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ABSTRACT 

 Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics 

industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet 

monocrystalline CdTe devices have received considerably less attention over the years. 

Monocrystalline CdTe double-heterostructure solar cells show great promise with respect 

to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress 

has been made in driving the efficiency in these devices ever closer to the record presently 

held by polycrystalline thin-films. This achievement is primarily due to the utilization of a 

remote p-n heterojunction in which the heavily doped contact materials, which are so 

problematic in terms of increasing non-radiative recombination inside the absorber, are 

moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to 

provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit 

and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the 

study and optimization of the structure barriers, contacts layers, and optical design. Further 

development of a wider bandgap MgxCd1-xTe solar cell based on the same design is 

included with the intention of applying this knowledge to the development of a tandem 

solar cell constructed on a silicon subcell. The exploration of different hole-contact 

materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the 

work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, 

a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area 

efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 

1.1V while still maintaining relatively high fill factors with no rollover, either before or 

after open-circuit, is a promising indicator that this approach can result in devices 
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surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based 

devices have been demonstrated with open-circuit voltages of up to 1.176 V and a 

maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms 

present within these devices, both optical and electrical, concludes with the presentation of 

a series of potential design changes meant to address these issues. 
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CHAPTER 1 

INTRODUCTION 

 The continued research and investment in solar technologies, most notably in 

photovoltaics, has resulted in remarkable improvements in their associated electricity 

costs—leading to an overall levelized cost of energy (LCOE) reduction of over 50% over 

the past 7 years [1]. As Silicon and GaAs solar cell efficiencies approach their respective 

detailed-balance limits [2], cadmium telluride (CdTe) based devices continue to languish 

well below the 32% limit [3], despite the fact that CdTe is an efficient photovoltaic material 

with a high absorption coefficient (>15,000 cm-1) near the band-edge and a near-optimum 

bandgap with respect to the detailed balance efficiency for single-junction solar cells [4]. 

Indeed, the record Silicon and GaAs cells have monocrystalline absorbers while progress 

in the CdTe field continues to be driven by polycrystalline thin-films.  

 In fact, while polycrystalline CdS/CdTe solar cells have been utilized for photovoltaic 

applications with an achieved record efficiency of over 22%, as demonstrated by First Solar 

[3], monocrystalline CdTe devices have received considerably less attention. Prior to this 

thesis work, the record efficiency for a single-crystal CdTe absorber had stood for nearly 

30 years at only 13.4% [5]. Our recent work together with others, have resulted in open-

circuit voltages (Voc) of over 1 V [6], [7]—a remarkable achievement considering the 

record thin-film Voc is only 0.887 V [3], and the record efficiency single-crystal device 

demonstrated by Nakazama had a Voc of only 0.892 V [5]. Yet in these designs, both poly- 

and monocrystalline, two issues play a major role in limiting the Voc; i) low p-type doping 

concentration and ii) bulk non-radiative recombination at either the interfaces or in the 

bulk. With these two effects dominating, they limit the exploration of other factors and 
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their potential impact on Voc (such as the contact layer). The record short-circuit current 

density (Jsc) and thus efficiency (η) of poly-crystalline CdTe devices have progressed 

considerably over the past several decades (a relative change of approximately 26% and 

40%, respectively), while the Voc has remained largely unimproved and has no contributed 

greatly to the dramatic progress in efficiency [3], [8]. The considerable bandgap-voltage 

offset (Woc=Eg/q-Voc) of approximately 0.52 V exhibited in the thin-film-market 

dominating CdTe devices is largely due to the three challenges that plague most CdTe thin-

films: short bulk carrier lifetimes, high interface recombination velocities (IRV), and the 

inability to form a heavily doped p-type contact [6]. The high rates of non-radiative 

recombination found within the absorber layer that lead to the poor bulk carrier lifetime 

can largely be attributed to the recombination at the grain boundaries and absorber 

interfaces (CdS and ZnTe), as well as to the extremely low activation rate of the p-type 

dopant. Recent work with monocrystalline absorbers has attempted to explore these issues 

resulting in considerably higher activation rates for the p-type dopant and more abrupt 

interfaces [7]. It is for this very reason that the pursuit of double-heterostructure solar cell 

designs offers such a beneficial approach considering the deficiencies in II-VI based solar 

cells have historically been driven by this low Voc.   

 Avoiding these limiting mechanisms is best achieved through the separation of the 

lightly doped absorber region from the highly-doped contact layer using a double 

heterostructure. Although several potential solutions exist, the CdTe/MgCdTe interface 

possesses extremely low interface recombination velocities due to the small lattice 

mismatch, making MgCdTe an ideal barrier material for minority carrier confinement and 

interface passivation, while also ensuring high-quality CdTe absorber growth above this 
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layer [9].  Effective minority carrier lifetimes of 3.6 µs are thus readily achieved in undoped 

CdTe double heterostructures while doped absorbers exhibit lifetimes on the order of 

hundreds of nanoseconds [6], [9], [10]. Absorber material quality and interface 

recombination are thus no longer the limiting factors in achieving high Voc. The present 

challenge lies rather in providing adequate contacts to extract the large implied voltage at 

the maximum power point as an (equally) large external voltage. In particular, due to 

difficulties in doping p-type and high surface recombination in CdTe material, high-

efficiency CdTe homojunctions are not currently a viable option and heterojunctions are 

employed in all of the record holding devices regardless of the layer structure; p-type 

absorber or n-type absorber.  

 This design technique is utilized in demonstrating a monocrystalline CdTe solar cell 

featuring a p-type a-Si:H hole contact layer with a record efficiency of 20.3% [11]. While 

allowing remarkable efficiency, the doped a-Si:H layer shows physical limitations, such as 

its moderate bandgap (~1.8 eV) which leads to considerable parasitic light absorption. A 

number of different material systems can be utilized in a similar manner, as is accomplished 

with p-type ZnTe:(As or Cu) [12]. The exploration of these different contact layer materials 

and their optimization as a hole contact in a double-heterostructure CdTe solar cell is 

presented throughout the following chapters. Materials include the aforementioned a-Si:H 

and p-ZnTe systems along with the previously unexplored option of CuZnS. The tradeoff 

that exists between providing an adequate built-in voltage (Vbi) and limiting parasitic 

absorption by maximizing transmission is a difficult optimization process that greatly 

differs amongst the contact materials studied here. A comparison on these grounds, 
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determining the most appropriate contact material for use with n-CdTe double-

heterostructure solar cells is presented. 

 Despite these considerable improvements in the field of thin film solar cells, crystalline 

silicon cells continues to dominate the PV market with over 90% of the market share [13]. 

And yet, pushing the record efficiency of single-junction crystalline silicon cells (mono- 

or poly-) even further towards the practical limit is beginning to exhibit signs of 

diminishing returns, in terms of cost. In fact, to reach the aggressive LCOE goals set forth 

by the Department of Energy, it is alleged that improvements in current module efficiency 

alone will not be sufficient—reductions in BOS costs are believed to be even more 

important in achieving these goals [1]. Utilizing these well-established material systems as 

the foundation for the development of dual-junction devices though, may prove to be a 

lower-cost solution with the benefit of economy of scale. Assuming silicon, with a bandgap 

of 1.1 eV, is to be used as the lower bandgap subcell due to its well-established track-record 

in the PV market, the optimum bandgap for the upper cell is 1.7 eV with the potential to 

reach nearly 40% efficiency under one-sun [14]. As thin-film poly-CdTe is a proven low-

cost and reliable PV technology with a bandgap closer to the ideal of 1.7 eV, this material 

system makes for an excellent choice as the starting point for the upper cell. Current state-

of-the-art CdTe devices already incorporate additional elements, namely selenium, within 

the absorber to narrow the bandgap for the purposes of increasing current generation; 

because of the large bowing parameter for the ternary Cd(Se)Te, the bandgap drops down 

below 1.51 eV. The introduction of a number of other elements in place of selenium will 

have the opposite effect, making the achievement of a 1.7 eV absorber possible—these 

include but are not limited to: zinc, manganese, or magnesium. 
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 Throughout this dissertation, both the 1.5 eV and 1.7 eV absorbers are explored 

simultaneously, discussing the path taken to achieve record efficiency values for their 

respective solar cell classes. The discussion begins with an overview of the double 

heterostructure design and its application to the II-VI material system. With the lattice 

constant of CdTe on the fringes of the commonly utilized grouping of semiconductors, 

finding both a suitable substrate and passivation material provides its own set of challenges. 

Next, this thesis aims to address the difficulties found in doping II-VI materials and 

develops an alternative solution in which an n-type absorber is used in conjunction with a 

remote p-n heterojunction. Device demonstration and optimization follow before 

ultimately concluding with an overview of potential design changes that could push this 

solar cell design beyond just record performance among its monocrystalline counterparts, 

but beyond the entire CdTe field as well. 
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CHAPTER 2 

DESIGN OF MGXCD1-XTE/MGYCD1-YTE  

DOUBLE-HETEROSTRUCTURE ABSORBERS 

 This chapter will consider the methods in which high-quality CdTe epi-layer growth 

can be achieved, and the design of a double heterostructure built around this absorber. A 

discussion on the various material systems that can be used to passivate the interfaces and 

confine carriers within the absorber follows. The benefits and disadvantages of each system 

is compared with respect to their ability to confine carriers, resist atmospheric conditions, 

and passivate the absorber interface. The incorporation of magnesium within the absorber 

is explored in pursuit of a wide bandgap material to be used as the upper cell within a 

silicon-based tandem solar cell. The thickness of each respective absorber necessary to 

achieve near complete absorption of the solar spectrum is calculated using ellipsometry 

data for each material system. 

2.1 Achieving high-quality epi-layer growth 

 The II-VI semiconductor lineup provides for a very wide range of available bandgap 

energies (particularly tellurium based compounds) and simultaneously provides material 

systems that range over a wide range of lattice constants. However, CdTe lies at the fringes 

of the more popular material systems with respect to the lattice constant, limiting the 

number of available substrates for high quality growth as shown in Fig. 1. Indeed, of the 

most commonly available substrates in Fig. 1, all are either group IV or III-V. And yet 

CdTe substrates themselves do exist and even though this would entail a homo-epitaxial 

growth, this is not actually the best option due to poor substrate quality and challenges 

associated with the removal of the surface oxide prior to MBE growth. II-VI material 

grown on InSb substrates has been demonstrated with a greatly reduced defect density—a 
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reduction of over two orders of magnitude under the right growth conditions—when 

compared with similar structures grown directly on CdTe substrates [15]. In addition, the 

combination of the small bandgap (0.17 eV) and high doping densities within the 

commercially available substrates leads to an extremely low resistivity which is beneficial 

for substrate based devices. 

 

Fig. 1 Bandgap energy versus lattice constant for select Group IV, III-V, II-VI, and IV-VI 

compound semiconductors. Various popular substrates have been marked to indicate which 

other semiconductors materials are lattice matched. 

 The CdTe/InSb interface is one that has already seen considerable use in device 

applications ranging from wafer based solar cells to multi-color photodetectors [6], [16]. 

The small lattice mismatch between InSb and both CdTe (0.03%) and MgTe (0.9%) allows 

for extremely high quality double-heterostructure growths. The chemical and electronic 

structure of this interface has been broken down in the past with K. Mackey, et al. providing 
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an insight into the valence band offset of the system and the formation of intermediate InTe 

layers at the interface [17]. Further experimental probing into the quality of this interface 

is presented in Chapter 5. 

2.2 Double-heterostructure design 

 Leveraging the high-quality CdTe epitaxially grown on InSb (100), a material of 

extremely high quality with a minimal dislocation density. However, this is only half the 

battle in achieving a reliable absorber with a high collection efficiency. Non-radiative 

recombination at the edges of the absorber are still a considerable concern and can 

drastically reduce the performance of a device as is the case with polycrystalline devices 

at the CdS and ZnTe heterointerfaces [7].  

 There are three well known II-VI binaries visible in Fig. 1 with bandgaps larger than 

that of CdTe that provide potential alloys for interface passivation and carrier confinement. 

MgCdTe, ZnCdTe and MnCdTe have all been well studied to varying extents and each 

provides different benefits as both barrier layers for a CdTe absorber or as a wide bandgap 

absorber itself. Because of the small lattice mismatch between MgTe and CdTe, relatively 

large amounts of magnesium can be added without dramatically effecting the quality of the 

interface of the CdTe/MgCdTe double heterostructure. However, the increasing bandgap 

leads to an increase in both the conduction band and valence band offsets; while beneficial 

for optical studies, which demonstrate the high lifetimes achieved using this material 

system, when utilized as a carrier selective contact, this becomes an issue. The conduction 

band offset (QC) and valance band offset (QV) ratio between CdTe and MgTe has been 

measured to be 70:30 and thus barriers exist for both electrons and holes [18]. Double 

heterostructures developed using III-V materials have been able to utilize materials with 
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similar offsets by controlling the barrier heights through proper doping control [19], [20]. 

For the CdTe system, this same methodology can be applied to the electron selective 

contact as the material system can be doped heavily n-type making it an acceptable back-

side contact in an eventual double-heterostructure solar cell device. The high level of 

doping places the Fermi level very close to the conduction band which, at equilibrium, 

results in the formation of two narrow triangular barriers at the heterointerfaces through 

which electrons can tunnel (this can be visualized in Fig. 31 in later chapters discussing 

doped devices or in Appendix B). This same approach however is not feasible for use as a 

hole selective contact with this material system. CdTe and MgCdTe alike are difficult to 

dope p-type and achieving high carrier concentrations is nearly impossible without 

introducing a significant number of defects associated with the poor incorporation of p-

type dopants; this topic will be addressed in more detail in later chapters. [21] Without the 

ability to reduce the barrier in the valence band, extraction of carriers at the hole contact 

can be difficult and the fill factor (FF) in a complete solar cell device is expected to suffer.   

 The ZnTe binary on the other hand is a wide bandgap material with the entirety of the 

band offset with CdTe contained within the conduction band [22], [23]. Thus, barriers can 

be constructed exclusively within the conduction band—a major benefit when developing 

a barrier layer for use between the absorber and hole contact. In this configuration, hole 

transport is not hindered at flat band regardless of the level of zinc incorporation. This 

material has been utilized quite successfully within current state-of-the-art polycrystalline 

devices where a copper-doped p-type ZnTe layer is used as the hole contact at the backside 

of the device. A combination of SIMS measurements and TEM images on such devices 
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show a considerable amount of zinc-cadmium interdiffusion creating a graded interface 

that may provide further passivation within these structures [23]. 

 The wide bandgap MnTe binary is the next nearest neighbor to CdTe in terms of lattice 

constant outside of MgTe. In a similar manner to MgCdTe though, the MnCdTe valence 

and conduction band offsets is split with a ratio of 40:60 resulting in barriers for both 

electrons and holes as the manganese content increases [24]–[26]. MnCdTe however, may 

still prove beneficial as a replacement for MgCdTe as it is much more resilient to 

oxidation—providing for a much simpler process. Fig. 2 shows how the band edges of each 

respective ternary compares with that of CdTe as the incorporation of the additional 

element increases.  

 

Fig. 2 Band edge minimum of each of the discussed ternary materials including a) ZnCdTe, 

b) MnCdTe, and c) MgCdTe. The CdTe energy levels are also included in dashed lines. 

 In the discussion of energy barriers to this point, the topic of lattice mismatch has been 

neglected. While ZnCdTe has been utilized successfully as a hole-contact material in 

polycrystalline devices and provides an ideal band alignment with CdTe for just that 

purpose, when utilized within a single-crystal environment, the large difference in lattice 
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constant results in relaxed layers that can no longer provide adequate passivation. The 

interface between CdTe and MnCdTe shares the same disadvantage to a lesser extent. To 

achieve the same conduction band offset with a ZnpCd1-pTe barrier as is achieved with the 

optimum Mg0.4Cd0.6Te layer (2.24 eV), a smaller bandgap of only 2.039 eV is required as 

there is no change in the valance band edge energy level. Yet, this change in bandgap 

necessitates approximately 77% zinc which shifts the relaxed lattice constant considerably, 

resulting in a mismatch of 4.46% with the underlying CdTe absorber. Conversely, because 

conduction band offset between CdTe and MnCdTe is smaller than that of MgCdTe and 

CdTe, it is necessary to utilize a barrier layer with an even larger bandgap to achieve the 

same barrier height for electrons. The bandgap versus lattice constant for each of these 

ternary systems is shown in Fig. 3 along with specific point at which each ternary achieves 

the same conduction band offset with CdTe—utilizing MgyCd1-yTe with x=0.4 as the 

standard. The specific material parameters associated with these points is included in 

TABLE 1 along with the lattice mismatch fm. 

 

Fig. 3  ZnpCd1-pTe, MnqCd1-qTe, and MgyCd1-yTe bandgap energy versus lattice constant 

along with the associated binaries: ZnTe, MgTe, and CdTe.  
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TABLE 1  

TERNARY BARRIER PARAMETERS 

 ZnpCd1-pTe MnqCd1-qTe MyyCd1-yTe 

p,q,x 0.77 0.54 0.40 

a (nm) 0.6191 0.6407 0.6457 

Eg (eV) 2.039 2.36 2.242 

ΔEc (eV) 0.509 0.512 0.512 

ΔEv (eV) 0.020 0.338 0.220 

fm (%) 4.46 1.13 0.35 

 

 Maintaining coherently strained layers at these composition levels is very difficult to 

achieve without making the layers so thin that they can no longer provide adequate 

confinement; this is especially true for the hole-selective layer where it is likely to be 

capped with an amorphous contact. Fig. 4 shows the critical thickness of the three ternary 

materials discussed versus the anion composition. The MgCdTe material system is the only 

option that can seemingly achieve a high bandgap (magnesium composition) while 

simultaneously remaining coherently strained at thicknesses that provide clear 

confinement. The example composition levels discussed earlier have been marked on each 

curve in the figure while the inset table shows the critical thickness for that level. Equation 

(1) shows the Mathews and Blakeslee model that was used to calculate the curves in Fig. 

4 with the material parameters needed for the calculations are given in TABLE 2 [27]. 
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Fig. 4 Critical thickness versus group-II element composition for three potential ternary 

barrier layers: MgCdTe, MnCdTe, and ZnCdTe. 

TABLE 2  

MATERIAL ELASTIC PROPERTIES 

 CdTe [28] ZnTe [28] MgTe [28] MnTe 

a (nm) 0.6481 0.6104 0.6420 0.6337 [29] 

Eg (eV) 1.51 2.27 3.46 3.2 [30] 

c11 (1011 dyn/cm2) 5.35 7.15 5.28 5.86* [17,18] 

c12 (1011 dyn/cm2) 3.69 4.08 3.66 3.28 [31] 

v 0.408 0.363 0.409 0.359 [17,18] 

* The c11/c12 ratio was measured in [30] while the value of c12 was extrapolated using data from [31] 

 ℎ𝑐 =
𝑎𝑠𝑢𝑏

𝐾√2𝜋𝑓𝑚

(1 − 𝑣
𝑓𝑚⁄ )

(1 + 𝑣)
(ln (√

2ℎ𝑐
𝑎𝑠𝑢𝑏
⁄ ) + 1) 

(1) 

where asub is the lattice constant of the substrate or underlying material system (assumed 

to be CdTe for the purposes of this comparison), v is the Poisson’s ratio as defined in TABLE 

2, and fm is the in-plane strain or lattice mismatch as defined in TABLE 1. The K parameter 

is a constant used to modify the solution depending on the structure, i.e. whether the layer 

has a cap. The critical thickness values reported here are not taken to be precise limits in 

real device applications but rather are utilized here to provide a helpful comparison 

between the material systems and highlight key disadvantages in choosing barriers.   
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 With these limitations and the ideal band structure in mind, MgCdTe provides for the 

best immediate solution for passivation and confinement at both the electron- and hole-

selective contacts. For the electron contact, both MgCdTe and MnCdTe provide 

comparative hole confinement when considering the valence band offset but MgCdTe will 

most likely provide for better passivation at the interface considering the better lattice 

match. In either case, there still exists a considerable barrier in the conduction band as well 

but as discussed earlier, n-type doping levels in these materials can be sufficient enough to 

pull down the bands in the center of the barrier. While ZnCdTe would be the perfect 

solution for the hole-contact material in terms of band offset, the strain is just too high to 

allow for proper interface passivation. Using MgCdTe in its place is thus necessary but not 

ideal, and results in a design that requires tradeoffs be made. 

 With MgCdTe the chosen material system for passivation and carrier confinement, the 

development of a 1.7 eV absorber is best accomplished using the same ternary system. The 

ideal tandem configuration may not utilize this particular bandgap for the upper cell when 

the bottom-cell bandgap is also a variable, yet with cost and stability major factors in 

deciding a suitable framework, choosing an existing technology to build off of is 

imperative. Using a 1.1 eV silicon cell as the foundation of a tandem design, provides a 

well-established technology on which an upper cell can be optically matched. Under these 

conditions, a bandgap of 1.7 eV provides for the best potential tandem efficiency under 

one-sun [14]. The 13% magnesium composition required to achieve this bandgap has been 

determined through a combination of PL and ellipsometry measurements to determine the 

bandgap, and XRD scans to verify the magnesium composition [32], [33].  
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 From this data, the absorption coefficient can be used to determine the required 

absorber thickness to ensure near 100% absorptance of the solar spectrum above 1.7 eV. 

Absorptance is the ratio of the absorbed photon flux to the total incident solar photon flux 

at the surface of the absorbing material for energies above the bandgap. The following 

equation can be used to calculate the absorptance: 

 

𝐴𝛼 =
∫ [1 − 𝑒(−𝛼(𝐸)∙𝑡)] ∙ Φ(𝐸)𝑑𝐸
∞

𝐸𝑔

∫ Φ(𝐸)𝑑𝐸
∞

𝐸𝑔

 (2) 

where E is the photon energy, Eg is the bandgap of the absorber, t is the thickness of the 

layer, α(E) is the absorption coefficient as a function of photon energy, and Φ(E) is the 

solar photon flux (the AM1.5G spectrum is utilized here). 

 The absorptance in Mg0.13Cd0.87Te versus thickness is shown in Fig. 5 compared with 

that of CdTe. For a CdTe absorber, 1000 nm can absorb 97.5% of all light above the CdTe 

bandgap. A similar thickness is required for a Mg0.13Cd0.87Te absorber to absorb upwards 

of 95% of the spectrum above 1.7 eV. Unfortunately, because of the lattice mismatch 

between Mg0.13Cd0.87Te and the underlying InSb, as the thickness of the absorber increases 

the layer will continue to relax. While this may not be detrimental in the long run, it was 

avoided for all devices discussed in this thesis. A thickness of 500 nm still allows for nearly 

90% of the incoming light to be absorbed while maintaining a relatively high quality 

absorber; this 10% transmission loss will be visible in layer chapters as the quantum 

efficiency of the completed devices are explored. 
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Fig. 5 Simulated absorptance as a function of CdTe (black) and MgCdTe (red) absorber 

thickness for the AM1.5G spectrum above each absorber’s respective bandgap. 
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CHAPTER 3 

DEMONSTRATION OF MGXCD1-XTE/MGYCD1-YTE 

DOUBLE-HETEROSTRUCTURE SOLAR CELLS 

 There are a number of additional processes required in employing a double 

heterostructure within a completed solar cell device that will be discussed in the following 

chapter. Namely, charger separation and extraction are accomplished through the 

formation of a built-in electric field that is not accomplished within the confines of the 

discussed double heterostructures. The concept of a remote p-j junction is discussed prior 

to delving into the various material systems that can be used to generate a high Vbi within 

the double-heterostructure, while remaining outside of direct contact with the absorber. 

ZnTe, CuZnS, and a-Si:H are all considered as potential hole contact materials with wider 

bandgaps than the primary absorbing material but can still provide high hole 

concentrations.  

3.1 Circumventing p-type doping in MgxCd1-xTe materials: the use of a remote 

junction 

 The issue of low Voc in poly-CdTe devices can be attributed to a number of different 

mechanisms including recombination at the interfaces of the absorber, short carrier 

lifetimes within the absorber, and low p-type doping level. With n-CdS/p-CdTe processes 

dominating industrial output, most research work has followed suit and focused on 

understanding and improving the limitations associated with p-type CdTe and passivating 

the already established interfaces. Improving commercial technologies without 

dramatically affecting the process has been important in lowering cost. Simultaneously 

increasing the hole density within the absorber along with the material lifetime has been 

the goal of a number of studies that have resulted in the development of a few post-growth 
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processes to maximize these parameters. These include the development of CdCl2 or MgCl2 

annealing processes to help interdiffuse the CdTe and CdS at the interface and passivate 

grain boundaries, and the addition of copper to the contact and absorber to improve both 

hole density and lifetime [34], [35]. Despite all of these post-growth optimization 

processes, the carrier lifetime in the absorber is still just several nanoseconds and carrier 

densities in the absorber rarely exceed 1015 cm-3 [7]. The interface between the absorber 

and the CdS electron contact and the ZnTe hole contact are both highly defective and 

exhibit very high recombination velocities [7].  

 Utilizing the double-heterostructure design but moving potentially defective contact 

layers outside of the absorber and the dedicated MgyCd1-yTe barrier/passivation layers—as 

is shown in Fig. 6—allows for the generation of a built-in voltage as is necessary for charge 

separation without sacrificing the quality of the absorber interfaces. This structure prevents 

the contact layers from compromising the quality of the absorber, whether it be through 

dopant induced recombination centers or broken bonds associated with non-crystalline 

materials, by confining minority carriers to the absorber. This is a widely used approach in 

compound semiconductor devices ranging all kinds of optoelectronic applications [19], 

[20], as well as used in silicon heterojunction with intrinsic thin layer (HIT) solar cells [36]. 

Where these designs differ though, is that while a HIT cell consists of a set of only two 

material systems where the passivation layer and heavily doped contact are both a-Si:H, 

the MgxCd1-xTe/MgyCd1-yTe double heterostructure can accommodate any number of other 

material systems as a contact material. This is not merely a possibility, but a necessity 

because the p-type doping capabilities in CdTe are so limited. While many of the laser, 

LED, or solar cell devices constructed using other compound semiconductors can dope the 
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opposing barrier layers heavily p- and n-type, the solar cell devices discussed in this thesis 

work utilize an intrinsic MgyCd1-yTe barrier layer at the hole contact to maintain the 

passivated interface with the absorber.  

 

Fig. 6  Schematic band edge diagram for the ideal II-VI double-heterostructure design.  

 A great deal of the issues associated with p-type doping in the CdTe absorber—

including compensation and the dramatic reduction in material quality at even low p-type 

doping levels—can be resolved by merely adopting a different architecture that relies on 

an n-type CdTe absorber. In this manner, the dilemma of achieving the doping levels in 

CdTe necessary for a high Vbi can be circumvented. Together, these two differences in 

design—utilizing n-type doping instead of p-type doping in the CdTe, and placing the 

heavily doped contact layers outside of the double heterostructure—result in a “remote 

junction” design that eliminates most of the non-radiative recombination concerns 

associated with the standard poly-CdTe thin-film process. 

 Utilizing a high-quality monocrystalline n-type absorber addresses two of the issues 

discussed above in that moving away from p-type doping enables longer minority carrier 

lifetimes and allows for higher carrier concentrations, and thus Voc, to be reached in solar 

cell devices. As demonstrated in previous work with this material system, both undoped 
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and n-CdTe double heterostructures demonstrate exceptional material quality, not just 

because the material system is monocrystalline but because the indium dopant used has a 

close to 100% activation rate up to the low 1017 range but begins to reduce beyond that 

point [10]. In these double-heterostructures, bulk minority carrier lifetimes in undoped 

absorbers are as long as several microseconds while n-type doping with indium will reduce 

the lifetime to hundreds of nanoseconds at doping levels of 1016 to 1017 cm-3 [10] due to an 

enhanced radiative recombination rate. Lifetimes at these levels are more than sufficient to 

give diffusion lengths longer than the micron thick absorbers needed for full absorption of 

the solar spectrum. 

 But effective minority carrier lifetime in an undoped absorber is not necessarily the 

only figure of merit when attempting to maximize the Voc of the device. The total minority 

carrier lifetime reported is determined by contributions from multiple recombination 

mechanisms—non-radiative recombination including SRH, Auger, or interface 

recombination, as well as radiative recombination. While both non-radiative and radiative 

carrier lifetimes can decrease with doping, it is important to understand the ratio of these 

two mechanisms and the importance of a system dominated by radiative recombination 

over non-radiative recombination.  

 Under constant excitation, the PL intensity of a material is proportional to the internal 

luminescent quantum efficiency (ηint) which is defined as the ratio of the radiative 

recombination rate to the total recombination rate including both radiative and non-

radiative recombination shown in equation (3). The external luminescence quantum 

efficiency (ηext), which quantifies the fraction of internally emitted photons that are able to 
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escape the front surface of the structure and can therefore be directly measured, is related 

to ηint as shown in equation (4). 

 𝜂𝑖𝑛𝑡 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑 + 𝑅𝑛𝑟
 (3) 

 𝜂𝑒𝑥𝑡 =
𝛾𝑒𝜂𝑖𝑛𝑡

1 − 𝛾𝑟𝜂𝑖𝑛𝑡
 (4) 

where γe is the photon extraction factor from the surface describing the probability that a 

radiatively emitted photon will escape the front surface, and γr is the photon recycling 

factor describing the probability that a photon will be reabsorbed within the material. With 

this relationship, it can be seen that even if the total recombination rate increases, if the 

radiative recombination rate increases at a greater pace than the non-radiative 

recombination rate, ηint (and thus ηext) will still increase. Maximizing this ratio and the ηext 

is thus a better metric when attempting to maximize the potential quasi-Fermi level 

separation in a device. Understanding why this is beneficial for a solar cell device may 

seem counterintuitive but can be explained qualitatively. Under ideal open-circuit 

conditions, in which there is no non-radiative recombination and none of the photo-

generated carriers will be collected as current, the same number of photons that are 

absorbed must therefore be emitted radiatively near the band edge with the energy 

difference accounted for through heat. This principle is paramount in determining the 

limiting efficiency of a solar cell in the detailed balance model for p-n junction solar cells 

[2]. This phenomenon has led to the coining of the phrase, a good solar cell makes a good 

LED [37]. Therefore, any reduction in the measured emission implies photons were lost to 

non-radiative recombination or parasitic absorption. With this reasoning, ηext can be used 
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to estimate how far the device’s Voc will depart from the ideal Voc of a solar cell (known 

as implied-Voc), as shown in equation (5) [37]–[39]: 

 𝑖𝑉𝑜𝑐 = 𝑉𝑑𝑏 −
𝑘𝑇

𝑞
|ln(𝜂𝑒𝑥𝑡)| (5) 

 where Vdb is the ideal Voc as determined by the detailed balance limit. Fig. 7 shows that 

even as the total measured effective lifetime within the CdTe/Mg0.46Cd0.54Te double 

heterostructure drops with an increase in doping, the PL intensity, and thus, the ηext 

continues to rise [10]. However, as the indium activation rate within the absorber begins to 

reduce beyond indium concentrations of 1×1017 cm-3, these indium atoms act as 

recombination centers and the non-radiative recombination begins to dominate. 

 Another way to view this is because the Voc is proportional to the log of the np product 

as shown in equation (6), an increase in the doping ND can lead to an improvement in Voc 

so long as the accompanying reduction in the excess carrier concentration Δp is smaller.  

 𝑉𝑜𝑐 =
𝑘𝑇

𝑞
ln [

(𝑁𝐷 + Δ𝑝)Δ𝑝

𝑛𝑖
2 ] (6) 

 A doping of over 1×1016 cm-3 was chosen for the devices to ensure consistent proximity 

to the peak seen in Fig. 7 without the possibility of inadvertently doping the structure to 

high. 
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Fig. 7 Carrier lifetime and photoluminescence peak intensity of CdTe/Mg0.46Cd0.54Te 

double heterostructures with different carrier concentrations [10]. 

 Compared with CdTe however, the PL intensity for MgxCd1-xTe alloys decreases with 

the addition of any indium as shown in Fig. 8. In part because incorporation and activation 

of indium in MgCdTe is so low, large quantities of indium are necessary to achieve even 

relatively small electron concentrations. Correlating dopant densities determined from 

SIMS results with carrier concentrations as determined by CV measurements, indium has 

an activation rate of only 10% in the Mg0.13Cd0.87Te layers studied with a maximum 

achieved carrier concentration of only 3×1015 cm-3. It is reasonable to expect that a large 

number of dopants create deep levels and become recombination centers, thereby 

dramatically increasing the non-radiative recombination rate. 
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Fig. 8 External luminescence quantum efficiency (ηext) as a function of MgxCd1-xTe 

absorber doping. The inset in the left figure shows the spectral PL intensity for the same 

samples. The absorber doping levels listed (1×1015, 3×1016, 1×1017, and 3×1017) are 

designed levels and do not necessarily reflect activated donor sites, while the nominally 

intrinsic sample is listed under the measured carrier concentration of 1×1014 cm-3. 

Unpublished measurements taken by Dr. Xin-hao Zhao and Dr. Yuan Zhao. 

 Indium can be fairly mobile, and large quantities of indium will often out-diffuse from 

the InSb substrate and buffer layer into subsequent epi-layers; later chapters show this 

phenomenon through SIMS profiles of the CdTe/InSb interface as well as in completed 

solar cell devices (Fig. 14 and Fig. 43). For these reasons, it is believed that the presence 

of doping ND will have an outsized detriment on the non-radiative minority carrier lifetime 

and the excess carrier concentration. Fortunately, the lifetime of 560 ns measured for 

undoped absorbers is still sufficiently long for the relatively thin MgCdTe absorbers and 

the iVoc is still relatively high at 1.29 V for a 1.2% ηext under one-sun conditions; this is 

assuming a calculated Vdb of 1.4 V. However, this still leads to issues when attempting to 

provide electron selective contacts which require high levels of doping in the barrier layer. 

Furthermore, indium has been found to move quite readily from even doped barrier layers 
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into undoped absorbers, thereby reducing the PL of the entire structure. For this reason, 

both barrier layers cladding the wider bandgap MgCdTe absorber must be left undoped to 

maintain the high level of quasi-Fermi level separation within the structure. Yet this may 

not be the case for all potential MgCdTe dopants. Indium seems to be the n-type dopant 

with the lowest activation rate once magnesium is added with halogens such as bromine, 

chlorine, or iodine providing potential alternatives [40]. 

3.2 Choice of hole contact and device demonstration 

Fig. 9 shows the general structure of solar cells fabricated using this architecture for 

both 1.5 eV and 1.7 eV absorbers. Interface passivation and carrier confinement is provided 

using MgyCd1-yTe barrier layers on either end of the n-CdTe or i-MgxCd1-xTe absorber. All 

double heterostructures discussed were grown at Arizona State University on a 2” n-type 

InSb substrate in a VG V80H dual chamber MBE system. The InSb buffer layer was grown 

in a dedicated III-V chamber after thermal desorption of the substrate’s oxide at a substrate 

temperature of 390 °C and a Sb/In flux ratio of 1.5. After transferring the wafer while under 

ultra-high vacuum to a dedicated II-VI growth chamber, all subsequent CdTe material 

growth is carried out at a substrate temperature of 265 °C and a Cd/Te flux ratio of 1.5. 

Unfortunately, the inability to effectively dope CdTe p-type prevents this same material 

from being employed as the hole contact or an emitter layer in a standard homojunction. 

Each material employed in its place is explored in detail in the following sections. Upon 

deposition of the hole-contact layer, the final devices can be processed. Indium tin oxide 

(ITO) patches were deposited via sputtering on the surface of the hole contact to act as the 

electrode responsible for lateral current flow. While ITO is used for all devices discussed, 

it’s entirely possible to use any number of transparent conducting oxides (TCO) depending 
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on the underlying contact decided upon. Silver contact pads are then deposited on the edges 

of the ITO mesas to provide stable, long term contact for electrical probing. This entire 

substrate based device is mounted onto a gold-coated silicon wafer using silver conducting 

paste to provide both stability and allow for probing of the back contact. 

                                                                  

Fig. 9 General layer structure of the MgxCd1-xTe/MgyCd1-yTe double-heterostructure solar 

cell utilizing an isolated hole contact. 

 Device mesa design has gone through several iterations from the outset of the project. 

ITO patches define the approximate mesa area in all situations as the top electrode. Fig. 10 

shows the evolution of the mesa design along with the size and shape of the aperture used 

for Light IV measurements. Probing the patch directly is possible and was the method 

originally used, however, silver makes a great contact to ITO and prevents probe damage. 

In order to prevent shading during the measurement, the silver contact pad must be placed 



27 
 

at the edge of the mesa as seen in Fig. 10 b), yet as the device area increases, resistive 

losses due to lateral current transport increase. While the ITO is farily conductive with a 

sheet resitance of less than 100 Ω sq-1, at a thickness of only 50 nm, silver fingers are 

necessary to minimize loss due to latteral current flow.  

 

Fig. 10 Solar cell device mesa design history detailing silver contact design and coverage 

of the measurement aperture. 

 Indeed, devices of different mesa areas are processed on each sample and Fig. 11 

compares the average IV characteristics for different mesa areas on one such wafer utilizing 

mesas of design b. For devices of this design, as the area increases, current must flow 

laterally for longer disstances through the ITO. This change is typified in the FF loss seen 

in Fig. 11 c) between devices of 2 mm versus devices of 3 mm diameters. In addition, a 

difference in Jsc is also seen with a change in mesa diameter. This difference is largely 

explained by the increase in relative contact shading as the metal coverage moves from 

only 1% to 2.6% for 3 mm diameter devices and 2 mm diameter devices, respectively. To 

counter this reduction in FF, metal fingers are necessary to carry current to the probe pad. 
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Fig. 11 Average Voc, Jsc, FF, and η for samples with device diameters of 2- and 3-mm of 

design b shown in Fig. 10; error bars indicate the standard error of the mean for devices on 

the same wafer. 

 The addition of the silver finger in Fig. 10 c) eliminates this concern but of course 

results in considerable metal coverage. A potential solution is presented in Fig. 10 d) where 

the silver fingers are wrapped around the edges of ITO mesa. The measurement aperture 

can then be made slightly smaller than the inner diameter of the contact while still 

maintaining low metal coverage under aperture at 1.1% and 1.6% for 3 mm diameter 

devices and 2 mm diameter devices, respectively. Photos of the most recent iterations of 

finger deisng are shown in Fig. 12. This design only limits resistance losses so long as the 

total device area remains relatively small—latteral current flow limited to < 1.25 mm. The 

bottom contact is much simpler in design and fabrication. Because of the low bandgap and 

high conductivity of the InSb substrates, little effort is required in producing an ohmic 

contact on the backside of the device. Conducting silver paste is used to mount each device 
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onto a silicon carrier wafer coated with gold which provides for low resistance latteral 

current flow to the eventual probe tips. The silicon carrier wafers are coated with a thin 50 

nm layer of titanium followed by a 250 nm layer of gold; the titanium layer is primarily 

used for adhesion purposes. 

  

Fig. 12 Photos of completed solar cell devices under aperture. Photo a) depicts a single 

finger design with considerable metal coverage while photo b) depicts the crescent finger 

design with the inset showing the metal finger layout under the aperture. 

3.2.1 Devices using zinc telluride 

 ZnTe is a wide bandgap material of 2.25 eV [28] that can be heavily doped p-type. 

ZnTe has been used as a hole contact in polycrystalline devices to great benefit, although 

in those circumstances it is used in conjunction with a p-type CdTe absorber as is standard 

with polycrystalline designs [23]. The material has even been integrated into commercial 

modules [41]. What remains to be seen is whether this material can be utilized as the 

primary hole contact for the monocrystalline devices discussed here in which an n-type 

absorber is used. With polycrystalline devices, CdS is the primary generator of the built-in 

potential that is eventually extracted as voltage, and not the ZnTe hole contact.  

 Two different approaches were taken to produce a highly conductive ZnTe hole contact 

on a CdTe absorber based device to test the viability of the contact material. While the 
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overall design of the underlying absorber will remain the same in both cases, the deposition 

method and doping species for the contact layer differs. The ZnTe hole contact was doped 

with arsenic in one case and coper in another. In the case of arsenic doping, the p-ZnTe 

layer was grown in a custom MOCVD system at Rensselaer Polytechnic Institute (RPI) at 

300 °C after the completion of the MBE grown absorber and cladding barrier layers. 

Further processing and characterization though were carried out entirely at ASU. The 

growth conditions have been shown, through Hall measurements carried out at RPI, to 

produce p-type ZnTe films with concentrations of 2×1018 cm-3 [42].  

 In the case of copper doping, the cell can be fully grown by MBE at Arizona State 

University. This copper doping process differs from the arsenic doped case in that the latter 

utilizes an in-situ doping process, while the former is accomplished via post growth 

diffusion. A thin layer of copper is sputtered on the surface of the now-intrinsic ZnTe 

contact where it can then be driven in through diffusion. The amount of copper necessary 

to achieve high carrier concentrations within a 10 nm contact layer is very small and only 

very short copper depositions are required. Hall measurements on ZnTe films doped with 

only 1 nm of copper on the surface indicate an average concentration of 4×1018 cm-3, while 

CV measurements on the same samples indicated an average concentration of 6×1018 cm-

3. In both of these cases, no additional drive-in anneal process was used outside of the 

elevated temperatures achieved during processing. Bcause these copper layers are so thin, 

removal of the seed layer is not entirely necessary as they are still highly transparet. Small 

levels of absorption occur within the metal layer though and can contribute to a reduction 

in potential device current as is seen in Fig. 13. The reflectance of these ZnTe surfaces will 

also change slightly with the addition of copper but this change is less relevant once we 
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transition to completed devices in which the surfaces will be coated with additional anti-

reflection coating layers. 

 

Fig. 13 Spectral absorptance and reflectance of 1 nm thin copper film. The absorptance 

was measured for a thin film of copper deposited on a glass slide while the reflectance 

comparison was made between the surface of ZnTe with and without the copper seed 

layer. The inset table shows the potential current loss for a CdTe device due to these two 

changes. 

 In addition, the copper can migrate into the CdTe absorber, and while it is employed as 

a p-type dopant in typical polycrystalline processes, it is a deep-level acceptor with 

extremely poor incorporation [34], [35]. With an n-type absorber, incorporated or not, the 

presence of copper will lead to a reduction in performance either through dopant 

compensation or an addition of recombination centers. Lifetime and overall PL intensity 

has been shown to be dramatically reduced with an excess of copper [35]. Preventing this 

migration is essential to maintain the high quality and long carrier lifetime in the absorber. 

And yet, the SIMS profile shown in Fig. 14 shows just such an undesirable occurance. 

Copper has migrated, from the surface, several hundred nanometers into the CdTe 

absorber. It is worth noting that significant indium diffusion from the substrate and 
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subsequent buffer layer is present at the back side of the device and can be seen to increase 

the doping in the bottom 250 nm of the absorber.  

 

Fig. 14 SIMS profile of a solar cell with a copper-doped ZnTe hole contact. The profile 

was measured with a primary current of 100 nA with a raster of 250 µm and a field aperture 

in place, thereby limiting the sampling area to a 60 µm square in the center. SIMS 

measurements were carried out at the NanoSIMS facility at ASU. 

 While annealing after copper deposition is not necessary to achieve copper activation 

in the ZnTe, additional processing steps as well as operating conditions can expose the cell 

to temperatures that may effect the migration of the copper. The SIMS profile was taken 

on a solar cell without any annealing and already shows copper within the absorber; as the 

copper seed layer isnt removed during processing, annealing can only increase the density 

and depth of the copper in the absorber. Using the PL quantum efficiency as an indicator 

of the iVoc  [43], significant degradation is seen as annealing moves additional copper into 

the absorber. Annealing was carried out in atmosphere for a period of 30 seconds at each 

temperature. As can be seen in Fig. 15, even before annealing, 1 nm of copper leads to a 
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reduction in PL. As the annealing temperature nears 150 °C, the PL begins to crater with a 

complete loss of performance and zero PL intensity at only 200 °C, while the control 

sample takes longer to decay. Reducing the thickness of the copper material at the surface 

protects, to some extent, the integrity of the absorber with little to no annealing, but is still 

detrimental when exposed to temperatures beyond 100 °C. 

 

Fig. 15 PL quantum efficiency vs. anneal temperature for samples with 0.1 nm of copper 

and 1 nm of copper on the surface of the ZnTe contact layer compared with a control 

sample with no copper deposition. 

  Fig. 16 shows the structure of the fabricated solar cells using this architecture with p-

ZnTe as the hole contact layer. This design change enhances previous work in which a p-

ZnTe/CdTe heterointerface was present, devoid of a MgCdTe passivation layer [42].  
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Fig. 16 Layer structure of the CdTe/MgxCd1-xTe double-heterostructure solar cell with a p-

type ZnTe contact layer. 

CV measurements on these structures—both copper-doped and arsenic-doped—

confirm the formation of a built-in voltage of over 1.1 V as shown in Fig. 17. These 

measurements are carried out using a mercury probe prior to the deposition of the ITO and 

silver contacts. 

 

Fig. 17 C-V and 1/C2 profile for a solar cell with a copper-doped ZnTe hole contact. This 

measurement was taken using a Hg probe prior to ITO deposition and without any high 

temperature annealing process. 
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 The current density-voltage (J-V) curve for the highest efficiency ZnTe:As based 

device is shown in Fig. 18 a) with the external quantum efficiency (EQE) and reflectance 

shown in Fig. 18 b). TABLE 3 compares the Voc and power conversion efficiency (η) for 

several device structures, each with a different type of ZnTe hole contact. The introduction 

of the MgCdTe barrier clearly results in an improvement in Voc, no matter the hole contact 

used. The arsenic-doped ZnTe hole contact provides a higher Voc and efficiency than that 

of the copper-doped contact (ZnTe:Cu), with copper diffusion being a potential cause.  

  

Fig. 18 a) Light J-V curve and power density, and b) EQE and 1-reflectance for the 

highest performing CdTe double-heterostructure solar cell with a ZnTe:As hole contact. 

The J-V curve represents an active-area efficiency corrected using the integrated EQE. 

This device was processed and characterized without the use of an additional anti-

reflection coating. 

TABLE 3  

MAXIMUM DEVICE PARAMETERS 

FOR VARIOUS ZNTE CONTACT DESIGNS 

 
ZnTe:As/ 

CdTe 

ZnTe:Cu/ 

MgCdTe/CdTe 

ZnTe:As/ 

MgCdTe/CdTe 

Jsc (mA/cm2) 21.2 22.2 23.6 

Voc (V) 0.759 0.819 0.860 

FF (%) 67.4 51.7 69.4 

η (%) 10.9 9.4 14.1 
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3.2.2 Devices using copper zinc sulfide 

The isolation of the absorber from the hole contact layer means that the quality of the 

contact layer is largely irrelevant with respect to maintaining a high quasi-Fermi level 

separation. Thus, the design does not necessitate crystalline materials like ZnTe, but 

indeed, can accommodate defective layers in the form of multi-crystalline or amorphous 

material systems. Copper zinc sulfide (CuxZn1-xS) is a semi-transparent conducting 

material. CuZnS films synthesized via chemical bath deposition (CBD) are comprised of a 

nanocomposite mix of independent sphalerite ZnS and covellite CuS crystals. In general, 

higher concentrations of the CuS phase lead to a higher hole conductivity and carrier 

concentration. The bandgap of the films can be varied from 2.1 eV to 3.45 eV by adjusting 

the films composition from pure CuS to ZnS. The wide bandgap, high hole concentration, 

and high conductivity all lend themselves to making a great hole-contact material. With 

the hole contact lying on the light incident side of the device, outside of the CdTe double 

heterostructure, absorption within this layer is generally lost to non-radiative 

recombination. The transparency of the material used is therefore very important. Fig. 19 

shows a structure diagram of the studied devices. Because of the changing carrier 

concentrations and conductivity within the CuZnS layers, an additional ITO is required for 

low copper compositions but is used in all cases to maintain symetry among samples. The 

nature of the deposition technique leads to difficulties in precisely controlling the thickness 

of CuZnS films. As the growth speeds of the CuS and ZnS crystals differ, the thickness of 

the films can vary; the films estimated thickness is between 10- and 20-nm.     
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Fig. 19 Layer structure of the CdTe/MgxCd1-xTe double-heterostructure solar cell with a 

CuZnS hole-contact layer. 

Measured current-voltage curves for solar cell devices of different copper compositions 

are shown in Fig. 20. 

 
Fig. 20 EQE corrected J-V curves for solar cells with CuZnS hole contacts of 15%, 25% 

and 65% copper compositions. The devices under test have a total area of 0.033 cm2 with 

approximately 1.5% metal coverage. 
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TABLE 4  

ACTIVE-AREA DEVICE PARAMETERS 

Cu 
Voc  

(V) 

Jsc 

(mA/cm2) 

FF  

(%) 

η  

(%) 

15% 0.506 21.0 71.8 7.6 

25% 0.788 21.0 73.0 12.1 

65% 0.956 21.2 63.5 12.9 

 With increasing copper content, the carrier concentration within the contact layer will 

increase, thereby improving the built-in potential. A corresponding increase in the Voc with 

copper composition is apparent in the light J-V curves shown in Fig. 20 as well as indicated 

in TABLE 4. With a copper composition of 65%, a Voc of 0.956 V is achieved. While the 

Voc is still higher than those measured with polycrystalline devices [3], the Woc of 0.544 V 

for this particular device is still similar given the smaller bandgap of polycrystalline 

devices.  

 Along with the increase in carrier concentration comes a dramatic improvement in layer 

conductivity. With a CBD process, this can be extremely problematic if the back contact 

or sidewalls are not adequately covered during the deposition. A short between the CuZnS 

hole contact and the electron contact would manifest itself as a shunt conductance in the J-

V curve as we can see in the case of the device with a 65% copper composition in Fig. 20. 

Sidewall deposition may still be an issue in the case of all devices but for a layer with only 

15% or 25% copper incorporation, the conductivity may not be high enough to dramatically 

reduce the FF of the J-V curve. The shunt conductance observed in the J-V curve does not 

necessarily have to plague future devices. Better isolation through a more controlled 

process such as sputtering or simply dicing all wafers post CBD growth can most likely 

result in the same voltages and current generation while simultaneously ensuring an 

improvement in the FF. Assuming these values are not affected, equation (7) can be used 
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to approximate the maximum power (P*
MP) without the power lost in a shunt resistance. 

Improving the 290 Ω·cm2 shunt resistance measured in the light J-V curve could lead to an 

improvement in efficiency up to 15.3%. 

 𝑃𝑀𝑃
∗ = 𝑃𝑀𝑃 (1 −

1

𝑟𝑆𝐻
)
−1

 (7)  

 Unexpectedly, the Jsc has not changed considerably with an increasing density of CuS 

crystals within the nanocomposite. The external quantum efficiency (EQE) curves shown 

in Fig. 21 indicate that the overall quantum efficiency within the device is not significantly 

changed with a change in copper composition. The small change in refractive index does 

however result in a shift of the reflectance minimum. However, the absorption within the 

CuZnS layer does indeed change with copper composition as seen in Fig. 22. As the copper 

content increases, so too does the absorption within the layer. The reason the large 

reduction in parasitic absorbance loss seen when moving from CuZnS layers of 25% to 

15% copper is not translated into an improvement in the EQE as well can be explained 

through a compensating reduction in collection efficiency across the spectrum due to the 

depletion of the hole contact layer due to the low carrier concentration in this layer.  

 Of course, the differences in reflection will not necessarily be evident in a fully 

optimized device as the differences in refractive index will be accounted for during the 

optimization of any additional anti-reflection layers added to the design. In addition, as 

contacts move to higher copper compositions, it may no longer be necessary to utilize a 

highly conductive ITO layer for lateral current flow. However, this design may still be 

desirable to allow for the hole contact to be as thin as possible to minimize parasitic 

absorption loss within this layer; absorbance within the ITO is considerably lower than in 

CuZnS films. 
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Fig. 21 EQE and 1-R curves for solar cells with CuZnS hole contacts of 15%, 25%, and 

65% copper compositions. Both EQE and R were measured at the center of the devices 

with a beam spot size smaller than the aperture. 

 
Fig. 22 Absorbance within CuZnS contacts of 15%, 25%, and 65% copper compositions. 

The parasitic current loss within the hole contact layer for each copper composition is also 

shown; the curves are weighted against the solar spectrum and integrated below 825 nm. 

The inset image shows the CBD deposited films on glass. Absorbance measurements were 

carried out using a spectrophotometer equipped with an integrating sphere. 
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3.2.3 Devices using amorphous silicon 

 Amorphous silicon offers a similar contact solution with a well-established, lower-cost 

deposition process and the capability to achieve very high hole densities. This same 

material system is utilized in double-heterostructure designs within the record holding HIT 

solar cells in which a-Si:H is utilized to passivate the surfaces of a multi-crystalline silicon 

absorber [36]. At this point, the heavily doped p-type a-Si:H contact has little to no effect 

on the crystalline absorber quality as is the case with the CdTe devices discussed here. The 

p-doped amorphous silicon layer was deposited after air exposure, without prior surface 

treatment, by plasma-enhanced chemical vapor deposition (PECVD) in a P-5000 tool using 

Silane, hydrogen and tri-methyl boron, at a pressure of 2.5 torr, a nominal susceptor 

temperature of 250 °C and a radiofrequency (RF) power of 36 W. Unfortunately, of the 

three options discussed thus far, a-Si:H has the lowest bandgap (1.8 eV) and thus parasitic 

absorption will play the biggest role in these devices. 

 One option to reduce the parasitic absorption observed in both simulations and 

measurements is to thin the a-Si:H hole contact. The EQE curves shown in Fig. 23 show 

just such an improvement in the blue wavelengths. However, thinning much below 8 nm 

results in a reduction in Voc and FF that we attribute to depletion of the hole contact by the 

adjacent n-type ITO layer [44]. As can be seen from the inset table, at 6 nm the contact 

layer is depleted to the point that the Voc and FF reduction dramatically outweighs the Jsc 

benefit. For this reason, the EQE curves shown were measured under reverse bias to ensure 

complete carrier collection. The dramatic changes in the Light J-V curves can be seen in 

Fig. 24. 
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Fig. 23 EQE comparison for devices with different a-Si:H layer thicknesses. The inset table 

shows the devices’ corresponding Voc and FF under AM1.5G illumination. The dip at 610 

nm is an artifact of the measurement tool. All EQEs were measured under reverse bias to 

ensure complete carrier collection.  

 

Fig. 24 IV comparison of CdTe solar cells with hole-contact layer thicknesses of 6-, 8-, 

and 12-nm. 

On the front of the device, a silicon oxide (SiOx) layer was added on top of the ITO 

electrode, following the design suggested by Herasimenka et al. [45]. It serves as the upper 

layer of a double-layer anti-reflection coating and increases the conductivity of the ITO 

due to the hydrogen treatment experienced during the higher-temperature hydrogen-
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containing SiOx growth [45]. With this design, the ITO can be thinned, thereby reducing 

the level of parasitic absorption in this layer. The thickness of the SiOx layer was optimized 

through OPAL simulations to minimize the AM1.5G-weighted front-surface reflectance 

[46].  

 Fig. 25 shows the simulated front-surface reflectance and front-stack (a-Si:H, ITO, and 

optional SiOx layers) absorbance for a device with and without SiOx included within the 

contact stack. The corresponding Jsc losses, calculated by integrating  over the solar 

spectrum between 300 nm and 830 nm, are reduced from 3.3 mA/cm2 to 0.6 mA/cm2 for 

the reflection loss and from 2.6 mA/cm2 to 2.2 mA/cm2 for the parasitic absorption loss. 

An increase in photogenerated current density of 3.1 mA/cm2 is thus expected over earlier 

designs. Top surface reflection therefore no longer makes up the majority of the optical 

loss while parasitic absorption within the contact stack now becomes the primary concern 

when addressing the Jsc of these devices.  

 To validate the modeled absorptance of the stack, all three layers—SiOx, ITO, and a-

Si:H—were deposited on glass and measured using a UV-Vis spectrophotometer. 

Absorption within the individual SiOx, ITO, and a-Si:H layers is difficult to experimentally 

parse as the inter-diffusion between these three layers within the completed device 

unavoidably changes the absorbance contribution from each layer (hydrogen doping of the 

ITO from both adjacent layers is one of these changes [46]–[48]). A qualitative distinction 

between contributions from each layer can be made, however. The SiOx layer used here is 

nearly 100% transparent over all the investigated range. The ITO is responsible for all 

absorption at wavelengths above 600 nm, for which the very thin a-Si:H layer absorbs 

negligibly. Below 400 nm, both the ITO and a-Si:H contribute to parasitic absorption, but 
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the clear majority of the absorption, originating from the 400 nm to 600 nm range and 

adding up to 1.6 mA/cm2, can be attributed to the a-Si:H contact layer. A full exploration 

of the hero device will be presented in the following chapters. 

 
Fig. 25 Simulated and measured front-stack absorbance and reflectance for a CdTe device 

with either an ITO/a-Si:H layer stack or a SiOx/ITO/a-Si:H layer stack. Simulations were 

carried out using OPAL.   

3.2.4 Contact summary and comparison 

ZnTe was chosen because of its ability to achieve high hole concentrations inducing 

high built-in voltages, but of similar importance is the wide bandgap of ZnTe which allows 

for less parasitic absorption when compared with other amorphous or poly-crystalline hole 

contacts such as a-Si:H and CuZnS contacts tested. The internal quantum efficienies (IQE) 

of three hero device designs are shown in Fig. 26. With the use of ZnTe:As as the hole 

contact, parasitic absorption at shorter wavelengths (< 600 nm) is minimized when 

compared to both other contacts. The difference in IQE corresponds to a 1.25 mA/cm2 gain 

of potential photogenerated current when using ZnTe instead of a-Si:H. This represents 

nearly 7% of the maximum Jsc attainable for a bandgap of 1.5 eV. The copper-doped ZnTe 

hole contact shows the same improvements in quantum efficiency at shorter wavelengths 
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and consequently demonstrates similar improvements in current. This large current 

differential taken from the IQE is not necessarily born out in the current comparison 

between the highest performance devices shown in TABLE 3 as the ZnTe based devices will 

have a significantly different reflectance than that of the the a-Si:H based devices; a proper 

comparison of the final currents would need to be made after each device has an optimized 

anti-reflection coating; this same reasoning applies to the devices developed using CuZnS. 

 

Fig. 26 IQE of CdTe solar cells with three different hole contacts: ZnTe:As, a-Si:H, and 

CuZnS. The listed current density is found by integrating the IQE weighted against the 

AM1.5G spectrum. These values are not the Jsc of each device but merely provide a 

weighted comparison between the internal quantum efficiencies of the devices. 

TABLE 5  

MAXIMUM DEVICE PARAMETERS  

FOR VARIOUS CONTACT MATERIALS 

 
ZnTe:As 

no barrier 
ZnTe:Cu ZnTe:As CuZnS a-Si:H 

Jsc (mA/cm2) 21.2 22.2 23.6 21.2 24.5 

Voc (V) 0.759 0.819 0.860 0.956 1.10 

FF (%) 67.4 51.7 69.4 63.5 75.6 

η (%) 10.9 9.4 14.1 12.9 20.3 
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Unfortunately, while the reduction in parasitic absorption goes a long way in moving 

the ZnTe based solar cells closer towards the efficiency records set by the a-Si:H based 

cells, the Voc is not simulatneously maintained at this point. Knowing this limitation with 

current ZnTe deposition methods and dopants, a-Si:H contacts are utilized within the 

highest efficiency devices for both 1.5 eV and 1.7 eV absorbers. The following chapter 

discusses the record holding devices.  
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CHAPTER 4 

DEVICE OPTIMIZATION AND IMPROVED PERFORMANCE 

 In this chapter, optimization of the MgyCd1-yTe barrier layers for both the CdTe 1.5 eV 

and Mg0.13Cd0.87Te 1.7 eV absorbers is carried out to maximize Voc. Completed devices 

are discussed and characterized, presenting light J-V and EQE curves for the devices with 

the highest achieved efficiency. CdTe solar cells are demonstrated with a Jsc of 24.5 

mA/cm2, a FF of 75.6%, a Voc of 1.1 V, and an active-area efficiency of 20.3%. In addition, 

Mg0.13Cd0.87Te solar cells are demonstrated with a Jsc of 15.0 mA/cm2, a FF of 63.5%, a 

Voc of 1.176 V, and an active-area efficiency of 11.2%. The highest measured Voc of 1.11 

V, achieved with a lifetime of approximately 100 ns, shows considerable progress when 

compared to published CdTe results from the past two decades. 

4.1 Devices with a 1.5 eV CdTe absorber 

4.1.1 Barrier layer optimization 

 With the upper barrier layer left intrinsic, energy barriers exist for electrons and holes 

and thus optimization of this layer requires more attention than that of the layer adjacent to 

the electron contact. Fig. 27 shows the average and maximum Voc of a series of solar cells 

of similar design but of varying barrier width and height (magnesium composition, x) for 

the front MgyCd1-yTe layer. As anticipated from PL and TRPL studies of CdTe double 

heterostructures [49], the Voc rises as the front barrier height or width increases, further 

confining electrons to the CdTe absorber layer with thermionic emission and tunneling 

suppressed. While the MgyCd1-yTe layer does in fact still provide adequate passivation of 

the interfaces themselves at the edge of the CdTe absorber, no matter the thickness, the 

effective interface recombination velocity includes the loss of carriers to non-radiative 
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recombination at the surface or more defective contact layer due to tunneling through or 

thermionic emission over the barriers. Tunneling is therefore an issue for barriers of only 

5- to 10-nm while thermionic emission becomes a problem for barriers of lower magnesium 

compositions. Both of these upwards trends are exhibited quite clearly for a CdTe absorber 

in Fig. 27. Although this same level of barrier optimization within the final device has not 

yet been carried out for the wider bandgap MgCdTe absorber, similar behavior can be seen 

in the PL comparison discussed in the next section. Maximizing this effect though, by 

increasing either the barrier thickness or height will not necessarily result in an increase in 

efficiency within an actual device. Providing confinement for electron majority carriers 

must be pursued while simultaneously ensuring that the accompanying barrier in the 

valence band does not become so large as to dramatically reduce the FF by limiting hole 

transport into the a-Si:H contact. In addition to the potential drop in FF, increasing the 

magnesium content further is expected to result in a lower quality interface as the strain 

increases. Whereas prior studies with similar double-heterostructure samples have shown 

that barriers with magnesium compositions as high as 46% can be made with high-quality 

interfaces [50], the PL intensity and implied-Voc degrades as the magnesium composition 

in the barriers approaches 60%. Also, even though the trend shown in Fig. 27 might 

encourage the pursuit of even thicker barriers layers, this is believed to be counter 

productive at this point as the maximum Voc with a 15-nm-thick barrier (1.11 V) already 

reaches the maximal iVoc (1.13 V) for such an absorber, calculated from ηext measurements 

[43]. Moreover, with this barrier layer being intrinsic, the conductivity is very low and the 

FF would suffer considerably as this layer thickness increases. This is, once again, not 
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believed to be as big of an issue at the backside of the device as the barrier layer on the 

opposite side of the absorber is heavily doped.  

 

Fig. 27 Box plot indicating the Voc for solar cells with different front MgCdTe layer barrier 

thicknesses and heights (magnesium composition). The boxes indicate the average values 

and upper and lower quartiles of all cells on the same wafer; the uppermost lines indicate 

the maximum values measured. 

 While the poor performance of the devices utilizing a thin MgCdTe barrier can be 

partially explained by the increased ability for electrons to tunnel through the barrier and 

recombine non-radiatively, either in the contact layer or at the surface, there are other 

potential concerns when using thin barriers in a solar cell structure. During device 

fabrication, it is highly likely that the upper MgCdTe barrier layer will be exposed to 

atmosphere prior to the deposition of the contact layer. With MgTe being an extremely 

hygroscopic material, high magnesium compositions even in the MgCdTe ternary can lead 

to considerable oxidation of this layer. For thin layers, it is possible for the barrier to oxidize 

completely resulting in the destruction of the high quality CdTe/MgCdTe interface and 

thus a dramatic increase in the interface recombination velocity. The transmission electron 



50 
 

microscopy micrograph shown in Fig. 28 shows the oxidation of the interface between the 

MgCdTe barrier layer and the upper contact layer.  

 

Fig. 28 TEM image of the upper layers of a CdTe/MgCdTe double-heterostructure solar 

cell with an a-Si:H contact. TEM images provided by Brian Tracy and Dr. David Smith at 

the LeRoy Eyring Center for Solid State Science. 

 And yet the presence of a thin oxide layer within the contact stack is not necessarily 

detrimental to the performance of the solar cell. Fig. 29 depicts the average parameters for 

solar cell samples with varying degrees of MgCdTe oxidation. Perhaps the most intriguing 

change with a thicker oxide layer is the increase in Voc. What was originally believed to be 

a significant downside to using MgCdTe as a barrier layer has proven to be a relatively 

benign occurrence when barriers are of sufficient thickness so as not to completely oxidize.  

In fact, the record performing devices discussed in this chapter were intentionally exposed 

to air for one week prior to contact layer deposition. 
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Fig. 29 Average Voc, Jsc, FF, and η for three samples in which the intrinsic MgCdTe 

passivation layers were exposed to atmosphere for varying lengths of time. Error bars in 

Voc and FF indicate the standard error of the mean for devices on the same wafer. The Jsc 

data points were calculated by integrating the EQE so an approximate error is not 

presented. 

4.1.2 Demonstration of devices with record performance 

 Fig. 30 shows a structure diagram for a double-heterostructure solar cell which utilizes 

an amorphous silicon contact layer along with the optimized barrier designs discussed here 

and in earlier chapters.  Deposition time was adjusted to obtain an 8-nm-thick layer based 

on the thickness optimization discussed in the previous chapter. A 50-nm-thick layer of 

tin-doped indium oxide (ITO, 95%/5%) was then sputtered on the surface in addition to 

utilizing the same top and bottom contact processes discussed in Chapter 2. Optical loss is 

a major component contributing to the reasons why monocrystalline cells constructed in 

this manner still demonstrate record efficiencies below those of polycrystalline designs—
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the best Jsc values still fall below 25 mA/cm2 while the record polycrystalline devices 

exhibit currents of 30 mA/cm2.   

 

Fig. 30 Layer structure of the CdTe/MgCdTe double-heterostructure solar cell with a p-

type a-Si:H contact layer. 

 

Fig. 31 Simulated band-edge diagram at equilibrium for a CdTe double-heterostructure 

solar cell with a p-type a-Si:H contact layer. A complete list of the parameters used in the 

band-edge diagram simulations is shown in TABLE 6. 
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 The simulated band edge diagram shown in Fig. 31 shows that the a-Si:H contact layer, 

results in a Vbi of over 1 V and the CV measurements for these device structures verify this 

fact with measured Vbi values of 1.1 V [51]. The simulated device parameters of the 

absorber are shown in TABLE 6 with a full breakdown of all material and simulation 

parameters found in Appendix A. 

TABLE 6  

PARAMETERS USED FOR BAND-EDGE DIAGRAM SIMULATIONS 

 ITO p- a-Si:H i-MgCdTe n-CdTe n-MgCdTe n-CdTe 

Bandgap 4 eV 1.8 2.284 eV 1.51 eV 1.98 eV 1.51 eV 

Magnesium 

Composition 
- - 0.40 - 0.26 - 

Electron 

Affinity 
4.9 eV 3.9 eV 3.738 eV 4.28 eV 3.951 eV 4.28 eV 

Doping 

Density 
Degenerate 1×1018 cm-3 NA 1×1016 cm-3 5×1017 cm-3 5×1017 cm-3 

Intrinsic 

Carrier 

Conc. 

Metal-like 8×104 cm-3 6×103 cm-3 5×105 cm-3 6×103 cm-3 5×105 cm-3 

NC/NV Metal-like 1 0.144 0.144 0.144 0.144 

Thickness 50 nm 8 nm 15 nm 1000 nm 50 nm 500 nm 

 Fully processed devices were tested by the National Renewable Energy Laboratory 

(NREL). The certified current-voltage curve (J–V curve) and EQE characteristics shown 

in Fig. 32 indicate a record total-area efficiency of 17.12% and an active-area efficiency of 

19.7%—where the active-area is defined as the area within the aperture that is not shaded 

by metal. The Voc is 1.0919 V—the highest certified value for a CdTe solar cell—and, 

though the device has appreciable series resistance (discussed in later sections)—there is 

no rollover in the J–V characteristics. The FF exceeds 70%, which is higher than typical 

record-Voc devices, for which FF is often sacrificed in order to artificially push Voc higher. 
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Fig. 32  a) NREL-certified total-area J–V curve (black) and ASU-calculated active-area 

J–V curve (red) derived from the b) NREL-certified EQE. In addition to the EQE, the 

device reflectance and contact layer absorption are included with calculated current 

losses. The device had a total area of 0.06335 cm2 as defined by a laser-etched silicon 

mask (measured by NREL) with approximately 13% metal coverage visible within the 

aperture area. 

 TABLE 7 lists the in-house measured device parameters from the best cells across the 

same wafer in which all of the discussed optimizations have been utilized. In all cases, the 

Voc is above 1 V while the FF is over 70%. The maximum active-area efficiency of 20.3% 

was measured on a cell with considerable metal coverage explaining the large difference 

between the total-area and active-area Jsc. In the case of the best measured voltage of 1.11 

V, the Woc of 0.39 V is considerably lower than the polycrystalline record device. A 

comparison of published Voc data spanning the past two decades, as gathered by Repins et 

al., is plotted versus the coresponding minority carrier lifetime in Fig. 33 [52]. A 

considerable gap in both Voc and carrier lifetime within the device is present in comparison 

to both the larger grouping of polycrystalline cells as well as to the more recent 

monocrystalline devices [7]. The double heterostructure design utilized in conjunction with 
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a thinner monocrystalline absorber leads to bulk minority carrier lifetimes sufficient to 

provide diffusion lengths longer than the absorber thickness.  

TABLE 7  

MAXIMUM MEASURED DEVICE PARAMETERS 

Device Voc (V) 

Jsc (mA/cm2) 

FF (%) 

η (%) 

Total-area 
Active-

area 

Total-

area 

Active-

area 

1 1.11 21.1  72.2 16.9  

2 1.09 22.6  74.0 18.2  

3 1.10 21.6  75.9 18.0  

4 1.09 22.4  75.7 18.5  

5 1.10 18.7 24.5 75.6 15.5 20.3 

 

Fig. 33 Published carrier lifetime and Voc data for CdTe devices over the past two decades 

including the maximum measured Voc presented here [52]. The lifetime was measured in a 

CdTe double heterostructure with a doping level of 1×1016 cm-3. 

 While this figure indicates that there is little room for improvement in the Voc, there 

still exists considerable room for improvement in the FFs of these devices. However, 

pursuit of a higher Jsc seems to provide the path of least resistance. The transition to a less 

absorptive hole contact would allow for a huge reduction in parasitic absorption that has 

been the primary cause for the difference between the measured Jsc and the maximum 

attainable for a 1.51 eV absorber. Potential candidate materials include high-work-function 
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metal oxides, p-type dopable chalcogenides, and other II-VI materials. MoOx—an example 

of the first—has been used successfully in organic and silcion solar cells [53]; CuZnS—an 

example of the second—has already been explored but due to difficulties in processing, 

high efficiencies have not yet been realized; and ZnTe—an example of the third—showed 

early signs of success in increasing Jsc as seen in Chapter 3 but has yet to see voltages 

beyond 1 V [12]. 

4.2 Devices with a 1.7 eV MgCdTe absorber 

4.2.1 Usage of graded barrier layers 

  Although very similar to the structure described in the previous section, several design 

changes are necessary when transitioning to a wider bandgap absorber device. For starters, 

the absorber thickness is reduced to 500 nm in the hopes of maintaining a higher quality 

absorber. Secondly, to provide adequate carrier confinement and surface passivation for a 

wider bandgap absorber as is the case with a magnesium incorporation of 13%, even greater 

magnesium levels in the barriers than has been previously employed with CdTe based 

devices is necessary. While CdTe DH designs can utilize abrupt heterointerfaces, this same 

abrupt change is difficult to achieve for a 1.7 eV absorber as magnesium is present 

throughout the entire DH and thus the magnesium shutter cannot merely be open and shut 

to generate the barrier layers as is typically done for the CdTe devices. Using a growth 

interruption to allow for the magnesium cell temperature to adjust to the required level for 

the different layers may result in an abrupt heterointerface, but this could result in a lower 

quality interface. Even under ultra-high vacuum, foreign elements in the chamber can build 

up at the interface resulting in an increase in the IRV. To generate an abrupt interface, at 

the completion of the barrier and absorber layer growths, both the magnesium cell and 
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tellurium cell shutters are closed leaving the surface of the sample under cadmium 

overpressure. At this point, the magnesium cell temperature is either ramped up or down 

at a rate of approximately 15 °C/min. Once the desired cell temperature for the subsequent 

layer is achieved, all shutters can once again be opened and growth can continue. To attain 

a grading of the composition between the absorber and barrier layers, the magnesium cell 

temperature is raised or reduced while all cell shutters remain open. The relationship 

between the cell temperature and the elemental flux is exponential so as the cell 

temperature changes linearly, the magnesium composition within the graded layer will 

change exponentially. The equilibrium state band edge diagram shown in Fig. 34 portrays 

how this grading affects the barrier band edges. In principal, this method of grading—

assuming the portion of the barrier containing the maximum magnesium composition 

remains unchanged, which is the case for the devices discussed below—will result in a 

thicker overall barrier layer. While this leads to a situation in which there are no 

discontinuities in the band edges for the absorber, the transition from the pure CdTe in the 

buffer layer does include a band offset formed by the opening of the magnesium shutter; 

this is not an issue for electron transport from the absorber into the CdTe contact. 

 
Fig. 34 Schematic band-edge diagram at equilibrium for the MgCdTe DH with graded 

barrier layers. 
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 Two sets of sample structures were developed to compare the quality of the absorber 

material when the barriers are either graded or abrupt. The PL intensity for each of these 

samples is shown in Fig. 35 a) and b). The samples shown in a) have a maximum 

magnesium composition of 24% within the barrier layers, with one sample containing an 

abrupt interface between the barrier and the absorber, while the other sample has 10 nm of 

grading between the barrier and absorber. For a 1.7 eV absorber, a 24% magnesium 

composition within the barriers does not generate a sufficient enough energy barrier to 

confine carriers at room temperature. This indicates that higher levels of magnesium are 

indeed necessary for final device development, yet comparisons can still be made between 

the samples at low temperature. At 130 K and below, the PL intensity for both samples is 

nearly equivalent, indicating that grading does not necessarily present any benefit when 

attempting to maximize the iVoc of the structure.  

 In light of the fact that barriers with only 24% magnesium cannot be used within a 

completed device structure, an increased magnesium composition of 50% was also 

compared as is shown in Fig. 35 b). In this case, the PL is quite high even at room 

temperature and the ηext of 1.2% gives an iVoc of 1.29 V. This holds true for the sample 

with and without grading in the barriers with very little difference in intensity between the 

two. The slight difference in peak position can be explained by a shift in the magnesium 

flux rate which occurs naturally over time as the cell continues to deplete (cell temperatures 

are re-calibrated over time as these shifts become apparent). In addition to the PL intensity, 

the bulk minority carrier lifetimes extracted from the time-resolved photoluminescence 

decay shown in Fig. 36 are nearly equivalent as well—being measured at approximately 

50 ns for both. The 50% magnesium barriers, whether used in conjunction with graded 
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layers or with an abrupt interface, provide excellent confinement and interface passivation 

with measured bulk minority carrier lifetimes of up to 560 ns measured in a graded 

structure [32]. Although oxidation is expected to become more prevalent as compositions 

move to these higher values, the absorber interface remains untouched by atmospheric 

degradation even a year after exposure to oxygen began. The 30 nm Mg0.5Cd0.5Te barrier 

layer, even without a CdTe capping layer, was resilient enough to atmospheric exposure to 

result in no significant change in PL intensity. This also holds true for both abrupt and 

graded samples. 

  

Fig. 35 PL intensity comparing samples with and without grading layers between the 

barrier and absorber layers. a) compares samples with barrier layers with a maximum 

magnesium composition of 24%, while b) compares samples with barrier layers with a 

maximum magnesium composition of 50%.  
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Fig. 36 Normalized room-temperature time-resolved photoluminescence decay for a set of 

two DH samples, each consisting of two 30nm Mg0.5Cd0.5Te barriers and a Mg0.13Cd0.87Te 

absorber layer with or without grading. The curves have been shifted along the y-axis for 

clarity. The fitted lifetimes are shown in the inset table.  

4.2.2 Demonstration of devices with record performance 

 The layer structure in Fig. 37 shows the design changes used when transitioning to a 

wider bandgap 1.7 eV absorber which include the addition of the graded barrier layers and 

the thinning of the absorber. The simulated equilibrium state band edge diagram shown in 

Fig. 38 portrays how this grading affects the barrier band edges. The p-type a-Si:H layer in 

contact with the top of the DH induces the band-bending in the Mg0.13Cd0.87Te absorber. 

Because the absorber region is left nominally intrinsic, the bands show a consistent electric 

field present throughout the entire absorber. With the addition of the grading layers used 

in conjunction with each barrier layer, a considerable impediment to carrier transport 

exists, especially considering doping cannot be used to in the electron selective barrier 

layer. 
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Fig. 37 Layer structure of the Mg0.13Cd0.87Te/Mg0.5Cd0.5Te double-heterostructure solar 

cell with a p-type a-Si:H hole contact. 

 
Fig. 38 Simulated band-edge diagram at equilibrium for the MgCdTe solar cell shown in 

Fig. 37. 
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 Fig. 39 shows the J-V characteristic under illumination and the EQE for the device that 

has demonstrated the maximum efficiency. The Jsc is difficult to accurately determine 

directly from the J-V measurement even with a mask, due to extreme sensitivity in the 

determining the area. Thus, the Jsc is calculated by integrating the EQE curve with the 

AM1.5G spectrum and is determined to be 15.0 mA/cm2 for the highest efficiency solar 

cell. The measured J-V curve is scaled to match the 15.0 mA/cm2 Jsc. The active-area 

efficiency (defined to be the efficiency of the unshaded area) is measured to be 11.2%, and 

accounting for the ~10% metal coverage, the total area efficiency is closer to 10.1%. 

  
Fig. 39 Device performance of the most efficient cell with area of 5 mm by 5 mm 

including the light J-V curve under the AM1.5G solar spectrum (left) and the external 

quantum efficiency (right). 

 The Voc of 1.176 V is lower than the implied-Voc calculated from luminescence 

efficiency measurement, and this same discrepancy exists when examining the built-in 

voltage (Vbi) of the device. The C-V and 1/C2 plots shown in Fig. 40 indicate that the 

completed DH device has a maximum potential Vbi of approximately 1.42 eV. However, 

there is a distinct change in the slope of the curve that can be attributed to the band offset 

at the heterojunction and this can introduce some variance in the Vbi depending on where 
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the curve is fit. Yet, it still stands that the a-Si:H hole contact generates a larger built-in 

potential across the Mg0.13Cd0.87Te absorber but extracting this potential as a voltage at the 

contacts is still problematic. The low fill factor (FF) of 63.5%, also implies that the charge 

transport in this solar cell structure still has ample room for further improvement with the 

most likely causes being the energy barriers discussed earlier in the paper. Further analysis 

of the reasons for this FF reduction help to bolster this claim and are discussed in the next 

chapter. 

 

Fig. 40 C-V and 1/C2 profile for the MgCdTe solar cell. Five devices across the sample 

were measured and the data presented represents the device demonstrating the median Vbi 

of 1.42 V calculated as the intersection of the fitted 1/C2 profile with x-axis 
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CHAPTER 5 

LOSS MECHANISMS AND ENVISIONED FUTURE DESIGNS 

 Understanding the underlying reasons for the difference in performance between the 

devices discussed in the prior chapter and that of the current state-of-the-art poly-CdTe 

solar cell, exposes a number of pathways for improvement. Chapter 5 discusses several of 

the different loss mechanisms found within the two different solar cell technologies 

discussed within this thesis. Beginning with electrical loss mechanisms that effect the FF 

of the devices, exploration of the impact of the lumped series resistance in the device is 

modeled and measured to determine a pseudo-FF and efficiency for the devices. The 

photocurrent loss mechanisms are then discussed through the comparison of the simulated 

device absorbance within the individual layers and the measured EQE. A series of design 

changes to address these loss mechanisms and improve the performance of the double-

heterostructure design are then considered; this includes absorber bandgap tuning and 

substrate removal. 

5.1 Loss mechanism analysis 

5.1.1 Loss mechanisms contributing to lower FF 

The J–V curve of the device with the best total-area efficiency was fitted with a one-

diode model based on the model developed by Merten et al. [54], as shown in Fig. 41. The 

parameters used in the model are listed in TABLE 8. The slight slope around short circuit 

can be fit well with a parallel resistance of only 5 kΩ·cm2, indicative of slight shunting 

responsible for a 0.6% FF loss. However, to properly reproduce the shape of the J–V curve 

between -1 V and the maximum power point (MPP), an additional imperfect collection 

term has to be used, which we model with a mobility-lifetime product of 3.3×10-6 cm2/V, 
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responsible for another 1.3% FF loss. Though such a mobility-lifetime product may be 

unphysical given the microsecond-range lifetime observed in undoped samples, bulk 

lifetimes within the actual solar cell devices are shorter due to the increased doping 

concentration (see Fig. 7).  

 
Fig. 41 Experimental and simulated J–V curves of an 18.5%-efficient monocrystalline 

CdTe solar cell. The curve was fitted with a one-diode model with series resistance, parallel 

resistance, and recombination terms. 

TABLE 8  

MODELED DEVICE PARAMETERS 

 Value Unit 
Absolute 
FF loss 

Diode saturation current (J0) 7.7×10-13 mA/cm2 - 
Diode ideality factor (n) 1.4 - - 

Photogenerated current (Jph) 22.6 mA/cm2 - 
Effective mobility·lifetime 

product (µ·τ)eff 
3.3×10-6 cm2/V 

1.3% 
Built-in voltage (Vbi) 1.2 V 

Parallel resistance (Rp) 5000 Ω·cm2 0.6% 
Series resistance (Rs) 4 Ω·cm2 7.1% 

 

Series resistance is the largest of the loss mechanisms, and an over 7% (absolute) 

improvement in FF is expected if the resistance can be reduced. About 1% can be attributed 

to the front electrode (120 Ω/□ sheet resistance of the front ITO, resistive losses in the 
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finger and contact resistance). The origin of the remaining 6% loss is under investigation, 

and likely originates in the numerous barriers to charge extraction between the CdTe 

absorber and the electrodes. The extraction of holes from the p-type a-Si:H to the ITO is 

expected to yield less than 0.5% loss based on the high FF values attained in silicon 

heterojunction cells using the same structure [45], leaving more than 5.5% FF loss in the 

II-VI stack and MgCdTe/a-Si:H interface. The two MgCdTe barriers probably contribute 

most to the loss, though the share between the front and rear layers is uncertain. In addition 

to the difference in magnesium composition, different doping densities and thicknesses are 

used in the front and rear. Varying the thickness and composition of these two barriers 

would help to elucidate the transport losses and to find an optimum barrier for each side 

that would minimize the resistance to the extraction of majority carriers while maintaining 

a low IRV [55]. 

 Electron transport from the CdTe buffer to the InSb wafer and rear metal is expected 

to be negligible due to the high doping in all layers and the low bandgap of InSb. Indeed, 

two structures were grown in order to measure the transport across the interface of an n-

CdTe on n-InSb structure as well as a n-CdTe on p-InSb structure. The final device 

structure and associated simulated band diagrams are show in Fig. 42. The structures 

consist of a 500-nm n-type CdTe layer grown on either an n- or p-type InSb layer. The top 

indium contact is made to the n-CdTe layer while the bottom contact is made using a 

Ti/Pt/Au stack on the InSb layer; this is done as opposed to the bottom of the substrate so 

as to avoid any wafer resistance effecting the vertical transport measurements. Lateral 

current flow is not believed to dramatically affect the measurements. Reciprocal space 

mapping on similar structures indicate that, as CdTe is so closely lattice matched to InSb,  
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these layers are coherently strained and the interfaces are relatively defect free [56]. X-ray 

diffraction peaks for the n-CdTe/n-InSb and n-CdTe/p-InSb devices in question show 

similarly high quality with full-width half maximums of 22- and 21-arc seconds, 

respectively. 

While the CdTe (1.51 eV) and InSb (0.17 eV) bandgaps were found from literature 

averages [28] (with the CdTe bandgap verified using photoluminescence measurements), 

the valence band offset and doping levels were found experimentally for these growths. X-

ray and ultraviolet photoelectron spectroscopy measurements performed by Robert 

Nemanich, et al. found that the valence band offset is approximately 0.90 eV [57]; this 

value compares really well with both the calculated offset of 0.86 eV and previous 

experimental results of 0.87 ± 0.10 eV [17], [58]. For the n- on n- case shown in Fig. 42 

b), the barrier is approximately 8 nm wide with a height of roughly 240 meV. For the tunnel 

junction shown in Fig. 42 c), the degenerate doping levels on both sides of the interface 

results in only a 15 nm distance encountered during the band-to-band transition with no 

energy change. 
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Fig. 42  a) Device layer structure and band edge diagrams for n-type CdTe grown 

on b) n-type and c) p-type InSb. Diagrams were plotted using PC1D, a one-dimensional 

transport simulation software. 

  Standard tunnel-junction formation results from extremely high doping of both 

layers at the interface. This heterointerface functions particularly well in this regard as the 

primary n-type dopant used within CdTe is indium—a dopant that will inevitably diffuse 

in from the InSb layers, thereby increasing the doping concentration at the interface. 

Secondary ion mass spectroscopy (SIMS) results shown in Fig. 43 indicate that while the 

targeted doping level within the bulk of the CdTe film of 1×1018 cm-3 is maintained 

(verified through C-V measurements), the doping density is over three times higher (≈ 

3.6×1018 cm-3) at the CdTe/InSb interface. Indium from the lower InSb layers has diffused 

up to 150 nm from the interface under no additional annealing—that is, outside of the 

substrate temperature and time of the CdTe layer growth itself.  This is not an insignificant 

change with respect to the barrier formation in the conduction bands. While the barrier 
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widths with a doping level of 3×1018 cm-3 shown in Fig. 42 b) and c) are 8 nm and 15 nm, 

they would increase in width 2- to 3-times with only a small reduction in doping to levels 

at 1018 cm-3 or below. This diffusion has a much larger, relative effect when occurring in 

the solar cell structures in which case the absorbers are doped several orders of magnitude 

lower and the cells are exposed to higher temperatures for a greater period of time during 

growth and processing; this was seen and discussed in Chapter 3.  

 
Fig. 43  Secondary ion mass spectroscopy results for an indium doped CdTe layer 

on a tellurium doped InSb layer. The indium doping density in the CdTe layer was 

calibrated using CV measurements while the indium concentration in the InSb layer is 

based on the calculated density. 

 J-V measurements were performed to test the vertical transport across the two different 

interfaces. The results shown in Fig. 44 a) reveal the ohmic behavior of the n-CdTe/n-InSb 

interface at both room- and low-temperatures with no discernable change in the resistance. 

The tunnel junction on the other hand, while nearly-ohmic at room temperature, is 

rectifying at lower temperatures. TABLE 9 reports all the resistances measured. The contact 

resistances are treated as having a negligible impact on the measurements as they are 

measured at several orders of magnitude lower than the resistance of the stack; this is after 
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a 200 °C anneal for 2 minutes. In addition, the semiconductor resistances of the vertical 

transport through the CdTe and the lateral transport through the InSb are ignored due to 

the thin 500 nm CdTe layer and the extremely high conductivity of the InSb. With these 

resistivity levels, for normal solar cell device operation at currents under 30 mA/cm2, the 

voltage drop at the interface will be significantly less than 1 mV. 

 

Fig. 44  I-V measurements at room- (295 K) and low-temperature (84.8 K) for both 

the a) n-CdTe/n-InSb and b) n-CdTe/p-InSb structures. All measurements were taken under 

vacuum using a two-point probe and Keithley multimeter, with low temperature 

measurements completed using liquid nitrogen cooling. 

TABLE 9  

MEASURED RESISTANCES OF ALL RELEVANT CONTACTS AND HETEROINTERFACES 

 ρc (Ω·cm2) 

295 K 

ρs (Ω·cm2) 

84.8 K 

ρs (Ω·cm2) 

In on 

n-CdTe 
1.2×10-4 -- -- 

Ti/Pt/Au on 

n-InSb 
1.1×10-6 -- -- 

Ti/Pt/Au on 

p-InSb 
6.9×10-5 -- -- 

n-CdTe on 

n-InSb 
-- 0.013 0.011 

n-CdTe on 

p-InSb 
-- 0.033 *See Fig. 3 b) 
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 The convex shape of the J–V curve between -1 V and MPP seen in the fitting of the J-

V curves is characteristic of a collection issue and not (Ohmic nor non-Ohmic) shunting. 

The transport-related origin of this FF loss is also confirmed by the variable-illumination 

Voc (commonly called Suns-Voc of Jsc-Voc if the Jsc is measured directly) measurements 

which were carried out on devices of the same design, showing a large discrepency between 

the one-sun FF and the calculated pseudo-FF (a value greater than 80%).  

 The Jsc-Voc curve for this device was attained by measuring the full J-V curve of the 

solar cell for several different light intensities and extracting the Jsc and Voc values. Looking 

at the standard single-diode model with series resistance shown in equation (8), we can see 

that at both Jsc (V=0) and Voc (J=0), the series resistance has no effect. Understanding this, 

plotting the extracted Jsc and Voc values, inverting the curve, and translating them into the 

first quadrant, we can visualize a J-V curve minus the effect of series resistance. A 

comparison of this shifted Jsc-Voc curve with the one-sun J-V curve as proposed by Aberle 

et. al., allows for the calculation of RS at the maximum power point through the relation 

shown in equation (9) [59], [60]. From these curves we can establish a psuedo-FF and 

psuedo-η for these devices indicating the limitations of the design. 

 𝐽 = 𝐽𝐿 − 𝐽0𝑒
[
𝑞(𝑉+𝐼𝑅𝑆)

𝑛𝑘𝑇
]
 (8) 

 𝑅𝑆,𝑆𝑢𝑛𝑠−𝑉𝑜𝑐 =
∆𝑉

𝐽𝑚𝑝𝑝
 (9) 

 This comparison is shown in Fig. 45. The large series resistance found at the maximum 

power point produces an even larger absolute FF loss than is predicted by the fitting, with 

the pseudo-FF calculated to be 86%. This same behavior is exhibited with the MgCdTe 

devices to an even greater extent. Once again, the pseudo-FF is over 85% with a 
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considerable amount of loss due to poor transport and a much larger series resistance of 26 

Ω·cm2.  One small caveat to consider in this analysis is that RS is current (illumination) and 

voltage dependent. While this is typically accounted for with a Jsc-Voc comparison and an 

RS(J) term can be determined, there are certain assumptions made in this analysis that done 

necessarily always hold true. Primarily, the saturation or dark current (J0) is assumed 

constant over all excitation intensities but this is not the case as recombination terms will 

change with injection level and voltage. However, for illumination levels resulting in 

voltages between Voc and Vmpp, prior work by Fong et. al. has indicated that there is very 

little error in the calculated RS(J) and constructing a pseudo-FF in this range is very 

accurate [61]. 

 

Fig. 45 Jsc-Voc data and fitting compared with the 1-sun J-V curve for a 1.5 eV CdTe device 

to extrapolate the series resistance at the operating point.   
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Fig. 46 Jsc-Voc data and fitting compared with the 1-sun J-V curve for a 1.7 eV MgCdTe 

device to extrapolate the series resistance at the operating point. 

 Further exploration of FF losses can be accomplished through temperature dependent 

measurements. There are many intrinsic material properties, as well as device properties, 

that exhibit some level of temperature dependence that will have an effect on the J-V 

parameters of a solar cell [62]. Perhaps most recognized is the effect temperature has on 

bandgap as well as the intrinsic carrier concentration. The reverse saturation current density 

(J0) is a measure of leakage current in the device and exhibits a strong dependence on n1
2. 

With J0 being a carrier recombination term, it has a strong effect on the Voc of the device 

as seen in equation (10) derived from the single-diode model: 

 𝑉𝑜𝑐 =
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐
𝐽0

+ 1) (10) 

 It is clear from this relationship that the Voc will drop as the temperature—and thus 

J0—increases. This trend can clearly be seen in the temperature dependent J-V parameters 

for a Mg0.13Cd0.87Te solar cell shown in Fig. 47. The Jsc is also seen to be increasing as the 

bandgap of the absorber decreases and additional portions of the solar spectrum can be 
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absorbed. Where this device performance deviates from the typical trends observed in other 

more common device structures is with the FF. While typical devices will show a 

degradation in FF as the temperature increases and the Voc decreases [62], these devices 

exhibit the exact opposite behavior. As previously discussed, the barriers in the conduction 

band at the electron contact and in the valance band at the hole contact are believed to be 

responsible for restricting majority carrier transport into their respective contacts. This is 

believed to be the leading cause of the internal lumped resistance. If this is true, an increase 

in FF as opposed to a decrease should be expected as thermal energy is added to the system, 

thereby increasing the ability for carriers to transport into their respective contacts. Indeed, 

this trend is observed as the FF increases to 74% with an increase in temperature of 60 °C.  

 

Fig. 47 Extracted device parameters for a Mg0.13Cd0.87Te double-heterostructure solar cell 

versus device temperature. Temperature is controlled using a hotplate and measured using 

an attached thermocouple.   
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 This behavior is also present within the CdTe absorber devices as seen in Fig. 48. 

However, with a significantly smaller barrier to carrier transport, the FF of these devices 

is already considerably higher at room temperature and very little additional thermal energy 

is required to negate the resistance due to this barrier. The concern of low conductivity due 

to an intrinsic absorber is also not an issue with the CdTe devices and thus is not considered 

a contributor to any series resistance within the device. This can be observed in the halt of 

the increasing FF at temperatures beyond 320 K and eventually revert to the downwards 

trend commonly seen in solar cell devices. The Voc and Jsc continue to change with 

temperature as expected and the efficiency will therefore roll over and degrade at an 

increased rate after the FF begins to plateau. 

 

Fig. 48 Extracted device parameters for a CdTe double-heterostructure solar cell versus 

device temperature. Temperature is controlled using a hotplate and measured using an 

attached thermocouple.   

.   
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 In addition, it’s clear from the J-V curves themselves shown in Fig. 49, that for the 

Mg0.13Cd0.87Te devices, an actual shift in the maximum-power-point voltage is visible at 

higher temperatures while the maximum power point for the CdTe devices shifts to lower 

voltages for all temperature increases. Nevertheless, a change in the slope of the J-V curve 

at open-circuit is still visible for CdTe devices indicating a reduction in the series 

resistance. The slope of the curves begins to stabilize as the temperature increases even 

further and the series resistance becomes constant with temperature. The existence of wider 

and higher barriers in the Mg0.13Cd0.87Te samples along with the undoped absorber would 

of course lead to a larger benefit to FF with increasing temperature as compared to the 

CdTe devices. The FF of both devices approach the same 75% value but the Mg0.13Cd0.87Te 

samples require additional thermal energy to reach this point. 

  
Fig. 49 Light J-V curves for a a) CdTe solar cell and a b) Mg0.13Cd0.87Te solar cell versus 

device temperature. The maximum power point has been marked to indicate how this 

point shifts with a change in temperature.  

  

 



77 
 

 The change in series resistance is even more evident in the J-V characteristic without 

illumination. At large forward bias, the effect of series resistance dominates and differences 

can easily be distinguished—with higher resistance values reducing the current density and 

causing roll over in the curve. Fig. 50 shows the dark J-V characteristics for both a CdTe 

solar cell (a) and a MgCdTe solar cell (b) measured at varying device temperatures. The 

roll over and consequent reduction in current density is improved greatly with the increase 

in temperature for a MgCdTe based device. While some improvement is seen with CdTe 

based devices, the change in series resistance is not nearly as dramatic. In both cases, the 

dark-current density J0 will increase with temperature as expected, visualized by a shift left 

and shown in TABLE 10. The J0 values reported are extracted from fitting the linear portion 

of the natural log of the dark J-V curve within the narrow voltage range as indicated in Fig. 

51.  Despite the changes, the dark current for the MgCdTe devices is several orders of 

magnitude larger than that of the CdTe device although they do begin to converge at higher 

temperatures. The dark I-V characteristic of the highest efficiency MgCdTe cell is shown 

in Fig. 51. 

  
Fig. 50 Dark J-V characteristic measured at varying device temperature for a a) CdTe 

solar cell device and a b) Mg0.13Cd0.87Te solar cell device. 
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TABLE 10  

DARK CURRENT DENSITIES FOR CDTE AND MGCDTE SOLAR CELLS  

FOR VARYING DEVICE TEMPERATURE 

Device 

temperature (K) 

J0 (mA/cm2) 

CdTe Mg0.13Cd0.87Te 

298 4.9×10-12 1.9×10-9 

308 6.4×10-11 7.9×10-9 

318 2.4×10-10 1.8×10-8 

328 6.6×10-10 3.2×10-8 

338 3.2×10-9 5.8×10-8 

348 7.3×10-9 1.7×10-7 

358 5.9×10-8 4.4×10-7 

368 1.4×10-7 1.3×10-6 

 

Fig. 51 Dark I-V curve (black) and ideality factor (red) for the Mg0.13Cd0.87Te solar cell 

with the highest efficiency. Due to the large effects of the shunt and series resistances, the 

extraction of the dark-current density and ideality factor is limited to the small voltage 

range indicated. 

This is indicative of an area for further improvement with respect to absorber 

passivation. Eliminating these barriers to current flow would result in a dramatic increase 

in FF and a return to the negative trend in FF with increasing temperature. However, this 

temperature dependence does provide some level of benefit at this stage as standard 
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operating temperatures of a device in the field typically range much hotter than the standard 

conditions used for measuring devices in the lab under AM1.5G. This means that although 

a maximum room temperature efficiency of 11.2% for Mg0.13Cd0.87Te is reported, the 

efficiency at operating conditions may be higher; this is in stark contrast to other PV 

technologies in which the exact opposite holds true. If we apply the same level of FF and 

Jsc improvement, and Voc reduction at higher temperatures to the hero device, it is 

reasonable to assume the efficiency can be 11.7% without any changes to the actual design. 

5.1.2 Loss mechanisms contributing to lower Jsc 

 To analyze the photocurrent loss mechanisms, the reflectance and absorptance 

spectrum of each layer is calculated using wave-optics, as presented in Fig. 52. Several of 

the experimentally observed losses such as the large parasitic absorption in the a-Si:H 

contact layer and the ITO are clearly visible, along with smaller losses such as transmission 

loss. One deviation from prior discussion that becomes apparent when viewing the 

simulated response is the influence of parasitic absorption within the i-MgCdTe barrier 

layer. MgCdTe still has a high absorption coefficient and will absorb higher energy photons 

even within the relatively thin 15 nm barrier layer. Within the calculations, these photo-

generated carriers are assumed to be lost to non-radiative recombination which can be 

visualized in the steep and immediate drop in EQE at the MgCdTe band edge (≈550 nm). 

However, this same dramatic drop is not present in the measured EQE curves for any of 

the CdTe solar cells; the EQE of the record device shown in Fig. 32 b) in Chapter 4 can be 

used as reference. This lack of distinct drop at the MgCdTe band edge and higher than 

expected EQE response at shorter wavelengths could indicate that not all carriers generated 

in this barrier layer are lost but may be collected. A very strong electric field exists within 



80 
 

the barrier layer and can generally sweep these carriers to their respective contacts very 

quickly. The voltage dependent measurements discussed below help substantiate this 

claim.  

 

Fig. 52 Simulated absorptance, transmittance and reflectance spectra of CdTe/MgCdTe 

double-heterostructure solar cell. 

 The wavelength dependence of the ratio of EQE measurements at different voltage 

biases can be a helpful method in determining the location and mechanisms responsible for 

incomplete collection [63]. As can be seen in Fig. 53, there is a strong bias dependence at 

shorter wavelengths for the CdTe double-heterostructure solar cells. In the case of reverse 

bias, response at short wavelengths will increase while the opposite holds true for EQE 

measurements at forward bias. This is indicative of a stronger field dependence for carriers 

absorbed nearer to the upper surface of the absorber or even within the barrier layer itself. 

The relative wavelength independence of the EQE ratio for wavelengths greater than 500 

nm would suggest that voltage dependent loss mechanisms are effecting all carriers 

equally. Several electrical loss mechanisms can contribute to this loss including interface 

recombination and barriers caused by the band offsets between the CdTe absorber and the 
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MgCdTe barrier/passivation layers. It is unlikely that the former is responsible as the IRV 

for these structures is remarkably low [6], [9], but rather, the energy barrier for holes at the 

upper barrier is responsible. The voltage dependence of the EQE ratio is also shown in Fig. 

54 for three select wavelengths. There is a strong voltage dependence at all bias points for 

short wavelengths, whereas wavelengths above 500 nm show no relative decay until the 

device nears flat band.  

  
Fig. 53 QE ratios for a CdTe solar cell device at reverse (top) and forward (bottom) bias 

compared at 0 V bias.  



82 
 

 

Fig. 54 Ratio of EQE at bias to EQE measured at 0 V for three different wavelengths: 450 

nm, 600 nm, and 750 nm. 

 The test conditions under which these measurements are taken must be considered as 

the illumination intensity will differ greatly between standard EQE conditions and standard 

J-V test conditions. For standard J-V curve measurements, devices are illuminated with a 

white light of ~100 mW/cm2 while the EQE setup utilized here has a much lower beam 

intensity. For this reason, it is sometimes recommended to use a constant wattage white 

bias light in addition to the low frequency monochromatic probing light to ensure the 

carrier density within the device remains the same between measurements—especially 

when making voltage dependent comparisons. This was not done so in the majority of the 

EQE measurements discussed here primarily because no discernable difference was found 

between the EQE of the device measured with and without additional light bias. The EQE 

of the hero device was measured at NREL utilizing a white light bias equivalent to 

approximately 9 mA/cm2, while the same device was measured at ASU with no light bias 

and presented the same output. In many devices the additional bias light is necessary to 

quench or saturate recombination centers, thereby increasing the spectral response over a 
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standard monochromatic condition with no background source [64]. For the very high 

quality CdTe absorbers with good quality interfaces and low IRV, this is not considered to 

be an issue and is also confirmed with TRPL measurements that exhibit no intensity 

dependence as seen in Fig. 55 a). This same reasoning however, may not apply to the 

MgCdTe absorber based devices as there is a significant excitation dependence seen in the 

TRPL results—viewed in Fig. 55 b). Further intensity and voltage dependent EQE 

measurements need to be examined to fully understand the spectral response of such 

devices. 

  
Fig. 55 Excitation dependent TRPL results for a) a CdTe/Mg0.5Cd0.5Te double 

heterostructure and b) a Mg0.13Cd0.87Te/Mg0.5Cd0.5Te double heterostructure. 

Unpublished TRPL measurements and fitting carried out by Dr. Xin-hao Zhao.  

 The photocurrent loss mechanisms for a MgCdTe absorber based device are also 

explored with the reflectance and absorptance spectrum of each layer calculated using 

wave-optics presented in Fig. 56. The absorptance of the Mg0.13Cd0.87Te absorber layer 

resembles the measured EQE closely, indicating that the carrier collection efficiency in the 

solar cell is close to unity just as is the case with the CdTe devices. This outcome is 
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expected as the minority carrier lifetime (and thus diffusion length) in 

Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs is measured to be very long. Integrating the absorptance 

of the CdTe absorber with the AM1.5G spectrum gives a Jsc of 15.3 mA/cm2. The losses 

of photocurrent due to reflectance and parasitic absorption are also shown in Fig. 56. The 

Jsc can be further improved by employing double-layer antireflection coatings, wider-

bandgap hole contact layers and a thicker Mg0.13Cd0.87Te absorber; the large reduction in 

quantum efficiency near the band edge cannot be explained by a change in reflectance 

alone, but also incomplete absorption due to the only 500 nm absorber. 

 
Fig. 56 Simulated absorptance, transmittance and reflectance spectra of 

Mg0.13Cd0.87Te/Mg0.5Cd0.5Te double-heterostructure solar cell. 

Up until this point, the hole contact has always been a material that can readily achieve 

relatively high hole densities and has a similar electron affinity to that of CdTe. However, 

n-type materials can provide the same functional band bending in the absorber when the 

electron affinity is on the order of 5.5 eV. Transition metal oxides (TMO) provide a group 

of materials that, while essentially n-type, have appropriately placed work functions which 

can support a large Vbi. The MoOx system supports a wide range in both band gap and work 
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function as the oxygen content changes [65]. Silicon devices have employed this same 

design methodology using hole selective MoOx contacts to great effect [66]. As with the 

silicon solar cells, CdTe absorber based devices share the same motivation for utilizing 

MoOx as the hole-selective contact through band-to-band tunneling—the larger bandgap is 

beneficial in minimizing the parasitic absorption that has such a large effect on the current 

density of a-Si:H based contacts and perhaps may play role in the future in increasing the 

Jsc in these devices. 

5.2 Envisioned design changes 

5.2.1 Jsc improvement through bandgap narrowing 

 Fig. 57 shows a comparison of the EQE of the monocrystalline CdTe solar cell from 

Fig. 32 with the EQE of First Solar’s record-efficiency polycrystalline cell. The majority 

of the difference in performance at wavelengths below 700 nm can be attributed to parasitic 

absorption—visible in Fig. 57 as the shaded region above the EQE—which, as previously 

discussed, is primarily in the hole contact layer. In addition, higher reflectance at the 

bounds of the visible spectrum contributes to the lower Jsc to some extent, due to the nature 

of the anti-reflection coating design technique in which optimizing the location of the 

minimum was the primary goal. However, a significant contributor to the higher Jsc, and 

thus the higher efficiency, of First Solar’s polycrystalline cells is their lower bandgap. The 

approximately 1.41 eV bandgap found in polycrystalline devices is due to the incorporation 

of selenium. Because CdSeTe ternary alloys have a strong bowing parameter, the bandgap 

is reduced as selenium is introduced into the CdTe absorber  [67]. This difference in 

bandgap alone is responsible for over 3 mA/cm2 of potential photocurrent generation, 

amounting to a nearly 13% increase over the present monocrystalline Jsc.  
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Fig. 57 EQE comparison between the monocrystalline CdTe solar cell from Fig. 32 and the 

record-efficiency polycrystalline solar cell developed by First Solar in 2015 (data for the 

new record cell is not yet available) [68]. 

 For polycrystalline devices, lowering the bandgap in this manner may be possible while 

maintaining a relatively constant Woc, but adding selenium to monocrystalline devices is 

expected to have an outsized detriment on Voc because the change in lattice constant may 

result in a considerable reduction in epitaxial material quality. Moving towards 30 mA/cm2 

actually extracted from the device will necessarily require that the maximum attainable 

current be larger than this value depending upon the average collection efficiency of the 

device. Fig. 58 shows the maximum attainable Jsc versus the bandgap energy of the 

absorber as determined by the integration of the AM1.5G solar spectrum below each 

energy. As the average collection efficiency decreases—whether through losses due to 

reflectance, parasitic absorption, recombination, etc.—the bandgap must be lowered even 

further to extract the desired 30 mA/cm2.   
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Fig. 58 Maximum attainable short-circuit current density for a given absorber bandgap 

energy. The displayed relationships were chosen to display the absorber bandgap necessary 

to achieve a Jsc of 30 mA/cm2 given different collection efficiencies. 

 Several options exist for determining the relationship between the tellurium/selenium 

composition within the CdSe1-xTex ternary and the bandgap energy and lattice constant. 

The data presented in Fig. 59 a) and b) utilizes the simple Vegard’s law presented below: 

 𝐸𝑔(𝐶𝑑𝑆𝑒1−𝑥𝑇𝑒𝑥) = 𝑥 ∗ 𝐸𝑔(𝐶𝑑𝑇𝑒) + (1 − 𝑥) ∗ 𝐸𝑔(𝐶𝑑𝑆𝑒) − 𝑏 ∗ 𝑥 ∗ (1 − 𝑥) (11) 

where Eg(CdTe) is 1.51 eV, Eg(CdSe) is 1.66 eV, and b is 0.83 eV [69]. This bowing 

parameter represents the average of  several experimentally determined values, but 

additional quadratic and linear fits to experimental data result in even larger bowing 

parameters of up to 0.996 eV [67]. Because this range is so large, predicting the selenium 

content necessary to reach the desired bandgap is difficult to accomplish. The calculations 

that follow dictate the upper bound in terms of selenium incorporation based on the lower 

bowing parameter of 0.83 eV.  
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Fig. 59 CdSe1-xTex bandgap energy versus a) tellurium composition and b) ternary lattice 

constant. The tellurium compositions necessary to achieve the bandgap energies shown 

in Fig. 58 are indicated in a) while the lattice constants of the ternaries with those 

compositions are indicated in b). 

  To reach the same approximate bandgap as is presumed to be used with the record 

holding devices developed by First Solar (1.41 eV), it is necessary to incorporate roughly 

19% selenium as seen in Fig. 59 a). Unfortunately, moving this far from pure CdTe pushes 

the lattice constant down to 6.40 Å, resulting in a large mismatch with the InSb substrate 

as seen in Fig. 59 b). While the addition of selenium clearly will result in a reduction in 

Voc as the bandgap decreases, the corresponding reduction in material quality due to the 

large lattice mismatch may also dramatically increase the Woc. If this is the case, any 

potential benefits in current generation would be negated as there will be an outsized 

detriment on the Voc.   

 Grading of the absorber bandgap is a potential solution to this problem in that it can 

reduce strain on the overall structure. Bandgap engineering has been considered within the 

thin-film field with limited success, specifically with CIGS devices [70]. However, the 

reasons for grading the bandgap in these devices differ greatly. Developing built-in electric 
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fields through increasing the bandgap is done to keep minority carriers away from potential 

recombination centers at the interfaces between the absorber and the contacts. In addition, 

larger bandgaps are desired within the quasi-neutral region to lower the recombination 

probability. Neither of these issues are present within the monocrystalline double-

heterostructures discussed in this thesis. Nevertheless, grading may still prove beneficial 

for controlling material quality throughout the growth. There are two drawbacks however: 

1) the smaller bandgap CdSeTe will only make up a portion of the absorber and therefore 

absorption of photons below 1.51 eV will be comparatively low; and 2) without fully 

understanding the valence and conduction band offsets between CdSe1-xTex and CdTe, it’s 

possible that there will be a built-in field for both electrons and hole at the back contact. A 

complete understanding of all of these trade-offs within a monocrystalline system is not 

yet know. 

5.2.2 Inverted device design 

 Improving current generation for these devices can also be achieved without 

necessarily changing the contact materials used, or resorting to bandgap tuning in the 

absorber. The process flow shown in Fig. 60 describes a method in which the solar cell 

structures currently under development can be utilized in an inverted design. By flipping 

the structure in this manner, the a-Si:H hole-contact layer—which is responsible for the 

majority of the parasitic absorption loss—is placed at the backend of the device. In such a 

design, nearly all of the higher energy photons incident on the device will be absorbed 

within the monocrystalline layers prior to reaching the backside of the device. However, 

an electron contact outside of the double heterostructure may still be necessary; in which 

case photons absorbed in this layer will also be lost to non-radiative recombination. 
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Notwithstanding, this solution remains a feasible option as the CdTe contact can be made 

thinner than the opposing hole contact without resulting in a depletion of majority carriers. 

As discussed in Chapter 3, the a-Si:H contact layer will deplete when paired with ITO and 

the thickness decreases below 8 nm. This won’t be a problem with an electron contact and 

thus the CdTe contact layer can be made even thinner so as to reduce parasitic absorption.  

 In addition to the changes in layer location, the inversion and subsequent substrate 

removal allows for the use of a mirror at the backside of the device—effectively doubling 

the optical path length of the device. The thickness of the absorber can thus be slightly 

reduced without experiencing any transmission loss; either through transmission to a 

substrate, or through emission back out the front surface of the device. Consequently, not 

only should this design lead to an increase in Jsc, but the potential exists for an increase in 

Voc as well. For radiative recombination dominated devices, the internal optics of the 

structure play a major role in determining the carrier lifetime within the absorber due to 

the effects of photon recycling [39], [71]. The CdTe/MgCdTe double heterostructures have 

been found to be radiatively limited and thus minority carrier lifetimes would benefit 

greatly from the presence of a mirror at the backside as opposed to an absorbing substrate; 

this may not always be the case as doping levels in the absorber are increased.  

 The early stages of the process itself are very similar to those described for all prior 

solar cell devices discussed in this thesis. The double heterostructure is grown by MBE up 

to the nominally intrinsic MgCdTe passivation layer shown in Fig. 60 a) at which point the 

hole-contact stack (a-Si:H/ITO/Ag) is deposited. Contrasted with the substrate based 

design, ITO mesas are not defined at this point but rather, all three layers are deposited 

across the entire surface forming the backside mirror shown in b). The device is then 
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flipped and bonded to a gold coated silicon carrier wafer, providing both support and 

backside contact. The substrate is then removed either through: 1) a combination of 

chemical mechanical polishing (CMP) and wet etching, or 2) a liftoff process using a 

sacrificial etching layer; MgTe has been shown to be a highly selective etching layer with 

submersion in water alone. TCO and metal pads can once again be used to provide current 

spreading and contacts.    

 

Fig. 60 Process flow describing potential development of an inverted solar cell device 

based on a CdTe double heterostructure.  

  The wave-optics simulation of this type of structure shown in Fig. 61 demonstrates the 

benefits of this design with respect to the readily achievable Jsc. The most clearly visible 

change is the lack of transmission loss mechanisms. At wavelengths between 650- and 850-

nm, outside of reflectance losses, nearly all incident light is absorbed and collected. Of 

similar import, and the driving reason behind this design choice, is the movement of the 

hole contact to the back end of the device and the associated change in parasitic absorption. 

Even with a 5 nm CdTe electron contact still utilized at the top-side of the device, 

absorption within the layers outside of the double heterostructure has been reduced to 

nearly only 1 mA/cm2. This brings the total weighted absorption within the CdTe absorber 

to a current density equivalent of 25.1 mA/cm2 and when the MgCdTe passivation layer is 



92 
 

included—which has been shown to also have a high collection probability as well—this 

value increases to 27 mA/cm2.  

 

Fig. 61 Calculated absorptance, transmittance and reflectance spectra of the proposed solar 

cell structure shown in Fig. 60. 

 The thickness of the electron contact can be tuned to reduce the level of absorptance 

within this layer without resulting in the depletion of the contact and a reduction in the Vbi 

of the device. At 8 nm thick, as is the case with a-Si:H contact used in the hero device, 

approximately 1.8 mA/cm2 in potential current is absorbed and lost within the CdTe 

contact. As the thickness of the contact is further reduced, the total current loss can even 

be negated as is the case if you eliminate the need for the layer altogether; the spectral 

absorptance for a series of thicknesses and their corresponding current losses are shown in 

Fig. 62. 



93 
 

 

Fig. 62 Spectral absorptance within the CdTe contact layer for a series of thicknesses 

ranging from 0- to 8-nm. The associated current losses (mA/cm2) within these layers are 

reported in the inset table. 
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CHAPTER 6 

CONCLUSION 

 Monocrystalline CdTe double-heterostructure solar cells have shown great promise 

with respect to addressing the problems of low Voc previously exhibited in CdTe solar cells. 

With the passing of the 1 V benchmark, rapid progress has been made in driving the 

efficiency in monocrystalline CdTe devices ever closer to the record set by polycrystalline 

thin-films. CdTe solar cell devices utilizing an a-Si:H hole contact provide the highest 

performance, with a total-area efficiency of 18.52% and an unshaded area efficiency of 

20.3% measured at ASU and an NREL certified total-area efficiency 17.1%. The large 

discrepancy between the total-area efficiency and the unshaded area efficiency leaves 

plenty of room for further improvement within the realm of a-Si:H contacts and the 

potential for surpassing 22% is still possible through a further reduction in the series 

resistance and thus an improvement in FF. Wider bandgap Mg0.13Cd0.87Te absorbers using 

the same a-Si:H contacts have demonstrated active-area efficiencies of up to 11.2% and a 

Voc of 1.176 V. Fitting of the J-V curves along with extraction of a pseudo-FF from Jsc-Voc 

measurements indicate that elimination of the series resistance within the devices can push 

the FF upwards of 80%. However, moving to wider bandgap solutions for the hole contact 

sets the maximum achievable efficiency even higher. This very approach was taken with 

ZnTe. 

 The Voc of the solar cell devices with a ZnTe:Cu and ZnTe:As hole contact are 819 mV 

and 867 mV, respectively. Yet, the use of ZnTe as the top, hole-contact layer improves the 

EQE at wavelengths below 600 nm, thereby dramatically increasing the Jsc of such devices 

compared to devices using an a-Si:H hole contact. The resulting maximum efficiency of 
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14.1% was demonstrated with an arsenic-doped ZnTe hole contact grown by MOCVD. For 

this material to be a viable option, finding a ZnTe material that results in a Voc beyond 1 V 

is imperative. With copper doping proving to be difficult to achieve without dramatic 

impact on the absorber quality, utilizing other dopant sources such as nitrogen or selenium 

may provide the necessary built-in voltage within the CdTe absorber while still allowing 

high voltages to be extracted at the electrodes.  

 While ZnTe and a-Si:H have shown to be sufficient contacts, other potential options 

exist that may provide for cheaper deposition techniques or lower levels of parasitic 

absorption. CuZnS is a transparent, heavily p-type material that can be deposited in a 

number of ways including inexpensive chemical bath deposition. Preliminary 

measurements on CdTe solar cells using CuZnS as a hole-contact layer have been measured 

with a Voc of up to 980 mV—indicating that the copper within the contact may be immobile 

and does not necessarily degrade the quality of the CdTe absorber.  

 The double-heterostructure design grown on InSb substrates presents an excellent 

platform for high efficiency solar cells. Continued characterization and modification can 

lead to even further revelations about how to optimize CdTe based solar cell—

monocrystalline or otherwise. Developing these designs and methods and transferring the 

technology to polycrystalline processes may help to improve the already impressive 

performance. This includes both the binary CdTe system as well as the potential 

development of the wider bandgap ternary system MgxCd1-xTe for use within tandem 

technologies.  
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APPENDIX A 

COMPLETE LIST OF MATERIAL PARAMETERS 
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TABLE 11  

BINARY MATERIAL PARAMETERS 

 InSb CdTe MgTe ZnTe MnTe 

a (nm) 0.648 0.6481 [28] 0.6420 [28] 0.6104 [28] 0.6337 [29] 

Epsilon 17.7 10.4 [28] 7.0 [28] 9.4 [28]  

Eg (eV) 0.174 1.51 [28] 3.46 [28] 2.27 [28] 3.2 [30] 

Χ (eV) 4.59 4.28 [28]  3.5 [28] 3.266 

Nc (cm-3) 3.94×1016 8.6×1017  1.12×1018  

Nv (cm-3) 7.12×1018 6.0×1018  1.55×1019  

ni (cm-3) 1.84×1016 4.97×105  1.5×10-1  

c11 

(1011 dyn/cm2) 
- 5.35 [28] 5.28 [28] 7.15 [28] 5.86 [17,18] 

c12 

(1011 dyn/cm2) 
- 3.69 [28] 3.66 [28] 4.08 [28] 3.28 [30] 

v - 0.408 0.409 0.363 
0.359 

[17,18] 

τn (ns)  100 1 1  

τp (ns)  100 1 1  

µn (cm2/Vs)  1050 [28]  7  

µp (cm2/Vs)  104 [28]  1.5  

 

TABLE 12 

COMMON TERNARY PARAMETERS 

 Mg0.24Cd0.76Te Mg0.40Cd0.60Te Zn0.77Cd0.23Te Mn0.54Cd0.46Te 

a (nm) 0.6466 0.6455 0.6191 0.6407 

fm (%) 0.23 0.42 4.46 1.13 

Eg (eV) 1.97 2.284 2.039 2.36 

Χ (eV) 3.951 3.731 3.731 3.731 

Nc (cm-3)* 7.18×1019 3×1022 - - 

Nv (cm-3)* 5×1020 2×1023 - - 
*Calculated using the intrinsic carrier concentration, Nc/Nv ratio, and bandgap of the ternary using the 

following equation 
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APPENDIX B 

QUANTUM EFFICIENCY MEASUREMENT CONSIDERATIONS 
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External quantum efficiency (EQE) is a ratio of the carriers collected from a solar cell 

to the photons of a given energy incident on the surface; internal quantum efficiency (IQE) 

would be the ratio to the number of photons actually absorbed. Of course, this means that 

it can be plotted against either energy or wavelength. In most cases in which data is 

converted, a simple change of x-axis is of course not sufficient and we can see why when 

examining the blackbody radiation spectrum when calculated per unit wavelength or per 

unit energy. Throughout this appendix, we will see though that this is not the case with 

EQE. 

Spectral Irradiance versus energy: 

 
𝐼𝐸 =

2𝐸3

ℎ3𝑐2 [𝑒
(
𝐸

𝑘𝐵𝑇
)
− 1]

 
(1) 

 𝐼𝐸~
𝐽

𝑚2 ∙ 𝑠 ∙ 𝑒𝑉
 (2) 

However, this gives the irradiance of the blackbody per unit solid angle, so we must 

determine what proportion of the radiation from the sun hits the surface of the earth. In 

addition, the intensity will scale with the area of the radiating body (dA) as is observed 

from the surface of the earth. 

 𝑑ΩdA =
𝜋𝑅𝑠

2

𝑑2
= 𝜋 sin(Θ𝑠𝑢𝑛)

2 ≈ 6.8×10−5 (3) 

where d is the distance between the Earth and the Sun and Rs is the radius of the sun; 

alternatively, the angle between the center of the earth and the edge of the sun, Θsun, can be 

used. The 4π term associated with the surface area of a unit sphere has already been taken 

into account in equation (1) and has therefore been left out of equation (3). 
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Constant Value Units 

Planck Constant (h) 4.135×10-15 eV·s 

Boltzmann Constant (kB) 8.62×10-5 eV/K 

Speed of Light (c) 3.0×108 m/s 

 

Spectral Irradiance versus wavelength: 

The same process can be carried out to determine the irradiance with respect to 

wavelength instead of energy. Converting between energy and wavelength results in the 

following equation: 

 
𝐼𝜆 =

2ℎ𝑐2

𝜆5 [𝑒
(

ℎ𝑐
𝜆𝑘𝐵𝑇

)
− 1]

 
(4) 

 𝐼𝜆~
𝐽

𝑚2 ∙ 𝑠 ∙ 𝑛𝑚
 (5) 

 𝑑ΩdA =
𝜋𝑅𝑠

2

𝑑2
= 𝜋 sin(Θ𝑠𝑢𝑛)

2 ≈ 6.8×10−5 (6) 

 

Constant Value Units 

Planck Constant (h) 6.624×10-34 J·s 

Boltzmann Constant (kB) 1.38×10-23 J/K 

Speed of Light (c) 3.0×108 m/s 

 

Final equations: 

 
𝐼𝜆 =

(1.37×10−4)ℎ𝑐2

𝜆5 [𝑒
(

ℎ𝑐
𝜆𝑘𝐵𝑇

)
− 1]

𝑑𝜆 
(7) 

 
𝐼𝐸 =

(1.37×10−4)𝐸3

ℎ3𝑐2 [𝑒
(
𝐸

𝑘𝐵𝑇
)
− 1]

𝑑𝐸 
(8) 
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Blackbody radiation vs. measured irradiance: 

The blackbody spectrum at 6000K plotted with the measured spectral irradiance AM0, 

which is the intensity of light without atmospheric absorption, is shown in Fig. B-1; data 

provided by NREL. This temperature will be used for all future comparisons.  

 
Fig. B-1 Calculated spectral irradiance of a black body source at 6000K (red) compared to 

the measured AM0 solar spectrum. 

Spectral irradiance and photon flux: 

The following two plots in Fig. B-2 show both the spectral irradiance and photon flux 

demonstrating the shift in peak wavelength/energy depending on whether the spectrum is 

calculated per unit wavelength or per unit energy.  
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Spectral irradiance  

with respect to wavelength (nm) 

Spectral irradiance  

with respect to energy (eV) 

  
Fig. B-2 Calculated spectral irradiance and photon flux of a black body source at 6000K 

plotted per unit wavelength (left) and per unit energy (right). 

Considering that we are interested in carrier collection for current generation, the 

photon density peak is much more relevant than the energy peak—one photon to one 

carrier. Because of the dramatic difference in peak position between the two spectra shown 

above, it may prove beneficial to plot measured solar cell data both ways. 

Let’s take for example, an ideal case in which we have a signal of unity representing a 

photo-response with a band edge cutoff of 850 nm; for the sake of simplifying the example, 

we will assume a lower bound of 350 nm. The first figure is presented as a signal per unit 

wavelength with evenly spaced intervals of dλ. Because of the inverse relationship between 

wavelength and energy, these same intervals are no longer evenly spaced when plotted per 

unit energy. However, the area for these two cases (total absorbed carrier density) must be 

the same, so the signal (y-axis) must deviate from unity. Combining the standard energy to 

wavelength conversion shown in equation (9) along with the relationship between the two 
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signals shown in equation (10), we get the conversion factor for the signal itself shown in 

equation (11).  

 𝐸 =
ℎ𝑐

𝜆
 (9) 

 𝑓(𝜆)𝑑𝜆 = 𝑓 (
ℎ𝑐

𝐸
) |𝐽|𝑑𝐸 = 𝐹(𝐸)𝑑𝐸 (10) 

 
𝐹(𝐸) = 𝑓(

ℎ𝑐

𝐸
)
ℎ𝑐

𝐸2
 

(11) 

This is known as the Jacobian transformation. A comparison between these two plots 

is shown below in Fig. B-3 and demonstrates how the shape of the signal density (signal 

strength=signal density*Δx(λ,eV)) will change when converting to a signal density per unit 

energy. Despite the dramatic change in shape and intensity when moving to energy, the 

area of this curve is exactly the same as the first case. 

Signal per unit wavelength  Signal per unit energy 

  
Fig. B-3 Unity signal with evenly spaced data points per unit wavelength (left) and the 

same unity signal when plotted per unit energy (right). 

However, this is only the case with sufficiently small intervals or with perfectly 

continuous curves in which the area can be determined exactly. As we can see in Fig. B-3, 

while the interval is evenly spaced around the measured data point when plotted per unit 
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wavelength (±dλ/2), when plotted per unit energy, not only are these intervals of different 

sizes, they are no longer centered around the measured data points—data points shown in 

red. This means that even if the interval is sufficiently small enough to capture features in 

the left figure, when converting to units of energy, valuable information can be lost as the 

intervals are narrowed or spread out and the calculated area will differ slightly. When 

converting data back and forth between per unit wavelength, and per unit energy, the data 

points will always align and the intervals will change as a result. However, if two 

measurements of the same signal were to be taken—one with uniform intervals in 

wavelength and one with uniform intervals in energy—the data points will no longer align 

and we may find that one is more useful than the other in determining the shape of the 

curve in certain energy ranges. 

Solar Cell EQE measurements: 

Ultimately, this leads to the question, will this affect the devices EQE measurements 

and should we consider plotting them with respect to energy? While EQE measurements 

are typically carried out using a xenon-arc lamp with a series of filters and gratings within 

the monochromator, for the purposes of this example, we will assume the incident light is 

the AM1.5G solar spectrum. For the two cases considered, incident flux per unit 

wavelength and incident flux per unit energy, the densities are shown below. The data on 

the left is provided by NREL while the data on the right was calculated using the conversion 

factor in equation (11). 
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Fig. B-4 Photon density for the AM1.5G solar spectrum plotted per unit wavelength (left) 

and per unit energy (right). 

Using the measured EQE shown below in Fig. B-5, we know that the collected carrier 

density will be the AM1.5G spectrum weighted against this EQE—shown in red in the 

right figure. The ratio between these two curves is thus the EQE. 

  
Fig. B-5 Measured EQE of CdTe/MgCdTe double-heterostructure solar cell (left) and the 

AM1.5G solar spectrum plotted alongside the carrier density collected by the solar cell 

(right). 

This carrier density per unit wavelength can be converted using equation (11) above to 

give a collected carrier density per unit energy. Both curves are shown below. Integrating 
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both yields a short-circuit current density (Jsc) of 22.05 mA/cm2, demonstrating that the 

overall current has remained unchanged regardless of the change in shape.  

  
Fig. B-6 Collected carrier density from a CdTe/MgCdTe solar cell plotted per unit 

wavelength (left) and per unit energy (right). 

Working backwards once more, and dividing the collected carrier density per unit 

energy by the AM1.5G solar spectrum per unit energy yields the ratio of collected carriers 

to incident carriers, the EQE.  

  
Fig. B-7 AM1.5G photon density and collected carrier density plotted per unit energy (left) 

and the EQE calculated as the ratio of these two curves (right). 
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In both cases, we have an incident spectrum either per unit wavelength or per unit 

energy, as well as a collected carrier density in either per unit wavelength or per unit 

energy. Because the current density in these two cases must be equivalent and the solar 

spectrum must also be equivalent, the ratio will also be equivalent at all points. This means 

that the EQE curve’s feature positions will be independent of the underlying measurements 

dependence on either wavelength or energy. Even though the visual appearance will change 

as the x-axis is inverted and stretched when moving to energy, the peak position will not 

change; 655 nm in this case. This same conclusion can be reached when examining 

equation (12). 

 𝐸𝑄𝐸 =
𝑁𝑐𝑜𝑙(𝜆)

𝑁𝑠𝑢𝑛(𝜆)
=

𝑁𝑐𝑜𝑙 (
ℎ𝑐
𝜆
) ∙ (

ℎ𝑐
𝐸2)

𝑁𝑠𝑢𝑛 (
ℎ𝑐
𝜆
) ∙ (

ℎ𝑐
𝐸2)

=
𝑁𝑐𝑜𝑙(𝐸)

𝑁𝑠𝑢𝑛(𝐸)
 (12) 

where Ncol is the carrier density collected by the solar cell under investigation and Nsun is 

the photon density incident on the surface. The right-hand side of the equation converts 

wavelength to energy and uses the Jacobian transformation on both densities. Because the 

EQE is a ratio of these two densities, regardless of whether we plot it as a function of 

wavelength or energy, the Jacobian transformation will cancel and we are left with the 

same EQE; although the appearance will of course differ as the scale is changed.  

However, this all hinges on the ability to maintain relatively narrow data intervals when 

transitioning between plots per unit wavelength and per unit energy. Because of the uneven 

distribution of data points after the conversion, energy/wavelength dependent error is 

introduced as the intervals are elongated in the energy space. For broad flat spectra like are 

commonly seen with EQE measurements, this error is not necessarily detrimental; 

especially considering that the range is typically confined to the visible portion of the 
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spectrum. For peaks with a narrow linewidth this effect may become an issue, but for these 

CdTe devices it is not considered to be a problem.   


