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ABSTRACT

The geotechnical community typically relies on recommendations made from nu-

merical simulations. Commercial software exhibits (local) numerical instabilities in

layered soils across soil interfaces. This research work investigates unsaturated mois-

ture flow in layered soils and identifies a possible source of numerical instabilities

across soil interfaces and potential improvement in numerical schemes for solving

the Richards’ equation. The numerical issue at soil interfaces is addressed by a

(nonlinear) interface problem. A full analysis of the simplest soil hydraulic model,

the Gardner model, identifies the conditions of ill-posedness of the interface prob-

lem. Numerical experiments on various (more advanced and practical) soil hydraulic

models show that the interface problem can also be ill-posed under certain circum-

stances. Spurious numerical ponding and/or oscillations around soil interfaces are

observed consequently. This work also investigates the impact of different averaging

schemes for cell-centered conductivities on the propensity of ill-posedness of the inter-

face problem and concludes that smaller averaging conductivities are more likely to

trigger numerical instabilities. In addition, an agent-based stochastic soil model, with

hydraulic properties defined at the finite difference cell level, results in a large num-

ber of interface problems. This research compares sequences of stochastic realizations

in heterogeneous unsaturated soils with the numerical solution using homogenized

soil parameters. The mean of stochastic realizations is not identical to the solution

obtained from homogenized soil parameters.
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Chapter 1

INTRODUCTION

1.1 Background

The soil between the land surface and the water table of groundwater, known

as the vadose zone, is unsaturated and often made up of distinct horizontal layers.

Soil layers can form naturally (such as sedimentation) or due to human activities

(such as agricultural practices and remove-and-replace techniques in construction).

The prediction of moisture movement in the vadose zone is of great importance in

many fields, such as environmental management, geotechnical engineering, agricul-

ture engineering, contaminant control and flood control. The laboratory experiments

on soil hydraulic properties may take days or weeks, and are still subject to errors

resulting from response hysteresis and limitations of testing methods, among others.

In situ data are more difficult to obtain consistently not only because of long periods

of time for measurements but also because of change of climates, human activities,

etc. Therefore, the geotechnical community refers to numerical simulations to make

large-scale strategies with considerable financial stakes. However, current numerical

implementations for unsaturated flow in heterogeneous (layered) soils have the fol-

lowing defects: (1) they often employ homogenization of parameters and conditions,

(2) they often produce numerical oscillations in layered (heterogeneous) soils due to

discontinuity of soil hydraulic properties. The purpose of this research is to address

variations in soil hydraulic properties across soil interfaces more appropriately from

a mathematical and physical point of view.
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1.2 Literature Review

The Richards’ equation, a nonlinear partial differential equation, is used to model

moisture movement in porous media. It was formulated by Richardson (1922) and

Richards (1931). In general, there is no closed-form analytical solution of the Richards’

equation. The Richards’ equation is stiff, and its numerical simulation is computation-

ally expensive, characterized by stability and convergence difficulties. In unsaturated

layered soils, Srivastava and Yeh (1991) derive the analytical solutions of the one-

dimensional Richards’ equation using the simplest soil hydraulic constitutive model –

the Gardner model. However, they point out that the analytical solution is possible

for varying only the saturated conductivities when other parameters are isotropic. For

a general case associated with more varying soil parameters or for more complicated

soil hydraulic constitutive models, analytical solutions are impossible to achieve in

layered soils.

Numerical simulations of water infiltration in homogeneous soils have been well

studied (Celia et al., 1990; van Dam and Feddes, 2000; Fredlund et al., 2012) and

many studies on water infiltration in heterogeneous soils use similar methodologies

by homogenizing soil parameters. Very few papers have addressed water movement

in heterogeneous soils by imposing the continuity of both flux and pressure head at

soil layer interfaces. Historically, simulations of water flow across interfaces in layered

soils have been obtained using head-based nodal averaging. The majority of the work

uses the arithmetic average of pressure heads (Kirkland et al., 1992) or the (weighted)

average of water contents (Zha et al., 2013) for the soil interfaces without imposing

the continuity of flux. This typically results in water imbalance around the interface,

although Schaudt and Morrill (2002) argue that refining the spatial discretization

can compensate for this defect. The commonly used commercial software products

2



do not address the interface problem by imposing the continuity of flux. For example,

HYDRUS smoothes the dissimilarity of soil materials by smoothly changing the soil

parameters (Simunek et al., 1998). Dye (2008) studies the numerical oscillations using

various commercial codes HYDRUS, SVFlux and Vadose/W.

Hills et al. (1989) first point out that the flux must be continuous across the in-

terface of two soil types. However, they do not propose any algorithm to impose the

continuity of flux but use an explicit approximation of the interface pressure head,

which does not satisfy the continuity of flux. Romano et al. (1998) propose an algo-

rithm to enforce the continuity of both flux and pressure head numerically. Schaudt

and Morrill (2002) impose the continuity of flux across the interface by using one-

sided approximations on either side of the interface without proposing any numerical

scheme to solve the interface problem. Matthews et al. (2004) also establish an in-

terface equation by comparing one-sided approximations of flux, but solve it via a

Newton iteration. They also use one-sided differences to approximate the pressure

head gradients at the interface. Liu et al. (2016b) show that multiple solutions of

the nonlinear interface equation may exist in certain soil parameter regimes, espe-

cially when sharp wetting fronts pass through the interface between highly dissimilar

materials.

Averaging methods of hydraulic conductivities are required for most numerical

methods for solving the Richards’ equation. The choice of averaging method impacts

the determination of interface conductivities in layered soils. Haverkamp and Vauclin

(1979) present a summary of averaging methods for cell-centered hydraulic conduc-

tivities in finite difference schemes. They test nine different methods of weighting

cell-centered hydraulic conductivity values in homogeneous unsaturated soil and test

the influence of averaging methods upon numerical solutions. Baker (2006) uses a

three-point grid test to validate some common averaging means. Previous studies

3



show that the geometric mean produces better numerical solutions (Haverkamp and

Vauclin, 1979; Schnabel and Richie, 1984; Belfort and Lehmann, 2005). Szymkiewicz

and Helmig (2011) compare conductivity averaging methods in one-dimensional un-

saturated flow in layered soils using two finite difference scheme (vertex-centered and

cell-centered). An and Noh (2014) proposes a high-order averaging method of hy-

draulic conductivities to improve the accuracy of numerical simulations of moisture

movement in a heterogeneous soil. Liu et al. (2016a) investigate the impact of dif-

ferent averaging methods for cell-centered hydraulic conductivities on the interface

problem of unsaturated flow in layered soils.

Field studies in the vadose zone have demonstrated extensive variability in charac-

teristics of soil hydraulic properties. Many results in the literature describe statistics

of parameters in various soil hydraulic constitutive models (Biggar and Nielsen, 1976;

Carsel and Parrish, 1988; Russo and Bouton, 1992; Haskett et al., 1995). Field stud-

ies have shown significant variability in saturated hydraulic conductivities (Wierenga

et al., 1991) and suggest that the cross-correlation between saturated hydraulic con-

ductivity and soil texture is rather small (Nielsen et al., 1973). Due to uncertainty

of soil hydraulic properties, it is significant to develop a stochastic model of mois-

ture flow in the vadose zone regarding the large-scale variations. Many stochastic

approaches treat the actual heterogeneous medium as an equivalent homogeneous

system with a set of effective properties (Yeh et al., 1985a,b,c; Mantoglou and Gel-

har, 1987; Zhu and Mohanty, 2002; Severino and Santini, 2005; Liu et al., 2016c), for

example, Liu et al. (2016c) express large-scale parameters by the mean parameters

plus correction terms using the θ-based form of the Richards’ equation. Other studies

apply the perturbation method in heterogeneous soils and compare to Monte Carlo

simulations (Andersson and Shapiro, 1983; Ünlü et al., 1990; Foussereau et al., 2000).

This research work presents a reduced method on the stochastic governing equations

4



which has not been found in the literature.

1.3 Outline of This Work

The issues addressed in this research work are threefold: (1) the mathematical

formulation of the interface problem in unsaturated flow across soil layers, (2) impacts

of different averaging methods of cell-centered conductivities on the ill-posedness of

the interface problem, (3) a reduced model for stochastic soil hydraulic parameters in

heterogeneous soils compared with the solution of homogenized soil parameters and

sequences of stochastic realizations.

Chapter 2 presents all mathematical formulations and analysis in this research

work. Chapter 3 provides illustrations and numerical evidence via numerical simula-

tions. Conclusions and future work are discussed in Chapter 4.
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Chapter 2

MATHEMATICAL MODEL

2.1 Richards’ Equation

The moisture movement in unsaturated soils is described by the one-dimensional

Richards’ equation (Richardson, 1922; Richards, 1931). This equation is often written

in three forms, which are identified as the “h-based” form, the “θ-based” form, and

the “mixed form”:

h-based form

C(h)
∂h

∂t
= −∂q

∂z
, q = K

(
1− ∂h

∂z

)
, (2.1)

θ-based form

∂θ

∂t
= −∂q

∂z
, q = K

(
1−D(θ)

∂θ

∂z

)
, (2.2)

mixed form

∂θ

∂t
= −∂q

∂z
, q = K

(
1− ∂h

∂z

)
, (2.3)

where θ = θ(z, t) represents volumetric water content, z is depth (positive down-

wards), t is time, q is infiltration flux, K is soil hydraulic conductivity, and h is

capillary pressure head. In Equations (2.1) and (2.2), C(h) ≡ ∂θ/∂h and D(θ) ≡

K(θ)/C(θ). In this research, these quantities are non-dimensionalized in numerical

simulations (see Appendix C.1). The Richards’ equation is augmented with specific

Dirichlet or Neumann boundary conditions as shown in Figure 2.1, as well as an ini-

tial profile of pressure head. In particular, the 1D (vertical) soil column is made up

of multiple layers.

For the following reasons, only the mixed form is considered in this research.
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z = 0

htop or qtop

hbottom or qbottom

z = 1

z

soil layer 1

soil layer 2

...

soil layer n

Figure 2.1: The Richards’ Equation Is Solved Numerically in an n-Layer Soil Column.

1. In the h-based form of the Richards’ equation, the value of C(h) is close to

zero when soil is near saturation. It has been reported that the h-based form

generally yields poor results, characterized by large mass balance errors and

erroneous estimates of infiltration depth (Celia et al., 1990).

2. The θ-based form is not commonly used in layered soils because the water con-

tent profile is usually discontinuous at interfaces between different soil materials,

thus introduces difficulties in evaluating the gradient of water content, ∂θ/∂z.

3. The mixed form is consistently reliable and robust with respect to mass balance.

In this work, the mixed form of the Richards’ equation is solved numerically in

a staggered difference scheme (Figure 2.2). The spatial derivatives are approximated

via standard second-order central finite differences and the mixed form Richards’

equation yields a system of ordinary differential equations (ODEs)

dθj
dt

= −
qj+ 1

2
− qj− 1

2

1
2
(∆j−1 + ∆j)

(2.4)
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with

qj+ 1
2

= Kj+ 1
2

(
1− hj+1 − hj

∆j

)
. (2.5)

The cell-centered conductivity Kj+ 1
2

in Equation (2.5) is estimated by an average

of adjacent nodal conductivities Kj and Kj+1. Formulations and numerical solutions

associated with four common averaging schemes (the harmonic mean, the geometric

mean, the log-mean, and the arithmetic mean) are presented in Sections 2.4 and 3.2.

A uniform difference scheme is used in numerical simulations, i.e., ∆j = ∆ for all

j, except those in Section 3.2.2 when a finer mesh is required in the vicinity of the

soil layer interface.

z

∆j−1

∆j

θj−1

θj

θj+1

θj+2

qj− 1
2

qj+ 1
2

qj+ 3
2

Figure 2.2: Staggered Finite Difference Water Content θ and Flux q Grids.

2.2 Soil Hydraulic Relations

Soil hydraulic properties are described by a set of physical equations relating

volumetric water content θ, pressure head h, hydraulic conductivity K and effective

saturation Se,

0 ≤ Se =
θ − θr
θs − θr

≤ 1, (2.6)

where θr and θs are residual and saturated volumetric water contents, respectively.
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A soil hydraulic constitutive model consists of two relations, the soil-water charac-

teristic curve (SWCC) and the hydraulic conductivity function. The SWCC provides

a relation between volumetric water content (or effective saturation) and pressure

head. The saturated and residual water contents used in computation of effective

saturation are obtained from the SWCC. The hydraulic conductivity (or permeabil-

ity) function, describes soil hydraulic conductivity as a function of pressure head.

A large number of closed-form empirical soil hydraulic models can be found in

the literature (Fredlund et al., 2012). The soil hydraulic parameters in those models

can be fitted by data from direct laboratory and field measurements. This research

investigates three commonly used models:

1. The Gardner model (Gardner, 1958)

Se =

e
αh if h < 0,

1 if h ≥ 0,

K = βSe,

(2.7)

with α > 0, β > 0,

2. the Mualem-van Genuchten model (MvG) (van Genuchten, 1980)

Se =

(1 + (−αh)n)−m if h < 0,

1 if h ≥ 0,

K = β
√
Se

(
1−

(
1− (Se)

1
m

)m)2

,

(2.8)

with α > 0, β > 0, n > 1, and 0 < m = 1− 1/n < 1,

3. the Fredlund & Xing-Leong & Rahardjo model (FXLR) (Fredlund and Xing,

1994; Leong and Rahardjo, 1997)

Se =

[ln(e+ (−αh)n)]−m if h < 0,

1 if h ≥ 0,

K = β(Se)
p,

(2.9)
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with α > 0, β > 0, n > 0, m > 0, and p > 0.

The parameters associated to a common letter do not necessarily carry the same

physical meaning in different models. Because the Gardner model is simple (quasi-

linear) and sufficient for describing flow characteristics in many situations, it is often

considered in numerical tests and mathematical analysis. In the MvG model, n > 1

and 0 < m < 1 are related to the pore size distribution in the soil. In the FXLR

model, 1/α relates to the air-entry value (increasing 1/α increases the air-entry value),

whereas in the other two models α is a curve-fitting parameter. In the FXLR model

m,n are independent positive curve-fitting parameters. The exponent p is determined

by fitting the hydraulic conductivity data with typical values in the range 2.5–24.5.

Larger values of p are also observed but not common (Fredlund and Xing, 1994). The

parameter β in all three models is simply a non-dimensionalized form of the saturated

hydraulic conductivity. It is also interesting to note that Zhu et al. (2004) establish

parameter equivalence of α for the Gardner model (αG) and the MvG model (αMvG)

based on preserving macroscopic capillary lengths and predicting the same vertical

water flux:

αMvG

αG

=
0.046m+ 2.07m2 + 19.5m3

1 + 4.7m+ 16m2
. (2.10)

Table 2.1 lists the MvG parameters and corresponding αG values for five example

soils from van Genuchten (1980).

2.3 Interface Problem

2.3.1 Formulation of the Interface Equation

This work presents a local numerical scheme for the interface problem. Assume

a vertical soil column is partitioned into several layers with different hydraulic prop-

erties. The soil hydraulic parameters adjacent to a soil interface are represented as
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Table 2.1: The MvG Parameters of Five Example Soils from van Genuchten (1980) and

the Equivalent α for the Gardner Model According to Equation (2.10).

Soil θs θr β ∝ Ks n m αMvG αG

(cm3/cm3) (cm/day) (cm−1) (cm−1)

Hygiene sandstone 0.250 0.153 108.0 10.4 0.9038 0.0079 0.0090

Touchet Silt Loam 0.469 0.190 303.0 7.09 0.8590 0.0050 0.0060

Silt Loam 0.396 0.131 4.96 2.06 0.5146 0.00423 0.01003

Guelph Loam (drying) 0.520 0.218 31.6 2.03 0.5074 0.0115 0.0278

Beit Netofa Clay 0.446 0.0 0.082 1.17 0.1453 0.00152 0.02787

superscripted − (upper) and + (lower) (Figure 2.3).

lower soil layer

soil interface

upper soil layerSe = S−e (h)

K = K−(Se)

Se = S+
e (h)

K = K+(Se)
hj+1

hj

z

qj+ 1
2
, Kj+ 1

2

Figure 2.3: A Soil Interface and the (Staggered) Finite Difference Scheme at the Interface.

To ensure mass conservation across the soil interface, Equation (2.4) remains

valid. However, Equation (2.5) no longer holds because it involves hydraulic relations

associated with different hydraulic parameters for both sides of the interface. The

soil hydraulic conductivity at the interface, Kj+ 1
2
, cannot be estimated as an average

of Kj and Kj+1 due to the discontinuity of conductivity across the interface.

The interface problem must be formulated by the continuity of both pressure head
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and flux at the soil interface. The continuity of pressure head at the soil interface is

applied implicitly via linear extrapolations,

h−j+1 = 2hj+ 1
2
− hj = hj+1 − δh,

h+
j = 2hj+ 1

2
− hj+1 = hj − δh,

(2.11)

with δh := hj+1 +hj−2hj+ 1
2
. The quantities h−j+1, h

+
j represent pressure heads at “fic-

titious” or “ghost” nodes (Romano et al., 1998) in extended layers (Figure 2.4). Con-

ductivities K−j+1 and K+
j are evaluated from extrapolated pressure head values h−j+1

and h+
j using the hydraulic properties of the associated layer, i.e., K−j+1 = K−(h−j+1)

and K+
j = K+(h+

j ).

z

interface hj+ 1
2

∆

hj, Kj

hj+1, Kj+1

K+
j+ 1

2

K−
j+ 1

2

h+
j , K

+
j fictitious

fictitious h−j+1, K
−
j+1

Figure 2.4: Fictitious Nodes in Extended Layers.

Local enforcement of the continuity of flux at the interface yields a nonlinear

equation,

qj+ 1
2

:= K−
j+ 1

2

(
1−

h−j+1 − hj
∆

)
= K+

j+ 1
2

(
1−

hj+1 − h+
j

∆

)
. (2.12)

The interface conductivities can then be defined as averages of the nodal conductivi-

ties in the extended layer, for example, using the geometric mean,

K−
j+ 1

2

=
√
KjK

−
j+1,

K+
j+ 1

2

=
√
K+
j Kj+1.

(2.13)

Define the ratio of the interface conductivities in extended layers by r := K−
j+ 1

2

/K+
j+ 1

2

.

Substituting Equation (2.11) into Equation (2.12) yields

δh = (∆− (hj+1 − hj))
1− r
1 + r

, (2.14)
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and the expression of r becomes a nonlinear equation of r, for example, using the

geometric mean for conductivities,

r :=
K−
j+ 1

2

K+
j+ 1

2

=

√
KjK−(hj+1 − δh)

K+(hj − δh)Kj+1

= g(r). (2.15)

Equation (2.15) must be solved iteratively, for example, using a fixed-point (Picard)

iteration

rn+1 = g(rn), r0 given, (2.16)

or a Newton iteration

rn+1 = rn −
g(rn)− rn
g′(rn)− 1

:= f(rn), r0 given. (2.17)

Once r is determined, the quantities associated with extended layers in Equa-

tion (2.12) are computed in order by Equations (2.14), (2.11) and (2.13). Notice that

altering the averaging method for cell-centered conductivities changes the averaging

formula in Equations (2.13) and (2.15).

It is worth noting that a local scheme is used here to estimate interface conductiv-

ities Kj± 1
2

in Equation (2.13) (with a geometric averaging scheme). There are many

other strategies using forward/backward estimates of conductivities, for example, by

using Kj =
√
Kj−1K

−
j+1 and Kj+1 =

√
K+
j Kj+2, the interface conductivities are

estimated by

K−
j+ 1

2

=

√
(Kj)3

Kj−1

, K+
j+ 1

2

=

√
(Kj+1)3

Kj+2

. (2.18)

The approach (2.18) involves four nodal values around a soil interface, therefore can-

not be applied to cell-wise layers with stochastic soil parameters. Moreover, comput-

ing interface conductivities directly from one-sided cells instead of solving an interface

equation (2.12) may lead to water balance errors because it does not guarantee flux

continuity at the interface.
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The local approach described here [e.g., Equation (2.13)] only involves nodal values

adjacent to soil layer interfaces, thus has two advantages: (1) it is consistent with

the approach within each layer; (2) the local scheme for Kj± 1
2

can be applied to

heterogeneous soils with cell-wise stochastic soil parameters (e.g., direct numerical

simulations in Section 3.3).

2.3.2 Ill-posedness of the Interface Equation

Numerical oscillations are reported using commercial software, for example, in

Figure 2.5 (Dye, 2008). The interface equation (2.15) may be ill-posed in certain soil

parameter regimes due to its nonlinearity. This research addresses numerical issues

when solving the interface problem.

Fictitious Pressure Heads in Extended Layers

When solving the interface equation, either fictitious (extrapolated) pressure head h+
j

or h−j+1 may be positive despite both hj, hj+1 < 0. It leads to erroneous or non-physical

interface pressure head and introduces a lack of regularity which further complicates

the analysis and the convergence properties of the Picard (2.16) and Newton (2.17)

iterations. For example, if

hj+1 − 2hj < ∆ < −hj (2.19)

(as hj+1 < hj < 0 corresponding to a wetting front moving downward) then

|δh| < ∆− (hj+1 − hj) < −hj+1 ⇒ h−j+1 < 0 (2.20)

but

h+
j ≥ 0 for r ≥ ∆− hj+1

∆− hj+1 + 2hj
> 1, (2.21)

in which case K+(hj − δh) = β+ in Equation (2.15). Although h+
j , h

−
j+1 ≥ 0 may

be physically unrealistic, given that hj, hj+1 < 0, it may still occur during the finite
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Figure 2.5: Examples of Stability Issues in Various Software a) Suction Oscillation with

Depth, b) Actual Flux Oscillation at Soil Surface, and c) Suction with Depth Increased

Monotonically to Unreasonable Values (Excerpt from PhD Dissertation of Dye, Heather

Beate, April 2008, Arizona State University). Copy Right 2008 by ProQuest LLC.

difference numerical solution process when the grid size ∆ is too large. The condition

0 < ∆ < min (−hj+1,−hj)− |hj+1 − hj| (2.22)

guarantees that

|δh| < |∆− (hj+1 − hj)| ≤ ∆ + |hj+1 − hj| < min (−hj+1,−hj) , (2.23)

for any r > 0, i.e., that the fictitious pressure heads (2.11) are negative (unsaturated).

The continuity of h across the interface ensures that (2.22) holds for ∆ sufficiently

small. In the presence of a very sharp wetting front, condition (2.22) may impose a

very small upper bound on ∆ to avoid hj+1 � hj < 0.
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Figure 2.6: Multiple Solutions of r = g(r) Exist While Equation (2.22) Is Satisfied.

Multiple Solutions of The Interface Equation

Unfortunately, Equation (2.22) does not in general guarantee the uniqueness of the

solution to the interface equation (2.15). Figure 2.6 illustrates such a situation in

two-cell examples with ∆ = 10 cm for the Gardner, MvG, and FXLR models. Soil

parameters used for the two-cell cases are listed in Table 2.2. While both the failure

of Equation (2.22) to hold and the multiplicity of solutions to the interface problem

are consequences of a too coarse spatial discretization, it is unclear how the two issues

are related or how they interact.

Table 2.2: Soil Parameters for Two-Cell Cases (in Figure 2.6) to Exhibit Multiple Solutions

to the Interface Equation.

Model
hj hj+1 α− α+ β− β+ n− n+ m− m+ p− p+

(cm) (cm) (cm−1) (cm−1)

Gardner −60 −100 0.13 0.01 14765 1

MvG −56 −101 0.022 0.031 0.9 1 7.5 5

FXLR −60 −100 0.015 0.0148 1 1.2 4.98 4.7 0.78 0.81 15 15

Suppose that the extrapolated pressure heads h+
j , h

−
j+1 are always negative (by
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refining grids if needed). For the simplest Gardner model with the geometric mean

for conductivities, Equation (2.15) reduces to

r = g(r) = λ exp

(
µ

1− r
1 + r

)
(2.24)

with

λ =
β−

β+
exp

((
α− − α+

) hj+1 + hj
2

)
> 0 (2.25)

and

µ =
1

2

(
α+ − α−

)
(∆− (hj+1 − hj)) . (2.26)

Figure 2.7 shows analytical criteria for the existence of multiple roots of (2.24) using

either the Picard iteration or the Newton iteration. For (µ, λ) in the white region

the Picard iteration converges to a unique single root for any choice of r0 (locally).

For (µ, λ) in the shaded region, the Picard iteration converges to a 2-cycle (oscillates

between two distinct values), while the Newton iteration converges to a single root.

For (µ, λ) in the hatched region Equation (2.24) has multiple roots and using either

iteration method converges to a solution which may be non-physical. The precise

characterization of the shaded and hatched regions is formulated in Appendix A.

It is shown in Appendix A that the Picard iteration converges to the unique

root of (2.24) provided |µ| < 2, which can always be achieved by selecting ∆ small

enough. Note that this requirement on ∆ is not associated with the condition (2.22).

Particularly, if α+ = α−, then µ = 0 and the solution r = λ = β−/β+ of (2.24) is

unique. Previous researches (Romano et al., 1998; Srivastava and Yeh, 1991; Brunone

et al., 2003) do not realize the multiplicity of roots of the interface equation because

they use the same α value for the Gardner model throughout all soil layers.

Figure 2.8 shows g(r) and f(r) vs r in scaled logarithmic axes. For fixed µ, changes

in λ correspond to horizontal translations. For µ < −2 Equation (2.24) has multiple

roots for a range 1/λ∗ ≤ λ ≤ λ∗ (λ ≈ 13.6 for µ = −6). When λ = 1 the value
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Figure 2.7: The (µ, λ)-Space Criteria for the Gardner Model with The Geometric Mean.

r = 1 is a root of (2.24) for any µ, represented by a •. For µ ≥ −2 the Newton

iteration converges globally, quadratically for µ > −2 but only linearly (with rate 2
3
)

for µ = −2 due to r = 1 having multiplicity 3. For µ < −2 the iteration function

f may become negative (shaded areas), leading to non-physical iterated values rn

and potentially creating problems in the convergence. In each case the root r = 1 is

represented by a •.
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Figure 2.8: Fixed-Point Iteration and Newton Iteration for Interface Problem under the

Gardner Model and the Geometric Mean for Cell-Centered Hydraulic Conductivities.
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For more sophisticated model, e.g. the MvG and FXLR models, the interface

equation (2.15) cannot be reduced to a simple equation with only a small number of

parameters, such as (µ, λ) for the Gardner model. In general the solution(s) depend(s)

on hj, hj+1, ∆, α−, α+, β−/β+, n−, n+, m−, m+ (and p−, p+). Hence, ill-posedness

of the interface equation using the MvG or FXLR model cannot be analytically de-

termined. However, numerical simulations (shown in Chapter 3) conducted for those

models support the potential existence of multiple solutions of the interface problem.

2.4 Averaging Methods for Cell-Centered Conductivities

In the interface equation (2.15), the form of averaging scheme for interface con-

ductivities determines the expression of g(r), and consequently affects the numerical

solutions of water flow in unsaturated layered soils. Four commonly used averaging

methods are investigated in this work:

harmonic mean: K
(h)

j+ 1
2

=
2KjKj+1

Kj +Kj+1

, (2.27)

geometric mean: K
(g)

j+ 1
2

=
√
KjKj+1, (2.28)

log-mean: K
(l)

j+ 1
2

=


Kj+1 −Kj

ln(Kj+1/Kj)
if Kj 6= Kj+1,

Kj if Kj = Kj+1,

(2.29)

arithmetic mean: K
(a)

j+ 1
2

=
1

2
(Kj +Kj+1). (2.30)

In a one-dimensional vertical soil setting, the arithmetic mean can be interpreted

by a parallel flow, and the harmonic mean can be interpreted by a serial flow in one

spatial cell (Figure 2.9). When the two neighboring nodal hydraulic conductivities Kj

and Kj+1 are very different, the arithmetic mean tends to yield an average closer to

the larger nodal value, as if the water flow chooses the faster route among the parallel

channels. The harmonic mean results in an average closer to the smaller nodal value
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because the lower conductivity behaves like a bottleneck for the flow.

Soil

Kj Kj+1

flow

(a) Arithmetic Mean

Kj

Kj+1

flow

(b) Harmonic Mean

Figure 2.9: Arithmetic Mean as a Parallel Flow and Harmonic Mean as a Serial Flow in

Layered Soils.

The geometric mean is based on the arithmetic mean of pressure heads using

the Gardner model. Suppose the saturated conductivity is non-dimensionalizated

(β = 1), the hydraulic function in the Gardner model then reduces to K = eαh.

Since the average of pressure head is h̄ = (hj + hj+1)/2 = (lnKj + lnKj+1)/(2α), the

average conductivity as Kj+ 1
2

= eαh̄ yields the geometric mean.

The log-mean is also based on the Gardner model, i.e., K = eαh, but derived from

the average conductivity as a function of pressure head in the cell,

Kj+ 1
2

=
1

hj+1 − hj

∫ hj+1

hj

K(h) dh =
Kj+1 −Kj

ln (Kj+1/Kj)
. (2.31)

Notice that in the log-mean formula (2.31), Kj 6= Kj+1 is assumed. AsKj+1 → Kj,

the limit of the log-mean (Kj+1 as a variable) is Kj, as expected.
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It can be easily verified that

K
(h)

j+ 1
2

≤ K
(g)

j+ 1
2

≤ K
(l)

j+ 1
2

≤ K
(a)

j+ 1
2

(2.32)

with equality when Kj = Kj+1.

When the two nodal conductivities have a large difference, especially when a

wetting front is passing through a cell in a coarse spatial grid, variations of different

averaging methods significantly impact the convergency and accuracy of the numerical

simulation.

To compare the values of different averaging methods more precisely, suppose

that Kj 6= Kj+1. Define the ratio of the two neighboring nodal conductivities by

τ = Kj/Kj+1. For simplicity, the subscript j + 1
2

(for the average conductivity) in

Equations (2.27)–(2.30) is dropped.

Denote the total difference between the arithmetic mean and the harmonic mean

by ωtotal = K(a)−K(h), the deviation from the geometric mean to the harmonic mean

by ωg = K(g) −K(h), and the deviation from the log-mean to the harmonic mean by

ωl = K(l) −K(h). Then

ωg

ωtotal

=
2
√
τ

(τ + 1)2
≤ 1

2
, (2.33)

and

ωl

ωtotal

=
2 (τ 2 − 1− 2τ ln(τ))

(τ − 1)2 ln(τ)
≤ 2

3
. (2.34)

As τ → 1 (Kj+1 → Kj), ωg/ωtotal → 1/2 and ωl/ωtotal → 2/3.

To visualize a comparison of these four means, Figure 2.10 shows the distances of

these means in general, as the harmonic mean is the smallest and the arithmetic mean

the largest, the geometric mean is smaller than the middle of the segment and the log-

mean is closer to the geometric mean than to the arithmetic mean. Figure 2.11 shows

how the ratio of distances changes when the ratio of the two nodal conductivities

varies. The geometric mean approaches to zero faster than the log-mean when the
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difference between Kj and Kj+1 increases. This implies that the geometric mean may

underestimate the average conductivity when the gradient of K is large, as a result,

it may also impact the well-posedness of the interface problem.

K(a)K(h) K(g) K(l)

ωg

ωl

ωtotal

Figure 2.10: Comparison of Values of Four Averaging Means from the Smallest (Left) to

the Largest (Right).

ωg/ωtotal

ln(τ)0

1
2

ωl/ωtotal

2
3

Figure 2.11: ωg/ωtotal and ωl/ωtotal as Functions of ln(τ).

The following facts can be drawn from the comparison of four averaging methods:

(1) The harmonic mean yields the smallest average value and it approximates the

physical reality of serial flows in 1D layered soil.

(2) The arithmetic mean is the linear approximation to the log-mean, however, the

arithmetic mean overestimates the average conductivity (perhaps not physical)

when the difference between Kj and Kj+1 is large, extremely if either of them is

zero. In such a scenario, the much lower conductivity value should dominates the

mean value because it is impervious. The other three average means (log-mean,
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geometric mean and harmonic mean) all yield zero if one of the conductivities

is zero, which is more realistic, especially for a 1D simulation..

(3) The log-mean is between the geometric mean and the arithmetic mean. It is

closer to the geometric mean than to the arithmetic mean. It has been known

that the geometric mean produces better numerical solutions (Haverkamp and

Vauclin, 1979; Schnabel and Richie, 1984; Belfort and Lehmann, 2005). It is

also reported in numerical simulations that the arithmetic means of K overes-

timate the soil water fluxes, while geometric means of K underestimate these

fluxes (van Dam and Feddes, 2000). Therefore, the log-mean of conductivities

is recommended in numerical simulations.

It is worth noting that the upstream mean and the modified upstream mean as

in Baker (2006) are even larger than the arithmetic mean, since they use the con-

ductivity of the lower suction (higher pressure head) as the average, and unsaturated

soil conductivity decreases with decreasing pressure head. Other averaging methods

in Haverkamp and Vauclin (1979) are established on averaging nodal pressure heads

and then evaluate the conductivity by plugging in the hydraulic conductivity func-

tion. However, this type of averaging methods should be addressed more carefully

because the hydraulic conductivity function K(h) is highly nonlinear, and averaging

pressure heads can introduce large deviation from the appropriate average of con-

ductivities. Notice that the geometric mean is also formulated on averaging pressure

heads, however, the quasi-linearity of the Gardner model compensates for the error

from nonlinearity of K(h).

The robustness of the four averaging methods is investigated by performing nu-

merical experiments in multi-layer soils in Section 3.2. In a layered soil, using different

averaging methods for cell-centered conductivities affects the ill-posedness of the in-
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terface problem. Numerical simulations in Section 3.2 show that a relatively large

average conductivity is less likely to trigger multiple solutions of the interface problem

because it potentially smoothes sharp wetting front.

2.5 A Reduced Model for Stochastic Soil Hydraulic Parameters

It is known that the vadose zone has large variability in characterization of soil hy-

draulic properties. The parameters in soil hydraulic models are considered as random

fields. Many studies show that soil hydraulic conductivity is the key characterization

of variability of soil (Wierenga et al., 1991; Nielsen et al., 1973). In general, the nat-

ural logarithm of saturated soil hydraulic conductivity follows normal distributions

(Russo and Bouton, 1992). As a result, water content (pressure head) follows cer-

tain probability distributions in an infiltration/evaporation process in heterogeneous

soils. The probability distributions of water content then determine the probability

distributions of soil hydraulic conductivity and flux. For statistical analysis of wa-

ter content profiles in transient water flow, numerical solutions of expectation and

standard deviation (variance) of water content are desired. This section presents a

reduced model on one-dimensional Richards’ equation in stochastic soils. The re-

duced model is a coupled system including expectations of water contents as well

as covariances of water contents and soil parameters, taking into account stochastic

saturated hydraulic conductivities.

The following assumptions are made:

(1) the Gardner model is used for soil hydraulic relations,

(2) the geometric mean is employed for estimation of cell-centered conductivities,

(3) the soil is always unsaturated, i.e., h < 0,

(4) the 1D soil column is discretized into uniform spatial cells,
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(5) the natural logarithm of saturated hydraulic conductivity has a normal distri-

bution, i.e. ln β = b ∼ N (b̄, σ2
b ),

(6) b, as a random variable, is independent for each (uniform) spatial cell and has

the same distribution throughout the soil,

(7) b value is fixed (no hysteretic response) in each cell,

(8) other soil parameters are assumed to be isotropic.

In the ODE system (2.4)-(2.5), denote the quantities in each (uniform) spatial cell of

the finite difference scheme as vectors,

θ =


θ1

...

θn

 , b =


b1

...

bn

 , q =


q1

...

qn

 ,

Se =


(Se)1

...

(Se)n

 =


θ1−θr
θs−θr

...

θn−θr
θs−θr

 , h =


h1

...

hn

 =


ln(Se)1
α

...

ln(Se)n
α

 .
The letter n used in this section, without specification, is an integer index related

to the total number of cells, not a soil parameter in models MvG and FXLR. Note that

all vector indices fall on the nodal grid except q on the cell-centered grid (Figure 2.2).

For simplicity of vector notations, i+ 1
2

is not used for cell-centered grids, instead, qi

indeed means qi+ 1
2
. Boundary conditions are treated by setting the first and/or last

entry in θ and/or q accordingly. Also, each vector dimension can change (by one or

two) according to the boundary conditions. See Appendix C.2 for the treatment of

boundary conditions.

Then the original ODE system (2.4)-(2.5) is written as

dθ

dt
= −G (q(b,θ)) , (2.35)
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with

qi(b,θ) = exp

{
bi + bi+1

2

}√
(Se)i(Se)i+1

(
1− hi+1 − hi

∆

)
, (2.36)

and G is a difference operator,

G : Rn → Rn−1

x 7→ Gx

with

G =
1

∆



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
...

...

0 0 0 · · · −1 1


. (2.37)

For a staggered (dual) finite difference scheme used here, the operator G calculates

the central difference.

Since b characterizes the variability of soil properties and results in the variability

of other variables (θ, etc.), it is considered as the primary variable in Equation (2.35).

Using the properties of normal distributions for b, the Taylor expansion of q(b,θ) in

terms of b has a closed-form formula (see Appendix B.1). Also notice that the proba-

bility distribution of θ is unknown and the reduced model only intends to involve the

first and second moments (i.e., expectation and variance) of θ, thus θ is considered as

the secondary variable in Equation (2.35) and the higher order (> 2) terms involving

θ in the Taylor expansion are truncated.

Let b̄ = E[b] and θ̄ = E[θ] denote the expectations of b and θ, respectively.

Denote δb = b− b̄ and δθ = θ− θ̄. Then E [δb] = E [δθ] = 0. The Taylor expansion
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of qi about (b̄, θ̄) (truncated as stated above) is,

qi(b,θ) ≈ qi(b̄, θ̄) +
∑

k1+···+kn≥1

1

k1!k2! · · · kn!

(
D
b
k1
1 ···b

kn
n
qi(b̄, θ̄)

)
(δb1)k1 · · · (δbn)kn

+
n∑
k=1

(
Dθkqi(b̄, θ̄)

)
(δθk) +

n∑
k=1

n∑
l=1

1

2

(
Dθkθlqi(b̄, θ̄)

)
(δθk)(δθl)

+
n∑
k=1

n∑
l=1

(
Dbkθlqi(b̄, θ̄)

)
(δbk)(δθl). (2.38)

For simplicity of notation, denote

Dbqi = (Db1qi, Db2qi, . . . , Dbnqi), (2.39)

Dθqi = (Dθ1qi, Dθ2qi, . . . , Dθnqi), (2.40)

Dθθqi =



∂2qi
∂θ1∂θ1

∂2qi
∂θ1∂θ2

· · · ∂2qi
∂θ1∂θn

∂2qi
∂θ2∂θ1

∂2qi
∂θ2∂θ2

· · · ∂2qi
∂θ2∂θn

...
...

. . .
...

∂2qi
∂θn∂θ1

∂2qi
∂θn∂θ2

· · · ∂2qi
∂θn∂θn


, (2.41)

Dbθqi =



∂2qi
∂b1∂θ1

∂2qi
∂b1∂θ2

· · · ∂2qi
∂b1∂θn

∂2qi
∂b2∂θ1

∂2qi
∂b2∂θ2

· · · ∂2qi
∂b2∂θn

...
...

. . .
...

∂2qi
∂bn∂θ1

∂2qi
∂bn∂θ2

· · · ∂2qi
∂bn∂θn


. (2.42)

Then Equation (2.38) can be written in the following matrix form

qi(b,θ) ≈ qi(b̄, θ̄) +
∑

k1+···+kn≥1

1

k1!k2! · · · kn!

(
D
b
k1
1 ···b

kn
n
qi(b̄, θ̄)

)
(δb1)k1 · · · (δbn)kn

+
(
Dθqi(b̄, θ̄)

)
· (δθ) +

1

2
(δθ)T ·

(
Dθθqi(b̄, θ̄)

)
· (δθ)

+ (δb)T ·
(
Dbθqi(b̄, θ̄)

)
· (δθ) . (2.43)

The probability distribution of qi depends on the distributions of b and θ. Using
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Equation (2.43) to estimate the expectation of qi,

E [qi(b,θ)]

≈ qi(b̄, θ̄) +
∑

k1+···+kn≥1

1

k1!k2! · · · kn!

(
D
b
k1
1 ···b

kn
n
qi(b̄, θ̄)

)
E
[
(δb1)k1 · · · (δbn)kn

]
+
(
Dθqi(b̄, θ̄)

)
· E [δθ] +

1

2
E
[
(δθ)T ·

(
Dθθqi(b̄, θ̄)

)
· (δθ)

]
+E

[
(δb)T ·

(
Dbθqi(b̄, θ̄)

)
· (δθ)

]
= qi(b̄, θ̄)eσ

2
b/4

+
1

2
trace

((
Dθθqi(b̄, θ̄)

)
· Σθθ

)
+ trace

((
Dbθqi(b̄, θ̄)

)
· ΣT

bθ

)
. (2.44)

A detailed derivation for qi(b̄, θ̄)eσ
2
b/4 in Equation (2.44) can be found in Ap-

pendix B.1. Here Σ denotes the covariance matrices:

Σθθ =



δθ1δθ1 δθ1δθ2 · · · δθ1δθn

δθ2δθ1 δθ2δθ2 · · · δθ2δθn
...

...
. . .

...

δθnδθ1 δθnδθ2 · · · δθnδθn


, (2.45)

Σbθ =



δb1δθ1 δb1δθ2 · · · δb1δθn

δb2δθ1 δb2δθ2 · · · δb2δθn
...

...
. . .

...

δbnδθ1 δbnδθ2 · · · δbnδθn


. (2.46)

Equation (2.44) then reduces to,

dθ̄

dt
≈ −G

(
q(b̄, θ̄)eσ

2
b/4 + η + ζ

)
, (2.47)

with

ηi =
1

2
trace

((
Dθθqi(b̄, θ̄)

)
· Σθθ

)
, (2.48)

ζi = trace
((
Dbθqi(b̄, θ̄)

)
· ΣT

bθ

)
. (2.49)
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Since the covariance matrices Σbθ and Σθθ are both involved in Equation (2.47),

a coupled system is required to compute them. By the chain rule,

d

dt
Σθθ = E

[
dδθ

dt
· (δθ)T

]
+ E

[
(δθ) ·

(
dδθ

dt

)T]
, (2.50)

d

dt
Σbθ = E

[
(δb) ·

(
dδθ

dt

)T]
. (2.51)

In Equation (2.51), note the fact that b does not change over time, that is,

dδb/dt ≡ 0.

Since

dδθ

dt
=
dθ

dt
− dθ̄

dt
,

by Equations (2.35) and (2.47), the i-th entry is(
dδθ

dt

)
i

≈ − 1

∆
(κi+1 − κi) (2.52)

with

κi = qi(b,θ)−
(
qi(b̄, θ̄)eσ

2
b/4 + ηi + ζi

)
. (2.53)

Then the i-th row of E

[
dδθ

dt
· (δθ)T

]
is

E

[(
dδθ

dt

)
i

(δθ)T
]
≈ − 1

∆

(
E
[
κi+1(δθ)T

]
− E

[
κi(δθ)T

])
. (2.54)

Substitute Equation (2.43) to (2.53), estimate the expectations in Equation (2.54),

and truncate the higher order terms involving δθ, then

E
[
κi(δθ)T

]
≈
(
Dbqi(b̄, θ̄)

)
· Σbθ +

(
Dθqi(b̄, θ̄)

)
· Σθθ. (2.55)

To write the entire matrix for E

[
dδθ

dt
· (δθ)T

]
, define a row difference operator,

Gr : Rn×m → R(n−1)×m

An×m 7→ 1

∆

(
V(n−1)×nUn×n − V(n−1)×n

)
An×m
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with matrix (V )i,j = δi,j and (U)i,j = δi+1,j. U with ones on the super-diagonal is

usually called an upper shift matrix. Also, denote

Gr =
1

∆

(
V(n−1)×nUn×n − V(n−1)×n

)
(2.56)

and the linear map is equivalent to left-multiplication by Gr.

Denote the Jacobian matrices of q by (Dbq)i,j = Dbjqi, (Dθq)i,j = Dθjqi, then

E

[
dδθ

dt
· (δθ)T

]
≈ −Gr

((
Dbq(b̄, θ̄)

)
· Σbθ +

(
Dθq(b̄, θ̄)

)
· Σθθ

)
(2.57)

Notice that E

[
(δθ) ·

(
dδθ

dt

)T]
is the transpose ofE

[
dδθ

dt
· (δθ)T

]
, Equation (2.50)

thus reduces to

d

dt
Σθθ ≈ H +HT , (2.58)

with

H = −Gr

( (
Dbq(b̄, θ̄)

)
· Σbθ +

(
Dθq(b̄, θ̄)

)
· Σθθ

)
. (2.59)

For Equation (2.51), using (2.52), the i-th column of (δb) ·
(
dδθ

dt

)T
is

(δb)

(
dδθ

dt

)T
i

≈ − 1

∆
(κi+1 − κi)δb. (2.60)

Its expectation yields

E

[
δb

(
dδθ

dt

)T
i

]
≈ − 1

∆
(E [κi+1(δb)]− E [κi(δb)]) . (2.61)

The above expression is more complicated than Equation (2.55) because in (2.55)

all higher order terms involve δθ are truncated. In contrast, Equation (2.61) has

terms that only contain δb and all orders for pure δb must be maintained. Higher

order terms involving δθ are again truncated. By Equation (2.53) and E [δb] = 0,

E [κi(δb)] ≈ E [qi(b,θ)(δb)] . (2.62)
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Then by Equation (2.43),

E [κi(δb)] ≈
∑

k1+···+kn≥1

1

k1!k2! · · · kn!

(
D
b
k1
1 ···b

kn
n
qi(b̄, θ̄)

)
E
[
(δb1)k1 · · · (δbn)kn(δb)

]
+Σbθ ·

(
Dθqi(b̄, θ̄)

)T
(2.63)

The first term in the above equation has a closed-form expression in terms of σb

and partial derivatives of q (see Appendix B.2).

Similarly, define a column difference operator,

Gc : Rm×n → Rm×(n−1)

Am×n 7→
1

∆
Am×n

(
Ln×nVn×(n−1) − Vn×(n−1)

)
with matrix (V )i,j = δi,j and (L)i,j = δi,j+1. Notice that L is often called a lower

shift matrix with ones on the sub-diagonal. When a matrix is right-multiplied by L,

it performs a right shift on the matrix entries. Also, denote

Gc =
1

∆

(
Ln×nVn×(n−1) − Vn×(n−1)

)
(2.64)

and the linear map is equivalent to right-multiplication by Gc.

Then Equation (2.51) reduces to,

d

dt
Σbθ ≈ −

(
σ2
b

2

(
1 + eσ

2
b/4 − eσ2

b/8
)
P + Σbθ ·

(
Dθq(b̄, θ̄)

)T)
Gc, (2.65)

with

P = diag(q(b̄, θ̄)) + Ln×n diag(q(b̄, θ̄)). (2.66)

Here diag(q(b̄, θ̄)) is a diagonal matrix with the diagonal q(b̄, θ̄). In fact, for

the Gardner model with the geometric mean of conductivities in Equation (2.36),

P = 2
(
Dbq(b̄, θ̄)

)T
.
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As a result, a (coupled) system of ODEs is formulated by

dθ̄

dt
≈ −G

(
q(b̄, θ̄)eσ

2
b/4 + η + ζ

)
,

d

dt
Σθθ ≈ H +HT ,

d

dt
Σbθ ≈ −

(
σ2
b

2

(
1 + eσ

2
b/4 − eσ2

b/8
)
P + Σbθ ·

(
Dθq(b̄, θ̄)

)T)
Gc.

(2.67)

The coupled system (2.67), as a reduced model for stochastic soil hydraulic param-

eters, consists of the expectation equations of soil water contents and the covariance

equations of water contents and soil hydraulic parameters. Section 3.3 presents the

numerical solution of this reduced model. The reduced model is also compared to

two other approaches: (1) direct numerical simulations using agent-based (cell-wise)

random parameters, and (2) the numerical solution using homogenized soil parame-

ters.
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Chapter 3

NUMERICAL SIMULATIONS

The numerical experiments in this research are coded in Fortran90, performed on

either the Intel Xeon CPU E5-2620 (2.00 GHz) or the Intel Core i7 (2.7 GHz). All

the numerical experiments can fit in the cache size. Appendix C shows more details

about the implementation of numerical simulations.

3.1 Investigation on Interface Problems in Two-Layer Soils

Numerical simulations of transient flow in two-layer soils using three hydraulic

models (Gardner, MvG, FXLR) are presented here. The purpose of these numerical

experiments is to demonstrate the possible existence of multiple solutions to the inter-

face problem for all three hydraulic models with specific soil parameters or conditions

and how the ill-posedness of the interface problem impacts the numerical solution.

3.1.1 Two-Layer Case Using Gardner Model

Since the Gardner model has been analyzed analytically in Equations. (2.24)–

(2.26), two cases are demonstrated in which the (µ, λ) path falls into the hatched

or shaded region in Figure 2.7 during the numerical simulation: (1) for the hatched

region that multiple solutions to the interface problem exist, (2) for the shaded region

that a fixed-point iteration converges to a 2-cycle.

Case 1 – Hatched Region

For a specific infiltration process in a two-layer soil, the boundary pressure heads

are fixed as htop = −0.6, hbottom = −1 (non-dimensionalized) using the parameters in
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Table 3.1. The initial pressure head profile is assumed to be constant within the range

0.55 ≤ z ≤ 1 (lower layer) and linear within the range 0 ≤ z ≤ 0.55 (upper layer

plus a small piece of the lower layer). This initial steady state can be interpreted as a

forced drainage at the bottom of the soil. Notice that the initial/boundary conditions

can affect the ill-posedness of the interface problem, thus, this research work only uses

conditions that can trigger the existence of multiple solutions.

Table 3.1: Dimensionless Soil Hydraulic Parameters for the Two-Layer Case Using the

Gardner Model.

Case No. Layer α β θs θr

Case 1
upper 13 1 0.4 0.06

lower 1 0.0006 0.4 0.06

Case 2
upper 10 1 0.4 0.06

lower 130 1476 0.4 0.06

When the number of interior grid points N = 50 (a description of indexing can be

found in Appendix C.2), multiple solutions to the interface problem exist at certain

time steps during the numerical simulation. Figure 3.1(a) shows the trajectories in

(µ, λ)-space computed at the interface during each numerical run. It shows how this

trajectory moves out of the hatched region as the grid is refined, i.e., N is increased,

from t = 0 (I) to t = 100 (T) with N = 50 (crosses), N = 100 (asterisks) and N = 200

(dots). Figure 3.1(b) indicates that multiple solutions can introduce strong deviation

or non-physical oscillations in pressure head under the interface (at z ≈ 0.5098). In

a multi-layer soil, errors from multiple interfaces may compound and possibly lead to

greater oscillations or instabilities.

Figure 3.2 shows the pressure head profiles at different time steps corresponding

to the (three) different values of N used. In the cases N = 50, 100, multiple solutions
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exist during the numerical simulation, while for N = 200, the interface problem

always admits a unique solution. Non-physical pressure heads can be observed in

Figure 3.2(a) and Figure 3.2(b), in particular as the wetting front passes through the

interface or shortly thereafter. When N = 50, multiple solutions do not disappear

once they appear, leading to an unrecoverable wrong profile. When N = 100, multiple

solutions exist only when the gradient of pressure head at the interface is large, the

pressure head profile becomes inaccurate due to the impact of multiple solutions

from t ≈ 1.04 to t ≈ 4.15. After the front has passed through the interface, multiple

solutions disappear when N = 100. Because of the natural diffusion process, the

profile may autocorrect itself only if the interface problem ceases to have multiple

roots after the front passes the interface.
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(a) (µ, λ) Trajectories at the Interface.

(b) Pressure Head below the Interface.

Figure 3.1: Gardner Model Case 1.
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Figure 3.2: Numerical Solutions of the Gardner Model Case 1

Case 2 – Shaded Region

This case occurs when the fixed-point iteration converges to a 2-cycle. It can be

avoided by switching to a different iterative method for solving the interface problem

(2.15), for example, using a Newton iteration instead.
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(a) (µ, λ) Trajectories at the Interface.
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(b) Pressure Head below the Interface.

Figure 3.3: Gardner Model Case 2.
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The solution process is illustrated in Figure 3.3 when such a situation arises in

the numerical simulation using the fixed-point iteration. The (µ, λ) trajectories at

the interface during the numerical run 0 ≤ t ≤ 100 with N = 24 using the fixed-point

iteration (2.16) is shown in Figure 3.3(a). For different maximum iteration number

(maxiter), 199 (crosses) or 200 (dots), the trajectories are apart from each other in

the shaded region due to alternating roots in 2-cycles of the fixed-point iteration.

In this case, the 2-cycle oscillates between two values, neither of which satisfies

Equation (2.15). The resulting fluxes appearing on each side of the rightmost equality

in (2.12) are not equal anymore. Instead of (2.12), the arithmetic average of these

fluxes is considered,

qj+ 1
2
≈ 1

2

[
K−
j+ 1

2

(
1−

h−j+1 − hj
∆

)
+K+

j+ 1
2

(
1−

hj+1 − h+
j

∆

)]
. (3.1)

The non-dimensionalized boundary pressure heads are set to htop = −0.6 and hbottom =

−0.01, corresponding to an evaporation process. The initial pressure head profile is

linear in the upper layer and constant in the lower layer. The fixed-point iteration

exhibits a 2-cycle only for relatively coarse grids. Figure 3.3(b) shows the pressure

head at z = 0.52, which is the first grid point below the interface, when N = 24. The

simulation is compared with the numerical solution obtained via a Newton iteration.

As in case 1, these results also indicate that non-convergence of the fixed-point itera-

tion is temporary and has no long-lasting impact on the solution at later times. The

evaporation process in the whole soil column is not shown here because the difference

in the entire pressure head profile is not much visible.

Considering the risk of a 2-cycle of a fixed-point iteration, a Newton iteration is

used by default in further implementation when using more advanced models (MvG

and FXLR).
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3.1.2 Two-Layer Case Using MvG Model

For the MvG model, multiple solutions of the interface problem also exist, for ex-

ample, when using parameters given in Table 3.2 and (non-dimensionalized) boundary

conditions htop = −1 and hbottom = −135. The initial pressure head profile is set linear

throughout the soil column, i.e., hinitial(z) = hbottom − (1− z) for 0 ≤ z ≤ 1.

Table 3.2: Dimensionless Soil Hydraulic Parameters for the Two-Layer Case Using the

MvG Model.

Layer α β n θs θr

upper 0.13 0.8 2.5 0.368 0.001

lower 0.29 1 2.72 0.368 0.001

Figure 3.4(a) shows the overall infiltration process for N = 104 and N = 110.

When N = 104 the interface problem exhibits multiple solutions during the simula-

tion, while N = 110 the interface problem always has a unique solution. The impact

of the multiplicity of solutions can be seen in Figure 3.4(b) to remain local in time

(around t ≈ 0.015) and in the vicinity of the soil interface at z = 0.5. Although the

two values of N are very close, Figure 3.4(b) demonstrates numerical ponding (as

the solid curve for t = 0.0149 crosses the other two curves) due to the existence of

multiple solutions to the interface problem when using N = 104.
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Figure 3.4: Numerical Solutions for the MvG Model
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3.1.3 Two-Layer Case Using FXLR Model

For the FXLR model, the numerical solution of a “transparent” interface problem

is presented here. The purpose of this numerical experiment is to demonstrate the

possibility for highly nonlinear models to introduce numerical issues with the interface

problem even across very similar soil types.

When upper and lower layers have identical hydraulic properties (K+ = K− = K),

the interface equation (2.15) yields

g(1) =

√
KjK(hj+1)

Kj+1K(hj)
=

√
KjKj+1

Kj+1Kj

= 1, (3.2)

i.e., r = 1 is a root of Equation (2.15) and K+
j+ 1

2

= K−
j+ 1

2

= Kj+ 1
2
. In other words,

the interface is transparent in a homogeneous soil. In the case of the Gardner model,

for which identical layers lead to a unique root (λ = 1 and µ = 0 in Equations (2.25)

and (2.26)), the interface problem is guaranteed a unique solution. However, even

in the case of a transparent interface, the interface problem may admit multiple

(three) solutions for certain advanced hydraulic model. This work presents a case

of the FXLR model for the interface problem to have other roots r 6= 1 under such

transparent condition, typically one greater than 1 and one smaller than 1.

One example of such instance is obtained for the parameters listed in Table 3.3

(used in both layers) and (non-dimensionalized) boundary pressure heads htop = −40

and hbottom = −70. The initial pressure head profile is linear throughout the soil.

Table 3.3: Dimensionless Soil Hydraulic Parameters for the Two-Layer Case Using the

FXLR Model (Transparent Interface)

Layer α β n m p θs θr

upper and lower 0.015 1 2.5 5 18 0.4 0.01
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If multiple solutions exist for the transparent interface, forcing r = 1 is equiva-

lent to solving (2.3) in a single layer. Figure 3.5 shows general convergence in the

numerical water profiles as ∆ decreases and r = 1 is fixed. Under this situation,

multiple solutions only exist for a short period as the wetting fronts passes through

the interface.

Pressure Head
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D
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th

1  
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t = 0

t = 10

t = 50

t = 100

t = 1000

N = 400, multiple solutions

N = 800, multiple solutions

fine mesh N = 3200, unique solution

Figure 3.5: Numerical Solutions for the FXLR Model with a Transparent Interface (z =

0.5) Forcing r = 1.

Because r = 1 is typically an unstable solution for the fixed-point iteration (but

stable for the Newton iteration), it is still possible for the fixed-point iteration to

converge to a root r 6= 1 even when starting from a value of r close to 1. In such

a situation, let the simulation force to select the root larger than 1. Figure 3.6

illustrates the resulting pressure head profile in the soil with N = 500. Once the

wetting front arrives at the interface, the numerical flow nonphysically accumulates at

the interface. Since r is overestimated, the hydraulic conductivities of the upper layer

are unrealistically larger than conductivities in the lower layer, and the lower layer
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behaves like a numerical impervious block. Multiple roots of the interface equation

do not disappear under this situation. It is worth noting that positive extrapolated

pressure heads h+
j , h

−
j+1 > 0 and numerical instabilities occur when using the largest

root of the interface problem.
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Figure 3.6: Numerical Solutions for the FXLR Model with a Transparent Interface (z =

0.5) Using the Root Larger Than 1.

3.2 Comparison of Averaging Methods for Cell-Centered Conductivities

3.2.1 Comparison in a Two-Layer Soil

Numerical simulations of one-dimensional infiltration flow in a two-layer soil are

used here to compare four hydraulic conductivity averaging methods and their im-

pact on the interface problem. Numerical experiments are conducted using the same

parameters and conditions in Section 3.1.1.

Table 3.4 lists whether physical numerical simulations are obtained and whether

the uniqueness of the solution to the interface problem is guaranteed for different N
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values.

Table 3.4: Gardner Model: Well-Posedness of the Interface Problem Using Different Con-

ductivity Averaging Methods.

Harmonic Mean

N = 50 N = 100
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

N = 200 N = 1000
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

Geometric Mean

N = 50 N = 100
Physical Solution Uniqueness Physical Solution Uniqueness

X X Partially Temporarily

N = 200 N = 1000
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

Log-Mean

N = 50 N = 100
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

N = 200 N = 1000
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

Arithmetic Mean

N = 50 N = 100
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

N = 200 N = 1000
Physical Solution Uniqueness Physical Solution Uniqueness

X X X X

Figure 3.7 shows the numerical infiltration process, when N = 100, using the four

hydraulic conductivities averaging methods described in Section 2.4 (used throughout

the domain and not simply at the interface).
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Figure 3.7: Numerical Solutions of Unsaturated Flow in a Two-Layer Soil Using Different

Averaging Methods for Cell-Centered Hydraulic Conductivities When N = 100.

The harmonic mean leads to a non-physical solution as soon as the water front

reaches the interface, and numerical ponding occuring at the interface persists later

on because of the underestimated interface conductivity. The source of the problem

can be attributed to the existence of multiple solutions to the interface problem

when the gradient of pressure head starts increasing at the passage of the wetting

front, a larger than physical root being selected in the numerical iteration. The
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simulation with the geometric mean temporarily exhibits a similar behavior, with

the existence of multiple solutions, but the ponding issue is only temporary as the

pressure head profile seems to correctly adjust itself once the interface problem ceases

to have multiple solutions(after the wetting front passes). Both the log-mean and the

arithmetic mean lead, in this example, to an interface problem with a unique root at

all times. The corresponding head profiles can be verified to be correct by using a

finer spatial discretization.

For the MvG model and the FXLR model, numerical experiments using different

conductivity averaging methods are compared in multi-layer soils in Section 3.2.3.

3.2.2 Comparison of Geometric Mean and Log-Mean with Mesh Refinement

As shown in previous simulations in a two-layer soil, using the geometric mean for

conductivities leads to multiple roots of the interface problem, while using the log-

mean guarantees a unique root. In this section, a local mesh refinement strategy is

proposed in order to show the critical discretization size needed for the geometric mean

to cease multiplicity issue of the interface problem compared with the log-mean. It is

worth noting that refining the mesh locally around a soil interface requires much less

computational cost to solve the Richards’ equation than refining the mesh globally,

except in an agent-based heterogenous soil (i.e., each cell is a distinct soil layer). As

mentioned before, this mesh refinement strategy is feasible only when a local scheme

for estimating interface conductivities is employed. Notice that the grid around an

interface is not uniform but symmetric about the interface, thus the value of ∆ in

Equation (2.12) is the cell size that straddles the interface.

Figure 3.8 shows the local mesh refinement around a soil interface. Several iter-

ations of refinements are applied until the interface problem ceases to have multiple

roots. Each refinement adds two trisection points of the cell containing the interface
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to the original grid points and keeps all the rest grid points as in the last iteration.

In the numerical implementation, the index of grid points should be updated and

numbered sequentially after each iteration refinement.

new grid

new grid

hj−2

hj−1

hj

hj+1

hj+2

hj+3

∆j−2

∆j−1

∆j

∆j+2

∆j+1

interface

Figure 3.8: Local Mesh Refinement Around a Soil Interface. New Grid Points Are the

Trisection Points of the Previous Interface Cell, ∆j−1 = ∆j = ∆j+1.

The numerical experiments are conducted using the Gardner model with the ge-

ometric mean and the log-mean for conductivities. The initial number of (uniform)

finite difference cells, N , is 100. Soil hydraulic parameters for the Gardner model

used here are α− = 5, α+ = 3, β± = 1, θr = 0.01, θs = 0.5 (non-dimensionalized).

The boundary conditions are fixed pressure heads htop = −0.5 and hbot = −5 (non-

dimensionalized). Figure 3.9 shows that, using the geometric mean, multiple solutions

of the interface problem vanish after four levels of refinements. The uniqueness of so-

lution is always guaranteed using the log-mean, that is, no mesh refinement is needed

for the log-mean. Compared to the log-mean, using the geometric mean requires a

much finer mesh (1/27 of the size for the log-mean in this example) to ensure good

49



numerical performance around the soil layer interface. Since the Richards’ equation

is very stiff, this defect of the geometric mean can lead to unaffordable computational

cost.
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(a) Geometric Mean with 3 Levels of Refine-
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(b) Geometric Mean with 4 Levels of Refine-
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Guaranteed.
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(c) Log-Mean with No Refinement at the Inter-

face. A Unique Solution Is Guaranteed.

Figure 3.9: Comparison of Numerical Solutions Using the Geometric Mean and the Log-

Mean, with Spatial Mesh Refinements at the Interface (z = 0.5).
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3.2.3 Comparison in Multi-Layer Soils

Considering a vertical soil column of several layers, each layer is associated with

a set of soil hydraulic parameters. The discrete scheme for an n-layer soil with a

uniform spatial discretization is shown in Figure 3.10.

N homogeneous cells
in each layer

staggered spatial scheme
in the i-th layer

hi,1, θi,1
hi,2, θi,2

qi,0, Ki,0

qi,1, Ki,1

hi,N , θi,N
qi,N−1, Ki,N−1

qi,N , Ki,N

α1, β1, ...

α2, β2, ...

...

αn, βn, ...

htop

qbottom = Kbottomz

Figure 3.10: Finite Difference Scheme in an n-Layer Soil.

Multi-Layer Case Using the Gardner Model

Five alternating layers with uniform thickness is set for the Gardner model case.

Each layer is discretized into 20 uniform spatial cells. The odd layers (layer 1, 3 and

5) are assigned non-dimensionalized soil parameters α = 13, β = 1, and the even

layers (layer 2 and 4) with α = 1, β = 0.0006. The residual and saturated water

contents are the same for the entire soil, θr = 0.06, θs = 0.4. The initial pressure head

profile is hinitial = −1 (non-dimentionalized). The boundary conditions are htop =

−0.4 (fixed pressure head) and qbottom = Kbottom (free drainage). Figure 3.11 shows

the numerical solutions of pressure head at different times using the four averaging

methods for cell-centered conductivities. The occurrence of multiple solutions of the

interface problems is triggered across the interfaces at z = 0.2 and 0.6, when using the

harmonic mean and the geometric mean. At t = 1, there is numerical ponding near
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the interface z = 0.2 for the harmonic and geometric means. For the geometric mean,

the multiple solutions of the interface problem disappear shortly after the wetting

front has passed through this interface, then the numerical result autocorrects itself

at t = 3 due to the diffusive nature of the flow (and the Richards’ equation). However,

the multiple solutions subsist after they first occur for the harmonic mean, and an

incorrect infiltration process persists because of low conductivities at the interfaces

from a high conductivity layer to a low conductivity layer. Similar behavior is shown

for the harmonic mean and the geometric mean due to the existence of multiple

solutions across the interface z = 0.6 at t = 10, 100. The log-mean and the arithmetic

mean in this case always admit a unique solution to the interface problems.

Multi-Layer Case Using the MvG Model

Numerical simulation for the MvG model in a ten-layer soil is investigated here. Each

layer with uniform thickness is discretized into 20 uniform spatial cells. The odd layers

(1, 3, 5, 7 and 9) are assigned with non-dimensionalized soil parameters α = 0.13, β =

1, n = 2.5, and the even layers (2, 4, 6, 8 and 10) with α = 0.29, β = 1, n = 2.72. The

residual and saturated water contents are θr = 0.001, θs = 0.368 for the entire soil

column. The boundary conditions are fixed pressure head values for the top and the

bottom of the soil, htop = −1 and hbottom = −135. The initial pressure head profile

is hinitial(z) = −136 + z.

Figure 3.12 shows the space-time relation representing where and when a given

pressure head, h = ln
(
(ehtop + ehbottom)/2

)
, is obtained. Figures 3.13–3.18 shows the

infiltration process (as water content profiles) at different times. When using the

harmonic mean, the cell-centered conductivities are extremely underestimated so the

numerical water infiltration is too slow to be acceptable. The wetting front has not

reached the top-most interface at z = 0.1 when t = 0.1. The other three averaging
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Figure 3.11: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Five-Layer Soil Using the Gardner Model. Soil Interfaces Are z = 0.2, 0.4, 0.6, 0.8.

methods yield more acceptable results. However, using the geometric mean triggers

multiple solutions to the interface problems, leading to oscillations (in Figure 3.12 and

3.13–3.18). These oscillations are in the vicinity of soil interfaces (z = 0.1, 0.2, 0.3,

etc.). In this experiment, the log-mean and the arithmetic mean always admit a

unique solution to the interface problems, as desired.
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Figure 3.12: Depth vs Time Relation for Where and When a Given Pressure Head Value

Is Reached in a 1D Infiltration Process in a Ten-Layer Soil Setting Using the MvG Model.
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Figure 3.13: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (1).
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Figure 3.14: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (2).
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Figure 3.15: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (3).
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Figure 3.16: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (4).
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Figure 3.17: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (5).
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Figure 3.18: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the MvG Model – (6).

Multi-Layer Case Using the FXLR Model

A soil column with ten uniform layers discretized into 20 uniform cells each is used

again for the FXLR model. Soil hydraulic parameters α = 0.015,m = 2.5,m = 5, p =

18 are used for all the layers. The odd layers are assigned with β = 1 and the even

layers β = 0.9. The initial/boundary conditions are htop = −70 and hbottom = −40

(non-dimensionalized).

Figure 3.19 shows the space-time relation representing where and when a given

pressure head, h = ln
(
(ehtop + ehbottom)/2

)
, is obtained. Figure 3.20 shows the infil-

tration process (as water content profiles) at time t = 1, 10, 60, 100. The numerical

infiltration using the harmonic mean is too slow as shown in Figure 3.20, similar to

the numerical result using the MvG model. Oscillations are observed for the geomet-

ric mean due to the existence of multiple roots to the interface problems. Numerical

ponding occurs at soil interfaces despite the relatively small dissimilarity between the

saturated conductivities of even and odd layers, due to the ill-posedness of the inter-
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face problems when using the geometric mean. It is noticed that multiple solutions

still exist in a homogeneous soil column (i.e., the same β value is used for all these

layers), but the oscillations disappear for the geometric mean (between t ≈ 50 and

t ≈ 450 in Figure 3.19) because r = 1 is always obtained for the interface equations.

In this experiment, the log-mean and the arithmetic mean again admit a unique so-

lution and exhibit similar behavior of the infiltration process. Also notice that the

infiltration process using the geometric mean is much slower than log-mean and arith-

metic mean, and the downward flow is hindered at interfaces due to the existence of

multiple roots of the interface problem. Numerical oscillations due to the multiplicity

issue of the interface problems when using the geometric mean are dramatically visi-

ble in Figure 3.19. Compared with Figure 3.12, similar behaviors of the four means

are observed for the FXLR model.
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Figure 3.19: Depth vs Time Relation for Where and When a Given Pressure Head Value

Is Reached in a 1D Infiltration Process in a Ten-Layer Soil Setting Using the FXLR Model.
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Figure 3.20: Numerical Simulations at Different Times of a 1D Infiltration Process in a

Ten-Layer Soil Using the FXLR Model.

3.3 Numerical Results with Stochastic Soil Hydraulic Parameters

The Monte Carlo simulations are performed based on a normal distribution of

b = ln(β) ∼ N (b̄, σ2
b ) (Carsel and Parrish, 1988; Russo and Bouton, 1992). In this

work, stochastic simulations are based on the Gardner model with the geometric mean

for cell-centered conductivities, in order to compare with the numerical solution of the
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reduced model (2.67). Set b̄ = 0 because of non-dimensionalization of the saturated

conductivity β (in Appendix C.1). Several values of the standard deviation, σb, are

investigated. Other soil parameters in the Gardner model are assigned isotropic,

α = 2, θr = 0.1, θs = 0.6.

To investigate unsaturated flow in a heterogeneous unsaturated soil column, the

boundary conditions are a fixed flux at the top surface qtop = 0.1 and a fixed pressure

head at the bottom hbottom = −1.0 (both dimensionless). The initial pressure head

condition is hinitial = −2+z, 0 ≤ z ≤ 1 (linear throughout the soil). This 1D (vertical)

soil column is discretized into 50 spatial finite different cells, and each cell is assigned

with random b ∼ N (0, σ2
b ).

For each choice of σb, 200 stochastic realizations are performed. Each realiza-

tion is associated with an array of b values for the sequence of spatical cells, and

direct numerical simulations (DNS) are implemented by solving interface problems

for boundaries of all spatical cells (like in a multi-layer soil that each cell is a distinct

layer).

Figures 3.21 and 3.22 demonstrate a comparison of solutions obtained from three

methods:

(1) the (statistical) mean of pressure head profiles of all DNS for a given σb,

(2) the solution using homogenized parameters (statistical mean of all generated

random b for the same σb),

(3) the solution of the reduced model (2.67).

As shown in Figures 3.21 and 3.22, when σb increases, both the mean of DNS

and the solution of the reduced model show larger pressure head (higher water con-

tent) in the upper part of the soil column and smaller pressure head (lower water

content) in the lower part. This indicates that using the homogenized parameters of
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heterogeneous soils in the simulation of unsaturated flow results in less variation in

water content. These results also show that the reduced model can capture the higher

pressure head value near the soil surface in this simulation. There is less deviation

near the bottom of the soil from DNS and the reduced model to the solution of ho-

mogenized parameters, due to the fact that the pressure head is fixed at the bottom

of the soil column. Also notice that the top boundary condition is a fixed positive

infiltration flux (Neumann condition), so it accounts for the larger values of pressure

head (wetter soil) near the soil surface compared to the solution of homogenized pa-

rameters. Further, compared to the mean of DNS, the solution of the reduced model

exhibits larger deviation from the solution of homogenized parameters in the upper

part and less deviation in the lower part, especially for larger values of σb.

Figure 3.23 shows four different DNS realizations using a fixed σb = 0.8, corre-

sponding to Figure 3.22(a). It demonstrates that stochastic realizations (despite the

same distribution of soil parameter) can vary dramatically from each other.

Figure 3.24–3.27 show the histograms and probability density functions (PDF) of

200 DNS realizations for each choice of σb = 0.2, 0.4, 0.8, 1.2. It is worth noting that

when σb is large (e.g. 0.8), the solutions obtained from homogenized soil parameters

fall out of the 3σ interval of the PDF. Although the solutions of the reduced model

overestimate the water content near surface when σb is large, they are closer to the

corresponding statistical mean of DNS. Results indicate that using homogenized soil

hydraulic parameters in a extensively heterogeneous soil results in large errors and

underestimates the variation of water content in such an infiltration process. The

reduced model, as well as DNS, produces better approximation of the infiltration

pattern in heterogeneous soils because it captures the large variation of water content.
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Figure 3.21: Comparison of Mean of DNS (Solid), Solution Using Homogenized Parame-

ters (Dashed), and Solution of the Reduced Model (Circle), for σb = 0.2, 0.4.
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Figure 3.22: Comparison of Mean of DNS (Solid), Solution Using Homogenized Parame-

ters (Dashed), and Solution of the Reduced Model (Circle), for σb = 0.8, 1.2.
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Figure 3.23: Four DNS Realizations (Solid Curves) for σb = 0.8, Compared with the

Solution Using Homogenized Parameters (Dashed Curves), Corresponding to Figure 3.22(a).
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(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 3.24: Histogram and PDF of DNS When σb = 0.2. The Mean of DNS Is Compared

with the Solution Using Homogenized Soil Parameters or the Reduced Model.
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(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 3.25: Histogram and PDF of DNS When σb = 0.4. The Mean of DNS Is Compared

with the Solution Using Homogenized Soil Parameters or the Reduced Model.
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(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 3.26: Histogram and PDF of DNS When σb = 0.8. The Mean of DNS Is Compared

with the Solution Using Homogenized Soil Parameters or the Reduced Model.
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(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 3.27: Histogram and PDF of DNS When σb = 1.2. The Mean of DNS Is Compared

with the Solution Using Homogenized Soil Parameters or the Reduced Model.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

This research work highlights the numerical difficulties in the simulation of tran-

sient unsaturated flow in layered soils.

1. The continuity of flux across the interface of soils is often neglected in nu-

merical (including commercial) software. This work addresses numerical difficulties

of enforcement of the continuity of both pressure head and flux at soil interfaces,

which yields a nonlinear interface problem. This interface problem can have multiple

solutions in certain soil parameter regimes and conditions for all three soil hydraulic

models (Gardner, MvG, and FXLR). Several factors affect in particular the well-

posedness of the interface problem. The size of the spatial discretization around the

interface between soil layers is certainly an important factor. This work presents a

full mathematical analysis for the Gardner model and the geometric mean for cell-

centered conductivities. Explicit criteria in terms of two parameters (µ, λ) identify

a priori a critical mesh size ∆ guaranteeing the uniqueness of the solution to the

interface problem. This work shows that the parameter µ can be made small enough

by reducing the cell size ∆, and eliminate the multiplicity of roots. The numerical

experiments in this work also demonstrate the possibility for ill-posed interface prob-

lems using the MvG and FXLR models. The high nonlinearity of more advanced soil

hydraulic models (such as MvG and FXLR) indicates difficulties in determining how

small ∆ should be to guarantee a unique solution to the interface problem. For some

cases, especially when a grid size is not fine enough or using a small conductivity
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averaging scheme (the harmonic mean), the wrong numerical ponding in simulation

results is unrecoverable. In other cases, the occurrence of multiple solutions while the

wetting front passes through the interface is a short-term effect that is damped once

the front has passed, when pressure head differential (or gradient) gets small again,

likely because of diffusive effects. The water content profile (or pressure head profile)

after the multiple solutions appear dramatically differs among numerical solutions,

especially on coarser grids, and it is unclear which solution makes sense physically.

Practitioners who conduct numerical simulations of water flows in layered soils can

a posteriori set a flag for the existence of multiple solutions to the interface problem

during numerical simulations. In addition, use of more advanced models, such as the

FXLR model that provides a good match between the hydraulic model and experi-

mental data, can introduce additional challenges to the numerical solution. The MvG

and FXLR models are used as a demonstration of this effect herein, but other more

sophisticated models may also exhibit multiple roots at soil interfaces.

2. This work shows that the choice of averaging schemes for hydraulic conduc-

tivities in staggered formulations of the Richards’ equations can substantially impact

the numerical solution, in particular the ill-posedness of the interface problem. The

harmonic averaging for cell-centered conductivities is not recommended in numerical

simulations especially for sophisticated hydraulic models because of its convergency

issue. Using the geometric mean, though recommended in many other studies for

better accuracy (Haverkamp and Vauclin, 1979; Schnabel and Richie, 1984; Belfort

and Lehmann, 2005), can lead to multiple solutions to the interface problem. Using a

relatively large average conductivity (e.g., the log-mean and the arithmetic mean) is

less likely to trigger the multiplicity of roots to the interface problem. The arithmetic

mean of conductivities may however grossly overestimate appropriate average con-

ductivities. The log-mean seems to be appropriate, both physically and numerically,
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at least for one-dimensional simulations such as those conducted here.

3. In this work, two techniques dealing with the heterogeneity of a one-dimensional

soil are proposed: (1) mean of stochastic realizations with soil hydraulic parameters

defined cell-wise via solving interface problems, and (2) a reduced model for stochastic

soil hydraulic parameters in the Richards’ equation using the Gardner model with the

geometric mean of conductivities. Results show that possible variation in pressure

head profile (water content profile) can be extensively underestimated in numerical

simulations via homogenization of soil hydraulic parameters. In contrast, the solution

of the reduced model and the mean of stochastic realizations exhibit the same ten-

dency of variation in pressure head in the infiltration process presented in this work.

Compared to the solution using homogenized parameters, the reduced model and the

mean of stochastic realizations show larger pressure head in the top part of the soil

column and smaller pressure head near bottom in infiltration process. The reduced

model successfully modeled variation in soil parameters, namely the saturated hy-

draulic conductivity, and agrees with the mean of stochastic realizations. In addition,

the larger the variation in saturated hydraulic conductivity, the larger the variation

in the solution of the reduced model than the mean of stochastic realizations. In

addition, the large variability of flow profiles in the stochastic realizations indicates

that a small change in the initial/boundary conditions or in the soil hydraulic prop-

erties can lead to large variations in flow profiles and can be visualized as “fingers”

in two-dimensional or three-dimensional simulations.
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4.2 Future Work

4.2.1 2D Cracked Soil

This research only focuses on one-dimensional (vertical) soils. Unsaturated flow in

1D layered soils can be generalized to two-dimensional soils. Although the simulation

in 2D is similar to that in 1D, 2D models will take into account the multiple inter-

faces in all directions rather than merely vertically, e.g. in fractured soils. The future

work will study the multiplicity of the numerical solutions and determine conditions

for uniqueness of solution and stability/convergence of iterative solutions for the in-

terface problems. We plan to apply the above interface strategies to model cracked

soils (e.g. in dry areas such as Arizona) and determine how the crack pattern affects

the infiltration flow of water in the soil. In turn the flow affects swelling properties

and possible shifts in soils, an issue which plays an important role in geotechnical

engineering, as it controls the depth of layer in remove-replace strategies for build-

ing foundations. In 1D, we use a finite difference approach, however, finite element

methods can be used to model cracks in 2D, and we plan to develop a version of the

interface problem in this more general setting.

4.2.2 Fingering Effect

The multiplicity of roots of the interface problem at small (but finite) discretiza-

tion sizes is ultimately related to the fact that the Richards’ equation is not far from

being ill-posed. Another instance of instabilities triggered by small perturbations

(via a fourth-order spatial derivative of the saturation) of the continuous Richards’

equation has, for example, been used to model the so-called “fingering effect”.

A modification of the Richards’ equation to include fingering effects, associated

to preferential vertical infiltration and modeled by a “correction” term involving a
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fourth-order spatial derivative of the saturation, was formulated by Cueto-Felgueroso

and Juanes (2008, 2009). The fingering effect is a phenomenon that the wetting front

forms a finger-like contact when water infiltrates into initially dry soil.

The one-dimensional modified Richards’ equation is,

∂θ

∂t
= − ∂

∂z

(
K

(
1− ∂h

∂z
− α∂

3θ

∂z3

))
, (4.1)

where 0 < α < 1.

The last term in the modified form of the Richards’ equation is a destabilizing

term. For instance, assuming that h is linear with respect to z, the first and second

terms vanish on the right-hand side of Equation (4.1). It yields a fourth-order partial

derivative equation

θt = θzzzz (4.2)

where the coefficient α can be scaled to one by multiplying the variables by constants.

Assume that we can use separation of variables, i.e., θ(t, z) = f(t)g(z). The equation

yields f ′(t)g(z) = f(t)g′′′′(z). Let

f ′(t)

f(t)
=
g′′′′(z)

g(z)
= λ, (4.3)

then f(t) = eλt. Assuming g(z) = eirz with real number r, it yields r4 = λ > 0 (a

dispersion relation). It implies that the solutions θ(t, z) is unstable.

There is another way to show that θ is unstable. Define

E =
1

2

∫
Ω

θ2 dz, (4.4)

where Ω is a given spatial domain with fixed θ values for boundary conditions.

Then

dE

dt
=

∫
Ω

θθt dz =

∫
Ω

θθzzzz dz =

∫
Ω

θ2
zz dz > 0, (4.5)

thus, the solution θ(t, z) is unstable.
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In the modified Richards’ equation, α = 0 corresponds to the original Richards’

equation and implies well-posedness with unique solution to the interface problem; but

for α > 0, instabilities and chaotic solutions may occur. This indicates a potential

connection between the modified Richards’ equation and the interface problems in

heterogeneous soils. Similar to the large variability of flow profiles in heterogeneous

soils, the impact of the extra unstable term in the modified Richards’ equation can also

be visualized as “fingers” in 2D/3D simulations. The “hold-back-pile-up” effect has

been discussed in one-dimensional simulations using the modified Richards’ equation

(Eliassi and Glass, 2002). How the destabilizing term behaves and impacts the one-

dimensional numerical solution is still unclear. The future work of this research

will focus on the variation and instabilities of the numerical solution of the modified

Richards’ equation and aim to study its connection to the reduced model for stochastic

soil hydraulic parameters.
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APPENDIX A

EXPLICIT CRITERIA FOR GARDNER MODEL WITH GEOMETRIC MEAN

81



A.1 Number of Roots of Equation (2.24)

For the Gardner model, the equation r = g(r) is equivalent to

ϕ(r) := ln g(r)− ln r = lnλ+ µ
1− r
1 + r

− ln r = 0. (A.1)

Note that ϕ(0+) = +∞ and ϕ(+∞) = −∞ so ϕ vanishes at at least one value of r.
The derivative

ϕ′(r) = − 2µ

(1 + r)2
− 1

r

vanishes for r solution of the quadratic equation (1 + r)2 = −2µr, i.e.,

r = r± := −(1 + µ)±
√
µ(µ+ 2). (A.2)

For µ ≥ 0 both roots are real but negative, while for −2 < µ < 0 the roots are
complex conjugate. In both cases ϕ is monotonic for r > 0 and Equation (2.24)
admits a unique solution.

If µ < −2 then 0 < r− < r+. Equation (2.24) therefore admits three roots if
ϕ(r−) < 0 and ϕ(r+) > 0. These two conditions are equivalent to

ln r+ − µ 1− r+

1 + r+
< lnλ < ln r− − µ 1− r−

1 + r−
, (A.3)

which reduces to

| lnλ| <
√
µ(2 + µ) + ln

∣∣∣1 + µ+
√
µ(2 + µ)

∣∣∣ (A.4)

using r−r+ = 1. For µ = −2 the function ϕ′ vanishes at the double root r = 1, in
which case Equation (2.24) has a single root if λ 6= 1 and the triple root r = 1 if
λ = 1.
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A.2 Stability of Fixed-Point Iteration

The fixed-point iteration (2.16) for the Gardner case (2.24) is guaranteed to con-
verge (locally) if |g′(r)| < 1 for r such that g(r) = r, which is equivalent to

1

r
>
|g′(r)|
r

=
|g′(r)|
|g(r)| =

∣∣∣∣ ddr ln g(r)

∣∣∣∣ =

∣∣∣∣ϕ′(r) +
1

r

∣∣∣∣ =
2|µ|

(1 + r)2
. (A.5)

On the boundary of the stability domain in (µ, λ)-space the relations (1 + r)2 = 2|µ|r
and g(r) = r hold. The first relation yields,

r̂ = r̂± := |µ| − 1±
√
|µ|(|µ| − 2) > 0, (A.6)

where

|µ| = 1

2

(
r +

1

r

)
+ 1 ≥ 2.

The second relation yields

lnλ = ln r − µ1− r
1 + r

. (A.7)

If µ < −2, r̂± is equivalent to (A.2). The stability region overlaps the region of
single root condition (A.4) for µ < −2.

If µ > 2, substituting r̂± in Equation (A.7) yields

| lnλ| =
√
µ(µ− 2)− ln

(
µ− 1−

√
µ(µ− 2)

)
, (A.8)

using r̂−r̂+ = 1. It determines the boundary of the shaded region in Figure 2.7.

83



APPENDIX B

REDUCTION IN STOCHASTIC EQUATIONS
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B.1 Reduction in Equation (2.44)

For a multi-variable function qi(b,θ) in Equation (2.44), its Taylor expansion
about (b̄, θ̄) consists of three parts – (a) only with δb or none, (b) only with δθ, and
(c) with both. Because the parameter b describes the variability of soil properties and
results in the variability in water content θ (and Se, h), b is considered as the primary
variable. A full expansion of the terms with δb (i.e., part (a)) is maintained. For
the other two parts with δθ, the expansion is truncated up to second-order, because
the probability distribution of θ is unknown and the reduced model only includes
covariances involving θ.

Notice that the expression of part (a) is equivalent to the Taylor expansion of
qi(b, θ̄) about b̄ with

qi(b, θ̄) = exp

{
bi + bi+1

2

}√
(S̄e)i(S̄e)i+1

(
1− h̄i+1 − h̄i

∆

)
. (B.1)

By the local scheme used in this research, qi is only dependent on bi and bi+1.
As stated in Section 3.3, bi and bi+1 are independent and have the same normal
distribution N (b̄, σ2

b ). It notes that, for the lognormal distribution defined as X =
eµ+σZ with Z a standard normally distributed variable, the expectation is E[X] =

eµ+σ2/2. Considering bi/2, bi+1/2 ∼ N (b̄/2, σ2
b/4),then

E[ebi/2] = E[ebi+1/2] = eb̄/2eσ
2
b/8. (B.2)

Therefore,

E[qi(b, θ̄)] =
√

(S̄e)i(S̄e)i+1

(
1− h̄i+1 − h̄i

∆

)
E[ebi/2]E[ebi+1/2]

= eb̄
√

(S̄e)i(S̄e)i+1

(
1− h̄i+1 − h̄i

∆

)
eσ

2
b/4

= qi(b̄)e
σ2
b/4. (B.3)

This provides an expression for part (a), i.e., the first term in (2.44). The other
two terms in (2.44) correspond to truncated parts (b) and (c), respectively.
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B.2 Reduction in Equation (2.63)

To find a closed-form expression for∑
k1+···+kn≥1

1

k1!k2! · · · kn!

(
D
b
k1
1 ···b

kn
n
qi(b̄, θ̄)

)
E
[
(δb1)k1 · · · (δbn)kn(δb)

]
, (B.4)

separate the first term (i.e., for k1 + · · ·+ kn = 1) and estimate the sum of the rest.
With the assumption that bi and bi+1 are independent and have the same normal

distribution,

δbk1+1
i δbk2i = δbk1+1

i · δbk2i , δbk1i δb
k2+1
i = δbk1i · δbk2+1

i .

By the fact that odd central moments of a normal distribution are zero and even
central moments are σ2k

b (2k − 1)!! for any positive integer k (the expressions of the
central moments can be found, for example, in Socha (2007)), also notice that qi only
depends on index i and i+ 1, the first term yields

n∑
j=1

(
Dbjqi(b̄, θ̄)

)
E [(δbj)(δb)] = σ2

bDbqi(b̄, θ̄), (B.5)

and by (2.36), the rest of (B.4) yields,

...
0∑

k1+k2≥2

qi(b̄, θ̄)

k1!k2!2k1+k2
δbk1+1
i δbk2i+1∑

k1+k2≥2

qi(b̄, θ̄)

k1!k2!2k1+k2
δbk1i δb

k2+1
i+1

0
...


. (B.6)

Here ∑
k1+k2≥2

qi(b̄, θ̄)

k1!k2!2k1+k2
δbk1+1
i δbk2i+1

= qi(b̄, θ̄)
∞∑
p=1

∞∑
q=1

σ2p+2q
b (2p− 1)!!(2q − 1)!!

(2p− 1)!(2q)!22p+2q−1

= qi(b̄, θ̄)
∞∑
p=1

∞∑
q=1

σ2p+2q
b

(2p− 2)!!(2q)!!22p+2q−1

= qi(b̄, θ̄)
∞∑
p=1

∞∑
q=1

σ2p+2q
b

(p− 1)!q!23p+3q−2

= qi(b̄, θ̄)
∞∑
m=2

m−1∑
p=1

σ2m
b

(p− 1)!(m− p)!23m−2
. (B.7)
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For the last double series,

∞∑
m=2

m−1∑
p=1

σ2m
b

(p− 1)!(m− p)!23m−2

=
∞∑
m=2

σ2m
b

(m− 1)!23m−2

m−1∑
p=1

(m− 1)!

(p− 1)!(m− p)!

=
∞∑
m=2

σ2m
b

(m− 1)!23m−2
(2m−1 − 1)

=
∞∑
m=1

σ2m+2
b

m!23m+1
(2m − 1)

=
σ2
b

2

∞∑
m=1

σ2m
b

22mm!
− σ2

b

2

∞∑
m=1

σ2m
b

23mm!

=
σ2
b

2

(
eσ

2
b/4 − 1

)
− σ2

b

2

(
eσ

2
b/8 − 1

)
=

σ2
b

2

(
eσ

2
b/4 − eσ2

b/8
)
. (B.8)

Similarly, the (i+1)-th term yields the same result, and then the expression (B.6)
reduces to

qi(b̄, θ̄)
σ2
b

2

(
eσ

2
b/4 − eσ2

b/8
)

(~ei + ~ei+1) , (B.9)

with ~ei, ~ei+1 standard basis vectors.

Adding (B.5) and (B.9) makes part of the i-th column of (δb)·
(
dδθ

dt

)T
, in matrix

form, it becomes
σ2
b

2

(
1 + eσ

2
b/4 − eσ2

b/8
)
P (B.10)

with

P =



q1(b̄, θ̄) 0 0 . . . 0
q1(b̄, θ̄) q2(b̄, θ̄) 0 . . . 0

0 q2(b̄, θ̄) q3(b̄, θ̄) . . . 0

0 0 q3(b̄, θ̄)
. . . 0

0 0 0
. . . qn(b̄, θ̄)

0 0 0 . . . qn(b̄, θ̄)


. (B.11)
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APPENDIX C

NUMERICAL IMPLEMENTATIONS
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C.1 Non-Dimensionalization Method

The following variables/parameters are non-dimensionalized (scaled). The super-
script ∗ indicates the real measurements of the quantities.

1. The total soil depth, L, is normalized using the real total depth L∗ as a reference.
Then the scaled depth is

z =
z∗

L∗
∈ [0, 1].

2. The volumetric water content θ and the effective saturation Se have no units of
measurements, so

θ = θ∗, Se = Se
∗.

3. The hydraulic conductivity, K, and the saturated hydraulic conductivity, β, are
scaled by a reference saturated conductivity Ks

∗, i.e.,

K =
K∗

Ks
∗ , β =

β∗

Ks
∗ .

For numerical experiments presented in this work, the value of Ks
∗ is determined

by the real saturated conductivity value in one of the soil layers. In particular,
the soil layer chosen as the reference has a scaled saturated conductivity one
(i.e., β = 1).

4. The non-dimensionalized pressure head is

h =
h∗

L∗
.

5. The scaled time is

t =
Ks
∗

L∗
t∗.

6. The parameter α in all three models used in this work (Gardner, MvG, and
FXLR) is associated with h, and thus should be scaled as

α = L∗α∗.

Hence, αh = α∗h∗.

Other parameters, n, m and p in the MvG and FXLR models are dimensionless
curve-fitting parameters. They do not need to be scaled, i.e.,

n = n∗, m = m∗, p = p∗.

Therefore, the mixed form of Richards’ equation with real measurements

∂θ∗

∂t∗
= − ∂

∂z∗

(
K∗
(

1− ∂h∗

∂z∗

))
is equivalent to the equation with non-dimensionalized quantities

∂θ

∂t
= − ∂

∂z

(
K

(
1− ∂h

∂z

))
.

89



C.2 Indexing for Various Boundary Conditions

The numerical scheme proposed in this research can be easily adjusted to Dirichlet
or Neumann or mixed boundary conditions. However, the discrete scheme should be
used with caution, in other words, flux q must be evaluated on cell-centered grids
and water content θ on nodal grids. If a layered soil is considered, soil interfaces
must coincide with flux grids. The discretized mesh of a vertical soil column and its
indexing should be addressed as shown in Figures C.1.
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q0

q1
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h0 = htop

qN−1

hN
qN
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...

z = 0

z = 1

(a) Dirichlet Boundary Conditions

q1

q2
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h2

h3

q0 = qtop

hN−1
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...
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z = 1

(b) Neumann Boundary Conditions
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(c) Mixed Boundary Conditions

Figure C.1: Mesh Indexing for Various Boundary Conditions.
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C.3 Solving the Interface Equation by Iterative Methods

In order to solve the interface equation (2.15), various root-finding methods can be
used, for example, the “fzero” function in MATLAB. However, due to the nonlinearity
of the interface equation and its propensity to have multiple roots, this work uses
iterative methods instead of external root-finding packages. A Picard iteration (2.16)
or a Newton iteration (2.17) is used to solve the interface equation in numerical
experiments. It is also worth noting that a Picard iteration can possibly leads to a 2-
cycle solution which does not converge to the correct root. Using a Newton iteration
can be computational inefficient. A full analysis and comparison of the iteration
methods for the Gardner model with the geometric mean of conductivities can be
found in Section 2.3.2 and 3.1.1.

In this work, the iteration method (Picard or Newton) for the interface equation
r = g(r) starts with an initial guess r0 = 1.

After the first successful time step, in general, r0 is set to the last solution r
obtained at the previous successful time integration step. If the iteration method
appears to diverge, a new value of r0 is generated automatically from a logarithmically
spaced partition of r values. r0 is then set to either of the grid values when the sign
of (r − g(r)) changes. Then the iteration restarts with the new r0.

In an agent-based model of heterogeneous soils (cell-wise layers), r0 = 1 is always
used regardless of the previous successful r.

Setting r0 equal to r in the last successful time step typically (but not always)
avoids positive extrapolated pressure heads h+

j , h
−
j+1.

The existence of multiple solutions to Equation (2.15) is examined in each time
iteration step by locating (µ, λ) in Figure 2.7 for the Gardner model. For the MvG or
FXLR model, a fixed logarithmically spaced partition of r from 10−5 to 105 (or 10−10

to 1010) is used to count sign changes of (r − g(r)). If the number of sign changes is
greater than one, Equation (2.15) exhibits multiple solutions.

In addition, the existence of multiple solutions can lead to positive extrapolated
pressure heads in Equation (2.11). To isolate the impact of multiple solutions, suit-
able hydraulic parameters and spatial discretization size is chosen to exclude positive
extrapolated pressure heads in the numerical examples unless specifically pointed out
otherwise.
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C.4 Using DVODE

The Variable-coefficient Ordinary Differential Equation solver (VODE) is a For-
tran 90 package to solve the initial value problem of first order ODEs. DVODE is the
double precision version of VODE.

To avoid failure of convergence, each numerical simulation limits the maximum
time integration step size (HMAX) in DVODE. The tolerance of the DVODE solver
and the tolerance of the iteration method are set according to the models. Chang-
ing the tolerance of the solver can affect adaptive time integration steps and thereby
influence the existence of multiple solutions to the interface problem, since the occur-
rence of the multiple solutions may be transient. This work only focus on comparing
numerical solutions with and without multiple solutions by changing the spatial dis-
cretization size for fixed tolerance settings. This work does not deal with integration
time step size in solving the Richards’ equation because DVODE uses an adaptive
time stepping strategy.
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C.5 Using OpenMP

The Open Multi-Processing (OpenMP), specifically PARALLEL DO, is used in
the following situations:

1. Evaluating volumetric water content θ, pressure head h, hydraulic conductivity
K and effective saturation Se based on the specified hydraulic model associated with
different layers. The soil hydraulic properties are distinct for each layer, so are the
soil hydraulic functions. The combined parallel work-sharing constructs for do-loop
are applied.

2. Solving more than one interface equations with parallel regions. Notice that
the parallel regions must be used with caution. In the parallel regions, set private
attribute to variables r, hj, hj+1, h

+
j , h

−
j+1, kj, kj+1, k

+
j , k

−
j+1, qj+ 1

2
and other local vari-

ables associated with individual interfaces.
3. When evaluating cell-centered conductivity values in the multi-layer soil case,

although the array expressions and array intrinsic functions are applied inside each
layer, parallel regions are used in the do-loop for multiple layers.

4. Specifically, OpenMP is also used for evaluation of the log-mean since the
log-mean fails if the two conductivities are very close, in the sense that a near zero
denominator is involved. An if condition is added to the log-mean subroutine to
exclude the case when the difference of two neighboring conductivities is less than
10ε, where ε is the machine epsilon. Otherwise, use the smaller value of them for
the cell-centered conductivity. Under this condition, an array-type expression is not
available for the log-mean, thus parallel regions are used.
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