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ABSTRACT  

   

The Pearson and likelihood ratio statistics are commonly used to test goodness-of-

fit for models applied to data from a multinomial distribution. When data are from a table 

formed by cross-classification of a large number of variables, the common statistics may 

have low power and inaccurate Type I error level due to sparseness in the cells of the 

table. The GFfit statistic can be used to examine model fit in subtables. It is proposed to 

assess model fit by using a new version of GFfit statistic based on orthogonal 

components of Pearson chi-square as a diagnostic to examine the fit on two-way 

subtables. However, due to variables with a large number of categories and small sample 

size, even the GFfit statistic may have low power and inaccurate Type I error level due to 

sparseness in the two-way subtable. In this dissertation, the theoretical power and 

empirical power of the GFfit statistic are studied. A method based on subsets of 

orthogonal components for the GFfit statistic on the subtables is developed to improve 

the performance of the GFfit statistic. Simulation results for power and type I error rate 

for several different cases along with comparisons to other diagnostics are presented. 
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CHAPTER 1 

INTRODUCTION 

The cross classification of several categorical variables produces a large contingency 

table. If a model is fit to the table, usually the Pearson chi-square and the likelihood ratio 

statistics are used to evaluate the goodness of fit. Suppose we have 𝑞 categorical 

variables and the i-th variable has 𝑐𝑖 categories. Thus there are 𝑘 = ∏ 𝑐𝑖
q
i=1  cells, also 

called response patterns in the cross-classified table. Then 𝑓𝑟 is the sample proportion of 

the r-th response pattern and �̂�𝑟 is the estimated probability of the r-th response pattern. 

The Pearson chi-square(𝜒2) and the likelihood ratio(LR) statistics are defined as follows: 

𝐿𝑅 = 2𝑛 ∑𝑓𝑟ln (
𝑓𝑟
�̂�𝑟

)

𝑘

𝑟=1

 

𝜒2 = 𝑛 ∑
(𝑓𝑟 − �̂�𝑟)

2

�̂�𝑟

𝑘

𝑟=1

 

If the number of observations in each response pattern is large enough and under the 

conditions (Koehler and Larntz, 1980) that i) 𝐻0: π = π(θ), ii) 𝑘 is fixed and 

iii) min1≤r≤k𝑛𝜋𝑟 → ∞ for 𝑛 → ∞, both Pearson chi-square and likelihood ratio statistics 

are approximately distributed chi-square with degree of freedom equal to k − 1 − 

number of estimated parameters. 

 However, in presence of sparse data, these two statistics may not follow the chi-square 

distribution even if the sample size is large. When the ratio of the sample size to the 

number of cells is relatively small, contingency tables are said to be sparse (Agresti & 

Yang, 1987), but sparseness can also be produced by very skewed cell frequencies in 

some cases. There is no universal agreement on what constitutes a small expected 
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frequency. Cochran (1954) suggested that most expected frequencies should be at least 

five. Cramer (1946) has suggested 10 and Kendall (1952) has suggested 20. 

One way to solve this problem is to use asymptotic normality of the Pearson and 

likelihood ratio statistics when both the sample size and number of cells become large. 

Morris (1975) showed that both the Pearson’s chi-square statistic and likelihood ratio 

statistic have asymptotic normal distributions under certain conditions. Koehler and 

Larntz (1980) suggest that because of the different influence of very small observed 

counts on Pearson’s chi-square statistic and likelihood ratio statistic, the asymptotic 

means and variances of these two statistics are different. Koehler and Larntz (1986) also 

provides a Monte Carlo study of these two statistics for loglinear models. The results 

show that generally the normal approximation is more accurate for likelihood ratio 

statistic than for Pearson’s chi-square statistic. 

 Another way to solve the sparseness problem is to use statistics based on the marginal 

frequencies. There are several statistics of this kind, such as Maydeu-Olivares’ 

statistic(2005), Bartholomew’s Y statistic(2002) and the orthogonal components of 

Pearson chi-square. Reiser (2008) introduced a score statistic based on the overlapping 

cells that correspond to the second-order marginal frequencies. Then orthogonal 

components of the Pearson-Fisher statistic are defined on marginal frequencies. The score 

statistic is shown to be a sum of these orthogonal components and is denoted 𝑋[2]
2 . 𝑋[2]

2 , 

the Y statistic and Maydeu-Olivares’ statistic are all score statistics and distribute 

asymptotically chi-square. The marginal frequencies are just linear combinations of the 

joint frequencies. Thus we can introduce a matrix H, which I will define later, to compute 
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the marginal frequencies. Since all the statistics mentioned here are based on the marginal 

frequencies, they can be computed easily using the H matrix. 

When using 𝑋[2]
2  to test the goodness-of-fit of a model, it may have higher power for 

certain alternative hypotheses because it represents a test that is “focused” on the second-

order marginal. If lack of fit is present in second-order marginal, then  𝑋[2]
2  would have 

higher power than an omnibus statistic such as the Pearson chi-square. But if lack of fit is 

present in higher-order marginal, then 𝑋[2]
2  may have lower power. Similarly, since 𝑋[2]

2  is 

the sum of all the orthogonal components, it can be considered as an omnibus statistic on 

the second-order marginals. If we just sum up a subset of these orthogonal components 

corresponding to variable 𝑖 and variable 𝑗, then we get a statistic only focused on variable 

𝑖 and variable 𝑗 on the second-order marginal. This statistic is denoted 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and it is 

distributed asymptotically chi-square. 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 can be used as a diagnostic to detect the 

source of lack of fit when the model does not fit the observed data. If lack of fit is present 

in the association between variable 𝑖 and variable 𝑗 , then  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 would have higher 

power than an omnibus statistic on the second-order marginals such as 𝑋[2]
2 . 

My research is focused on 𝑋[2]
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
. I studied their Type I error rate and power 

and compared their performance with several other statistics. Monte Carlo simulations 

were conducted to study the empirical type I error rate and power of these statistics. 

Theoretical power calculation were also conducted for 𝑋[2]
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
. Besides these 

type I error and power studies, I also improved the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Although 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  is a 

good remedy to the problem of sparseness because it is calculated from marginal two-
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way tables, sometimes even 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may have low power and inaccurate Type I error 

level due to severe sparseness in a two-way subtable when the number of categories is 

large and response variables have a skewed distribution. In that case, the distribution of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may not be well approximated by the chi-square distribution even if the total 

sample size is large. I improved 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 in the sparse case by selecting a subset of 

orthogonal components chosen systematically to reduce the impact of sparseness. I 

denote this improved statistic 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 where 𝑡 represents the 𝑡 orthogonal components 

chosen to compute this statistic. 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is distributed asymptotically chi-square with t 

degrees of freedom. The same idea was applied to 𝑋[2]
2  and I denote the new statistic 

𝑋[2][𝑡]
2 . Type I error rate and power were studied for 𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)
 and 𝑋[2][𝑡]

2 . 

In this dissertation, I will present a literature review first. In the literature review, I will 

first introduce the traditional Pearson chi-square statistic and the problem of sparseness. 

Then I will introduce the orthogonal components along with several other statistics based 

on marginal proportions. After the literature review, I will show theoretical and empirical 

studies of the GFfit statistic. Simulation results and an application will be presented. 

Finally, summary and discussion will be presented. 
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CHAPTER 2 

LITERATURE REVIEW 

II.1.1 Pearson Chi-square Statistic 

Pearson’s chi-square test was the first goodness of fit test and perhaps one of the most 

frequently used statistical tests. So in this section I will first review Pearson’s chi-square 

test. Suppose there is a multinomial distribution involving k cells with known cell 

probabilities[ 1, 2, … , 𝑘], 0 <  𝑖 <  1;     𝑖 =1. For a random sample of fixed size 

n, let [f1, f2, …, f𝑘], 0  f𝑖  n;   f𝑖 =n be the random frequency counts in the respective 

cells {1, 2, …, k}. It follows that 

E[f𝑖  ] =  n𝑖  =  E𝑖;   

Var(f𝑖)  =  n𝑖  (1 − 𝑖);  

Covar (f𝑖 , f𝑗)  =  − n𝑖𝑗;  i ≠  j 

Since ∑𝑓𝑖 = 𝑛, 𝑉𝑎𝑟(∑𝑓𝑖) = 0 and hence the joint distribution of [f1, f2, …, f𝑘]is 

singular. Denote the 𝑘×𝑘 matrix of the variances and covariances of the f’s by W. Note 

that 

W =  n[   −  ′] 

where   

 =  (1, 2, … , 𝑘)′  

 =  diag{ ’s } = [

1 0 … 0
0 2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑘

] 

It can be proven that 

Rank (W) =  k − 1 

Then the Pearson chi-square statistic is defined as 
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𝜒2 = ∑
(𝑓𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=0

 

It follows that when n tends to infinity, the limiting distribution of 𝜒2 is that of a Chi-

square distribution with k-1 df. To prove this, for every single selected random sampling 

unit, we can introduce the ‘indicator functions’ of the k cells. That means, for the ith 

sampled unit, 

{𝐼𝑖(1),… , 𝐼𝑖(t),… , 𝐼𝑖(k)} 

denote the underlying random indicator functions 

𝐼𝑖(t) = {
1  𝑖𝑓 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑢𝑛𝑖𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑒𝑙𝑙 𝑡 
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This is true for t = 1, …, k; i =1, 2, …, n. 

Clearly, 

∑𝐼𝑖(t)

𝑘

𝑡=1

= 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1, 2, … , 𝑛 

∑𝐼𝑖(t)

𝑛

𝑖=1

= 𝑓𝑡  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 = 1,… , 𝑘 

Therefore for every i = 1, 2, …, n, {𝐼𝑖(1), … , 𝐼𝑖(t),… , 𝐼𝑖(k)} follows a singular 

multinomial distribution with parameters [ 1, 2, … , 𝑘] and are i.i.d. By the central limit 

theorem, the sample average counts 

[ 
𝑓1
𝑛

,… ,
𝑓𝑘
𝑛

] 

follow a singular multivariate normal distribution with rank k-1 since the variance-

covariance matrix W of the 𝑓𝑖’s has rank k-1. Therefore 

Q = (𝑓 − 𝑛𝜋)′𝑊+(𝑓 − 𝑛𝜋) 
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has chi-square distribution with k-1 df, where 𝑊+ is the Moore-Penrose g-inverse of the 

W and  

𝑊+ =
1

𝑛
[𝜋−𝛿 − 11′] 

𝜋−𝛿 is the inverse of 𝜋𝛿  and 1 is a column vector of 1’s. 

Thus 

Q = (f − E)′𝑊+(𝑓 − 𝐸) = (f − E)′
1

𝑛
[𝜋−𝛿 − 11′](𝑓 − 𝐸)

= (f − E)′ [
1

𝑛
𝜋−𝛿 −

1

𝑛
11′] (𝑓 − 𝐸) = (f − E)′ [𝐸−𝛿 −

1

𝑛
11′] (𝑓 − 𝐸)

= (f − E)′𝐸−𝛿(𝑓 − 𝐸) −
1

𝑛
(f − E)′11′(𝑓 − 𝐸)

= ∑
(𝑓𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

−
1

𝑛
∑(𝑓𝑖 − 𝐸𝑖)

𝑘

𝑖=1

1′(𝑓 − 𝐸)

= ∑
(𝑓𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

−
1

𝑛
×0×1′(𝑓 − 𝐸) = ∑

(𝑓𝑖 − 𝐸𝑖)
2

𝐸𝑖

𝑘

𝑖=1

 

Therefore we have shown that the limiting distribution of 𝜒2 is that of a Chi-square with 

k-1 degrees of freedom. 

If the cell probabilities [1, 2, … , 𝑘] are unknown, we will use a model with g unknown 

parameters to estimate the cell probabilities. To estimate the probabilities, we need to 

estimate the unknown parameters from the sample first. Then we replace the expected 

frequencies E’s by estimated frequencies �̂�′𝑠, where 

�̂�𝑖 = 𝑛�̂�𝑖 ; 𝑖 = 1,2, … , 𝑘 

Then we compute the Pearson chi-square statistic as 
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𝜒𝑃𝐹
2 = ∑

(𝑓𝑖 − �̂�𝑖)
2

�̂�𝑖

𝑘

𝑖=0

 

Since the g unknown parameters have to be estimated from the data, we lose some 

degrees of freedom. Fisher (1924) gives the first derivation of the correct degrees of 

freedom, namely 𝑘 − 𝑔 − 1 when 𝑔 parameters are estimated from the data. Thus this 

statistic is also called the Pearson-Fisher statistic. 

II.1.2 The Partition of 𝝌𝟐 

Lancaster (1969) introduced the partition of 𝜒2. In the earlier section, we suppose that 𝑛 

observations are given on a set of the 𝑘 indicator variables of the multinomial 

distribution. If a subset of (𝑘 − 1) indicator variables is chosen, the remaining variable is 

determined since only (𝑘 − 1) of these indicator variables are linearly independent. 

Equivalently, any set of (𝑘 − 1) orthonormal functions, {U∗(𝑖)}, may be considered and 

their standardized sums, 

U(𝑖) = 𝑛−
1
2 ∑U𝑗

∗(𝑖)

𝑛

𝑗=1

 

Then 

𝜒2 = ∑ U(𝑖)

𝑘−1

𝑖=1

 

And 𝜒2 is invariant for any choice of the set {U∗(𝑖)}. 

 

II.1.3 Score Statistics 

Suppose we have a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 from a continuous distribution with pdf 

𝑓(𝑥; 𝜃) where  

θ = (𝜃1, … , 𝜃𝑘)′ ∈ Θ, the parameter space 
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We want to test the null hypothesis 𝐻0: θ = 𝜃0 against 𝐻𝑎: θ ≠ 𝜃0. Note that if the 

distribution of X is discrete, the following results still hold. Let L be the likelihood 

function, then 

L = ∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 

the score U(θ) = (U𝑖(θ)),where U𝑖(θ) =
𝜕𝑙𝑜𝑔𝐿

𝜕𝜃𝑖
 

the information matrix I(θ) = (I𝑖𝑗(θ)) ,where I𝑖𝑗(θ) = 𝐸𝜃[U𝑖(θ)U𝑗(θ)]

= −𝐸𝜃[
𝜕2𝑙𝑜𝑔𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
] 

Then the score test statistic is defined as 

S = {U(𝜃0)}′{I𝑖𝑗(𝜃0)}
−1{U(𝜃0)} 

Under the null hypothesis, S is asymptotically distributed chi-square with k degrees of 

freedom, where k is the number of elements in θ, or equivalently, the dimension of the 

parameter space. 

However, sometimes we are only interested in several particular parameters. For 

example, when testing for a normal mean, usually the variance is also unknown but we 

are not interested in it. In this case the unknown variance will enter the problem as a 

‘nuisance’ parameter. To deal with this problem, we let 𝑓(𝑥; 𝛾) be the probability density 

function and γ is the parameter vector. γ can be partitioned into 

γ = (θ′, β′)′ 

where θ is a k×1 vector of real parameters and β is a q×1 vector of nuisance parameters. 

Then we can partition the score and information matrix into 
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U = U(γ) = (
𝑈𝜃(𝛾)

𝑈𝛽(𝛾)
) 

I = (
𝐼𝜃𝜃 𝐼𝜃𝛽

𝐼𝛽𝜃 𝐼𝛽𝛽
) 

Then Σ(γ) is defined by  

Σ(γ) = 𝐼𝜃𝜃(𝛾) − 𝐼𝜃𝛽(𝛾){𝐼𝛽𝛽(𝛾)}−1𝐼𝛽𝜃(𝛾) 

Cox and Hinkley (1974, Section 9.3) showed that {Σ(γ)}−1 is the asymptotic covariance 

matrix of 𝜃 and Σ(γ) is the asymptotic covariance matrix of 𝑈𝜃(𝛾). 

Then the score test statistic is defined as 

Ŝ = {𝑈𝜃(𝛾0)}′{Σ(�̂�0)}
−1{𝑈𝜃(�̂�0)} 

where 𝛾0 is the ML estimator of 𝛾 under the null hypothesis 𝐻0: θ = 𝜃0, in which 𝜃 is 

restricted to taking the value 𝜃0. Under the null hypothesis, Ŝ is asymptotically distributed 

chi-square with k degrees of freedom. 

II.1.4 Components 

Suppose we want to test the null hypothesis that m cell probabilities are 𝑝𝑗 = 𝑝𝑗(𝛽), 𝑗 =

1, … , 𝑚. An alternative is to take the order k ‘smooth’ probability function 

𝜋𝑗(𝜃, 𝛽) = 𝐶(𝜃, 𝛽) exp {∑𝜃𝑖ℎ𝑖𝑗(𝛽)

𝑘

𝑖=1

} 𝑝𝑗(𝛽),    𝑗 = 1,… . ,𝑚 

 where θ is a k×1 vector of real parameters,  β is a q×1 vector of nuisance parameters 

and 𝐶(𝜃, 𝛽) is a normalizing constant that ensures ∑ 𝜋𝑗(𝜃, 𝛽) = 1𝑚
𝑗=1 . For each i, 𝑖 =

1, … , 𝑘, the ℎ𝑖𝑗(𝛽) are values taken by a random variable 𝐻𝑖 with 𝑃 (𝐻𝑖 = ℎ𝑖𝑗(𝛽)) =

𝜋𝑗(𝜃, 𝛽), 𝑗 = 1,… ,𝑚. Here 𝑘 ≤ 𝑚 − 1 since the parameter space has dimension m-1. 

Testing 𝐻0: 𝜋𝑗(𝜃, 𝛽) = 𝑝𝑗(𝛽) 𝑣𝑠 𝐻𝑎: 𝜋𝑗(𝜃, 𝛽) ≠ 𝑝𝑗(𝛽) is equivalent to test 𝐻0: 𝜃 =
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0 𝑣𝑠 𝐻𝑎: 𝜃 ≠ 0. For convenience, we drop the argument 𝜃 and 𝛽 from 

𝜋𝑗(𝜃, 𝛽), 𝑝𝑗(𝛽) and ℎ𝑖𝑗(𝛽). 

Suppose a random sample of n observations is taken and the number of observations in 

the jth class is 𝑁𝑗 , 𝑗 = 1, … ,𝑚. Write H = (ℎ𝑖𝑗) , 𝑁 = (𝑁𝑗) and 𝑝 = (𝑝𝑗) 

Rayner and Best(1989) have shown that the Pearson-Fisher statistics 𝜒2
𝑃𝐹

 can be 

partitioned into components via 𝜒2
𝑃𝐹

= �̂�1
2 + ⋯+ �̂�𝑚−𝑞−1

2  in which the �̂�𝑟 are 

asymptotically standard normal and asymptotically independent, being defined by �̂�𝑟 =

∑ ℎ̂𝑟𝑗𝑁𝑗/√𝑛𝑚
𝑗=1 . 

 

II.2 Problem of Sparseness 

Suppose we have 𝑞 categorical variables and the i-th variable has 𝑐𝑖 categories. Thus 

there are 𝑘 = ∏ 𝑐𝑖
q
i=1  cells, also called response patterns in the cross-classified table. 

When the sample size to the number of cells is relatively small, contingency tables are 

said to be sparse (Agresti & Yang, 1987). When there is a problem of sparseness, a test 

statistic based on an asymptotic chi-square distribution may no longer follow a chi-square 

distribution. There is no universal agreement on what constitutes a small expected 

frequency. Cochran (1954) suggested that most expected frequencies should be at least 

five. Cramer (1946) has suggested 10 and Kendall (1952) has suggested 20. When 

sparseness is present in a set of frequencies, combining cells or adding a small constant 

such as 0.5 to each cell are sometimes attempted (Goodman, 1964). 

One way to solve the problem of sparseness is to consider other distribution for the 

goodness-of-fit statistics. If the number of observations in each response pattern is large 

enough and under the conditions that 𝑖) 𝐻0: 𝜋 = 𝜋(𝜃), 𝑖𝑖) 𝑘 is fixed and 
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𝑖𝑖𝑖) 𝑚𝑖𝑛1≤𝑟≤𝑘𝑛𝜋𝑟 → ∞ for 𝑛 → ∞, the Pearson’s chi-square statistic is distributed 

asymptotically chi-square. Morris (1975) showed that both the Pearson’s chi-square 

statistic and likelihood ratio statistic have asymptotic normal distributions under 

conditions that allow both n and k to become large without necessarily requiring that 

𝑚𝑖𝑛1≤𝑟≤𝑘𝑛𝜋𝑟 → ∞, which means the number of cells is increased when the sample size 

is increased. Consider the sequence of multinomial random vectors 

{(𝑁1,𝑘(𝑖), 𝑁2,𝑘(𝑖), … , 𝑁𝑘(𝑖),𝑘(𝑖))}𝑖=1
∞  

where the i-th vector in the sequence has 𝑘(𝑖) cells. The sample size is 𝑛𝑘 = ∑ 𝑁𝑗,𝑘
𝑘
𝑗=1  

and the probability vector is (𝑝1𝑘, 𝑝2𝑘, … , 𝑝𝑘𝑘) with ∑ 𝑝𝑗𝑘
𝑘
𝑗=1 = 1. Morris (1975) derived 

a central limit theorem for the Pearson statistic. Under the null hypothesis, the sufficient 

conditions for asymptotic normality as k → ∞ are (a) 𝑚𝑎𝑥1<𝑖<𝑘𝑝𝑖𝑘 = 𝑜(1) as k → ∞ and 

(b) 𝑛𝑘𝑝𝑖𝑘 is uniformly bounded below by some constant.  When the null hypothesis is 

true, the asymptotic mean and variance for the Pearson statistic are  

𝜇𝑃,𝑘 = 𝑘 

𝜎𝑃,𝑘
2 = 2k + ∑

(1 − 𝑘−1𝑝𝑗𝑘)

𝑛𝑘𝑝𝑗𝑘

𝑘

𝑗=1

 

Note that when the expected frequencies are not all equal, 𝜎𝑃,𝑘
2  may be much larger than 

the chi-square variance on k − 1 degrees of freedom. 

Koehler and Larntz (1980) suggest that because of the different influence of very small 

observed counts on Pearson’s chi-square statistic and likelihood ratio statistic, the 

asymptotic means and variances of these two statistics are different. Koehler and Larntz 

(1986) also provides a Monte Carlo study of these two statistics for loglinear models. The 
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results show that generally the normal approximation is more accurate for likelihood ratio 

statistic than for Pearson’s chi-square statistic. 

Another way to solve the problem of sparseness is to use statistics based on the marginal 

frequencies. There are several statistics of this kind, which will be introduced later. 

 

II.3 Orthogonal Components Based on Marginal Proportions 

Reiser (2008) introduced a score statistic based on the overlapping cells that correspond 

to the first and second-order marginal frequencies. Then orthogonal components of the 

Pearson-Fisher statistic are defined on marginal frequencies. The score statistics is shown 

to be a sum of these orthogonal components 

II.3.1 First- and Second-order Marginals. 

The relationship between joint proportion and first- and second-order marginal cane be 

shown by using zeros and ones to code the levels of categorical response variables, 𝑌𝑖, 𝑖 =

1, 2, … 𝑞. Each 𝑌𝑖 has 𝑐 ≥ 2 categories. A specific cell from the contingency table, 

sometimes called a response pattern, can be indicated by a (𝑐 − 1)𝑞-dimensional vector 

of zeros and ones. Then a 𝑇 = 𝑐𝑞-dimensional set of response patterns can be generated 

by varying the levels of the 𝑞𝑡ℎ variable most rapidly, the 𝑞𝑡ℎ − 1 variable next, etc. 

Define 𝑽 as the 𝑇 by (𝑐 − 1)𝑞 matrix with response patterns as rows. 

For 𝑞 = 3 and 𝑐 = 2, 

𝑽 =

[
 
 
 
 
 
 
 
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]
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For 𝑞 = 3 and 𝑐 = 3, 𝑽 is a 27 by 6 matrix: 

𝑽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 1 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 1]

 
 
 
 
 
 
 
 
 
 
 
 

 

The matrix 𝑽 can be generated by kernel patterns. 𝑽 has (𝑐 − 1) kernel patterns, each of 

dimension 𝑐. In general, the 𝑖𝑡ℎ kernel pattern, 𝑓𝑖 = (0 ⋯ 0 1 0 ⋯ 0)′ with the 

1 on the (i+1)-th position and 𝑖 = 1, 2, … , 𝑐 − 1. For 𝑐 = 2, the kernel pattern is 𝑓1 =

(0 1)′, and for 𝑐 = 3, the kernel patterns are 𝑓1 = (0 1 0)′ and 𝑓2 = (0 0 1)′. 

The matrix 𝑽 can be generated by Kronecker products of the kernel patterns with the 

vector 𝟏𝑐, which is a vector of length 𝑐 where each element is 1. The patterns of columns 

are (𝑐 − 1) columns 𝑓𝑖 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 ⊗ ⋯⊗ 𝟏𝑐), 𝑖 = 1,… , 𝑐 − 1, followed by (𝑐 − 1) 

columns 𝟏𝑐 ⊗ 𝑓𝑖 ⊗ (𝟏𝑐 ⊗ ⋯⊗ 𝟏𝑐), 𝑖 = 1,… , 𝑐 − 1, continuing until (𝑐 − 1) columns 

(𝟏𝑐 ⊗ 𝟏𝑐 ⊗ ⋯⊗ 𝟏𝑐) ⊗ 𝑓𝑖 , 𝑖 = 1,… , 𝑐 − 1. 

With 𝑞 = 3 and 𝑐 = 2, 

𝑽 = (𝑓1 ⊗ (𝟏2 ⊗ 𝟏2), 𝟏2 ⊗ (𝑓1 ⊗ 𝟏2), (𝟏2 ⊗ 𝟏2) ⊗ 𝑓1 ) 

With 𝑞 = 3 and 𝑐 = 3, 

𝑽 = (𝑓1 ⊗ (𝟏3 ⊗ 𝟏3), 𝑓2 ⊗ (𝟏3 ⊗ 𝟏3), 𝟏3 ⊗ (𝑓1 ⊗ 𝟏3),

𝟏3 ⊗ (𝑓2 ⊗ 𝟏3),  (𝟏3 ⊗ 𝟏3) ⊗ 𝑓1, (𝟏3 ⊗ 𝟏3) ⊗ 𝑓1)
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Define 𝐇[1] = 𝑽′, where ℎ𝑙𝑠 is an element of 𝐇[1], 𝑙 = 1, 2, … , 𝑞(𝑐 − 1), 𝑠 = 1, 2, … , 𝑇. 

Then, under some specific model 𝝅 = 𝝅(𝜽), which we will introduce later, the first-order 

marginal proportion for variable 𝑌𝑖 can be defined as 

𝜋(𝑖)(𝑎; 𝜽) =Prob(𝑌𝑖 = 𝑎|𝜽) = ∑ ℎ𝑙𝑠𝜋𝑠(𝜽)𝑠 = 𝒉𝒍
′𝝅(𝜽), 𝑎 = 2,… , 𝑐, 𝑙 = (𝑐 − 1)(𝑖 − 1) +

𝑎 − 1, 

Where 𝒉𝒍
′ is row 𝑙 of matrix 𝐇[1]. Then the true first-order marginal proportion is given 

by 

𝜋(𝑖)(𝑎) =Prob(𝑌𝑖 = 𝑎) = ∑ ℎ𝑙𝑠𝜋𝑠𝑠 = 𝒉𝒍
′𝝅. 

Under the model, the second-order marginal proportion for variable 𝑌𝑖 and 𝑌𝑗 can be 

defined as  

𝜋(𝑖𝑗)(𝑎, 𝑏; 𝜽) =Prob(𝑌𝑖 = 𝑎, 𝑌𝑗 = 𝑏|𝜽) = ∑ ℎ𝑘𝑠ℎ𝑙𝑠𝜋𝑠(𝜽)𝑠 = (𝒉𝒌
′ ∘ 𝒉𝒌

′ )𝝅(𝜽),  

Where 𝑖 = 1,… , 𝑞 − 1; 𝑗 = 𝑖, … , 𝑞;  𝑘 = (𝑐 − 1)(𝑖 − 1) + 𝑎 − 1;  𝑙 = (𝑐 − 1)(𝑗 − 1) +

𝑏 − 1; 𝑎 = 2, … , 𝑐; 𝑎 = 2,… , 𝑐; and 𝒉𝒌
′ ∘ 𝒉𝒌

′  represents the Hadamard product of rows 𝑘 

and 𝑙. Then the true second-order marginal proportion is given by 

𝜋(𝑖𝑗)(𝑎, 𝑏) =Prob(𝑌𝑖 = 𝑎, 𝑌𝑗 = 𝑏) = ∑ ℎ𝑘𝑠ℎ𝑙𝑠𝜋𝑠𝑠 = (𝒉𝒌
′ ∘ 𝒉𝒌

′ )𝝅,  

The summation across the frequencies associated with the response patterns to obtain the 

marginal proportions represents a linear transformation of the frequencies in the 

multinomial vector 𝝅 which can be implemented via multiplication by a certain matrix, 

denoted generally by H. The symbol 𝐇[𝑡] denotes the transformation matrix that would 

produce marginal of order 𝑡. The symbol 𝐇[𝑡:𝑢], 𝑡 ≤ 𝑢 ≤ 𝑞, denotes the transformation 

matrix that would produce marginal from order 𝑡 up to and including order 𝑢. 
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For second-order marginal proportions, the rows of 𝐇[2] are Hadamard products among 

the columns of V. For 𝑞 = 3 and 𝑐 = 2,  

𝐇[2] = [

(𝑣1 ∘ 𝑣2)′

(𝑣1 ∘ 𝑣3)′

(𝑣2 ∘ 𝑣3)′

] 

where 𝑣𝑖 is the column 𝑖 of matrix V, and 𝑣𝑖 ∘ 𝑣𝑗 is the Hadamard product of columns 𝑖 

and 𝑗.  

For 𝑞 = 3 and 𝑐 = 3, 𝐇[2] is an 12 by 27 matrix: 

𝐇[2] =

[
 
 
 
 
 
 
 
 
 

(𝑣1 ∘ 𝑣3)′

(𝑣1 ∘ 𝑣4)′
⋮

(𝑣1 ∘ 𝑣5)′

(𝑣1 ∘ 𝑣6)′
⋮

(𝑣3 ∘ 𝑣5)′
⋮

(𝑣𝑖(𝑐−1) ∘ 𝑣𝑗(𝑐−1))′]
 
 
 
 
 
 
 
 
 

 

II.3.2 Higher-order Marginals  

Matrix H for higher-order marginal can be defined in a similar way using Hadamard 

products among columns of V. The third-order marginal proportions for variables 

𝑌𝑖, 𝑌𝑗  𝑎𝑛𝑑 𝑌𝑘 can be obtained by employing the matrix 𝐇[3]. Then we define 

𝐇[𝑡:𝑢] =

[
 
 
 

𝐇[𝑡]

𝐇[𝑡+1]

⋮
𝐇[𝑢] ]

 
 
 

 

II.3.3 𝑿[𝒕:𝒖]
𝟐  Statistic 

Now our null hypothesis is 𝐻0: 𝐇𝝅 = 𝐇𝝅(𝜽) and the test statistic is 

𝑋[𝑡:𝑢]
2 = 𝒆′�̂�𝒆

−𝟏𝒆 

�̂�𝒆 = 𝑛−1𝛀𝒆 with 𝛀𝒆 evaluated at the maximum likelihood estimates �̂�, and where 
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𝛀𝒆 = 𝐇(𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′)𝐇′ 

𝐷(𝝅) =diagnal matrix with (𝑠, 𝑠) element equal to 𝜋𝑠(𝜽) 

𝐀 = 𝐷(𝜋)−1/2
∂𝝅(𝜽)

∂𝜽
 

𝐆 =
∂𝝅(𝜽)

∂𝜽
 

𝒆 = 𝐇(𝒑 − 𝝅) is the matrix form of the marginal residuals  

and 𝒑 is the observed proportion 

𝐇 = 𝐇[1:2] produces 𝑋[1:2]
2  and 𝐇 = 𝐇[2] produces 𝑋[2]

2 . It has been proved that for 2 

categories, the distributions of 𝑋[1:2]
2  and 𝑋[2]

2  are chi-square distributions with degrees of 

freedom equal to 𝑞(𝑞 + 1)/2 and 𝑞(𝑞 − 1)/2 respectively.  

Here 𝐇 was presented as a matrix of constants. However, if we consider 𝐻𝑙 as a random 

variable that takes on values ℎ𝑙𝑠 with probability 𝜋𝑠(𝜃𝑎), where 𝜋𝑠(𝜃𝑎) is a probability 

under a Neyman smooth alternative hypothesis, then we can see that the test statistics is 

just a special case of the score statistic given by Rayner and Best. And further, 

Bartholomew (1987) showed that the joint probability function of the q-dimensional 

vector of binary variables can be uniquely expressed in terms of the 2𝑞 − 1 marginal 

probabilities form first to q-th order, which means 

𝑋[1:𝑞]
2 = 𝜒𝑃𝐹

2  

However, in fact we only require fewer than 2𝑞 − 1 marginals to reproduce the Pearson-

Fisher statistic for a composite null hypothesis since some residuals on the marginal are 

degenerate variables equal to zero due to linear dependencies among the rows of 𝐇[1:q] 
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for a composite null. Suppose there are g linear dependent rows. We can delete these g 

rows from 𝐇[1:q] and denote the new matrix 𝐇[1:q;−g]. Then 

𝑋[1:𝑞:−𝑔]
2 = 𝜒𝑃𝐹

2  

 

II.3.4 Goodness of Fit Statistics 

Assume 𝑐 categories for each variable. Joreskog and Moustaki (2001) defined  

𝐺𝐹𝑓𝑖𝑡(𝑖𝑗) = 𝑛 ∑
(𝑝𝑎𝑏

(𝑖𝑗)
− �̂�𝑎𝑏

(𝑖𝑗)
)2

�̂�𝑎𝑏
(𝑖𝑗)

𝑎𝑏

 

𝑖 = 1,⋯ , 𝑞 − 1      𝑗 = 𝑖 + 1,⋯ , 𝑞      𝑎 = 1,⋯ , 𝑐      𝑏 = 1,⋯ , 𝑐 

Here the name GFfit stands for Goodness-of-fit. 

Consider 𝑐 kernel patterns 𝒕𝑔, 𝑔 = 1, 2, … , 𝑐 that form, as columns, a 𝑐 by 𝑐 identity 

matrix, and consider the 𝑐𝑞 by 𝑇 matrix 𝑼 given by 

𝑼

=

(𝒕1 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐) 𝒕2 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐) ⋯ 𝒕𝑐 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐)

𝟏𝑐 ⊗ (𝒕1 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐) 𝟏𝑐 ⊗ (𝒕2 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐) ⋯ 𝟏𝑐 ⊗ (𝒕𝑐 ⊗ 𝟏𝑐 …⊗ 𝟏𝑐)…

𝟏𝑐 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝒕1) 𝟏𝑐 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝒕2) … 𝟏𝑐 ⊗ (𝟏𝑐 ⊗ 𝟏𝑐 …⊗ 𝒕𝑐))

 

Note that linear dependencies exist among columns of 𝑼; 𝑽 consists of the linear 

independent columns of 𝑼.Then a 𝑐2𝑞(𝑞 − 1)/2 by 𝑇 matrix 𝑴 is given by 
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𝑴[2]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑢1 ∘ 𝑢𝑐+1)′

(𝑢1 ∘ 𝑢𝑐+2)′
⋮

(𝑢1 ∘ 𝑢𝑞𝑐)′

(𝑢2 ∘ 𝑢𝑐+1)′

(𝑢2 ∘ 𝑢𝑐+2)′
⋮

(𝑢2 ∘ 𝑢𝑞𝑐)′

⋮
(𝑢𝑐 ∘ 𝑢𝑐+1)′

(𝑢𝑐 ∘ 𝑢𝑐+2)′
⋮

(𝑢𝑐 ∘ 𝑢𝑞𝑐)′

⋮
(𝑢𝑐+1 ∘ 𝑢2𝑐+1)′

⋮
(𝑢𝑐+1 ∘ 𝑢𝑞𝑐)′

⋮
(𝑢(𝑞−2)𝑐+1 ∘ 𝑢(𝑞−1)𝑐+1)′

⋮
(𝑢(𝑞−1)𝑐 ∘ 𝑢𝑞𝑐)′ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Linear dependencies exist among rows of 𝑴[2]; 𝐇[2] consists of the linear independent 

rows of 𝑴[2]. 

Then using 𝑴[2], Cagnone and Mignani (2007) show that 𝐺𝐹𝑓𝑖𝑡(𝑖𝑗) is a special case of 

𝑋[𝑡:𝑢]
2 : 

𝐺𝐹𝑓𝑖𝑡(𝒊𝒋) = 𝒆′(�̂�𝒆
(𝒊𝒋)

)+𝒆 

Where 𝑨+ indicates the Moore-Penrose generalized inverse of matrix 𝑨, and  �̂�𝒆
(𝒊𝒋)

=

𝑛−1𝛀𝒆 with 𝛀𝒆 evaluated at the MLE �̂�, and now 

𝛀𝒆 = 𝐌[2]
(𝑖𝑗)

(𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′)(𝐌[2]
(𝑖𝑗)

)′ 

𝐌[2]
(𝑖𝑗)

 is a partition of the general matrix 𝐌[2] such that 
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𝐌[2]
(𝑖𝑗)

=

[
 
 
 
 
𝑚𝑔+1

′

𝑚𝑔+2
′

⋮
𝑚𝑔+𝑐2

′
]
 
 
 
 

 

Where 𝑔 = (
(𝑖−1)(2𝑞−𝑖)

2
+ 𝑗 − 𝑖 − 1)𝑐2 

If we apply the Pearson’s 𝜒2 to the 2-variable subset for variable i and variable j, the 𝑋𝑖𝑗
2  

statistic can be defined as follow: 

𝑋𝑖𝑗
2 = 𝑋𝑖𝑗

2 (𝜃𝑖𝑗) = 𝑛𝒆′(�̂�[2]
𝑖𝑗

)−1𝒆 

�̂�[2]
𝑖𝑗

= 𝐇[2]
(𝑖𝑗)

𝐷(�̂�)𝐇[2]
(𝑖𝑗)′

 

𝒆 = 𝐇[2]
(𝑖𝑗)(𝒑 − �̂�) is the matrix form of the marginal residuals 

However, under the null hypothesis, 𝑋𝑖𝑗
2  does not distribute as chi-square since here the 

parameter 𝜃𝑖𝑗 is estimated from full table. 𝐺𝐹𝑓𝑖𝑡(𝑖𝑗) is actually the same as 𝑋𝑖𝑗
2 . 

II.3.5 Orthogonal Components 

Consider the 𝑇 − 𝑔 − 1 by 2𝑞 matrix 𝐇∗ = 𝑭′𝐇[1:𝑞;−𝑔], where 𝑔 is the number of 

unknown model parameters to be estimated and 𝐇[1:𝑞;−𝑔] is matrix 𝐇[1:𝑞] deleting 𝑔 rows. 

𝐇∗ has full row rank. 𝑭 is the upper triangular matrix such that 𝑭′𝛀𝒆𝑭 = 𝑰. 𝑭 = (𝑪′)−1, 

where 𝑪 is the Cholesky factor of 𝛀𝒆. Premultiplication by (𝑪′)−1 orthonormalises the 

matrix 𝐇[1:𝑞;−𝑔] relative to the matrix 𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′. Then 

𝑋𝑃𝐹
2 = 𝑋[1:𝑞;−𝑔]

2 = 𝑛𝐫′(�̂�∗)′�̂�∗𝐫 

where �̂�∗ = 𝐇∗(�̂�), and 𝐫 = (�̂� − 𝝅(�̂�)). 

Define 

�̂� = 𝑛
1
2�̂�′𝐇𝐫 = 𝑛

1
2�̂�∗𝐫 

where �̂�  is the matrix 𝑭 evaluated at 𝜽 = �̂�. Then 
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𝑋𝑃𝐹
2 = �̂�′�̂� = ∑ γ̂𝑗

2

𝒋=𝑻−𝒈−𝟏

𝒋=𝟏

 

�̂�∗𝐫 has asymptotic covariance matrix 𝑭′𝛀𝒆𝑭 = 𝑰𝑻−𝒈−𝟏. The elements γ̂𝑗
2 are 

asymptotically independent chi-square random variables with 𝑑𝑓 = 1 (Reiser, 2008). 

Components maybe obtained as sequential sum of squares. Redefine 

𝑧𝑠 = √𝑛 (𝜋𝑠(�̂�))
−

1

2
(�̂�𝑠 − 𝜋𝑠(�̂�)). 

Perform the regression of 𝒛 on the columns of 𝐇′: 

𝒛 = 𝐇′𝜷 

Then, 

�̂� = (𝐇�̂�𝐇′)−𝟏𝐇�̂�𝐮 

where 𝐮 = √𝑛𝐫, �̂� = �̂�
𝟏

𝟐�̂��̂��̂�
𝟏

𝟐 = �̂�
𝟏

𝟐𝚺�̂�
𝟏

𝟐, and 𝑫 = 𝑑𝑖𝑎𝑔(𝝅(𝜽)). 

Σ = Σ(𝜃) = (𝑰 − 𝝅
𝟏
𝟐 (𝝅

𝟏
𝟐)

′

− 𝑨(𝑨′𝑨)−𝟏𝑨′) is idempotent. 

Let �̂� = �̂��̂�
𝟏

𝟐𝐇′. Then 

�̂� = (�̂�′�̂�)−𝟏�̂�′𝒛 

γ̂𝑗
2, 𝑗 = 1, 𝑇 − 𝑔 − 1 are the sequential SS from this regression. 𝜸 = 𝑪′𝜷 are the 

orthogonal coefficients.  

Now define an orthogonal components version of 𝐺𝐹𝑓𝑖𝑡: 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

= ∑ 𝛾𝑙
2

𝑙=𝑚+(𝑐−1)2

𝑙=𝑚+1

 

where 𝑚 = 𝑞 + (𝑖 − 1)(𝑐 − 1)2 + (𝑗 − 2)(𝑐 − 1)2. 

Then 
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𝑋[2]
2 = ∑ ∑ 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)

𝑗=𝑞

𝑗=𝑖+1

𝑖=𝑞−1

𝑖=1

 

More generally, 

𝑋𝑃𝐹
2 = ∑ 𝛾𝑙

2

𝑙=𝑞(𝑐−1)

𝑙=1

+ ∑ 𝛾𝑙
2

𝑙=(𝑞
2)(𝑐−1)2

𝑙=𝑞(𝑐−1)+1

+ ∑ 𝛾𝑙
2

𝑙=(𝑞
3)(𝑐−1)3

𝑙=(𝑞
2)(𝑐−1)2+1

+ ⋯+ 𝛾𝑇−𝑔−1
2  

Then 

𝑋𝑃𝐹
2 = ∑𝐺𝐹𝑓𝑖𝑡⊥

(𝑖)

𝑖

+ ∑∑𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

𝑗𝑖

+ ∑∑∑𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗𝑘)

𝑘𝑗𝑖

+ ⋯+ 𝐺𝐹𝑓𝑖𝑡⊥
(1,2,⋯,𝑞)

 

because 

𝑋𝑃𝐹
2 = �̂�′�̂� = ∑ 𝛾𝑙

2

𝑙=𝑇−𝑔−1

𝑙=1

 

The extended 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are independent chi-square statistics with 𝑑𝑓 = (𝑐 − 1)2 because 

of the definition on orthogonal components. The original 𝐺𝐹𝑓𝑖𝑡(𝑖𝑗) statistics are not 

necessarily independent and do not necessarily sum to 𝑋[2]
2 . 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 statistics are order 

dependent since they are defined on orthogonal components. 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 statistics are 

diagnostics for lack of fit. If 𝐺𝐹𝑓𝑖𝑡⊥
(23)

 has a large value, it means the association 

between variable 2 and variable 3 cannot be explained by the current model. 

Due to collinearity among the columns of H, the calculation of �̂�𝒆
−𝟏 is usually very 

inaccurate. Thus 𝑋[2]
2  is very inaccurate numerically if we use 𝑋[2]

2 = 𝒆′�̂�𝒆
−𝟏𝒆 to calculate 

it. However, calculating components by sequential SS as given in Section II.3.4 using the 

Sweep operator are very accurate numerically (Goodnight, 1978; SAS PROC REG). 
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II.4. Other Statistics 

II.4.1 Joe-Maydeu Statistic 

Since �̂�𝒆
−𝟏 is usually very inaccurate, Maydeu-Olivares and Joe(2005) proposed an 

alternative quadratic form statistic. Suppose 𝐇[1:r] is full rank with rank=s, Define 

𝚫𝒓 = 𝐇[1:r]𝐆 

Then consider an 𝑠×(𝑠 − 𝑔) orthogonal complement to 𝚫𝒓, say 𝚫𝒓
(𝒄)

, such that 

𝚫𝒓
(𝒄)′

𝚫𝒓 = 𝟎 

Then let 

𝐶𝑟 = 𝐶𝑟(𝜃) = 𝚫𝒓
(𝒄)

[𝚫𝒓
(𝒄)′𝐇[1:r](𝐷(𝝅) − 𝝅𝝅′)𝐇[1:r]

′𝚫𝒓
(𝒄)]−𝟏𝚫𝒓

(𝒄)′
 

Note that 𝐶𝑟 is invariant to the choice of  𝚫𝒓
(𝒄)

. Since 

𝐶𝑟𝛀𝒆𝐶𝑟 = 𝐶𝑟𝐇(𝐷(𝝅) − 𝝅𝝅′ − 𝐆(𝐀′𝐀)−𝟏𝐆′)𝐇′𝐶𝑟

= 𝐶𝑟𝐇(𝐷(𝝅) − 𝝅𝝅′)𝐇′𝐶𝑟 − 𝐶𝑟𝐇(𝐆(𝐀′𝐀)−𝟏𝐆′)𝐇′𝐶𝑟

= 𝐶𝑟𝐇(𝐷(𝝅) − 𝝅𝝅′)𝐇′𝐶𝑟 − 0 = 𝐶𝑟 

𝛀𝒆 is a generalized inverse of 𝐶𝑟. 

Then the Joe-Maydeu statistic is defined as 

𝑀𝑟 = 𝑀𝑟(𝜃) = 𝑛𝒆′�̂�𝑟𝒆 

�̂�𝑟 = 𝐶𝑟(𝜃) 

𝒆 = 𝐇[1:r](𝒑 − 𝝅) is the matrix form of the marginal residuals. 

Under the null hypothesis, 𝑀𝑟 is distributed asymptotically chi-square with 𝑑𝑓 = 𝑠 − 𝑔. 

The degrees of freedom are obtained using the fact that 𝚫𝒓
(𝒄)

 is of full rank 𝑠 − 𝑔 and 

hence 𝐶𝑟 is also of rank 𝑠 − 𝑔. Maydeu-Olivares and Joe have shown that 𝑀𝑞 equals the 

Pearson-Fisher chi-square statistic when 𝜃 is the maximum likelihood estimator. 
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However, when 𝜃 is some other minimum variance asymptotically normal estimator, 𝑀𝑞 

and the Pearson-Fisher chi-square statistic are equivalent only asymptotically, with 𝑀𝑞 <

𝑋𝑃𝐹
2 . 

Maydeu-Olivares and Joe(2006) also proposed an 𝑀𝑟
(𝑏)

 statistic to assess the source of 

misfit when the overall 𝑀𝑟 statistic suggest a model misfit. 𝑀𝑟
(𝑏)

 is based on each subset 

b of {1,…,n} with cardinality r. For a submodel for r-dimensional margins, with 𝐶𝑟(𝑏) =

∏ 𝑐𝑖𝑖∈𝑏  cells depending on 𝑔𝑟(𝑏) parameters, 𝑀𝑟
(𝑏)

 has an asymptotic null chi-square 

distribution with 𝐶𝑟(𝑏) − 𝑔𝑟(𝑏) − 1 degrees of freedom, assuming that the submodel is 

identified, the estimator is consistent and asymptotically normal, and 𝐶𝑟(𝑏) − 1 > 𝑔𝑟(𝑏). 

Let be 𝜃𝑏the subset of the parameter vector 𝜃 with dimension 𝑔𝑟(𝑏). Then the 𝑀𝑟
(𝑏)

 

statistic is defined as 

𝑀𝑟
(𝑏)

= 𝑀𝑟
(𝑏)

(𝜃𝑏) = 𝑛𝒆′�̂�𝑟𝑏𝒆 

�̂�𝑟𝑏 = 𝐶𝑟𝑏(�̂�𝑏) = 𝚫𝒓𝒃
(𝒄)

[𝚫𝒓𝒃
(𝒄)′𝐇[r]

(𝑏)(𝐷(𝝅) − 𝝅𝝅′)𝐇[r]
(𝑏)′

𝚫𝒓𝒃
(𝒄)]−𝟏𝚫𝒓𝒃

(𝒄)′
 

𝒆 = 𝐇[r]
(𝑏)(𝒑 − 𝝅) is the matrix form of the marginal residuals 

𝚫𝒓𝒃 =
∂𝐇[r]

(𝑏)
𝝅(𝜽)

∂𝜃𝑏
 

𝚫𝒓𝒃
(𝒄)

 𝑖𝑠 an 𝐶𝑟(𝑏) − 1×𝑔𝑟(𝑏) orthogonal complement to 𝚫𝒓𝒃 

Given a necessary and sufficient condition that 

Σ𝑟𝑏C𝑟𝑏Σ𝑟𝑏C𝑟𝑏Σ𝑟𝑏 = Σ𝑟𝑏C𝑟𝑏Σ𝑟𝑏           𝑓𝑜𝑟 𝑎𝑛𝑦 𝜃 

where Σ𝑟𝑏 is the asymptotic covariance matrix of √𝑛𝐇[1:r]
(𝑏) (𝒑 − 𝝅), Maydeu-Olivares and 

Joe have shown that the 𝑀𝑟
(𝑏)

 has an asymptotic null chi-square distribution with 𝐶𝑟(𝑏) −
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𝑔𝑟(𝑏) − 1 degrees of freedom. The degrees of freedom are obtained by the fact that 𝚫𝒓𝒃
(𝒄)

  

is of full column rank 𝐶𝑟(𝑏) − 𝑔𝑟(𝑏) − 1 and hence C𝑟𝑏 is also of rank 𝐶𝑟(𝑏) − 𝑔𝑟(𝑏) −

1. 

II.4.2 �̅�𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐  

As mentioned earlier 𝑋𝑖𝑗
2  does not distributed chi-square. However, we can assume that 

the distribution of 𝑋𝑖𝑗
2  can be approximated by a 𝑏𝜒𝑎

2 distribution. The first and second 

asymptotic moments of 𝑋𝑖𝑗
2  are 

�̂�1 = 𝑡𝑟 ((�̂�[2]
𝑖𝑗

)
−1

�̂�𝒆),   �̂�2 = 2𝑡𝑟 ((�̂�[2]
𝑖𝑗

)
−1

�̂�𝒆)
2

 

Solving for the two unknown constants 𝑎 and 𝑏, we obtain the mean and variance 

corrected �̅�𝑖𝑗
2  statistic 

�̅�𝑖𝑗
2 =

𝑋𝑖𝑗
2

𝑏
=

2�̂�1
2

�̂�2
𝑋𝑖𝑗

2  

Which has an approximate reference chi-square distribution with degrees of freedom 

𝑎 =
2�̂�1

2

�̂�2
 

Alternatively, following Asparouhov and Muthen (2010), we can define a mean and 

variance corrected 𝑋𝑖𝑗
2  which has 𝑑𝑓𝑖𝑗 = 𝑐2 − 𝑞𝑖𝑗 − 1, where 𝑞𝑖𝑗 is the number of 

parameters in the bivariated probabilities. We can write the statistic �̿�𝑖𝑗
2 = 𝑎∗ + 𝑏∗𝑋𝑖𝑗

2  

where 𝑎∗ and 𝑏∗ are chosen so that the mean and variance of �̿�𝑖𝑗
2  are 𝑑𝑓𝑖𝑗 and 2𝑑𝑓𝑖𝑗. 

Solving for 𝑎∗ and 𝑏∗, we obtain 

�̿�𝑖𝑗
2 = 𝑋𝑖𝑗

2√
2𝑑𝑓𝑖𝑗

�̂�2
+ 𝑑𝑓𝑖𝑗 − √

2𝑑𝑓𝑖𝑗�̂�1
2

�̂�2
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II.4.3 Y Statistic 

Bartholomew and Leung (2002) proposed the Y statistic based on only second order 

marginals. The statistic is defined as 

𝒀 = 𝒆[𝟐]
′ �̂�[𝟐]

−𝟏𝒆[𝟐] 

𝒆[𝟐] = 𝐇[𝟐](�̂� − 𝝅(𝜽)) 

𝑫[𝟐] = 𝒏−𝟏(𝒅𝒊𝒂𝒈(𝐇[𝟐]𝝅(𝜽))(𝑰 − 𝒅𝒊𝒂𝒈(𝐇[𝟐]𝝅(𝜽)))) 

Bartholomew and Leung gave a chi-square approximation with c degrees of freedom for 

the distribution of  

𝑌 − 𝑎

𝑏
 

Where  

𝑏 =
𝜇3(𝑌)

4𝜇2(𝑌)
 

𝑐 =
𝜇2(𝑌)

2𝑏2
 

𝑎 = 𝜇1(𝑌) − 𝑏𝑐 

𝜇1, 𝜇2 𝑎𝑛𝑑 𝜇3 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑌 

The Y statistic is simpler to compute than the 𝑋[2]
2  since it only requires estimates for 𝝅. 

However, this statistic does not perform well with the degrees of freedom given by 

Bartholomew and Leung. A modified version of this statistic, 𝑌2, was proposed by Cai, 

Maydeu, Coffman and Thissen(2006). 𝑌2 is based on both first and second order marginal 

and it is defined as 

𝒀𝟐 = 𝒆[𝟏:𝟐]
′ �̂�[𝟏:𝟐]

−𝟏 𝒆[𝟏:𝟐] 

𝒆[𝟏:𝟐] = 𝐇[𝟏:𝟐](�̂� − 𝝅(𝜽)) 
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𝑫[𝟐] = 𝒏−𝟏(𝒅𝒊𝒂𝒈(𝐇[𝟏:𝟐]𝝅(𝜽))(𝑰 − 𝒅𝒊𝒂𝒈(𝐇[𝟏:𝟐]𝝅(𝜽)))) 

A chi-square approximation with c degrees of freedom is given for the distribution of  

𝑌2 − 𝑎

𝑏
 

Different from the Y statistic, now the computation of a, b and c require computation of 

𝛀𝒆 evaluated at the maximum likelihood estimates �̂� and 𝜃. Thus the 𝒀𝟐 statistic has no 

computational advantage compared to 𝑋[2]
2 . 

II.4.4 A “Reduced” Version of 𝑿[𝒕:𝒖]
𝟐  

Tollenaar and Mooijaart (2003) proposed a “reduced” version of 𝑋[𝑡:𝑢]
2 , 𝑋𝑟𝑒𝑑

2 , defined as 

𝑋𝑟𝑒𝑑
2 = 𝑛𝒆′(𝐇[𝟏:𝟐](𝐷 (𝝅(�̂�)) − 𝝅(�̂�)𝝅(�̂�)

′
)𝐇[𝟏:𝟐]

′)−1𝒆 

where 

𝒆 = 𝐇[𝟏:𝟐](�̂� − 𝝅(�̂�)) 

The covariance matrix in 𝑋𝑟𝑒𝑑
2  does not include the term 𝐆(𝐀′𝐀)−𝟏𝐆′, which may 

substantially reduce computations. The degrees of freedoms of 𝑋𝑟𝑒𝑑
2  are different from 

those of 𝑋[𝑡:𝑢]
2  because of the different covariance matrix. 𝑋𝑟𝑒𝑑

2  has an asymptotic chi-

square distribution with m-g degrees of freedom, where 𝑚 = 0.5𝑞(𝑞 − 1) and 𝑔 = 

number of parameters to be estimated. By substituting 𝐇[𝟏:𝐫] in place of 𝐇[𝟏:𝟐], 𝑋𝑟𝑒𝑑
2  can 

be extended to include higher order marginal up to order r. The extended statistic is 

defined as 

𝑋𝑟𝑒𝑑,𝑟
2 = 𝑛𝒆′(𝐇[𝟏:𝐫](𝐷 (𝝅(�̂�)) − 𝝅(�̂�)𝝅(�̂�)

′
)𝐇[𝟏:𝐫]

′)−1𝒆 

where 

𝒆 = 𝐇[𝟏:𝐫](�̂� − 𝝅(�̂�)) 
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𝑋𝑟𝑒𝑑,𝑟
2  has an asymptotic chi-square distribution with m-g degrees of freedom, where 𝑚 = 

the rank of 𝐇[𝟏:𝐫] and 𝑔 = number of parameters to be estimated. Note that 𝑋𝑟𝑒𝑑,𝑟
2  is just 

the sum of 𝑋(𝑏)
2  statistics: 

𝑋𝑟𝑒𝑑,𝑟
2 = ∑𝑋(𝑏)

2

𝑏

 

II.5 Power of  𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 

Suppose the true probability vector is 𝜋. Then we use a wrong model to fit the data and 

get the probability vector 𝜋(𝜃). Mitra (1958) shows that 𝜒𝑃𝐹
2  has a limiting non-central 

chi-square distribution with non-centrality paremeter 𝜆, where 

𝜆 = 𝛿′𝐷𝑖𝑎𝑔[𝜋(𝜃)]−1𝛿 

𝜋 = 𝜋(𝜃) +
𝛿

√𝑛
 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 is calculated by decomposing 𝜒𝑃𝐹
2  into orthogonal components 𝛾2 and 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 is just the sum of several of these components. To calculate the power of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

,we can apply the similar method introduced in section II.3.4.We can define the 

orthogonal components of 𝜆. These orthogonal components may be used to calculate the 

power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

.  

II.6 Generalized Linear Latent Variable Model  

The generalized linear latent variable model (GLLVM) will be used for simulation and 

power calculation because the model is applied to a large number of variables and 

sparseness issues arise in large multidimensional tables. Let 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑝) be the 

vector of p ordinal observed variables, each of them having c𝑖 categories. Thus there are 

∏ 𝑐𝑖
𝑝
𝑖=1  cells, also called response patterns in the cross-classified table. The r-th response 
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pattern is indicated as 𝒚𝒓 = (𝑦1 = 𝑎1, 𝑦2 = 𝑎2, … , 𝑦𝑝 = 𝑎𝑝), where 𝑎𝑖 is the value of the 

i-th observed variable(𝑎𝑖 = 1,… , 𝑐𝑖 𝑎𝑛𝑑 𝑖 = 1,… , 𝑝). 

Let 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑞) be the vector of q continuous latent variables. Then the probability 

of the r-th response pattern 𝒚𝒓 is given by 

𝜋𝑟(𝜃) = ∫𝜋𝑟(𝒛) ℎ(𝒛) 𝑑𝒛 , 

where 𝜃 is a vector of parameters. ℎ(𝒛) is the density function of z, and we assume every 

latent variable to be distributed standard normal independently. 𝜋𝑟(𝑧) is the conditional 

probability of 𝑦𝑟 given z and it is a multinormial probability function 

𝜋𝑟(𝒛) = ∏𝜋𝑎𝑖

(𝑖)(𝑧)

𝑝

𝑖=1

= ∏(𝜏𝑎𝑖

(𝑖) − 𝜏𝑎𝑖−1

(𝑖) )

𝑝

𝑖=1

 

where 𝜏𝑎𝑖

(𝑖) = 𝜋1
(𝑖)(𝑧) + 𝜋2

(𝑖)(𝑧) + ⋯+ 𝜋𝑎𝑖

(𝑖)(𝑧) is the probability of a response in category 

𝑎𝑖 or lower on the variable 𝑖 and 𝜋𝑎𝑖

(𝑖)(𝑧) is the probability of a response in category 𝑎𝑖 on 

the variable 𝑖. 

Logistic regression is used to model the interrelationship between 𝜏𝑎𝑖

(𝑖)
 and the latent 

variables. 

𝑙𝑜𝑔 [
 𝜏𝑠

(𝑖)

1 − 𝜏𝑠
(𝑖)

] = 𝛼𝑖0(𝑠) − ∑𝛼𝑖𝑗𝑧𝑗

𝑞

𝑗=1

,   𝑠 = 1,… , 𝑐𝑖−1 

𝛼𝑖0(𝑠) and 𝛼𝑖𝑗 are the parameters of the model. 𝛼𝑖0(𝑠) is the intercept and 𝛼𝑖𝑗 is the j-th 

slope for variable 𝑖. The intercepts should satisfy the condition 𝛼𝑖0(1) ≤ 𝛼𝑖0(2) ≤ ⋯ ≤

𝛼𝑖0(𝑐𝑖). 
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We use the E-M algorithm to calculate the maximum likelihood estimator for the 

parameters in the model. The integrals are approximated through the Gauss-Hermite 

quadrature method (Cagnone & Mignani, 2007). 

II.7 Completed Monte Carlo Simulations 

I carried out several Monte Carlo simulations to compare the performance of Type I error 

and power of the different statistics discussed earlier. In particular, I first compared three 

global statistics, traditional Pearson chi-square statistic 𝑋𝑃𝐹
2 , second-order marginal 

statistic calculated by using the matrix inverse 𝑋[2]𝑖𝑛𝑣
2  and second-order marginal statistic 

calculated by using sequential SS 𝑋[2]𝑠𝑠
2 .  

II.7.1 Completed Type I Error Study 

The empirical distribution under H0 and the empirical Type I error rate were examined 

first because a statistic may not be useful if the Type I error rate is not close to the 

nominal level. If a statistic does not follow the hypothesized theoretical distribution due 

to a condition such as sparseness, then the empirical Type I error rate may not be close to 

the nominal level. 

The design of this Type I error study is described as follows 

 Model                                                                     GLLVM with 1 latent factor 

 Number of observed variables                                  𝑝 = 4, 𝑝 = 5, 𝑝 = 6 

 Number of categories for each variable                   𝑐 = 3, 𝑐 = 4 

 Number of samples                                                   500 

 Sample size                                                               𝑛 = 500 

The intercepts range from -3 to 3 and are generated randomly. The factor loadings are the 

following: for 𝑝 = 4, 𝛼1 = (0.0, 0.1, 0.2, 0.6)′; for 𝑝 = 5, 𝛼1 = (0.0, 3.0, 2.0, 1.0, 2.0)′ ; 
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for p = 6, α1 = (0.8, 0.7, 0.5, 0.3, 0.2, 0.1)′. I got these parameters from a published 

paper. (Cagnone & Mignani, 2007). 

When estimating the parameters, the procedure may not converge if any of the slopes are 

too large. We will omit the samples where any slope estimation is larger than four. This 

convergence problem does not happen in four and six variables cases. However, for five 

variables case, about 3.2% of the samples cannot be estimated. The software used is R. 

In Table 1, the means and standard deviations of 𝑋𝑃𝐹
2 , 𝑋[2]𝑖𝑛𝑣

2  and 𝑋[2]𝑠𝑠
2  are reported. The 

Type I errors for each statistic are reported in Table 2. The tables show empirical Type I 

error for nominal α = 0.05, using a chi-square distribution for each statistic. 

TABLE 1: Mean and Standard Deviation of the Statistics 𝑿𝑷𝑭
𝟐 , 𝑿[𝟐]𝒊𝒏𝒗

𝟐  and 𝑿[𝟐]𝒔𝒔
𝟐  

 Mean Standard Deviation 

𝑝 4 4 5 6 4 4 5 6 

𝑐 3 4 4 4 3 4 4 4 

𝑋𝑃𝐹
2  68.14 240.93 999.51 4001.73 12.16 25.33 90.87 447.88 

𝑋[2]𝑖𝑛𝑣
2  25.98 53.19 91.65 141.06 12.14 10.33 13.12 70.96 

𝑋[2]𝑠𝑠
2  23.67 54.99 90.06 132.71 6.75 10.37 12.85 15.65 

𝑘 81 256 1024 4096 81 256 1024 4096 

𝑛/𝑘 6.17 1.95 0.49 0.12 6.17 1.95 0.49 0.12 

Note: 𝑘 =Number of response patterns= 𝑐𝑝. 
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TABLE 2: Type I Error of the Statistics 𝑿𝑷𝑭
𝟐 , 𝑿[𝟐]𝒊𝒏𝒗

𝟐  and 𝑿[𝟐]𝒔𝒔
𝟐  

 Type I error 

𝑝 4 4 5 6 

𝑐 3 4 4 4 

𝛼 = 0.05 

𝑋𝑃𝐹
2  0.060 0.086 0.166 0.25 

𝑋[2]𝑖𝑛𝑣
2  0.098 0.050 0.052 0.078 

𝑋[2]𝑠𝑠
2  0.04 0.066 0.052 0.034 

From these two tables, I can see that the Type I error of 𝑋𝑃𝐹
2  makes sense only for four 

variables three categories case because the sparseness problem is moderate here: 
𝑛

𝑘
=

6.17 is still greater than 5. However, for all the other cases, the sparseness is quite severe, 

so that the Type I error of 𝑋𝑃𝐹
2  is very large. 𝑋[2]𝑖𝑛𝑣

2  is very inaccurate numerically here, 

especially for the six variables case as it has a very large standard deviation compared to 

the 𝑋[2]𝑠𝑠
2 . The Type I error looks good for four variables four categories and five 

variables four categories cases. However, it is a bit large for four variables three 

categories and six variables four categories cases. 𝑋[2]𝑠𝑠
2  is the best statistic in this 

simulation study. For four variables and five variables cases, its Type I errors are close to 

0.05 and its standard deviations are not very large. However for six variables case its 

Type I error is a bit small. This may due to some of the 4 by 4 marginal tables are sparse. 

Table 3, Table 4, Table 5 and Table 6 shows the means of the orthogonal components 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)
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TABLE 3: Mean of the 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Four Variables  

 c = 3 c = 4 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 Mean 

(df=4) 

Mean 

(df=9) 

(43) 3.82 8.89 

(42) 3.72 9.15 

(41) 3.94 9.28 

(32) 4.12 8.93 

(31) 4.13 9.29 

(21) 3.93 9.45 
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TABLE 4: Mean of the 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Five Variables Four Categories 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 Mean 

(df=9) 

(54) 9.01 

(53) 9.26 

(52) 9.01 

(51) 9.31 

(43) 8.62 

(42) 8.94 

(41) 9.15 

(32) 8.99 

(31) 9.12 

(21) 8.64 
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TABLE 5: Mean of the 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Six Variables Four Categories 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 Mean 

(df=9) 

(65) 8.37 

(64) 8.69 

(63) 8.46 

(62) 9.12 

(61) 8.94 

(54) 8.96 

(53) 9.10 

(52) 8.89 

(51) 9.16 

(43) 8.77 

(42) 8.56 

(41) 8.84 

(32) 8.53 

(31) 8.99 

(21) 9.31 

From these three tables, I can see that in each case, the means of every 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are 

close to each other. This is because within each case, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are independent chi-

squared statistics on (𝑐 − 1)2 degrees of freedom due to its definition. However, I did 

find that in the six variables four categories case, the empirical means of 𝐺𝐹𝑓𝑖𝑡⊥
(65)

 and 

𝐺𝐹𝑓𝑖𝑡⊥
(63)

 are lower than what we expected. For a four categories case, the 𝐺𝐹𝑓𝑖𝑡⊥
(ij)
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should distribute chi-squared with 9 degrees of freedom. But the empirical means of 

𝐺𝐹𝑓𝑖𝑡⊥
(65)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(63)

 are 8.37 and 8.46. This may due to the sparseness in the two-

way subtable.  The sum of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 equals to 𝑋[2]𝑠𝑠
2  as shown in Section II.3.4. However, 

the original 𝐺𝐹𝑓𝑖𝑡
(𝑖𝑗)

 statistics are not necessarily independent and do not necessarily 

sum to 𝑋[2]𝑠𝑠
2 .     

II.7.2 Completed Power Simulation Study 

𝑋[2]
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 may have higher power for certain alternative hypotheses because they 

represent a test that is “focused” on the second-order marginal. If lack of fit is present in 

second-order marginal, then  𝑋[2]
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 would have higher power than an 

omnibus statistic such as 𝑋𝑃𝐹
2 . But if lack of fit is present in higher-order marginal, then 

𝑋[2]
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 may have lower power. 

I used a four variables three categories dataset to study the power of 𝑋𝑃𝐹
2 , 𝑋[2]𝑖𝑛𝑣

2  and 

𝑋[2]𝑠𝑠
2  . This dataset has 500000 records for 1000 replications of samples of size 500. It is 

generated from the two-factor model. The correlation of these two factors is zero. The 

true intercepts are 𝛼10 = (−1.5, −0.6, 0.3, 1)′ and 𝛼20 = (−1,−0.3, 0.6, 1.5)′. The true 

slopes are 𝛼1 = (1, 1, 1, 1)′ and 𝛼2 = (0, 0.1, 0.2, 0.6)′. To evaluate the power, the one-

factor model was used to fit the data. So the parameter vector is 



  37 

[
 
 
 
 
 
 
 
 
 
 
 
𝛼101

𝛼102

𝛼103

𝛼104

𝛼201

𝛼202

𝛼203

𝛼204

𝛼11

𝛼12

𝛼13

𝛼14 ]
 
 
 
 
 
 
 
 
 
 
 

 

for the false one-factor model. As mentioned in Section 6.1, when estimating the 

parameters, the procedure may not converge if any of the slopes are too large. In this 

dataset, the convergence problem happens when any of the slopes are greater than 4.2. 

Besides the convergence problem, another problem happens when the start values of the 

intercepts differ too much. If 𝛼10 and 𝛼20 differ too much, the estimates of 𝛼1 are tend to 

be greater than the estimates of 𝛼2. These slope estimates will produce a negative 

probability, which does not make any sense. So this kind of sample will also be omitted. 

After omitting the samples with these two problems, there are 970 samples left. Our start 

values are 𝛼10 = (−0.9,−0.3, 0.3, 0.9)′, 𝛼20 = (−0.6, 0, 0.6, 1.2)′ and 𝛼1 =

(0.5, 0.5, 0.5, 0.5)′. The Type I error is set to be 0.05. The mean, standard deviation and 

empirical power of these three statistics are shown in the following table. Empirical 

power is the number of samples that reject the null divided by 970. 
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TABLE 6: Mean, Standard Deviation and Power of 𝑿𝑷𝑭
𝟐 , 𝑿[𝟐]𝒊𝒏𝒗

𝟐  and 𝑿[𝟐]𝒔𝒔
𝟐  

 Mean Standard Deviation Empirical Power 

𝑋𝑃𝐹
2  84.53 25.47 0.268 

𝑋[2]𝑖𝑛𝑣
2  72.98 100.28 0.800 

𝑋[2]𝑠𝑠
2  39.74 10.23 0.591 

From Table 6 we can see that the power of 𝑋𝑃𝐹
2  is 0.268, which is not large enough. 

𝑋[2]𝑖𝑛𝑣
2  has a very large power, which is 0.8. However, 𝑋[2]𝑖𝑛𝑣

2  is very inaccurate 

numerically. This can be demonstrated by its large standard Deviation. 𝑋[2]𝑠𝑠
2  is the best 

statistic here. Its power is 0.591 and it has a small standard deviation.The means of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are reported in Table 7. 

TABLE 7: Mean of the 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

  

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 Mean 

(df=4) 

(43) 4.11 

(42) 5.95 

(41) 6.68 

(32) 14.93 

(31) 4.04 

(21) 4.03 

As mentioned earlier, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 should distribute chi-square on (𝑐 − 1)2 degrees of 

freedom independently if the model is correct. In this case, under the null hypothesis, 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 should distribute chi-square on 4 degrees of freedom However, since we use a 
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one-factor model to fit the data generated by a two-factors model, we can see that the 

mean of 𝐺𝐹𝑓𝑖𝑡⊥
(32)

 is 14.93, which is substantially higher than the other 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. In the 

true model, variable 2 and 3 have factor loading 0.1 and 0.2 on factor 2. 
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CHAPTER 3 

THEORETICAL AND EMPIRICAL STUDIES OF THE GFFIT STATISTIC 

I studied three problems in my dissertation. Firstly, I studied the Type I error and power 

of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, both theoretical and empirical. Secondly, I improved the performance of  

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 when the two-way subtables are sparse. Thirdly, I applied the improvement on 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 to 𝑋[2]
2 .  

III.1 Type I Error and Power Study of 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 

I performed theoretical calculations to study asymptotic power and several Monte Carlo 

simulations to study the empirical Type I error and empirical power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 

compared the performance of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 to that of 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2 . 

The empirical distribution under H0 and the empirical Type I error rate were examined 

first because a statistic may not be useful if the Type I error rate is not close to the 

nominal level. If a statistic does not follow the hypothesized theoretical distribution due 

to a condition such as sparseness, then the empirical Type I error rate may not be close to 

the nominal level. For the Type I error study of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2 , sparseness 

in two-way subtables may affect the empirical distribution. Kolmogorov-Smirnov tests 

were applied to each statistic to test distribution against chi-square and performance at 

nominal α=0.01 and 0.05 were tabulated. As mentioned earlier, it is known that 𝑋𝑖𝑗
2  is not 

distributed chi-square. The design of this Type I error study is as follows 

 Model                                                                     GLLVM with 1 latent factor 

 Number of observed variables                                  𝑝 = 4, 𝑝 = 5, 𝑝 = 6 

 Number of categories for each variable                   𝑐 = 3, 𝑐 = 4 

 Number of samples                                                   500 

 Sample size                                                               𝑛 = 500 and 150 

The intercepts are 𝛼0(i) = (−1.5, 0.5)′ for each variable for three categories case and 

𝛼0(i) = (−1.5, 0.5, 2.5)′ for each variable for four categories. The factor loadings are the 
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following: for 𝑝 = 4, 𝛼1 = (0.0, 0.1, 0.2, 0.6)′; for 𝑝 = 5, 𝛼1 = (0.0, 3.0, 2.0, 1.0, 2.0)′ ; 

for p = 6, α1 = (0.8, 0.7, 0.5, 0.3, 0.2, 0.1)′. These three parameter settings are the same 

as those introduced in the completed Type I error study of 𝑋[2]
2 . The true model was fitted 

to simulated data. 

First, simulations with sample size 500 were conducted. Simulation results for Type I 

error are shown in the following tables. The tables show empirical Type I error rates for 

nominal α = 0.05, using a chi-square distribution for each statistic. The error rates 

outside of the interval 0.05 ± 1.96√
(0.95)(0.05)

1000
= (0.0365,0.0635) were bolded. 

Convergence rate for estimation of parameter for each case were also included in the 

table title. 

TABLE 8: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Three 

Categories, n=500, Convergence Rate=100% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.038 0.05 0.024 0.036 

(13) 0.026 0.058 0.016 0.040 

(14) 0.05 0.056 0.026 0.040 

(23) 0.054 0.058 0.028 0.046 

(24) 0.04 0.066 0.024 0.042 

(34) 0.05 0.044 0.028 0.046 
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TABLE 9: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Four 

Categories, n=500, Convergence Rate=99% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.048 0.051 0.038 0.055 

(13) 0.061 0.058 0.056 0.071 

(14) 0.040 0.034 0.026 0.048 

(23) 0.038 0.040 0.036 0.048 

(24) 0.068 0.057 0.042 0.069 

(34) 0.089 0.081 0.060 0.092 
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TABLE 10: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Five Variables Four 

Categories, n=500, Convergence Rate=98% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.053 0.053 0.0345 0.053 

(13) 0.071 0.071 0.053 0.063 

(14) 0.057 0.055 0.051 0.053 

(15) 0.067 0.051 0.033 0.053 

(23) 0.041 0.051 0.035 0.051 

(24) 0.045 0.041 0.033 0.047 

(25) 0.043 0.047 0.027 0.043 

(34) 0.041 0.043 0.033 0.043 

(35) 0.047 0.057 0.041 0.049 

(45) 0.032 0.029 0.022 0.033 
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TABLE 11: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables Four 

Categories, n=500, Convergence Rate=100% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.042 0.052 0.052 0.072 

(13) 0.048 0.052 0.058 0.070 

(14) 0.050 0.046 0.058 0.070 

（15） 0.056 0.066 0.070 0.072 

（16） 0.034 0.046 0.050 0.052 

（23） 0.066 0.046 0.072 0.084 

（24） 0.048 0.050 0.050 0.068 

（25） 0.046 0.038 0.054 0.062 

（26） 0.054 0.080 0.060 0.070 

（34） 0.050 0.032 0.050 0.058 

（35） 0.038 0.044 0.046 0.054 

（36） 0.034 0.052 0.042 0.048 

（45） 0.030 0.034 0.044 0.044 

（46） 0.050 0.046 0.052 0.056 

（56） 0.048 0.048 0.078 0.080 

From these tables we can see that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 , 𝑀2
(𝑖𝑗)

 and �̿�𝑖𝑗
2  have a good Type I error 

when sparseness is present but 𝑋𝑖𝑗
2  does not since we mentioned in earlier chapters that 

𝑋𝑖𝑗
2  does not distribute Chi-square.  
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A Kolmogorov-Smirnov test has also been applied to each statistic. The p-values are 

shown in the following tables. I bolded the p-values less than 0.05. 

TABLE 12: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Three 

Categories, n=500 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) <0.0001 0.7279 <0.0001 <0.0001 

(13) 0.0006 0.0044 <0.0001 <0.0001 

(14) 0.5003 0.4846 <0.0001 <0.0001 

(23) 0.8552 0.5093 <0.0001 <0.0001 

(24) 0.7029 0.4102 <0.0001 <0.0001 

(34) 0.6160 0.8930 <0.0001 0.0002 

 

TABLE 13: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Four 

Categories, n=500 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.1639 0.1036 <0.0001 0.6476 

(13) 0.7483 0.8809 <0.0001 0.3310 

(14) 0.6377 0.3924 <0.0001 0.8951 

(23) 0.9001 0.8054 <0.0001 0.3214 

(24) 0.7235 0.2745 <0.0001 0.0226 

(34) 0.0181 0.4855 <0.0001 0.0333 
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TABLE 14: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Five Variables Four 

Categories, n=500 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.8100 0.8322 <0.0001 0.7614 

(13) 0.0645 0.0334 <0.0001 0.0173 

(14) 0.4235 0.3953 <0.0001 0.8063 

(15) 0.1650 0.0384 <0.0001 0.0094 

(23) 0.0762 0.8871 <0.0001 0.3721 

(24) 0.9543 0.8644 <0.0001 0.9217 

(25) 0.1810 0.2110 <0.0001 0.4059 

(34) 0.6884 0.8972 <0.0001 0.6112 

(35) 0.2433 0.9761 <0.0001 0.5721 

(45) 0.2812 0.2106 <0.0001 0.0882 
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TABLE 15: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables Four 

Categories, n=500 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.0884 0.1357 <0.0001 0.6371 

(13) 0.9253 0.9990 <0.0001 0.1950 

(14) 0.0032 0.0030 <0.0001 0.0413 

（15） 0.0431 0.1354 <0.0001 0.0112 

（16） 0.0545 0.3613 <0.0001 0.8293 

（23） 0.0842 0.6011 <0.0001 0.0131 

（24） 0.5314 0.8327 <0.0001 0.2647 

（25） 0.8498 0.7623 <0.0001 0.6642 

（26） 0.4539 0.7237 <0.0001 0.5423 

（34） 0.4711 0.4174 <0.0001 0.8828 

（35） 0.0932 0.0842 <0.0001 0.2685 

（36） 0.4498 0.7975 <0.0001 0.6673 

（45） 0.2410 0.0924 <0.0001 0.6181 

（46） 0.4129 0.3945 <0.0001 0.5516 

（56） 0.6564 0.3897 <0.0001 0.2489 

 

We can see that in all four scenarios, most of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝑀2
(𝑖𝑗)

 have a p-value greater 

than 0.05. None of the 𝑋𝑖𝑗
2  has a p-value greater than 0.05, and theoretically it does not 

distribute Chi-squared. I noticed that for four variables four categories, five variables four 
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categories and six variables four categories cases, most �̿�𝑖𝑗
2  has a p-value greater than 

0.05. However, for the four variables three categories case, none of the �̿�𝑖𝑗
2  has a p-value 

greater than 0.05. In this case, the degrees of freedom for �̿�𝑖𝑗
2  is 2. This result indicates 

that the �̿�𝑖𝑗
2  statistic does not approximate Chi-squared distribution well when the number 

of degrees of freedom is small. 

Then I conducted another simulation with the same parameter settings but a smaller 

sample size of 150. With a smaller sample size, the contingency table is sparser than 

those in the earlier cases. With such a small sample size, some slope estimates tend to be 

very large, which indicate that the ML estimation algorithm for parameter estimates did 

not converge. An extremely large slope estimate will result in several estimated 

cumulative frequencies with the same value for different categories in one variable. In 

this case, we failed to compute the derivatives for the corresponding parameters. Without 

these derivatives, we cannot compute the statistics of interest. For example, for the four 

variables three categories case, using ltm package in R which produces MLE for 

parameters, 153 out of 500 samples have this problem. So I just discarded the four 

variables three categories case. The Simulation results for Type I error are shown in the 

following tables. The tables show empirical Type I error rates for nominal α = 0.05, 

using a chi-squared distribution for each statistic. 
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TABLE 16: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Four 

Categories, n=150, Convergence Rate=97.6% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.041 0.037 0.027 0.043 

(13) 0.055 0.051 0.041 0.057 

(14) 0.055 0.047 0.035 0.041 

(23) 0.039 0.041 0.025 0.029 

(24) 0.047 0.033 0.031 0.047 

(34) 0.047 0.047 0.029 0.053 
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TABLE 17: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Five variables Four 

Categories, n=150, Convergence Rate=98.8% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.032 0.038 0.028 0.046 

(13) 0.047 0.034 0.038 0.045 

(14) 0.063 0.051 0.067 0.071 

(15) 0.049 0.061 0.040 0.053 

(23) 0.032 0.034 0.022 0.038 

(24) 0.051 0.040 0.034 0.045 

(25) 0.040 0.059 0.040 0.063 

(34) 0.045 0.045 0.032 0.038 

(35) 0.063 0.043 0.026 0.034 

(45) 0.043 0.059 0.048 0.067 
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TABLE 18: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables Four 

Categories, n=150, Convergence Rate=99.8% 

 Type I error rate 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.042 0.042 0.038 0.042 

(13) 0.022 0.034 0.014 0.028 

(14) 0.034 0.034 0.032 0.042 

（15） 0.050 0.060 0.036 0.046 

（16） 0.058 0.068 0.036 0.060 

（23） 0.044 0.048 0.036 0.050 

（24） 0.054 0.042 0.042 0.048 

（25） 0.050 0.044 0.040 0.046 

（26） 0.046 0.060 0.038 0.040 

（34） 0.040 0.050 0.030 0.032 

（35） 0.056 0.054 0.052 0.060 

（36） 0.044 0.050 0.030 0.038 

（45） 0.046 0.050 0.042 0.044 

（46） 0.042 0.038 0.034 0.036 

（56） 0.054 0.050 0.046 0.048 

From these tables we can see that even with a smaller sample size and sparser 

contingency table, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 , 𝑀2
(𝑖𝑗)

 and �̿�𝑖𝑗
2  have a good Type I error but 𝑋𝑖𝑗

2  does not. 

A Kolmogorov-Smirnov test has also been applied to each statistic. The p-values are 

shown in the following tables. 
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TABLE 19: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables Four 

Categories, n=150 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.2258 0.0357 <0.0001 0.0303 

(13) 0.6956 0.8877 <0.0001 0.8698 

(14) 0.4740 0.8925 <0.0001 0.3517 

(23) 0.0802 0.2740 <0.0001 0.5812 

(24) 0.5394 0.4370 <0.0001 0.1872 

(34) 0.5356 0.7980 <0.0001 0.3663 
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TABLE 20: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Five Variables Four 

Categories, n=150 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.4054 0.3125 <0.0001 0.3616 

(13) 0.5599 0.2668 <0.0001 0.3065 

(14) 0.2832 0.4409 <0.0001 0.1314 

(15) 0.5160 0.3218 <0.0001 0.6426 

(23) 0.2295 0.7410 <0.0001 0.6986 

(24) 0.4844 0.8989 <0.0001 0.6365 

(25) 0.5580 0.6263 <0.0001 0.7138 

(34) 0.5057 0.8734 <0.0001 0.2494 

(35) 0.0160 0.5289 <0.0001 0.3054 

(45) 0.7394 0.7029 <0.0001 0.6587 
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TABLE 21: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables Four 

Categories, n=150 

 p-value 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.5718 0.7693 <0.0001 0.7006 

(13) 0.1746 0.3033 <0.0001 0.0014 

(14) 0.2841 0.6815 <0.0001 0.7957 

（15） 0.7269 0.1877 <0.0001 0.1169 

（16） 0.4218 0.6736 <0.0001 0.6599 

（23） 0.4255 0.2892 <0.0001 0.1906 

（24） 0.5222 0.4024 <0.0001 0.2571 

（25） 0.9135 0.4619 <0.0001 0.9950 

（26） 0.1849 0.6377 <0.0001 0.4906 

（34） 0.2837 0.7848 <0.0001 0.6955 

（35） 0.8376 0.8123 <0.0001 0.9370 

（36） 0.6927 0.4109 <0.0001 0.5188 

（45） 0.8323 0.6497 <0.0001 0.9616 

（46） 0.1040 0.0277 <0.0001 0.0501 

（56） 0.3942 0.2501 <0.0001 0.6346 

We can see that in these three cases, most 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

,  𝑀2
(𝑖𝑗)

 and �̿�𝑖𝑗
2  have a p-value greater 

than 0.05.  
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According to these simulation studies, we can conclude that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

,  𝑀2
(𝑖𝑗)

 and �̿�𝑖𝑗
2  still 

follow the hypothesized theoretical Chi-squared distribution even though there is a 

sparseness problem in the contingency table. 

Besides these one-factor type I error rate study, I also studied the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 type I errors 

for two two-factor six variables four categories cases. For each case, pseudo data for 

1000 samples were generated with sample size 500. The parameter settings are shown 

below: For the non-skewed case, 𝛼0(1) = (−3,−2.5, −2,−1.8, −1.5, −0.8)′, 𝛼0(2) =

(−1,−0.5, 0, 0.2, 0.5, 1.2)′, 𝛼0(3) = (1, 1.5, 2, 2.2, 2.5, 3.2)′, 𝛼1 =

(1.6, 1.35, 1.25, 0.4, 0.5, 0.6)′, 𝛼2 = (0, 0, 0, 1, 1, 1)′; for the skewed case, 𝛼0(1) =

(−3,−2.5, −2,−1.8, −1.5, −0.8)′, 𝛼0(2) = (−2.5,−2,−1.5, −1.3, −1,−0.3)′, 𝛼0(3) =

(−2,−1.5, −1,−0.8, −0.5, 0.2)′, 𝛼1 = (1.6, 1.35, 1.25, 0.4, 0.5, 0.6)′, 𝛼2 =

(0, 0, 0, 1, 1, 1)′. I studied these two-factor cases because in the power study I generated 

the data from two-factor models and fitted the data with one-factor models. If the 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not have a good type I error for two-factor cases, the power study would 

have no meaning. Simulation is available only for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 due to software. The type I 

error rates for these two-factor cases are listed below. The convergence rates for non-

skewed case and skewed case are 99.5% and 99%, respectively. 
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TABLE 22: Type I Error Rates for Two-Factor Cases 

 Type I error rates 

(ij) Non-skewed Skewed 

(12) 0.0572 0.0626 

(13) 0.0572 0.0535 

(14) 0.05427 0.0454 

(15) 0.03919 0.0434 

(16) 0.0552 0.0474 

(23) 0.0502 0.0636 

(24) 0.0532 0.0545 

(25) 0.0462 0.0484 

(26) 0.0522 0.0515 

(34) 0.0462 0.0454 

(35) 0.0492 0.0636 

(36) 0.0331 0.0434 

(45) 0.0422 0.0515 

(46) 0.0482 0.0474 

(56) 0.0603 0.0383 

 

From this table we can see that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 has good type I error for the two-factor cases. 

Besides 500 sample size, I also planned to do the simulation with sample size 150. 

However, with this small sample size, the convergence problem is presented so that I 

discarded these simulations. Beside the six variables case, I also planned to do a two-
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factor four variables three categories type I error study. The parameters are 𝛼0(1) =

(−2,−2,−2,−2)′, 𝛼0(2) = (2,2, 2, 2)′, 𝛼1 = (0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′. 

I wanted to investigate this case since I will use the same parameter setting to do a power 

study later. However, the convergence problem is present again for this case so that I 

have to discard the simulation. 

Then I performed a power study for the lack-of-fit statistics examined in the type I error 

study. 𝑋[2]
2 , 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
, 𝑀2

(𝑖𝑗)
, 𝑋𝑖𝑗

2  and �̿�𝑖𝑗
2  may have higher power for certain alternative 

hypotheses because they represent a test that is “focused” on the second-order marginal. 

If lack of fit is present in second-order marginal, then these statistics may have higher 

power than an omnibus statistic such as 𝑋𝑃𝐹
2 . But if lack of fit is present in higher-order 

marginal, then these statistics may have lower power. For the power study, I calculated 

theoretical power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 first, then compared to empirical power in the simulations. 

I tried several different cases in the simulation. In each case I examined the empirical 

power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2 . 

First, I studied a four variables three categories case and six variables four categories 

case. Pseudo data for 1000 samples were generated from a confirmatory two-factor model 

with all parameters fixed and then fit with a one factor model. The parameters for the data 

generating models are the following: for four variables case, 𝛼0(1) =

(−2,−2,−2,−2)′, 𝛼0(2) = (2,2, 2, 2)′, 𝛼1 = (0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′ ; 

for six variables case, 𝛼0(1) = (−3,−2.5, −2, −1.8, −1.5, −0.8)′, 𝛼0(2) =

(−1,−0.5, 0, 0.2, 0.5, 1.2)′, 𝛼0(3) = (1, 1.5, 2, 2.2, 2.5, 3.2)′, 𝛼1 =

(1.6, 1.35, 1.25, 0.4, 0.5, 0.6)′, 𝛼2 = (0, 0, 0, 1, 1, 1)′, which are the same parameter used 
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for the Type I error study for a six-variable two-factor model. From the slopes, we can 

see that for the four variables case, variables 2 and 3 have high association with factor 1, 

variables 1 and 4 have high association with factor 2. For the six variables case, variables 

1, 2 and 3 have high association with factor 1, variables 4, 5 and 6 have high association 

with factor 2. These parameter values are chosen so that the effect size for the goodness-

of-fit test is large. The two latent variables were specified as uncorrelated, each with 

variance equal to 1.0. With a sparser dataset, the statistics tend to have a lower power. So 

for each case I used two different sample size, 150 and 500. The theoretical and empirical 

power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 for the four-variable case are listed in the following table, and I 

bolded the relatively high power. The convergence rates for the sample size 500 case and 

sample size 150 case are 99.2% and 99.3%, respectively. 

TABLE 23: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Four Variables Case 

 Power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, four variables case 

 Sample size 500 Sample size 150 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.0548 0.0514 0.0514 0.0423 

(13) 0.1341 0.1653 0.0726 0.0977 

(14) 0.4743 0.3891 0.1588 0.1319 

(23) 0.6082 0.5806 0.2012 0.2134 

(24) 0.0501 0.0433 0.0500 0.0553 

(34) 0.0502 0.0534 0.0501 0.0513 
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From this table we can see that with a smaller sample size, both theoretical and empirical 

power of  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 tend to be smaller. The empirical power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 is close to its 

theoretical power. For this four variables case, 𝐺𝐹𝑓𝑖𝑡⊥
(14)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(23)

 have the two 

largest power, which shows that primarily the association between variables 2 and 3, and 

the association between variable 1 and 4, were not adequately explained by the one-factor 

model. For comparison, I also list the empirical power for 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2  in the 

following tables. I bolded relatively high power.  

TABLE 24: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables, n=500 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.0514 0.0504 0.0353 0.0544 

(13) 0.1653 0.0474 0.0272 0.0504 

(14) 0.3891 0.0484 0.0221 0.0383 

(23) 0.5806 0.1089 0.8800 0.8740 

(24) 0.0433 0.0544 0.0272 0.0514 

(34) 0.0534 0.0453 0.0292 0.0524 
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TABLE 25: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Four Variables, n=150 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.0423 0.0534 0.0342 0.0645 

(13) 0.0977 0.0483 0.0322 0.0594 

(14) 0.1319 0.0483 0.0292 0.0564 

(23) 0.2134 0.0806 0.3403 0.3353 

(24) 0.0553 0.0412 0.0362 0.0574 

(34) 0.0513 0.0564 0.0392 0.0634 

 

From these two tables we can see that 𝑀2
(𝑖𝑗)

 has very low power. Although 𝑋23
2  has a 

large power, as I have demonstrated in the type I error study, it is not distributed Chi-

squared. �̿�23
2  has a larger power than that of  𝐺𝐹𝑓𝑖𝑡⊥

(23)
. However, the �̿�𝑖𝑗

2  statistic didn’t 

detect the lack-of-fit in the associations between variable 1 and variable 4. 

The theoretical and empirical powers for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 for six variables case are listed in the 

following table. The convergence rates for both sample size 500 case and sample size 150 

case are 100%. 
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TABLE 26: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Six Variables Case 

 Power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, six variables case 

 Sample size 500 Sample size 150 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.2211 0.2280 0.0908 0.1160 

(13) 0.2996 0.3240 0.1079 0.1300 

(14) 0.1000 0.0850 0.0634 0.0600 

(15) 0.0964 0.0660 0.0625 0.0620 

(16) 0.1188 0.1070 0.0679 0.0840 

(23) 0.9942 0.9630 0.5725 0.3850 

(24) 0.1196 0.0960 0.068 0.0630 

(25) 0.1275 0.1240 0.0700 0.0630 

(26) 0.2306 0.1980 0.0929 0.0950 

(34) 0.2374 0.2210 0.0944 0.1070 

(35) 0.1953 0.1820 0.0852 0.0900 

(36) 0.1360 0.1070 0.0719 0.0570 

(45) 0.0980 0.0670 0.0629 0.0650 

(46) 0.1295 0.1180 0.0704 0.0650 

(56) 0.1889 0.1540 0.0838 0.0850 

 

Again, the theoretical power is close to the empirical power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. For this six 

variables four categories case,  𝐺𝐹𝑓𝑖𝑡⊥
(23)

 has the largest power, which means the 



  62 

association between variable 2 and 3 cannot be explained by the one-factor model. When 

the sample size decreases, both theoretical power and empirical power decrease.  

For comparison, I listed the empirical power for 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2  below. 

TABLE 27: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables, n=500 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.2280 0.0460 0.0420 0.0660 

(13) 0.3240 0.0490 0.0430 0.0630 

(14) 0.0850 0.0610 0.0700 0.0940 

(15) 0.0660 0.0380 0.0560 0.0710 

(16) 0.1070 0.0610 0.0580 0.0820 

(23) 0.9630 0.0460 0.0440 0.0570 

(24) 0.0960 0.0610 0.0690 0.0900 

(25) 0.1240 0.0530 0.0700 0.0860 

(26) 0.1980 0.0570 0.0550 0.0770 

(34) 0.2210 0.0510 0.0630 0.0830 

(35) 0.1820 0.0490 0.0540 0.0740 

(36) 0.1070 0.0420 0.0460 0.0630 

(45) 0.0670 0.0510 0.7210 0.7400 

(46) 0.1180 0.0470 0.6610 0.6860 

(56) 0.1540 0.060 0.6530 0.6740 
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TABLE 28: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables, n=150 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.1160 0.0410 0.0460 0.0610 

(13) 0.1300 0.0400 0.0410 0.0540 

(14) 0.0600 0.0580 0.0460 0.0630 

(15) 0.0620 0.0440 0.0420 0.0590 

(16) 0.0840 0.0650 0.0540 0.0750 

(23) 0.3850 0.0430 0.0260 0.0480 

(24) 0.0630 0.0510 0.0490 0.0610 

(25) 0.0630 0.0610 0.0440 0.0610 

(26) 0.0950 0.0660 0.0470 0.0610 

(34) 0.1070 0.0500 0.0460 0.0580 

(35) 0.0900 0.0560 0.0460 0.0560 

(36) 0.0570 0.0480 0.0360 0.0440 

(45) 0.0650 0.0420 0.190 0.2000 

(46) 0.0650 0.0420 0.140 0.1490 

(56) 0.0850 0.0410 0.161 0.1690 

 

From these two tables we can see that 𝑀2
(𝑖𝑗)

 has very low power. �̿�23
2  has a low power but 

�̿�45
2 , �̿�46

2  and �̿�56
2  have relatively high power. This indicates that 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 and �̿�𝑖𝑗

2  detect 
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the lack-of-fit in the associations between different pairs of variables. 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 finds lack 

of fit in the first three variable pairs. �̿�𝑖𝑗
2  finds lack of fit in the last three variable pairs. 

Then I conducted two more power studies, still a four variables three categories case and 

a six variables four categories case to examine more sparseness conditions. First 

theoretical power was calculated, and then pseudo data for 1000 samples were generated 

from a confirmatory two-factor model with all parameters fixed and then fit with a one 

factor model. But the parameters are different from the earlier study: for four variables 

case, 𝛼0(1) = (−1.5, −1,− 0.6, −0.3)′, 𝛼0(2) = (−1.0,−0.5, −0.1, 0.2)′, 𝛼1 =

(0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′ ; for six variables case, 𝛼0(1) =

(−3,−2.5, −2,−1.8, −1.5, −0.8)′, 𝛼0(2) = (−2.5,−2,−1.5, −1.3, −1,−0.3)′, 𝛼0(3) =

(−2,−1.5, −1,−0.8, −0.5, 0.2)′, 𝛼1 = (1.6, 1.35, 1.25, 0.4, 0.5, 0.6)′, 𝛼2 =

(0, 0, 0, 1, 1, 1)′. In the earlier settings, the intercepts range from -3 to 3.2, but in this 

setting almost all the intercepts are negative. The slopes in this setting are the same as in 

the earlier simulation. This will make the sample distribution in the two-way subtables 

more skewed and the statistics may have inaccurate Type I error level and/or lower power 

because of problems of higher sparseness in the subtables. Again, two sample sizes, 150 

and 500 were used. For the four variables four categories case, the problem of failure to 

converge was encountered again using ltm package in R, and estimation did not converge 

in about half of the samples. For six-variable non-skewed case, all simulations converge 

for both 150 and 500 sample sizes. For six variables skewed case, 99% of simulations 

converge for 500 sample size and 92% of simulations converge for 150 sample size. So I 
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discard the four variables four categories case. The result for six variables four categories 

case is listed below. 

TABLE 29: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Six Variables Case 

 Power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, six variables case 

 Sample size 500 Sample size 150 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.3914 0.2790 0.1280 0.1654 

(13) 0.5874 0.3984 0.1799 0.1513 

(14) 0.0648 0.0485 0.0542 0.0620 

(15) 0.0616 0.0516 0.0533 0.0577 

(16) 0.0706 0.0819 0.0558 0.0696 

(23) 0.8672 0.8413 0.3071 0.2546 

(24) 0.0614 0.0475 0.0533 0.0761 

(25) 0.0565 0.0404 0.0519 0.0609 

(26) 0.0576 0.0829 0.0522 0.0739 

(34) 0.0752 0.0738 0.0571 0.0794 

(35) 0.0671 0.0768 0.0549 0.0642 

(36) 0.0546 0.0637 0.0514 0.0859 

(45) 0.0592 0.0940 0.0527 0.0903 

(46) 0.0683 0.0849 0.0552 0.0751 

(56) 0.0697 0.0859 0.0556 0.0772 
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TABLE 30: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables, n= 500 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.2790 0.0758 0.1507 0.1799 

(13) 0.3984 0.0758 0.1547 0.1789 

(14) 0.0485 0.0374 0.0465 0.0596 

(15) 0.0516 0.0384 0.0455 0.0596 

(16) 0.0819 0.0566 0.0586 0.0758 

(23) 0.8413 0.0647 0.1435 0.1658 

(24) 0.0475 0.0404 0.0556 0.0707 

(25) 0.0404 0.0434 0.0495 0.0647 

(26) 0.0829 0.0475 0.0586 0.0697 

(34) 0.0738 0.0394 0.0505 0.0697 

(35) 0.0768 0.0505 0.0586 0.0788 

(36) 0.0637 0.0485 0.0596 0.0738 

(45) 0.0940 0.0889 0.2912 0.3154 

(46) 0.0849 0.0495 0.2436 0.2628 

(56) 0.0859 0.0394 0.2386 0.2669 
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TABLE 31: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐 , Six Variables, n= 150 

 Empirical power 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.1654 0.0947 0.1360 0.1556 

(13) 0.1513 0.0914 0.1175 0.1316 

(14) 0.0620 0.0685 0.0663 0.0729 

(15) 0.0577 0.0511 0.0577 0.0652 

(16) 0.0696 0.0696 0.0642 0.0816 

(23) 0.2546 0.0903 0.1055 0.1143 

(24) 0.0761 0.0685 0.0772 0.0881 

(25) 0.0609 0.0653 0.0631 0.0739 

(26) 0.0739 0.0663 0.0609 0.0729 

(34) 0.0794 0.0718 0.0707 0.0837 

(35) 0.0642 0.0631 0.0653 0.0718 

(36) 0.0859 0.0729 0.0707 0.0826 

(45) 0.0903 0.0848 0.1566 0.1697 

(46) 0.0751 0.0739 0.1153 0.1218 

(56) 0.0772 0.0739 0.1120 0.1273 

Again, from these tables, we can see that the theoretical power is close to the empirical 

power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and �̿�𝑖𝑗
2  detected the lack-of-fit in the associations between 

different pairs of variables. 

Comparing the skewed case with the non-skewed case, we can see that with a more 

skewed dataset,  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 tends to have lower power, both theoretically and empirically. 
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The empirical power is closer to the theoretical power in the non-skewed case than that in 

the skewed case. This difference may be due to more severe sparseness because of 

skewed table. 

 

III.2 Improve 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 by a Subset of Orthogonal Components 

III.2.1 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

 Statistic 

Although 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  is a good remedy to the problem of sparseness because it is 

calculated from marginal two-way tables, sometimes even 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may have low power 

and inaccurate Type I error level due to severe sparseness in a two-way subtable when 

the number of categories is large and response variables have a skewed distribution. In 

that case, the distribution of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may not be well approximated by the chi-square 

distribution even if the total sample size is large.  

I modified 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 for the sparse case by selecting a subset of orthogonal components 

chosen systematically to reduce the impact of sparseness to the extent possible. When 

computing 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, we use (𝑐 − 1)2 orthogonal components that can produce the full 

table. Since including those orthogonal components corresponding to the cells with low 

frequencies is one reason for the poorer performance of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  in the sparse two-way 

subtable, one way to solve this problem is using a subset, less than (𝑐 − 1)2, of the 

orthogonal components corresponding to several cells with relatively large frequencies. 

In other words, instead of using all the (𝑐 − 1)2 components, we can drop those 

components that are likely to correspond to relatively small frequencies. I denote this 

statistic by 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, where 𝑡 means computing the statistic with t cells, where t ≤
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(c − 1)2.  Since 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is the sum of t orthogonal components and each orthogonal 

component has a Chi-squared distribution with one degrees of freedom, 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is 

distributed Chi-squared with t degrees of freedom. To use 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, we need to decide 

how many cells and which cells to choose to compute 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

. Since including those 

cells with extremely low frequencies is the main reason that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not work well 

when the subtable is sparse, we should not choose too many cells. On the other hand, if 

we only choose 1 or 2 cells, we may decrease power of the test based on the component. 

So I investigated a moderate number of cells, say four or five cells, we seek to choose 

those cells with relatively large expected frequencies. I did many simulations and the best 

result is to choose the cells in the center of the table. The expected frequencies depend 

highly on the intercepts in the GLLVM model. Since we assume the latent variables are 

distributed normal in the model, if the intercepts are generally evenly distributed, then the 

cells in the center of the subtable will have large expected frequencies. For example, in 

the following tables I labeled the cells for a four categories case and a five categories 

case. 
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TABLE 32: Label of Cells for Four Categories Case. 

Label Category of variable i 

1 2 3 4 

Category of 

variable j 

1 16 12 8 4 

2 15 11 7 3 

3 14 10 6 2 

4 13 9 5 1 

 

TABLE 33: Label of Cells for Five Categories Case. 

Label Category of variable i 

1 2 3 4 5 

Category 

of variable 

j 

1 25 20 15 10 5 

2 24 19 14 9 4 

3 23 18 13 8 3 

4 22 17 12 7 2 

5 21 16 11 6 1 

 

For the four categories case, I will choose the four cells labeled 6, 7, 10, 11. For the five 

categories case, I will choose the five cells labeled 8, 12, 13, 14, 18. More generally, for a 

dataset with 𝑐 categories in each variable, if 𝑐 is even, I will choose four cells 

corresponding to the categories pair (
𝑐

2
, 
𝑐

2
), (

𝑐

2
, 
𝑐

2
+ 1), (

𝑐

2
+ 1, 

𝑐

2
) and (

𝑐

2
+ 1, 

𝑐

2
+ 1). If 

𝑐 is odd, I will choose five cells corresponding to the categories pair (
𝑐+1

2
, 
𝑐+1

2
), (

𝑐+1

2
−

1, 
𝑐+1

2
), (

𝑐+1

2
, 
𝑐+1

2
− 1), (

𝑐+1

2
+ 1, 

𝑐+1

2
) and (

𝑐+1

2
, 
𝑐+1

2
+ 1). As the two-way table 
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becomes larger, more cells could be taken from the center of the table. For example, if 

the variable has six categories, then we can take 16 cells labeled “X” in the center of the 

two-way subtable as shown below. 

TABLE 34: Cells to Choose to Compute 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

 for Six-Category Case 

 Category of variable i 

1 2 3 4 5 6 

Category 

of 

variable 

j 

1       

2  X X X X  

3  X X X X  

4  X X X X  

5  X X X X  

6       

 

If the variable has seven categories, then we can take 13 cells labeled “X” in the center of 

the two-way subtable as shown below. 
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TABLE 35: Cells to Choose to Compute 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

 for Seven-Category Case 

 Category of variable i 

1 2 3 4 5 6 7 

Category 

of 

variable 

j 

1        

2    X    

3   X X X   

4  X X X X X  

5   X X X   

6    X    

7        

 

III.2.2 Type I Error Rate Study for 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

  

To check the performance of the 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 statistic, I first conducted several Type I error 

studies. To demonstrate this sparseness problem, I conducted two Type I simulations for 

four variables, four categories. I generated 1000 pseudo datasets from a one factor model 

and fit it with a one factor model. The parameters for the data generating models are the 

following: 𝛼0(1) = (−3.5,−3.5, −3.5, −3.5)′, 𝛼0(2) = (0, 0, 0, 0)′, 𝛼0(3) =

(3.5, 3.5, 3.5, 3.5)′, 𝛼1 = (1, 1, 1, 1)′. The two sample sizes are 150 and 500. The average 

frequencies for each cells in the two-way subtables are listed below. 
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TABLE 36: Average Frequencies of Cells for Four Variables Four Categories Case, 

n=500 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 2.13 13.02 6.61 0.414 

2 13.02 118.52 89.87 6.69 

3 6.67 89.46 118.23 13.05 

4 0.41 6.62 13.14 2.13 

 

TABLE 37: Average Frequencies of Cells for Four Variables Four Categories Case, n= 

150 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 0.65 3.87 1.98 0.13 

2 3.86 35.80 26.95 1.98 

3 2.01 26.88 35.38 3.89 

4 0.12 1.96 3.90 0.63 

Although the four cells in the middle have relatively large average frequencies, some of 

the other cells have very low frequencies, and with smaller sample size, the sparseness 

problem becomes more severe. Because of the sparseness in these cells, some  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 

statistics may have inaccurate empirical Type I error. The empirical Type I error rates of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 for these two cases when nominal α = 0.05 are listed below. 
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TABLE 38: Type I Error Rates of  𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 for Sparse Four Variables Four Categories 

Subtables. 

 Type I error rate 

(ij) Sample size 500 Sample size 150 

(12) 0.07 0.083 

(13) 0.072 0.100 

(14) 0.057 0.082 

(23) 0.047 0.068 

(24) 0.054 0.075 

(34) 0.067 0.084 

Comparing to the interval 0.05 ± 1.96√
(0.95)(0.05)

1000
= (0.0365,0.0635), for the 500 

sample size case, the empirical Type I error rates of  𝐺𝐹𝑓𝑖𝑡⊥
(12)

 , 𝐺𝐹𝑓𝑖𝑡⊥
(13)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(34)

 

are two high. With a sample size 150, the sparseness problem is so severe that all the 

empirical Type I error rates of  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  are two high. 

I applied the 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 to the four variables case with sparse two-way tables. Since the 

number of categories in this case is even, I chose four cells to compute 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

. 

𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 is distributed asymptotically Chi-squared with 4 degrees of freedom. The 

empirical type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are listed below. 
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TABLE 39: Type I Error Rates of  𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

 for Sparse Four Variables Four Categories 

Subtables. 

 Type I error rate 

(ij) Sample size 500 Sample size 150 

(12) 0.042 0.055 

(13) 0.060 0.048 

(14) 0.053 0.047 

(23) 0.039 0.043 

(24) 0.040 0.054 

(34) 0.052 0.055 

According to the result above, the empirical Type I error improved by using the four 

components corresponding to the four cells with the largest frequencies. All the empirical 

Type I error rates are within the interval (0.0365,0.0635), for both sample sizes. 

A Kolmogorov-Smirnov test has also been applied to 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 to test its distribution 

against chi-square. The p-values are shown in the following table.  

TABLE 40: KS Test P-values for 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

 

 KS test p-values 

(ij) Sample size 500 Sample size 150 

(12) 0.384 0.176 

(13) 0.316 0.033 

(14) 0.354 0.652 

(23) 0.378 0.566 

(24) 0.449 0.668 

(34) 0.931 0.411 
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For the 500 sample size case, all p-values are greater than 0.05. For the 150 sample size 

case, only for 𝐺𝐹𝑓𝑖𝑡⊥(4)
(13)

, we reject the null hypothesis that it is distributed chi-square. 

For further investigation, I conducted a type I error study for a five variables five 

categories case. I generated 1000 pseudo datasets from a one factor model and fit it with 

a one factor model. The parameters for the data generating models are the following: 

𝛼0(1) = (−3.5, −3.5, −3.5, −3.5, −3.5)′, 𝛼0(2) =

(−2.5, −2.5, −2.5, −2.5, −2.5)′, 𝛼0(2) = (2.5,2.5,2.5,2.5,2.5)′ 𝛼0(4) =

(3.5, 3.5, 3.5, 3.5)′, 𝛼1 = (1, 1, 1, 1,1)′. The sample size is 200. The expected frequencies 

for each cell in the two-way subtable are listed below. 

TABLE 41: Average Frequencies of Cells for Five Variables Five Categories Case, 

n=200 

Average frequencies Category of variable i 

1 2 3 4 5 

Category 

of variable 

j 

1 0.8548 1.6941 5.7310 0.4841 0.1642 

2 1.6884 3.7019 14.8257 1.4216 0.4945 

3 5.7027 14.8900 96.8331 14.8598 5.6709 

4 0.4831 1.4084 14.8639 3.7107 1.6623 

5 0.1684 0.4879 5.7018 1.6730 0.8237 

 

From this subtable we can see that the cell with category 3 for both variable i and j has 

very large frequency. But all the other cells have relatively low frequencies. Since the 

number of categories is odd, when computing 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 , I chose t=5. The empirical 

Type I error rates of both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 for these two cases when nominal α =

0.05 are listed below. 
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TABLE 42: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟓)
(𝒊𝒋)

 

 Type I error rates 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 

(12) 0.0752 0.0542 

(13) 0.0742 0.0621 

(14) 0.0682 0.0471 

(15) 0.0682 0.0542 

(23) 0.0742 0.0611 

(24) 0.0812 0.0682 

(25) 0.0862 0.0632 

(34) 0.0822 0.0421 

(35) 0.0662 0.0502 

(45) 0.0672 0.0451 

 

From this table, we can see that all the empirical Type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are out 

of the interval (0.0365,0.0635). But only one empirical Type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 

are out of the interval (0.0365,0.0635). 

Choosing orthogonal components corresponding to cells with large frequencies can 

overcome the problem of sparseness in the two-way tables. Then, on the opposite, the 

𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 computed by choosing orthogonal components corresponding to cells with 

small frequencies will result in inaccurate type I error rates. For example, in the five 

variables five categories 200 sample size case, I also chose cells labeled 1, 3, 4, 11 and 16 
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to compute 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

. The empirical Type I error rates of 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 for these chosen 

cells when nominal α = 0.05 are listed below. 

TABLE 43: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥(𝟓)
(𝒊𝒋)

 Choosing Cell 1, 3, 4, 11 and 16 

𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 Type I error rate 

(12) 0.0652 

(13) 0.0682 

(14) 0.0682 

(15) 0.0621 

(23) 0.0692 

(24) 0.0782 

(25) 0.0852 

(34) 0.0842 

(35) 0.0612 

(45) 0.0712 

 

Eight out of these ten Type I error rates are outside of the interval (0.0365,0.0635). 

From these simulations, we can see that when sparseness is present, using 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 may 

be a good remedy. However, even though the subtable is not sparse, 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 still 

distributed chi-squared distribution with df = t. To show this, I repeated the simulation 

study in chapter III.1 for the four variables four categories case with sample size 500. For 
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this case, the subtable is not sparse and I computed 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

. The empirical type I error 

rates and KS test p-values are listed in the table below. 

TABLE 44: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

  

𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 Type I error rate KS test p-value 

(12) 0.0283 0.3822 

(13) 0.0484 0.7685 

(14) 0.0545 0.5125 

(23) 0.0424 0.8549 

(24) 0.0565 0.1681 

(34) 0.0484 0.9759 

 

With sample size 500, only 𝐺𝐹𝑓𝑖𝑡⊥(4)
(12)

 has a type I error rate outside of the interval 

0.05 ± 1.96√
(0.95)(0.05)

500
= (0.0310,0.0691). All the p-values are greater than 0.05. 

III.2.3 Additional Type I Error Rate Study for 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

  

In this section, I presented several additional Type I error rate simulation results for 

𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

. The reason that I conducted these simulations is that the parameter settings 

used in these simulations are similar to the settings used in the power study for 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, 

which I will introduce later. If the 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 does not have a good Type I error rate in 

these simulations, the power study would have no meaning. 
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The first simulation is for a four-variable four-category case. 500 pseudo samples were 

generated from a one-factor model and fitted with a one-factor model. The parameters for 

the data generating model are the following: 𝛼0(1) = (−1,−1,−1,−1)′, 𝛼0(2) =

(0.5,0.5,0.5,0.5)′, 𝛼0(3) = (2,2,2,2)′, 𝛼1 = (2.0, 1.1, 1.2, 2.0)′. Two sample sizes are 

used, 500 and 150. The Type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are shown in the 

following table. The convergence rates for sample size 500 case and sample size 150 case 

are both 100% 

TABLE 45: Type I Error Rates for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Four-Variable Four-

Category  

 Sample Size 500 Sample Size 150 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(12) 0.046 0.042 0.042 0.048 

(13) 0.048 0.046 0.050 0.044 

(14) 0.058 0.058 0.060 0.056 

(23) 0.058 0.040 0.036 0.068 

(24) 0.068 0.060 0.046 0.050 

(34) 0.056 0.044 0.038 0.060 

All these Type I error rates are within the interval 0.05 ± 1.96√
(0.95)(0.05)

500
=

(0.0310,0.0691). Thus both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 works well for this case. 

The second simulation is for a five-variable five-category case. 500 pseudo samples were 

generated from a one-factor model and fitted with a one-factor model. The sample size is 

300. The parameters for the data generating model are the following: 𝛼0(1) =
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(−1.59,−2.30, −1.43,−3.02, −1.26)′, 𝛼0(2) =

(−0.84,−0.38, −0.32,−1.50, −0.21)′, 𝛼0(3) = (0.71,0.16,0.15,0.57,0.78)′, 𝛼0(4) =

(1.48,1.80,1.66,2.13,1.65)′, 𝛼1 = (2.3,2.5,1.9,2.1,2.3)′. The Type I error rates for 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 are shown in the following table. The convergence rate is 100%. 

TABLE 46: Type I Error Rates for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟓)
(𝒊𝒋)

, Five-Variable Five-

Category 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 

(12) 0.036 0.056 

(13) 0.050 0.058 

(14) 0.048 0.048 

(15) 0.060 0.060 

(23) 0.040 0.040 

(24) 0.048 0042 

(25) 0.038 0.040 

(34) 0.046 0.046 

(35) 0.044 0.052 

(45) 0.048 0.058 

All these Type I error rates are within the interval (0.0310,0.0691). Thus both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 

and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 works well for this case. 

The third simulation is for a four-variable six-category case. 500 pseudo samples were 

generated from a one-factor model and fitted with a one-factor model. The parameters for 

the data generating model are the following: 𝛼0(1) = (−3.5,−3.5, −3.5, −3.5)′, 𝛼0(2) =
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(−3,−3,−3,−3)′, 𝛼0(3) = (0,0,0,0)′, 𝛼0(4) = (3,3,3,3)′, 𝛼0(5) = (3.5,3.5,3.5,3.5)′, 𝛼1 =

(2.3, 2.5, 1.9, 2.1)′. Two sample sizes are used, 1000 and 300. The Type I error rates for 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are shown in the following table. The convergence rates for 

sample size 1000 case and sample size 300 case are 98% and 98.6%, respectively. 

TABLE 47: Type I Error Rates for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Four-Variable Six-Category  

 Sample Size 1000 Sample Size 300 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(12) 0.1020 0.0592 0.1156 0.0568 

(13) 0.0857 0.0388 0.1115 0.0507 

(14) 0.0816 0.0429 0.1338 0.0770 

(23) 0.0694 0.0469 0.0872 0.0486 

(24) 0.0837 0.0531 0.1075 0.0568 

(34) 0.1040 0.0673 0.1014 0.0649 

 

We can see that for both 1000 sample size case and 500 sample size case, all the Type I 

error rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 are outside of the interval (0.0310,0.0691) due to the sparseness 

in the two-way table. However all but one Type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are within the 

interval (0.0310,0.0691). This indicates that for this four-variable six-category case, 

𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 still distribute asymptotic chi-square but 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not due to the 

sparseness in the two-way table. 
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The fourth simulation is for a five-variable five-category case. 500 pseudo samples were 

generated from a one-factor model and fitted with a one-factor model. The sample size is 

300. The parameters for the data generating model are the following: 𝛼0(1) =

(−3,−3,−3,−3, −3)′, 𝛼0(2) = (−2,−2,−2,−2,−2)′, 𝛼0(3) = (2,2,2,2, 2)′, 𝛼0(4) =

(3,3,3,3,3)′, 𝛼1 = (2.5, 2.7, 1.9, 2.1, 2.3)′.The Type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 

𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 are shown in the following table. The convergence rate is 100%. 

TABLE 48: Type I Error Rates for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟓)
(𝒊𝒋)

, Five-Variable Five-

Category 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 

(12) 0.058 0.050 

(13) 0.072 0.048 

(14) 0.060 0.048 

(15) 0.072 0.050 

(23) 0.052 0.052 

(24) 0.076 0.070 

(25) 0.062 0.038 

(34) 0.064 0.052 

(35) 0.054 0.038 

(45) 0.062 0.064 

For 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, three out of then Type I error rates are outside of the interval 

(0.0310,0.0691).  But for 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

, only one Type I error rates are outside of this 
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interval. This indicates that the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not work well due to the sparseness in the 

two-way subtable. 

III.2.4 Power Study for 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

  

Besides the type I error study, I also conducted several power studies. When we use a 

wrong model to fit the data, both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 have a non-central chi-squared 

distribution. Using this property, we can compute the theoretical power of the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 

and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 . Although both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 distributed chi-squared, they may 

have different power. To show this, I conducted several power simulations, one four-

variable four-category case and one five-variable five-category case. For the four-

variable case, I used two sample sizes, 150 and 500. For the five-variable case, the 

sample size is 300. In both simulations, 500 pseudo samples were generated from a two-

factor model and fitted with a one-factor model. The parameters for the data generating 

models are the following: for 4 variables case, 𝛼0(1) = (−1,−1, −1,−1)′, 𝛼0(2) =

(0.5,0.5,0.5,0.5)′, 𝛼0(3) = (2,2,2,2)′, 𝛼1 = (0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′ ; 

for 5 variables case, 𝛼0(1) = (−1.59,−2.30,−1.43,−3.02,−1.26)′, 𝛼0(2) =

(−0.84,−0.38, −0.32,−1.50, −0.21)′, 𝛼0(3) = (0.71,0.16,0.15,0.57,0.78)′, 𝛼0(3) =

(1.48,1.80,1.66,2.13,1.65)′, 𝛼1 = (1.5,1.7,1.9,2.1,2.3)′, 𝛼2 = (0.8,0.8,0,0,0)′. These 

parameter settings are similar to the parameter settings used in the Type I error study 

shown in Sec III.2.2. The expected frequencies for each cell in the two-way subtables are 

listed below. 
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TABLE 49: Average Frequencies of Cells for Four-Variable Four-Category Case, n=500 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 66.36 43.02 31.70 22.98 

2 42.97 35.09 28.93 23.12 

3 31.68 28.94 26.50 23.34 

4 22.99 23.15 23.38 25.77 

TABLE 50: Average Frequencies of Cells for Four-Variable Four-Category Case, n=150 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 19.91 12.90 9.51 6.89 

2 12.89 10.52 8.68 6.93 

3 9.50 8.68 7.95 7.00 

4 6.89 6.94 7.01 7.73 

TABLE 51: Average Frequencies of Cells for Five-Variable Five-Category Case, n=150 

Average frequencies Category of variable i 

1 2 3 4 5 

Category 

of variable 

j 

1 32.99 16.18 11.79 8.05 5.63 

2 13.76 10.04 9.66 7.84 6.91 

3 10.14 9.66 9.30 10.36 10.09 

4 6.79 7.74 9.76 11.43 15.52 

5 4.83 6.83 10.56 16.20 37.85 
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We can see that the four-variable 500 sample size case is not sparse, but the four-variable 

150 sample size case and the five-variable case may be a little bit sparse but the 

sparseness is not severe. The theoretical and empirical power for both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 

𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 are listed below. 

TABLE 52: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

, Four-Variable Four-Category, n=500 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.0555 0.0681 0.0546 0.0641 

(13) 0.0619 0.0701 0.0635 0.0841 

(14) 0.4513 0.3507 0.3615 0.3146 

(23) 0.8271 0.8096 0.5611 0.5751 

(24) 0.0501 0.0501 0.0500 0.0400 

(34) 0.0504 0.0621 0.0500 0.0600 
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TABLE 53: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

, Four-Variable Four-Category, n=150 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.0516 0.0668 0.0513 0.0587 

(13) 0.0534 0.0566 0.0539 0.0506 

(14) 0.1430 0.1356 0.1284 0.1417 

(23) 0.2794 0.2692 0.1852 0.1741 

(24) 0.0500 0.0506 0.0500 0.0465 

(34) 0.0500 0.0769 0.0500 0.0627 
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TABLE 54: Powers for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

, Five-Variable Five-Category, n=300 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.1638 0.1470 0.1209 0.1020 

(13) 0.0682 0.0570 0.0567 0.0440 

(14) 0.0771 0.0630 0.0641 0.0580 

(15) 0.0581 0.0480 0.0571 0.0480 

(23) 0.0545 0.0620 0.0540 0.0450 

(24) 0.0701 0.0450 0.0575 0.0510 

(25) 0.0526 0.0620 0.0513 0.0410 

(34) 0.0553 0.0500 0.0536 0.0570 

(35) 0.0514 0.0580 0.0516 0.0400 

(45) 0.0570 0.0490 0.0531 0.0480 

From these tables, we can make three conclusions. First, when the subtable is not sparse, 

both  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 have a non-central chi-squared distribution. This is 

demonstrated by the fact that the theoretical power of both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 are 

close to their empirical power. Second, when there is no sparse problem in the subtable, 

generally the power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is lower than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. For example, in the four 

variables four categories 500 sample size case, 𝐺𝐹𝑓𝑖𝑡⊥
(23)

 has a theoretical power of 

0.8271, which is higher than the theoretical power of 𝐺𝐹𝑓𝑖𝑡⊥(4)
(23)

, 0.5611. Third, even 

though there is no sparse problem in the subtable, the theoretical powers of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 
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𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 will decrease when the sample size decreases. For example, in the four 

variables four categories 500 sample size case, 𝐺𝐹𝑓𝑖𝑡⊥(4)
(23)

 has a theoretical power of 

0.5611. However, when sample size decreases to 150, 𝐺𝐹𝑓𝑖𝑡⊥
(23)

 has a theoretical power 

of 0.1852. 

However, when we have a sparse subtable, the power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 might be lower than 

that of  𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

. To show this, 500 pseudo samples were generated from a two-factor 

model and fitted with a one-factor model. There are four variables and six categories in 

the dataset. The sample size is 1000. The parameters for the data generating models are 

the following: 𝛼0(1) = (−3.5, −3.5, −3.5, −3.5)′, 𝛼0(2) = (−3,−3,−3,−3)′, 𝛼0(3) =

(0,0,0,0)′, 𝛼0(4) = (3,3,3,3)′, 𝛼0(5) = (3.5,3.5,3.5,3.5)′, 𝛼1 = (1.5, 1.7, 1.9, 2.1)′, 𝛼2 =

(0.8, 0.8, 0, 0)′ . This parameter setting is similar the parameter settings used in the Type 

I error study shown in Sec III.2.2. The expected frequencies for each cell in the two-way 

subtable are listed below. 
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TABLE 55: Average Frequencies of Cells for Four-Variable Six-Categories Case, 

n=1000 

Average 

frequencies 

Category of variable i 

1 2 3 4 5 6 

Category 

of 

variable j 

1 26.21 7.48 44.91 14.49 0.55 0.95 

2 6.39 2.35 17.89 7.27 0.30 0.52 

3 36.05 16.07 178.43 121.32 6.56 12.19 

4 12.19 6.56 121.32 178.43 16.07 36.05 

5 0.52 0.30 7.27 17.89 2.35 6.39 

6 0.95 0.55 14.49 44.91 7.48 26.21 

 

We can see that even though we have a large sample size of 1000, with the given 

parameter setting, there are still many cells in the subtable have a frequency less than 1. 

Thus there is a problem of sparseness in the subtable. The four cells in the center of the 

table have relatively large frequencies. In Sec III.2.2, I have shown that for this case 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not work well but 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 works better. The theoretical and empirical 

powers for both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are listed below. 
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TABLE 56: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

, Four-Variable Six-Category, n=1000 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.3319 0.2953 0.5404 0.5213 

(13) 0.0571 0.1140 0.0585 0.0835 

(14) 0.0596 0.1283 0.0680 0.1059 

(23) 0.0564 0.0875 0.0568 0.0733 

(24) 0.0534 0.0733 0.0521 0.0794 

(34) 0.0522 0.0631 0.0514 0.0753 

 

We can see that when sparseness is presented in this subtable, both theoretical power and 

empirical power of 𝐺𝐹𝑓𝑖𝑡⊥
(12)

 are lower than those of 𝐺𝐹𝑓𝑖𝑡⊥(4)
(12)

. I already showed that in 

Sec III.2.2, 𝐺𝐹𝑓𝑖𝑡⊥
(12)

 does not work well for this case due to the sparseness in the two-

way table. This can also be demonstrated by the fact that the empirical power of  

𝐺𝐹𝑓𝑖𝑡⊥
(13)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(14)

 are about twice as their theoretical power.  

If we decrease the sample size to 300, The theoretical and empirical powers for both 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are listed below. 
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TABLE 57: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Four-Variable Six-Category, n=300 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.1094 0.1000 0.1785 0.1700 

(13) 0.0521 0.106 0.0526 0.0520 

(14) 0.0528 0.080 0.0553 0.0480 

(23) 0.0519 0.086 0.0521 0.0440 

(24) 0.0510 0.102 0.0506 0.0480 

(34) 0.0507 0.076 0.0504 0.0500 

 

From these results, we can see that both theoretical and empirical powers of 𝐺𝐹𝑓𝑖𝑡⊥(4)
(12)

 

are still higher than those of 𝐺𝐹𝑓𝑖𝑡⊥
(12)

. With a smaller sample size, the theoretical power 

of both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 are lower than those with a large sample size.  

Then I did another simulation with a five variables five categories case. Again 500 

pseudo samples were generated from a two-factor model and fitted with a one-factor 

model. The sample size is 150. The parameters for the data generating models are the 

following: 𝛼0(1) = (−3,−3,−3,−3,−3)′, 𝛼0(2) = (−2,−2, −2,−2,−2)′, 𝛼0(3) =

(2,2,2,2, 2)′, 𝛼0(4) = (3,3,3,3,3)′, 𝛼1 = (1.5, 1.7, 1.9, 2.1, 2.3)′, 𝛼2 = (1.0, 1.0, 0, 0, 0)′ , 

which is similar to the parameter setting used in the third simulation shown in Sec III.2.2. 

The expected frequencies for each cell in the two-way subtable are listed below 
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TABLE 58: Average Frequencies of Cells for Five-Variable Five-Category Case, n=150 

Average frequencies Category of variable i 

1 2 3 4 5 

Category 

of variable 

j 

1 14.41 7.10 18.16 1.01 0.75 

2 5.93 4.38 15.97 1.19 0.93 

3 14.86 14.85 100.80 14.85 14.86 

4 0.93 1.19 15.97 4.38 5.93 

5 0.75 1.01 18.16 7.10 14.41 

 

From this table we can see that actually only one cell has large expected frequencies and 

all the other cells have relatively low expected frequencies. The theoretical and empirical 

powers for both 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 are listed below. The convergence rate is 100%. 
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TABLE 59: Powers for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝐭)
(𝒊𝒋)

, Five-Variable Five-Category n=300 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.3286 0.226 0.3563 0.308 

(13) 0.0546 0.068 0.0530 0.070 

(14) 0.0541 0.052 0.534 0.040 

(15) 0.0562 0.064 0.0574 0.052 

(23) 0.0532 0.078 0.0517 0.058 

(24) 0.0529 0.058 0.0516 0.050 

(25) 0.0529 0.072 0.0514 0.048 

(34) 0.0507 0.072 0.0510 0.054 

(35) 0.0509 0.054 0.0510 0.068 

(45) 0.0509 0.050 0.0510 0.052 

 

From this table we can see that the theoretical powers of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 are 

almost the same in this case, which means theoretically 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 actually did not 

improve the original 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 much. But the empirical power for 𝐺𝐹𝑓𝑖𝑡⊥(5)
(12)

  is higher 

than the empirical power for 𝐺𝐹𝑓𝑖𝑡⊥
(12)

. This may be due to the poor performance of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 for this case because of the sparseness in the two-way subtable as demonstrated 

in Sec III.2.2. All the other 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(5)
(𝑖𝑗)

 have very low power, both 

empirically and theoretically. 
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Then I applied 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 to the six variables four categories power study in Sec III.1.2. I 

chose four cells in each two-way subtable to compute 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 and compared the power 

for 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 with the power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 in each case. The results for both non-skewed 

case and skewed case are shown in the following tables. 
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TABLE 60: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Non-Skewed Case. 

 Powers for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Sample size 500 Sample size 150 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(12) 0.228 0.185 0.116 0.097 

(13) 0.324 0.240 0.130 0.098 

(14) 0.085 0.079 0.060 0.050 

(15) 0.066 0.069 0.062 0.060 

(16) 0.107 0.101 0.084 0.071 

(23) 0.963 0.917 0.385 0.337 

(24) 0.096 0.083 0.063 0.061 

(25) 0.124 0.090 0.063 0.057 

(26) 0.198 0.197 0.095 0.095 

(34) 0.221 0.205 0.107 0.100 

(35) 0.182 0.170 0.090 0.086 

(36) 0.107 0.122 0.057 0.077 

(45) 0.067 0.100 0.065 0.075 

(46) 0.118 0.134 0.065 0.075 

(56) 0.154 0.196 0.085 0.099 
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TABLE 61: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 and 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Skewed Case. 

 Powers for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Sample size 500 Sample size 150 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(12) 0.2790 0.0788 0.1654 0.1001 

(13) 0.3984 0.0930 0.1513 0.0837 

(14) 0.0485 0.0293 0.0620 0.0663 

(15) 0.0516 0.0415 0.0577 0.0500 

(16) 0.0819 0.0424 0.0696 0.0642 

(23) 0.8413 0.1344 0.2546 0.1109 

(24) 0.0475 0.0434 0.0761 0.0565 

(25) 0.0404 0.0414 0.0609 0.0598 

(26) 0.0829 0.0485 0.0739 0.0598 

(34) 0.0738 0.0374 0.0794 0.0729 

(35) 0.0768 0.0576 0.0642 0.0783 

(36) 0.0637 0.0374 0.0859 0.0685 

(45) 0.0940 0.0889 0.0903 0.0946 

(46) 0.0849 0.0728 0.0751 0.0729 

(56) 0.0859 0.0616 0.0772 0.0805 

 

From these two tables we can see that both 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 have the largest 

power for variables pair 2 and 3. For the non-skewed case, the empirical power of 
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𝐺𝐹𝑓𝑖𝑡⊥(4)
(23)

 is just a little bit lower than the empirical power of 𝐺𝐹𝑓𝑖𝑡⊥
(23)

. However, for 

the skewed case with sample size 500, the empirical power of 𝐺𝐹𝑓𝑖𝑡⊥(4)
(23)

 is much lower 

than the empirical power of 𝐺𝐹𝑓𝑖𝑡⊥
(23)

. To further investigate the reason for such a 

difference, I listed the expected frequencies of cells in the two-way table for the skewed 

case with sample size 500 below. 

TABLE 62: Expected Frequencies of Cells for Skewed Case, Sample Size 500 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 26.57 9.01 10.29 76.78 

2 6.75 2.59 3.10 27.24 

3 6.89 2.74 3.34 31.61 

4 31.11 13.56 17.36 230.98 

 

We can see that due to the high skewness in the two-way subtable, the four cells in the 

center which we choose to compute 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 actually have lowest expected frequencies 

among all these cells. Thus, the 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 computed based on these cells has extremely 

low empirical power. 

Then I compared 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 with 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 where the slopes and intercepts in the model 

are generated randomly. I studied one five variables four categories case. All the slopes 

were generated from a uniform distribution 𝑈(.5, 2.5). The three intercepts were 

generated from three different uniform distributions:𝑈(−2,−1),𝑈(−1, 1) and 𝑈(1, 2). 
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I first generated 1000 pseudo samples with sample size 150 from a one-factor model. The 

data was fitted to the correct one-factor model and the type I error rates for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 

with 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are shown in the following table. 

TABLE 63: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝐚𝐧𝐝 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Intercepts and Slopes 

Generated Randomly 

 Type I error rates 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(12) 0.039 0.036 

(13) 0.050 0.049 

(14) 0.045 0.048 

(15) 0.045 0.054 

(23) 0.058 0.054 

(24) 0.045 0.042 

(25) 0.044 0.045 

(34) 0.049 0.054 

(35) 0.051 0.058 

(45) 0.048 0.056 

We can see that only the type I error rate for 𝐺𝐹𝑓𝑖𝑡⊥(4)
(12)

 is outside of the interval 0.05 ±

1.96√
(0.95)(0.05)

1000
= (0.0365,0.0635). 

Then using the same parameter generating distribution, I generated 1000 pseudo samples 

with sample size 150 from a two-factor model. The data was fitted to the wrong one-
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factor model and the theoretical and empirical power for 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 with 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 are 

shown in the following table. 

TABLE 64: Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝐚𝐧𝐝 𝑮𝑭𝒇𝒊𝒕⊥(𝟒)
(𝒊𝒋)

, Intercepts and Slopes Generated 

Randomly 

 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝐺𝐹𝑓𝑖𝑡⊥(4)
(𝑖𝑗)

 

(ij) Theoretical 

power 

Empirical 

power 

Theoretical 

power 

Empirical 

power 

(12) 0.0926 0.0892 0.0702 0.0543 

(13) 0.0563 0.0564 0.0510 0.0430 

(14) 0.1446 0.1282 0.1085 0.1292 

(15) 0.0897 0.0871 0.0728 0.0769 

(23) 0.0546 0.0471 0.0526 0.0461 

(24) 0.0786 0.0830 0.0764 0.0666 

(25) 0.0769 0.0953 0.0705 0.0769 

(34) 0.0526 0.0605 0.0522 0.0646 

(35) 0.0510 0.0492 0.0503 0.0451 

(45) 0.0510 0.0594 0.0513 0.0389 

From this table we can see that 𝐺𝐹𝑓𝑖𝑡⊥
(14)

 with 𝐺𝐹𝑓𝑖𝑡⊥(4)
(14)

 have the largest power, both 

theoretically and empirically. Although the theoretical power of 𝐺𝐹𝑓𝑖𝑡⊥
(14)

 is higher than 

that of 𝐺𝐹𝑓𝑖𝑡⊥(4)
(14)

, the empirical power for these two statistics are almost the same. This 

indicates that in this case, 𝐺𝐹𝑓𝑖𝑡⊥(4)
(14)

 didn’t improve 𝐺𝐹𝑓𝑖𝑡⊥
(14)

. 
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From these simulation studies, we can see that when the subtable table is sparse, the 

power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 may or may not be higher than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Even though in the 

situations where the two-way subtable is very sparse and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 does not improve the 

original 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, it did not perform worse in the simulations. And generally the 

empirical power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is closer to the theoretical power than those of the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 

when the subtable is sparse. However, if there is no sparseness problem in the subtable, 

generally the power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is lower than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Thus, I recommend to 

use both 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 and 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and compare them. If these two statistics result in 

different test results, expected frequencies could be examined.   

 

III.3 Apply the New Method to 𝑿[𝟐]
𝟐   

III.3.1 𝑿[𝟐]
𝟐   Statistic 

In the previous section, I have shown that when there is a sparseness problem in the 

subtable, 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 might have better performance than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Similarly, we 

can apply the same idea to 𝑋[2]
2 . I will denote this new statistic  𝑋[2][t]

2 , where 𝑡 means 

computing the statistics with the t cells we choose according to the criterion introduced in 

the previous section. 

Since 𝑋[2]
2  is just the sum of all 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
, then we can define 𝑋[2][t]

2  as 

𝑋[2][t]
2 = ∑𝐺𝐹𝑓𝑖𝑡⊥(t)

(𝑖𝑗)

𝑖,𝑗
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Theoretically, if we specify the correct model, 𝑋[2][t]
2  has a Chi-squared distribution with 

𝑑𝑓 = 𝑡 ∗ 𝐶𝑞
2, where 𝑞 is the number of variables in the dataset. Note that the degrees of 

freedom equals the number of orthogonal components we used to compute 𝑋[2][t]
2 . If the 

model specified is wrong, then 𝑋[2][t]
2  has a non-central Chi-squared distribution. 

III.3.2 Type I Error Rate Study for 𝑿[𝟐]
𝟐    

To examine the performance of 𝑋[2][t]
2 . I re-examined the four-variable four-category 

sample size 150 Type I error rate simulation that shown at the beginning of SecIII.2. I 

generated 1000 pseudo datasets from a one factor model and fit it with a one factor 

model. The parameters for the data generating models are the following: 𝛼0(1) =

(−3.5, −3.5, −3.5, −3.5)′, 𝛼0(2) = (0, 0, 0, 0)′, 𝛼0(3) = (3.5, 3.5, 3.5, 3.5)′, 𝛼1 =

(1, 1, 1, 1)′. The expected frequencies for each cells in the two-way subtables are listed 

below. 

TABLE 65: Average Frequencies of Cells for Four-Variable Four-Category Case, n=150 

Average frequencies Category of variable i 

1 2 3 4 

Category of 

variable j 

1 0.63 3.91 2.00 0.12 

2 3.91 35.53 26.86 2.00 

3 2.00 26.86 35.53 3.91 

4 0.12 2.00 3.91 0.63 

I computed both 𝑋[2]
2  and 𝑋[2][𝑡]

2 . Again, since the number of categories is even, I chose 

four cells from each two-way subtable to compute 𝑋[2][4]
2 .  The empirical Type I error 

rates when nominal α = 0.05 and KS test p-values of 𝑋[2]
2  and 𝑋[2][4]

2  are listed below. 
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TABLE 66: Type I Error Rates and KS Test P-values for 𝑿[𝟐]
𝟐  and 𝑿[𝟐][𝟒]

𝟐 , Four-Variable 

Six-Category 

 𝑋[2]
2  𝑋[2][4]

2  

Type I error rate 0.1049 0.0504 

KS test p-value 0.0004 0.3757 

 

In the earlier section it was already shown that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may not have a Chi-squared 

distribution in the sparse case. Then 𝑋[2]
2  would not have a Chi-squared distribution since 

it is just the sum of all the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. This is demonstrated by the Type I error rate and 

KS test p-value shown in the table. However, we can see that  𝑋[2][4]
2  still performs well 

even though the subtable is sparse. 

Then I applied 𝑋[2][𝑡]
2  to the Type I error study for the four-variable six-category case 

introduced in Sec III.2.3. 500 pseudo samples were generated from a one-factor model 

and fitted with a one-factor model. The parameters for the data generating model are the 

following: 𝛼0(1) = (−3.5,−3.5, −3.5, −3.5)′, 𝛼0(2) = (−3,−3,−3,−3)′, 𝛼0(3) =

(0,0,0,0)′, 𝛼0(4) = (3,3,3,3)′, 𝛼0(5) = (3.5,3.5,3.5,3.5)′, 𝛼1 = (2.3, 2.5, 1.9, 2.1)′. The 

sample size is 1000. I conducted this simulation because this parameter setting is similar 

to the parameter setting I used for the power study for 𝑋[2][𝑡]
2  which I will show later. If 

the Type I error rate of 𝑋[2][𝑡]
2  does not look good for this parameter setting, the power 

study would have no meaning. Since there are six categories in this case, when 

computing 𝑋[2][𝑡]
2 , I chose two different t, 4 and 16. All these cells are in the center of the 

subtable. The Type I error rates for 𝑋[2]
2  , 𝑋[2][4]

2  and 𝑋[2][16]
2  are shown in the following 

table. The convergence rate is 98%. 
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TABLE 67: Type I Error Rates for 𝑿[𝟐]
𝟐 , 𝑿[𝟐][𝟒]

𝟐  and 𝑿[𝟐][𝟏𝟔]
𝟐 , Four-Variable Six-Category 

 

 𝑋[2]
2  𝑋[2][4]

2  𝑋[2][16]
2  

Type I error rate 0.1183 0.0653 0.1122 

 

It is not surprised that 𝑋[2]
2  has a very large Type I error rate since in Sec III.2.3 I already 

showed that 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 does not have a good Type I error rates. Thus 𝑋[2]
2  would not have 

a good Type I error rate since it is just the sum of all the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. The Type I error rate 

for 𝑋[2][4]
2  is within the interval (0.0310,0.0691). However, when we choose 16 cells, 

𝑋[2][16]
2  has a very large Type I error rate because we may have chosen too many cells 

with low expected frequencies to compute 𝑋[2][16]
2 . 

 

III.3.3 Power Study for 𝑿[𝟐]
𝟐    

To examine the power of 𝑋[2][𝑡]
2  when the subtable is sparse, I re-examined the four 

variables six categories sample size 1000 power simulation shown in Section III.2.4. 

𝑋[2][4]
2  and 𝑋[2][16]

2  were computed using the cells in the center of the two-way subtable. 

Both theoretical and empirical powers for 𝑋[2]
2 , 𝑋[2][4]

2  and 𝑋[2][16]
2  are listed below. The 

convergence rate is 98.2%. 
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TABLE 68: Theoretical Power and Empirical Power for 𝑿[𝟐]
𝟐 , 𝑿[𝟐][𝟒]

𝟐  and 𝑿[𝟐][𝟏𝟔]
𝟐  

 Theoretical Power Empirical Power 

𝑋[2]
2  0.1802 0.1914 

𝑋[2][4]
2  0.3295 0.3360 

𝑋[2][16]
2  0.1617 0.1995 

So we can see that both theoretical and empirical power of 𝑋[2]
2  are lower than those of 

𝑋[2][4]
2  when the subtable is sparse. The power of the 𝑋[2][4]

2  may be higher because lack-

of-fit located primarily in the four cells of the two-way tables where the test is focused. 

The theoretical power and empirical power of 𝑋[2][16]
2  are lower than those of 𝑋[2][4]

2 . This 

result is consistent with the result shown in the Type I error rate study that 𝑋[2][16]
2  does 

not work well for this case.  
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CHAPTER 4 

APPLICATION, SUMMARY AND DISCUSSION 

IV.1 Application 

I analyzed a real data set about agoraphobia. Agoraphobia is a type of anxiety disorder in 

which you fear and often avoid places or situations that might cause you to panic and 

make you feel trapped, helpless or embarrassed. With agoraphobia, you often have a hard 

time feeling safe in any public places, especially where crowds gather. You may even 

feel unable to leave your home. This dataset consists in judgments expressed by 3305 

patients about several fears. There are 5 variables in this dataset: 

1.Fear of tunnels or bridges 

2.Fear of being in a crowd 

3.Fear transportation 

4.Fear of going out of house alone 

5.Fear of being alone 

Each variable has three categories: “yes”, “no”, “kind of”. Our goal is to study whether 

these five variables can be modeled by a one-factor latent variable model. The number of 

all the possible response patterns is k=243. However, as most of the answers are “no”, 

139 response patterns are empty. Furthermore many response patterns have a frequency 

less than five. The detailed frequencies are reported in Table 69. 

TABLE 69: Number of Response Patterns with Small Frequencies. 

Frequency Number of Response 

Patterns 

Number of Cases 

1 46 46 

2 20 40 

3 11 33 

4 5 20 

5 2 10 

>5 20 3156 

Total 104 3305 
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We used a one-factor model to fit the data. The 𝑋𝑃𝐹
2 , 𝑋[2]𝑖𝑛𝑣

2 , 𝑋[2]𝑠𝑠
2  and p-value are 

reported in Table 70. 

TABLE 70: 𝑿𝑷𝑭
𝟐 , 𝑿[𝟐]𝒊𝒏𝒗

𝟐  𝑿[𝟐]𝒔𝒔
𝟐  and P-value of the Agoraphobia Sample 

 𝑋𝑃𝐹
2  𝑋[2]𝑖𝑛𝑣

2  𝑋[2]𝑠𝑠
2  

Value 383.32 180.46 188.80 

Degrees of freedom 227 40 40 

P-value <0.0001 <0.0001 <0.0001 

 

We can see that all these three statistics are pretty large and the p-values are almost 0. 

This indicates that the one-factor model is not a good fit to the data.  

As mentioned earlier, 𝑋𝑃𝐹
2 = ∑ 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖)
𝑖 + ∑ ∑ 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
𝑗𝑖 + ∑ ∑ ∑ 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗𝑘)
𝑘𝑗𝑖 + ⋯+

𝐺𝐹𝑓𝑖𝑡⊥
(1,2,⋯,𝑞)

= 𝑋[1]
2 + 𝑋[2]

2 + ⋯+ 𝑋[𝑞]
2 , we can use this sample to verify this equation. 

The 𝑋[1]
2 , 𝑋[2]

2 , 𝑋[3]
2 , 𝑋[4]

2  and 𝑋[5]
2  are reported in Table 71. 

TABLE 71: 𝑿[𝟏]
𝟐 , 𝑿[𝟐]

𝟐 , 𝑿[𝟑]
𝟐 , 𝑿[𝟒]

𝟐  and 𝑿[𝟓]
𝟐  of the Agoraphobia Sample 

 Value Degrees of freedom 

𝑋[1]
2  24.24 10 

𝑋[2]
2  188.80 40 

𝑋[3]
2  102.00 80 

𝑋[4]
2  70.26 80 

𝑋[5]
2  22.25 32 

 

The degrees of freedom of 𝑋𝑃𝐹
2  is 227. As we are running out of the degrees of freedom, 

we will omit 𝑋[1]
2 . We can see that 𝑋[2]

2 + 𝑋[3]
2 + 𝑋[4]

2 + 𝑋[5]
2 = 383.317, which is very 

close to 𝑋𝑃𝐹
2  383.32. However, the chi-squared distribution for 𝑋[3]

2 , 𝑋[4]
2  and 𝑋[5]

2  may not 

be valid due to the sparseness in the higher order subtables. 

The 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2   and the p-values are shown in the following tables. I 

bolded the p-values less than 0.05. 
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TABLE 72: 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐  for the Application 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 16.81 16.33 16.66 12.78 

(13) 65.94 47.71 51.26 41.366 

(14) 4.28 1.68 4.21 2.66 

(15) 7.75 0.37 4.30 2.72 

(23) 30.39 30.83 31.57 25.11 

(24) 14.77 9.91 10.75 7.80 

(25) 10.45 7.23 8.49 5.97 

(34) 10.60 10.64 11.14 8.37 

(35) 11.38 0.99 5.62 3.89 

(45) 16.38 12.31 27.88 21.09 
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TABLE 73: P-values for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 𝑴𝟐
(𝒊𝒋)

, 𝑿𝒊𝒋
𝟐  and �̿�𝒊𝒋

𝟐  for the Application 

 P-values 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 𝑀2
(𝑖𝑗)

 𝑋𝑖𝑗
2  �̿�𝑖𝑗

2  

(12) 0.0021 0.0003 0.0004 0.0017 

(13) <0.0001 <0.0001 <0.0001 <0.0001 

(14) 0.3690 0.4321 0.3773 0.2635 

(15) 0.1011 0.8299 0.3665 0.2556 

(23) <0.0001 <0.0001 <0.0001 <0.0001 

(24) 0.0052 0.0070 0.0290 0.0202 

(25) 0.0334 0.0267 0.0750 0.0503 

(34) 0.0314 0.0048 0.0249 0.0151 

(35) 0.0225 0.6094 0.2292 0.1423 

(45) 0.0025 0.0021 <0.0001 <0.0001 

 

The results for all these statistics are consistent with each other generally. From these p-

values, we can see that the association between most variable pairs cannot be explained 

the one-factor model. 

Then I fitted the data with a two-factor model. The 𝑋[2]𝑠𝑠
2  and 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
 and the 

corresponding p-values are shown in the following table. 
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TABLE 74: 𝑿[𝟐]𝒔𝒔
𝟐  , 𝑮𝑭𝒇𝒊𝒕⊥

(𝒊𝒋)
 and the Corresponding P-values 

 𝑋[2]𝑠𝑠
2  p-value 

 143.94 <0.0001 

(ij) 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 p-value 

(12) 22.51 0.0002 

(13) 36.19 <0.0001 

(14) 3.34 0.5025 

(15) 5.94 0.2032 

(23) 20.14 0.0004 

(24) 11.15 0.0248 

(25) 11.12 0.0252 

(34) 9.24 0.0552 

(35) 12.23 0.0156 

(45) 12.03 0.0171 

 

From these p-values we can see that the two-factor model does not fit the data well either 

and the association between most variable pairs cannot be explained by this model. Since 

both one-factor model and two-factor model did not fit well, we may consider other 

models such as log-linear model. 

IV.2 Summary 

In summary, I studied the Type I error and power of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, both theoretical and 

empirical, and compared the performance of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 to that of 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2 . I 
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introduced 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 to improve the performance of  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 when the two-way 

subtables are sparse and applied the improvement on 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 to 𝑋[2]
2 .  

When the correct model was fitted to the dataset and the sparseness problem was not 

present in the two-way subtables, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

  and 𝑀2
(𝑖𝑗)

 distributed asymptotically chi-

square. 𝑋𝑖𝑗
2  does not distributed chi-square. For �̿�𝑖𝑗

2  if the degrees of freedom are small, its 

empirical distribution does not approximate chi-square well. However, when the degrees 

of freedom are moderate or large, �̿�𝑖𝑗
2  still has an asymptotic chi-square distribution. 

When there is a sparseness problem in the two-way subtables, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 tends to have 

inflated type I error rate since its distribution may not be well approximated by the chi-

square distribution due to the sparseness in the subtables even if the total sample size is 

large. In this situation, 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 may be a good remedy. Simulation results show that 

even though the subtable is not sparse, 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 still distributed chi-square with 𝑑𝑓 = 𝑡. 

When an incorrect model was fitted to the dataset, 𝑋[2]
2 , 𝐺𝐹𝑓𝑖𝑡⊥

(𝑖𝑗)
, 𝑀2

(𝑖𝑗)
, 𝑋𝑖𝑗

2  and �̿�𝑖𝑗
2  can 

be used as diagnostics to detect the source of lack of fit. If lack of fit is present in second-

order marginal, then  𝑋[2]
2  would have higher power than an omnibus statistic such as the 

Pearson chi-square since it represents a test that is “focused” on the second-order 

marginal. Similarly, if lack of fit is present in the association between variable 𝑖 and 

variable 𝑗 , then  𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, 𝑀2
(𝑖𝑗)

, 𝑋𝑖𝑗
2  and �̿�𝑖𝑗

2  may have higher power than an omnibus 

statistic on the second-order marginals such as 𝑋[2]
2 . Simulation results show that  𝑀2

(𝑖𝑗)
 

has very low power. Although 𝑋𝑖𝑗
2  may have high power in some situations, I do not 

recommend to use it as diagnostics since it does not distribute chi-square theoretically. 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and �̿�𝑖𝑗
2  have the largest power among these four statistics. However, they may 

detect the lack-of-fit in the associations between different pairs of variables. The power 

of these statistics are affected by the sample size of the dataset. When the sample size 

decreases, both theoretical power and empirical power decrease. 

When there is a sparseness problem in the two-way subtable, 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 may have a low 

power. In this case, using 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 may be a good remedy to the sparseness in the 
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subtable. However, simulation results show that the power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 may or may not 

be higher than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Even though in the situations where the two-way 

subtable is very sparse and 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 does not improve the original 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, it did not 

perform worse in the simulations. And generally the empirical power of 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is 

closer to the theoretical power than those of the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 when the subtable is sparse. 

However, if there is no sparseness problem in the subtable, generally the power of 

𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 is lower than that of 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Thus, I recommend to use both 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

 and 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 and compare them. If these two statistics result in different test results, 

expected frequencies could be examined.  

When using 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, we need to decide the number of cells we choose, t, and which 

cells should we choose. I suggest to choose a moderate number of cells, say four or five. 

Simulation results suggest that we choose the cells in the center of the table. Particularly, 

for a dataset with 𝑐 categories in each variable, if 𝑐 is even, I will choose four cells 

corresponding to the categories pair (
𝑐

2
, 
𝑐

2
), (

𝑐

2
, 
𝑐

2
+ 1), (

𝑐

2
+ 1, 

𝑐

2
) and (

𝑐

2
+ 1, 

𝑐

2
+ 1). If 

𝑐 is odd, I will choose five cells corresponding to the categories pair (
𝑐+1

2
, 
𝑐+1

2
), (

𝑐+1

2
−

1, 
𝑐+1

2
), (

𝑐+1

2
, 
𝑐+1

2
− 1), (

𝑐+1

2
+ 1, 

𝑐+1

2
) and (

𝑐+1

2
, 
𝑐+1

2
+ 1). As the two-way table 

becomes larger, more cells could be taken from the center of the table. 

 

IV.3 Discussion 

IV.3.1 A Method That Did Not Improve 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 

Besides 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, there is another way that might be able to improve 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

. When 

computing 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, we actually don’t use all the 𝑐2orthogonal components. Instead, we 

only use (𝑐 − 1)2 orthogonal components that can produce the full table. This allows us 

different choices of the orthogonal components. As long as the components we choose 
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can produce the full table, the 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 computed should have (𝑐 − 1)2 degrees of 

freedom. But to improve the chi-square approximation, we can choose (𝑐 − 1)2 

components corresponding to the cells that tend to have largest expected frequencies. 

However, simulation results show that this method may not improve the performance of 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. There may be three reasons. Firstly, since the choice of the (𝑐 − 1)2 

orthogonal components should be able to produce the full table, we usually cannot choose 

some cells with relatively large frequencies. Secondly, by choosing (𝑐 − 1)2 cells, it is 

inevitable that we might choose some cells with relatively low frequencies. Thirdly, the 

original 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 already works well enough if we have to choose (𝑐 − 1)2 cells. For 

easy demonstration, I again labeled the cells in the four categories case below. 

TABLE 75: Labels of Cells for Four Categories Case 

Label of the cells Category of variable i 

1 2 3 4 

Category of 

variable j 

1 16 12 8 4 

2 15 11 7 3 

3 14 10 6 2 

4 13 9 5 1 

When computing the original 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

, by default we use the (4 − 1)2 = 9 cells on the 

bottom right corner of this subtable, which means cells 1, 2, 3, 5, 6, 7, 9 ,10 and 11. 

These cells already includes the cells in the center of this table. In Section III.2 we 

demonstrate that when choosing the 𝑡 cells for 𝐺𝐹𝑓𝑖𝑡⊥(t)
(𝑖𝑗)

, we will choose the cells in the 

center of the table since they will have large expected frequencies if the intercepts in the 
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GLLVM model are generally evenly distributed. Since when computing the original 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 we already include all the cells in the center, choosing other cells may not be 

able to improve the statistic generally. To demonstrate this, I repeated the five variables 

five categories power study with parameter setting 𝛼0(1) =

(−1.59,−2.30, −1.43,−3.02, −1.26)′, 𝛼0(2) =

(−0.84,−0.38, −0.32,−1.50, −0.21)′, 𝛼0(3) = (0.71,0.16,0.15,0.57,0.78)′, 𝛼0(3) =

(1.48,1.80,1.66,2.13,1.65)′, 𝛼1 = (1.5,1.7,1.9,2.1,2.3)′, 𝛼2 = (0.8,0.8,0,0,0)′. 500 

pseudo samples with sample size 300 were generated. Besides using the default cells in 

the bottom right corner of the subtable, I also computed 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 using the cells in the 

top right corner of the subtable. The empirical power results are listed below. 
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TABLE 76: Empirical Power for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

 with Two Different Cell Selections 

 Empirical Power 

(ij) Default cells (bottom right 

corner) 

Top right cells 

(12) 0.1638 0.1460 

(13) 0.0682 0.0520 

(14) 0.0771 0.0540 

(15) 0.0581 0.0460 

(23) 0.0545 0.0600 

(24) 0.0701 0.0460 

(25) 0.0526 0.0640 

(34) 0.0553 0.0560 

(35) 0.0514 0.0520 

(45) 0.0570 0.0400 

From this table we can see that the empirical power does not differ much for these two 

different cells selections. So this method was not useful. 

 

IV.3.2 Computation Time 

I used R to do all the simulation studies. When the number of variables and categories 

increases, the computation time will increase substantially. So far, the computation time 

for a nine variables five categories case is about half an hour for just one sample. The 

main reason for such a long computation time is that we need to conduct lots of matrix 

production and numerical integration when computing the statistics we are investigating. 
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When estimating the parameters, I used two functions: the grm function in the ltm 

package and the mirt function in the mirt package. The grm function works significantly 

faster than the mirt function does. However, the grm function can only fit the one-factor 

model for multinomial data. The mirt function can fit the model with any number of 

factors. Thus, I only used mirt function for the type I error rate study for a two-factor 

model and used grm function for all the other simulation studies presented earlier to 

decrease the computation time. 

Since I was doing simulation study, using parallel computing can decrease the 

computation time substantially. I used the foreach function in R to do the parallel 

computing. I run my simulation on mathpost which has 24 cores. After several 

experiments, I found that using 20 cores simultaneously can decrease the computation 

time most. For example, the computation time for the six variables four categories two-

factor type I error study I presented in Sec III.1 using traditional for loop in R is about 7 

hours. But using parallel computing with 20 cores reduces the computation time to about 

half an hour. 

 

IV.3.3 Memory Issue 

When doing my simulations, there is a memory issue when computing several very large 

matrices.  

The first issue is about the H matrix and M matrix I introduced in Sec II.3.1. These two 

matrices may be the most important matrices that I need to compute since all the statistics 

I investigated need to be computed through these two matrices. Since the rows in the H 

matrix consist of a subset of the rows in the M matrix, I only stored the M matrix to save 
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memory. With a large number of variables and categories, the M matrix can be very 

large. For example, for the nine variables five categories case, the M matrix is 900 by 

1953125. Using the traditional matrix generation in R, 13.1 Gb is needed to store this M 

matrix. Mathpost has 96 GB of memory. Since most elements in the M matrix are just 

zero, the M matrix is known as a sparse matrix. Using the Matrix package in R, we can 

generate the M matrix as a sparse matrix which save large amount of space. The M 

matrix for nine variables five categories case only need 812 Mb memory to store if we 

generate it as a sparse matrix. Although we have decreased the memory needed to store 

the M matrix substantially, this may still be a problem when we use parallel computing. 

When doing parallel computing, we use more cores to do simulations simultaneously. 

However, with more cores, less computing memory is allocated for each core. And the M 

matrix is not the only large matrix we need to store in memory. Thus, we will run out of 

memory very soon when we increase the number of variables and categories in our 

simulation. If we have to run simulations for large numbers of variables and categories, 

we have to use the traditional for loop in R, which is very time consuming.  

Another memory issue happens when computing 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

. Recall from Section II.3.5, to 

compute 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 we need to perform a regression and 𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 is the sum of 

corresponding sequential sum of squares. When performing that regression, we need to 

compute  

�̂� = �̂��̂�
𝟏
𝟐𝐇′ 

Where 

𝑫 = 𝑑𝑖𝑎𝑔(𝝅(𝜽)) 
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Σ = Σ(𝜃) = (𝑰 − 𝝅
𝟏
𝟐 (𝝅

𝟏
𝟐)

′

− 𝑨(𝑨′𝑨)−𝟏𝑨′) 

Thus, �̂� is a 𝑘 by 𝑘 matrix where k is the number of response pattern. For the nine 

variables five categories case, 𝑘 = 59 = 1953125. Obviously, �̂� will not be a sparse 

matrix and there is no way for us to store it in the memory. To solve this problem, we 

actually don’t compute �̂�. We compute �̂� directly by 

�̂� = �̂��̂�
𝟏
𝟐𝐇′ = (�̂�

𝟏
𝟐𝐇′ − 𝝅

𝟏
𝟐 ((𝝅

𝟏
𝟐)

′

�̂�
𝟏
𝟐𝐇′) − 𝑨(𝑨′𝑨)−𝟏 (𝑨′�̂�

𝟏
𝟐𝐇′)) 

In this way, we avoid computing a matrix with extremely large dimensions. The same 

idea has been applied to many computations when calculating those statistics.  

 

IV.3.4 Convergence Problem 

As presented in Chapter 3, some simulations had problems of convergence. When the 

ML estimation algorithm for intercepts and slopes estimates does not converge, some 

slope estimates will be extremely large. An extremely large slope estimate will make 

several estimated cumulative frequencies the same value for different categories in one 

variable. In this case, we failed to compute the derivatives for the corresponding 

parameters. Without these derivatives, we cannot compute the statistics studied here. 

Generally, with a smaller sample size and skewness in the two-way subtable, it is more 

likely that the ML estimation algorithm will fail to converge. For example, I listed the 

convergence rate for the two-factor six variables four categories type I error rate 

simulations I presented in Sec III.1. below. 
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TABLE 77: Convergence Rate for the Two-Factor Six Variables Four Categories Type I 

Error Rate Simulations 

 Sample size Convergence rate 

Skewed 500 .990 

150 .617 

Non-Skewed 500 .995 

150 .733 

 

We can see that when we decrease the sample size from 500 to 150, the convergence rate 

decreases a lot. And the convergence rate for skewed case is lower than that for Non-

Skewed case.  

However, even though the sample size is not small and the two-way subtable is not 

skewed, the convergence problem may still present. One example is the two-factor four 

variables three categories type I error study mentioned in Sec III.1. The sample size is 

500 and the parameter setting is listed below: 𝛼0(1) = (−2,−2, −2,−2)′, 𝛼0(2) =

(2,2, 2, 2)′, 𝛼1 = (0.0, 1.0, 1.0, 0.0)′, 𝛼2 = (2.0,0.1,0.2,2.0)′ . Pseudo data for 1000 

samples were generated. With this setting, the dataset has neither small sample size nor 

skewed two-way subtable. However, the convergence rate for this simulation is 0.753. 

Thus I discarded this simulation. 

However, if we do need to evaluate the empirical type I error rate or power of a 

simulation with convergence problem, we can put a cap on the slope estimates. Since the 

failure of computing the statistics was due to some extremely large slope estimates, 

putting a cap on these estimates can solve this problem. After some experiments, I found 

that for a two-factor model, 3.5 and -3.5 are good caps for slope estimates; for a one-



  120 

factor model, -4 and 4 are good caps for slope estimates. I repeated the two-factor four 

variables three categories type I error study and capped the slope estimates with -3.5 and 

3.5. With this remedy, the statistics can be computed for 91% of these samples. The type 

I error rate of is listed in the following table. 

TABLE 78: Type I Error Rate for 𝑮𝑭𝒇𝒊𝒕⊥
(𝒊𝒋)

, Two-Factor Four Variables Three 

Categories, Slope Capped. 

𝐺𝐹𝑓𝑖𝑡⊥
(𝑖𝑗)

 Type I error rate 

(12) 0.0582 

(13) 0.0527 

(14) 0.0648 

(23) 0.0703 

(24) 0.0637 

(34) 0.0582 

 Comparing to the interval 0.05 ± 1.96√
(0.95)(0.05)

1000
= (0.0365,0.0635), three out of six 

type I error rates are outside of this interval. 

Other methods of numerical estimation would have better convergence performance. 

Estimation by bayes methods or penalized ML would be expected to have better 

convergence proportions. 

Even if MLE is obtained, some estimates are so extreme that calculation of the G, matrix 

of second derivatives fails due to �̂� equals zero or one. Calculation of  𝑋[2]
2 = 𝒆′�̂�𝒆

−𝟏𝒆 

may be unstable due to inverse of �̂�𝑒 matrix. The method of orthogonal component using 

sequential sum of square via the SWEEP operator overcomes this problem. 
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