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ABSTRACT 

Emerging information and communication technology (ICT) has had an enormous 

effect on the building architecture, engineering, construction and operation (AECO) fields 

in recent decades. The effects have resonated in several disciplines, such as project 

information flow, design representation and communication, and Building Information 

Modeling (BIM) approaches. However, these effects can potentially impact 

communication and coordination of the virtual design contents in both design and 

construction phases. Therefore, and with the great potential for emerging technologies in 

construction projects, it is essential to understand how these technologies influence virtual 

design information within the organizations as well as individuals’ behaviors. This research 

focusses on understanding current emerging technologies and its impacts on projects 

virtual design information and communication among projects stakeholders within the 

AECO organizations.  
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CHAPTER 1 

INTRODUCTION TO THIS RESEARCH MOBILE VIRTUAL DESIGN AND 

CONSTRUCTION ADOPTION IN THE ARCHITECTURE, ENGINEERING, 

CONSTRUCTION AND OPERATION FIELDS 

This research has four components, and each component represents different 

aspects of how emerging technologies are used within the industry. The authors started to 

understand how technology been adopted in the industry, specifically mobile computers 

technology, to approach virtual design and construction use-cases. The second component 

aimed to understand site-based technologies and how they influence the virtual design 

information in construction projects. The third component came as a conclusion of the 

second component where Mixed Reality technology has shown a great potential to enable 

bidirectional design information and coordination, therefore this component focused only 

on the use of MR design information communication, but with the focus on how project 

stakeholders behave using this technology. The last component also focused on the use of 

MR technology in design and constructability review sessions by controlling the use of 

mobile devices to understand if same behaviors can be observed when individuals are 

forced to use a particular MR environment.  

The subsequent paragraphs describe in detail each of these four research 

components. 
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1.1 MOBILE VIRTUAL DESIGN AND CONSTRUCTION IN THE AECO 

INDUSTRIES   

The first component aimed to explore the industry’s adoption of mobile Building 

Information Modeling (BIM) or mobile Virtual Design and Construction (VDC), which is 

defined as the use of a mobile computing device to engage with BIM/VDC approaches to 

construction projects. This component seeks to understand current levels of adoption of 

mobile BIM/VDC among industry members in the AECO fields. A survey was created to 

obtain feedback from industry practitioners. The survey asked questions about current uses 

of BIM and VDC to understand the level of adoption through traditional, desktop 

computing methods, as well as mobile BIM/VDC approaches. Respondents were asked to 

describe the biggest technological issues faced during implementation of mobile 

BIM/VDC, and to anonymously provide a critique of their own company’s process for 

BIM/VDC adoption. The responses were also compared to studies conducted by other 

researchers to understand how similar or different the obtained responses were from 

broader surveys. A discussion of the survey results suggests where future mobile 

BIM/VDC implementations could offer the greatest benefits. In some construction 

activities, mobile BIM/VDC seems to be underutilized despite its potential. Also, although 

smartphone devices have been widely used and tablets are becoming a good choice for 

presenting BIM content in the field, the respondents emphasized investigating wearable 

devices in future research. The limited mobile hardware and software capabilities, 

especially in cases that involve large models and data, was cited as the main constraint 

currently hindering further mobile BIM/VDC adoption for graphics-heavy applications. 
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Additionally, connectivity with the internet or between mobile devices was also suggested 

to be insufficient for effectively using mobile BIM/VDC in construction. 

1.2 ICTS INFLUENCES ON INFORMATION COMMUNICATION AND 

COORDINATION PROCESSES IN  CONSTRUCTION INDUSTRY 

The second component in this research came as a result of the first. The industry 

members are currently using emerging technologies to facilitate different construction 

tasks but with a limited understanding of how technologies influence the information flow 

between projects’ virtual contents and construction sites. Therefore, this component 

explored the state of this field of research by analyzing the information coordination flow 

between virtual models and physical construction sites for seven selected technologies that 

have been used in the AECO industry. The authors analyzed 119 journal articles published 

between 2005 and 2015 from three databases, and then classified these journal articles 

according to the manner in which the described implementations of singular or combined 

technologies facilitated information flow between the physical sites and the virtual models 

in a given construction project. The two classifications were: bidirectional coordination, 

when information flows between virtual models and construction sites in two directions; 

and unidirectional coordination, when information flows in only one direction. The 

findings show that unidirectional coordination applications substantially outnumber 

bidirectional implementations. Additionally, within the bidirectional categories, about 

26.9% of the total number of approaches fall into the non-automated bidirectional 

coordination classification, while only 2.5% of papers describe the use of an automated 

bidirectional method. Further discussion is provided to explore the potential contributing 
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factors that have hindered the automation of project data through the use of technologies 

in the AECO industry.  

1.3 MOBILE MIXED REALITY TO INFLUENCE DESIGN AND 

CONSTRUCTABILITY REVIEW SESSIONS 

The second research component suggested that the use of Mixed Reality (MR) can 

potentially enable bidirectional information coordination. Therefore, the third component 

in this study focused only on the use of MR, but not for field and model communication 

and coordination. Instead, the focus was on how these technologies can influence human 

behaviors in MR environment during only the design phase. Specifically, this component 

studies the use of MR in design and constructability review sessions and tests whether the 

combined virtual-physical nature of MR facilitates the same behaviors and outcomes for 

users who ordinarily only use BIM walkthroughs (Virtual Reality) or physical mock-ups 

(where users can only interact with physical objects) for their review and constructability 

sessions. Additionally, this research component identifies and analyzes various behaviors 

such as decision making, problem solving, and design alternatives that occur as users 

interact with MR on different mobile computers in order to understand how different 

mobile computers, such as wearables and handheld devices, can lead to different behaviors 

in an MR environment. This component found that MR can facilitate some of the behaviors 

of Virtual Reality and physical mock-ups in design and constructability review sessions. 

Additionally, different mobile computers can potentially influence project stakeholders’ 

behaviors in the MR environment. For example: according to this research methodology, 

handheld devices between 6 inches and 10 inches may potentially enable more/better? 
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decision making behavior as compared to other devices selected in this study. An initial 

framework has been developed for future research aimed at illustrating the potential 

behaviors that users might experience when interacting with particular pieces of technology 

in review sessions.  This could allow future researchers to better understand how to achieve 

a desired behavior using different mobile computers and better plan for technology. 

1.4 SINGLE MOBILE USE IN MIXED REALITY TO INFLUENCE DESIGN 

AND CONSTRUCTABILITY REVIEW SESSIONS 

The last part in this research is a continuation of the third component aimed at 

understanding project stakeholders’ behaviors using different mobile devices in MR design 

and constructability review sessions. Whereas the prior component presented a variety of 

mobile MR devices for all participants and allowed them to choose to use any device at 

any point in the design review session, the participants in this fourth research component 

were not provided with a variety of devices for their selection. Instead, participants were 

provided with only a single mobile device during a design review activity. This allowed 

the researchers to explore whether different mobile MR devices would enable similar or 

different behaviors when participants were not provided with a choice of device. In many 

industry and academic research applications, a variety of devices capable of providing a 

MR experience are not provided. Therefore, the intention of this fourth research component 

was to provide an understanding of whether the same types of behaviors that were observed 

in the sessions involving multiple devices could be observed with certain specific devices. 

As a result, an MR framework that illustrates the percentages of each behavior using 

different mobile computers was developed and included. Additionally, a table that helps 
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researchers explore whether different mobile MR devices would enable similar or different 

behaviors when participants were not provided with a choice of device was created. This 

research component identified a mechanism for analyzing the participant behaviors that are 

associated with the different mobile computers through a tri-level matrix.  The 

understanding gained with this component could support ongoing research, by enabling the 

incorporation of more data through the framework of the matrix that was developed. 
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CHAPTER 2 

MOBILE VIRTUAL DESIGN AND CONSTRUCTION ADOPTION IN THE 

ARCHITECTURE, ENGINEERING, CONSTRUCTION AND OPERATION FIELDS 

2.1 INTRODUCTION 

Virtual Design and Construction (VDC) and Building Information Modeling (BIM) 

have been increasingly adopted in the Architecture, Engineering, Construction, and 

Operation (AECO) industry. VDC refers to the management of integrated multi-

disciplinary performance models of construction projects, including building design, work 

processes, and organization (Li et al., 2009), while BIM involves the development of digital 

models representing physical and functional building characteristics (Building Smart 

Alliance, 2013). BIM can be a tool for implementing VDC. Both BIM and VDC use in 

construction has been increasing in recent years (National Federation of Builders, 2012). 

This increased use provides an opportunity to leverage this information in the field with 

mobile computers. Construction personnel have not traditionally had access to VDC 

information in the field. Mobile computing hardware, in the form of smartphones, tablets, 

and wearable devices, have become more affordable and available for industry 

professionals to access computer information in the field. Additionally, with the increase 

in wireless network speeds and the development of mobile VDC software applications, a 

robust mobile computing infrastructure has been emerging with potential to improve on-

site construction information management. This research explores mobile VDC use in 

industry, which was defined as any use of a mobile computing device to engage with VDC 
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approaches to construction, other than non-VDC based mobile computing tasks such as 

email checking and web browsing. 

While prior researchers have explored technology management issues related to 

BIM and VDC, several questions still remain related to mobile VDC. The research 

presented in this paper explores the following research questions: 

What forms of mobile (IT) are having the greatest impacts of mobile VDC? 

Which VDC use-cases are commonly facilitated through mobile VDC? 

The authors addressed these questions through the development and distribution of 

an industry-based survey. The responses provided were organized and analyzed to identify 

noteworthy responses and trends in responses. Additionally, the results obtained from this 

small survey distribution were compared to the results obtained from larger prior studies 

to identify similarities in responses. The results of this work helped to address the research 

questions and highlight aspects of mobile VDC where industry members see benefits and 

challenges and also where they foresee future benefits. Ultimately, this work will help to 

guide future research and development efforts to improve the AECO industry through 

strategic mobile VDC implementation. 

2.2 BACKGROUND 

2.2.1 Conventional BIM and VDC 

In recent years, the use of mobile computing tools to facilitate BIM and VDC 

approaches have offered new methods for the AECO fields to increase project qualityand 

efficiency, while decreasing costs and project delivery time (Russell et al., 2014; Lin, et 

al., 2014; Underwood J. and Isikdag U., 2011). In particular, many researchers have 
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suggested that BIM and VDC will enhance or enable increased productivity (Aapaoja et 

al., 2013; Aranda-Mena et al., 2009; Eastman et al., 2011; Gustavsson T. and Gohary, 2012; 

Teicholz, 2013). These suggestions have also been echoed by industry-lead studies. For 

instance, Mortenson Construction and its research partners investigated and analyzed 18 

construction projects completed between 2003 and 2013, seeking to identify and 

understand three key performance measures: time, cost, and productivity and concluded 

that there are opportunities for the building industry to deliver value through the 

implementation of BIM/VDC (Mortenson, 2014). This study also indicated that higher 

adoptions of BIM/VDC technology on a project were correlated with higher performance 

values (Mortenson, 2014). It may be possible to leverage mobile VDC to help facilitate 

these suggested benefits by allowing AECO professionals to access VDC content in the 

field. For example, mobile and wireless solutions provided real and considerable benefits 

for construction projects: Worker productivity increased 30.1%; operating costs were 

reduced by up to 14.1%; and sales and revenue increased by 13.6% (Krebs D., 2009). 

2.2.2 Mobile VDC 

VDC and BIM approaches provided technological solutions to common problems, 

such as cannot-try-before-building and ineffective information and knowledge 

management that challenge contemporary project managers (Li et al., 2009). Mobile VDC 

may offer further benefits by allowing individuals to access this content outside of a 

traditional office setting. Construction work-sites have traditionally been dominated by 

paper drawings and 2D representations for communication (Davies and Harty, 2013). In 

order to overcome this, various mobile systems, such as electronic pocketbooks, laptop 
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PCs, and personal data assistants (PDAs) have been implemented and trialed on 

construction sites the early 1999s (Kim et al., 2013; Lin and Su., 2013; Meza et al., 2014; 

Wang et al., 2007). There have been many success stories in this endeavor, and mobile 

computing implementations have developed to produce solutions that can improve project 

performance. There have been permanent changes to site activities, workers, and the 

workplace by being able to obtain updated information of the current and planned 

activities, and with easier access to mobile devices and faster wireless connections, AECO 

fields will likely continue reaping the benefits (Nourbakhsh et al., 2012; Chen and Kamara, 

2011; W. Shen et al., 2010; Chen et al., 2008). 

A number of organizations and researchers have developed approaches to using 

mobile VDC to support the construction process. The state-of-the-art to facilitate on-site 

information exchange is with the use of advanced mobile computing technology (Kim et 

al., 2013). Currently, mobile computing contains a spectrum of low- and high-end devices. 

Tablet computers and wireless handheld smartphones are commonly used by project 

managers, contractors and subcontractors, architects, consulting engineers, supervisors, 

field workers, and inspectors in the AECO industry (Krebs, 2009). There are many uses 

for larger devices, such as tablets and convertible notebooks, which can support graphics-

heavy applications better than their smaller, handheld counterparts. At present, mobile 

devices are found to be useful in labor management collaboration and communications. 

For example, a mobile tablet computer and shared workspace information was developed 

to support construction inspection processes (Ochoa et al., 2011). Other mobile innovations 

include a telematic digital workbench, which is a horizontal tabletop user interface that 
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integrates mobile computing and wireless communication and has been deployed for 

construction defect management (Dong et al., 2009). 

2.2.3 Mobile Computing User Interfaces 

In addition to the increasingly common smartphone- and tablet-based mobile 

computers, emerging wearable mobile devices, such as virtual reality devices (Google 

Glass, Head Mounted Display, Oculus Rift, Sony Project Morpheus and Samsung Gear 

VR) and smart watches, have the potential to expand the scope of traditional applications 

and integrate mobile computing more naturally into site practices. These mobile devices 

may help to facilitate augmented reality visualization for the AECO fields. Mobile 

augmented reality would provide the means to access information in an intuitive way by 

superimposing virtual augmentations to specific objects in an environment, as seen through 

handheld mobile devices (Behzadan and Kamat, 2007; Kim et al., 2013; Veas et al., 2012). 

An integrating system has been developed for presenting multiple image-based 3D model 

reconstruction approaches, including augmented reality (Yang et al., 2013). Moreover, a 

case-study implemented an innovative site BIM system on a major hospital construction 

project to allow site workers with mobile tablet PCs to access design information and 

capture work quality and progress data (Davies et al., 2013). Other mobile VDC 

implementations include: steel fabrication delivery drawings on PDAs (Lipman, 2004); 

sending information to a construction via ‘information booths’ (Hewage and Ruwanpura, 

2009); and large touch screen placed on-site (Sacks et al., 2010). 

Wearable computing, perhaps most notably popularized by Google Glass, has also 

attracted increased attention since it facilitates a new form of cyber-physical interaction 
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through small, body-worn devices that are always on and accessible (Ngai et al., 2010; 

Gruebler et al., 2014). Head mounted displays (HMDs), which are a leading candidate for 

practically realizing some of these applications, have become lighter, brighter, smaller and 

less expensive during the last years. Although HMDs can create challenges because the 

visualization environment is not natural (Patterson et al., 2006), visualizing on-task 

information presented through HMDs is still more suitable than auditory information for 

preventing careless skill-based errors (Nakanishi et al., 2010), it allows context-sensitive 

information to be shown in a user’s visual field while keeping the user’s hands free for the 

main task during the work. 

The possibilities for mobile computing technologies continue to expand and evolve. 

The possible implementation options for how these technologies can be used are virtually 

infinite. The general challenge with having a plethora of technological options and even 

more VDC/BIM options in the field is in deciding what technological options are the most 

viable and useful for given use-cases. In other words, the question is not how can mobile 

technology be used for VDC/BIM, but how should it be used to add value? However, there 

are difficulties in addressing this question because of various mobile technologies and 

methods for using these different tools among AECO professionals. Therefore, this 

research takes an initial step toward exploring this question by gathering industry inputs to 

understand how industry professionals are using mobile VDC. The data collected helps to 

begin defining current mobile VDC implementations as well as new areas for mobile VDC 

research and development where additional benefits may be observed. 
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2.3 METHODOLOGY 

To address the research questions targeted in this work, AECO industry feedback 

was collected through a survey. This survey gathered industry feedback regarding the use 

and perception of VDC, including both traditional and mobile VDC approaches. The 

survey was distributed to architects, engineers, general contractors/construction managers, 

subcontractors, owner representatives, and consultants. The overall aim of the survey was 

to identify general perceptions of the current level of mobile VDC adoption and practical 

ideas for additional research areas from professionals in the AECO fields. Based on this 

aim, the specific survey questions were developed based on specific objectives including: 

Assess the motivation among industry members for using mobile VDC; Determine most 

common BIM use-cases and its effectiveness for VDC technology; Identify which VDC 

use-cases tend to be performed with mobile VDC approaches; Identify current challenges 

facing mobile VDC adoption; And identify future mobile VDC research areas and 

development opportunities with high perceived value. 

2.3.1 Survey Development 

Specific questions were developed to address the intended aims of this survey. 

These questions generally allowed respondents to qualitatively evaluate their own 

experience with mobile and traditional VDC. To allow respondents to provide candid 

critiques of their own experience, respondents were not asked to provide their name or the 

name of their company. Instead, they were asked to provide more general, demographic 

information to help add context to their responses. These demographic questions asked for 

information related to the respondent’s: Field, such as Architect, Engineer, General 
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Contractor/Construction Manager, Owner Representative, Subcontractor, Consultant, 

Research; As well as their company’s  market sector(s) and size. 

The levels of respondents’ and companies’ VDC experiences were also obtained 

using questions designed to identify their level of VDC experience and to rate the 

company's technological and VDC background. For example, respondents were asked 

“How would you describe your own level of experience with VDC (mobile or otherwise)?” 

and “How long has your company been using some application of VDC (mobile or 

otherwise)?” Three questions were also generated to reflect training program availability 

provided by companies and to indicate the average time needed to train employees for 

using mobile VDC. 

The second part of the survey solicited responses related to the adoption of mobile 

VDC and perceptions of its use. Respondents were asked about their use of 25 specific 

BIM uses, as defined by the BIM Project Execution Planning Guide (Computer Integrated 

Construction Research Program, 2010). For each of these 25 BIM uses, respondents were 

asked two questions: “Have you used a VDC approach (mobile or otherwise) to this use-

case in the past?” and “Have you used mobile VDC approach to this use-case in the past?” 

Here, the main objective was to understand the frequency of use of mobile VDC as 

compared to other VDC approaches in each BIM use-case. These questions also helped to 

indicate the types of BIM uses where mobile VDC adoption may be more or less mature.   

The last part of the survey solicited responses related to respondents’ professional 

opinions of mobile computing hardware and software applications, and the extent to which 

these are capable of facilitating mobile VDC approaches. Responders were asked about 



 

 15  

their perceptions related to the willingness of current industry professionals to use 

smartphones, tablet computers, and wearable devices. Finally, open-ended perception 

questions were asked to generate responses related to the type of research topics that 

industry professionals believe should be studied to provide value to the AECO industry in 

the next 5 to 10 years.     

2.4 DATA ANALYSIS 

The data obtained from the survey responses was organized and analyzed to 

identify noteworthy trends and findings. This data came in the form of responses to 

multiple choice questions and Likert scale-based questions related to the extent to which 

respondents agreed with or supported certain statements. Additionally the collected data 

included text responses generated for open-ended questions. To understand how well the 

responses provided by the respondents to this research align with the perception among the 

industry at large, the data obtained was compared to other, prior research (McGraw-Hill, 

2014). Through this aggregation and analysis of the data, several noteworthy trends were 

identified. 

2.5 RESULTS 

After distributing the survey, 35 individuals from the AECO fields provided 

responses to the questions. These individuals represented a broad cross section of the 

AECO industry. Due to the small sample size that was obtained in this study, the collected 

data was compared to the sample results obtained by larger surveys, including the McGraw 

Hill Construction report (2014). Figure 1 shows the responses reported in the larger 

McGraw Hill survey, and compares them to the responses obtained in this research. While 
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there were some differences between the surveys, there were also a number of similarities. 

For example, the market sectors in which respondents worked had a similar distribution 

between this mobile VDC survey and the McGraw Hill Construction report (2014), as 

illustrated in Figure 1. Also, in both surveys, over half of the respondents reported having 

more than three years of BIM experience. Moreover, the majority of respondents were from 

companies involved in general contracting/construction in both surveys. Therefore, 

although the sample size obtained through this survey is small, the responses obtained 

come from individuals with similar background BIM experience and similar types of work 

to those in the larger survey.  

After the respondents’ data was compared to prior research, the responses obtained 

were organized and analyzed. About 71% of respondents indicated that more than half of 

their company's new and ongoing projects involve BIM/VDC applications. To further 

dissect current BIM use, respondents were asked about their level of BIM adoption for 

different BIM uses, as defined in the BIM Project Execution Planning Guide (2011). For 

each BIM use listed, respondents were asked whether they had implemented this BIM use 

in any format. Additionally, they were also asked if they had implemented the use, 

specifically with mobile VDC. 3D Coordination was reported as the most widely used by 

respondents in traditional and mobile approaches. 

However, about 69% of the responses indicated that the second most common VDC 

(mobile or otherwise) applications include: Design Reviews and Cost Estimation. For 

mobile VDC uses, 3D Control and Planning and Design Review were the second most 

common. It is noteworthy that Cost Estimation is the use-case with the lowest interest in 
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mobile VDC as compared to VDC (mobile or otherwise). Moreover, Structural Analysis 

and Disaster Planning obtained the lowest interest to be used in either both VDC (mobile 

or otherwise) and mobile VDC. Figure 2 shows the ten most common BIM/VDC uses 

facilitated by both VDC (mobile or otherwise) and mobile VDC.  

                         

                     Figure 1 Companies' Market Sector 

Respondents were also asked about which uses of mobile BIM/VDC will add 

important value in the next five to ten years and which uses hold the greatest potential for 

bridging the gap between design and construction. The most common answers included: 

On-site 3D Coordination and Scheduling, Design Review, and Existing Conditions 

Modeling. Respondents highlighted wearable technologies, mobile computer connectivity, 

and ease of accessing on-site information as areas with high perceived future value worth 

studying further.  
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For mobile device usability, smartphones (Android, iPhones, Windows Phones, 

etc.) have been used for longer period than tablet computers (iPads, MS Surfaces, etc.) or 

wearable computers (Google Glass, Smart Watches, etc.) for either on-site 

implementations or off-site experimentation. 28 out of 35 respondents’ companies have 

four or more years of using smartphones, while 13 out of 35 companies have been used 

tablets for four or more years. 

 

Figure 2 the most 10 common BIM/VDC uses in both VDC (mobile or otherwise) 

and mobile VDC 

Although smartphones and tablets have been used for a much longer time, four 

companies have started using wearable computers for less than a year. However, when 

respondents were asked to indicate their opinions about which mobile computing platform 

would enable widespread mobile VDC adoption in industry, 29 respondents suggested 

tablets, while 18 suggested smartphones and 9 respondents suggested wearable technology.  

In regard to the average training program time to prepare companies’ employees 

for implementing mobile VDC, most respondents agreed that it takes a few days to train 
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employees to deal with the new mobile VDC technologies. 20 out of 35 said they already 

have training programs to prepare employees for implementing mobile VDC technology. 

Additionally, most respondents agreed that their companies’ field crew would be willing 

to use mobile computing devices, but they still do not use them in practice due to many 

challenges.  

The major barriers that currently inhibit the adoption of mobile VDC strategies in 

industry were also suggested by respondents. In fact, only about 46% of respondents 

indicated that current mobile computing hardware and software applications are sufficient 

for the implementation of mobile VDC in the field. More specifically, they identified poor 

connections and storage limitations in mobile tools as key factors holding back mobile 

VDC adoption. 

2.6 DISCUSSION 

The current levels of adoption of mobile VDC and perceptions among industry 

members in the AECO fields were assessed in this survey. While the sample size obtained 

for this initial work was much smaller than that of prior works, the results are generally in 

line with the results obtained in a prior, larger, BIM/VDC survey conducted (McGraw-Hill 

Construction, 2014). The prior study explored BIM adoption in industry in general, but this 

research specifically explored mobile VDC, aiming at identifying how mobile VDC is 

being used for different use-cases.  

2.6.1 Opportunities for Mobile VDC 

The AECO industry has made important strides in improving project efficiency 

through the use of new mobile VDC technology. Respondents indicated that ease of access 
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to data is a motivating factor for adopting mobile computing tools that facilitate VDC. In 

particular, respondents noted that mobile BIM will change how documents are delivered, 

and mobile VDC will improve project collaboration by expediting quick access to key 

information using mobile devices to analyze and project images and 3D visualizations at 

every step of the construction process.  Additionally, they agreed that mobile VDC will 

enhance project communication, facilitate as-built modeling, and allow for rapid model 

modifications while adapting to new design changes. Overall, coordination and exchange 

of information between project stakeholders was the key factor for mobile VDC adoption. 

However, 3D Coordination, Design Review and 3D Control and Planning construction 

activities are the most widely implemented with mobile VDC approaches. In these cases, 

design review software and hardware capable of processing potential model files are 

required. In terms of software, numerous applications are commercially available and can 

be run on mobile tablet computers, such as BIM 360 products from Autodesk, Tekla BIM 

sight Mobile, and BIM anywhere. Generally, these mobile applications do not provide all 

the features of desktop computer-based software. Mobile computers have storage space 

limitations and hardware processing power that typically only support light modifications 

and limited project collaboration.   

Overall, the level of adoption of mobile VDC compared to VDC (mobile or 

otherwise) is also important. For example, about 57% of respondents use VDC (mobile or 

otherwise) to facilitate 3D Control and Planning, while 46% implement mobile VDC for 

the same activity. In this case and others, it is apparent that the level of adoption using 

mobile tools has a substantial share in some BIM use-cases. Therefore, there is an 
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opportunity to investigate what BIM/VDC use-cases can be totally implemented with 

mobile tools in the next few years, and what mobile devices can handle and adequately 

facilitate these use-cases. 

2.6.2 Challenges Associated with Mobile VDC 

Challenges were found related to mobile VDC adoption in the AECO industry. 

First, respondents said that signal connectivity with the internet or between mobile devices 

is insufficient for effectively using mobile VDC in construction projects, and this is 

therefore a crucial technological obstacle that needs to be overcome. This problem was also 

investigated by other researchers (Atalah and Seymour, 2013; Shen et al., 2008).  

A second challenge in mobile VDC implementation noted by respondents is poor 

software usability stemming from limited computational power, disk space, screen size, 

etc. Even though mobile computing devices are becoming increasingly powerful, they 

cannot yet compete with high-end desktop machines, and they typically cannot handle 

intensive software applications, especially those that deal with complex simulations or 

massive data sets. However, emerging technologies have started solving some of these 

difficulties. For example, the use of cloud computing allows the data exchange over 

wireless networks to overcome limited mobile storage space (Ijeh, 2012; Jiao et al., 2013; 

Wang et al., 2015). Researchers have also studied how to advance the use of wireless 

networks in the field (Atalah and Seymour, 2013; Brilakis i. 2007; Harun and Bichard, 

2007; Nielsen and Koseoglu, 2007). Moreover, some BIM use-cases are already working 

on mobile environments with commercial software applications that have identified ways 

to reduce model sizes and complexities that would otherwise limit mobile computing 
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performance. Even so, there are still constraints facilitating mobile VDC in some activities 

such as 3D Control and Planning and Existing Conditions Modeling, since these need other 

devices and equipment, including laser scanning with point cloud manipulation software 

or digital layout equipment. 

Other challenges were also reported by respondents in the open-ended questions. 

When asked about the major barriers currently inhibiting the adoption of mobile VDC 

strategies, several different challenges were identified. The most common of the mobile 

VDC challenges mentioned by respondents were technological capabilities, cost, and user 

training. Additionally, the ease of use and technical skill [of users] were also mentioned by 

at least one individual in the survey. These challenges have been also observed and 

explored by prior researchers aiming to improve the implementation of mobile VDC 

(Davies and Harty, 2013; Kim et al., 2013; Mustonen et al., 2013).  

2.6.3 Survey Limitations 

The sample size included in this survey is relatively small. There could be a bias 

introduced in the data because the respondents who volunteered their time to complete the 

survey may be likely to have more of an interest in using VDC approaches than responses 

from a truly random sample of industry members. Additionally, if respondents had not had 

experience implementing many mobile VDC applications, it is possible that they would 

not know all possible opportunities and challenges for future mobile VDC research. 

Moreover, some respondents may have less interest in implementing certain tasks due to 

lower returned benefits to the industry. Nonetheless, this survey was intended to elicit 

general feedback from industry members about what uses of VDC are currently being used 
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and also where future research may be able to add new value. Therefore, despite the 

survey’s limitations, there are several noteworthy findings that will help to inform future 

research.  

2.6.4 Opportunities for Future Research 

Although there are still some technical problems facing mobile adoption, the 

growing number of construction professionals who have started implementing mobile 

VDC using existing hardware and software applications reflects the industry’s willingness 

to invest in future mobile computing BIM/VDC approaches. Overall, mobile VDC is 

already being used by construction professionals for such tasks as 3D coordination, Design 

Reviews, and 3D Control and Planning. When respondents were asked to suggest future 

research areas and opportunities for the next five to ten years, they suggested that mobile 

BIM/VDC applications should be developed due their influence on the daily on-site data 

inspection and control. Additionally, respondents suggested that training will be especially 

important to ensure that crew members possess appropriate knowledge and skillsets related 

to current mobile devices and software. Furthermore, although the current mobile 

computing BIM/VDC platform of choice would be smartphones, respondents highly 

recommended and encouraged researchers to start investigating mobile wearable devices 

with the integration of virtual 3D BIM interfaces. To address these concerns and with the 

high interest to use BIM content in the field, future work should explore how various 

consumer electronics and industry-specific wearable computing devices can affect the user 

experience in engaging with BIM content in the field. Specific questions include: What 

current opportunities can wearable mobile technology offer to each BIM use-case? What 
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new methods to approach BIM use-case in the field with current mobile technology? 

Finally, what are the underlying reasons that make certain mobile VDC uses gain adoption 

faster than others? Is this due to returned benefits, or because of the current mobile 

technology limitations, which do not allow less adopted activities to be deployed yet in the 

field? 

Future work will also aim to further explore the topic of mobile VDC using alternate 

data collection methods.  While this survey was helpful in providing responses from 

individuals with background BIM experience, social media will be used in future work to 

explore how BIM, VDC, and mobile VDC are being used on a broader scale. This will 

provide a larger dataset that may be helpful in illustrating broader trends in adoption of 

these technologies among industry members. 

2.7 CONCLUSIONS 

While the research, development, and deployment of mobile VDC is relatively new 

in the construction industry, it has already begun to be implemented by different companies 

for different uses. This study helped to identify some of the specific uses of BIM where 

mobile technology has been used in industry. In general, the BIM uses that are most 

commonly implemented with VDC are also the same ones that are frequently handled with 

mobile VDC. However, mobile VDC still has less overall adoption due to various 

obstacles, as outlined previously. This suggests that, although mobile technologies are 

becoming advanced enough to handle some of the computing needs that had typically been 

reserved for office computing settings, there are still limitations in facilitating all mobile 

VDC activities. It also suggests that companies are not necessarily likely to try new BIM 
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implementations with mobile devices. Instead, companies are more likely to develop their 

VDC strategies using traditional computing settings and later explore mobile computing 

approaches. This provides an opportunity for future researchers to develop implementation 

strategies and technologies to facilitate additional benefits from leveraging other less 

common, but still valuable BIM use-cases. 

In addition to identifying the types of VDC use-cases that have been implemented 

with mobile VDC, this survey also generated recommendations from industry professionals 

for future opportunities and work. The results suggest that mobile VDC is still not fully 

disseminated and exploited by companies in the industry. While key elements like cloud 

computing and advanced wireless connectivity have started to solve some of the general 

technical obstacles, it would be valuable to explore the specific difficulties in implementing 

each BIM use-case, and the challenges that face mobile VDC in the AECO fields. Future 

work will attempt to address these challenges related to wireless connectivity, software 

applications, and mobile hardware capabilities.  

Despite the challenges identified with mobile VDC through the survey responses, 

the responses indicate a perception of great potential value. Industry members generally 

agree that mobile computing systems will be able to offer beneficial capabilities to VDC 

efforts in the near- and long-term. Future work will aim to create new development and 

implementation strategies to help the AECO industry realize the perceived benefits. 
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CHAPTER 3 

ICT IMPLEMENTATIONS FOR FACILITATING INFORMATION FLOW 

BETWEEN VIRTUAL MODELS AND PHYSICAL SITES IN THE AEC INDUSTRY: 

AN ANALYSIS OF RECENT RESEARCH 

3.1 INTRODUCTION 

Information and communications technology (ICT) has been increasingly applied 

in the construction industry. Complex modern construction information technologies such 

as Radio Frequency Identification (RFID), 3D Laser Scanning, Augmented Reality (AR), 

and Mobile Computing have been employed to manage data, improve project efficiency, 

reduce cost, minimize risk, and develop new construction processes. However, despite 

many successful implementations of these technologies in construction projects, 

construction project stakeholders still face a wide range of communication challenges when 

implementing ICT in their projects. Such challenges include: Fragmentation of the industry 

and lack of integration between the design and production processes (Dainty et al., 2006). 

Additionally, the physical environment within which the technology must operate, the 

multiple stakeholders collaborating on and off site, and technical content communication-

transfer problems (A. Rimmington and G. Dickens C, 2015). However, getting the right 

information to the right place also means overcoming the challenges of organizational 

fragmentation that is so common in the industry due to the site-based nature of the work. 

Therefore, understanding how different ICTs influence project information coordination in 

various project phases, as well as in the transferring of information between physical and 

model sites, would allow ICT implementation to improve, not hinder, communication 
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between project stakeholders and allow for more successful construction projects in the 

future. For these reasons, the classification scheme in this research categorizes journal 

articles according to their bidirectional or unidirectional uses of ICTs, therefore allowing 

the authors to assess how different ICT implementations facilitate project information flow 

using a single or a combination technology of ICTs. 

ICTs allow project data to be transmitted to and/or from a building site. A user can 

read information from either a virtual model or from an on-site device. To better understand 

how this data transfer has been implemented in prior works, this research proposed a 

classification system with four different modes of communication with the use of ICT. The 

first two modes relate to instances where project data is read only from a project site or 

virtual model. The second two relate to instances where the same data may be accessed 

from both the model and the site. Figure 3 illustrates the conceptual information flow 

between physical construction sites and virtual model environments. 

 
Figure 3 Unidirectional and Bidirectional Information Communication Flow 

The four modes of communication are listed below with examples and explanations 

of how each one defined information coordination flow in prior works.  
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 Unidirectional-Model Coordination: Information flows from a virtual model or 

Building Information Modeling (BIM) to a physical site so the model’s information 

and geometry can be presented and navigated on-site. For example: Using a mobile 

computer to navigate a BIM on-site for coordination model reference.   

 Unidirectional-Site Coordination: Information is obtained from the physical site and is 

inputted into the virtual model. For example: Using RFID tags on precast concrete to 

update material tracking statuses. 

 Non-automated Bidirectional Coordination: Information can be authored or accessed 

in either a virtual model or physical site environment, but a (human) user is needed to 

update the captured information. Generally, bidirectional information flow consists of 

data capturing, data transferring, and integrated data processing in both directions. In 

non-automated bidirectional coordination, the user is needed to transfer and incorporate 

captured data to the virtual model contents and vice versa. For example: Using a laser 

scanner to generate point clouds that a human user can combine with BIM content in a 

common visualization environment for existing conditions modeling and visualization. 

If there is no automated process used to update the visualization environment from the 

captured data, the user acts as an agent to update information content.  

 Automated Bidirectional Coordination: Information flows between a virtual model and 

the physical site, but is authored without human intervention. In this type of 

coordination, data transferring, integrating, and processing phases are automated 

processes. For example: Using a site-based laser scanner to generate daily point clouds 
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that can automatically be combined with BIM schedule information, resulting in an 

automatically generated 4D object-oriented progress tracking system.  

Several recent publications have explored the use of ICTs to facilitate 

unidirectional-model coordination (Davies and Harty 2013; Nourbakhsh et al. 2012). These 

studies explored how ICTs can be used to relay BIM content to field personnel. Based on 

the analysis strategy used in this paper, these BIM-based studies would fall into a 

unidirectional-model mode of communication. However, this paper focuses on the use of 

ICTs related to site-based communication to address the following research questions: 

 How have ICTs been used to facilitate site-based communication between building 

project team members on site and those off site working in virtual model 

environments? 

 Based on this analysis, what ICTs have been most commonly leveraged to facilitate 

different modes of project data flow? 

To address these research questions, 119 scholarly publications from 2005 to 2015 

were analyzed and categorized based on the data flow behaviors related to site-based 

information generation described in each publication. This paper, then, illustrates how 

recent research efforts have employed specific ICTs and combinations of ICTs to facilitate 

different modes of project information data flow and communication, and furthermore, 

which particular strategies are becoming well-established in current site-based ICT 

research. 
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3.2 BACKGROUND & MOTIVATION 

ICTs provide new opportunities for collecting and leveraging project data and 

creating business innovation (Peansupap and Walker 2005). Implementing appropriate 

technologies can lead to better oversight for specific construction tasks or design changes 

during the construction phase, thus enhancing project control and the construction process 

(Motamedi 2009; Motamedi et al. 2011; Erdogan et al. 2010). Moreover, these 

technologies may offer new solutions for effective decision-making techniques, fast 

measuring speed, noncontact measurement, moderate accuracy and automation that could 

change the current approach to construction (Keller and Gracht, 2014; Erdogan et al. 2010). 

Research also suggests that ICTs offer productivity gains of 31 to 45 percent when properly 

implemented (Zhai et al. 2009).  

The potential benefits that ICTs offer have pushed researchers to explore their use 

in the building industry. For example, in one study that reviewed AEC-related ICT research 

from 1998 to 2012 (Lu et al. 2014), several key ICTs were identified as having an effect 

on industry adoption, including: Wireless Technology, Virtual Reality (VR), BIM, Web, 

and Electronic Data Management System. Another ICT study identified emerging ICTs 

with the potential to automate building construction tasks (Vähä et al. 2013), including: 

Global Positioning Systems (GPS), Wireless Technology, Radio Frequency Identification 

(RFID), Augmented Reality, and BIM. It has also been suggested that ICTs improve 

project performance by creating a closed loop information cycle between the physical 

construction site and corresponding virtual model (Sørensen et al. 2010; Wikforss and 
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Löfgren 2007), which may further support construction automation. This bidirectional flow 

of project data may also play a key role in improving project efficiency (Shen et al. 2010).  

These suggested benefits have lead researchers to implement various technologies 

to facilitate project communication. To determine appropriate technologies for this 

analysis, prior literature that identified relevant ICTs were explored (Lu et al. 2015; Vähä 

et al. 2013; Rabuck 2011). From these prior studies, seven ICTs that were common among 

the studies were identified, including: RFID, 3D laser scanning, Quick Response (QR) 

Codes, Augmented Reality (AR), Mobile Computing, Robotics (drones), and Wireless 

Connection. Examples of research and industrial pilot projects that have reviewed the 

potential of these technologies in the AEC industry are listed in Table 1. 

Table 1: The potential uses of emerging technologies in the construction industry 

Technology Construction Use-cases Explored 
Examples of Prior 

Implementations 

Radio Frequency 
Identification 
(RFID) 

Construction supply chain management and 
logistics, Tracking and material tracking, Quality 
control, Inventory management and Life cycle 
management 

El Ghazali et al. (2012); Costin et 
al. (2012); Kelm et al., (2013); Lu 
et al. (2011); Motamedi et al. 
(2009); Lee et al. (2012);  Sardroud 
(2013); Shin et al. (2011) 

3D Laser Scanning 
Surveying, progress of concrete casting, paving 
operations, highway alignment and construction 
quality control 

El-Omari and Moselhi (2008); Kim 
et al. (2015); Teizer et al. (2007); 
El-Omari and Moselhi (2008). 

Quick Response 
(QR) Codes and 
NFC 

Material Takeoff, Field Material Control, 
Tracking on-site data of construction materials 
on the site, Purchasing and Accounting, 
Recording historical data of construction 
materials consumed, Monitoring materials 
consumption, and Document Control 

Tian et al. (2012); Tserng et al. 
(2005); Wan and Kumaraswamy 
(2009). 

Augmented Reality 
(AR) 

Register a 3D model at any location in outdoor, 
Projects life cycle, Collaboration. Construction 
progress. 

Behzadan and Kamat (2007);   Shin 
and Dunston (2009); Zollmann et 
al. (2014). 

Mobile Computing 
Site monitoring, task management, and on-site 
information sharing 

Chen and Kamara (2008);  
Hammad et al., (2006);  Kimoto et 
al. (2005);  Kim et al. (2008). 

Wireless Connection 
(Wi-Fi) 

Facilitate real-time data flow, transferring 
information between two or more devices, 

Zhang et al. (2009); Shin et al. 
(2011);  Tserng et al. (2005); Zhang 
et al. (2009) 
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3.2.1 ICTs Classification Characteristics  

Prior research has studied the effectiveness of ICTs and their implementation in the 

industry. These studies proposed different methods of ICT categorization based on various 

criteria, characteristics, and use-case schemes to understand their adoption in the industry. 

Various benefits have been observed by categorizing the ways in which ICTs have been 

implemented, such as having a better plan for technology, understanding future technology 

trends, planning for specific projects, and analyzing markets and technologies for potential 

competitive advantages (Tatum C., 1998). 

In general, the categorization characteristics in these studies were developed on the 

basis of the main themes, methods, and proposed directions of the research methodologies 

adopted by the researchers. For example, Lu et al., (2015) categorized ICTs based on the 

factors that most noticeably influenced the success of ICT adoption and diffusion in AEC 

organizations. Other research studied ICTs based on human communication interfaces 

(Rimmington A. et al., 2015). Table 2 presents the categories and characteristics used to 

understand ICT implementation in prior studies. 

While various studies look at ICT adoption and their implementation (Table 2), the 

current literature lacks studies on how ICTs facilitate information coordination flow 

between virtual models and physical sites. This review paper aims to fill that gap and 

collection and storing, Information exchange, 
and improving work cooperation 

Robotics(drones) 

Improve jobsite communication and safety, 
along with performing highly technical tasks 
such as 3-D modeling and capturing on-site 
images from the field. 

Rodriguez-Gonzalvez (2014);  
Siebert and Teizer (2014). 
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proposes a classification system using seven selected ICTs according to communication 

coordination schemas between virtual models and physical sites.  

Table 2 Categories and characteristics used to understand ICT implementations in 

prior studies 

 

 

 

Key Area Categorization/Characteristics Author/ year of publication 

Architecture, Engineering, 
and Construction 

Personal characteristics 
Organizational characteristics 
Technology characteristics 
Project characteristics 
External environment 

Lu et al., (2015) 

Construction Processes 
ICT Impact on capability maturity models 
(CMM) and e-readiness models 

Perego A., (2011) 

Operations management, 
logistics, and information 
systems 

Supply chain management (SCM)  
Supply chain (SC) performance 

Zhang X. (2011) 

Building Project 
Management 

Coordination and collaboration between project 
participants 

Ahuja A. et al., (2009) 

Construction Projects 

Material Management Processes  
Material and equipment resources 
Construction-applied resources 
Construction processes 
Project requirements and constraints 
ICT on human resources  
Potential for automation 
The impact on knowledge management 
initiatives 
Adaptive systems 
Ambient access 
Collaborative virtual teams 
Digital site, Flexible interoper- ability 
ICT skills & awareness 
Knowledge sharing 
Legal & contractual governance 
Model & object based ICT  
Performance driven process 
Smart buildings & products 
Total life support 
Computers 
Computer aided drafting (CAD) 
Spread sheets and word processors 
Building information modelling (BIM) 
Electronic mail 
The Internet and World Wide Web 
Networking 
Virtual private network (VPN) 
Workflow management applications 
Document management applications 
Product modelling applications 
Technology innovation  
Technology adoption 
Human – electronic interfaces 
Human - human communication interfaces 

Kasim N., (2011), Tatum C., (1998), Bowden 
S. et al., (2006), Hannus M. et al., (2003), 
Onyegiri A., et al., (2011), Adriaanse A. et al., 
(2010), J. H. Rankin and R. Luther, (2006), 
Rimmington A., et al., (2015) 
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3.3 METHODOLOGY 

This study reviews and analyzes academic publications from 2005 to 2015 that 

studied one or more of the seven selected construction technologies. To acquire as many 

papers as possible that deal with ICT in the AEC industry, the journals are selected in two 

steps: 1) finding all well-known construction journals through journal ranking results 

(Brochner and Bjork 2008), web-of-science indexed journals within categories of 

construction and building technology and civil engineering, and endorsed journals by 

globally acknowledged professional institutions such as the American Society of Civil 

Engineers (ASCE), the International Project Management Association, and the Project 

Management Journal and, 2) selecting journals that have close relation with ICT or 

construction organizations. Therefore, three databases were selected to find journals, 

ABI/Inform, ASCE Digital Library, and Web of Science. In each database, search terms 

were determined that would yield publications relevant to these ICTs. The search terms 

used to identify relevant papers are listed in  

Table 3 Relevant search terms for the desired technologies.  

Technology Relevant Search Terms 

Radio Frequency 

Identification (RFID) 

RFID; RFID in construction; RFID site management; RFID construction material; RFID 

material location; and RFID material tracking 

3D Laser Scanning 
3D Laser scanning; 3D Laser scanning in construction; and 3D Laser scanning 

construction utilities 

Quick Response (QR) 

Codes, Barcodes and NFC 

QR in construction; Two dimensions bar code in construction; Quick response 

construction; Barcode in construction; Barcode construction materials; Construction 

materials and bar code; Construction materials and QR codes; And NFC in construction 

Augmented Reality Augmented Reality: Augmented Reality in construction: Augmented Reality and BIM 

Mobile Computing 
Mobile Computing; Mobile Computing in construction; PDA construction; Tablet 

construction; And Wearable Computers in construction 

Wireless Connection (Wi-

Fi) 
Wireless Connection in construction 

Robotics (drones) Drone in construction; Construction robotic; UAV in construction 

Technology Relevant Search Terms 

Radio Frequency 

Identification (RFID) 

RFID; RFID in construction; RFID site management; RFID construction material; RFID 

material location; and RFID material tracking 

3D Laser Scanning 
3D Laser scanning; 3D Laser scanning in construction; and 3D Laser scanning 

construction utilities 

Quick Response (QR) 

Codes, Barcodes and NFC 

QR in construction; Two dimensions bar code in construction; Quick response 

construction; Barcode in construction; Barcode construction materials; Construction 

materials and bar code; Construction materials and QR codes; And NFC in construction 

Augmented Reality Augmented Reality: Augmented Reality in construction: Augmented Reality and BIM 

Mobile Computing 
Mobile Computing; Mobile Computing in construction; PDA construction; Tablet 

construction; And Wearable Computers in construction 

Wireless Connection (Wi-

Fi) 
Wireless Connection in construction 

Robotics (drones) Drone in construction; Construction robotic; UAV in construction 
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Table 3 Relevant search terms for the desired technologies 

 

After the relevant papers were identified from the listed search terms, the search 

results were refined through a series of additional filters. First, the results were refined to 

only include papers that were published between 2005 and 2015. This enabled the 

researchers to exclude older studies that may have used obsolete technologies to facilitate 

project communication. Then the results were further refined to only include peer-reviewed 

journal publications because they generally require more in-depth and rigorous research 

presentations than non-peer-review-based publications. Furthermore, it is not uncommon 

for researchers to build upon smaller pilot studies presented in conference papers in a single 

journal paper. Therefore, using only journal articles enabled the researchers to not “double 

count” the same research implementations multiple time. 

The final filter that was applied to collected publications involved removing papers 

that focused on the development of a new ICT without any implementation. Because this 

study aimed to understand how ICTs facilitated information flow on construction project; 

it was necessary to look specifically at publications that included some actual technological 

implementation. Any publications reviewed that did not include specific descriptions of 

how the ICTs were actually implemented were removed from the pool of publications. The 

database filters and the aggregate search results are listed in Figure 4. 

The selected articles were then classified according to the three established data 

flow categories involving information creation from the project site (unidirectional-site 

coordination, non-automated bidirectional coordination, or automated bidirectional 
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coordination). The categorization of each study was based on the content presented in the 

respective publication. In all cases, papers were categorized based only on what was 

presented in the paper. If papers did not discuss a particular mode of information flow, they 

were not assumed to have incorporated any of these attributes. This helped to address the 

first research question related to the types of communication modes that are facilitated in 

current ICT research. 

 

In addition to the categorization of the collected publications using the data flow 

categories identified, the specific technologies used in each publication were also 

Figure 4 Search Method and Results 
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identified. While some publications used a single ICT to enable data flow, several used 

multiple ICTs, which would work in conjunction with one another to enable project data 

flow. In cases where multiple ICTs were used, the resulting hybrid approach was classified 

based on the overall type of data flow that was described in the publication. Furthermore, 

the observed combinations of ICTs were grouped to identify the specific combinations that 

enabled particular modes of communication. This process helped to illustrate common 

combinations of ICTs that are used to facilitate coordination. 

During this review of papers, some research implementations used a combination 

of ICTs that included one or more of the seven ICTs identified from the literature review 

as well as additional ICTs that were not identified in the original review. In these instances, 

the ICTs used from among the seven targeted technologies were identified, but it was also 

noted that the research implementation used one or more additional ICTs to enable a 

particular type of data flow. These implementations were classified as a hybrid 

technological approach that used “Additional Technologies.” 

For research papers that used ICTs to bridge the communication gap between the 

physical project site and the virtual model, BIM was often referenced as a technological 

component that would facilitate data flow. Therefore, while BIM is not generally 

considered to be as ICT, it proved to be a key component in the virtual model environment 

with which the site-based ICTs often communicated. For studies that referenced BIM or 

virtual model integration, BIM was also included as an additional supporting technology 

that was a key component of a particular ICT combination for facilitating a particular mode 

of data communication.  
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The following examples illustrate the method used in this research for categorizing 

prior studies for the three site-based communication categories identified: 

 A combination of Radio Frequency Identification (RFID) technology and Closed-

Circuit Television (CCTV) were used to track materials and equipment throughout the 

construction supply network for a cable-stayed bridge, from the point of design to 

installation (Ju Y. 2011). In this study, CCTV cameras acquired site image data that 

helped field engineers confirm the delivery of construction components. The material 

identification (RFID) system was coupled with the image acquisition (CCTV cameras) 

system, such that the tag information obtained by the RFID reader could be associated 

with the material delivery image captured by the CCTV camera. The RFID information 

and image data were saved to a main server database to systematically manage the 

construction materials. The combination of these technologies allowed information 

(e.g. the material schedule) to be created based on physical construction site conditions. 

This information was then transmitted to other sources that could be read or embedded 

elsewhere. This study did not indicate that there was a mode of inputting information 

related to material delivery into the virtual model environment and subsequently 

reading that information at the physical site.  Therefore, this approach was classified 

under Unidirectional-Site Coordination. 

 Site photographs from a mobile computer and BIM were used to monitor and detect 

schedule deviations in interior construction work (Skibniewski 2014). This study used 

an AR environment to allow the as-built and as-planned models to be geo-registered 

and visualized through a color coded interface. Since this approach captured data 
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directly from the physical site (via mobile computer photographs) and also from the 

virtual model (via BIM), it was considered to involve bidirectional coordination. This 

particular study required a human user to manually update the site-based information 

into the virtual model. Therefore, this approach was further classified as Non-

Automated Bidirectional Coordination. 

  3D laser scanning and 3D model content were used to automatically track construction 

progress (Turkan et al. 2012). This research captured data directly from the physical 

site through 3D laser scanning technology. 3D model-based information and project 

schedule were combined with the site-captured data to automatically generate a 4D 

object-oriented progress tracking system. This approach has the ability to update a 

current project model without a human user in the loop. This ability to capture 

information from both virtual models and physical site conditions suggests that this 

study uses a bidirectional coordination method. This automatic synchronization of site-

based information and model-based information suggested that this study be 

categorized as Automated Bidirectional Coordination. 

3.4 RESULTS 

A total of 119 academic journal articles were reviewed and categorized based on how 

the particular approaches discussed in each individual article facilitated information 

communication between the construction site and the virtual model. Table 4 Total number 

of journal articles selected in each database 4 indicates the number of articles collected 

from each database. Additionally, Table 5 shows the journals' names that the selected 
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papers have been published in. Each of these publications was then categorized into one of 

the 3 different site-based communication modes described. 

Table 4 Total number of journal articles selected in each database 
 

 

 

Table 5 Number of selected articles found in each journal 

 
 

 

 

 

 

 

 

 

 

 

When the use of ICTs and various combinations of ICTs by project stakeholders 

were analyzed, the results indicated that there were 23 different combinations of 

Database Name Number of selected articles 

ABI/INFORM 21 

ASCE Digital Library 22 

Web of Science 76 

Journal Name Number of selected articles 

Automation in Construction 68 

Journal of Construction Engineering and Management  20 

Computer-Aided Civil and Infrastructure Engineering 6 

Engineering, Construction and Architectural Management 5 

Construction Innovation 4 

AACE International Transactions 2 

Frontiers of Structural and Civil Engineering 2 

Tunneling and Underground Space Technology 2 

Construction Management and Economics 1 

Group Decision and Negotiation 1 

Indoor and Built Environment 1 

Organization, Technology & Management in Construction  1 

Iranian Journal of Science and Technology. Transactions of Civil 
Engineering 

1 

Journal of Construction Engineering and Management 1 

Sensor Review 1 

Systemic Practice and Action Research 1 

Telecommunication Systems 1 

Construction and Building Materials 1 
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technologies used to enable different data flow models, as shown in Figure 7. In some of 

these studies, only one ICT was implemented; but in others, combinations of ICTs were 

used. Analysis revealed that when projects used multiple ICTs, those projects tended to 

choose the same pairs and sets of ICTs to enable data flow. Furthermore, even though they 

might have used the same combinations of ICTs, they enabled different modes of data flow. 

The total number of publications in each category of mode information flow is also listed 

at the bottom of Table 7. The results found that 84 publications (70.6%) used a 

unidirectional-site coordination mode, 32 publications (26.9%) used a non-automated 

bidirectional coordination approach, and 3 publications (2.5%) used an automated 

bidirectional coordination approach.  

In addition to listing the number of publications that used different types of 

information flow modes, Figure 7 also shows the number of publications that used each 

combination of ICTs to enable a particular communication flow mode. Many of the prior 

implementations aimed to achieve different communication goals.  As a result, there are 

no standards in the AEC industry for using technological combinations, both in terms of 

type and number of technologies. 

A few ICT combinations did have a substantial number of publications that all used 

the same combination of technologies. Figure 6 indicates the most common combinations 

of ICTs, based on the total number of publications where a specific ICT combination was 

used. The two most common technological combinations included “3D laser scanning and 

other technologies” and “Augmented Reality, BIM, and other technologies.” 
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Table 6 Most common technological combination 

Total 
Number 

of 
Articles 

Technological Combinations 

9 
-3D Laser scanning + Other Technology. 

-Augmented Reality + BIM + Other Technology. 

8 -RFID + Other Technology. 

7 
-3D Laser scanning + BIM. 

-Mobile Computing + Wireless Connection + Other Technology. 

6 
-Augmented Reality + BIM. 

-RFID + Mobile Computing + Wireless Connection + Other Technology. 

5 -Augmented Reality + Mobile Computing + BIM. 

4 
-3D Laser scanning + BIM. 

-Wireless Connection + Other Technology. 

2 

-RFID + 3D Laser scanning + Quick Response (QR) Codes, Barcodes and NFC + Mobile Computing + Wireless 
Connection + Other Technology. 

-RFID + 3D Laser scanning + Mobile Computing + Wireless Connection + Other Technology. 

-RFID + Wireless Connection.  

-Robotics + Other Technology. 

-Augmented Reality + Mobile Computing + Wireless Connection + Other Technology. 

-Mobile Computing + Wireless Connection + BIM + Other Technology 

1 

-Quick Response (QR) Codes, Barcodes and NFC + Wireless Connection. 

-RFID + Quick Response (QR) Codes, Barcodes and NFC + Mobile Computing + Wireless Connection + Other 
Technology. 

-Quick Response (QR) Codes, Barcodes and NFC + Mobile Computing.  

-3D Laser scanning + Augmented Reality + Mobile Computing + Other Technology. 

-RFID + Wireless Connection + Other Technology. 

In addition to identifying the most common ICT combinations used in recent 

research, the individual ICTs used were analyzed to see which technologies were most 

common when used either alone or in combination with others. Figure 5 shows the 

frequency of use of different ICTs among the analyzed research publications.  
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Figure 5 Frequency of different ICTs appearing in analyzed research 

publications 

Table 7 Technology classifications 
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Cho et al., (2011); Ding et al., (2013); 
Majrouhi J. (2013); Wang (2008); Yin et 
al., (2009); Zekavat et al., (2014). 
(Total=6) 

    

x        x 

Su, X. et al., (2014); Young, D. et al., 
(2011); Elghamrawy et al., (2010); Li H. 
et al., (2013). Lu, M. et al., (2007); 
Shehab, T. (2009); Umetani et al., (2011); 
Wu, W. et al., (2010). (Total=8) 

    

x         

Song et al., (2006); Costin et al., (2012); 
Demiralp et al., (2012); Goodrum et al., 
(2006); Grau et al., (2012); Guven et al., 
(2013); Hinkka et al., (2013); Ko, C.-H. 
(2010); Lu, W. et al., (2011); Montaser et 
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S. et al., (2009). Yagi et al., (2005). 
(Total=15) 

 
x        

Becerik-Gerber et al., (2011); Bosche et 
al., (2008); Shih, N. et al., (2006); Uddin, 
W. (2008); Karan, E., et al., (2013); Su, 
Y., et al., (2006); Marks, E. et al., (2013); 
Son, H. et al., (2013); Teizer, J. et al., 
(2007); Walters, R. et al., (2008); El-
Omari, S., and Moselhi, O. (2009); 
Gómez-García-Bermejo, J. et al., (2013); 
Jung, J. et al., (2014). Moselhi, O. E. S., 
and El-Omari, S. (2005); Nuttens, T. et al., 
(2014). Ray, S. J., and Teizer, J. (2013); 
Tang, P. et al., (2010); Teizer, J. et al., 
(2010); Turkan, Y. et al., (2014); Xiong, 
X. et al., (2013). (Total=20) 

    

x x X  x x   x 
Park, M. et al., (2015); El-Omari, S., and 
Moselhi, O. (2009). (Total=2) 

    

    x     
Kimoto, K. et al., (2005); Nourbakhsh, M. 
et al., (2012); Ochoa, S. F. et al., (2011); 
Suman, N. et al., (2009).  (Total=4) 

    

   x    x    

Albert, A. et al., 
(2014); Irizarry, J. et 
al., (2013); Jun Wang 
et al., (2014); Park, 
C.-S. et al., (2013); 
Shin, D. H., and 
Dunston, P. S. (2009); 
Wang, X. et al., 
(2013). (Total=6) 

  

    x x   x 

Chen, X. (2013); Chen, Y., and Kamara, 
J. M. (2008); Chen, Y., and Kamara, J. M. 
(2011); Khoury, H. M., and Kamat, V. R. 
(2009); Kim, Y. S. et al., (2008). Nielsen, 
Y., and Koseoglu, O. (2007). Shin, Y. et 
al., (2008).  (Total=7) 

    

     x   x 
Nuntasunti, S. and Bernold, L. (2006); 
Gangone, M. V. et al., (2012); Li, X. et al., 
(2012); Zhu, D. et al., (2011).  (Total=4) 

    

x x   x x  x x   

Turkan, Y. et al., 
(2013); El-Omari, S., 
and Moselhi, O. 
(2011).  (Total=2) 
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 x       x 

Arayici, Y. (2007); Baiden, G. et al., 
(2014); Bhatla, A. et al., (2012); Chae, 
M. J. et al., (2011); Dai, F. et al., 
(2013); El-Omari, S., and Moselhi, O. 
(2008); Kim, C. et al., (2005); Moselhi, 
O. E. S., and  El-Omari, S. (2005); 
Zalama, E. et al., (2011).  (Total=9) 

   

 x      x    
Goedert, J. and 
Meadati, P. (2008); 

  



 

 45  

Randall, T. (2011); 
Golparvar-Fard, M. 
et al., (2011); Larsen, 
K. E. et al., (2011). 
(Total=4) 

   x    x x   

Chen, H.-M., and 
Huang, P.-H. (2013); 
Golparvar-Fard, M. 
et al., (2011); Phillip 
S. et al., (2005); 
Feng, C., and Kamat, 
V. R. (2013); Kang, 
L. S. et al., (2010); 
Kuo, C. et al., (2013); 
Kwon, O.-S. et al., 
(2014); Shin, D. H., 
and Dunston, P. S. 
(2010); Skibniewski 
2014); Yabuki, N. et 
al., (2011). (Total= 
10) 

  

x  x  x x   x Lin, Y.-C. et al., (2014). (Total=1)     

x     x    
Shin, T.-H. et al., (2011); Wu, W. et al., 
(2013). (Total=2) 

    

 x      x  
Tang, P., and Akinci, B. (2012); Wang, 
J. et al., (2015). (Total 2) 

  

Kim, M.-K. etal., 
(2015); Lagüela, 
S. et al., (2014); 
Turkan, Y. et al., 
(2012). (Total=3) 

      x  x 
 Rodriguez-Gonzalvez, P. (2015); 
Siebert, S., and Teizer, J. (2014). 
(Total=2) 

    

  x  x     Tserng, H. P. et al., (2005). (Total=1)     

   x x   x    

Jiao, Y., Zhang et al., 
(2013); Meža, S. et 
al., (2014); Rohani, 
M. et al., (2014); 
Wang, X., and 
Dunston, P. S. 
(2006); Wang, X. et 
al., (2014). (Total=5) 

  

   x x x   x   

Behzadan, A. H. et 
al., (2008); Kim, C. 
et al., (2013). 
(Total=2) 

  

 x  x x    x   
Yang, M.-D. et al., 
(2013). (Total=1) 

  

    x x  x x   

 Dong, A., et al., 
(2009); Hammad, A. 
et al., (2006). 
(Total=2) 

  

x     x   x Riaz, Z. et al., (2006). (Total=1)     
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Unidirectional-site communication can be enabled using individual or multiple 

technologies. Of all the technologies and publications explored, 3D laser scanning was the 

most common ICT used for capturing information from the physical site and enabling a 

unidirectional-site mode of data flow. A total of 20 publications (16.8%) used 3D laser 

scanning alone to enable unidirectional-site coordination, which may reflect this 

technology’s ability to generate a 3D point cloud in x, y, z coordination compared to the 

limited information capacity and available formats of lines and text provided by RFID tags 

and QR technology. Additionally, some laser scanners can capture up to 2000 data points 

per second while other scanners can capture up to 50,000 points per second (E. Jaselskis et 

al., 2005), making them highly desirable data collecting tools. On the other hand, 13 

publications (10.9%) used 3D laser scanning in conjunction with other technologies such 

as photogrammetry, handheld camera, and GPS to enable unidirectional-site coordination. 

The least common ICT combinations used to facilitate data flow for unidirectional-site 

based coordination included: “RFID, Quick Response (QR) Codes, Barcodes and NFC, 

Mobile Computing, Wireless Connection, and other technologies,” “Quick Response (QR) 

Codes, Barcodes and NFC, and Mobile Computing,” and “RFID, Wireless Connection, and 

other technologies.” 

For non-automated bidirectional coordination, there were no publications reviewed 

that used non-automated bidirectional coordination with only a single ICT. In all cases, a 

combination of technologies was used to capture information from both the physical sites 

and virtual models. The most common combination of technologies to facilitate this mode 

of data flow involved AR and BIM in combination with other technologies that were not 
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specifically targeted in this analysis such as infrared capturing, image-based capturing, 

cloud technology and servers. Studies that used this combination accounted for 8.4% of the 

total publications reviewed.  

Automated bidirectional coordination was used by the smallest percentage of 

studies, with only three publications describing this mode of interaction. There was only 

one technological combination used to enable automated bidirectional coordination in the 

publications reviewed. The ICT combinations included BIM and 3D laser scanning to link 

physical model content to virtual model content. This combination accounted for only 2.5% 

of the total publications reviewed. 

3.5 DISCUSSION 

Modern construction requires sophisticated project monitoring and control. This 

necessitates a system for efficient information flow between project parties that can provide 

projects with updated data to meet on-site changes and production deadlines. ICTs may 

offer a number of advantages that can enhance communication between virtual models and 

physical sites. Specifically, there are numerous benefits suggested through bidirectional 

coordination, such as improved real-time progress monitoring, consistency maintenance, 

and control of construction activities (Shen et al. 2010; Akanmu et al. 2013). Furthermore, 

research suggests that automating this communication process can offer even greater 

benefits for transferring information from design to construction and maintenance, hence 

enhancing control of the construction processes (Motamedi and Hammad 2009; Anumba 

et al. 2010). The findings of this paper indicate that bidirectional coordination is possible, 

but is not yet the norm in AEC-related ICT project site research. Furthermore, automated 
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bidirectional coordination approaches remain uncommon despite the potential benefits 

suggested by prior works. This overall finding could be due to several factors, which will 

be discussed in the following subsections.  

3.5.1 Implementation strategy’s effect on information flow 

The papers reviewed in this study typically did not consider the mode of 

information flow as a major focus of the paper. Instead, most publications focused on the 

use of ICTs to solve a specific construction problem. In these types of use-inspired research 

initiatives, ICTs were often used differently based on the needs of a particular problem-

context. During the analysis of relevant research publications, there were several instances 

where the same combinations of ICTs were described. Upon analyzing these publications, 

it was noteworthy to see that these same combinations of ICTs often enabled different 

communication modes based on the way in which they were implemented.  

For example, two different research implementations used 3D laser scanning and 

BIM to assess site conditions (Golparvar-Fard et al., 2011 and Kim et al. 2015). Both 

instances enabled project information to be created on site and in a virtual model, but the 

implementation strategies indicated different modes of information coordination. In one 

implementation, the combined ICTs produced a 4D as-constructed model to analyze and 

document workflows (Golparvar-Fard et al., 2011). This approach required a (human) user 

to attach the site-based, laser-scanned point cloud to the virtual project model, which 

indicated a non-automated bidirectional coordination approach. The second 

implementation of the same ICTs used a 3D laser scanner in conjunction with BIM to 

identify and analyze the dimensional and surface qualities of precast concrete elements 



 

 49  

(Kim et al. 2015). In this implementation, the laser-scanned point cloud and BIM content 

were automatically incorporated to compare the as-built conditions to the as-planned 

conditions, which automatically generated an inspection checklist of potential problem 

areas. Examples such as these were frequently observed in this paper’s analysis and help 

to illustrate the importance of implementation strategy in determining the type of 

information flow that is achieved. 

3.5.2 Technological capabilities affecting information flow 

In addition to the importance of the ICT implementation strategy, the analysis 

performed suggests that the capabilities of the different ICTs also influence the information 

mode achieved of data flow. When the frequency of the different technologies was 

analyzed, it was observed that certain technologies tended to appear more often for certain 

modes of coordination. Figure 6 represents how often each ICT was used in the reviewed 

papers to facilitate each form of communication (unidirectional and bidirectional).  

Figure 6 ICTs Ability to Facilitate Bidirectional and 

Unidirectional Coordination 
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Several of the technologies explored were only used to enable unidirectional 

communication modes (i.e. Robotics and QR codes). Other technologies (RFID, Wireless 

Connections, Mobile Computing, and 3D laser scanning) were used in different 

implementations that enabled both unidirectional and bidirectional communication modes, 

depending on the study. In this analysis, Augmented Reality technology was only used in 

research that targeted non-automated bidirectional coordination modes, but it should be 

noted that Augmented Reality could potentially be used for unidirectional coordination 

strategies that relay virtual model content to physical sites for visualization without the 

ability to author content on-site. This particular type of unidirectional coordination was 

outside the scope of this research because it would not include information flowing to the 

construction site. Furthermore, this type of information communication has been explored 

by prior recent publications that explore how ICTs can bring virtual model content to site 

(Davies and Harty 2013; Van B. and Natrop 2015). 

This analysis of prior studies does not necessarily mean that the different ICTs 

could not be used to enable other modes of information flow, but it does suggest that in 

recent history, some technologies have been more likely to support certain modes of 

information flow than others. This trend in using certain technologies for certain 

communication modes may be due at least in part to the capabilities provided by the 

different ICTs.  

3.5.3 Effects of the information transmitted by ICTs 

In addition to the effects that technological capabilities and implementation 

strategies have on coordination modes, the specific information transmitted by the different 
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devices may also affect the overall coordination methods observed. Different ICTs tend to 

enable the transfer of relevant project information (e.g. project schedule, material tracking, 

model content, and specifications information) through different means and in different 

formats. For example, studies that used RFID generally discussed text-based information 

that was created from sensors, while studies that used laser scanning generally discussed 

information that is created in a point cloud format. This difference in information transfer 

method and format provides a challenge for studies that use multiple ICTs.  

The challenges associated with this type of information transfer and formatting may 

be especially relevant to bidirectional coordination since all studies that fell into both 

bidirectional categories did so because of ICT combinations. While challenging, 

synchronizing information between ICTs must occur to enable coordination between 

different components. In the studies that used non-automated bidirectional approaches, a 

human user was often tasked with the synchronization of information. For example: 3D 

laser scanning needs a user in the field to scan and collect instant field situation. Because 

construction projects keep changing, the scan constantly needs to be updated based on the 

user’s objectives. This type of captured data also necessitates that a human upload and 

process the point cloud before start reading information from it. 

A challenge like transmitting information from the site was also highlighted by 

researchers. Prior studies have used wireless communication and cloud-based data transfer 

to link captured data with their offices, but there were limitations such as signal strength 

and speed. Additionally, other technologies like GPS may not be particularly effective, 

especially for underground projects, because of GPS signal strength. However, in cases of 
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automated bidirectional approaches, information was transmitted in a way that allowed 

different ICTs to properly interpret and process data from other ICTs. Challenges 

mentioned above may contribute to the fact that the vast majority of bidirectional 

coordination studies in this research did not use an automated coordination approach. 

During the analysis of the recent ICT research publications, there were a few 

different information synchronization approaches referenced that were used to create a 

common language between ICT components. The green building XML schema (gbXML) 

and the Industry Foundation Classes (IFC) file format were used to allow users to share 

and modify the information authored and processed by ICTs. The gbXML schema was 

developed to facilitate the transfer of relevant construction data to engineering analysis 

tools, and the IFC data format is currently an open data format that is compatible with 

several BIM applications. Both of these were used in several of the reviewed publications 

that demonstrated bidirectional coordination (Larsen et al. 2011; Kim et al. 2015; Lagüela 

et al. 2014). Additionally, there are several BIM-based tools commercially available that 

can enable the transfer data between different software programs throughout the design 

phase. Some tools only allow users to read model contents while others allow users to 

modify information and send it to other software tools. Therefore, it is possible that these 

information formats and BIM-based tools will provide opportunities in the future to create 

a more closed loop of information flow to facilitate more automated bidirectional 

coordination strategies. 

BIM and Virtual Reality have also started to be used in construction projects and 

there has been empirical investigation of BIM and VR technology by companies in the 
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construction sector. However, VR and BIM were not limited only to visualize BIM 

contents, but also can allow project stakeholders to interact with this contents. Prior studies 

showed the potential insights using this technology for different construction use cases 

(Bassanino et al. 2014; Berg 2014; Li et al. 2009). In this sense, BIM contents can be 

obtained through VR even from the construction sites by using information technology that 

allows to facilitate this process. In other words, the information has been transferred from 

the BIM contents to the construction site. However, BIM was not included in this study as 

this study categorize BIM-based studies in a unidirectional-model mode of communication. 

This paper focuses on the use of ICTs related to site-based communication to address the 

research questions.  

Overall, the results showed a potential trend in facilitating bidirectional 

coordination. According to this study’s findings, AR technology is the only technology that 

has been used to provide model-related information to the field. Different values such as 

data interaction, visualization, and real-time simulation can be achieved with this 

technology. However, with the current advancements in mobile computers (wearables and 

handhelds) and AR, there is a great potential to fix some of the existing challenges facing 

AR technology. For example: AR allows users to bring model contents (including text-

based information and 3D elements) into the site. 

3.6 LIMITATIONS 

There are some limitations associated with the methodology chosen for this study. 

First, the research methodology only compares the information flow achieved in a 

particular application, not the potential of the actual technologies that facilitate the 
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application. This means that for some cases, the studies analyzed could be slightly modified 

to achieve different modes of information communication. For research initiatives that 

have been expanded since this analysis, it is possible that more papers with additional 

modes of coordination could be included in this research analysis. In this way, the analysis 

provided by this paper may only serve as a snapshot of a window of time in ICT research.  

Additionally, it is possible that some publications did not present all of the 

technologies involved in implementation, such as mobile computing or wireless 

connections. Many of the publications reviewed were not focused on defining specific ICT-

based information flows. Instead, publications often focused on use-inspired research 

objectives aimed at solving a specific construction problem. Therefore, it is possible that 

while analyzing the different publications, certain additional ICTs were used for particular 

implementations even though they were not described in the resulting publications.  

Due to the uncertainty that is present in some articles with respect to ICT 

infrastructure and also uncertainties related to ICT implementation strategies, the authors 

of this paper do not make claims related to best practices for ICT implementation. 

Furthermore, no claims are made related to specific construction applications where 

different communication modes may be most beneficial. For certain applications, it is 

likely that certain practical limitations exist that would not allow for the use of certain ICTs 

or a specific implementation strategy. Therefore, the conclusions drawn from this work are 

generated from the data observed from the classification of prior research, which help to 

provide an understanding of the recent trends in ICT research. 
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3.7 CONCLUSION 

The primary aim of this study was to understand how recent research efforts have 

implemented ICT to facilitate information flow to and from a construction site. This topic 

was addressed through the categorization of 119 journal articles published between 2005 

and 2015 related to ICT applications in construction. This paper provides insights into 

general trends of ICT use. Additionally, the analysis performed identifies the individual 

and combined ICT’s that have been used in recent research history to facilitate particular 

types of information flow. The major findings from the review included: 

 While some prior researchers have suggested benefits to bidirectional coordination, 

unidirectional coordination applications substantially outnumber bidirectional modes. 

 Of the ICTs explored, mobile computers and 3D laser scanning have the highest 

frequency to facilitate both bidirectional and unidirectional coordination modes in 

reviewed approaches. 

 About 26.9% of the total number of approaches fall into the non-automated 

coordination classification, while only 2.5% used the automated bidirectional method. 

 55.8% of bidirectional approaches used Augmented Reality to facilitate non-automated 

bidirectional coordination while 3D laser scanning and BIM were the only ICT 

combination that enabled automated bidirectional coordination with about 7%.  

In addition to illustrating the current trends in ICT research, this paper contributes 

to the current literature on how to provide a classification structure that can be used for 

future ICT research analysis to determine shifts in research trends. This review paper 

provides an understanding of the approaches currently being studied and the different types 



 

 56  

of data flow facilitating building construction projects. This review could also become a 

foundation for the classification and integration of state of the art ICT research on behalf 

of AEC organizations because it offers insight as to how future researchers may improve 

construction communication between construction sites and virtual models through the 

strategic implementation of new technologies. Additionally, it could help to identify the 

ICTs and combinations of ICTs that are becoming more established for use in the 

construction industry.  

In the future, the authors plan to focus their work on ICTs to leverage AR 

technology to enable bidirectional coordination mode. The authors will focus on specific 

construction use-cases and the human perspective toward using AR technology, as well as 

the ability to run AR technology on different commercially available mobile computers 

such as smartphone and tablets. The intent of this future work is to further enable 

researchers and practitioners to strategically plan for ICT uses.     
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CHAPTER 4 

MOBILE MIXED REALITY TO INFLUENCE DESIGN AND CONSTRUCTABILITY 

REVIEW SESSIONS 

4.1    INTRODUCTION 

Several different methods have been used by project stakeholders to support the 

understanding of the conceptualizations, representations, and the final appearances of their 

design ideas. These methods can include traditional visualization approaches, such as a 

paper-based documentation, as well as modern approaches like virtual reality (VR)-based 

Building Information Modeling (BIM) walkthroughs, physical mock-ups, and mixed 

reality (MR). VR allows users to interact with purely virtual environments, while physical 

mock-ups enable participants to physically navigate a space to generate design and 

constructability feedback for the space. Mixed reality (MR) defined as a process of 

enhancing the real world with computer-generated information (typically a graphical 

overlay) to improve the interaction of the user with the real world (Kalawsky R.S. et al 

2000). Therefore, MR technology allows users to interact with both virtual and physical 

components in physical environments simultaneously.  

These recent developments in computing, modeling, and visualization technologies 

have become more popular as a method for driving some design processes in the 

Architecture, Engineering, and Construction (AEC) industries. The technology can 

facilitate collective decision making throughout project phases, especially during design 

and constructability review sessions, when a number of project teams come together in a 

single technology-driven meeting space to review a concept within a project design. 
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However, prior studies have explored how different VR environments enable certain 

human behaviors in those sessions, but the same trend related to MR is missing from the 

current literature. Therefore, this study focuses on the use of mobile MR technologies in 

design and constructability review sessions to further understand project stakeholders' 

behaviors in this environment.  

This research aims to understand MR environments in design constructability 

review sessions among other visualization approaches, and to further understand MR 

interfaces and influences on project stakeholders’ behaviors. Therefore, this study 

addressed these two research concerns in two components. The first component consists of 

understanding human behaviors in MR compared to VR and physical mock-ups. The 

addressed questions include: Can MR facilitate the same behaviors reported by prior 

studies which conducted review sessions with purely VR or purely physical mock-ups? If 

yes, what are the types of shared and unique behaviors that can be observed in MR, as 

compared to VR and physical mock ups? How human perceive the value of MR compared 

to Virtual Reality and Physical Mock-ups from prior experience? 

The second component considered the use of MR on different mobile computers. 

The addressed questions include: Do different mobile computers lead to different human 

behaviors in MR interfaces? If so, what are the behaviors that may occur while using 

different mobile MR technologies in design and constructability review sessions? What are 

the human perceptions toward using different mobile MR interfaces? The two research 

concerns are presented in Figure 7. 



 

 59  

To address these research questions, the authors developed a framework to illustrate 

the types of behaviors observed when users interacted with different mobile computers 

with an MR interface in order to understand how technologies can influence project 

stakeholders’ behaviors and what types of behaviors can be driven by one specific 

technology versus another. Observational and perceptional data points were collected. 

Additionally, a discussion of how this research analyzed each data point to understand the 

observed behaviors has been developed and included in this study.  

 
 

Figure 7 the structure of two research components addressed in this study 

4.2 BACKGROUND 

4.2.1    Design and Constructability Review Sessions in Construction   

In the building industry, design and constructability review sessions are processes 

in which information is exchanged by project stakeholders and reviewers to understand and 

negotiate the interests, goals, and objectives of the owners and the project in a timely 

manner (East, Kirby, & Perez, 2004). The review process focuses primarily on analyzing 

design components and methods such as structural, mechanical, electrical, and plumbing 
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components; aesthetic design concepts or ideas; and compliance with the current codes and 

standards (East et al., 2004). With so many design and construction concerns to be 

discussed, analyzed, and decided upon, visualization technologies have become 

increasingly useful and necessary. Studies reveal that design review is crucial for detecting 

and identifying conflicts, errors, and inconsistencies in designs (East, 1998; East et al., 

2004; East, Roessler, & Lustig, 1995; Spillinger, 2000). Additionally, work by East et al. 

(2004) suggested that a successful automated design review system will reduce the number 

of reviewers and the time necessary to complete the review phases. Although review 

meetings are one of the most influential constituents of a design process (Verlinden, 

Horvath, & Nam, 2009), they have also been described as tedious and resource-intensive 

(Garcia, Kunz, & Fischer, 2005; Majumdar, Fischer, & Schwegler, 2006; Romano & 

Nunamaker Jr, 2001). Researchers have also noted various critical challenges that impede 

the progress of sessions. The transmission of information to communicate design through 

accurate visual representation is crucial. The representation techniques can play a major 

role in how project stakeholders perceive design (Bassanino et al., 2010) as different 

presentation techniques can easily alter perceptions and behaviors (Brown, 1999). For 

example; the process of overlaying 2D drawings on a light table to assess constructability 

concerns between building trades can be time-consuming and inefficient (Staub-French & 

Fischer, 2001). Therefore, 3D representations may allow for better communication of 

design concepts during design and constructability review sessions. 
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4.2.2 Modern Visualization Interfaces 

Designers have emphasized the advantages of using 3D representations, such as 

physical mock-ups and Virtual Reality, over traditional 2D methods (Rahimian and 

Ibrahim 2011). Physical mock-ups give reviewers a natural and intuitive experience of 

interacting with a 3D physical environment. Virtual Reality provides users with the 

opportunity to be immersed in a purely 3D virtual environment.  

4.2.3 Physical Mock-ups in the AEC industry 

Although creating physical mock-ups is a time-consuming process, they can 

provide tangible objects for reviewers to examine in an intuitive manner. It helps reviewers 

addressing potential design issues up front, such as constructability and assembly needs, 

safety, structural performance, environmental performance, and planning (Majumdar and 

Fischer 2006). Reviewers would be able to physically view and experience the design, 

finding errors and conflicts in their physical space. Using full-scale physical mock-ups of 

buildings and facilities is often practiced by different construction companies (Staub-

French and Fischer, 2001; Cowden et al. 2003; Shiratuddin & Thabet, 2003a, 2003b).  

However, prior studies have highlighted deficiencies in using plywood mock-up 

review sessions, including: discrepancies in the dimensions of furniture, missing 

components from the design, and insufficient detailing of components (Maldovan & 

Faddoul, 2006; Peavey, Zoss, & Watkins, 2012). Majumdar and Fischer (2006) noted as 

well that some participants can feel lost during the review process because it can be hard 

to get everyone to focus on one issue at a time, especially if the space is large. However, 

the more fundamental limitation of a physical mock-up is that the physicality of it quite 
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literally requires more time and resources to modify than virtual BIM contents (Johansson, 

2012; Maing, 2012). 

4.2.4 Virtual Reality Mock-ups in the AEC industry 

In Virtual Reality, construction project stakeholders can “walk virtually through” a 

building and visualize its components from different visual perspective using different 

types of technology such as desktop computers (Gopinath, 2014), stereo rear projectors 

(Phillip & Laura, 2010), handhelds, and wearable computing devices (Livatino S. et al., 

2009; Pedro A. et al., 2014; Froehlich M & Azhar S. 216). However, by walking through 

a 3D model in a virtual environment, designers can view and test the design directly (Phillip 

& Laura 2010), allowing them to virtually “disassemble” and “reassemble” the components 

of a building, rehearse the construction process, develop a construction sequence, assess 

the constructability of the design, and identify potential interference problems. Prior studies 

have investigated the benefits of replacing physical mock-ups with virtual mock-ups 

(Maldovan, Messner, & Faddoul, 2006). According to Maldovan et al. (2006), the top 

categories for which virtual mock-ups can help in terms of importance of reviewing a 

design include: sight lines, aesthetics, lighting, security, and ergonomics.  

VR can also present negative impacts to users. According to Costello (1997), 

possible negative effects of VR interfaces can be divided into three main areas: 1) Physical, 

such as physical discomfort and immersion injuries, 2) physiological, such as visual 

asthenopia and postural instability, and 3) psychological, such as perceptual shifts and 

disorientation and changes in perceptual judgment. Other research studied factors affecting 

human perceptions and behaviors in VR using different computer interfaces (Alshaer et al., 
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2017). This study found that multiple factors can influence participants’ sense of presence 

in the virtual environment. In particular, the interface or the device display type is 

significantly affecting both perceptual and behavioral measures whereas the device field 

of view only affected behavioral measures. Moreover, a study conducted by Saleeb (2015) 

found that humans perceive each virtual dimension differently from its physical 

counterpart, and with varying percentages. 

While other researchers recognized that different VR interfaces enabled different 

human behaviors, this same type of understanding does not exist for MR interfaces. 

Therefore, this study contributes towards an understanding of how different mobile MR 

can influence human behaviors during design and constructability review sessions. 

4.2.5 Mixed Reality in the AEC industry 

MR technology is becoming more mature in the AEC industry. Various prior 

studies used MR to facilitate construction processes. For example MR has been used for: 

collaborative construction tasks (Hammad et al., 2009); interactive architectural 

visualization (Jun Wang et al., 2014; Rohani, M. et al., 2014; Phillip et al., 2005); and steel 

column inspection (Shin and Dunston 2009). Research trends and opportunities of MR 

applications in AEC have also been recently documented (Chi K. et al., 2013). 

4.2.6 Mixed Reality on Mobile devices 

MR technology is becoming more mature in the AEC industry. Various prior 

studies used MR to facilitate construction processes. For example MR has been used for: 

collaborative construction tasks (Hammad et al., 2009); interactive architectural 

visualization (Jun Wang et al., 2014; Rohani, M. et al., 2014; Phillip et al., 2005); and steel 
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column inspection (Shin and Dunston 2009). Research trends and opportunities of MR 

applications in AEC have also been recently documented (Chi K. et al., 2013).  

Several researchers have implemented MR on different mobile computer interfaces 

such as smartphones (Kim et al., 2013; Olbrich et al., 2013; Hakkarainen, Woodward, and 

Billinghurst 2008), laptops for inspection processes (Shin and Dunston 2010), tablets 

(Riera et al., 2014; Schmalstieg and Wagner 2007), and head mounted displays supporting 

collaboration among design team members (Wang and Dunston 2011; Wang X. 2011; Jun 

Wang et al., 2014). These prior studies aimed to develop an MR environment for a single 

device in order to support a specific use-case. In most cases, the contribution of the work 

related to the proof that MR could in some way support the targeted use-case.  

In MR environment, a human factor which defined as the way in which individuals 

comprehend and function in reference to space relationships, is a critical concept in 

understanding the value of MR technology for design comprehension and communication 

(Dunston P. and Xiangyu W. 2005). The differences in performance in various display 

environments can be measured through well-planned controlled experimentation, but 

however, the processes which may occur are complex and not fully understood (Sholl 

1995; Tversky et al. 1999; Oxman 2000; Wang 2002). Therefor, and with the wide variety 

of mobile computing tools available today that can run MR environments for visualization, 

there is not a thorough understanding of how the different devices enable (or potentially 

hinder) different user behaviors while using the same MR environment. A better 

understanding of the types of behaviors that different MR environments enable would 

allow researchers and practitioners to strategically plan for the use of MR to support 
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specific human behaviors. This study aims to take a critical step toward this understanding 

through the exploration of various mobile computing devices that enable the same MR 

visualization.  

4.3    RESEARCH METHOD  

The two sets of research questions addressed in this study support an exploratory 

investigation with qualitative and quantitative data collection methods. The exploratory 

study is devoted to investigating little understood phenomena, identifying or discovering 

important variables, and generating hypotheses for further research (Marshall and Rossman 

2011). To address the research questions related to MR compared to VR/Physical mock-

ups, and different MR compared to MR on other devices, this research ran two design and 

constructability review sessions with industry experts. The authors analyzed the experts’ 

behaviors and perceptions during the sessions. The data were collected in two forms: 

observational and perceptional data points. The following illustrate this research method 

to collect and analyze the collected data.  

4.3.1 Data points and research concerns  

The research questions targeted two main components: 1) Mixed reality behaviors 

compared to VR and physical mock-ups, and 2) Mixed Reality on different mobile 

computers. Each of the two items includes multiple questions that can be answered by the 

observational and perceptional data points. Table 1 summarizes the research components 

and the relative questions that serve in filling the research gaps. Table 8 summarizes the 

research components and the relative questions that serve in filling the research gaps.  
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Table 8 Two research components and the questions addressed in each component 

Component 1: 
Mixed reality 

compared to VR and 
physical mock-ups 

Does MR facilitate the same behaviors as VR and physical mock-ups in design 
and constructability review sessions? 

What are the behaviors that can be obtained in mobile MR design and 
constructability review sessions compared to VR and physical mock-ups? 

How human perceive the value of MR compared to Virtual Reality and Physical 
Mock-ups from prior experience? 

Component 2: 
Mixed Reality on 
different mobile 

computers 

Do different mobile ITs lead to different human behaviors in MR interfaces? 

What are the series of behaviors that may occur while using different mobile 
MR in design and constructability review sessions? 

What are the human perceptions toward using different mobile MR interfaces? 

4.3.2 Mobile devices used during the two design and constructability review 

sessions 

Mobile computers are defined as transportable computing devices with mobile 

communication technologies (Rouse 2007), without requiring a connection to a fixed 

physical link (Livingston 2013). Typically, the mobile devices have a display screen with 

a small numeric or alphanumeric keyboard or a touchscreen providing a virtual keyboard 

and buttons on-screen, integrated cameras, wireless connectivity, mobile phone and GPS 

capabilities are common, and have the features to display computer generated data (Rouse 

2007). Some mobile devices can be in the form of handhelds where users can hold the 

devices such as smartphones and tablets, while others are in the form of wearable devices 

such smart glasses and head mounted displays.   

With the plethora of mobile computers available today, current researchers do not 

know if all available devices offer the same behaviors in MR environments. Therefore, this 

research selected different mobile computers available in the market that may potentially 
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offer different user interfaces. For example: different handheld and wearable devices. A 

list of mobile interfaces used in this research shown in Table 9. 

Table 9 List of devices interface used in MR case study 

 Device type Interaction style Selected device 

H
an

dh
el

d 

Small screen size  Display interface 3.8” Smartphone - Samsung 
Galaxy T599- 2013 

Average screen size Display interface 5.7” Smartphone - Samsung 
Galaxy Note 5 - 2015 

Small tablet screen size  Display interface 9.7” Phablet - Samsung 
Galaxy Tab S2 - 2015 

Large tablet screen size  Display interface 12.2” Tablet - Samsung 
Galaxy Tab Pro -  2014 

W
ea

ra
bl

e 

One eye screen smart glass One eye display interface Vuzix Smart Glass – M100 
- 2014 

Dual eyes screen glasses Splinted display interface VR Box 

Duel eyes transparent smart 
glasses 

See-through transparent 
glasses 

Epson Smart Glasses- BT-
200 - 2014 

Tablet mounted on a stand Display interface 12.2” Tablet - Samsung 
Galaxy Tab Pro -  2014 

 

4.4 MR interface development 

To collect the observational data points for this research, the authors held two 

design and constructability review sessions with industry professionals at an architectural 

design firm in Arizona, United States. The sessions conducted for this research aimed to 

solve design layout challenges related to a headwall above a patient bed in a health care 

facility. Patient headwalls are the walls that are placed at the head of a patient bed. They 

typically include various utilities, such as vacuum, oxygen, other medical gases, power, 

and data. Because of the number of utilities that fit in a small space, headwalls can pose a 

challenge to designers.  
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During the design review sessions, the first step was giving participants a design 

program for the headwall. This program required participants to include design 

components such as patient 

bed, patient computer, medical 

outlets, and cabinet in their final 

design. Additionally, they were 

also given a brief overview of 

MR prior to the review 

sessions. This helped to ensure that participants understood what was required for the 

design and how to visualize it with MR. After the introduction to the activity, the authors 

gave participants the first device at the beginning of 

each session to ensure that all devices were used at 

least once during the sessions. Then participants had 

the option of picking any device for the visualizing 

process, but were also asked to use each device 

offered at least once (Figure 8). The authors placed all 

of the devices on a table and then distributed them to 

all of the participants, allowing them to then use and switch between devices on their own 

during the review session.  During the sessions, participants were asked to move the printed 

markers that represented different objects in order to test different design layouts in MR to 

assess the design scenarios (Figure 9). In total, 15 of markers were printed. These included: 

patient beds; computers; cabinets; and TVs. There were also different markers to represent 

Figure 8 Design and constructability review sessions 

– visualizing 

Figure 9 Figure 9 Design and 
constructability review sessions 
– placing markers 
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different sizes of these objects, so that reviewers could see how different sizes (ex. TVs) 

would work or not work in the room according to the specific layout of the space. 

Participants were asked to place the markers on the wall and then to point the mobile device 

to show the augmented virtual content over the marker. Participants were able to move and 

change the markers throughout the review session according to the team’s discussion and 

suggestions.  However, for the final design appearance, the participants had to take picture 

of their final design so the company design team can proceed with final design decision 

and make the appropriate changes in their project design accordingly. 

4.5 Interacting with mobile MR interfaces during the sessions 

In this research the MR application was used by the project team to determine a 

layout for the space that would allow doctors and nurses to have enough space to interact 

with the patients while accessing the necessary utilities on the headwall or interacting with 

medical records on the computer. Therefore, to make it as simple as possible for the 

participants, the same mobile MR application and markers were used on all devices, 

meaning that the only things that changed during the review sessions were the visualization 

styles of the devices being used. Additionally, the MR application developed for this 

research allowed users to view objects through a video see-through approach, without any 

kind of interaction from the devices or the tools accompanying those devices, such as a 

mouse or touchpad. Isolating users from these kinds of distractions was designed to help 

users focus on using the device and their interaction with the space and scenario. The 

intention was to minimize interaction with other tools, and to avoid overloading users’ 

working memory.  
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Prior visualizing process using mobile devices, participants had to choose markers 

and place those markers on the wall. The use of marker-based MR technology in this study 

because it allows the researchers to test a wide range of mobile computing devices which 

were all capable of running the MR application. Additionally, markers also allowed the 

researchers to explore whether MR would enable the same types of physical navigation 

behaviors seen in physical mock-ups.  

4.6    DATA COLLECTION  

The research techniques adopted in this study aimed to facilitate comprehensive 

data collection. These techniques include giving participants pre- and post-session 

questionnaires “perceptional data points” as well as directly observing the participants as 

they interacted with the devices and space “observational data points”. An explanation of 

these techniques is provided in the following sections.  

4.6.1 Survey Techniques 

Pre- and post-session questionnaires were conducted to assess any shifts in 

perceptions or attitudes as related to the two levels of research questions asked in this 

research. The survey was organized into three main categories. First; Questions aimed at 

understanding the Sample Distribution, including participants’ current and prior positions 

as well as experiences in the industry. Second: questions concerning the three Visualization 

Approaches (VR, MR, and Physical mockups), reflecting any shift in perceptions before 

and after using MR during the design and constructability review sessions, as well as 

compared to other visualization approaches. Third: questions about MR Interfaces 

themselves, reflecting users’ perceptions of using different mobile computing tools in the 
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MR environment. The responses to several questions were measured on a Likert scale of 

1-7 while other questions were asked using a ranking technique which allowed participant 

to rank their levels of satisfaction with various systems or devices for the purpose of 

visualization. Table 10 includes some of the questions used to address each type of 

perceptional data in this research. 

 Table 10 Questionnaire structure for addressing research objectives 

 

4.6.2 Direct Observation  

In this research the authors also used structured direct observation to record 

behaviors as they occurred, with no preconceived ideas of what would be observed. This 

observation data was collected by video and audio recording the discussions during the 

design and constructability review scenarios. Previous research has categorized the 

behaviors people exhibit when working together in engineering meetings (Liston et al. 

2001). These researchers classified meeting activities as Describe, Explain, Predict, and 

Evaluate. A separate study from Stanford University expanded upon the research done by 

Objective: Sample question 
Section 2: Visualization 
Approaches  

- Rate your level of agreement with the following sentence: It is 
easier to manipulate a design for the layout of a patient room layout 
with Mixed Realty than with a physical mock-up approach. 

- Rate your level of agreement with the following sentence: It is 
easier to manipulate a design for the layout of a patient room with 
Mixed Realty than with a Virtual Reality approach. 

- I can easily share my ideas and thoughts about a design concept by 
using MR, VR, physical mock-ups: (check all that apply) 

Section 3: MR interface - Handheld devices such as smartphones and tablets provide an 
effective Mixed Reality visualization interface for design and 
constructability review sessions. 

- Rank the following mobile devices in terms of the highest 
visualization satisfaction. 

- Rank the following mobile devices in terms of the highest ease of 
use. 

Open-ended questions: 
Future concerns 

- What other building design and construction uses would benefit 
from the use of MR visualization? 
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Liston et al. by analyzing the ways people interacted, participated, and contributed to 

meetings, as well as the way projects evolved (Garcia et al. 2003). This study classified all 

utterances spoken during nine engineering meetings according to the reactions they 

promoted. They identified seven codes of behavior among participants which influenced 

the outcomes and efficiency of the meetings, including: Describe, Explain, Evaluate, 

Predict, Formulate Alternative, Negotiate, and Decide (DEEPAND). In this research the 

authors have used the codes of behavior from Garcia et al. (2003) as their coding system 

(DEEPAND) to measure and evaluate the outcomes of the engineering meetings from the 

three main perspectives: efficiency, effectiveness, and meeting value. However, because 

the nine meetings in Garcia et al. did not include MR, the authors developed five more 

codes of behavior that could occur in an MR-specific environment. For example, with 

mobile MR interfaces, users can walk while holding a device to physically explore and 

visual objects. This behavior may not occur in VR as people only interact through a device 

display. Table 11 presents the definitions of the five codes the authors developed for this 

study. 

Table 11 The definitions for the developed five categories 

Code of behavior  

Visualizing Definition 

Problem solving When holding/wearing a device, looking through the device’s screen, and 
visualizing (including seeing or not seeing virtual objects) 

Walking through/ navigating 
a design 

Decision making event “agreement” occurred after defining design problem 

Discussing while looking at 
others 

When holding/wearing a device and walking to navigate the design pieces 

Discussing while looking at 
the markers 

When having face-to-face communication  
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Unlike the DEEPAND method of observing behaviors, all codes in this study were 

divided into two data types: Time and Events. The time data set records the amount of time 

spent on each behavior using each different mobile computer. In this category, nine codes 

of behaviors were considered. The time spent on each behavior was noted in intervals of 

minutes. The events data set recorded all as frequency data point such (ex, number of event 

occurred). Three codes were created for the events data set as those behaviors have no 

significant time measurements, instead, the frequency measurements would give better 

understanding of how frequent a particular behavior was repeated in a time interval. Figure 

10 shows the structure used to collect the two data sets. 

The authors used observational software to analyze the both observational data 

points. After the design review sessions were conducted, the researchers reviewed the 

recorded video footage to code when different observational data points were observed. 

For example, if a participant was walking while holding a particular device, the total time 

that they were physically navigating the space was documented (time analysis). Similarly, 

if a participant moved a printed marker to test an alternate design layout, an additional 

“Formulate Alternative” event would be documented. However, these data points include 

either behaviors formed as users’ movements or speaking (verbal-based). Example(s) and 

the definition of each behavior is listed in Table 12. 

While this research’ first component includes understanding if mobile MR can 

facilitate the behaviors of VR and Physical mock-ups, data points were collected from prior 

work to determine whether the same behaviors were observed using VR and physical 

mock-ups. The authors selected multiple prior works that aimed to understand the 
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engineering meeting in VR and Physical mock-ups design review processes. The focus was 

determining whether the behaviors observed in MR environment can also be found in the 

other visualizations (VR and Physical mock-ups). If a behavior was found in those studies 

using any technology this study considered that behavior as found behavior. The following 

examples illustrates how the authors found the behaviors from the prior work: 1) Prior 

work found that VR and Physical mock-ups can offer decision-making process during 

design review processes. But however, VR can cut the decision-making time to less than 

fifty percent as compared to Physical mock ups (Majumdar et al 2006). 2) descriptive, 

predict, negotiate, evaluate, and explanative behaviors were observed during several 

engineering meetings in VR environment (Garcia et al. 2003). 3) VR simulation and 

Physical mock-ups enhance visualizations processes and communicating with design 

elements in design review sessions (Jo, Yang, and Son 2008; Peavey et al. 2012). 4) 

Physical mock-ups is a tool for evaluating multiple design solutions in a true “apples to 

apples” setting (Stuart Hodas 2007).  

             

Figure 10 the three data sets used to categorize all codes 
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Table 12 Definitions and examples of all behaviors used in this study 

 

4.7    RESULTS  

The collected data points for this research include observational and perceptional 

data points. The authors held two design and constructability review sessions with industry 

professionals at an architectural design firm in Arizona, United States. The sessions 

conducted for this research aimed to solve design layout challenges related to a headwall 
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above a patient bed in a health care facility. 12 participants participated in the two sessions. 

The first session took about 34 minutes while the second one took about 26 minutes. The 

following section illustrate the results obtained from the two data sets (observational and 

perceptional) used in this research. 

4.7.1 Perceptional data pints 

4.7.1.1 data distribution 

All participants in this study provided feedback after using MR technology to 

facilitate the design and constructability review process. In total 12 industry professionals 

participated in two design and constructability review sessions. Most of the participants 

were those who had experience resolving design issues, such as architects, project 

managers, and project planners, while other participants had experience working alongside 

project team leaders, such as technicians. In terms of prior work experience, 55% of 

participants had more than 10 years of construction-related experience and 80% of 

participants had previously contributed to design and constructability review sessions for 

different projects and design scenarios. Participants were also asked about the current 

visualization approaches used in their design and constructability review meetings, and 

while 72% had experience with VR, while only 9% had interacted with a MR interface 

before. 

4.7.1.2 Visualization approaches 

Participants were asked if it was easier to manipulate a design for the layout of a 

patient room with MR as compared with VR and physical mock-ups. The same questions 

were asked before and after the sessions. The results showed that participants agreed more 



 

 77  

to use MR as an alternative to Physical mockups, 9% before to 45% after the session. 

However, participants have less agreement to use MR as an alternative to VR (18% before 

to 36% after the session). 

When participants were asked to select the visualization methods as an easy method 

to share design ideas among project stakeholders. 64% selected the three methods (MR, 

VR, and Physical mockups) as they have the option of check all that apply. However, in 

terms of finding design conflicts, 55% of the participants agreed that using MR on mobile 

devices could effectively be used to resolve design conflicts. 

4.7.1.3 Mixed Reality interfaces 

Participants were also asked to evaluate the effectiveness of the visualization 

interface on handheld and wearable computers before and after the sessions. Participants’ 

answers were significantly skewed towards disagree and strongly disagree using MR on 

wearable devices compared to handheld devices (P=0.046, df=10, at 0.05).  

In terms of satisfaction using different mobile devices, 45% of participants were 

mostly satisfied with their experiences using MR on the three different handheld screen 

sizes offered (small screen handheld device with less than 6 inches, medium screen hand 

held device between 6 inches and 10 inches, and large screen handheld device with more 

than 10 inches) both prior to and after the sessions.  

The participants were also asked to rate their levels of satisfaction with each device 

as well as how easy each device was to use during the sessions. The device which received 

the highest levels of satisfaction was the tablet mounted on a stand, followed by the 

handheld device with larger than 10 inches, then the medium screen handheld device 
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between 6 inches and 10 inches. Figure 11 shows the participants’ levels of satisfaction 

and ease of use for the proposed mobile devices. 

 

 
Figure 11 participants’ levels of satisfaction and ease of use for the proposed mobile 

devices 

The last section of the survey was concerned with participants’ ideas about future 

applications of MR in facilitating design and constructability review sessions. All 

participants agreed that using a tablet mounted on a stand in their future design review 

sessions would be the most useful. Handheld device larger than 10 inches and handheld 

device between 6 and 10 inches came in second and third respectively. Additionally, 64% 

of participants said they would not consider using a smartphone with a screen measuring 

fewer than 4 inches or one eye video see-through glasses in future sessions.    
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4.7.2 Direct observation  

The authors also collected video and audio recordings as observational data to 

further understand participants’ behaviors during the sessions. As mentioned in the 

methodology section, two data sets were created based on the observations: time and events 

data. The following illustrates the results observed in each data set. 

4.7.3 Time analysis 

The results showed that the behaviors’ duration was varied using different devices. 

For example, the longest time spent in Descriptive behavior was through the use of tablet 

mounted on a stand approach, and for Explanative, handheld device between 6 inches and 

10 inches was the highest. Table 13 illustrates the longest and shortest time spent for all 

behaviors observed using the selected technologies proposed in this research. 

Table 13 Time analysis for seven observed codes 
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The time spent communicating can be deduced from observing the percentages of 

time spent on different behaviors. In this data set nine different behaviors were observed 

and analyzed according to this study’s coding system and method. The observed time was 

normalized to average use per person for each behavior. After that, the percentage of time 

spent doing a specific behavior was measured for each interface. For example, the average 

use per person in Visualizing behavior using VR Box interface is 1.06 min/person; 

however, the total time spent in Visualizing behavior is 9.57 min/person. So, the percentage 

use per person among other interfaces within Visualizing behavior is 1.06*100/9.57= 

11.1% for VR Box. All time data set in the following sections considered using this 

percentages.  

4.7.4 Events analysis 

Three behaviors were coded from the video and audio records to compile the events 

data set, including decision making, problem solving, and design changes. The results show 

that participants were able to make decisions and solve design problems in the MR 

environment. Four design decisions were made using the medium handheld device 

(between 6 inches and 10 inches) and the large handheld device (larger than 10 inches). 

Additionally, three design problems were solved using handheld devices with screens 

between 6 inches and 10 inches in size. Lastly, for formulate design alternatives (move 

markers) the tablet mounted on a stand were the highest compared to other devices. Figure 

12 shows the events analysis results observed in this study.  
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Figure 12 Events behaviors results observed using different mobile devices 

When participants used wearable devices such as two eye see-through glasses, one 

eye video see-through glasses, and video see-through VR Boxes, no Problem solving was 

detected. However, one Decision making behavior was observed while participants were 

using the VR Box and one eye video see-through glasses.  

4.8 DISCUSSION 

Ultimately, every user is unique and arrives at design review sessions with his or 

her own perspective, preference, and experience with various mobile devices and 

visualization interfaces. The goal, then, is not to determine which mobile IT device is ideal 

for all design review sessions and use cases, but how each individual mobile IT device can 

be used to elicit specific, desired human behaviors from a variety of unique participants. 

This approach would allow project teams to make more effective plans for using 

technology in their review and constructability sessions, prioritizing effective and efficient 
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human behaviors and interactions because ultimately, humans are the engines for making 

design decisions. For example, if the goal of the design review meeting is to elicit Decision 

Making behaviors in order to address design issues, team members could choose a specific 

mobile computer based on research findings to best facilitate Decision Making behaviors 

in their review session. In order to achieve this sort of efficiency, discerning which mobile 

computers tend to elicit which types of behaviors across populations must become a key 

research focus for future studies, as this research study only collected data from two design 

and constructability review sessions at a single construction firm in Arizona, United States. 

Because the sample size of this study is so small, the results of this study may not be fully 

reliable for casting wide judgment as to the efficiency and effectiveness of using these 

mobile devices in review sessions, or for determining which human behaviors are most 

commonly exhibited while using these devices during any given review session. Despite 

the small sample size, however, this study can be used as a starting point for researchers 

who seek a preliminary baseline for understanding mobile device effectiveness in MR 

environments and professionals’ various perspectives on and responses to using those 

devices in design and constructability review sessions.  

4.8.1 Handheld vs. wearable devices in design and constructability 

review sessions 

The second set of research questions addressed in this study concerns how human 

users perceived using different mobile MR interfaces, specifically looking at whether 

industry professionals preferred using handheld or wearable devices to facilitate MR design 

and constructability review sessions. The results showed a significant shift away from 
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using wearables, while the results showed no change in the perception of the usefulness of 

handheld devices. 

Participants seemed less satisfied with wearable devices due to the many challenges 

they experienced while using them, such as issues of skewed depth perception, the 

sensation of being disconnected from their surroundings, the small fields of view (e.g. one-

eye interface), and difficulty tracking the markers. Some of those same challenges have 

been highlighted in prior works using both MR and VR interfaces (Armbrüster et al. 2008; 

Choi et al. 2016). However, the most significant difficulty associated with using wearable 

devices was how the embedded cameras negatively affected the users’ abilities to interact 

naturally with other team members in the space. Because the wearables had embedded 

cameras, every time a participant tried to make eye-contact with another team member 

while discussing a design idea, the participant struggled to walk, move naturally, and 

change the positions of the markers because each time the person’s head moved, the camera 

moved as well, resulting in disorienting, unnatural vision that led many participants to lose 

sight of the markers completely. Participants constantly needed to refocus and adjust their 

eyes and the markers in order to see the virtual objects. Therefore, participants who used 

wearable devices tended to spend long periods of time just trying to track the markers, 

which detracted from their ability to discuss their design ideas and perhaps significantly 

reduced the quality and quantity of constructive design ideas they could contribute. 

Even though using handheld devices also required participants to point cameras at 

markers, the cameras on these devices were not directly linked to the movements of the 

users’ eyes or heads, and so did not impede the sensory perceptions of users or the users’ 
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abilities to communicate with other team members in the same ways. The tablet mounted 

on a stand proved to be the most successful mobile IT device for this scenario because it 

interfered the least with participants’ abilities to discuss design ideas while looking at other 

people and while looking to the markers. This mounted tablet approach allowed 

participants to look through a stationary display from a distance or up close, removing any 

issues of sensory deprivation or disorientation, and allowed users’ hands and eyes to be 

free in order to gesture and look at other participants. Additionally, because the stand had 

four wheels, participants were able to move the stand around the space while collaborating 

and discussing the design, changing the locations of the markers with ease as the tablet 

continued to effectively track the markers. As a result, the mounted tablet approach allowed 

participants to provide design ideas and changes in a better way and without distraction 

and allowed for natural human behaviors and interactions between participants. 

The first three devices that offer the highest ratings of satisfaction and ease of use 

among handheld devices include, tablet mounted on a stand, large handheld device with 

screens larger than 10 inches, and medium handheld devices with screens between 6 and 

10 inches respectively. In conclusion, despite current advancements in wearable 

technology, industry professionals tend to prefer using handheld devices selected in this 

study when facilitating MR design and constructability review sessions.   

4.8.2 Future potential for wearable devices  

While participants favored handheld devices, the observational data also shows that 

wearable devices have the potential to become more useful and effective if their current 

inadequacies and imperfections related to inhibiting natural human behaviors, perceptions, 
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and interactions can be addressed. For example, the video see-through VR Box ranked the 

first in terms facilitating Descriptive behavior, and the two-eye see-through transparent 

glasses ranked the second in terms of Visualizing behavior. These results demonstrate that 

wearable devices also have the capacity to facilitate positive behaviors among participants, 

though they still have challenges to overcome. Some of these challenges could be related 

to the fact that wearable technology is still fairly new to industry professionals, and the 

lack of constant exposure to and experience with these types of wearable devices might 

keep industry professionals from feeling fully comfortable interacting with these still-

uncommon interfaces. Of course, this specific challenge may prove, through further 

research, to be unique to this sample group and therefore not relevant on a large scale that 

might include users with more experience and comfort with these devices. However, 

despite the small sample size of this study, the data can still prove helpful to future 

researchers in that the authors of this research have developed an initial framework to 

illustrate the variety of behaviors observed while participants used the selected mobile 

devices. 

4.8.3 The development of the initial framework 

The following two sections address the development of the framework related to: 

understanding MR environments compared to VR and Physical mock-ups (Research 

component 1); and understanding the human behaviors observed through implementing the 

same MR application on different mobile interfaces (Research component 2)  

6.3.1 MR behaviors compared to VR and physical mockups (research component 

-1) 
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This research only studied behaviors in MR design and constructability review 

meetings, therefore, this research method used prior work as discussed in the methodology 

section to determine whether the same behaviors in MR were also found in VR and physical 

mock-ups. The behaviors found in the prior studies were referenced in this framework. 

Table 14 illustrates MR framework component-1 including behaviors observed in MR 

compared to VR and physical mock-ups. 

Table 14 MR vs. VR vs. Physical Mock-ups framework 

Observed Human 
Behavior 

Mixed Reality 
(this study 

data) 

Virtual Reality 
(prior work) 

Physical mockups 
(prior work) 

Visualizing Yes 
Jo, Yang, and Son 2008; Peavey et al. 

2012 

(Jo, Yang, and Son 
2008; Peavey et al. 

2012) 

Descriptive Yes (Garcia et al. 2003) 
(Johansson, Jenna. 

2012) 

Explanative Yes (Garcia et al. 2003) (Minjung Maing 2012) 

Evaluative Yes (Garcia et al. 2003) (Stuart Hodas 2007) 

Predict No (Garcia et al. 2003) 
(Johansson, Jenna. 

2012) 

Decision making Yes 
(Majumdar et al 2006; Peavey et al. 

2012) 
(Majumdar et al 2006; 

Peavey et al. 2012) 

Problem solving Yes 
(Ferdinando Milella 2015; Majumdar 

et al 2006) 
Minjung Maing 2012 

Negotiate No (Garcia et al. 2003) (Walker. 2015) 

Design changes 
(Alternatives) 

Yes 
(Kurt D. Maldovan 2016; Johansson, 

Jenna. 2012) 

(Walker. 2015; 
Johansson, Jenna. 

2012) 

Walking/ Navigate 
through Design Virtually and 

Physically 

Only virtually (Kurt D. Maldovan 
2016; Mohd Fairuz Shiratuddin and 

Walid Thabet 2003a) 

Only physically 
(Walker. 2015; 
Mohd.Fairuz 

Shiratuddin and Walid 
Thabet. 2003a) 

Discussing about the 
design while looking 

to others 
Yes - - 

Discussing about the 
design while looking 

to markers 
Yes N/A N/A 
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There are 10 behaviors observed in MR environment including five behaviors from 

DEEPAND approach and 5 from this study’s MR coding system. On the other hand, 10 

behaviors were found in prior studies enabled in VR and Physical mock-ups approaches. 

However, two behaviors were not found in the prior studies include Discussing about the 

design while looking to others and Discussing about the design while looking to markers. 

For Discussing and looking to markers, this behavior is not achievable in VR or Physical 

mock-ups as markers doesn’t represent virtual objects in these environment unless there is 

a use of MR technology in such scenario. The physical markers can be used to facilitate 

different process such benchmarks or reference points. For Discussing about the design 

while looking to others, this doesn’t mean that this behavior couldn’t be achieved in VR or 

Physical mock-ups. But there could be no interest to track this behavior in the prior 

literatures. Specifically, with the use of fully immersive VR environment, wearing 

wearable devices, as users get disconnected from the physical environment. But however, 

researches have highlighted the importance of both human–computer and computer-

mediated human-to-human interactions as they support individual, collaborative thinking 

and matching intuitive modes and interaction tools (Dunston P. and Xiangyu W. 2005).     

Negotiate and Predict were not observed during the two design review sessions in 

this study, but they were enabled by VR and Physical mock-ups approaches. But however, 

according to the MR vs. VR vs. Physical Mock-ups framework above, there are 8 different 

shared behaviors that were observed in the three environments. Those behaviors were 

observed in different environment but the same behaviors’ definitions were used to test if 

each environment can be enabled by different environment. The second research 
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component aimed to address if mobile MR can facilitate some behaviors of VR and 

Physical mock-ups. Therefore, mobile MR can enable many of the same behaviors that can 

be elicited through VR and Physical mockups as shown in the framework. 

4.8.4 MR implementation on different mobile interfaces framework 

(research component-2) 

Previous work categorized the detailed tasks people perform or behave when 

working together in meetings (Liston et al. 2001). Others work illustrated how those 

behaviors can affect meeting effectiveness, meeting efficiency, and value index (Garcia et 

al. 2003). In MR technology, it is critical to understanding human aspects and its influences 

on the outcomes of the meetings, specifically, for design comprehension and 

communication (Dunston P. and Xiangyu W. 2005) as the differences in human 

performance can achieved by various MR interfaces (Oxman 2000; Wang 2002). In 

general, different behaviors were highlighted by researchers that can influence design 

review processes’ outcomes in these interfaces. For example: design navigation and 

generate alternatives behaviors are key aspects for design comprehension and 

communication (Dunston P. and Xiangyu W. 2005). Another example showed that more 

design alternatives, negotiation, explanative behaviors increase meetings efficiency, while 

more decision making can enhance meeting values (Garcia et al. 2003, 2005). Therefore, 

the question becomes, how human behaviors can be evaluated using mobile MR interfaces 

in design review processes? The second research component designed to address this 

question by developing a framework that illustrates the human behaviors achieved using 

different mobile MR interfaces in design and constructability review processes.   
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The framework labeled as MR implementation on different mobile interfaces 

framework to illustrate the behaviors observed in two mobile MR design and 

constructability review sessions (Table 15). The first vertical column represents all 

behaviors while the first row shows different mobile interfaces selected in this study. The 

development of this framework is to understand how various technologies in MR 

environments can enable different human behaviors in design and constructability review 

sessions. For example, if the desire is to understand the percentage of decision making 

behavior on different MR interfaces, according to the MR implementation on different 

mobile interfaces framework below, a handheld device with a screen larger than 10 inches 

would offer the greatest potential for bringing about this behavior. 

The developed framework doesn’t only show those behaviors that have the highest 

potential to occur during the sessions, it also shows where those behaviors that have lowest 

potential to occur in the same sessions. This may also address the needs if the desire was 

to minimize a particular behavior in MR design and constructability review sessions for 

future sessions. 

4.9 LIMITATIONS 

This initial MR framework has not been validated outside of the small sample size 

of this research, so this framework should primarily serve as a foundation for creating an 

even more inclusive, representative, and accurate categorization system for identifying the 

best mobile devices for creating the desired human behaviors. However, despite the small 

sample size, this data still has the potential to serve as a foundation for behavioral 
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prediction models that can provide valuable insight into how industry professionals 

respond and interact with designs using different mobile computers. 

Table 15 MR implementation on different mobile interfaces framework 

 

It also serves to validate the use of MR technologies in review sessions alongside 

or instead of VR and physical mock-ups. However, more sessions need to be conducted in 

the future to further validate the initial framework. 

The second limitation in this study could be present because of users’ preference to 

use certain devices during the sessions. Participants could potentially prefer to use a 

particular device based on their prior experience, thoughts, or their comfort to hold or wear 

devices. Therefore, there may be more likely to demonstrate a behavior on those devices 

than other devices. 
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Other limitations related to technology capabilities may also presented during the 

sessions. Even though current mobile computer technology can run MR visualization 

interfaces in design and constructability review sessions, the performance often fluctuates 

based on multiple factors, including the cameras’ resolutions, processor performance for 

rendering, and display quality. Although multiple markers were used and full scale objects 

were augmented in different design scenarios, the number of markers dramatically 

influenced the tracking performance of the devices. There was a direct relationship between 

the object’s scale and the marker’s size. This was also influenced by the distance between 

the objects and the devices. Additionally, unlike markerless MR, marker-based MR is 

limited to render virtual contents as users need to keep the devices’ cameras pointed on the 

markers. If the markers are not within the camera’s field of view that results in losing the 

tracking process which lead to disappearing the virtual contents. 

4.10 CONCLUSION  

This research serves industry professionals by exploring the feasibility of deploying 

MR mobile-based interfaces in design and constructability review sessions, and offering a 

guideline for incorporating various technologies in MR environments. These findings 

illustrate that MR can facilitate some of the same behaviors observed in other visualization 

technologies such as VR and physical mock-ups. Additionally, different mobile computers 

seemed to elicit different human behaviors from users, which allowed the authors to create 

a framework to help professionals understand the behaviors associated with using 

particular mobile technologies in MR environments. Using the framework, if a project team 
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desires a particular behavior during a review session, an optimal device can be chosen to 

elicit this behavior. This research contributes to the current literature in four main ways:  

 It demonstrates that MR can facilitate many of the same behaviors as purely VR and 

physical mock-ups in design and constructability review sessions.  

 It demonstrates that different mobile computers may potentially enable different 

human behaviors in MR design and constructability review sessions.  

 It documents the types of behaviors that can be achieved using different mobile MR 

interfaces. 

Future work related to MR devices and human behavior in review sessions will 

require more constructability and design review sessions to be held, but with fewer mobile 

device options. Instead of using all available mobile devices during one session, the authors 

will ask industry professionals to use only one mobile device. The same methodology will 

be used for observing human behaviors so that the authors can isolate which behaviors are 

enabled through different devices. This will help to validate or alter the initial framework.  
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CHAPTER 5 

SINGLE MOBILE USE IN MIXED REALITY TO INFLUENCE DESIGN AND 

CONSTRUCTABILITY REVIEW SESSIONS 

5.1    INTRODUSTION 

This study is a continuation of prior research done by Alsafouri S. and Ayer K. S. 

2017 which was aimed at understanding project stakeholders’ behaviors using different 

mobile devices in MR design and constructability review sessions. The prior study 

suggested that 9 different behaviors were observed using mobile MR computing tools using 

the DEEPAND coding system (Garcia et al. 2003). The 9 behaviors observed included: 

describe; explain; evaluate; formulate alternatives; decide; visualize; problem solve; 

navigate a design; discuss while looking at others; and discuss while looking at the design. 

Those behaviors were also enabled by other visualization approaches, including virtual 

reality (VR) and physical mock-ups. Additionally, the use of different mobile computers 

can enable behaviors in MR environment that were not reported by prior studies that 

explore purely VR or purely physical mock-ups. The initial study presented a variety of 

mobile MR devices for all participants and allowed them to choose to use any device at 

any point in the design review session. This helped to illustrate the natural tendencies 

among participants when selecting a device for the session.  

This paper expands this work through further MR design review sessions where 

participants were not provided with a variety of devices for their selection. Instead, 

participants were asked to use only one mobile device during a design review activity. This 

allowed the researchers to explore whether different mobile MR devices would enable 
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similar or different behaviors when participants were not provided with a choice of device. 

In many industry and academic research applications, a variety of devices capable of 

providing a MR experience are not provided. Therefore, the intention of this work was to 

provide an understanding of whether the same types of behaviors that were observed in the 

sessions involving multiple devices could be observed with certain specific devices. This 

understanding may support technology planning in future studies to allow individuals to 

strategically plan for certain technologies to enable targeted human behaviors. 

This study presents findings to address the following research questions:  

 Does the same MR design review environment elicit different human behaviors if it 

is viewed through different mobile computing devices?  

 What human behaviors are observed with different mobile MR devices? 

 How do the behaviors observed in this work compare to those observed during 

sessions where individuals were provided with various MR device choices? 

To address these research questions, the authors conducted design review sessions 

with graduate and undergraduate students at Arizona State University. This enabled the 

researchers to systematically test single devices in a collaborative design session including 

devices that prior work suggested would be counter-productive for design review sessions. 

Therefore, the students were only provided with a single mobile computing devices for 

experiencing the MR design environment. A structured analysis approach was used 

according to the coding strategies defined in DEEPAND (Garcia et al. 2003) and prior MR 

work (Alsafouri S. and Ayer K. S. 2017). The findings are presented in two tables that 

address both research questions. 
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5.2    METHODOLOGY  

While this research objective is to set a baseline for a consistent design review 

scenario with different mobile devices, the data was collected by running design and 

constructability review sessions with graduate and undergraduate students at Arizona State 

University. Additionally, the students’ data was selected in this research as this study is 

exploring human behaviors using different mobile computers in MR interface, and human 

behaviors are still human behaviors regardless of the system or device that they interact 

with. In terms of participants’ experiences in design and constructability review sessions, 

industry professionals may not all have the experience to resolve a design conflict, which 

is the same scenario as with the students’ data points. Additionally, for experiences levels, 

students may not have the same level of industry experience as the prior industry 

participants. But design and constructability review sessions often involve individuals who 

may not have a substantial amount of architectural design experience as project 

stakeholders (i.e. owners or future building tenants) are always changed based on the 

project or design review scenarios. Therefore, the authors opted to leverage a student 

population of participants in order to conduct repeated standardized design review sessions 

to enable better consistency of data and reduce the impacts of interactions other than those 

related to the different MR device interventions. This also enables the researchers to 

systematically test single devices in a collaborative design session including devices that 

prior work suggested would be counter-productive for design review sessions 
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5.2.1 Design and constructability review scenario 

The developed hypothetical design scenario’s constraints were the same for all 

participants. During each session, each participant was provided with only a single MR 

computing device. During different sessions, different participants were provided different 

devices to allow each device to be tried in several different sessions. The following sections 

present the detailed method involved in collecting and analyzing the data points.    

To compensate for the potential limitation of using student participants with limited 

industry experience, the design scenario created involved simple interior design elements 

that would not require substantial prior expertise for layout. The design program used in 

this study consisted of designing an office space in a predetermined room size. Students 

were brought into an empty office space with printed fiducial markers that represented 

various design elements. This tasked students with laying out the space with the 

“augmented” objects that they would want to have in their own office space. While the 

design components were all familiar to students (i.e. desks, cabinets, chairs, table lamps, 

and computers), students were still challenged to make design decisions because there were 

intentionally more MR elements that were provided than would realistically fit in the space. 

Upon arriving to the sessions, participants were given a quick introduction about MR and 

how they can use the device given in a particular session.  

The students were given the following scenario: they are currently working for a 

construction company and they recently have been promoted to an executive position. At 

a minimum, the company requires participants to design their own offices. However, 

participants were provided with the following design programming requirements: 
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 Required items that needed to be added: 

o List, Item name and number of alternatives provided 

 Optional additional components 

o List, Item name and number of alternatives provided 

o These items required students to find space in the office, which 

could not come at the expense of omitting required components. 

 Room Constraints: 

o The size of the office (the physical room where the activity was 

conducted) could not be changed. 

o The built-in architectural elements in the space (including a window, 

door, electrical outlets, TV, and a built-in bookshelf) could not be 

changed. 

o Participants were provided a physical office chair on wheels that 

they were told they could use to try different desk locations. 

The constraints provided a challenge to the student participants, but they also 

provided a direct method for allowing participants to engage with both physical and virtual 

objects involved in the session. This ability to engage with both physical components is 

uniquely suited to Mixed Reality. Therefore, this approach enabled the researchers to 

observe how it might affect the behaviors of the participants. 

During the sessions, participants discussed the design requirements by providing 

suggestions or ideas to solve/avoid design issues that they faced such as components’ 

location, type of object, and space constraints. Due to the large number of options that 
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could be selected, it was easy for participants to use more objects in the MR space than 

would be possible in reality. This challenged participants to move objects so they did not 

physically obstruct the room or one another. 

Participants were allowed to layout the space for as long as they felt was necessary, 

but most groups used approximately 30 minutes. When the participants felt that they had 

identified their ideal space layout, they were asked to document their design decisions in a 

form provided. This form tasked students with listing all items that they had selected, 

including both required and available options.  

5.2.2 Technology used and selection  

The mobile computer interfaces used in in this study are listed in Table 16. Upon 

arriving to the design review session, participants were provided with a single device. They 

were not told what other devices were used in this work. 

Table 16 list of mobile interfaces used in this research 

 Device example Interaction style Device example 

H
an

dh
el

d 

Small screen size Display interface 
3.8” Smartphone - Samsung 

Galaxy T599- 2013 

Average screen size Display interface 
5.7” Smartphone - Samsung 

Galaxy Note 5 - 2015 

Small tablet screen size Display interface 
9.7” Phablet - Samsung 
Galaxy Tab S2 - 2015 

Large tablet screen size Display interface 
12.2” Tablet - Samsung 
Galaxy Tab Pro -  2014 

W ea One eye screen smart glass One eye display interface 
Vuzix Smart Glass – M100 - 

2014 
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Dual eyes screen glasses Splinted display interface VR Box 

Duel eyes transparent smart 
glasses 

See-through transparent 
glasses 

Epson Smart Glasses- BT-
200 - 2014 

Tablet mounted on a stand Display interface 
12.2” Tablet - Samsung 
Galaxy Tab Pro -  2014 

 

In this study, the authors have developed an Android-based, mobile, MR 

application that allows user to visualize virtual objects in a physical space. All devices 

chosen could run on the Android platform and possessed built in cameras to track printed 

fiducial markers. Participants would place markers on the ground and, when the devices 

would register the printed markers, they would present corresponding 3D models at full 

scale for participants to inspect. This allowed participants to physically navigate around 

the space and their view of the “augmented” content would modify accordingly.  

The authors followed a step by step process presented in prior research to develop 

a single MR application that could be built to all devices that were used in the design and 

constructability review sessions (Alsafouri S. and Ayer K. S. 2016). While some of the 

mobile computing devices chosen could technically enable different User Interfaces (UI) 

to be developed, the UI developed for this was intentionally kept the same. This meant that 

when users would view the MR environment through the provided device, they would only 

see the camera view of the space with the markers placed. This enabled the researchers to 

have a consistent environment for comparison. 
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5.3 DATA COLLECTION  

The research techniques adopted in this study aimed to facilitate comprehensive 

data collection. These techniques include giving participants pre- and post-session 

questionnaires, referred to as “perceptional data points,” as well as directly observing the 

participants as they interacted with the devices and space, the “observational data points”. 

An explanation of these techniques is provided in the following sections.  

5.3.1 Survey Techniques 

Pre- and post-session questionnaires were conducted to assess any shift in 

perceptions or attitudes as related to the two levels of research questions asked in this 

research. The survey was organized into three main categories. First: questions aimed at 

understanding the Sample Distribution, including participants’ current and prior positions 

as well as experiences in the industry. Second: questions concerning the three Visualization 

Approaches (VR, MR, and Physical mockups), reflecting any shift in perceptions before 

and after using MR during the design and constructability review sessions, as well as 

compared to other visualization approaches. Third: questions about the MR Interfaces 

themselves, reflecting users’ perceptions of using different mobile computing tools in the 

MR environment. The responses to several questions were measured on a Likert scale of 

1-7 while other questions were asked using a ranking technique which allowed participants 

to rank their levels of satisfaction with various systems or devices for the purpose of 

visualization. Table 17 includes some of the questions used to address each type of 

perceptional data in this research. 
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Table 17 Questionnaire structure for addressing research objectives 

Objective: Sample question 
Section 2: Visualization 

Approaches  

- Rate your level of agreement with the following sentence: It is easier 
to manipulate a design for the layout of a patient room layout with 
Mixed Realty than with a physical mock-up approach. 

- Rate your level of agreement with the following sentence: It is easier 
to manipulate a design for the layout of a patient room with Mixed 
Realty than with a Virtual Reality approach. 

- I can easily share my ideas and thoughts about a design concept by 
using MR, VR, physical mock-ups: (check all that apply) 

Section 3: MR interface - Handheld devices such as smartphones and tablets provide an 
effective Mixed Reality visualization interface for design and 
constructability review sessions. 

- Rank the following mobile devices in terms of the highest 
visualization satisfaction. 

- Rank the following mobile devices in terms of the highest ease of 
use. 

Open-ended questions: Future 
concerns 

- What other building design and construction uses would benefit from 
the use of MR visualization? 

 

5.3.2 Direct Observation 

For the observational data points, the authors used the same method of coding the 

12 behaviors addressed in the prior work (describe, explain, evaluate, predict, formulate 

alternatives, negotiate, and decide, visualize, problem solve, navigate a design, discuss 

while looking at others, and discuss while looking at the design) through video and audio 

records. The first seven codes were developed by previous research by Garcia et al. (2003) 

to understand human behaviors in engineering meetings. The other five codes were 

developed and defined in a prior work done by Alsafouri and Ayer (2017) as these codes 

of behavior could potentially occur in an MR-specific environment.  

The authors use the same categories to analyze these codes, Time and Event 

analysis. The time data set records the amount of time spent on each behavior using each 

different mobile computer. In this category, nine codes of behaviors were considered. The 

time spent on each behavior was noted in intervals of minutes. The events data set recorded 
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all events such as a request for or response to an event. Three codes were created for the 

events data set as those behaviors have no significant time measurements, instead, the 

frequency measurements would give better understanding of how frequent a particular 

behavior was repeated in a time interval.  

The observed time for each behavior was normalized to average use per person. 

Thus, because some sessions took longer than others, the results were divided by the total 

time spent in each session to measure the average time spent for a specific behavior per 

minute. For example, using handheld devices with less than a four inch screen, 4 

participants spent 24 minutes visualizing and they took 50 minutes to complete the three 

sessions, therefore, step one is to calculate the average use per person = 24 (minute) / 4 

(persons) = 6 minutes of visualizing behavior per person. And then step two is to calculate 

the average use per one minute, so 6 (minute visualization per person) *100 / 50 (total 

sessions time) = 12% (percentage in visualization time per person per minute). The main 

purpose of this is to normalize the data and treat it so that the optimal behavior that occurs 

per minute can be seen without considering the variance of the total time of the sessions. 

All observational data was normalized and the following sections use these normalized 

percentages.  
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5.4 RESULTS 

5.4.1 Perceptional data points 
 

In total 64 students participated in 32 design and constructability review sessions. 

In terms of prior work experience, 40% of participants have one to two years of 

construction-related experience while 52% have less than one year. 

5.4.2 Visualization approaches 

Participants were asked if it was easier to manipulate and design the office space 

layout with MR as compared with VR and physical mock-ups. The results showed that 

61% of participants agreed and strongly agreed to use MR as an alternative to VR. 

However, 77% of participants agreed and strongly agreed to use MR as an alternative to 

Physical mockups.  

  It was also noted that the students’ perceptional data points toward using MR 

visualization as an alternative to VR was different from the prior research method (with 

the use of multiple devices during the sessions). 36% of industry professionals have agreed 

to use MR as an alternative to VR, while 61% of the students agreed to use MR as an 

alternative to VR.   This results indicate that industry professionals have less agreement on 

whether to use MR as an alternative to VR compared to the students' data points. 

5.4.3 Mixed Reality Interfaces 

Participants were asked different questions to understand their perception using a 

particular device on MR. Table 18 shows the questions and the percentage of participants 

that agree with each statement.  
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Table 18 Table 16 Percentage of participants that agree with each statement 

 
Questionnaire Statements 

Percentage of 
agree answers  

It was easy to use a mobile computing device for Mixed Reality to design an office 
space 56.3% 

The device used in this session provided an effective Mixed Reality visualization 
interface for the design of the office space 

56.3% 

Mixed Reality on a mobile device can effectively be used to resolve design conflicts 53.1% 
I could easily share my ideas and thoughts about a design concept by using Mixed 

Reality on a mobile device: 
37.5% 

I could track multiple markers at the same time during this session 50.0% 

I could see full-scale objects on the mobile device’s display used in this session 56.3% 

It was convenient to use the mobile computer to physically navigate through the 
design 

57.8% 

I could manipulate different design options using Mixed Reality and a mobile device 
during the design scenario 

67.2% 

I would use this device again in future design and constructability sessions 50.0% 

 
5.4.4 Observational data point 

As mentioned in the methodology section, two data sets were created based on the 

observation system used in this study: Time and Events. The following illustrates the 

results observed in each data set. 

5.4.5 Time analysis 

The results showed that the behaviors’ duration was varied using different devices. 

For example, the longest time spent in Descriptive behavior was through the use of tablet 

larger than 10 inches, and for Explanative, a tablet mounted on a stand approach was the 

highest. Table 19 illustrates the longest and shortest time spent for all behaviors observed 

using the selected technologies proposed in this research.  

5.4.6 Events analysis 

Three behaviors were coded from the video and audio records to compile the events 

data set, including decision making, problem solving, and design alternatives. The results 

show that participants were able to make decisions and solve design problems in the MR 
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environment. However, each interface offers a different number of events observed for 

those three behaviors. For example, hand held with screen less than 4 inches had the highest 

offering Design alternatives among other devices. Figure 13 shows all percentages of each 

the event behaviors observed on different mobile interfaces.  

Table 19 Time analysis for seven observed codes 

D
ev

ic
e 

n
u

m
be

r 

[1] Handheld 
with screen 
less than 4 
inches 

[2] Handheld 
between 4 -6 
inches 

[3] Handheld 
between 6 inches 
and 10 inches 

[4] Handheld larger 
than 10 inches 

[5] Video see-
through VR Box 

[6] Two-eye 
see-through 
glasses 

[7] One-eye 
see-through 
glasses 

[8] Tablet 
mounted on a 
stand 

 
  

  

B
eh

av
io

r Visualizing Descriptive Explanative Evaluative 

Walking 
through/ 

navigating 
the design 

Predict 

Discussing 
the design 

while 
looking to 

others 

Discussing 
the design 

while 
looking to 
the board 

L
on

ge
st

 [4]  
11.8 

Minutes 

[4] 
9.7 Minutes 

[8] 
5.1 

Minutes 

[8] 
7.8 

Minutes 

[6] 
4.6 

Minutes 

[1] 
4.6 

Minutes 

[8] 
0.29 

Minutes 

[4] 
8.2 

Minutes 

S
ho

r
te

st
 [5] 

6.12 
Minutes 

[7] 
3.9 Minutes 

[5] 
0.34 

Minutes 

[6] 
0.11 

Minutes 

[3] 
1.78 

Minutes 

[6] 
0 Minutes 

[5] 
3.3 

Minutes 

[1] 
2.7 

Minutes 

 

 
Figure 13 Event Analysis Using Different Mobile Interface 
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5.5 DISCUSSION  

In this study 11 behaviors were observed compared to 10 behaviors in the prior 

study. The new behavior that was observed here is Predict behavior, while none of the 

research methods observed Negotiation behavior. However, Negotiation behavior was 

defined as negotiating tasks and responsibility assignment with the team members. In other 

words, it aimed to isolate tasks in terms of who will detail a specific design issue for future 

session. An example of this type of task is cost estimation according to the current design 

changes. The students understood that there would not be any future sessions related to 

their office layout, which may have contributed to negotiation behaviors not being 

observed. 

5.5.1 The development of MR Framework  

The development of this framework consists of two steps regarding the research 

questions. First, the development of the MR framework, the one that illustrates the 

observed behaviors, occurred using different mobile interfaces used in each MR session. 

The second section includes the development of the potential common-MR behaviors 

which might occur. This development illustrates whether mobile computers can potentially 

still lead to the same behaviors regardless of whether users were forced to use a single 

technology or they had the choice to use any device.   

5.5.2 MR framework using single mobile computer  

The framework using single mobile computer (Table 20) can provide a guideline 

to understand the observed behaviors using different mobile MR interfaces. The first 

vertical column represents the observed behaviors while the first row shows the selected 
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mobile interfaces in this study. The data were normalized as described in the data collection 

section and then the percentage of each device within each behavior were also calculated, 

the summation of each raw is equal to 100 to illustrate each device’s stake among other 

devices.  

In order to understand the percentage of particular behavior in this framework, 

within the row of that behavior the percentage observed using each device is listed. For 

example, if the desired behavior was Decision Making, according to the MR framework, a 

handheld device with a screen between 6 inches and 10 inches would offer the greatest 

potential value to enable this behavior. 

Table 20 MR framework using single mobile device in each design review session 
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5.5.3 Behaviors occurred in both multiple and single mobile use research 

methods  

The second research concern of this study is to understand the behaviors that have 

occurred in this research method compared to those observed during sessions where 

individuals were provided with various MR device choices. In other words, can a particular 

device lead to same behaviors in both research methods. However, the two data points from 

each research method couldn’t numerically be compared or combined as the total time 

spent in those sessions were varied; some sessions went for 50 minutes long while others 

lasted for 20 minutes. Additionally, data points for each were collected using different 

research methods (single or multiple use of mobile computers). Therefore, to address the 

second research concern, the authors developed a mechanism that helps to understand the 

likelihood of having a particular behavior using a specific device from the two data sets in 

a comparable matrix. This mechanism not only helps to illustrate those behaviors that have 

high or low potential to occur, but also allows researchers to incorporate future data points 

from new design and constructability sessions.  All of which aims to address this research 

effort goal: to better plan for technologies in these sessions. 

The preliminary step in this mechanism is to refine the data points as follows:  

 First, each data point from each research method was normalized separately. As 

described in the data collection section, the data were normalized to measure the 

average use per person per minutes.  

 Second, for each behavior there are eight different mobile interfaces represented 

in the observational time spent to achieve this behavior. There are the highest and 
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the lowest values included in those eight data points. The other six values fall in 

between the highest and lowest values. Therefore, the eight values were sorted in 

three levels of intervals. The three levels of intervals were defined using the 

following methodology:   

o Calculating the Variation value (V) in each data point. Table 21 shows an 

example of using sample data observed for visualization behavior and 

calculating the V value for both research methods. 

o Defining the boundaries of three intervals of each level. Three equal 

intervals were calculated by dividing the V value into three. For example, 

level 3 represents those behaviors that have the lowest potential to occur 

or close to the minimum value observed using a particular device. While 

level 1 represents values that are close to the maximum value observed for 

a specific behavior using a particular device. Figure 14 represents an 

example for the three equal intervals for a single device use for 

visualization behavior. 

Table 21 example data point for visualization behavior 

Mobile interface MULTIPLE 
DEVICES (I1)  

SINGLE DEVICE 
(I2) 

Handheld with screen less than 4 inches 0.0266 0.2262 

Handheld between 4 -6 inches 0.0344 0.2633 

Handheld between 6 inches and 10 
inches 

0.0384 0.3099 

Handheld larger than 10 inches 0.0673 0.1429 
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Figure 14 Three levels and the intervals related to each level for visualizing behavior 

in single mobile device use approach 

For the same example in the table above, the three levels were defined for the use 

of single device in visualization behavior as the following: 

 

The boundaries of those levels were vary based on the data points for each behavior 

as well as the research method used. However, the last step is to define where every mobile 

Two-eye see-through glasses 0.0443 0.3280 

One-eye see-through glasses 0.0108 0.2707 

Video see-through VR box 0.0304 0.3266 

Tablet mounted on a stand 0.0217 0.2987 

The variation calculations (V) = 
((Max(ii) – Min(ii))/3   

0.0188 0.0617 

Boundaries 
of the three 
levels   

Min (ii) ≤ Level 1< Min (ii) + V,  ex (i1):   0.1429 ≤ Level 1 < 0.1429 + 
0.0617= 0.2046 
 
Min (ii) + V ≤ Level 2< Min (ii) + 2V,  ex (i1):   0.2046≤ Level 2 < 0.2046+ 0.0617= 
0.2663 
 
Min (ii) + 2V ≤ Level 3≤ Max (ii),  ex (i1):   0.2663 ≤ Level 3 ≤ 0.3280 
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computer fall in one of the three intervals for each behavior. For example: the average time 

observed using handheld device with a screen between 4 to 6 inches in visualizing behavior 

is 0.2633 per one minute, therefore, this value fall in level 2 (0.2046≤ Level 2 ≤ 0.2663). 

All data from the two methods (the use of multiple and single mobile devices) went through 

this refinement according to the unique boundaries defined in previous steps.  

After sorting the data from the two research methods by understanding where each 

data pint fall in in one of the three levels boundaries, it is essential to understand if a specific 

behavior was captured at the same level or if it is varied from each method. In other words, 

there is more likelihood to have this behavior by using this particular device when the same 

levels are achieved in both research scenarios. For example, decision making was achieved 

in level 1 using handheld devices with screens between 6 to 10 inches in both methods, 

using singular and multiple mobile interfaces. However, if a particular behavior was not 

achieved in the same level, the authors have categorized the variation into two other 

categories. One level difference when the differences between the levels from the two 

research methods is equal to one. And two levels differences when the difference between 

the levels is equal to two. Figure 15 illustrates all possible options and scenarios available 

for all behaviors.  

Last step aimed to represent the results achieved after sorting the data points from 

the two research methods. The others developed a table that used the same key matrix 

presented in Figure 15 above to illustrate the level of differences in the results (L1, L2, L3, 

one level dif., and two level dif.). The developed table (Table 22) used the same approach 

used in the MR initial framework above in terms of listing the devices and all behavior 
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observed in this study. If the desire is to read if a particular behavior was achieved in the 

two data sets, the dark green spots (L1, L2, and L3) show that these behaviors have been 

obtained in the same level both from the use of single device or multiple device approaches. 

 

Figure 15 all possible options will occur sorting the data points from both research 

methods 

However, L1 means behaviors that fall in the highest likelihood to occur while L3 

represent that these behaviors have been captured within the lowest level to occur using 

that particular device among all other devices. In the framework, one level differences in 

the results represented in lighter green color and the two levels differences defined as very 

light green.  

5.6 LIMITATIONS  

This framework has not been validated with industry professionals as the data were 

collected only through conducting design sessions with students, so it should primarily 

serve as a foundation for creating an even more inclusive, representative, and accurate 
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categorization system to identify the best mobile devices for creating the desired human 

behaviors. 

Table 22 Behaviors occurred in both multiple and single mobile use research methods 
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Additionally, despite the fact that data was collected only from students, this data 

may still provide valuable initial insight into how behaviors could vary using a singular 

technology-driven scenario compared to the prior study where the authors provided the 

choice to select a device during the sessions. However, testing MR interfaces using 

different research methods would also help to increase internal validity of this research, 

and more sessions with industry professionals need to be conducted in the future to further 

increase both the internal and external validity of the framework. 

5.7 CONCLUSION  

This study is a continuation of prior research done by Alsafouri S. and Ayer K. S. 

2017 aimed at understanding project stakeholders’ behaviors using different mobile 

devices in MR design and constructability review sessions. The continuous work consists 

of two parts. The first part of this study aimed to understand human behaviors by tracking 

12 different behaviors in mobile MR interfaces. However, participants were asked to use 

only one mobile device during a design review activity which is differ from the prior work 

where participants had the choice to use any mobile device during the sessions. This study 

found that mobile MR enabled 11 different behaviors such as decision making and problem 

solving. Thus, the authors developed an MR initial framework to illustrate the percentages 

of each behavior using different mobile computers. If the users’ potential were to maximize 

a specific behavior, the framework shows which mobile device is most likely to enable this 

behavior among other devices selected in this study.  

The second part of this study aimed to understand if the same behaviors can be 

enabled in mobile MR if participants were asked to use only one mobile device, compared 
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to the prior work where participants had the choice to use any device. This study found 43 

behaviors were enabled with the same level of likelihood (L1, L2, and L3) in both research 

methods. Therefore, the authors developed a table to help researchers explore whether 

different mobile MR devices would enable similar or different behaviors when participants 

were not provided with a choice of device. Additionally, the authors developed a 

mechanism to analyze those behaviors in the three levels matrix (L1 represent behaviors 

that have higher potential to occur, while L3 represent the lower potential to occur). This 

allows ongoing research to incorporate more data observed from future sessions. For 

example: if more session will be conducted with using any mobile device selected in this 

effort, the three levels matrix mechanism can be used to test if same behaviors are achieved 

in the from sessions. However, if the desire to test a new device the MR initial framework 

allows to add one more column to illustrate the behaviors of that device among other 

devices.  

Overall, the intention of this work was to provide an understanding of whether the 

same types of behaviors that were observed in the sessions involving multiple devices 

could be observed with certain specific devices. This understanding could support 

technology planning in future studies to allow individuals to strategically plan for certain 

technologies to enable targeted human behaviors.  
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CHAPTER 6 

RESEARCH CONTRIBUTION 

Each chapter in this research represents different aspects of how emerging 

technologies are used within the industry. The first contribution aimed to explore the 

industry’s adoption of mobile Building Information Modeling (BIM) or mobile Virtual 

Design and Construction (VDC). This study found that in some construction industries, 

industry experts’ potential for using mobile BIM/VDC has already begun to be 

implemented by different companies for different uses. However, despite this potential, it 

seems that some mobile BIM/VDC are still underutilized. Additionally, smartphone 

devices have been widely used and tablets are becoming a good choice for presenting 

BIM/VDC content in the field. More emphasized investigating is needed for wearable 

devices in future research.  Moreover, this study also contributes in defining some of the 

specific uses of mobile BIM/VDC in industry.  

Despite the challenges identified with adopting information technology with 

BIM/VDC approaches through chapter one, the results showed that there is a great potential 

value in using technology to facilitate BIM/VDC. Therefore, the second research 

component (chapter 2) came to investigate further on how these emerging technologies 

could influence project information coordination flow between BIM/VDC contents and 

physical construction sites. The new contribution of this paper is a systematic analysis of 

prior works. This analysis had not been completed through prior research. Therefore the 

new knowledge provided in this paper relates to an understanding of current trends among 
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AECO researchers exploring emerging technologies on construction sites. The findings 

from this work include:   

Some prior researchers have suggested benefits to bidirectional coordination; 

unidirectional coordination applications substantially outnumber bidirectional modes. 

About 26.9% of the total number of approaches fall into the non-automated 

coordination classification, while only 2.5% used the automated bidirectional method. 

55.8% of bidirectional approaches used MR to facilitate non-automated 

bidirectional coordination while 3D laser scanning and BIM were the only ICT 

combination that enabled automated bidirectional coordination with about 7%.  

These results also suggested that the use of Mixed Reality (MR) can potentially 

enable bidirectional information coordination between virtual model and construction sites. 

Therefore, the third component (chapter 3) in this study focused only on the use of MR but 

not for implementing this technology for specific site-based use-cases; instead the focus 

was on human perspective toward using this technology in the design phase, specifically, 

when a number of project teams come together in a single technology-driven meeting space 

to review a concept within a project design. In other words, how MR influences human 

behaviors during the design phase. However, although this component studies the use of 

MR for design review sessions, it also tests whether the combined virtual-physical nature 

of MR facilitates the same behaviors and outcomes for users who ordinarily only use BIM 

walkthroughs (Virtual Reality) or physical mock-ups for their review and constructability 

sessions. Additionally, this research component contributes in identifying and analyzing 

various human behaviors such as decision making, problem solving, and design 
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alternatives that occur as users interact with MR on different mobile computers in order to 

understand how different mobile computers, such as wearables and handheld devices, can 

lead to different behaviors in an MR environment. This understanding translated to a 

development of MR framework to illustrate the observed behaviors in MR design and 

constructability review sessions. The results also include:   

 MR can facilitate some of the behaviors of Virtual Reality and physical 

mock-ups in design and constructability review sessions.  

 Different mobile computers can potentially influence project stakeholders’ 

behaviors in the MR environment.  

 MR can facilitate some of the behaviors observed in VR and Physical 

mock-ups. 

An initial framework has been developed for future research aimed at illustrating 

the potential behaviors that users might experience when interacting with particular pieces 

of technology in review sessions.   

This research contribution allows future researchers to better understand how to 

achieve a desired behavior using different mobile computers to better plan for technology. 

The last part in this research is a continuation of the prior component aimed at 

understanding project stakeholders’ behaviors using different mobile devices in MR design 

and constructability review sessions. Whereas the prior component presented a variety of 

mobile MR devices for all participants and allowed them to choose to use any device at 

any point in the design review session, this research component expanded this work 

through further MR design review sessions where participants were not provided with a 
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variety of devices for their selection. Instead, participants were asked to use only one 

mobile device during a design review activity. This allowed the researchers to explore 

whether different mobile MR devices would enable similar or different behaviors when 

participants were not provided with a choice of device. This research component 

contributed to developing the MR framework that illustrates the percentages of each 

behavior using single mobile device during the design review sessions. Additionally, a tri-

level matrix framework was created to help researchers understand whether different 

mobile MR devices have enabled similar or different behaviors when participants were not 

provided with a choice of device.  

Lastly, this research component defines a mechanism for analyzing the participant 

behaviors that are associated with different mobile computers. The understanding gained 

with this component could support ongoing research, by enabling the incorporation of more 

data through the framework of the matrix that was developed. For example: if more 

sessions will be conducted using the same (multiple or single method) device(s), the three 

levels matrix mechanism can be used to test if the same behaviors are obtained in the 

sessions. If the desire in future sessions is to use different methods than those developed in 

this study, the tri-level mechanism also support to test the behaviors if the method was not 

the same as this research. For example: the use of multiple device compared with the use 

of only two devices in the sessions. However, normalizing the data points should also be 

considered in the future sessions.  
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If the desire is to test a new device(s) as a single use or with other devices, 

researchers can also use this research methodology to develop a new framework that shows 

the percentages of different behaviors occurred during new design review sessions.  

Overall, the goal of developing the mechanism is to test if researchers can isolate 

behaviors that are repeated during the use of different mobile devices and differed 

implementation methods. Therefore, future research may be able to predict a particular 

behavior by using a specific mobile device and, additionally, by defining behaviors on three 

levels L1, L2, and L3, researchers could maximize a specific behavior and minimize 

unwanted behaviors.  

In summation, this work has presented a systematic approach to studying mobile 

computing tools for the AECO fields. The work has demonstrated the capability of MR to 

support certain decision-making processes that had traditionally only been reported 

through pure VR or purely physical mock-ups. In addition to the theoretical findings that 

advance the body of knowledge on MR in the AECO fields, the specific findings may 

further support researchers and practitioners in planning for technology to support specific 

human needs. This has the potential to enable better-informed project decisions that can 

enable a better built infrastructure. 

Future work 

Future work will aim to explore the topic of human behaviors in MR design and 

constructability review processes by conducting more design sessions. Since this work did 

not explore order of behaviors occurred during the sessions, future work will also consider 

the sequence of behaviors that could occur using MR interfaces. Studying behaviors’ 
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sequences could help researchers to understand the value added to maximizing/minimize 

particular behaviors. For instance, even if a particular device leads to increase decision-

making behavior, it is important to understand if these decisions are effective decisions.     
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APPENDIX A 

INDUSTRY EXPERTS QUESTIONNAIRE (CHAPETR 3) 
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Your First and Last Name: ______________________________ 
Current position title:  _________________________________ 
General Information 

How many years of experience do you have in the building industry: 

 Less than 1 years                    1-5 years                                6-10 years                                
 More than 10 years 

Do you have experience in design and constructability review sessions?  If Yes, how 

often you participate in these session: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        
Always 

 

Do you have experience using Virtual Reality in building projects?  If yes, how often you 

use Virtual Reality in building project: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        
Always 

 

Do you have experience using Mixed Reality in construction projects?  If yes, how often 

you use Mixed Reality in building project: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        
Always 
 

 

       

Do you use any types of mobile computing devices in design and constructability review 
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sessions to facilitate visualization: If yes, list the name(s) of these devices: 

 Yes                No 

Mobile device 1 
________________________________________________________________________
___  
Mobile device 2 
________________________________________________________________________
___ 
Mobile device 3 
________________________________________________________________________
___ 
Mobile device 4 
________________________________________________________________________
___ 
 
Pre-Questionnaire  

Handheld devices such as smartphones and tablets provide an effective Mixed Reality 

visualization interface for design and constructability review sessions: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

 
N/A 

Wearable devices such as smart glasses and head mounted displays provide an effective 

Mixed Reality visualization interface for design and constructability review sessions 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

 
N/A 

 

Rate your level of satisfaction using the following mobile screen sizes in terms of Mixed 
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Reality visualization interface for conducting design and constructability review sessions:    

Small screen size (smartphones with less than 6 inches)  

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither 

Satisfied or 
Dissatisfied 

 
Mostly 

Satisfied 

 
Completely 

Satisfied 

 
N/A 

 

Medium screen size (phablet or small tablets between 6 inches and 10 inches) 

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfi
ed 

 
Neither 

Satisfied or 
Dissatisfied 

 
Mostly 

Satisfied 

 
Completely 

Satisfied 

 
N/A 

Large screen size (tablets larger than 10 inches) 

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither 

Satisfied or 
Dissatisfied 

 
Mostly 

Satisfied 

 
Completely 

Satisfied 

 
N/A 

Rate your level of agreement with the following sentence: It is easier to manipulate a 

design for patient room layout with Mixed Realty than Physical Mock-ups approach:  

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

Rate your level of agreement with the following sentence: It is easier to manipulate a 

design for patient room layout with Mixed Realty than Virtual Reality approach:  

 
 
 

Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

   
Agree 

 
Strongly 

Agree 
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I can easily share my ideas and thoughts about a design concept by using: (check all that 

apply)  

 
Virtual Reality 

 
Mixed Reality 

 
Physical Mock-ups 

 
None of them 

 
 
Your First and Last Name: ______________________________ 
Post Questionnaire 

Rate your level of satisfaction with the following sentence: It is easy to use mobile 

computing devices and Mixed Reality in design and constructability review sessions 

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither Satisfied 
or Dissatisfied 

 
Mostly Satisfied 

 
Completely 

Satisfied 

Handheld devices such as smartphones and tablets provide an effective Mixed Reality 

visualization interface for design and constructability review sessions: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

 
N/A 

Wearable devices such as smart glasses and head mounted displays provide an effective 

Mixed Reality visualization interface for design and constructability review sessions: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

 
N/A 

 

I can effectively design patient room layout using Mixed Reality on handheld devices: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 
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I can effectively design patient room layout using Mixed Reality on wearable devices: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither agree 
or Disagree 

  
Agree 

 
Strongly 

Agree 
       

Rate your agreement with the following sentence: Mixed Reality on mobile device can 

effectively be used to resolve design conflicts: 

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither Satisfied 
or Dissatisfied 

 
Mostly Satisfied 

 
Completely 

Satisfied 

I can easily share my ideas and thoughts about a design concept by using one or more of 

the following visualization approaches: (check all that apply) 

 
Virtual Reality 

 
Mixed Reality 

 
Physical Mock-ups 

 
None of them 

Rate your level of satisfaction using the following mobile screen sizes in terms of Mixed 

Reality visualization interface during reviewing a design:    

Small screen size (smartphones with less than 6 inches)  

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither 

Satisfied or 
Dissatisfied 

 
Mostly 

Satisfied 

 
Completely 

Satisfied 

 
N/A 

Medium screen size (phablet or small tablets between 6 inches and 10 inches) 

 
Completely 
Dissatisfied 

 
Mostly 

Dissatisfied 

 
Neither 

Satisfied or 
Dissatisfied 

 
Mostly 

Satisfied 

 
Completely 

Satisfied 

 
N/A 

Large screen size (tablets larger than 10 inches) 
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Completely 
Dissatisfied 

Mostly 
Dissatisfied 

Neither 
Satisfied or 
Dissatisfied 

Mostly 
Satisfied 

Completely 
Satisfied 

N/A 

Rate your level of agreement with the following sentence: It is easier to manipulate a 

design for patient room layout with Mixed Realty than Physical Mock-ups approach:  

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

Rate your level of agreement with the following sentence: It is easier to manipulate a 

design for patient room layout with Mixed Realty than Virtual Reality approach: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree or 
Disagree 

  
Agree 

 
Strongly 

Agree 

Rate your level of agreement with the following sentence: I need to see the design team 

in front of me while interacting with virtual objects:   

 
Strongly 
Disagree 

 
Disagree 

  
Neither agree 
or Disagree 

  
Agree 

 
Strongly 

Agree 

Rank the following devices from 1 to 8 where 1 is the device that provides the highest 

visualization satisfaction to you during the session:  

If you have not used a device just keep it blank 

Smartphones 
with less than 4 
inches  

Smartphones 4 -
6 inches  

Phablet or 
small tablets 

between 6 

Tablets larger 
than 10 inches  

Two eyes see 
through 
transparent 

glasses  
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inches and 
10 inches 

Camera see 
through Rift  

One eye see 
through glasses 

Tablet 
mounted 
on a 
stand 

 

 

Rank the following devices from 1 to 7 where 1 is the device that provides the highest 

ease of use during design the session:  

If you have not used a device just keep it blank 

Smartphones 
with less than 4 
inches  

Smartphones 4 -
6 inches  

Phablet or 
small tablets 

between 6 
inches and 
10 inches 

Tablets larger 
than 10 inches  

Two eyes see 
through 
transparent 

glasses  

Camera see 
through Rift  

One eye see 
through glasses 

Tablet 
mounted on 
a stand 

 
 Would you consider using the following device(s) in future design and constructability review 
sessions? 
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What other building design and construction use would benefit from the use of Mixed Reality 
visualization?  
 
 
 

 
 
 
 
 

 

What would you like most in this session?  

 
 
 
 
 
What would you like least in this session?  
 

Smartphones with less than 4 inches Yes No 

Smartphones 4 -6 inches 
Yes No 

Phablet or small tablets between 6 inches and 
10 inches Yes No 

Tablets larger than 10 inches 
Yes No 

Two eyes see through transparent glasses Yes No 

Camera see through Rift 
Yes No 

One eye see through glasses Yes No 

Tablet mounted on a stand 
Yes No 
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What other comments would you have related to this session?   
 
 
 
 
 
 
 

Thank you  
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APPENDIX B  

STUENDTS QUESTIONNAIRE (CHAPETR 4) 
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Pre-questionnaire 
Your First and Last Name:    ___________________________  
Device Name Used in This Session: __________________________ 
Group Number: __________ 
 
General Information 

How many years of experience do you have in the building industry: 

 Less than 1 years                    1-5 years                                6-10 years                                 
More than 10 years 

Do you have experience in design and constructability review sessions?  If Yes, how 

often you participate in these session: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        Always 

 

Do you have experience using Virtual Reality in building projects?  If yes, how often you 

use Virtual Reality in building project: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        Always 

 

Do you have experience using Mixed Reality in construction projects?  If yes, how often 

you use Mixed Reality in building project: 

 Yes                 No 

 
Never 

 
 

 
Rarely 

 
Sometimes 

 
Often 

 
        Always 
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Your First and Last Name:    ___________________________  
Device Used in This Session: __________________________ 
Group Number: __________ 

POST-QUESTIONNAIRE 

Rate your level of agreement with the following sentences: It was easy to use a mobile 

computing device for Mixed Reality to design an office space: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither Agree 
nor Disagree 

  
Agree 

 
Strongly Agree 

The device used in this session provided an effective Mixed Reality visualization 

interface for the design of the office space.  

 
Strongly 
Disagree 

 
Disagree 

  
Neither Agree 
nor Disagree 

  
Agree 

 
Strongly Agree 

Mixed Reality on a mobile device can effectively be used to resolve design conflicts: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither Agree 
nor Disagree 

  
Agree 

 
Strongly Agree 

I could easily share my ideas and thoughts about a design concept by using Mixed 

Reality on a mobile device: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither Agree 
nor Disagree 

  
Agree 

 
Strongly Agree 

I could track multiple markers at the same time during this session: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 
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I could see full-scale objects on the mobile device’s display used in this session: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 

It was convenient to use the mobile computer to physically navigate through the design: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 

I could manipulate different design options using Mixed Reality and a mobile device 

during the design scenario: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 

Mixed Reality provided an easier method for manipulating the office space layout than 

would have been provided through Virtual Reality. 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 

Mixed Reality provided an easier method for manipulating the office space layout than 

would have been provided through a Physical Mock-up: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 
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I would use this device again in future design and constructability sessions: 

 
Strongly 
Disagree 

 
Disagree 

  
Neither 

Agree nor 
Disagree 

  
Agree 

 
Strongly 

Agree 

 
 

 
 
 
 
 
 
 

What did you like most in this session?  

 
 
 
 
 
 
What did you like least in this session?  
 
 
 
 
 
 
 

 
What other comments do you have related to this session?   
 
 
 
 
 
 
 
 
 
 

Thank you 


