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ABSTRACT 

The formation and stability of a slowly evolving zonal jet in 2-D flow with beta effect is 

analyzed using the model developed by Manfroi and Young in which the final governing 

equation was derived by means of a perturbation analysis of a barotropic vorticity equation 

with sinusoidal meridional mean flow. However in the original study the term β0, that 

represents the effect of large-scale Rossby waves, was dropped and was proceeded on a 

path of finding solutions for a simplified 1-D flow. The idea of this study is to understand 

the effects of the dropped term on the overall dynamics of the zonal jet evolution. For this 

purpose the system that is entirely deterministic with no additional forcing is solved by 

means of a standard finite difference scheme. The Numerical solutions are found for 

varying β0 and μ values where μ represents the bottom drag. In addition to this the criteria 

for the formation of zonal jets developed originally for the 1-D system is verified for the 

2-D system as well.  The study reveals the similarity in some of the results of the 1-D and 

the 2-D system like the merging of jets in the absence of bottom drag, formation of steady 

jets in presence of a non-zero bottom drag and the adherence to the boundary criteria for 

the formation of zonal jets. But when it comes to the formation of steady jets, a finite β0 

value is required above which the solution is similar to the 1-D system. Also the jets formed 

under the presence of non-zero bottom drag seem wavy in nature which is different from 

the steady horizontal jets produced in the 1-D system.   
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CHAPTER 1 

1. INTRODUCTION: 

Predicting atmospheric flows has been an important part in predicting the climate of a 

planet. One of the pivotal approaches used is the employment of two-dimensional 

turbulence models for doing so. It is known that at large Reynolds Number there is very 

little dissipation of energy and thus closely packed two dimensional eddies would 

propagate to larger scale unmitigated. However, Rhines in 1975 showed that this cascade 

towards large scales is halted as a result of existing background Rossby Waves which he 

indicated happens at a wave number of 𝑘𝑏 = (
𝛽

2𝑈
)

1

2
 where β is the vertical gradient of 

Coriolis component and U is the r.m.s. velocity of particle. He also suggested formation of 

anisotropic zonal mean flow as a result of the continuing cascade having a Jet Scale 

of 𝐿𝑟ℎ = √
𝑈

𝛽
. [Rhines] Although the length scale of these jets has been accepted by several 

studies following this, the precise mechanism of the development of these anisotropic 

structures became the focal point of these studies. The problem studied in this research 

work is based on one such model developed to study the evolution of zonal jets. 

1.1 Definitions 

1.1.1 Beta effect: 

          An important parameter when it comes to atmospheric dynamics and 

instabilities is the planetary beta effect. It arises as a direct consequence of varying 

planetary vorticity across the latitudes. This phenomenon is commonly noted in rotating 
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spheres and having a pronounced value when the speed with which the bodies rotate is 

higher. The formula for calculating 𝛽 is given below. 

𝛽 =
𝑑Ω

𝑑𝑦
 

Where Ω is the planetary vorticity at the latitude. 

1.1.2 Rossby Waves: 

  Rossby Waves are oscillation produced about a latitude due to the 

instabilities perpendicular to the latitude in a horizontal air flow. The restoring force that 

makes it meander about the horizontal is a result of the planetary beta effect. These waves 

are also responsible for arresting the energy cascade in eddies to larger scales [Rhines 

1975]. 

1.1.3 Zonal Jets: 

        Zonal Jets are anisotropic bands of alternating eastward and westward flows 

that form in several atmospheric as well as oceanic flows. These types of structures are 

seen in atmosphere of Jupiter (Figure 1.1). A striking feature of these structures is their 

persistence for a very long time and this coupled with discovery of their presence in 

atmosphere of several recently discovered large planets drove the motivation for studying 

their formation. 
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Figure 1.1 – Image showing the atmosphere of Jupiter (courtesy Wikipedia) 

1.2 Literature Survey: 

Following the paper by Rhines, Vallis and Maltrud in 1992 performed numerical 

simulations on a beta plane to produce zonal jets solving the vorticity equation directly for 

fixed value of β and a random small scale forcing term of varying wave number. The results 

confirmed the scaling relations by Rhines while producing intense and persistent zonal jets 

upon using a small-scale forcing. It was predicted that the formation of these persistent jets 

was a direct result of inverse energy cascade. 

Huang and Robinson in 1998 performed the study in a rotating sphere analyzing the decay 

of turbulence in presence of zonal jets verifying the formula for anisotropic Rhines scale 

in process. Major prediction of this model was the reduced interaction of eddies closer to 
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Rhines scales with Zonal Jets suggesting that although the Rhines Scale barrier was valid 

for arrest of cascade to larger scale no evidence was seen for interaction of these eddies 

with zonal jets. There however was evidence of non-local energy transfer between the 

small-scale eddies and zonal jets which is thought to play the major role of maintaining the 

jets. 

Noboru Nakamura and Da Zhu in 2009 suggested that the stirring due beta effect could 

produce a Potential Vorticity staircase which could be serve as a driving force for the zonal 

jets that are formed.  

This idea was taken forward by R.S Scott and A.-S Tissier 2012 who then went on to 

suggest that jets can be formed also because of mixing of large scale waves which were 

previously thought to be discrete providing very less contribution to the development of 

jets.   

1.3 Model Used: 

The current study is performed based on the model by Manfroi and Young 1998 in which 

a small scale deterministic stirring is done on a base-state flow which when α=0 is nothing 

but a stationary Rossby wave. The starting point of the study is the vorticity equation  

Vorticity equation 

                                   (𝛇 + 𝐟)𝑡 + 𝐽(𝜓, 𝛇 + 𝐟) = 𝟎                                                                                  (𝟏) 

While in this case the planetary vorticity is taken as  

𝛽(𝑠𝑖𝑛𝛼𝑥 + 𝑐𝑜𝑠𝛼𝑦) 
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It is to be noted here that the vorticity equation ignores the divergence of velocity term 

based on the assumptions of incompressible flow. This assumption becomes questionable 

when it represents the system like Jupiter’s atmosphere as the velocities reach close to 

sonic. However, this phenomenon of formation of zonal jets is not isolated to just this as 

we can also see them in Earth’s Ocean where the velocities are much lesser and can be 

agreed to be incompressible. Also, given the large number of studies done based on the 

assumption of incompressible flow it is proceeded here based on the same assumption. 

Also, the basic state flow was taken as  

(𝛹, −𝛹𝑦, 𝛹𝑥) = (−𝑢𝑦 − 𝛹0𝑐𝑜𝑠𝑚𝑥, 𝑢, 𝑚𝛹0𝑠𝑖𝑛𝑚𝑥) 

Where 𝛹 is Stream Function. 

The total Stream Function is 𝛹(𝑥, 𝑦) + 𝜓(𝑥, 𝑦, 𝑡) 

Plugging this into the vorticity equation while non dimensionalizing the disturbance stream 

function as ψnondim =  ψdim/ν the following equation is derived. 

∇2𝜓𝑡 + 𝑢∇2𝜓𝑥 + 𝑅𝑠𝑖𝑛𝑥[∇2𝜓𝑦 + 𝜓𝑦] + 𝐽(𝜓, ∇2𝜓) + 𝛽𝑐𝑜𝑠𝛼𝜓𝑥 − 𝛽𝑠𝑖𝑛𝛼𝜓𝑦

= ∇4𝜓 − 𝜇∇2𝜓                                                                                  (2) 

Following this a perturbation analysis is done for slightly supercritical Reynolds number 

𝑅 = 𝑅𝑐(1 + 𝜖2) 

And several other variables are introduced based on multiscale expansion from several 

literature studies on the variables involved. The focus here is the result of this analysis 

which is the following equation and forms the starting point of our study. 
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𝐴𝜂𝜂𝜏 + 2𝐴𝜂𝜂𝜂𝜂 + 3𝐴𝜂𝜂𝜂𝜂𝜂𝜂 − [(𝛽1 − 𝑢1 + 𝐴𝜂)
2

𝐴𝜂]
𝜂𝜂𝜂

+
1

3
(𝐴𝜂

3)
𝜂𝜂𝜂

+ 𝛽0𝐴𝜉 − 𝛼5𝛽0𝐴𝜂

= −𝜇4𝐴𝜂𝜂                                                                                                   (3) 

Where 

 𝐴(𝜉, 𝜂, 𝜏) = 𝜓0,       𝜂 = 𝜖𝑦,         𝜏 =  𝜖4𝑡,        𝜇 = 𝜖4𝜇4,       𝛼 = 𝜖5𝛼5,            𝜉 = 𝜖6𝑥 

𝜓0 Basic State Stream Function of the Disturbance. 

𝜉, 𝜂  Non-Dimensionalized x and y coordinates. 

𝜏  Non-Dimensionalized time. 

𝜇4  Non-Dimensionalized Bottom Drag term. 

𝛼5  Non-Dimensionalized Angle of Inclination of Basic State Flow to the planetary        

vorticity. 

𝑢1Second term in the expansion of net advection term 𝑢. 

𝛽1Second term in the expansion of the term 𝛽. 

𝜖  A small value controlling supercriticality of Reynold’s Number. 

𝛽 and 𝑢 are expanded as 

𝛽 =  𝛽0 + 𝜖𝛽1 + 𝜖2𝛽2 + 𝜖3𝛽3 + ⋯ 

𝑢 =  𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2 + 𝜖3𝑢3 + ⋯ 

The equation 3 is derived upon collection of 𝜖6 terms from the perturbation analysis. 

However, in this process the author had dropped the 𝛽0𝐴𝜉 to make it a 1D system and had 



7 

done further analysis on this 1D system. It is seen that the dropped term represents the 

effect of large-scale Rossby waves. The objective of this research is to understand how the 

effect of large-scale Rossby waves affects the formation of zonal jets.  

1.4 Plan of Research: 

As a first step the simplified 1D system is first verified to ensure proper numerical scheme 

is used to solve the equation. The simplified 1D equation as given in the paper is 

𝑈𝜏 = −𝜇𝑈 − 𝑟𝑈𝜂𝜂 − 3𝑈𝜂𝜂𝜂𝜂 − 2𝛾(𝑈2)𝜂𝜂 +
2

3
(𝑈3)𝜂𝜂                             (4) 

Following this a numerical scheme is developed to solve the complete 2D system. The 

details of the numerical structure are discussed in the next chapter. The results of the 

simulation are found for various cases of β0 and μ4. Comparison is done for specific results 

discussed in the paper and how it varies when it comes to the 2D model. Also, the results 

of the 2-D model are compared against the analytical μ, γ boundary derived to mark the 

arrest of zonal jet formation.  
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CHAPTER 2 

2. NUMERICAL SCHEME: 

  For coming up with a numerical solution a finite difference scheme is used 

which is 2nd order in space (a Central Difference Scheme) and 3rd order in Time (Runge-

Kutta time integration method). It was essential to use a 3rd order Time stepping scheme 

as lower order integrations produced unstable solutions. 

  The domain length was 100 for the 1D system (as per the analysis by 

Manfroi and Young) and for the 2D system was taken as 100 * 100 in η and ξ directions.  

2.1 Runge-Kutta Time Integration  

For time integration, a Total Variation Diminishing (TVD) Runge-Kutta 3rd order scheme 

is used. The formula used for this purpose is given below.  

For a generalized formula 

𝜕𝑓

𝜕𝑡
= 𝐹 

Where, 

 F is the total spatially discretized right hand side of f at time level n. 

f is the value of function at n+1 level. In this case f = Aηη. 

𝑓(0) = 𝑓𝑛 

𝑓(1) = 𝑓(0) + 𝛼1,0 ∆𝑡 𝐹(0) 
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𝑓(2) = 𝑓(0) + 𝛼2,0 ∆𝑡 𝐹(0) + 𝛼2,1 ∆𝑡 𝐹(0) 

𝑓(3) = 𝑓(0) + 𝛼3,0 ∆𝑡 𝐹(0) + 𝛼3,1 ∆𝑡 𝐹(1) + 𝛼3,2 ∆𝑡 𝐹(2) 

𝑓(3) = 𝑓𝑛+1 

For a TVD-RK3 Scheme 

𝛼1,0 = 1, 𝛼2,0 = −
3

4
, 𝛼2,1 =

1

4
, 𝛼3,0 = −

1

12
, 𝛼3,1 = −

1

12
, 𝛼3,2 =

2

3
 

Ref: Lecture notes on Computational Fluid Dynamics by Dr. Herrmann. 

2.2 Stable Time Step Size: 

Now for taking a stable time step for a TVD RK-3 method we take the stability criteria 

for an FTCS.  

∆𝑡 = 𝐶𝐹𝐿
∆𝑥

𝑚𝑎𝑥|𝑎|
 

Where a is maximum coefficient of hyperbolic term in the equation. 

A simple expansion of the equation 3 and simplification would give the following 

equation. 

𝐴𝜂𝜂𝜏 + 3𝐴𝜂𝜂𝜂𝜂𝜂𝜂 − 4𝛾𝐴𝜂𝐴𝜂𝜂𝜂𝜂 − 12𝛾𝐴𝜂𝜂𝜂𝐴𝜂𝜂 − 2(𝐴𝜂)
2

𝐴𝜂𝜂𝜂𝜂 − 12𝐴𝜂𝐴𝜂𝜂𝐴𝜂𝜂𝜂

− 4(𝐴𝜂𝜂)
3

+ (2 − 𝛾2)𝐴𝜂𝜂𝜂𝜂 + 𝛽0𝐴𝜉 − 𝛼5𝛽0𝐴𝜂 = −𝜇4𝐴𝜂𝜂 

Thus, in this case the maximum coefficient of hyperbolic term would become 12𝛾𝐴 (since 

LHS is 𝐴𝜂𝜂𝜏). However, during the initial phase the value of A is very small thus a 
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minimum value of 0.01 is used. Thus, the stable time step used for this problem is as 

follows. 

∆𝑡 = 𝑚𝑖𝑛 (0.8
∆𝑥

𝑚𝑎𝑥|12𝛾𝐴|
, 0.01) 

2.3 Meshing Type 

A uniform face centered mesh is used for this problem with a total of 141 nodal points 

(extra 6 points to accommodate for boundary on each side as a sixth order differential 

term is used). The domain length of 100 is divided into 128 elements. 

An important reason why the choice of 128 elements would suffice in replicating the true 

behavior of the system hinges on the fact that when it comes to 2D turbulence in 

atmospheric flows the energy cascade always proceed in a direction from small scale to 

large scales. Given this the possibility of breakage in solution due to the limit in grid size 

is avoided. However, this may give rise to a different problem of piling energy into the 

large scale because of lack of diffusion of energy at such large scales. Thus, for the current 

choice though most of the results would carry the essence the original set of equations, 

there would be results (concerning merging of jets while there is no bottom drag) when a 

finer mesh would provide better results. But given such finer meshes would take much 

more time (4 times) for simulation given the corresponding reduction in time step size 

based on stability it was found 128 elements would be a more optimum value for the 

analysis. 
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2.4 Initial Condition: 

The initial condition used is a random variable declared in both x and y direction to avoid 

presence of any preexisting bias for formation of coherent structures.  

2.5 Boundary Condition: 

The problem is defined in a periodic domain along x and y axes. Thus, a periodic 

boundary condition is used along both these axes. In addition to this the summation of 

stream function along y is taken as 0 at each time step as there is no net momentum in x 

direction as defined by the problem. 

2.6 Finding A from 𝐴𝜂𝜂: 

  A matrix is formed out of second derivative finite difference formula 

employing boundary conditions for first and last rows. Since 128 nodes are used a 

128*128 matrix is defined. In case of using more nodes a more efficient way would be to 

use a V-Cycle. However, in this case given the simplicity of the matrix and since the 

matrix is formed and inverted only once it is easier to use this method. Also, it is noted 

that using the boundary conditions directly into the matrix makes it a singular matrix. 

Thus, the last row of the matrix is replaced with the condition that stream function along 

y direction add up to give zero. 
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CHAPTER 3 

3. RESULTS AND DISCUSSION: 

Results of solving the 2D equation was found with the value of stream function field found 

at the end of the time interval. The primary plots that were used for comparison were the 

Harmon Diagram showing the evolution of zonal mean of horizontal velocity with time. 

Also, a contour plot of stream function at the end of the time interval is shown. The results 

were found by varying the parameter β0 and bottom drag μ4 mainly to study the effect of 

those parameters on the formation of zonal jets. The results are found for two cases, one 

with the case where the basic state forcing is along a plane inclined to axis of rotation (α=1) 

and other with case of basic state forcing parallel to axis of rotation (α=0). First section 

will have a brief discussion on the numerical solution for 1D model using a random initial 

condition 

3.1 Numerical Solution for the simplified 1D system: 

In case of the 1D system the Horizontal velocity field is found at the end of τ=2000 based 

on the formula 4. The evolution of jets and the merging is captured by the Harmon Diagram 

shown in Figure 3.1. Figure shows the evolution of jet for increasing cases of bottom drag 

μ. Though the initial conditions used are different the ones used in Manfroi and Young one 

can see similar characteristics being maintained from the figures. Also, it is to be noted that 

since this is a 1D system it assumes of uniformity in Horizontal Velocity along the x 

direction. 
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Figure 3.1 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of μ = 0, 0.01, 0.02, 0.05, 0.07, 0.09 
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3.2 Case of Parallel Basic State Forcing (α=0): 

Since the angle α=0, the value of β would be constant at each point which is the case in 

most of the atmospheric flows. We will first see the results for case with no bottom drag. 

3.2.1 Case with no bottom drag (μ=0): 

Figure 3.3 shows the Harmon Diagram for cases of increasing β0 value with no bottom 

drag. Figure 3.4 shows the Stream Function plot at the end of the time integration for those 

cases. 

  

  

Figure 3.2: Line Plot of Zonal Mean at the End of τ=2000 α=0 β0 = 0, 0.001, 0.01, and 0.1.  
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Figure 3.3: Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of β0 = 0, 0.001, 0.005, 0.01, 0.05, 0.1 from Top Left to Bottom Right Respectively for 

Case with No Bottom Drag (μ4 = 0) 
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Figure 3.4 Contour Plots Showing Stream Function as a Function of ξ and η Versus the 

Coordinates ξ and η for Values of β0 = 0, 0.001, 0.005, 0.01, 0.05, 0.1 from Top Left to 

Bottom Right Respectively for the Case with No Bottom Drag (μ4 = 0) at Time τ=2000. 
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Figure 3.5 Contour Plot Showing Variation of Zonal Mean with Time τ for β0 = 0.1. 

3.2.2 Case with finite Bottom Drag (μ ≠ 0) 

The figures 3.6, 3.7 show selected Harmon Diagram for cases of increasing bottom drag 

which is varied from 0.01 all the way till 0.087 the point at which zonal jets are no longer 

created. There are also figures showing stream function at the end of the time step for these 

case following which there is a plot summarizing all the runs spanning the β0 and μ space 

denoting the number of jets in each of those cases. 

3.2.3 Discussion on the results: 

The term β0 here represents in a way the gradient in potential vorticity. However, from the 

perturbation analysis done by Manfroi and Young it was seen that this is synonymous with 

net planetary advection. It could be seen from the results that this plays a major role in the 

formation of jets with greater value of β0 (above 0.05) showing more pronounced zonal 

flow. A plot of zonal mean at the end of time integration for these cases show that the 
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intensity of the anisotropic zonal velocity match that of the 1D system. However, the cases 

with lesser β0 show flows with reduced mean velocity. Another observation from these 

results is the number of evolving jets. Although a random initial condition is used in every 

one of the runs, we can see that for case with no bottom drag the number of jets evolving 

is always three. This also is in close correlation with the 1D case where 4 jets where seen. 

Another important prediction of Manfroi and Young is the continuous merging of these 

formed jets until only 1 jet is left. However, there is no evidence of merging seen among 

the cases when integrated till τ=2000. To confirm this fact simulations were performed 

taking one of the cases and running them till τ=16000 whose result is shown in figure 3.5. 

It can be seen that the same three jets remained unmerged for up to τ=16000. Part of a 

reason for this is the large separation between the sharp easterly jets which thereby may 

take a very long time to merge. However, since the system reverts to and can be compared 

with uniform 1D system, it is assumed that the property holds for the 2D system too. Also 

in the case where τ=16000 one can see the merging occurring at around 2000 bringing the 

jets down from 4 to 3. This in addition to the fact that for the 1D case at the end of τ=2000 

there were 4 jets can be taken as an evidence of jet merging. 

The crucial effect of adding bottom drag is the gradual thinning of jet scale because of the 

increasing bottom drag as reported in Manfroi and Young. This can be seen through the 

series of plots from 3.6 till 3.9. As a result of this the number of jets rise from 3 in the case 

with no bottom drag to almost 6 for the case where μ4=0.086 which is just before the jets 

disappear when μ4=0.087.  
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Figure 3.6 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of (β0, μ4) = (0.01, 0.01), (0.03, 0.01), (0.001, 0.02), (0.004, 0.02), (0.006, 0.05), (0.01, 

0.05) from Top Left to Bottom Right Respectively.  
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Figure 3.7 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of (β0, μ4) = (0.01, 0.07), (0.05, 0.07), (0.02, 0.075), (0.01, 0.086) from Top Left to 

Bottom Right Respectively.  

 

The value of β0 above which the wavy as well as zonal jets are formed varies for different 

values of bottom drag and increases as the bottom drag increases. For example, from the 

plots we can see that for μ4 = 0.05 a value of β0 = 0.01 produces a continuous wavy jet 

whereas as μ4 is increased to 0.07 this occurs at β0 = 0.02. 
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Another important feature of these cases is the persistent wavy jets like the one seen in 

Figure 3.8. Though the reason is unknown this is thought to be the effect of background 

large scale rossby wave as such structures are seen as an effect of having a finite β0 value 

and as this value is increased further the waviness decreases and zonal flows become 

pronounced. This is demonstrated in the later section. 

A possible explanation is in presence of a large β0 there is a huge driving force that can 

nullify the effect of bottom friction defeating any tendency of the jet stick to wavy form. 

This could be seen from the fact that when the bottom drag value is less we see much lesser 

meridional excursions. Also, this would explain the requirement of a larger β0 for 

maintaining a continuous wavy jet as the bottom drag value increases. 

These wavy structures once formed continues to move unaltered for a very long time like 

the zonal jets. Also, the intensity of Eastward and Westward jets at individual ξ coordinate 

are the same as the 1D approximation of this system. 

Another interesting feature that can be seen in case of small bottom drag but a finite value 

of β0 is the presence of many number of large scale eddies. One can recall from the 

discussion in Huang and Robinson that the eddies that reach the Rhines scale do not 

contribute to the persistence of jets and thereby remain discrete. The feature found in Figure 

3.8 is thought to be a depiction of this effect. The reason this happens is because in the 

initial phase of evolution when most of the energy is concentrated in the small scales and 

since a random initial condition is used the energy concentration in non-uniform. Thus if 

due to cascade large scale eddies get created they continue to persist along with the zonal 

jets contributing very little to persist the jets.  
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Figure 3.8 Contour Plot Showing Stream Function as a Function of ξ and η Versus the 

Coordinates ξ and η for Values of (β0, μ4) = (0.01, 0.01), (0.03, 0.01), (0.001, 0.02), 

(0.004, 0.02), (0.006, 0.05), (0.01, 0.05) from Top Left to Bottom Right Respectively at 

Time τ=2000.  
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Figure 3.9 Contour Plot Showing Stream Function as a Function of ξ and η Versus the 

Coordinates ξ and η for Values of (β0, μ4) = (0.01, 0.07), (0.05, 0.07), (0.02, 0.075), (0.01, 

0.086) from Top Left to Bottom Right Respectively at Time τ=2000.  
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3.3 Case of Inclined Basic State Forcing (α=1): 

When the parameter α is varied setting it to a value of 1, the problem becomes a case where 

there is a vertical north south stirring along with an inclined basic state forcing. This type 

of problem gives rise to some interesting jet structures with migration of these structures 

towards the poles at a rate that is determined by the value of β0.  

We analyze cases like ones analyzed in the first case (With parallel basic state forcing). 

Also, there will be some discussion on jet structure and effect on bottom friction μ and β0 

on the same. 

3.3.1 Case with no bottom drag (μ=0): 

The Figures 3.10 and 3.11 show that with increasing value of β0 the rate at which migration 

occurs towards the pole varies. Also for the case with no bottom drag we can see that the 

zonal jets are elongated not meridionally but along the direction of the basic state forcing. 

This happens for a value of β0 greater than 0.002 as seen from the plot of stream function 

at the end of τ=2000. 

3.3.2 Case with finite bottom drag (μ ≠ 0): 

Similar to the case with parallel basic state flow the Figures 3.12 to 3.14 show the Harmon 

Diagram for various values of β0 and increasing μ4 from 0.01 to 0.087. It is to be noted that 

despite having an inclined basic state flow the seizure of zonal jet formation occurs at the 

same value of 0.087 as the case with parallel basic state flow.  
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Figure 3.10 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of β0 = 0, 0.0001, 0.001, 0.002, 0.01 from Top Left to Bottom Right Respectively for 

Case with No Bottom Drag (μ4 = 0) and α=1 

 

3.3.3 Discussion on the Results: 

One can see that changing the case from a parallel to an inclined basic state forcing 

affects the Harmon Diagram in that we see a slow migration of the jets towards the north. 

Also one can see that for the case with no bottom drag the jet tend to incline themselves 

in the direction of the basic state forcing as the value of β0 is increased (in this case over a 

value of 0.002). 
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Figure 3.11 Contour Plot Showing Stream Function at τ=2000 for Values of β0 = 0, 

0.0001, 0.001, 0.002, 0.01 from Top Left to Bottom Right Respectively for Case with No 

Bottom Drag (μ4 = 0) and α=1 

 

Also, like the first case, there was no conclusive evidence to suggest the merging of the 

jets in the absence of bottom drag. In the first case, however we could see system revert 

itself back to the uniform 1D type zonal jet and it was argued though merging wasn’t seen 

explicitly it would occur upon continuous integration for a long time. But in this case since 

there is a constant migration and because the jets seem to be inclined the same argument 

cannot be made.  
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Figure 3.12 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of (β0, μ4) = (0.005, 0.01), (0.01, 0.01), (0.005, 0.02), (0.01, 0.02), (0.005, 0.03), (0.005, 

0.04) from Top Left to Bottom Right Respectively for α=1.  
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Figure 3.13 Contour Plot Showing Variation of Zonal Mean with Time Scale τ for Values 

of (β0, μ4) = (0.005, 0.085), (0.005, 0.087) for α=1.  

  

  

 

Figure 3.14: Contour Plot Showing Stream Function as a Function of ξ and η Versus the 

Coordinates ξ and η for Values of (β0, μ4) = (0.0156, 0.01), (0.0156, 0.02), (0.0156, 0.08), 

(0.05, 0.086) from Top Left to Bottom Right Respectively at Time τ=2000.  
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3.4 Formation and Stability of Zonal Jets with varying γ: 

The problem of stability of zonal jets was studied by Manfroi and Young suggesting 

through an analytical study that this happens when the viscosity is below as certain critical 

value μc and this varies as a function of γ which is the effective planetary vorticity 

gradient (𝛾 = 𝛽1 − 𝑢1). It is further suggested in their study that despite having this limit, 

the solutions from the 1D system did not seem to follow the limit for certain cases. For 

example, as it can be seen from Figure 3.15, though the limiting viscosity value for case 

with γ=1 was 0.0833 we could still see jet formation at μ4=0.1. It can be seen from figures 

3.17 and 3.18 that better adherence to this limit can be seen when it comes to the 2D system 

for both the cases (α=0, α=1). The jet keeps forming for case γ = 1.25 till μ4=0.09 while 

the analytical critical bottom drag value is around 0.0159.  

A clearer plot summarizing the runs is shown in Figures 3.17 and 3.18 demarcating the 

stability boundary, the runs that produced stable jets and the runs that produced no jets. 

The formula determining the critical Bottom Drag value is given below. 

𝜇𝑐 =
1

12
(2 − 𝛾2)2 

For a given γ any value of bottom drag μ below μc results in the spontaneous evolution of 

zonal jet.  
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Figure 3.15: Plot Showing the Zonal Mean vs η at the End of τ=2000 for Cases of (γ, μ) = 

(0.75, 0.175), (0.75, 0.18), (1, 0.075), (1, 0.087), (1.25, 0.016), (1.25, 0.017) for Case α=0 

and β0 = 0.05 
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Figure 3.16: Plot Showing the Zonal Mean vs η at the End of τ=2000 for Cases of (γ, μ) = 

(0.75, 0.175), (0.75, 0.18), (1, 0.086), (1, 0.1), (1.25, 0.017), (1.25, 0.09) for the 1-D 

System 
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Figure 3.17: Plot Showing the Summary of Runs in the (γ, μ) Parametric Space with 

Circle Demarcating Formation of Jets while Cross Demarcates Non-Formation of Jets for 

both the Cases (α=0, α=1) 

 

Figure 3.18: Plot Showing the Summary of Runs in the (γ, μ) Parametric Space with 

Circle Demarcating Formation of Jets while Cross Demarcates Non-Formation of Jets for 

the 1-D System 
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3.5 Ratio of Zonal Kinetic Energy to Total Kinetic Energy: 

A better understanding of the effect of β0 would be to find the ratio of Zonal Kinetic Energy 

to Total Kinetic Energy. This ratio gives the amount of total energy present in zonal jets. 

The time evolution of this ratio shown in the figure 3.19 for various β0 values provide an 

illustration on the beginning of formation of Zonal Jets and how the parameter value of β0 

affects the formation of these Zonal Jets. This Kinetic Energy value is calculated in term 

of the non-dimensionalized root mean square velocity with Zonal Kinetic Energy 

considering only the horizontal component of velocity U while Total Kinetic Energy is 

considered using both the horizontal and vertical component (U & V).  

𝑈 = −𝐴𝜉 , 𝑉 = 𝐴𝜂 

𝑅𝑎𝑡𝑖𝑜 (𝑟) =
𝐾𝐸𝑧𝑜𝑛𝑎𝑙

𝐾𝐸𝑡𝑜𝑡𝑎𝑙
=

1
2 𝑈𝑟𝑚𝑠

2

1
2

(𝑈𝑟𝑚𝑠
2 + 𝑉𝑟𝑚𝑠

2 )
                                    (5) 

This comparison is done for the case of α=0. The 1D system is based on the simplification 

that assumes 100% of the total energy is made up by the zonal jets thus the ratio would be 

1 for all the cases. From the plot in Figure 3.19 and 3.20 one clearly see the difference in 

the rate at which zonal jets are formed for increase in β0 value. The initial phase where the 

ratio keeps increasing indicates the phase where Zonal Jet formation takes place. The later 

phase when the value remains constants indicates the phase when the upscale energy 

transfer ceases. We can see that for the case with finite bottom drag (μ=0.01) the halting of 

upscale energy transfer takes place at a much lesser ratio than that for the case with no 

bottom drag indicating the persistence of the curvy profile as discussed in section 3.2.3.  
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Also the plot in figure 3.21 clearly shows this difference in ratio achieved. The slight 

deviation (at μ=0.01) in the variation of the ratio with bottom drag is due to the formation 

of eddy like structures in cases of high β0 and low μ as discussed in section 3.2.3.  

 

Figure 3.19: Plot Showing the Ratio of Kinetic Energy in Zonal Component to the Total 

Kinetic Energy for μ=0 with Solid and Dotted Line Representing β0=0.01, 0.05 

Respectively 
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Figure 3.20: Plot Showing the Ratio of Kinetic Energy in Zonal Component to the Total 

Kinetic Energy for μ=0.01 with Solid and Dotted Line Representing β0=0.01, 0.05 

Respectively 

 

Figure 3.21: Plot Showing the Ratio of Kinetic Energy in Zonal Component to the Total 

Kinetic Energy for Varying μ with Solid and Dotted Line Representing β0=0.01, 0.05 

Respectively at the End of τ=2000. 
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3.6 Influence of Initial Condition: 

It was seen in previous sections that the number of jets and the wavy nature of the jets may 

have something to do with the initial condition. In order to check the effect of a random 

and a deterministic initial conditions a simulation was performed for the case with β0=0.01 

and μ=0.05 with the following initial condition. 

𝐴 (𝜉, 𝜂, 0) = cos(0.12 𝜋 𝜉) [1 + 𝑠𝑖𝑛(0.12 𝜋 𝜂)] 

The plots for the two cases (with the above initial condition and with random initial 

condition) are shown in Figure 3.22 and 3.23. It can be seen that despite using a different 

boundary condition, there is still some wavy nature in the jets though not as much as the 

case with random boundary condition. This difference in the jet structure is because there 

is already large scale flow in the initial phase and a bias for zonal jet formation in the form 

of symmetry in zonal direction.  

The figure 3.24 showing the evolution of ratio with time for a case with this initial 

condition. A striking feature in this plot is the steep reduction in the zonal energy ratio. 

One can see that after creation of zonally elongated flows a wavy jet is formed which is 

the reason for the steep fall. Another thing we can see is the number of jets finally formed 

is the same for this case compared to the case with original random initial condition. This 

despite the evolution starting with initial six jets. This can be seen in figure 3.25 showing 

the variation of zonal mean with time. 
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Figure 3.22: Contour Plot of Stream Function for Random Initial Condition Case at 

β0=0.01 and μ=0.05 

 

Figure 3.23: Contour Plot of Stream Function for a specific Initial Condition Case at 

β0=0.01 and μ=0.05 
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Figure 3.24: Plot Showing the Ratio of Kinetic Energy in Zonal Component to the Total 

Kinetic Energy for β0=0.01 and μ=0.05 for a Specific Initial Condition 

 

Figure 3.25: Contour Plot of Zonal Mean vs Time for a Specific Initial Condition case at 

β0=0.01 and μ=0.05 
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3.7 Summary of the Results: 

Finally, a plot showing the summary of all the runs is provided in the Figures 3.26 and 3.27 

for the 2D system with α=0 and 2D system with α=1. The summary provides the number 

of jets seen in each of the cases which is given by the number present inside the circular 

points seen in the results plot.  

 

 

Figure 3.26 Plot Showing the Summary of Runs in the (β0, μ) Parametric Space with the 

Number Inside the Circle Demarcating Number of Jets for α=0 case. 
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Figure 3.27 Plot Showing the Summary of Runs in the (β0, μ) Parametric Space with the 

Number Inside the Circle Demarcating Number of Jets and Cross Denoting Non- 

Formation of Jet for α=1 Case. 
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CHAPTER 4 

4. CONCLUSION: 

Thus, the numerical solutions are explored for the 2-D system spanning the β0, μ parametric 

space. It is found that certain key behaviors that were predicted from the 1-D system holds 

true for the 2-D system as well. One is the continuous merger of the zonal jets in the 

absence of bottom drag which though not conclusive, can still be partially verified from 

the results. One major result would be the adherence to the μ, γ boundary for the formation 

of jet. It is interesting to note that the boundary that was originally derived analytical from 

the 1-D system seems to be more suitable for the 2-D system than the original one from 

which it was derived. On the other hand, there were also certain results that were quite 

different from behavior suggested by the 1-D system. The formation of wavy jet streams 

for smaller values of β0, and their persistence just like zonal jets is one such phenomena 

that could not be explained. Similarly, the case of migrating structures in case of an inclined 

basic state flow was also quite interesting. There is also the presence of large scale long 

persistent eddies that are seen in the case of large β0 and small bottom drag. Another aspect 

discussed was the variation in the number of jets for varying β0 which if not fortuitous due 

to random initial conditions needs some explanation. The aim of the study was to provide 

numerical solution to the complete 2-D system investigating in the process any information 

left out because of its simplification. Despite certain similarities there are certain results 

which needs future investigation to confirm the veracity of their existence. 
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APPENDIX A 

 

CODE FOR SOLVING 2-D SYSTEM 
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tic; 

clc; 

clear; 

L=100; 

m=128; 

h=L/m; 

%predeclaration 

A=zeros(m+11,m+11); 

Ai=zeros(m+11,m+11); 

d2a=zeros(m+6,m+6); 

U=zeros(m+11,m+11); 

Ui=zeros(m+11,m+11); 

U_plot=zeros(m+11,m+11); 

zonalpoint=zeros(m+11,m+11); 

gamma=1; 

b0=0.01; 

alpha=0; 

mu=0.05; 

y=0-6*h:h:100+6*h; 

x=0-6*h:h:100+6*h; 

t=0; 

inc=1; 

var=1; 
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for i=1:length(x) 

    for j=1:length(y) 

            A(i,j)=cos(1*pi*x(i)/600)*(1+sin(1*pi*y(j)/600)); 

           %A(i,j)=rand(1); 

            Ai(i,j)=A(i,j); 

    end 

end 

figure 

surfc(x,y,A); 

for rr=1:m 

        for ss=1:m 

            if rr==ss&&rr~=m 

                a(rr,ss)=-2; 

            else if rr>=3&&rr-ss==2 

                    a(rr,ss)=0; 

                else if rr>=2&&rr-ss==1 

                        a(rr,ss)=1; 

                    else if ss>=2 && ss-rr==1 

                          a(rr,ss)=1; 

                        else if ss>=3 && ss-rr==2; 

                                a(rr,ss)=0; 

                            else if (rr==m-1&&ss==1)||(rr==1&&ss==m-

1)||(rr==m&&ss==2)||(rr==2&&ss==m) 
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                                    a(rr,ss)=0; 

                                else if (rr==1&&ss==m)||(rr==m&&ss==1) 

                                        a(rr,ss)=1; 

                                    else if rr==m&&ss==m 

                                            a(rr,ss)=1; 

                                        else  

                                            a(m,rr)=1; 

                                            a(m,m)=1; 

                                            a(m,2)=1; 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

end 

    ina=inv(a);  

while t<=2 

dann=thesfn(A,h,m,gamma,b0,alpha,mu); 

for i=7:m+6 
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    for j=7:m+6 

        d2a(i,j)=(A(i+1,j)-2*A(i,j)+A(i-1,j))/(h^2); 

        d4a(i,j)=(A(i+2,j)-4*A(i+1,j)+6*A(i,j)-4*A(i-1,j)+A(i-2,j))/(h^4); 

    end 

end 

dt=min(0.01,0.8*h/(12*gamma*max(max(abs(A))))); 

if t<300&&t+dt>300 

    dt=300-t; 

else if t<500&&t+dt>500 

        dt=500-t; 

    else if t<600&&t+dt>600 

            dt=600-t; 

        else if t<1000&&t+dt>1000 

                dt=1000-t; 

            end 

        end 

    end 

end 

%%start of RK-3%% 

dann0=dann; 

phi0=d2a; 

phi1=phi0+dt.*dann0; 

A=d2a2a(ina,phi1,h,m); 
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A=thesboun(A,m); 

dann1=thesfn(A,h,m,gamma,b0,alpha,mu); 

phi2=phi1-(3/4)*dt.*dann0+(1/4)*dt.*dann1; 

A=d2a2a(ina,phi2,h,m); 

A=thesboun(A,m); 

dann2=thesfn(A,h,m,gamma,b0,alpha,mu); 

phi3=phi2-(1/12)*dt.*dann0-(1/12)*dt.*dann1+(2/3)*dt.*dann2; 

A=d2a2a(ina,phi3,h,m); 

A=thesboun(A,m); 

  

for i=7:m+7 

    for j=7:m+7 

        U(i,j)=(A(i-1,j)-A(i+1,j))/(2*h); 

        V(i,j)=(A(i,j-1)-A(i,j+1))/(2*h); 

        Ued=((abs(U(i,j)))^2+(abs(V(i,j)))^2); 

        Uz=((abs(U(i,j)))^2); 

        ratio(i,j)=Uz/Ued; 

        Ui(i,j)=(Ai(i-1,j)-Ai(i+1,j))/(2*h); 

    end 

    U_plot(i)=mean(U(i,:)); 

end 

        if rem(inc,100)==0 

            t_plot(var)=t; 
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            zonalpoint(7:m+7,inc/100)=U(7:m+7,m); 

            zonalmean(7:m+7,inc/100)=U_plot(7:m+7); 

            contourf(x(7:m+7),y(7:m+7),A(7:m+7,7:m+7)); 

            F(inc/100)=getframe; 

            var=var+1; 

        end 

rmean(inc)=mean(mean(ratio)); 

ttot(inc)=t; 

contourf(x(7:m+7),y(7:m+7),A(7:m+7,7:m+7));pause (0.000001); 

t=t+dt; 

inc=inc+1; 

end 

mov=VideoWriter('b0.01mu0.0862000sa1.avi','Uncompressed AVI'); 

save('b0.01 mu0a enerrgy ratio.mat'); 

figure 

plot(ttot,rmean); 

figure 

contourf(t_plot,x(7:m+7),zonalmean(7:m+7,:)); 

figure 

plot(Ui(7:m+7,m),x(7:m+7));xlim([-2 4]); 

figure 

plot(U_plot(7:m+7),x(7:m+7));   

toc; 
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thesfn 

function [dann] = thesfn(A,h,m,gamma,b0,alpha,mu) 

d2a=zeros(m+13,m+13); 

d4a=zeros(m+13,m+13); 

d6a=zeros(m+13,m+13); 

da2=zeros(m+13,m+13); 

first=zeros(m+13,m+13); 

da3=zeros(m+13,m+13); 

dapsi=zeros(m+13,m+13); 

da=zeros(m+13,m+13); 

term1=zeros(m+13,m+13); 

term2=zeros(m+13,m+13); 

dann=zeros(m+6,m+6); 

for i=4:m+9 

    for j=4:m+9 

        d2a(i,j)=(A(i+1,j)-2*A(i,j)+A(i-1,j))/(h^2); 

        d4a(i,j)=(A(i+2,j)-4*A(i+1,j)+6*A(i,j)-4*A(i-1,j)+A(i-2,j))/(h^4); 

        d6a(i,j)=(1*A(i+3,j)-6*A(i+2,j)+15*A(i+1,j)-20*A(i,j)+15*A(i-1,j)-6*A(i-2,j)+A(i-

3,j))/(h^6); 

        da2(i,j)=(gamma+((A(i+1,j)-A(i-1,j))/(2*h)))^2; 

        first(i,j)=da2(i,j)*(A(i+1,j)-A(i-1,j))/(2*h); 
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        da3(i,j)=((A(i+1,j)-A(i-1,j))/(2*h))^3; 

        dapsi(i,j)=(A(i,j+1)-A(i,j-1))/(2*h);%h of other coordinate 

        da(i,j)=(A(i+1,j)-A(i-1,j))/(2*h); 

    end 

end 

for i=7:m+6 

    for j=7:m+6 

        term1(i,j)=(-1*first(i-2,j)+2*first(i-1,j)-2*first(i+1,j)+1*first(i+2,j))/(2*(h^3)); 

        term2(i,j)=(-1*da3(i-2,j)+2*da3(i-1,j)-2*da3(i+1,j)+1*da3(i+2,j))/(2*(h^3)); 

        dann(i,j)=-2*d4a(i,j)-3*d6a(i,j)+term1(i,j)-(1/3)*term2(i,j)-

b0*dapsi(i,j)+b0*alpha*da(i,j)-mu*d2a(i,j); 

    end 

end 

 

thesbound 

function [A] = thesboun(A,m) 

 

for j=7:m+6 

    A(m+7,j)=A(7,j); 

    A(m+8,j)=A(8,j); 

    A(m+9,j)=A(9,j); 

    A(m+10,j)=A(10,j); 

    A(m+11,j)=A(11,j); 
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    A(m+12,j)=A(12,j); 

    A(m+13,j)=A(13,j); 

    A(6,j)=A(m+6,j); 

    A(5,j)=A(m+5,j); 

    A(4,j)=A(m+4,j); 

    A(3,j)=A(m+3,j); 

    A(2,j)=A(m+2,j); 

    A(1,j)=A(m+1,j); 

end 

for i=7:m+6 

        A(i,m+7)=A(i,7); 

    A(i,m+8)=A(i,8); 

    A(i,m+9)=A(i,9); 

    A(i,m+10)=A(i,10); 

    A(i,m+11)=A(i,11); 

    A(i,m+12)=A(i,12); 

    A(i,m+13)=A(i,13); 

    A(i,6)=A(i,m+6); 

    A(i,5)=A(i,m+5); 

    A(i,4)=A(i,m+4); 

    A(i,3)=A(i,m+3); 

    A(i,2)=A(i,m+2); 

    A(i,1)=A(i,m+1); 
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end 

for j=1:m+13 

    A(1,j)=A(m+1,j); 

    A(2,j)=A(m+2,j); 

    A(3,j)=A(m+3,j); 

    A(4,j)=A(m+4,j); 

    A(5,j)=A(m+5,j); 

    A(6,j)=A(m+6,j); 

    A(m+7,j)=A(7,j); 

    A(m+8,j)=A(8,j); 

    A(m+9,j)=A(9,j); 

    A(m+10,j)=A(10,j); 

    A(m+11,j)=A(11,j); 

    A(m+12,j)=A(12,j); 

    A(m+13,j)=A(13,j); 

end 


