  

In the second cycle when using the 1 V cutoff voltage (Fig. 3.4B), the sloped region > 

2.0 V corresponding to the Li intercalation reaction disappeared, and instead a sloped 

plateau at 1.5 V was observed. The different features in the first and second cycles suggest 

a structural change in the first discharge that is not reversible. Presumably, the conversion 

reaction in the first discharge occurs at 1.1 V, while in the second cycle it increases to 1.5 

V. This increase in discharge potential is also observed in Fe2O3 conversion electrodes. 
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The potential difference is as small as 0.05 V in nanostructured morphologies122–124, but is 

more pronounced in micron-sized powders125, consistent with our observations. As a result 

of the inductive effect caused by the more ionic sulfate and hydroxyl groups63,64 in jarosite, 

the observed discharge voltages are higher than those observed in Fe2O3, where the plateau 

associated with formation of Fe0 is usually around 0.7 V122–126. However, the smaller 

number of sulfate anions in the jarosites results in a lower discharge voltage than that 

observed in Fe2(SO4)3, which is around 3.5 V127. Subsequent discharges were also 

characterized by flat plateaus, but at progressively lower potentials compared to the 2nd 

cycle (Fig. 3.4B). The capacities were observed to decrease quite rapidly, dropping quickly 

to 20 mAh/g after 20 cycles, which is only 4% of the first discharge capacity. This indicates 

a poor reversibility, likely due to the low electronic conductivity of the ionic conversion 

products formed. Studies on failure mechanisms in conversion electrodes also showed that 

the metal nanodomains formed during discharge can catalyze the formation of a SEI layer 

after cycling, and the SEI growth exacerbated the capacity loss51,52,128.  

3.3.2.2 K,Fe Jarosite 

The electrochemical properties of K,Fe-jarosite were previously investigated by Ding 

et al. in materials prepared in a nanosheet morphology with thickness of ~13 nm106,108 and 

as nanoplates grown on reduced graphene oxide107. In the nanosheets, redox peaks at 2.42 

and 1.85 V vs. Li/Li+ during lithiation and 2.09 and 2.97 V during delithiation were 



66 

 

observed during cyclic voltammetry. Galvanostatic cycling at 0.2 C revealed linear voltage 

curves and capacity of 117 mAh/g when cycled between 1.6 – 4.0 V vs. Li/Li+ at a 0.2C 

rate, which was 13X higher than the capacities observed in the bulk sample. In the work 

by Ding et al., both the nanosheets and the bulk sample (prepared by precipitation) showed 

insertion-type behavior during lithiation between 2.5 – 1.5 V, followed by conversion-type 

behavior at lower potentials108. As shown in Figure 3.6A, the K,Fe-jarosite synthesized 

here displayed negligible capacity at potentials > 1.5 V, but a plateau at 1.03 V and capacity 

of 477 mAh/g were observed when decreasing the potential limit to 1 V vs. Li/Li+. 

Compared with the jarosite nanosheet16, the capacity retention and the performance were 

not as good as the nanostructured jarosite, likely because of the lower fraction of 

conducting carbon black used in our composites (10 wt% rather than 20 wt%) as well as 

the large particle sizes. 
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Figure 3. 6 Voltage profiles of K,Fe-jarosite (A) discharged to 1 V, (B) charged to 4 V vs. 

Li/Li+. (C) XRD patterns of K,Fe-jarosite pristine electrode, after lithiation to 1 V, after 

one full discharge/charge cycle, and after 100 cycles. Peaks labelled with ○ are from the 

Al substrate and peaks labelled with # are from KLiSO4. 

This plateau is similar to the one observed in the previous work and is slightly lower 

than the theoretical capacity of 482 mAh/g corresponding to the 3 electron reduction of 

Fe3+ in KFe3(SO4)2(OH)6. The high discharge capacity observed in the K,Fe-jarosite 

despite the considerable presence of H3O
+ and H2O is interesting; moreover the plateau 

corresponding to the Fe0 formation is at almost the same voltage as the one observed in the 
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Na,Fe-jarosite. The absence of the sloped profile that was observed in the Na,Fe-jarosite 

as well as in the K,Fe-jarosite nanosheets suggests that the K,Fe-jarosite synthesized here 

underwent the conversion reaction directly, without the Li+ insertion reaction first. The c-

lattice parameter of our synthesized K,Fe-jarosite was 16.99 Å (Table 3.2), smaller than 

that found in the nanosheets (17.224 Å), which had a reported composition of 

K1.06Fe3(SO4)2.11(OH)5.84
106. Since our Na,Fe-jarosite showed similar electrochemical 

characteristics as the Na,Fe-jarosite nanosheets despite the micron-sized particles, the 

K,Fe-jarosite data suggest that the Li+ insertion reaction is more dependent on the jarosite 

composition. It is possible that the replacement of K+ by H3O
+ and decreased c-axis spacing 

in our K,Fe-jarosite materials prevented the Li+ insertion reaction from occurring in the 

higher potential range.  

Other than the first discharge, the electrochemical properties of K,Fe-jarosite were 

very similar to those observed in Na,Fe-jarosite. The second discharge potential was also 

higher at about 1.42 V, but progressively decreased in the third, fourth, and fifth discharge 

to 1.33, 1.16, and 1.12 V, respectively. The charge profiles (Fig 3.6B) also looked similar 

to those observed in Na,Fe-jarosite (Fig. 3.4D). 

To study the structural changes, ex-situ XRD was performed on the fresh, lithiated 

and lithiated/delithiated K,Fe-jarosite electrodes. Figure 3.6C shows that after lithiation, 

all of the reflections from K,Fe-jarosite disappeared, suggesting the crystal structure 
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completely collapsed and became amorphous. Reflections around 2θ = 22.4, 28.7 and 34.8 

were also observed during the lithiation, which is attributed to the formation of KLiSO4 as 

a conversion reaction production.   

3.3.2.3 Na,V Jarostie 

To our knowledge, the electrochemical properties of the vanadium-jarosite analogs 

have not been previously studied. The slightly larger c-axis spacing in the V-jarosites, 

along with the decreased tendency for vanadium compounds to undergo conversion 

reactions compared to iron compounds, make their electrochemical investigation 

worthwhile. Figure 6 shows the results for the first 5 cycles for Na,V-jarosite. The first 

discharge capacity was 164 mAh/g, corresponding to insertion of 2.88 Li+ per jarosite unit 

for formation of Li2.88NaV3(SO4)2(OH)6, slightly lower than the theoretical value of 171 

mAh/g corresponding to the insertion of 3 Li and reduction of V3+ to V2+, as shown in 

Equation (5).  

NaV3
3+(SO4)2(OH)6 + 3Li+ + 3e- → Li3NaV3

2+(SO4)2(OH)6      (5) 

The first charge capacity was 68 mAh/g, corresponding to removal of 1.19 Li+ per 

jarosite unit, and resulting in the formation of Li1.69NaV3(SO4)2(OH)6. Subsequent 

discharges showed reversible insertion of about 1.1 Li+ per jarosite with a sloped voltage 

profile between 1.0 – 1.5 V vs Li/Li+. The capacity decreased gradually with cycling, 

reaching about 40 mAh/g after 30 cycles (Fig. 3.5B).  
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Figure 3. 7 Na.V-jarosite (A) voltage profile with differential charge plot for first 2 cycles 

in inset and (B) XRD after cycling between 1 – 4 V vs. Li/Li+; (C) voltage profile and (D) 

XRD after cycling between 10 mV – 3 V vs. Li/Li+. 

The reduction peaks in the dQ plot of the first discharge (Fig. 3.7A, inset) may include 

contributions from the formation of SEI layer, and the dQ plots of the following cycles 

show two broad peaks at about 1.4 and 1.1 V, which are attributed to the reversible insertion 

of Li+. This may be similar to the Li+ insertion process associated with the V3+/V2+ couple 

in LixV2(PO4)3, which shows two reduction peaks at 1.74 and 1.66 V due to the presence 
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of a phase transition129. The potentials in the Na,V-jarosite are lower due to the presence 

of hydroxide groups, which decrease the voltage due to the induction effect. During 

charging, there is a sharp peak in the dQ plot at around 1.2 V during charging, which may 

be from Li+ insertion into the Na vacancies first, followed by the two broad peaks at 1.3 

and 1.6 V corresponding to Li+ extraction.  

The ex-situ XRD patterns (Fig. 3.7B) showed the Na,V-jarosite structure remained 

stable during discharging and charging, even after many cycles. Compared with the pristine 

electrode, the peaks in the lithiated jarosite were broader, but the positions were quite 

similar, indicating little volume change after Li+ insertion. According to the Wyckoff 

positions in the 𝑅3̅𝑚 space group (#166), there are two empty positions, the 9e and 3d 

sites, which could potentially be occupied by Li+ ions (Fig. 3.8). As shown in Figure 3.8B, 

the 9e sites are found in the empty spaces between the V-O octahedra layers, in the same 

layer as the Na+, while the 3d sites are found in the same layer as the V-O octahedra (Fig. 

3.8D). According to ref.105, Li+ intercalation into jarosite compounds tend to separate the 

octahedra layers, so the 9e sites are the more likely sites for Li+ insertion, even though the 

3d sites seem to along the empty tunnels seen when viewing along the [210] direction (Fig. 

3.8C). When comparing the calculated diffraction patterns for pristine Na,V-jarosite with 

that for Na,V-jarosite containing 3 Li+ per formula unit in the 9e position (Fig. 3.9), the 

main difference is that the ratios of peak intensities (012)/(003), (012)/(021), (012)/(113), 
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and (012)/(107) all increase in the lithiated material (Table 3.4), a trend we also observed 

in our experimental patterns.  

 

Figure 3. 8 Crystal structure image of Na,V-jarosite with Li+ in 9e sites viewing (A) along 

the [-1-21] direction and (B) along the [210] direction; Li+ in 3d sites (C) along the [-1-21] 

direction and (D) along the [210] direction. 

 

Figure 3. 9 Comparison of XRD patterns for Na,V-jarosite and Na,V-jarosite containing 3 

Li in the 9e sites calculated in Diamond.  
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Table 3. 4 Comparison of peak intensities in calculated XRD patterns for Na,V-jarosite 

and Na,V jarosite containing 3 Li in the 9e sites 

hkl 
Peaks ratio (012)/(hkl) 

in jarosite 

Peaks ratio (012)/(hkl) in jarosite 

with Li in 9e sites 
Change 

003 3.63 6.17 increase 

012 1.00 1.00  

021 1.01 1.32 increase 

113 0.78 0.92 increase 

107 2.28 2.64 increase 

 

 

After charging to 4 V, the aforementioned peak intensity ratios decreased, indicating 

the removal of Li+ from the 9e position. However, the diffraction intensities of the 

delithiated Na,V-jarosite were not as strong as in the pristine electrode, suggesting that not 

all of the inserted Li+ were removed. From the voltage profile (Fig. 3.7A), 2.88 Li+ were 

inserted per formula unit, but only about 1 Li+ was removed, consistent with the XRD 

pattern analysis. When looking along the [-1-21] direction, one-third of the Li+ sit in empty 

channels, while the rest reside in between the vanadium octahedra (Fig. 3.8A); these Li+ 

may be harder to remove during the charge, which can explain the higher capacity of the 

first discharge capacity compared to the first charge capacity. Hence, the reversible cycling 

of ca. 1 Li+ after the first discharge may be facilitated by the 9e sites in the open channels. 

Rietveld refinement was performed on the lithiated and delithiated electrodes and the lattice 
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parameters are shown in Figure 3.7B. After discharge to 1 V, both a and c lattice 

parameters increased, but then decreased after charging to 4 V. This suggests that Li+ 

insertion leads to an expansion of the unit cell and extraction of the Li+ causes the volume 

to decrease back.   

Similar to the Na,Fe-jarosite, when discharging Na,V-jarosite to lower potentials, the 

reaction changed to a conversion mechanism. Figure 3.7C shows the voltage profiles for 

Na,V-jarosite cycled between 10 mV – 3 V. The first discharge capacity reached 508 

mAh/g corresponding to insertion of 8.9 Li+, but dropped in subsequent cycles. XRD 

analysis after cycling showed that the peak intensities greatly decreased (Fig. 3.7D), 

suggesting amorphization, although some Na,V-jarosite peaks were still present after the 

first charge to 3 V. This is likely due to the presence of unreacted material.  

3.3.2.4 K,V Jarosite 

The voltage profiles for K,V-jarosite cycled between 1 – 4 V vs. Li/Li+ were similar 

to those observed in Na,V-jarosite (Fig. 3.10). The first discharge capacity was 105 mAh/g, 

corresponding to insertion of 1.90 Li+ per jarosite for formation of Li1.9KV3(OH)6(SO4)2. 

The first charge was 38 mAh/g, corresponding to removal of 0.68 Li+ per formula unit. 

Subsequent discharges showed reversible insertion of about 0.7 Li+ per jarosite with a 

sloped voltage profile between 1.0 – 1.5 V vs Li/Li+. Similar to Na,V-jarosite, the XRD 
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patterns of the lithiated and delithiated electrodes showed no large structural changes, 

which is consistent with an insertion reaction.  

Again, just as in the other jarosites, K,V-jarosite underwent a conversion reaction 

when discharged < 1 V. Figure 8C shows the voltage profiles for K,V-jarosite cycled 

between 10 mV – 3 V. The first discharge capacity reached 508 mAh/g corresponding to 

insertion of 8.9 Li+, but dropped in subsequent cycles. The discharge capacity of the 

second cycle was only 184 mAh/g, less than half of the first discharge capacity. XRD 

analysis after cycling showed that the peak intensities greatly decreased (Fig. 3.10D), 

suggesting amorphization, and some reflections due to the presence of unreacted material 

were still present. 
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Figure 3. 10 K,V-jarosite (A) voltage profiles and (B) XRD after cycling between 1- 4 V 

vs. Li/Li+; (C) voltage profiles and (D) XRD after cycling between 10 mV- 3 V vs. 

Li/Li+.  

3.3.2.5 Na Intercalation 

As the open framework structure in the jarosite may be able to facilitate the diffusion 

of larger cations, we chose Na,V-jarosite to further study the electrochemical properties in 

Na-cells. Galvanostatic testing using a C/20 C-rate and potential limitation between 1 – 4 

V vs. Na/Na+ was performed. Figure 3.11A shows the voltage profiles and the number of 

Na+ per unit formula for the first 5 cycles. In the first charge, the capacity observed at 
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around 3.1 V was equivalent to about 0.74 Na+ extracted from 

Na0.866(H3O)0.134V2.728(OH2)0.815(OH)5.185(SO4)2, but only 0.06 Na+ could be inserted back. 

After the first cycle, the capacity dropped rapidly, with only about 0.13 Na+ per formula 

unit reversibly inserted. Figure 9B shows the XRD patterns of the fresh electrode, sodiated 

electrode and sodiated/desodiated electrode. The peak positions remained the same, which 

indicates the structure did not change during the electrochemical process. It is possible that 

the capacity observed in the first charge is due to the oxidation of electrolyte or other side 

reactions. Although the Na,V-jarosite showed reversible Li+ insertion, it may not be 

suitable as an electrode for Na-ions due to the larger size of Na+ compared to Li+.  

 

 

Figure 3. 11 (A) Voltage profiles of Na,V-jarosite discharged/charged in Na-half cells; 

(B) XRD patterns of the fresh, sodiated and sodiated/desodiated electrodes.  
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3.4 Conclusion 

In conclusion, we found that jarosite compounds can undergo electrochemical 

reactions with lithium but not with sodium and may be promising candidates as new 

electrode materials. The work presented here demonstrates the basic voltage dependent 

behavior of these jarosite compounds as a function of composition and establishes the 

baseline for future studies that may seek to improve the cyclablity and capacity retention 

through strategies that have been used for other polyanion materials, such as particle-size 

reduction, advanced nanostructured architectures, and carbon coating. In general, the 

trivalent metal played an important role in the reaction mechanism and the alkali metal also 

influenced the reaction voltage.  

A first discharge capacity of 477 mAh/g was observed in K,Fe-jarosite and 516 mAh/g 

was observed for Na,Fe-jarosite, consistent with the 3 electron reduction of Fe3+ and 

conversion reaction mechanism at low potentials. During the first discharge, Na,Fe-jarosite 

underwent a Li+ insertion reaction first at potentials > 1.5 V vs. Li/Li+, followed by a 

conversion reaction. This insertion reaction was not observed in K,Fe-jarosite due to the 

substitution of some K+ for H3O
+ during the synthesis, which decreased the interlayer 

spacing and inhibited Li+ insertion. XRD characterization suggested that the discharge 

products after the conversion reaction were amorphous or too small to be detected by X-
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rays, small reflections associated with crystalline KLiSO4 were observed in the discharged 

K,Fe-jarosite. 

Na,V and K,V-jarosite demonstrated close to the theoretical discharge capacity based 

on the 1 electron reduction of V3+, with about one Li+ and one electron inserted and 

extracted per unit formula starting from the second cycle. XRD characterization suggested 

that the structure did not change during the discharge and charge process, which indicated 

an insertion reaction mechanism. A capacity of 164 mAh/g was observed in the first 

discharge for Na,V-jarosite and 105 mAh/g for K,V-jarosite. Lithiation of the vanadium 

jarosites to lower potentials also resulted in conversion-type reactions. The capacity in the 

first charge was 40 mAh/g for Na,V-jarosite in Na half-cells, but subsequent low capacities 

suggested that very little sodium could be reversibly extracted/inserted. These studies show 

that the jarosite compounds could be promising candidates for the development of new 

electrodes for Li-ion batteries. Future work on development of nanostructured jarosites 

may lead to materials with better capacity retention and rate performance.  
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 4: HTPS AS CATHODE ELECTRODE FOR LITHIUM-ION AND SODIUM-ION 

BATTERY  

4.1 Introduction 

Since Na+ ion transport through the sodium superionic conductor Na1+xZr2P3-xSixO12 

(NASICON) was first observed130,131, compounds with similar rhombohedral structures 

have been widely studied for applications in fuel cells, gas sensors, and batteries132–134. In 

particular, NASICON-type phosphates with general chemical formula AxM2(PO4)3 (A = Li 

or Na, M = Ti, V, and Fe) have been investigated as solid electrolytes135–137, cathodes for 

Li-ion and Na-ion batteries138–142 and anodes for aqueous based batteries143,144. These 

compounds contain a three-dimensional (3D) framework of PO4 tetrahedra that are corner-

shared with MO6 octahedra. Substitutions are possible at various lattice sites and the open 

3D crystal structure enables easy diffusion of alkali cations within the channels.  

The physicochemical and electrochemical properties of NASICON-type compounds 

can be tuned through mixing of the tetrahedral oxoanions. For instance, previous reports 

have shown that the Li+ conductivity in titanium phosphates could be improved by doping 

the materials with silicate145,146, vanadate147–149, and niobate147–149. The lithium/delithiation 

potential can furthermore be tuned using the induction effect, whereby the redox energies 

of the transition metal ions are affected by the electronegativity and bond strength with the 

oxoanions150–152. For example, insertion of Li+ into rhombohedral forms of Fe2(SO4)3 and 

Li3Fe2(PO4)3 showed that the position of the Fe3+/Fe2+ redox couple was at 3.6 and 2.8 V 
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vs. Li+/Li, respectively; when phosphate was substituted with sulfate, the Fe3+/Fe2+ redox 

couple for rhombohedral LiFe2(SO4)2(PO4) was observed at 3.3 – 3.4 V vs. Li+/Li151. 

Recently, new hydrogen titanium phosphate sulfate (HTPS) compounds were 

synthesized using a peroxide-based sol-gel method153 with composition H1-xTi2(PO4)3-

x(SO4)x (x = 0.5 – 1) and structure resembling that of LiTi2(PO4)3 (LTP) (Fig. 4.1). In LTP 

(space group R 3̅ c), two Li+ ions may be intercalated through a two-phase reaction 

mechanism at 2.5 V vs. Li/Li+ to form Li3Ti2(PO4)3 (space group R3̅). There are two types 

of cavities in the NASICON-type structure, with the M1 site located between two TiO6 

octahedra along the c-axis, and the M2 cavities found surrounding the M1 sites154 (Fig. 

4.1B). The Li+ ions in LTP reside solely within the M1 cavities, while in Li3Ti2(PO4)3 the 

M1 sites are empty and the Li+ ions fully occupy the M2 sites142. The flat voltage plateau 

observed during lithiation of LTP is attributed to the filling of the M2 cavity through a 

mechanism that involves cooperative migration of Li+ from the M1 to M2 sites139. 

In HTPS, the formation of the alkali-free NASICON-type phase is proposed to be 

stabilized by incorporation of sulfate ions (present from the TiOSO4 precursor used in the 

synthesis) to create the mixed polyanion compound153. Unlike other reported NASICON-

type compounds that contain only phosphate anions, in HTPS the 6b sites are filled with 

protons to maintain charge neutrality due to the presence of the two differently charged 

tetrahedral oxoanions. Both sulfate and phosphate anions are found in the 18e sites with 

P/S ~ 2.57 (Fig. 4.1A).  
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Figure 4. 1 HTPS crystal structure (A) HTPS structure viewed along the a-axis to illustrate 

the ion channels. (B) M1 and M2 sites in the HTPS structure. The PO4/SO4 tetrahedra are 

shown in grey, the TiO6 octahedra are shown in blue, M1 sites are in green, M2 sites are in 

yellow, and the 6b sites are in red.  

Here we report, for the first time, the electrochemical properties of HTPS and a 

detailed study comparing the lithiation and sodiation reaction mechanisms with those found 

in other NASICON-type compounds. Four different types of HTPS samples, namely the 

as-prepared, ball-milled (BM-HTPS), heat treated (500-HTPS), and carbon composite (C-

HTPS) materials, were studied and evaluated in Li-ion cells. We find that different from 

lithiation in LTP, the lithiation mechanism of HTPS is a two-step process, whereby the Li+ 

first insert into the M1 sites at ca. 2.8 V vs. Li/Li+ followed by insertion into the M2 sites 

at ca. 2.5 V. This makes HTPS more similar to Mn-NASICON compounds such as 

Mn0.5Ti2(PO4)3 than to LTP. The reaction of ambient H2O with H+ to form H3O
+ within the 

HTPS structure can block Li+ insertion, but the H2O can be removed by heating the 
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electrode prior to electrochemical testing. We find that HTPS also can be used as a sodium 

battery cathode in a similar two-step sodiation process at ca. 2.9 and 2.2 V vs. Na/Na+, with 

a discharge capacity of about 90 mAh g-1 remaining after 50 cycles.  

4.2 Experimental Methods 

4.2.1 Synthesis of HTPS 

4.2.1.1 HTPS 

5.8 g TiOSO4 ·0.18 H2SO4 ·3.11 H2O (Sigma-Aldrich) was dissolved in 11.3 g of 

deionized water into which 3.3 g of a 27 wt% H2O2 solution (Alfa Aesar) was subsequently 

added. The solution was stirred until it became homogeneous. To this solution, 3.6 g of 85 

wt% H3PO4 solution (Alfa Aesar) was added and dissolved with stirring until the solution 

became homogeneous. This solution was left loosely covered at 60 °C for one day during 

which it turned opaque and orange colored as to form an orange-white spongy solid. This 

solid was heated at 650 °C in air for 10 h and formed a white product. This white product 

was washed with deionized water three times.  

4.2.1.2 BM-HTPS 

Ball milling was performed on the as-synthesized HTPS and C-HTPS using a SPEX 

8000 mill with a hardened steel vial (SPEX 3127) for 1 h to decrease the aggregate particle 

size. 
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4.2.1.3 500-HTPS 

The as-synthesized HTPS was heated in a tube furnace at 500 °C for 8 h under Ar to 

remove water. 

4.2.1.4 C-HTPS 

Carbon composites with HTPS were prepared by incorporating glucose as a carbon 

precursor into the HTPS synthesis. 3.9 g TiOSO4 ·0.18 H2SO4 ·3.11 H2O (Sigma-Aldrich) 

was dissolved in 12.0 g of deionized water into which 3.5 g of 27 wt% H2O2 solution (Alfa 

Aesar) was subsequently added. The solution was stirred until it became homogeneous. To 

this solution, 3.1 g of 85 wt% H3PO4 solution (Alfa Aesar) was added and dissolved with 

stirring until the solution became homogeneous. To this solution, 1.9 g of d-glucose (Sigma) 

was added and dissolved with stirring until the solution became homogeneous. This 

solution was left at 70 °C for one day, which resulted in a black, semi-liquid paste. The 

product was heated at 650 °C under Ar for 10 h in a tube furnace to form a black product. 

4.2.2 Materials Characterization 

4.2.2.1 Elemental Analysis 

Elemental analysis of the as-prepared HTPS was performed using a Thermo 

iCAP6300 inductively coupled plasma optical emission spectrometer (ICP-OES) to 

determine the amount of Ti, P, and S in samples acid digested with microwave-assistance.  

4.2.2.2 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was performed using a Mettler-Toledo TGA/DSC 

1 STARe system. The analysis was carried out by heating from 25 to 1000 °C at a rate of 

20 °C/min, holding for 0.5 – 2 h, and then cooling to room temperature. During the analysis, 
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the furnace was purged with air at 50 mL/minute. The amount of carbon in the HTPS 

carbon composites was determined from the weight loss between 450 and 600°C, which is 

below the temperature at which HTPS decomposes153. 

4.2.2.3 Nitrogen Adsorption 

Nitrogen sorption isotherms were collected on a Micromeritics ASAP 2020 surface 

area and porosity analyzer at 77 K. Samples were degassed under vacuum at 200 °C for 8 

h. To calculate the surface areas, the Brunauer-Emmett-Teller (BET) model was applied to 

the partial pressure range of 0.05 – 0.2 of the adsorption branch of the isotherm. The 

desorption branch was analyzed by applying the Barrett-Joyner-Halenda (BJH) model 

using the Halsey thickness curve, heterogeneous surfaces, and Faass correction to account 

for multilayer desorption in estimating the thickness of the adsorbed nitrogen to calculate 

pore-size distribution155. The total quantity of gas adsorbed at the data point closest to P/P0 

= 0.98 on the desorption branch was used to approximate the total pore volume. 

4.2.2.4 X-ray Diffraction 

Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and X-ray 

photoelectron spectroscopy (XPS) were used to perform structural and chemical 

characterization of the prepared HTPS powders and composite electrodes before and after 

electrochemical cycling. For PXRD and XPS, the electrodes were rinsed several times with 

ethanol and dried at 50 °C overnight. PXRD data were collected using a Panalytical X’pert 

Pro diffractometer with CuKα radiation operating at 40 kV/40 mA. 
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4.2.2.5 Electron Microscopy 

Scanning electron microscopy (SEM) imaging was performed using an XL 30 ESEM-

FEG microscope and a 20 kV electron beam. For mounting the samples, the powder sample 

was dusted onto carbon tape on an SEM stub, whereas electrodes were imaged directly, 

and after rinsing in the case of used electrodes. Transmission electron microscopy (TEM) 

observation was carried out on a JEOL 2010F microscope using 200 kV. For TEM, the 

HTPS particles were dispersed into ethanol with ultrasonication for five minutes. Then, a 

copper and lacy carbon TEM grid was dipped into the dispersion and the ethanol was 

allowed to evaporate. 

4.2.2.6 X-ray Photoelectron Spectroscopy 

XPS was performed on a VG ESCALAB 220i-XL with Al Kα anode (1486.6 eV) 

operating at 60 W and 12 kV. The X-ray takeoff angle was 45° and the data were acquired 

from the region within ~500 μm of the outer surface of the sample. Charge compensation 

was used because HTPS is an insulator. A pass energy of 20 eV was used for high-

resolution spectra (energy resolution 0.7 eV). The spectra were calibrated to the 

hydrocarbon peak at 284.5 eV. Peak fitting was performed using CasaXPS processing 

software. 

4.2.3 Electrochemical Characterization 

Composite electrodes were prepared by mixing the HTPS active material with 

polyvinylidene difluoride (PVDF) binder (Kynar) and SuperP Li carbon black (TimCal) 

with a ratio of 80:10:10 by weight. N-methyl-2-pyrrolidone was added dropwise and the 

slurry was then stirred overnight. This slurry was then coated onto a piece of Al foil with 
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doctor blading. The slurry-coated Al foil was dried in an oven at 120 oC for about 5 h to 

remove any residual solvent. The foil was then punched into disks using a compact 

precision disc cutter (MSK T07) and weighed prior to electrochemical testing. Coin cells 

(CR2032) were assembled in an Ar-filled glove box using lithium metal foil as the anode, 

Celgard 2500 as separator, and 1 M LiPF6 in EC: DMC (1:1 by vol, MTI) as electrolyte. 

HTPS was also evaluated in Na half-cells using Na metal as the anode, glass microfiber 

filter (Whatman GF/F) as separator, and 1 M NaClO4 in propylene carbonate (PC) as 

electrolyte (BASF). Galvanostatic measurements were performed between 2 – 3.4 V vs. 

Na+/Na with a current density of 7 mA g-1. 

4.2.3.1 Galvanostatic/Potentiodynamic Measurements 

Galvanostatic or potentiodynamic measurements were performed on a BioLogic 

VMP3 between 2 – 3.4 V vs. Li+/Li unless otherwise noted. For galvanostatic 

measurements, C-rates were determined using a theoretical capacity of 140 mAh/g, 

according to the insertion of 2 Li+ per HTPS formula unit. The current densities 

corresponding to the C-rates are as follows: C/20 (7 mA/g), C/10 (14 mA/g), C/5 (28 mA/g), 

C/2 (70 mA/g), 1C (140 mA/g). For potentiodynamic measurements, a 5 mV voltage step 

was used with a threshold current density of 7 mA/g. 

4.2.3.2 Galvanostatic Intermittent Titration 

Galvanostatic intermittent titration (GITT) measurements were performed with the 

amount of charge passed in each step limited to 7 mAh/g, followed by relaxation at open 

circuit for 3 h or until the open circuit drift over time decreased to 1 mV/h. The chemical 

diffusion coefficient of the Li+ (Na+) ion was calculated using Equation (1): 59 
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𝐷 = 
4

π
(
mVM
MwS

)
2

(
∆𝐸𝑠

τ𝑑𝐸 𝑑𝑡1/2⁄
)
2

, 𝑡 ≪ L2 𝐷⁄ (1) 

where D (cm2/s) is the chemical diffusion coefficient, m is the mass of the HTPS, VM is 

the molar volume of H0.39Ti2(PO4)2.39(SO4)0.61 (135.12 cm3/mol), Mw is the molecular 

weight (381.73 g/mol), S is the active surface area of the electrode, τ was the time duration 

of the applied current (60 min), ΔEs is the change in the steady-state voltage over the 

titration step, E is the voltage, t is the time and L is the thickness of the electrode. In our 

calculations, we assumed that VM remained a constant with the discharge and charge in the 

cathode, the active surface area of the electrode was the geometric surface area. If E vs. t1/2 

shows linear behavior over the entire period of applied current, then equation (1) can be 

simplified to the form shown in equation (2), with ΔEt representing the change in cell 

voltage during the current pulse, neglecting the IR drop 59: 

𝐷 = 
4

πτ
(
mVM
MwS

)
2

(
∆𝐸𝑠
∆𝐸𝑡

)
2

, 𝑡 ≪ L2 𝐷⁄ (2) 

4.2.3.3 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectroscopy (EIS) was performed on fully charged 

electrodes in the frequency range of 10 mHz – 1 MHz. 
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4.3 Results and Discussion 

4.3.1 Structural Characterization of Synthesized HTPS 

4.3.3.1 Morphology 

SEM imaging showed that the as-made HTPS particles were formed as loose 

aggregates (Fig. 4.2A), which were revealed using TEM observation to be composed of 

nanoparticles smaller than 50 nm (Fig. 4.2B). Nitrogen sorption isotherms and BJH pore 

size distributions revealed that the BET surface area of the as-made HTPS was 78 m2/g and 

that the pore volume was 0.22 cm3/g (Fig. 4.3). The average pore width was 11 nm, which 

confirmed the presence of textural meso- and macropores in the material153. Since some of 

the aggregates were very large, approaching 500 μm in size, ball-milling was performed to 

decrease the aggregate particle size. SEM imaging showed that the size of the ball-milled 

HTPS (BM-HTPS) aggregates was decreased to about 2 μm (Fig. 4.2C).  

 

Figure 4. 2 (A) SEM and (B) TEM images of as-made HTPS; (C) SEM images of HTPS 

after ball milling (BM-HTPS) 
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Figure 4. 3 Nitrogen sorption isotherms and BJH pore size distributions of as-made 

HTPS.  

4.3.3.2 X-ray Diffraction 

PXRD was performed on the as-made HTPS, BM-HTPS, and C-HTPS samples to 

elucidate the crystal structure (Fig. 4.4). The obtained patterns matched the simulated 

PXRD pattern of a hypothetical HTi2(PO4)3 compound (space group: 𝑅3̅𝑐; a = 8.467 Å; c 

= 21.69 Å) which was derived by replacing the Li+ in the M1 sites of the LiTi2(PO4)3 

structure with protons153. The crystallite size determined using the Scherrer equation on the 

PXRD pattern of the as-made HTPS was 22.7 nm, consistent with TEM observations. No 

diffraction peaks from impurities were observed and neither the ball-milling nor carbon 

composite processing appeared to affect the crystallite size or the lattice constants of the 

HTPS.  
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Figure 4. 4 PXRD patterns of as-made HTPS, BM-HTPS and C-HTPS. The red vertical 

lines represent the simulated powder pattern of HTi2(PO4)3 based on a NASCION structure 

with protons in the M1 sites. 

4.3.3.3 Elemental Analysis 

To obtain the composition of HTPS, ICP-OES elemental analysis was performed on 

digested samples using the assumption that the stoichiometry can be written as H1-

xTi2(PO4)3-x(SO4)x to maintain charge neutrality153. According to the ICP-OES result, x = 

0.61, resulting in a formula of H0.39Ti2(PO4)2.39(SO4)0.61. Due to the presence of two Ti4+ 

species per formula unit (f.u.) in HTPS, a theoretical capacity of 140.4 mAh/g 

corresponding to formation of (Li0.6H0.4)Li1.4Ti2(PO4)2.4(SO4)0.6 is expected. Due to the 

partial occupancy of the M1 sites by protons, it is expected that the Li+ ions can be shared 

between the M1 (0.6 occupancy) and M2 (1.4 occupancy) sites.   
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4.3.2 Electrochemical Characterization 

 

Figure 4. 5 Potentiodynamic cycling results of first two cycles in Li-cell. Voltage profiles 

(left) and differential charge plots (right) for (A) as-made HTPS, (B) 500-HTPS, (C) BM-

HTPS, and (D) C-HTPS.  
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4.3.2.1 HTPS 

To evaluate the potential-dependent redox behavior of HTPS, potentiodynamic 

cycling was performed on the composite electrodes in Li half-cells. The voltage profile of 

the as-synthesized HTPS showed an open circuit of 2.78 V vs. Li+/Li and a capacity of 29 

mAh/g in the first discharge (Fig. 4.5A, left), which corresponds to insertion of 0.41 Li+ 

per HTPS f.u. The first charge capacity was 46 mAh g-1 and all subsequent discharge and 

charge capacities were around 45 mAh/g, corresponding to reversible cycling of 0.65 Li+ 

into the structure. 

The differential charge (dQ) plot (Fig. 4.5A, right) showed a reduction peak at 2.52 

V vs. Li/Li+ in the first cycle, and two oxidation peaks at 2.53 V and 2.88 V. In the second 

cycle, two distinct redox processes, appearing as two peaks at 2.5 V and 2.85 V, were 

clearly distinguished on both reduction and oxidation. These two redox processes are 

roughly correlated to the two sloped regions observed in the voltage profiles from 3.4 – 2.7 

and 2.7 – 2.0 V and are attributed to Li+ occupation in the M1 and M2 sites, respectively. 

According to studies on hydrogen substituted zirconium phosphate NASICON-type 

compounds, H3O
+ can occupy the 6b sites156,157, which are the same sites occupied by Li+ 

in LTP154. Hence, the presence of water inside the as-prepared HTPS may account for the 

low discharge capacity observed in the first cycle. If the H3O
+ ions blocked the Li+ insertion 

pathways into the M1 sites, this could explain why only one reduction peak corresponding 

to Li+ insertion into the M2 sites (at 2.5 V) was observed in the first discharge. During 

charging, however, the H3O
+ and Li+ could both be removed and lead to the first charge 

capacity being higher than the discharge (Fig. 4.5A). To confirm this, charging was first 
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performed on the HTPS electrode followed by characterization with XRD (Fig. 4.6A). The 

first charge capacity was about 10 mAh g-1, corresponding to removal of 0.145 H3O
+ per 

f.u. and the oxidation peak was observed at about 2.9 V in the differential charge plot (Fig. 

4.6B), which suggests the involvement of the M1 sites. The XRD patterns of the as-made 

HTPS and charged HTPS looked very similar, indicating that the structure did not change 

after charging to 3.4 V (Fig. 4.6C). 

 

 

Figure 4. 6 Potentiodynamic cycling results of as-made HTPS in Li-cell, showing first 

two cycles when the electrode was charged (oxidized) first; (A) Voltage profiles, (B) 

differential charge plots . (C) PXRD patterns of as-made HTPS pristine electrode, after 
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as-made HTPS was charged to 3.4 V and the diffractions of the Al substrate, marked with 

* in the HTPS patterns. 

4.3.2.2 500-HTPS 

TGA studies on HTPS showed that significant weight loss did not occur until >800 

oC (Fig. 4.7A). Our previous studies showed that HTPS calcined at 400 - 700 oC all 

displayed PXRD reflections that could be assigned to the rhombohedral NASICON-type 

structure without any secondary phases; after calcination at 750 oC, small reflections 

attributed to TiP2O7 and Ti5P4O20 phases appeared but the sample was still predominately 

HTPS153. The TGA measurements also showed that the mass of as-prepared HTPS 

gradually increased after exposure to air. Figure 4.7B shows that after the HTPS was 

calcined at 500 oC, a small increase in weight was observed while the sample was cooling 

to room temperature, which is attributed to moisture being incorporated into the structure 

through exposure to the ambient environment. Thus the sample referred to as 500-HTPS 

was prepared by calcining the HTPS at 500 °C for 8 h under Ar to remove all of the 

moisture, then quickly transferring it to the glovebox for assembly into the Li half-cells.  
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Figure 4. 7 TGA of HTPS (A) weight change of as-prepared HTPS during heating, (B) 

weight change of as-prepared HTPS during heating to 500°C and exposure to ambient 

atmosphere, (C) weight change of as-prepared C-HTPS during heating.   

For 500-HTPS electrodes, the open circuit voltage increased to 2.85 V (Fig. 4.5B), 

and the capacity of the first discharge increased to 51 mAh/g, corresponding to 0.72 Li+ 

inserted per formula unit. The capacity between 2.78 – 2.85 V was about 12 mAh/g, which 

indicates that the increase in the first discharge capacity of 500-HTPS after calcination was 

partially due to the higher open circuit voltage and recovery of Li+ insertion at the higher 

potential redox process, as verified by the dQ plot (Fig. 4.5B). Based on these results, it is 

highly likely that water was present in the structure as H3O
+ in the ion channel (Fig. 4.1B) 

and blocked the Li+ diffusion pathways to the M1 sites. Hence, the capacity in the higher 
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cell voltage region associated with the insertion of Li+ into the M1 sites was not observed 

during the first discharge. However, for the calcined 500-HTPS, the water was removed 

leaving the M1-M2-M1 channels empty and enabling insertion of Li+ at around 2.83 V. 

Notably, the observed features for HTPS in the dQ plots are different from those 

observed in LTP, despite the structural similarities of the compounds. First, the two 

different redox peaks in the dQ plots representing the high and low voltage Li+ insertion 

processes are similar to the two separate lithiation processes that occur in Mn-NASICON 

compounds, where Mn2+ partially occupies the M1 site140,158. For example, the insertion of 

Li+ into the initially half empty M1 sites in Mn0.5Ti2(PO4)3 was attributed to a potential 

plateau at 2.8 – 3.0 V; when the Li0.5Mn0.5Ti2(PO4)3 composition was exceeded, the 

additional Li+ were intercalated into the M2 cavity in the voltage range of 2.5 – 2.2 V. This 

supports the assumption that the protons in HTPS occupy the M1 site, and that Li+ insertion 

into HTPS is due to subsequent filling of M1 and M2 sites140, not a cooperative migration 

of Li+ from the M1 to M2 sites through a two-phase reaction as for LTP154. In other words, 

the redox peak at ~ 2.8 V in HTPS is due to Li+ insertion into the M1 sites, and the process 

at ~ 2.5 V is from lithiation of the M2 cavity. Secondly, the potentials for HTPS are higher 

than those observed for LTP, where the average potential is located around 2.4 – 2.5 V vs. 

Li+/Li159; this could be due to the presence of the sulfate groups, which can increase the 

reaction potential due to the induction effect151. 

4.3.2.3 BM-HTPS 

Since the observed capacities in the potentiodynamic cycling data for the as-prepared 

HTPS and 500-HTPS were much lower compared to the theoretical capacity for HTPS 

(which could be a result of the low electronic conductivity within the as-prepared HTPS 
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electrode and need for long relaxation time for the Li+ diffusion processes) the particle size 

of the as-made HTPS was decreased using ball milling (BM-HTPS). Figure 4.5C showed 

that BM-HTPS had an even higher open circuit voltage around 3.15 V, and the capacity of 

the first discharge was 106 mAh/g, corresponding to insertion of 1.51 Li+ per f.u. The dQ 

plot showed similar reduction and oxidation peaks as those observed in the as-made HTPS.  

 

 

Figure 4. 8 Voltage profiles for the first discharge and charge cycles of BM-HTPS 

obtained under different C-rates.  

4.3.2.4 C-HTPS 

Although ball-milling was effective for increasing the specific capacity of HTPS, 

galvanostatic cycling at increasingly higher rates to 1C showed a decrease in capacity to as 

low as 30 mAh/g (Fig. 4.8), indicating that there were still significant kinetic limitations in 

BM-HTPS. To improve the electronic conductivity of HTPS, the particles were prepared 

as composites with conducting carbon (C-HTPS) using an in-situ synthesis method that 

entailed the addition of d-glucose to the reagents during the synthesis, and pyrolyzing the 
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resulting solid under Ar at 650 °C to promote carbonization. According to the TGA 

performed on the obtained C-HTPS (Fig. 4.7C), the carbon content in the synthesized 

composite was about 4 wt%. A first discharge capacity of 96 mAh/g was observed for C-

HTPS (Fig. 4.5D), which is almost twice the discharge capacity observed for calcined 500-

HTPS; a higher charge capacity of 105 mAh/g was also observed. The first charge capacity 

of C-HTPS was also larger than the discharge capacity; this observation may due to the 

existence of O-C=O functional groups in the carbon, as confirmed by XPS (Fig. 4.9), which 

can become oxidized during charging and create additional capacity. 

 

 

Figure 4. 9 High resolution XPS spectrum for C 1s peak from C-HTPS pristine electrode. 

The CF2 and CH2 are from the PVDF binder.  

4.3.2.5 Electrochemical Impedance Spectroscopy 

The improved electronic conductivity of C-HTPS was confirmed by analyzing the 

Nyquist plots obtained from EIS measurements (Fig. 4.10). Compared to BM-HTPS, the 

contact resistance/SEI resistance and charge transfer resistance160,161 were smaller, 
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confirming that the in-situ carbon composite method was effective for improving the 

electronic properties of the HTPS electrodes. 

 

 

Figure 4. 10 Measured Nyquist plots of BM-HTPS and C-HTPS under fully charged 

conditions and the calculated values (shown by the line) with the equivalent circuit shown 

in the figure. The impedance parameters derived using this model are shown in the table 

with R1 attributed to the Ohmic resistance, R2 attributed to the contact resistance including 

the Li+ migration resistance through the SEI film formed on the cathode surface, the R3 

represents the charge-transfer reaction resistance in the cathode-electrolyte interface. 

4.3.2.6 Galvanostatic Intermittent Titration 

Further galvanostatic measurements were performed on the BM-HTPS and C-HTPS 

samples. GITT measurements for BM-HTPS are shown in Figure 4.11A. The results show 

insertion of a total of 2 Li+ between 3 – 1.7 V vs. Li/Li+ corresponding to the theoretical 

capacity, with approximately 0.6 Li+ inserted in the high voltage sloped region between 3.0 

– 2.6 V. During charging, only 1.5 Li+ were extracted, indicating some irreversibility. 

Galvanostatic cycling using a C/20 rate showed a first discharge capacity of 148 mAh/g 
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and charge capacity of 105 mAh/g (Coulombic efficiency of 71%) over the voltage rage of 

1.5 – 3.5 V (Fig. 4.11B). However, the capacity retention was not well maintained. When 

the lower voltage cutoff was increased to 2 V (Fig. 4.11C), the capacity remained around 

100 mAh/g with improved retention and Coulombic efficiency during cycling (Fig. 4.11D). 

The capacity retention of C-HTPS under galvanostatic cycling (Fig. 4.12) was not greatly 

improved, not even with ball-milling (Fig. 4.12). The large polarization observed in the 

GITT data, particularly below 2.2 V, is also observed in other NASICON materials140,158 

at high degrees of lithiation and may be due to intrinsic kinetic limitations in Li+ diffusion 

into the structure. These results suggest that ball-milling or in-situ carbon composite 

formation can lead to only limited improvements, and other strategies such as careful 

morphology-control and nanostructure design may be beneficial for obtaining better 

capacity retention in HTPS. 
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Figure 4. 11 Galvanostatic cycling results for ball-milled HTPS in Li-cell (A) GITT 

between 1.5 – 3.4 V for the first cycle; Voltage profiles of first 5 cycles at C/20 rate between 

(B) 1.5 – 3.4 V and (C) 2 – 3.4 V; (D) Capacity vs. cycle life for both potential ranges. 
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Figure 4. 12 Galvanostatic cycling results between 2 – 3.4 V for (A),(B) C-HTPS and 

(C),(D) ball-milled C-HTPS.    

4.3.3 Structural Characterization during Electrochemical Reaction 

To further understand the lithiation mechanism into HTPS, characterization was 

performed using SEM, PXRD, and XPS after different stages of lithiation/delithiation. 

4.3.3.1 Scanning Electron Microscopy 

The SEM images of the electrodes after lithiation and delithiation were quite similar 

(Fig. 4.13), indicating there was no morphology change during the electrochemical process. 
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Figure 4. 13 SEM image of BM-HTPS (A) pristine electrode and (B) after 

lithiation/delithiation 

4.3.3.2 X-ray Diffraction 

To further investigate the structural changes upon electrochemical reaction, PXRD 

was performed on the BM-HTPS electrodes at different states of discharge and charge (Fig. 

4.14). The peak from the Al substrate (marked with the asterisk) was used as the internal 

reference (Fig. 4.6). The PXRD pattern for the pristine electrode showed several 

differences after discharging to 2 V. The peak at 2θ ~ 20.5° is made up of reflections from 

the (104) planes at 20.36° and the (21̅0) planes at 20.90° (Fig. 4.14B). After discharge to 2 

V, the intensity of the (104) peak decreased and the (21̅0) peak increased (Fig. 4.14C); 

when charged back to 3.4 V, the reverse occurred (Fig. 4.14E). 
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Figure 4. 14 PXRD pattern of (A) BM-HTPS powder, (B) pristine electrode prepared from 

BM-HTPS, (C) HTPS electrode discharged to 2 V, (D) discharged to 1.5 V, and (E) HTPS 

electrode discharged to 2 V and then charged to 3.4 V. The red vertical lines on the bottom 

are the simulated diffraction pattern of HTPS, the black dotted lines indicate the 

diffractions of (104) (21̅0) and (113) planes of HTPS. (F) Zoom-in view on the (104) and 

(21̅0) reflections from the pristine and lithiated electrodes. 

According to our proposed lithiation mechanism, the Li+ will first insert into the M1 

sites of HTPS at 2.82 V and then into the M2 sites at around 2.5 V. When the PXRD pattern 

was simulated with the Li+ ions replacing H+ in the 6b sites, the intensity of the (104) 

reflection decreased and the (21̅0) reflection increased relative to the structure with protons 

in the 6b sites, which is same with our experimental observations. Also, when comparing 

the PXRD patterns of the pristine and lithiated electrodes, almost all of the peaks shifted to 
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lower angles (Fig. 4.14B and C) indicating the enlargement of the unit cell, which is the 

same as what was observed in the Mn-NASICON compounds Li0.5Mn0.5Ti2(PO4)3 and 

Li0.5Mn0.5Ti1.5Cr0.5(PO4)3 during lithiation140,158. Hence, the PXRD data support the 

aforementioned two-step Li+ mechanism into HTPS.  

The PXRD data also provided an explanation for why the cycling performance of 

HTPS was worse when the discharge voltage was decreased 1.5 V. The intensity of the 

crystalline peaks was strongly decreased for the sample discharged to 1.5 V (Fig. 4.14D), 

suggesting an amorphization reaction at the lower voltage and collapse of the structure, 

which can explain the bad capacity retention observed in the first few cycles of the cell 

cycled from 1.5 – 3.4 V (Fig. 4.11B). 

4.3.3.3 X-ray Photoelectron Spectroscopy 

To further analyze the electrochemical mechanism of HTPS lithiation, we performed 

XPS on the BM-HTPS electrodes at different states of charge. Figure 4.15 shows the high 

resolution scans of the Ti 2p region. In the XPS spectrum for the pristine HTPS electrode 

(Figure 4.15A), two peaks were observed at 460.2 and 466.0 eV corresponding to the Ti4+ 

binding energies for Ti 2p3/2 and 2p1/2, respectively. These peaks are shifted to higher 

binding energies compared to those found in TiO2 at 458.3 and 464.0 eV162, which is 

consistent with the electron withdrawing properties of the polyanions. For instance, the Ti 

2p3/2 binding energies were reported at 458.4 and 459.1 eV in phosphate and sulfate-

modified titania163 and 459.8 eV in titanium pyrophosphate164. Since HTPS contains both 

phosphate and sulfate groups, the binding energy of Ti 2p should be even higher than these 

other materials, which is consistent with our observations.  
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Figure 4. 15 XPS patterns of BM-HTPS (A) pristine electrode, (B) after discharge to 2 V, 

and (C)  after discharge to 2 V and charge to 3.4 V vs. Li/Li+. The Ti4+ 2p3/2 peak (red 

line) is at 460.2 eV and the Ti3+ 2p3/2 peak (green line) is at 459.1 eV.  

After the electrode was lithiated to a capacity of 115 mAh/g (corresponding to 

insertion of 0.82 Li+/Ti), the Ti 2p3/2 and 2p1/2 peaks shifted to lower binding energies to 

459.1 and 464.8 eV, respectively (Fig. 4.15B), which are 1.1 and 1.2 eV lower than the 

binding energy for Ti4+, consistent with the formation of Ti3+20,165. Deconvolution of the Ti 

2p3/2 peak revealed peaks at 460.2 eV and 459.1 eV, the former of which is attributed to 

unreacted Ti4+ since the HTPS was not fully reduced (only 82% of the theoretical capacity 

was observed in this sample). Figure 4.15C shows the XPS spectrum for an electrode that 

underwent a full lithiation/delithiation cycle, with the discharge capacity of 107 mAh/g 

(insertion of 0.76 Li+/Ti) and charge capacity of 83 mAh/g (extraction of 0.59 Li+/Ti). The 

presence of both Ti4+ and Ti3+ in the spectrum is consistent with the measured capacities 
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and Coulombic efficiency of only 78%. These XPS measurements confirm that the 

Ti4+/Ti3+ redox couple is electrochemically active and is correlated with the 

lithiation/delithiation processes. 

4.3.4 Na Intercalation 

The electrochemical properties of HTPS in Na-cells were also evaluated, using BM-

HTPS because this sample displayed the best performance in the Li-cells. 

4.3.4.1 Galvanostatic/Potentiodynamic Measurements 

Similar to Li+ insertion, Na+ insertion was observed to occur over two potential 

regions, between 3.1 – 2.7 V and 2.7 – 1.8 V vs. Na/Na+ (Fig.4.16A). The reaction in the 

lower potential region is attributed to Na+ insertion in the M2 cavities, which is similar to 

what has been observed in NaTi2(PO4)3
166,167, while the reaction at the higher potentials is 

likely due to Na+ insertion into the M1 sites. However, as verified by the dQ plot (Fig. 

4.16B), the amount of charge associated with Na+ insertion in the higher potential region 

was much lower than what was observed for Li+ insertion. This is likely due to the larger 

size of the Na+ compared to Li+ with respect to the size of the M1 cavity. Long-term cycling 

of HTPS in the Na-cell showed stable discharge capacities around 90 mAh/g (Fig. 4.17A), 

but the charge capacities were higher than expected, particularly in the first cycle. 
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Figure 4. 16 Galvanostatic cycling results for ball-milled HTPS in Na-cell (A) Voltage 

profile from 1.5 – 3.4 V using C/20 rate; (B) differential charge plot; (C) First and (D) 

second cycle from GITT measurement.   

The first galvanostatic cycle showed a higher charge capacity compared to the 

discharge, which is attributed to a side reaction observed during charging above 3 V vs. 

Na/Na+ (Fig. 4.17B). This additional charge capacity was also observed in subsequent 

cycles, as shown in Figure 4.16. Control tests on electrodes only containing carbon black 

(90 wt%) and binder showed similar charge features above 3 V (Fig. 4.17C), suggesting 

that the extra capacity was due to side reactions with the carbon. The capacity associated 
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with these side reactions decreased as the cycle number continued, with only ca. 50.9 

mAh/g capacity observed at the 5th (Fig. 4.17C, inset), suggesting that the carbon becomes 

passivated or that the reaction is not reversible, the Coulombic efficiency was shown in 

Figure 4.17D, the value for the first cycle was below 1%, but increased by 58 times after 

10 cycles. For the HTPS electrode, however, the Coulombic efficiency (Fig. 4.17A) was 

rather low until the 30th cycle, indicating that the passivation of the carbon is less complete 

when the side reaction occurs in parallel with the HTPS de-sodiation. 

 

 

Figure 4. 17 Na-ion cell data (A) Capacity vs. cycle number and coulombic efficiency of 

HTPS for cycle 1 -60. (B) Galvanostatic first discharge/charge profiles of HTPS over the 
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voltage range of 1.5 – 3.4; (C) Galvanaostatic first discharge/charge voltage profile of 

electrode without HTPS (90% carbon black with 10% PVDF), inserted is the voltage 

profile of cycle . (D) Capacity vs. cycle number and coulombic efficiency without HTPS, 

showing cycles 1 - 11. All data were obtained using a current density of 7 mA/g.  

 

 
Figure 4. 18 PXRD pattern of (A) pristine electrode prepared from BM-HTPS, (B) HTPS 

electrode discharged to 1.5 V in a Na cell, the red vertical lines on the bottom are the 

simulated diffraction pattern of HTPS, the black dotted lines indicate the diffractions of 

(104) (21̅0) and (113) planes. (C) Zoom-in view on the (104) and (21̅0) reflections from 

the pristine and sodiated electrodes. 

The PXRD patterns for the pristine and sodiated electrodes (Fig. 4.18A, B) showed 

similar trends with the electrodes in Li cells. After discharging to 1.5 V, the intensity of the 

(104) peak decreased and the (21̅0) peak increased (Fig. 4.18C), indicating that the Na+ 
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inserted into the M1 sites. Also, when comparing the PXRD patterns of the pristine and 

sodiated electrodes, almost all of the peaks shifted to lower angles (Fig. 4.18A and B) 

indicating the enlargement of the unit cell, which is the same as what was observed in the 

Li cell. Note that, the shifts of the (104) and (21̅0) reflections in the sodiated electrode (0.17 

and 0.23 degrees) were bigger than those in the lithiated electrode (0.14 and 0.15 degrees), 

which is reasonable as the Na ions are larger than Li ions. Hence, the PXRD data of the 

sodiated electrode also support the aforementioned two-step reaction mechanism.  

4.3.4.2 Galvanostatic Intermittent Titration 

Similar to the case in the Li-cell, higher degrees of sodiation in HTPS could be 

observed in the GITT measurements. The GITT results also showed a very large capacity 

of 580 mAh/g in the first charge attributed to the side reaction (Fig. 4.16C) that was not a 

large contribution of the GITT profile in the second cycle, which displayed a charge 

capacity of about 90 mAh/g (Fig. 4.16D). The second discharge capacity of HTPS in the 

Na-cell was about 120 mAh/g, corresponding to 1.71 Na+ inserted per f.u.(Fig.4.16D), 

which is higher than the discharge capacity observed for the second galvanostatic cycle of 

103 mAh/g (Fig. 4.16A) due to kinetic limitations. 

To study the difference in kinetics for the lithiation and sodiation reactions in HTPS, 

the GITT data were further analyzed to determine the kinetic parameters of mixed 

conductors 59. Figure 4.18A shows an example potential vs. time (E vs. t) profile for a 

single titration, illustrating how the parameters required for the diffusion calculation were 

determined from the plot. The E vs. t1/2 plots for both Li and Na-cells were linear behavior 

over the entire period of applied current (Fig. 4.18B), so equation (2) was used to calculate 

the diffusion coefficient as a function of guest species inserted/extracted per f.u. of HTPS 
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(Figure 4.18C,D). During discharging, the values of DLi in HTPS were in the range of 

1.04×10-11 to 8.01×10-10 cm2 s-1, while the DNa ranged from 1.27×10-11 to 2.98×10-10 cm2 

s-1. During charging, DLi ranged from 4.86×10-11 to 6.26×10-10 cm2 s-1 and DNa from 

1.27×10-12 to 4.54×10-10 cm2 s-1. During both lithiation and delithiation, the DLi values 

dropped to ~10-11 cm2 s-1 when more than 1.5 Li+ were inside the HTPS, which is attributed 

to the difference in the M1 and M2 site reactions. In comparison, the values of DLi in LTP 

varied over a wide range, from 8.46×10-14 cm2 s-1 to 2.15×10-9 cm2 s-1, with the minimum 

value occurring at the middle of the two-phase transition of LTP 168. The diffusion 

coefficients for HTPS did not vary as much as those for LTP during the lithiation 

(sodiation)/delithation (desodiation) processes, which is attributed to the different 

mechanism of ion insertion in HTPS vs. LTP. The DLi values for HTPS are comparable to 

intercalation electrode materials such as Li(Ni1/3Co1/3Mn1/3)O2 (~3×10-10 cm2 s-1)169 and 

higher than those in LiFePO4 (1.8×10-14 cm2 s-1)170.  
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Figure 4. 19 (A) Potential vs. time plot of ball-milled HTPS electrode in Na-cell for a single 

GITT titration during discharge, E0 is the steady-state voltage of previous titration, Es is 

the steady-state voltage of this step, ΔEs is the change in the steady-state voltage over the 

titration step and ΔEt is the voltage change for a current flux for the time τ, neglecting the 

IR drop; (B) linear behavior of the E vs. t1/2 relationship of Li cell and Na cell; (C)-(D) 

Chemical diffusion coefficient of Li+ and Na+ ions in HTPS as fuction of guest species 

inserted per HTPS formula unit, vs. the number of guest species (C) inserted during 

discharging (D) extracted during charging after a fully discharge per formula unit. 
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4.4 Conclusion 

Herein we establish the properties of hydrogen titanium phosphate sulfate, 

H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), for electrochemical Li+ and Na+ insertion. Ball-milling and 

preparation with carbon composites using an in-situ reaction with glucose were also 

performed to decrease the particle size and increase the conductivity, respectively. A 

capacity of 148 mAh/g was observed in the ball-milled HTPS in the Li half-cell and 103 

mAh/g in the Na half-cell. The insertion of cations occurred in two voltage ranges, at 2.83 

and 2.53 V vs. Li/Li+ and at 2.87 and 2.20 vs. Na/Na+, corresponding to the filling of the 

M1 and M2 sites, respectively. Future work on the synthesis of pre-lithiated and pre-

sodiated materials, decreasing the particle size, and optimizing the carbon composites to 

improve the electronic conductivity of the composite would be advantageous for further 

development of HTPS as a cathode for Li- and Na-ion batteries.  
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 5: ELECTROCHEMICAL PROPERTIES OF SILICON CLATHRATE 

5.1 Introduction 

Clathrates 171 are known for their unique structures and potential as superconducting 

172–180, thermoelectric181–187, magnetic188,189, hydrogen storage190,191, and hard materials192. 

Type I clathrates of the form MxSi46 (where M is the guest ion, e.g. Ba), are made from two 

pentagonal dodecahedra (Si20) plus six tetrakaidecahedra (Si24) per unit cell (Fig. 5.1).  

Framework substitution, whereby some of the Si atoms are substituted with another 

element, is also common in clathrates. Example type I ternary clathrates that have been 

studied are of the form Ba8XSi46- where X = Al, Ga, Zn, Cu, Ni, etc.193–195 Such 

substituents stabilize the clathrate structure by fulfilling the Zintl concept and modifying 

the density of states at the Fermi level, which can affect the transport properties195. The 

Zintl condition is obtained when the more electropositive ‘guest’ atoms donate valence 

electrons to the more electronegative host or cage and each element achieves a closed shell 

state196, for instance, in Ba8Al16Si30. 
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Figure 5. 1 Combined Ball and stick/polyhedral illustration of type I Ba8Al16Si30 

clathrate. 

Recently, there has been much interest in the electrochemical properties of clathrates 

and their potential for applications in batteries197. Considering the possible sites that Li 

could occupy inside the clathrate structure, the insides of the Si20 and Si24 cavities are 

potential candidates, in addition to vacancy sites on the Si framework. Previous first 

principles density functional theory studies (DFT) showed that Li insertion into Si 

framework vacancies or Ba guest atom vacancies in the Si20 cages could stabilize the 

clathrate structure, and that multiple Li atoms can fit inside the Si24 cages198,199. Moreover, 

it is suggested that clathrates can form stable structures containing framework vacancies in 

order to meet the Zintl condition (e.g., Ba8AlxSi42-(3/4)x□4-(1/4)x, Ba8Ge43□3 and Cs8Sn44□2, 

where □ = vacancy)183,184,191,200–202.  
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In our group’s previous work197, ternary type I clathrates based on Ba8AlSi46– (=8，

10，12) were found to display voltage-dependent redox characteristics distinct from those 

observed in diamond cubic Si, amorphous Si, and other SiO. Moreover, no discernable 

changes in the local bonding and crystalline structure of the type I clathrates were observed 

by nuclear magnetic resonance (NMR) or X-ray diffraction (XRD) after lithiation. The as-

prepared clathrates investigated in this previous study were off-stoichiometric and also 

contained some unreacted precursors and side products such as Si and BaSi2. In order to 

remove these non-clathrate species, ball-milling followed by acid and base etching was 

employed. However, it is not known what role, if any, these processing steps played in the 

formation of additional defects in the clathrate structure, or the observed electrochemical 

properties of the clathrate electrodes.  

Here, we performed a systematic investigation of silicon clathrates with higher Al 

content, Ba8Al16Si30. This would enable the evaluation of the electrochemical properties of 

silicon clathrates with minimum defects such as framework vacancies. Ba8Al16Si30 

clathrate was prepared using arc melting or hot-pressing. Then, different processing steps 

(such as ball-milling, acid/base etching) were incrementally introduced and studied with 

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, 

and electrochemical analysis to understand their role on the electrochemical behavior and 

other physicochemical features.  

We find that very few Li can be electrochemically inserted into the as-made clathrate. 

The introduction of disorder through ball-milling resulted in higher observed specific 

capacities, not solely from the reduction of the particle size, but from the formation of an 

amorphous surface layer. The acid/base etching, while not affecting the crystallinity of the 
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clathrate, caused the formation of Si-O bonds on the surface and led to lower lithiation 

capacities. Additionally, further ball-milling can achieve high capacity again by 

regenerating the amorphous layer. These results show that for clathrate with high Al 

content and small amount of vacancies, Li insertion in the structure is unfavorable unless 

amorphous surface layer is introduced.  

5.2 Experimental Methods 

5.2.1 Synthesis of Silicon Clathrate by Arc-melting 

The clathrate samples prepared by arc-melting are named with the prefix “AM”. In 

the arc-melting preparation, metals of Ba, Si and Al were weighed with a total weight of 

ca. 600 mg to achieve a composition of Ba8Al16Si30. The arc melting chamber was 

evacuated to vacuum for 20 min and filled with high purity argon. The metals Ba, Al and 

Si were melted into an ingot, which was then taken out and turned over. The melting 

process was repeated three times to obtain good homogeneity. 

5.2.1.1 AM-1 

AM-1 refers to the sample obtained after the as-made, arc-melted ingot was ground 

by hand using a mortar and pestle 

5.2.1.2 AM-2 

AM-1 refers to the sample which ball-milled for 40 min (SPEX 8000, stainless steel 

grinding set) 
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5.2.1.3 AM-3 

AM-2 was suspended in de-ionized water and treated with 3 M HCl for 12 hours to 

remove the BaSi2. After the acid treatment, the powder was recovered using vacuum 

filtration and washed with de-ionized water. Then, the powder was treated with 1 M NaOH 

for 12 hours to remove amorphous or cubic Si, then recovered using vacuum filtration and 

washed with de-ionized water and dried to yield AM-3. 

5.2.1.4 AM-4 

AM-4 was obtained by ball-milling AM-3 for 40 minutes. 

5.2.1.5 AM-5 

AM-5 was obtained by ball-milling AM-3 for 120 minutes. 

5.2.2 Materials Characterization 

Wavelength dispersive X-ray spectroscopy (WDS) was used to determine the 

composition. Powdered X-ray diffraction (XRD), scanning electron microscopy (SEM), X-

ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to perform 

structural and chemical characterization of the prepared Si clathrate powders and 

composite electrodes before and after electrochemical cycling.  

5.2.2.1 Wavelength Dispersive Spectroscopy 

Wavelength dispersive X-ray spectrometer (WDS, JEOL JXA-8530Ff equipped with 

five wavelength-dispersive spectrometers) was used to determine the composition of the 

silicon clathrates. The clathrate powder was mixed with epoxy and cured for two days at 

room temperature in chemical hood. Then the sample was grinded and polished to a flat 
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surface for subsequent analysis. 10 nA current with a 20 keV accelerating potential was 

used for analysis, Net elemental intensities for Al and Si were determined with respect to 

pure elemental Si and Al calibration standards, as well as barite was used as standard to 

determine the net elemental intensities for Ba. Seven different locations were randomly 

chosen and the average analyzed for each sample. 

5.2.2.2 X-ray Diffraction 

For XRD, the electrodes were rinsed several times with propylene carbonate and dried 

in an Argon-filled glovebox overnight. XRD data were collected using a Panalytical X’pert 

Pro diffractometer with CuKα radiation operating at 40 kV/40 mA. 

5.2.2.3 Electron Microscopy 

Scanning electron microscopy (SEM) imaging was performed using an XL 30 ESEM-

FEG microscope and a 12 kV electron beam. For mounting the samples, the powder 

samples were dispersed into ethanol with ultrasonication for five minutes and dropped to a 

clean Si wafer surface, the Si wafers were pasted on the SEM stubs using carbon tapes. 

Transmission electron microscopy was performed using a Philips CM-200 operated 

at 200 kV. Powdered samples were dispersed into ethanol with ultrasonication for 5 

minutes and then dropped onto a Ted Pella copper TEM grid with lacey carbon support. 

After all the ethanol was evaporated, the grid was loaded onto a single-tilt sample holder 

and taken into the microscope for examination, The samples were not covered with any 

conductive coatings. Images were recorded using a CCD camera and a Gatan Acquisition 

System. 
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5.2.2.4 X-ray Photoelectron Spectroscopy 

XPS was performed on a VG ESCALAB 220i-XL with Al Kα anode (1486.6 eV) 

operating at 63 W and 12 kV. The X-ray takeoff angle was 45° and the data were acquired 

from the region about ~400 μm of the surface of the sample. Charge compensation was 

used. A pass energy of 20 eV was used for high-resolution spectra (energy resolution 0.7 

eV). The spectra were calibrated to the hydrocarbon peak at 284.5 eV. Peak fitting was 

performed using CasaXPS processing software. 

5.2.2.5 Raman Spectroscopy 

The powder samples were dispersed into ethanol with ultrasonication for five minutes 

and dropped to a clean copper foil substrate for the Raman spectroscopy measurements. 

The Raman spectroscopy data were collected using a custom built Raman spectrometer in 

a 180 ° geometry. The sample was excited using a 150 mW Coherent Sapphire SF laser 

with a 532 nm laser wavelength. The laser power was controlled using a neutral density 

filters wheel and an initial laser power of 100 mW, and ranged from 1.3 mW to 24 mW 

depending on sample sensitivity. The laser was focused onto the sample using a 50X super 

long working distance plan APO Mitutoyo objective with a numerical aperture of 0.42. The 

signal was discriminated from the laser excitation using a Kaiser laser band pass filter 

followed by an Ondax® SureBlock™ ultra narrow-band notch filter and a Semrock edge 

filter.  The data were collected using an Acton 300i spectrograph and a back thinned 

Princeton Instruments liquid nitrogen cooled CCD detector. 
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5.2.3 Electrochemical Measurement 

The clathrate powder was prepared into slurries by mixing the clathrate sample with 

10 wt% carbon black (to serve as conducting additive) and 10 wt% polyvinylidene 

difluoride (PVDF) (to serve as binder) in N-methyl pyrrolidone (NMP) as solvent. The 

slurries were stirred overnight and coated onto Cu foil current collectors using a Meyer rod, 

and then heated at 120 oC to remove the solvent. Pouch cells were assembled using Li metal 

as the counter electrode, Celgard 2500 as separator, and 1 M LiPF6 (EC:DMC:DEC, 4:2:4 

in volume, LBC 3051C, MTI) as electrolyte in the glovebox. 

5.2.3.1 Galvanostatic Measurements 

Electrochemical testing was performed using a Biologic VMP3. Galvanostatic 

measurements were performed from 0.01 – 2.5 V vs. Li/Li+ range using a current density 

of 25 mA/g. 

5.2.3.2 Galvanostatic Intermittent Titration 

Galvanostatic intermittent titration (GITT) measurements were performed by 

charging/discharging the cells at a constant current (5 mAh g-1 for AM-3 and HP, 25 mAhg-

1 for AM-5) for an interval of 10 minutes followed by an open circuit stand for 40 minutes 

to allow the cell voltage to relax to its quasi-equilibrium state. 
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5.3 Results and Discussion 

5.3.1 Structural Characterization 

5.3.1.1 X-ray Diffraction 

The XRD pattern of AM-1 matched the reflections associated with Ba8Al16Si30 (Fig. 

5.2A). The reference pattern used for the clathrate was Ba8Al16Si30 PDF 00-055-0373 193. 

Additionally, some weak reflections that were not associated with the clathrate structure 

were observed at 2θ = 22.2, 28.4, 28.7, 29.9, and 33.3o (Fig. 5.2B).  The reflection at 28.4 

o is likely from the (111) reflections of cubic Si, as this is commonly seen in clathrate 

syntheses indicating some unreacted precursor 183,203,204. The other reflections are close to 

the positions of the (102), (211), (103) and (301) diffracting planes of BaSi2, but the most 

intense reflection for the (112) planes expected at 27.3 o was not observed in AM-1; hence 

it is uncertain if BaSi2 is present in the sample. These other reflections could be from a 

compound with BaAl4-type structure, as suggested in previous studies 183. BaAl2Si2 was 

also identified in previous studies on Ba8AlySi46-y clathrate 205183; the peak at 2θ = 28.7 o 

could be from the (211) plane of BaAl2Si2, but this assignment is also not unambiguous. 

Anno et al have suggested the existence of BaAl2O4 as an impurity phase 205; the peak at 

28.4 o may be suggested to have contribution from (202) plane of that structure.. However, 

given how elemental Ba was stored and handled, the introduction of such a large amount 

of oxygen during the process is highly unlikely. We note that while the identity of the 

impurity phase(s) is not clear, the very weak intensity of the reflections is indicative of 

clathrate samples with phase purity of over 95% wt.  
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Figure 5. 2 XRD of Ba8Al16Si30 samples prepared by (A) arc-melting, and (B) Zoomed in 

view from 2θ = 21 - 34.5o of the XRD pattern for AM-1. The reference pattern for 

Ba8Al16Si30 (PDF 00-055-0373) is shown on the bottom for comparison. 

After ball-milling of AM-1, the peak positions remained the same, but the intensities 

were slightly altered – weakened and broadened to a certain degree, which indicates a 

smaller particle size in AM-2 compared to AM-1. After acid and base treatment, the small 

impurity peaks disappeared, confirming the removal of these phases. The XRD pattern of 

AM-4, which was ball-milled for 40 minutes, had broader diffraction peaks due to the 

decrease in the particle size. After ball-milling for 2 hours, the peaks were even broader, 

and a small peak at 2θ = 24.0 o was observed, which corresponds to the (022) plane of Si 

clathrate.  
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Least-squares refinement determined that the cell parameter of the clathrate samples 

from AM-1 to AM-5 were 10.5888 Å, 10.5914 Å, 10.5908 Å, 10.5915 Å and 10.5935 Å 

(Table 5.1). The refinement results showed there was not a large difference in the lattice 

parameters of the samples, which suggests that the clathrates had a similar composition. 

Previous studies showed changes in lattice parameter of 0.048 Å when the Al content 

changed from 12.0 to 14.9 206. Shifts in the (2 3 1) reflection were also shown to be 

characteristic of differences in Al content 206, but we did not observe this in our samples, 

as shown in Figure 5.3.  This is consistent the microprobe analysis results that did not 

show a large difference in the composition between the samples (Table 5.1). 

Table 5. 1  Cell parameters for clathrates according to the XRD refinement and the atomic 

ratio of Ba, Al and Si according to microprobe analysis. 

Sample Lattice constant  Ba Al Si 

AM-1 10.589 7.79 13.68 32.32 

AM-2 10.591 8.54 13.54 32.46 

AM-3 10.591 8.45 13.34 32.66 

AM-4 10.592 8.46 13.43 32.57 

AM-5 10.594 8.56 13.41 32.59 
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Figure 5. 3 XRD patterns for clathrates at high degree near (2 3 1) peak. 

5.3.1.2 Electron Microscopy 

Scanning electron microscopy (SEM) imaging was employed to determine the particle 

sizes of the clathrates. The SEM images of AM-1 showed particle sizes of about 1-40 μm 

(Fig. 5.4A). Some of the particles were around 2 μm in size, but the majority of the sample 

consisted of particles larger than 20 μm. After ball-milling for 40 minutes to form AM-2 

(Fig. 5.4B), the particle size was reduced to less than 5 μm. When the ball-milling was 

followed by the acid and base treatment to make AM-3, the morphology was more uniform, 

with the size controlled under 2 μm (Fig. 5.4C). Further ball-milling for 40 minutes did not 

result in a large effect in changing the particles sizes (AM-4, Fig. 5.4D), but when the ball-

milling time was increased to 120 minutes, the particle size decreased to about 1 μm (AM-

5, Fig. 5.4E).  
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Figure 5. 4 SEM images of different prepared Ba8Al16Si30 samples (A) AM-1; (B) AM-2; 

(C) AM-3; (D) AM-4; (E) AM-5. 

To better understand the surface structure of different clathrate samples, transmission 

electron microscopy (TEM) characterization was performed (Fig. 5.5). Selected-area 

electron diffraction (SAED) was also performed assess the crystallinity of the particles. 

The samples were stable under the electron beam and no visible changes to the 

microstructure of the samples were observed during imaging. A thin amorphous layer less 

than 5 nm thick was observed in AM-1(Fig. 5.5A), and the SAED pattern showed distinct 

spots with little amorphous halo, indicating that the majority of the particles were 

crystalline. After ball-milling, the amorphous surface layer became thicker in AM-2, in 

some cases more than 10 nm thick (Fig. 5.5B). This shows that ball-milling can cause the 

surface of the clathrate particles to become amorphous. The TEM analysis of the sample 

after ball-milling and acid/base treatment, AM-3, displayed a non-uniform amorphous 

layer, which was in some cases only 5 nm thick (Fig. 5.5C). This suggests that the acid/base 



129 

 

treatment could have partially etched away the amorphous layer. The TEM images of AM-

4 and AM-5 showed that further ball-milling introduced more amorphous surfaces. The 

AM-4 sample, which was ball-milled for 40 minutes, displayed an amorphous layer about 

10 nm (Fig. 5.5D), while the sample ball-milled for 120 minutes, AM-5, showed an even 

thicker layer of 10-20 nm (Fig. 5.5E). However, the crystalline lattice fringes and electron 

diffraction patterns showed that the particle interiors were still crystalline, consistent with 

the XRD results (Fig. 5.2). 
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Figure 5. 5 High-magnification TEM images and selected-area electron diffraction patterns 

of (A) AM-1. (B) AM-2. (C) AM-3. (D) AM-4. (E) AM-5, inserted are the low-

magnification TEM images. The dashed line shows the amorphous-crystalline interface. 

5.3.1.3 X-ray Photoelectron Spectroscopy 

XPS studies were performed to better understand the differences in chemical surface 

states between the different clathrate samples. As shown in Figure 5.6, the Ba 4d3/2 and Ba 

4d5/2 peaks were observed at binding energies of 93.0 and 90.3 eV, respectively, while the 

Si 2p peak corresponding to the Si in the clathrate framework was found at 98.6 eV. Due 

to the interaction of the Si with Ba and Al, the binding energy of Si in the clathrate shifted 



131 

 

to the lower energy level compared that observed in diamond cubic Si 207. The signal 

attributed to surface Si bound to oxygen was centered at approximately 102.5 eV, 

suggesting the presence of a notable native oxide in the as-prepared AM-1 (Fig. 5.6A). 

This is consistent with previous studies identifying a native oxide on silicon clathrate 

surfaces 197,208. Comparing the spectra for AM-1 (Fig. 5.6A) and AM-2 (Fig. 5.6B), the 

amount of Si-O and Si-Si signals are the same, 76 % Si-O and 24 % Si-Si (Table 5.2), 

indicating that ball-milling did not affect this oxide layer. After the acid/base treatment, 

however, the Si-O peak intensity became stronger (Fig. 5.6C), 94 % of Si-O and 6% of Si-

Si (Table 5.2). This indicates that almost all of the surface Si atoms were bonded with O, 

suggesting that the acid/base treatment oxidized the AM-3 clathrate surface. Additional 

ball-milling after the acid/base treatment resulted in an increase in the Si-Si peak intensity 

in AM-4 and AM-5, the Si-Si peaks increased to 17 % and 19 % (Table 5.2), respectively, 

which could be due to the exposure of fresh surfaces as the particle sizes were reduced.  
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Figure 5. 6 High resolution XPS spectra of Ba8Al16Si30 samples (A) AM-1; (B) AM-2; (C) 

AM-3; (D) AM-4; (E) AM-5. The green dashed line is 98.6 eV and red line is 102.5 eV. 

Table 5. 2 The contribution of Si-O and Si-Si in percentage (obtained by XPS). 

Sample Si-O (%) Si-Si (%) 

AM-1 76 24 

AM-2 76 24 

AM-3 94 6 

AM-4 83 17 

AM-5 81 19 
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5.3.1.4 Raman 

To better characterize the structure of the clathrates, Raman spectroscopy was 

performed. Previous studies have demonstrated that the Raman spectrum of silicon 

clathrates is characterized by: 1) low-frequency vibration bands associated with the rattling 

guest atoms, 2) a low frequency framework band, and 3) a high frequency framework band 

that describes how strongly the guest atoms are interacting with the framework. The high 

frequency framework band was observed between 430 – 461 cm-1 in non-framework 

substituted clathrates 178,209,210, e.g. at 438 cm-1 in Ba8Si46 
178. When Al-substitution is used, 

the band redshifts due to the reduced mass when replacing Al with Si. For example, this 

framework band was observed at 517 and 508 cm-1 in Ba7.5Al13Si29 and Eu0.27Ba7.22Al13Si29, 

respectively 211.  

The highest-frequency framework mode in our AM-1 and AM-2 samples was 

observed at 495 cm-1 (Fig. 5.7A-B), which is higher than the mode in the non-substituted 

clathrates from previous studies. This mode redshifted to 510.5 cm-1 in AM-3 after etching 

(Fig. 5.7C), but shifted back after further ball-milling, e.g. for AM-5 (Fig. 5.7D), the same 

trend was also found in the lowest-frequency framework vibrations around 300 cm-1. From 

XPS analysis, the amount of Si-O bonding increased after etching, so the redshift observed 

in AM-3 is likely due to the formation of the oxide layer.  
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Figure 5. 7 Raman spectra of (A) AM-1, (B) AM-2, (C) AM-3, and (D) AM-5. The dashed 

line represents a Raman shift of 495 cm-1. 

5.3.2 Electrochemical Characterization 

5.3.2.1 Galvanostatic Measurements 

The voltage curves obtained from galvanostatic cycling of samples are shown in 

Figure 5.8. AM-1 exhibited a first charge (lithiation) capacity of 85 mAh/g and a first 

discharge (delithiation) capacity of 46 mAh/g, which decreased in subsequent cycles (Fig. 

5.8A). Because of the large particles sizes in AM-1, the lithium diffusion distances were 

very long, and the carbon black additive may not have been sufficient to ensure good 

electronic conductivity through the composite electrode. As shown in Figure 5.8B, ball-

milling resulted in a large increase in capacity, with a 472 mAh/g charge and 276 mAh/g 

discharge capacities observed in the first cycle of AM-2. These capacities correspond to ca. 

20 Li+ reversibly inserted per clathrate formula unit in AM-2, compared to around 3 Li+ for 
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AM-1. Also notably, whereas the shape of the charge/discharge curves was rather linear in 

AM-1, in AM-2 a plateau feature was observed < 0.2 V vs. Li/Li+. This increase in capacity 

after the sample was ball-milling can be explained by the decrease in particle size, as seen 

in the SEM imaging (Fig. 5.8B), but may also be due to additional capacity due to the 

electrochemical reaction of Li with the amorphous surface face. 

To better understand this, the capacities of the other samples were also studied. After 

the acid/base treatments were applied, AM-3 showed a 126 mAh/g charge and 64 mAh/g 

discharge capacities in the first cycle (Fig. 5.8C), which is only 23% - 26% of the capacities 

of AM-2. Since the TEM imaging indicated that the amorphous layer was thinner after the 

acid/base treatment, the lower capacities in AM-3 compared to AM-2 could be due to 

removal of this layer of active material. Also, the layer rich in Si-O on the surface of the 

clathrate may have also played an inhibitory role on the reaction of Li+ with the clathrate. 

The AM-4 and AM-5 results further support this hypothesis, as ball-milling of AM-3 

resulted in higher capacities. As shown in Figure 5.8D-E, the first charge/discharge 

capacities were increased to 176 mAh/g and 98 mAh/g for AM-4 (40 minutes ball-milling) 

and 403 mAh/g and 276 mAh/g for AM-5 (120 minutes ball-milling), corresponding to 

increases in lithiation capacity by 40% and 220%, respectively, relative to AM-3. AM-5 

displayed the highest number of Li+ reversibly inserted in all the samples studied, about 25 

Li+ per formula unit.  
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Figure 5. 8 Voltage profile of first three cycles and thirtieth cycle of (A) AM-1; (B) AM-

2; (C) AM-3; (D) AM-4 and (E) AM-5. 

From the SEM images (Fig. 5.4D-E), the longer ball-milling times can help to 

improve the uniformity of the particle morphology and decrease the particle size, but not 

dramatically. The XPS (Fig. 5.6) and Raman spectroscopy (Fig. 5.7) results support the 

exposure of non-oxide covered surfaces in AM-4 and AM-5, while the TEM analysis 

showed more amorphous layers were generated with the extended ball-milling time. From 

these observations, it appears that the formation of this amorphous surface layer on the 

clathrate particles plays a critical role in the observed electrochemical properties and higher 

specific capacities.  
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The long-term galvanostatic cycling performance and structural changes were also 

studied. As shown in Figure 5.9, the capacities of all of the samples decreased in after the 

first few cycles. The capacity of AM-1stablized at 37 mAh/g after 20 cycles. AM-3 and 

AM-4 displayed capacities of 78 mAh/g and 95 mAh/g after 100 cycles, respectively (Fig. 

5.9B). The capacities also slightly increased at the later cycles, which implies some sort of 

activation process. This could be related to the removal of the silicon oxide surface during 

the electrochemical reaction, which would lead to more exposure of clathrate surface. This 

is reasonable for AM-3, which had the strongest Si-O XPS peak intensity. The similar 

cycling behavior of AM-3 and AM-4 suggests that the 40 minutes of ball-milling was not 

sufficient to expose all the clathrate surface.   

 

 

Figure 5. 9 Capacity vs. cycle number of (A) AM-1, AM-3 and AM-4, (b) AM-2 and 

AM-5. 

The ball-milled samples AM-2 and AM-5 showed the worst capacity retention. The 

capacities of AM-2 and AM-5 dropped significantly from their initial values; a capacity of 
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79 mAh/g was observed from AM-2 after 100 cycles, and 136 mAh/g from AM-5 after 100 

cycles (Fig. 5.9C).  

5.3.2.2 GITT 

 

 

Figure 5. 10 GITT profile of (A) first two cycles of AM-3. (B) First two cycles of AM-5. 

(C) Diffusion coefficient vs. potential of the first cycle of AM-5. 

To better understand some of the redox-dependent behavior, galvanostatic 

intermittent titration (GITT) and differential charge (dQ) plots were obtained. The 

polarization between 1 – 2 V vs. Li/Li+ (Fig. 5.10), which corresponds to the peak centered 

around 1 V observed in the dQ plots (Fig. 5.11A) points to a side reaction likely due to 

reduction of the electrolyte to form a solid electrolyte interphase layer 212. These features 

become undiscernible in the following cycle, suggesting that the SEI formation mostly 

takes place during the first cycle. This polarization was not as obvious in the ball-milled 

AM samples (Fig. 5.10B), which is consistent with the amorphous surface layer in those 

samples creating a different interface with the electrolyte, which might result in different 

SEI formation properties. Figure 5.10C showed the Li ion diffusion coefficients versus the 
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cell potential, which is about 10-12 to 10-16 cm2s-1 for the lithiation below 0.5 V and about 

10-10 to 10-12 cm2s-1 for the delithiation. The diffusion coefficients are similar with the nano 

Si213 and Si thin film/Si nanorods214, which are about 10-10 to 10-12 cm2s-1 and 10-12 to 10-

15.5 cm2s-1. 

5.3.2.3 Differential Plots 

The AM-1and AM-3 samples were characterized by linear voltage profiles and dQ 

plots (Fig. 5.11A) that suggested a surface-dominated, capacitive adsorption mechanism 

215. On the other hand, for AM-2 and AM-5, the broad peaks were similar in position to 

those observed in our previous work on off-stoichiometric clathrates (Ba8Al8Si30) 
197 with 

reduction starting below ~0.3 V vs. Li/Li+, and suggest a single-phase, solid solution 

lithiation mechanism (Fig. 5.11B). For both groups of samples, these characteristics were 

maintained even after 30 cycles (Fig. 5.11C and 5.11D). Similar to our previous 

observations 197, the voltage-dependent redox characteristics in these samples were distinct 

from those observed in diamond cubic Si, amorphous Si, and SiO. The dQ plot associated 

with cubic Si reacting with Li is characterized by a sharp peak at 0.125 V vs. Li/Li+ 

associated with a two-phase reaction to form amorphous lithium silicide and a peak near 

50 mV which is attributed to the formation of Li15Si4 
100,216. Lithiation of amorphous Si 

occurs as two single-phase reactions, which manifest as broad peaks centered at 0.25 and 

0.1 V vs. Li/Li+ in the dQ plots 217. SiO undergoes a conversion reaction with Li to form 

lithium silicates and Li2O, which showed a sharp peak in the differential charge plot at 0.25 

V and a broad one at around 0.1 V vs. Li/Li+ 218 .  
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Figure 5. 11 Differential charge plots of AM-1and AM-3 (A) first cycle; (C) thirtieth cycle. 

Differential charge plots of AM-2 and AM-5 (B) first cycle; (D) thirtieth cycle. 

During the delithiation process, broad peaks centered at 0.45 V vs. Li/Li+ were 

observed in all of the samples. Compare with the off-stoichiometric clathrates, which 

exhibited a broad discharge peak at 0.4 V vs. Li/Li+ in the dQ plots 197, the discharge 

voltage are higher, which is likely due to the difference of the composition (i.e. Al/Si ratio). 

Again, the dQ plots during discharge do not match those observed electrodes made of cubic 

Si, amorphous Si, or SiO. The cubic Si undergoes a two-phase delithiation reaction at about 

0.43 V216, while Li is removed in two single –phase reactions centered at 0.3 V and 0.5 V 

vs. Li/Li+ in amorphous Si217, delithiation of charged SiO shows similar characteristics 

with the amorphous Si. Small sharp peaks at 0.48 V were found in AM-1 and AM-2, 
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considering the impurities, those two unique peaks may come from the two-phase 

delithiation of c-Li15Si4 formed by the unreacted Si during charging. Therefore, the 

electrochemical properties of the clathrate are distinct and unique from those observed in 

lithiation of c-Si, a-Si, or SiO. 

5.3.3 Structural Characterization during Electrochemical Reaction 

XRD analysis of the electrodes after the first lithiation and after 100 cycles did not 

show a decrease in peak intensity (Fig. 5.12), suggesting that amorphization of the clathrate 

structure is not occurring as a result of the electrochemical lithium insertion reaction, and 

that amorphization is also not responsible for the decreasing capacities observed in the ball-

milled samples AM-2 and AM-5. Rather, based on the TEM observations showing that 

ball-milling could introduce amorphous surface layers on the clathrate particles, it is likely 

that AM-2 and AM-5 have the highest capacities due to the electrochemical reaction of Li 

with these amorphous regions. However, this reaction is not as reversible as the surface-

based processes that could be occurring in the other samples, particularly the samples 

without ball-milling (AM-1) that display the most reversible cycling. 
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Figure 5. 12 XRD patterns of electrodes of pristine electrodes (black trace), electrodes after 

the first lithiation (red trace), and electrodes after 100 cycles (blue trace) for (A) AM-1, (B) 

AM-2, (C) AM-3, (D) AM-4, (E) AM-5. 

5.4 Electrochemical Performance of other Silicon Clathrates 

5.4.1 Synthesis of Silicon Clathrate by Arc-melting and Sample Preparation 

In the arc-melting preparation, metals of Ba, Cu (or Ni), and Al were weighed in an 

Ar-filled glovebox with a total weight of ca. 600 mg to achieve a nominal composition of 

Ba8Cu4Si42, Ba8Ni4Si42, and Ba8Ni2Al8Si36. The metals were quickly transferred to the arc 
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melting chamber which was evacuated to ca. 10-4 Torr and backfilled with high purity 

argon. The formed ingot was then taken out and turned over. The melting process was 

repeated three times to ensure good homogeneity  

After hand grinding the initial ingots, ball-milling was performed (SPEX 8000, 

stainless steel grinding set) for 40 minutes to decrease the particle size. The powder was 

suspended in de-ionized water and treated with 3 M HCl for 12 hours to remove the BaSi2. 

After the acid treatment, the powder was recovered using vacuum filtration and washed 

with de-ionized water. Then, the powder was treated with 1 M NaOH for 12 hours to 

remove amorphous or cubic Si, then recovered using vacuum filtration and washed with 

de-ionized water and dried. 

5.4.2 Materials Characterization 

To identify the crystal structure of the samples, X-ray diffraction was performed. The 

data were collected using a Panalytical X’pert Pro diffractometer with CuKα radiation 

operating at 40 kV/40 mA. 

The XRD pattern of Ba-Cu-Si matched the reflections associated with Ba8Cu4Si42 (Fig. 

5.13A). The reference pattern used for the clathrate was of Ba8Cu4Si42 (PDF 00-051-

1353)194. Additionally, some reflections that were not associated with the clathrate 

structure were observed at 2θ = 28.5. This reflection is likely from the (111) reflections of 

cubic Si, as this is commonly seen in clathrate syntheses indicating some unreacted 

precursor 183,203,204, and was removed by acid and base etching (Fig. 5.13A Etched). 
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Figure 5. 13 XRD patterns of (A) Ba8Cu4Si42, with the reference pattern of Ba8Cu4Si42 

(PDF 00-051-1353) (B) Ba8Ni4Si42, with reference pattern of Ba8Ni2Si44 (00-055-0390) 

and (C) Ba8Ni2Al8Si36, with the same Ba8Ni2Si44 reference. 

The XRD patterns of the clathrates with Ni were shown in Figure 5.13B and 5.13C, 

with the reference pattern of Ba8Ni2Si44 (00-055-0390)194 as a comparison. Both of the 

samples contained impurities as Si and other small phases which were removed by acid 

and base etching (Fig.5.13B and 5.13C Etched). Significant shifts to the lower angles were 

observed when comparing the sample Ba8Ni2Al8Si36 with Ba8Ni4Si42 (Fig.5.13D), 

indicating an expansion of the unit cell. The covalent radius of Al is larger than Si206, but 

smaller than Ni. In the case of Ba-Ni-Si clathrate, the framework contains four Ni atoms 

and forty two Si atoms, and two of the Ni atoms and six Si atoms were replaced by eight 
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Al atoms in the Ba-Ni-Al-Si clathrate. Therefore, the enlargement of the unit cell by Al 

substitution is greater than the contraction caused by the replacement of Ni by Al.  

5.4.3 Electrochemical Measurement 

The clathrate powder was prepared into slurries by mixing the clathrate sample with 

10 wt% carbon black (to serve as conducting additive) and 10 wt% polyvinylidene 

difluoride (PVDF) (to serve as binder) in N-methyl pyrrolidone (NMP) as solvent. The 

slurries were stirred overnight and coated onto Cu foil current collectors using a Meyer rod, 

and then heated at 120 oC to remove the solvent. Pouch cells were assembled using Li metal 

as the counter electrode, Celgard 2500 as separator, and 1 M LiPF6 (EC:DMC:DEC, 4:2:4 

in volume, LBC 3051C, MTI) as electrolyte in the glovebox. 

The voltage curves obtained from galvanostatic cycling of samples are shown in 

Figure 5.14A-C. Ba8Cu4Si42 exhibited a first charge (lithiation) capacity of 184 mAh/g 

and a first discharge (delithiation) capacity of 69 mAh/g, which decreased in subsequent 

cycles to about 50 mAh/g. Similar performances were also found in Ba8Ni2Si44 and 

Ba8Ni2Al8Si36, with capacities of 139/61 mAh/g (lithiation/delithiation), and 208/71 mAh/g 

(lithiation/delithiation), respectively, and the capacities of both samples decreased to about 

60 mAh/g in the following cycles. 

The differential plots are shown in Figure 5.14D-E, with the dotted lines for cubic 

silicon and amorphous silicon as comparisons. The dQ plots for the clathrate samples are 

quite district with the Si samples, and were characterized by linear voltage profiles and dQ 

plots that suggested a surface-dominated, capacitive adsorption mechanism 215, which is 

similar with AM-3. As discussed in chapter 5.3, all the samples are not active, likely due 
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to the oxidation layer generated by the acid and base etching but this should be confirmed 

in further studies. 

 

 

Figure 5. 14 Voltage profile of first three cycles of (A) Ba8Cu4Si42, (B) Ba8Ni2Si44 and (C) 

Ba8Ni2Al8Si36; First two differential plots for (D) Ba8Cu4Si42, (E) Ba8Ni2Si44 and (F) 

Ba8Ni2Al8Si36. 
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5.4.4 Structural Characterization 

 

 

Figure 5. 15 XRD patterns of electrodes of pristine electrodes and electrodes after the first 

lithiation for (A) Ba8Cu4Si42, (B) Ba8Ni2Si44 and (C) Ba8Ni2Al8Si36. 

XRD analysis of the pristine electrodes and electrodes after the first lithiation did 

not show a decrease in peak intensity (Fig. 5.15), suggesting that amorphization of the 

clathrate structure is not occurring as a result of the electrochemical lithium insertion 

reaction. This suggests that the reactions are mainly due to the surface absorption. 
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5.5 Conclusion 

In conclusion, we performed a systematic investigation of the processing steps of 

silicon clathrate.  Transmission electron microscope analysis showed ball-milling 

generated amorphous layer on the clathrate surface, which is crucial for the reaction with 

Li. The ball-milling process increased the capacity of hand ground clathrate from 85 mAh/g 

to 472 mAh/g, while the XPS analysis suggested a new oxide layer was introduced by the 

acid/base treatment, and confirmed by TEM, the former amorphous layer was partially 

removed. Thus, the decreased capacity of 126 mAh/g after the acid/base treatment is likely 

due to the removal of the amorphous layer and the presence of the oxidized surface layer 

inhibiting the reaction of Li+ with clathrate. Further ball-milling can expose the clathrate 

surface again, and capacities of 176 mAh/g and 403 mAh/g were observed in the samples 

ball-milled for 40 and 120 minutes, respectively. According to the X-ray diffraction (XRD) 

analysis, all the lithiation/delithiation processes are proposed to occur in single phase 

reactions as there is no discernible structures change. These results show that for clathrate 

at the Zintl condition, Li insertion in the structure is unfavorable unless framework 

vacancies are introduced. The electrochemical performances of Ba8Cu4Si42, Ba8Ni2Si44 and 

Ba8Ni2Al8Si36 were also evaluated. All of those samples were ball-milled and acid/base 

etched.  Due to the surface oxidation layer, those samples showed similar performance 

with the AM-3 sample of Ba8Al16Si30.  
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6: ELECTROCHEMICAL PROPERTIES OF GERMANIUM CLATHRATE 

6.1 Introduction 

 

Figure 6. 1 Crystal structure of Ba8Ge43, distorted pentagondodecahedra (blue) and 

hexakaidecahedra (grey) in the germanium framework. 

Here, we extend the studies described in the previous chapter to type I clathrates based 

on M8XGe46– (M = Ba, K; X = Al, Li) in order to observe the electrochemical properties 

of Ge-based clathrates for the first time. Ba8Ge43 was first obtained as a by-product of the 

decomposition of Ba3Ge4C2 
222. The Ba8Ge43 structure was characterized as a defect type I 

clathrate type structure with three missing Ge atoms in the covalent germanium framework 

(a=10.6565(2)Å, space group Pm-3n, V=1210.2 Å3)223; the appearance of spontaneous 

vacancies in this case can serve to maintain electron charge balance in off stoichiometry 

materials. Cabrera et al reported the Ge1(6c) position was partially (48.89%) occupied, and 
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Ge2 and Ge3 positions were fully occupied. They also reported a site splitting for Ge3 site, 

i.e. the Ge3 position split into two near sites. In their following study, they reported an 

investigation of the fully ordered defects in the Ge network (thermal annealed sample) in a 

superstructure (Ia-3d) of the clathrate-I type with a (Ia-3d) = 21.3123Å = 2 × a (Pm-3n) 224. 

In the case of Ba-Al-Ge clathrates, there is Al substitution on the 6c, 16i, and 24k sites225. 

Based on the Zintl concept, the more electropositive “guest” atoms donate their valence 

electrons to the more electronegative “host” or cage atoms, so the latter can complete their 

valence requirement and build a covalently bonded cage structure. For Ba8AlxGe46-x-y, the 

spontaneous vacancies y can be determined by balancing the electron count in the 

framework, which equals to (16-x)/4. There has also been experimental evidence showing 

that Li can occupy framework vacancies in the germanium clathrate K8LiGe46- (0 ≤  ≤ 

2.3).226 

6.2 Experimental Methods 

6.2.1 Synthesis of Germanium Clathrate by Arc-melting 

A series of clathrates with nominal composition of Ba8AlδGe46-δ (δ = 0, 4, 8, 12, 16) 

were synthesized using arc-melting. The samples were named according to Alδ, where δ 

represents the nominal amount of Al, e.g. Al0 means δ = 0 or Ba8Ge46. Metals of Ba, Si 

and Al (commercial grade materials with stated purity 99.9% wt) were weighed in the Ar-

filled glove box (controlled O2 and moisture atmosphere) according to the formula 

Ba8AlδGe46-δ. An extra amount (5%) of Ba was loaded since Ba is more volatile than other 

elements, the total weight of the starting materials was ca. 600 mg. Then, the materials 
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were quickly transferred to the chamber of a custom-made arc-melter, which were 

evacuated to ca. 10-4 Torr and backfilled with high purity argon. After the initial melting, 

the formed ingot was taken out and turned over. The melting process was repeated three 

times to ensure good homogeneity.  The weight of the ingot at the end of the process was 

checked and the observed loss was less than 0.5%. The as-made arc-melted ingots were 

processed further. HG-Alδ refers to the sample ground by hand using a mortar and pestle, 

while BM-Alδ refers to the HG-Alδ sample after ball-milling for 40 minutes. 

6.2.2 Materials Characterization 

6.2.2.1 X-ray Diffraction 

Powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray 

photoelectron spectroscopy (XPS) were used to perform structural and chemical 

characterization of the prepared Ge clathrate powders and composite electrodes before and 

after electrochemical cycling, the electrodes were rinsed several times with propylene 

carbonate and dried in an Argon-filled glovebox overnight. 

6.2.2.2 Electron Microscopy 

Powder XRD data were collected using a Panalytical X’pert Pro diffractometer with 

CuKα radiation operating at 40 kV/40 mA. Scanning electron microscopy (SEM) imaging 

was performed using an XL 30 ESEM-FEG microscope and a 12 kV electron beam. XPS 

was performed on a VG ESCALAB 220i-XL with Al Kα anode (1486.6 eV) operating at 

63 W and 12 kV. The X-ray takeoff angle was 45° and the data were acquired from the 

region about ~400 μm of the surface of the sample. Charge compensation was used. A pass 

energy of 20 eV was used for high-resolution spectra (energy resolution 0.7 eV). The 
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spectra were calibrated to the hydrocarbon peak at 284.5 eV. Peak fitting was performed 

using CasaXPS processing software. 

6.2.3 Electrochemical Measurement 

HG-Alδ and BM-Alδ samples were prepared into slurries by mixing the clathrate 

sample with 10 wt% carbon black and 10 wt% polyvinylidene difluoride (PVDF) binder in 

N-methyl pyrrolidone (NMP) as solvent. The slurries were stirred overnight and coated 

onto Cu foil current collectors using a Meyer rod, and then heated at 120 oC for 3 hours to 

remove the solvent. Half-cells were assembled using Li metal as the counter electrode in 

the Ar-filled glovebox. Electrochemical testing was performed using a Biologic VMP3 

galvanostat/potentiostat. Galvanostatic measurements were performed in the 0.01 – 2.5 V 

vs. Li/Li+ range using a current density of 25 mA/g of clathrate. For potentiodynamic 

measurements, a 5 mV voltage step was used with a threshold current density of 100 mA/g 

in the same voltage range. 

6.3 Results and Discussion 

6.3.1 Structural Characterization 

XRD was performed on the synthesized Ge clathrates samples before and after 

grinding. All of the hand ground Ba8AlδGe46-δ samples (Fig. 6.2A) displayed crystalline 

clathrate peaks matching the reflections in Ba8Ge43 (PDF 01-073-5638)224, which is a 2 

x2x2 superstructure of the normal cubic clathrate. For the Al containing samples, the peaks 

were shifted to lower angles, indicating an increase in the cell parameter. Rietveld 
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refinement was performed to determine the cell parameters and showed an increase from 

21.31 Å for Al0 to 21.67 Å for Al16 (Table 6.1). The presence of crystalline Ge, identified 

by the (111) reflection, was noticeable in Al0 and Al4. Rietveld refinement to determine 

the phase fraction showed that the amount of Ge impurity was very small (Table 6.1). No 

other crystalline peaks were observed. 

 

 

Figure 6. 2 XRD patterns of (A)as-made Ge clathrate and (B) ball-milled Ge clathrate with 

reference pattern PDF 01-073-5638 corresponding to Ba8Ge43 on the bottom. (■) Ge. 

XRD was also performed on the ball-milled clathrate powder (Fig. 6.2B). The powder 

after ball-milling also displayed a crystalline clathrate structure without any change of the 
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cell parameter and impurities, but the diffraction intensities decreased and the peaks were 

broader, which is consistent with a smaller particle size in the ball-milled samples. 

Table 6. 1 Properties of synthesized Ge clathrates 

Sample 
a-parameter 

(Å) 
Clathrate % Ge % 

Al0 21.3056 99.7 0.3 

Al4 21.3885 98.5 1.5 

Al8 21.5553 100 0 

Al12 21.6010 100 0 

Al16 21.6700 100 0 

 

6.3.2 Electrochemical Characterization 

6.3.2.1 Galvanostatic Measurements 

The voltage curves obtained from galvanostatic cycling of HG and BM samples are 

shown in Figure 6.3, and the experimental results are summarized in Table 6.2, with 

theoretical capacities and the number of Li inserted (x) per formula unit (f.u.), the charge 

(lithiation) and discharge (delithiation capacities), corresponding to the number of Li 

inserted per clathrate formula unit and Coulombic efficiencies (CE) for the first cycle.  

The theoretical capacities for the clathrates were calculated using the nominal 

composition (and its molecular weight) and assuming the clathrates undergo a conversion 

reaction upon lithiation. (The small weight % of Ge in x < 8 was neglected). It is known 

that germanium can alloy with lithium to form the Li4.4Ge alloy227. The highest theoretical 

capacity assuming full conversion for the Al-free Ge clathrate Al0 was 1201 mAh/g, which 
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corresponds to insertion of 189 Li per formula unit (f.u.). This value decreased as the Al 

content increased, as shown in Table 6.2.  

 

Figure 6. 3 Galvanostatic cycling data of (A) hand ground samples and (B) ball-milled 

samples. 

Table 6. 2 Theoretical conversion capacities and experimentally observed capacities of 

Ge clathrates. 

 
in 

Al 

Theoretical Experimental 

Final Product: Li4.4Ge Hand ground samples Ball-milled samples 

Capacity 

(mAh/g) 

# of Li 

per f.u. 

Capacity 

(mAh/g) 

(CE%) 

# of Li 

per f.u. 

Capacity 

(mAh/g) 

(CE%) 

# of Li 

per f.u. 

0 1201 189 1098/683(62) 173/108 1248/858(69) 197/135 

4 1163 184 896/607(68) 142/96 1087/751(69) 173/119 

8 1100 167 883/451(51) 134/59 879/548(62) 134/83 

12 1030 149 558/329(59) 81/59 702/431(61) 102/63 

16 954 132 518/289(56) 72/56 651/397(61) 90/55 
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Comparing the results of hand ground and ball-milled sample, the ball-milling process 

can improve the performance, including the capacity and coulombic efficiency, which is 

reasonable considering Ge clathrate is not a good conductor, and the amount of material 

get reacted will be increased by decreasing the particle size. And on the other hand, the 

voltage profiles for the HG and BM samples were quite similar, indicating the ball-milling 

process do not change the reaction mechanism, so in the following discussion, only ball-

milled samples were discussed. 

 

 

Figure 6. 4 Potential vs. specific capacity plots of the galvanostatic cyling data of (A) 

hand ground samples and (B) ball-milled samples. 

Interestingly, a composition dependency on the first charge capacities was observed. 

BM-Al0 showed the highest numbers of Li+ inserted, with x = 197; x decreased as the Al-

content in the clathrate increased, with x = 90 for BM-Al16. This corresponds to specific 

capacities of 1248 mAh/g for Al0 compared to only 651 mAh/g for Al16, as shown in the 

potential vs. specific capacity plots in Figure 6.4. The observed first cycle charge for BM-

Al0 is higher than the theoretical conversion capacity, suggesting that there some charge 
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devoted to formation of the solid electrolyte interphase (SEI) layer. This is confirmed by 

the low CE of 69% and SEM images (Fig. 6.5). 

 

 

Figure 6. 5 SEM images of (A) pristine and (B)lithiated electrode of BM-Al0. (C) 

Pristine and (D)lithiated electrode of BM-Al4. (E) Pristine and (F)lithiated electrode of 
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BM-Al8. (G) Pristine and (H)lithiated electrode of BM-Al12. (I) pristine and (J) lithiated 

electrode. 

Although the first discharge (delithiation) capacities for all of the samples followed a 

similar trend, with the highest capacities observed in Al0, the values were much lower, 

around 680 mAh/g. The 1st cycle CE was highest for BM-Al0 and BM-Al4 at 69%, which 

decreased with the decreasing of Al content, around 61% for the other samples. Further 

galvanostatic cycling showed the capacities for all the samples decreased rapidly below 

100 mAh/g after 10 cycles (Fig. 6.6). 

 

 

Figure 6. 6 Capacity vs cycle life for all the Ge clathrate samples. 
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6.3.2.2 Differential Plots 

To investigate the electrochemical processes during charging and discharge, the 

differential capacity of the first two cycles of electrodes cycle at current rate of 100 mA/g 

were plotted and is shown in Figure 6.7 with a Ge electrode which has been ball-milled 

for 40 minutes as a comparison. The dQ plot associated with ball-milled Ge reacting with 

Li is characterized by two peaks at ~ 0.33 V and 0.16 V, and replaced by one peak at 0.16 

V. The peak at ~ 0.31 V is attributed to the lithiation of Ge to form a series of amorphous 

LixGe phases where 0 < x < 3.75. The peak at 0.16 V for both first and second cycles is 

attributed to the formation of the amorphous, Li rich Ge alloy, a-Li15Ge4
228,229. For the BM-

Al0 to BM-Al12 samples, the lithiation peaks are broad and from ~0.13 V to 0.20 V, which 

may be associated with the formation of lithium rich a-LiGe, but due to the Ge bonding 

with Al and different amount of vacancies, the peak shapes were quite different with the 

pure Ge. For the lithiation for the BM-Al16 sample, the lithiation occurred around 0.06 V. 

When considering the crystal structure of Ba8AlxGe46-x-y, y is the number of vacancies, 

which is equal to (16-x)/4. The amount of vacancies for BM-16 is the smallest, and equals 

to zero when the Al equals to 16. So the low reaction voltage may be explained by the 

different crystal structure containing the least amount of vacancies for Li diffusion. 

The delithiation process of the Ge electrode occurres at 0.50 V and 0.66 V, associated 

with the delithiation of Li poor a-LixGe and Li rich a-LixGe. For the Ge clathrates, the 

discharge reactions occur over a broader voltage region, from 0.2 V to 0.6 V and more than 

one peak was observed, indicating the formation of a series of phases. Therefore, the 

electrochemical properties of the clathrate are distinct and unique from those observed in 

lithiation of Ge. 
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Figure 6. 7 Differential capacity plots of the first and second cycles of different ball-

milled Ge clathrate samples and ball-milled Ge. The electrodes were cycled at a 100 

mA/g current between 0.01V and 2.5V. 
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6.3.3 Structural Characterization after Electrochemical Reaction 

XRD of the pristine electrodes and electrodes after the first charge was performed. As 

shown in Figure 6.8, the reflections associated with the clathrates all disappeared after one 

lithiation, suggesting the amorphization of the material and coversion reaction mechanisim. 

Considering the same trend for the theoretical and experimental capacities, which 

decreased with the decrease in Ge content, the electrochemical performance may mainly 

be due to the alloying of Ge and Li, which led to the formation of amorphous phases after 

the reaction.  

 

Figure 6. 8 XRD patterns of pristine electrodes (black) and lithiated electrodes (red). 

Comparison of SEM images taken of the pristine electrodes compared with electrodes 

after the first lithiation did show indication of particle volume expansion and coating of the 

electrode with an SEI layer (Fig. 6.5), which may explain the fast decay of the capacities 

(Fig. 6.6) 
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6.4 Electrochemical Properties of Phosphide Clathrate Materials 

Three different materials, Ba8Cu16P30, Ba8Cu14Ge6P26 and BaCu2P4 are discussed in 

this section. These materials were synthesized by the research group of Prof. Kirill Kovnir 

from the University of California, Davis, and characterized by X-ray diffraction with the 

simulated patterns as references. No impurities were reported, so the materials were used 

as received. 

Ba8Cu16P30 was first synthesized and characterized by Dünner and Mewis in 1995 230, 

and was reported to display semiconducting behavior with a band gap of 0.7 V. It belongs 

to the space group of Pbcn, a superstructure of the type I cubic clathrate structure without 

atomic disorder, where the Ba atoms are encapsulated in the cages formed by Cu and P 

atoms. On the other hand, there have been limited studies reporting the Cu and Ge 

substituted framework clathrate, Ba8Cu14Ge6P26. The unconventional clathrate, BaCu2P4 

crystallized in the orthorhombic space group Fddd, which can transform to the type I 

clathrate Ba8Cu16P30 at high temperatures. 231  

6.4.1 Electrochemical Measurement 

The clathrate powder was prepared into slurries by mixing the clathrate sample with 

10 wt% carbon black and 10 wt% polyvinylidene difluoride (PVDF) in N-methyl 

pyrrolidone (NMP) as solvent. The slurries were stirred overnight and coated onto Cu foil 

current collectors using a Meyer rod, and then heated at 120 oC to remove the solvent. 

Pouch cells were assembled using Li metal as the counter electrode, Celgard 2500 as 

separator, and 1 M LiPF6 (EC:DMC:DEC, 4:2:4 in volume, LBC 3051C, MTI) as 

electrolyte in the glovebox. Electrochemical testing was performed using a Biologic VMP3. 



163 

 

Galvanostatic measurements were performed from 0.01 – 2.5 V vs. Li/Li+ range with a 

C/20 rate. The current density used for Ba8Cu16P30 was 20 mA/g, 39 mA/g for 

Ba8Cu14Ge6P26 and 118 mA/g for BaCu2P4. 

 

 

Figure 6. 9 Voltage profile of the first 5 cycles of (A) Ba8Cu16P30, (B) Ba8Cu14Ge6P26 and 

(C) BaCu2P4. Differential plots of (D) Ba8Cu16P30, (E) Ba8Cu14Ge6P26 and (F) BaCu2P4. 

Capacity vs. cycle number of (G) Ba8Cu16P30, (H) Ba8Cu14Ge6P26 and (I) BaCu2P4. 

The voltage curves obtained from galvanostatic cycling of the samples are shown in 

Figure 6.9A-C. Ba8Cu16P30 exhibited a first charge capacity of 453 mAh/g and a first 
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discharge capacity of 153 mAh/g, which decreased to 80 mAh/g after 30 cycles (Fig. 6.9G). 

Ba8Cu14Ge6P26 showed a large increase in capacity, with a 1114 mAh/g charge and 424 

mAh/g discharge capacities (Fig. 6.9B),  which also decreased to about 80 mAh/g after 

30 cycles(Fig. 6.9H). BaCu2P4 showed the highest lithiation capacity, exhibited a first 

charge capacity of 1511 mAh/g and a first discharge capacity of 303 mAh/g, which also 

fell to 80 mAh/g after 30 cycles (Fig. 6.9I).  

To better understand the electrochemical reaction of the P clathrate, differential charge 

plots were also studied as shown in Figure 6.9D-F. For Ba8Cu16P30 and BaCu2P4, two sharp 

peaks were observed around 0.20 V and 0.11 V during the first lithiation, and suggest a 

two phase, conversion lithiation mechanism, but the sharp peaks disappeared and a much 

smaller peak at 0.15 V was observed for the second cycle, which indicated the reaction 

during the first lithiation is somehow irreversible. For Ba8Cu14Ge6P26, the two sharp peaks 

for the first cycle and a much smaller peak for the second cycle were also observed, but the 

potentials change to 0.27 V, 0.14 V and 0.13 V, respectively, which may due to the Ge 

substitution. The dQ plots for the clathrate samples are quite distinct with phosphorus. 

During lithiation, the dQ plot associated with black phosphorus reacting with Li is 

characterized by two broad peaks at 0.78 V and 0.63 V vs. Li/Li+ associated with two-

phase reactions to form LiP and Li2P, and a peak near 0.18 V which is attributed to the 

formation of Li3P.232–234  

During the delithiation process, broad peaks centered at 1 V vs. Li/Li+ were observed 

in Ba8Cu16P30 and BaCu2P4. Compare with phosphorus anodes, which exhibited a broad 

discharge peak at 1.12 V vs. Li/Li+ in the dQ plots234, the discharge voltage are slightly 

lower, which is likely due to the difference of chemical environment. Due to the Ge 
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substitution, the discharge peak of Ba8Cu14Ge6P2 is quite different with the other two 

samples, which showed a broad peak at 0.75 V. According to the electrochemical 

investigation, the reactions with Li are similar in Ba8Cu16P30 and BaCu2P4, but the latter 

showed a higher capacity, about four times of Ba8Cu16P30; the reaction of Ba8Cu14Ge6P2 is 

different with the other two clathrate due to the Ge substitution, and showed a high capacity 

of 1114 mAh/g for the first lithiation. During charging, all the samples showed a distinct 

and unique reaction from those observed in lithiation of phosphorus, but the discharging 

processes for Ba8Cu16P30 and BaCu2P4 are similar with the phosphorus. 

6.4.2 Structural Characterization after Electrochemical Reaction 

 

 

Figure 6. 10 XRD patterns of pristine (black) and lithiated (red) electrodes for (A) 

Ba8Cu16P30, (B) Ba8Cu14Ge6P26 and (C) BaCu2P4. 

XRD of the pristine electrodes and electrodes after the first charge was performed. As 

shown in Figure 6.10A, the intensity of the clathrate diffractions decreased after lithiation 

in sample Ba8Cu16P30, suggesting the partial amorphization of the material, which can 

explain the low capacity as a result of the incomplete reaction. For the other samples, the 
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reflections associated with the clathrates all disappeared after one lithiation, suggesting the 

amorphization of the material and coversion reaction mechanisim.  

6.5 Conclusion 

In conclusion, we investigated a series of Ba8AlδGe46-δ (δ = 0, 4, 8, 12, 16) for use as 

an electrochemical energy storage material for the first time. According to the 

electrochemical and material characterization, the Ge clathrates underwent conversion 

reactions, with formation of amorphous products after lithiation. The highest numbers of 

Li+ inserted observed in BM-Al0, with x=197; x decreased as the Ge-content in the 

clathrate decreased, with x = 90 for BM-Al16. This corresponds to specific capacities of 

1248 mAh/g for BM-Al0 compared to 651 mAh/g for BM-Al16. By the differential plots 

analysis, the reaction is different and unique with lithiation of germanium, but still suffer 

from large volume changes. 

The electrochemical properties of phosphorus clathrates were studied as well. 

Ba8Cu16P30 showed the lowest capacity about 450 mAh/g for the first lithiation, and an 

incomplete reaction with lithium. BaCu2P4 showed a similar reaction voltage, with a higher 

capacity of 1510 mAh/g. Ba8Cu14Ge6P26 exhibited a capacity of 1110 mAh/g with a 

different reaction voltage due to the Ge substitution. All of the materials underwent 

conversion reactions, and suffered from bad capacity retention. 
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