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ABSTRACT

The Pearson and likelihood ratio statistics are commonly used to test goodness-of-
fit for models applied to data from a multinomial distribution. When data are from a table
formed by cross-classification of a large number of variables, the common statistics may
have low power and inaccurate Type I error level due to sparseness in the cells of the
table. The GFfit statistic can be used to examine model fit in subtables. It is proposed to
assess model fit by using a new version of GFfit statistic based on orthogonal
components of Pearson chi-square as a diagnostic to examine the fit on two-way
subtables. However, due to variables with a large number of categories and small sample
size, even the GFfit statistic may have low power and inaccurate Type I error level due to
sparseness in the two-way subtable. In this dissertation, the theoretical power and
empirical power of the GFfit statistic are studied. A method based on subsets of
orthogonal components for the GFfit statistic on the subtables is developed to improve
the performance of the GFfit statistic. Simulation results for power and type | error rate

for several different cases along with comparisons to other diagnostics are presented.
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CHAPTER 1

INTRODUCTION
The cross classification of several categorical variables produces a large contingency
table. If a model is fit to the table, usually the Pearson chi-square and the likelihood ratio
statistics are used to evaluate the goodness of fit. Suppose we have g categorical
variables and the i-th variable has c; categories. Thus there are k = 1'[?=1 c; cells, also
called response patterns in the cross-classified table. Then f, is the sample proportion of
the r-th response pattern and 7,. is the estimated probability of the r-th response pattern.

The Pearson chi-square(y?) and the likelihood ratio(LR) statistics are defined as follows:

k
LR = ZnZ frln(g—r)
r=1 T

r=1

If the number of observations in each response pattern is large enough and under the
conditions (Koehler and Larntz, 1980) that i) H,: T = m(8), ii) k is fixed and
iii) min, <,.<xnm, — oo for n — oo, both Pearson chi-square and likelihood ratio statistics
are approximately distributed chi-square with degree of freedom equalto k — 1 —
number of estimated parameters.

However, in presence of sparse data, these two statistics may not follow the chi-square
distribution even if the sample size is large. When the ratio of the sample size to the
number of cells is relatively small, contingency tables are said to be sparse (Agresti &
Yang, 1987), but sparseness can also be produced by very skewed cell frequencies in

some cases. There is no universal agreement on what constitutes a small expected



frequency. Cochran (1954) suggested that most expected frequencies should be at least
five. Cramer (1946) has suggested 10 and Kendall (1952) has suggested 20.

One way to solve this problem is to use asymptotic normality of the Pearson and
likelihood ratio statistics when both the sample size and number of cells become large.
Morris (1975) showed that both the Pearson’s chi-square statistic and likelihood ratio
statistic have asymptotic normal distributions under certain conditions. Koehler and
Larntz (1980) suggest that because of the different influence of very small observed
counts on Pearson’s chi-square statistic and likelihood ratio statistic, the asymptotic
means and variances of these two statistics are different. Koehler and Larntz (1986) also
provides a Monte Carlo study of these two statistics for loglinear models. The results
show that generally the normal approximation is more accurate for likelihood ratio
statistic than for Pearson’s chi-square statistic.

Another way to solve the sparseness problem is to use statistics based on the marginal
frequencies. There are several statistics of this kind, such as Maydeu-Olivares’
statistic(2005), Bartholomew’s Y statistic(2002) and the orthogonal components of
Pearson chi-square. Reiser (2008) introduced a score statistic based on the overlapping
cells that correspond to the second-order marginal frequencies. Then orthogonal
components of the Pearson-Fisher statistic are defined on marginal frequencies. The score

statistic is shown to be a sum of these orthogonal components and is denoted X[zz]. X[Zz],

the Y statistic and Maydeu-Olivares’ statistic are all score statistics and distribute
asymptotically chi-square. The marginal frequencies are just linear combinations of the

joint frequencies. Thus we can introduce a matrix H, which | will define later, to compute



the marginal frequencies. Since all the statistics mentioned here are based on the marginal
frequencies, they can be computed easily using the H matrix.

When using X[ZZ] to test the goodness-of-fit of a model, it may have higher power for
certain alternative hypotheses because it represents a test that is “focused” on the second-
order marginal. If lack of fit is present in second-order marginal, then X[ZZ] would have
higher power than an omnibus statistic such as the Pearson chi-square. But if lack of fit is
present in higher-order marginal, then X[ZZ] may have lower power. Similarly, since X[Zz] is

the sum of all the orthogonal components, it can be considered as an omnibus statistic on
the second-order marginals. If we just sum up a subset of these orthogonal components

corresponding to variable i and variable j, then we get a statistic only focused on variable
i and variable j on the second-order marginal. This statistic is denoted GFfitfj) and it is
distributed asymptotically chi-square. GFf itfj ) can be used as a diagnostic to detect the
source of lack of fit when the model does not fit the observed data. If lack of fit is present
in the association between variable i and variable j , then GFfitfj) would have higher
power than an omnibus statistic on the second-order marginals such as X[Zz].

My research is focused on X[ZZ] and GFf itfj )| studied their Type | error rate and power

and compared their performance with several other statistics. Monte Carlo simulations

were conducted to study the empirical type | error rate and power of these statistics.

Theoretical power calculation were also conducted for X7, and GF f itfj ). Besides these

type | error and power studies, | also improved the GFfitfj). Although GFfitfj) isa

good remedy to the problem of sparseness because it is calculated from marginal two-



way tables, sometimes even GF f itfj ) may have low power and inaccurate Type | error
level due to severe sparseness in a two-way subtable when the number of categories is

large and response variables have a skewed distribution. In that case, the distribution of
GFfitfj) may not be well approximated by the chi-square distribution even if the total

sample size is large. | improved GFfitfj) in the sparse case by selecting a subset of

orthogonal components chosen systematically to reduce the impact of sparseness. |

denote this improved statistic GF f itf(jt)) where t represents the t orthogonal components

@

chosen to compute this statistic. GF fit 10

is distributed asymptotically chi-square with t

degrees of freedom. The same idea was applied to X[ZZ] and | denote the new statistic

@@

X[zz][t]. Type I error rate and power were studied for GFfit 10

and X 1.)-

In this dissertation, | will present a literature review first. In the literature review, | will
first introduce the traditional Pearson chi-square statistic and the problem of sparseness.
Then I will introduce the orthogonal components along with several other statistics based
on marginal proportions. After the literature review, | will show theoretical and empirical

studies of the GFfit statistic. Simulation results and an application will be presented.

Finally, summary and discussion will be presented.



CHAPTER 2
LITERATURE REVIEW

11.1.1 Pearson Chi-square Statistic
Pearson’s chi-square test was the first goodness of fit test and perhaps one of the most

frequently used statistical tests. So in this section | will first review Pearson’s chi-square
test. Suppose there is a multinomial distribution involving k cells with known cell
probabilities| nt,, Ty, ..., ], 0 < m; < 1; 2 m; =1. For a random sample of fixed size
n, let[f, f5, ..., fi], 0 <f; <n; 2 f; =n be the random frequency counts in the respective
cells {1, 2, ..., k}. It follows that

E[f;] = nm; = E;

Var(f;)) = nm; (1 —m;);
Covar (f;,f;) = —nmm; i # j

Since Y. f; = n,Var(} f;) = 0 and hence the joint distribution of [f;, f,, ..., f]is
singular. Denote the k Xk matrix of the variances and covariances of the f’s by W. Note
that

W = n[n® — nn']
where

T = (Tfl,sz, ...,TEk)’

T 0 0
m® = diag{n’s} = Tz - 0
O 0 T

It can be proven that
Rank (W) = k-1

Then the Pearson chi-square statistic is defined as
5



It follows that when n tends to infinity, the limiting distribution of x? is that of a Chi-
square distribution with k-1 df. To prove this, for every single selected random sampling
unit, we can introduce the ‘indicator functions’ of the k cells. That means, for the ith
sampled unit,

(LD, ... ;(©), ..., ;(k)}
denote the underlying random indicator functions

1.(t) = {1 if ith sampled unit belongs to cell t
' 0 otherwise

This is true fort=1, ..., k;1=1, 2, ..., n.

Clearly,

k
Zli(t) =1foreachi=1,2,..,n
t=1

n
Zli(t) = f; foreacht =1, ..,k
i=1

Therefore for everyi=1, 2, ..., n, {[;(1), ..., [;(t), ..., [;(k)} follows a singular
multinomial distribution with parameters [ wty, 5, ..., 7, ] and are i.i.d. By the central limit

theorem, the sample average counts

L, L

n n

]
follow a singular multivariate normal distribution with rank k-1 since the variance-
covariance matrix W of the f;’s has rank k-1. Therefore

Q= (f —nm)W*(f —nm)

6



has chi-square distribution with k-1 df, where W™ is the Moore-Penrose g-inverse of the

W and
1
+ _ -6 _ l
w _Jn 11']

7% is the inverse of 7% and 1 is a column vector of 1°s.

Thus
1
Q=(E-BW'(f-E) = (=B [r° - 11'|(f - E)
1 1 1
— (f—E) [En_‘s - E“'] (f —E) = (f— E)’ [E-6 - Ell'] (f —E)

=~ EYE(f ~ E) — ((~ EY11'(f ~ )
k k

_ (fl _Ei)z 1 /

DS

k k
N i—E) 1 , N (i E)?
_;—Ei ~ = x0x1 (f—E)—;—Ei

Therefore we have shown that the limiting distribution of x? is that of a Chi-square with
k-1 degrees of freedom.
If the cell probabilities [n;, 7, ..., 7w, ] are unknown, we will use a model with g unknown
parameters to estimate the cell probabilities. To estimate the probabilities, we need to
estimate the unknown parameters from the sample first. Then we replace the expected
frequencies E’s by estimated frequencies E's, where

E =nft;;i=12,..,k

Then we compute the Pearson chi-square statistic as



k &g
, N Ui—E)
XPF = B —
. E;
1=0

Since the g unknown parameters have to be estimated from the data, we lose some
degrees of freedom. Fisher (1924) gives the first derivation of the correct degrees of
freedom, namely k — g — 1 when g parameters are estimated from the data. Thus this
statistic is also called the Pearson-Fisher statistic.

11.1.2 The Partition of x?
Lancaster (1969) introduced the partition of x2. In the earlier section, we suppose that n

observations are given on a set of the k indicator variables of the multinomial
distribution. If a subset of (k — 1) indicator variables is chosen, the remaining variable is
determined since only (k — 1) of these indicator variables are linearly independent.
Equivalently, any set of (k — 1) orthonormal functions, {U*(®}, may be considered and

their standardized sums,

1 n
Uy = n‘iz u;®
=1

Then

k-1

42 = z uo

i=1
And x? is invariant for any choice of the set {U*®}.
11.1.3 Score Statistics
Suppose we have a random sample X, X5, ..., X;, from a continuous distribution with pdf
f(x; 6) where

0 = (64,...,0;) € 0,the parameter space



We want to test the null hypothesis Hy: 6 = 6, against H,: 6 # 6,. Note that if the
distribution of X is discrete, the following results still hold. Let L be the likelihood

function, then

L= ﬁf(xi;H)

dlogL
the score U(0) = (Ui(e)),where U;(0) = °9

20,

the information matrix I(0) = (Il-j(e)) ,where [;;(0) = Eg [Ui(B)UJ-(G)]

3 d%logL
— 7%%90,06;

Then the score test statistic is defined as

S= {U(Ho)}’{lij(90)}_1{U(90)}
Under the null hypothesis, S is asymptotically distributed chi-square with k degrees of
freedom, where k is the number of elements in 6, or equivalently, the dimension of the
parameter space.
However, sometimes we are only interested in several particular parameters. For
example, when testing for a normal mean, usually the variance is also unknown but we
are not interested in it. In this case the unknown variance will enter the problem as a
‘nuisance’ parameter. To deal with this problem, we let f(x; y) be the probability density
function and y is the parameter vector. y can be partitioned into

y= (68

where 6 is a kx1 vector of real parameters and 3 is a qx1 vector of nuisance parameters.

Then we can partition the score and information matrix into



U=UQ) = (Ue()’)>

Up(¥)
[ = (199 I@ﬁ)
Igo  1Igp
Then Z(y) is defined by
() = loo V) — Iop WU ()3 e (v)
Cox and Hinkley (1974, Section 9.3) showed that {Z(y)}~! is the asymptotic covariance

matrix of @ and X(y) is the asymptotic covariance matrix of Uy (y).
Then the score test statistic is defined as

S={Ug(70)}Y EF0)} {Us (7o)}
where ¥, is the ML estimator of y under the null hypothesis Hy: 6 = 8, in which 8 is
restricted to taking the value 8,. Under the null hypothesis, S is asymptotically distributed
chi-square with k degrees of freedom.

11.1.4 Components
Suppose we want to test the null hypothesis that m cell probabilities are p; = p;(5),j =

1, ..., m. An alternative is to take the order k ‘smooth’ probability function

k
m;(6,8) = C(6,B) exp {Z Hihij(ﬁ)}pj(ﬁ): j=1...m
i=1
where 0 is a kx1 vector of real parameters, [ isa qx1 vector of nuisance parameters
and € (0, B) is a normalizing constant that ensures .72, 7;(8, ) = 1. For each i, i =

1,...,k, the h;;(B) are values taken by a random variable H; with P (Hi = hy; (ﬁ)) =

m;(6,6),j =1, ...,m. Here k < m — 1 since the parameter space has dimension m-1.

Testing Hy: (6, 5) = p;j(B) vs Hy: m; (0, B) # p;(B) is equivalent to test Hy: 6 =

10



0 vs H,: 6 # 0. For convenience, we drop the argument 8 and § from

;(6, B), p;(B) and h;; (B).

Suppose a random sample of n observations is taken and the number of observations in
the jthclass is Nj,j = 1, ..., m. Write H = (h;;) , N = (N;) and p = (p;)

Rayner and Best(1989) have shown that the Pearson-Fisher statistics y? p Can be
partitioned into components via 2, = V2 + -+ V}5_,_; in which the 1}, are
asymptotically standard normal and asymptotically independent, being defined by V. =

Z;'n=1 iir]N]/\/E

11.2 Problem of Sparseness
Suppose we have g categorical variables and the i-th variable has c; categories. Thus

there are k = [T{, c; cells, also called response patterns in the cross-classified table.
When the sample size to the number of cells is relatively small, contingency tables are
said to be sparse (Agresti & Yang, 1987). When there is a problem of sparseness, a test
statistic based on an asymptotic chi-square distribution may no longer follow a chi-square
distribution. There is no universal agreement on what constitutes a small expected
frequency. Cochran (1954) suggested that most expected frequencies should be at least
five. Cramer (1946) has suggested 10 and Kendall (1952) has suggested 20. When
sparseness is present in a set of frequencies, combining cells or adding a small constant
such as 0.5 to each cell are sometimes attempted (Goodman, 1964).

One way to solve the problem of sparseness is to consider other distribution for the
goodness-of-fit statistics. If the number of observations in each response pattern is large

enough and under the conditions that i) Hy: T = m(8), ii) k is fixed and
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iii) min,<,<,nm, — oo for n - oo, the Pearson’s chi-square statistic is distributed
asymptotically chi-square. Morris (1975) showed that both the Pearson’s chi-square
statistic and likelihood ratio statistic have asymptotic normal distributions under
conditions that allow both n and k to become large without necessarily requiring that
min, <<, N7, — oo, Which means the number of cells is increased when the sample size
is increased. Consider the sequence of multinomial random vectors

{(N1k(yr Noe(iys -0 Niiy k(i) Yot
where the i-th vector in the sequence has k(i) cells. The sample size isn, = Z;?:l Nk
and the probability vector is (p1y, P2k, ---» Pik) With X_; pjc = 1. Morris (1975) derived
a central limit theorem for the Pearson statistic. Under the null hypothesis, the sufficient
conditions for asymptotic normality as k — oo are (a) max;<;<xpix = 0(1) as k - oo and
(b) nypj is uniformly bounded below by some constant. When the null hypothesis is

true, the asymptotic mean and variance for the Pearson statistic are

Upk =k

Note that when the expected frequencies are not all equal, o, may be much larger than
the chi-square variance on k — 1 degrees of freedom.

Koehler and Larntz (1980) suggest that because of the different influence of very small
observed counts on Pearson’s chi-square statistic and likelihood ratio statistic, the
asymptotic means and variances of these two statistics are different. Koehler and Larntz

(1986) also provides a Monte Carlo study of these two statistics for loglinear models. The

12



results show that generally the normal approximation is more accurate for likelihood ratio
statistic than for Pearson’s chi-square statistic.
Another way to solve the problem of sparseness is to use statistics based on the marginal

frequencies. There are several statistics of this kind, which will be introduced later.

11.3 Orthogonal Components Based on Marginal Proportions
Reiser (2008) introduced a score statistic based on the overlapping cells that correspond

to the first and second-order marginal frequencies. Then orthogonal components of the
Pearson-Fisher statistic are defined on marginal frequencies. The score statistics is shown
to be a sum of these orthogonal components

11.3.1 First- and Second-order Marginals.
The relationship between joint proportion and first- and second-order marginal cane be

shown by using zeros and ones to code the levels of categorical response variables, Y;,i =
1,2,..q. Each Y; has ¢ > 2 categories. A specific cell from the contingency table,
sometimes called a response pattern, can be indicated by a (¢ — 1)g-dimensional vector
of zeros and ones. Then a T = c?-dimensional set of response patterns can be generated
by varying the levels of the g*"* variable most rapidly, the g** — 1 variable next, etc.
Define V as the T by (¢ — 1)q matrix with response patterns as rows.

Forg=3andc =2,

NN ===

_m, OO Rk oo
PO R ORFRrOoORFROo
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Forg =3 and c = 3, V is a 27 by 6 matrix:

SO O OO
SO O OO
= -0 o O
- OO O O O
o oo

<
Il
(NN
oo
oo
_ o
oo

0 1 0 10
01 0 1 1
0 1 0 1 0 1

o

The matrix V can be generated by kernel patterns. ¥V has (c — 1) kernel patterns, each of
dimension c. In general, the i*" kernel pattern, f; = (0 -~ 0 1 0 - 0)" withthe
1 on the (i+1)-th positionand i = 1,2, ...,c — 1. For ¢ = 2, the kernel pattern is f; =
(0 1), and for ¢ = 3, the kernel patternsare f; =(0 1 0)'andf,=(0 0 1)
The matrix V can be generated by Kronecker products of the kernel patterns with the
vector 1., which is a vector of length ¢ where each element is 1. The patterns of columns
are(c—1)columns ;, @1, ®1. QR 1.),i=1,..,c—1,followed by (c — 1)
columns1. @ i1, Q- ®1.),i=1,..,c—1,continuing until (c — 1) columns
1. R¥1. ®-R®1)Qf,i=1,..,c— 1.
Withqg =3 and c = 2,

V=010 1,;®1,),1,8(/1®1,),1,®1,)Q f1)
Withg =3 and c = 3,

V=(A®1:®13), L®1:01), 13& (/i ®1y),
1, ® (2 ® 13), (1:013)Q fi, (13813) R f1)
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Define H;y = V', where h;g isan elementof Hyyp, [ = 1,2,...,q(c — 1),s = 1,2,...,T.
Then, under some specific model = = (@), which we will introduce later, the first-order
marginal proportion for variable Y; can be defined as
7D (a; @) =Prob(Y; = a|@) = Y hi;ns(0) = hjm(0),a =2,...,c,l = (c—1)({i—1) +
a—1,
Where h; is row [ of matrix Hy;;. Then the true first-order marginal proportion is given
by
n®(a) =Prob(Y; = a) = ¥ hjsns = hjm.
Under the model, the second-order marginal proportion for variable ¥; and ¥; can be
defined as
W) (a, b; @) =Prob(Y; = a,¥; = b|0) = Xs hyshisms(0) = (hy o hj)T(8),
Wherei=1,..,.q—1;j=i,..,¢; k=(C—-1D{-1D)+a-1;l=(Cc-1DG-1+
b—1;a=2,..,¢c;a=2,..,cand hy o hy, represents the Hadamard product of rows k
and L. Then the true second-order marginal proportion is given by
D (a,b) =Prob(¥; = a,Y; = b) = ¥ hyshysms = (i, © b,
The summation across the frequencies associated with the response patterns to obtain the
marginal proportions represents a linear transformation of the frequencies in the
multinomial vector 7 which can be implemented via multiplication by a certain matrix,
denoted generally by H. The symbol Hy,; denotes the transformation matrix that would
produce marginal of order ¢t. The symbol Hy;,,;, t < u < g, denotes the transformation

matrix that would produce marginal from order t up to and including order wu.
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For second-order marginal proportions, the rows of Hy,; are Hadamard products among
the columns of V. For g = 3 and ¢ = 2,

(W1 0vy)
Hpp = (vy o v3)
(v 0 v3)’
where v; is the column i of matrix V, and v; o v; is the Hadamard product of columns i
and j.
For g = 3 and ¢ = 3, Hpy) is an 12 by 27 matrix:

(v 0 v3)
(v1ovy)

(vy 0 vs)
l'1[2] = (v1 0 vg)

(v3 0 vg)’

| (Vice-1) © Vje-1))']

11.3.2 Higher-order Marginals
Matrix H for higher-order marginal can be defined in a similar way using Hadamard

products among columns of V. The third-order marginal proportions for variables

Y;,Y; and Y; can be obtained by employing the matrix Hjz;. Then we define

11.3.3 Xf,.,,; Statistic
Now our null hypothesis is Hy: Hr = Hme(@) and the test statistic is

X =e'Z;le
2. = n"1Q, with Q, evaluated at the maximum likelihood estimates 8, and where
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Q. =H(D () —nn’ — GA’A)"1G)HH’

D () =diagnal matrix with (s, s) element equal to 74 (80)

1/, 91 (6)
= 2277
A =D(m) V2 30
_ 0n(0)
€=

e = H(p — m) is the matrix form of the marginal residuals
and p is the observed proportion

H = Hjy.z) produces X[Zl:z] and H = H,; produces X[ZZ]. It has been proved that for 2
categories, the distributions of X[Zl:z] and X[ZZ] are chi-square distributions with degrees of

freedom equal to q(q + 1)/2 and q(q — 1) /2 respectively.
Here H was presented as a matrix of constants. However, if we consider H; as a random
variable that takes on values h;; with probability ,(8,), where m4(6,) is a probability
under a Neyman smooth alternative hypothesis, then we can see that the test statistics is
just a special case of the score statistic given by Rayner and Best. And further,
Bartholomew (1987) showed that the joint probability function of the g-dimensional
vector of binary variables can be uniquely expressed in terms of the 29 — 1 marginal
probabilities form first to g-th order, which means

X[Zl:q] = X#F
However, in fact we only require fewer than 29 — 1 marginals to reproduce the Pearson-
Fisher statistic for a composite null hypothesis since some residuals on the marginal are

degenerate variables equal to zero due to linear dependencies among the rows of Hyy.q
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for a composite null. Suppose there are g linear dependent rows. We can delete these g

rows from Hjy.q and denote the new matrix Hiy.q;_g1. Then

X[Zl:q:—g] = XI%F

11.3.4 Goodness of Fit Statistics
Assume c categories for each variable. Joreskog and Moustaki (2001) defined

@) AaliN2
GFfit®) = n E Pap — oy )
ﬁ.(l])
ab ab

i=1,-,9-1 j=i+1,+-,9 a=1-,c b=1-,c
Here the name GFfit stands for Goodness-of-fit.
Consider ¢ kernel patterns t,, g = 1, 2, ..., ¢ that form, as columns, a ¢ by c identity
matrix, and consider the cq by T matrix U given by
U

GHN1,R®1,..881) t, 1. ®1,..Q01.) - t:Q(1,QR1...81,)
=1, (t; ®1..81) 1.9, ®1,..Q01,) - 1.9t R1,..Q1,)...

1.1, ®1,..0¢t) 1,91, ®1,...Q9¢t,) .. 1,31, ®1,...Q¢t,))
Note that linear dependencies exist among columns of U; V consists of the linear

independent columns of U.Then a c2q(g — 1)/2 by T matrix M is given by
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(ug ° Ucyq)’
(Ug © Ucyz)

(ul ° uqc),

(uz °©Ucyq)'
(uz ° Ucyr)'

(U1 © Uzcs1)
(U1 © uqc),

(u(q—z)c+1 ° u(q—l)c+1)’

(u(q—l); °Uge)'
Linear dependencies exist among rows of M,}; Hz; consists of the linear independent
rows of M.
Then using M, Cagnone and Mignani (2007) show that GFfit (/) is a special case of
X[t:u]:
GFfit® = e’ By *e

Where A" indicates the Moore-Penrose generalized inverse of matrix A, and fﬁ,"") =
n~1Q, with Q, evaluated at the MLE 8, and now

Q. = MY (D(m) — ' — GA'A)TIG )M}’
M isa partition of the general matrix M, such that

(2]
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Where g = (—(i_l)(zzq_i) +j—i—1)c?
If we apply the Pearson’s y? to the 2-variable subset for variable i and variable j, the Xl-zj
statistic can be defined as follow:
X% =Xx406;) = ne’(ﬁg])‘le
b, = Hi ey’
e= H[(;{) (p — 7) is the matrix form of the marginal residuals
However, under the null hypothesis, Xl-zj does not distribute as chi-square since here the

parameter 6;; is estimated from full table. GFfit?) is actually the same as X7.

11.3.5 Orthogonal Components
Consider the T — g — 1 by 29 matrix H* = F'H[y.4;_g), Where g is the number of

unknown model parameters to be estimated and Hyq.q;— 41 is matrix Hyq.,; deleting g rows.
H* has full row rank. F is the upper triangular matrix such that F'Q.F = I. F = (€)1,
where C is the Cholesky factor of Q.. Premultiplication by (€)™ orthonormalises the
matrix Hyy.q,— g relative to the matrix D(mr) — ' — G(A’A)"1G’. Then

Xpp = Xfi.q—g) = nr'(H)'H'r
where H* = H*(8), and r = (p — (0)).
Define

1
2

1A -
Y = n2F'Hr = nzH'r

where F is the matrix F evaluated at @ = 8. Then
20



H*r has asymptotic covariance matrix F'Q,F = I7_g_1. The elements f/} are

asymptotically independent chi-square random variables with df = 1 (Reiser, 2008).

Components maybe obtained as sequential sum of squares. Redefine

1
ze =V (m5(8)) * (s — ms(B)).
Perform the regression of z on the columns of H':
z=H'B
Then,
B = (HWH") 'HWu

—

11
= D25Dz, and D = diag(m(0)).

N =

— AIAAA

where u = +/nr, W = D22ED
1 1\’ ..

5 =3(0) = (I —m2 (m2) — A(A'A)"*A") is idempotent.

Let M = £DZH’. Then

B=MM"Mz
f/f,j = 1,T — g — 1 are the sequential SS from this regression. y = C’'p are the
orthogonal coefficients.

Now define an orthogonal components version of GF fit:

I=m+(c—-1)?

GFfit!” = Z %

l=m+1
wherem =q+ (i —1)(c— 1)+ (G —2)(c — 1)%
Then
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X% = Grfit!”
i=1 j=i+1
More generally,
l=q(c-1) 1=(3)(c-1)? 1=(D-1)°
Xee= D PR+ ) PR+ ) fE+etihgn
=1 I=q(c-1)+1 l=(‘21)(c—1)2+1

Then

Xpp = Z GFfitl + Z Z GFfit™) + Z Z Z GFfit™" + ...+ GFfit (">
i i i j k

because

Q)

The extended GF f itfj) are independent chi-square statistics with df = (¢ — 1)? because

of the definition on orthogonal components. The original GFfit(/) statistics are not

necessarily independent and do not necessarily sum to X [22]. GFf itfj ) statistics are order

dependent since they are defined on orthogonal components. GF f itfj ) statistics are

diagnostics for lack of fit. If GFf itf” has a large value, it means the association
between variable 2 and variable 3 cannot be explained by the current model.

Due to collinearity among the columns of H, the calculation of £, 1 is usually very

inaccurate. Thus Xp, is very inaccurate numerically if we use X, = e’Z; e to calculate

it. However, calculating components by sequential SS as given in Section 11.3.4 using the

Sweep operator are very accurate numerically (Goodnight, 1978; SAS PROC REG).
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I1.4. Other Statistics
11.4.1 Joe-Maydeu Statistic
Since £ 1 is usually very inaccurate, Maydeu-Olivares and Joe(2005) proposed an
alternative quadratic form statistic. Suppose Hp, . is full rank with rank=s, Define
A, = Hpy.qG
Then consider an sx(s — g) orthogonal complement to A,., say Agf), such that
AY'A, =0
Then let
Cr = C,(0) = AP[AY Hyy (D () — )My A 1AL
Note that C, is invariant to the choice of A(rc). Since
C,Q.C, = C,H(D(m) — i’ — G(A’A)"1G)H'C,
= C,H(D(w) — i )H'C, — C,H(G(A'A)"1G)H'C,
= C,H(D(m) —mr')H'C, — 0 = C,
Q. is a generalized inverse of C,.
Then the Joe-Maydeu statistic is defined as
M, = M,(0) =ne'C.e
¢ = ¢.(6)
e = Hjy.q(p — m) is the matrix form of the marginal residuals.
Under the null hypothesis, M,. is distributed asymptotically chi-square with df = s — g.
The degrees of freedom are obtained using the fact that AS.C) is of full rank s — g and

hence C, is also of rank s — g. Maydeu-Olivares and Joe have shown that M, equals the

Pearson-Fisher chi-square statistic when 8 is the maximum likelihood estimator.
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However, when @ is some other minimum variance asymptotically normal estimator, M,
and the Pearson-Fisher chi-square statistic are equivalent only asymptotically, with M, <
X3r.

Maydeu-Olivares and Joe(2006) also proposed an Mr(b ) statistic to assess the source of

misfit when the overall M,. statistic suggest a model misfit. Mr(b ) is based on each subset

b of {1,...,n} with cardinality r. For a submodel for r-dimensional margins, with C,.(b) =

[1iep c; cells depending on g,-(b) parameters, Mﬁb) has an asymptotic null chi-square
distribution with C,.(b) — g,-(b) — 1 degrees of freedom, assuming that the submodel is

identified, the estimator is consistent and asymptotically normal, and C,.(b) — 1 > g,.(b).

Let be 6, the subset of the parameter vector 8 with dimension g,.(b). Then the Mr(b)

statistic is defined as

Cry = Crp(By) = A8 HD (D () — mn)HE) 2114
€= H[(f]) (p — m) is the matrix form of the marginal residuals

b
_ OH{m(6)
rb aeb

A(b) is an C,.(b) — 1x g, (b) orthogonal complement to A,
Given a necessary and sufficient condition that
2rpCrpZrpCrp2rp = ZrpCrpZyp forany 6
where X,,, is the asymptotic covariance matrix of v'n H( 1(p — 1), Maydeu-Olivares and

Joe have shown that the Mr(b ) has an asymptotic null chi-square distribution with C,.(b) —
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gr(b) — 1 degrees of freedom. The degrees of freedom are obtained by the fact that A(r?
is of full column rank C,.(b) — g, (b) — 1 and hence C,;, is also of rank C,.(b) — g,(b) —

1.

11.4.2 X% and X%
As mentioned earlier Xizj does not distributed chi-square. However, we can assume that

the distribution of Xl-zj can be approximated by a by2 distribution. The first and second

asymptotic moments of Xizj are

i =or (DY) %), = 2er ((ﬁg])'lfe)z

Solving for the two unknown constants a and b, we obtain the mean and variance

corrected )?izj statistic

XZ _XlZJ_ZA%Xz
lj_T_E ij

Which has an approximate reference chi-square distribution with degrees of freedom

2%

i

Alternatively, following Asparouhov and Muthen (2010), we can define a mean and

variance corrected Xizj which has df;; = ¢ — q;; — 1, where q;; is the number of
parameters in the bivariated probabilities. We can write the statistic )?izj =a" + b*Xizj

where a* and b* are chosen so that the mean and variance of X7 are df;; and 2df;;.

Solving for a* and b*, we obtain

_ 2df;; 2df,;i2
G=XG |7 rdfy— |
M2 Ha
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11.4.3 Y Statistic
Bartholomew and Leung (2002) proposed the Y statistic based on only second order

marginals. The statistic is defined as
¥ = e Dizjepy
€21 = Hiz (p —m(0))
Dz = n~'(diag(Hpm(0))(I — diag (Hm(6))))
Bartholomew and Leung gave a chi-square approximation with ¢ degrees of freedom for

the distribution of

Where

_ us3(Y)
4, (Y)

_ uz(Y)
2b?

a=u(Y)—bc
U1, Uy and pz are the asymptotic moments of Y
The Y statistic is simpler to compute than the X[ZZ] since it only requires estimates for .
However, this statistic does not perform well with the degrees of freedom given by
Bartholomew and Leung. A modified version of this statistic, Y,, was proposed by Cai,
Maydeu, Coffman and Thissen(2006). Y, is based on both first and second order marginal
and it is defined as
Y2 = {12 D12 €12
er1:2) = Hp2)(p — m(0))
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Dz = n"'(diag(Hj121m(0))(I — diag (Hjy2)7(6))))
A chi-square approximation with ¢ degrees of freedom is given for the distribution of

Y, —a
b

Different from the Y statistic, now the computation of a, b and ¢ require computation of
Q. evaluated at the maximum likelihood estimates 7 and 8. Thus the ¥, statistic has no

computational advantage compared to X [22].

11.4.4 A “Reduced” Version of X [Zt:u]
Tollenaar and Mooijaart (2003) proposed a “reduced” version of X [Zt:u], X2, 4, defined as

XZq = ne'(Hy (D (n(@)) — (9)m(8) YHy.z)) e

where
e = Hy1.2)(p — m(9))

The covariance matrix in X2, does not include the term G(A’A)~1G’, which may
substantially reduce computations. The degrees of freedoms of X2, are different from
those of X[zt:u] because of the different covariance matrix. X?2,,; has an asymptotic chi-
square distribution with m-g degrees of freedom, where m = 0.5q(q — 1) and g =
number of parameters to be estimated. By substituting Hyy.,; in place of Hy.), XZ.4 can

be extended to include higher order marginal up to order r. The extended statistic is

defined as

X7ear = ne' (Hyn(D (ﬂ(a)) — m(8)m(8) M) te
where

e = Hy. (P — m(8))
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XZ.q, has an asymptotic chi-square distribution with m-g degrees of freedom, where m =
the rank of Hjy., and g = number of parameters to be estimated. Note that X2, , is just

the sum of X§,) statistics:

szed,r = Z X(zb)
b

1.5 Power of GFfit'”
Suppose the true probability vector is . Then we use a wrong model to fit the data and

get the probability vector m(8). Mitra (1958) shows that y23, has a limiting non-central
chi-square distribution with non-centrality paremeter A, where

A = 6'Diag[n(6)]716

)
n=mn(f)+—

Vn

GFfitfj) is calculated by decomposing y35 into orthogonal components y2 and
GFf itfj ) is just the sum of several of these components. To calculate the power of

GFfitfj),We can apply the similar method introduced in section 11.3.4.We can define the
orthogonal components of A. These orthogonal components may be used to calculate the
power of GFf itfj).

11.6 Generalized Linear Latent VVariable Model
The generalized linear latent variable model (GLLVM) will be used for simulation and

power calculation because the model is applied to a large number of variables and
sparseness issues arise in large multidimensional tables. Let y = (y4,y>, ..., yp) be the
vector of p ordinal observed variables, each of them having c; categories. Thus there are

P_ ¢ cells, also called response patterns in the cross-classified table. The r-th response
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pattern is indicated as y, = (y; = a3,y = ay, ..., ¥, = a,), Where a; is the value of the
i-th observed variable(a; = 1, ... ,c;and i = 1, ...,p).
Let z = (24, Z,, ..., 24) be the vector of g continuous latent variables. Then the probability

of the r-th response pattern y,. is given by

7,.(0) = f 7.(2) h(z) dz,

where 6 is a vector of parameters. h(z) is the density function of z, and we assume every
latent variable to be distributed standard normal independently. r,.(2) is the conditional

probability of y, given z and it is a multinormial probability function

m(2) = 1_[ HOE H(T(” )

) = nll) (z) + nzl) (z)+ -+ 7'[( )(z) is the probability of a response in category

where r(l

a; or lower on the variable i and n((l? (z) is the probability of a response in category a; on
the variable i.

Logistic regression is used to model the interrelationship between r(l) and the latent

variables.

q

(l)
log (1) = a;0(s) Z a;ijzj, s=1,..,¢4

a;o(s) and a;; are the parameters of the model. a;o(s) is the intercept and a;; is the j-th
slope for variable i. The intercepts should satisfy the condition a;,(1) < ;,(2) < -+ <

ajo(cy).
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We use the E-M algorithm to calculate the maximum likelihood estimator for the
parameters in the model. The integrals are approximated through the Gauss-Hermite
quadrature method (Cagnone & Mignani, 2007).

11.7 Completed Monte Carlo Simulations
| carried out several Monte Carlo simulations to compare the performance of Type | error

and power of the different statistics discussed earlier. In particular, | first compared three
global statistics, traditional Pearson chi-square statistic X3, second-order marginal

statistic calculated by using the matrix inverse X [Zz]im, and second-order marginal statistic
calculated by using sequential SS X[ZZ]SS.

11.7.1 Completed Type | Error Study
The empirical distribution under Ho and the empirical Type | error rate were examined

first because a statistic may not be useful if the Type I error rate is not close to the
nominal level. If a statistic does not follow the hypothesized theoretical distribution due
to a condition such as sparseness, then the empirical Type | error rate may not be close to
the nominal level.

The design of this Type | error study is described as follows

e Model GLLVM with 1 latent factor
e Number of observed variables p=4p=5p==6

e Number of categories for each variable c=3,c=4

e Number of samples 500

e Sample size n = 500

The intercepts range from -3 to 3 and are generated randomly. The factor loadings are the

following: for p = 4,2, = (0.0,0.1,0.2,0.6)"; forp = 5, ¢; = (0.0, 3.0, 2.0,1.0,2.0)’;
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forp =6,a;, = (0.8,0.7,0.5,0.3,0.2,0.1)". I got these parameters from a published
paper. (Cagnone & Mignani, 2007).

When estimating the parameters, the procedure may not converge if any of the slopes are
too large. We will omit the samples where any slope estimation is larger than four. This
convergence problem does not happen in four and six variables cases. However, for five
variables case, about 3.2% of the samples cannot be estimated. The software used is R.

In Table 1, the means and standard deviations of X2, X[zz]im, and X[ZZ]SS are reported. The

Type | errors for each statistic are reported in Table 2. The tables show empirical Type |

error for nominal a = 0.05, using a chi-square distribution for each statistic.

TABLE 1: Mean and Standard Deviation of the Statistics X3z, Xf)in, and Xo

Mean Standard Deviation
p 4 4 5 6 4 4 5 6
c 3 4 4 4 3 4 4 4

X3r 68.14 240.93 99951 4001.73 1216 25.33 90.87 447.88

Ximy 2598 5319 9165 14106 1214 1033 1312 7096
X%, 2367 5499 9006 13271 675 1037 1285 1565
k 81 256 1024 4096 81 256 1024 4096

n/k 6.17 1.95 0.49 0.12 6.17 1.95 0.49 0.12

Note: k =Number of response patterns= c?.

31



TABLE 2: Type | Error of the Statistics X3, X{)iny and Xy

Type | error
p 4 4 5 6
c 3 4 4 4
a = 0.05
X3r 0.060 0.086 0.166 0.25
XZino 0.098 0.050 0.052 0.078
Xlss 0.04 0.066 0.052 0.034

From these two tables, | can see that the Type | error of X3, makes sense only for four
variables three categories case because the sparseness problem is moderate here: % =
6.17 is still greater than 5. However, for all the other cases, the sparseness is quite severe,
so that the Type | error of X3 is very large. X[Zz]im, is very inaccurate numerically here,
especially for the six variables case as it has a very large standard deviation compared to
the X[ZZ]SS. The Type I error looks good for four variables four categories and five
variables four categories cases. However, it is a bit large for four variables three

2

categories and six variables four categories cases. X[ is the best statistic in this

simulation study. For four variables and five variables cases, its Type | errors are close to
0.05 and its standard deviations are not very large. However for six variables case its
Type | error is a bit small. This may due to some of the 4 by 4 marginal tables are sparse.

Table 3, Table 4, Table 5 and Table 6 shows the means of the orthogonal components

GFfit”
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TABLE 3: Mean of the GFfit(l""), Four Variables

c=3 c=4%

GFfitfj) Mean Mean
(df=4) (df=9)

(43) 3.82 8.89
(42) 3.72 9.15
(41) 3.94 9.28
(32) 4.12 8.93
(31) 4.13 9.29
(21) 3.93 9.45
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TABLE 4: Mean of the GFfit(l""), Five Variables Four Categories

GFfit™” Mean
(df=9)

(54) 9.01
(53) 9.26
(52) 9.01
(51) 9.31
(43) 8.62
(42) 8.94
(41) 9.15
(32) 8.99
(31) 9.12
(21) 8.64
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TABLE 5: Mean of the GFfit(l""), Six Variables Four Categories

GFfit™” Mean
(df=9)

(65) 8.37
(64) 8.69
(63) 8.46
(62) 9.12
(61) 8.94
(54) 8.96
(53) 9.10
(52) 8.89
(51) 9.16
(43) 8.77
(42) 8.56
(41) 8.84
(32) 8.53
(31) 8.99
(21) 9.31

From these three tables, | can see that in each case, the means of every GFf itfj ) are

close to each other. This is because within each case, GFfitfj) are independent chi-

squared statistics on (¢ — 1)? degrees of freedom due to its definition. However, | did

find that in the six variables four categories case, the empirical means of GFfitiGs) and

GFf itfg) are lower than what we expected. For a four categories case, the GFf itfj)
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should distribute chi-squared with 9 degrees of freedom. But the empirical means of
GFfitiﬁS) and GFfiti“) are 8.37 and 8.46. This may due to the sparseness in the two-

way subtable. The sum of GFfitfj) equals to X[ZZ]SS as shown in Section 11.3.4. However,

the original GFf it statistics are not necessarily independent and do not necessarily
SUM 10 X 1.

11.7.2 Completed Power Simulation Study
X [22] and GFf iti”) may have higher power for certain alternative hypotheses because they

represent a test that is “focused” on the second-order marginal. If lack of fit is present in
second-order marginal, then X[ZZ] and GFfitfj) would have higher power than an
omnibus statistic such as X2. But if lack of fit is present in higher-order marginal, then
X[ZZ] and GFfitfj) may have lower power.

| used a four variables three categories dataset to study the power of X7, X[Zz]im, and

X [22]55 . This dataset has 500000 records for 1000 replications of samples of size 500. It is

generated from the two-factor model. The correlation of these two factors is zero. The
true intercepts are @, = (—1.5,—0.6,0.3,1)" and a,, = (—1,—0.3,0.6,1.5)". The true
slopesare a; = (1,1,1,1)" and a, = (0,0.1,0.2,0.6)". To evaluate the power, the one-

factor model was used to fit the data. So the parameter vector is
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for the false one-factor model. As mentioned in Section 6.1, when estimating the
parameters, the procedure may not converge if any of the slopes are too large. In this
dataset, the convergence problem happens when any of the slopes are greater than 4.2.
Besides the convergence problem, another problem happens when the start values of the
intercepts differ too much. If a;, and a,, differ too much, the estimates of «a; are tend to
be greater than the estimates of a,. These slope estimates will produce a negative
probability, which does not make any sense. So this kind of sample will also be omitted.
After omitting the samples with these two problems, there are 970 samples left. Our start
values are a;, = (—0.9,—0.3,0.3,0.9)', ayq = (—0.6,0,0.6,1.2)" and a; =
(0.5,0.5,0.5,0.5)". The Type | error is set to be 0.05. The mean, standard deviation and
empirical power of these three statistics are shown in the following table. Empirical

power is the number of samples that reject the null divided by 970.
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TABLE 6: Mean, Standard Deviation and Power of X3z, Xfy)i, and X

Mean Standard Deviation ~ Empirical Power
XZr 84.53 25.47 0.268
X iny 72.98 100.28 0.800
Xioyss 39.74 10.23 0.591

From Table 6 we can see that the power of X2, is 0.268, which is not large enough.
X[Zz]im, has a very large power, which is 0.8. However, X[Zz]m,, IS very inaccurate
numerically. This can be demonstrated by its large standard Deviation. X[ZZ]SS is the best

statistic here. Its power is 0.591 and it has a small standard deviation.The means of

GFf itfj ) are reported in Table 7.

TABLE 7: Mean of the GFfit'?

GFfit™ Mean
(df=4)

(43) 4.11
(42) 5.95
(41) 6.68
(32) 14.93
(31) 4.04
(21) 4.03

As mentioned earlier, GFfitfj) should distribute chi-square on (¢ — 1)? degrees of
freedom independently if the model is correct. In this case, under the null hypothesis,

GFfitfj) should distribute chi-square on 4 degrees of freedom However, since we use a
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one-factor model to fit the data generated by a two-factors model, we can see that the

mean of GFfitf’z) is 14.93, which is substantially higher than the other GFfitfj). In the

true model, variable 2 and 3 have factor loading 0.1 and 0.2 on factor 2.
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CHAPTER 3
THEORETICAL AND EMPIRICAL STUDIES OF THE GFFIT STATISTIC

| studied three problems in my dissertation. Firstly, | studied the Type I error and power
of GFf itfj), both theoretical and empirical. Secondly, | improved the performance of
GFf itfj ) when the two-way subtables are sparse. Thirdly, | applied the improvement on
GFfit™ to X%,

111.1 Type | Error and Power Study of GFfit(f")

| performed theoretical calculations to study asymptotic power and several Monte Carlo
simulations to study the empirical Type I error and empirical power of GFfitfj) and
compared the performance of GFfit" to that of M{", X% and X?.

The empirical distribution under Ho and the empirical Type | error rate were examined
first because a statistic may not be useful if the Type | error rate is not close to the

nominal level. If a statistic does not follow the hypothesized theoretical distribution due
to a condition such as sparseness, then the empirical Type | error rate may not be close to

the nominal level. For the Type I error study of GFfitfj), Mz(ij), Xl-zj and )731 sparseness
in two-way subtables may affect the empirical distribution. Kolmogorov-Smirnov tests
were applied to each statistic to test distribution against chi-square and performance at
nominal a=0.01 and 0.05 were tabulated. As mentioned earlier, it is known that X 12] is not

distributed chi-square. The design of this Type I error study is as follows

e Model GLLVM with 1 latent factor
e Number of observed variables p=4p=5p==6

e Number of categories for each variable c=3,c=4

e Number of samples 500

e Sample size n = 500 and 150

The intercepts are a, ;) = (—1.5,0.5)" for each variable for three categories case and

aoqy = (—1.5,0.5,2.5)" for each variable for four categories. The factor loadings are the
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following: for p = 4, ¢, = (0.0,0.1,0.2,0.6); for p = 5,a; = (0.0,3.0,2.0,1.0,2.0)";
forp =6,a; = (0.8,0.7,0.5,0.3,0.2,0.1)". These three parameter settings are the same
as those introduced in the completed Type I error study of X, [22]. The true model was fitted

to simulated data.
First, simulations with sample size 500 were conducted. Simulation results for Type |
error are shown in the following tables. The tables show empirical Type | error rates for

nominal a = 0.05, using a chi-square distribution for each statistic. The error rates

outside of the interval 0.05 + 1.96 /% = (0.0365,0.0635) were bolded.
Convergence rate for estimation of parameter for each case were also included in the

table title.

TABLE 8: Type | Error Rate for GFfit'” M, x% and X%, Four Variables Three
Categories, n=500, Convergence Rate=100%

Type | error rate

(i) GFfit™ M X5 Xz

(12) 0.038 0.05 0.024 0.036
(13) 0.026 0.058 0.016 0.040
(14) 0.05 0.056 0.026 0.040
(23) 0.054 0.058 0.028 0.046
(24) 0.04 0.066 0.024 0.042
(34) 0.05 0.044 0.028 0.046
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TABLE 9: Type | Error Rate for GFfit"™” M, x% and X

Categories, n=500, Convergence Rate=99%

17

2 Four Variables Four

Type | error rate

(ij) GFfittD M X3 X3

12) 0.048 0.051 0.038 0.055
(13) 0.061 0.058 0.056 0.071
(14) 0.040 0.034 0.026 0.048
(23) 0.038 0.040 0.036 0.048
(24) 0.068 0.057 0.042 0.069
(34) 0.089 0.081 0.060 0.092
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TABLE 10: Type | Error Rate for GFfit(li") Mgij), X%]- and X?, Five Variables Four
Categories, n=500, Convergence Rate=98%

ij>

Type | error rate

(ij) GFfitD M X5 X5

(12) 0.053 0.053 0.0345 0.053
(13) 0.071 0.071 0.053 0.063
(14) 0.057 0.055 0.051 0.053
(15) 0.067 0.051 0.033 0.053
(23) 0.041 0.051 0.035 0.051
(24) 0.045 0.041 0.033 0.047
(25) 0.043 0.047 0.027 0.043
(34) 0.041 0.043 0.033 0.043
(35) 0.047 0.057 0.041 0.049
(45) 0.032 0.029 0.022 0.033
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TABLE 11: Type | Error Rate for GFfit”> MY, X% and X%, Six Variables Four
Categories, n=500, Convergence Rate=100%

Type | error rate

(i GFfit™ M X5 X5

(12) 0.042 0.052 0.052 0.072
(13) 0.048 0.052 0.058 0.070
(14) 0.050 0.046 0.058 0.070
(15) 0.056 0.066 0.070 0.072
(16) 0.034 0.046 0.050 0.052
(23) 0.066 0.046 0.072 0.084
(24) 0.048 0.050 0.050 0.068
(25) 0.046 0.038 0.054 0.062
(26) 0.054 0.080 0.060 0.070
(34) 0.050 0.032 0.050 0.058
(35) 0.038 0.044 0.046 0.054
(36) 0.034 0.052 0.042 0.048
(45) 0.030 0.034 0.044 0.044
(46) 0.050 0.046 0.052 0.056
(56) 0.048 0.048 0.078 0.080

From these tables we can see that GF f itfj) , Mz(”) and )?izj have a good Type | error
when sparseness is present but Xl-zj does not since we mentioned in earlier chapters that

Xl-zj does not distribute Chi-square.
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A Kolmogorov-Smirnov test has also been applied to each statistic. The p-values are

shown in the following tables. I bolded the p-values less than 0.05.

TABLE 12: KS Test P-values for GFfit™ M, x% and X2, Four Variables Three

Categories, n=500

ij»

p-value

(ij) GFfit™ MY X5 x5

(12) <0.0001 0.7279 <0.0001 <0.0001
(13) 0.0006 0.0044 <0.0001 <0.0001
(14) 0.5003 0.4846 <0.0001 <0.0001
(23) 0.8552 0.5093 <0.0001 <0.0001
(24) 0.7029 0.4102 <0.0001 <0.0001
(34) 0.6160 0.8930 <0.0001 0.0002

TABLE 13: KS Test P-values for GFfit’” MY, X2 and X

Categories, n=500

ijs

2 Four Variables Four

p-value

(i) GFfitt M X3 X2

(12) 0.1639 0.1036 <0.0001 0.6476
(13) 0.7483 0.8809 <0.0001 0.3310
(14) 0.6377 0.3924 <0.0001 0.8951
(23) 0.9001 0.8054 <0.0001 0.3214
(24) 0.7235 0.2745 <0.0001 0.0226
(34) 0.0181 0.4855 <0.0001 0.0333
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TABLE 14: KS Test P-values for GFfit” MY, X% and X

Categories, n=500

1R

2 Five Variables Four

p-value

(i GFfit™ M X5 X5

(12) 0.8100 0.8322 <0.0001 0.7614
(13) 0.0645 0.0334 <0.0001 0.0173
(14) 0.4235 0.3953 <0.0001 0.8063
(15) 0.1650 0.0384 <0.0001 0.0094
(23) 0.0762 0.8871 <0.0001 0.3721
(24) 0.9543 0.8644 <0.0001 0.9217
(25) 0.1810 0.2110 <0.0001 0.4059
(34) 0.6884 0.8972 <0.0001 0.6112
(35) 0.2433 0.9761 <0.0001 0.5721
(45) 0.2812 0.2106 <0.0001 0.0882
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TABLE 15: KS Test P-values for GFfit” M, X% and X%, Six Variables Four
Categories, n=500

p-value
(ij) GFfitD M X5 X5
(12) 0.0884 0.1357 <0.0001 0.6371
(13) 0.9253 0.9990 <0.0001 0.1950
(14) 0.0032 0.0030 <0.0001 0.0413
(15) 0.0431 0.1354 <0.0001 0.0112
(16) 0.0545 0.3613 <0.0001 0.8293
(23) 0.0842 0.6011 <0.0001 0.0131
(24) 0.5314 0.8327 <0.0001 0.2647
(25) 0.8498 0.7623 <0.0001 0.6642
(26) 0.4539 0.7237 <0.0001 0.5423
(34) 0.4711 0.4174 <0.0001 0.8828
(35) 0.0932 0.0842 <0.0001 0.2685
(36) 0.4498 0.7975 <0.0001 0.6673
(45) 0.2410 0.0924 <0.0001 0.6181
(46) 0.4129 0.3945 <0.0001 0.5516
(56) 0.6564 0.3897 <0.0001 0.2489

We can see that in all four scenarios, most of GF f itfj ) and Mz(ij ) have a p-value greater
than 0.05. None of the Xizj has a p-value greater than 0.05, and theoretically it does not

distribute Chi-squared. | noticed that for four variables four categories, five variables four
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categories and six variables four categories cases, most )?l-zj has a p-value greater than
0.05. However, for the four variables three categories case, none of the )?izj has a p-value
greater than 0.05. In this case, the degrees of freedom for )?izj is 2. This result indicates

that the )71-2]- statistic does not approximate Chi-squared distribution well when the number
of degrees of freedom is small.

Then | conducted another simulation with the same parameter settings but a smaller
sample size of 150. With a smaller sample size, the contingency table is sparser than
those in the earlier cases. With such a small sample size, some slope estimates tend to be
very large, which indicate that the ML estimation algorithm for parameter estimates did
not converge. An extremely large slope estimate will result in several estimated
cumulative frequencies with the same value for different categories in one variable. In
this case, we failed to compute the derivatives for the corresponding parameters. Without
these derivatives, we cannot compute the statistics of interest. For example, for the four
variables three categories case, using Itm package in R which produces MLE for
parameters, 153 out of 500 samples have this problem. So I just discarded the four
variables three categories case. The Simulation results for Type | error are shown in the
following tables. The tables show empirical Type | error rates for nominal o = 0.05,

using a chi-squared distribution for each statistic.
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TABLE 16: Type | Error Rate for GFfit'” Mgij), X2 and X2, Four Variables Four
Categories, n=150, Convergence Rate=97.6%

ij>

Type | error rate

(ij) GFfittD M X7 Ve

12) 0.041 0.037 0.027 0.043
(13) 0.055 0.051 0.041 0.057
(14) 0.055 0.047 0.035 0.041
(23) 0.039 0.041 0.025 0.029
(24) 0.047 0.033 0.031 0.047
(34) 0.047 0.047 0.029 0.053
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TABLE 17: Type | Error Rate for GFfit'” MY, X% and X

Categories, n=150, Convergence Rate=98.8%

ij

2 Five variables Four

Type | error rate

(ij) GFfit'” M X% Xz

(12) 0.032 0.038 0.028 0.046
(13) 0.047 0.034 0.038 0.045
(14) 0.063 0.051 0.067 0.071
(15) 0.049 0.061 0.040 0.053
(23) 0.032 0.034 0.022 0.038
(24) 0.051 0.040 0.034 0.045
(25) 0.040 0.059 0.040 0.063
(34) 0.045 0.045 0.032 0.038
(35) 0.063 0.043 0.026 0.034
(45) 0.043 0.059 0.048 0.067
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TABLE 18: Type | Error Rate for GFfit'”> MY, X% and X%, Six Variables Four
Categories, n=150, Convergence Rate=99.8%

Type | error rate

(i GFfit™ M X5 X5

(12) 0.042 0.042 0.038 0.042
(13) 0.022 0.034 0.014 0.028
(14) 0.034 0.034 0.032 0.042
(15) 0.050 0.060 0.036 0.046
(16) 0.058 0.068 0.036 0.060
(23) 0.044 0.048 0.036 0.050
(24) 0.054 0.042 0.042 0.048
(25) 0.050 0.044 0.040 0.046
(26) 0.046 0.060 0.038 0.040
(34) 0.040 0.050 0.030 0.032
(35) 0.056 0.054 0.052 0.060
(36) 0.044 0.050 0.030 0.038
(45) 0.046 0.050 0.042 0.044
(46) 0.042 0.038 0.034 0.036
(56) 0.054 0.050 0.046 0.048

From these tables we can see that even with a smaller sample size and sparser
contingency table, GFfitfj) , Mz(ij) and )?izj have a good Type I error but Xl-zj does not.
A Kolmogorov-Smirnov test has also been applied to each statistic. The p-values are

shown in the following tables.
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TABLE 19: KS Test P-values for GFfit” MY, X% and X

Categories, n=150

1R

2 Four Variables Four

p-value

(i) GFfit™ MG X? 2

(12) 0.2258 0.0357 <0.0001 0.0303
(13) 0.6956 0.8877 <0.0001 0.8698
(14) 0.4740 0.8925 <0.0001 0.3517
(23) 0.0802 0.2740 <0.0001 0.5812
(24) 0.5394 0.4370 <0.0001 0.1872
(34) 0.5356 0.7980 <0.0001 0.3663
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TABLE 20: KS Test P-values for GFfit” MY, X% and X

Categories, n=150

1R

2 Five Variables Four

p-value

(i GFfit™ M X5 X5

(12) 0.4054 0.3125 <0.0001 0.3616
(13) 0.5599 0.2668 <0.0001 0.3065
(14) 0.2832 0.4409 <0.0001 0.1314
(15) 0.5160 0.3218 <0.0001 0.6426
(23) 0.2295 0.7410 <0.0001 0.6986
(24) 0.4844 0.8989 <0.0001 0.6365
(25) 0.5580 0.6263 <0.0001 0.7138
(34) 0.5057 0.8734 <0.0001 0.2494
(35) 0.0160 0.5289 <0.0001 0.3054
(45) 0.7394 0.7029 <0.0001 0.6587
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TABLE 21: KS Test P-values for GFfit” M, X% and X%, Six Variables Four
Categories, n=150

p-value

(i GFfit™ M X X5

(12) 0.5718 0.7693 <0.0001 0.7006
(13) 0.1746 0.3033 <0.0001 0.0014
(14) 0.2841 0.6815 <0.0001 0.7957
(15) 0.7269 0.1877 <0.0001 0.1169
(16) 0.4218 0.6736 <0.0001 0.6599
(23) 0.4255 0.2892 <0.0001 0.1906
(24) 0.5222 0.4024 <0.0001 0.2571
(25) 0.9135 0.4619 <0.0001 0.9950
(26) 0.1849 0.6377 <0.0001 0.4906
(34) 0.2837 0.7848 <0.0001 0.6955
(35) 0.8376 0.8123 <0.0001 0.9370
(36) 0.6927 0.4109 <0.0001 0.5188
(45) 0.8323 0.6497 <0.0001 0.9616
(46) 0.1040 0.0277 <0.0001 0.0501
(56) 0.3942 0.2501 <0.0001 0.6346

We can see that in these three cases, most GF f itfj ), Mz(ij ) and )?izj have a p-value greater

than 0.05.
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According to these simulation studies, we can conclude that GFfitfj), Méij) and )?izj still
follow the hypothesized theoretical Chi-squared distribution even though there is a
sparseness problem in the contingency table.

Besides these one-factor type | error rate study, | also studied the GF f itfj ) type | errors
for two two-factor six variables four categories cases. For each case, pseudo data for
1000 samples were generated with sample size 500. The parameter settings are shown
below: For the non-skewed case, ag(1y = (—3,—2.5,—2,—1.8,—1.5,-0.8)", ag(z) =
(-1,-0.5,0,0.2,0.5,1.2)’, ag(sy = (1,1.5,2,2.2,2.5,3.2) ,a; =
(1.6,1.35,1.25,0.4,0.5,0.6)", a, = (0,0,0,1,1,1)"; for the skewed case, ayc1) =
(-3,-2.5,-2,-1.8,—1.5,-0.8)", ag(z) = (—=2.5,-2,-1.5,—-1.3,—1,-0.3)', aq(3) =
(-2,-1.5,—-1,-0.8,-0.5,0.2)", a; = (1.6,1.35,1.25,0.4,0.5,0.6)", ar, =
(0,0,0,1,1,1)". I studied these two-factor cases because in the power study | generated
the data from two-factor models and fitted the data with one-factor models. If the

GFf itfj ) does not have a good type | error for two-factor cases, the power study would
have no meaning. Simulation is available only for GFfitfj) due to software. The type |

error rates for these two-factor cases are listed below. The convergence rates for non-

skewed case and skewed case are 99.5% and 99%, respectively.
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TABLE 22: Type | Error Rates for Two-Factor Cases

Type | error rates

(i) Non-skewed Skewed
(12) 0.0572 0.0626
(13) 0.0572 0.0535
(14) 0.05427 0.0454
(15) 0.03919 0.0434
(16) 0.0552 0.0474
(23) 0.0502 0.0636
(24) 0.0532 0.0545
(25) 0.0462 0.0484
(26) 0.0522 0.0515
(34) 0.0462 0.0454
(35) 0.0492 0.0636
(36) 0.0331 0.0434
(45) 0.0422 0.0515
(46) 0.0482 0.0474
(56) 0.0603 0.0383

From this table we can see that GF f itfj ) has good type I error for the two-factor cases.
Besides 500 sample size, | also planned to do the simulation with sample size 150.
However, with this small sample size, the convergence problem is presented so that |

discarded these simulations. Beside the six variables case, | also planned to do a two-
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factor four variables three categories type I error study. The parameters are aq(q) =
(=2,-2,-2,-2), agzy = (2.2,2,2)",a; = (0.0,1.0,1.0,0.0)", &, = (2.0,0.1,0.2,2.0)".
| wanted to investigate this case since | will use the same parameter setting to do a power
study later. However, the convergence problem is present again for this case so that |
have to discard the simulation.

Then | performed a power study for the lack-of-fit statistics examined in the type I error
study. X[ZZ], GFfitfj), Méij), Xl-zj and )Tizj may have higher power for certain alternative
hypotheses because they represent a test that is “focused” on the second-order marginal.
If lack of fit is present in second-order marginal, then these statistics may have higher
power than an omnibus statistic such as X3.. But if lack of fit is present in higher-order
marginal, then these statistics may have lower power. For the power study, | calculated
theoretical power of GFfitfj) first, then compared to empirical power in the simulations.
| tried several different cases in the simulation. In each case | examined the empirical
power of GFfit'”, M, X2 and XZ.

First, | studied a four variables three categories case and six variables four categories
case. Pseudo data for 1000 samples were generated from a confirmatory two-factor model

with all parameters fixed and then fit with a one factor model. The parameters for the data

generating models are the following: for four variables case, @y =

(=2,-2,-2,-2), agzy = (2,2,2,2),a; = (0.0,1.0,1.0,0.0)', ¢, = (2.0,0.1,0.2,2.0)";
for six variables case, ayqy = (—=3,—-2.5,—2,-1.8,—-1.5,-0.8)", a2y =
(-1,-0.5,0,0.2,0.5,1.2)", g3y = (1,1.5,2,2.2,2.5,3.2) ,a; =

(1.6,1.35,1.25,0.4,0.5,0.6)", @, = (0,0,0,1,1,1)’, which are the same parameter used
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for the Type I error study for a six-variable two-factor model. From the slopes, we can
see that for the four variables case, variables 2 and 3 have high association with factor 1,
variables 1 and 4 have high association with factor 2. For the six variables case, variables
1, 2 and 3 have high association with factor 1, variables 4, 5 and 6 have high association
with factor 2. These parameter values are chosen so that the effect size for the goodness-
of-fit test is large. The two latent variables were specified as uncorrelated, each with
variance equal to 1.0. With a sparser dataset, the statistics tend to have a lower power. So

for each case | used two different sample size, 150 and 500. The theoretical and empirical

power for GFfitfj) for the four-variable case are listed in the following table, and |
bolded the relatively high power. The convergence rates for the sample size 500 case and

sample size 150 case are 99.2% and 99.3%, respectively.

TABLE 23: Power for GFfit(f"), Four Variables Case

Power for GFf itfj ), four variables case

Sample size 500 Sample size 150

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.0548 0.0514 0.0514 0.0423
(13) 0.1341 0.1653 0.0726 0.0977
(14) 0.4743 0.3891 0.1588 0.1319
(23) 0.6082 0.5806 0.2012 0.2134
(24) 0.0501 0.0433 0.0500 0.0553
(34) 0.0502 0.0534 0.0501 0.0513
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From this table we can see that with a smaller sample size, both theoretical and empirical

power of GFfitfj) tend to be smaller. The empirical power of GFfitfj) is close to its

theoretical power. For this four variables case, GFfit " and GFfit *® have the two
largest power, which shows that primarily the association between variables 2 and 3, and

the association between variable 1 and 4, were not adequately explained by the one-factor

model. For comparison, | also list the empirical power for szij), Xizj and )?l-zj in the

following tables. | bolded relatively high power.

TABLE 24: Empirical Power for GFfit(lij) Mgij), X7 and )=(12] Four Variables, n=500

Empirical power

(ii) GFfit') M X% Ve

12) 0.0514 0.0504 0.0353 0.0544
(13) 0.1653 0.0474 0.0272 0.0504
(14) 0.3801 0.0484 0.0221 0.0383
(23) 0.5806 0.1089 0.8800 0.8740
(24) 0.0433 0.0544 0.0272 0.0514
(34) 0.0534 0.0453 0.0292 0.0524
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TABLE 25: Empirical Power for GFfit(li") M;ij), Xl?]- and )=(12] Four Variables, n=150

Empirical power

(ij) GFfit'D MY X5 Xz

(12) 0.0423 0.0534 0.0342 0.0645
(13) 0.0977 0.0483 0.0322 0.0594
(14) 0.1319 0.0483 0.0292 0.0564
(23) 0.2134 0.0806 0.3403 0.3353
(24) 0.0553 0.0412 0.0362 0.0574
(34) 0.0513 0.0564 0.0392 0.0634

From these two tables we can see that Mz(ij ) has very low power. Although X2, has a

large power, as | have demonstrated in the type | error study, it is not distributed Chi-
squared. X2, has a larger power than that of GFf it£23). However, the X lz] statistic didn’t
detect the lack-of-fit in the associations between variable 1 and variable 4.

The theoretical and empirical powers for GF f itfj) for six variables case are listed in the

following table. The convergence rates for both sample size 500 case and sample size 150

case are 100%.
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TABLE 26: Power for GFfit(f"), Six Variables Case

Power for GFfitfj), six variables case

Sample size 500 Sample size 150

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.2211 0.2280 0.0908 0.1160
(13) 0.2996 0.3240 0.1079 0.1300
(14) 0.1000 0.0850 0.0634 0.0600
(15) 0.0964 0.0660 0.0625 0.0620
(16) 0.1188 0.1070 0.0679 0.0840
(23) 0.9942 0.9630 0.5725 0.3850
(24) 0.1196 0.0960 0.068 0.0630
(25) 0.1275 0.1240 0.0700 0.0630
(26) 0.2306 0.1980 0.0929 0.0950
(34) 0.2374 0.2210 0.0944 0.1070
(35) 0.1953 0.1820 0.0852 0.0900
(36) 0.1360 0.1070 0.0719 0.0570
(45) 0.0980 0.0670 0.0629 0.0650
(46) 0.1295 0.1180 0.0704 0.0650
(56) 0.1889 0.1540 0.0838 0.0850

Again, the theoretical power is close to the empirical power for GFfitfj). For this six

variables four categories case, GFf itf” has the largest power, which means the
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association between variable 2 and 3 cannot be explained by the one-factor model. When

the sample size decreases, both theoretical power and empirical power decrease.
For comparison, | listed the empirical power for Méij), Xizj and )71-21- below.

TABLE 27: Empirical Power for GFfit(lij) M;ij), Xl?]- and )=(12] Six Variables, n=500

Empirical power

(ij) GFfit™) M X5 Xz

(12) 0.2280 0.0460 0.0420 0.0660
(13) 0.3240 0.0490 0.0430 0.0630
(14) 0.0850 0.0610 0.0700 0.0940
(15) 0.0660 0.0380 0.0560 0.0710
(16) 0.1070 0.0610 0.0580 0.0820
(23) 0.9630 0.0460 0.0440 0.0570
(24) 0.0960 0.0610 0.0690 0.0900
(25) 0.1240 0.0530 0.0700 0.0860
(26) 0.1980 0.0570 0.0550 0.0770
(34) 0.2210 0.0510 0.0630 0.0830
(35) 0.1820 0.0490 0.0540 0.0740
(36) 0.1070 0.0420 0.0460 0.0630
(45) 0.0670 0.0510 0.7210 0.7400
(46) 0.1180 0.0470 0.6610 0.6860
(56) 0.1540 0.060 0.6530 0.6740
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TABLE 28: Empirical Power for GFfit(li") M;ij), Xl?]- and )=(12] Six Variables, n=150

Empirical power

(i) GFfit™ M X5 X%

(12) 0.1160 0.0410 0.0460 0.0610
(13) 0.1300 0.0400 0.0410 0.0540
(14) 0.0600 0.0580 0.0460 0.0630
(15) 0.0620 0.0440 0.0420 0.0590
(16) 0.0840 0.0650 0.0540 0.0750
(23) 0.3850 0.0430 0.0260 0.0480
(24) 0.0630 0.0510 0.0490 0.0610
(25) 0.0630 0.0610 0.0440 0.0610
(26) 0.0950 0.0660 0.0470 0.0610
(34) 0.1070 0.0500 0.0460 0.0580
(35) 0.0900 0.0560 0.0460 0.0560
(36) 0.0570 0.0480 0.0360 0.0440
(45) 0.0650 0.0420 0.190 0.2000
(46) 0.0650 0.0420 0.140 0.1490
(56) 0.0850 0.0410 0.161 0.1690

From these two tables we can see that Mz(ij ) has very low power. )?223 has a low power but

X2, X3, and X2 have relatively high power. This indicates that GFfit"" and X? detect
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the lack-of-fit in the associations between different pairs of variables. GFf itfj ) finds lack

of fit in the first three variable pairs. )?L-Zj finds lack of fit in the last three variable pairs.

Then I conducted two more power studies, still a four variables three categories case and
a six variables four categories case to examine more sparseness conditions. First
theoretical power was calculated, and then pseudo data for 1000 samples were generated
from a confirmatory two-factor model with all parameters fixed and then fit with a one
factor model. But the parameters are different from the earlier study: for four variables
case, ap(1) = (—1.5,—1,— 0.6, —0.3)’, ap(zy = (=1.0,—0.5,-0.1,0.2)", a; =
(0.0,1.0,1.0,0.0)', a = (2.0,0.1,0.2,2.0)"; for six variables case, ay(;) =
(-3,-2.5,-2,-1.8,—1.5,-0.8)", ag(z) = (—=2.5,-2,-1.5,—-1.3,—1,-0.3)', aq(3) =
(-2,-1.5,—-1,-0.8,-0.5,0.2)", a; = (1.6,1.35,1.25,0.4,0.5,0.6)", ar, =
(0,0,0,1,1,1)". In the earlier settings, the intercepts range from -3 to 3.2, but in this
setting almost all the intercepts are negative. The slopes in this setting are the same as in
the earlier simulation. This will make the sample distribution in the two-way subtables
more skewed and the statistics may have inaccurate Type | error level and/or lower power
because of problems of higher sparseness in the subtables. Again, two sample sizes, 150
and 500 were used. For the four variables four categories case, the problem of failure to
converge was encountered again using Itm package in R, and estimation did not converge
in about half of the samples. For six-variable non-skewed case, all simulations converge
for both 150 and 500 sample sizes. For six variables skewed case, 99% of simulations

converge for 500 sample size and 92% of simulations converge for 150 sample size. So |
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discard the four variables four categories case. The result for six variables four categories

case is listed below.

TABLE 29: Power for GFfit(fj), Six Variables Case

Power for GFfitfj), six variables case

Sample size 500 Sample size 150

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.3914 0.2790 0.1280 0.1654
(13) 0.5874 0.3984 0.1799 0.1513
(14) 0.0648 0.0485 0.0542 0.0620
(15) 0.0616 0.0516 0.0533 0.0577
(16) 0.0706 0.0819 0.0558 0.0696
(23) 0.8672 0.8413 0.3071 0.2546
(24) 0.0614 0.0475 0.0533 0.0761
(25) 0.0565 0.0404 0.0519 0.0609
(26) 0.0576 0.0829 0.0522 0.0739
(34) 0.0752 0.0738 0.0571 0.0794
(35) 0.0671 0.0768 0.0549 0.0642
(36) 0.0546 0.0637 0.0514 0.0859
(45) 0.0592 0.0940 0.0527 0.0903
(46) 0.0683 0.0849 0.0552 0.0751
(56) 0.0697 0.0859 0.0556 0.0772
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TABLE 30: Empirical Power for GFfit'? M, X% and X%, Six Variables, n= 500

y?

Empirical power

(i) GFfit™ M X5 X%

(12) 0.2790 0.0758 0.1507 0.1799
(13) 0.3984 0.0758 0.1547 0.1789
(14) 0.0485 0.0374 0.0465 0.0596
(15) 0.0516 0.0384 0.0455 0.0596
(16) 0.0819 0.0566 0.0586 0.0758
(23) 0.8413 0.0647 0.1435 0.1658
(24) 0.0475 0.0404 0.0556 0.0707
(25) 0.0404 0.0434 0.0495 0.0647
(26) 0.0829 0.0475 0.0586 0.0697
(34) 0.0738 0.0394 0.0505 0.0697
(35) 0.0768 0.0505 0.0586 0.0788
(36) 0.0637 0.0485 0.0596 0.0738
(45) 0.0940 0.0889 0.2912 0.3154
(46) 0.0849 0.0495 0.2436 0.2628
(56) 0.0859 0.0394 0.2386 0.2669
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TABLE 31: Empirical Power for GFfit(li") M;ij), Xl?]- and )=(12] Six Variables, n= 150

Empirical power

(i) GFfit™ M X5 X%

(12) 0.1654 0.0947 0.1360 0.1556
(13) 0.1513 0.0914 0.1175 0.1316
(14) 0.0620 0.0685 0.0663 0.0729
(15) 0.0577 0.0511 0.0577 0.0652
(16) 0.0696 0.0696 0.0642 0.0816
(23) 0.2546 0.0903 0.1055 0.1143
(24) 0.0761 0.0685 0.0772 0.0881
(25) 0.0609 0.0653 0.0631 0.0739
(26) 0.0739 0.0663 0.0609 0.0729
(34) 0.0794 0.0718 0.0707 0.0837
(35) 0.0642 0.0631 0.0653 0.0718
(36) 0.0859 0.0729 0.0707 0.0826
(45) 0.0903 0.0848 0.1566 0.1697
(46) 0.0751 0.0739 0.1153 0.1218
(56) 0.0772 0.0739 0.1120 0.1273

Again, from these tables, we can see that the theoretical power is close to the empirical

power for GFf itfj). GFf itfj ) and )?l-zj detected the lack-of-fit in the associations between
different pairs of variables.

Comparing the skewed case with the non-skewed case, we can see that with a more

skewed dataset, GFf itfj) tends to have lower power, both theoretically and empirically.
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The empirical power is closer to the theoretical power in the non-skewed case than that in
the skewed case. This difference may be due to more severe sparseness because of

skewed table.

111.2 Improve GFfit(l"") by a Subset of Orthogonal Components

11.2.1 GFfit(})) Statistic

Although GFf itfj) is a good remedy to the problem of sparseness because it is
calculated from marginal two-way tables, sometimes even GFf itfj) may have low power
and inaccurate Type | error level due to severe sparseness in a two-way subtable when
the number of categories is large and response variables have a skewed distribution. In

that case, the distribution of GFfitfj) may not be well approximated by the chi-square
distribution even if the total sample size is large.

I modified GFf itfj ) for the sparse case by selecting a subset of orthogonal components
chosen systematically to reduce the impact of sparseness to the extent possible. When
computing GF f itfj), we use (c — 1)? orthogonal components that can produce the full
table. Since including those orthogonal components corresponding to the cells with low
frequencies is one reason for the poorer performance of GF f itfj ) in the sparse two-way
subtable, one way to solve this problem is using a subset, less than (¢ — 1)?2, of the
orthogonal components corresponding to several cells with relatively large frequencies.
In other words, instead of using all the (¢ — 1)? components, we can drop those

components that are likely to correspond to relatively small frequencies. | denote this

statistic by GFfitii(]%, where t means computing the statistic with t cells, where t <
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(c — 1)2. Since GFfitf(jt)) is the sum of t orthogonal components and each orthogonal

component has a Chi-squared distribution with one degrees of freedom, GF f itf(jt)) S

distributed Chi-squared with t degrees of freedom. To use GFf itf(jt)), we need to decide

how many cells and which cells to choose to compute GFfitf(jt)). Since including those

cells with extremely low frequencies is the main reason that GFfitfj) does not work well
when the subtable is sparse, we should not choose too many cells. On the other hand, if
we only choose 1 or 2 cells, we may decrease power of the test based on the component.
So I investigated a moderate number of cells, say four or five cells, we seek to choose
those cells with relatively large expected frequencies. | did many simulations and the best
result is to choose the cells in the center of the table. The expected frequencies depend
highly on the intercepts in the GLLVM model. Since we assume the latent variables are
distributed normal in the model, if the intercepts are generally evenly distributed, then the
cells in the center of the subtable will have large expected frequencies. For example, in
the following tables I labeled the cells for a four categories case and a five categories

case.
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TABLE 32: Label of Cells for Four Categories Case.

Label Category of variable i
1 2 3 4
Category of 1 16 12 8 4
variable 2 15 11 7 3
3 14 10 6 2
4 13 9 5 1

TABLE 33: Label of Cells for Five Categories Case.

Label Category of variable i
1 2 3 4 5
Category 1 25 20 15 10 5
of variable 2 24 19 14 9 4
] 3 23 18 13 8 3
4 22 17 12 7 2
5 21 16 11 6 1

For the four categories case, | will choose the four cells labeled 6, 7, 10, 11. For the five
categories case, | will choose the five cells labeled 8, 12, 13, 14, 18. More generally, for a

dataset with ¢ categories in each variable, if ¢ is even, | will choose four cells
. . . cC C c C c c c c
corresponding to the categories pair (E’ E)’ (E’ 5 + 1), (5 +1, 5) and (E +1, 5 +1).If

. . . : . . c+1 c+1, c+1
c is odd, 1 will choose five cells corresponding to the categories pair (C2 , CZ ), (C2 —

1, C+1), (C+1, AL 1), (il + 1, ﬂ) and (il, AL 1). As the two-way table
2 2’ 2 2 2 2" 2
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becomes larger, more cells could be taken from the center of the table. For example, if
the variable has six categories, then we can take 16 cells labeled “X” in the center of the

two-way subtable as shown below.

TABLE 34: Cells to Choose to Compute GF it for Six-Category Case
1(t)

Category of variable i
1 2 3 4 5 6
Category 1
of 2 X X X X
variable 3 X X X X
J 4 X X X X
5 X X X X
6

If the variable has seven categories, then we can take 13 cells labeled “X” in the center of

the two-way subtable as shown below.
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TABLE 35: Cells to Choose to Compute GFfit(ij)

1(v for Seven-Category Case

Category of variable i
1 2 3 4 5 6 7
Category 1
of 2 X
variable 3 X X X
j 4 X X X X X
5 X X X
6 X
7

111.2.2 Type | Error Rate Study for GFfit(f{z)
@n

To check the performance of the GFfit| , statistic, | first conducted several Type I error

studies. To demonstrate this sparseness problem, I conducted two Type | simulations for
four variables, four categories. | generated 1000 pseudo datasets from a one factor model
and fit it with a one factor model. The parameters for the data generating models are the
following: o1y = (—3.5,—3.5,—3.5,—3.5)", ag(z) = (0,0,0,0)", ag(3y =
(3.5,3.5,3.5,3.5)", a; = (1,1,1,1)". The two sample sizes are 150 and 500. The average

frequencies for each cells in the two-way subtables are listed below.
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TABLE 36: Average Frequencies of Cells for Four Variables Four Categories Case,
n=500

Average frequencies Category of variable i
1 2 3 4
Category of 1 2.13 13.02 6.61 0.414
variable j 2 13.02 118.52 89.87 6.69
3 6.67 89.46 118.23 13.05
4 041 6.62 13.14 2.13

TABLE 37: Average Frequencies of Cells for Four Variables Four Categories Case, n=
150

Average frequencies Category of variable i
1 2 3 4
Category of 1 0.65 3.87 1.98 0.13
variable | 2 3.86 35.80 26.95 1.98
3 2.01 26.88 35.38 3.89
4 0.12 1.96 3.90 0.63

Although the four cells in the middle have relatively large average frequencies, some of

the other cells have very low frequencies, and with smaller sample size, the sparseness

problem becomes more severe. Because of the sparseness in these cells, some GFf itf’ )

statistics may have inaccurate empirical Type I error. The empirical Type | error rates of

GFfitfj) for these two cases when nominal o = 0.05 are listed below.
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TABLE 38: Type | Error Rates of GFfit(l"") for Sparse Four Variables Four Categories
Subtables.

Type | error rate

(i) Sample size 500 Sample size 150
(12) 0.07 0.083
(13) 0.072 0.100
(14) 0.057 0.082
(23) 0.047 0.068
(24) 0.054 0.075
(34) 0.067 0.084

Comparing to the interval 0.05 + 1.96 /% = (0.0365,0.0635), for the 500

sample size case, the empirical Type | error rates of GFfitfz) : GFfitiB) and GFfitf‘*)

are two high. With a sample size 150, the sparseness problem is so severe that all the
empirical Type | error rates of GFfitfj) are two high.

| applied the GFf itf(jt)) to the four variables case with sparse two-way tables. Since the

£ ()

number of categories in this case is even, I chose four cells to compute GFfit .

GFf itf(’;z) is distributed asymptotically Chi-squared with 4 degrees of freedom. The

),

1 (a) are listed below.

empirical type | error rates for GFfit

74



TABLE 39: Type | Error Rates of GFfit(lia) for Sparse Four Variables Four Categories
Subtables.

Type | error rate

(i) Sample size 500 Sample size 150
(12) 0.042 0.055
(13) 0.060 0.048
(14) 0.053 0.047
(23) 0.039 0.043
(24) 0.040 0.054
(34) 0.052 0.055

According to the result above, the empirical Type | error improved by using the four
components corresponding to the four cells with the largest frequencies. All the empirical

Type | error rates are within the interval (0.0365,0.0635), for both sample sizes.

A Kolmogorov-Smirnov test has also been applied to GF f itf(ji) to test its distribution

against chi-square. The p-values are shown in the following table.

TABLE 40: KS Test P-values for GFfit'’,

KS test p-values

(i) Sample size 500 Sample size 150
(12) 0.384 0.176
(13) 0.316 0.033
(14) 0.354 0.652
(23) 0.378 0.566
(24) 0.449 0.668
(34) 0.931 0.411
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For the 500 sample size case, all p-values are greater than 0.05. For the 150 sample size

(13)

1(ay» We reject the null hypothesis that it is distributed chi-square.

case, only for GFfit

For further investigation, | conducted a type | error study for a five variables five
categories case. | generated 1000 pseudo datasets from a one factor model and fit it with
a one factor model. The parameters for the data generating models are the following:
ao1y) = (—3.5,—3.5,—3.5,-3.5,-3.5), ag(2) =

(—2.5,-2.5,-2.5,-2.5,-2.5)', ap(2y = (2.5,2.5,2.5,2.5,2.5)" ap(4) =
(3.5,3.5,3.5,3.5), ¢y = (1,1,1,1,1)". The sample size is 200. The expected frequencies

for each cell in the two-way subtable are listed below.

TABLE 41: Average Frequencies of Cells for Five Variables Five Categories Case,
n=200

Average frequencies Category of variable i
1 2 3 4 )
Category 1 0.8548 1.6941 5.7310 0.4841 0.1642
of variable 2 1.6884 3.7019 14.8257 1.4216 0.4945
] 3 5.7027 14.8900 96.8331 14.8598 5.6709
4 0.4831 1.4084 14.8639 3.7107 1.6623
5 0.1684 0.4879 5.7018 1.6730 0.8237

From this subtable we can see that the cell with category 3 for both variable i and j has

very large frequency. But all the other cells have relatively low frequencies. Since the

number of categories is odd, when computing GFfitf(jt)) , I chose t=5. The empirical

Type I error rates of both GFf itfj) and GFf it for these two cases when nominal o =

L(b)

0.05 are listed below.
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TABLE 42: Type | Error Rate for GFfit” and GFfit(7}
Type | error rates

(i) GFfit™) GFfit{?)
(12) 0.0752 0.0542
(13) 0.0742 0.0621
(14) 0.0682 0.0471
(15) 0.0682 0.0542
(23) 0.0742 0.0611
(24) 0.0812 0.0682
(25) 0.0862 0.0632
(34) 0.0822 0.0421
(35) 0.0662 0.0502
(45) 0.0672 0.0451

From this table, we can see that all the empirical Type | error rates for GFfitiij) are out

of the interval (0.0365,0.0635). But only one empirical Type | error rates for GFfitfg)

are out of the interval (0.0365,0.0635).
Choosing orthogonal components corresponding to cells with large frequencies can

overcome the problem of sparseness in the two-way tables. Then, on the opposite, the

GFf itf(jt)) computed by choosing orthogonal components corresponding to cells with
small frequencies will result in inaccurate type | error rates. For example, in the five

variables five categories 200 sample size case, | also chose cells labeled 1, 3, 4, 11 and 16
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to compute GFf itf{s)). The empirical Type | error rates of GFf itf(js)) for these chosen

cells when nominal a = 0.05 are listed below.

TABLE 43: Type | Error Rate for GFfit(li{;) Choosing Cell 1, 3, 4, 11 and 16

GFf itf("s)) Type | error rate
(12) 0.0652
(13) 0.0682
(14) 0.0682
(15) 0.0621
(23) 0.0692
(24) 0.0782
(25) 0.0852
(34) 0.0842
(35) 0.0612
(45) 0.0712

Eight out of these ten Type | error rates are outside of the interval (0.0365,0.0635).

£

From these simulations, we can see that when sparseness is present, using GF fi 10

may

be a good remedy. However, even though the subtable is not sparse, GF f itf(jt)) still
distributed chi-squared distribution with df = t. To show this, | repeated the simulation

study in chapter 111.1 for the four variables four categories case with sample size 500. For
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()

this case, the subtable is not sparse and | computed GFfit, ;.

The empirical type I error

rates and KS test p-values are listed in the table below.

TABLE 44: Type | Error Rate for GFfit(lia)

GFfit ii(fz) Type | error rate KS test p-value
(12) 0.0283 0.3822
(13) 0.0484 0.7685
(14) 0.0545 0.5125
(23) 0.0424 0.8549
(24) 0.0565 0.1681
(34) 0.0484 0.9759

With sample size 500, only GFfitf(ig has a type | error rate outside of the interval

0.05 + 1.96 f% = (0.0310,0.0691). All the p-values are greater than 0.05.

111.2.3 Additional Type | Error Rate Study for GFfit(lig)

In this section, | presented several additional Type | error rate simulation results for

GFfitf(jt)). The reason that | conducted these simulations is that the parameter settings

used in these simulations are similar to the settings used in the power study for GFfitf(jt)),

which I will introduce later. If the GF f itf(jt)) does not have a good Type | error rate in

these simulations, the power study would have no meaning.
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The first simulation is for a four-variable four-category case. 500 pseudo samples were
generated from a one-factor model and fitted with a one-factor model. The parameters for
the data generating model are the following: aoqy = (=1,—1,—1,—1)", ag(z) =

(0.5,0.5,0.5,0.5), ag(3y = (2,2,2,2)', a4 = (2.0,1.1,1.2,2.0)". Two sample sizes are

used, 500 and 150. The Type I error rates for GFfit"” and GFf itf({z) are shown in the

following table. The convergence rates for sample size 500 case and sample size 150 case

are both 100%

TABLE 45: Type | Error Rates for GFfit(f") and GFfit(fa), Four-Variable Four-
Category

Sample Size 500 Sample Size 150
(ij) GFfit” GFfitl?) GFfit™” GFfit())
(12) 0.046 0.042 0.042 0.048
(13) 0.048 0.046 0.050 0.044
(14) 0.058 0.058 0.060 0.056
(23) 0.058 0.040 0.036 0.068
(24) 0.068 0.060 0.046 0.050
(34) 0.056 0.044 0.038 0.060

(0.95)(0.05)

All these Type I error rates are within the interval 0.05 + 1.96 /T

(0.0310,0.0691). Thus both GFfit{” and GFfit ) works well for this case.

The second simulation is for a five-variable five-category case. 500 pseudo samples were
generated from a one-factor model and fitted with a one-factor model. The sample size is

300. The parameters for the data generating model are the following: a1y =
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(—1.59,—-2.30,—1.43,—-3.02, —1.26), Qo2) =
(—0.84,-0.38,—-0.32,—1.50, —0.21)", ag(3y = (0.71,0.16,0.15,0.57,0.78)", g4y =
(1.48,1.80,1.66,2.13,1.65)', a; = (2.3,2.5,1.9,2.1,2.3)". The Type | error rates for

GFf itfj ) and GFf itf("s)) are shown in the following table. The convergence rate is 100%.

TABLE 46: Type | Error Rates for GFfit(lij) and GFfit(li{;), Five-Variable Five-
Category

(i) GFfit™ GFfit{)
(12) 0.036 0.056
(13) 0.050 0.058
(14) 0.048 0.048
(15) 0.060 0.060
(23) 0.040 0.040
(24) 0.048 0042
(25) 0.038 0.040
(34) 0.046 0.046
(35) 0.044 0.052
(45) 0.048 0.058

All these Type I error rates are within the interval (0.0310,0.0691). Thus both GFfitfj)

and GFfitf(Q) works well for this case.
The third simulation is for a four-variable six-category case. 500 pseudo samples were
generated from a one-factor model and fitted with a one-factor model. The parameters for

the data generating model are the following: ay;y = (—=3.5,—3.5, —3.5, =3.5)", ap(z) =
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(=3,-3,-3,-3)", a3z = (0,0,0,0), @y = (3,3,3,3)", ags) = (3.53.5,3.5,3.5), a; =
(2.3,2.5,1.9,2.1)". Two sample sizes are used, 1000 and 300. The Type I error rates for
GFfitfj) and GFfit(ij) are shown in the following table. The convergence rates for

14

sample size 1000 case and sample size 300 case are 98% and 98.6%, respectively.

TABLE 47: Type | Error Rates for GFfit(l"") and GFf it(lia), Four-Variable Six-Category

Sample Size 1000 Sample Size 300
(ij) GFfit” GFfitl?) GFfit™” GFfit())
(12) 0.1020 0.0592 0.1156 0.0568
(13) 0.0857 0.0388 0.1115 0.0507
(14) 0.0816 0.0429 0.1338 0.0770
(23) 0.0694 0.0469 0.0872 0.0486
(24) 0.0837 0.0531 0.1075 0.0568
(34) 0.1040 0.0673 0.1014 0.0649

We can see that for both 1000 sample size case and 500 sample size case, all the Type I

error rates for GFfitfj) are outside of the interval (0.0310,0.0691) due to the sparseness

(U))

1(4) are within the

in the two-way table. However all but one Type | error rates for GFfit
interval (0.0310,0.0691). This indicates that for this four-variable six-category case,
GFfit(ij) still distribute asymptotic chi-square but GFfitfj) does not due to the

19

sparseness in the two-way table.
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The fourth simulation is for a five-variable five-category case. 500 pseudo samples were
generated from a one-factor model and fitted with a one-factor model. The sample size is
300. The parameters for the data generating model are the following: a1y =
(=3,-3,-3,-3,-3) oy = (—=2,-2,-2,-2,-2), ao(z) = (2.2,2,2,2)', Q) =
(3.3,3,3,3), a; = (2.5,2.7,1.9,2.1,2.3)".The Type | error rates for GFfit" and

GFf itf("s)) are shown in the following table. The convergence rate is 100%.

TABLE 48: Type | Error Rates for GFfit'” and GFfit(7} , Five-Variable Five-
Category

(i) GFfit™) GFfit?)
(12) 0.058 0.050
(13) 0.072 0.048
(14) 0.060 0.048
(15) 0.072 0.050
(23) 0.052 0.052
(24) 0.076 0.070
(25) 0.062 0.038
(34) 0.064 0.052
(35) 0.054 0.038
(45) 0.062 0.064

For GFf itfj ), three out of then Type | error rates are outside of the interval

(0.0310,0.0691). But for GFfitf(’g), only one Type | error rates are outside of this
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interval. This indicates that the GFf itfj ) does not work well due to the sparseness in the

two-way subtable.

111.2.4 Power Study for GFfit(lig)

Besides the type | error study, | also conducted several power studies. When we use a

wrong model to fit the data, both GFfit{”’ and GFf itf(jt)) have a non-central chi-squared

distribution. Using this property, we can compute the theoretical power of the GFfitfj)

and GFfit() . Although both GFfit™” and GFfit(7) distributed chi-squared, they may
have different power. To show this, | conducted several power simulations, one four-
variable four-category case and one five-variable five-category case. For the four-
variable case, | used two sample sizes, 150 and 500. For the five-variable case, the
sample size is 300. In both simulations, 500 pseudo samples were generated from a two-
factor model and fitted with a one-factor model. The parameters for the data generating
models are the following: for 4 variables case, ag1y = (—1,—1,—1,-1), ag(z) =
(0.5,0.5,0.5,0.5)", a(z) = (2,2,2,2)', 2, = (0.0,1.0,1.0,0.0)’, @, = (2.0,0.1,0.2,2.0)';
for 5 variables case, ag;y = (—1.59,—2.30,—1.43,-3.02, —1.26)", ag(p) =
(—0.84,—-0.38,—-0.32,—1.50,—0.21)/, Qoz) = (0.71,0.16,0.15,0.57,0.78)’, Qoz) =
(1.48,1.80,1.66,2.13,1.65)", a; = (1.5,1.7,1.9,2.1,2.3)’, a, = (0.8,0.8,0,0,0)". These
parameter settings are similar to the parameter settings used in the Type | error study
shown in Sec I11.2.2. The expected frequencies for each cell in the two-way subtables are

listed below.
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TABLE 49: Average Frequencies of Cells for Four-Variable Four-Category Case, n=500

Average frequencies

Category of variable i

1 2 3 4
Category of 66.36 43.02 31.70 22.98
variable j 42.97 35.09 28.93 23.12
31.68 28.94 26.50 23.34
22.99 23.15 23.38 25.77

TABLE 50: Average Frequencies of Cells for Four-Variable Four-Category Case, n=150

Average frequencies

Category of variable i

1 2 3 4
Category of 19.91 12.90 9.51 6.89
variable | 12.89 10.52 8.68 6.93
9.50 8.68 7.95 7.00
6.89 6.94 7.01 7.73

TABLE 51: Average Frequencies of Cells for Five-Variable Five-Category Case, n=150

Average frequencies

Category of variable i

1 2 3 4 5
Category 1 32.99 16.18 11.79 8.05 5.63
of variable 2 13.76 10.04 9.66 7.84 6.91
i 3 10.14 9.66 9.30 10.36 10.09
4 6.79 7.74 9.76 11.43 15.52
5 4.83 6.83 10.56 16.20 37.85
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We can see that the four-variable 500 sample size case is not sparse, but the four-variable

150 sample size case and the five-variable case may be a little bit sparse but the
sparseness is not severe. The theoretical and empirical power for both GFf itfj) and

GFfit?) are listed below.

TABLE 52: Power for GFfit(l"") and GFfit(l"g), Four-Variable Four-Category, n=500

GFfit? GFfit{l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.0555 0.0681 0.0546 0.0641
(13) 0.0619 0.0701 0.0635 0.0841
(14) 0.4513 0.3507 0.3615 0.3146
(23) 0.8271 0.8096 0.5611 0.5751
(24) 0.0501 0.0501 0.0500 0.0400
(34) 0.0504 0.0621 0.0500 0.0600
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TABLE 53: Power for GFfit{” and GFfit(lig), Four-Variable Four-Category, n=150

GFfitt? GFfit'l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.0516 0.0668 0.0513 0.0587
(13) 0.0534 0.0566 0.0539 0.0506
(14) 0.1430 0.1356 0.1284 0.1417
(23) 0.2794 0.2692 0.1852 0.1741
(24) 0.0500 0.0506 0.0500 0.0465
(34) 0.0500 0.0769 0.0500 0.0627
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TABLE 54: Powers for GFfit(lij) and GFfit(ij) Five-Variable Five-Category, n=300

1
GFfit™ GFfit)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.1638 0.1470 0.1209 0.1020
(13) 0.0682 0.0570 0.0567 0.0440
(14) 0.0771 0.0630 0.0641 0.0580
(15) 0.0581 0.0480 0.0571 0.0480
(23) 0.0545 0.0620 0.0540 0.0450
(24) 0.0701 0.0450 0.0575 0.0510
(25) 0.0526 0.0620 0.0513 0.0410
(34) 0.0553 0.0500 0.0536 0.0570
(35) 0.0514 0.0580 0.0516 0.0400
(45) 0.0570 0.0490 0.0531 0.0480

From these tables, we can make three conclusions. First, when the subtable is not sparse,

both GFfitfj) and GFf itf(jt)) have a non-central chi-squared distribution. This is

demonstrated by the fact that the theoretical power of both GF f itfj) and GFf itf("t)) are

close to their empirical power. Second, when there is no sparse problem in the subtable,

@)

generally the power of GFfitl(t)

is lower than that of GFfitfj). For example, in the four

variables four categories 500 sample size case, GFf itf” has a theoretical power of

0.8271, which is higher than the theoretical power of GFfitf(ig, 0.5611. Third, even

though there is no sparse problem in the subtable, the theoretical powers of GFfitfj) and
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GFfitf(jt)) will decrease when the sample size decreases. For example, in the four

variables four categories 500 sample size case, GFf Ltf(ig has a theoretical power of

0.5611. However, when sample size decreases to 150, GFf iti23) has a theoretical power
of 0.1852.

However, when we have a sparse subtable, the power of GF f itfj) might be lower than
that of GFf itf(jt)). To show this, 500 pseudo samples were generated from a two-factor

model and fitted with a one-factor model. There are four variables and six categories in
the dataset. The sample size is 1000. The parameters for the data generating models are
the following: a1y = (—3.5,—3.5,—3.5,—3.5), ag(z) = (=3,—3,-3,-3)", ap3) =
(0,0,0,0)', ey = (3,3,3,3), 25y = (3.53.5,3.5,3.5), &y = (1.5,1.7,1.9,2.1)", a, =
(0.8,0.8,0,0)" . This parameter setting is similar the parameter settings used in the Type
| error study shown in Sec 111.2.2. The expected frequencies for each cell in the two-way

subtable are listed below.
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TABLE 55: Average Frequencies of Cells for Four-Variable Six-Categories Case,
n=1000

Average Category of variable i
frequencies 1 2 3 4 5 6
Category | 1 26.21 7.48 4491 14.49 0.55 0.95
of 2 6.39 2.35 17.89 7.27 0.30 0.52
variable j | 3 36.05 16.07 178.43 121.32 6.56 12.19
4 12.19 6.56 121.32 178.43 16.07 36.05
5 0.52 0.30 7.27 17.89 2.35 6.39
6 0.95 0.55 14.49 4491 7.48 26.21

We can see that even though we have a large sample size of 1000, with the given
parameter setting, there are still many cells in the subtable have a frequency less than 1.
Thus there is a problem of sparseness in the subtable. The four cells in the center of the

table have relatively large frequencies. In Sec 111.2.2, | have shown that for this case

GFfitfj) does not work well but GFfitf(Q) works better. The theoretical and empirical

powers for both GF f itfj) and GFf itf(jz) are listed below.
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TABLE 56: Power for GFfit{” and GFfit(lig), Four-Variable Six-Category, n=1000

GFfitt? GFfit'l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.3319 0.2953 0.5404 0.5213
(13) 0.0571 0.1140 0.0585 0.0835
(14) 0.0596 0.1283 0.0680 0.1059
(23) 0.0564 0.0875 0.0568 0.0733
(24) 0.0534 0.0733 0.0521 0.0794
(34) 0.0522 0.0631 0.0514 0.0753

We can see that when sparseness is presented in this subtable, both theoretical power and

empirical power of GFfit{'* are lower than those of GFfit{(3). I already showed that in

Sec 111.2.2, GFfitfz) does not work well for this case due to the sparseness in the two-
way table. This can also be demonstrated by the fact that the empirical power of

GFf itfg) and GFf iti“) are about twice as their theoretical power.

If we decrease the sample size to 300, The theoretical and empirical powers for both

GFfit'"” and GFfitf(JZ) are listed below.
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TABLE 57: Power for GFfit{” and GFfit(lia), Four-Variable Six-Category, n=300

GFfitt? GFfit'l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.1094 0.1000 0.1785 0.1700
(13) 0.0521 0.106 0.0526 0.0520
(14) 0.0528 0.080 0.0553 0.0480
(23) 0.0519 0.086 0.0521 0.0440
(24) 0.0510 0.102 0.0506 0.0480
(34) 0.0507 0.076 0.0504 0.0500

From these results, we can see that both theoretical and empirical powers of GF f ltJ(_l(i%

are still higher than those of GFfith). With a smaller sample size, the theoretical power

of both GFf itfj) and GFf itf(jt)) are lower than those with a large sample size.
Then I did another simulation with a five variables five categories case. Again 500
pseudo samples were generated from a two-factor model and fitted with a one-factor
model. The sample size is 150. The parameters for the data generating models are the
following: ag1y = (—=3,-3,-3,-3,-3), agz) = (—2,—2,—2,-2,-2) ,ap3) =
(2,2,2,2,2), @y = (33,33,3) ¢y = (1.5,1.7,1.9,2.1,2.3)', ¢, = (1.0,1.0,0,0,0)’",

which is similar to the parameter setting used in the third simulation shown in Sec 111.2.2.

The expected frequencies for each cell in the two-way subtable are listed below
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TABLE 58: Average Frequencies of Cells for Five-Variable Five-Category Case, n=150

Average frequencies Category of variable i
1 2 3 4 5)
Category 1 14.41 7.10 18.16 1.01 0.75
of variable 2 5.93 4.38 15.97 1.19 0.93
J 3 14.86 14.85 100.80 14.85 14.86
4 0.93 1.19 15.97 4.38 5.93
5 0.75 1.01 18.16 7.10 14.41

From this table we can see that actually only one cell has large expected frequencies and

all the other cells have relatively low expected frequencies. The theoretical and empirical

powers for both GFf itfj) and GFf itfgg) are listed below. The convergence rate is 100%.
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TABLE 59: Powers for GFfit'” and GFfit"¥)

1(vy Five-Variable Five-Category n=300

GFfit™ GFfit(l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.3286 0.226 0.3563 0.308
(13) 0.0546 0.068 0.0530 0.070
(14) 0.0541 0.052 0.534 0.040
(15) 0.0562 0.064 0.0574 0.052
(23) 0.0532 0.078 0.0517 0.058
(24) 0.0529 0.058 0.0516 0.050
(25) 0.0529 0.072 0.0514 0.048
(34) 0.0507 0.072 0.0510 0.054
(35) 0.0509 0.054 0.0510 0.068
(45) 0.0509 0.050 0.0510 0.052

From this table we can see that the theoretical powers of GF f itfj ) and GF f itf(’g) are

almost the same in this case, which means theoretically GFfitf(jg) actually did not

improve the original GFfitfj) much. But the empirical power for GFfitf(g is higher

than the empirical power for GF f itilz). This may be due to the poor performance of
GFf itfj ) for this case because of the sparseness in the two-way subtable as demonstrated
in Sec 111.2.2. All the other GFfitfj) and GFfitf(js)) have very low power, both

empirically and theoretically.
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Then I applied GFfitf(jt)) to the six variables four categories power study in Sec 111.1.2. |

chose four cells in each two-way subtable to compute GF f itf(ji) and compared the power

for GFf itii(’% with the power for GF f itfj) in each case. The results for both non-skewed

case and skewed case are shown in the following tables.
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TABLE 60: Empirical Power for GFfit(f") and GFfit(l"a), Non-Skewed Case.

Powers for GFfit|"” and GFfit ),

(i) Sample size 500 Sample size 150
GFfit'? GFfit(l) GFfit” GFfit())

(12) 0.228 0.185 0.116 0.097
(13) 0.324 0.240 0.130 0.098
(14) 0.085 0.079 0.060 0.050
(15) 0.066 0.069 0.062 0.060
(16) 0.107 0.101 0.084 0.071
(23) 0.963 0.917 0.385 0.337
(24) 0.096 0.083 0.063 0.061
(25) 0.124 0.090 0.063 0.057
(26) 0.198 0.197 0.095 0.095
(34) 0.221 0.205 0.107 0.100
(35) 0.182 0.170 0.090 0.086
(36) 0.107 0.122 0.057 0.077
(45) 0.067 0.100 0.065 0.075
(46) 0.118 0.134 0.065 0.075
(56) 0.154 0.196 0.085 0.099
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TABLE 61: Empirical Power for GFfit(f") and GFfit(l"a), Skewed Case.

Powers for GFfit|"” and GFfit ),

(i) Sample size 500 Sample size 150
GFfit'? GFfit(l) GFfit” GFfit())

(12) 0.2790 0.0788 0.1654 0.1001
(13) 0.3984 0.0930 0.1513 0.0837
(14) 0.0485 0.0293 0.0620 0.0663
(15) 0.0516 0.0415 0.0577 0.0500
(16) 0.0819 0.0424 0.0696 0.0642
(23) 0.8413 0.1344 0.2546 0.1109
(24) 0.0475 0.0434 0.0761 0.0565
(25) 0.0404 0.0414 0.0609 0.0598
(26) 0.0829 0.0485 0.0739 0.0598
(34) 0.0738 0.0374 0.0794 0.0729
(35) 0.0768 0.0576 0.0642 0.0783
(36) 0.0637 0.0374 0.0859 0.0685
(45) 0.0940 0.0889 0.0903 0.0946
(46) 0.0849 0.0728 0.0751 0.0729
(56) 0.0859 0.0616 0.0772 0.0805

From these two tables we can see that both GFf itf({f) and GFf itfj ) have the largest

power for variables pair 2 and 3. For the non-skewed case, the empirical power of
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GFfitf(ig is just a little bit lower than the empirical power of GFfitiB). However, for

(23)

1(ay Is much lower

the skewed case with sample size 500, the empirical power of GFfit

than the empirical power of GFfit *®. To further investigate the reason for such a
difference, I listed the expected frequencies of cells in the two-way table for the skewed

case with sample size 500 below.

TABLE 62: Expected Frequencies of Cells for Skewed Case, Sample Size 500

Average frequencies Category of variable i
1 2 3 4
Category of 1 26.57 9.01 10.29 76.78
variable | 2 6.75 2.59 3.10 27.24
3 6.89 2.74 3.34 31.61
4 3111 13.56 17.36 230.98

We can see that due to the high skewness in the two-way subtable, the four cells in the

center which we choose to compute GF f itf({g) actually have lowest expected frequencies

among all these cells. Thus, the GFfit(”) computed based on these cells has extremely

1(4)

low empirical power.

Then | compared GF f itfj) with GFf itf(jt)) where the slopes and intercepts in the model
are generated randomly. I studied one five variables four categories case. All the slopes
were generated from a uniform distribution U (.5, 2.5). The three intercepts were

generated from three different uniform distributions:U(—2,—1),U(—1,1) and U(1, 2).
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| first generated 1000 pseudo samples with sample size 150 from a one-factor model. The
data was fitted to the correct one-factor model and the type | error rates for GFf itfj )

with GFfitf(Q) are shown in the following table.

TABLE 63: Type | Error Rate for GFfit(lij) and GFfit(l"a), Intercepts and Slopes
Generated Randomly

Type | error rates

(ij) GFfit') GFfit{7)
(12) 0.039 0.036
(13) 0.050 0.049
(14) 0.045 0.048
(15) 0.045 0.054
(23) 0.058 0.054
(24) 0.045 0.042
(25) 0.044 0.045
(34) 0.049 0.054
(35) 0.051 0.058
(45) 0.048 0.056

We can see that only the type | error rate for GFfit(lz) is outside of the interval 0.05 +

1(4)
1.96 /W = (0.0365,0.0635).
1000

Then using the same parameter generating distribution, | generated 1000 pseudo samples

with sample size 150 from a two-factor model. The data was fitted to the wrong one-
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U))

factor model and the theoretical and empirical power for GFfitfj) with GFfit, ,,

are

shown in the following table.

TABLE 64: Power for GFfit(lij) and GFfit(lia), Intercepts and Slopes Generated
Randomly

GFfitt GFfit(l)

(i) Theoretical Empirical Theoretical Empirical

power power power power
(12) 0.0926 0.0892 0.0702 0.0543
(13) 0.0563 0.0564 0.0510 0.0430
(14) 0.1446 0.1282 0.1085 0.1292
(15) 0.0897 0.0871 0.0728 0.0769
(23) 0.0546 0.0471 0.0526 0.0461
(24) 0.0786 0.0830 0.0764 0.0666
(25) 0.0769 0.0953 0.0705 0.0769
(34) 0.0526 0.0605 0.0522 0.0646
(35) 0.0510 0.0492 0.0503 0.0451
(45) 0.0510 0.0594 0.0513 0.0389

as

From this table we can see that GFfiti“') with GFfit] )

have the largest power, both

theoretically and empirically. Although the theoretical power of GFfit{** is higher than

(14)

that of GFfit ),

the empirical power for these two statistics are almost the same. This

indicates that in this case, GFf itf(g didn’t improve GF f iti“).
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From these simulation studies, we can see that when the subtable table is sparse, the
power of GFfit(ij) may or may not be higher than that of GFfitfj). Even though in the

L(t)

situations where the two-way subtable is very sparse and GFf itf(jt)) does not improve the

original GFfitfj), it did not perform worse in the simulations. And generally the
empirical power of GFf itf("t)) is closer to the theoretical power than those of the GF f itfj )

when the subtable is sparse. However, if there is no sparseness problem in the subtable,

generally the power of GFfitf(jt)) is lower than that of GFfitfj). Thus, | recommend to

use both GFf itf(jt)) and GFf itfj) and compare them. If these two statistics result in

different test results, expected frequencies could be examined.

111.3 Apply the New Method to X,

111.3.1 X%, Statistic

In the previous section, | have shown that when there is a sparseness problem in the
subtable, GFf itf(jt)) might have better performance than that of GFf itfj ), Similarly, we

can apply the same idea to X[Zz]. I will denote this new statistic X[zz][t], where t means

computing the statistics with the t cells we choose according to the criterion introduced in

the previous section.

Since X7 is just the sum of all GFfit ", then we can define Xfo as

, (i)
Xiz)e = Z GFfit,
07
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Theoretically, if we specify the correct model, X [22][t] has a Chi-squared distribution with
df =t * CZ, where q is the number of variables in the dataset. Note that the degrees of

freedom equals the number of orthogonal components we used to compute X[zz][t]. If the
model specified is wrong, then X[Zz][t] has a non-central Chi-squared distribution.

111.3.2 Type | Error Rate Study for X7,

To examine the performance of X [Zz]m. I re-examined the four-variable four-category
sample size 150 Type | error rate simulation that shown at the beginning of Seclll.2. |
generated 1000 pseudo datasets from a one factor model and fit it with a one factor
model. The parameters for the data generating models are the following: aq(;) =
(—3.5,-3.5,-3.5,-3.5)", @pzy = (0,0,0,0)", 93y = (3.5,3.5,3.5,3.5)", &y =
(1,1,1,1)". The expected frequencies for each cells in the two-way subtables are listed

below.

TABLE 65: Average Frequencies of Cells for Four-Variable Four-Category Case, n=150

Average frequencies Category of variable i
1 2 3 4
Category of 1 0.63 3.91 2.00 0.12
variable | 2 3.91 35.53 26.86 2.00
3 2.00 26.86 35.53 391
4 0.12 2.00 3.91 0.63

| computed both X[ZZ] and X[Zz][t]. Again, since the number of categories is even, | chose
four cells from each two-way subtable to compute X[ZZ][4]. The empirical Type | error

rates when nominal a = 0.05 and KS test p-values of X[zz] and X[ZZ][4] are listed below.
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TABLE 66: Type | Error Rates and KS Test P-values for X[ZZ] and sz]m, Four-Variable
Six-Category

2 2
Xfz] X241
Type | error rate 0.1049 0.0504
KS test p-value 0.0004 0.3757

In the earlier section it was already shown that GFf itfj) may not have a Chi-squared

distribution in the sparse case. Then X[zz] would not have a Chi-squared distribution since

it is just the sum of all the GFf itfj ). This is demonstrated by the Type I error rate and
KS test p-value shown in the table. However, we can see that X[ZZM still performs well
even though the subtable is sparse.

Then I applied X[ZZ][t] to the Type | error study for the four-variable six-category case
introduced in Sec 111.2.3. 500 pseudo samples were generated from a one-factor model
and fitted with a one-factor model. The parameters for the data generating model are the
following: a1y = (—3.5,—3.5,—3.5,—3.5)", @g(2) = (—3,—3,-3,-3) , ap(3) =
(0,0,0,0)', &gy = (3,3,3,3)", atg(s) = (3.5,3.5,3.5,3.5), @y = (2.3,2.5,1.9,2.1)". The
sample size is 1000. | conducted this simulation because this parameter setting is similar
to the parameter setting | used for the power study for X[Zz][t] which I will show later. If
the Type I error rate of X [22] (¢ does not look good for this parameter setting, the power
study would have no meaning. Since there are six categories in this case, when
computing X[Zz]m, | chose two different t, 4 and 16. All these cells are in the center of the
subtable. The Type I error rates for X{,; , Xf514 and X316 are shown in the following

table. The convergence rate is 98%.
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TABLE 67: Type | Error Rates for X5}, X{y4) and X%y146), Four-Variable Six-Category

2 2 2
X[z X241 X(2)16]

Type | error rate 0.1183 0.0653 0.1122

It is not surprised that X[ZZ] has a very large Type | error rate since in Sec 111.2.3 | already
showed that GF f itfj ) does not have a good Type | error rates. Thus X, [22] would not have
a good Type | error rate since it is just the sum of all the GFfitfj). The Type | error rate
for X[ZZM is within the interval (0.0310,0.0691). However, when we choose 16 cells,
X [22][16] has a very large Type | error rate because we may have chosen too many cells

with low expected frequencies to compute X[ZZ][IG].

111.3.3 Power Study for X,
To examine the power of X [22] (¢ When the subtable is sparse, | re-examined the four

variables six categories sample size 1000 power simulation shown in Section 111.2.4.

X[ZZ][4] and X[Zz][16] were computed using the cells in the center of the two-way subtable.
Both theoretical and empirical powers for Xf5), X1, and X314 are listed below. The

convergence rate is 98.2%.
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TABLE 68: Theoretical Power and Empirical Power for Xfy, Xf5114 and X4

Theoretical Power Empirical Power
X[ZZ] 0.1802 0.1914
X[ZZ][4] 0.3295 0.3360
X2 0.1617 0.1995

[2][16]

So we can see that both theoretical and empirical power of X [22] are lower than those of
X[ZZ]H] when the subtable is sparse. The power of the X[ZZ][4] may be higher because lack-
of-fit located primarily in the four cells of the two-way tables where the test is focused.

The theoretical power and empirical power of X%, are lower than those of X}, ,;. This
result is consistent with the result shown in the Type | error rate study that X[ZZ][16] does

not work well for this case.
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CHAPTER 4

APPLICATION, SUMMARY AND DISCUSSION
IVV.1 Application
| analyzed a real data set about agoraphobia. Agoraphobia is a type of anxiety disorder in
which you fear and often avoid places or situations that might cause you to panic and
make you feel trapped, helpless or embarrassed. With agoraphobia, you often have a hard
time feeling safe in any public places, especially where crowds gather. You may even
feel unable to leave your home. This dataset consists in judgments expressed by 3305
patients about several fears. There are 5 variables in this dataset:
1.Fear of tunnels or bridges
2.Fear of being in a crowd
3.Fear transportation
4.Fear of going out of house alone
5.Fear of being alone
Each variable has three categories: “yes”, “no”, “kind of”. Our goal is to study whether
these five variables can be modeled by a one-factor latent variable model. The number of
all the possible response patterns is k=243. However, as most of the answers are “no”,
139 response patterns are empty. Furthermore many response patterns have a frequency

less than five. The detailed frequencies are reported in Table 69.

TABLE 69: Number of Response Patterns with Small Frequencies.

Frequency Number of Response Number of Cases
Patterns

1 46 46
2 20 40
3 11 33
4 5 20
5 2 10
>5 20 3156

Total 104 3305
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We used a one-factor model to fit the data. The X2, X(jnp, X255 @nd p-value are

reported in Table 70.

TABLE 70: X3z, X{2)iny X{2)ss and P-value of the Agoraphobia Sample

Xir X{ojinv Xoyss
Value 383.32 180.46 188.80
Degrees of freedom 227 40 40
P-value <0.0001 <0.0001 <0.0001

We can see that all these three statistics are pretty large and the p-values are almost 0.

This indicates that the one-factor model is not a good fit to the data.
As mentioned earlier, X3 = Y; GFfitf) + XY GFfitfj) +2iY 2k GFfitfjk) + o+
GFfitf'z""'Q) = X[Zl] + X[ZZ] + -+ X[Zq], we can use this sample to verify this equation.

The X{y, Xy, Xfap X{yy and X, are reported in Table 71.

TABLE 71: X{y), Xfy), Xa), X4y and X7, of the Agoraphobia Sample

Value Degrees of freedom
X 24.24 10
Xfy 188.80 40
X [23] 102.00 80
X 70.26 80
X 22.25 32

The degrees of freedom of X2, is 227. As we are running out of the degrees of freedom,
we will omit X7;. We can see that X + Xfy + X[y + Xf; = 383.317, which is very
close to X3, 383.32. However, the chi-squared distribution for Xf,;, X{;; and Xf; may not
be valid due to the sparseness in the higher order subtables.
The GFfitfj) Méij), Xl-zj and )?l-zj and the p-values are shown in the following tables. |
bolded the p-values less than 0.05.
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TABLE 72: GFfit™ M, X% and X? for the Application

(i) GFfit™ M X X%
(12) 16.81 16.33 16.66 12.78
(13) 65.94 47.71 51.26 41.366
(14) 4.28 1.68 4.21 2.66
(15) 7.75 0.37 4.30 2.72
(23) 30.39 30.83 3157 25.11
(24) 14.77 9.91 10.75 7.80
(25) 10.45 7.23 8.49 5.97
(34) 10.60 10.64 11.14 8.37
(35) 11.38 0.99 5.62 3.89
(45) 16.38 12.31 27.88 21.09

108



TABLE 73: P-values for GFfit” Mgij), X2 and X2 for the Application

(ij) GFfit M X5 X7

(12) 0.0021 0.0003 0.0004 0.0017
(13) <0.0001 <0.0001 <0.0001 <0.0001
(14) 0.3690 0.4321 0.3773 0.2635
(15) 0.1011 0.8299 0.3665 0.2556
(23) <0.0001 <0.0001 <0.0001 <0.0001
(24) 0.0052 0.0070 0.0290 0.0202
(25) 0.0334 0.0267 0.0750 0.0503
(34) 0.0314 0.0048 0.0249 0.0151
(35) 0.0225 0.6094 0.2292 0.1423
(45) 0.0025 0.0021 <0.0001 <0.0001

The results for all these statistics are consistent with each other generally. From these p-

values, we can see that the association between most variable pairs cannot be explained

the one-factor model.

Then | fitted the data with a two-factor model. The X[ZZ]SS and GFfitfj) and the

corresponding p-values are shown in the following table.
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TABLE 74: X[ZZ]SS , GFfit(f") and the Corresponding P-values

XPopss p-value

143.94 <0.0001
(i) GFfit™ p-value
(12) 22.51 0.0002
(13) 36.19 <0.0001
(14) 3.34 0.5025
(15) 5.94 0.2032
(23) 20.14 0.0004
(24) 11.15 0.0248
(25) 11.12 0.0252
(34) 9.24 0.0552
(35) 12.23 0.0156
(45) 12.03 0.0171

From these p-values we can see that the two-factor model does not fit the data well either
and the association between most variable pairs cannot be explained by this model. Since
both one-factor model and two-factor model did not fit well, we may consider other
models such as log-linear model.

V.2 Summary

In summary, | studied the Type | error and power of GFf itfj), both theoretical and

empirical, and compared the performance of GF f itfj) to that of MZ(”), XZ and )?121 I

tj
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introduced GFf itf(jt)) to improve the performance of GFf itfj) when the two-way

subtables are sparse and applied the improvement on GF f itfj ) to X [22].

When the correct model was fitted to the dataset and the sparseness problem was not
present in the two-way subtables, GFf itfj) and Mz(ij) distributed asymptotically chi-
square. Xizj does not distributed chi-square. For )71-2]- if the degrees of freedom are small, its
empirical distribution does not approximate chi-square well. However, when the degrees

of freedom are moderate or large, )?izj still has an asymptotic chi-square distribution.

When there is a sparseness problem in the two-way subtables, GF f itfj ) tends to have
inflated type | error rate since its distribution may not be well approximated by the chi-

square distribution due to the sparseness in the subtables even if the total sample size is

large. In this situation, GFfitf(jt)) may be a good remedy. Simulation results show that

even though the subtable is not sparse, GF f itf(jt)) still distributed chi-square with df = t.

When an incorrect model was fitted to the dataset, X, GFfit ", M, x% and X7 can
be used as diagnostics to detect the source of lack of fit. If lack of fit is present in second-
order marginal, then X[ZZ] would have higher power than an omnibus statistic such as the

Pearson chi-square since it represents a test that is “focused” on the second-order

marginal. Similarly, if lack of fit is present in the association between variable i and

variable j , then GFfitfj), MZ(”), Xizj and )?izj may have higher power than an omnibus

statistic on the second-order marginals such as Xf,;. Simulation results show that Méij)
has very low power. Although Xl?j may have high power in some situations, | do not
recommend to use it as diagnostics since it does not distribute chi-square theoretically.
GFf itfj ) and )?izj have the largest power among these four statistics. However, they may
detect the lack-of-fit in the associations between different pairs of variables. The power
of these statistics are affected by the sample size of the dataset. When the sample size
decreases, both theoretical power and empirical power decrease.

When there is a sparseness problem in the two-way subtable, GFfitfj) may have a low

£

power. In this case, using GFfit | )

may be a good remedy to the sparseness in the
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subtable. However, simulation results show that the power of GFfit |

may or may not

be higher than that of GFf itiij). Even though in the situations where the two-way

£ ()

1(t) does not improve the original GFfitfj), it did not

subtable is very sparse and GF fi

perform worse in the simulations. And generally the empirical power of GFfitf(jt)) is
closer to the theoretical power than those of the GFf itfj ) when the subtable is sparse.

However, if there is no sparseness problem in the subtable, generally the power of

GFfitf(jt)) is lower than that of GFfitfj). Thus, I recommend to use both GFfitf("t)) and

GFf itfj ) and compare them. If these two statistics result in different test results,

expected frequencies could be examined.

When using GFfitf(jt)), we need to decide the number of cells we choose, t, and which
cells should we choose. | suggest to choose a moderate number of cells, say four or five.
Simulation results suggest that we choose the cells in the center of the table. Particularly,

for a dataset with ¢ categories in each variable, if c is even, | will choose four cells

corresponding to the categories pair (g, %), (%, % + 1), (g + 1, %) and (% + 1, % + 1). If

. . . . . . 1 c+1 1
c is odd, 1 will choose five cells corresponding to the categories pair (C: , C: ), (C: —
1 1 c+1 1 1 1 c+1
1, C; ), (C: ,C; - 1), (—C: + 1,—62 ) and (—C: ,—C: + 1). As the two-way table

becomes larger, more cells could be taken from the center of the table.

I'V.3 Discussion
IV.3.1 A Method That Did Not Improve GFfit\”

Besides GFfit ™  there is another way that might be able to improve GF it™ \When
L 1(®

computing GF f itfj ), we actually don’t use all the c?orthogonal components. Instead, we

only use (¢ — 1)? orthogonal components that can produce the full table. This allows us

different choices of the orthogonal components. As long as the components we choose
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can produce the full table, the GFfitfj) computed should have (¢ — 1)? degrees of
freedom. But to improve the chi-square approximation, we can choose (¢ — 1)?
components corresponding to the cells that tend to have largest expected frequencies.
However, simulation results show that this method may not improve the performance of
GFfitfj). There may be three reasons. Firstly, since the choice of the (¢ — 1)?
orthogonal components should be able to produce the full table, we usually cannot choose
some cells with relatively large frequencies. Secondly, by choosing (¢ — 1)? cells, it is
inevitable that we might choose some cells with relatively low frequencies. Thirdly, the
original GFfitfj) already works well enough if we have to choose (¢ — 1)? cells. For

easy demonstration, | again labeled the cells in the four categories case below.

TABLE 75: Labels of Cells for Four Categories Case

Label of the cells Category of variable i
1 2 3 4
Category of 1 16 12 8 4
variable j 2 15 11 7 3
3 14 10 6 2
4 13 9 5 1

When computing the original GFfitfj), by default we use the (4 — 1)? = 9 cells on the
bottom right corner of this subtable, which means cells 1, 2, 3, 5, 6, 7, 9,10 and 11.

These cells already includes the cells in the center of this table. In Section I11.2 we

demonstrate that when choosing the t cells for GFf itf(jt)), we will choose the cells in the

center of the table since they will have large expected frequencies if the intercepts in the
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GLLVM model are generally evenly distributed. Since when computing the original

GFfitfj) we already include all the cells in the center, choosing other cells may not be
able to improve the statistic generally. To demonstrate this, | repeated the five variables
five categories power study with parameter setting a1y =
(—1.59,-2.30,—1.43,—-3.02, —1.26), Qo2) =

(—0.84,—0.38,—-0.32,—1.50, —0.21)’, ap(3) = (0.71,0.16,0.15,0.57,0.78)', ag(z) =
(1.48,1.80,1.66,2.13,1.65)', a; = (1.5,1.7,1.9,2.1,2.3)', a, = (0.8,0.8,0,0,0)". 500
pseudo samples with sample size 300 were generated. Besides using the default cells in
the bottom right corner of the subtable, I also computed GFfitfj) using the cells in the

top right corner of the subtable. The empirical power results are listed below.
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TABLE 76: Empirical Power for GFfit(fj) with Two Different Cell Selections

Empirical Power

(i) Default cells (bottom right Top right cells
corner)
(12) 0.1638 0.1460
(13) 0.0682 0.0520
(14) 0.0771 0.0540
(15) 0.0581 0.0460
(23) 0.0545 0.0600
(24) 0.0701 0.0460
(25) 0.0526 0.0640
(34) 0.0553 0.0560
(35) 0.0514 0.0520
(45) 0.0570 0.0400

From this table we can see that the empirical power does not differ much for these two

different cells selections. So this method was not useful.

IVV.3.2 Computation Time

| used R to do all the simulation studies. When the number of variables and categories
increases, the computation time will increase substantially. So far, the computation time
for a nine variables five categories case is about half an hour for just one sample. The
main reason for such a long computation time is that we need to conduct lots of matrix

production and numerical integration when computing the statistics we are investigating.
115



When estimating the parameters, | used two functions: the grm function in the Itm
package and the mirt function in the mirt package. The grm function works significantly
faster than the mirt function does. However, the grm function can only fit the one-factor
model for multinomial data. The mirt function can fit the model with any number of
factors. Thus, I only used mirt function for the type I error rate study for a two-factor
model and used grm function for all the other simulation studies presented earlier to
decrease the computation time.

Since | was doing simulation study, using parallel computing can decrease the
computation time substantially. I used the foreach function in R to do the parallel
computing. | run my simulation on mathpost which has 24 cores. After several
experiments, | found that using 20 cores simultaneously can decrease the computation
time most. For example, the computation time for the six variables four categories two-
factor type I error study I presented in Sec I11.1 using traditional for loop in R is about 7
hours. But using parallel computing with 20 cores reduces the computation time to about

half an hour.

1VV.3.3 Memory Issue

When doing my simulations, there is a memory issue when computing several very large
matrices.

The first issue is about the H matrix and M matrix | introduced in Sec 11.3.1. These two
matrices may be the most important matrices that I need to compute since all the statistics
| investigated need to be computed through these two matrices. Since the rows in the H
matrix consist of a subset of the rows in the M matrix, | only stored the M matrix to save
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memory. With a large number of variables and categories, the M matrix can be very
large. For example, for the nine variables five categories case, the M matrix is 900 by
1953125. Using the traditional matrix generation in R, 13.1 Gb is needed to store this M
matrix. Mathpost has 96 GB of memory. Since most elements in the M matrix are just
zero, the M matrix is known as a sparse matrix. Using the Matrix package in R, we can
generate the M matrix as a sparse matrix which save large amount of space. The M
matrix for nine variables five categories case only need 812 Mb memory to store if we
generate it as a sparse matrix. Although we have decreased the memory needed to store
the M matrix substantially, this may still be a problem when we use parallel computing.
When doing parallel computing, we use more cores to do simulations simultaneously.
However, with more cores, less computing memory is allocated for each core. And the M
matrix is not the only large matrix we need to store in memory. Thus, we will run out of
memory very soon when we increase the number of variables and categories in our
simulation. If we have to run simulations for large numbers of variables and categories,

we have to use the traditional for loop in R, which is very time consuming.
Another memory issue happens when computing GFfitfj). Recall from Section 11.3.5, to
compute GFfitfj) we need to perform a regression and GFfitfj) is the sum of

corresponding sequential sum of squares. When performing that regression, we need to

compute

Where

D = diag(m(0))
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S =3(6) =(—-m2 (n%)' —A(A'A)1A"
Thus, £ is a k by k matrix where k is the number of response pattern. For the nine
variables five categories case, k = 5° = 1953125. Obviously, £ will not be a sparse
matrix and there is no way for us to store it in the memory. To solve this problem, we

actually don’t compute E. We compute W directly by
anl ~1 1 1\ 1 ~1
W =3$D2H’ = (DZH' — mz ((nf) DZH’> — A(A'A)! (A’DZH’>)
In this way, we avoid computing a matrix with extremely large dimensions. The same

idea has been applied to many computations when calculating those statistics.

IVV.3.4 Convergence Problem

As presented in Chapter 3, some simulations had problems of convergence. When the
ML estimation algorithm for intercepts and slopes estimates does not converge, some
slope estimates will be extremely large. An extremely large slope estimate will make
several estimated cumulative frequencies the same value for different categories in one
variable. In this case, we failed to compute the derivatives for the corresponding
parameters. Without these derivatives, we cannot compute the statistics studied here.
Generally, with a smaller sample size and skewness in the two-way subtable, it is more
likely that the ML estimation algorithm will fail to converge. For example, 1 listed the
convergence rate for the two-factor six variables four categories type | error rate

simulations I presented in Sec I11.1. below.
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TABLE 77: Convergence Rate for the Two-Factor Six Variables Four Categories Type |
Error Rate Simulations

Sample size Convergence rate
Skewed 500 990
150 617
Non-Skewed 500 995
150 733

We can see that when we decrease the sample size from 500 to 150, the convergence rate
decreases a lot. And the convergence rate for skewed case is lower than that for Non-
Skewed case.

However, even though the sample size is not small and the two-way subtable is not
skewed, the convergence problem may still present. One example is the two-factor four
variables three categories type I error study mentioned in Sec I11.1. The sample size is
500 and the parameter setting is listed below: aoqy = (—=2,-2,-2,-2)", ag(z) =
(2,2,2,2),a; = (0.0,1.0,1.0,0.0)", @, = (2.0,0.1,0.2,2.0)" . Pseudo data for 1000
samples were generated. With this setting, the dataset has neither small sample size nor
skewed two-way subtable. However, the convergence rate for this simulation is 0.753.
Thus | discarded this simulation.

However, if we do need to evaluate the empirical type | error rate or power of a
simulation with convergence problem, we can put a cap on the slope estimates. Since the
failure of computing the statistics was due to some extremely large slope estimates,
putting a cap on these estimates can solve this problem. After some experiments, | found

that for a two-factor model, 3.5 and -3.5 are good caps for slope estimates; for a one-
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factor model, -4 and 4 are good caps for slope estimates. | repeated the two-factor four
variables three categories type | error study and capped the slope estimates with -3.5 and
3.5. With this remedy, the statistics can be computed for 91% of these samples. The type

| error rate of is listed in the following table.

TABLE 78: Type | Error Rate for GFf it Two-Factor Four Variables Three
Categories, Slope Capped.

GFf itfj) Type | error rate
(12) 0.0582
(13) 0.0527
(14) 0.0648
(23) 0.0703
(24) 0.0637
(34) 0.0582

Comparing to the interval 0.05 + 1.96 /% = (0.0365,0.0635), three out of six

type | error rates are outside of this interval.

Other methods of numerical estimation would have better convergence performance.
Estimation by bayes methods or penalized ML would be expected to have better
convergence proportions.

Even if MLE is obtained, some estimates are so extreme that calculation of the G, matrix

of second derivatives fails due to 7 equals zero or one. Calculation of X[ZZ] =e'S;le

may be unstable due to inverse of £, matrix. The method of orthogonal component using

sequential sum of square via the SWEEP operator overcomes this problem.
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