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ABSTRACT

This dissertation consists of three chapters. Chapter one examines whether spend-

ing different amount of time outdoors on weekends and weekdays change the estimates

of the impact of ground level ozone on the incidents of respiratory disease and asthma

in California. This chapter contributes to the literature that focuses on the short term

effect of air pollution on public health. Using the American Time Use Survey data, I

find that on average people spend 50 min outdoors on weekends more than weekdays.

Incorporating this difference in estimating the health impact of ozone changes the

results significantly, especially for adults 20-64. The specification also allows me to

find a precise estimate for each day of the week.

In chapter two I estimate the effect of exposure to ozone on skills of children aged

3 to 15 years. I use the Letter-Word (LW) test scores from the Panel Study of Income

Dynamics (PSID) as a measure of children’s skills. Due to omitted variable bias, OLS

estimate of ozone effect on children’s skill is positive and imprecisely estimated. To

mitigate the omitted variable bias I use the instrumental variables approach. This

method accounts for endogeneity of pollution. The effect of ozone on children’s skills

becomes negative but only marginally significant.

In chapter three, I estimate a production function of skill formation for children 3

to 15 years old and simultaneously account for their childhood exposure to ozone. I

find that a one standard deviation increase in ozone leads to a 0.07 standard deviation

reduction in the LW test scores on average. The LW test score of 3 year olds drops

by 0.10 standard deviation in response to one standard deviation increase in pollu-

tion levels, while for the 14 year olds this effect is only half as much, 0.04 standard

deviation. I also find that households exhibit compensatory behavior and mitigate

the negative effect of pollution by investing more on their children. I quantitatively

demonstrate that certain policies, such as a reduction in pollution levels or income
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transfers to families, can remediate the negative impact of childhood exposure to

pollution on adult outcomes.
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Chapter 1

ACCOUNTING FOR EXPOSURE TIME IN ESTIMATING THE EFFECT OF

OZONE ON RESPIRATORY DISEASE AND ASTHMA

1.1 Introduction

People spend different amount of time outdoors based on their preferences and

time constraints at different periods of time. Amount of time spent outdoors impacts

the degree of exposure to pollution and, therefore, leads to a different health outcome.

Quasi-experimental studies that examine the health impact of pollution usually do

not have access to the information about individual’s outdoor time. So controlling

for the outdoor time is one of the challenges faced by the researchers who are trying

to estimate the health impact of pollution.

This chapter test the hypothesis about a systematic difference between times

that people spend outdoors on different days of the week. The intuition behind the

hypothesis is that people have different time constraints on weekends as compared

to weekdays, so they would spend different amount of time outdoors on these days.

This outdoor time difference leads to a different exposure to pollution and, therefore,

different health impact of pollution on weekends and weekdays.

In order to examine the effect of this difference on the estimate of the health

impact of pollution, I set up the analysis in this chapter in two stages. In the first

stage I develop a two constraints model to explain individuals’ decision of outdoor

leisure time on weekends and weekdays. In order to test the results of this model with

observational data, I test the difference between individuals’ weekend and weekday

outdoor time using the American Time Use Survey (ATUS) data.

1



In the second stage I use a nonpublic version of daily hospitalization data in

California that is accessible from the Office of Statewide Health Planning and

Development (OSHPD). For any given zip code, I obtain the daily hospitalization

rates from the OSHPD dataset; the pollution and meteorological data comes from

the California Air Resource Board and the National Climatic Data Center,

respectively. Using the variation of pollution and hospital admissions over time and

zip codes, I can estimate the health impact of ozone. I examine the effect of

incorporating the outdoor time difference in estimating the health impact of ozone.

In order to estimate the health impact of ozone I use a conventional model that has

been employed in the literature and add the interaction of the ozone level and the

weekend fixed effect. The interaction term allows me to control for different

exposure time between weekends and weekdays in order to obtain a better estimate

of the biological effect of ozone.

The results of the first stage indicate that people spend significantly more time

outdoors on weekends than weekdays. The magnitude of this difference on average

is around 50 minutes that is large as compare to the mean, 80 minutes, and median,

45 minutes, outdoor time in the dataset. I call this difference the Weekend Effect

throughout the study. 1

The second set of results confirms that incorporating the weekend effect

significantly changes the estimate of the health impact of ozone and the estimation

gives a precise estimate for each day of the week. This change is consistent with the

intuition and more noticeable for adults ages 20-64.

The weekend effect is interesting in own right. First, it shows how individuals’

time constraints and preferences affect their time allocation among different types of

1It is different than the weekend ozone effect that illustrate the systematic difference between
ozone pollution levels on weekends as compared to weekdays in some region in California.
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activities. Second, it introduces a method to partially correct the measurement error

regarding pollution measure. This is an important issue in estimating the health

impact of any pollution when the exposure to pollution is influenced by time spent

outdoors.

1.2 Prior Literature

An ultimate goal of many public regulations regarding emissions and pollution

is the enhancement of public health. To evaluate these policies we need to estimate

cost and benefits of the policies, but there are some difficulties associated with this

estimation. Not only it’s hard to map the regulations into improvement in emissions,

pollution, and eventually public health, but it is also difficult to translate health

improvement into a dollar valuation. For example, it is not easy to estimate how

much of the improvement in air quality and public health is because of the Clean Air

Act (CAA). Even if we have a fairly credible estimate of this relationship, it is difficult

to get a dollar valuation of improvement in health outcome. The health outcomes

include birth weight, premature births, asthma hospitalizations, heart attack, change

in public utility, saved lives, and so forth.

Our understanding and knowledge of health impacts of air pollution come from

health science and epidemiological research. In the health science, toxicology,

researchers estimate the impact of a toxin on health outcome of a group of humans

or animals in a controlled setting. For instance, a group of people is exposed to a

pollutant and their pulmonary function is recorded to estimate the dose-response of

human to ozone pollution. There are some shortcomings of using this method in

policy making context. Ethical concerns over using human subjects in this type of

research is one of the issues. At the same time, if the experiment is conducted on

animals, then using the research results for human population is problematic. Even
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if the subjects are humans, generalizing the results to vulnerable groups such as

children and elderly that are not usually in the treatment group is not clear.

Based on studies in toxicological literature, the dose-response function is not linear

and there are disproportionately greater responses from higher level of pollution,

Lefohn et al. (2010). 2 It is also not possible to simulate the real world pollution

level and its variation, e.g. it is harmful to expose human subjects to high level of

pollution in the lab. Therefore, it is not straightforward to map the results from the

lab setting to the real world.

However, epidemiological research explains the relationship between pollution

and public health using real world observations. What is missing from this

literature is human behavior and responses. The main difference between economic

and epidemiological models of environmental health, is that the economic models

consider economic agent’s behavior and they typically do quasi-experimental

analysis. People based on their preferences, information, and constraints decide how

much to work, how much to spend on consumption goods, where to live, how to

avoid negative externalities such as pollution, and how much to spend on medical

care to prevent disease or treat their health problems. In the economic literature,

researchers’ aim is to account for any of these behaviors that affect the association

between pollution and health outcomes in order to estimate the health impact of

pollution.

2Dose-response can be viewed as a damage function that maps individual’s exposure to a
particular contamination to a health problem, Zivina and Neidell (2013). To estimate the health
impact of pollution it is important to choose an appropriate dose-response function. Pollutants may
have a temporary and contemporaneous impact, but also long lasting impacts. The damage function
can also differ based on age and health status of a person.
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1.2.1 Health Impact of Pollution

In order to study the health impact of a pollutant using quasi-experimental

analysis, the ideal data would have: an accurate measurement of health outcome,

exact measure of contamination level that an individual has contact with, the

duration of an individual’s exposure to the contamination, individual’s

characteristics, actions that an individual has taken to avoid the pollution impacts,

and other environmental factors that affect individual’s health. 3 Availability of

each of this information can affect the estimate of the health impact of pollution or

the interpretation of the estimate. There are five sources of bias in the estimate of

the health impact of pollution: (i) exposure measure; (ii) avoidance behavior; (iii)

assigning pollution to individuals; (iv) residential sorting; and (v) environmental

confounding. In order to clarify the effect of each of these sources, assume the

following relationship between the health outcomes and pollution:

Healthi,t = αxi,t + νi,t, (1.1)

where

νi,t = Ai,t + Ii,t + f(Wi,t) + g(t) + εi,t

In equation (1.1), i and t represent individual and time. Health is the measure of

the health outcomes and x is the pollution level that an individual has been exposed.

The error term, ν, includes avoidance behavior in response to pollution in order to

avert its negative impacts, A, individuals physical and socioeconomic characteristics,

I, environmental conditions such as other pollutants and weather conditions, f(W ),

seasonal effects, g(t), and random factors, εi,t. Equation (1.1) is a comprehensive

3Contamination is the amount of a toxic materials in a particular location and time. These
materials can be in the air, water, or soil. E.g. carbon monoxide, ozone, lead, particulate matter,
and sulfur monoxide.

5



model that nests all the models that been used in the literature in order to estimate

the health impacts of a pollutant of interest.

We are interested in getting an unbiased estimate of α as the biological impact of

pollution on health outcome. If we use an imprecise measure of pollution, or if some

of the determinants of ν are correlated with both of the health and pollution and we

do not control for them, then our estimate of α will be biased. In the following five

subsections I explain how each of these mechanism affect the estimate of the biological

health impact of pollution.

Exposure Measure

One of the main limitations of the studies in this literature, is lack of data on actual

exposure of individuals to a pollutant, pollution in equation (1.1). Therefore, in

order to estimate the health impact of pollution, studies usually use pollution level

of individuals’ residence as a proxy for actual pollution. For example, assume that

pollution level on weekends is high and individuals spend more time outdoors, but

both of pollution levels and outdoor time on weekdays is low. Therefore, by using

residential pollution level as pollution in equation (1.1) without any correction for

weekends and weekdays, we will overestimate the health impact of pollution. In other

words, using the residential pollution level for variable pollution in equation (1.1)

without a proper correction leads to the measurement error in pollution estimate.

Since the specification is a linear model that is widely used in the literature, this

measurement error gives an inconsistent estimate of the biological health impact of

pollution, Cameron and Trivedi (2005). So, the closer we get to the exposure measure,

the better estimate we would get.

In this study, I want to partially correct for the measurement error of pollution

in equation (1.1). Using the American Time Use Survey (ATUS) data, we can see
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a significant difference between the times that people spend outdoors on weekends

as compared to weekdays. This outdoor time difference comes from an individual’s

characteristics and in general his life style, and not from his temporarily decision that

is correlated with pollution level as a defensive response to that. 4 This difference

leads to a different exposure to pollution on weekends and weekdays. So the identical

pollution level on weekends and weekdays can lead to a different health outcome on

these days. In order to account for different health impact of pollution on weekends

and weekdays, in addition to using residential pollution level as pollution in equation

(1.1), I also include the interaction of weekend fixed effect with the pollution level

in the estimation equation. This method helps me to get a different values of α for

weekends and weekdays.

To the best of my knowledge, this is the first study that uses ATUS to correct for

the measurement error of pollution in order to estimate the health impact of ozone.

Assigning Pollution to Individuals

Second source of measurement error of pollution comes from the method of assigning

the pollution level to an individual. Usually the pollution level of an individual’s

residence is considered as pollution that the individual has been exposed to. For

instance, Currie et al. (2009) uses exact address of an individual to assign more

accurate pollution level and some use a broader area such as zip code, Source Receptor

Area (SRA) in Southern California, or county, Moretti and Neidell (2009), Neidell

and Kinney (2010). There is a trade-off between choosing a small region versus a

broader region to assign pollution level to an individual. Exact residence address

gives a better estimate of the potential pollution level that an individual could be

4I will extend the discussion about the determinants of outdoor times on weekends and weekdays
in subsection The Weekend Effect.
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exposed, but loses some information if an individual travel far from his residence.

However, the general preference in the literature is to use the exact address if this

information is available. In this study I use the average pollution level within 20miles

radius of an individual’s residence zip code centroid. 5 This radius provides a good

average measure of potential pollution for both large and small zip codes. Large zip

codes are usually rural areas and people do not commute very far; and also small ones

are more densely populated areas (e.g. Los Angeles) and people may travel between

zip codes to work or for shopping, and this radius encircles multiple zip codes.

Avoidance Behavior

Avoidance behavior is defined as a precautionary action that is taken by individuals to

avoid the harmful impact of pollution. The avoidance behavior can be considered as

spending less time outdoors, or expenditure on equipment that protects an individual

from exposing to pollution (e.g. air filter), or any other action or expenditure that

avert the negative impact of pollution. This behavior is represented by variable A in

equation (1.1). The idea is that people respond accordingly to variation of pollution

level. 6 So variable A in equation (1.1) is correlated with pollution, and it is

also correlated with health through averting the negative health impact of pollution.

Therefore, not controlling for A leads to a biased estimate of α due to omitted variable.

Using the American Time Use Survey data at national level, Back et al. (2013)

show that after controlling for climatic and geographical factors, children and old

people tend to spend less time outdoors as the air quality reaches to unhealthy level.

However, the authors illustrate that this behavior is not mainly driven by EPA’s Air

5This method has also been employed in some studies that estimate the health impact of such
pollutants. See, for example: Currie and Neidell (2005), Neidell (2004), and Knittel et al. (2011).

6This behavior is more prevalent among families that have children, older individuals, or someone
who is vulnerable to pollution. When the pollution level is high, these families try to stay at home
or take medicine, or take any necessary action.
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Quality Index (AQI). Although this result does not preclude the presence of avoidance

behavior of people in response to air pollution level. Neidell (2009) show that people

respond to ozone forecast and smog alert that are provided by local authorities. The

authors find that people decrease attendance at two major outdoor facilities 7 within

the boundaries of the South Coast Air Quality Management District (SCAQMD). 8

In addition to spending less time outdoors in response to pollution level, people may

take other precautionary actions to avert the harmful impacts of pollution that has

not been observed in these studies due to lack of data on those actions.

Recent studies that control for avoidance behavior in two different ways: Neidell

(2009), Neidell and Kinney (2010), and Neidell (2004) including information about

pollution that is provided to public in the estimation model, and Moretti and

Neidell (2009), Knittel et al. (2011), and Schlenker and Walker (2016) using an

instrumental variable for the pollution. The first method is based on the fact that

people respond to the information about the pollution that is self-observable (smog)

or is provided by public agencies (e.g. smog alert, ozone forecast). When people

receive this information, they adjust their behavior accordingly to avert harmful

impacts of pollution, Zivin and Neidell (2009). Neidell (2004) was one of the first

attempts to understand the association between air pollution and childhood asthma.

Because of the data limitation he uses aggregate monthly data to estimate the

impact of some of the air pollutants on childhood asthma. 9 Since different age

groups of kids have potentially various behavioral (accomplished by their family)

and biological responses to pollution, he divides the kids younger than 18 into 5

7The Los Angeles Zoo and Botanical Gardens, and Griffith Park Observatory.

8Another study by Zivina and Neidell (2014) find that people change their time allocation in
response to temperature (this study does not examine the effect of pollution). They find large
reduction in labor supply in industries that are more exposed to climate as temperature increases
beyond 85 degree, and reduction in outdoor leisure activities for unemployed individuals

9O3, CO, NO2, and PM10.
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age-groups. 10 By dividing into the age groups and also including smog alert in

his estimation model, he controls for avoidance behavior. 11 Few years later,

Neidell (2009) and Neidell and Kinney (2010) use similar method to embed the

information on pollution that is provided to public into the estimate of the health

impact of pollution. The main differences with the previous study are: interacting

the smog alert and ozone forecast with the pollution level, using more detailed daily

data with better control for environmental confounding, and focusing on smaller

study region (Southern California) that has better coverage of pollution information

and is populated area with similar regional geography. 12 Before including the

information variables, smog alert and ozone forecast, in the estimation, Neidell

(2009) also shows that this information actually decrease attendance at two major

outdoor facilities within the boundaries of the SCAQMD. In all these studies

controlling for avoidance behavior does matter, and dropping this information

underestimates the health impact of pollution. For example, Neidell (2009) and

Neidell and Kinney (2010) show that including avoidance behavior in the estimation

increases the estimate of the health impact of ozone by a factor of 1.5-2.5, and

20%-130% among different age groups, respectively.

In the second approach, studies use instrumental variable to control for

measurement error that comes from avoidance behavior. For example, Moretti and

Neidell (2009) use daily variation of boat traffic in two major ports of Los Angeles

as an instrument for ozone pollution. The idea is that the daily variation of boat

traffic is exogenous and the boat traffic neither is included in ozone forecast nor is

100-1, 1-3, 3-6, 6-12, and 12-18 years old.

11Not interacting the smog alert with the pollution level, but including it as an explanatory
variable.

12Weather conditions such as maximum/minimum temperature, sun cover, humidity, wind speed,
and also carbon monoxide and nitrogen dioxide.
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reported by media, and also it is not observable by people to impact their daily

behavioral responses. The authors show that boat traffic has major impact on ozone

level (relevancy) , and is orthogonal to ozone forecast and some weather conditions

(validity). 13 The idea of Schlenker and Walker (2016) and Knittel et al. (2011) is

the same, only they use daily airport runway congestion and automobile congestion

as an instrumental variable, respectively. All these studies use two stage least square

(2SLS) method for their estimation. They all show that controlling for avoidance

behavior using instrumental variable significantly changes the results. For example,

Moretti and Neidell (2009) show that the estimate of the health impact of ozone

using instrumental variable is 4 times greater than the standard OLS estimation.

Residential Sorting

The pollution levels are not randomly assigned to different residential locations;

rather, people sort among various communities. For example, rich families usually

live in the areas with better air quality, and they even spend more money on their

health care. The opposite is true for poor people who live in more polluted areas. If

we do not control for these differences, our estimate of the health impact of

pollution, α, will be biased upward. In other words, there are some characteristics of

individuals that are correlated with pollution and also have direct effect on Health

(e.g. income level) in equation (1.1). If we do not include them in equation (1.1) as

variable I, the estimation will suffer from omitted variable bias. 14

One way to overcome this issue is to collect detailed information on individual’s

characteristics in order to control for sorting issue, Currie and Neidell (2005) and

Currie et al. (2009). These studies estimate the impact of pollution on infants’ health.

13Although this impact decrease with the distance from the ports.

14Residential characteristics can also be seen as an individual’s characteristics, while it is the same
for everyone who lives in the same residence.
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They have access to a rich data that includes information on infant’s health status at

birth, and information about the mother’s characteristics such as race, education, and

marital status. Including this information as variable I in equation (1.1) and other

appropriate controls such as the mother’s and zip code-month fixed effects can control

for factors that are directly correlated with child’s health and also are correlated with

pollution level through the residence decision of the mother. Therefore, including

this information solves the residential sorting issue due to omitted variable. The

authors do not compare their results with the estimation without controlling for the

individuals’ characteristics. However, their results suggest a strong negative impact

of carbon monoxide on infant health. Currie et al. (2009) also show that this negative

impact is larger for older and smoking mothers.

If this kind of rich data is not available, another way of overcoming sorting issue

is to use a proper instrumental variable for pollution (a conventional way in order to

overcome the omitted variable bias). Ransom and Pope (1995) use the pollution levels

change due to closing for a year and re-opening of steel mill in Utah Valley, where

the steel mill is the major source of pollution. This change in pollution level due to

closing and re-opening of steel mill is fairly exogenous, and residential sorting is a

household’s long run decision. So by using the instrumental variable for the openness

of the steel mill, they should not worry about residential sorting issue. They use

neighboring Cache Valley community as a control group that is not affected by the

steel mill pollution because of the geographical characteristics. Cache valley is very

similar to Utah Valley in many aspects such as demographic, weather, and housing

characteristics and the only difference between them is their pollution levels. The
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authors find a positive and statistically significant impact of steel mill operation on

respiratory hospital admission. 15

In this study, using daily data and also zip code fixed effect, I partially control

for the residential sorting issue. In the estimation, I use the daily variation in ozone

pollution to explain the daily hospital admission rates, and unobserved factors that

directly impact an individual’s health and do not vary in daily basis, Moretti and

Neidell (2009). At the same time, since residents within zip codes are fairly

homogeneous in some dimensions, by including zip code fixed effect I can control for

the unobserved characteristics of individuals.

Environmental Confounding

The last source of endogeneity is environmental confounding. Usually pollutants

have seasonal trend, and also are correlated with some other pollutants and weather

conditions. For example, ozone is correlated with carbon monoxide, nitrogen

dioxide, sun light, and temperature and usually between late spring and early fall

has the highest level of the year. On the other hand, the other pollutants and

weather conditions impact environmental quality and therefore the public health,

Deschnes and Greenstone (2011), and also health outcomes may have some seasonal

pattern, Currie et al. (2009). These factors are f(W ) and g(t) in equation (1.1). So

dropping these variables from the estimation of the health impact of ozone leads to

a biased estimate due to omitted variable issue. Fortunately, data on the

environmental information is available with very high frequency. So, almost all the

15In order to deal with the sorting issue Currie and Walker (2009) use shock in pollution level due
to introducing of electronic toll collection (E-ZPass). They use difference-in-differences estimation for
the period of before and after the introduction of the policy. They show that the policy significantly
improves the infants’ health. Since the time period is short, this improvement cannot be explained by
residential characteristics changes. However, both Ransom and Pope (1995) and Currie and Walker
(2009) evaluate the health impact of the shocks, but do not provide the estimate of the biological
health impact of pollution that is the focus of my study.

13



studies in the literature, as well as this study, control for the environmental

conditions that are correlated with the pollutant of interest. To control for seasonal

trend studies usually include fixed effects of month, quarter of the year, year, the

weeks since the child’s birth dummy in infant health studies, spline function of the

proper date depending on each case, or (and) their interactions. I include day of the

week and month-year fixed effects and I’ll explain them more in the estimating

strategy section.

In sum, first two sources of biases are due to measurement error of pollution, and

the last three ones are because of omitted variables of A, I, f(W ), and g(t) in equation

(1.1). In this study, I want to partially correct the measurement error by adding the

interaction of weekend fixed effect with the pollution level in the estimation equation.

I also use a reasonable radius around an individual’s residence to assign the pollution

level to an individual to mitigate the second source of bias. In the current version of

the study I do not control for the avoidance behavior. By using daily data and zip

code fixed effect I partially control for the residential sorting issue. Finally, I account

for the environmental confounding issue by controlling for some other pollutants,

weather conditions that are correlated with ozone, and time fixed effects.

1.2.2 Outdoor Leisure Choice

In order to correct the measurement error of pollution in equation (1.1) as I

explained in previous sections, I need to show the difference between outdoor leisure

time on weekends and weekdays. This subsection and the next section are the

explanation of the literature on recreation choice and my conceptual model of

explaining outdoor leisure choice on weekends and weekdays. This will be the

theoretical base for the empirical section in order to show the difference between

outdoor leisure time on weekends and weekdays.
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Recreation is a consumption good requiring both a money price and time. The

role of time for consumption as an influence to individual’s demand for market goods

has been emphasized since Becker’s classic paper, Becker (1965).

One way to incorporate a role for time, is to introduce a time constraint in an

individual’s utility maximization problem. Thus, an individual faces both the budget

constraints, in monetary terms and a time budget constraint that he needs to allocate

in order to consume market goods. This issue is more important when we consider

time intensive goods, such as going online or visiting a national park. Goolsbee and

Klenow (2006) utilize this framework in order to estimate the consumer surplus from

using internet that is a time intensive good. They develop a model that assumes an

individual must allocate both monetary and time resources in deciding a consumption

pattern. They obtain a larger value for consumer surplus than one can calculate using

only expenditure of individuals on internet service. Zivina and Neidell (2014) use a

similar framework to estimate the impact of climate change on individuals’ time

allocation between labor, outdoor leisure, and indoor leisure. These two studies are

different in a sense that they focus on different time intensive goods. But, much

importantly their models are similar such that an individual jointly decides on time

allocation among labor and the time intensive goods, based on their time cost and

their contribution to his utility function.

In real life, most people do not have the opportunity to freely choose their time

allocation among labor and leisure. Shaikh and Larson (2003) and Larson and

Shaikh (2004) use a two constraints’ model (money and time constraints) to

estimate the welfare measures for change in recreation cost and environmental

quality, and the marginal value of time, respectively. The critical assumption they

have is that individuals’ labor decision is not jointly chosen with leisure time, rather

it is a long-term decision. So when individuals want to allocate their time on
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recreation, the time budget is given. This constraint helps them to use individuals’

decision within given time constraint to estimate the marginal value of time.

Palmquist et al. (2010) and also most general model of Phaneuf (2011) use two

constraints’ model to demonstrate an individual’s utility maximization problem, when

the labor decision has been already made by an individual. The argument is that

recreation activities need discrete blocks of time, and transferring time between blocks

of time endowment is costly. Although, individuals’ labor time is not very flexible, yet

they are flexible in choosing among leisure activities and time saving products (hiring

someone to mow lawns). So an individual decides how much to buy the time saving

good from the market and how much to produce himself by spending his own time,

i.e. exchange the money with his free time that can be allocated to leisure activities.

So using revealed and stated preferences about these time saving activities they are

able to estimate the shadow value of time.

In the current study, similar to the recent studies I use the two constraints’ model,

but I focus on an individual’s weekly problem and distinguishing between weekends

and weekdays due to time flexibility and constraints. An individual has already

decided about his weekly labor time and he allocates his free time on different leisure

activities. An individual solves his weekly problem such that he faces different time

constraints on weekends and weekdays and it is costly to transfer time between these

days. I also distinguish between outdoor and indoor leisure. As Palmquist et al. (2010)

argue, leisure activities need discrete blocks of time and this can vary among activities,

so people tend to move those activities that need more time to days with larger

available time. Usually individuals’ time is more flexible and they have more free time

on weekends than on weekdays, and outdoor leisure are usually more time consuming

than indoor leisure (playing golf, or basketball versus watching TV series). So we

expect to see that people move their time consuming outdoor leisure to weekends
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as compare to weekdays. The next section is detailed explanation of the conceptual

model.

1.3 Conceptual Framework of Outdoor Leisure Choice

In my model of individual behavior, and individual’s utility depends on

consumption good, X, outdoor leisure, lo, and indoor leisure li. The individual

consume these goods in period 1, weekday, and period 2, weekend. The labor hours

is predetermined and exogenous for the two periods. There is money price for the

consumption good and time price for both the leisure goods. The individual solve

the following maximization problem:

V (I, p1, q1, p2, q2, T1, T2) = max
c,li1,lo1,li2,lo2

U(c, li1, lo1, li2, lo2) (1.2)

subject to

c = wL = I

p1li1 + q1lo1 = T1

p2li2 + q2lo2 = T2

where w,L, and I are an individual’s wage rate, labor time, and income,

respectively. Tt is the available free time on period t. I assume a general case such

that the relative time price of outdoor and indoor leisure can be different and this

can vary between periods too. This means that an individual in order to watch TV

or work out, spends different time between weekends and weekdays. The time price

difference between indoor and outdoor leisure comes from the type of the indoor

and outdoor activities. I also suppress the consumption good on two periods for

notational convenience.
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Maximizing the utility function subject to money and time constraints in

equation (3.4) gives the solution for an individual’s problem and indirect utility

function V (I, p1, q1, p2, q2, T1, T2). The interiority of solution and using the envelope

theorem leads to:

VTt = µt(I, p1, q1, p2, q2, T1, T2) (1.3)

VI = λ(I, p1, q1, p2, q2, T1, T2)

ρt =
VTt
VI

=
µt
λ

lit = −Vpt
VTt

lot = −Vqt
VTt

t = 1, 2

Where µt, λ, and ρt represent Lagrange multiplier of time constraint of period t,

money budget constraint, and opportunity cost of time at period t, respectively. The

subscript of indirect utility V means the derivative of V with respect to that subscript.

The opportunity cost of time is directly related to shadow value of time and it varies

between period 1 and 2, but it is not straightforward to see how the shadow value of

time is related to the parameters of the problem. This difficulty is also true about

the decision variables of leisure time that are given by Roy’s identity in fourth and

fifth expressions of the equation (1.3). In order to discuss the relationship between

parameters and the shadow values and the decision variables I consider the following

utility function:

U(c, li1, lo1, li2, lo2) = f(X) + θlαi1l
β
i2 + (1− θ)lαo1l

β
o2 (1.4)

The form of utility function means that indoor and outdoor leisure can be

substitute, and the parameter of θ define the importance of indoor leisure over

outdoor leisure. The outdoor (indoor) leisure on weekends is a necessary good for

outdoor (indoor) leisure on weekdays, and both are separable from consumption
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good. Assuming the existence of interior solution, and using the first order

conditions leads to:

li1 = T1/(p1 + (
p2

q2

)
−β

α+β−1p
β−1

α+β−1

1 q
α

α+β−1

1 (
1− θ
θ

)
−1

α+β−1 ) (1.5)

lo1 = T1/(q1 + (
p2

q2

)
β

α+β−1p
α

α+β−1

1 q
β−1

α+β−1

1 (
1− θ
θ

)
1

α+β−1 )

By the symmetry, the similar expression can be derived for the leisure time of

period 2. After imposing a few standard assumptions of 0 < αβ, 0 < α + β < 1

, and 0 < θ < 1 we can see from equation (1.5) that the outdoor (indoor) leisure

is negatively related to its own time price, i.e. ∂li1
∂p1

< 0 and ∂lo1
∂q1

< 0 and positively

related to the available time endowment, ∂li1
∂T1

> 0 and ∂lo1
∂T1

> 0, and their importance

in the utility function, i.e. ∂li1
∂θ

> 0 and ∂lo1
∂(1−θ) > 0. These results are very intuitive

and as we expected. Using first order conditions the shadow value of time for period

1 is presented in the following equation (it is similar for the period 2):

µ1 =
θα

p1

lα−1
i1 lβi2 (1.6)

This equation together with the equation (1.5) give the relationship between the

shadow value of time and the parameters. The shadow value of time at period 1

decreases as the scarcity of time goes away, i.e. ∂µ1
∂T1

= (α − 1)constant. So if an

individual has less free time on weekdays than on weekends, then an individual’s

marginal value of extra time on weekdays will be higher than on weekends.

In the empirical part of this study, I analyze the outdoor leisure time difference

between weekends and weekdays. Later I will explain the estimating strategy by

detail, but here I want to explain the relationship between the theoretical and the

empirical models. From equation (1.5), I can drive the expression for lo2 − lo1:
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(1.7)

lo2 − lo1 = h(α, β, θ, T1, T2, p1, q1, p2, q2)

Three parameters of α, β, and θ are taste characteristics of an individual that

affect the outdoor leisure choice. In the empirical section I control for these

characteristics by age, sex, marital status, residential metropolitan status, family

income, and household size. I also control for the labor force status (employed,

unemployed) and weekly labor hours that affect time constraint T1 and T2. Marital

status, residential metropolitan status, and household size can affect the time

constraint too. If we accept the arguments of Palmquist et al. (2010), then we have

a framework that maintains people can trade time for money by outsourcing some

time consuming home maintenance tasks. In this context, wealthy people most

likely to ”buy” time by time saving products. So income level can also affect the

time constraint. Finally, based on blocks of time needed to do every outdoor

activity, an individual decides to do the activity on weekends or weekdays, and this

comes from the time price of activities p1, q1, p2, and q2.

1.4 Data

1.4.1 American Time Use Survey Data

I obtain the information on individuals’ activities from the American Time Use

Survey (ATUS) data for the years 2005-2012. The ATUS is an annual survey of how

individuals age 15 and over spend their time on various activities such as leisure,

working, household activities, childcare, and sport activities. They ask subset of

people who are chosen from Current Population Survey (CPS) to report their diary

of their activities in one day (one person only for a single day). There is detailed
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information on what activity individuals did, where they did, when they did, who

was with them during each activity. I also merge the ATUS with the CPS data to

get more demographic information about individuals that is not available from the

ATUS data.

To calculate an individual’s outdoor leisure time I choose activities based on the

nature of activities and the location that is performed. The list of activities that I

choose as outdoor activities are provided in Table 1.1. Some of the activities such

as hiking, hunting, or golfing are clearly outdoor activities. If an activity can be

performed either indoors or outdoors, such as biking or running, I choose those cases

that has been performed outdoors.

Table 1.4 provides summary statistics of the outdoor leisure time and the

explanatory variables that are classified based on matching criteria. In Table 1.4

and all the following tables, units of outdoor time is minutes per day. The reason

for presenting summary statistics of these variables is that in the estimation part, I

estimate the effect of two latter variables on outdoor leisure. Table 1.4 yields some

interesting insights. Older respondents spend less time outdoors. The family size of

respondents who are younger than 45 years of age is very similar. But family size of

people older than 45 are smaller than the other age groups, and this can be because

their children do not live with them anymore. We can also see that labor force are

mainly people between 26-64 ages who have the highest working time. If I drop

individuals between 20-25 from the first age group and 65-70 from the last group,

this difference in labor hours would be more precise. Another observation is that

males spend more time outdoors and work more in comparison to females. The

same is true for married people as compare to single people. 16 We do not see that

16In this study I considered all the people that are not currently married as single (they can be
divorced, separated, never married, or widowed).
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much difference between the rest of the categories, but full/part time students. Full

time students spend more time outdoors and work less, and they live in larger

families as compare to part time students. These are just observations from the raw

data without controlling for other determinants that can explain these differences.

Table 1.6 reports summary statistics for different outdoor activities. I drop those

activities from Table 1.1 that has less than 30 observations, and I ordered them in

Table 1.6 based on their average time. As we can see, there is large diversity between

activities based on their mean and median values, where the mean time varies from

15-245 and median time from 5-197 minutes. Order of activities based on their

median and interquartile range in some cases are different than their order based on

mean, but in most cases is similar. The columns 7 and 8 provide mean value of the

activities on weekdays and weekends, respectively. The last column of Table 1.6 gives

the percentage of the number of observation that has been observed on weekends.

The Figure 1.1 draws the relationship between percentages of the observation that

has been occurred on weekends versus activities, while the activities are ordered based

on their mean values. Figure 1.1 shows that activities with greater mean time tend

to be done mostly on weekends. The percentage increases from 40% for less time

consuming activities to 80% for more time consuming activities. 17 For example

people tend to go hunting or boating on weekends that take few hours, but they can

go running for 40 minutes whenever they want. Instead of mean values of activities, I

use median and interquartile range and the results are similar. Figures 1.11 and 1.12

present these result.

17Total number of observation in the data set is almost evenly distributed between weekends and
weekdays.
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1.4.2 Health Outcome

The data on health outcomes is a nonpublic version of the hospitalization data

that is accessible from the Office of Statewide Health Planning and Development

(OSHPD) for the years 2004-2011. The data includes all the records of individuals

who are discharged from hospitals in California. In the nonpublic version of the data,

there is detailed information on a patient’s exact date of admission, residential zip

code, age, sex, major diagnostic category, and the chief cause of the admission. I

obtain the respiratory diseases and the asthma admissions as a measure of health

outcomes from the data which is classified based on the International Classification

of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). 18 People usually

visit the hospital if the impact of pollution is very severe. Therefore, the hospital

admission on respiratory disease as a measure of health outcome underestimates the

health impact of ozone (even if I include other health problem such as heart attack

in the number of hospitalization).

Since the health impact of ozone differs among age groups, to calculate the

dependent variable I divide the dataset into three age groups: 5-19, 20-64, and 64+.

I drop the children younger than five, because it is difficult to clearly diagnose

asthma at this age, Neidell (2009). Table 1.8 gives the summary on the respiratory

disease and asthma hospitalization and also on zip code population that are

separated by age category. The values in the table are the daily average

hospitalization across zip codes for the whole data set, i.e. number of hospitalization

per day, per zip code.

18The OSHPD health data also includes the Major Diagnostic Categories (MDCs) of: 1.
Circulatory system 2. Ear, nose, mouth, throat 3. Nervous system 4. Skin, subcutaneous tissues
and breast diseases and disorders 5. Newborn and neonate conditions began in perinatal period 6.
Factors on health status and other contacts with health service 7. Human immunodeficiency virus
infection. The first category (e.g. heart attack) is also expected to be related to air pollution. At
this stage of the study, I only focus on the Respiratory System diseases, and another category can
be done in the next steps.
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The Figure 1.2 gives the annual total counts of respiratory disease hospitalization

over the study period. We can see a slight decline in number of hospitalization over

time for patients who are older than 65 years of age. However, this value for two other

age categories is quite stable. In California over the same time period we see around

4 million increase in the total population of individuals older than 65, 2 million for

individuals of ages 20-64, and almost constant population for children at ages 5-19.

Therefore, as a matter of absolute values there has been an improvement in the health

of elderly and adults, but not children. 19

Since the patient’s zip code is the highest geographical resolution that is available

from the health data, I calculate the dependent variables in the zip code-daily level

separately for each age category. For a particular zip code x at day t, I count the

number of patients who are admitted to any hospital in California and their residential

zip code is x and asthma (respiratory diseases) being the chief cause of admission.

20 I divide this number by the zip code population as the hospitalization rate of the

zip code x at day t. Therefore, the dependent variable is the daily number of asthma

(respiratory diseases) admissions per zip code divided by the zip code population.

I divide the number of admission by the zip code population, in order to eliminate

the size effect of population: regardless of pollution level, the larger the zip code

population, the higher the hospital admission. I obtain the annual population of zip

codes per age group, by linearly interpolating population from the US 2000 and 2010

Census data.

Table 1.9 gives some information on hospitalization rate for different range of zip

code population. Because the number of asthma hospitalization always is equal or

19I draw the similar graph as Figure 1.2 with only difference that I divide values in Figure 1.2 by
the total population of each age category and the results is very similar. Figure 1.13 presents the
result.

20I use the residential zip code of the patients, and not the hospital zip code.
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smaller than respiratory disease, so in Table 1.9 I use the asthma hospitalization in

order to see the population effect on the health measure clearly. In Table 1.9 for each

given range of population, the second column is the total number of zip codes, third

column is the total number of asthma admission from all the zip codes for the years

of 2004-2011, fourth column is the average asthma admission per zip code, and fifth

column is the daily value of the forth column. As we expected, the total admission

per zip is positively correlated with the population of the zip codes, fourth column.

This correlation does not change even after calculating the daily value, fifth column.

One explanation can be that these zip codes are mostly urban areas with higher

pollution. But this hypothesis can be tested more specifically in the estimation part,

to see which factors explain this variation.

The Figures 1.3 and 1.4 give a better visual insight about the distribution of

hospitalization number and population in CA. For example, the range of 0-2000 in

Figure 1.3 means that total number of hospitalization from these zip codes was less

than 2000 for the entire period of study. In Figure 1.4 values are the average

population for the years 2004-2011. The white colors in both figures are missing

values. As we can see, the number of hospitalization and population of zip codes are

correlated. I present a similar graph only for Los Angeles County in the Figures

1.14 and 1.15, the result is very similar. In both figures, the concentration is mostly

in South coast, San Joaquin valley, Sacramento valley, and San Francisco bay area.

1.4.3 Pollution and Weather

Daily pollution data comes from the California Air Resource Board. The data

includes daily ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2) in monitor

level. It is necessary to control for CO and NO2 because of their correlation with

ozone level, and also their direct impact on daily environmental quality, and therefore,
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on public health, Brauer et al. (2008), Currie and Neidell (2005). Particulate matter

less than 10 µm in diameter (PM10) is also one of the main pollutant that is related

to the health problem, Knittel et al. (2011), Currie et al. (2009). However, PM10 is

not included in this study because it is not available on a daily basis. In most, but

not all the monitors, PM10 is recorded once every six days. 21 Also, because of the

high correlation between PM10, CO, and NO2, Currie and Neidell (2005), omitting

PM10 will not bias the estimates of the health impact of ozone.

Weather conditions are correlated with ozone levels, and also affect time allocation

of people between activities, and time spent outside, Zivina and Neidell (2014), so they

affect individual’s exposure to ozone. Weather conditions are also expected to have

direct effect on health. 22 Therefore, almost all the studies in the literature, Neidell

(2009) and Neidell and Kinney (2010) and Currie and Neidell (2005), control for the

weather conditions, and (Knittel et al. (2011)) specifically show the importance of

including weather conditions in the estimation of the health impact of pollution. To be

consistent with the literature, I include daily maximum and minimum temperatures,

average precipitation level, and maximum relative humidity. 23 The weather data

comes from the National Climatic Data Center and it is publicly available. For the

weather conditions, I obtain the weather data for Arizona, Nevada, and Oregon as well

as California itself. This helps me to calculate more accurately weather conditions

for the zip code near the borders of California in case monitors inside the border of

California are too far from the zip code. In the weather data, there are some outlier

for the maximum and minimum temperature. I drop those temperature that were

21PM2.5 is recorded once every three days.

22Deschnes and Greenstone (2011) show that mortality rate increases at the extremes of the
temperature.

23Some studies also include sun cover and average wind speed. These variables are frequently
missing and after I assign them to each zip code, there is no enough observation left to include in
the regression.
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greater than 130 or less than -30 Celsius. 24 I use measures for the pollutants

that correspond with air quality standards in California for the period of study: 1h

maximum for ozone, 8h maximum for carbon monoxide, and 1h maximum for nitrogen

dioxide. Table 1.11 gives the summary statistics of the pollutants and the weather

conditions using the raw data.

Figure 1.5 gives the annual trend of three pollutants for the study period. From

2004 to 2011 there is a reduction in both CO and NO2 pollution level, but ozone

pollution is almost constant around 0.05 ppm.

To assign the daily pollution and the weather conditions to each zip code, if there

are monitors within the zip code polygon, I assign the average ozone value of those

monitors to the zip code. Figure 1.6 presents the distribution of pollution monitors

across California that are mostly concentrated in densely populated areas. If there

is not any monitor within the zip code polygon, first I find all the monitors within

20miles radius of the zip code centroid using latitude and longitude of the locations

of the monitors. 25 Then, using an inverse distance weighted average of the nearest

monitors I calculate the pollution levels and the weather conditions for each zip code

according to equation (1.8):

Pzt =

∑
mAPmt/(distm|dist ≤ 20)∑
m 1/(distm|dist ≤ 20)

(1.8)

Where z, t, and m are zip code, day, and monitor, respectively. P is the assigned

pollution (weather) level, AP is the actual pollution (weather) that is recorded in

the monitor level, and dist is the distance between the monitor and centroid of the

zip code. There are two reasons for using the average value instead of the value of

24Apparently the outlier numbers come from the sites that the data center does not have sufficient
control on the recording process of them. So I drop those outliers from the dataset.

25Knittel et al. (2011) and Currie and Neidell (2005) use the same strategy to find the nearest
monitors to the centroid of the zip codes.
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one nearest monitor: to get more accurate values for each zip code polygon, and to

preserve sample size in case one nearest monitor has missing value.

Table 1.12 presents the distance between patients and hospitals’ zip codes that

they are admitted. All the values are in percentages. For example, the distance

between residence and the hospital of 34% of the patients was less than 5 miles. Out

of this 34%, 4% were children between the ages of 5-19, 35% were adults between the

ages of 20-64, and 61% were patients older than 65 years of age. The percentage among

different age groups is almost constant for different distance levels. As we can see from

Table 1.12 that choosing 20 miles radius, at least for 70% of the observations gives

a plausibly accurate measure of pollution and weather conditions based on equation

(1.8).

1.5 Estimation Strategy

In this section, I assess whether there is a difference between outdoor time on

weekends and weekdays. If this difference exists, I quantify its effect on the estimate

of the health impact of ozone.

1.5.1 The Weekend Effect

I use the term of Weekend Effect to remark the fact that there are two significant

differences between weekdays and weekends in term of ozone level and the time that

people spend outdoors. 26 In the empirical section, first using some summary

statistics and running t-test, I want to test whether outdoor leisure time on weekends

is different than on weekdays. If it is different I estimate the following equation to

26There is another term of Weekend Ozone Effect that comes from the atmospheric science
literature. They use this term to the observation that ozone level on weekends is greater than
on weekdays in some areas in California, despite the fact that its precursors are lower on weekends.
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explain the factors that leads to this observation:

outdoordiwmy = constant+ αincomediwmy + βHHsizediwmy + γLhdiwmy + εdiwmy (1.9)

Where i, w,m, y represent individual, week, month, and year, respectively.

Superscript d represents the difference value of a variable between weekend and

weekday. 27 So outdoordiwmy is the difference of outdoor leisure time between

weekend and weekday of individual i at week w, month m, and year y, i.e.

outdoordiwmy = outdoorweekendiwmy − outdoorweekdayiwmy . income is the family income,

HHsize is the total number of persons in the household of an individual, Lh total

hours that an individual usually works per week, and εdiwmy is the error term. All of

these variables are the difference between weekend and weekday.

The difficulty of estimating this equation is that in the data set that I use, each

individual is observed only throughout a single day. So I do not observe an individual’s

outdoor time on weekends and weekdays to see what factors explain the potential

difference between these days. To overcome this issue, I match individuals in the

sample by their characteristics, and treat those individuals in each matched group as

one person. By doing this process, hypothetically I have information on individuals

at different times. So I can calculate the average value of variables of interest among

individuals within each matched group. Then I run the regression of equation (1.9).

The more matching criteria you choose, the less number of observation you end

up with for each matched group. On the other hand, the less matching criteria

leads to more heterogeneity within each group, and it would be hard to believe that

individuals within each group are similar. I use individuals’ age, sex, marital status,

metropolitan status, labor force status, and family income range as a categorical

27For weekends I use average value over Saturday and Sunday, and for weekdays I use Monday
through Friday
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variables to construct the matched sample. 28 Therefore, all the individuals who

are in the same cell based on these criteria I assign them a unique identification

number, i. Then I calculate the average value of the individuals’ outdoor time with

the same id, i, who are surveyed on the weekend of week w, month m, and year

y to calculate the outdoorweekendiwmy . The process is exactly the same for all the other

variables in equation (1.9). These classifications help me to partially control for

physical and economic factors, and in general individuals’ life style in order to obtain

more homogeneous groups of people within each group. This homogeneity is useful

in order to test whether after controlling some personal characteristics, there is still

a difference between weekends and weekdays outdoor leisure. I could also control for

residential state of individuals, full/part time student, and hourly/non-hourly labor

force status, but there will not be sufficient observation to do the estimation.

For explanatory variables, in order to explain the outdoor time difference between

weekends and weekdays, I need to choose those variables that average value among

people is meaningful. For example, average income of people is meaningful, but not

average value of their residential state number. So, I consider individual’s outdoor

leisure time, family size, and weekly labor hours. I present the result of estimation

of equation (1.9) in section 1.6.1. In the main estimation, in order to calculate the

dependent variable I only use the outdoor leisure time. For sensitivity analysis, I

repeat the same estimation for another dependent variables. In the second dependent

variable, I include all the outdoor time both leisure and work related time. 29

28I use five age categories to match individuals: 15-25, 26-35, 36-45, 46-64, and 65+.

29I was also interested in calculating the dependent variable based on only those activities that
their average time on weekends and weekdays varies largely. These activities are golfing, playing
baseball, fishing, hunting, playing unclassified sports. The problem is that by choosing only these
activities there is no enough observation to do the estimation.
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1.5.2 Health Effect of Ozone

In order to estimate the health impact of ozone pollution on respiratory disease

and asthma hospitalization, I estimate the following equation which controls for the

weekend effect:

Healthzt = constant+α0xzt+α1xztwdt+
4∑
j=1

[βjxzt−j+γjxzt−jwdt−j+µjPzt−j]+fz+gt+εzt,

(1.10)

where z, t, andε are zip code, day, and error term, respectively. Health is the

number of the respiratory disease (asthma) hospitalization that is normalized by the

population of zip code. constant is constant term, x is ozone level, wd is weekend

fixed effect, P include CO, NO2 and weather conditions, f is the zip codes fixed

effect, and g is day of the week and month-year fixed effects to account for time and

seasonal effects.

This model is a conventional model to estimate the health impact of pollution

in the literature (e.g. Neidell (2009), Neidell and Kinney (2010)) except for the

interaction of ozone pollution and the weekend fixed effect that accounts for the

weekend effect. This interaction helps me to estimate the different health impact of

ozone for weekends and weekdays. According to previous studies that usually find

the health impact of ozone up to four days after exposure to pollution, I include four

lags of ozone and weather variables. Instead of focusing on the impact of each lag

separately I calculate the overall impact of ozone on hospitalization,
∑

j
∂Healthzt
∂xzt−j

=

α0 + α1wdt +
∑4

j=1[βj + γjwdt−j]. Calculating this value leads to seven different

values of the health impact of ozone for each day of the week. I.e. because of the

accumulation effect of ozone and different health impact of ozone on weekends and

weekdays, the overall health impact of ozone will be different for each day of the week.
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1.6 Estimation Results

1.6.1 Outdoor Time on Weekends and Weekdays

Table 1.13 presents average outdoor leisure for different classifications. In all the

cases the null hypothesis is rejected with very small P-values. This rejection means for

all the subgroups, average outdoor leisure on weekends is greater than on weekdays

and the difference varies between 10-50 minutes. Besides this difference, from Table

1.13 we can infer another important point. Comparing the weekend-weekday outdoor

leisure difference within each groups tells us that this difference varies even between

subgroups. For example, the weekend-weekday outdoor leisure difference for male is

45 minutes and for female is 30 minutes. So, this means that controlling for these

criteria in the estimation that is provided in the following is important. Because part

of the weekend-weekday outdoor leisure difference is explained by these matching

criteria.

Table 1.14 represents the results of equation (1.9). The dependent variable in

column (1) is the outdoor leisure, and in column (2) is all the outdoor activities

including work related activities.

In Table 1.14, constant term in both of the specifications is statistically significant

and it is positive. The magnitude of the constant term as compare to the mean (80

minutes) and median (45 minutes) is very large. That means people spend much more

time outdoors on weekends than on weekdays. The coefficient of household size is not

significant. However the coefficient of weekly labor hours is negative and significant

in the first specification. This can happen because people who work more, their work

hours is also spread over weekends. So their outdoor leisure on weekends can not be

that different from weekdays. As we can see in column (2), if I add the work related

outdoor activities the significant coefficient disappears.
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It is worth noting that these estimations are after controlling for other

demographic characteristics of individuals. This means that even if I control for

some physical, economic, and cultural characteristics of individuals, there is still a

large difference between outdoor time that people spend on weekends and weekdays.

If more continuous information about individuals was available, getting a precise

magnitude and the sign of the estimate of each variable would be possible.

Other than the fact that time that people spend outdoors on weekends is

significantly different than on weekdays, ozone pollution levels in some locations are

also higher on weekends as compared to weekdays. Ozone is formed from volatile

organic compounds (VOC) and oxides of nitrogen (NOX) in the presence of sunlight

and heat. To control ozone pollution, the EPA regulates the measurements of VOC

and NOX . V OC and NOX are mainly released by vehicles, construction equipment,

and industrial paints and solvents that are dependent on human activity patterns

over the week. Usually, levels of these precursors are lower on weekends than on

weekdays and much of this difference is ascribable to mobile sources (e.g. motor

vehicle) rather than to stationary and area sources (Blanchard and Tanenbaum

(2003)). We expect to see the same trend over a week for ozone pollution. However,

in some regions in California such as the South Coast Air Basin, the San Francisco

Bay Area Air Basin, and some urban area in the Central Valley, the ozone level is

typically higher on weekends than on weekdays and this phenomenon is called

Weekend Ozone Effect. 30 The weekend ozone effect has been well documented in

the atmospheric science literature, and it usually happens in highly polluted and

populated areas despite the fact that the level of precursors of ozone (VOC and

30The main reasons is a decrease NOX emission at weekend but there are several other hypothesis
that can be possible explanations for weekend ozone effect: NOX -reduction, NOX -timing, carryover
near the ground, carryover aloft, increased weekend emissions, aerosol and ultraviolet (UV) radiation,
and ozone quenching hypothesis (EPA (2014)). For more information on the weekend ozone effect
hypothesis see the California Air EPA June 2003 report on the weekend ozone effect.
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NOX) on weekends are lower than on weekdays ( Yarwooda et al. (2008), Qin et al.

(2004), Fujita et al. (2003), Blanchard and Tanenbaum (2003) ).

In sum, based on American Time Use Survey data, the time that people spend

outdoors on weekends is different than on weekdays. So, I expect that health

outcomes will be different on weekends than on weekdays even if the ozone level

stays unchanged. In addition, there are many research in atmospheric science

literature that show the ozone levels on weekends is significantly higher than on

weekdays in some regions of California. Since, dose-response is not a linear function

of ozone pollution, I expect that the health impact of ozone on weekends is different

than on weekdays, even if people spend the same time outdoor every day of the

week. In other words, the same amount of change in the ozone levels may cause

greater change in health outcomes on weekends as compared to weekdays, because

the original level of ozone is different. Both these factors are accelerating each other

and if we do not control for the weekend effect, the estimate for the weekend health

impact of ozone will be biased upward. To account for these differences, I use the

interaction of ozone and the weekend fixed effect in the empirical estimation to

distinguish between the coefficient of ozone for weekends and weekdays. However,

using this method it is not possible to distinguish between the impact of outdoor

time difference and the weekend ozone effect on the estimate.

1.6.2 Health Impact of Ozone

Before presenting the results of equation (1.10), it is worth to discuss some

information about the dependent and pollution variables. Based on the discussion of

outdoor time and ozone level on weekends and weekdays, I was expecting to observe

more hospitalization on weekends than weekdays. But in Table 1.15 for all age

categories, Sunday and Saturday have the lowest number of hospitalizations. In
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terms of percentages, every day on weekend accounts for around 11-12%, and every

day on weekday accounts for around 14-16% of the total hospitalizations.

As we can see in Table 1.16, the mean value of O3 is higher on weekends than

weekdays and the opposite is true for CO. The magnitude of medians that are not

shown here are different from means, but medians repeat the patterns of the means

for both O3 and CO. The median value for NO2 is different than its mean value,

and is higher on weekdays than weekends. So possibly the variation of the hospital

admissions in Table 1.15 is mostly driven by CO and NO2.

Figure 1.7 displays the daily variation in respiratory disease hospitalization for age

categories. Purple lines separate the seasons: spring, summer, fall, and winter. The

hospitalization rate is in its highest level in the spring and the winter, and the lowest

rate is in the fall. In this figure I do not control for the population, but Figure 1.8

plots the daily value of respiratory disease hospitalizations after normalizing by the

population. In Figure 1.8 the curve for old individuals, which are the most vulnerable

age group based on the hospitalization rate, has a declining trend from the spring

to the winter but not for two other groups. In both figures there is enough daily

variation in hospitalization rate to be explained.

Figure 1.9 presents the daily variation of three pollutants over the year indicating

large daily variation in the data. I control for the seasonal fixed effects, CO, NO2, and

weather conditions that I include in the main estimation to see if there is still enough

variation in ozone pollution. Figure 1.10 provides the residuals after this process, and

there is still a sufficient variation in O3 to explain the health impact. By comparing

Figures 1.7 and 1.9, there is a similar patterns over the year between hospitalization,

CO and NO2, but the pattern of O3 is reverse. This seasonal trend should not cause

any problem in the estimation, because I use the daily variation to explain the health

impact.
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In all analyses I only focus on months from March to October, because the ozone

level is high in this period of the year and most likely to have the weekend ozone

effect issue. Tables 1.17 and 1.18 provide the estimation results for the equation

(1.10) without interaction of ozone and weekend fixed effect. For the dependent

variable I use respiratory disease hospitalization rate in Table 1.17 and asthma

hospitalization rate in Table 1.18. The coefficients have anticipated signs, but the

coefficient for individuals ages 65+ is not significant in Table 1.17. For children,

estimate of the impact of ozone in column (1) indicates that 1ppm increase in the

five-day average ozone leads to 1.23 increase in the respiratory disease hospital

admissions for a zip code with 10000 population. Based on Table 1.17 adults ages

20-64 are more vulnerable group to ozone that is counterintuitive. This results can

be explained by avoidance behavior. Since old people and children would respond to

pollution level, then without controlling for the avoidance behavior we

underestimate the health impact of pollution. In Table 1.18 only the coefficient for

adults ages 20-64 is significant.

In Tables 1.19 and 1.20 I control for the weekend effect, interaction term, and

run the same estimation as in Tables 1.17 and 1.18. As mentioned early, the overall

health impact of ozone should vary across days of the week. The impact of ozone

on respiratory disease and asthma for adults ages 20-64 on weekdays are significantly

greater than weekends. This result indicates that this age group spends less time

outdoors on weekends and not controlling for the weekend effect overestimates the

health impact of ozone on weekends. The opposite is true for children if we consider

the respiratory disease, but not for asthma. Ozone does not have a significant impact

on asthma hospitalization of old individuals ages 65+. For the respiratory disease of

old people, the estimate is very large positive value on Thursdays and negative value
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on Sundays. Small or negative number can be explained by the presence of avoidance

behavior, but these values are very unusual and the reason should be something else.

Overall, controlling for the weekend effect changes the magnitude of the estimates

for days of the week, but the significance of the results depends on individuals’ age.

Chi-square test for the difference between the estimates confirmed that with the

inclusion of weekend effect the coefficients are significantly different for children and

seniors but not for adults, Tables 1.19.
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1.7 Discussion and Conclusion

In this study I show that time people spend outdoors on weekends is significantly

greater than weekdays. In doing so, I develop a theoretical framework that explains

how an individual’s shadow value, outdoor and indoor leisure varies over time and how

it depends on his characteristics. In the estimation part, I show that after controlling

for some of the individuals’ characteristics there is still a large differences, around 50

minutes, between weekends and weekdays outdoor time. This difference potentially

can be explained by some other personal taste, and money or time constraints that I

did not have data on them.

In the second stage of this study, I examine the effect of controlling for the weekend

effects in estimating the impact of ozone on respiratory disease and asthma hospital

admissions. Results of the estimation indicates that controlling for the weekend effect

changes the health impact of ozone for adults ages 20-64. For children, the impact

of ozone on respiratory disease is greater on weekends than weekdays, and the effect

on asthma varies over day of the week. Ozone does not have a significant impact on

asthma hospitalization of old individuals ages 65+.

Controlling for the weekend effect in addition to partially correcting for the

measurement error regarding the pollution measure, it gives a precise estimate for

each day of the week. These differences in the health impact of ozone can be

considered in the pollution policies. For example, there can be a different pollution

standards for weekends and weekdays to reach a better improvement in public

health.
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1.8 Figures

Figure 1.1: Percentage of Activities on Weekends vs Activities

Note: The horizontal line is ordered based on mean time of activities.
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Figure 1.2: Annual Respiratory Disease Hospitalization by Age Categories
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Figure 1.3: Distribution of Respiratory Disease Hospitalization in California
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Figure 1.4: Distribution of Population in California
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Figure 1.5: Annual Average Level of Pollutants
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Figure 1.6: Pollution Monitors in California
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Figure 1.7: Average Daily Respiratory Disease Hospitalizations over the Year
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Figure 1.8: Average Daily Respiratory Disease Hospitalizations Normalized by

Population over the Year
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Figure 1.9: Average Daily Pollution Levels over the Year
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Figure 1.10: Average Daily Ozone Level and Its Residual over the Year
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Figure 1.11: Percentage of Activities on Weekends vs Activities

Note: The horizontal line is ordered based on median time of activities.
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Figure 1.12: Percentage of Activities on Weekends vs Activities

Note: The horizontal line is ordered based on interquartile time of activities.
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Figure 1.13: Annual Respiratory Disease Hospitalization by Age Categories

Normalized by the Population of Each Group
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Figure 1.14: Distribution of Respiratory Disease Hospitalization in Los Angeles
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Figure 1.15: Distribution of Population in Los Angeles
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1.9 Tables
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Table 1.1: Activities and ATUS Codes Used to Define Time Spent Outdoors

Activity

Code

Activity Location Classification

Any Any besides working Outdoors away from

home

1

Any Any Walking 2

Any Any Biking 3

130106 Boating Anywhere 4

130112 Fishing Anywhere 5

130136 Yoga Outdoors away from

home

6

130102 Playing baseball Anywhere 7

130103 Playing basketball Not at gym 8

130104 Biking Not at gym or at home 9

130108 Climbing/spelunking/caving Not at gym 10

130109 Dancing Outdoors away from

home

11

130110 Participating in equestrian

sports

Outdoors away from

home

12

130113 Playing football Outdoors away from

home

13

130114 Golfing Anywhere 14

130116 Hiking Anywhere 15
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Table 1.2: Activities and ATUS Codes Used to Define Time Spent Outdoors (Cont’d)

Activity

Code

Activity Location Classification

130118 Hunting Anywhere 16

130119 Participating in martial arts Outdoors away from

home

17

130120 Plying racquet sports Outdoors away from

home

18

130121 Participating in rodeo

competitions

Not at gym 19

130122 Rollerblading Anywhere 20

130123 Playing rugby Anywhere 21

130126 Playing soccer Not at gym 22

130127 Playing softball Anywhere 23

130130 Playing volleyball Not at gym 24

130131 Walking Not at gym or at

home

25

130132 Participating in water sports Not at gym 26

130124 Running Outdoors away from

home

27

130125 Skiing/ice

skating/snowboarding

Outdoors away from

home

28
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Table 1.3: Activities and ATUS Codes Used to Define Time Spent Outdoors (Cont’d)

Activity

Code

Activity Location Classification

130128 Using cardiovascular equipment Outdoors away from

home

29

130133 Weightlifting/strength training Outdoors away from

home

30

130134 Working out, unspecified Outdoors away from

home

31

130199 Playing other sports Outdoors away from

home

32

150301 Building house/wildlife

site/other structure

Anywhere 33
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Table 1.4: Summary Statistics

Mean Median Mean Median Mean Median

Category Outdoor leisure Household size Weekly labor hours

Age

15-25 94.6[117.7] 53 3.6[1.5] 4 31.6[15.1] 35

26-35 89.2[113.2] 45 3.2[1.4] 3 41.1[12.2] 40

36-45 86.1[116.2] 45 3.4[1.4] 4 42.1[12.4] 40

46-64 76.5[104.2] 40 2.3[1.3] 2 41.6[12.6] 40

65+ 70.7[93.8] 40 2.6[1.5] 2 30.5[16.2] 32

Male 98.6[125] 60 2.8[1.5] 3 43.5[13.3] 40

Female 67.2[91.9] 36 2.7[1.5] 2 36.8[12.8] 40

Married 85[113.1] 45 3.3[1.3] 3 41.2[13.2] 40

Single 78.7[106.2] 40 2.3[1.5] 2 38.7[13.6] 40

Metropolitan 79.1[103.9] 45 2.8[1.5] 3 40[13.2] 40

Non-metropolitan 97.1[137.3] 45 2.7[1.5] 2 40.5[14.7] 40

Employed 82.2[112] 45 2.9[1.4] 3 40.1[13.4] 40

Unemployed 81.1[105.7] 45 2.7[1.5] 2 No Obs. No Obs.

Notes: Values in the brackets are the standard deviation.
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Table 1.5: Summary Statistics (Cont’d)

Mean Median Mean Median Mean Median

Category Outdoor leisure Household size Weekly labor hours

Age

Hourly labor force 81.7[114.3] 40 2.9[1.5] 3 38.1[11.7] 40

Non-hourly labor

force

81[106.2] 45 2.8[1.4] 3 44.1[11.3] 40

Full time student 86.6[105.5] 46 3.7[1.5] 4 25.5[14.7] 24

Part time student 74.6[102.6] 40 3.1[1.5] 3 38.1[12.5] 40

Notes: Values in the brackets are the standard deviation.
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Table 1.6: Summary Statistics

Activity Mean

(minutes)

Median

(minutes)

Interquartile

range

#ObsWeekday

mean

Weekend

mean

% of Obs

on

weekend

Walking 14.7 5 12 33579 13.5 16.3 0.43

Biking 36.7 15 35 1825 27.6 47.2 0.46

Working out,

unspecified

38.4 30 45 33 40.9 34.1 0.36

Any besides

working

48.5 20 50 9032 34.3 61.4 0.52

Running 55.1 45 30 609 48.8 61.2 0.51

Playing other

sports

86.2 60 76 78 76.4 90.4 0.71

Playing

basketball

104.1 90 75 381 102.8 105.4 0.51

Participating

in water

sports

106.3 90 65 1213 97.3 112 0.61

Playing

volleyball

107 90 85 88 105.2 108.7 0.52

Playing

soccer

110.1 120 85 182 104 113.6 0.63
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Table 1.7: Summary Statistics (Cont’d)

Activity Mean

(minutes)

Median

(minutes)

Interquartile

range

#ObsWeekday

mean

Weekend

mean

% of Obs

on

weekend

Plying racquet

sports

114.8 119 57 49 99.3 125.5 0.59

Playing

softball

115.5 100 75 111 114.3 117.1 0.43

Playing

baseball

120.3 100 120 125 104.3 132.9 0.56

Rollerblading 120.6 120 120 89 101.6 131.3 0.64

Hiking 125.5 120 90 182 96.1 133.2 0.79

Skiing/ice

skating/snowboarding

138.1 120 120 46 176.3 126.2 0.76

Boating 156.1 120 159 219 176.4 150.7 0.79

Golfing 189.1 180 167.5 476 179.9 195.9 0.57

Fishing 239.3 205 200 395 211.7 252.5 0.68

Hunting 246.7 197 197.5 216 216.6 262.7 0.65
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Table 1.8: Summary Statistics: Hospitalization Rate (Person/Zip Code/Day)

Age 5-19 Age 20-64 Age 65+

Respiratory diseases (mean) .014 .104 .163

Standard deviation (.122) (.365) (.477)

Range [0,4] [0,10] [0,16]

Asthma .005 .014 .008

Standard deviation (.073) (.123) (.094)

Range [0,3] [0,4] [0,3]

# Observation 7766676 7766676 7766676

Population / zip code (mean) 4669 12703 2342

Standard deviation (5139) (12486) (2248)

Range [0,30536] [0,59850] [0,11318]

# Observation 1656 1656 1656
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Table 1.9: Summary Statistics: Asthma Hospitalization Rate Among Zip Codes with

Different Population During 2004-2011

Population

range

# zip codes

in each

range of

population

Total #

hospitalization

of zip codes in

2004-2011

# hospitalization

/zipcode in each

range of

population

# hospitalization

/zipcode/day in

each range of

population

0-

5000

1448 50519 34.88 0.008

5001-

10000

694 43274 62.35 0.019

10001-

15000

331 21333 64.45 0.021

15001-

20000

260 24158 92.91 0.031

20001-

25000

164 17854 108.86 0.037

25001-

30000

129 18446 142.99 0.048

30001-

35000

75 13410 178.8 0.061

35001-

40000

51 10338 202.70 0.069

40001-

45000

30 7076 235.86 0.080
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Table 1.10: Summary Statistics: Asthma Hospitalization Rate Among Zip Codes

with Different Population During 2004-2011 (Cont’d)

Population

range

# zip codes

in each

range of

population

Total #

hospitalization

of zip codes in

2004-2011

# hospitalization

/zipcode in each

range of

population

# hospitalization

/zipcode/day in

each range of

population

45001-

50000

11 3277 297.90 0.101

50001-

55000

6 1764 294 0.100

55001-

59850

5 2168 433.6 0.148

Notes: Column 4 is the total number of asthma admission during 2004-2011 per zip code in the

specific population range. Column 5 is the average daily asthma admission during 2004-2011 for

each zip code in the specific population range.
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Table 1.11: Summary Statistics: Pollution and Weather

Variables Mean Standard

deviation

Range #Observation

Ozone max 1h (ppm) 0.05 0.02 [0,.44] 5391324

Carbon Monoxide max 8h (tenths

of ppm)

0.70 0.71 [0,45.69] 4199740

Nitrogen dioxide max 1h (ppm) 0.03 0.02 [0,.21] 4805116

Precipitation (mm) 19.91 101.14 [0,2000] 4472764

Maximum temperature (Celsius) 161.07 81.99 [-

30,130]

3731256

Minimum temperature (Celsius) 57.27 82.22 [-

30,130]

4586985

Average sun cover sunrise to sunset

(%)

67.00 32.04 [0,100] 729

Average daily wind speed (meters

per second)

28.12 16.52 [0,1542] 403547

Maximum relative humidity (%) 80.58 19.52 [3,100] 4788305

California Standard

Ozone max 1h (ppm) 0.09 since 2005

Carbon Monoxide max 8h (ppm) 9 since 1989

Nitrogen dioxide max 1h (ppm 0.18 since 2007
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Table 1.12: Summary Statistics: Percentage of the Respiratory Disease

Hospitalization

Distance between patient’s and hospital zip

code

Age

5-19

Age

20-64

Age

65+

Total

Any distance 5 37 58 100

< 5 miles 4 35 61 34

< 10 miles 4 36 60 48

< 20 miles 4 37 59 68

< 30 miles 4 37 59 80

< 40 miles 5 37 58 86

< 50 miles 5 37 58 89%

Notes: Numbers in each cell presents the percentage of the respiratory disease hospitalization of

each age group in the whole dataset for the years 2004-2011. Total number of respiratory disease

hospitalization was 2,470,707 but for 56,258 observations there is not enough information to

calculate the distance between patient’s and hospital’s zip code. So each of these percentages are

calculated after dropping those observations without distance values.
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Table 1.13: Summary Statistics: Outdoor Time

Outdoor leisure

Categories Weekday Weekend P-value #Observation

Age

15-25 74.1[1.8] 117.2[3.0] .00 4357

26-35 57.6 [1.6] 106.9[2.6] .00 4840

36-45 61.3[1.5] 110.3[2.4] .00 5864

46-64 57.7[1.2] 95.1[1.8] .00 8126

65+ 66.4[1.8] 75.7[2.3] .00 4060

Male 75.1[1.2] 120.8[1.7] .00 12597

Female 52.5[.7] 83.3[1.3] .00 14650

Married 63.3[1.0] 106.5[1.6] .00 12921

Single 61.9[.9] 96.5[1.4] .00 14326

Metropolitan 60.7[.7] 98.1[1.1] .00 23118

Non-metropolitan 73.7[2.4] 118.9[3.5] .00 3927

Employed 56.5[.8] 106.4[1.4] .00 16619

Unemployed 71.2[1.1] 92.5[1.7] .00 10628

Notes: Values in the brackets are the standard deviation. P-value is determined

from two-sample t-test, where null hypothesis is: meanweekday −meanweekend ≥ 0.
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Table 1.14: OLS: Determinants of Outdoor Time Difference Between Weekends and

Weekdays

Dependent var

outdoor leisure total outdoor time

Household size -3.39 0.94

(4.30) (4.64)

Weekly labor hours -0.70∗ -0.34

(0.40) (0.43)

Intercept 54.23∗∗∗ 51.06∗∗∗

(5.93) (6.39)

N 617 620

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 1.15: Summary Statistics: Number of Respiratory Disease Hospitalization for

the Years 2004-2011

Day of the week Age 5-19 Age 20-64 Age 65+ Total

Saturday 13,117 95,813 153,440 262,370

Sunday 13,938 96,423 150,316 260,677

Monday 18,439 131,433 204,473 354,345

Tuesday 17,369 126,332 195,780 339,481

Wednesday 15,883 122,829 188,992 327,704

Thursday 15,570 119,856 188,710 324,136

Friday 15,523 118,406 189,239 323,168

Total 109,839 811,092 1,270,950 2,191,881

Table 1.16: Summary Statistics: Pollution Levels for the Years 2004-2011

Day of the week Ozone CO NO2

Saturday 0.05 0.67 0.02

Sunday 0.05 0.62 0.02

Monday 0.04 0.67 0.02

Tuesday 0.04 0.69 0.02

Wednesday 0.04 0.70 0.02

Thursday 0.04 0.70 0.02

Friday 0.04 0.71 0.02
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Table 1.17: Regression of Ozone on Respiratory Disease Hospitalization by Age,

Without Controlling for the Weekend Effect

Age 5-19 Age 20-64 Age 65+

Ozone (sum of lags) 1.23∗ 2.01∗∗∗ 0.22

(0.73) (0.02) (11.24)

N 761150 761150 761150

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Coefficients from estimation are multiplied by a factor of 104. Standard errors are

based on the robust variance estimator that are clustered by zip codes.

Table 1.18: Regression of Ozone on Asthma Hospitalization by Age, Without

Controlling for the Weekend Effect

Age 5-19 Age 20-64 Age 65+

Ozone (sum of lags) 1.50 0.83∗∗∗ 1.44

(0.99) (0.45) (2.28)

N 445343 445343 445343

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Coefficients from estimation are multiplied by a factor of 104. Standard errors are

based on the robust variance estimator that are clustered by zip codes.
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Table 1.19: Regression of Ozone on Respiratory Disease Hospitalization by Age, with

Controlling for the Weekend Effect

Age 5-19 Age 20-64 Age 65+

Ozone (sum of lags)

Saturday 2.77∗∗∗ 1.20∗∗∗ -5.44

(0.09) (0.02) (10.10)

Sunday 3.91∗∗∗ .77 -21.25∗∗

(.67) (1.44) (9.75)

Monday 1.53 3.45 2.95

(1.06) (2.17) (9.89)

Tuesday 2.55∗∗∗ 4.81∗∗∗ -4.18

(.34) (.04) (28.31)

Wednesday .79 1.97∗∗∗ -2.73

(0.73) (0.32) (22.97)

Thursday -1.36∗∗ 1.03∗∗∗ 20.20∗∗∗

(0.58) (0.43) (4.91)

Friday .19 1.00 3.48

(1.64) (0.73) (2.44)

χ2 9.24 3.66 23.55

P-value 0.09 0.59 0.00

N 761150 761150 761150

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Coefficients from estimation are multiplied by a factor of 104. Standard errors are

based on the robust variance estimator that are clustered by zip codes.
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Table 1.20: Regression of Ozone on Asthma Hospitalization by Age, with Controlling

for the Weekend Effect

Age 5-19 Age 20-64 Age 65+

Ozone (sum of lags)

Saturday 3.80∗∗∗ 1.32 1.61

(0.71) (0.85) (3.18)

Sunday 2.48∗∗∗ 1.05 -0.81

(.15) (.99) (4.85)

Monday 1.76 .49∗∗∗ 1.67

(1.28) (.11) (2.04)

Tuesday 3.60∗∗∗ .29∗∗∗ .12

(.45) (.05) (1.81)

Wednesday .27 .59∗∗∗ -.75

(0.84) (0.25) (3.51)

Thursday -.24 1.05∗∗ 3.22

(1.11) (0.56) (2.07)

Friday .43 1.08∗∗∗ 3.91

(.78) (0.36) (2.85)

χ2 4.47 5.35 8.62

P-value 0.48 0.37 0.13

N 445343 445343 445343

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Coefficients from estimation are multiplied by a factor of 104. Standard errors are

based on the robust variance estimator that are clustered by zip codes.
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Chapter 2

EFFECT OF CHILDHOOD EXPOSURE TO OZONE ON CHILDREN’S SKILL

2.1 Introduction

A notable number of studies recently examined the contemporaneous impact of

pollution on public health 1 . The public burden of pollution forms one of the main

bases for environmental policies. However, less is known about the long term impact

of pollution on the formation of human capital. A few recent studies illustrate the

long term impact of pollution on human capital and labor outcomes, yet there is still

a lot to be learned in this area. The major goal of this study is to estimate the effect

of exposure to ozone pollution on children’s skill.

So far, the literature that examined the effect of pollution on children’s skill mostly

has focused on the most hazardous pollutants such as fine particles (PM2.5). Almost

nothing is known about the effect of ozone on children’s skill, and this is what I focus

on in this chapter. In addition to estimating the effect of ozone, I also control for

the exposure to pollution from early childhood until teenage years, which is another

novelty of this study. Previous studies that have examined the effect of pollution

on cognitive/non-cognitive skills mostly focused on the effect of the early childhood

exposure to pollution. While early childhood is an important stage of the child

development process and a vulnerable period of children to be exposed to pollution,

by focusing on this stage of life we do not learn about the rest of the child development

process which can be critical in terms of child development and thus, important for

policy.

1See, for instance Currie and Neidell (2005), Currie and Walker (2009), Currie et al. (2009),
Vahedi (2013)
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A well-known challenge with isolating the causal effect of the exposure to

pollution levels on children’s skills is an omitted variable bias. It is likely that

neighborhood pollution levels are correlated with other neighborhood

characteristics, such as crime rate or school quality. Without controlling for these

neighborhood characteristics, the estimated effect of pollution will likely be biased.

To deal with this issue, I use the instrumental variable that is introduced by Chay

and Greenstone (2005). The instrumental variables they propose isolates exogenous

variation in pollution generated by law enforcement and can be used to estimate the

causal effect of pollution on children’s skills. To estimate the model empirically, I

combine the data from two sources. The Panel Study of Income Dynamics (PSID)

provides a rich panel of a nationally representative sample of households. The Child

Development Supplement (CDS), added to the original survey in 1997, that

specifically focuses on children and provides rich data to study human capital

formation. From the PSID and CDS I use information on children and their family

characteristics along with the households’ time investments in their children. To

measure the exposure to pollution, I collected pollution data recorded via the

monitors throughout the country from the US Environmental Protection Agency

(EPA).

The OLS estimates suffer from omitted variable bias due to the endogenous nature

of pollution measure. Based on health studies we expect that the effect of ozone on

children’s skill is negative or at least zero. OLS estimate of the effect is positive

which is counterintuitive, even though it is statistically insignificant. To mitigate the

omitted variable bias issue I use the IV estimation. This method accounts for the

endogenous nature of pollution variable and the effect becomes negative. However,

the effect of ozone on children’s skill is marginally insignificant. This insignificant
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effect of ozone on children’s skill is due to smaller sample and the loss of precision in

the first stage of IV estimation.

The remainder of the chapter is organized as follows. Section 2 discusses the

related studies. Data description is in section 3. Section 4 presents the econometric

model. Section 5 discusses the estimation results. Section 6 discusses and concludes.

2.2 Prior Literature

The study of the long term impact of early childhood exposure to pollution has

been hampered by the lack of appropriate data. Oftentimes the data does not have

sufficient information about the households or the children. Even rich data does not

solve the selection issue, and finding an exogenous variation in pollution becomes a

challenge. To deal with these limitations, researchers have used quasi-experimental

design or instrumental variable approach. For example, Sanders (2011) studies the

impact of prenatal exposure to total suspended particulate (TSP) on educational

achievement in high school. He utilizes county-level variation in timing and

magnitude of sudden change in TSP levels that happened in response to industrial

recession in the early 1980s. He claims that the dramatic change in TSP levels is

strongly correlated with the industrial and manufacturing production. He uses this

relationship to construct an instrumental variable (IV) for TSP. Specifically,

Sanders (2011) defines an IV for TSPs as a relative share of county-level

employment in manufacturing. The IV estimate is relatively larger than its

Ordinary Least Square (OLS) counterpart: one standard deviation reduction in

TSPs leads to a 6 percent increase in high school math scores when using the

instrument, compared to the OLS estimate of only about 2 percent.

Almond et al. (2009) study school performance of children in Sweden who had

been affected in utero during the Chernobyl disaster. The authors focus on children’s
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achievement in the final year of compulsory school (age 16) and performance in high

school (age 19). While being far from Chernobyl, Sweden did receive 5% of the nuclear

fallout due to wind and weather conditions. Moreover, weather conditions generated

a large variation in the amount of fallout among the affected regions in Sweden.

This incident provided a natural experiment to study the impact of exposure to

radiation on school performance of children. The study finds that the cohort affected

by the fallout perform significantly worse in the final year of compulsory school and

particularly in math. They also have a lower rate of high school graduation and lower

GPA conditional on graduation.

Bharadwaj et al. (2014) examine the impact of exposure to air pollution during

gestational trimesters on the educational performance in 4th grade in Santiago, Chile.

Using sibling comparison and air quality alerts, the authors account for sorting and

avoidance behavior. The idea is that by using sibling comparison they can control

for factors that are correlated with pollution levels (through residential choice) and

a child’s educational achievement. For example, parents’ income and their education

can be important determinants of residential choice and have a direct impact on a

child’s educational performance. If people respond to air quality alerts, by controlling

for these alerts, the authors take into account the subjects’ avoidance behavior. The

authors find a significant negative influence of pollution on math and language skills.

Evens et al. (2015) study the impact of lead concentration in whole blood

(B-Pb) on educational performance. They examine the impact of blood lead on 3rd

grade Illinois Standard Achievement Tests (ISAT) scores in Chicago public schools.

After controlling for family income, demographics, and low birth weight or

preterm-birth, the authors find that even the low blood lead levels 2 has a

significant impact on educational performance. They find that 5µg/dL increase in

2B-Pb of < 10µg/dL
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B-Pb in early childhood is associated with 32% increase in the risk of failing reading

and math tests. Consistent with the previous studies, the results demonstrate that

the impact of lead exposure is non-linear and it is steeper at lower levels.

All these studies focus on the effect of exposure to pollution in utero or during

very early childhood on later educational outcome. Even though children are

vulnerable to pollution during this period, but it is not the only period that is

crucial in child development process. After this early stage, children still remain

vulnerable to pollution, and the magnitude of the effect may vary by age and it is

important to learn about this period as well. In the current study I control for

exposure to pollution even as late as 15 years of age and estimate its effect on

children’s skill. Further, all these studies have focused on the most hazardous

pollutants because of their sever negative effect that is found in the health and

epidemiological studies. We do not know about the effect of ozone on educational

outcomes which is the focus of the current study.

There are other studies that investigate the effect of childhood exposure to

pollution on other type of adulthood outcomes such as wage and criminal activities.

Isen et al. (2014) is one of the first studies that link childhood exposure to pollution

directly to labor outcomes. The authors use the drastic change in TSP due to

implementing the 1970 Clean Air Act Amendment (CAAA) to address the impact

of childhood exposure to pollution on labor outcomes. Using the data from the

Longitudinal Employer Household Dynamics File (LEHD) they compare the labor

outcomes of those who were born right before the CAAA implementation with those

who were born right after the policy implementation in counties that experienced a

sharp change in TSP levels. The study finds that 10 unit decline in TSPs in the

year of birth is correlated with 1% decrease in annual earnings of individuals in
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their late thirties. A back of the envelope calculation suggests that there is roughly

$6.5 billion lifetime earning gain for the entire cohort that were affected by CAAA.

Reyes (2007) studies the impact of childhood exposure to lead on criminal

activities in adulthood. It has been previously shown that lead exposure has a

negative impact on the development of the central nervous system and brain.

Higher lead level is associated with behavioral disorders, such as aggressiveness,

hyperactivity, and lack of emotional control. Reyes (2007) uses a variation of lead

pollution levels among states over time due to removing lead from gasoline under

the CAAA. She links the sharp drop of crime in 1990s to the decline of lead in the

late 1970s and early 1980s to find that the phase-out of lead from gasoline explains

56% of the decline in violent crime in 1990s.

2.3 Data

Primary source of the data for this study is the Panel Study of Income Dynamics

(PSID) and three waves of Child Development Supplement (CDS-I, CDS-II, and

CDS-III). I also use pollution data from the US Environmental Protection Agency

(EPA).

2.3.1 PSID and CDS

The PSID is a nationally representative longitudinal survey of the US

individuals and families in which these individuals reside 3 . It provides a wide

range of information on families and individuals. Since 1968 the PSID has collected

data on family composition changes, housing and food expenditures, marriage and

3The PSID survey initially started in 1968 with a nationally representative sample of households.
However, after the first wave of the survey in the following years, children from a household in the
main sample who left the family and formed their own family were added as new households to the
survey. Adding the new generation of the households into the survey and also dropouts from the
main sample made the current sample unrepresentative of the national population. In order to fix
this issue, PSID contains household’s weights.
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fertility histories, employment, income, health, consumption, wealth, and time spent

on housework. The original PSID survey mainly focuses on households and

particularly the head of the households, and then on spouses. From the main PSID

survey, I use demographic information about the parents of children.

While PSID collects some information about children in the household, this

information is quite limited. Starting in 1997, PSID added a new component, the

CDS, that specifically focuses on children and collects detailed information on them.

So far three waves has been administered: in 1997, 2002, and 2007. The data

include but not limited to general school achievement information; the CDS also

administers the subset of standard tests to assess academic skills of children. These

tests include mathematics and language skills among other content areas. For this

study I use the Letter-Word (LW) test scores as a measure of children’s skill. The

LW test is a subset of Woodcock-Johnson Revised (WJ-R) test of achievement that

measures the symbolic learning and reading identification abilities of children at

ages between 3 to 17. I use the raw scores for the LW test that is well-suited for

examining changes in a child’s performance on a WJ-R sub-test over time. 4

The CDS also collects time use data on children for two days during a week: one

weekday and one weekend day. Subjects fill out (with their caregiver if they are too

young) a detailed time diary during these days. They provide information on what

they have done (type of activities), where they have done these activities (location

of activities), starting and ending time of activities (duration of activities), and who

was with them during the activities over 24 hours. I use the time diary information

to extract the time that children spend on developing their skills, either alone (e.g.

4The PSID also reports the standardized scores of the LW test that are normalized using a
child’s raw score, his age, and other children’s scores in his age category. The standard scores
are useful for cross-sectional comparison between different age groups. However, it is not useful
to study changes in a child’s performance over time. For further detail on the LW test seehttps:
//psidonline.isr.umich.edu/Guide/default.aspx
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time at school or working alone on home works) or with their parents (e.g. studying

with parents). Table 3.1 lists the variables that I use in the analyses, years of data,

and their sources.

I focus on the PSID and CDS surveys that are administered between the years of

1997 and 2007. My target sample are children between 3 and 15 years old who have

at least one LW test score. Even though the test is given to children between ages 3

and 18, I observe a dramatic unexplained drop in study time for children older than

16 and I drop those observations from the sample. I further restrict the sample based

on the income data. I drop observations from families who had weekly income below

$100 as a minimum income required for a sustainable living in the absence of savings

in the model. I also drop the high income observations with annual income above

$150000. These restrictions based on income remove 4% of the observations. 5

Table 3.2 provides summary statistics of the data from the PSID and CDS. All

the time variables are calculated in hours per week units and the family income is

weekly income in 2000 dollars. Table 3.3 presents demographics variables for the CDS

sample started at 1997.

Figure 3.1 shows the average LW test scores for every age group of children. The

average test score increases at a declining rate by children’s age. This observation is a

crude measure of improvement in children’s skill as they grow up. Figure 3.2 provides

the average time that parents actively spend with their children and the time that

children spend on their education alone for every age group. I define the parental

time with their child ”active” if at least one of the parents actively engaged in the

activities that the child performs. Further, the education time alone is the time spent

on school related activities such as time spent at school or time spent on homework

5Some of the families have zero or negative income where negative income corresponds to business
or farm losses. There are only 22 observations with zero or negative income which is less than 1%
of all the observations with non-missing income.
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at home that the child does on his own. As demonstrated in figure 3.2, as children

grow up they spend less time with their parents and more on school related tasks.

2.3.2 Pollution

The ideal air pollution data for this study would be the exact measure of pollution

that a child inhales. Unfortunately, such detailed and precise measure of exposure

to pollution is not available unless it is recorded in a lab experiment. In case of the

United States, researchers normally use the measure of pollution that is recorded by

the EPA via monitors throughout the country. Figure 3.3 shows the actual locations

of monitors nationwide that are placed by the EPA to record variety of pollutants.

Among the multiple alternatives of pollution measures I use ground level ozone to

control for environmental hazards because of its availability for the entire period of

the CDS sample. Bad ozone is the one that is found in the Earth’s lower atmosphere,

near the ground level. The ground level ozone is not generated directly. It is formed

from the chemical reactions between oxides of nitrogen (NOx) and volatile organic

compounds (VOC) in the presence of sunlight and heat. NOx and VOC are emitted

from different sources such as cars, power plants, industrial boilers, and refineries

into the air. Previous studies have shown that ozone has negative effects on human

health, specially on children and elderly. 6

Using the centroid of households’ census block and latitude and longitude of the

monitors I find a nearest monitor to every household’s location. Assigning a monitor

that is very far from a household and may not be true representative of the pollution

levels that the household is exposed to, can lead to measurement error. For that

reason, I only keep those households that are within 20 miles of the nearest pollution

monitor. Since the PSID survey after year 1997 is run biannually, I only observe

6For instance Currie and Neidell (2005) and Neidell (2004).
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households’ location every other year. So, I do not observe what pollution levels

a household faces between the two surveys. In order to obtain more information

from pollution data, if a household lives in the same census block in two consecutive

surveys, I assume it was living in the same census block in-between.

Since the main data from the PSID is collected on yearly basis, the pollution data

should match that annual pattern. Instead of reporting an annual measure collected

from the monitors, the EPA generates so-called ”Design Value”. The design value is

a statistic that the EPA generates to describe the air quality status at a particular

location relative to the National Ambient Air Quality Standards (NAAQS). Based on

the design value, the EPA determines if a particular monitor or, at a more aggregate

level, a county is in attainment status or not. The monitor or county with the design

value above the predetermined threshold is considered to be in non-attainment and

these with the design value below the threshold are considered to be in attainment

status. If a county is in non-attainment status, it is required to lower the pollution

levels below the designated threshold. Under the Clean Air Act Amendment (CAAA)

every year the EPA assigns a county attainment/non-attainment status.

In order to facilitate the interpretation of the results, I normalize the design value

by its standard deviation. Figure 3.5 shows the distribution of the pollution for the

pooled data. Figure 3.4 gives an idea about the variation of the pollution levels across

the country in 2000 where the darker colors represent higher level of pollution.

2.4 Econometric Model

This section presents the empirical model to estimate the effect of childhood

exposure to ozone on children’s skill. I first use the OLS model to estimate the

effect of ozone on children’s skill

θi,t = η1θi,t−5 + η2τi,pt + η3τi,ct + η4xi,t + η5agei,t +Wi,t + εi,t (2.1)
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where i stands for child and t for time; θ is the child’s skill; τi,pt is parents’ time

with the child; τi,ct is the child’s time investment alone; Agei,t is the set of age dummies

for the child; Wi,t is a vector of other control variables and includes household income

and parents’ free time; and ε is the error term. Since the CDS data is only available

for 1997, 2002, and 2007, the time lag in my model is five years instead of one. In

other words, to control for initial stock of skills, I use a test score that is five years

apart from the current score. τi,pt and τi,ct are measuring the investments by the

child’s parents and himself. Parents’ free time is the total time available in a week

minus sleeping time and labor hours.

Next, to mitigate these omitted variable biases I use instrumental variable

approach. Following Chay and Greenstone (2005) and Bento et al. (2013) I use

attainment status of a residence as an instrument for pollution levels. Under the

CAAA if a county is in non-attainment status, it is required to lower the pollution

levels below the designated threshold. Therefore, the attainment status of a

residence can be used as an instrumental variable for pollution levels. Similar to

Bento et al. (2013) I use the attainment status of monitors instead of counties. In

real life, there is a variation in pollution levels among monitors even within a county.

The EPA assigns attainment status of a county based on the pollution levels of the

worst monitor within a county. As a result, local regulators tend to focus on dirtier

monitors to coordinate with the EPA’s standard. Therefore, most of the change

happens in dirtier monitors, not all the monitors within a county. Hence, using the

attainment status of monitors captures the pollution levels change better than

county attainment status. Further, I use the attainment status with one year lag as

the instrumental variable, since if a county is in non-attainment status, it is required

to bring the pollution levels below the designated threshold in the upcoming year.
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First and second stage equations for the IV analysis are given by

θi,t = η1θi,t−5 + η2τi,pt + η3τi,ct + η4x̂i,t + η5agei,t +Wi,t + εi,t

xi,t = %1zi,t + ΠYi,t + ξi,t (2.2)

Where the first equation is the same as the OLS regression model. In the second

equation zi,t is the attainment status dummy of the monitor near child i at year t;

Yi,t is the remainder of the control variables from the first equation; and ξi,t is the

error term.

2.5 Estimation Results

This section presents estimation results of equations (2.1) and (2.2). In the

second column of table 2.4 I use only pollution level and children’s age as

independent variables. In third column I add the investment variables, and in the

last column I estimate the full model. Not surprisingly, stock of children’s skill,

children’s time investments on education alone, and household’s income are

positively correlated with the children’s skill and are statistically significant. In the

full model, Column 4, the coefficient on the lagged test score implies that children

who scored one point higher on previous test, on average score 0.192 points higher

on consecutive test. Children time investment on education is positively related to

test scores: one more hour per week is associated with 0.0325 points increase in test

score. Increasing household weekly income by 100 dollars is associated with 0.3

points higher test score. To control for the unobserved time-invariant characteristics

of individuals, I use first difference approach. Table 2.5 presents the results of the

estimation. As expected, the standard deviations of the estimates are large, and the

effect of ozone is not statistically significant.
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In all the specification the coefficient for pollution levels is positive and

insignificant. This positive coefficient becomes much smaller in the last column

when I control for the investment variables, household’s income, and parents’ labor

hours. The OLS coefficient however does not represent a causal effect of pollution

on test scores because of the omitted variable bias. As mentioned above, one

potential source of the omitted variable bias are unobserved neighborhood

characteristics that are correlated with both pollution levels and test scores, such as

crime rate or school quality.

Instrumental variable estimates presented in Table 2.6 plausibly identify the causal

effect of pollution on children’s skill. The first stage result supports the relevance of

attainment status as an instrumental variable. In the second stage the coefficient of

pollution is negative but statistically insignificant. One percent increase in pollution

levels lowers the children’s test score by 0.3 percent. As evidenced by the results,

instrumental variable partially solves the omitted variable bias - the estimate of the

pollution effect has the expected sign, but suffers from low precision. Large standard

error of the estimates in part can be due to small sample. Related, standard errors of

the IV estimates are always larger than the OLS estimates due to the loss of precision

in the first stage.

2.6 Discussion and Conclusion

In this study I estimated the effect of exposure to ozone on children’s skill. I

estimated this effect both using OLS and IV estimation to control for endogeneity of

pollution measure. I use a panel data from the Panel Study of Income Dynamics and

Child Development Supplement for test scores, time investment, and demographics

of children and their family. I merge these data sets with the measures of ozone index

from the Environmental Protection Agency.
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Because of the endogeneity problem effect of ozone on children’s skill from OLS

estimation is counterintuitive in sign and not significant. Instrumental variable

approach mostly corrects for the endogeneity problem, and results of IV estimation

demonstrate the negative effect of ozone on children’s skill. However, the coefficient

is imprecisely estimated. The low precision of the IV estimate is because of both

small sample and the fact that IV estimation in general produces large standard

errors due to the loss of precision in the first stage. In the next chapter I use

structural estimation approach to improve on this issue and to provide a framework

to analyze policy counterfactuals.
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2.7 Figures

Figure 2.1: Average LW Test Scores by Age

Source: The LW test scores comes from the PSID-CDS.
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Figure 2.2: Average Child’s Time on Education Alone

Source: The time diary information comes from the CDS.
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Figure 2.3: Pollution Monitors’ Location

Source: The exact geographical location of the monitors is from the EPA.
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Figure 2.4: Ozone Average by County for Year 2000

Source: Ozone data comes from the EPA.
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Figure 2.5: Pollution Distribution

Source: Ozone data comes from the EPA.
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2.8 Tables

Table 2.1: Data Sample

Used variable from the data Years Source

It Annual family income 1996,98,2000,02,04,06 PSID

ht Parents’ labor hours 1996,98,2000,02,04,06 PSID

θt Letter-Word score 1997,2002,07 CDS

τ pt Active time parents spend with child 1997,2002,07 CDS

τ ct Time that child spend at school study alone 1997,2002,07 CDS

xt Pollution 1997-2007 EPA

Table 2.2: Summary Statistics

Variable Mean Std. Dev. Min. Max. N

Family income 971.98 600.29 100.06 2882.64 5302

LW Test Score 35.98 14.71 1 57 1940

Total time on education alone 30.97 15.9 0 88.5 1899

Parents’ active time with child 23.74 14.9 0 143.5 1899

Ozone design value 5.43 0.89 1.85 9.45 4086

Notes: This table shows the sample’s characteristics at the beginning of the study, year 1997.
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Table 2.3: Summary Statistics for Sample at 1997

Variable Mean Std. Dev. N

Mothers education (years) 14 1.9 854

Family size 2.2 0.9 958

Mothers age at first birth 24.28 5.74 855

Family income ($/week) 899.39 589.11 851

Notes: This table shows the sample’s characteristics at the beginning of the study, year 1997.
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Table 2.4: OLS Results. Dependent Variable: LW Test Score

(1) (2) (3)

Ozone design value 0.231 0.244 0.0688

(0.325) (0.307) (0.304)

Lagged test score 0.175∗∗∗ 0.192∗∗∗

(0.0234) (0.0231)

Parents’ active time with child 0.0219 0.00635

(0.0144) (0.0135)

Child’s time on education alone 0.0347∗∗ 0.0325∗∗

(0.0108) (0.0104)

Household income 0.00251∗∗∗

(0.000371)

Parents’ free time 0.0289

(0.0225)

Intercept 4.433∗ -0.429 -1.643

(1.957) (2.205) (2.834)

N 1940 1940 1940

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

All the specifications control for child’s age.
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Table 2.5: First Difference Estimate. Dependent Variable: LW Test Score

Independent Variables Coefficient

Ozone design value 1.548

(1.818)

Parents’ active time with child -0.052

(0.066)

Child’s time on education alone 0.123∗

(0.062)

Household income 0.002

(0.002)

Parents’ free time -0.014

(0.121)

Intercept 17.580∗∗∗

(1.132)

N 761

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

All the variables represent first differences.
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Table 2.6: IV Estimates of Pollution on LW Test Score

First stage Ozone design value

Attainment status -1.415∗∗∗

(.0532)

Second stage LW test score

Ozone design value -0.273

(0.391)

Lagged test score 0.193∗∗∗

(0.0229)

Parents’ active time with child 0.00472

(0.0135)

Child’s time on education alone 0.0329∗∗

(0.0104)

Household income 0.00258∗∗∗

(0.000372)

Parents’ free time 0.02960

(0.0227)

Intercept 38.19∗∗∗

(2.953)

N 1940

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

It is controlled for child’s age in the regression.
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Chapter 3

CHILDREN’S SKILL FORMATION: THE ROLE OF CHILDHOOD EXPOSURE

TO POLLUTION

3.1 Introduction

In previous chapter I estimated the effect of exposure to ozone on children’s skill

using instrumental variables approach. In general, the reduced form model is helpful

to estimate the effect of exposure to ozone on children’s skills in the presence of

endogeneity and selection. However, such model does not account for the potential

behavioral response of individuals. As a result, we cannot uncover the underlying

mechanism of the pollution effect, nor can we estimate the policy counterfactuals.

In this chapter, I develop a structural model that links children’s exposure to

pollution to their educational outcomes. I model an optimization problem of

altruistic households that value their children’s skill level and contribute to the

development of their children through monetary and time investments. To the best

of my knowledge, this is the first study that attempts to estimate the skill formation

technology taking into account exposure to pollution.

Using the theoretical model to address this question has multiple benefits. This

model is well suited to study the mechanism of pollution effects on children’s skill

as well as to conduct counterfactual analyses. I jointly estimate the parameters of

the model which makes it feasible to identify the effect of the unobserved monetary

investment. I also control for the exposure to pollution from early childhood until the

teens, which is another novelty of this study. Previous studies that have examined the

effect of pollution on cognitive and non-cognitive skills mostly focused on the effect

97



of the early childhood exposure to pollution. While early childhood is an important

stage of the child development process and a vulnerable period of children to be

exposed to pollution, by focusing on this stage of life we do not learn about the rest

of the skill development process which can be critical in terms of child development

and thus, important for policy.

A well-known challenge with isolating the causal effect of the exposure to

pollution levels on children’s skills is an omitted variable bias. It is likely that

neighborhood pollution levels are correlated with other neighborhood

characteristics, such as crime rate or school quality. Without controlling for these

neighborhood characteristics, the estimated effect of pollution will likely be biased.

To deal with this issue I use the instrumental variable that is introduced by Chay

and Greenstone (2005). This instrumental variable isolates exogenous variation in

pollution generated by law enforcement and can be used to estimate the causal

effect of pollution on children’s skills. To estimate the model empirically, I combine

data from two sources. The Panel Study of Dynamics (PSID) provides a rich panel

on a nationally representative sample of households. Since 1997 the Child

Development Supplement (CDS) has been added to the original survey that

specifically focuses on children and provides rich data to study human capital

formation. From the PSID and CDS I collect information on children and their

family characteristics along with the households’ time investments in their children.

To measure the exposure to pollution, I collected pollution data recorded via the

monitors throughout the country from the US Environmental Protection Agency

(EPA).

Previous studies have focused either on parental investment in a children’s skill

(estimates of a child’s skill formation technology in child development literature)

or on the effect of pollution on these skills (environmental studies). To the best
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of my knowledge, the structural model I develop in this study is the first model

that combines two approaches to estimate the effect of pollution on children’s skills

while accounting for parents’ investment. Omitted variable bias explained above

is not completely solved in the OLS estimation. While the instrumental variables

strategy can potentially deal with the bias, it does not allow for the examination of

the mechanism of the pollution effect, nor it allows to conduct counterfactual analysis.

In this study, I control for the omitted variables bias using an instrumental variable,

and my structural model enables me to run counterfactual analysis. In addition,

environmental studies that use quasi-experimental design to estimate the pollution

effect, usually focus on a particular age group of children. In this study, I estimate

the heterogeneous effect of pollution on children’s skills at different ages.

Consistent with previous studies, my results demonstrate the negative effect of

pollution on children’s skills and that effect varies by age. I find that on average a

one standard deviation decline in pollution levels that children are exposed to, during

the development process, increases their test scores by 0.07 standard deviation. This

number is 0.10 standard deviation for 3 year olds and 0.04 standard deviation for 14

year old children. This result implies that children are more vulnerable to pollution

in early childhood, which is consistent with findings in health and epidemiological

literature.

Using the estimation results, I run two counterfactual experiments: pollution

reduction, and income transfer to the households. In the first experiment, I estimate

the effect of reducing the stream of pollution that children are exposed to by one

standard deviation at every age of the development process. As a result of this change,

the average test scores among all age groups increases by 0.09 standard deviation. If I

were to ignore the households’ behavioral response to the change in pollution levels in

the model, this effect would go up as high as 0.13 standard deviation. Larger effects
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when the behavioral channel is shut down, indicate that households compensate in

response to pollution change.

In an income transfer experiment, households receive a transfer of $600 per week

at every age of children’s development period which corresponds to one standard

deviation of income. This transfer on average increases the test score by 0.12 standard

deviation. The effect of an income transfer accrues over time and leads to a larger

effect for 15 year old children due to cumulative effect through stock of a child’s skill.

If households invest the entire income transfer on children’s skills, the effect would

be larger. However, the transfer is split up between consumption and monetary

investment on children. To compare the results of the two experiments, the effect

of one standard deviation reduction in pollution levels on test scores is the same as

the effect of a weekly income transfer of $120, or $6240 per year. In addition to

a pollution effect, the results also emphasize the importance of monetary and time

investments on children’s skills.

The remainder of the chapter is organized as follows. Section 2 explains the

theoretical model. Data description is in section 3. Section 4 discusses the estimation

issues and identification strategy. Section 5 presents the estimation results. Section

6 presents counterfactual analysis. Section 7 discusses and concludes.

3.2 Model

In order to estimate and predict the effect of pollution on skill formation and

long-term outcomes, I build a conceptual model that is closely related to Cunha

and Heckman (2007) and Boca et al. (2014). In the following sections I explain the

structure of the model, present its solution, and demonstrate the mechanisms through

which pollution affects children’s skill formation.

100



3.2.1 Timing and Household’s Preference

Economy consists of homogeneous households, where each child is born with initial

stock of skills denoted by θ0. Time t is modeled as discrete with finite horizon. The

child development process takes M + 1 periods, i.e. the timing is t = 0, 1, . . . ,M . At

the beginning of every period a household knows its child’s skill level, θt, household’s

income, It, parents’ labor hours, ht, and pollution level, xt. The unitary household

optimally allocates its time between leisure and investment on child’s skill. The leisure

time includes parents’ leisure, lpt, and child’s leisure time, lct. Time investment on

child’s skill includes time that parents spend with their child, τpt, and time that

children invest in their skill alone, τct, e.g. school time 1 . Further, a household

allocates its income on consumption of a composite good, ct, and monetary investment

on child’s skill, et. There is no labor choice in the model. In every period, parents’

labor hours and household’s income is exogenously realized. However, these stochastic

processes are correlated through the initial condition and I will elaborate on them in

section 3.2.4.

Every period the household receives utility from consumption, parent’s leisure

time, child’s leisure time, and child’s skills level. I assume a simple Cobb-Douglas

functional form for the household’s utility function 2 . The household’s preference is

represented by

U(ct, lpt, lct, θt) = α1 ln ct + α2 ln lpt + α3 ln lct + α4 ln θt t = 1, . . . ,M − 1, (3.1)

1Boca et al. (2014) divide the time spending with children into two groups of active and passive
time. In this study I only use one category of parental time. I include any parental time such that
at least one of the parents are actively engaged in doing a activity with the child as productive time.

2Alternatively, I could have used more general form of the Constant Elasticity of Substitution
(CES) model. While the CES allows complementarity between variables, it is not the focus of this
study. Also, Cobb-Douglas functional form simplifies the model.
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I normalize the input weights to add up to one,
∑

j αj = 1, and αj > 0 for j = 1, . . . , 4.

At period M when the child leaves the household, in addition to the flow utility similar

to previous periods, the household receives utility from the stock of its child’s skill

at the end of the period M . This extra utility is βϕ ln θM+1, where β is the discount

factor and the household weights the last period’s skill by the factor of ϕ. So, the

household’s utility in the last period is

U(cM , lpM , lcM , θM) = α1 ln cM + α2 ln lpM + α3 ln lcM + α4 ln θM + βϕ ln θM+1, (3.2)

3.2.2 Children’s Skill Formation Technology

A household faces a trade-off when making investment in its child’s skills:

investing in children, it has less resources for consumption and leisure, but at the

same time, this investment boost its child’s skill and generated higher utility derived

from the increased child’s skill. I model skill technology as the Cobb-Douglas form

with some modification: to allow the decision variables of a household to potentially

be correlated with the pollution levels, I interact investments with the pollution

variable. Child’s skill, θ, evolves over time according to the following technology 3 :

ln θt+1 = lnRt + δ1,t ln θt + δ2,t ln ẽt + δ3,t ln τ̃pt + δ4,t ln τ̃ct + δ5,t lnxt + lnut (3.3)

s.t.

ẽt = et + p1etxt + p2,

τ̃pt = τpt + q1τptxt + q2,

τ̃ct = τct + r1τctxt + r2,

t ∈ 0, 1, . . . ,M

3In principal θ can include cognitive and non-cognitive skills/abilities. However, in this study I
assume a one-dimensional skill.
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A child’s skill at the end of period t, θt+1, depends on total factor productivity

(TFP), Rt, child’s stock of skill at the beginning of the period, θt, monetary

investments, et, parental time with the child, τpt, child’s alone time investment on

skill alone, τct, pollution levels that a child is exposed to, xt, and error term, ut. In

the equation (3.3) and in the constraints δ’s, p’s, q’s, and r’s are the production

function parameters. The simple interactions between pollution levels and the

decision variables add the complementarity between them both in the level and

growth of children’s skill. More importantly, it makes the model more general and

allows the optimal decision variables to potentially depend on the pollution levels.

Without the interaction terms the model forces the decision variables to be

independent of pollution levels. By making the model more general via adding this

interaction, the pollution can either directly affect the child’s skill, or indirectly by

affecting the household’s investment behavior. Later I explain these two channels in

more detail. The error term in the technology function includes any other factors

that are not controlled in the model. These factors are uncorrelated with the rest of

the variables in the model, even though they might directly affect children’s skill.

In equation (3.3) entails complementarity and substitutability between all the

inputs. For example, marginal effect of any investment variable is affected by the

level of pollution that a child is exposed to, or the parental time investment can

be substituted by monetary investment. In equation (3.3) the marginal effect of

the stock of children’s skill is called self-productivity of the technology function and

is defined as ∂θt+1

∂θt
. If this derivative is positive it means that starting a period with

high skill level leads to accumulating more of skill with the same levels of investments.

The self-productivity effect is the dynamic component of the the model that enables

accumulation of child’s skill over time. This dynamic component carries the effect

of investments and various shocks from one period to consecutive periods. Stronger
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connection between periods through the self-productivity leads to higher persistence

of these effects.

3.2.3 Household’s Dynamic Problem

The household’s value function is

Vt(θt, St) = max
τpt,τct,lpt,
lct,ct,et

U(ct, lpt, lct, θt) + βE[Vt+1(θt+1, St+1|St)] (3.4)

subject to

St = (It, ht, xt, ut)

τpt + lpt = T − Lt

τpt + τct + lct = T

ct + et = bt

where T is the total time available. St is the vector of state variables that includes

household’s income, It, parents’ labor hours, Lt, pollution levels, xt, and the error

term, ut, and it is realized at the beginning of the period t before making decision.

The second constraint implies that parents spend the time that is left after work

either with their child or on leisure. The third constraint describes the allocation of

child’s own time on spending his time with parents, on investing on skill alone, or

on leisure. The last constraint is the household’s budget constraint: the household

spends its income either on consumption of the composite good or investing on its

child. 4 Labor hours, income, and pollution levels are exogenous and stochastic and

E is the conditional expectations operator with respect to It+1, ht+1, xt+1, and ut+1.

4Every period a household exogenously receives non-labor income. Having the labor choice
allows more flexibility in household’s decision process and add another trade off between working
and spending time with child. It can also affect policy analysis as well. However, in the current
version of the study for simplicity I abstract from the labor choice.
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In the last period of child development, M , the household maximizes the value

function that only depends on the flow utility as following:

VM(θM , SM) = max
τpM ,τcM ,lpM ,
lcM ,cM ,eM

α1 ln cM +α2 ln lpM +α3 ln lcM +α4 ln θM +βϕ ln θM+1 (3.5)

There is no uncertainty in the last period of child development and the household

faces the similar set of constraints as previous periods.

3.2.4 Heterogeneity and Sources of Uncertainty

Households in the model differ from each other in five dimensions which are the

sources of heterogeneity in the model: child’s initial skill level, household’s income,

parents’ labor hours, pollution levels, and the technology error term. Besides these

values, all the households are homogeneous in terms of preferences, skill formation

function, and the law of motion for income, parents’ labor hours, and pollution

processes. Initial values for child’s skill level, household’s income, parents’ labor

hours, and pollution levels are drawn jointly from a normal distribution:

(θ0, I0, h0, x0) ∼ LogNormal(M,Σ),

Child’s skill evolves over time according to equation (3.3). Household’s income,

parents’ labor hours, pollution levels, and the error terms are the sources of the

uncertainty in the model. Amount of income, labor hours, and pollution levels that

the household faces in each period are determined by stochastic processes modeled as

follows:

ln It+1 = ω0 + ω1 ln It + εt+1, εt
iid∼ Normal(0, σε)

lnht+1 = ρ0 + ρ1 lnht + εt+1, εt
iid∼ Normal(0, σε)

lnxt+1 = γ0 + γ1 lnxt + γ2zt + ξt+1, ξt ∼ Normal(0, σξ)
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where zt is the instrumental variable for pollution. Pollution levels that the

household faces every period comes from an exogenous process. The underlying

assumption is that the location choice is not part of the household decision

variables. This implies that the model does not control for the residential sorting. If

pollution levels is positively correlated with other characteristics of the

neighborhood that a household lives and negatively affect child’s skill, then my

estimation of pollution effect on child’s skill will be an upper bound. For example,

crime rate can be higher in neighborhoods with high levels of pollution. Children in

these neighborhood may perform poorly not only because of exposure to high

pollution levels, but also negative effect of high crime rate. Since, I do not allow

households to choose their location and therefore pollution levels, I will attribute all

the negative effects of neighborhood only to pollution. The opposite is true if the

neighborhood characteristics that are correlated with pollution levels have positive

effect on children’s test score, such as school quality.

To control for the omitted variables bias I use the instrumental variable that is

introduced in Chay and Greenstone (2005). The authors use the attainment status

of counties that is assigned by the EPA based on the pollution levels of the counties.

If a county is assigned to be in non-attainment status it has to lower the pollution

levels for the next year by the law. The idea is that pollution changes exogenously by

the law enforcement and if the household composition of the county does not change

within a year this exogenous change in pollution levels can be used to estimate the

causal effect of pollution on children’s test score. To account for this exogenous

change in pollution due to government policy I include the attainment status, zt, in

the pollution process. Using the instrumental variable in the pollution process helps

to satisfy the orthogonality assumption between the technology error, ut, term and

the pollution levels, xt, in the technology function.
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In the model I abstract from parents’ labor decision because the main focus of

this study is child development and not individuals labor decision. Therefore, labor

hours and household’s income are exogenously determined. One way to look at this

issue is to drop the labor hours from the model and simply assume that every parents

have T hours to spend on leisure or child development. However, this may cause bias

in estimating the effect of pollution on child’s skill if the labor hours is correlated

with pollution and child’s skill. 5 Instead, without complicating the model and

endogenizing labor choice, I make the model richer by including the exogenous labor

hours process in the model. As long as the exogenous process of labor hours, to

a reasonable extent, captures the reality in the data I can be confident that this

assumption will not bias the estimation.

3.2.5 Model Solution

Given the functional forms of the utility function and the children’s skill formation

technology, there is a closed form solution for the optimal decision variables 6 . The

optimal value for the monetary investment in child’s skill is

e∗t =
βδ3,t(1 + p1xt)AtIt − α1p2

(1 + p1xt)(α1 + βδ3,tAt)
, (3.6)

The monetary investment is directly related to income level and negatively related

to the relative weight of consumption in the utility function, α1. If any of p1 and p2

take value of zero, e∗t will be independent of xt, i.e. monetary investment on child’s

skill will not be correlated with the pollution levels.

5This is true for household income, too. One could assign the same level of income for every
household and remove the income process from the model.

6I allow the corner solution in my model, however because of the Cobb-Douglas form of the
preferences, the decision variables will not take their maximum possible values, i.e. e∗t < bt and
τ∗pt, τ

∗
ct < T . If any of the decision variables take their maximum possible values, then one of the

elements in the preference function is zero and the utility function is not defined at zero. However,
the decision variables can be zeros.
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The optimal value of parental time, τpt, is a solution of the quadratic equation

of aτ 2
pt + bτpt + c = 0 where a, b, and c are functions of the model parameters and

exogenous variables. 7 The model therefore can have multiple solutions for the time

investments. By definition, τ ∗pt has to be positive. However, there is no analytical

solution of the ranges for the structural parameters that guarantee value of τ ∗pt to

be positive. In the numerical solution I make sure that τ ∗pt takes positive values and

choose the answer that gives the highest utility level in case of multiple solutions. If

any of q1 and q2 take value of zero, τ ∗pt will be independent of xt. The same holds

for the values of r1 and r2 and therefore τ ∗ct. Hence, if p1p2 = q1q2 = r1r2 = 0, then

this model will nest the simple model in which decision variables are independent

of pollution levels and excludes the endogeneity of these variables with respect to

pollution.

3.2.6 Pollution Impacts

Potentially, pollution can affect a child’s skill through two channels. In the first

channel, pollution affects a child’s skill directly through health. Health effects of

pollution can be mild (headache and tiredness), or severe (such as asthma attack and

long lasting brain damage from exposure to pollution in early childhood). In turn,

poor health can affect a child’s productivity. For example, student’s poor performance

at the school due to lack of attention or tiredness. Severe health shocks such as nervous

system damage can have a persistent and long term impact on a child’s performance.

8 I will refer to this channel as direct impact.

In the second channel, pollution affects a child’s skill indirectly through a

household’s investment. In response to changes in pollution levels, household can

7See 3.10.

8Reyes (2007)
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adjust their investment behavior accordingly. This adjustment can either mitigate

the negative effect of pollution or exacerbate it depending on the direction of the

adjustment. I will refer to this channel as indirect impact. Equation (3.7)

demonstrates both effects of pollution. For a general form of the skill formation

technology θt+1 = f(θt, et, τpt, τct, xt) the the partial derivative of θt+1 with respect

to xt is

∂θt+1

∂xt
=
∂ft
∂e∗t

∂e∗t
∂xt

+
∂ft
∂τ ∗pt

∂τ ∗pt
∂xt

+
∂ft
∂τ ∗ct

∂τ ∗ct
∂xt︸ ︷︷ ︸

IndirectImpact

+
∂ft
∂xt︸︷︷︸

DirectImpact

(3.7)

The asterisks indicate the optimal values of the decision variables. The three terms

on the right hand side of equation (3.7) represent the indirect effect of pollution.

In the direct impact, pollution affects a child’s skill in the absence of any type of

behavioral response. Majority of the epidemiological and health studies focus on the

direct impact of pollution.

Combining equations (3.7) and (3.3) together, the direct and indirect impact of

pollution on a child’s skill for the specific case can be expressed as:

Direct Impact =
∂ft
∂xt

= θt+1[
δ3,tp1e

∗
t

ẽ∗t
+
δ4,tq1τ

∗
pt

τ̃ ∗pt
+
δ5,tr1τ

∗
ct

τ̃ ∗ct
+
δ6,t

xt
], (3.8)

Indirect Impact = θt+1[
δ3,t(1 + p1xt)

ẽ∗t

∂e∗t
∂xt

+
δ4,t(1 + q1xt)

τ̃ ∗pt

∂τ ∗pt
∂xt

+
δ5,t(1 + r1xt)

τ̃ ∗ct

∂τ ∗ct
∂xt

]

(3.9)

According to equation (3.7) the net impact of pollution on a child’s skill is the sum

of direct and indirect impacts. The direction of the net effect (negative or positive)

depends on the sign and magnitude of the parameters. Predictions of the theory are

ambiguous with respect to pollution effect on a child’s skill. To fix ideas, let’s assume
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that there is no behavioral response with respect to pollution levels. In the model this

assumption holds if p1p2 = q1q2 = r1r2 = 0 and this will lead to
∂e∗t
∂xt

=
∂τ∗pt
∂xt

=
∂τ∗ct
∂xt

= 0.

Substituting these values in the equations (3.8) and (3.9) leads to

∂θt+1

∂xt
= Direct Impact + Indirect Impact = θt+1

δ6,t

xt
(3.10)

Thus, the sign of the net pollution effect only depends on the sign of δ6,t. Based

on the previous epidemiological and health studies we expect δ6,t to be negative. In

other words, when households do not adjust their behavior, pollution will negatively

affect children’s health. However, the assumption of p1p2 = q1q2 = r1r2 = 0 is a

specific case of the general model and, in fact, these parameters can take any non-

zero values. That is, households can react to the pollution levels and accordingly

choose the values of the decision variables and by that means either mitigate or even

intensify the negative effect of pollution depending on the values of the parameters.

Apart from non-behavioral response, there are two other possible cases:

compensatory and reinforcing responses. The compensatory response is when the

household mitigates the negative effect of pollution. In this case, pollution still

negatively affects the child’s skill but to a lesser degree than in the case of

non-behavioral response, i.e. θt+1
δ6,t
xt

< ∂θt+1

∂xt
. The reinforcing response happens

when the return to investment in child’s skill is too low because of the high

pollution levels. In this case the household lowers the investment. Therefore, the

negative net effect of pollution in the presence of reinforcing responses is larger than

the direct impact alone. Theoretically, the reinforcing behavioral responses mean

∂θt+1

∂xt
< θt+1

δ6,t
xt

< 0. The range of the parameters that predicts the compensatory or

reinforcing response can not be derived analytically.

Since the model does not predict a definite outcome, question about how pollution

affects children’s skill and how this effect is neutralized (or intensified) by households
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becomes an empirical question. The estimation results will determine which one

of the roles households have: non-responsive to pollution levels, compensatory, or

reinforcing role.

3.3 Data

Primary source of the data for this study is the Panel Study of Income Dynamics

(PSID) and three waves of Child Development Supplement (CDS-I, CDS-II, and

CDS-III). I also use pollution data from the US Environmental Protection Agency

(EPA).

3.3.1 PSID and CDS

The PSID is a nationally representative longitudinal survey of the US

individuals and families in which these individuals reside 9 . It provides a wide

range of information on families and individuals. Since 1968 the PSID has collected

data on family composition changes, housing and food expenditures, marriage and

fertility histories, employment, income, health, consumption, wealth, and time spent

on housework. The original PSID survey mainly focuses on households and

particularly the head of the households, and then on spouses. From the main PSID

survey, I use demographic information about the parents of children.

While PSID collects some information about children in the household, this

information is quite limited. Starting in 1997, PSID added a new component, the

CDS, that specifically focuses on children and collects detailed information on them.

So far three waves has been administered: in 1997, 2002, and 2007. The data

9The PSID survey initially started in 1968 with a nationally representative sample of households.
However, after the first wave of the survey in the following years, children from a household in the
main sample who left the family and formed their own family were added as new households to the
survey. Adding the new generation of the households into the survey and also dropouts from the
main sample made the current sample unrepresentative of the national population. In order to fix
this issue, PSID contains household’s weights.
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include but not limited to general school achievement information; the CDS also

administers the subset of standard tests to assess academic skills of children. These

tests include mathematics and language skills among other content areas. For this

study I use the Letter-Word (LW) test scores as a measure of children’s skill. The

LW test is a subset of Woodcock-Johnson Revised (WJ-R) test of achievement that

measures the symbolic learning and reading identification abilities of children at

ages between 3 to 17. I use the raw scores for the LW test that is well-suited for

examining changes in a child’s performance on a WJ-R sub-test over time. 10

The CDS also collects time use data on children for two days during a week: one

weekday and one weekend day. Subjects fill out (with their caregiver if they are too

young) a detailed time diary during these days. They provide information on what

they have done (type of activities), where they have done (location of activities),

starting and ending time of activities (duration of activities), and who was with them

during the activities over 24 hours. I use the time diary information to extract the

time that children spend on developing their skills, either alone (e.g. time at school

or working alone on home works) or with their parents (e.g. studying with parents).

Table 3.1 lists the variables that I use, years of data, and their sources.

I focus on the PSID and CDS surveys that are administered between the years

of 1997 and 2007. For the sample I use for the estimation, I keep all the children

who have at least one LW test score. I focus on children between the age of 3 and

15. Even though the administrated test is given to children between ages 3 and 18,

I observe a dramatic unexplained drop in study time of children older than 16 and I

drop those observations from the sample. I further restrict the sample based on the

10The PSID also .reports the standardized scores of the LW test that are normalized using a
child’s raw score, his age, and other children’s scores in his age category. The standard scores are
useful for cross-sectional comparison between different age groups. However, it is not useful to
study changes in a child’s performance over time. For further detail on the LW test see https:
//psidonline.isr.umich.edu/Guide/default.aspx
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income data. I drop observations from families who had weekly income below $100 as

a minimum income required for a sustainable living in the absence of savings in the

model. I also drop the high income observations with annual income above $150000.

These restrictions based on income remove 4% of the observations 11 .

Table 3.2 provides summary statistics of the data from the PSID and CDS. All

the time variables are calculated in hours per week units and the family income is

weekly income in 2000 dollars. Table 3.3 presents demographics variables for the CDS

sample started at 1997.

Figure 3.1 shows the average LW test scores for every age group of children. The

average test score increases at a declining rate by children’s age. This observation is a

crude measure of improvement in children’s skill as they grow up. Figure 3.2 provides

the average time that parents actively spend with their children and the time that

children spend on their education alone for every age group. I define the parental

time with their child ”active” if at least one of the parents actively engaged in the

activities that the child performs. Further, the education time alone is the time spent

on school related activities such as time spent at school or time spent on homework

at home that the child does on his own. As demonstrated in figure 3.2, as children

grow up they spend less time with their parents and more on school related tasks.

3.3.2 Pollution

The ideal air pollution data for this study would be the exact measure of pollution

that a child inhales. Unfortunately, such detailed and precise measure of exposure

to pollution is not available unless it is recorded in a lab experiment. In case of the

United States, researchers normally use the measure of pollution that is recorded by

11Some of the families have zero or negative income where negative income corresponds to business
or farm losses. There are only 22 observations with zero or negative income which is less than 1%
of all the observations with non-missing income.
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the EPA via monitors throughout the country. Figure 3.3 shows the actual locations

of monitors nationwide that are placed by the EPA to record variety of pollutants.

Among the multiple alternatives of pollution measures I use ground level ozone to

control for environmental hazards because of its availability for the entire period of

the CDS sample. Bad ozone is the one that is found in the Earth’s lower atmosphere,

near the ground level. The ground level ozone is not generated directly. It is formed

from the chemical reactions between oxides of nitrogen (NOx) and volatile organic

compounds (VOC) in the presence of sunlight and heat. NOx and VOC are emitted

from different sources such as cars, power plants, industrial boilers, and refineries into

the air. Previous studies have shown that ozone has negative effects on human health

specially on children and elderly. 12

Using the centroid of households’ census block and latitude and longitude of the

monitors I find a nearest monitor to every household’s location. Assigning a monitor

that is very far from a household and it may not be true representative of the pollution

levels that the household is exposed to, can lead to measurement error. To avoid the

measurement error I only keep those households that are within 20 miles of the nearest

pollution monitor. Since the PSID survey after year 1997 is run biannually, I only

observe households’ location every other year. So, I do not observe what pollution

levels a household faces between two surveys. In order to obtain more information

from pollution data, if a household lives in the same census block in two consecutive

surveys, I assume it was living in the same census block in-between.

Since the main data from the PSID is collected on yearly basis, the pollution data

should match that annual pattern. Instead of reporting an annual measure collected

from the monitors, the EPA generates so-called ”Design Value”. The design value is

a statistic that the EPA generates to describe the air quality status at a particular

12For instance Currie and Neidell (2005) and Neidell (2004).

114



location relative to the National Ambient Air Quality Standards (NAAQS). Based on

the design value, the EPA determines if a particular monitor or, at a more aggregate

level, a county is in attainment status or not. The monitor or county with the design

value above the predetermined threshold is considered to be in non-attainment and

these with the design value below the threshold are considered to be in attainment

status. If a county is in non-attainment status, it is required to lower the pollution

levels below the designated threshold. Under the Clean Air Act Amendment (CAAA)

every year the EPA assigns a county attainment/non-attainment status.

In order to facilitate the interpretation of the results, I normalize the design value

by its standard deviation. Figure 3.5 shows the distribution of the pollution for the

pooled data. Figure 3.4 gives an idea about the variation of the pollution levels across

the country in 2000 where the darker colors represent higher level of pollution.

3.4 Estimation Method

In the following I present the assumption underlying the model specification and

explain the procedure to identify the parameters of the model and at the end I explain

the estimator that I use in this study.

3.4.1 Parameters

Each time period is equal to one year and child development process lasts until

age 15, M = 15. Preferences after age 15 are captured in final utility function. In

equation (3.3) I allow the TFP and the production parameters , δk,t’s, to vary by a

child’s age. In order to reduce the number of parameters to estimate, 6×M , I assume

a linear form as following:

Rt = exp(λ0,1 + λ0,2t) t = 1, . . . ,M,
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δk,t = λk,1 + λk,2t k = 1, . . . , 5; t = 1, . . . ,M, (3.11)

Using this linear form, the total number of technology parameters to be estimated

reduces to only 12. 13

Because of the normalization of the preference parameters, I only need to estimate

three of αk’s using the following mapping:

α1 = D−1exp(υ1), (3.12)

α2 = D−1exp(υ2)

α3 = D−1exp(υ3),

α4 = D−1,

where D−1 = 1 +
∑3

l=1 exp(υl). Instead of estimating αj’s directly, I estimate three

υl’s. All the three υl’s can take any real numbers, however, the mapping guarantees

that 0 ≤ αj ≤ 1 and αj’s sum to one. Another preference parameter to be estimated

is the child’s skill weighting parameter in the final period, ϕ.

Initial values for child’s skill level, household’s income, parents’ labor hours, and

pollution levels are drawn jointly from a log-normal distribution with average and

covariance matrix of (M,Σ). After the initial conditions are realized, the child’s

skill evolves over time according to the technology function. During the development

periods household’s income, parents’ labor hours, and pollution levels are drawn from

stochastic and exogenous processes described in the model section. Six parameters -

ω0, ω1, ρ0, ρ1, γ1, and γ2 - and the variances of the error terms of these processes are

unknown and need to be estimated.

13Two λ’s for each of the five δ’s and two for Rt.
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3.4.2 Identification

This section lays out the identification strategy of the model parameters. I jointly

estimate the preference and technology parameters within the model. I estimate the

parameters of the initial condition and the exogenous processes of household income,

parents’ labor hours, and pollution levels outside the model using directly the actual

data.

If a child starts a period with a skill level θt, then the skill at the end of the period

t is:

ln θt+1 = (λ0,1 + λ0,2t) + (λ1,1 + λ1,2t) ln θt

+(λ2,1 + λ2,2t) ln ẽt + (λ3,1 + λ3,2t) ln τ̃pt

+(λ4,1 + λ4,2t) ln τ̃ct + (λ5,1 + λ5,2t) lnxt + lnut

= f(θt, et, τpt, τct, xt; Λ) + lnut,

(3.13)

Λ is the vector of all the parameters in the technology function that includes

λ’s and complementary parameters, p’s, q’s, and r’s. Under the assumption that

error term is independently distributed across children and over time the production

parameters λ’s can be recovered using the non-linear least squares (NLS) approach

under the standard full rank condition where the objective function is

Λ̂NLS = argmin
Λ

N∑
n=1

(ln θt+1 − f(θt, et, τpt, τct, xt; Λ))2, (3.14)

In order to the full rank condition hold, households should have different levels

of investments and values for the exogenous variables. This condition is routinely

satisfied in the actual data. Additionally, given that the δi,t’s are a linear function

of children’s age, a necessary and sufficient condition for the sample is to contain

children of at least two different ages. This condition trivially is met in the actual

data. Hence, for a given set of preference parameters the technology parameters

can be identified. One remaining concern is identifying the parameters of unobserved
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monetary investment. However, in the model monetary investment is the only variable

that is directly related to observable household income. 14 I substitute optimal

solution of monetary investment which is a function of income into the model and

back out the technology parameters for a given set of preference parameters.

Next, I identify preference parameters. I take the value for the discount factor,

β, as given and set it to conventional value 0.96. I need to identify υ’s and the final

period’s preference parameter, ϕ. The time investments, τ ∗pt and τ ∗ct, are functions of

ϕ and υ’s. 15 For a given set of technology parameters the time investments can be

inverted to recover the preference parameters. Empirically, the sufficient condition

to identify ϕ and υ’s is that I observe at least two households with different levels

of time investments and their children are in different ages. 16 Hence, converting

actual measure of time investments yields values of preference parameters that are

homogeneous across the households. Basically, if there are enough variation in time

investments and children’s ages, I can recover preference parameters.

I estimate the average and covariance matrices of the log-normal distribution of

the initial condition outside the model directly from the actual data. Lastly, I need

to identify the parameters of the law of motions for income, parents’ labor hours, and

pollution. Since the law of motions for income, parents’ labor hours, and pollution

levels are homogeneous across the households, I can use household longitudinal data

to identify the parameters of these process outside of the model. If I have income,

parents’ labor hours, and pollution data for at least three periods, I can identify the

parameters of these three law of motions. Since this condition holds in the actual

data I recover those parameters.

14e∗t =
βδ3,t(1+p1xt)AtIt−α1p2
(1+p1xt)(α1+βδ3,tAt)

15See 3.11 for more detail.

16This condition also holds if I observe at least one household in the data at two different points
in time.
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3.4.3 Estimator

I use the Method of Simulated Moments (MSM) to estimate the parameters of

the model. Denote MN to be the vector of sample moments that summarizes the

relationships between variables where N indicates the number of children in the data

sample. The goal of the estimation is to identify a set of parameters of the model

that generates a vector of moments, M̃S, as close to true moments, MN , as possible.

The empirical process starts at year 1997. In the first period, I draw a vector of

household’s income, parents’ labor hours, pollution levels and initial child’s skill at

the age of 3 for S number of households. For a given set of model’s parameters I

solve the household’s decision problem for 1997 that yields the household’s optimal

value of consumption, monetary and time investments on the child, parents’ and

child’s leisure at 1997 and the child’s skill in 1998. In year 1998 I draw from the

distribution of shocks to household’s income, parents’ labor hours, and pollution

levels. Using the exogenous processes for these variables, I calculate their values for

1998. Simulating the child’s skill for 1998 from the household’s decision at 1997 and

knowing the household’s income, parents’ labor hours, and pollution levels I solve

the household’s decision problem as before. Repeating this process yields the path

of optimal decision variables of the household’s and child’s skill from 1997 to 2007.

I repeat the same process for all the S households. While I observe children’s skills

in 1997, 2002, and 2007, I can simulate these values for all years from 1997 to 2007

using the data generating process (DGP).

For a given set of parameters and using the DGP, I simulate a sample of S

households and calculate the moments of the sample, M̃S, that is analogous to MN

in the actual data sample. The problem is to find a set of parameters, Ψ, that

minimizes the following function:
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Ψ̂N,S,W = argmin
Ψ

(M̃S −MN)W (M̃S −MN)

where W is the inverse of the covariance matrix of data moments, MN , that I

estimate it by re-sampling the actual data. Moments that I use in the estimation are

average, standard deviation, and the correlation between test score, parents’ active

time with children, and child’s alone time on education at each child age group: 3-6,

7-10, and 11-15 years old. I also use the correlation between test score, parents’ active

time with children, child’s alone time on education, pollution instrumental variable,

households’ income, and parents’ labor hours at each child age group.

In the set of moments the orthogonality condition between the instrumental

variable and the error term is E(ztut) = 0. If the pollution levels was not

endogenous, then it would be uncorrelated with the error term, i.e. E(xtut) = 0.

However, because of the omitted variables this condition does not hold anymore and

instead the error term is orthogonal to the instrumental variable. Hence, I use the

moment condition of E(ztut) = 0 instead of E(xtut) = 0.

3.5 Estimation Results

In this section, I present estimated parameters of the structural model and within

the sample fit.

3.5.1 Preference Parameters

All the households have the same time invariant preferences; thus, I only need

to estimate one set of preference parameters. The estimated preference parameters

are presented in table 3.4 panel A. The transformed preference parameters, υ’s, are

difficult to interpret. I instead present the original preference parameters, α’s.
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Since the preference parameters in the flow utility are normalized, α’s are the

weights that households place on each input in their utility function. The weight

that an average household attach to parental leisure and child leisure is almost the

same, 0.19. These weights for consumption good and child’s skill are 0.26 and 0.35,

respectively. This means that in terms of flow utility households value one unit of

child’s skill more than one unit of any other input in its preference. The value of

child’s skill is actually greater because of the weighted child skill in the last period of

the child development in the utility function of the household. Another measure to

compare the importance of different ”good” in the household’s utility is to compare

the household’s willingness to pay for one additional unit of the ”goods”. Units of

parents’ and child’s leisure time is hours per week and the units of child’s skill is

questions correct on the LW test. Households’ average willingness to pay for parental

leisure, child leisure, and child’s skill are $10, $9, and $57, respectively. Household’s

willingness to pay for different ”goods” also reveals the high value of child’s skill for

the household.

The estimated scaling factor for children’s skill in the last period, ϕ, is 9.06.

In order to provide some insight on the value of the scaling factor, if the model’s

assumption was that the household live infinitely and it values its child’s final skill in

all the future periods, the implied value of ϕ would be 1
1−β = 25. So, this implies the

household has a high valuation child’s skill.

3.5.2 Skill Formation Technology Parameters

There are two groups of technology parameters: time invariant, and time variant

parameters. Time invariant technology parameters, p’s, q’s, and r’s , are the

complementary parameters between investment variables and pollution levels. Table

3.4 panel B provides the estimated values of these parameters. Standard errors are
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calculated using the bootstrap method. The time variant technology parameters are

the TFP, Rt, and the elasticity of child’s skill with respect to inputs, δ’s, that vary

by child’s age. These parameters are presented in figures 3.6-3.8.

Recall that
∂e∗t
∂xt

= α1p1p2
(1+p1xt)2(α1+βδ3,tAt)

; since p1 and p2 are both positive, the

monetary investment is increasing in pollution levels. If pollution goes up,

household will spend more on child’s skill. Hence, the household has a

compensatory role regarding monetary investment on child. It means that the

household who lives in a polluted area invests more money on its child to

compensate for the negative effect of pollution.

Based on the signs of these parameters it is not very straightforward how

parental time and pollution levels are related. However, for the given point estimate

results and average values for the exogenous variables of the model I can calculate

the change in parental time in response to change in pollution levels. Parental time

is increasing in pollution levels, so the household has compensatory role regarding

parental investment on child. Thus, the child who lives in a polluted neighborhood,

receives more parental time to compensate for the negative effect of pollution. For

the given average pollution levels, 10% higher pollution on average leads to 0.005%

more parental time. The opposite is true for the child’s educational time alone.

Meaning that a child who lives in a polluted area spend less time on education alone

as compare to a child in a better neighborhood. I must point out that p1, q2, and r1

are not statistically significant.

Figures 3.6-3.8 show the value of δt’s by child age over the child development

horizon. In figure 3.6 parameters of δ1,t, and δ2,t represent the elasticity of child’s

skill with respect to stock of child’s skill and monetary investment, respectively. The

self-productivity parameter, δ1,t, is downward sloping. This pattern represents the
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diminishing marginal return of stock of child’s skill. In other words, having a higher

skill to improve child’s skill is more important in early childhood than later.

Because of the interaction terms of investment variables with pollution levels, δ2,t-

δ4,t represent the elasticities of the effective decision variables (ẽt, τ̃pt, and τ̃ct), i.e. the

original decision variables interacted with pollution levels. As it was expected figures

3.6 and 3.7 show that δ2,t, δ3,t, and δ4,t are positive. In addition, the elasticity of

parental time interacted with pollution is decreasing as child ages, and the elasticity

of educational time alone and monetary investment interacted with pollution become

more productive as child ages. Decreasing pattern of δ1,t and δ3,t is in line with the

previous findings of child development literature that emphasize the importance of

early childhood intervention. 17 Stock of child’s skill and parental time are more

productive early on in child’s development process. On the other hand, increasing

pattern of δ2,t means that monetary investment becomes more productive as the child

grow older. Further, getting more productive at studying alone that includes school

time for older children may lead to the increasing pattern of δ4,t.

Figure 3.8 shows that the coefficient of pollution levels is negative and is increasing

by child’s age. Without any interaction in the model, δ5 represents the elasticity of

child’s skill with respect to pollution. Increasing pattern means that younger children

are more vulnerable to environmental hazards than their older peers. However, more

intuitive way to explain the effect of pollution is the direct effect of pollution that is

given in equation (3.8). The direct effect is the measure of interest that shows how

child’s skill will be affected by pollution in the absence of compensatory investment

by the households. The direct effect varies by age and it depends on income level,

parents’ free time, pollution levels, and value of child’s skill. The computed direct

impact for 3 years old child is about -1.44. This means that for an average child

17For example Heckman (2008) and Cunha et al. (2006)
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of age 3 year, increasing pollution levels by one standard deviation reduces child’s

test score by 0.10 standard deviation. This value for 14 years old children is about

0.04 of standard deviation. On average the direct effect across all the ages is about

0.07 standard deviation for one standard deviation increase in pollution levels. The

decreasing pattern, absolute value, of the negative effect of pollution supports the

fact that younger children are more vulnerable to environmental hazards than their

older peers.

3.5.3 Within Sample Fit

This section presents the within sample fit results for three main variables of

the LW test score, parental time with child, and child’s educational alone time in

tables 3.5-3.6 and figures 3.10-3.12. Tables 3.5 and 3.6 show the results for three

age categories and the numbers are the average values of the variables for every age

group. Figures 3.10-3.12 present similar results as the tables with finer categories of

child age. Figures demonstrate a good fit of the model to the data.

The estimated model is able to predict the increasing and concave pattern of the

LW test score data. Parental time average in the data has a sharp decline from age

3 to 8, and after age 8 it declines with a slower rate. The model is fitting the data

well in terms of these slopes before and after the age of 8. Children’s alone time on

education is increasing up to age 7, and after they start the school the time growth

slows down and almost stays constant. The model is able to track this pattern for all

the age groups before and after the age of 7.

3.6 Counterfactual Analysis

In this section I consider two counterfactual policy experiments using the results

of the point estimates. The first policy is an environmental policy that exogenously
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reduces the pollution levels. The second policy is the income transfer to households.

The counterfactual exercise will provide the magnitude and direction of the household

response to these policy changes and the effect on children’s skill.

3.6.1 Experiment 1: Pollution Decline

As with any policy intervention, it is critical to have a credible estimate of the

costs and benefits of environmental policy for its successful implementation. In this

section I examine the impact of policy that reduces pollution level using the point

estimates results.

Figure 3.13 shows the result of the experiment. The baseline is the simulated

test scores from the model for the estimated parameters. In the experiment, I reduce

the stream of the pollution that children are exposed to by one standard deviation

at every age of the development process. In other words, children now live in a

neighborhood with better air quality as opposed to what they used to live. Reduction

in pollution levels leads to increase in children’s test score for all the ages. This

improvement comes from multiple channels. First channel is the direct effect of

pollution that has a negative effect on children’s skill. Among the decision variables

children’s alone time on education, τct, increases in response to pollution decline

and positively affects the child’s skill. These factors, reinforced by self-productivity,

∂θt+1

∂θt
, magnify the improvement in child’s skills brought by the reduction in pollution

level. However, both monetary investment and parental time with the child are

positively correlated with pollution levels. This means that in response to pollution

reduction the household will enjoy from more consumption good and parents’ leisure

than investing on the child. This response will dampen the positive effect of pollution

reduction on the child’s skill.
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It is also worth examining how the experiment result would change if I were

to ignore the household’s investment responses to pollution decline. To do so, I

simply calculate the children’s skill using the skill formation technology with the

new pollution levels and using investment values from the baseline model. This

method, therefore, shuts down the investment response channel because it assumes

that investment variables stay unchanged after the pollution decline. The result of

this exercise together with the previous ones is presented in figure 3.13. In the full

model average test score among all the age groups increase by 0.09 standard deviation

in response to one standard deviation decline in pollution levels, as compared to a 0.13

standard deviation increase in the average test score when the investment response

is ignored. Smaller effect in the full model as compare to the case of shutting down

the response channel means that compensatory effect of monetary investment and

parents’ time with the child is stronger than the reinforcing effect of the child’s alone

time on education.

Since the productivity of inputs in the skill formation technology is age

dependent and the effects accumulate over time through the self-productivity, the

effect of pollution on children’s skill varies by age. Figures 3.14-3.16 show the

distribution of the changes in test score due to pollution reduction for three age

categories in the full model with investment responses. The pattern for the case

without investment responses are qualitatively similar.

3.6.2 Experiment 2: Income Transfer

Income transfer is a conventional policy solution to improve children’s skills

especially among the disadvantaged families. Additional income transfer may

influence the investment decisions of the households and, thus, child’s skill. In

income transfer counterfactual experiment households receive transfer of one
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standard deviation of income that is roughly $600 per week at every age of children.

Unlike the pollution reduction counterfactual, household’s income affects child’s skill

only through the monetary investment that is positively correlated with income

levels.

Figure 3.17 demonstrates the result of income transfer on children’s skill. On

average, one standard deviation income transfer increases the test score by 0.12

standard deviation. Because of cumulative effect through stock of child’s skill, the

effect of income transfer is magnified for older children and it leads to larger gap for

15 years old children.

To compare the results of two experiments figure 3.18 presents the effect of two

experiments in one frame. The horizontal axis is the amount of weekly transfer to

the households and the vertical axis is the LW test score. The flat curve presents the

average test score from one standard deviation reduction in pollution levels without

income transfer. The upward slopping curve represents the average test score for

different amount of income transfers. The figure shows that reducing pollution levels

by one standard deviation leads to the same average test score as a weekly income

transfer of $120, i.e. $6240 per year. Figure 3.19 presents similar result but for the

average utility level instead of average test score. The figure shows that reducing

pollution levels by one standard deviation leads to the same average household utility

as a weekly income transfer of around $30, i.e. $1560 per year. The fact that smaller

income transfer equates utility levels as compare to $120 that equates the LW test

scores under two experiment comes from the preference and the technology function.

Pollution does not directly affect the household’s utility but through the child’s skill.

Hence, pollution reduction increases the household’s utility through improving the

child’s skill. However, since the income directly enters into the household’s utility

through the consumption good the small transfer of income can lead to the same
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level of utility as pollution reduction. The income transfer of $30 will not lead to

a large improvement in the child’s test score because it will be split up between

consumption and monetary investment on the child. If the goal is to improve the

child’s test score equal to pollution reduction, the amount of transfer has to be large

enough such that overflow of transfer into monetary investment is enough to improve

the test score equal to pollution reduction. Related, Chay and Greenstone (2005)

find that the elasticity of housing values with respect to particulates concentrations

ranges from -0.20 to -0.35 at an average housing price of $40290.

3.7 Discussion and Conclusion

In this chapter I estimated the skill formation technology of children while

including pollution levels as one of the determinants of children’s skill. I used panel

data from the Panel Study of Income Dynamics and Child Development Supplement

as a source of data on test scores, time use, and demographics of children and their

family. I merged these data sets with the measures of pollution from the

Environmental Protection Agency: I used ozone as a control for pollution exposure

of children because it is one of the most hazardous pollutants to human health.

My estimation results show that pollution has negative effect on the LW test

scores. I find that increasing the pollution levels by one standard deviation decreases

the test scores by 0.07 standard deviation on average. This average effect, however,

masks significant heterogeneity among different age groups. Thus, test score of 3

years old would go down by 0.10 standard deviation in response to one standard

deviation increase in pollution levels, while for the 14 years old children this effect is

nearly twice as small - 0.04 standard deviation. This finding implies that children are

more vulnerable to pollution in early childhood. The magnitude of the effect I find

is significant compared to other policies of improving children’s test scores estimated
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in the literature. For example, Krueger (1999) shows that reducing class size by 7-8

students in a class with 20 students, improves the students standardized test scores

by 0.22 standard deviation.

The estimated effects above only represent the direct impacts of pollution without

accounting for its indirect impact and the dynamic nature of the model. In the

presence of behavioral response the net effect of pollution can be different than the

direct impact alone; moreover, the net effect can be accumulated over time and create

multiplier effect. Thus, the benefit of continuously living in a neighborhood with one

standard deviation lower pollution levels from the age of 3 to 15, translates into 0.19

standard deviation higher test score at age 15.

I consider income transfer as a policy that could potentially mitigate the negative

effect of pollution on child’s skill. I find that an annual income transfer of $31,000

(an equivalent of one standard deviation household income) on average increases the

test scores by 0.12 standard deviation. To compare the magnitude of this effect, Dahl

and Lochner (2012) find that $1000 increase in family income leads to 0.06 standard

deviation increase in combined math and reading scores. In a relate study, Neilson

and Zimmerman (2014) estimated that $77,000 per student in school construction

expenditure results in 0.21 standard deviation gain in reading score.
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3.8 Figures

Figure 3.1: Average LW Test Scores by Age

Source: The LW test scores comes from the PSID-CDS.
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Figure 3.2: Average Child’s Time on Education Alone

Source: The time diary information comes from the CDS.
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Figure 3.3: Pollution Monitors’ Location

Source: The exact geographical location of the monitors is from the EPA.
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Figure 3.4: Ozone Average by County for Year 2000

Source: Ozone data comes from the EPA.
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Figure 3.5: Pollution Distribution

Source: Ozone data comes from the EPA.
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Figure 3.6: Elasticities by Child’s Age

Note: δ1 and δ2 are the elasticity of θt+1 with respect to θt and ẽt, respectively.
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Figure 3.7: Elasticities by Child’s Age

Note: δ3, and δ4 are the elasticity of θt+1 with respect to τ̃p,t, and τ̃c,t, respectively.
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Figure 3.8: δ5,t by Child’s Age

Note: δ5 is the power of xt in the skill technology function.
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Figure 3.9: Direct Impact of Pollution on Test Scores

Note: This graphs shows the direct effect of pollution on the LW test score for given values

of exogenous variables in their mean level. To fix the idea, one standard deviation increase

in pollution levels roughly reduces the LW test score by 1 score for a child at age 14. This

number is around 3.5 for an 8 years old child.
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Figure 3.10: LW Test Scores by Child’s Age in the True and Simulated Data
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Figure 3.11: Parental Time by Child’s Age in the True and Simulated Data
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Figure 3.12: Education Time Alone by Child’s Age in the True and Simulated Data
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Figure 3.13: Average Child’s Test Scores

Note: The baseline is the simulated data using the point estimate results. The second curve

is the simulation results from one standard deviation reduction of pollution level for all the

ages. The third curve is the simulation results from one standard deviation reduction of

pollution level for all the ages without investment responses.
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Figure 3.14: LW Test Score Change Due to Pollution Decline. Age 3-6

143



Figure 3.15: LW Test Score Change Due to Pollution Decline. Age 7-10
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Figure 3.16: LW Test Score Change Due to Pollution Decline. Age 11-15
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Figure 3.17: Average Child’s Test Scores

Note: In the baseline I draw the income value from the data. For the treatment group I

give weekly transfer of one standard deviation income.
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Figure 3.18: Average LW Test Score Under Two Separate Policies

Note: Average LW test score under two separate policies: pollution reduction, income

transfer. Pollution decline curve presents the average LW test score from one standard

deviation reduction of pollution level for all the ages without income transfer. Income

transfer curve presents the average LW test score for different amount of transfer without

pollution reduction. The graph shows that income transfer of around $120 leads to the

same average LW test score as one standard reduction in pollution levels for all the ages.
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Figure 3.19: Average Household’s Utility Levels under Two Separate Policies

Note: Average household’s utility levels under two separate policies: pollution reduction,

income transfer. Pollution decline curve presents the average household’s utility levels from

one standard deviation reduction of pollution level for all the ages without income transfer.

Income transfer curve presents the household’s utility levels for different amount of transfer

without pollution reduction. The graph shows that income transfer of around $30 leads to

the same average household’s utility levels as one standard reduction in pollution levels for

all the ages.

148



3.9 Tables

Table 3.1: Data Sample

Used variable from the data Years Source

It Annual family income 1996,98,2000,02,04,06 PSID

ht Parents’ labor hours 1996,98,2000,02,04,06 PSID

θt Letter-Word score 1997,2002,07 CDS

τ pt Active time parents spend with child 1997,2002,07 CDS

τ ct Time that child spend at school study alone 1997,2002,07 CDS

xt Pollution 1997-2007 EPA

Table 3.2: Summary Statistics

Variable Mean Std. Dev. Min. Max. N

Family income 971.98 600.29 100.06 2882.64 5302

LW Test Score 35.98 14.71 1 57 1940

Total time on education alone 30.97 15.9 0 88.5 1899

Parents’ active time with child 23.74 14.9 0 143.5 1899

Ozone design value 5.43 0.89 1.85 9.45 4086

Notes: This table shows the sample’s characteristics at the beginning of the study, year 1997.
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Table 3.3: Summary Statistics for Sample at 1997

Variable Mean Std. Dev. N

Mothers education (years) 14 1.9 854

Family size 2.2 0.9 958

Mothers age at first birth 24.28 5.74 855

Family income ($/week) 899.39 589.11 851

Notes: This table shows the sample’s characteristics at the beginning of the study, year 1997.
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Table 3.4: Estimated Parameters

Parameter Estimate SE

Panel A: preference parameters

Consumption impact α1 0.2569 0.0099

Parents leisure impact α2 0.1972 0.0240

Child leisure impact α3 0.1936 0.0069

Child’s human capital impact α4 0.3523 0.0109

Child’s human capital multiplier at final period ϕ 9.0648 15.0449

Panel B: technology parameters

Monetary investment parameter p1 0.0381 1.2955

Monetary investment intercept parameter p2 0.0712 0.0351

Parental time parameter q1 0.2522 0.0985

Parental time intercept parameter q2 2.5191 2.2786

Education time alone parameter r1 -0.0003 0.0002

Education time alone intercept parameter r2 5.2308 11.6220

Table 3.5: Sample Fit for the LW Test Scores

Age Category Letter-Word Test Scores

Data Simulated

3-6 9.51 10.53

7-10 34.09 33.62

11-15 45.61 45.07
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Table 3.6: Sample Fit for Time Investment

Age Category Parents time with child

(hr/week)

Childs time on education alone

(hr/week)

Data Simulated Data Simulated

3-6 33.88 23.68 18.28 13.70

7-10 23.46 20.01 33.99 31.30

11-15 19.73 19.83 35.74 38.23
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3.10 Model Solution Detail

Solving the household’s optimization problem using the backward induction leads

to the following first order conditions:

βδ3,t(1 + p1xt)At
et + p1etxt + p2

− α1

It − et
= 0

βδ4,t(1 + q1xt)At
τpt + q1τptxt + q2

− α2

T − Lt − τpt
− α3

T − τpt + τct
= 0

βδ5,t(1 + r1xt)At
τct + r1τctxt + r2

− α3

T − τpt + τct
= 0

For M periods of child development process At is calculated as

AM = ϕ,

AM−1 = α4 + βδ1,Mϕ,

...

At = α4 + βδ1,t+1At+1,

...

A1 = α4 + βδ1,2A2,

Where βAt is the period t marginal utility of the period t + 1 log child skill to

the household, i.e. ∂Vt(.)
∂ ln θt+1

. The future marginal utility depends on the flow utility

of child skill which is measured by α4, the productivity of child skill in forming the

next period child skill which is measured by δ1t, and the discount factor β. In the

last period the household only values child skill at the end of period M with weight

of ϕ. Hence, there is no flow utility of period M + 1 and only the marginal utility is

weighted by ϕ without adding α4.
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From the first order conditions the optimal value of monetary investment on child’s

skill, et, is

e∗t =
βδ3,t(1 + p1xt)AtIt − α1p2

(1 + p1xt)(α1 + βδ3,tAt)

The optimal value of parental time, τpt, is a solution for the quadratic equation of

aτ 2
pt + bτpt + c = 0 where

a = (1 + q1xt)[α2 + α3 + βAtδ3t +
βAtδ4t(α2 + βAtδ3t)

α3 + βAtδ4t

]

b = (1 + q1xt)(α2T + α3T1 + βAtδ3t(T1 + T ))− q2(α2 + α3)

+(1 + q1xt)(α2 + βAtδ3t)/(1 + r1xt)(α3 + βAtδ4t)(α3r2 − TβAtδ4t(1 + r1xt))

−βAtδ4t/(α3 + βAtδ4t)(T1βAtδ3t(1 + q1xt)− α2q2)

c = (T1βAtδ3t(1 + q1xt) − α2q2)/(1 + r1xt)(α3 + βAtδ4t)(TβAtδ4t(1 + r1xt)− α3r2)

+(q2(α2T + α3T1)− T1TβAtδ3t(1 + q1xt))

The rest of the optimal values are as following

τ ∗ct =
βδ4,tAt(1 + r1xt)(T − τ ∗pt)− α3r2

(1 + r1xt)(α3 + βδ4,tAt)
,

l∗pt = T − Lt − τ ∗pt,

l∗ct = T − τ ∗pt − τ ∗ct,

3.11 Identifying Preference Parameters

From 3.10, I can simplify time investments as following

τ ∗pt =
−b±

√
b2 − 4ac

2a

τ ∗ct =
βδ4,tAt(1 + r1xt)(T − τ ∗pt)− α3r2

(1 + r1xt)(α3 + βδ4,tAt)
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Parameters a, b, and c are presented in section 3.10. Technically there are two

equations in hand and four parameters to be identified. Since At is time varying,

actual measures of time investments for a household in two different points in time

provides four equations to back out the preference parameters, α2, α3, α4, and ϕ.

Similarly, time investments for two different households can do the job ,too.

Empirically if there are enough variation in time investments and children’s ages, I

can recover preference parameters.
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