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ABSTRACT

Using stereo vision for 3D reconstruction and depth estimation has become a

popular and promising research area as it has a simple setup with passive cameras

and relatively efficient processing procedure. The work in this dissertation focuses on

locally adaptive stereo vision methods and applications to different imaging setups

and image scenes.

Solder ball height and substrate coplanarity inspection is essential to the detec-

tion of potential connectivity issues in semi-conductor units. Current ball height

and substrate coplanarity inspection tools are expensive and slow, which makes them

difficult to use in a real-time manufacturing setting. In this dissertation, an auto-

matic, stereo vision based, in-line ball height and coplanarity inspection method is

presented. The proposed method includes an imaging setup together with a com-

puter vision algorithm for reliable, in-line ball height measurement. The imaging

setup and calibration, ball height estimation and substrate coplanarity calculation

are presented with novel stereo vision methods. The results of the proposed method

are evaluated in a measurement capability analysis (MCA) procedure and compared

with the ground-truth obtained by an existing laser scanning tool and an existing

confocal inspection tool. The proposed system outperforms existing inspection tools

in terms of accuracy and stability.

In a rectified stereo vision system, stereo matching methods can be categorized

into global methods and local methods. Local stereo methods are more suitable

for real-time processing purposes with competitive accuracy as compared with global

methods. This work proposes a stereo matching method based on sparse locally adap-

tive cost aggregation. In order to reduce outlier disparity values that correspond to

mis-matches, a novel sparse disparity subset selection method is proposed by assigning

a significance status to candidate disparity values, and selecting the significant dispar-
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ity values adaptively. An adaptive guided filtering method using the disparity subset

for refined cost aggregation and disparity calculation is demonstrated. The proposed

stereo matching algorithm is tested on the Middlebury and the KITTI stereo evalua-

tion benchmark images. A performance analysis of the proposed method in terms of

the l0 norm of the disparity subset is presented to demonstrate the achieved efficiency

and accuracy.
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Chapter 1

INTRODUCTION

This chapter presents the motivation behind the work in this dissertation and

briefly summarizes the contributions and organization of this dissertation.

1.1 Motivation

Three-dimensional reconstruction and modeling is one of the major areas in com-

puter vision and computer graphics. 3D reconstruction is a process that estimates

the 3D structure and appearance of objects or scenes. In recent decades, people are

paying more and more attention to obtaining 3D information using 3D reconstruction

due to its wide range of applications in various fields. 3D reconstruction plays im-

portant roles in automatic target recognition and tracking [2–4], medical diagnostic

and surgery [5–7], large scene reconstructions [8], remote sensing and global informa-

tion systems (GIS) [9, 10], teleconferencing [11, 12], commercial 3D television and 3D

gaming, 3D cinema creation, industrial automated assembly and machine vision for

product inspection and quality control [13, 14].

In different applications, the 3D reconstruction can be done with various technolo-

gies, including mechanical measurement of objects using depth gauge, radiometric

scanning methods, including time-of-flight lasers [15], microwave or ultrasound [16],

and camera-sensor based methods using images and videos. 3D reconstruction can

be realized directly using 3D cameras such as time-of-flight cameras and structured

light systems [17] that generate the range information of the 3D scene by project-

ing laser beams on to the scene and computing the delay of the reflected laser rays
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from scene objects. In camera-sensor based methods, two-dimensional (2D) images

and video frames are the 2D projection of 3D objects on the camera sensors. Thus

by extracting features from 2D images/videos, the 3D structure of the scene can be

reconstructed. 3D reconstruction using image and video processing techniques is at-

tracting a lot of attention because of the readily available non-intrusive image and

video capture and storage resources, and is perceptually motivated due to the ability

to achieve 3D reconstruction from 2D visual data as demonstrated by the Human Vi-

sual System. Furthermore, recent image/video processing techniques demonstrated

relatively good 3D reconstruction results for various applications. Using image and

video for 3D reconstruction is also more efficient in terms of implementation, compu-

tation and transmission, as compared to other methods that rely on high-maintenance

equipment such as X-ray microscopy [18] and 3D laser scanners [15, 17]. Using pas-

sive 2D camera sensors, 3D reconstruction can be achieved using a single 2D image,

a stereoscopic imaging system, or multiple images or video frames. The stereoscopic

method is one of the most popular 3D reconstruction methods because of the rel-

ative simple image setup, reliable 3D estimation results and efficient computation

procedure.

Stereo vision plays a significant role in many 3D reconstruction applications, and

the binocular camera setup shares similar concepts as the human vision for 3D per-

ception. 3D vision for humans is caused by the fact that the projected points of the

same point in space on the two human eyes are located at different distances from

the center of focus (center of fovea). The difference between the distances of the

two projected points, one on each eye, is called disparity. The disparity information

is processed by high levels of the human brain to produce a feeling of the distance

of objects in 3D space. Stereoscopic vision methods adopt a similar idea to obtain

stereo 2D images of the same scene with two cameras that have a small rotation or

2



shift in their relative locations. The 3D information of the image scene is represented

using the depth value or disparity value in stereo vision methods. The depth value

of an image point is the distance between the 3D point corresponding to the image

point and the camera projection center. The disparity corresponds to the coordinate

difference between the two projected 2D image points in stereo images. The goal of

stereo matching is to estimate the depth or disparity information using either a sparse

feature point set or dense image pixels.

According to different applications of stereo vision, the stereo vision setup can

be categorized into two different classes: angled stereo camera setup with unrecti-

fied stereo images and horizontally planar aligned stereo camera setup with rectified

stereo images. In both stereo vision setup schemes, the main procedure, called stereo

matching, is to first find matching 2D points, in stereo images, that correspond to

the same 3D point in the image scene. Using the displacement of the matching 2D

points, the depth or disparity information can be estimated. In the angled stereo

camera setup, since the poses of two cameras include both a rotation and translation,

the corresponding 2D image points in the stereo views may not be located on the

same horizontal axis. In the horizontally aligned stereo setup, the stereo cameras

are pointing to the image scene with the same angle and there is only a horizontal

translation between stereo cameras. Thus the stereo camera planes are co-planar,

and the matching 2D image points in the stereo views are on the same horizontal

axis, reducing the search of matching point to the horizontal axis only. It is possi-

ble to transform the angled stereo cameras to be horizontally aligned with co-planar

camera planes, and align the matching pixels to be on the same horizontal axis in

stereo images. This linear transformation is called image rectification [19], and it

is usually applied before performing the stereo matching procedure for horizontally

aligned images.
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Although various stereo matching methods have been proposed, there are still

many challenges in stereo vision for different applications. In angled stereo vision

schemes, the matching points in the unrectified stereo views are typically found us-

ing feature detection and matching methods. The feature detection and matching

methods generate sparse matching pairs between the stereo views. Existing feature

point detection methods such as Harris corner detection [20], SIFT [21], SURF [22],

BRISK [23] and FAST [24] are able to generate reliable and scale-invariant feature

points in natural images with various textures and features, luminance changes and

object discontinuities. These feature points usually include image corners, edges and

texture points. With a sufficient number of matching feature points in the stereo

views, the 3D scene can be reconstructed. The depth information at the locations of

the detected feature points is calculated using the detected and matched 2D feature

points in the stereo views and using the relative stereo camera positions. This type

of stereoscopic system has been widely used in object recognition and tracking, large

scene reconstruction [9] and intelligent vehicle systems such as advanced driver assist

systems [25]. However, there are some applications for which the imaged objects and

scenes lack sufficient texture and features such as edges and corners. The aforemen-

tioned feature detection methods are not suitable for these applications. Furthermore,

passive stereo vision is rarely explored for such applications. One such application

area is the industrial automated machine vision for product inspection and quality

control.

In semiconductor manufacturing and quality control, the inspection of defective

solder joints on Ball Grid Array (BGA) for defect detection is important in both

manufacturing and in the post-inspection process because defective solder joints can

cause problems in semi-conductor products, including non-wets and infant mortal-

ity resulting in failed parts. The uniformity of solder ball heights and coplanarity
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across the unit surface affects the reliability of the BGA package significantly. Tra-

ditional solder ball height and coplanarity measurement methods include 3D X-ray

laminography [26], laser scanning [27], confocal microscopy [28] or machine vision

approaches with prior assumptions or prior references [29–32]. These methods esti-

mate ball height information with high-cost equipment, complicated setup, expensive

computation load and slow speed. Stereo vision methods for ball height and copla-

narity estimation are rarely explored due to the characteristics of solder ball images

such as textureless, edgeless and smooth surfaces with less color change. Due to the

simpler setup and more efficient processing nature of stereo vision, an efficient image

feature detection and matching method is needed to extract 2D features in solder ball

images. With such extracted features, the reconstruction of solder ball height and

coplanarity can be implemented efficiently using stereo vision for real-time inspection

and measurement purposes.

For rectified and aligned stereo vision fields, dense depth or disparity maps are

generated as the output using stereo images and various stereo matching algorithms.

Dense stereo matching methods have attracted a lot of attention from researchers in

computer vision and computer graphics because the dense disparity maps computed

using stereo matching can be applied to areas such as teleconferencing, depth-image-

based-rendering in multiview displays and coding, to name a few. Existing stereo

matching approaches are summarized and compared based on the Middlebury im-

age database in [33]. The stereo matching algorithms are categorized into two ma-

jor classes: global methods and local methods. Both the accuracy and computation

complexity of the computed dense disparity map are crucial in most stereo match-

ing algorithms. Global methods using energy optimization methods such as belief

propagation [34, 35], graph cut [36] and dynamic programming [37] produce accu-

rate disparity maps, but the computation load and memory consumption are high

5



as compared to local methods. Local stereo methods are more suitable for real-time

applications because the computation complexity is relatively low and they can be

more parallelized for faster processing. Recently proposed local stereo methods pro-

duce competitive disparity estimation results in terms of accuracy as compared to the

global methods, and the computation is efficient using the integral image technique

or hardware optimization.

Although the recent local stereo matching methods are able to compute accurate

disparity maps with a relatively low computational complexity, the task of efficiently

estimating dense disparity maps using stereo methods is still challenging. The cap-

tured stereo images are disturbed by surrounding environmental noise such as sensor

noise and illumination changes. In addition, image scenes with textureless regions,

slanted surfaces and occlusions make the stereo matching problem more complicated.

Recently researchers are seeking possibilities to improve the performance of local

stereo matching methods in order to achieve a higher accuracy and faster computa-

tion speed for real-time applications with various possible image scenes. In addition,

there is a need to improve the performance of local stereo methods in the presence of

noise, uniform areas, depth discontinuities and occlusions.

1.2 Contributions

In Chapter 3, a novel stereo vision system is proposed for solder ball height and

ball grid array (BGA) coplanarity estimation. The proposed method enables in-line

real-time automatic product 3D characterization and inspection. We propose a novel

iso-contour-based feature detection and matching algorithm for textureless objects.

Compared to other existing BGA inspection systems, the proposed method has ben-

efits in mainly three aspects: 1) the proposed image processing and machine vision

method is computationally efficient compared to other image processing techniques
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for solder ball height detection; 2) the solder ball height and package coplanarity re-

sults by the proposed method show high accuracy and reliability compared to other

far more sophisticated methods; 3) the imaging setup procedure and equipment cali-

bration and adjustment of the proposed method is much simpler than other existing

methods. The proposed stereo setup using two area-scan cameras captures enough

details of the solder balls with diameters around 200-400 µm. The proposed stereo

vision based method is able to reconstruct the 3D structure of the solder balls without

any prior height and coplanarity information. Furthermore, with the novel iso-contour

tree structure based matching scheme, the feature points of the textureless solder ball

images can be accurately located and matched between stereo views. We show that

the proposed system is capable to estimate the solder ball height in different height

ranges. Both the ball height results and coplanarity results show high correlation

and stability compared to the existing confocal inspection method and laser scanning

method.

In Chapter 4, a novel stereo matching method using sparse locally adaptive cost

aggregation is proposed to compute a more accurate disparity map with less com-

plexity and redundancy. The proposed local stereo matching method consists of a

fast initial cost aggregation stage followed by a refined cost aggregation that is only

performed over a sparse subset of disparities. In the proposed method, the cost ag-

gregation is performed in a locally adaptive manner by adapting the support region

to the local image intensity and structure. In order to reduce outlier disparity val-

ues that correspond to mis-matches, a novel sparse disparity subset selection method

is proposed by assigning a significance status to candidate disparity values, and se-

lecting the significant disparity values adaptively. A novel adaptive guided filtering

method using the disparity subset for refined cost aggregation and disparity calcula-

tion is demonstrated. The disparity maps are refined through occlusion handling and
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post-processing steps using localized-support-region-based propagation and weighted

propagation. We show that the proposed sparse adaptive guided filter produces ac-

curate dense disparity results using the Middlebury stereo matching database version

2 and version 3 [38] and the KITTI 2015 [39] stereo database, and that the proposed

method outperforms previous popular local methods [40–42] and some semi-global

stereo matching methods [43]. We also conduct a performance analysis by varying

the size of the sparse disparity subset, and show that using a sparse disparity subset

for cost aggregation helps in removing matching ambiguities and in improving the

disparity estimation accuracy, while preserving the computational efficiency.

1.3 Organization

This dissertation is organized as follows. Chapter 2 presents background material

on concepts that are related to the work in this dissertation. Chapter 3 presents the

proposed stereo vision based automated solder ball height and coplanarity detection

method. The method is tested on different BGA packages and experimental results are

evaluated using the measurement capability analysis (MCA) to demonstrate the ac-

curacy, repeatability and reproducibility of our proposed method. Chapter 4 presents

a novel local stereo matching method using sparse locally adaptive cost aggregation.

The performance analysis and results of the proposed method are obtained based on

stereo images from the Middlebury [38] and the KITTI [39] benchmark databases.

Finally, Chapter 5 summarizes the contributions of this work and discusses future

research directions.
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Chapter 2

BACKGROUND

This chapter gives some background knowledge on 3D reconstruction and stereo

vision. In Section 2.1, the camera geometry and the pinhole camera model, which

are basic for the analysis of 3D systems, are illustrated. In Section 2.2, the two-view

geometry is discussed in two aspects: the epipolar geometry and the disparity calcu-

lation. The epipolar geometry between two views and the fundamental matrix are

introduced in Section 2.2.1 for further use. In rectified stereo images, the relationship

between disparity and depth is illustrated in Section 2.2.2.

2.1 Camera Geometry

In computer vision, homogeneous representations of lines and points are described

as follows. A line passing through the point (x, y)T can be described as:

ax+ by + c = 0 (2.1)

So, the vector l = (a, b, c)T is the homogeneous representation of a line. Alternatively,

the line can be described using the vector (a, b, c)T . Therefore, equation (2.1) can be

written in the form of two inner products as follows:

lT · x = (a, b, c) · (x, y, 1)T = 0 (2.2)

According to (2.2), a 2D point can be expressed using a three-dimensional vector

(x, y, 1)T , whose third element serves as a scale factor. For a more general case, the

homogeneous representation (x, y, z)T of a point denotes the point (x/z, y/z)T in 2D-

vector form. Similarly, the three-dimensional point X = (x, y, z)T can be represented
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using the homogeneous notation as X = (x, y, z, 1)T and the plane π on which X

lies is represented in homogeneous form as

π = (π1, π2, π3, π4)
T (2.3)

A 3D point X lying on the plane π satisfies:

πT ·X = (π1, π2, π3, π4) · (x, y, z, 1)T = 0 (2.4)

A basic camera model is the projective pinhole camera geometry as shown in

Fig. 2.1. It is assumed that the camera center is the origin of a Euclidean coordinate

system. The camera center OC is also called the optical center. The image captured

by the camera is typically projected on the camera plane (also called the focal plane)

behind the camera center, with a negative focal length −f on the z-axis. In addition,

according to the imaging mechanism of cameras, the image on the camera image plane

is upside-down with respect to the real scene. In the model in Fig. 2.1, the image

plane is placed to be in front of the camera center, and the distance from the image

plane to the center point is the focal length f . In this latter case, the image does not

have to be inverted. The plane, which passes through the camera center and is parallel

to the image plane, is denoted as the principal plane. The line, passing through the

camera center and perpendicular to the image plane, is called the principal axis. The

intersection of the principal axis with the image plane is a point called the principal

point PP .

In this camera model (Fig. 2.1), a 3D point in space at a position X = (x, y, z)T

can be mapped to the image plane by forming a line starting at the camera center to

the point X, and the intersection of this line with the image plane is a 2D point x

lying on the image plane. Using the similar triangles, the position of x with respect to

the camera center can be represented in homogeneous coordinates as (f ·x
z
, f ·y

z
, f, 1)T
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Fig. 2.1: Pinhole Camera Model.

in the 3D space. The homogeneous representation of the 2D point x on the image

plane is (f ·x
z
, f ·y

z
, 1)T , while the origin of the image plane is the same as the principal

point PP . A projective camera [44] is modeled though the projection equation as

x = PX (2.5)

where x represents the 2D point in homogeneous representation, that is, it is a 3× 1

dimensional vector. P is a 3 × 4 projection matrix. X stands for the 3D point in

homogeneous representation, and it is a 4× 1 dimensional vector.

The Projection matrix P can be represented as

P = K[ R | t ] (2.6)

where R is a 3 × 3 rotation matrix representing the orientation of the camera coor-

dinates with respect to the world coordinates, t is a 3 × 1 translation vector which

shifts the camera center OC with respect to the world coordinate system, and t is

given by

t = −R ·OC (2.7)
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The transformation (including rotation and translation) between different coor-

dinates is shown in Fig. 2.2. In (2.6), K is the intrinsic camera matrix, called the

camera calibration matrix and is given by

K =


f s u

0 αf v

0 0 1

 (2.8)

where f is the focal length of the camera, α is the aspect ratio of the pixel size on

the image plane in the x and y directions, (u, v) represents the coordinates of the

principal point with respect to the left bottom corner of the image plane, and s is the

skew factor which is non-zero if the x and y axes of the image coordinates are not

perpendicular.

2.2 Two-View Geometry

2.2.1 Epipolar Geometry and Fundamental Matrix

The geometry between two views of the same scene can be represented using

the epipolar geometry. The epipolar geometry is illustrated in Fig. 2.3. Suppose a

3D point X in space is projected into two views to generate 2D points x1 and x2,
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respectively. As three points form a plane, x1, x2 and X would lie on a common

plane πE. The plane πE is denoted as the epipolar plane. The line connecting the

two camera centers is the baseline between two views, and it also lies on the epipolar

plane. The intersection points of the baseline with the two views are the epipoles

denoted by e1 and e2, one in each view. The line, which connects the 2D point and

the corresponding epipole on the same plane, is called the epipolar line. The epipolar

line I2 in the second view is parallel to the ray through x1 and the camera center

OC1 , and I2 is the projected image in the second view of that ray. Since the 3D point

X lies on the ray through x1 and camera center OC1 , the projected 2D point x2 of

the 3D point X in the second view must be lying on the epipolar line l2.

From the above discussion, any point x2 in the second image that matches the

point x1, must lie on the epipolar line l2, and the epipolar line l2 in the second

view is the mapped image of the ray through x1 and camera center OC1 . So, there

is a mapping between the 2D point in one view and the epipolar line in the other
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view. The fundamental matrix F12 is defined to represent this mapping relationship

x1
F12−−→ l2. Similarly, the fundamental matrix F21 represents the mapping between

x2 and l1. The fundamental matrix is the algebraic representation of the epipolar

geometry, and it is a 3× 3 matrix with a rank of 2.

The epipolar line l2 corresponding to the 2D point x1 is represented by

l2 = F12x1 (2.9)

The fundamental matrix relates to the corresponding epipoles e1 and e2 as follows:

eT2 F12 = 0 (2.10)

F12e1 = 0 (2.11)

From (2.10) and (2.11), the epipole in the first view e1 is the right null-space of

F12, and the epipole in the second view e2 is the left null-space of F12. Epipoles

for two views can be computed from the fundamental matrix using the singular value

decomposition (SVD). Suppose M is a m×n matrix; the singular value decomposition

of M is in the form of

M = UΣV T (2.12)

where U is a m × m unitary matrix, Σ is a m × n diagonal matrix and V is a

n × n unitary matrix. The diagonal entries of Σ are the singular values of M . The

column vectors of U are the left-singular vectors of M and the column vectors of V

are the right-singular vectors of M . That is, the relationship of the corresponding

left-singular vector u, right-singular vector v, and the singular value sigma can be

represented as

uTM = σvT (2.13)

Mv = σu (2.14)
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Since the rank of the fundamental matrix is 2, in the SVD of F the third singular

value in the diagonal matrix is zero. According to (2.13) and (2.14), if U and V are,

respectively, the left-singular and right-singular matrices in the SVD of the funda-

mental matrix F , the third column of the left-singular matrix U and the third column

of the right-singular matrix V would correspond to the left null vector and the right

null vector of the fundamental matrix F , respectively, and would satisfy (2.10) and

(2.11). Thus, the epipole in the second view is computed from the third column of

the left-singular matrix U in the SVD of the fundamental matrix F and the epipole

in the first view is given by the third column of the right-singular matrix V in the

SVD of the fundamental matrix F .

As stated in [44], the two 2D points x1 and x2, corresponding each to the projec-

tion of the 3D point X into two different views, are related as follows:

xT
2 F12x1 = 0 (2.15)

and

xT
1 F21x2 = 0 (2.16)

From (2.15) and (2.16), the fundamental matrices, F12 and F21, can be related as

F21 = F T
12 (2.17)

In this dissertation, the fundamental matrix F12 is denoted as F for simplicity.

2.2.2 Rectified Two-View Geometry and Disparity

The depth values of a 3D scene correspond to the distances of the 3D points to

the camera center, while the disparity values in rectified stereo vision represent the

differences between the coordinates of matching points in stereo views. There is an

implicit relationship between the disparity and the depth. If the disparity shift of a
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3D point is known, the corresponding depth value can be estimated, with the prior

knowledge of the camera movement and the focal length of the camera [45, 46]. The

geometry of the disparity versus depth relationship is shown in Fig. 2.4.

In Fig. 2.4, x1 is the projected 2D point of the 3D point on view 1, and x2 is

the projected 2D point of the 3D point X on view 2. OC1 and OC2 are the stereo

camera centers with a horizontal camera shift of M . The line connecting camera

centers OC1 and OC2 is called baseline. The perpendicular distance from the 3D

point X to the baseline is the depth value of the 3D point. This depth is denoted as

Z. The distance from the baseline to the image plane is the focal length of the camera,

denoted as f . The distance between x1 and the principal point O1 is denoted as D1,

and the distance between x2 and the principal point O2 is denoted as D2. Using the

triangular geometry, the disparity of the 3D point X on the stereo 2D views, can

then be presented as

D = D1 +D2 = f · M
Z

(2.18)
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From the analysis above, the disparity D of corresponding 2D points in stereo views

is the inverse of the depth Z with a scalar of the product of the known focal length

f and the camera shift M .
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Chapter 3

STEREO VISION BASED AUTOMATED SOLDER BALL HEIGHT AND

SUBSTRATE COPLANARITY INSPECTION

3.1 Introduction

For unrectified stereo images, the 3D structure can be estimated with the prior

knowledge of stereo camera positions and enough feature correspondences of 2D points

between stereo images. Stereo vision through camera calibration and feature detec-

tion has been widely used in various areas such as target recognition [47], vehicle

navigation and obstacle detection [48] and robotics 3D reconstruction [49]. Sparse

features such as corners and edges are usually detected using feature detectors in-

cluding SIFT [21], SURF [22], etc. However, for stereo images that contain objects

with less texture and features, these popular feature detectors fail to produce enough

matching correspondences, thus the depth information of stereo images can not be

estimated efficiently. For applications that has object with textureless regions, the

stereo vision method is rarely used for 3D reconstruction and depth estimation. One

of such applications is the industrial automated machine vision for product inspec-

tion and quality control. In this chapter, we propose a stereo vision method with

novel feature detection method for the solder ball height and coplanarity estimation

in industrial product inspection.

Defective solder joints on BGA (Ball Grid Array) can cause problems in semi-

conductor products, including non-wets and infant mortality resulting in failed parts.

In order to reduce the potential for late detection of warped or defective parts resulting

in potential added cost for a defective unit and escapee to a customer, the inspection
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of solder joints of BGA is an important process in manufacturing. The solder joint

bonding ability and reliability is highly dependent on the uniformity of solder ball

heights and coplanarity across the unit substrate. Non uniform solder ball heights

can result in non-wets which cause connectivity failures and result in failed units.

Warpage can also cause connectivity failures as well as result in infant mortality

due to connectivity failures at joints with minimal or weak connectivity. Thus the

inspection of solder ball heights is essential in the detection and identification of

defects in a timely manner before defective units escape to the customer.

Numerous methods have been developed in recent years for solder ball height

and coplanarity measurements. Traditional methods such as visual inspection and

in-circuit functional tests are not able to analyze the solder ball layout and height in-

formation, and they are usually time-consuming and produce variable results. Nowa-

days, automated methods are developed to produce more reliable and accurate ball

height and coplanarity results. These methods include 3D X-ray laminography [26],

laser scanning [27], Moiré projection (Fringe Moiré and shadow Moiré) [50], confo-

cal microscopy [28], shadow graph [51], machine vision methods [29–32] and hybrid

methods combining structured light and machine vision [52].

A common factory floor tool for warpage inspection uses a model-based method

which requires a-priori reference and calibration by a microscope tool tested on several

hundred BGA units for each type of product. The sampling and testing procedure

of the reference microscope tool is time-consuming. This factory floor tool assumes

uniform ball height from the model height, and is not able to compute the absolute

ball height for each solder ball. If the incorrect model ball heights are used, there will

be mis-detection of warpage and potential for defects and escapees due to incorrect

ball size not being detected. The machine vision method in [29] acquires images of

the package using two cameras with directional lighting and, for each image, the ball
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peaks are located by determining the position of the brightest point in each solder ball

region, However, the assumption that the ball peaks correspond to highest intensity

points is not valid in practice as shown later in this chapter. In addition, the method of

[29] just calculates the position of the ball peaks with respect to the image origin and

not ball peak heights. And it assumes that the majority of ball peaks are co-planar,

which implies that most of the balls have the same height, and uses this assumption

to determine a linear planar transformation (homography) describing the relation

between the ball peak positions in the two views. The computed transformation

is then applied to the positions of ball peaks in one view. The deviation between

the resulting transformed positions and the actual positions in the second view is

computed and used to flag balls with large deviations as defective. Similar to the

method in [29], the machine vision methods described in [30–32] use two area-scan

cameras at different angle setups and different lighting conditions to calculate the

solder ball height and coplanarity. But they all have several deficiency and drawbacks:

the method in [30] assumes that the substrate points are lying on the same plane, and

it calculates the individual ball height from the fitted substrate plane and an estimated

average ball height value; the methods in [31] and [32] require a complex calibration

process of the camera poses, multiple images for the whole package inspection, and

more importantly, they all require a reference ball with known ball height in the field

of view for each image. Thus these machine vision methods are not sufficient to detect

the true ball height and coplanarity without any prior knowledge and not suitable for

real-time computation.

The method in [52] combines structured light and machine vision methods to esti-

mate the 3D shape of mirror surfaces in applications of modeling specular weld pool

surfaces. This method projects a structured laser dot pattern onto the mirror surface,

and uses three cameras in addition to non-reflective planes to capture the reflected
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laser patterns. The three captured laser pattern images are used to reconstruct a

sparse set of 3D points on the measured surface through camera calibration and ho-

mography calculation. However, the method in [52] is used to reconstruct relatively

large surfaces in the millimeter range, and it is not applicable to model micrometer

surfaces as considered in our application. Additionally, the method of [52] assumes

that the 3D surface to be reconstructed is convex and can be estimated from the

sparse set of 3D points through a second-degree polynomial fitting. This assumption

is not generally applicable to real-world solder ball surfaces.

Some of the existing automated ball height and coplanarity detection methods

[26–28, 50, 51] are able to provide relatively more accurate results as compared to

the aforementioned existing machine vision methods [29–32], but they usually require

high-cost equipment and complicated setup, and the measuring speed is slow. The

laser scanning method [27] uses a line-structured laser vision sensor to obtain the

range image of the BGA package and determine the orientation of the BGA from the

substrate surface region. Each individual solder ball is located from semi-circles in

the line-scan profile, and the ball surface is modeled using Bezier curves. Then the

ball height is computed from the modeled ball surface profile. Although the laser

scanning method reconstructs the ball surface with relatively high accuracy, it suf-

fers from slow speed and complicated setup and cannot be used as part of an in-line

inspection system. The Moiré projection method [50] projects the periodic fringe

patterns on the package surface and generates absolute ball height and coplanarity

from the deformation of the projected waveforms on the solder ball packages. But the

phase unwrapping in the Moiré projection methods can produce inaccuracy in the ball

height results, and it is computationally intensive and time consuming. The motion

control system and integrated workstation of the Moiré projection methods are usu-

ally expensive and require complex training. Another height inspection method [51]

21



calculates absolute ball height from the shadowgraph of balls in the images generated

by an oblique collimated light source. But this method is only used on wafers, and

might not be usable for solder balls on BGA packages. The collimated light setup

requires a number of expensive optical lenses. The size of the whole setup is large and

is not suitable for in-line manufacturing ball inspection operations. Due to the set up

complexity and limited execution speed, existing automated solder ball height and

coplanarity measuring methods are not suitable for a real-time inspection process.

Therefore, a reliable, fast, in-line ball height and coplanarity measurement method is

needed for inspecting units undergoing assembly.

Existing stereo vision measurement techniques determine the height and depth

of objects by detecting corresponding feature points in two views of the same scene

taken from different viewpoints. The images in stereo matching research are usually

taken from a natural scene or manmade objects, which have distinct features for

each object in the scene for matching, such as color and gradient. There are various

methods proposed for stereo matching [53–55], but a common issue with existing

techniques is that they rely on the presence of edges, corners and surface texture for

the detection of feature points. Therefore, these techniques cannot be applied to the

measurement of solder ball height due to the textureless, edgeless, smooth surfaces of

solder balls.

In this chapter, an automatic, stereo vision based, in-line ball height and copla-

narity inspection method is presented. The method proposed in this chapter is com-

putationally efficient compared to other image processing techniques for solder ball

height detection and is shown to exhibit high accuracy, repeatability and reproducibil-

ity. Additionally, the imaging setup procedure and equipment of the proposed method

is much simpler than other existing methods. The proposed method includes an imag-

ing setup together with a computer vision algorithm for reliable, in-line ball height
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measurement. The imaging set up consists of two different area-scan cameras mounted

at two opposing angles with ring lighting around each camera lens which allows the

capture of two images of a semi-conductor package in parallel. The lighting provides

a means to generate features on the balls which are then used to determine height.

The computer vision algorithm consists of calibration of stereo cameras, segment-

ing individual balls, detecting substrate feature points and ball peak feature points

in stereo views, triangulation of corresponding points and calculating ball height and

substrate coplanarity. The camera parameters, including intrinsic parameters and ex-

trinsic parameters, are calculated in the calibration process. The segmentation of each

individual ball is achieved using histogram thresholding and a boundary circle-fitting

algorithm. The substrate feature points are detected in the segmented individual ball

region, and the ball peak feature points are determined by grouping points with the

same intensity on the ball surface, which allows the formation of curves, also known

as iso-contours, that are then matched between the two views. Finally, an optimized

triangulation is performed to determine feature point depth and ball height, and

coplanarity is calculated from the determined substrate depth.

The proposed ball height calculation method was tested on three different types

of BGA products, which have different ball size, ball surface appearance, ball pitch

and layout. The results are evaluated in a measurement capability analysis (MCA)

procedure and compared with the ground-truth obtained by an existing laser scanning

tool and an existing confocal inspection tool. The laser scanning tool and the confocal

tool are primarily suitable for sampling measurements due to slower speed and lengthy

calibration process. The accuracy of ball height of the proposed method is compared

with the ball height of the laser scanning tool, and a correlation of 0.94 is achieved.

The coplanarity of the BGA package is determined from the computed substrate

depth results in the proposed algorithm. The results show that the proposed method
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is capable of calculating the ball height and warpage on BGA packages, and that

the produced results are comparable to the results produced by other methods that

require significantly more expensive equipment and complicated processing software.

This chapter is organized as follows. The stereo camera setup and camera calibra-

tion process are presented in Section 3.2. The proposed feature detection algorithm

and ball height and coplanarity calculation algorithms are presented in Section 3.3.

The experimental results and performance analysis with existing schemes are pre-

sented in Section 3.4. Conclusions are drawn in Section 3.5.

3.2 Imaging Setup and Camera Calibration

Since the size of solder balls on the BGA package is relatively small (the ball

diameter is typically 200-400µm for different types of BGA packages), in order to

obtain repeatable and reliable ball height results, the setup of the stereo cameras is

required to be precise and stable when imaging such small-size objects. The imaging

setup in this work uses two cameras mounted at two opposite angles with a ring light

around each camera lens, which allows the capture of two images of a semi-conductor

package in parallel. In our setup, we used two Adimec OPAL-8000 cameras and two

AI standard working distance 3” LED white color ring lights. The BGA package is

placed on a tray holder under both cameras’ field of view. The ring light around each

camera generates straight light beams that shine on top of the solder ball surface.

The surface of the solder balls is reflective to directional light due to the specular

nature of ball surface. With the previously described setup, the ball peak points on

the ball surface that have the same surface normal with that of the substrate surface

will reflect the illumination into the camera [29], as shown in Fig. 3.1. Thus these

ball peak points will appear bright in the captured images. Other points, whose

surface normal vectors have a direction that is different from that of the normal of
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Fig. 3.1: Illustration of the Ball Peak Point Reflection in the Imaging Setup. It Should be

Noted that the Ball Size was Enlarged for Illustration Purposes and that the Actual Ball

Size is Significantly Smaller than Shown in the Figure.

the substrate surface, will reflect the directional light to other directions that cannot

be captured by the CCD camera, and thus appear darker in the captured images. In

the stereo images captured by two cameras at opposite angles, the bright regions near

the center of each individual ball contain the ball peak area of solder balls. In the

proposed camera and ring light setup process, the position of the BGA package and

the lights are adjusted so that maximum brightness is achieved in an area surrounding

the ball peaks in both views.

In stereo vision algorithms, the stereo camera parameters consist of intrinsic pa-

rameters, such as focal length and principal points, and extrinsic parameters, such

as the rotation matrix and translation vectors between stereo cameras. In the pin-

hole camera model as illustrated in Chapter 2.1, the 3 × 4 camera matrix can be

represented using the calibrated camera parameters [44]. In order to estimate the

camera matrices of our stereo camera setup, the camera calibration method used in
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this chapter makes use of the MATLAB Camera Calibration Toolbox [56][57], which

computes the camera parameters from the feature points of a planar calibration pat-

tern in multiple views through a closed-form solution and a minimum mean-squared

error (MSE) based nonlinear refinement procedure. The planar calibration pattern

used in this chapter is a circular pattern as shown in Fig. 3.2. The small dark circles

are printed on a ceramic board, are uniformly spaced and of the same size. A total of

25 pairs of images were captured with the calibration pattern board placed in 25 dif-

ferent positions. For each position, a pair of images is recorded using the left camera

and right camera in the stereo setup. Then the camera calibration is implemented

using the captured image pairs and a stereo calibration method [56] to obtain the

camera parameters of the left and right cameras.

3.3 Proposed Automated Ball Height Inspection Method

In this section, we present more details about the proposed ball height detection

algorithm which is capable of calculating accurate solder ball heights on different

products. Fig. 3.3 shows the flowchart of the proposed ball height inspection method.

The block diagram summarizes the steps of the proposed method including individual

solder ball segmentation and matching, substrate feature point detection, ball peak

feature point detection and matching, triangulation and ball height calculation and

substrate coplanarity calculation. More details about ball segmentation, feature point

matching, triangulation and coplanarity estimation are provided in Sections 3.3.1 to

3.3.4 below.

3.3.1 Individual Ball Segmentation and Matching

The accuracy of the matching process of ball feature points is one of the main

factors that affect the accuracy of the final height results. In the feature matching
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Fig. 3.2: Planar Calibration Pattern Board.
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Fig. 3.3: Diagram of the Proposed Solder Ball Height Inspection Method.

process, the first basic step is to match the individual balls in the left view and right

view correctly. For this purpose, the individual balls are segmented and labeled in a

row-wise order. A ball with the same label number in the left and right views corre-

spond to the same imaged physical ball. The segmentation of BGA images segments

out two regions, the balls region and the substrate region. Several automatic thresh-

olding methods were proposed to segment the gray-scale images into binary masks

[52, 58]. The automatic segmentation method proposed in [58] uses two thresholds to

model fuzzy edge regions that occur in metal transfer images, and assigns a probability

to pixels in fuzzy regions to determine the object boundary. The thresholding method

in [52] was proposed to segment the captured images of a structured laser dot pat-

tern, which contain unevenly distributed background intensities. A two-dimensional

band-pass filter is designed based on the known laser dot pattern structure and is
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used to filter the laser dot pattern image. A prefixed global threshold is then used

to generate the segmentation mask. For our application, as shown in Fig. 3.4a, the

captured BGA images exhibit strong boundaries between the individual balls and

the background, which can thus be easily segmented using efficient histogram-based

thresholding methods.

The segmentation method used in this work consists of an adaptive thresholding

method based on histogram analysis [59]. The histogram of the image can be rep-

resented using two Gaussian distributions with different variance and different mean

values. Using the automatic threshold calculation algorithm in [59] and morpho-

logical opening operations, the round-shape ball regions for each individual ball are

segmented. The boundary of each individual ball mask is refined using circle fitting.

An example of left view and right view images of a solder ball is shown in Fig. 3.4a,

and the corresponding segmented ball mask is shown in Fig. 3.4b. In addition, for

the same imaged physical ball, the highest intensity region containing or surround-

ing the ball peak occurs at different locations in the left and right views due to the

opposite imaging angles of the left and right cameras, as shown in Fig. 3.5a. There-

fore, template matching is performed for each matching pair of solder balls, using

the segmented ball in one view as the template, in order to correct for this devia-

tion. The bright region aligned images in the left view and right view are shown in

Fig. 3.5b. This alignment enables a more accurate matching of the locations of the

corresponding ball peaks as described in Section 3.3.2.

3.3.2 Feature Point Detection

After the balls are segmented and matched in the two camera views, ball peak

points as well as substrate points need to be localized and matched in the left and

right camera views in order to determine the ball heights. In order to measure the
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(a) (b) (c)

Fig. 3.4: (a) An Example of a BGA Image in the Left View. (b) The Segmented Ball

Mask of the BGA Image Shown in (a). (c) Substrate Feature Points Marked as Green Stars

in the BGA Image Shown in (a).

(a) (b)

Fig. 3.5: (a) Original Ball Image in Left View and Right View. (b) Ball Image After

Bright Region Alignment.

ball height, the goal is to find the bottom substrate point and the peak point of each

solder ball from the features in the stereo 2D images. However, the main difficulty

of the feature detection is that the surfaces of the solder balls are textureless and

edgeless, which makes the popular feature detection algorithms, such as the Canny

edge detector and the SIFT (Scale Invariant Feature Transform) [21] not suitable for

finding the correct matching features. This is also the main reason why few stereo

vision methods are used in the solder ball height inspection area.

The bottom points of each solder ball are the points that lie on the same surface as

the substrate of the BGA package. Since the solder balls are placed on the substrate

using the paste or fluxing technique, the circle-shape boundary where each individual
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solder ball touches the substrate can be used to generate the bottom points for each

solder ball. In the 2D image captured by the CCD camera, the boundary between

a solder ball and the substrate surface is the ball mask boundary of the considered

ball. For each individual ball, the centroid of the boundary points represents the

imaginary point lying under the solder ball surface on the substrate surface. Thus,

for each pair of matching solder balls in the stereo images, the ball mask boundary

and its corresponding centroid are calculated for each ball in the pair. The computed

centroid points corresponding to a matched solder ball pair in the left and right views

are taken as the matched feature points on the substrate. The substrate feature points

of the BGA image shown in Fig. 3.4a are plotted as the green star points in Fig. 3.4c.

Compared to the substrate feature point detection, the feature point detection

and matching for ball peaks is more intricate. In our proposed method, we exploit

the fact that, in the captured pair of images, the ball peaks should belong to areas

of high intensities due to the employed imaging and lighting set-up as described in

Section 3.2. The lighting provides a means to generate intensity based features on

the ball. According to the imaging setup procedure, since the directional illumination

and the area scan camera are placed at the same angle but on opposite sides, the ball

peaks belong or are surrounded by bright regions in the captured image pair.

In real-world manufacturing environments, not all solder balls have ideal surfaces;

some ball surfaces may be slightly scratched or worn off. Therefore, in order to

account for this, there are several different types of ball surfaces that are considered

as part of this work. Fig. 3.6 shows different types of solder ball surfaces with different

reflective characteristics. Fig. 3.6a, the normal ball surface exhibits a concentrated

high-intensity round bright region around the ball peak. Another type of surface

exhibits a bright region with a relatively lower intensity and larger diffused area than

the one resulting from the normal surface, as shown in Fig. 3.6b. Some ball surfaces
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(a) (b) (c)

Fig. 3.6: Different Types of Ball Peaks. (a) Ball Peak with a Concentrated High-Intensity

Round Bright Region. (b) Ball Peak with a Diffused Low-Intensity Bright Region. (c) Ball

Peak with Several Separate Distinct Bright Regions.

result in reflected bright intensities forming several separated distinct bright areas

instead of a single bright region, as shown in Fig. 3.6c. In addition, the imaged

surface of a solder ball results in different bright regions in the left and right view due

to local variations in the reflective surface characteristics of the solder ball as shown

in Fig. 3.9c.1 and Fig. 3.9c.2. Due to the difference in the formed bright regions in the

two views and to the variations in the reflective surface characteristics of solder balls,

a robust matching algorithm suitable for the different types of solder ball surfaces is

needed. In this chapter, an iso-contour based matching algorithm is proposed and is

applied to detect the matching bright regions between stereo views.

In our proposed method, points with the same intensity are determined on the ball

surface and are grouped together to form curves of similar intensities, also known as

iso-contours, which are then matched between the two views. For a given intensity,

the iso-contour can be obtained by computing the locations of points having the

considered intensity and connecting the located points together. In each individual

ball region, multiple iso-contours are contained in a bright region intensity range. The

lower threshold of the intensity range is determined using the adaptive thresholding
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method based on histogram analysis [59], and the higher threshold is the highest

gray-scale level in the ball region. In order to obtain iso- contours with smooth

curves, the discrete-domain image is transformed into an image on a fine dense grid

approximating the continuous domain using bilinear interpolation. In this approach,

the intensities of pixels at non-integer coordinates can be approximated from the

surrounding pixels at integer coordinates, and the desired continuous iso-contour

curves can be approximated. The iso-contours of various intensities in the bright

region reflect the characteristic of the ball peak surface, such as the shape of the

formed bright region and the structure of the bright region. The iso-contours inside a

single concentrated bright region usually follow similar shapes as the bright region’s

boundary, and the iso-contours are nested from highest intensity to lowest intensity

as shown in Fig. 3.7. Fig. 3.7c illustrates the iso-contours corresponding to the bright

regions shown in Fig. 3.7b. In order to match the iso-contours in the left and right

views, the iso-contours of each view are represented using a graph structure, which

casts the iso-contour matching problem into a graph matching problem.

For a set of intensities ranging from a minimum value to a maximum value, the

nesting relationship of iso-contours can be represented effectively using a tree graph

structure, called the inclusion tree structure [60], as illustrated in Fig. 3.8. An iso-

contour curve C1 is defined as included inside another iso-contour curve C2 if all

the points along C1 are located inside C2. Equivalently, C2 is said to enclose C1.

This inclusion relationship is defined mathematically as C1 ⊂ C2, if C1 ⊂ Int(C2),

where Int(C) represents the interior region of the curve C according to the Jordan

curve theorem [60]. As shown in Fig. 3.8b, each contour curve corresponds to a node

in the inclusion tree structure. The outermost iso-contour corresponds to the root

node (for example, contour C0 in Fig. 3.8. A branching node in the tree structure

corresponds to an iso-contour that encloses two or more non-nested iso-contours (for
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(a) (b) (c)

Fig. 3.7: (a) An Example of Solder Ball Bright Region. (b) Bright Region After Thresh-

olding. (c) Enlarged Iso-Contour Map for the Right Region in (b).

(a) (b)

Fig. 3.8: (a) An Example of Contour Map. (b) Inclusion Tree of the Contour Map in (a).

example, contour C2 and C9 in Fig. 3.8), and the resulting branches are called each

a subtree. The end nodes of the tree structure, also known as leaf nodes, correspond

each to an innermost iso-contour (for example, contour C6, C13, C14 and C15 in

Fig. 3.8). Fig. 3.9 illustrates different types of bright regions and their associated

iso-contours. For example, in Fig. 3.9a, there is a single contiguous bright region and

its corresponding iso-contours can be represented using a tree with a single branch.
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Fig. 3.9b to Fig. 3.9d illustrate cases when there are several distinct bright regions

and their associated iso-contours can be represented by a tree with multiple subtrees.

It should also be noted that the number of subtrees representing the iso-contours in

the left view can be different from the number of subtrees in the right view.

Once the tree structure is formed for each view, the iso-contour matching algo-

rithm starts by detecting and removing the scattered outliers of sub-tree/tree regions

in the left and right views’ bright regions. This outlier region removal is done by lo-

cating the bounding box of iso-contour region and removing scattered bright regions

near the bounding box. The bounding box of the bright region is determined as the

bounding box of the root iso-contours with relatively large areas. If there is only one

iso-contour in the root node of the tree structure, the bounding box is the bounding

box of the root iso-contour. If multiple separate iso-contours exist at the root node

level of the tree structure, the areas of each of these iso-contours are sorted in de-

scending order, and the area ratio of the jth area over the (j+ 1)th area is calculated.

The first index of the area ratio that is larger than a threshold of 2 is detected, and

all iso-contours in the sorted array before the threshold index are used to compute

the rectangular bounding box enclosing these iso-contours. Once the bounding box of

the bright region is detected, for each sub-tree/tree region, the distance between the

centroid of the outermost contour and the centroid of the bounding box is calculated,

and the sub-trees/trees regions that result in a distance that is greater than twice

the standard deviation of all the computed distances are removed as outliers. This

ensures the removal of the scattered bright regions with small areas.

After the removal of the outliers scattered bright regions, for each subtree/tree

region in one view, a matching subtree/tree region is localized in the other view, and

matching feature points are computed from the matching subtree/tree regions. A

flowchart in Fig. 3.10 shows the main steps of the matching procedure.
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Fig. 3.9: Examples of Different Iso-Contour Maps of Solder Ball Peak Regions. (x.1)

Left Ball Peak Image. (x.2) Right Ball Peak Image. (x.3) Iso-Contour Map in Left. (x.4)

Iso-Contour Map in Right. (x = a,b,c,d).

For each subtree/single-branch tree in the left view, referred to as reference sub-

tree/tree, a set of candidate matching subtrees/single-branch trees in the right view

is formed. The set of matching candidates is formed based on three features: the

overlap ratio between the areas covered by the outermost contour of the considered

subtree/tree in the left view and the candidate subtree/tree in the right view, the
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Fig. 3.10: Flowchart of the Ball Peak Feature Point Detection.

(a) (b)

Fig. 3.11: (a) An Example of Ball Image in Left View and Right View. (b) Multiple

Pairs of Matching Iso-Contours and Matching Centroid Points (Same Color Illustrates the

Matching).
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area difference and the centroid distance of the outermost iso-contour of the consid-

ered subtree/tree in the left view and the candidate subtree/single-branch tree in the

right view. The right-view subtrees/single-branch trees with the largest overlap ra-

tio, the smallest area difference or smallest centroid distance are selected as matching

candidates. As a consequence, for each subtree/single-branch tree in the left view,

there are at least one matching candidate and at most three matching candidates in

the right view. If the formed set of candidates contains all the subtrees of a tree,

an additional candidate representing the whole tree is also included as part of the

formed candidate set.

Once the matching candidates of the subtree/tree region are formed, the next

step is to locate the matching ball peak feature points in the matching subtree/tree

regions in the left and right views. For this purpose, for each candidate matching

pair of subtree/tree regions between the left and right view, the iso-contour with

the largest average intensity gradient magnitude values in each view is chosen as the

candidate matching iso-contour curve, and the centroid points of the matching iso-

contours in both views are calculated as a candidate matching pair of feature points.

Among the matching candidate feature point set, the best matching subtree/tree

region is determined using the epipolar geometry between their relative locations. The

details of the epipolar geometry will be discussed later in Section 3.3.3. The epipolar

constraint between two corresponding 2D feature points x1 and x2 is represented

using the fundamental matrix F as xT
2 Fx1 = 0. Due to the presence of noise and pixel

quantization error, the detected feature points may not satisfy the epipolar constraint.

While fixing the feature point in the left view, the nearest point to the original

feature point in the right view which satisfies the epipolar constraint can be located.

The Euclidean distance of the corrected point and the original feature point in the

right view can be used as a measure of the quality of the original matching feature
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points. If a pair of candidate matching points results in a large Euclidean distance for

the corrected point, the candidate matching is problematic. For each subtree/single

branch tree of the left view, among the candidate matching feature points in the

right view, the matching feature point that results in the smallest corrected Euclidean

distance is chosen as the best matching feature point, and the corresponding matching

subtree/tree region is selected as the best matching subtree/tree region.

For multiple pairs of matching subtrees/trees, the corresponding multiple pairs of

centroid points are used as the matching feature points for the considered ball peak

between the left view and right view. An example of the matching iso-contour curves

and centroids for multiple matching bright regions are shown in Fig. 3.11. These

multiple pairs of centroid points are further used to calculate candidate ball height

using triangulation as discussed in Section 3.3.3. For a given solder ball, candidate ball

heights that deviate from other ball height values by twice of the standard deviation

are eliminated, and the ball height value with the smallest corrected point distance

among the remaining candidate ball heights is selected as the final solder ball height.

3.3.3 Triangulation, and Ball Height Calculation

Once the corresponding feature points of substrate and solder ball peak are located

in the stereo images, the triangulation method is used to obtain the 3D reconstruc-

tion of these feature points. As illustrated in Fig. 2.3, ideally, in the 3D space, the

intersection of the two lines, which are formed by connecting each of the matching

2D points and their corresponding camera centers, can be computed to get the corre-

sponding 3D point in space. But due to the presence of noise and digitization errors,

it is possible that the intersection of these two rays does not exist in the 3D space. In

this chapter, the epipolar-based optimized triangulation [44] is applied to the matched

pair of feature points in order to calculate the coordinates of the corresponding 3D
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points.

As the feature points are detected in the images according to local iso-contour

information, the detected matching feature points might not satisfy the epipolar con-

straints between the stereo views due to noise and digitization error. In linear tri-

angulation, the 3D points calculated using the 2D feature points that do not satisfy

epipolar constraints will be inaccurate. Thus a corrected set of 2D matching feature

points satisfying the epipolar constraint needs to be calculated near the original 2D

feature points detected in images. The method in [44] uses a MSE-based method to

localize a pair of corrected 2D feature points x̂L and x̂R that minimize the Euclidean

distance between the corrected points and the original noisy 2D points xL and xR in

two views, which can be represented mathematically as

min d(xL, x̂L)2 + d(xR, x̂R)2 subject to x̂T
RF x̂L = 0 (3.1)

According to the epipolar geometry introduced in Chapter 2.2.1, any pair of corrected

points satisfying the epipolar constraint must lie on a pair of corresponding epipolar

lines in the two images; alternatively, any pair of points lying on the corresponding

epipolar lines will satisfy the epipolar constraint. Thus localizing corrected 2D points

which minimize the Euclidean distance from the original points is equivalent to lo-

calizing a pair of corrected epipolar lines in both views that minimize the Euclidean

distance between the original 2D points and the corrected epipolar lines in both views.

This can be represented as

min d(xL, l̂L)2 + d(xR, l̂R)2 (3.2)

where l̂L and l̂R are the corrected epipolar lines satisfying the epipolar constraint.

In order to minimize (3.2), firstly the corrected epipolar line in the left view is pa-

rameterized using a parameter t and the epipole eL calculated using the fundamental
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matrix F . Thus the epipolar line in the left view can be written as l̂L(t). Secondly,

using the fundamental matrix F , the corresponding epipolar line in the right view

can be computed as l̂R(t). Thirdly, the distance function in (3.2) can be expressed

as a polynomial function of t, represented as g(t). By computing the roots of the

numerator polynomial of g′(t), the solution of the parameter t is the root value which

minimizes the polynomial function (3.2). Finally, using the calculated parameter t,

a pair of corrected epipolar lines are solved for. In each view, the intersection point

between the corrected epipolar line and the line going through the original 2D point

and perpendicular to the corrected epipolar line is the corrected 2D feature point.

In this chapter, a simplified method to compute a corrected set of 2D feature

points is used. Instead of computing a pair of corrected points near the original

ones, the feature point in one view is fixed, and a corrected feature point in the

other view near the original one is calculated. In order to locate the corrected set of

2D matching feature points at the sub-pixel level, both the left-view and right-view

images are interpolated by an integer factor of 4 before feature point detection and

matching. The goal of the optimized triangulation method is to fix the original 2D

feature point in one view (left view), and to localize a corrected 2D feature points

x̂R that minimizes the Euclidean distance between the corrected points x̂R and the

original noisy 2D points xR, in the other view (right view), which can be represented

mathematically as

min d(xR, x̂R)2 subject to x̂T
RF x̂L = 0 (3.3)

Since the feature point in the left view is fixed, the corresponding epipolar line in

the right view can be calculated using the feature point in the left view and funda-

mental matrix, as lR = FxL. The corrected point in the right view that minimizes

the distance in (3.3) is the intersection point between the epipolar line and the line
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going through original 2D point and perpendicular to the epipolar line. The corrected

pair of 2D feature points satisfies the epipolar constraint, and the intersection of the

projected lines of 2D points in 3D space is ensured. Using the corrected matching

feature points in both views and the calibrated camera projection matrix, the coor-

dinates of the 3D point corresponding to the matched 2D points in the left and right

images are computed using linear triangulation based on singular value decomposi-

tion (SVD) [61]. The Euclidean distance in (3.3) also reflects the accuracy of the

matching between the original 2D feature points. If the corrected Euclidean distance

is large, the original matching pair of feature points is problematic. Thus this cor-

rected Euclidean distance is used as indicated in Section 3.3.2 to determine the best

matching among multiple candidate matching sub-trees or single branch trees.

For each individual ball, the 3D point of the ball bottom on the substrate and

the 3D points of ball peaks are calculated through triangulation. The Euclidean

distance between the coordinates of each 3D ball peak point and corresponding 3D

ball bottom point is calculated as the ball height value. As indicated previously in

Section 3.3.2, for a given ball, it is possible to obtain multiple best matching pairs of

ball peak subtree/tree regions. In this latter case, for the considered ball, multiple

3D ball peak points and corresponding ball heights are calculated, one for each best

matching pair. Ball heights that deviate from other ball height values by twice of the

standard deviation are eliminated, and the height value with the smallest corrected

point distance in the remaining ball heights is selected as the solder ball height.

3.3.4 Substrate Coplanarity Calculation

The coplanarity of the BGA substrate is used to evaluate the warpage of the

substrate surface. In the proposed method, coplanarity is calculated using the depth

of substrate points corresponding to each individual ball. And by finding a rotation
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matrix and a translation vector that transform the substrate 3D points from the

coordinate system of the left camera (with the origin point located at the camera

center) to the coordinate system of the BGA package (with the origin point located

at the top left corner point of the image package area), the depth values of the

transformed substrate 3D points correspond to the coplanarity values of the BGA

substrate. According to three-dimensional machine vision theory [44] and to the

camera calibration method in [56], given the calibrated intrinsic camera matrix of

the left camera, the 2D image points of a planar pattern on the left camera image

plane and the 3D points that correspond to the same physical planar pattern with

respect to the BGA package’s coordinate system, the homography between 2D planar

image points and planar 3D points can be calculated, and the rotation matrix and

translation vector are computed by decomposing the obtained homography matrix.

The first step in the proposed method is to form a set of 3D planar points in

the 3D space, and get the 3D coordinates of these points, XC and XP with respect

to both the left camera’s coordinate system and BGA package’s coordinate system,

respectively. Then, using the projection matrix of the left camera, PL, and the 3D

planar point’s coordinates XC with respect to the left camera’s coordinate system, a

set of 2D planar image points xC on the left camera’s image plane can be computed.

Finally, the rotation matrix and translation vector can be computed using the 2D

planar image points xC and the set of corresponding 3D planar points’ coordinates

XP in BGA package’s coordinate system as described in more details below.

The procedure for warpage detection and quantification consist of the following:

(1) As indicated in Section 3.3.3, for each individual ball, the 3D point of the ball

bottom on the substrate and the 3D points of ball peaks are calculated through trian-

gulation. The obtained 3D substrate points calculated with respect to the left-view

camera (denoted as XC substrate) may not lie on the same plane due to warpage. In
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order to detect and quantify this warpage, a reference plane, with respect to which

warpage is measured, needs to be determined. For this purpose, the coordinates (with

respect to the left-view camera’s coordinate system) of three boundary 3D substrate

points in the imaged BGA package are used to form a plane. We chose the top-left,

top-right and bottom-left boundary 3D substrate points for the plane calculation.

For all other 3D substrate points, they are projected on this plane resulting each in a

projected 3D point with the same x and y coordinates but with a z-coordinate (depth

value) that is determined from the plane equation. Thus a set of 3D planar points

XC with respect to the left camera’s coordinate system is formed using 3 boundary

substrate points and all other projected 3D substrate points lying on the plane. The

x and y coordinates of 3D planar points XP with respect to the BGA package are

formed using the same x and y coordinates of XC , and the z values are defined to be

0.

(2) The 2D image points xC on the left-view camera’s image plane corresponding

to the 3D planar points XC are calculated using the left-view camera’s projection

matrix PC as xC = PLXC , where PL = KL[I, 0̄], KL is the camera intrinsic matrix,

I is a 3× 3 identity matrix, and 0̄ is a 3× 1 column vector with all zero elements.

(3) Finally, the 3 × 3 homography H between xC and XP is computed using the

Direct Linear Transform (DLT) method [44], and xC = HXP . The rotation ma-

trix R and translation vector t is computed by decomposing H [56]. Once R and

t are obtained, the 3D substrate points XC substrate, calculated using triangulation

with respect to the left camera’s coordinate system, are transformed to 3D sub-

strate points XC package with respect to the BGA package’s coordinate system, as

XC package = RTXC substrate − RT t. The origin point of the BGA package’s coordi-

nate system is taken to be the top-left corner point of the imaged solder ball package

region. The depth values (z-coordinate value) of the transformed 3D substrate points
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(a) (b) (c)

Fig. 3.12: Examples of Solder Balls of Three BGA Products. (a) Solder Ball of Product

A. (b) Solder Ball of Product B. (c) Solder Ball of Product C.

corresponding to each solder ball represent the coplanarity of the BGA substrate.

3.4 Experimental Results

The proposed method was applied to different Intel product lines: A, B and C.

Each one of these product lines has different solder ball layout and different ball

characteristics. The average ball height for product A, B, C is around 280µm, 280µm

and 380µm respectively. Example images of solder balls, one from each of the three

products, are shown in Fig. 3.12.

In order to evaluate the performance of the proposed method, the ball height and

coplanarity results of the proposed algorithm were analyzed through the measurement

capability analysis (MCA) procedure. The MCA procedure consists of three different

aspects to prove that the proposed metrology is accurate, capable and stable under

important parameters. These three analyses are accuracy, repeatability and repro-

ducibility, and for each analysis, there is a standard evaluation metric to determine

the capability of the metrology. The MCA procedure is conducted on both the ball

height and coplanarity results, and details are described in the following sections.
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In the MCA procedure, the ball height and coplanarity results of the proposed

method are compared with those collected using two existing automated inspection

tools: the laser-scanning tool and the confocal inspection tool. The laser-scanning

tool scans the entire ball surface for each ball to calculate the true ball height. But

the laser scanning process is quite time-consuming being extremely slow and is not

suitable to measure all the testing ball samples due to the considerable amount of time

it takes to profile each ball. Furthermore, laser-scanning does not provide a measure

of coplanarity. As a consequence, in our MCA analysis, the ball height accuracy of

the proposed method is compared with the ball height of the laser-scanning tool on

a limited number of balls. On the other hand, the existing confocal inspection tool is

able to profile the BGA package off-line in a shorter time than the laser scanning tool,

and it can provide both ball height and coplanarity results in multiple measurements.

But the confocal tool determines the solder ball height using circle-fitting techniques

for ball peak detection, thus the obtained ball height values may not correspond

to the true height. A detailed correlation analysis between the confocal tool ball

height and laser-scanning ball height is presented in Section 3.4.1 showing that the

confocal tool does not correlate well with the highly accurate laser scanning tool. As

a consequence, in our MCA analysis, the ball height of the laser scanning tool is used

as a reference for establishing the high accuracy of the ball height obtained using the

proposed method, while ball of height of the confocal tool is used for establishing the

high repeatability of the proposed method. In addition, the coplanarity results of

the confocal tool are used for establishing the high accuracy and repeatability of the

proposed method for coplanarity measurement and warpage detection.
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(a) (b)

Fig. 3.13: (a) Calculated Ball Peak Depth and Substrate Depth with Respect to the Left

Camera for One Row of Solder Balls. (b) Calculated Solder Ball Height Results in Row

Order.

3.4.1 MCA on Solder Ball Height Results

For the solder balls in one row on the BGA package, the depth values of substrate

and the depth values of ball peak feature points with respect to the left-view camera’s

coordinate system are plotted in Fig. 3.13a. Since both cameras are placed over the

BGA package, the substrate depth values are larger (greater distance from the camera)

than the ball peak depth values (less distance from the camera) when viewed from the

left camera center. The ball height is obtained by calculating the Euclidean distance

between the substrate 3D point and the ball peak 3D point. The ball height values

of solder balls are plotted in a row-wise order, as shown in Fig. 3.13b.

In the accuracy analysis of the MCA procedure, the ball height results calculated

using the proposed method are compared with the height results of laser-scanning

inspection tool on product C on 17 balls. This is because product C usually produces

more variance and inaccuracy in ball height than the other two products, and if

the accuracy of product C is capable, it also proves the capability of the other two

products. The evaluation metric of accuracy analysis is the R-squared value, which is
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Fig. 3.14: Accuracy Analysis (Correlation Analysis and Matching Analysis) of Ball Height

Results of the Proposed Method and the Laser-Scanning Method.

the square of the correlation between two comparison results. If the R-squared value

of the ball height between the proposed method and laser-scanning tool is larger than

0.75, the proposed method is accurate for automated inspection. The correlation and

ball height difference results of the ball height values between the proposed method

and laser-scanning tool are shown in Fig. 3.14. Using the statistics analysis software

JMP 7.0, the correlation value is 0.94 and the R-squared value is 0.8853, indicating

that the proposed method not only satisfies but significantly exceeds the accuracy

criterion. On the other hand, since the confocal tool uses circle-fitting techniques on

the ball surface peak detection, the ball height detected by the confocal tool does not

reflect the true ball height. In fact, the correlation of ball height between the confocal

tool and the laser-scanning tool is 0.3, which does not prove high accuracy. This is

the reason why the ball height of the proposed method is compared with that of the

laser-scanning tool for accuracy analysis.

In the repeatability analysis of the MCA procedure, the ball height results calcu-

lated using the proposed method are compared with the height results of the confocal
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Fig. 3.15: Repeatability Analysis of Ball Height Results of the Proposed Method (Red

Star) and the Confocal Method (Blue Circle). Ball Height Results of 40 Balls from Product

C and 30 Measurements for Each Ball are Plotted.
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Fig. 3.16: Reproducibility Analysis of Ball Height Results of the Proposed Method (Sym-

bols with the Same Color Represent the Ball Height of the Same Ball). Ball Height Results

of 40 Balls on a BGA Package of Product C and 27 Measurements for Each Ball are Plot-

ted. (a) Ball Height Plotted by the BGA Part Number and Ball Number. (b) Ball Height

Plotted by Different Locations and Days.

inspection tool on all three products due to the established high repeatability of the

confocal tool. The objective of repeatability testing is to determine whether the tool’s

“inherent” variation is acceptable and stable in the short term. For each product, a

BGA package is randomly picked and imaged for 30 times. In the 30 repeated mea-

surements, the BGA package is pick-up and re-fixtured in a short time on the same

day. The total numbers of balls tested on the package of each product line A, B and
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C are 76, 151 and 156, respectively. The evaluation metric of repeatability analysis

is the P/T ratio, which is represented as

P/T =
6σms

USL− LSL
× 100% (3.4)

where σms is the mean variance of 30 ball heights of each ball among all balls measured,

and USL−LSL is the tolerance range of the solder ball height in the pre-defined spec

limits. The tolerance range of product A and B is 100 µm, and of product C is 120 µm.

If the P/T ratio is below 20%, the repeatability of the proposed method is proved.

The ball height results for tested solder balls from Product C in 30 measurements of

the proposed method and the confocal method are plotted in row order in Fig. 3.15.

Due to space limitation and for improved readability, repeatability results for ball

heights are shown only for the first 40 of the 156 tested balls. The mean variance

values of product A, B and C are 1.31µm, 1.67µm and 1.58µm, respectively. Using

(3.4), the P/T ratio values of the proposed method on product A, B and C are 7.9%,

10% and 7.91% respectively. The P/T ratio values of the confocal method on product

A, B and C are 5.5%, 7.6% and 8%. Both the proposed method and the confocal

method have the P/T ratio well under 20%, and this proves the repeatability of the

proposed method.

In the reproducibility analysis of the MCA procedure, the ball height results cal-

culated using the proposed method are analyzed on different products under different

affecting factors. The objective of reproducibility testing is to determine whether the

total measurement variation is acceptable under different metrology factors. In the

reproducibility testing of ball height detection method, three major affecting factors

are tested: day, rotation and translation of BGA package in the field of view, and

repeat of each test. The testing plan consist of 2 different products (products A

and C), 40 balls on each product, 3 days, 3 rotated and shifted package locations
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in the camera field of view, and 3 repeats for each placement. Thus for each ball

on each product, 27 measurements are taken and tested. The evaluation metric of

reproducibility analysis is the P/T ratio, and if the P/T ratio is smaller than 30%

in reproducibility testing, the proposed automatic tool is capable. The ball height

results for the tested solder balls of product C in 27 measurements of the proposed

method are plotted in row order in Fig. 3.16. Reproducibility results for ball heights

are shown in Fig. 3.16 for only the first 40 of the 156 tested balls due to space limi-

tation. The mean variance values σms of product A and product C are 1.94µm and

1.90µm, respectively. The P/T ratio value of the proposed method on products A

and C are 11.6% and 9.5%, respectively, which are significantly lower than the thresh-

old of 30%. Thus the reproducibility analysis of the proposed ball height detection

method meets and exceeds the reproducibility criterion.

From the above three MCA procedures on the proposed ball height detection

method, the accuracy and stability of the proposed ball height detection method is

proved, and the proposed method is capable to be used as an automated ball height

detection tool.

3.4.2 MCA on Substrate Coplanarity Results

The coplanarity of the BGA substrate is used to evaluate the warpage of the

substrate surface. In the considered BGA package coordinate system, the depth

values of the substrate point represent the coplanarity of the package. The 3D plot of

the 3D substrate points over 4 solder ball rows on the package for product C is shown

in Fig. 3.17 using the proposed method (red star). For comparison, Fig. 3.17 also

shows the 3D substrate points obtained using the confocal tool (blue dot). Similar

results were also obtained for other tested products. The 3D substrate points are

plotted in Fig. 3.17 with respect to the BGA package’s coordinate system (with the
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Product C: 3D Plotting of Sustrate Points

3D substrate point using proposed method

3D substrate point using confocal tool
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Fig. 3.17: Plotting of Substrate Points with Respect to Package Coordinates and Copla-

narity Comparison with Confocal Results for Product C.
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Fig. 3.18: Accuracy Analysis (Correlation Analysis and Matching Analysis) of Coplanarity

Results of the Proposed Method and the Confocal Method.

origin point located at the top left corner point of the image package area). As seen

in Fig. 3.17, the depth values of the ball substrate points are following a curved-shape
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plot, which reflects the warpage of the BGA package.

Similar to the MCA on solder ball height, the MCA procedure including accuracy,

repeatability and reproducibility are tested on the coplanarity results, and compared

with the confocal coplanarity results. In the accuracy analysis, the proposed method

is tested on product A with 76 balls, product B with 151 balls and product C with 156

balls. The correlation and difference results in terms of coplanarity values between

the proposed method and the confocal tool are shown in Fig. 3.18 for product C. The

correlation values for coplanarity between the proposed method and the confocal tool

on product A, B and C are 0.984, 0.979 and 0.985, respectively. Thus the R-squared

values for product A, B and C are 0.9692, 0.9583 and 0.9701, respectively. Since

the R-squared values for all three products are significantly larger than the threshold

0.75, the accuracy of the proposed coplanarity algorithm is proved.

In the repeatability analysis, the proposed method is tested on the same packages

and balls as those used for the coplanarity accuracy analysis, and repeated for 30

measurements in a short time on the same day. The coplanarity results for the

tested solder balls of product C corresponding to 30 measurements using the proposed

method and the confocal method are plotted in row order in Fig. 3.19. For clarity

and due to space limitation, the repeatability results for coplanarity are shown for

the first 52 balls of the 156 tested balls in Fig. 3.19. The mean variance values σms

of product A, B and C are 0.8µm, 1.08µm and 0.61µm, respectively. The P/T ratio

values on product A, B and C are 4.8%, 6.4% and 3%, respectively, for the proposed

method, and the P/T ratio values of the confocal method is 5.5%, 7.6% and 8%

respectively. For coplanarity repeatability, the P/T ratio of the proposed method is

lower than that of the confocal tool. Since all the P/T ratios are significantly less

than the threshold 20%, the high repeatability of the proposed coplanarity method

is established.

52



C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

321 54 6 987 1110 12 151413 1716 18 212019 2322 24 272625 2928 30 333231 3534 36 393837 40

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

C
o
n
fo

ca
l

S
te

re
o

434241 4544 46 494847 5150 52

C
o
p
la

n
ar

it
y

Variability Chart for Ball Height
Confocal

Stereo

Tool

160

140

120

100

80

60

Fig. 3.19: Repeatability Analysis of Coplanarity Results of the Proposed Method (Red

Star) and the Confocal Method (Blue Circle). Coplanarity Results of 52 Balls (2 Rows of

Balls) on Product C and 30 Measurements for Each Ball are Plotted.
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Fig. 3.20: Reproducibility Analysis of Coplanarity Results of the Proposed Method (Sym-

bols with the Same Color Represent the Coplanarity of the Same Ball). Coplanarity Results

of 40 Balls on a BGA Package of Product C and 27 Measurements for Each Ball are Plot-

ted. (a) Coplanarity Plotted by the BGA Part Number and Ball Number. (b) Coplanarity

Plotted by Different Locations and Days.

The reproducibility analysis on the coplanarity results are tested using the same

measurements as that of the reproducibility analysis on the ball height results. The

coplanarity results for the tested solder balls on product C corresponding to 27 mea-

surements using the proposed method are plotted in row order in Fig. 3.20. For clarity

and due to space limitation, the reproducibility results for coplanarity are shown for

the first 40 balls of the 156 tested balls in Fig. 3.20. The mean variance values σms

of product A and C are 0.82µm and 1.36µm, respectively. The P/T ratio values
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on product A and C using the proposed method are 4.9% and 6.8%, respectively,

which are all significantly less than the threshold 30%. Thus the reproducibility of

the proposed coplanarity method is validated.

3.5 Conclusion

In this chapter, a robust automatic in-line solder ball height detection scheme is

presented to allow automated measurement and inspection of solder ball height. The

proposed method is fully automated and can benefit the manufacturing process by

measuring ball height and package coplanarity accurately. The proposed method has

been implemented in software and was deployed on a standalone PC using the 2D

images obtained from a simple imaging setup consisting of two cameras and directional

ring lights. The proposed method can accurately and consistently compute solder ball

heights and package coplanarity. The computed solder ball heights exhibit a very

high correlation with the state-of-the-art expensive laser scanning technology and

have been shown to be repeatable and reproducible. Compared to the existing ball

height and coplanarity inspection tools, the proposed method has a low computational

complexity and enables real-time in-line ball height and warpage inspection during

manufacturing.
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Chapter 4

SPARSE LOCALLY ADAPTIVE COST AGGREGATION FOR STEREO

MATCHING

4.1 Introduction

Disparity estimation using a stereo image pair has been thoroughly studied in

computer vision. The stereo image pair is taken with two cameras of the same scene

at two slightly different positions. The stereo matching algorithms aim at estimating

the dense correspondence between stereo images. Surveys comparing different stereo

matching techniques in the last two decades can be found in [33, 62, 63]. Generally,

there are two broad categories of stereo matching algorithms: global methods and

local methods. Global algorithms generally define an energy model with different

constraints, such as smoothness assumption and uniqueness assumption, and solve

the energy model using global optimization techniques such as belief propagation

[34, 35], dynamic programming [37], simulated annealing [64] or graph cut [36]. Global

algorithms usually generate more accurate disparity results than local methods but

the main drawback of global algorithms is that they are iterative and they incur a high

computational complexity and are thus not suitable for real-time applications due to

the slow speed and high memory requirements. On the other hand, local stereo

matching approaches obtain the disparity map based on measuring correlations of

local neighboring window pixels. According to [33], local stereo matching consists

of four steps: matching cost computation, cost aggregation, disparity selection and

disparity refinement. The local stereo matching methods used to be less accurate

compared to global methods, but they are much faster and more suitable for real-
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time applications as compared to the global methods. Recent local stereo matching

methods [40, 42, 65–74] use edge-preserving filters such as the bilateral filter and

guided image filter in the cost aggregation step to generate more accurate disparity

maps that outperform many global optimization based algorithms. Other methods

use adaptive support regions to generate a more robust disparity map. Thus local

stereo matching methods have been attracting more attention recently. However, in

the most recent Middlebury version 3 stereo benchmark evaluation database, only

6 out of 54 submitted methods are local stereo methods, and there are no local

stereo methods in the top 25 ranks, because of the various scene types and occlusion

challenges in the Middlebury version 3 database. Thus there is a need to develop an

efficient local stereo system that is robust to variations in stereo scenes.

In this chapter, we propose a novel Sparse Locally Adaptive Cost aggregation

(SLAC) local stereo matching method. The proposed SLAC-based local stereo method

achieves a higher accuracy than existing state-of-art local methods without an increase

in the computational complexity. Different from most local stereo methods, except

[41], that compute the cost aggregation at all disparity levels, the proposed SLAC

method consists of a fast initial cost aggregation stage followed by a refined cost ag-

gregation that is only performed over a sparse subset of disparities. In the proposed

method, the cost aggregation is performed in a locally adaptive manner by adapting

the support region to the local image intensity and structure. In order to reduce out-

lier disparity values that correspond to mis-matches, a novel sparse disparity subset

selection method is proposed by assigning a significance status to candidate disparity

values, and selecting the significant disparity values adaptively. An adaptive guided

filtering method using the sparse disparity subset for refined cost aggregation and

disparity calculation is demonstrated. Mismatched pixels in the disparity map are

further refined through a sparse localized support-region-based propagation and oc-
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clusion handling. For this purpose, a novel disparity post-processing method using

a multi-directional weighted propagation with a disparity and smoothness penalty is

proposed. The proposed stereo matching algorithm is tested on the Middlebury ver-

sion 2 and version 3 stereo evaluation benchmark images and the KITTI 2015 stereo

benchmark images. We demonstrate the effectiveness of using the proposed sparse

disparity subset selection method and adaptive sparse guided filtering in improving

the accuracy of the disparity results.

The rest of this chapter is organized as follows. After an overview of related work

in Section 4.1.1, the proposed local stereo matching method is described in Section 4.2.

Section 4.3 presents the experimental results and analysis on the Middlebury version

2 and version 3 benchmark stereo dataset and the KITTI 2015 stereo benchmark

dataset. Finally a conclusion is presented in Section 4.4.

4.1.1 Related Work

Adaptive Cost Weight: In local methods, cost aggregation is important in

disparity estimation because it helps in removing the influence of possible noise dur-

ing similarity measurements between pixels of stereo views. The cost aggregation is

usually performed by summing up the (weighted) matching costs in local support

windows under the assumption that the pixels in the local support region belong to

the same object patch and have similar disparities. Recent local methods perform

cost aggregation using locally adaptive filtering techniques with a region of support

and weights that adapt to the local image characteristics. Bilateral filters are used in

several popular stereo matching methods such as [65–69]. The cost in the local sup-

port region is weighted exponentially using the spatial and color differences between

each surrounding pixel and the middle pixel. The main drawback of bilateral filtering

methods is that the non-linear pixel-wise support weight computation consumes a

57



large amount of time and computation load. This procedure is not amenable to be

speeded up by integral image techniques. The method in [75] proposed to compute

the adaptive weights using the geodesic distance to produce better performance at

object borders. But the computation complexity of [75] is still high. Another method

in [76] computes the adaptive weights using the information permeability and propa-

gation method. The computation complexity is less as compared to using the geodesic

distance. Using a guided filter [77] for stereo matching was first proposed in [70, 71],

and was adopted in several stereo matching approaches [40, 42, 72–74]. The guided

filter has better filtering effect near edges and depth discontinuities. Furthermore,

the computational complexity of the guided filter is more suitable for real-time ap-

plications because of the linear computation and the speed-up implementation using

integral image methods. The local multipoint filtering method in [40] extends the

square-support region guided image filter to a more generalized multipoint filter us-

ing a zero-order and a first-order filtering model. The method in [42] proposed adap-

tive guided filtering based on the original guided image filter but with an adaptive

kernel size. Recent proposed methods in [78, 79] combine the guided filtering based

aggregation with semi-global optimization to achieve a better refined disparity result.

Adaptive Support Region: Besides the adaptive support weight methods such

as bilateral filtering and guided filtering, the adaptive support window methods can

also improve the cost aggregation accuracy, thus benefiting the disparity estimation.

Instead of using fixed size rectangular windows, the size and the shape of the support

window could be varied for each pixel, according to the color information in the

local neighborhood. The shiftable window approach is proposed in [80] and used in

[81–83] to select a proper square window size in a set of fixed-size windows for each

pixel. This helps to handle the discontinuity regions. Other methods [84, 85] seek

to determine the optimum non-rectangular window by optimizing over a large class
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of “compact” windows. The method in [86] proposed to use polygons with varying

sizes to represent the arbitrarily shaped support region of each pixel. However this

method does not result in an efficient image representation for cost aggregation since

it requires more parameters for polygon representation. Another adaptive support

window approach called the cross-based support region method is firstly proposed

in [1], and has been adopted in several recent stereo matching methods [42, 72, 87–

89]. The cross-based support region determines an arbitrary-shape support region

using four arm lengths in four directions surrounding each pixel: left, right, up and

bottom. This method handles the variable shape near depth discontinuities accurately

and the cost aggregation is more efficient compared to other adaptive support window

methods. The method in [40] further combines the cross-based support region with

guided filtering to perform local multipoint filtering more efficiently as compared to

the original guided image filtering.

Cost Aggregation Complexity Reduction: In local stereo matching methods,

the most time-consuming step is the cost aggregation. It is important to reduce the

computational complexity of cost aggregation for real-time purposes, while retain-

ing the accuracy of the estimated disparities. Recently several local stereo matching

schemes were proposed to reduce the computation load and the aggregation redun-

dancy. A multiscale approach is used in [83, 90] to reduce the disparity search range

using smaller support windows on the coarser image scale. A cost volume filtering

method using salient subvolumes in [91] utilizes the SIFT [21] matching features to

select the salient regions in each cost volume for cost volume filtering instead of filter-

ing the full-size cost volume. This method achieves comparable results as compared

to filtering the whole cost volume while accelerating the computation process. The

integral image technique [92, 93] is used to accumulate the matching cost more effi-

ciently. The cost aggregation methods based on variant support regions in [1, 40, 42]
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compute two integral images in the horizontal and vertical directions respectively, and

the aggregated cost for each pixel is obtained by subtracting the corresponding accu-

mulated costs in the integral images. The method proposed in [41] explores to reduce

the redundancy and improve the computation efficiency in the disparity search range

using a disparity subset determined jointly from the disparity histogram based on a

fast box-filtered cost volume and a sampling technique in a square support region,

and conducts a refined bilateral-filter-based cost aggregation using only the selected

disparity candidates. But the fast box-filtered cost volume computation is noisy and

inaccurate, and erroneous disparity values that correspond to mis-matches can result

in inaccurate aggregated cost, which in turn can affect the disparity accuracy. An-

other drawback of the method in [41] is that they use the bilateral adaptive weight

for refined cost aggregation with a relatively high computational complexity.

4.2 Proposed Local Stereo Matching Method

The proposed local stereo matching method follows the main steps of local stereo

matching, including cost computation, cross-based support region calculation, fast

and coarse cost aggregation, disparity subset selection, cost volume aggregation on

the selected disparity subset using adaptive guided filtering, sparse localized support-

region-based propagation, disparity calculation and disparity refinement. A block

diagram of the proposed local stereo matching method is shown in Fig. 4.1. Details

about each component are presented in the following subsections.

4.2.1 Cost Computation

The matching cost computation is the first step of stereo disparity estimation al-

gorithms and it is vital to the final disparity results. The cost value is a per-pixel

dissimilarity measurement between pairs of corresponding pixels in the left and right
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Fig. 4.1: Block Diagram of the Proposed Local Stereo Matching Method.

stereo images. Let D = (d, 0). For pixel p = (x, y) at disparity d, the cost value

C(p, d) is derived using pixel p in the left image and pixel p − D = (x − d, y) in

the right image. The cost volume is formed using the cost values over all pixels

at all disparity values. Various cost measures were proposed for stereo matching

algorithms, including absolute intensity difference (AD) [94], squared intensity dif-

ferences (SD) [95–97], gradient-based measures [71, 98, 99], Birchfield and Tomasis’s
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sampling-insensitive measure (BT) [100], mutual information [101, 102], normalized

cross correlation (NCC) [103] and census [104, 105]. A comprehensive review of dif-

ferent matching costs is presented in [106]. Combining cost measures tend to improve

the overall disparity accuracy, and different cost measures are combined and analyzed

in several recent stereo matching approaches [71, 72, 107]. The census measure was

shown to produce reliable dissimilarity cost and several modifications based on the

census measure have been proposed [72, 105, 108]. In our stereo matching frame-

work, we generate the matching cost by combining three measures: the Birchfield

and Tomasi’s sampling-insensitive measure (BT) [100], absolute horizontal gradient

difference [71] and census on image intensity [104]. The Birchfield and Tomasi’s

sampling-insensitive measure (BT) is an essential cost measure to handle the color or

gray-scale variations in the local region and is more robust to image sampling com-

pared to the absolute intensity difference measure [100]. The Birchfield and Tomasi’s

sampling-insensitive measure (BT) is combined with the absolute intensity difference

to enhance the robustness of the cost measure to illumination changes at depth dis-

continuities. The census measure encodes the local image structures with a relative

ordering on pixel intensities, and was shown to be more robust to radiometric changes

and image noises. The three cost measures can be represented mathematically as de-

scribed below.

Suppose the pixel in the left view is denoted as p = (x, y) and the disparity level

is d, then the corresponding point in the right view is pR = p−D, where D = (d, 0).

The Birchfield and Tomasi’s sampling-insensitive measure (BT) of point p at disparity

level d is computed as [100]:

CBT (p, d) =
1

3

∑
i∈[r,g,b]

min
(
d̄(p, pR, I

i
L, I

i
R), d̄(pR, p, I

i
R, I

i
L)
)

(4.1)

where d̄(p, pR, I
i
L, I

i
R) is the dissimilarity measure of how well the intensity at p in the
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left view fits into the linearly interpolated region surrounding pR in the right view.

d̄(pR, p, I
i
R, I

i
L) is the dissimilarity measure of how well the intensity at pR fits into

the linearly interpolated region surrounding p. I iL denotes the color intensity value in

the ith RGB color channel in the left view, and I iR denotes the color intensity value

in the ith RGB color channel in the right view. According to [100], d̄(p, pR, I
i
L, I

i
R) is

computed as follows:

d̄(p, pR, I
i
L, I

i
R) = max

(
0, I iL(p)− IR i

max, I
R i
min − I iL(p)

)
(4.2)

where IR i
max = max

(
1
2

(
I iR(pR) + I iR(pR − (1, 0))

)
, 1
2

(
I iR(pR) + I iR(pR + (1, 0))

)
, I iR(pR)

)
IR i
min = min

(
1
2

(
I iR(pR) + I iR(pR − (1, 0))

)
, 1
2

(
I iR(pR) + I iR(pR + (1, 0))

)
, I iR(pR)

)
(4.3)

Similarly, d̄(pR, p, I
i
R, I

i
L) is computed as follows:

d̄(pR, p, I
i
R, I

i
L) = max

(
0, I iR(pR)− IL i

max, I
L i
min − I iR(pR)

)
(4.4)

where IL i
max = max

(
1
2

(
I iL(p) + I iL(p− (1, 0))

)
, 1
2

(
I iL(p) + I iL(p+ (1, 0))

)
, I iL(p)

)
IL i
min = min

(
1
2

(
I iL(p) + I iL(p− (1, 0))

)
, 1
2

(
I iL(p) + I iL(p+ (1, 0))

)
, I iL(p)

) (4.5)

The absolute horizontal gradient difference is defined as

CGD(p, d) =
∣∣∇xIL

(
p
)
−∇xIR

(
p− (d, 0)

)∣∣ (4.6)

where ∇xI(p) is the gradient value of the gray-scale intensity in the x direction at

pixel p. IL(p) and IR(p) are the gray scale intensities at a pixel p in the left and right

view, respectively.

To compute the census of image intensity, the gray-scale intensity at a point p in

the left view is compared with the gray-scale intensity at other points in a local square
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window centered at p. A binary function representing the relationship between the

intensity at the point p and pn is defined as

ξ(p, pn) =

 1, if |I(p)| < |I(pn)|

0, otherwise
(4.7)

The census transform of point p is a binary sequence formed by the concatenation

of the binary function ξ(p, pn) for all neighboring pn in the n × n square window

centered at p, in a row-wise order. It can be expressed as

CENSUS(p) = ⊗
pn∈Np

ξ(p, pn) (4.8)

where Np is the n × n square window centered at p, and ⊗ is the concatenation

operation in row-wise order. The census measure CCEN between the point p in the

left view and p − (d, 0) in the right view is defined as the Hamming distance of two

binary census strings of p in the left view and p− (d, 0) in the right view, represented

as

CCEN = Hamming
(
CENSUS left

(
p
)
, CENSUS right

(
p− (d, 0)

))
(4.9)

The final cost measure at each pixel is obtained as a combination of the above

cost measures. However, each of the above cost measures does not carry the same

significance, in the sense that increments in these cost measures do not correspond to

equal increments in the perceived dissimilarity. Furthermore, an increment in a cost

measure is not linearly proportional to the increment in the perceived dissimilarity,

but can be related to the perceived dissimilarity through an exponential psychometric

function [109, 110] as follows:

P (c, λ) = 1− exp
(
− c

λ

)
(4.10)

where c is the cost measure and λ is a normalization parameter that depends on the

corresponding cost measure. From (4.10), it should be noted that 0 ≤ P (c, λ) ≤ 1,

64



and thus P (c, λ) provides a normalization of the cost measures so that they can be

combined properly.

The final cost measure is obtained as a weighted linear combination of the nor-

malized cost measures as follows:

C(p, d) = α · P (CCEN , λCEN) + β · P (CAD, λAD) + (1− α− β) · P (CGD, λGD) (4.11)

where α, β are weights for different cost components, and 0 < α < 1, 0 < β < 1,

0 < α + β < 1.

4.2.2 Modified Cross Support Region

In the cost aggregation step, for each pixel, the cost of the neighboring pixels are

aggregated in the neighborhood to reduce the matching ambiguities and generate a

more reliable cost volume. The neighborhood pixels form the support region of each

center pixel. It is desirable to determine the support region around a pixel p such

that pixels in that region would correspond to 3D points belonging to the same ob-

ject or surface as p and would thus have similar disparities. In local stereo matching

algorithms, determining a proper support region for each pixel is essential to the cost

aggregation step, and has a direct effect on the cost volume reliability and disparity

accuracy. Several methods proposed various adaptive support region schemes to ag-

gregate the matching cost more robustly [1, 80, 84, 86]. But the methods in [80, 84]

relied on the square support regions which are not adaptive near disparity continu-

ities. The method in [86] proposed to use polygons with varying sizes to represent

the arbitrarily shaped support region of each pixel. However this method does not

result in an efficient image representation for cost aggregation since it requires more

parameters for polygon representation. The cross-based support region proposed in

[1] is efficient to represent the adaptive support region, but it uses a fixed threshold

65



to determine the support region arm length. Based on the cross-based support region

method originally proposed by [1], we propose a locally adaptive cross-based support

region calculation method that adapts to the local image characteristics by incor-

porating the variance of the local color change at each pixel in the color similarity

threshold.

According to [1], the input color image is firstly smoothed using a 3×3 median filter

to suppress the image noise. The adaptive support region of each point is determined

using four cross arms in orthogonal directions based on the color similarity. The four

cross arms are in the left, right, up and bottom directions. The arm length in each

direction is determined by searching the largest span where all pixels covered by the

span have similar colors as compared to the center pixel. For each pixel p, the cross-

based support region is formed by merging the horizontal arms of all the pixels lying

on the vertical arms of p, or merging the vertical arms of all the pixels lying on the

horizontal arms of p. An example of the cross-based support region is illustrated in

Fig. 4.2.

The original cross-based support region of [1] uses the maximum color difference

in the RGB channels as the color similarity measure, and sets a fixed threshold to

determine if the two pixels have a similar color. This method cannot adapt to the

local characteristics of the visual content. For example, in highly textured regions

with high color variations, the threshold should be higher to generate a larger support

region containing the texture pixels. In textureless regions, the threshold should be

relatively smaller in order to cover similar color pixels without crossing the edge

boundaries.

Instead of using a fixed threshold to determine color similarity as in the method [1],

in our proposed method, for each pixel p, the maximum color difference among RGB

channels between p and a pixel pi in the arm span is thresholded using an adaptive
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Fig. 4.2: An Example of the Cross-based Support Region of a Pixel. The Black Pixels

Represent the Object Boundary. The Red Pixel is the Anchor Pixel p. For Each Pixel

in the Vertical Arm Span, the Corresponding Horizontal Arm Lengths Are Determined to

Form the Support Region. The Blue Contour Represents the Cross-based Support Region

of p.

threshold determined by the local color standard deviation in the neighborhood of

the pixel pi.

In the horizontal arm calculation, the modified color similarity indicator function

for the horizontal arm lengths δ(p1, p2) is defined as

δ(p1, p2) =


1, max

c∈[r,g,b]

(
|Ic(p1)− Ic(p2)|

)
≤ TC

0, otherwise

(4.12)

and

TC = c1 · σLocal H(p2) + c2 (4.13)

where c1 is a scaling factor and c2 is a bias term. σLocal H(p) is the local color change

standard deviation in a neighborhood of pixel p = (x, y) in the horizontal direction,

and it is computed as follows:

σLocal H(p) =

√√√√1

4

1∑
k=−2

(
max
i∈[r,g,b]

(
|Ii(p+ (k, 0))− Ii(p+ (k + 1, 0))|

)
− µLocal H

)2
(4.14)
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(a) (b)

Fig. 4.3: The Boundary of the Support Region of a Considered Pixel (Blue Cross) in the

Teddy Image is Shown by the Red Contour Surrounding That Pixel. (a) Original Cross-

based Support Region [1] of a Pixel in the Teddy Image. (b) Modified Cross-based Support

Region Generated by the Proposed Method of a Pixel in the Teddy Image.

where µLocal H is the mean value of the local color difference and is given by

µLocal H =
1

4

1∑
k=−2

max
i∈[r,g,b]

(∣∣Ii(p+ (k, 0))− Ii(p+ (k + 1, 0))
∣∣) (4.15)

The vertical arms are determined by calculating the color standard deviation in the

vertical direction in a similar manner.

The proposed modified cross-based support region method adjusts in a local adap-

tive manner the thresholds based on the local structure and is thus able to better

represent pixels belonging to the same textured regions as compared to the original

method in [1]. This is illustrated in Fig. 4.3 which shows that the proposed method

results in a cross support region that covers more relevant neighborhood pixels in the

texture regions.
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Fig. 4.4: Illustration of Cost Volume Aggregating over the Cross-based Support Region.

The Cost is Aggregated First in the Horizontal Direction, and Then in the Vertical Direction.

4.2.3 Fast Coarse Cost Aggregation

After computing the per-pixel cost volume C(p, d), and the adaptive cross-based

support regions for all pixels, a fast cost volume aggregation is conducted to generate

an initial coarse aggregated cost volume CA(p, d) for all pixels at all disparity levels.

The proposed fast coarse aggregated cost volume CA(p, d) is less accurate than the

refined cost aggregation using a guided filter in terms of disparity estimation, but it

is faster and less noisy than the per-pixel cost calculated in Section 4.2.1. The coarse

cost volume is used in Section 4.2.4 to select a sparse subset of disparity candidates

with higher matching likelihood. Once the disparity subsets are estimated for all

pixels, a more accurate adaptive cost aggregation is computed using the guided filter

only on the disparity subset, as discussed in Section 4.2.5.

For each pixel p at disparity level d, the fast coarse aggregated cost CA(p, d) is

computed as the summation of per-pixel cost C(p, d) in p’s support region. We use

the cross-based support region ωp as described in Section 4.2.2 for aggregation. As

in [1], the cost is aggregated efficiently using two orthogonal 1-D integrations in the

horizontal direction followed by the vertical direction. An illustration of orthogonal

aggregation is shown in Fig. 4.4.
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4.2.4 Disparity Subset Selection

As stated in Section 4.1.1, most existing edge-preserving filter based stereo meth-

ods exhaustively compute a single aggregated cost volume for all disparity values,

and determine the disparity maps from the aggregated cost volume. For each pixel,

the aggregated cost values are calculated for all integer values in the disparity range

d ∈ [0, Dmax], and the disparity value corresponding to the smallest cost value is

selected as the disparity at this point. For each pixel, the matching costs with high

matching values usually correspond to mis-matched disparity between stereo views.

Thus there is potentially no need to calculate the aggregated cost at the mis-matched

disparity levels, and this will also reduce the computational complexity in the cost

aggregation step. Furthermore, it is stated in [41] that unnecessary pixel candidates

with high matching cost at some disparity levels may contaminate the cost aggrega-

tion process for the neighborhood pixels, increasing the disparity ambiguity. In order

to improve the computation efficiency and reduce the cost aggregation redundancy,

it is possible to aggregate the matching cost using a compact representation of the

per-pixel matching cost in a smaller disparity search range. Unlike the method in [41]

that considers only the local minima of the cost function to form the disparity sub-

set, we propose to adaptively select both the local minima and admissible disparity

candidates with relatively small matching cost near local minima for each pixel. This

is because disparity candidates with relatively small matching cost can also provide

highly matching probabilities in the cost aggregation. Additionally, for each pixel,

we incorporate the disparity subset candidates of the neighborhood support region

pixels into the disparity subset calculation. This has the potential to reduce the noise

effect in the initial cost volume estimation, and avoid missing some potential disparity

candidates.
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In our disparity subset calculation procedure, the initial fast and coarse aggregated

cost volume CA(p, d) calculated in Section 4.2.3 is used to generate the disparity

candidates corresponding to relatively lower cost values for each pixel. In the disparity

subset selection, both local minima and admissible disparity candidates with relatively

small matching cost are considered. For each pixel p, we assign a significance status

to each of the disparity values in the disparity range [0, Dmax], and the disparity

candidates which are labeled as significant form the disparity subset.

Suppose we select a number of Nsub = Ns · Dmax sparse disparities candidates

to generate the disparity subset MC(p), and a minimum number of M (M < Nsub)

admissible disparity candidates with relatively small matching cost are enforced in

the disparity subset. Ns is the ratio of the disparity subset size with respect to the

total disparity range Dmax.

Firstly, for each pixel p, the initial aggregated cost CA(p, d) in the whole disparity

range is normalized to [0, 1], denoted as C ′A(p, d), and local minima points whose cost

value is smaller than 0.6 form a local minima disparity candidate set, denoted as

DLM . The number of selected local minima points in DLM is denoted as NLM .

Secondly, in order to assign a significance status to each disparity candidate, we

consider the following two conditions:

(1) if the number of selected local minima NLM is less than Nsub −M , all the

disparity values in DLM are marked as significant disparity candidates. Except for

the marked significant disparity candidates, the cost values of remaining disparity

candidates are sorted in ascending order, and the disparity values corresponding to

the firstNsub−NLM smallest cost values are marked as significant disparity candidates;

(2) if the number of selected local minima NLM is larger than Nsub − M , the

cost values of local minima disparities in DLM are sorted in ascending order, and the

disparity values corresponding to the first Nsub−M smallest elements are marked as
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Fig. 4.5: Disparity Subset Selection From the Coarse Aggregated Cost Volume. The Red

Dots Represent the Selected Disparity Candidates Including Local Minima and Admissible

Disparity Candidates with Relatively Small Matching Cost.

significant disparity candidates. Except for the marked significant disparity candi-

dates, the cost values of remaining disparity candidates are sorted in ascending order,

and the disparity values corresponding to the first M smallest cost values are marked

as significant disparity candidates.

Finally, the final disparity subset MC(p) for pixel p consists of all the significant

disparity candidates. After the disparity subset is estimated for each pixel, we further

analyze the disparity candidates of the neighborhood pixels, and add possible dispar-

ity candidates from the neighborhood. For each pixel p, we go through the disparity

subset MC(q) of pixels in the neighborhood support region q ∈ ωp, and form a dis-

parity histogram Hp(d) of the disparity candidates in the neighborhood pixels. The

histogram is normalized to [0, 1]. For a disparity value d1, if Hp(d1) is larger than a

threshold of 0.5/Nsub, this disparity candidate is likely to correspond to true matches,

thus d1 is added to the disparity subset MC(p) of p if MC(p) does not contain d1
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already.

By selecting the disparity values of both local minima and admissible disparity

candidates with relatively small matching cost and from the neighborhood pixels, a

more reliable disparity subset is generated compared to only selecting the local min-

ima candidates. An example of the initial aggregated cost CA(p, d) and the selected

disparity subset (marked as red dots) is illustrated in Fig. 4.5.

4.2.5 Refined Cost Aggregation using Sparse Adaptive Guided Filter

As stated earlier, since the per-pixel matching cost is noisy and produces unstable

disparity values by selecting the minimum cost in the isolated per-pixel cost among

the disparity range, a refined cost aggregation is computed using the adaptive support

region and disparity subset based on the per-pixel matching cost volume computed in

Section 4.2.1. Since the guided filter has a good performance in preserving edges and

is efficient in computation with the linear filtering model, we use the guided filter for

sparse cost aggregation. For each pixel, the cost aggregation is done in its adaptive

support region as discussed in Section 4.2.2, but only for the disparity values in the

disparity subset MC(p). Using the disparity subset, the aggregation for each pixel

in the adaptive support region for each disparity value d ∈ MC(p) is obtained by

summing up the weighted cost value of surrounding pixels whose disparity subset

contains the current disparity value d. This can be represented as

C ′(p, d) =


∑

qWp,q(I)C(q, d)o(q, d), d ∈MC(p)

Γ, otherwise
(4.16)

where C(p, d) is the per-pixel cost volume calculated as in Section 4.2.1, I is the color

image and o(p, d) is the disparity subset selection function given by

o(p, d) =

 1, d ∈MC(p)

0, otherwise
(4.17)

73



Cost values corresponding to disparity values outside the disparity subset are set to

a large number Γ in the disparity calculation. Wp,q(I) is the adaptive weight between

p and neighborhood pixel q at disparity d, expressed as follows:

Wp,q(I) =
1

|ωp|
∑
k∈ωp

( 1

|ωk|
∑
q∈ωk

(
1+(Ip−µk)T (Σk+εU)−1(Iq−µk)

))
,∀q : p ∈ ωq (4.18)

where Σk and µk are the 3× 3 covariance matrix and 3× 1 mean vector of the color

image I in the support region ωk of pixel k, respectively. U is a 3× 3 identity matrix

and ε is a smoothness parameter. |ωp| is the pixel number in the support region ωp

of point p. According to [40], unbalanced arm lengths in the horizontal direction or

vertical direction will cause the gradient reversal artifacts in guided filtering, thus we

set the horizontal arm lengths symmetrically to the smaller length of rleft and rright,

and the vertical arm lengths are set similarly as the smaller length of rup and rbottom.

In the guided filter implementation, the weight values Wp,q(I) do not need to be

calculated explicitly. Instead, the filtered cost volume output can be calculated using

the linear model definition of guided image filter as in [77]. Firstly, the input per-pixel

matching cost is computed as the cost volume only containing the cost values in the

selected disparity subset, represented as

CD(p, d) = C(p, d) · o(p, d) (4.19)

Secondly, the filtered cost volume output C ′(p, d) at disparity level d is calculated

as a weighted sum of the linear transform of I in the support region ωq centered at

the pixel q and p ∈ ωq, represented as

C ′(p, d) =

∑
q∈ωp
|ωq(d)|

(
aq(d)T Ip + bq(d)

)∑
q∈ωp
|ωq(d)|

, ∀q : p ∈ ωq, d ∈MC(p) (4.20)

where ωq(d) is the support region of q at disparity d, and |ωq(d)| is the number of

pixels with non-zero cost in the support region ωq at disparity d. “∀q : p ∈ ωq” means

all the pixels q whose support region ωq include the pixel p.
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The linear coefficients 3 × 1 aq(d) and 1 × 1 bq(d) can be solved through linear

regression as follows::

aq(d) =
1

|ωq(d)|
(Σq + εU)−1

(∑
i∈ωq

IiCD(i, d)− µqC̄D(q, d)
)
, d ∈MC(p) (4.21)

bq(d) = C̄D(q, d)− aq(d)Tµq, d ∈MC(p) (4.22)

where C̄D(q, d) is the mean of the per-pixel cost measure in support region ωq. Σq

and µq are, respectively, the 3 × 3 covariance matrix and 3 × 1 mean vector of the

color image I in the support region ωq centered at pixel q.

Finally, for each pixel p, the number of non-zero cost pixels in its support region

at different disparity levels of the disparity subset MC(p) could be different, thus the

aggregated cost using a guided filter at different disparity levels may be unstable.

To address this issue, we propose to further weight the guided filter output with an

exponential weight function. The final sparsely aggregated cost volume CSLAC(p, d)

is represented as

CSLAC(p, d) = C ′(p, d) ·Bp(d) (4.23)

where the exponential weight function Bp(d) is defined as

Bp(d) = exp

− |ωp(d)|
max

d∈MC(p)
|ωp(d)| · λB

 (4.24)

where λB is a constant to adjust the exponential kernel shape.

4.2.6 Cost Volume Optimization and Disparity Calculation

Since the aggregated cost volume CSLAC(p, d) is adaptively estimated based on

the local neighborhood region, there are possible matching ambiguities in the cost

volume that can cause mis-matching near depth discontinuities and occluded regions.

In order to further remove the matching ambiguities in the cost volume, the aggre-

gated cost volume is optimized using a localized support-region-based propagation
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by considering smoothness constraints and parallelism between stereo views. The

proposed propagation is similar to the semi-global optimization (SGM) method in

[43, 87], but the cost volume is propagated in local support regions instead of using

all image pixels. The SGM usually aggregates the cost value at each disparity level

in 1D from multiple path directions. In the proposed localized support-region-based

propagation, we compute the recursive optimization in four directions r: left-to-right

(r = (1, 0)), right-to-left (r = (−1, 0)), top-to-bottom (r = (0, 1)) and bottom-to-top

(r = (0,−1)). Given a direction vector r, the aggregated cost Cr(p, d) along the

direction r at pixel p and disparity d ∈MC(p) can be represented as:

Cr(p, d) = CSLAC(p, d) + min
(
Cr(p− r, d), Cr(p− r, d± 1) + P1,

min
dd∈MC(p−r)

Cr(p− r, dd) + P2

)
− min

dd∈MC(p−r)
Cr(p− r, dd), if (p− r) ∈ ω(p) (4.25)

Cr(p, d) = CSLAC(p, d), if (p− r) /∈ ω(p) (4.26)

where p − r is the previous pixel along the direction r. The cost is propagated

from the previous pixel only if the previous pixel lies in the current pixel’s support

region, thus the propagation is computed in a localized support region instead of

on all image pixels. In (4.25), P1 and P2 are two smoothness penalty terms for the

disparity changes between neighboring pixels, and P1 < P2. The values of P1 and

P2 are set symmetrically according to the gray-scale intensity difference DL between

pixel p and p − r in the left view and the difference DR between the corresponding

pixel p− (d, 0) and p− (d, 0)− r in the right view, represented as:

(P1, P2) =



(π1, π2), DL < τSO, DR < τSO

(π1/4, π2/4), DL < τSO, DR > τSO

(π1/4, π2/4), DL > τSO, DR < τSO

(π1/10, π2/10), DL > τSO, DR > τSO

(4.27)

76



where π1 and π2 are constant penalty values, and τSO is the threshold on intensity

difference between adjacent pixels. Note that, for each pixel p, we only aggregate the

cost values corresponding to the disparity subset values in MC(p), and this helps to

save the computational time of propagation.

The optimized cost volume Cfinal(p, d) is obtained by averaging the propagated

path costs in four directions as:

Cfinal(p, d) =
1

4

∑
r

Cr(p, d) (4.28)

After obtaining the filtered cost volume using the proposed sparse locally adap-

tive cost aggregation as described above, the disparity map of each view is initially

computed by selecting the disparity value corresponding to the minimal cost value in

the aggregated cost volume Cfinal(p, d) for d ∈MC(p) using a winner-take-all (WTA)

approach as follows:

D̂(p) = arg min
d∈MC(p)

Cfinal(p, d) (4.29)

4.2.7 Disparity Refinement

Despite the effectiveness and efficiency of the local cost volume filtering and

locally-support-region-based propagation, the initial estimated disparity maps con-

tain outliers such as mis-matches and occlusion, due to the various scene structures

and characteristics. The local stereo methods usually make the assumption of fronto-

parallelism for object surfaces in the stereo matching process, thus they do not per-

form well for slanted surface regions. Another drawback of the local stereo methods

is that they are not robust to large homogeneous and textureless regions since image

pixels are matched in a limited neighborhood support region. In the slanted surfaces

and homogeneous regions, the disparity map might have sharp discontinuities and

blocking artifacts that affect the overall disparity accuracy.
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Many post-processing methods were proposed to refine the disparity maps in re-

cent years. Some disparity post-processing methods use image segmentation to detect

and correct the inconsistent regions in disparity maps [72, 89, 108], but segmenta-

tion methods are usually computationally expensive. The local stereo methods in

[70, 87, 105] use different interpolation methods based on the local support region

to correct the mis-matched pixel regions, but the local interpolation methods can

not handle the large homogeneous regions and slanted surfaces. The method in [42]

proposes to detect the mis-matched homogeneous regions using the cost-ratio mea-

sure of the aggregated cost volume, and correct the large homogeneous regions using

the weighted propagation method only in the horizontal directions. But it lacks the

robustness to deal with homogeneous regions with disparity changes and slanted sur-

faces, since the weighted propagation is computed at the same disparity and only in

horizontal directions.

In this section, we propose a novel disparity refinement method to handle mis-

matches including slanted and homogeneous regions. The refinement method firstly

detects the unreliable regions in the initial disparity maps, and corrects the disparity

values in these regions using a multi-direction weighted cost propagation method with

disparity change and smoothness compensation terms. The remaining invalid dispar-

ity pixels in each view are further interpolated adaptively using the local support

region.

A. Detection of Unreliable Disparity Regions

The unreliable disparity pixels in each view consist of two parts: the invalid disparity

pixels corresponding to occlusions and unstable disparity pixels in large homogeneous

regions.

Using the disparity map of the left view D̂left(p) and the right view D̂right(p),
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Fig. 4.6: Invalid Pixel Map of the Adirondack Dataset in the Middlebury Version 3

Database. Invalid Pixels are Marked as Black Color.

the left-right cross consistency check is implemented to detect invalid disparity pixels

in each view, respectively. For a pixel p in the left view, if the disparity of its

corresponding point in the right view does not agree with the disparity of p in the

left view, the pixel is marked as invalid for further approximation. The invalid pixels

are those which do not satisfy the following criteria:

∣∣D̂left(p)− D̂right(p− (D̂left(p), 0))
∣∣ ≤ TD (4.30)

where p − (D̂left(p), 0) = (x − D̂left(p), y), and TD = 1 for integer disparity ranges.

The set of invalid pixels is denoted as Pinvalid. The set of invalid pixels in the right

view is computed in a similar manner. These invalid pixels usually contain matching

outliers and occlusion pixels between the two views. The invalid pixels are marked as

black color in Fig. 4.6 for the left view of the Adirondeck image set of the Middlebury

version 3 database.

In the initially computed disparity map D̂(p) for each view, we further identify

pixels with unstable aggregated cost using both the local color standard deviation

calculated using (4.14) in Section 4.2.2 and the cost ratio between the minimum cost
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Fig. 4.7: Unreliable Pixel Map of the Adirondack Dataset in the Middlebury Version 3

Database. Unreliable Pixels are Marked as Black Color.

value and the second minimum cost value in its sparse cost volume Cfinal(p, d). The

cost ratio is expressed as

Rcost(p) =

∣∣Cfinal 1(p)− Cfinal 2(p)
∣∣

Cfinal 2(p)
(4.31)

where Cfinal 1(p) is the minimum cost value for d ∈ MC(p), and Cfinal 2(p) is the

second minimum cost value. Pixels with a local color standard deviation smaller

than a threshold Tcv and with a cost ratio value smaller than a threshold Tcost are

marked as unstable pixels. Both the invalid pixels and the unstable pixels are denoted

as unreliable pixels. An example of the detected unreliable pixels are marked as black

color in Fig. 4.7 for the left view of the Adirondeck data set in the Middlebury version

3 benchmark database.

B. Multi-Direction Weighted Propagation with Disparity Compensation

In order to normalize the cost volume CSLAC(p, d), an absolute difference cost volume

Cdiff (p, d) is generated using the aggregated SLAC cost volume CSLAC(p, d) computed
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in Section 4.2.5 as follows:

Cdiff (p, d) =

 0, p ∈ Pinvalid∣∣CSLAC(p, d)− Cbest(p)
∣∣, d ∈MC(p)

(4.32)

where Cbest(p) correspond to the minimum matching cost in the disparity subset of

pixel p.

Using the absolute difference cost volume, the cost at each disparity level in the

considered disparity subset is aggregated using the weight propagation method in

four directions r: left-to-right
(
r = (1, 0)

)
, right-to-left

(
r = (−1, 0)

)
, top-to-bottom(

r = (0, 1)
)

and bottom-to-top
(
r = (0,−1)

)
. Given a direction vector r, the

aggregated cost C ′r(p, d) along the direction r at pixel p and disparity d ∈MC(p) can

be represented as:

C ′r(p, d) = Cdiff (p, d) + µ ·min
(
C ′r(p− r, d), C ′r(p− r, d± 1) +H1,

min
dd∈MC(p−r)

C ′r(p− r, dd) +H2

)
, if (p− r) ∈ ω(p) (4.33)

C ′r(p, d) = Cdiff (p, d), if (p− r) /∈ ω(p) (4.34)

In (4.33), H1 and H2 are smoothness penalty terms, µ is the propagation coefficient

calculated using a kernel function of the intensity difference between pixel p and the

previous pixel p− r along the direction r, as follows [76]:

µ = exp
(
− |I(p)− I(p− r)|

σ

)
(4.35)

where I(p) is the gray-scale image intensity, and σ is a smoothness term [76].

The propagated cost volume is the average of the aggregated costs in all directions

and is given by:

Cprop(p, d) =
1

4

∑
r

C ′r(p, d) (4.36)
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Using the propagated cost volume of each view, the disparity map Dprop is calcu-

lated using a winner-take-all operation as follows:

Dprop = arg min
d∈MC(p)

Cprop(p, d) (4.37)

For the detected unreliable pixels (Section 4.2.7 A), the disparity value is replaced by

the disparity value in Dprop.

The proposed weighted propagation adapts the accumulated cost value to the

disparity change in homogeneous regions by using the smoothness penalty terms, and

it greatly helps to reduce the disparity error in the unreliable regions including invalid

pixels and unstable pixels. The resulting disparity map using the proposed weighted

propagation is shown in Fig. 4.8. Fig. 4.8 shows the effectiveness of the weighted

propagation in correcting the disparity in homogeneous and slanted regions. Note

that for both the proposed localized support-region-based propagation and weighted

propagation, the idea is similar to a local stereo aggregation since the propagation is

only computed based on the sparse disparity subset and in the local support region,

while the regular SGM performs the propagation over all image points.

C. Adaptive Interpolation

Using the refined disparity maps for both views, another left-right-consistency check

is computed and the detected invalid pixels are filled with reliable neighboring pixel

disparities. We use an iterative cross-region-based interpolation method to approxi-

mate the disparity of invalid pixels. Starting from the invalid pixel set Pinvalid near

the reliable pixels in D̂left(p) by searching invalid pixels p whose 8-connect neigh-

borhood includes at least one reliable pixels, the ratio Rpixel(p) of the reliable pixel

number over the total pixel number in the cross-based support region ω(p) is firstly

calculated for each invalid pixel p in Pinvalid. If Rpixel(p) is larger than a threshold
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(a) (b)

Fig. 4.8: Disparity Maps of the Adirondack Image Set in the Middlebury Version 3

Database. (a) Disparity Map Before Disparity Refinement. (b) Disparity Map After Dis-

parity Refinement using Weighted Propagation.

Tout, the histogram H ′(p, d) is calculated for the disparity values of reliable pixels in

the cross-based support region of p. The disparity of the invalid pixel p is assigned as

the disparity bin corresponding to the histogram peak in H ′(p, d). The filled invalid

pixel is marked as “reliable” pixel for the next iteration, and this filling process is

repeated until no extra invalid pixels are filled.

The remaining invalid pixels are filled using the disparity of the nearest reliable

pixel in the horizontal scanline. For each remaining invalid pixel p, the disparity dL

of the nearest reliable pixel to the left of p and the disparity dR of the nearest reliable

pixel to the right of p are considered, and the minimum disparity of dL and dR is

assigned as the refined disparity for the invalid pixel p. The final disparity map after

refinement is the final stereo matching result. Fig. 4.9 shows the refined disparity

map of the“Adirondack” dataset in the Middlebury version 3 database.
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Fig. 4.9: Final Disparity Map of the Left View of the Adirondack Image Set in the

Middlebury Version 3 Training Database.

Table 4.1: Parameters Used in the Proposed Stereo Matching System for All Image Sets.

λCEN λBT λGD α β π1 π2 τSO c1 c2 Np

40 20 2 0.5 0.1 0.06 0.12 15 2 20 9

M Tcv Tcost Lmax λB TD Tout H1 H2 σ ε

2 0.001 0.1 5 4 1 0.4 0.001 0.012 0.05 1e-4

4.3 Experimental Results

The parameters used in our algorithm are summarized in Table 4.1. The param-

eters are tested extensively with different values and combinations using the Middle-

bury version 2 and version 3 training image sets. The parameters corresponding to

the lowest disparity error are chosen as the system parameters. For different testing

image scenes and dataset, the parameters are fixed values.
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(a) (b) (c) (d) (e)

Fig. 4.10: Results for the Middlebury Benchmark Version 2 Stereo Image Pairs. From

Top Row to Bottom Row: Tsukuba, Venus, Teddy and Cones. (a) Left View of Original

Images; (b) Right View of Original Images; (c) Ground-truth Disparity Maps; (d) Disparity

Maps of the Proposed Method; (e) Error Map with Bad Pixels in “nonocc” Area Shown in

Black Color.
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Table 4.2: Bad Pixel Error Results Based on the Middlebury Stereo Evaluation Version 2

Benchmark Dataset. APBP stands for Average Percent of Bad Pixels.

Algorithm Tsukuba Venus Teddy Cones APBP

Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc (%)

Proposed 1.15 1.62 5.94 0.17 0.39 1.85 4.62 10.62 12.90 2.47 8.38 7.27 4.78

AdaptiveGF [42] 1.04 1.53 5.62 0.17 0.41 1.98 5.71 11.3 14.3 2.44 8.22 7.05 4.98

HistAggr2 [41] 1.93 2.30 6.39 0.16 0.46 2.22 5.88 11.3 14.7 2.41 8.18 7.21 5.20

CrossLMF [40] 2.46 2.78 6.26 0.27 0.38 2.15 5.50 10.6 14.2 2.34 7.82 6.80 5.13

CostFilter [70] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

NonLocalFilter [111] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48

RecursiveBF [112] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

AdaptWeight [65] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

4.3.1 Accuracy Evaluation

A: Disparity Results For The Middlebury Stereo Database Version 2

The proposed local stereo matching system is tested on the Middlebury stereo bench-

mark version 2 data set [38] using four benchmark stereo pairs: Tsukuba, Venus,

Teddy and Cones. The input left image, right image and ground-truth disparity map

of these datasets are shown in Fig. 4.10 (column (a) to (c)). The ratio Ns of the

disparity subset size with respect to the total disparity range is set to 0.4. The notion

of “nonocc” corresponds to the non-occluded regions, “all” corresponds to all regions

including half-occluded regions, and “disc” corresponds to regions near depth dis-

continuities. The masks of “nonocc”, “all” and “disc” for 4 image sets are shown in

Fig. 4.11. In the Middlebury benchmark evaluation, the bad pixels are defined as the

pixels whose disparity difference between the calculated disparity and the ground-

truth disparity value is larger than a threshold of 1.0. The bad pixel error is the

ratio of bad pixel number over the total image pixel number. The bad pixel error is

evaluated in the white color region for each mask, respectively.
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(a) (b) (c)

Fig. 4.11: The Masks for Bad Pixel Error Evaluation for the Middlebury Benchmark

Version 2 Stereo Image Pairs. From Top Row to Bottom Row: Tsukuba, Venus, Teddy and

Cones. (a) “nonocc”; (b) “all”; (c) “disc”. Bad Pixels Error is Evaluated in White Regions

of the Masks.

The accuracy of our propose SLAC stereo matching system is evaluated based

on the Middlebury benchmark version 2. For each dataset, the bad pixel error is

calculated for all pixels (all), non-occluded regions (nonocc) and regions near depth

discontinuities (disc). The calculated disparity maps and bad pixel images are shown

in Fig. 4.10 (columns (d) and (e)). Instead of using the whole disparity range for cost

aggregation and disparity calculation, the proposed stereo matching method using

sparse locally adaptive cost aggregation is capable to generate accurate disparity maps

with object boundaries and depth discontinuities preserved. The disparity results are
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shown in Table 4.2 for the proposed method along with several state-of-art local

stereo matching algorithms, such as AdaptiveGF [42], HistAggr2 [41], CrossLMF

[40] and CostFilter [70]. Our proposed method is ranked 17 out of 168 methods in

the Middlebury version 2 stereo benchmark. The proposed SLAC stereo matching

method has better performance than existing local stereo matching methods.

B. Disparity Results For The Middlebury Stereo Database Version 3

The accuracy of our proposed SLAC stereo matching system is evaluated based on

the Middlebury benchmark dataset version 3 [38]. The Middlebury version 3 dataset

contains 15 training image sets and 15 testing image sets. For each dataset, the stereo

images have three resolutions: full, half and quarter resolution. The bad pixel error

is calculated for non-occluded regions (nonocc). We test the proposed SLAC stereo

system on all 15 pairs of stereo images in the training image set with quarter resolution

(Midd3 Q) and half resolution (Midd3 H). The ratio Ns of the disparity subset size

with respect to the total disparity range is set to 0.4. The disparity error threshold

is set to 1.0 in quarter resolution image sets, and is set to 2.0 in half resolution image

sets equivalently. The calculated disparity map and bad pixel images are shown in

Fig. 4.12 and Fig. 4.13 (columns (d) and (e)).

The numerical results for the training dataset are shown in Table 4.3, and the

results for the testing dataset are shown in Table 4.4. At the time of submission

in December 2016, the ranks of the proposed method are as indicated below, and

the error threshold is 1 pixel at quarter resolution (i.e., “bad 4.0”). The weighted

average of bad pixel error on the half-resolution training dataset is 10.6, with a rank

of 20. The weighted average of bad pixel error on the quarter-resolution training

dataset is 11.71, with a rank of 23. The weighted average of bad pixel error on the

half-resolution testing dataset is 11.7, with a rank of 22. The online Middlebury
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(a) (b) (c) (d) (e)

Fig. 4.12: Results of Middlebury Benchmark Version 3 Quarter Resolution Training Stereo

Image Pairs, From Top Row to Bottom Row: Adirondack, ArtL, Jadeplant, Motorcycle,

MotorcycleE, Piano, PianoL and Pipes. (a) Left View of Original Images; (b) Right View

of Original Images; (c) Ground-truth Disparity Maps; (d) Disparity Maps of the Proposed

Method. Disparity Values Ascend from Blue to Red Color; (e) Error Map with Bad Pixels

in “nonocc” Area Shown in Black Color.
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(a) (b) (c) (d) (e)

Fig. 4.13: Results of Middlebury Benchmark Version 3 Quarter Resolution Training Stereo

Image Pairs, From Top Row to Bottom Row: Playroom, Playtable, PlaytableP, Recycle,

Shelves, Teddy and Vintage. (a) Left View of Original Images; (b) Right View of Original

Images; (c) Ground-truth Disparity Maps; (d) Disparity Maps of the Proposed Method.

Disparity Values Ascend from Blue to Red Color; (e) Error Map with Bad Pixels in “nonocc”

Area Shown in Black Color.
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Table 4.3: Bad Pixel Error of the Proposed Stereo Matching Algorithm Based on the

Middlebury Stereo Evaluation Benchmark Version 3 Quarter Resolution and Half Resolution

Training Image Set. The Disparity Error Threshold for Quarter Resolution Image Sets

is 1 Pixel, and the Disparity Error Threshold for Half Resolution Image Set is 2 Pixels

Equivalently.

Algorithm Adiron ArtL Jadepl Motor MotorE Piano PianoL Pipes Playrm Playt PlaytP Recyc Shelves Teddy Vintge Weighted Avg

Proposed SLAC H 4.21 6.26 13.6 4.96 4.54 12.9 22.6 7.11 10.1 37.9 6.94 6.27 32.6 3.54 22.0 10.6

Proposed SLAC Q 4.50 8.89 16.57 5.69 5.40 15.43 24.76 7.90 12.78 29.64 8.19 7.50 32.42 4.62 23.71 11.71

SGM H [43] 7.95 5.92 12.3 5.91 4.87 11.7 22.1 7.87 12.1 42.4 10.3 8.42 35.4 4.70 31.4 12.1

SGM Q [43] 5.43 11.1 18.1 6.32 5.71 14.5 26.6 10.1 14.6 25.8 11.4 8.34 35.0 5.47 30.3 13.0

LAMC DSM [105] 10.8 11.1 20.3 7.40 6.63 15.6 23.8 12.4 23.5 23.2 14.9 11.4 42.2 6.62 29.1 15.0

SNCC [113] 9.37 10.5 19.0 7.00 6.16 16.8 24.5 12.1 22.0 45.5 11.2 10.6 38.1 6.93 32.4 15.3

Cens5 [82] 15.0 11.3 18.3 8.70 7.46 18.9 28.7 11.7 23.3 46.5 13.1 12.3 41.2 7.82 42.4 17.3

Table 4.4: Bad Pixel Error of the Proposed Stereo Matching Algorithm Based on the

Middlebury Stereo Evaluation Benchmark Version 3 Half Resolution Testing Image Set.

The Disparity Error Threshold for Half Resolution Image Set is 2 Pixels.

Algorithm Austr AustrP Bicyc2 Class ClassE Cpmpu Crusa CrusaP Djemb DjembL Hoops Livgrm Nkuba Plants Stairs Weighted Avg

Proposed SLAC H 20.3 3.61 6.49 17.4 31.8 6.21 11.6 5.94 2.89 32.8 14.5 13.5 14.8 8.59 11.2 11.7

SGM Q [43] 20.1 6.25 7.99 9.98 21.9 12.0 9.53 5.64 3.73 27.5 18.2 14.6 13.7 10.9 18.2 11.8

SGM H [43] 26.7 3.56 5.02 20.0 34.4 6.61 9.90 3.27 2.70 19.8 17.2 17.8 15.0 8.47 21.2 12.2

SNCC [113] 34.7 6.19 7.65 22.4 41.1 8.34 20.2 7.12 4.74 17.4 25.1 23.0 16.2 11.6 21.1 15.8

Cens5 [82] 34.6 6.46 8.60 22.2 38.7 13.9 21.7 10.9 5.66 27.5 30.8 25.5 19.9 14.0 35.7 18.6

LAMC DSM [105] 39.1 10.2 12.9 14.7 35.5 13.5 23.4 15.3 4.48 26.6 25.9 23.5 21.4 21.9 30.9 19.2

version 3 evaluation table consists of a total of 54 submitted results using various

stereo matching methods on December 2016, but most of the methods are based on

global stereo matching and optimization algorithms. Only 6 local stereo methods are

evaluated based on the Middlebury version 3 dataset. Among the evaluation results

of the training and testing dataset, there are no local stereo methods in the top 30

methods. The proposed local stereo matching system achieves top performance in the

category of local stereo matching, and has an overall ranking of 20 on half-resulution

training images and 22 on half-resolution testing images.
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Fig. 4.14: Bad Pixel Error of the Proposed Stereo Matching Algorithm Based on the KITTI

2015 Stereo Evaluation Benchmark Training Image Set. The Disparity Error Threshold is

3.0 Pixel. The Results for Image Number 110 and 138 are Shown in Column 1 and Column

2, Respectively. From Top Row to Bottom Row: Left Image, Right Image, Ground-Truth

Disparity Map, Disparity Map of the Proposed Method, Bad Pixel in Black Color.

C. Disparity Results For The KITTI 2015 Stereo Dataset

The accuracy of our proposed SLAC stereo matching system is evaluated based on

the KITTI 2015 Stereo Dataset [39]. The image scenes in the KITTI database consist

of outdoor scenes with large homogeneous regions and background regions with far

objects. We test our system on all 200 training image pairs. The disparity error
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threshold is 3.0 pixels according to [39]. The average bad pixel error for 200 training

image pairs is 6.49%. Some examples of the calculated disparity maps and bad pixel

images are shown in Fig. 4.14 (row 4 and row 5).

4.3.2 Evaluation of Disparity Subset Performance

We further analyze the performance of the proposed SLAC stereo matching system

in terms of the l0 norm of the disparity subset on the Middlebury stereo benchmark

data set version 2 and version 3 training image pairs.

With a varyiing number of disparity subset candidates, the average bad pixel error

of “nonocc”, “all” and “disc” area for four Middlebury version 2 datasets is shown

in Figs. 4.15 (a) - (c). The average bad pixel error of all three regions are plotted

for different disparity subset size ratio in Fig. 4.15 (d). The weighted average bad

pixel error of “nonocc” area for the Middlebury version 3 quarter-resolution training

dataset is shown in Fig. 4.16. The disparity subset size ratio Ns is varied from 10%

to 100%. As shown in Fig. 4.15 and Fig. 4.16 for both Middlebury datasets, the

error rate does not decrease and converge as the number of selected disparity subset

candidates increases. The accuracy using the full disparity range does not produce

the best disparity results. Instead, the error rate has a slightly increasing trend as

the number of disparity subset candidates increases to the total disparity number

for most datasets. This observation coincides with the conclusions in [41] that using

all disparity values in cost aggregation does not guarantee a more accurate disparity

map. By selecting a proper disparity subset, the estimated disparity map can have a

higher accuracy compared to using the full disparity range.
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(a) (b)

(c) (d)

Fig. 4.15: Performance Evaluation With Respect To Disparity Subset Size using the

Middlebury Version 2 Benchmark Dataset. Average Bad Pixel Error of the Four Image Sets

in Different Regions is Plotted for Different Size Ratio of Disparity Subset. (a) Average Bad

Pixel Error in “nonocc” Region, (b) Average Bad Pixel Error in “all” Region, (c) Average

Bad Pixel Error in “disc” Region, (d) Total Average Bad Pixel Error in All Three Regions.

4.3.3 Evaluation of Intermediate Cost Aggregation Steps

In order to illustrate the effectiveness of the proposed SLAC system, the per-

formance of each cost aggregation and refinement step is evaluated based on the

Middlebury version 3 quarter-resolution training dataset. The intermediate dispar-

ity map is computed after each step including fast coarse cost aggregation, sparse
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Fig. 4.16: Performance Evaluation With Respect To Disparity Subset Percentage.

Weighted Average Bad Pixel Error of “nonocc” Area is Plotted for 15 Training Image

Pairs in the Quarter-Resolution Middlebury Version 3 Benchmark Dataset.

guided-filter-based cost aggregation, localized support-region-based propagation, and

disparity refinement. The weighted average bad pixel error rate is calculated for all

15 training image pairs. The plot of weighted average error rate after each step is

shown in Fig. 4.17. The matching error rate after the fast coarse cost aggregation

is the highest because we only aggregate the per-pixel cost uniformly in the support

region, and there are more noise and mis-matches near the depth discontinuities. The

matching error rate greatly drops after the sparse cost aggregation and the localized

support-region-based propagation. In the disparity refinement steps, the occlusion

detection, weighted cost propagation and filling further reduce the mis-matched and

occluded areas to generate the final disparity result.

4.3.4 Complexity and Efficiency of The Proposed SLAC System

We briefly analyze the complexity of the proposed SLAC system in terms of Op-

erations Order. Suppose the image size is W · H, the full disparity range is Dmax

and the size ratio of the disparity subset is Ns. In the cost computation step, the

total computation complexity is O(NpWHDmax), where Np represents the census
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Fig. 4.17: Performance Evaluation After Intermediate Stereo Matching Steps. Step1: Fast

Coarse Aggregation; Step2: Sparse Guided Filter; Step3: Localized Support-Region-Based

Propagation; Step4: Disparity Refinement. Weighted Average Bad Pixel Error of “nonocc”

Area is Plotted for 15 Training Dataset in the Middlebury Quarter Resolution Version 3

Stereo Database.

window size. Computing a cross-based arm requires O(WHL) operations, where L is

the arm length. The complexity of fast coarse cost aggregation and disparity subset

computation is O(WHDmax) for each. The sparse guided-filter-based cost aggrega-

tion, multi-direction weighted propagation and localized support-region-based prop-

agation have a complexity of O(WHDmaxNs) since the computation is only done

on the disparity subset. The complexity of the winner-take-all disparity computa-

tion is O(WHDmaxNs) and of disparity refinement using adaptive interpolation is

O(WHL2 + WHDmaxNs), where L is the arm length of the support region. From

the above complexity analysis, we can see that the proposed SLAC system retains

the linear complexity of local stereo matching methods.

Additionally, using the sparse disparity subset further helps in saving computa-

tions in the steps of sparse cost aggregation, sparse localized support-region-based
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Fig. 4.18: Comparison of Processing Time Between Using Disparity Subset with Ns = 40%

and Using Full Disparity Range, for Guided-Filter Cost Aggregation, Localized Support-

Region-Based Propagation and Weighted Propagation in Disparity Refinement.

propagation and weighted propagation used for disparity refinement. In Fig. 4.18, a

comparison of processing time between using the disparity subset with Ns = 40% and

using a full disparity range for guided-filter cost aggregation, and weighted propaga-

tion used for disparity refinement is plotted as a bar chart. The total processing time

of the above three steps using a full disparity range is about 2.26 times of the time

using a disparity subset.

In order to analyze the efficiency of the proposed stereo system, the processing

time of each step is profiled based on the C++ OpenCV code on a computer with i7

core @2.67GHz. The average processing time using the Middlebury version 3 quarter

resolution training images is shown in Fig. 4.19, for 7 intermediate steps: cost compu-

tation, cross-based support region computation, fast coarse cost aggregation, dispar-

ity subset computation, sparse guided-filter-based cost aggregation, sparse localized

support-region-based propagation, and disparity post processing using weighted prop-
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Fig. 4.19: Average Processing Time for the Middlebury Version 3 Quarter Resolution

Training Images for 7 Intermediate Steps: Cost Computation, Cross-Based Support Re-

gion Computation, Fast Coarse Cost Aggregation, Disparity Subset Computation, Sparse

Guided-Filter-Based Cost Aggregation, Sparse Localized Support-Region-Based Propaga-

tion, and Disparity Refinement using Weighted Propagation.

agation. From the bar chart, it can be observed that the sparse guided filter, localized

support-region-based propagation and weighted propagation takes most of the pro-

cessing time. But all the steps in the proposed stereo matching method can be easily

implemented using a GPU platform to show real-time complexity and performance.

4.4 Conclusion

In this chapter, a novel local stereo matching algorithm using sparse locally adap-

tive cost aggregation (SLAC) is proposed. The proposed SLAC local stereo matching

method consists of a fast initial cost aggregation stage followed by a refined cost ag-

gregation that is only performed over a sparse subset of disparities. In the proposed

method, the cost aggregation is performed in a locally adaptive manner by adapting

the support region to the local image intensity and structure. In order to reduce out-

lier disparity values that correspond to mis-matches, a novel sparse disparity subset
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selection method is proposed by assigning a significance status to candidate disparity

values, and selecting the significant disparity values adaptively. An adaptive guided

filtering method using the disparity subset for refined cost aggregation and dispar-

ity calculation is demonstrated. The aggregated cost volume is optimized through

semi-global optimization. The unreliable disparity pixels are further refined using a

novel weight propagation with disparity and smoothness penalty terms. The proposed

stereo matching system is tested on the Middlebury benchmark dataset (version 2 and

version 3) and the KITTI 2015 stereo benchmark dataset. The analysis of system

parameters demonstrates that the proposed SLAC stereo matching method is capa-

ble to generate accurate disparity results that outperform existing state-of-art local

stereo matching methods.
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Chapter 5

CONCLUSION

This work addresses locally adaptive stereo matching methods for different imag-

ing setups and applications. Two novel methods are proposed for 3D reconstruction

based on stereo images. The area of stereo 3D reconstruction is a promising area

with more research problems to be investigated further. This chapter summarizes the

main contributions of this dissertation and suggests possible research extensions.

5.1 Contributions

This dissertation presents novel locally adaptive stereo matching methods for dif-

ferent imaging setups and applications. The main contributions of this dissertation

can be summarized as follows:

• An automatic, stereo vision based, in-line ball height and coplanarity inspection

method is presented. The proposed method is computationally efficient com-

pared to other image processing techniques for solder ball height and coplanarity

detection and is shown to exhibit high accuracy, repeatability and reproducibil-

ity.

1. A novel imaging setup is proposed based on an angled-stereo scheme with

easy-to-setup and low-cost equipment. The proposed imaging setup is

compatible with real-time and in-line solder ball height inspection. The

proposed imaging setup is easy to calibrate using existing vision-based

off-line calibration toolboxes.
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2. The proposed stereo matching and 3D reconstruction method is indepen-

dent of prior depth references and active 3D sensor data. A novel iso-

contour-based feature detection and matching algorithm is proposed for

textureless objects and homogeneous object regions. The textureless re-

gions of stereo images are represented with a novel iso-contour tree struc-

ture and the sparse stereo matching is represented as a tree structure

matching problem for the first time. The proposed 3D reconstruction al-

gorithm of ball height and coplanarity from the 2D features outperforms

existing methods in terms of both the computational efficiency and the

estimation accuracy.

• A novel local stereo matching algorithm using sparse locally adaptive cost ag-

gregation (SLAC) is proposed for natural real-world image scenes. The per-

formance of the proposed SLAC method is tested on the Middlebury and the

KITTI benchmark datasets showing that the proposed SLAC method outper-

forms existing local methods in terms of accuracy.

1. A novel adaptive support region computation method is proposed by adapt-

ing the support region to the local image intensity and structure. The local

color intensity variance is adopted in the support region arm length calcu-

lation to generate a more robust support region for various scenes.

2. A novel sparse disparity subset selection method is proposed in order to

reduce outlier disparity values that correspond to mis-matches. An adap-

tive guided filtering method is demonstrated using the disparity subset

for refined cost aggregation and disparity calculation. It is shown that

using the robust disparity subset for cost aggregation helps in removing

the matching ambiguity in disparity calculation, and outperforms methods
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that make use of the full disparity range, in terms of computing time and

disparity accuracy.

3. A novel and efficient disparity refinement algorithm is proposed to remove

the disparity outliers using a multi-directional weighted cost propagation

method with disparity change and smoothness penalty constraints. The

proposed disparity refinement method helps to identify and correct the

mis-matched disparity outliers in homogeneous and slanted regions.

5.2 Future Directions

The area of stereo 3D reconstruction is a promising area with more research prob-

lems to be investigated further. The following items summarize possible research

directions to be further studied and implemented based on the work presented in this

dissertation.

• Stereo Vision Based Automated Solder Ball Height and Substrate Coplanarity

Inspection

1. The proposed solder ball height and coplanarity detection system can be

further enhanced and improved using higher resolution stereo images of

BGA packages by more sophisticated area-scan CCD cameras. With more

detailed features of the solder ball surface in 2D images, the accuracy of

stereo matching can be improved.

2. The stereo matching accuracy is sensitive to the camera angles in the

stereo setup and relative position of corresponding feature points in stereo

images. Therefore, there is a need to conduct a parametrized performance

analysis using different camera angles and different rectification methods.
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3. The proposed iso-contour based feature detection and matching method

could be applied to help in detecting the substrate feature points. This will

generate a more accurate substrate ball boundary for each solder ball, and

substrate feature points could be matched with higher sub-pixel accuracy

by calculating the centroid of the substrate ball boundary.

4. The proposed iso-contour based feature detection and height calculation

method could be tested on different industrial packages including wafer

bumps and components on integrated circuit boards.

• Sparse Locally Adaptive Image-Guided Cost Aggregation For Stereo Matching

1. Recent advances in deep learning show that the learned features obtained

from the multi-layer convolutional neural network (CNN) using a sufficient

training dataset could be very useful in computer vision related tasks. Sev-

eral researchers have shown that using the trained deep learning features

for stereo cost computation is beneficial to improve the disparity estimation

accuracy. Combining the deep CNN with the disparity subset computation

could lead to a better disparity estimation.

2. Since local stereo matching methods are easy to implement and parallelize,

the computational speed of the proposed SLAC stereo matching method

can be expedited by the GPU implementation with parallel computing

architecture.

3. The proposed idea of sparse disparity subset can be adopted to differ-

ent stereo matching frameworks including local stereo cost aggregation,

semi-global stereo matching and global-optimization-based stereo match-

ing methods. This could lead to improvements in the stereo matching

accuracy and efficiency.
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4. In the localized-support-region-based optimization and weighted cost prop-

agation procedure, the disparity change and smoothness penalty terms

could be estimated adaptively according to the local scene and image char-

acteristics. This could help in increasing the cost aggregation accuracy at

depth discontinuities as well as in large homogeneous regions.
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