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ABSTRACT  

   

Machine learning methodologies are widely used in almost all aspects of software 

engineering. An effective machine learning model requires large amounts of data to 

achieve high accuracy. The data used for classification is mostly labeled, which is 

difficult to obtain. The dataset requires both high costs and effort to accurately label the 

data into different classes. With abundance of data, it becomes necessary that all the data 

should be labeled for its proper utilization and this work focuses on reducing the labeling 

effort for large dataset. The thesis presents a comparison of different classifiers 

performance to test if small set of labeled data can be utilized to build accurate models 

for high prediction rate. The use of small dataset for classification is then extended to 

active machine learning methodology where, first a one class classifier will predict the 

outliers in the data and then the outlier samples are added to a training set for support 

vector machine classifier for labeling the unlabeled data. The labeling of dataset can be 

scaled up to avoid manual labeling and building more robust machine learning 

methodologies. 
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CHAPTER 1 

INTRODUCTION 

Machine learning has now become an essential part of many software applications. In its 

traditional application, classification models require large sets of inputs labeled data. 

Manual data labelling at large scale becomes highly expensive in terms of both cost and 

time. This thesis work focuses on how we can minimize the amount of labeled data to 

train a machine effectively and still produce accurate results.  

Learning from small dataset is a challenging problem and many methodologies try to 

achieve high accuracy with large datasets, for example, One Class Classifiers (OCC), 

Semi-Supervised Learning (SSL) / Online Machine Learning (OML) methodologies. 

OCC as instance, uses only positive samples or positive with very little negative samples 

to train, however, using only one class still requires labelling all the positive samples. 

The traditional classification problem uses both positive and negative datasets and 

provide more accurate results given that the data is labeled accurately. 

Labeling a large dataset is a cumbersome task, however, unlabeled data is available in 

abundance. Utilizing a small label dataset to label unlabeled data, an active learning 

methodology, can be utilized to reduce the problem space. The drawback in such scenario 

is to either use an oracle (eg. a human to label all the data piece by piece acquired by 

querying the classifier to provide a prospective label) or depend on a classifier to 

accurately label the unlabeled pool. Both the scenarios carry disadvantages and the 

assumptions that all data is true which is, the data is balanced, no sample is wrongly 

labeled, no parts in the dataset is missing. Many techniques such as normalizing data, 

taking Gaussian for the entire data, and others can be used to address true data problems 
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which contributes to higher accuracy of a classification model but does not completely 

address reducing the dataset size requirements.  

Many large datasets with large feature space can be reduced to fewer features 

(dimensionality reduction) using techniques such as Principal Component Analysis 

(PCA). The new reduced dimensionality can be thought of less data in feature space, 

however, the classifier still trains and tests on same number of samples. PCA can address 

hard problems of classification, such as curse of dimensionality, however could lead to 

loss in important data for less dimensions.  

Object detection in geo-spatial images is a well-known problem and has been solved by 

first labeling huge datasets for positive and negative samples, and then classifying the 

datasets with traditional models such as State Vector Machine (SVM), Active Learning 

methodology, and others. The accuracy of such methodologies is generally high because 

of the decision boundary being very vast and large amount of both negative and positive 

samples provide higher accuracy.  

OCC can help in lowering the required labeled data for higher accuracy with requiring 

only positive or positive with little negative samples to train the classifier. This 

methodology helps in reducing the dataset size required for training, however still carries 

disadvantages such as curse of dimensionality, inlier and outlier detection, which become 

much harder due to the absence of negative data. The OCC is discussed in detail in 

chapter 2. 

This work tries to find the smallest size to train a classifier and compare accuracy results. 

The comparison is drawn between multi-class classifiers and OCC for both traditional 

machine learning and active learning methodology. 
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OCC has also been adopted for active learning methodology. In the work as presented by 

Barnab-Lortie, Bellinger, & Japkowicz (2015), methods for OCC such as- Mahalanobis 

distance classifier, distance to KNN, and One-Class SVM can be used to devise an active 

learning model. The author proposes different set of procedures to compare how OCC 

with KNN and Mahalanobis distance and One-Class SVM performs. The idea presented 

is that, first a small dataset is used to train OCC and a little data is kept for validation. 

Once the OCC is train and tested, use a selection criterion to choose samples from 

unlabeled pool. The samples are then used added to the original training set and tested on 

“held out” data.  

In comparison to the work presented in this thesis, Barnab-Lortie, Bellinger, & 

Japkowicz (2015) do not focus on lowering the dataset size or reducing data 

preprocessing, but evalute performance of different OCC techniques. In this thesis work, 

we try to reduce the dataset size requirements by evaluating performance of classifiers 

based on small dataset without using data preprocessing to boost the performance. Also, 

we introduce a novel methodology to build an active machine learning model by combing 

One-Class SVM and binary SVM to reduce the data labeling cost and build a robust 

active learning model. 

 

1.1 Motivation 

For an application to effectively use machine learning models, it is an expensive task to 

collect and label large amounts of data. If we can reduce the labeled data and still predict 

the outcome with high accuracy, the overall costs can be largely reduced. With higher 
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accuracy of a classifier, an active learning approach to label unlabeled dataset can also 

minimize labeling of data through an oracle. 

With the progress in technology, all major software has data centric operation. The data 

however, might not be labeled into classes and may require manual effort to do so. The 

machine learning algorithms achieve high accuracy when trained with large labeled 

dataset size. Labeled dataset being expensive, some part of it must be kept for testing the 

performance of a classifier, which means some percentage of data is not utilized to make 

the model more accurate.  

Another disadvantage with large labeled dataset is that the data pre-processing costs also 

increases. The training data should be kept true, which means, low on variance and 

missing values along with its distribution in standard, normalized, or Gaussian form.  

The pre-processing costs with large datasets can be reduced if we can assert that small 

labeled dataset size is effective to achieve high accuracy. 

 

1.2 Hypothesis 

One Class Classification methods train on positive samples with no or limited negative 

samples. The limited negative samples can be either an inadequate small amount of 

labeled negative samples, poorly distributed negative samples or unlabeled data to extend 

the classification boundary. Filtering our data set with positive samples reduces the 

original dataset size and reduce the required manual labelling of the complete data set. 

With this we expect to see high accuracy when training with one class classifier for large 

positive sample data set. A multi-class classifier for the same amount of data might not 

perform as good as OCC due to small training size. 
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Another interesting viewpoint is then to check -  how multi-class classifiers work with 

increasing amounts of input data in accuracy metric versus OCC. This will then lead to 

calculate precision and recall determining at what point the multi-class classifiers takes 

over one class classifier in terms of accuracy. We then extend this incremental approach 

to active learning methodology where, we first train a multiclass classifier with labeled 

data and random samples from unlabeled pool to determine if unlabeled data was 

accurately classified or not. Another extension is to train a OCC to detect inliers and 

outliers in the data and use those samples with labeled pool along with training data to 

check if unlabeled pool is accurately labeled. Techniques such as Random Over 

Sampling (ROS) (Lemaˆıtre, Nogueira, & Aridas, 2017) can be used to balance 

imbalances in data and remove under sampling problem. ROS will help in increasing the 

accuracy of the model and make the model robust. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, we will discuss One Class Classification (OCC), Active Learning, 

Support Vector Machines (SVM), and Principal Component Analysis (PCA). 

 

2.1 One Class Classification 

2.1.1 General Introduction to One Class Classification 

In conventional classification techniques, we train our classifier using both positive and 

negative labeled data. Using such data helps in making the decision boundary cover most 

of the data instances, in other words it provides good generalization of the overall data.  

One Class Classification (OCC) on the other hand deals only with the following - only 

positive labels or positive with little negative samples. The goal here is to define a 

decision boundary such that all the data from positive samples is included and best 

matches from unlabeled data are accurately predicted. This provides an advantage over 

using less data and more so labeling only positive samples, reducing the manual labeling 

effort.  

However, OCC still carries disadvantages such as - outlier detection, curse of 

dimensionality, and overfitting of data, as seen in a multi-class classifier. Lesser the data 

available for OCC classifier, the harder it becomes to achieve higher accuracy.  

A OCC methodology deals in classifying objects with only positive samples or very little 

negative and positive sample dataset. The OCC has been widely studied and many 

comparisons have been drawn to distinguish the ease of usability of OCC vs multi-class 

setup and to highlight that both classification techniques have similar problems such as - 
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curse of dimensionality, boundary definition, estimation of classification error, etc. The 

OCC is also thought to be a difficult classification methodology due to lack of negative 

samples in the dataset.  

One of the most common examples studied to compare one class with multi-class 

classification is, distinguishing fruits with vegetables. A positive only dataset will 

classify different fruits and vegetables based on the category they belong to. However, 

this problem becomes unrealistic when a test data such as an animal (let us consider a dog 

in this example) is fed to the classifier. The dog in this case will certainly be classified as 

either a fruit or a vegetable, which is wrong in both the cases. 

Another example can be thought of while discussing OCC vs multiclass classification is 

detection of false sensor data. While collecting, and labeling a dataset, we would always 

have positive faults dataset or positive with very little negative sample dataset. In such a 

scenario, it becomes highly difficult to detect when the sensor is showing an 

abnormal/false behavior due to absence/little availability of negative samples, thereby 

making it harder to decide feature vectors for such data.  

OCC problem as presented by Mazhelis is as follows: 

Let us consider an object Z represented by a vector � = ���, … , ��	 of values of 
� 

features from feature space. Let C be classes and �, where � = {1, … , ��}, denotes label 

of class i.  

Let ��� and ��� be training and test datasets where: 

 ��� = {����, … , ����� , �|! = 1, … ���|" � , is the class label, and 

 ��� = {����, … , ����� , �|! = 1, … ���|" are vectors of features without class labels. 
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Let # be a set of parameters to be learned by the classifier. For an unlabeled observation 

x, the classifier should produce an output u (x, #) where $��, #	 ∈ {��, … , �&�	. The 

classifier can also implement a real-valued discriminant function $'��, #	 such that it 

greater values of the function corresponds to higher probability of class membership 

(�) ∈ �  |�	 = (�� |�	. Consequently, the highest value of discriminant function is 

selected: 

*��, #	 = �+,-��.�,…,&/  $'0��, #	,  

where * is a mapping function.  

A highest posterior probability can be calculated using Baye’s rule for any output of a 

classifier’s approximated probability (�� |�	. 

A single discriminant function for a two-class classification problem can be given as: 

$��, #	 =  (��� |�	 −  (��2 |�	 which can lead to implement classification as: 

 *��, #	 = {�� , �3 $��, #	 ≥ 0,  �2 �3 $��, #	 < 0  
 

2.1.2 Putting to test- Performance of OCC 

The performance of a multiclass classifier is computed based on probability density of 

both positive and negative classes. However, due to availability of only positive sample 

in OCC, the probability density of only positive class is known. The performance in OCC 

is therefore calculated by measuring objects - true positive, false positive, false negative, 

true negative. Table 1 is a confusion matrix which illustrates different scenarios. 
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Object from target class Object from outlier class 

Classified as a target object True positive, 78  False positive, 98 

Classified as an outlier object False negative, 9: True negative, 7: 

 Table 1: A confusion matrix for One Class Classification. Source (Tax D. M., 2001) 

 

From table 1, it can be deduced that 78 + 9:  =  1 and 98  +  7:  =  1. The 

complication in this scenario is that, nothing or very little is known about 98 �
< 7:, 

however, 78 and  9: can be estimated. Now to calculate the true error (=>?@A), as 

discussed earlier, the complete probability density B��, �	 should be known. 

In case of OCC however, only B��|C�	 ( C� being the target class) is known and only 

error of first kind ε1can be estimated. =� being the reduction of false negatives detected in 

the matrix above. Error of second kind =�� is the false positives from above matrix. This 

error is unmeasurable due to the absence of a negative class and hence an outlier 

distribution B��|CD	 cannot be estimated. 

The posterior probability in this case can be calculated using Baye’s rule: 

B�C�|�	 = B��|C�	B�C�	B��	 

=  B��|C�	B�C�	B��|C�	B�C�	  +  B��|CD	B�CD	 

The outlier distribution B��|CD	 is assumed to be uniformly distributed and B��|CD	 is 

independent of x in feature space, which means B��|C�	 can be used instead of B�C�|�	 

transformed by a strictly increasing function. 

 

2.1.3 Taxonomy of One Class Classification 

Unified approach to OCC based on the prior work is proposed by (Khan & Madden, 

2004). The approach presented is broadly divided into three categories listed as follows: 
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1. Availability of Training Data: Learning with positive only / positive and very 

little negative / unlabeled data. 

2. Methodology Used: Algorithms based on One-class Support Vector Machines 

(OSVMs) or methodologies based on algorithms other than OSVMs. 

3. Application Domain: Application of OCC in domains like image classification, 

text/document classification, or in other domains. 

Let us now discuss the above taxonomy briefly. 

 

2.1.3.1 Availability of Training Data. 

The availability of training data is a key factor while discussing OCC. The training data 

which is large positive, labeled data plays a key role in not only generalizing the classifier 

but also, defining an efficient decision boundary. The outlier class, as in this case, should 

be clearly distinguished to avoid anomaly and detect false positive objects.  

As discussed earlier, the training of OCC can be categorized in three categories: 

1 Learning with positive only data. 

2 Learning with positive and small negative set / artificial outliers. 

3 Learning with positive and unlabeled data. 

The above categories represent the type of data which can be used to train a OCC. The 

most common being the 1 and 2 have been thoroughly discussed in different research 

work. The third category, positive and unlabeled data, overlaps slightly with semi-

supervised learning which is explained in following section. 
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 Figure 1: Taxonomy of OCC. Source: (Khan & Madden, 2004) 

 

 

2.1.4 Methodology Used 

Majority of methodologies involving OCC use One-class Support Vector Machines 

(OSVMs) or Non-OSVMs (neural networks, decision trees, nearest neighbors and many 

others). Let us discuss both the techniques in brief detail. 

 

2.1.4.1 OSVMs 

The study of OSVM involves the Support Vector Data Descriptors (SVDDs, detailed 

discussion in following section). The SVDDs comprises of a hyper-sphere / hyper-plane 

around the positive class data containing almost all the data points and at minimum 

radius. A Gaussian or Polynomial Kernel is typically implemented to compute a hyper-

sphere / hyper-plane to manage higher dimensionality of feature space and define Support 

Vectors efficiently. 
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2.1.4.2 Methods other than OSVMs 

Methods such as neural networks, nearest neighbors, decision trees, and others can also 

be used to classify objects in One Class. These methods have been widely studied and 

comparisons have been drawn with OSVM methodology. The study of these methods is 

out of scope for this work and are not discussed in detail. 

 

2.1.4.3 Application Domain. 

The application of OCC methodologies can be commonly seen in text/document 

classification problems. The other applications include handwriting detection, remote 

sensing, object recognition, spam detection, and many others. 

 

2.1.5 OCC - Learning and Methodologies. 

In this section, we will discuss learning and methodologies which can be utilized to build 

a OCC classifier as described by (Khan & Madden, 2004). 

 

2.1.5.1 Training a Classifier 

Before a classifier predicts objects or predicts the outcome we train the classifier on 

probability density function (PDF) or on parameters of discriminant functions. 

Methods such as parametric or nonparametric density estimation can be used to 

determine PDF.  

 

Assuming we have a Gaussian distribution # = {E, F} parameters of the distribution can 

be estimated through maximizing the likelihood in form: 

            G�E, F	  =  ∏∈IJK  B�� |E, F	 
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Figure 2: A sample anomaly detection curve from the dataset used in experiment. The 

blue circle shows the decision boundary of the classifier. 

 

 

When it is difficult to estimate likelihood maximization, Expected-Maximization (EM) 

algorithm can be used to compute expectation and maximization. In expectation 

procedure (E-step) the expectation E of the log-likelihood of parameters with respect to 

hidden parameters is calculated. In maximization procedure (M-step) the parameters are 

reassigned the values maximizing the expectation of log-likelihood. The E and M steps 

are iteratively repeated until convergence. 
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Parameters of discriminant function can be estimated by minimizing an error function of 

parameters. The value of error function is evaluated using empirical data and it reflects 

degree of misclassification error. For instance, the cross-entropy error function is given 

by: 

            =�L  =  − ∑ ∑ �N2N.�  O0∈PQK R
 $N �� , #	 S�N =  1, if �  ∈  �N ,
�N =  0, otherwise 

 

Another concept used while defining learning of a classifier is Generalizability. The term 

generalizability refers to the ability of a classifier to include data points which lie outside 

the decision boundary making the classifier general enough and able to achieve high 

accuracy. Consider decomposition of misclassification error into bias and variance. The 

decomposition is expected error over all possible training set instead of just ��� (training 

dataset). Let us take sum-of-square error function for regression problem instead of 

classification: 

]IJ^[�$��, #	  −  �2]  

=  a]IJ^[$���, #	] −  ��b2  +  ]IJ^[{�$���, #	]  − ]IJ^[�$���, #	}2]  
                  = �c��d	2  +  e�+��
fg 

where ���	 is the regression function approximated. The bias tells us how flexible our 

model is and variance value defines the ability of a classifier to generalize beyond 

training dataset. 
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2.1.5.2 Classification Methodologies 

In this section, we will discuss different methodologies which can be used to classify a 

OCC. 

 

2.1.5.2.1 Histogram of Oriented Gradients (HoG) 

The work of (Dalal & Triggs, 2005) has been widely recognized in human detection 

problem. The proposed work moves forward from previous work like HaaR feature 

extraction, for face recognition problems. The previously studied HaaR feature extraction 

method lacked in defining good feature vector. The work presented by (Dalal & Triggs, 

2005) combines Scale Invariant Feature Transform (SIFT) feature extraction 

methodology with histograms to define comprehensive feature vectors and improve the 

accuracy. The HoG method is robust to the noise in training data along with mislabeling 

errors and depends on how the feature space is divided into bins. Gaussian and mixture of 

Gaussians methodology is also widely used to build an effective classifier.  

Assuming a dataset is normally distributed, then the Gaussian distribution is given by: 

Bh��, μ, ∑	 =  1
�2k	l

2|∑|^1/2   
 

 × exp{ − 1
2 �� − μ	� r�� − μ	} 

:�
 

where µ is the mean vector, and ∑ is covariance matrix. 

Additionally, a mixture of Gaussian distribution represents linear combination 
sh  as: 

Bsh��	  =  1/
th r Bh��,
�uv

.�
 μ_� , ∑_�	(��	 

The number of parameters for Gaussian model is given by: 
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xy?yzsh =  
�  + 1
2 
� �
�  − 1	 

and parameters for mixture of Gaussians is given by: 


xy?yzsh = 
sh�
xy?yzh  +  1�  

Both parameters for Gaussian and mixture of Gaussians can be calculated by maximizing 

the likelihood L(µ, ∑), which can be done by following equations: 

û = 1
|���|  r �

O0∈IJ^
  

F| = 1
|���|  �� r ��,

O0∈IJ^
 û	^7  

The performance of Gaussian based models on metrics such computational and storage 

cost can be significantly less with a major disadvantage in that these models are sensitive 

to noise in training data. This disadvantage can induce bias and consequently decrease the 

accuracy of the model. 

Other methodologies include Markov Model, Parzen Density Estimation, K-Nearest-

Neighbors, which can be used depending on how robust / flexible a classifier is expected 

to behave and the kind of data being used to train the classifier. 

 

2.1.6 Support Vector Data Descriptor (SVVD) 

Defining a decision boundary is critical aspect of OCC. A dataset with positive only / 

positive only and minimal negative data points can easily misclassify objects and can be 

affected by noise in data. A SVVD aims to define hypersphere with a minimum volume 

(radius) to cover all the training dataset with minimizing the noise factor and minimizing 

mislabeling errors. 
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  Figure 3: A visual representation of HoG Algorithm. Source: (Intel, n.d.) 

 

 

The problem of rejecting data points lying outside the hypersphere can be seen. However, 

one way to include maximum points at greater distance is to use Polynomial or a 

Gaussian Kernel (Tax D. M., 2001). The use of kernel in the classifier can help in 

defining the hyperspherical boundary based on the how flexible or tight the boundary is 

desired and what kernel method is implemented. 

Support vectors are the points on the boundary. }� represents the outlier and has ~ �  0. 

The structural error as seen in above image can be defined as: 

~��, �	  =  �2 

to be minimized with following constraints: 
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�|� − �|�2 ≤  �2,  ∀� 
Slack variables as introduced by (Tax D. M., 2001) to above equation to include all 

objects within the sphere and make the model more flexible. The equation proposed is as 

follows: 

=��, �, ~	  =  �2  +  � r ~


 

along with constraints that almost all objects are within the sphere: 

�|�� −  �|�2 ≤  �2  +  ~,   ~ ≥  0, ∀ 

SVVD proposed by (Tax D. M., 2001) is as following: 

            3J��I��; � , �	 =  � ��|� − �|�2 �2�  

    = I � �z. z	  − 2 r α��z. x�	


 +  r ����� , ��� ≤
�

 R2 	 

being an outlier object. 

Inclusion of artificial outlier objects (Tax & Duin, 2001) has been proposed to optimize 

OSVM parameters and gain balance between over and under fitting of data points with 

respect to the sphere. 

Defining decision boundary, as discussed earlier, is a critical aspect of OCC. In OSVM 

methodology many techniques have been proposed to improve the definition of 

classification boundary.  
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Figure 4: Source: (Tax D. M., 2001) A hypersphere containing target data with radius R    

and center at �. 

 

Gaussian kernel is more effective than Polynomial and Linear kernels as argued by (Li, 

Huang, Tian, & Xu , 2003) to detect anomaly and define the outliers and propose 

improved version of OSVM by extending the work of (Schölkopf , Williamson , Smola , 

& Shawe-Taylor, 1999). 

 
 

Figure 5: Source (Tax D. M., 2001). Data Description of banana-shaped dataset. The 

model uses a Gaussian kernel with varying s. Dashed line is description boundary and 

solid circle shows the support vector. 
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They consider origin to be a second class and all points “close enough” to origin as 

outliers. 

 
 Figure 6: Source (Li, Huang, Tian, & Xu , 2003). An improved version of OSVM. 

 

 

2.2 Active Learning 

Active learning can be thought of an approach to skip large labeling of dataset. Active 

learning or “query learning” is a well-studied domain to overcome the labeling 

bottleneck. A survey by Settles (2010) on active learning and its methodologies explains 

scenarios, query strategy framework, analysis, problem setting variants, and practical 

considerations in active learning.  

In context of using active learning for object detection in geo-spatial images, (Tuia, 

Volpi, Copa, & Munoz-Mari, 2011) present a survey of active learning algorithms for 

supervised remote sensing image classification. (Tuia, Volpi, Copa, & Munoz-Mari, 

2011) present active learning algorithms for - committee-based, large margin-based, and 



  21 

posterior probability-based heuristics and compare performance of these algorithms. 

They conclude that large margin based methods with SVM model provide better accuracy 

than other models for hyperspectral images, however they argue that the best heuristic is 

problem-based with involves comparison of metrics such as accuracy, computational 

cost, and others. 

 
Figure 7: Source: (Settles, 2010). Pool Based Active Learning 

 

 

Active learning methodology can also help to solve the problem of large labeling of 

dataset. In active learning, we first train a classifier, use the query based approaches to 

predict more labels, and then use an oracle (example- a human annotator) using query 

approach and then add the correct labels to the pool of data. This process eases out the 

manual labeling, however, the challenges such as high dimensionality of data, 

dependency on models for accuracy and oracle are persistent.  
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One way to address these problems is to combine robust classification models with strict 

boundary and feature reduction technique such as Principal Component Analysis (PCA). 

These steps will help in reducing effort for labeling data and build a robust classifier. 

One such approach is proposed by (Vijayanarasimhan & Grauman, 2014). In their work, 

a part-based detector on top of a linear SVM and hash functions for querying the data has 

been proposed. The use of SIFT descriptor for feature encoding helps in building vectors 

to be efficiently used by the classifier and avoid mispredictions.  

In the experiment chapter, we will discuss about the how active learning approach can be 

utilized to reduce the labeled dataset size requirements. A similar approach by 

(Yarowsky, 1995), where a small labeled dataset is used to train a classifier and is then 

used to label the unlabeled data. The accurate predictions are consequently added to the 

training set to build a more robust classifier. We in our experiment will extend this idea 

by using an incremental approach. We first train the classifier with a small labeled dataset 

along with random unlabeled samples and then measure the accuracy of the classifier. We 

will also test this idea by using a OCC to first choose samples from an unlabeled pool as 

outliers which are then added to a training set to check if this improves the accuracy of 

the overall model.  

 

2.3 Support Vector Machines (SVM) 

SVM is a widely-recognized technique for classification of binary class data introduced 

by (Cortes & Vapnik, 1995). The SVMs distinguishes two classes by constructing a 

hyperplane in large dimensional space. The points on the hyperplane are the support 

vectors which determine the decision boundary. 
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The approach proposed by (Cortes & Vapnik, 1995) for SVM is briefly summarized by 

(Meyer , 2017) in four parts namely- class separation, overlapping classes, nonlinearity, 

and problem solution. The class separation is the hyperplane separating two classes helps 

in defining the decision boundary and maximizing the distance between both classes. 

Overlapping classes or soft margin helps in reducing the effect of data points on “wrong” 

side of the margin which can lead to misclassification of a sample. Nonlinearity is when a 

linear plane cannot separate space and the data points are projected in higher-dimension. 

Problem solution is the formulation of the complete task which can be solved with known 

methodologies. 

 
Figure 8: (Meyer , 2017). A plot showing two classes separated by hyperplane. The 

points on the boundary are support vectors. 
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The SVMs function better when used with kernel tricks. There have been many proposed 

kernel tricks such as Linear, polynomial, and quadratic kernels, to enable the 

classification with minimizing the errors and increasing the accuracy. The kernel tricks 

help in accurate decision boundary by clearly separating classes with both low and high 

dimensional feature space. This thesis work uses linear kernel trick in the experiments.  

Let us consider a sample set � = {���, ��	, ��2, �2	, … , ��z, �z	, where � ∈  � and 

labeled by � ∈ {−1, +1}. Let � = �}, �	 be a labeled sample from set � that has empty 

intersection with hyperplane, then  

* = minO∈ �  | 〈�, �〉 +  #| � 0 

where � is the weight vector and # is a bias of the hyperplane (Camphell & Cristianini). 

The * being margin of the hyperplane � w.r.t. sample S. Also, the hyperplane w.r.t. 

sample is in canonical form: 

minO∈ �  | 〈�, �〉 +  #| = 1 

further proving that,  

* = 1/�|�|�2 

 

In our experiments, we use SVM for binary classification and its comparison with OCC, 

which is an extended version of SVM for inlier/outlier detection. As discussed earlier, the 

SVMs are widely used and are known to provide high accuracy. This comparison of two 

methodology helps in determining if same or better accuracy can be achieved by using 

less labeled data. 
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Figure 9: Source: (Gunn, 1998). Optimal Separating Hyperplane showing the separation 

between two classes. The figure also shows that the classifier generalizes well, which 

means, the unseen samples will be classified highly accurately. 

 

 

2.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a technique which helps in lowering the feature 

space in high dimension data. PCA reduces data from n- dimensional feature space to k- 

dimensional feature space. The number of components in PCA is the dimensionality to 

which the data is reduced. To perform PCA on n dimensional space to reduce it to k 

dimensional feature space, we first compute the covariance matrix, which is given as 

follows: 

∑ = �
z ��	��	� 
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and then compute eigenvectors of matrix ∑. 

The linear transformation in PCA is the direction of maximum variance of data reduced 

to k-dimensional feature space which is mutually orthogonal. 

The reduction of dimensional space helps in maximizing scatter of data points in linear 

projection. PCA can be defined as computation of principal components by performing 

eigenvalue decomposition of covariance of covariance matrix of complete training data 

(Chang, Nie, Yang, Zhang, & Huang, 2016 ). They define the objective function on PCA 

as: 

max�^�.� 7+���}}��	 

where 7+ (.) denotes tracer operator. 
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CHAPTER 3 

APPROACH 

A prominent challenge when presented with large dataset is to first label the data so that 

we can classify the data into different classes. The labeling of the data is an expensive 

process because data with high dimensional feature space presents a lot of challenges as 

the features can be repetitive and they may or may not add valuable information about a 

sample. Curse of dimensionality is a difficult problem to handle especially when dataset 

is huge. Several datasets can also have missing values which are hard to compensate for 

and can lead to misclassification, resulting in unreliable accuracy of a classifier. The 

comparison of binary versus one class classification can help in understanding how much 

data is necessary in achieving high accuracy and in building a generic classifier to predict 

from unseen data. 

The goal of this thesis is to lower the labeled dataset size requirement by comparing 

different classification methodologies for their accuracy and F1 score on different dataset 

sizes. We then extend the approach for active learning/semi-supervised learning to check 

if we can label the unlabeled data from a classifier trained on small dataset. We follow an 

incremental approach for varying dataset sizes and calculate how much data is required to 

improve the accuracy of a classifier. In the active learning experiment, the combination 

of two classification methodologies (OCC to choose samples from unlabeled pool and 

SVM to train on labeled data plus selected samples from OCC) tells if such an approach 

can be utilized to automate labeling of unseen data with high accuracy. 
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CHAPTER 4 

EXPERIEMENTS 

To compare the accuracy of the approach as explained in chapter 3, an SVM classifier is 

compared with a One Class SVM classifier trained only on positive samples. The 

accuracy and other parameters such as precision, recall, F1-score, and Support are 

compared with and without applying PCA to training data. The use of PCA is to check 

weather dimensionality reduction improves the accuracy on small datasets.  

Accuracy is one of the metrics we use to compare performance of the classifiers. This 

thesis work does not focus on improving the accuracy, but evaluates the performance of a 

classifier without involving pre-processing techniques or using kernel tricks to help 

improve the accuracy and other metric score of the classifier. With rule based learning 

and its application with different techniques, Duch, Setiono, & Zurada (2004), in their 

work, achieve higher accuracy for same dataset as used in this thesis varying from +4 to 

+10 in percentage points.  

 

4.1 Experimental Setup 

The experiments were setup on a 64-bit Windows OS on top of Intel(R) Core (™) i7-

6500 CPU @ 2.50 GHz 2.59 GHz processor with 16.0 GB of RAM.  

The dataset used for the experiments was Pima Indian Diabetes database acquired from 

(Lichman, 2013). The database consists of a total of 768 instances of patients showing 

indications of being positive or negative for diabetes. Each data point has a total of 8 

attributes with each labeled as 1 (for positive) and 0 (for negative) indication for diabetes.  
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4.2 Experimental Environment  

Python 2.7 with scikit-learn (Pedregosa, et al., 2011) and imbalance-learn library 

(Lemaˆıtre, Nogueira, & Aridas, 2017) on PyCharm IDE. 

Dataset 

Characteristics 

Number 

of 

Instances 

Attribute 

Characteristics 

Number of 

Attributes 

Associated 

Task 

Multivariate 768  

268 

Positive 

400 

Negative 

Integer, Real 

(all represented as 

real numbers in 

this experiment) 

8 Classification 

 Table 2: Dataset Overview, Source (Lichman, 2013) 

 

4.3 Experiment 1 

In the first experiment a total of 268 samples were picked for both SVM and One Class 

SVM. The One Class SVM was first trained and tested for Positive only dataset and total 

instances of positive instances in the dataset is 268. For a fair comparison of both the 

models, SVM was also trained and tested on 268 samples with 102 positive and 166 

negative samples. The positive and negative samples were randomly picked as the 

SVM’s classification is not dependent on only positive samples. 

Train and test split methodology for cross validation was applied to use 80% of 268 (214 

samples) samples for training the classifier and 20% of 268 (54 samples) samples to test 

the classifier. Following are the results obtained for the first experiment showing the 

accuracy and precision score. Before diving into statistics of results, let us first define 

accuracy and precision. 
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Accuracy is a metric that provides correctly classified instances of a classifier and 

precision score is the measure of the ratio of accurately predicted samples over total 

predicted positive observations. 

The accuracy achieved for 2-Class SVM in for experiment 1 is 68% and the precision 

score is 55%. The following table is a confusion matrix for 2-Class SVM results of 

prediction made on samples from the test data. 

Confusion Matrix for SVM: 

 
Predicted Class 0 Predicted Class 1 

Actual Class 0  True Negative (TN) = 27 False Positive (FP) = 8 

Actual Class 1 False Negative (FN) = 9 True Positive (TP) = 10 

Table3: Confusion Matrix for SVM classifier. 

From the table above we see that the true negative is 27, true positive is 10, false negative 

is 9, and false positive is 8 and hence the accuracy (A), precision (P), recall (R), and F1-

score is calculated as: 

� = 7( + 7�
7���R  = 10 + 27

54  = 0.68  

( = 7(
7( +  9(  = 10

10 +  8 = 0.55 

� = 7(
7( +  9�  = 10

10 +  9 = 0.52 

9 -g�d$+g = 9£  =  �1 +  ¤2	(+gf�d��
 × �gf�RR
�¤2(+gf�d��
 +  �gf�RR	   = 0.54 
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Precision, Recall, and F1-score for SVM classification: 

 
Precision Recall F1-Score 

Positive for Diabetes 0.56 0.53 0.54 

Table 4: Precision, Recall, F1-score (SVM) 

 
Figure 10: Graph describing ROC curve for this experiment. 

 

From the results above we see that the classifier’s holdout accuracy is at 68.51% and its 

precision score is 62.22% for predicting both negative and positive class. 

Results for One Class SVM including the parameter nu from Python’s Sklearn One Class 

SVM parameters:  
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nu is the parameter to tune the classifier for minimizing training errors. nu defines upper 

bound on fraction of margin errors and lower bound on support vectors which are relative 

to the total training samples. 

 
Figure 11: Precision-Recall Curve. 

 

Following matrix shows how the accuracy increases when tuning nu parameter: 

Nu 0.5 0.6 0.7 0.8 0.9 

Accuracy 0.38 0.42 0.43 0.54 61 

Table 5: Effect of 
$ Parameters on Accuracy for OCC. 

The accuracy for OCC is at 61% when all the training data is positive samples only, and 

the precision score is 73.4%. 
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Confusion Matrix for One Class SVM: 

 
Predicted Negative Predicted Class 1 

Positive for Diabetes TN = 12 FP = 16 

Actual Class 1 FN = 5 TP = 21 

 Table 6: Confusion Matrix for OCC. 

Precision, Recall, F1-score, Support for One Class SVM: 

 
Precision Recall F1-Score 

Positive for Diabetes 0.57 0.81 0.67 

 Table 7: Precision, Recall, F1-score, and Total number samples. 

One Class SVM in experiment 1 outperforms the 2-Class SVM. This can be measured by 

looking at the F1-score parameter for both the classifiers. The OCC was trained on 

positive samples only, while the 2-Class SVM was trained on both positive and negative 

samples. The decision for both classifiers is binary and as expected, the OCC would do 

better with small dataset as the decision boundary will include all maximum possible 

variance and improve the recall rate. 

 

4.4 Experiment 2 

In this experiment, we apply Principal Component Analysis (PCA) on our data set to 

check if reducing dimensionality to a lower dimensional feature space of dataset helps in 

improving the accuracy of a classifier. In this section, dataset size is 268 samples because 

of total 268 positive samples available.  

Overall Results for SVM with PCA Dataset size = 268 with 102 positive and 166 

negative samples: 
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The accuracy score in this experiment for 2-Class SVM is 69% and the precision score is 

at 60%. 

Confusion Matrix for SVM with PCA: 

 
Predicted Negative Predicted Positive 

Positive for Diabetes FN = 11 TP = 8 

 Table 8: Confusion Matrix for SVM with PCA 

Precision, Recall, F1-score (SVM with PCA) 

 
Precision Recall F1-Score 

Positive for Diabetes 0.57 0.42 0.48 

 Table 9: Precision, Recall, F1-score SVM with PCA 

Results One Class SVM with PCA, dataset size = 268 total samples, 214 positive samples 

to train and 54 negative and positive samples to test: 

The accuracy score achieved is 35% and the precision score is 56%.  

Confusion Matrix One Class SVM with PCA: 

 
Predicted Negative Predicted Positive 

Positive for Diabetes FN = 13 TP = 13 

 Table10: Confusion Matrix for SVM with PCA 

Precision, Recall, F1-score (One Class SVM) 

 
Precision Recall F1-Score 

Class 1 0.37 0.50 0.43 

 Table 11: Precision, Recall, F1-score One Class SVM 

In this experiment, the 2-Class SVM outperforms the OCC with accuracy score of 69% to 

35%. The PCA did not help in this scenario to improve the accuracy of OCC and F1 

score. With low dimensionality of the feature space in this data set, reduction technique 
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has not helped in projecting the linear data well for the decision boundary to include all 

the cases. Also, OCC trains on positive only samples which helps in building a strict 

decision boundary. With test samples from both negative and positive class, the 

confusion matrix for One Class SVM clearly shows that the precision and recall for OCC 

with PCA (with low feature space) is not the best methodology.  

 

4.5 Experiment 3 

For the active learning experiment, the entire dataset is divided into three namely Black 

(B) training data, Gray (G) unlabeled pool, and White (W) test data. Now, we first divide 

the dataset where 20% of data is named W for testing and is never utilized for training. 

The remaining 80% of the data is a pool to be utilized as B and G. Now from 80% 

available data, we first randomly sample 10% of data as B and treat 70% data as an 

unlabeled pool G. 

4.5.1 The First Model

 
Figure 12: Algorithm for The First Model 
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In the first model, we use binary SVM for classification and testing the model. We 

choose random samples from the unlabeled pool to select our random samples once the 

binary SVM is classified. Following is the procedure for the first model: 

i. Train on 10% B data as chosen and randomly select 10% from G dataset. 

ii. Increment 10% on every iteration and evaluate the holdout (W) data as the B data 

increases from 10% to 80%. 

iii. Compare F1-score and accuracy for each iteration. 

In this model, the approach is to check the F1 score and accuracy of the model when 

trained on 10% of the B data and 10% random samples from G data and measure the F1 

and accuracy score based on the size of training data. All the iterations of classification 

this model is tested on same test data (White data) and the goal is to check if random 

samples are accurately labeled during classification. 

The total positive samples in the dataset is around 35%, which is a classical 

undersampling problem. To balance the dataset, Random Over Sampler (python 

imbalance-learn) is used, which leads to the second model in for active learning 

methodology. 

The results of the first model are shown in fig. 13. The figure shows a plot for Number of 

Samples v/s F1-score at each iteration of the increasing dataset size. The F1-Score 

reaches a plateau when the dataset size is around 65% of ¥ + ¦ dataset.  
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Figure: 13. The Graph Shows Number of Samples v/s F1-score For Each Iteration of The 

First Model. 

 

4.5.2 The Second Model 

In this model, we repeat the experiment as described in first model. Randomly choosing 

samples from B and G data can result in imbalance of data while training. To overcome 

such a scenario, we use Random Over Sampling methodology to resample with 

replacement (Lemaˆıtre, Nogueira, & Aridas, 2017) on B data for each iteration to keep 

the class frequencies balanced.  
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Figure 14: Algorithm for The Second Model. 
 

To measure the performance with Random Over Sampling, we calculate F1 score and 

accuracy of the classifier on each iteration and compare the scores with each increment. 

 
Figure: 15. The Graph Shows Number of Samples v/s F1-score For Each Iteration of The 

Second Model with Random Over Sampling. 

 

The results of this experiment are shown in fig. 15. The graph plot of F1-Score v/s 

Number of Samples with Random Over Sampling shows that the F1-Score is higher than 
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as observed in the first model, which concludes that the random over sampling technique 

has helped in improving both the accuracy and F1-score of this methodology. 

 

4.5.3 The Third model 

 
Figure 16: Algorithm for The Third Model 

 

The third model uses a combination of both binary-SVM and OCC classifiers. Following 

is the procedure for the third model: 

i. Train a OCC with B as chosen from the dataset.  

ii. Test OCC on G and pick 10% of outliers. These outliers are then subtracted from 

G 

iii. The samples (outliers) chosen from OCC are then added to the B samples, which 

are used for training binary-SVM. 

iv. The trained classifier is tested on W data for each iteration. 

v. Compare F1-score and accuracy of the model for each iteration. 

Picking outliers, as mentioned in step 2, also depends on the value of nu set during 

training the OCC classifier. Higher the nu value, stricter the classification boundary 
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becomes. The nu value minimizes training errors and defines upper bound on fraction of 

margin errors and lower bound on support vectors which are relative to the total training 

samples. 

 
Figure 17: F1-Score v/s Number of Samples when using OCC + Binary SVM. 

 

The results of this experiment are shown in fig. 17. In this experiment, we see that the 

OCC + Binary-SVM combination works better than first and second models. The F1-

Score as see above is obtained when outliers are identified and added to Binary-SVM for 

classification and tested on W. The performance of third model is better in terms of both 

performance and dataset size. The total data used to train Binary-SVM in this model is 

smaller because we only add outliers to B knowing that the true positive samples as 

predicted by OCC have been correctly identified. 
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4.5.4 The Fourth Model 

As discussed in the second model, the third model could use samples which are 

imbalanced. In the fourth model too, we use Random Over Sampling (ROS) methodology 

to rectify the imbalance in samples while training (Lemaˆıtre, Nogueira, & Aridas, 2017). 

The ROS methodology is applied to the samples before training the classifier. For each 

iteration, the comparison metrics F1-score and accuracy is calculated and comparison is 

drawn for every iteration.   

 
Figure 18: Algorithm for The Fourth Model 

 

The results of this experiment are shown in fig. 19. In this experiment, we see that 

Random Over Sampling technique used to balance the data for OCC and Binary-SVM 

helps in increasing the performance of the proposed model.  
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Figure 19: F1-Score v/s Number of Samples for ROS + OCC + Binary SVM. 

 

The following is a combined result of four models as discusses: 

 
Figure 20: Combined Results for Experiment 3 Diabetes Data. 
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4.6 Repeating Experiments for a larger dataset 

To test the proposed idea, we repeat experiments for the dataset as shown in table 12 

acquired from UCI machine learning repository. 

Dataset 

Characteristics 

Number of 

Instances 

Attribute 

Characteristics 

Number of 

Attributes 

Associated 

Task 

Multivariate 30,000 

6,336 

Positive 

23,664 

Negative 

Integer, Real 

(all represented 

as real numbers 

in this 

experiment) 

24 Classification 

 Table 12: Dataset Overview, Source (Lichman, 2013) 

The experiments were setup same as in section 4.4 and the dataset samples are show 

which clients are likely to Default on Credit Card (DCC). Let us know look the results 

obtained when the dataset size increases from 768 to 30,000 samples. 

 

4.6.1 Results of Experiment 1 repeated for DCC dataset 

 
Accuracy F1 Score 

OCC 79% 0.82 

SVM 82% 0.80 

 Table 13: Results of OCC v/s Binary SVM for DCC dataset. 

From table 13 we see that the OCC performs better than Binary-SVM. The dataset does 

not use any data pre-processing techniques the classifier is trained on 80% of data and 

tested on 20% of the data. The results have been obtained after repeating the experiment 

five times and verifying that the results do not fluctuate more than 0.20 standard 

deviation. 
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4.6.2 Results of Experiment 2 repeated for DCC dataset 

 
Accuracy F1 Score 

OCC 65% 0.64 

SVM 81% 0.75 

 Table 14: Results of OCC v/s SVM with PCA on DCC dataset 

From table 13 we see that when the dimensionality of the dataset is reduced Binary-SVM 

performs better than OCC.  The reduction in dimensionality (PCA) on training data for 

OCC might lead to loss of important information especially when the dataset only 

consists of positive samples versus both positive and negative samples as in case of 

Binary-SVM. 

 

4.6.3 Results of Experiment 3 repeated for DCC dataset. 

4.6.3.1 Results for The First model. 

The results of this experiment are shown in fig. 21. With larger dataset size, we see that 

the F1-Score as compared to the results in section 4.4.1 is higher. The F1-Score drops in 

second iteration of loop however, it increases as the dataset size grows larger. A plateau 

can be seen in the last two iterations of the experiment when the dataset size reaches 80% 

of the training data. 
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Figure 21: Number of Samples v/s F1-Score for Binary SVM + Random Samples. 

 

4.6.3.2 Results for The Second model 

The results of the second model with DCC show that with Random Over Sampling the 

performance of the classifier increases. The F1-Score compared to previous experiment is 

higher and consistently increases with increase in the dataset size. 
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Figure 22: Number of Samples v/s F1-Score for ROS + Binary SVM + Random Samples 

 

4.6.3.3 Results for The Third model 

 
Figure 23: Number of Samples v/s F1-Score for OCC + Binary SVM 

 

In fig. 23 we see the results for the third model. Here we repeat the experiment as in 

section 4.3.3 in which, we use a combination of OCC and binary-SVM. With larger 
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dataset size to train from, the F1-Score is better than observed in section 4.4.3. The F1-

Scores increases with every iteration of the loop when expect for the third iteration. Also, 

we see that the total number of samples to train binary-SVM is less than total number of 

samples used in experiment 1 and 2. This is so because, we first train the OCC to detect 

and choose outliers from B data and not add correctly labeled samples when training 

Binary-SVM. 

 

4.6.3.4 Results for The Fourth model. 

 
Figure 24: Number of Samples v/s F1-Score for ROS + OCC + Binary SVM 

 

The results for the fourth model is shown in fig. 24. Here we use Random Over Sampling 

before training OCC and binary SVM, keeping the rest of the methodology same as in the 

third model. Here we see that, the F1-score is higher than as observed in the third model 

and outperforming the first and second model. 
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Now let us look at the combined results for experiment 3 for DCC dataset: 

 
Figure 25: Combined Results of Experiment 3 for DCC Dataset. 
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CHAPTER 5 

CONCLUSION 

The work presented in this thesis shows that with small dataset, accurate predictions can 

be made. The accuracy of the model can be increased with dimensionality reduction 

techniques. The comparison of OCC and binary SVM tells that for small dataset with less 

features, OCC performs better than binary SVM, however with feature reduction, binary 

SVM outperforms the OCC. The concept of using less data to achieve high accuracy can 

help in reducing costs and effort for labeling the data. Furthermore, we can also build 

active machine learning models with less data and automate labeling of data with 

combination of classifiers.  

The hypothesis holds true in experiment 1, where OCC outperforms the binary SVM, 

however, with increasing dataset size and inclusion of outliers, the OCC does not tend to 

do better in experiment 2. One of the reasons for this could be the imabalance in data 

which is seen for both Diabetes and DCC dataset. In the Experiment 3we see that Binary 

SVM performs better when used with Random Over Sampling technique, however, OCC 

+ Binary-SVM with and without Random Over Sampling performs better. In the third 

and fourth model as proposed in experiment 3 we see that the performance is better both 

in terms of F-1 score and accuracy, and that the dataset size used is smaller for the third 

and fourth model. On repeating the experiments with on DCC dataset, we see that our 

methodology provides expected results as seen in Diabetes dataset. OCC has performed 

steadily in experiment 3, which tells that combination of two classifiers is a competitive 

approach to label the unseen data, hence reducing the requirement of large dataset.   
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We also see in our experiments that the data-preprocessing is valuable. Use of random 

over sampling improves the accuracy for all the models, however, we in this thesis focus 

on reducing the dataset size requirements. One of the other pre-processing techniques to 

overcome imbalance in data is to assign weights to the samples before training the 

classifier.  
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CHAPTER 6 

FUTURE WORK 

The approach as presented in this work can be extended to image classification for object 

detection. Quantum GIS is a very popular tool used for labeling objects in geo-spatial 

images, however, it requires manual effort for labeling both positive and negative 

samples.  With abundant unlabeled geo-spatial imagery, the active learning approach as 

presented can be utilized to label the data beginning with using small data set of labeled 

images. The work of (Dalal & Triggs, 2005) shows an approach to detect humans using 

active learning approach. Another approach could be- using QGIS, label objects in geo-

spatial image, extract all the labeled image patches disintegrating large geo-spatial 

images into small image samples and mark them as positive or negative sample. A 

combination of, OCC to detect outliers and then using a SVM to classify images, will 

make a robust model to label the large unlabeled pool of images. Also, images can have 

very large dimensional space. Using feature reduction techniques such as PCA, HaaR, 

Scale Invariant Feature Transform(SIFT), and HoG can help in reducing large 

dimensionality and build a more robust feature space, consequently boosting the 

classifier’s accuracy.
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