
 
  

Warning a Distracted Driver: Smart Phone Applications, Informative Warnings and 

Automated Driving Take-Over Requests 

by 

Jaimie Christine McNabb 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy 

 

 

 

 

Approved April 2017 by the 

Graduate Supervisory Committee: 

 

Rob Gray, Chair 

Russell Branaghan  

Vaughn Becker 

 

 

  

 

 

 

ARIZONA STATE UNIVERSITY 

May 2017



i 

ABSTRACT 

      While various collision warning studies in driving have been conducted, only a 

handful of studies have investigated the effectiveness of warnings with a distracted 

driver. Across four experiments, the present study aimed to understand the apparent gap 

in the literature of distracted drivers and warning effectiveness, specifically by studying 

various warnings presented to drivers while they were operating a smart phone. 

Experiment One attempted to understand which smart phone tasks, (text vs image) or 

(self-paced vs other-paced) are the most distracting to a driver. Experiment Two 

compared the effectiveness of different smartphone based applications (app’s) for 

mitigating driver distraction. Experiment Three investigated the effects of informative 

auditory and tactile warnings which were designed to convey directional information to 

a distracted driver (moving towards or away). Lastly, Experiment Four extended the 

research into the area of autonomous driving by investigating the effectiveness of 

different auditory take-over request signals. Novel to both Experiment Three and Four 

was that the warnings were delivered from the source of the distraction (i.e., by either 

the sound triggered at the smart phone location or through a vibration given on the wrist 

of the hand holding the smart phone). This warning placement was an attempt to break 

the driver’s attentional focus on their smart phone and understand how to best re-orient 

the driver in order to improve the driver’s situational awareness (SA). The overall goal 

was to explore these novel methods of improved SA so drivers may more quickly and 

appropriately respond to a critical event.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Background 

According to the Center of Disease and Control (2015), every day in the United 

States, nine people are killed and 1,153 people are injured in crashes that involve driver 

distraction. Distracted driving is defined as the diversion of attention away from the 

activities critical for safe driving and towards a competing activity (Lee, Regan & 

Young, 2008; Regan & Strayer, 2014). Ironically, due to a limited capacity of available 

cognitive resources, distracted drivers are unable to recognize their own driving errors 

(Kane & Engle, 2003; Watson & Strayer, 2010). Furthermore, drivers self-assessments 

combined with their driving performance under distraction suggest that drivers tend to 

be overconfident in their distracted driving ability (Horrey, Lesch & Garabet, 2008; 

Peters & Peters, 2001). The combination of one’s inability to recognize driving errors 

and one’s high confidence of their ability to drive distracted contributes to the large 

number of distracted drivers on the road. In fact, distracted driving is responsible for up 

to 30% of total crashes (NHTSA, 2013) although, this estimate may be low due to 

inaccurate classification of the term distracted driving (Regan & Strayer, 2014). 

Regardless, Wilson and Stimpson (2010) reported that fatalities involving driver 

distraction rose 28% since 2005. They proposed that an alarming increase in driving 

distraction may be attributed to the growing number of drivers using a smart phone, 

specifically, texting on a smart phone while driving.   

Prior to the introduction of cell phones, contributors of distracted driving 

consisted of tasks such as listening to music, talking with passengers, eating, 
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daydreaming or in some cases even grooming. Although these various distractions have 

been shown to have a negative impact on driving performance (Stutts, Feaganes, 

Rodgman, Hamlett, Reinfurt, Gish & Staplin, 2003), the introduction of the cell phone 

in 1995, exacerbated distracted driving (Strayer & Johnston, 2001; Horrey &Wickens, 

2006; Caird, Willness, Steel & Scialfa, 2008).  From 1999- 2008, the percentage of 

Americans that owned a cell phone jumped from 33 to 91% (Wilson & Stimpson, 

2010).  Due to this boom in cell phone usage over such a short period of time, extensive 

research on the impact of cell phone usage on driving performance was imperative. 

Research suggests that (though not entirely consistent) cell phone use while driving may 

be more detrimental to driving performance than engaging in a conversation with a 

passenger, (Drews, Pasupathi & Strayer, 2008; McEvoy, Stevenson & Woodward, 

2007), hands-free cell phones provide no benefit over handheld cell phones in 

preventing distraction (Stayer & Johnston, 200l; Caird et al., 2008) and additionally, 

drivers talking on a cell phone are more likely to experience inattenional blindness 

resulting in missed signs, vehicles and even pedestrians (Strayer, Drews & Johnston, 

2003; Strayer, Cooper & Drews, 2004; Nasar, Hecht & Wener 2008). In a meta-analysis 

including 33 driving studies involving cell phone use, a reliable, perhaps 

underestimated, increase in reaction time (RT) of .25 sec to an event (relative to driving 

alone baseline conditions) was demonstrated while the control of lateral position 

remained relatively unaffected (Caird et al., 2008). Driving performance has been 

shown to be negatively affected when drivers use a cell phone for calling, however, 

more recent evidence suggest that the distraction problem has been further intensified 

with the advancement of cell phone technology (e.g., the text message).  



3 

Text messaging is both a convenient and popular form of communication that 

requires little to no effort once practiced. Due to the lack of effort required of a person 

to text message, drivers are led to believe they can simultaneously and successfully text 

and drive. Text messaging requires both manual dexterity to hold and press the correct 

keys, and visual attention to ensure accurate typing and comprehension. The attentional 

demands associated with texting and driving have dangerous repercussions for public 

safety. Over the past decade, numerous driving and texting studies have been conducted 

to assess the dangers imposed on drivers (Drews, Yazdani, Godfrey, Cooper, & Strayer, 

2009; Hosking, Young & Regan, 2009; Caird, Johnston, Willness, Asbridge, & Steel 

2014; Young, Rudin-Brown, Patten, Ceci & Lenne, 2014). More recently, Caird et al. 

(2014) conducted a meta-analysis of 28 experimental texting and driving studies.  The 

analysis revealed that both typing and reading text messages while driving produces 

increased brake reaction times (BRT’s), increased collisions, as well as having an 

adverse effect on the control of lane position, speed and time headway (TH) (i.e., the 

temporal gap between the driver’s vehicle the vehicle they are following). These effects 

were found when the driver was both typing and reading text messages. A similar 

pattern of performance degradation was found regardless of what phone interface was 

used to text message e.g., participants using either a touch-screen interface of the smart 

phone (lacking tactile feedback) or a hard numeric keypad interface of a standard cell 

phone (Young et al., 2014).  Additionally, although slightly less detrimental to overall 

driving performance, He, Chaparro, Nguyen, Burge, Crandall, Ni and Cao (2014) 

recently reported that text messaging using speech-based interfaces also had negative 

impacts on driving performance. Overall, these studies together provide evidence that 
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cell phones, and now specifically smart phones, contribute to a major source of 

distraction behind the wheel.  

Smart phones are not just a “phone” but rather a conglomerate of technological 

devices including a phone, camera, video camera, GPS, computer and entertainment 

system with over 1 million applications (app’s) available for download. With a constant 

4G network, drivers can stay connected to social media apps such as Facebook, 

Instagram, or Twitter all while simultaneously operating a vehicle. As of 2014, over 

65% of American’s own a smart phone (PRC, 2015) with the majority of them being 

young adults (18-49 years old). To date, surprisingly, only a handful of studies have 

looked at the negative effects of smart phone use while driving (Basacik, Reed & 

Robbins, 2012; Saiprasert, Supakwong, Sangjun & Thajchayapong, 2014). Basacik et 

al., (2012) asked participants in a driving simulator to either update their Facebook 

status or use Facebook messenger while driving. Relative to an only driving control 

condition, Facebook use while operating a vehicle resulted in a significant increase in 

the RT to target stimuli (by 0.4 s on average) as well as an increase in the number of 

lane departures, increased variability of TH, and increased amount of time with eyes off 

the road. Further exploration of the type of task or app platform a driver engages in on 

their smart phone may reveal the potential for different consequences on distracted 

drivers.  

Unfortunately, in today’s technology based society, drivers often use their smart 

phones to talk, text or connect to social media apps, making distracted driving 

seemingly inevitable. This issue has become a growing concern for roadway officials, 

policymakers and automotive industry leaders. Various attempts to mitigate driver 
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distraction have been demonstrated through instantiating laws that restrict various smart 

phone uses while driving, e.g. texting, or talking (Sundeen, 2005), developing advanced 

infotainment systems using voice-based interactive technologies (Cooper, Ingebretsen, 

& Strayer, 2014), as well as detecting driver distraction or drowsiness with the use of an 

eye-tracker (Smith, Shah, & Lobo, 2003; Sahayadhas, Sundaraj & Murugappan, 2012). 

Whereas these attempts to mitigate distracted driving may initially deter drivers, the 

results may not be a lasting solution (McCartt & Geary, 2004). Progressively, car 

assistive technologies, while typically integrated in luxury vehicles, have been 

successful in reducing rear-end or lane changing collisions (Ben-Yaacov, Maltz & 

Shinar, 2002). These assistive technologies include, but are not limited to, collision 

avoidance warning systems, lane departure warning systems, blind spot warning 

systems, and rear back-up camera warnings. Of specific interest to the current review is 

how effective warning systems are when a driver is facing distraction?  

 

   Distraction 

 In order to have a clear understanding of distraction, both as a cognitive process 

and as it relates to driving, it is necessary to first recognize the cognitive role of attention. 

Attention is defined as a cognitive process that allows a person to selectively concentrate 

or attend to specific information in their environment by allocating resources that are able 

to process modality specific information (Friedenberg & Silverman, 2011). 

Metaphorically expressed, Posner, Snyder and Davidson (1980) ascribe one’s visual 

attention to an “attentional spotlight” beam that continually scans the environment and 

allocates processing power to stimuli within the beam of focus. The precise cognitive 
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mechanisms and processes performed by the central executive system in maintaining 

attention and processing visual and cognitive information within one’s “spotlight” has 

been studied and modeled (Kane & Engle, 2002; Baddeley & Hitch, 1974). Results of 

these studies reveal that attention is necessary for processing information and is an 

essential component to both working memory and long term memory models, but due to 

the increased resources required to maintain attention, attention is by nature limited 

(Kahneman, 1973). Attentional limitations, throughout cognitive psychology research, 

are exemplified in studies that simulate inattention, divided attention (multi-tasking) as 

well as mind-wandering tasks (De Pisapia & Braver, 2006; McVay & Kane, 2009). In an 

applied driving context, the same attentional limitations a driver experiences tend to 

contribute to overall driver distraction and driver inattention (Strayer & Drews, 2007; 

Watson & Strayer, 2010). Furthermore, Regan and Strayer (2014) created a driver 

inattention taxonomy that attempts to clarify the various levels of driver inattention 

through categorizing various instances of driver distractions. They suggest that 

distraction is only ONE of the many factors that can contribute to a driver’s inattention 

on the roadway. Consequently, as smart phone and advanced infotainment system 

technologies progress, drivers become more apt to be distracted visually (i.e., looking 

away from the roadway) or distracted cognitively (i.e., thinking about a new alert 

message). As both a driver’s visual and cognitive attention demands increase, overall 

driver distraction and inattention thereby increase. Due to this increase in driver 

distraction, a model (Distract-R) was developed that accounts for a drivers attentional 

limitations as they interact with various vehicle interface designs and smart phones. This 
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model attempts to analyze and predict a driver’s behavior and attention as they interact 

with current available technologies,  

 

Modeling the Effect of Distraction in Driving 

Distract-R was developed by Salvucci, Zuber, Bergovaia and Markley (2005) and 

is based on the Adaptive Control of Thought cognitive model (ACT-R) to generate 

driving performance predictions. The Distract-R model is based on a modified version of 

the ACT-R model, referred to as the ACT-Simple framework, which eliminates the recall 

and learning aspect of the original ACT-R model. The ACT-Simple framework is based 

on basic perceptual and cognitive operations required for a driver to perceive and 

complete a secondary task while driving.  

Distract-R consists of five major components that include interfaces, tasks, drivers, 

scenarios and lastly the results which are presented in a visual simulation. The interface 

component allows a visual prototype to be created and includes the dial, microphone, and 

display buttons. For example, each operation on the interface such as speak, press, or 

listen requires 300ms of processing time. Also, prior to each operation, a 1200ms 

cognitive operator “think” is added. Furthermore, the prep and execution models are 

based on assumptions, based on Fitt’s Law models; such that, prep time for each task 

consists of 100ms intervals and execution times for each specific task. The tasks 

component allows the designer to specify the order in which various tasks are to be 

completed, such as, the process for placing a call or turning a knob on the radio. The 

driver component allows different parameters to be chosen such as, age (young versus 

old), steering style (how aggressively the driver corrects vehicle to center), and stability 
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(based on how unsafe the driver is). Likewise, the scenario component allows for 

environment parameters such as speed of the vehicle and behavior of the lead car. Once 

all components are satisfied the designer can run the model which outputs results in the 

form of BRT, task time, lane violations data at a rate 1000x’s real observed time. This 

data generated output can be used as a baseline for potential causes of driving errors and 

then matched and compared to real human data. If this model is match to real observed 

data then this model has high predictive ability.  

While Distract-R is a relevant and efficient way to test new interface designs for 

drivers, with the introduction of the smart phone, the model itself needed to be updated.  

In order for the Distract-R model to account for visual and touch interfaces that are 

consistent with today’s smart phones, Lee (2014) extended the Distract-R model. 

Particularly, one of his major contributions to advance the Distract-R model was 

introduction of a Saliency Map model. The Saliency Map model fills the visual attention 

gap by allocating resources associated with task switching and eye-glance behavior while 

engaging in dual tasks. This updated Distract-R model has been shown to be a better 

model for making predictions about driving performance based on the smart phone tasks 

that a driver is using such as playing music, text messaging or navigating an application.  

 

Warnings 

Even when a driver’s attention is fully focused on the task of driving, drivers have 

been shown to be prone to perceptual errors and risky behaviors.  For example, drivers 

fully engaged in driving tasks frequently are unable to accurately judge distance or 

speeds on the roadway (e.g., Denton, 1980; Gray, 2005), have a tendency to follow too 
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closely to the car in front of them (vanWinsum & Heino, 1996) and tend to have an over 

inflated sense of confidence about their driving abilities (Horrey et al., 2008).  These 

types of driving inadequacies, along with the high rate of distracted drivers on the 

roadway increases one’s chances of being involved in an accident.  

For many, autonomous vehicles offers a pragmatic solution to this serious 

problem however, there are still many issues that need to be solved before autonomous 

vehicles will be commonplace on roadways. These unforeseen issues include, but are not 

limited to, issues regarding the situation awareness of drivers with regards to the driver 

taking over control from the automation (e.g., Zeeb, Bucher & Schrauf, 2015), the high 

costs of purchasing and converting all vehicles to automation, as well as the political 

issues associated with accident responsibility (Jones, 2002) i.e., the driver or car 

manufacturer responsible if an accident does occur. For these reasons, warnings offer a 

more practical approach to mitigate accidents due to the low cost and easier 

implementation to vehicles.  

Driver warnings are intended to improve safety by way of influencing a person’s 

behavior as well as act as a supplement, rather than substitute, for a good design 

(Salvendy, 2012). Successful warnings need to be able to quickly alert a driver of an 

event and more importantly orient the driver’s attention to the location of the event 

(Meng & Spence, 2015). Additionally, more advantageous warning systems may be able 

to convey information about the situation such as the urgency required, or the even the 

direction in which a driver should expect a potential collision (Gray, Ho & Spence, 

2014). Drivers, who are distracted, specifically, by reading or writing text messages may 

benefit most from warnings of potential collisions.   
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Various warning modality types e.g., visual, auditory and tactile warnings, have 

been shown to be effective in both alerting and orienting a driver’s attention (Edworthy, 

1994; Lee, McGehee, Brown & Reyes, 2002; Gray et al., 2014), refer to (Table 1) for a 

summary of each warning modalities pros and cons. Visual warnings provide drivers with 

pertinent information about a specific situation, although due to a driver’s overloaded 

visual demand, visual warnings are typically not as effective when presented in isolation 

(Lee et al., 2002; Scott & Gray, 2008). Auditory warnings that consist of auditory icons 

i.e., screeching tires, have been shown to immediately capture attention of external 

events, especially in cases of high cognitive workload, (Edworthy, 1994; Ho & Spence, 

2005) although due to competing sounds, auditory warnings may potentially be masked 

or  conversely, if too loud or unreliable, may become annoying (Bliss & Acton, 2003). 

Tactile warnings, unlike auditory and visual warnings, can be implemented without 

substantially increasing a driver’s workload, thus improving reaction times to potential 

collisions (van Erp & van Veen, 2004; Scott & Gray, 2008) although due to the physical 

contact within a person’s peripersonal space as well as being a rarely used warning 

modality type, tactile warnings in a critical event may actually shock or confuse drivers. 

Crossmodal warnings, which are combinations of different modality types, such as, 

audiovisual, audiotactile and visuotactile bimodal warnings, as well as trimodal (auditory 

+ visual + tactile) warnings provide the most promising results. Research has shown 

bimodal and trimodal warnings that account for spatial location and timing tend to elicit 

faster BRTs to critical events than the same warnings presented in unimodal fashion 

(Fitch, Kiefer, Hankey & Kleiner, 2007; Santangelo & Spence, 2007; Lee & Spence, 

2008).  
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Although data gathered in driving simulators has been shown to be reliable and 

generalizable to real world driving (Kluver, Herrigel, Henrich, Schoner & Hecht, 2016) 

warning drivers in the lab may differ from real world situations (Ho, Gray & Spence, 

2014). Warning a driver in a lab setting inherently creates a learned response to the 

warning in which a driver can prepare and expect a critical event therefore improving 

overall reaction times. In a real driving situation, a driver may rarely encounter warnings 

leading to longer reaction times in the event of a critical situation. Because of this 

potentially low occurrence with warnings it is imperative to implement intuitive and 

easily understood warning systems. Successful warning systems need to account for not 

only warning modality but location, timing and pertinent information that is specific to a 

driver’s environment and situation. I next review each of the different warning modalities 

in more detail.    

Visual Warnings 

 Driving is predominantly a visual task requiring a great degree of visual attention. 

In order for a driver to successfully navigate the roadway, they need to be able to visually 

identify and process other vehicles, nearby pedestrians, current traffic conditions, as well 

as interpret traffic signals and warning signs (Strayer et al., 2004). Visual demands placed 

on the driver are not limited to demands outside of the vehicle, but are also present within 

the vehicle. In-vehicle visual demands consist of, but are not limited to, visual interfaces 

including the dashboard, displaying vehicle information such as the speedometer and fuel 

level, the center console, providing entertainment, navigation and climate control 

information, as well as rear and side mirrors. Additionally, as technology advances, in-

vehicle distractions can come from portable technology sources such as a driver’s smart 
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phone, laptop or tablet. As would be predicted given that driving is primarily a visual 

task, visual warnings have been shown to be the least effective modality used to warn a 

driver. Scott and Gray (2008) provided clear evidence of this notion by conducting a 

study that directly compared auditory, tactile and visual unimodal warnings to a no-

warning condition. Results showed that visual warnings (dashboard flashing lights) were 

not as effective in reducing BRT’s as the auditory tones alone or tactile vibrations 

embedded in the seatbelt.  

To circumvent the problem of drivers missing visual warnings, head-up displays 

(HUDs) have been developed. HUDs project on the windshield so that warning signals 

and other driving information (e.g., speed) is in the driver’s field of view when they are 

looking at the road. HUDs main goals are to minimize the amount of total time spent 

looking away from the roadway and effectively reduce information access costs 

associated with task switching (Sojourner & Antin, 1990). While HUDs can be beneficial 

to a driver, the HUDs overlay of information may obstruct or clutter the driver’s field of 

view, and in an unexpected situation may hinder any benefits (Horrey, Wickens & 

Alexander, 2003). HUDs as well as in-dashboard displays have also used icons to warn 

drivers symbolically (e.g., an image of two cars colliding) or via text messages (e.g., the 

word “Stop!”), (Edworthy, Stanton & Hellier, 1995). Although fairly limited, previous 

research on visual warnings in this context has demonstrated similar comprehension rates 

for both visual symbols and textual words (Hawkings, Womack & Maunce, 1993; 

Hanowski & Kantowitz, 1997). Specifically, Hanowski & Kantowitz, (1997) found that 

overall, participants had better comprehension for shorter messages and symbols 
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categorized as “very high comprehension” and younger drivers, as compared to older 

drivers, were more accurate in interpreting a message’s meaning. 

 Visual warning comprehension is vital in order to effectively assist drivers in 

avoiding hazardous events. Visual warnings may not be detectable or discernible in a 

moment of urgency due to the high visual workload in driving. For this reason, visual 

warning research has looked at the impact of multiple sources of visual warnings as well 

as combining visual warnings with other warning types (Selcon, Taylor & McKenna, 

1995; Lee et al., 2002). For instance, Selcon et al. (1995) found redundancy of warnings, 

visual verbal + visual spatial e.g., a written word on the correct side of a display, was 

more beneficial in reducing response time to an event than a single source e.g., written 

word in the center of the display. Similarly, rear end collision warning studies 

demonstrated success in implementing a symbolic visual warning (e.g., a vehicle 

colliding with the rear of another vehicle), with an auditory warning tone (Kiefer, 2000; 

Lee et al., 2002). Furthermore, although visual warnings can provide drivers with 

pertinent information about a specific situation, visual warnings unaccompanied by 

another modality may not be sufficient to successfully warn drivers.  

Auditory Warnings 

Auditory warnings, in a driving context, may be a beneficial modality to capture a 

driver’s attention and provide critical information of external events (Ho & Spence, 

2005). Auditory warnings can be detected and identified quickly resulting in decreased 

reaction times to an external event, especially in cases of high cognitive workload 

(Edworthy, 1994; Belz, Robinson & Casali, 1999; Graham, 1999).  Auditory warnings in 

general need to be loud enough for people to hear them, especially drivers who with 
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hearing limitations and those in cars with competing auditory stimuli (e.g., music, 

passengers, traffic noise, or cell phone conversations). However, the audio warnings 

should not be so loud as to trigger a startle response (Patterson, 1989; Edworthy, 1994).  

Auditory warnings are either verbal or nonverbal and each type has advantages as 

well as limitations. Verbal warnings (e.g., speech) covey critical information to a driver 

in stressful situations though, depending on the length of the verbal warning or the 

competing auditory sounds, verbal warnings may take longer to fully process or could 

even be misunderstood (Aldrich & Parkin, 1989). Nonverbal warnings can be further 

broken into synthetic/abstract sounds (e.g., tones or beeps) that represent a particular 

meaning, or representational auditory icons/earcons (e.g., car horn or skidding tire 

sound) that represent a naturally occurring sound (Graham, 1999) or looming warnings 

that convey critical information through increasing or decreasing the intensity of a sound 

(Gray, 2011).  

Abstract auditory warnings are easily learned and in certain situations and have 

been shown to improve reaction times to an external event (Graham, 1999; Mohebbi 

Gray & Tan, 2009). However, when abstract warnings are presented in new situations 

they may be indistinguishable or confusing (Belz et al., 1999). Similarly, auditory icons 

have been shown to be effective in alerting a driver to an external event (Ho & Spence, 

2005).  However, auditory icon warnings have the potential to be confused with naturally 

occurring stimuli and have been shown to elicit inappropriate responses in some 

situations (Gray, 2011). An alternative which seems to capture the benefits of both 

abstract and auditory icon warnings are informative warnings that provide an optimal 

solution in warning a driver about an impeding collision. For example, looming auditory 



15 

warnings which use an abstract signal that increases in loudness at a rate that matches the 

closing velocity have been shown to result in speeded reaction times and appropriate 

responses (Gray, 2011). However, though auditory warnings have shown success in 

alerting and informing a driver of a critical situation, auditory warnings alone may not be 

the most beneficial modality.  

Tactile Warnings 

Tactile warnings are used to alert someone of a potentially dangerous situation 

through the sense of touch. Tactile warnings, with respect to warning drivers, have 

included vibrations via tactors or applied force feedback systems that have been delivered 

to the driver through the gas pedal, steering wheel, driver’s seat, seatbelt, or even on the 

body such as, a driver’s thighs, waist or back (Ho, Gray & Spence, 2014). Overall, tactile 

warnings can be broken down into three types, basic (non-directional), directional and 

meaningful signals. Basic (non-directional) tactile warnings are the most simple and 

consist of vibrational pulses that do not provide the driver any additional information 

about the external collision itself (e.g., Scott & Gray, 2008). Directional tactile warnings 

stimulate different parts of the driver’s body to signal events in different locations. For 

example, torso/back stimulation to stimulate front-end/rear-end collision (Ho, Reed & 

Spence, 2006), left/right leg stimulation to signal lane departures to each side (Navarro, 

Mars & Hoc, 2007) or warnings which attempt direct attention to multiple spatial 

locations (Gray et al., 2014) e.g., stimulation to left shoulder to get driver to look up and 

to the left. Lastly, meaningful tactile looming warnings can convey proximity 

information about the driving environment through manipulation of the dynamic qualities 

of the vibrations (i.e., signals toward-head or toward-torso and rate of apparent tactile 
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motion, Gray et al., 2014; Ho et al., 2014). Research has investigated whether there is an 

intuitive natural mapping to tactile warnings and if meaning can be conveyed by a tactile 

warning through manipulating perceived urgency (e.g., changing the intensity, varying 

the inter-pulse interval or simulating motion (Ho, et al., 2006; Lee & Spence, 2008). Ho 

et al.,(2014) found that the use of three tactors was beneficial in decreasing BRTs as 

compared to only using one or two tactors, although the direction of the three tactors, 

upwards, downwards or randomized did not convey any additional benefits. Conversely, 

in a separate study, when the tactors displayed an upward and  towards motion that was 

dependent on the closing velocity to the lead car, BRTs were significantly reduced (Gray, 

et al., 2014). 

The success of tactile warnings are based on the “tap on shoulder” principle, to 

which stimulating an individual’s personal space can lead to immediate identification of 

an event. Also, tactile warnings alert a driver privately, in a non-obtrusive manner (i.e.,  

passengers are unaware) which may be a contributing factor to why participants generally 

rate them as being less annoying than other warning types (Fitch et al., 2007). Another 

benefit to tactile warnings is that the tactile sense is the most accessible and unburdened 

sensory modality available during driving. Unlike auditory and visual warnings, it has 

been proposed that because the sense of touch is relatively less involved in the task of 

driving, tactile warnings can be implemented without substantially increasing a driver’s 

workload. Evidence in support of this idea comes from studies that have shown that as 

compared to other warning types, tactile warnings elicit faster reaction times to a 

potential collision (van Erp & van Veen, 2004; Fitch et al., 2007; Scott & Gray, 2008; 

Meng & Spence, 2015).   
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Equally, there are some drawbacks in an applied setting to using only tactile 

warnings. Whereas the “tap on the shoulder” principle is beneficial in creating an 

immediate response, the response is not sensitive to spatial localization as an auditory or 

visual warning. For example, when someone reaches over and taps a person on the wrong 

side of the shoulder and then quickly moves out of the way, the person is “tricked” into 

looking in the wrong direction. With regards to tactile warnings, if a tactile warning is 

given to the waist of a driver in a critical situation a driver may be more likely to look 

down at their waist rather than to an event outside of the vehicle. Secondly, tactile 

warnings depend on stimulating a person’s body and may not be detected by the driver if 

heavy clothes are worn (i.e., jeans and/or a coat in the winter), if both hands are not 

placed on the steering wheel, or if a seatbelt is not worn.  Lastly, due to the low 

occurrence of potential collisions encountered by the driver, a vibrotactile warning 

presented to a driver in an emergency situation may ironically result in confusion and 

longer reaction times (Ho et al., 2014).  Although tactile warnings can quickly alert a 

driver, a combination of warning modalities may be the best option to best warn a driver.  

Crossmodal Warnings 

 As discussed previously, warning drivers via unimodal presentation (e.g., 

auditory, visual or tactile modalities have been shown to reduce response time in driving 

situations (e.g., a potential lane departure or rear-end collision). Again, though reliable, 

these findings may not be suitable in an applied driving context. For example, if the 

modality used to warn a driver is masked, as in the case of the sounds from a noisy car 

masking an auditory warning or the vibrations from a bumpy dirt road masking a tactile 

warning, a driver might better benefit from a bimodal or even trimodal warning signals 
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(Lee & Spence, 2008; Ho, Santangelo & Spence, 2009; see Ho & Spence, 2008, for a 

review).   

Crossmodal links may exist between sensory information processing pathways 

(Holmes & Spence, 2005) such that, the use of bimodal audiovisual, audiotactile and 

visuotactile warnings, as well as trimodal warnings (auditory + visual + tactile), have 

been shown to elicit faster BRTs to critical events (Fitch et al., 2007; Santangelo & 

Spence, 2007; Lee & Spence, 2008). Specifically, auditory and visual channels have been 

shown to share attention pathways, resulting in no attention task switching costs (van Erp 

& van Veen, 2004; Ho & Spence, 2005) and complementary audio-visual warnings, 

rather than redundant warnings, can be more effective at reducing BRTs to a potential 

collision (Fricke & Thuring, 2009).  More recently, with the introduction of tactile 

displays, studies combining tactile with auditory or with visual warnings have reduced 

BRTs. For instance, Ho, Reed and Spence (2007) found that drivers had faster brake 

responses to a potential rear-end collision event when a bimodal audiotactile warning (a 

500 sec car horn and 500 sec vibration to the participant’s waist) was used as compared 

to only using one modality warning type. Similarly, visuotactile displays increased 

reaction time to navigation messages by 15% as compared to reaction times in a visual 

only condition (van Erp and van Veen, 2004).  Furthermore, an added benefit to using all 

three modalities was demonstrated by Lee and Spence (2008).  In this study, participants 

in a simulator were asked to operate a touch-screen device consisting of both visual and 

tactile information as well as being warned via an auditory tone, while simultaneously 

asked to avoid potential collisions with the lead car. Findings demonstrated participants 
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had faster responses to the lead car when the trimodal warnings were presented from the 

same location, as compared to bimodal or unimodal warning conditions.  

Although crossmodal warnings may benefit drivers of potential collisions, 

precautions in their design need to be taken into account. Recent data suggest that in 

order for crossmodal warnings to be successful, they need to be congruent in both spatial 

location and time, and this congruency may be more necessary for audiovisual warnings 

as opposed to audiotactile warnings. This theory is based on the concept that audiotactile 

warnings may be inherently nonspatial therefore not requiring congruency in spatial 

location (Ho et al., 2009). With that being said, Ho et al. (2009) found that bimodal 

audiotactile warnings presented to participants left or right thigh and corresponding ear 

were actually more effective in capturing spatial attention suggesting that congruency for 

audiotactile warnings is indeed important. Overall, regardless of what warnings 

modalities are to be used especially in the context of warning a driver, it is vital the 

modality of the warning and modality combinations are appropriate to the situation. 

 

Other Warning Considerations 

Successful warning systems not only need to be presented in the appropriate 

warning modality but they also should be sensitive to timing, location, as well as what 

information they convey to a driver. In order for a warning to be most effective it should 

be presented in the correct sensory modality and if an additional modality is to be used 

they should be complementary and additive, not just redundant (Spence & Driver, 1997; 

Ho & Spence, 2005). Timing of the warnings themselves is critical especially if 

simultaneous warnings are to be given, as well as considerations as to how far in advance 
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the warnings are given (Lee et al., 2002; Spence & Squire, 2003; Straughn, et al., 2009). 

Ideally, the warning should be spatially congruent with the other warnings as well as 

congruent with the critical event (Ho & Spence, 2008). Lastly, if the warnings are to be 

informative, attention as to what information should be conveyed to a driver is essential. 

Information that may be conveyed includes verbal messages, as well information 

containing the urgency of a situation or the direction in which a potential collision may 

occur. This can be achieved by manipulating the rate of change or simulated motion 

direction of a warning signal. I next review timing, location and information of the 

warnings in more detail. 

Timing 

Warnings about a critical event, particularly one as common a potential rear-end 

collision, are extremely time sensitive (Lee et al., 2002; Abe & Richardson, 2006; Ferris, 

Penfold, Hameed & Sarter, 2006; Straughn, et al., 2009). A poorly timed warning could 

not only annoy or disturb a driver it could counteract any benefits of the warning 

(Parasuraman Hancock & Olofinboba, 1997). For instance, warnings that are presented 

too far in advance may create a false alarm situation leading to alarm mistrust (Bliss & 

Acton, 2003) or the driver may forget the warning altogether (Hanowski & 

Kantowitz,1997). Conversely, warnings that are presented too late may not give a driver 

enough time to appropriately interpret or react to the situation, most likely resulting in an 

abrupt, ingrained, and possibly incorrect response such as slamming on the brakes or 

violently turning the steering wheel (Graham, 1999).  

For these reasons, research has been conducted to identify the optimal warning 

time relative to the collision event. Results of rear-end collision warning studies have 
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shown that a fixed time to collision (TTC) warning of two to five seconds prior to a 

potential collision may be advantageous (Maretzke & Jacob, 1992) although, due to 

individual differences in drivers, specifically in their driving speeds, a fixed TTC may not 

be as effective as an algorithm based warning that takes into account both TTC and the 

drivers speed in relation to a lead car (Burgett, Carter, Miller, Najm & Smith, 1998).  

Generally speaking, potential collision warnings that are presented earlier rather than 

later tend assist drivers the most (Lee et al., 2002; Abe & Richardson, 2006; Straughn et 

al., 2009).  In a rear-end collision warning simulator study performed by Lee et al. (2002) 

it was found that compared to the no warning condition an early warning helped prevent 

80.7% of collisions. Similarly, Abe and Richardson (2006) found that early warnings, 

especially in the case of short time headways, reduced driver BRTs as well as increased 

drivers trust with the warning system. Furthermore, Straughn et al., (2009) showed a 

benefit to early pedestrian collision warnings, by giving an early (4 second TTC) as 

opposed to giving a late (2 second TTC). These findings suggest that the early warning 

signals may have allowed drivers to shift their attention to the critical event allowing for 

a driver to evaluate and more appropriately respond to the situation. These findings 

together indicate that in order for a driver to more appropriately respond to a critical 

situation an early warning may be more suitable.  

In conjunction to how far in advance a warning is given, if multiple warnings are 

to be given, the specific timing of each warning modality source needs to be considered. 

In warning system research, optimal spacing of multimodal warning signals has been 

studied in an attempt to create the most efficient warning systems. Visual, auditory and 

tactile sensory information sources travel at different rates and have different processing 
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times in the human perceptual system thus leading to slight perceived temporal offsets 

when they are physically presented at the same time (Stein & Meredith, 1993). For 

example, the neural processing of auditory information is faster than the neural 

processing of visual information because the latter involves a chemical process (Dixon & 

Splitz, 1980). Also, tactile information given to the fingertips is processed quicker than 

tactile information given to the torso due to more receptors located in a person’s 

fingertips (Stein & Meredith, 1993). Although these processing differences between 

modalities exist, people are generally unaware of the differences due to our brains ability 

to integrate information from the different senses. This smooth integration allows the 

perception of synchrony of information presented in different modalities (Spence & 

Squire, 2003). In order to achieve a warning system that appears synchronous, a slight 

delay (100ms or more) in the presentation of each warning modality, as well as the 

appropriate presentation order of each modality i.e., the visual warning precedes the 

auditory warning, has been shown to be necessary. Conversely, recent work in an applied 

driving context, demonstrates that surprisingly synchronous warnings may be more 

optimal. Ho, Gray and Spence (2014) found evidence that synchronous audiovisual cues 

facilitated head turning and steering wheel turn response times, whereas asynchronous 

audiovisual cues did not. The explanation for these inconsistent findings may be that the 

mechanism responsible for an orienting a response rather than an alert response is more 

sensitive to temporal synchrony. These findings highlight why it is imperative that 

designers of multimodal waring systems consider both accurate timing of the warning as 

well as timing of each warning modality.  
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Location 

An effective warning may alert a driver, but a more effective warning can both 

alert AND orient a driver’s spatial attention to the correct location (Ho & Spence, 2008 

for a review). In order for a warning to be most advantageous to a driver it is necessary 

that the warning signal be both spatially congruent with the critical driving event (e.g., 

the location of the object that will hit) and spatially congruent with additional warning 

modality types (Ho & Spence, 2008). Spatially congruent warnings that have been shown 

to effectively orient a driver’s spatial attention to a specific location have consisted of 

flashing lights displayed in a critical direction, spatially predictive auditory tones i.e., a 

tone given to the left speaker indicative of the left side of a vehicle, as well as tactile 

stimulations administered to various locations on a drivers body i.e., torso/back to 

indicate a front-end/rear-end collision (Ho & Spence, 2005; Ho et al., 2006; Scott & 

Gray, 2008, Ho et al., 2009).  

Although spatially congruent warnings have been shown to be successful in 

alerting and orienting a driver, the reliability of the signal to indicate the location of the 

event may be equally as important.  Ho and Spence (2005) investigated this theory by 

having participants in a driving simulator complete a cognitively demanding rapid serial 

visual presentation (RSVP) task while responding to a reliable or unreliable auditory 

warning indicative of either a front-end or rear-end collision. The spatial congruency of 

the auditory warnings was manipulated as well as the reliability of the warning in 

correctly indicating the direction of the critical event. Findings showed that spatial 

congruency of the auditory warnings contributed to improved response times to a critical 

event but equally important were that response times improved as the reliability of the 
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warnings increased from 50% to 80%. These results are consistent with previous findings 

on warning reliability, such that, as the reliability of a cue increases to 100% valid, 

reaction times tend to improve (Bliss & Acton, 2003). 

As previously discussed, under conditions of high driver workload unimodal 

warnings are not as effective as multimodal warnings. With that being said, more 

research is needed on multimodal warning systems. Overall findings on multimodal 

warnings propose that, in order for the warnings to be valuable to a driver, each warning 

modality should be delivered from a congruent spatial location (Ho & Spence, 2005; Ho 

et al., 2007; Fitch et al., 2007; Lee & Spence, 2008; Ho et al., 2009). In fact, many 

studies have demonstrated that driver’s reaction times to a critical event are facilitated by 

delivering the warnings from spatially congruent locations, although studies have rarely 

considered the effect of warning a driver from spatially incongruent locations. To assess 

the impact of warning signals delivered from incongruent spatial locations, Ho et al., 

(2009) designed and conducted two experiments that incorporated either unimodal and 

bimodal audiotactile warnings that were spatially congruent (spatial tactile vibration and 

auditory cue) or spatially incongruent (central tactile vibration with spatial auditory cue). 

Results revealed that bimodal audiotactile cues presented from similar spatial directions 

were more effective than the use of solely unimodal cues. Additionally, it was observed 

that bimodal cues, with no regards to spatial direction, provided no additional benefit to a 

driver, suggesting that incongruent bimodal cues may actually eliminate any observed 

facilitation effects.  Ultimately, research findings indicate that when designing a vehicle 

warning system it is essential that the warning signal be spatially congruent to the critical 
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event as well as reliable and if multimodal warnings are to be used, it is imperative that 

they originate from the same spatial location.  

Information Conveyed 

 Vehicle warning systems have been shown to successfully alert a driver about a 

critical event as well as orient a driver to the location of the event. Of present interest is 

the warning systems ability to convey pertinent information about an event itself, such as 

urgency or direction of a potential collision. Research addressing this specific topic has 

attempted to convey meaning into the warning systems by manipulating various features 

of the warning signal such as the intensity, frequency, and the rate of change of intensity 

(Gray, 2011; Gray et al., 2013; Ho et al., 2014). For instance, auditory warnings have 

been shown to convey urgency to a driver by manipulating the sounds intensity or by 

manipulating the rate of change of intensity with respect to the TTC. Gray (2011) 

revealed that when the sound intensity of an auditory warning increased as a function of 

the decreased distance between a driver’s vehicle and a lead car (looming auditory 

warning), the driver’s reaction time to a collision was improved as compared to other 

auditory warnings that varied in only their speed or frequency. Additional results 

observed that looming auditory warnings were so naturally informative that by altering 

the rate of change of intensity to the TTC, drivers could be influenced to respond early or 

late to an impending collision. These results, taken together, suggest that looming 

auditory warnings may be the most effective way to inform drivers of a potential collision 

due to the natural mapping of the looming auditory signal to real-world events. 

 Building on the findings of the effectiveness of informative auditory warnings, Ho 

et al., (2014) recently extended this idea into the vibrotactile warning domain. However, 
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results showed that vibrotactile looming signal (i.e., a vibration from a single tactor that 

increased in intensity as a function of the distance to the lead vehicle) alone did not 

provide participants any advantage over other non-looming vibrotactile signals (e.g., a 

constant intensity vibration). Interestingly, whereas looming virbotactile warnings 

themselves did not improve a driver’s response to potential collision, it was found that 

simulating motion either upwards, downwards or randomized with three tactors, across 

the driver’s body did in fact improve performance. Because the randomized tactor 

simulation, which lacked directional information, improved performance to a similar 

degree as the directional tactile signal, the findings of this study suggested that 

vibrotactile dynamic warnings could not be used to convey meaning to a driver.  

To further explore this question, Gray et al. (2014), had participants in a driving 

simulator wear three dynamic tactors that delivered a vibrotactile signal that was 

dependent on the closing velocity (CV) with the lead car and provided upward or 

downward motion information. Results of this study concluded that BRTs were 

significantly improved when the vibrotactile warnings were CV-linked and even more 

facilitated reaction times were shown when the vibrotactile cues were presented in an 

upwards motion, moving towards the drivers head. Overall, these applied driving studies 

provide evidence that information can indeed be conveyed to a driver through the use of 

auditory looming sounds or dynamic collision linked vibrotactile cues.  
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Distraction and Warnings 

Despite the abundant research showing the effectiveness of collision warnings 

(reviewed above), one question that has not be studied in detail is whether these warnings 

will remain effective under conditions of high driver distraction. Generally speaking, 

auditory warnings can be successful in reducing reaction times to a potential collision, 

though this effectiveness begins to diminish when a driver is distracted. Mohebbi et al. 

(2009) exposed this limitation by having drivers talk on a hands-free cell phone while 

receiving either auditory or tactile warnings of an impending rear-end collision. Results 

indicated that the task of talking on a cell phone rendered the auditory collision warning 

completely ineffective (i.e., it no longer reduced BRT as compared to a no warning 

condition) and reduced the effectiveness of the tactile collision warning (i.e., although it 

resulted in significantly lower BRTs as compared no warning, this difference was 

reduced). The authors proposed that this difference between modalities is that talking on 

cell phone increases auditory attentional demands without effecting tactile attention.  In a 

follow up study, Ahtamad, Spence, Meng, Ho, McNabb & Gray, (under review), recently 

investigated the effect of a task relying primarily on the sense of touch (texting with a 

smart phone) on warning effectiveness. Results revealed that texting rendered vibrotactile 

warnings (either abstract or informative) ineffective (i.e., no reduction in BRT relative to 

a no warning condition).  Although various real-life scenarios may mitigate the success of 

a warning system, such as loud music masking an auditory warning or a bumpy road 

masking a vibrotactile warning, these few distraction and warning studies highlight that 

warning a driver that is distracted by their smart phone may consequently render any 

warning virtually ineffective. Due to these unsettling findings, it is essential to investigate 
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further what warnings or combinations of warnings, if any, might successfully alert a 

driver that is indeed engaged in smart phone operations.  

 

Distraction and Autonomous Vehicles 

 Autonomous vehicles, while an exciting design and obvious solution for many of 

today’s roadway problems associated with distracted drivers, do not come without 

problems of their own. For instance, the most dangerous circumstance, a driver who is 

not in full control of the vehicle physically and has not been monitoring the driving 

situation cognitively receives a request from the vehicle to take immediate control to a 

time sensitive or critical event.  Due to the likely opportunity for some type of control 

failure in autonomous vehicles, research in this area has focused on understanding what 

level of situation awareness may be most effective in assisting the driver to safely regain 

control of the vehicle (Louw, Merat & Jamson, 2014; Louw & Merat, 2014). Overall 

findings have demonstrated that drivers should be encouraged to remain driving “in the 

loop” both cognitively and physically (Louw, et al., 2014) because drivers that take 

advantage of fully automated systems (i.e., attending to their iPad) tend to react slower 

and more aggressively to critical events, thus increasing their risk for potential collisions 

(Merat & Jamson, 2014). While the findings suggest that the best case scenario in 

autonomous driving is that drivers remain as supervisory agents, these findings do not 

seem achievable in an applied setting. Specifically, because supervisory drivers that are 

physically and cognitively in the “loop” appear to defeat the main intent of an automated 

vehicle.  For this exact reason, it is necessary to reveal the most effective way to break a 

driver’s attention and redirect them to the “loop” (i.e., roadway) as quickly as possible 
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when they have been acting as a supervisory agent. The most favorable solution to this 

problem would be to develop a warning system that is effective enough to both alert a 

driver of a critical event but additionally provide enough information to the driver that 

they can properly assess the situation and appropriately react.  

 

Summary 

The seemingly inevitable fact that a large proportion of drivers will use a smart 

phone while driving creates immense problems for public safety. Of the various attempts 

to mitigate this serious problems, warnings, such as collision avoidance warning systems, 

lane departure warning systems, blind spot warning systems, and rear back-up camera 

warnings have aimed to provide an inexpensive method to reduce accidents, as well as 

diminish fatalities and high financial losses associated with preventable accidents. 

Though warnings can be easily added into most vehicles, their effectiveness has shown to 

be highly sensitive to the design parameters. First, it is essential that the correct warning 

modality types are used and if crossmodal warnings are used the signals for each 

modality is properly combined. Second, it is imperative that the location, timing, and 

information to be conveyed by the warning are considered. Additionally, due to most 

driver’s lack of experience with warning systems (and likely reluctance to go through a 

training period before driving a new car off the lot), systems need to be intuitive and 

quickly understood in order to ensure the driver makes an appropriate response to a 

critical situation.  

Even if all of these requirements have been successfully met and the warning 

system has been implemented, a major area of concern is how effective a warning may be 
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when a driver is distracted especially given that the bulk of research in this area used low 

workload conditions.  The limited amount of research that has examined warning 

effectiveness when a driver is distracted, being a secondary task, suggests that warnings 

may not provide any benefit in reducing potential collisions in such situations. That being 

said, it is vital that future research be conducted that not only looks at the use of warnings 

on distracted drivers but research that is aimed to discover the best warning 

implementations systems to quickly disengage a driver from specific sources of 

distraction, (i.e., their smart phones).  Equally, as autonomous vehicles become more 

commonplace, distraction research needs to be focused on what warning modalities or 

combinations of warning modalities can quickly alert and re-orient the attention of a 

distracted driver in the event of a critical incident. These as well as other research 

questions need to be addressed due to a heightened number of distracted drivers on the 

public roadways, consequently, jeopardizing everyone’s safety.  

 

Current Study 

While various collision warning studies in driving have been conducted, (Table 

1) only a handful of studies have incorporated the effectiveness of warnings with a 

distracted driver. Interestingly, to date, only one study has researched the effectiveness 

of warnings with a driver that is distracted by a smart phone. The present study (across 

four experiments) aims to understand the apparent gap in the literature of distracted 

drivers and warning effectiveness, specifically by studying various warnings on drivers 

while they are operating a smart phone.  
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 Table 1. Driver Warning Modality Research Summary 

Modality Type Pros Cons 

Visual 

 

 Easily implemented 

 Projected in driver line 

of sight 

 Driving requires too 

much visual 

competition 

 Images may be 

misinterpreted 

Auditory 

 

 Quick attention capture 

 Effective in alerting 

driver to an external 

event 

 May be masked 

 May be result in 

inappropriate response 

(i.e., braking) 

 May be annoying 

Tactile 

 

 Minimal workload on 

driver 

 Typically rated as less 

annoying 

 May cause confusion, 

shock due if rarely 

experienced 

 May be masked 

Crossmodal 

 

 Due to multiple 

sources, more likely to 

not be masked  

 Visual & auditory 

pathways may have no 

task-switching costs 

 Need to be congruent in 

location 

 Need to be congruent in 

timing 
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CHAPTER 2 

EXPERIMENT ONE: Staying Connected on the Road: A Comparison of Different 

Types of Smart Phone Use in a Driving Simulator 

Abstract 

Previous research on smart phone use while driving has primarily focused on 

phone calls and texting. Drivers are now increasingly using their phone for other 

activities during driving, in particular social media, which have different cognitive 

demands. The present study compared the effects of four different smart phone tasks on 

car-following performance in a driving simulator. Phone tasks were chosen that vary 

across two factors: interaction medium (text vs image) and task pacing (self-paced vs 

experimenter-paced) and were as follows: Text messaging with the experimenter 

(text/other-paced), reading Facebook posts (text/ self-paced), exchanging photos with the 

experimenter via Snapchat (image, experimenter -paced), and viewing updates on 

Instagram (image, experimenter -paced). Drivers also performed a driving only baseline. 

Brake reaction times (BRTs) were significantly greater in the text-based conditions 

(Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the 

baseline (0.88 s). There was no significant difference between BRTs in the image-based 

and baseline conditions and there was no significant effect of task-pacing. Similar results 

were obtained for Time Headway variability. These results are consistent with the picture 

superiority effect found in memory research and suggest that image-based interfaces 

could provide safer ways to “stay connected” while driving than text-based interfaces. 
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Background 

Although we still call them “smart phones,” the devices most people carry today 

serve as a conglomerate of technological devices including a phone, camera, video 

camera, GPS, computer and entertainment system with over 1 million applications 

(app’s) available for download. Having such power in the palm of our hand creates a 

potentially major source of distraction when we are commuting and indeed it is well 

documented that the use of smart phones can be a cause of accidents for pedestrians (e.g., 

Hatfield & Murphy, 2007) cyclists (e.g., Ahlstrom & Kircher, Thoslund & Adell, 2015), 

and, the interest of the present study, drivers (reviewed in Caird et al., 2008; Caird et al., 

2014).  

To date, the vast majority of studies on the effects of smart phone use in driving 

have focused on two device functions: talking on the phone and texting/instant 

messaging. Research on cell phone use has consistently demonstrated that conversations 

while driving significantly increase a driver’s reaction time (RT) to events and stimuli—a 

meta-analysis of 33 studies conducted by Caird and colleagues found a mean increase in 

RT of .25 s (Caird et al., 2008).  As the authors acknowledge, this is likely an 

underestimate of the true effect because in most experiments the attentional demands are 

unlike those in real driving e.g., drivers are abnormally vigilant to the driving task 

because they are being observed (Ho et al., 2014). A key finding of these studies is that 

the increase in RT is similar for handheld and hands-free phones. This indicates that the 

detrimental effects of talking on a cell phone while driving are due to a reduction in the 

attentional and/or working memory resources devoted to driving rather than the 

commonly held belief that the impairments are solely due to the physical demands of 
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holding the phone and taking one’s eyes of the road to dial/receive a call. It should be 

noted, however, recent naturalistic driving studies have provided data inconsistent with 

these findings i.e., no significant increase in the likelihood of an accident when using a 

hands-free cell phone while driving (e.g., Fitch, Soccolich, Guo, McClafferty, Fang & 

Olson, 2013). Although some studies have reported other (perhaps compensatory) effects 

talking on a cell phone while driving on driver behavior including increased time 

headway (TH), decreased speed and poorer lateral control, these effects have not been 

found consistently (Caird et al., 2014). 

Turning to texting, studies have reported similar (and often greater) detrimental 

effects on driving performance. In a meta-analysis of 28 studies conducted by Caird and 

colleagues (Caird et al., 2014), it was found that texting while driving produces 

significantly longer brake RTs (BRT), increased collisions, as well as adversely affecting 

lane position, speed and headway regulation. These effects were found both when the 

driver was typing and reading text messages. A similar pattern of performance 

degradation was also found regardless of what phone interface was used to text message 

e.g., participants using either a touch-screen interface (lacking tactile feedback) or a hard 

numeric keypad interface (Young, Rudin-Brown, Patten, Cici, & Lenne, 2014). 

Additionally, although slightly less detrimental to overall driving performance, He et al. 

recently reported that even text messaging via speech-based interfaces negatively 

impacted driving performance in simulator (He et al., 2014) 

In addition to the texting and talking studies, Kujala and colleagues have 

investigated the effects of using a music player and a navigation device on a smart phone 

during driving (Kujala, 2013; Kujala & Saarilumo, 2011). Both of these tasks were found 
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to significantly impair driving performance in a simulator (e.g., increases the number of 

lane excursions) with the effect magnitude depending on the design of the interface (e.g., 

kinetic vs. button scrolling, grid vs list menu). 

As discussed above, smart devices now have many other uses including the main 

interest of the present study: social networking (e.g., Facebook, Twitter, etc). To date, we 

have been only able to find one study that has specifically focused on the effect of social 

networking on driving other than solely texting or instant messaging. Basacik et al. 

investigated the effect of Facebook use on driving performance in a simulator (Basacik et 

al., 2012). In this study, participants were asked to send and receive messages through 

Facebook’s instant messaging system and update their status. Relative to an only driving 

control condition, Facebook use resulted in an significant increase in the RT to target 

stimuli (by 0.4 s on average), increase in the number of lane departures, increased 

variability of TH, and increased amount of time with eyes off the road. Similar effects 

were observed for both instant messaging and status updating. 

The limited amount of research on the effects of social networking on driving 

represents an important gap in the literature for two reasons. First, the frequency of this 

behavior is continuing to increase particularly in younger drivers. A State Farm survey 

conducted in 2014 (State Farm, 2015) reported that between the years 2009–2014 the 

number of drivers reading social media networks while driving increased from 21 to 41% 

for the ages 18 to 29 and increased from 9 to 20% across drivers of all ages. Over the 

same time period, talking on a hand-held phone while driving has decreased. The second 

important issue is that modern social networking apps include a variety of different 

methods of interaction that go beyond reading text on a screen and writing text messages. 
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These include exchanging photos (e.g., Snapchat, Instagram) and videos (e.g., YouTube, 

Vine) which have been shown to have different memory and attentional demands than 

text (e.g., Weldon, Roediger, & Challis, 1989).  For example, there is a well-documented 

“picture superiority effect” in that memory for images is better than memory for text 

Paivio & Csapo, 1973). Finally, unlike the cell phone use and texting tasks used in most 

previous driving studies which are typically initiated by someone else, many social 

networking apps can be either self or other paced (e.g., Facebook). Previous research has 

shown that for self-paced secondary tasks drivers may adapt their driving behaviors and 

engage in secondary tasks when a situation is less demanding such as when they are 

stopped at a red light or before entering “danger zones” (Metz, Landau, & Just, 2014; 

Liang, Horrey & Hoffman, 2014) however these findings have not be entirely consistent 

and more research is needed to determine the differences between self and other-paced 

secondary tasks in driving. For these reasons the effects of social networking on driving 

may not be directly predictable from the research on cell phone use and texting described 

above. 

The aim of the present study was to compare the effects of four different smart 

phone tasks on driving performance. In particular, we were interested in two factors: 

interaction medium (text vs image) and interaction type (self-paced vs experimenter-

paced). To achieve this end, drivers were asked to perform four different smart phone 

tasks (in separate blocks) while also performing a car-following task in a driving 

simulator: Text messaging with the experimenter (text/experimenter-paced), reading 

Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat 

(image, experimenter-paced), and viewing updates on Instagram (image, self-paced). As 
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described below, these tasks were designed so that they required a comparable amount of 

manual interaction and off-road glances. Drivers also performed a baseline driving 

condition and their performance on the secondary tasks was assessed via post-driving 

recognition tests. The experiment was designed to test the following predictions: 

1. Driving performance would be impaired (e.g., significantly higher BRTs, 

larger variance in TH) in all four smart phone conditions in comparison to 

just driving 

2. Impairments in driving performance would be significantly greater for the 

text-based tasks (texting and Facebook) as compared to the image based 

tasks (Snapchat and Instagram) due to the higher processing demands 

required for the former (Paivo & Csapo, 1973).  

3. Impairments in driving performance would be significantly less for the 

self-paced tasks (Facebook and Instagram) as compared to the 

experimenter-paced tasks (texting, Snapchat) because, as found in 

previous studies, drivers would adapt their behavior to perform the self-

paced tasks in less dangerous intervals 

 

Method 

Participants 

Eighteen undergraduates from Arizona State University participated for partial 

fulfillment of an introductory psychology research requirement. All were native English 

speakers with normal or corrected-to-normal vision with a valid driver’s license, were 

right-handed and were smart phone users. Participants ranged in age from 18–22 years 
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(M = 20.4). All participants gave informed written consent and the experiment was given 

ethics approval by the Arizona State University Institutional Review Board (IRB). 

Apparatus 

The DS-600c Advanced Research Simulator by DriveSafety
™

 was used. As 

shown in Figure 1, this simulator was comprised of a 300 deg wraparound display, a full-

width automobile cab (a Ford Focus) and a motion platform. Tactile and proprioceptive 

feedback cues were provided via dynamic torque feedback from the steering wheel and 

vibration transducers mounted under the driver’s seat. The motion platform provided 

coordinated inertial cues for the onset of longitudinal acceleration and deceleration. The 

data recording rate was 60 Hz. During the drive, the participant’s face and right hand 

(i.e., the one used to hold their phone) were video recorded using a Logitech C920 

Webcam. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148555#pone-0148555-g001
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Figure 1- The driving simulator 

 

Procedure 

Car following task 

The car following task was identical to that used in several previous studies (e.g., 

Scott & Gray, 2008; Mohebbi et al., 2009). Specifically, drivers followed a red lead car 

on a rural, two-lane road and were instructed to drive in their own lane and not pass the 

lead car. Drivers were instructed to maintain a 2.0 s time headway (TH) with the lead car. 

If the drivers followed too far behind the lead car, the words “Speed Up!” would appear 

in red text on the driver’s display. There was no analogous “Slow Down!” warning so 

that drivers were free to maintain any TH below 2.0 sec. Drivers were given a 5-min 
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practice drives (with no secondary tasks) to become familiar with the driving simulator 

and the car following task. 

The lead car was programmed to unpredictably (to the driver) change speeds at 

variable intervals. The lead car traveled between 55 and 65 mph (with an average speed 

of 60 mph) with its speed determined by a sum of three sinusoids. The lead car was 

programmed to make 8 unpredictable (to the driver) full stops at a -6 m/s
2
. The behavior 

of the lead car made it very difficult for the driver to predict when the lead car would 

speed up, slow down, or stop; creating multiple possible rear-end collision situations. 

Intermittent opposing roadway traffic was included to more closely simulate real-world 

rural driving conditions. If the participant contacted the lead vehicle (i.e., crashed) an 

audio file of a crash sound was presented for a duration of 500 msec and lead vehicle 

disappeared from the screen. 

Each driver completed 5 driving tracks corresponding to the four smart phone 

tasks plus the baseline driving condition. Each track had 10 unpredictable full stops of the 

lead car, and required roughly 6–7 minutes to complete. The location of the stops was 

randomly varied across tracks. Similar to our previous studies (e.g., Scott & Gray, 2008) 

drivers always performed the baseline condition first. The order of the 4 smart phone 

conditions was partially counterbalanced across participants. In particular, we ensured 

that each of the 4 tasks occurred first and last for an equal number of participants. 

Participants rested for 5 min between conditions to minimize simulator sickness and 

fatigue. 
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Smart phone tasks 

After the practice and baseline driving condition participants were next given 

instructions about the four smart phone tasks. For all tasks, participants used their own 

smart phone and were informed that they would be given a memory test about the content 

of the task after the driving was complete. The tasks were designed to produce 

comparable levels of manual interaction with the phone and off-road glances and these 

variables were analyzed as described below. The four tasks were as follows. 

Texting: In this condition, participants were told to imagine that they were selling 

their own car on Craigslist and a potential buyer was contacting them to ask 

questions. The experimenter then sent several questions (e.g., “what the make, 

model and year of your vehicle, how long have you owned it?) to which the 

participant was required to write a text response as they typically would respond. 

Participants were sent a text once per minute. 

Facebook: In this condition, participants were required to scroll through and read 

the updates from a Facebook account made up by experimenters. All of the 

updates were text only and included no images. Examples were: “A day without 

sunshine is like, well, night” and “Whatever you are, be a good one.” There were 

a total of 100 possible updates. 

Instagram: In this condition, participants were required to scroll through and 

view the updates on an Instagram account posted by the experimenters. All of the 

updates were images with no text and there was 120 in total. 

Snapchat: In this condition, participants were required to view an image sent by 

the experimenter and then choose an image from the photo album on their phone 



42 

that matched in some way (e.g., sending a picture of a dog in response to being 

sent a picture of a dog). Prior to the beginning of the experiment, participants 

were sent 12 images by the experimenter to save on their phone. Participants were 

sent an image once every 30 sec. 

      After each condition, participants completed the NASA-TLX workload 

questionnaire as well as a recognition test. The recognition tests involved 10 images (for 

the Snapchat and Instagram conditions) or 10 written statements (for the Facebook and 

Texting conditions) in which only 5 items were actually used in the experiment and 5 

were not. After completing the 5 tracks participants filled out a demographics sheet, were 

debriefed and were given credit for their participation. 

Data Analysis 

To assess driving performance two dependent variables that have been shown to 

be sensitive to distraction in previous studies, BRT and TH variability were used. To 

compare the visual and manual demands of the smart phone tasks we calculated total on-

phone glance time and total time in which the participant’s thumb was in contact with 

their phone for each condition. These data were analyzed using separate One-Way 

Repeated Measures ANOVAs with task condition (baseline, texting, Facebook, Instagram 

and Snapchat) as the factor. Planned comparisons were used to test hypotheses (ii) and 

(iii) listed above. One-Way Repeated Measures ANOVAs were also performed for the 

NASA-TLX and the recognition test data. For all results reported, statistical significance 

is set at p<.05. Effect sizes were calculated using partial eta squared (ηp
2
) for ANOVAs 

and Cohen's d for t-tests for all significant findings. 
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Results 

Brake Reaction Times 

Brake Reaction Times (BRT) Figure 2 shows the mean BRTs for the five 

different driving conditions. The one-way ANOVA performance on these data revealed a 

significant effect of condition, F(4, 68) = 5.93, p<.001, ηp
2
 = .26. The first planned 

contrast indicated that the combined BRT for the text-based tasks (texting and Facebook, 

Mean = 1.16 s) was significantly larger than the combined BRT for the image based tasks 

(Snapchat and Instagram, Mean = .92 s), t(17) = 3.47, p = .001, d = 0.75. The second 

planned contrast revealed that the combined BRT for the self-paced tasks (Facebook and 

Instagram, Mean = 1.04) was not significantly different that the combined mean for the 

experimenter-paced tasks (texting, Snapchat, Mean = 1.04), p>.9. Finally, post-hoc t-tests 

(with Bonferroni correction, p = 0.0125) were used to compare each of the BRT in each 

of the phones conditions with baseline driving. These tests revealed that, in comparison 

to the baseline condition (Mean = 0.88 s), the mean BRT was significantly higher in the 

Facebook (Mean = 1.18 s, t(17) = 3.30, p = 0.004, d = 1.2) and texting (Mean = 1.14 s, 

t(17) = 3.40, p = 0.003, d = 1.15) conditions. The mean BRTs were not significantly 

different from the baseline in either the Instagram (Mean = 0.89 s) or Snapchat (Mean = 

0.95 s), p’s both >0.25, d’s both <0.25. Finally, there was no significant effect of 

condition order on BRT, p>0.25. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148555#pone-0148555-g002
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Figure 2- Mean brake reaction times (BRT) for the five difference driving conditions, 

Error bars are standard errors.  

Time Headway 

Time Headway (TH) variability Figure 3 shows the mean TH variability for the 

five different driving conditions. The one-way ANOVA performance on these data 

revealed a significant effect of condition, F(4, 68) = 5.02, p<.001, ηp
2
 = .23. The first 

planned contrast indicated that the combined TH variability for the text-based tasks 

(texting and Facebook, Mean = .26) was significantly larger than the combined TH 

variability for the image based tasks (Snapchat and Instagram, Mean = .24), t(85) = 3.2, p 

= .002, d = 0.8. The second planned contrast revealed that the combined TH variability 

for the self-paced tasks (Facebook and Instagram, Mean = .24) was not significantly 

different that the combined mean for the experimenter-paced tasks (texting, Snapchat, 
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Mean = .24), p>.9. The post-hoc tests revealed that, in comparison to the baseline 

condition (Mean = .23), the TH variability was significantly higher in the Facebook 

(Mean = .26, t(17) = 2.97, p = 0.008, d = .71) and texting (Mean = .26, t(17) = 3.02, p = 

0.007, d = .74) conditions. The mean TH variability was not significantly different from 

the baseline in either the Instagram (Mean = .23) or Snapchat (Mean = .24), p’s both 

>0.4, d’s both <0.2. Finally, there was no significant effect of condition order on TH 

Variability, p>0.4. 

Figure 3- Mean time headway variability (TH) for the five difference driving conditions. 

Error bars are standard errors.  
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Gaze and Manual Interaction Behavior 

The mean total on-phone glance times were 135.9 (SD = 26.0), 130.9 (SD = 

30.1), 121.7 (SD = 27.2), and 146.4 (SD = 28.0) sec for the Facebook, texting, Instagram 

and SnapChat conditions respectively. The one-way ANOVA performance on these data 

revealed a non-significant effect of condition, p>0.1, ηp
2
 = .08. The mean total thumb-

phone contact times were 58.9 (SD = 10.3), 62.0 (SD = 16.7), 57.8 (SD = 19.3), and 54.2 

(SD = 11.5) sec for the Facebook, texting, Instagram and SnapChat conditions 

respectively. The one-way ANOVA performance on these data revealed a non-significant 

effect of condition, p>0.25, ηp
2
 = .07 

Questionnaire Data 

Table 2 shows the means for mental, physical and temporal demand, as well as 

task performance, required effort and overall frustration dimensions of the NASA-TLX 

questionnaire. There was a significant effect of task condition on perceived physical 

demand [F(4, 68) = 5.89,p = <0.001, ηp
2
 = .26] and perceived mental demand [F(4, 68) = 

3.06, p = 0.022, ηp
2
 = .15]. As can be seen in Table 3, the baseline condition was rated as 

easier than all of the other four conditions. There was no significant effect of task 

condition for any of the other NASA-TLX dimensions. 

A signal detection analysis was completed for each participant’s four recognition 

tests and d-prime (d’) values were calculated. As can be seen in Table 3, the means for all 

participants in each of the four task conditions are similar. A one-way ANOVA 

performed on the mean d’ values revealed a non-significant effect of condition, p>0.05. 

This non-significant effect implies that the tradeoff between the driving and phone tasks 

was similar for all conditions. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148555#pone-0148555-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148555#pone-0148555-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148555#pone-0148555-t002
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NASA TLX MEASURES 

Condition 

Mental 

Demand 

Physical 

Demand 

Temporal 

Demand Perform. Effort Frustration 

Baseline 9.06 4.11 8.83 10.50 10.22 7.61 

Facebook 12.72 7.50 10.28 11.28 11.22 9.67 

Texting 12.28 8.61 10.28 10.33 11.11 7.78 

Instagram 11.33 8.39 10.00 10.50 10.56 8.17 

Snapchat 11.24 8.06 9.41 9.00 9.41 8.24 

Table 2 – Mean task-load response ratings captured from the NASA-TLX form. All 

responses are based on a 1-21 increment scaled with 1 being very low and 21 being very 

high.  

  

 Recognition Tests Signal 

Detection Measures 

Condition d' 

Facebook 3.49 

Texting 4.83 

Instagram 3.57 

Snapchat 3.09 

Table 3 – Mean d’(dprime scores) for each of the 4 recognition task conditions.   

 

 

Discussion 

Previous research on smart phone use while driving has primarily focused on 

phone calls and texting. Drivers are now increasingly using their phone for other 

activities during driving, in particular social media (State Farm, 2015) which have 

different cognitive demands. The aim of the current experiment was to investigate the 

effect of four different smart phone tasks on driving performance. In particular, we were 

interested in two factors: interaction medium (text vs image) and interaction type (self-

paced vs other-paced). 

Given the consistent negative effects of phone use on driving performance that 

have been found in previous research (reviewed Caird et al., 2008; Carid et al., 2014) our 
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first hypothesis was that BRTs and TH variability would be significantly elevated in all 

four smart phone conditions as compared to the baseline driving condition. This was not 

the case as significant effects on driving performance were only found for the two text-

based conditions (Facebook and texting). The significant increase in BRT and TH 

variability for the text-based conditions is consistent with previous research which has 

shown both reading and entering text on a phone can impair driving performance Caird et 

al., 2014). The lack of significant effects for the image-based conditions (and the 

significant difference between the image-based and text-based conditions found for both 

BRT and TH variability, which was consistent with our second hypothesis) suggests that 

interacting with image-based smart phone app’s has different effects on driving 

performance than text. 

Consistent with this idea, previous research has shown that the processing of 

images has different memory and attentional demands in comparison to text, commonly 

called the picture superiority effect (Paivio, & Csapo, 1973). This is evidenced by the 

consistent finding that memory for pictures (e.g., a photo of a car) is better than memory 

for words (e.g., the word “car”) even when the recall task involves written responses. 

According to dual coding theory, this effect is due to differences in encoding: pictures are 

encoded twice (first in a sensory based, visual code then in a symbolic, verbal code) 

while words are only coded once in a verbal code (Paivio, & Csapo, 1973). These dual 

codes are thought to be independent and additive, thus, the increasing the likelihood it 

will be accessed from memory. In the image-based condition in the present study this 

would have made it easier for participants to remember the images they saw while 
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scrolling in Instagram and the images they have saved in their photo album, thus reducing 

the demands of the task consistent with this idea. 

Contrary to our third hypothesis, there was no significant effect of pacing of the 

phone task (self vs other) on driving performance. The rationale behind this prediction 

was previous research which has shown that when drivers engage in self-paced tasks they 

are more likely to adapt their driving behaviors to engage in the secondary task when 

conditions were deemed as more “safe,” such as when stopped at a red light or before 

entering an attention demanding situation Ahlstrom et al., 2015; Metz et al., 2014; Liang 

et al., 2014). We would argue that the most likely reason for the lack a pacing effect in 

the present study was the nature of the car-followed task used in our study. The task was 

a highly dynamic, continuous control task in which there were no clear break periods 

(e.g., stop lights or stretches of road with no traffic) which the driver could use for the 

phone tasks. For the entire duration of the trial participants were required to maintain a 2 

sec TH with vehicle undergoing regular changes in speed and fairly frequent sudden 

stops. Therefore, there was very limited opportunity for adaptation of driving behavior. It 

will be important for future research to investigate whether similar effects occur when 

self-paced adaption is more feasible. 

The present study used the task of car following, a driving behavior that has been 

modeled in several previous studies, therefore, it is interesting to consider how such 

models might be used to understand driver distraction in this situation. First, it has been 

proposed in recent models that car following behavior depends on a driver’s memory for 

the speed and position at a previous time period (e.g., Yu & Shi, 2015; Yu & Shi, 2015; 

Tang, Huang, Zhao & Xu, 2009). Since it well know that memory is strongly linked to 
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attention (review in (Fougine, 2008)), it is likely that distraction from using a smart 

phone (which takes a driver’s attention away from the road) will alter this specific 

parameter of the model. Second, it has been shown that traffic forecasting information 

providing by intelligent transportation systems can have a direct effect on car following 

behavior (Tang, Li & Huang, 2010), therefore, it would be interesting to investigate 

whether drivers might use such information to mitigate the effects of distraction (e.g., by 

deciding when to engage in smart phone tasks). Finally, since most car following models 

used parameters such as time headway, speed and reaction time (e.g., Jiang, Wu & Zhu, 

2001) that were shown to be influenced by distraction in the present study, it will be 

important for future research to attempt to explain and predict the effects of distraction on 

car following by directly applying such models. 

The findings of the present experiment were limited by certain constraints 

imposed through the simulation paradigm (Ho et al., 2014) First, the drivers in the 

present experiment were fully expecting the lead car to stop suddenly, so driver responses 

recorded in this simulation were likely faster than can be expected in a real driving 

situation. However, it is reasonable to expect that the relative differences in BRT between 

the different conditions would be the same in real driving. Nonetheless, this needs to be 

tested empirically. Second, although we attempt to match the smart phone tasks in terms 

of demands, it is possible that the differences between conditions were not solely due to 

the differences in interaction medium and pace between conditions. Future research is 

needed in which warnings occur at a much lower frequency. 

On a practical level, the present findings suggest that image-based interfaces may 

provide a relatively safer ways for people to “stay connected” (e.g., interact with social 
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media, instant message friends, etc.) while driving as compared to text-based interfaces– 

a function that drivers increasingly want in their vehicle (State Farm, 2015).. In the 

present study, viewing image updates and exchanging images with another person on a 

smart phone did not have any significant effects on driving performance. Since an 

auditory analog of the picture superiority effect has also been found (e.g., a ringing sound 

is remembered better than the word “ringing”, (Crutcher, & Beer, 2011), it will be 

interesting for future research to investigate whether earcons (Blattner, Sumikawa & 

Greenberg, 1989) have a similar advantage over talking over a phone in terms of driver 

distraction. 
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CHAPTER 3 

EXPERIMENT TWO-A Comparison of Different Smart Phone Based 

Applications for Mitigating Driver Distraction  

Background 

Distraction from smart phones while driving is an ever increasing problem in our 

society. According to a recent ATT&T study, it was found that 70% of drivers engage in 

smart phone activities such as texting (61%), emailing (33%) and even social networking, 

mainly checking Facebook (27%) while driving (ATT&T, 2015). Previous research has 

demonstrated negative effects produced when drivers talk on a phone while driving 

(Caird et al., 2008), text on a phone while driving (Caird et al., 2014) and more recently 

when they engage in social media applications (app’s) on their smart phone (i.e., 

Facebook and Instagram) while driving (Basacik, Reed and Robbins, 2012; McNabb & 

Gray, 2016, Experiment 1).  These effects include delayed brake reaction time (RT) to 

collision events and impaired lane position and headway regulation. Depending on the 

nature of the task being performed, smart phone use can produce manual, visual and/or 

cognitive distraction (Strayer, 2015).  

In response to this problem, several smart phone app’s have recently been 

developed which attempt to regulate a driver’s use of their smart phone in some way with 

a particularly focus on texting (e.g., Drive Now Text Later,  DriveSafe Mode, Live2Txt). 

In addition, it has been suggested that a special “driving mode” (similar to the existing 

“airplane mode”) be a built-in feature of all phones (Simons & Chabris, 2015). These 

interventions typically run in the background by linking to the driver’s GPS system and 

automatically activating when a threshold speed (e.g. 10 mph) is reached. When the 
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threshold is reached, incoming calls and texts are blocked and the sender is typically sent 

a message that the driver is unable to respond. When the driving speed goes below the 

threshold (e.g., if the vehicle is stopped at a red light), the messages are allowed to come 

through and the driver can then check them.  Although well intentioned, there are several 

important limitations with these app’s. First, it seems unlikely that the large proportion of 

drivers that want to use their phone during driving (ATT&T, 2015), will voluntarily use 

an app that will prevent this. Consistent with this idea, it has been shown that even when 

drivers experience the benefits of driver-related smart phone applications as research 

participants, they stop using the app almost immediately after the study is concluded 

(Musicant & Lotan, 2016, Botzer, Musicant & Perry, 2017).  Drivers have identified 

several issues related to the reluctance to use these apps including potential draining of 

the phone battery, use of their data allowance, and dislike of being monitored and 

restricted. Second, these types of app’s have the potential to drain the user’s phone 

battery and/or use of their data allowance. Finally, and most importantly, the design of 

these app’s raise some other possible human factors issues. 

First, even when the message blocking in these app’s is activated it is still likely 

that the driver will be alerted that they have received a message. For example, visual 

notifications (e.g., from an iPhone’s notification center) are not fully disabled in most of 

these app’s and some app’s still allow auditory and vibration notifications. It has recently 

been shown that receiving a message notification can be distracting and result in impaired 

performance on an attentional-demanding task, even when participants did not directly 

interact with their smart phone during the task (Stothart, Mitchum & Yehnert, 2015).  

The authors proposed that notifications can prompt task-irrelevant thoughts and mind 
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wandering which are also known to impair driving performance (Yanko & Spalek, 2013). 

It is possible that this mind wandering will result in more sustained distraction as 

compared to if the driver were just allowed to check the message in the first place.  

A second potential problem could arise when a driver’s speed drops below the 

threshold level and messages are allowed through.  If they have been driving for a long 

time and/or are highly active on social media it is possible that they could be inundated 

with several messages. If they are checking these at a red light these could in turn lead to 

slower reaction time to the light changing green and/or impaired awareness of the traffic 

environment at the intersection.  

The goal of the present study was to compare different smart phone mitigation 

methods in a driving simulator. In an attempt to re-create the natural desire drivers have 

to check their own personal messages, participants were asked to perform a riddle task 

while driving. Specifically, they received texts from the experimenter which were each 

clues to a riddle that had to be solved at the end of the drive. The five conditions were as 

follows: 

Baseline – participants drove around the simulated environment without their 

smart phone. They were asked to make sure their phone was on silent and not to bring it 

in the vehicle with them.  

Airplane Mode – participants drove with their phone sitting face down on the 

passenger seat and set in airplane mode (i.e., no messages or notifications). They were 

told that they would be receiving messages to the riddle that could be checked once the 

drive was completed. 
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On Mode – participants drove with their phone as the normally do while driving 

and fully activated. They were told that they could check the incoming text messages 

whenever they wished.  

Notifications Only Mode - participants drove with their phone face down on the 

passenger seat and fully activated. However, they were instructed not to check their 

messages until after the drive was complete.  

Check at Stop Mode - participants drove with their phone face down on the 

passenger seat and fully activated.  However, they were instructed to only check their 

messages when they were stopped (e.g., at a red light). The experiment was designed to 

test the following predictions:  

(i) Driving performance would be impaired (e.g., significantly higher 

speeds and lane position variability) in On, Notifications Only and 

Check at Stop modes relative to the other conditions due to mind 

wandering,  

(ii) Impairments in driving performance would be significantly greater 

for conditions in which drivers were physically allowed to check 

messages while driving (On and Red Light) as compared when 

they could not (Airplane and Notifications Only) due to the added 

visual and manual distraction and  

(iii) Driving performance in stopping situations would be impaired 

(i.e., longer wait times and slower reaction times) in the Check at 

Stop condition.  
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Methods 

Participants 

Fifteen undergraduates (mean age=20.1) from Arizona State University 

participated for partial fulfillment of an introductory psychology research requirement.  

All were native English speakers with normal or corrected-to-normal vision with a valid 

driver’s license and were smart phone users.  

Apparatus 

The same apparatus was used as in Experiment 1, (Chapter 2). 

Procedure 

Driving Task 

 In all conditions, drivers were asked to drive in a simulated city environment and 

were instructed to drive as they normally would while following auditory turn 

instructions from a navigation system. They were further instructed to obey the posted 

speed limit (30 mph) at all times. Intermittent opposing roadway traffic was included to 

more closely simulate real-world driving conditions. Each drive lasted roughly 7 minutes.  

Drivers were given a 5-min practice to become familiar with the driving simulator 

before the experimental conditions began. The order of conditions was partially counter-

balanced across drivers. 

Riddle Task 

Drivers were instructed that in the experimental conditions they would be asked to 

solve a riddle at the end of each drive. They were further instructed that they would be 

receiving the clues to the riddle via text messages sent by the experimenter to their smart 

phone which they may or may not be able to check (and begin thinking about the 
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solution) while driving, depending on the condition. After they had finished the drive and 

put the vehicle in park, they had 1 minute to solve the riddle. For each riddle they 

answered correctly they were entered into a drawing to win an iPad.   

Riddles were chosen from the MindTrap™ board game. Each riddle had 4 parts 

that were delivered in 4 separate text messages. An example of one the riddles use was:  

Text 1: A taxi driver was called to take a group of passengers to the train station. Text 2: 

The train station is normally an hour away but with traffic being extra heavy it took a full 

hour and a half. Text 3: On the return trip the traffic was still as heavy, Text4: And yet it 

took only 90 minutes. Why? Answer: Because 1.5 hours and 90 minutes are the same.  

Data Analysis   

The mean values for the following driving performance variables were analyzed:  

Speed, Lane Position Variability, Reaction Time to lights changing green and Lane 

Position Variability after light change when stopped at pedestrian crosswalks. For all 

results reported, statistical significance was set at p<.05. Effect sizes were calculated 

using partial eta squared (ηp
2
) for ANOVAs and Cohen's d for t-tests for all significant 

findings.   

 

Results 

Mean Speed  

Figure 5 shows the mean driving speed for the five different conditions. The 

Repeated Measures ANOVA performed on these data revealed a significant effect of 

condition, F(4,56) = 5.23, p=.001, ηp
2
 =.27. Follow up pairwise comparisons 

demonstrated that all four experimental conditions had a significantly faster mean Speed 
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as compared to the baseline condition (M=12.1m/s), Airplane Mode (M = 13.7m/s, t(14) 

= -3.20, p=.006, d=-1.21), On Mode (M = 13.8m/s, t(14) =-2.19, p=.046, d=-.93), 

Notifications Only Mode (M =14.8m/s, t(14) = -4.86, p=.019, d=-1.13) and Stop Check 

Mode (M = 14.2 m/s, t(14) = -3.04, p=.009, d=-1.19). 

 

Figure 4. Mean Speed across the five different experimental conditions.  Error bars are 

standard errors.  

 

Mean Lane Position Variability  

Figure 6 shows the mean Lane Position Variability for the five different driving 

conditions. The Repeated Measures ANOVA performed on these data revealed a 

significant effect of condition, F(4,56) = 5.05, p=.002, ηp
2
 =.27. Follow up pairwise 

comparisons demonstrated that three of the four experimental conditions had significantly 

greater mean Lane Position variability as compared to the baseline condition (M=-.13), 



62 

On Mode (M =-.33, t(14) = 3.89, p=.002, d=-.86), Notifications Only Mode (M =-.38, 

t(14) = 3.07, p=.008, d=-.81) and Stop Check Mode (M = -.37, t(14) = 5.07, p=.000, d=-

1.06) were significant while Airplane Mode was approaching significance (M = -.25, 

t(14) = 1.80, p=.094, d=-.47),  

 

Figure 5. Mean Lane Position Variability across the five different experimental 

conditions.  Error bars are standard errors.  

Red Light & Pedestrian Delays 

Figure 7 shows the mean Reaction Time (i.e., accelerator response) after the 

signal light turned to green for the different driving conditions. 

The Repeated Measures ANOVA performed on these data revealed a significant 

effect of condition, F(3,56) = 19.71, p=.000, ηp
2
 =.59. Follow up pairwise comparisons 

demonstrated that as compared to the baseline condition (M = 2.03 s) only drivers in the 

Stop Check Mode had significantly longer Reaction Times to the green light change (M = 

3.63 s, t(14) = -7.12, p=.000, d=-2.23) than all other conditions, Airplane Mode (M = 
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2.07 s, t(14) = -.317, p=.76 ), Ignore Mode (M =1.98s, t(14) = .213, p=.84 ) and  

Notifications Only Mode (M =1.7s, t(14) = 1.18, p=.29).  

Drivers mean wait times at pedestrian cross walks were also analyzed for each of 

the experimental conditions. The Repeated Measures ANOVA performed on these data 

revealed a significant effect of condition, F(3,42) = 4.96, p=.005, ηp
2
 =.26. Similar to the 

red light Reaction Times, follow up pairwise comparisons demonstrated that drivers in 

the Stop Check Mode average Time waited on average (M = 18.1s) significantly longer 

than each of the other three conditions, Airplane Mode (M = 9.9s, t(14) = 2.45, p=.028, 

d=.53), Ignore Mode (M = 4.06s, t(14) = 3.33, p=.005, d=.98) and  Notifications Only 

Mode (M =7.0s, t(14) = 2.07, p=.058, d=.75).  

 

Figure 6. Mean Reaction Time to green light changes across the five different 

experimental conditions.  Error bars are standard errors.  

Lastly, we also examined drivers’ behavior for the 10 sec period immediately 

after the light turned to green for all five conditions, as shown in Figure 8. Repeated 
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Measures ANOVAs results show that while the average speeds in the conditions were not 

significantly different from each other F(4,56) = 1.69, p=.165, ηp
2
 =.49, average Lane 

Position Variability was significantly different F(4,56) = 3.41, p=.015, ηp
2
 =.20. In 

particular pairwise comparisons revealed that drivers only in the On and Stop Check 

Mode conditions had significantly higher Lane Position Variability in 10 sec period as 

compared to the baseline condition. (M = -.30, t(14) =2.63, p=.02, d=-.89)and (M=-.22, 

t(14) = 2.59, p=.021, d=-.70), respectively.  

 

Figure 7. Mean Lane Position Variability across the five different experimental 

conditions after green light.  Error bars are standard errors.  

 

Discussion  

 Simply put, people want to use their smart phones to stay connected while on the 

move. For example, in a 2014 survey conducted by State Farm found that in the past 5 
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years the number of people aged 18-29 that use social media while driving doubled from 

21 to 42% (State Farm, 2014). This is, however, worsening one of the single biggest 

human factor problems in society today: driver distraction (Strayer, 2015). How can we 

satisfy the conflicting forces of connectivity-on-the-go and safe mobility?   

An approach that has become popular in more recent years is the development of 

smart phone app’s which somehow alter the way in which information is delivered to the 

driver (i.e., silencing or blocking an incoming message). Unfortunately, these types of 

app’s have potential to introduce safety problems of their own. For instance, if the driver 

places their smart phone within viewing distance, the incoming messages may still be 

visually displayed on the screen (i.e., the notifications bar of an iPhone) and additionally 

some app’s may not completely silence the incoming alert sound. Most concerning is 

how the speed threshold operates. For example, when a driver is stopped at red lights or 

slowed down due to traffic the app interprets the driver as having stopped. This could 

potentially causing the phone to be inundated with messages although they are still 

behind the wheel. This could result in delayed reactions/impaired situation awareness 

when a driver at a routine stop attempts to read a large number of messages during 

various traffic stops. Lastly, these app’s may exacerbate off-task, mind wandering 

thoughts when drivers feel restricted and inhibited from receiving messages as well as 

contribute to distracted driving. The goal of the present study was to evaluate these 

specific issues associated with safe driving app’s.  

 Unexpectedly, in the present study, driving performance was significantly (and 

negatively) affected in all conditions for which drivers had their phone in the car, 

regardless of the mode. In particular, both driving speed and lane position variability 
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were significantly higher as compared to the baseline condition in which the driver did 

not have their phone. We would argue that most likely explanation for this effect is that 

drivers in the present study engaged in off-task thoughts about potential messages. For 

instance, the observed negative effects in the Airplane, Notifications Only and Check at 

Stop modes were most likely due to the cognitive resources taken up by off-task thoughts 

about what messages they would be receiving i.e., participants knew that were receiving 

message relevant to the riddle task but were not allowed to check them. These findings 

are consistent with a recent study showing that the cognitive distraction imposed by a 

simple alert, not the physical interaction with the smart phone can influence performance 

on a sustained attention task (Yanko & Spalek, 2013; Stothart et al., 2015). For the On 

mode, it is likely that negative effects observed were due to both the visual and manual 

distraction produced by the driver physically interacting with their phone while driving, 

consistent with previous research on texting and driving (Caird et al., 2014). 

 As predicted, allowing drivers to check stored messages at traffic stops produced 

negative effects on driving performance. Specifically, driver’s reaction times to green 

lights and wait times at crossings were significantly longer for the Check at Stop mode 

than all other conditions. Furthermore, after participants finished checking their messages 

and began driving the overall average Speeds for each condition remained consistent 

whereas lane position variability was negatively impacted. Only the Check at Stop mode 

and On mode lane position variability were significantly different from the Baseline 

mode reflecting that restricted drivers receiving messages at the stop light suffer the same 

performance decrements drivers that have no imposed phone restrictions. These findings 

are consistent with previous research that engaging with a smart phone, even if only at 



67 

stop lights may contribute to inattentional blindness or in more extreme cases a loss of 

situational awareness as demonstrated by delays in reaction times to relevant traffic 

situations (Caird et al., 2014).  

In summary, the present study provides evidence that the presence of a smart 

phone in a driver’s vehicle, regardless of a driver’s physical interaction with the device, 

can be distracting, enough so, as to negatively impact a drivers driving performance (i.e., 

Speed, Lane Position Variability, RT’s). Surprisingly, even the expectancy of receiving 

an important message, without an auditory notification seems to create enough cognitive 

distraction through mind-wandering to impact a driver’s performance. Paradoxically, 

when drivers are restricted to only looking at their incoming messages at red lights or 

crossings they may become so overly absorbed with their phones they actually suffer the 

same or worse performance decrements as an unrestricted driver. In sum, app’s which 

restrict incoming messages in some manner do not seem to an effective method for 

mitigating driver distraction problems 
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CHAPTER 4 

Experiment Three- Informative Warnings at the Source of Distraction 

Background 

Driver distraction has contributed to accidents on the roadways since the 

introduction of vehicles (Graham-Little, 1934). Over time, as technology has progressed, 

distractions from smart phones have become one of the biggest concerns regarding driver 

safety. While drivers are not likely to admit that they use their smart phone while driving, 

it was revealed that a majority of drivers have confidence in their own abilities to use 

their phone while driving although ironically they fear other driver’s capabilities relative 

to their own (Sanbonmatsu, Strayer, Behrends, Ward & Watson, 2016). Furthermore, as 

shown in Experiment 2, when a driver’s smart phone is put away, there can still be 

cognitive mind-wandering disturbances that hinder driving performance, as driver’s may 

experience a phenomenon known as a Fear of Missing Out (FoMO) (Przybylski, 

Murayama, DeHaan & Gladwell, 2013). Driver’s experiencing FoMO while driving may 

be preoccupied by various thoughts about what they could be missing out on such as the 

most recent social updates, current events or work related activities (Mason, Norton, Van 

Horn, Wegner & Macrae, 2007; Stohart, et al., 2015).  From the observed increase in 

dependency and emotional attachment to smart devices it remains unlikely that drivers, 

even while driving, will disconnect from their devices.  

Due to the driver always being connected, it becomes crucial to find new methods 

to warn a distracted driver. With the expectations that future technology will allow a 

smart phone to have the ability to collect, interpret and display data about the driver’s 

behavior, the driver’s vehicle as well as pertinent information about nearby vehicles on 
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the roadway, the goal of this study was to investigate whether a warning given on or near 

the location of the smart phone as well as conveying apparent motion can improve 

reaction times to a critical event. In order to achieve this goal, we investigated a novel 

approach of using a driver’s smart phone, the main cause of distraction within a vehicle, 

as the source of the warning to the driver.  

Driver distraction typically has been understood in terms of competing or limited 

attentional resources. More recent, an emerging theoretical perspective from Lee (2014) 

considers the attentional dynamics of distraction as the ability to “manage interruptions.” 

Specifically, within this conceptual interruption model there are four stages known as, 

detection, interpretation, shifting of attention and then resumption of the task. For our 

study in particular, the focus was on the first three stages of Lee’s (2014) model. 

Primarily, this study focused on how to introduce a warning that is detectable under 

distraction. Secondly, this study was aimed to reveal if the warning signal could be easily 

interpreted by attempting to convey movement in the warning signal to match the real 

world situation. Lastly, this study investigated if the warning signal could potentially shift 

a driver’s attention from their smart phone to the roadway.  

In terms of the first stage, numerous warning studies have been conducted with 

respect to a driver successfully detecting a collision warning while driving (Ho, Reed & 

Spence, 2006: Spence & Ho, 2008). Reaction time benefits have been observed with 

auditory, visual, tactile and multisensory warnings (Lee et al., 2002). While auditory 

and tactile warning modalities have shown the most success, various factors such as 

loud noises in the vehicle (Edworthy, 1994) talking on the phone (Mohebbi et al., 2009) 

or even a bumpy road (Spence & Ho, 2008) may reduce their detectability. 
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Additionally, fewer studies have determined if a driver can detect these same types of 

warnings while engaged with their smart phone for uses other than talking (i.e., 

checking Facebook). Ahtamad et al., (under review) recently investigated the effect of a 

task relying primarily on the sense of touch (texting with a smart phone) on tactile 

warning effectiveness. Results revealed that texting on the smart phone while receiving 

a tactile warning on the opposite hand/arm rendered the tactile warnings ineffective 

(i.e., no reduction in BRT relative to a no warning condition).  In order for a driver to 

successfully detect a warning, it may be necessary that the warning is emitted from or 

near the smart phone, the area of attentional focus, due to the required interaction with a 

smart phone (i.e., holding the phone with one hand and eye fixation at the screen).  

Secondly, the interpretation of the interruption to improve a driver’s reaction to a 

critical event is vital. Traditional warning studies have been conducted in driving 

research that focus on understanding the timing implications of the warning (Lee et al., 

2002; Spence & Squire, 2003; Straughn et al., 2009), and the optimal location of the 

warning (Ho & Spence, 2008).  More recently, warning studies have begun to investigate 

what information might be conveyed or interpreted in the warning signal to increase a 

driver’s overall situation awareness (SA) of a critical event (Gray, 2011; Ho, Gray & 

Spence, 2014). Auditory looming warnings and vibrotactile apparent motion signals have 

been shown to successfully convey urgency when the warning signal parallels the 

incoming information about the closing velocity (CV) with the lead car or when the 

warning simulates apparent movement that is presented as moving towards the driver’s 

head or torso (Gray, 2011; Meng, Gray, Ho, Ahtamad & Spence, 2015). In order for the 

driver to effectively interpret an interruption from the warning signal it is worthwhile to 
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investigate if the warning from a smart phone could convey pertinent information to the 

driver before any head or eye movement is necessary.   

Lastly, re-orienting a driver or shifting a driver’s attention from their smart phone 

may prove more difficult than expected. One prominent aspect of the interruption 

perspective is task preservation (Zeigarnik, 1938), where a driver fails to interrupt their 

interaction with a task (i.e., smart phone) and return their attention to the road or warning 

system due to their fixation with completing a goal on the smart phone. Unfortunately, 

smart phones have the ability absorb the user in a multitude of ways with unlimited goals 

that can cause the user to lose track of both time and their surroundings (Wickens, 

Martin-Emerson, Larish, 1993). An alert given at the location of the driver’s smart phone 

may successfully interrupt the driver, consequently shifting their attentional focus to the 

forward position of the roadway. Conversely, an alert given at their smart phone may 

cause a driver to be unnecessarily oriented to the smart phone longer (i.e., processing the 

sound or vibration coming from the device) (Posner, 1980). Due to these unknown 

implications on warnings involving smart phone distraction, it is valuable to investigate if 

the apparent motion could be used to successfully re-orient the driver to the forward 

facing direction.  

Aforementioned, simulating apparent motion as moving towards the driver has 

resulted as an effective method for alerting drivers (Ho, Spence & Gray, 2013; Meng et 

al., 2015). In the case of a warning a distracted driver, little is known if the towards 

motion will remain the more effective option. In line with previous research, the apparent 

motion simulating movement towards a driver may allow the driver to successfully 

process and react to the warning information prior to looking forward at the roadway. 
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Conversely, the reverse result may occur. When a distracted driver is presented an 

apparent motion warning appearing to move towards them, because the initial sound or 

vibration is presented outside a driver’s area of attention or focus (i.e., a speaker on the 

dash, or vibration to their non-dominant hand) a driver to be less inclined to break their 

attentional focus with their smart phone. Although counter to previous research on 

apparent motion, simulated motion away from a driver that is distracted may be as or 

more efficient in improving a driver’s reaction time. For example, when a driver is 

looking away from the road, down at their smart phone, motion that appears to have 

initiated from their device may be more successful in breaking a driver’s attentional focus 

with their smart phone. Furthermore, the secondary sound or vibration simulating the 

“away” motion (i.e., a speaker on the dash, or vibration to their non-dominant hand) 

could potentially create a faster and accurate orientation of the driver’s attention to the 

forward facing position and towards the location of the critical event.  

Current Study 

A literature review revealed that no study to date has used the smart phone as the 

source for the warning. In the current study both the auditory and tactile warnings that 

conveyed direction were presented on or near the source of the driver’s smart phone (i.e., 

via a speaker that produced a tone next to the hand they held their smart phone with or a 

vibration given to the wrist of the hand that held their smart phone). Drivers were asked 

to perform a car-following task while simultaneously using their smart phone to watch a 

video. The driving simulator would trigger an auditory or tactile warning when a driver’s 

time to collision (TTC) and the lead car approached less than 3 seconds. Additionally, for 

both the auditory and tactile warning conditions participants were given sound or 
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vibrations that appeared to be moving either towards the driver, away from the driver, or 

presented in a non-informative, static manner at the smart phone location only.  This 

experiment was designed to test the following predictions.  

(i) Driving performance to a potential rear-end collision will be improved 

(faster brake reaction times (BRT’s) in conditions with warnings 

relative to the non-warning baseline condition.  

(ii) The benefits of the tactile warnings (i.e., changes in BRT relative to 

the non-warning condition) will be significantly greater than for the 

auditory warning due to the notion that the secondary task had an 

auditory component (listening to video) and no tactile component. 

(iii) If interpretation of the warning (i.e., signalling an approaching object) 

is more beneficial to the driver, then warnings that simulate motion 

towards the driver will be significantly faster (i.e., changes in BRT 

relative to the no warning baseline) versus the away and static 

movement conditions. If re-orienting of the warning is more beneficial 

to the driver, then warnings that simulate motion away from the driver 

will be significantly faster (i.e., changes in BRT relative to the no 

warning baseline) versus the toward and static movement conditions. 
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Method 

Participants 

Fifteen undergraduates (mean age= 20.13) from Arizona State University 

participated for partial fulfillment of an introductory psychology and human systems 

engineering research requirement. All participants had corrected-to-normal vision, held a 

valid driver’s license, were right-handed and owned a smart phone. 

Apparatus 

Simulator 

The same apparatus was used as in Experiment 1, (Chapter 2). 

Procedure 

Car following task 

The same car-following task as Experiment 1 was used.  Each driver completed 7 

driving tracks corresponding to the 6 smart phone warning conditions tasks plus the 1 

non-warning baseline condition. Each track had 10 unpredictable full stops of the lead 

car, and required about 6–7 minutes to complete. The locations of the stops were 

randomly varied across tracks. The 7 smart phone warning conditions order were 

counterbalanced across participants, such that each participant participated in one of three 

block randomization presentation orders (tactile, non-warning, auditory: auditory, tactile, 

non-warning: and non-warning, tactile, auditory). Additionally, within each of the 

conditions the order of warning trials (towards, away or static) was partially 

counterbalanced such that each participant was given one of three blocked orders 
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(towards, away, static; away, towards, static; static, towards, away). Each participant was 

given a 3-minute practice trial to get acquainted with the simulator. Participants were able 

to rest as long as needed between conditions to minimize simulator sickness and fatigue.   

Driving Conditions 

Drivers were instructed that in all the experimental conditions they would be 

driving around a track while watching a YouTube science video of their choice and 

simultaneously receiving warnings, either auditory or tactile. Drivers were informed they 

would be given a quiz about the video at the end of the drive, so they needed to try to 

maintain an appropriate balance of their attention, as best as they could, between driving 

the vehicle and watching the video. Drivers were asked to hold their smart phone in their 

right hand, in a comfortable position that was lower than the center of the steering wheel 

while keeping their left hand on the steering wheel at all times.   

The warning types drivers received were either auditory or tactile and given in 

either a static, toward or away motion. The warnings were only triggered when the 

drivers TTC with the lead car reached the threshold of 3 seconds or less and repeated 

every second until the driver’s TTC was greater than 3 seconds.  

Auditory Static: A 250-hz tone was given for a total of 700msec on the right 

speaker that was placed near the driver’s smart phone.  

Auditory Away: A 250-hz tone was given for a total of 300msec to the right 

speaker (near driver’s right hand) followed by 100msec of silence and then a 250-

hz tone presented to the left speaker (left side of dash) for a total of 300msec.  
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Auditory Toward: A 250-hz tone was given for a total of 300msec to the left 

speaker (near dash) followed by 100msec of silence and then a 250-hz tone 

presented to the right speaker (near driver’s right hand) for a total of 300msec.  

Tactile Static: A 250-hz tone was given for a total of 700msec via a tactor that 

was velcroed onto the participant’s right wrist. 

Tactile Away: A 250-hz tone was given for a total of 300msec via a tactor that 

was velcroed onto the participant’s right wrist, followed by 100msec pause, and 

then another 250-hz tone that was presented for 300msec to the left wrist.  

Auditory Toward: A 250-hz tone was given for a total of 300msec via a tactor 

that was  velcroed onto the participants left wrist, followed by 100msec pause and 

then another 250-hz tone that was presented for 300msec to the right wrist. 

Data Analysis 

To assess driving performance two dependent variables that have been shown to 

be sensitive to distraction in previous studies, BRT and TH variability were used. These 

data were analyzed using a Repeated Measures ANOVAs with warning modality 

(auditory or tactile) and direction (static, towards, away) as the two factors. Planned 

comparisons (using pairwise t-tests) between each warning type and the no warning 

condition were used to test hypotheses (i) listed above. For all results reported, statistical 

significance is set at p<.05. Effect sizes were calculated using partial eta squared (ηp
2
) for 

ANOVAs and Cohen's d for t-tests for all significant findings. 
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Results 

Brake Reaction Times 

Figure 9 shows the mean BRTs for the seven different driving conditions. The 

repeated measures ANOVA performed on these data revealed a significant main effect of 

modality, F(1,28) = 9.03, p<.009, ηp
2
 = .39, such that the  BRT for the auditory warnings 

(Mean = .60 s) was significantly faster than the  BRT for the tactile warnings (Mean = .73 

s). Contrary to our predictions, the main effect for direction and the modality by direction 

interaction were not significant, F(1,28) = .46, p=.64, ηp
2
 = .31 and F(1,28) = .03, p=.97, 

ηp
2
 = .00, respectively.  

Follow-up paired samples t-tests, comparing the non-warning baseline condition 

(Mean = 0.82 s) to each of the six experimental conditions, were run. Results 

demonstrated that each of the mean auditory conditions BRT’s were significantly faster 

than no warning, auditory away (Mean = 0.61 s, t(14) = -3.28, p = 0.005, d=.82) auditory 

towards (Mean = 0.58 s, t(14) = -8.14, p = 0.000,  d=1.11) and auditory static (Mean = 

.60 s, t(14) = -4.26, p = 0.001, d=.93) conditions. Additionally, for the tactile conditions it 

was revealed that only the tactile towards condition BRT’s were significantly faster than 

the non-warning condition (Mean = .70 s, t(14) = -2.78, p = 0.015, d=.55) while the 

tactile away (Mean = 0.74 s) and tactile static (Mean = 0.75 s) were not significantly 

different from the non-warning condition p’s all >0.005. 



78 

Figure 8- Mean brake reaction times (BRT) for the seven different driving conditions. 

Error bars are standard errors.  

Additional Analyses 

One condition that was not run in the present study was a static warning presented 

on the dashboard. This is an important omission because it is possible that all of the 

warnings used in the present experiment, (Experiment 3) were equally effective because 

they all included a sound or vibration that occurred near the phone. To address this issue, 

data from a similar study, that included the static-dashboard condition, was compared to 

the present results.  Figure 10 shows the mean BRTs for these three different driving 

conditions. The first condition was the supplemental data from the similar study, in which 

the warning was presented at the dashboard location only. The second condition was 

from the present study, Experiment 3, and was the auditory static warning given in the 

location of the driver’s hand. The third condition, also from Experiment 3, was the tactile 
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static warning given to at the location of the driver’s hand. Independent samples t-tests 

were used to compare the auditory static at dash condition to each of the two static at 

hand (tactile and auditory) conditions. It was revealed that the static tactile at hand 

condition BRT’s (Mean = 0.75 s) and the static auditory at hand condition BRT’s (Mean 

= 0.60 s) were both significantly faster than the static auditory at dash condition BRT’s 

(Mean = 0.93 s), t(28) = -2.30 p = 0.029, d=.82) and t(28) = --4.23 p = 0.000, d=1.56), 

respectively.  

Figure 9- Mean brake reaction times (BRT) for the three different driving conditions. 

Error bars are standard errors.  
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Discussion 

Previous research on warning drivers have found both auditory looming and 

apparent motion tactile modalities can be used to improve driver’s reaction times to 

critical events (Gray, 2011; Ho et al., 2014). Interestingly, these same warnings have 

been shown to be nearly rendered ineffective when drivers are simultaneously distracted 

by their smart phone (Athamad et al., under review). In an applied setting, a driver’s 

increased dependency with their smart phone, combined with the potential for a driver to 

experience FoMo, sets the stage for a driver’s inability to disconnect both physically and 

cognitively while driving (as observed in Experiment 2). For this reason, the overarching 

aim of this study was to explore practical ways to warn a distracted driver, specifically, 

by implementing the warning near the location of their smart phone.  In particular, we 

were interested in two factors for the warning: modality (auditory vs tactile) and direction 

of apparent motion (towards vs away vs static).  

Given that overall warning studies tend to show warnings improve driver’s 

reaction times to a critical event (Ho et al., 2013), our first hypothesis was that the BRT’s 

would be significantly faster when drivers were given a warning as compared to the non-

warning condition. Interestingly, the findings support our first hypothesis for the BRT’s, 

all conditions involving the auditory warning decreased a driver’s BRT as compared to 

the non-warning condition, consistent with previous research on auditory looming 

warnings (Gray, 2011). For the tactile apparent motion warning conditions, results found 

that only the tactile warning presented as moving towards the driver had the ability to 

improve a driver’s BRT as compared to non-warning conditions. These findings are 

partially consistent with both previous research findings that tactile warnings can be 
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rendered ineffective when given to a distracted driver (Ahtamad et al., under review) and 

research findings that the most effective apparent tactile motion warning is when the 

motion is presented as moving towards the driver (Ho et al., 2014).  

In line with the notion that the secondary task was highly demanding, both with 

respect to the visual and auditory processing, the second hypothesis was that the tactile 

warnings would significantly reduce BRT’s as compared to the auditory warnings. This 

hypothesis was based on the premise that the tactile warnings would not be directly 

competing for a driver’s attention with the visual and auditory modalities thus allowing a 

driver to more quickly process the tactile warning information. Surprisingly, the results 

suggest the opposite effect for the driver’s BRT’s. The BRT data revealed that the 

auditory warnings actually improved reaction times to the critical event as compared to 

the tactile warnings. Upon further consideration, this observed benefit may have been 

more pronounced in this study due to again, the nature of the secondary task. Although 

the auditory warnings were competing for the driver’s attention with the secondary task, 

the secondary task of listening and watching a video was, in essence, more passive as 

compared to past studies requiring driver’s to actively engage in conversations with a 

passenger or on talk on their cell phone (Mohebbi et al., 2009). The passive interaction 

drivers maintained with watching a video displayed on their smart phone while driving, 

albeit a common use of the smart phone, may have allowed drivers to become more 

receptive to an auditory signal as they were enhancing their auditory channel required by 

listening to the video. In turn, this auditory receptiveness may have contributed to a 

driver’s ability to react more quickly to the auditory warning as compared to the tactile 

warning.  
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Furthermore, and contrary to our third hypothesis, there was no benefit of 

direction on BRT when simulated as moving toward the driver as compared to when the 

motion was simulated as moving away or those that were static. The rationale for this 

hypothesis was with past research success from presenting informative warnings, that 

either increase in sound and intensity as a driver approaches a lead car or tactile 

vibrations that move towards a driver’s head (e.g., Gray, 2011). Additionally, from 

studies that demonstrate motion simulated as moving away from the driver may 

potentially aid in reorienting their attention to the collision event (Gray & Tan, 2002). 

Further investigation on the effectiveness of the warning location was considered. For the 

static conditions, follow-up analysis combined this experiment with data from a previous 

static auditory warning experiment. Results revealed that BRT’s were significantly faster 

when the static auditory or tactile warnings were given near the participant’s hand 

holding the smart phone as compared to an auditory warning presented at the dash only. 

These findings support the notion that giving an initial warning near the location of the 

smart phone is more likely to break the driver’s attentional focus with their smart phone 

rather as opposed to orienting them to the smart phone longer. Future research to 

investigate if auditory information can convey informative information or re-orient a 

driver by using 3D looming audio or a secondary auditory sound presented in the 

direction of the critical event is worth exploring. 

There is a large body of literature discussing the various ways that can 

successfully warn a driver, although most are without consideration of warning a driver 

that is distracted by their smart phone. Overall, these data are in line with the previous 

findings that distracted drivers given a tactile warning while simultaneously distracted by 
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their smart phone had the equivalent reaction times as not warning a driver in the first 

place (Ahthamad et al., under review). Notably, results of this study did reveal that the 

auditory modality can be used to improve a driver’s BRT although apparent motion 

information was unable to provide any benefit. From Lee’s (2014) perspective of a driver 

being able to “manage interruptions” these results demonstrate the driver was able to 

detect the auditory warning more so than the tactile warnings although they were unable 

to accurately interpret the directional information provided in the warning. One potential 

reason for the interpretation discrepancy may be attributed to our warning presentation 

methodology. Unlike typical warning studies, where the warning presentation is given at 

the dash, our warnings were presented near a speaker at the driver’s smart phone. Again, 

the rationale for this warning presentation method was that due to more applied real 

world driving conditions in which a driver is being distracted by their smart phone, this 

location may increase potential to improve a driver’s reaction time to the critical event.  

Future research is necessary to explore how information to a driver can be best 

conveyed for a driver to both quickly interpret and most effectively shift their attention to 

the roadway. As technology increases and has the capability to keep drivers connected at 

all times there become more challenges in convincing drivers to disconnect. From the 

perspective that drivers ARE engaging with their smart phone while driving, the goal of 

this study was an exploratory investigation on novel methods to warn a distracted driver. 

Warnings were presented to a distracted driver from sounds or vibrations that were given 

near the source of the distraction, their smart phone, in hopes to reveal a potential 

solution of using a driver’s smart phone as a source of the warning to convey event 

information. While warning a distracted driver proves to be challenging, hopefully more 
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applied studies such as these may shed light on alternative, novel and beneficial methods 

for alerting a distracted driver. 
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CHAPTER 5 

EXPERIMENT 4- Take-Over Request Signals while Operating an Autonomous 

Vehicle  

 Background 

Autonomous vehicles pose a solution to issues associated with distracted driving 

although inadvertently the autonomous vehicles may create unforeseen issues with a 

driver’s ability to maintain proper situation awareness (SA). Naturally, a driver of an 

autonomous vehicle will inherit a more passive supervisory control role that requires a 

driver to monitor the system and only intervene with the system when necessary or urgent 

(Endsley & Kaber, 1999; Lee & See, 2004). A supervisory control role can lead drivers to 

boredom and fatigue due to low cognitive workload required to operate the vehicle 

(Parasuraman & Riley, 1997), thus leading to an increase in a driver’s engagement with 

other tasks (i.e., smart phone tasks). A driver’s engagement with tasks, other than the 

main task of driving, consequently may decrease a driver’s overall SA (Endsley, 1995; 

Ma & Kaber, 2005).  In general, a reduction of a driver’s SA while monitoring an 

autonomous vehicle may not pose an absolute risk but in an unexpected critical situation, 

the driver being “out-of-the-loop” (OOTL) may have detrimental or even deadly 

consequences.  

Situation awareness (SA), as defined by Endsley (1995), is the “perception of 

elements in the environment within a volume of time and space, the comprehension of 

their meaning and the projection of their status in the near future.”  For drivers to achieve 

proper SA they need to be able to recognize and process relevant information in their 

driving environment, such as their location in relationship to other vehicles, to accurately 
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respond to a critical situation. Moreover, SA has been extensively studied in the driving 

domain. Results of these studies have found that engaging in distracting secondary tasks, 

such as cell phone use, can reduce a driver’s overall SA thus leading to drivers missing 

warning signs as well as an overall decrease in driving performance (Strayer & Johnston, 

2001;  Kass, Cole & Stanny, 2007). Additionally, drivers engaged in secondary tasks 

(e.g., watching a video on their smart phone) while monitoring fully automated systems 

tend to react slower and more inappropriately respond to critical events, thus increasing 

their risk for potential collisions (Merat & Jamson, 2014). For these reasons, drivers of 

autonomous vehicles are encouraged to increase SA during driving by remaining “in-the-

loop” both physically (e.g., hands on the steering wheel) and cognitively (i.e., looking 

forward at the roadway to process the situation) though the evidence suggests the latter is 

far more imperative (Louw, Merat, Jamson, 2015; Zeeb,et al., 2015). 

OOTL automated driving studies have focused on understanding what level of a 

drivers SA is required for a driver to more accurately regain control of the vehicle during 

a take-over request (TOR) situation (Louw, et al., 2014).  A TOR is a situation in which 

the automated system has been deactivated (e.g. due to sensor loss) and the driver needs 

to initiate steering and braking control (Gold, Dambock, Lorenz & Bengler, 2013). 

Overall findings reveal challenges in assessing drivers SA levels in this situation as a 

drivers eyes being forward towards the roadway are not always an accurate assessment of 

SA and even more so if the driver is engaged in other cognitive tasks (Radlmayr, Gold, 

Lorenz, Faird & Bengler, 2014). Moreover, when distracted drivers are redirected quickly 

to the forward direction of the roadway they are not as always able to cognitively process 

the situation in a timely manner, resulting in more brake responses rather than accurate 
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maneuvers to the critical event (Gold et al., 2014). Due to the ambiguity of SA, indirect 

measures of SA have been developed that analyze not just the reaction times and 

response types to critical situations, but evaluate the driver’s glance behaviors towards 

latent hazards on simulated driving roadways (Gibson, Lee, Venkatraman, Price, Lewis, 

Montgomery & Mutlu, 2016). While these measures give some insight to the driver’s 

overall level of SA at the TOR, methods for enhancing a driver’s SA, especially through 

a warning given in conjunct or prior to the TOR becomes imperative.  

Various studies have attempted to design and analyze different methods of 

enhancing a drivers SA at the time of take-over through the use of warnings. Auditory 

warnings have been shown to not only be able to orient a driver to the roadway but 

orient a driver to the specific location of a critical event. Specifically, Straughn et al., 

(2009) had participants drive along a three lane simulated highway where pedestrians 

randomly walked from the sidewalk to one side of the road. Findings revealed that 

drivers SA could be successfully improved by orienting a driver to either the danger or 

safe lane of travel depending on the timing of the auditory warning. Similarly, although 

to a lesser extent, improving SA at the TOR for a distracted driver in the realm of 

automated driving has been attempted. Lorenz, Kerschblaum and Schumann (2014) 

designed a novel augmented reality overlay on an autonomous driving simulation that 

either illuminated the roadway as green or red. The red color was indicative of the 

accident location and the green color was indicative of the safe location. They found 

that participants were influenced by these colors, not in their reaction take-over times 

but in the appropriateness of their decision making. Similarly, Beller, Heesen & 

Vollrath (2013) implemented an uncertainty symbol on the dash that was presented to 
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drivers when the automation was “uncertain” in conjunction with varying the reliability 

of the automation system. With regard to SA, it was found that in the uncertain 

conditions in which the drivers were given the uncertainty symbol, drivers increased 

their overall SA by decreasing their engagement (e.g., performance) with the secondary 

task.  

As automated driving becomes more mainstream it becomes necessary to 

investigate the most effective way enhance a drivers SA while simultaneously directing 

their attention back to the roadway (i.e., the “loop”) as quickly as possible. One 

potential solution to this problem would be to develop a warning system on the smart 

phone (or other infotainment device that a driver might use while the automation is 

engaged) that is effective enough to both alert a driver of a critical event (as shown in 

Experiment 3) but additionally, to provide enough SA information about the critical 

event to the driver that they can quickly assess the situation and appropriately react.  

The aim of the current study was to compare different types of auditory 

warnings designed to signal a take-over event in an automated driving scenario. To test 

this, drivers were asked to take-over control from the automated vehicle in response to 

obstacles on the roadway which required them to steer to the left or right around the 

obstacle or bring the vehicle to a stop in front of it. We were primarily interested in two 

questions. First, similar to the results of our Experiment 3, would take-over signals be 

more effective when presented at the location the driver was attending (i.e., their smart 

phone) as compared to signals presented at the location of the danger? Second, would 

responses to take-over requests be more effective when the signal contained apparent 

motion oriented towards the location of the obstacle on the roadway as compared to 
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non-directional signals as has been shown in manual driving conditions (e.g., Straughn, 

et al., 2009)? Specifically, this experiment was designed to test the following 

predictions.  

(i) Take-over performance will be improved (faster brake reaction and 

steering response times) in conditions with take-over request signals 

relative to the no signal baseline condition.  

(ii) Take-over performance will be significantly better for apparent motion 

signals as compared to signals that are static (i.e., no movement) as 

predicted by the observed benefits from auditory looming signals 

(Gray, 2011). 

(iii) Take-over performance will be significantly better for directional 

apparent motion signals (i.e., that are oriented towards to location of 

the obstacle) as compared to non-directional apparent motion signals 

(i.e., that are always just oriented towards the center of the road). 

 

Method 

Participants 

13 undergraduates (mean age=22.4) from Arizona State University participated 

for partial fulfillment of an introductory psychology research requirement.  All were 

native English speakers with normal or corrected-to-normal vision with a valid driver’s 

license and were smart phone users.  

Apparatus 

The same apparatus was used as in Experiment 1, (Chapter 2). 
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Procedure 

Driving Task 

In the automated driving scenario, the vehicle’s lateral position and speed was 

controlled by the simulator as the autonomous vehicle followed a lead vehicle on a 

straight stretch of a 3-lane road with intermittent road construction. On each drive, at a 

random time between 2-6 minutes, a critical event, TOR was programmed to occur.  The 

critical events were designed so that they required the driver to make a decision about 

how to respond. They involved the lead car braking in response to lane closures and the 

control of the participant’s vehicle switching from automated to manual. For some 

events, only two of the lanes were blocked and one was left open while for others all 

three lanes were closed. Drivers were instructed to steer into an open lane if there was 

one available or brake and come to a stop if there was not. In all conditions (described 

below), an auditory take-over signal was presented “early warning” given about 5 

seconds prior to the control switching to back to manual. This timing is consistent with 

previous research that early warnings are more beneficial when the driver is signaled to 

the location of the danger because they assist in the driver’s assessment of the situation 

(Straughn et al., 2009). Drivers were told that they would receive an auditory warning 

sound shortly before the automated vehicle switch to manual control in a critical 

situation. Drivers was told that task in these situation was to either: steer into an open 

lane (if possible) or if both lanes were blocked to brake as quickly as possible.    

During each drive, participants were asked to perform a secondary task of 

watching a video on their smart phone. Participant’s had a choice of watching one of 

three science video’s that were presented on their phone via YouTube. Additionally, they 
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were asked to hold their smart phone with their right hand and at a level no higher than 

the steering wheel and to divide/shift their attention between the simulated roadway and 

phone as they felt most comfortable. They were informed they would be given a quiz 

about the video at the end of the experiment.   

Takeover Request Signals 

Four different auditory signals were compared to a no signal (NS) condition as follows: 

Device to Danger (DD) – a 250-hz auditory tone was first presented from a 

speaker near smart phone location for a total of 300msec. After a delay of 

100msec, a second auditory tone of the same frequency and duration was 

presented from a speaker mounted in the dashboard on the same side as the lane 

obstruction.  

Device to Front (DF) - this warning was identical to the DD condition except 

that the second tone was always presented from a speaker mounted in the center 

of the dashboard.  

Device Only (DO) - a 250-hz auditory tone was presented from a speaker near 

smart phone location. Note this warning was designed to have the same total 

duration (700msec) as the DD and DF warnings described above.  

Front Only (FO) - a 250-hz auditory tone was presented from a speaker on a 

speaker mounted in the center of the dashboard. Note this warning was designed 

to have the same total duration (700msec) as the DD and DF warnings described 

above.  
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Data Analysis 

Brake reaction times and steering reaction times were the dependent variables 

used to assess take-over performance. Note, under all conditions, drivers steering 

response was in the correct direction (i.e., towards the open lane) so we did not analyze 

steering accuracy. Furthermore, initial analyses revealed there was no significant effect of 

the side of the obstacle (i.e., left vs right). Therefore, steering and braking data were 

analyzed using separate One Way repeated measures ANOVAs with signal condition 

(DF, DO, FO, DD, No Signal) as the factors. Paired samples t-tests were used to test 

hypotheses (i, ii, & iii) listed above. For all results reported, statistical significance was 

set at p<.05. Effect sizes were calculated using partial eta squared (ηp
2
) for ANOVAs and 

Cohen's d for t-tests. 

 

Results 

Steering Reaction Times 

Figure 11 shows the mean Steering Reaction Times (SRT) for the five different 

driving conditions. The ANOVA performed on these data revealed a significant main 

effect of condition, F(1,12) = 65.97, p<.000, ηp
2
 = .85. Consistent with hypothesis (i), 

SRT’s were significantly slower in the non-warning baseline condition (Mean = 2.04 s) 

as compared to combined mean for all warning conditions (Mean = 1.35 s) revealed, t(12) 

= -7.43, p < 0.000, d=2.03).. Additionally, SRTs were significantly faster in conditions 

involving an apparent motion take-over signals (DF & DD, Combined Mean = 1.05 s) as 

compared to conditions with static signals (DO & FO, Combined Mean = 1.64 s), t(25) = 

-12.94, p < 0.000, d=3.09), supporting hypothesis (ii). Finally, SRT’s were significantly 
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faster in conditions for which drivers were oriented to the danger (DD, Mean= .94s) as 

compared to being oriented to the front only (DF, Mean= 1.17 s), t(12) = 7.84, p < 0.000, 

d=2.62), supporting hypothesis (iii). 

 

 

Figure 10- Mean steer reaction times (SRT) for the five different driving conditions. 

Error bars are standard errors.  

Brake Reaction Times 

A similar pattern of results was found for drivers BRT’s to the critical event. 

Figure 12 shows the mean BRT’s for the five different driving conditions. A one way 

repeated measures ANOVA performed on these data revealed a significant main effect of 

condition, F(4,48) = 32.15, p<.000, ηp
2
 = .73. BRT’s in the non-warning baseline 

condition (Mean = 1.55 s) were significantly faster than the combined mean for all 
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warning conditions (Mean = 1.09 s)  found that BRT’s were significantly faster after a 

warning than when no warning was given, t(12) = -7.26, p < 0.000, d=2.03) , supporting 

our first prediction. Additionally, for the experimental conditions the independent 

samples t-test revealed that the conditions to which the auditory warning conveyed 

motion, (DF & DD, Mean = .93 s) were significantly faster as compared to static warning 

(DO & FO, Mean = 1.25 s), t(25) = -6.63, p < 0.000, d=1.57), supporting our second 

prediction. Lastly, the independent samples t-test revealed for only the conditions that the 

auditory warning conveyed orientating information, (DD and DF) BRT’s were 

significantly faster when drivers were oriented to the danger (DD Mean= .81s) as 

compared to being oriented to the front only (DF Mean= 1.05 s), t(12) = 5.05, p < 0.001, 

d=1.52), supporting our third prediction. 

 

Figure 11- Mean brake reaction times (BRT) for the five different driving conditions. 

Error bars are standard errors. 
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Discussion 

Recent research on distracted drivers supervising automated vehicles has started 

to investigate a driver’s level of situation awareness (SA) at the time of request (TOR) 

(Ma et al., 2005; Gold et al., 2013, Louw, et al., 2014).  In general, driving take-over 

performance when drivers are supervising an automated vehicle demonstrates that 

drivers tend to not fully take-over control when requested (de Waard, van der Hulst, 

Hoedemaeker, & Brookhuis, 1999). Additionally, it has been observed that the amount 

of time it takes for a driver to gain complete control of the vehicle after a TOR can be 

excessive. For instance, drivers can take 35-40 seconds to fully assess and appropriately 

respond to the situation (Merat et al., 2014). The goal of Experiment 4 was improve the 

responses of drivers in this critical situation by using an informative TOR signal, similar 

to those that have been employed for distracted manual driving. Specially, different 

auditory warnings, ones that conveyed motion and/or oriented the driver to the danger, 

were compared in terms of their ability to improve a driver’s SA, by observing the 

drivers BRT’s and SRT’s to the critical event.  

Given that general warning studies tend to show an improvement in BRT’s to a 

critical event (Ho et al., 2013), our first hypothesis was that take-over performance 

would be improved (faster BRT’s and SRT’s) in conditions with take-over request 

signals relative to the no signal baseline condition. As expected, this hypothesis was 

supported for both dependent variables. Not only did the auditory warnings improve 

drivers BRT but also aided in a driver’s ability to make a swerve decision faster (SRT) 

when there was a foreseen obstacle. These findings are consistent with previous 

research on auditory warnings (Scott & Gray, 2008; Mohebbi et al., 2009) and 
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consistent with our Experiment 3 results, in which auditory warnings remained an 

effective modality, even when drivers were distracted by their smart phone.  

Our second hypothesis, that take-over performance would be significantly better 

for apparent motion signals as compared to signals that are static (i.e., no movement) 

was also supported. This prediction was based on previous findings that warning signals 

that are able to convey some type of information about the critical event, such as 

motion, would be able to improve the reaction time and decision of the driver. These 

findings have been demonstrated in auditory looming signal research (Gray, 2011) as 

well as tactile warnings research in which the apparent that is presented as moving 

towards the driver’s head or torso (Meng et al., 2015). Our results demonstrated that 

drivers that were given warnings that conveyed motion as compared to a static non-

motion were effective in reducing BRT’s and SRT’s.  

Lastly, our third hypothesis, that take-over performance would be significantly 

better for directional apparent motion signals (i.e., that are oriented towards the location 

of the obstacle) as compared to non-directional apparent motion signals (i.e., that are 

always just oriented towards the center of the road) was supported. This prediction was 

based on previous findings that attentive drivers can benefit from auditory warnings that 

provide SA information, specifically SA information that orient the driver to the danger 

(Straughn et al., 2009). Additionally, this work is congruent to previous findings such 

that simulating motion as moving away from the driver may potentially aid in 

reorienting a driver’s attention to the collision event (Gray & Tan, 2002). 

The pattern of BRT and SRT results in this experiment did not appear to reveal 

any significance or improvement when the take-over signals were presented at the 
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location the driver was attending (i.e., their smart phone) as compared to signals 

presented at the location outside their focus (i.e., the danger or dash). These results are 

not entirely consistent with Experiment 3’s supplemental analysis, in which the location 

of the static auditory warning presented at the location the driver was attending (i.e., 

their smart phone) did make a difference. The reason for this discrepancy between 

experiments may be attributed to the experimental design differences, such that in the 

current study drivers were acting as a supervisor and not an active driver. Potential 

explanations for this discrepancy will be further explored and discussed in the overall 

general discussion. For this experiment, the significant finding was that the informative 

motion warnings improve BRT and SRT more so than the static non-informative 

warning. 

There is a large body of research that attempts to warn a manual driver while 

simultaneously improving the driver’s SA (Ho & Spence, 2005; Gray, Ho & Spence, 

2014). Research on drivers being warned while supervising autonomous vehicles, are 

not as common. This experiment revealed similar results to previous work, such that, 

auditory warnings can be used to both alert an autonomous driver of the critical event, 

but that the warnings can convey information (Gray, 2011; Ho, Spence & Gray, 2013). 

Additionally, it was found that an autonomous driver can benefit from the information 

conveyed in the warning signal to improve their cognitive decision making when 

responding to the critical event. These findings suggest informative warnings that 

convey motion can not only orient a driver back to the main task of driving, but 

informative warnings that convey direction of the danger can be used to improve a 

drivers SA and quickly reorient them back “in-the-loop.” While these results have 
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potential to apply to autonomous vehicle safety, future work is necessary to improve 

upon this concept 
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CHAPTER 6 

GENERAL DISCUSSION 

Distracted driving is defined as the diversion of attention away from the 

activities critical for safe driving and towards a competing activity (Lee, et al., 2008; 

Regan & Strayer, 2014). As previously discussed, due to a limited capacity of a driver’s 

available cognitive resources, distracted driving is responsible for up to 30% of total 

crashes (NHTSA, 2013).  Since 1995, distracted driving has been exacerbated by the 

development of the cell phone. Not only is the cell phone distracting when it is used for 

calling (Strayer & Johnston, 2001; Horrey & Wickens, 2006; Caird et al., 2008) but 

more recent evidence suggest that the distraction problem is further intensified with the 

advancement of smart phone technology (e.g., the text message, social media app’s).  

This issue has become a growing concern for roadway officials, policymakers and 

automotive industry leaders leading to a variety of different attempts to mitigate driver 

distraction. Potential solutions have involved car assistive technologies including 

collision avoidance warning systems, lane departure warning systems, blind spot 

warning systems, and rear back-up camera warnings. Of specific interest to the current 

experiments was the question of how to best warn a distracted driver, an issue that has 

received surprisingly little research attention.  

Previous research suggests that engaging in a secondary tasks while driving such 

as talking on the cell phone or text messaging may consequently render any warning 

virtually ineffective, despite the modality of the warning that is used (Mohebbi et al., 

2009; Ahtamad et al., 2015). Although autonomous vehicles are able to offer a potential 

solution to many of the distracted driving issues, discovering methods to alert and re-
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orient a driver is also important in automated driving (e.g., when the driver is required 

to take-over due to a control failure). The present research not only looked at the use of 

warnings on distracted drivers but aimed to discover the best warning implementation 

systems to quickly disengage a driver from specific sources of distraction, (i.e., their 

smart phones) and re-orient the driver’s attention in the event of a critical incident. The 

present set of studies, across four experiments, aimed to tackle this problem from 

multiple angles.  

Experiment 1 examined the relative degree of distraction produced by a set of 

commonly used smart phone tasks. In particular, we were interested in comparing app’s 

or tasks that were primarily text- based (i.e., scrolling through Facebook, Twitter 

newsfeeds) with image- based (i.e., Instagram, Snapchat) apps. Additionally, we wanted 

to understand how task pacing (i.e., either responding at their leisure, or being required 

to respond to the experimenter immediately) impacted driving performance. Results 

revealed that text conditions created significantly longer BRT’s and larger TH 

variability as compared to image-based conditions. Interestingly, we did not observe 

any significant effect of task pacing (e.g., self vs experimenter) on driving performance. 

These overall findings were consistent with the general finding that smart phone use is 

distracting and impairs driving performance. Based on the prevalence of smart phones 

as well as the availability of many text- based applications on the market (e.g., 

Facebook, Twitter, etc.) the next logical step was to investigate potential solutions to 

mitigate driver smart phone distraction.  

Experiment 2 was concerned with mitigating driver distraction through safe 

driving smart phone apps. Several smart phone app’s have recently been developed that 
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attempt to regulate a driver’s use of their smart phone in some manner. We were 

interested in how people use and interact with these various safe driving app’s and how 

these app’s might impact a driver’s driving performance. In this experiment, we 

simulated four different application modes, and compared them to a baseline, no phone 

condition. The modes varied by either allowing drivers to check their messages or not 

and whether or not the driver heard an audible alert of the received messages. While 

driving around a simulated urban environment, participants received text messages from 

an experimenter that were clues to a riddle. Results demonstrated that for all conditions 

in which drivers had their phone in the car (regardless of mode), mean driving speed 

and lane positive variability were significantly higher. Additionally, allowing drivers to 

check their messages when stopped (e.g. at a red light) produced significant delays in 

reaction times and higher lane position variability when driving started again, as 

compared to the other modes. These results are consistent with research using a simple 

laboratory task which has shown that when phones that are turned off or blocked they 

can still cause distracting task-irrelevant thoughts produced by the expectation of 

receiving an important message (Stothart et al., 2015). They also suggest that restricting 

smart phone use is not an effective method for reducing the effects of distraction on 

driving performance.  

Unfortunately, as demonstrated in Experiment 2, even app’s that help to regulate 

incoming information can be a source of distraction. Drivers want to stay connected as 

much as possible. Due to the likelihood that drivers will engage with their smart phones 

at some point in their drive, a potential solution for warning a distracted driver needs to 

be explored. This was attempted, in Experiment 3, in which both auditory and tactile 
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warnings were given to drivers while they were watching a movie on their smart phone. 

The warnings attempted to convey directional information of either moving towards or 

away from the driver and were compared to a no movement condition. Results revealed 

that only the auditory warnings produced a significant reduction in BRT’s to the critical 

event and there was no significant effect of simulated movement direction. A follow-up 

analysis found that drivers benefited from a warning presented at the location of their 

smart phone as compared to  warnings delivered from the dashboard, as is typically 

done in most existing collision warning systems. Overall, these results suggest that a 

warning given at the source of distraction (i.e., near the location of the driver’s attential 

focus) may be the most effective method for mitigating driver distraction. 

The goal of Experiment 4 was to extend the present research beyond the topic of 

driver distraction during manual driving to consider the related issue of take-over 

requests (TOR) in automated driving. Specifically, In Experiment 4, drivers were asked 

to take-over control from a simulated automated vehicle in response to obstacles on the 

roadway. Similar to Experiment 3, auditory warnings that conveyed motion information 

(in this case, either moving towards the location of danger of towards the center of the 

roadway) were used and were compared to a static warnings (delivered either on the 

dashboard or at the location of the smart phone). Results revealed that drivers of an 

autonomous vehicle benefited from the use of an informative motion warning. 

Specifically, an auditory warning that was first triggered at the location of the smart 

phone and then in the location of the danger, lead to significantly larger reductions in 

BRT’s to a critical event as compared to all other warnings.  
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Experiments 1 and 2 were a starting point in understanding which smart phone 

tasks are the most distracting to a driver as well as investigating the effectiveness of 

different types of smart phone apps which restrict phone usage during driving. These 

two studies together demonstrated that drivers are most distracted by text-based app’s 

(i.e., reading Facebook status updates) and even when the smart phone is turned off 

(i.e., using an blocking app) driving performance is still significantly impaired as 

compared to when their smart phone is turned off. From these findings, Experiment 3 

and 4 explored new methods for warning a distracted driver. Novel to these studies was 

presenting warnings from the source of the distraction, using either a sound triggered at 

the smart phone location or presenting a vibration given on the wrist of the hand 

holding the smart phone. The goal was to explore the possibility of breaking the driver’s 

attentional focus on their smart phone as well as finding the best methods to improve 

the driver’s situation awareness by conveying direction and location information in the 

warning itself.   

Experiment 3 and 4 found that warning a distracted driver was achievable, 

primarily by using auditory warnings. Interestingly, Experiment 3 found no benefit of 

conveying motion in the warning to the driver, while Experiment 4 did. Also, 

Experiment 3 found that warning a driver near their location of attentional focus (i.e., 

the smart phone) versus outside of their area of attentional focus (i.e., the dash) 

improved a driver’s BRT, while Experiment 4 found no such benefit. The likely reason 

for this discrepancy between experiments is differences in the nature of the driving task. 

In Experiment 3, drivers were actively engaged in controlling the vehicle while in 

Experiment 4, drivers were passively supervising the vehicle until the takeover request 
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was issued. Differences in how a driver responded to the warnings in the present 

experiments may have been attributed to their level of responsibility in maintaining 

control of the vehicle. Due to the active engagement and high level of responsibility in 

Experiment 3, the perceptual-cognitive demands of the task (both driving and using 

their smart phone) may have been too high to allow them to fully process the motion 

information contained in the warning. On the contrary, the passive nature of Experiment 

4 may have given the driver the necessary processing resources to utilize the motion 

information contained in the warning. Additionally, driver controlling the vehicle 

manually, as in Experiment 3, may have been more conscious of their lack of attention 

on the roadway resulting in quicker responses to warnings when presented closer to 

their area of focus, near their smart phone. Conversely, a driver passively monitoring an 

automated vehicle, as in Experiment 4, may have reacted similarly in ALL warning 

conditions based on the assumption that they are not fully responsible for the driving 

performance of the vehicle.  

Moreover, the differences between the outcomes in both Experiments 3 and 4 

may have been attributable to the warning timing.  In Experiment 3 drivers were given a 

relatively late warning (e.g., TTC less than 3 seconds) while in Experiment 4 drivers 

were given a relatively early warning (e.g., TTC of 5 seconds). As Straughn et al. 

(2009) demonstrated, the timing of a warning prior to the critical event can make a 

difference how a driver may react. When the warning is given early enough, drivers are 

more able to assess the situation and act in a more appropriate manner as compared to 

drivers given late warnings who must react immediately without fully assessing the 

situation. Experiment 3’s late warning may have contributed to drivers reacting in a 
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more erratic manner as well as causing drivers to become more reliant on the 

origination of the warning’s location for the response. Conversely, Experiment 4’s early 

warning may have contributed to drivers reacting in a more calm manner due to more 

processing time to process the information that was conveyed as well as allowing 

drivers to respond to any warning despite the location it originated.  

 

Theoretical Implications 

 Lee (2014) proposed an account of warning a distracted driver which involves 

“managing interruptions.” Of the four stages, our study is concerned with the first three; 

detect, interpret, and shift attention. The present results have several important 

implications for this theory. First, the results of the present experiments suggest that a 

driver’s ability to successfully detect a warning is highly dependent on the nature of the 

secondary task being performed. While drivers in previous research have been found to 

not respond to auditory warnings when engaging in auditory tasks, these tasks were 

generally active in nature, such as talking with a passenger or on their cell phone 

(Mohebbi, et al., 2009). In the present experiments, drivers were passively processing 

auditory information from videos which may have essentially given them more 

processing capacity to detect auditory warnings  Similarly, the tactile warnings used in 

the present study (which have shown to be highly effective in previous research 

involving hands-free secondary tasks) were ineffective in reducing BRTs.  Thus, that 

act of having to actively hold an object (e.g., their smart phone) may change a driver’s 

ability to detect tactile warnings.  
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Secondly, in this set of experiments, distracted drivers differed in their ability to 

accurately interpret directional information conveyed in the warning based on their 

driving task responsibility (i.e., manual or passive driving) as well as the timing of the 

warnings (i.e., early or late). When drivers were a passive supervisor of an autonomous 

vehicle and given an early warning, they were more likely to benefit from the warnings 

that conveyed motion versus static warnings. There was no such warning benefit when 

drivers controlled the vehicle manually and were given a late warning. These findings 

suggest that the nature of the driving task may directly influence the interpretation of 

warning signals. 

 Similarly, these findings revealed that distracted drivers differed in their ability 

to shift their attentional focus depending on, again, the driver responsibility type. For 

manual drivers, a warning that was given at the location near the driver’s smart phone, 

as compared to given on the dash was more likely to have the ability to re-orient the 

driver’s attention to the roadway, not towards the phone, as would be predicted by 

Posner (1980). On the other hand, for passive drivers, the origination location did not 

appear to improve re-orientation ability (i.e., demonstrated by brake and steer reaction 

times in response to static warnings). These findings illustrate that the level of 

responsibility/control may have an influence on how a driver re-orients their attention.  

Thirdly, one of the most intriguing findings to come from these experiments was 

that drivers of autonomous vehicles were able to improve SA through the use of an 

informative warning. Specifically, with informative auditory warnings were given (e.g. 

that originated at the source of distraction and ended at the location of the danger) 

drivers significantly improved their brake and steer reaction times to a critical event. 
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This finding suggests that the signal aided in their ability to quickly evaluate the 

situation and has theoretical implications for the theory of SA in which informative 

warnings may be able to successfully improve one’s SA when supervising an 

autonomous vehicle. Further testing should be explored to understand these capabilities 

and limitations. 

Lastly, the results of these experiments have theoretical implications for the 

theory of mind-wandering while driving (McVay & Kane, 2009). Our results were 

consistent with Stothart et al., (2015) findings that a person may show performance 

decrements after hearing an alert on their phone while engaged with a primary task as 

well as consistent with Yanko and Spalek’s (2013) findings that notifications while 

driving can prompt task-irrelevant thoughts. These results extended these theories such 

that, a drivers overall driving performance was shown to be reduced when drivers 

THINK about the possibility of receiving a message, but do not actually hear the alert. 

These findings are in accordance with the FoMo theory (Przybylsk et al., 2013) and 

extend to drivers on their smart phones.    

  

Practical Implications 

 The present set of experiments had important practical guidelines for automotive 

design for information presentation. These were as follows (1) when presenting 

information to a driver via a visual display use images instead of text whenever 

possible. (2) When attempting to restrict incoming messages or alerts to a driver be 

aware of the timing they are received by the driver as well as the implications for 
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withholding their ability to engage with the device. These findings will are important to 

take into account when designing how to present information to a driver.  

 Furthermore, these experiments had practical guidelines for how to design 

warnings for a driver, specifically, a distracted MANUAL driver that is engaged with a 

device. (1)Warnings given near the location of their attentional focus can be beneficial 

method to break a driver’s attention with their device. (2) Drivers using their smart 

phone for audio/visual tasks will respond quicker to an auditory alert than a tactile alert. 

(3) Static warnings are equally beneficial as warnings that convey motion. These 

findings will be important to take into account when designing and implementing new 

methods to warn a manual distracted driver.  

In the near future, the prevalence of autonomous vehicles on the roadways will 

increase. Therefore, understanding how drivers respond during a take-over request with 

an autonomous vehicle will increasingly important issue. This research was aimed at 

understanding and applying warnings to drivers of autonomous vehicles that are 

distracted, as they may differ from manual driving distracted and waring behaviors. 

These findings too have practical implications for warning design of autonomous 

vehicles in the future. Specifically (1) an automated drivers SA might actually be 

improved by giving them an informative motion warning and (2) improved SA at TOR 

can be accomplished by warning the driver first near or at their device and then near the 

location of the danger.  
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Limitations 

 Although these set of experiments contained many interesting findings they are 

not without limitations. First, it would have been beneficial to have included an analysis 

of eye gaze and eye glance behavior via an eye-tracking system. Gaze and glance 

behavior has been shown to provide insight as to what a driver’s level of trust in a 

system as well as an indicator of their level of SA. Our main focus for assessing a 

driver’s distraction level in these experiments was the overall brake reaction and steer 

reaction times. If we had the analysis of the time it took drivers to look up after getting 

an alert this would have provided a more complete picture of the re-orienting response. 

Furthermore, it would have allowed us to determine whether the responses to the 

warnings differed depending on whether the driver was looking at their phone or at the 

roadway. 

 Another potential limitation of these experiments was the frequency of the 

events that the driver was required to respond to. In Experiments 1-3, a potential rear-

end collision occurred roughly once every 2 minutes while in Experiment 4, the take-

over request from the automated driving system occurred after 2-6 minutes of driving. 

These are; of course, at much higher frequencies than we would expect in real driving 

and thus may have made drivers in the present study unnaturally attentive (Ho, Gray & 

Spence, 2014).   
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Future Research 

Future research is necessary to explore how information can be best conveyed so 

that a driver may quickly interpret and most effectively shift their attention to the 

roadway in a critical event. Different warning methods that aim to improve a driver’s SA 

are worth future investigation, such as manipulating the informative warning or 

combining modalities. The auditory modality could be improved to provide more tones or 

auditory messages with explicit instructions on what is happening or through the use of 

auditory 3-D mapping. Future research could also investigate the use of visual warning 

modalities such as visual LED strips to direct attention, visual messages on the phone 

itself, or hologram visual images overlaid on the windshield. The tactile modality could 

be more heavily explored such as stronger tactile warnings embedded in the seat belt, 

embedded in the driver’s seat or in a contained in a glove or mounted to the back of the 

smart phone. A wide range of options could result in faster reaction times and may be 

used in conjunction with a novel app design.  

As we discovered, a driver’s perceived responsibility with the vehicle (i.e., either 

manual or automated control) plays a role in how they respond to the warnings. Future 

research that manipulates the driver’s expectancies and responsibilities while 

simultaneously being warned is worthwhile. This could achieved by either providing 

instructions about the vehicles capabilities prior to engagement or by alternating the 

mode (i.e., either manual or automated) after they begin their driving session. 
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CHAPTER 7 

CONCLUSION 

The prevalence of drivers engaging with a smart phone for a variety of tasks is 

becoming a real world concern. From the perspective that drivers ARE engaging with 

their smart phone while driving, the goal of this study was to determine the most 

effective methods for warning a distracted dirver. First, we were interested in what 

smart phone tasks are the most distracting to the driver. Our results demonstrated that 

text-based app’s/tasks contributed to the worst driving performance. Also, we found 

additional evidence that is consistent with the notion that people do not want to be 

removed from social connectivity or disconnected form work productivity (FoMo, 

Przybylsk et al., 2013). Our results revealed that as engagement with app’s that block or 

restrict incoming information that drivers are thinking about can actually lead to 

impaired driving performance.  

Once these initial findings were established, we had drivers engage in a 

distracting task of watching videos on their smart phone while driving either manually 

or as a supervisor of an autonomous vehicle. Novel to the warnings design was that they 

were presented to a distracted driver via sounds or vibrations that were given near the 

source of the distraction, their smart phone, in hopes to reveal an increase in their 

reaction times to a critical event. The warnings attempted to convey directional 

information of either moving towards the driver, away from the driver or no movement 

and to understand what modality (auditory or tactile) was most effective. Specifically, 

results found that warnings that were presented near a driver’s smart phone were only 

beneficial to manual drivers (Experiment 3) and that simulated motion were only 
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beneficial to drivers in an autonomous vehicle (Experiment 4). While warning a 

distracted driver proves to be challenging, hopefully more applied studies such as these 

may shed light on alternative, novel and beneficial methods for alerting a distracted 

driver. 
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