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ABSTRACT

Answer Set Programming (ASP) is one of the main formalisms in Knowledge

Representation (KR) that is being widely applied in a large number of applications.

While ASP is effective on Boolean decision problems, it has difficulty in expressing

quantitative uncertainty and probability in a natural way.

Logic Programs under the answer set semantics and Markov Logic Network (LPMLN)

is a recent extension of answer set programs to overcome the limitation of the deter-

ministic nature of ASP by adopting the log-linear weight scheme of Markov Logic.

This thesis investigates the relationships between LPMLN and two other extensions

of ASP: weak constraints to express a quantitative preference among answer sets,

and P-log to incorporate probabilistic uncertainty. The studied relationships show

how different extensions of answer set programs are related to each other, and how

they are related to formalisms in Statistical Relational Learning, such as Problog and

MLN, which have shown to be closely related to LPMLN. The studied relationships

compare the properties of the involved languages and provide ways to compute one

language using an implementation of another language.

This thesis first presents a translation of LPMLN into programs with weak con-

straints. The translation allows for computing the most probable stable models (i.e.,

MAP estimates) or probability distribution in LPMLN programs using standard ASP

solvers so that the well-developed techniques in ASP can be utilized. This result can

be extended to other formalisms, such as Markov Logic, ProbLog, and Pearl’s Causal

Models, that are shown to be translatable into LPMLN.

This thesis also presents a translation of P-log into LPMLN. The translation tells

how probabilistic nonmonotonicity (the ability of the reasoner to change his proba-

bilistic model as a result of new information) of P-log can be represented in LPMLN,

which yields a way to compute P-log using standard ASP solvers or MLN solvers.
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Chapter 1

INTRODUCTION

Knowledge Representation and Reasoning (KRR) is an area in Artificial Intelli-

gence (AI) dedicated to representing information in the real world as well as the ways

we reason about this information in a form that a computer can utilize. Answer set

programming (ASP) (Gelfond and Lifschitz, 1988) is one of such form that is based on

the stable model (answer set) semantics of logic programming, where reasoners draw

tentative conclusions and can retract their conclusions as a result of new information.

ASP is a declarative paradigm that is simple but expressive, and is widely applied

in a large number of applications. A lot of techniques have been developed for ASP

solvers to make them highly efficient for deterministic inference.

However, ASP lacks an important construct in knowledge representation — quan-

titative uncertainty. To overcome the deterministic nature of ASP and express un-

certainty, a few extensions of answer set semantics have been proposed.

One simple but practically very useful extension is weak constraints (Buccafurri

et al., 2000), which assign a quantitative preference over the stable models of an ASP

program. The additional weak constraint rules cannot be used for deriving stable

models but only for calculating the penalty (a number to be ranked) of each stable

model that violates the weak constraints. Weak constraints enable an answer set

program to find its optimal stable models, but they do not have a built-in notion of

probability.

In contrast to weak constraints, another probabilistic extension of answer set

programs, P-log (Baral et al., 2009), directly assigns a probability to each possible

world (namely, stable model in ASP) by clear and transparent modeling of logical
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and probabilistic knowledge. P-log is highly structured and has quite a sophisticated

semantics. One of its distinct features is probabilistic nonmonotonicity (the ability

of the reasoner to change his probabilistic model as a result of new information)

whereas, in most other probabilistic logic languages, new information can only cause

the reasoner to abandon some of his possible worlds, making the effect of an update

monotonic. However, the current P-log implementation (http://www.depts.ttu.

edu/cs/research/krlab/plog.php) does not have a well developed prototype.

Rather than directly assigning the probabilities to each stable model as P-log does,

LPMLN (Lee and Wang, 2016), a recently introduced probabilistic extension of answer

set programs, enables ASP to calculate probabilities by the concept of weighted rules,

whose weight scheme is adopted from that of Markov Logic (Richardson and Domin-

gos, 2006). The idea of LPMLN is to assign a weight to each ASP rule — the more

rules a stable model satisfies, the more weights it gets, and the probability of this

stable model is calculated by normalizing its weight among all stable models. It is

shown in (Lee and Wang, 2016; Lee et al., 2015) that LPMLN is expressive enough to

embed Markov Logic and several other probabilistic logic languages, such as ProbLog

(De Raedt et al., 2007), Pearls’ Causal Models (Pearl, 2000), and a fragment of P-log

(Baral et al., 2009). Although LPMLN is very expressive, it is difficult for LPMLN to

capture the feature of probabilistic nonmonotonicity in P-log.

Comparing these three languages, weak constraints have a good performance in

practice and is easy to debug, but it does not have a built-in notion of probability.

P-log is a clear and transparent modeling language that is easy to use and is capable

of expressing sophisticated logical and probabilistic knowledge together. If P-log can

be reduced to LPMLN, and LPMLN can be reduced to weak constraints, then the

sophisticated representation in P-log can be captured by logic programs with weak

constraints and solved by ASP solvers. This thesis will show these two translations.

2
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This thesis first investigates a translation from LPMLN to programs with weak

constraints, which complements the inverse translation shown in (Lee and Wang,

2016). The translation is simple so it can be easily applied in practice.

• It shows that an LPMLN program can be turned into a usual ASP program with

weak constraints so that the most probable stable models of the LPMLN program

are exactly the optimal stable models of the program with weak constraints.

• The translation allows us to compute MAP estimates of LPMLN programs using

standard ASP solvers so that the well-developed techniques in ASP can be

utilized. This result can be extended to other formalisms, such as Markov

Logic, ProbLog, and Pearl’s Causal Models, that are shown to be translatable

into LPMLN.

Further, this thesis shows how P-log can be completely characterized in LPMLN.

Unlike the translation in (Lee and Wang, 2016), which was limited to a subset of

P-log that does not allow dynamic default probability, we provide a novel translation,

which applies to full P-log and complements the recent translation from LPMLN into

P-log in (Balai and Gelfond, 2016).

• The translation helps us understand how P-log is related to LPMLN, and fur-

thermore how P-log is related to formalisms in Statistical Relational Learning,

such as Problog and MLN, which have shown to be closely related to LPMLN.

• In conjunction with the first translation, we show another two means of comput-

ing P-log: turning P-log through LPMLN into weak constraints and computing

it using ASP solvers, or turning P-log through LPMLN into MLN and computing

it using MLN solvers.

This thesis is organized as follows. Chapter 2 reviews the syntax and semantics

of LPMLN, weak constraints, and P-log. Chapter 3 and Chapter 4 show a translation

3



from an LPMLN program to an ASP program with weak constraints and a translation

from a P-log program to an LPMLN program. More examples of both translations are

listed in Chapter 5. The comparison of run time for a P-log program, its translated

LPMLN program, and its further translated ASP program with weak constraints on

various benchmarks can be found in Chapter 6. We comment on our contributions in

Chapter 7.
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Chapter 2

BACKGROUND

In this chapter, we review the syntax and semantics of three extension of answer set

programs: LPMLN, weak constraints, and P-log.

2.1 Review of LPMLN

Syntax of LPMLN

We review the definition of LPMLN from Lee and Wang (2016). In fact, we consider a

more general syntax of programs than the one from Lee and Wang (2016), but this is

not an essential extension. We follow the view of Ferraris et al. (2011) by identifying

logic program rules as a special case of first-order formulas under the stable model

semantics. For example, rule

r(x)← p(x), not q(x)

is identified with first-order formula

∀x(p(x) ∧ ¬q(x)→ r(x)).

An LPMLN program is a finite set of weighted first-order formulas

w : F

where F is a first-order formula, w is

• a real number, in which case the weighted formula is called soft, or

• α for denoting the infinite weight, in which case it is called hard.
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An LPMLN program is called ground if its formulas contain no variables. We

assume a finite Herbrand Universe. Any LPMLN program can be turned into a ground

program by replacing the quantifiers with multiple conjunctions and disjunctions over

the Herbrand Universe. Each of the ground instances of a formula with free variables

receives the same weight as the original formula.

Semantics of LPMLN

For any ground LPMLN program Π and any interpretation I, Π denotes the unweighted

formula obtained from Π, and ΠI denotes the set of w : F in Π such that I |= F ,

and SM[Π] denotes the set {I | I is a stable model of ΠI} (We refer the reader to

the stable model semantics of first-order formulas in Ferraris et al. (2011)). The

unnormalized weight of an interpretation I under Π is defined as

WΠ(I) =


exp

( ∑
w:F ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined

as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J)
.

I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0.

For any first-order formula F , the probability of F under Π is defined as

PΠ(F ) =
∑
I:I�F

PΠ(I).

We say F is satisfiable in Π if PΠ(F ) 6= 0.

Conditional probability under Π is defined as usual. For first-order formulas F1

and F2, if F2 is satisfiable in Π, the probability of F1 given F2 under Π is defined as

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
.
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Example 1 Consider the LPMLN program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

There are 8 interpretations of Π. For each interpretation I, we list the rules that

are satisfied by I (ΠI), weight of I under Π (WΠ(I)), and probability of I under Π

(PΠ(I)) in the following table.

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2} e10+1 e11

e11+e5+e15+e−14+e−4

{p} {r3} e5 e5

e11+e5+e15+e−14+e−4

{q} {r1, r2} 0 0

{r} {r1, r2, r4} 0 0

{p, q} {r1, r3} e10+5 e15

e11+e5+e15+e−14+e−4

{p, r} {r2, r3, r4} e5+1−20 e−14

e11+e5+e15+e−14+e−4

{q, r} {r1, r2, r4} 0 0

{p, q, r} {r1, r2, r3, r4} e10+5+1−20 e−4

e11+e5+e15+e−14+e−4

By definition, SM[Π] has 5 elements:

∅, {p}, {p, q}, {p, r}, {p, q, r}.

Since their probabilities are all greater than 0, all of them are probabilistic stable

models of Π, among which {p, q} is the most probable stable model, whose weight is

e15, while {p, q, r} is a probabilistic stable model whose weight is e−4.

Further, if we want to calculate the probability of q given r, we have

PΠ(q | r) =
PΠ(q ∧ r)
PΠ(r)

=
PΠ({q, r}) + PΠ({p, q, r})

PΠ({r}) + PΠ({p, r}) + PΠ({q, r}) + PΠ({p, q, r})
=

e−4

e−14 + e−4
.
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The following example illustrates an LPMLN program Π where some of its weighted

rules are hard rules (rules with infinite weight α). We will see some interpretations

of Π belong to SM[Π], but are not probabilistic stable models of Π because of the

utilization of hard rules.

Example 2 Consider the LPMLN program Π in Example 1 from Lee and Wang

(2016).

α : Bird(Jo)← ResidentBird(Jo) (r1)

α : Bird(Jo)← MigratoryBird(Jo) (r2)

α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

The following table shows the satisfied rules, weight, and probability of each inter-

pretation of Π.

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α e0

e2+e1+e0

{R(Jo)} {r2, r3, r4} e2α+2 0

{M(Jo)} {r1, r3, r5} e2α+1 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r4} e3α+2 e2

e2+e1+e0

{M(Jo), B(Jo)} {r1, r2, r3, r5} e3α+1 e1

e2+e1+e0

{R(Jo),M(Jo)} {r4, r5} e3 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r4, r5} e2α+3 0

By definition, SM[Π] has 7 elements: ∅, {R(Jo)}, {M(Jo)}, {R(Jo), B(Jo)},

{M(Jo), B(Jo)}, {R(Jo),M(Jo)}, and {R(Jo),M(Jo), B(Jo)}. Since an interpre-

tation I is a probabilistic stable model of Π iff PΠ(I) 6= 0, only three elements in
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SM[Π],

∅, {ResidentBird(Jo),Bird(Jo)}, and {MigratoryBird(Jo),Bird(Jo)},

are probabilistic stable models of Π. Among them,

{ResidentBird(Jo),Bird(Jo)}

has the highest weight (and probability), and thus is the most probable stable model of

Π.

As we can see from the table, an element I in SM[Π] is a probabilistic stable model

of Π only when I satisfies the maximal number of hard rules in Π, i.e., there is no

interpretation J of Π such that J ∈ SM[Π] and J satisfies more hard rules than I.

Thus {R(Jo),M(Jo), B(Jo)} is not a probabilistic stable model of Π even though it

satisfies four rules in Π.
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2.2 Review of Weak Constraints

Syntax of Weak Constraints

A weak constraint has the form

:∼ F [Weight @ Level ].

where F is a ground formula, Weight is a real number and Level is a nonnegative

integer. Note that the syntax is more general than the one from the literature Buc-

cafurri et al. (2000); Calimeri et al. (2013), where F was restricted to conjunctions of

literals. 1 We will see the generalization is more convenient for stating our result,

but will also present translations that conform to the restrictions imposed on the

input language of ASP solvers.

Semantics of Weak Constraints

Let Π be a program Π1 ∪Π2, where Π1 is a set of ground formulas and Π2 is a set of

weak constraints. We call I a stable model of Π if it is a stable model of Π1 (in the

sense of Ferraris et al. (2011)). For every stable model I of Π and any nonnegative

integer l, the penalty of I at level l, denoted by PenaltyΠ(I, l), is defined as

∑
:∼ F [w@l]∈Π2,

I|=F

w.

For any two stable models I and I ′ of Π, we say I is dominated by I ′ if

• there is some nonnegative integer l such that PenaltyΠ(I ′, l) < PenaltyΠ(I, l)

and

• for all integers k > l, PenaltyΠ(I ′, k) = PenaltyΠ(I, k).

1 A literal is either an atom p or its negation not p.
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A stable model of Π is called optimal if it is not dominated by another stable model

of Π.

Example 3 Consider the ASP program with weak constraints Π in Example 3.16

from (Gebser et al., 2015). We want to choose one hotel from five candidates which

are identified by numbers assigned in descending order of stars. For each of the hotels,

we know its cost. We know hotel 4 is located on a main street thus we expect its rooms

to be noisy. (These information are represented by rules 1-7 in the following program

Π)

{hotel(1..5)} = 1 (r1)

star(1, 5). cost(1, 170). (r2)

star(2, 4). cost(2, 140). (r3)

star(3, 3). cost(3, 90). (r4)

star(4, 3). cost(4, 75). main street(4) (r5)

star(5, 2). cost(5, 60). (r6)

noisy ← hotel(X),main street(X) (r7)

#maximize{Y@1, X : hotel(X), star(X, Y )}. (r8)

#minimize{Y/Z@2, X : hotel(X), cost(X, Y ), star(X,Z)}. (r9)

:∼ noisy . [1@3] (r10)

Rule 10 says that at level 3 (highest priority), we want to avoid noise. Rule 9 says

that at level 2 (medium priority), we want to minimize the cost per star. And rule 8

says that at level 1 (lowest priority), we want to maximize the number of stars among

hotels that are otherwise indistinguishable.

The stable models of Π are stable models of rules 1-7:

{hotel(1), ...}, {hotel(2), ...}, {hotel(3), ...}, {hotel(4), noisy , ...}, {hotel(5), ...}

where the omitted atoms are atoms in rules 2-6. Among these stable models, the

11



optimal stable model is

{hotel(3), ...}

because at level 3, it does not satisfy noisy; at level 2, hotel 3 and hotel 5 have lowest

value (of Y/Z) 30; and at level 1, hotel 3 has one more star than hotel 5.
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2.3 Review of P-log

Syntax of P-log

A sort is a set of symbols. A constant c maps an element in the domain s1×· · ·×sn to

an element in the range s0 (denoted by Range(c)), where each of s0, . . . , sn is a sort. A

sorted propositional signature is a special case of propositional signatures constructed

from a set of constants and their associated sorts, consisting of all propositional atoms

c(~u) = v where c : s1 × · · · × sn → s0, and ~u ∈ s1 × · · · × sn, and v ∈ s0. 2 Symbol

c(~u) is called an attribute and v is called its value. If the range s0 of c is {f, t} then c

is called Boolean, and c(~u)=t can be abbreviated as c(~u) and c(~u)= f as ∼c(~u).

The signature of a P-log program is the union of two propositional signatures σ1

and σ2, where σ1 is a sorted propositional signature, and σ2 is a usual propositional

signature consisting of atoms Do(c(~u) = v), Obs(c(~u) = v) and Obs(c(~u) 6= v) for all

atoms c(~u)=v in σ1.

A P-log program Π of signature σ1 ∪ σ2 is a tuple

Π = 〈R,S,P,Obs,Act〉 (2.1)

where the signature of each of R, S, and P is σ1 and the signature of each of Obs

and Act is σ2 such that

• R is a set of normal rules of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn

where A,B1, . . . , Bn are atoms in σ1 (0 ≤ m ≤ n).

• S is a set of random selection rules of the form

[r] random(c(~u) : {x : p(x)})← Body (2.2)

2Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in
first-order logic.
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where r is a unique identifier, p is a boolean constant with a unary argument,

and Body is a set of literals. x is a schematic variable ranging over the argument

sort of p. Rule (2.2) is called a random selection rule for c(~u). Intuitively, rule

(2.2) says that if Body is true, the value of c(~u) is selected at random from the

set Range(c) ∩ {x : p(x)} unless this value is fixed by a deliberate action, i.e.,

Do(c(~u)=v) for some value v.

• P is a set of so-called probability atoms (pr-atoms) of the form

prr(c(~u)=v | C) = p (2.3)

where r is the identifier of some random selection rule for c(~u) in S; c(~u)=v ∈ σ1;

C is a set of literals; and p is a real number in [0, 1]. We say pr-atom (2.3) is

associated with the random selection rule whose identifier is r.

• Obs is a set of atomic facts of the form

Obs(c(~u)=v)

Obs(c(~u) 6= v)

where c(~u) is an attribute occurring in S, v ∈ Range(c). Obs(c(~u) = v) repre-

sents an observation of c(~u) = v to be true, and Obs(c(~u) 6= v) represents an

observation of c(~u) 6= v to be true.

• Act is a set of atomic facts of the form

Do(c(~u)=v)

where c(~u) is an attribute occurring in S, v ∈ Range(c). Do(c(~u)=v) represents

a deliberate action to make c(~u)=v to be true.
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Semantics of P-log

Let Π be a P-log program (2.1) of signature σ1 ∪ σ2. The possible worlds of Π,

denoted by ω(Π), are the stable models of τ(Π), a (standard) ASP program with the

propositional signature

σ1 ∪ σ2 ∪ {Intervene(c(~u)) | c(~u) is an attribute occurring in S}

that accounts for the logical part of P-log and is constructed as follows:

Definition of τ(Π)

• τ(Π) contains all rules in R.

• For each attribute c(~u) in σ1, for v1, v2 ∈ Range(c), τ(Π) contains the following

rule:

← c(~u) = v1, c(~u) = v2, v1 6= v2

• For each random selection rule (2.2) in S with Range(c) = {v1, . . . , vn}, τ(Π)

contains the following rules:

c(~u) = v1; . . . ; c(~u) = vn ← Body, not Intervene(c(~u))

← c(~u) = v, not p(v), Body, not Intervene(c(~u))

where Intervene(c(~u)) means that the randomness of c(~u) is intervened (by an

atomic fact Do(c(~u) = v)).

• For each atomic fact Obs(c(~u) = v) in Obs, τ(Π) contains the following rules:

Obs(c(~u) = v)

← Obs(c(~u) = v), not c(~u) = v

• For each atomic fact Obs(c(~u) 6= v) in Obs, τ(Π) contains the following rules:

Obs(c(~u) 6= v)

← Obs(c(~u) 6= v), c(~u) = v
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• For each atomic fact Do(c(~u) = v) in Act, τ(Π) contains the following rules:

Do(c(~u) = v)

c(~u) = v ← Do(c(~u) = v)

Intervene(c(~u))← Do(c(~u) = v)

Conditions for Π

As in Baral et al. (2009), we assume that all P-log programs Π satisfy the following

conditions:

• Condition 1 [Unique random selection rule]: If a P-log program Π

contains two random selection rules for c(~u):

[r1] random(c(~u) : {x : p1(x)})← Body1,

[r2] random(c(~u) : {x : p2(x)})← Body2,

then no possible world of Π satisfies both Body1 and Body2.

• Condition 2 [Unique probability assignment]: If a P-log program Π

contains a random selection rule for c(~u):

[r] random(c(~u) : {x : p(x)})← Body

along with two different pr-atoms:

prr(c(~u)=v | C1) = p1,

prr(c(~u)=v | C2) = p2,

then no possible world of Π satisfies Body , C1, and C2 together.
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An atom c(~u)=v is called possible in a possible world W due to a random selection

rule (2.2) if Π contains (2.2) such that W |= Body ∧ p(v) ∧ ¬Intervene(c(~u)). 3 Pr-

atom (2.3) is applied in W if c(~u)=v is possible in W due to r and W |= C.

Given a P-log program Π, a possible world W ∈ ω(Π), and an atom c(~u) = v

possible in W , by Condition 1, it follows that there is exactly one random selection

rule (2.2) such that W |= Body . Let rW,c(~u) denote this random selection rule, and let

AVW (c(~u)) = {v′ | there exists a pr-atom prrW,c(~u)
(c(~u) = v′ | C) = p that is applied

in W for some C and p}. We then define the following notations:

• If v ∈ AVW (c(~u)), there exists a pr-atom prrW,c(~u)
(c(~u)=v | C) = p in Π for some

C and p such that W |= C. By Condition 2, for any other prrW,c(~u)
(c(~u)=v |

C ′) = p′ in Π, it follows that W 6|= C ′. So there is only one pr-atom that is

applied in W for c(~u)=v, and we define

PossWithAssPr(W, c(~u)=v) = p.

(“c(~u)=v is possible in W with assigned probability p.”)

• If v 6∈ AVW (c(~u)), we define

PossWithDefPr(W, c(~u)=v) = max
(
p, 0
)
,

where p is

1−
∑

v′∈AVW (c(~u)) PossWithAssPr(W, c(~u)=v′)

|{v′′ | c(~u)=v′′ is possible in W and v′′ 6∈ AVW (c(~u))}|
. (2.4)

( “c(~u)=v is possible in W with the default probability.”)

The max function is used to ensure that the default probability is nonnegative. 4

3Note that this is slightly different from the original definition of P-log from Baral et al. (2009),
according to which, if Intervene(c(~u)) is true, the probability of c(~u)=v is determined by the default
probability, which is a bit unintuitive.

4In Baral et al. (2009), a stronger condition of “unitariness” is imposed to prevent (2.4) from
being negative.
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For each possible world W ∈ ω(Π), and each atom c(~u) = v possible in W , the

probability of c(~u)=v to happen in W is defined as:

P (W, c(~u)=v) =


PossWithAssPr(W, c(~u)=v) if v ∈ AVW (c(~u));

PossWithDefPr(W, c(~u)=v) otherwise.

The unnormalized probability of a possible world W is defined as

µ̂Π(W ) =
∏

c(~u)=v∈W and
c(~u)=v is possible in W

P (W, c(~u)=v),

and, assuming Π has at least one possible world with nonzero unnormalized proba-

bility, the normalized probability of W is defined as

µΠ(W ) =
µ̂Π(W )∑

Wi∈ω(Π) µ̂Π(Wi)
.

We say Π is consistent if Π has at least one possible world with a non-zero prob-

ability.

Example 4 The following P-log program Π describes Monty Hall Problem. A player

is given the opportunity to select one of three closed doors, behind which are two goats

and one car. Once the player has made a selection, Monty, who is the show host,
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is obligated to open one of the remaining closed two doors which does not contain

the car. He then asks the player if he would like to switch his selection to the other

unopened door, or stay with his original choice. Let’s denote the door that is selected

by the player as door 2, the door that Monty opens as door 3, and the remaining as

door 1.

∼CanOpen(d)← Selected = d. (d ∈ {1, 2, 3})

∼CanOpen(d)← Prize = d.

CanOpen(d)← not ∼CanOpen(d).

random(Prize).

random(Selected).

random(Open : {X : CanOpen(X)}).

Obs(Selected = 2).

Obs(Open = 3).

Obs(Prize 6= 3).

By definition, τ(Π) is as follows:
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∼CanOpen(d)← Selected = d

∼CanOpen(d)← Prize = d

CanOpen(d)← not ∼CanOpen(d)

← CanOpen(d),∼CanOpen(d)

← Prize = d1,Prize = d2, d1 6= d2

← Selected = d1, Selected = d2, d1 6= d2

← Open = d1,Open = d2, d1 6= d2

Prize = 1; Prize = 2; Prize = 3← not Intervene(Prize)

Selected = 1; Selected = 2; Selected = 3← not Intervene(Selected)

Open = 1; Open = 2; Open = 3← not Intervene(Open)

← Open = d, not CanOpen(d), not Intervene(Open)

Obs(Selected = 2)

← Obs(Selected = 2), not Selected = 2

Obs(Open = 3)

← Obs(Open = 3), not Open = 3

Obs(Prize 6= 3)

← Obs(Prize 6= 3),Prize = 3

There are two possible worlds W1 and W2 of Π (which are two stable models of

τ(Π)):

W1 = {Prize = 1,CanOpen(1) = f} ∪ U,

W2 = {Prize = 2,CanOpen(1) = t} ∪ U,
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where U denotes the intersection of them, and

U = {Obs(Selected = 2),Obs(Open = 3),Obs(Prize 6= 3),

Selected = 2,Open = 3,CanOpen(2) = f,CanOpen(3) = t}.

Note that, by definition, Prize = 1, Prize = 2, Prize = 3, Selected = 1, Selected =

2, Selected = 3 are all possible in W1 and W2. Then the unnormalized weight µ̂Π(Wi)

of each possible world Wi are shown below:

µ̂Π(W1) = P (W1,Prize = 1)× P (W1, Selected = 2)× P (W1,Open = 3)

= PossWithDefPr(W1,Prize = 1)× PossWithDefPr(W1, Selected = 2)×

PossWithDefPr(W1,Open = 3)

= 1
3
× 1

3
× 1

1
= 1

9

µ̂Π(W2) = P (W2,Prize = 2)× P (W2, Selected = 2)× P (W2,Open = 3)

= PossWithDefPr(W2,Prize = 2)× PossWithDefPr(W2, Selected = 2)×

PossWithDefPr(W2,Open = 3)

= 1
3
× 1

3
× 1

2
= 1

18

The normalized weight (probability) µΠ(Wi) of each possible world Wi is as follows:

µΠ(W1) = 2
3
; µΠ(W2) = 1

3
.

As we can see, switching the choice doubles the chance to win the car.

Note that in this example, the unnormalized weight of each possible world is not

exactly its probability, but 1
6

of it. The reason is that this example contains Obs, which

prunes out the other 10 possible worlds 5 that contain selected = 1, selected = 3,

open = 1, open = 2, or prize = 3. We still assign the probability to these pruned out

possible worlds based on the intuition that “observations don’t affect the probability

distribution”.

5These possible worlds could be added here if necessary.
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Chapter 3

TURNING LPMLN INTO PROGRAMS WITH WEAK CONSTRAINTS

In this chapter, we show how an LPMLN program can be turned into an answer set

program with weak constraints, so that the probabilistic stable models of the LPMLN

program are exactly the stable models of the translated answer set program with

weak constraints, while the probability distribution is also preserved.

3.1 General Translation

3.1.1 Translation lpmln2wc

We define a translation that turns an LPMLN program into a program with weak

constraints. For any ground LPMLN program Π, the translation lpmln2wc(Π) is simply

defined as follows. We turn each weighted formula

w : F

in Π into

{F}ch,

where {F}ch is a choice formula, standing for F ∨¬F (Ferraris et al., 2011). Further,

we add

:∼ F [−1@1] (3.1)

if w is α, and

:∼ F [−w@0] (3.2)

otherwise.
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Intuitively, choice formula {F}ch allows F to be either included or not in deriving a

stable model. 1 When F is included, the stable model gets the (negative) penalty −1

at level 1 or −w at level 0 depending on the weight of the formula, which corresponds

to the (positive) “reward” eα or ew that it receives under the LPMLN semantics.

The following proposition tells us that choice formulas can be used for generating

the members of SM[Π].

Proposition 1 For any LPMLN program Π, the set SM[Π] is exactly the set of the

stable models of lpmln2wc(Π).

The following theorem follows from Proposition 1. As the probability of a stable

model of an LPMLN program Π increases, the penalty of the corresponding stable

model of lpmln2wc(Π) decreases, and the distinction between hard rules and soft

rules can be simulated by the different levels of weak constraints, and vice versa.

Theorem 1 For any LPMLN program Π, the most probable stable models (i.e., the

stable models with the highest probability) of Π are precisely the optimal stable models

of the program with weak constraints lpmln2wc(Π).

Example 1 Continued For program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

SM[Π] has 5 elements: ∅, {p}, {p, q}, {p, r}, {p, q, r}. Among them, {p, q} is the

most probable stable model, whose weight is e15, while {p, q, r} is a probabilistic

1This view of choice formulas was used in PrASP (Nickles and Mileo, 2014) in defining spanning
programs.
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stable model whose weight is e−4. The translation lpmln2wc yields

{p→ q}ch :∼ p→ q [−10 @ 0]

{p→ r}ch :∼ p→ r [−1 @ 0]

{p}ch :∼ p [−5 @ 0]

{¬r → ⊥}ch :∼ ¬r → ⊥ [20 @ 0]

whose optimal stable model is {p, q} with the penalty at level 0 being −15, while

{p, q, r} is a stable model whose penalty at level 0 is 4.

The following example illustrates how the translation accounts for the difference

between hard rules and soft rules by assigning different levels.

Example 2 continued: For program Π in Example 2, the translation lpmln2wc(Π)

is 2

{Bird(Jo)→ ResidentBird(Jo)}ch

{Bird(Jo)→ MigratoryBird(Jo)}ch

{⊥ → ResidentBird(Jo),MigratoryBird(Jo)}ch

{ResidentBird(Jo)}ch

{MigratoryBird(Jo)}ch

:∼ Bird(Jo)→ ResidentBird(Jo) [−1@1]

:∼ Bird(Jo)→ MigratoryBird(Jo) [−1@1]

:∼ ⊥ → ResidentBird(Jo),MigratoryBird(Jo)} [−1@1]

:∼ ResidentBird(Jo) [−2@0]

:∼ MigratoryBird(Jo) [−1@0]

The three probabilistic stable models of Π,

∅, {Bird(Jo),ResidentBird(Jo)}, and {Bird(Jo),MigratoryBird(Jo)},
2Recall that we identify the rules with the corresponding first-order formulas.
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have the same penalty −3 at level 1. Among them,

{Bird(Jo),ResidentBird(Jo)}

has the least penalty at level 0, and thus is an optimal stable model of lpmln2wc(Π).

Note that while the most probable stable models of Π and the optimal stable

models of lpmln2wc(Π) coincide, their weights and penalties are not proportional

to each other. The former is defined by an exponential function whose exponent

is the sum of the weights of the satisfied formulas, while the latter simply adds up

the penalties of the satisfied formulas. On the other hand, they are monotonically

increasing/decreasing as more formulas are satisfied, which yields a way to simulate

the exponential function of LPMLN in weak constraints.

Let Π be a logic program with weak constraints whose Level ∈ {0, 1}, and I be

any interpretation of Π. We define a penalty weight of I under Π as

W (Π, I) =


exp
(
− PenaltyΠ(I, 1)× α− PenaltyΠ(I, 0)

)
if I is a stable model of Π,

0 otherwise;

and define a penalty probability of I under Π by normalizing its penalty weight as

P (Π, I) = lim
α→∞

W (Π, I)∑
J is a stable model of Π

W (Π, J)
.

The following corollary, following from Proposition 1 and Theorem 1, shows that

for any LPMLN program Π and any interpretation I of Π, its weight and probability

are preserved in the translated logic program with weak constraints lpmln2wc(Π).

Corollary 1 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) = W (lpmln2wc(Π), I), and

• PΠ(I) = P (lpmln2wc(Π), I).
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By Corollary 1, we can calculate the probability of I by simply analyzing the

penalties it received in lpmln2wc(Π), which yields a way to compute the probability

distribution of an LPMLN program using the output of standard ASP solvers, such as

Clingo.

Example 1 Continued Consider the translation lpmln2wc(Π), denoted by Π′:

{p→ q}ch :∼ p→ q [−10 @ 0]

{p→ r}ch :∼ p→ r [−1 @ 0]

{p}ch :∼ p [−5 @ 0]

{¬r → ⊥}ch :∼ ¬r → ⊥ [20 @ 0].

For any interpretation I of Π′, the following table shows the penalty of I at level 0,

its penalty weight, and its penalty probability under Π′. Note that when I is not a

stable model of Π′, its penalty is not defined (denoted by N/A).

I Penalty(I, 0) W (Π′, I) P (Π′, I)

∅ −10− 1 e10+1 e11

e11+e5+e15+e−14+e−4

{p} −5 e5 e5

e11+e5+e15+e−14+e−4

{q} N/A 0 0

{r} N/A 0 0

{p, q} −10− 5 e10+5 e15

e11+e5+e15+e−14+e−4

{p, r} −1− 5 + 20 e1+5−20 e−14

e11+e5+e15+e−14+e−4

{q, r} N/A 0 0

{p, q, r} −10− 1− 5 + 20 e10+1+5−20 e−4

e11+e5+e15+e−14+e−4

As we see, W (Π′, I) and P (Π′, I) are exactly the same as WΠ(I) and PΠ(I) that

are defined in the semantics of LPMLN.

Given an LPMLN program Π, to know the probability of an interpretation I of

Π, we can either directly calculate it based on the semantics of LPMLN, or compute
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the penalty probability of I under lpmln2wc(Π). No matter what procedure we are

using, we need to accumulate the weights or penalty weights of all stable models of

lpmln2wc(Π) as the normalization factor, which is computationally expensive. In this

case, computing a conditional probability can be more effective because it decreases

the number of stable models that we need to consider.

Let Π be a logic program with weak constraints. We define a total weight Z for Π

by summarizing the penalty weights of all its stable models as

Z(Π) =
∑

I is a stable model of Π

W (Π, I).

For any first-order formula F , let F constr be the ASP rule “← not F”.

The following corollary shows that we can compute conditional probabilities under

an LPMLN program Π by simply comparing the outputs of two logic programs with

weak constraints.

Corollary 2 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wc(Π). If F2 is satisfiable in Π, the probability of F1 given F2

under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

By Corollary 2, we only need to consider a subset of the stable models of Π′ that

satisfy F2. Note that calculating PΠ(I) is a special case of computing the conditional

probability PΠ(F1 | F2), where F1 is a conjunction of literals in I (including atoms

that are false) and F2 is >.
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Example 1 Continued Consider the translation lpmln2wc(Π), denoted by Π′:

{p→ q}ch :∼ p→ q [−10 @ 0]

{p→ r}ch :∼ p→ r [−1 @ 0]

{p}ch :∼ p [−5 @ 0]

{¬r → ⊥}ch :∼ ¬r → ⊥ [20 @ 0].

Π′ ∧ rconstr has a stable model {p, r} with penalty weight e−14 and a stable model

{p, q, r} with penalty weight e−4, while the latter one is the only stable model of

Π′ ∧ qconstr ∧ rconstr. Thus the probability of p given q under Π is

PΠ(q | r) =
Z(Π′ ∧ qconstr ∧ rconstr)

Z(Π′ ∧ rconstr)
=

e−4

e−14 + e−4
,

which is exactly the same as the conditional probability we calculated under the

semantics of LPMLN.

3.1.2 Translation mln2wc

In view of Theorem 2 from (Lee and Wang, 2016), which tells us how to embed

Markov Logic into LPMLN, it follows from Proposition 1 that the models finding

in MLN can also be reduced to the stable models finding in answer set programs.

Besides, it follows from Theorem 1 that MAP inference in MLN can be reduced to

the optimal stable model finding of programs with weak constraints.

For any Markov Logic Network Π, let mln2wc(Π) be the union of lpmln2wc(Π)

plus choice rules {A}ch for all atoms A in Π.

Proposition 2 For any Markov Logic Network program Π, the models of Π are pre-

cisely the stable models of the program with weak constraints mln2wc(Π).

Theorem 2 For any Markov Logic Network Π, the most probable models of Π are

precisely the optimal stable models of the program with weak constraints mln2wc(Π).
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Similarly, MAP inference in ProbLog and Pearl’s Causal Models can be reduced

to finding an optimal stable model of a program with weak constraints in view of the

reduction of ProbLog to LPMLN (Theorem 4 from (Lee and Wang, 2016)) and the

reduction of Causal Models to LPMLN (Theorem 4 from (Lee et al., 2015)) thereby

allowing us to apply combinatorial optimization methods in standard ASP solvers to

these languages.

Furthermore, the probability distribution in a Markov Logic Network Π is also

preserved in mln2wc(Π), and we can compute the conditional probability in MLN by

using standard ASP solvers. The following corollaries follow from Corollary 1 and

Corollary 2.

Recall that the weight and probability of an interpretation I of a Markov Logic

Network Π is defined as

Wmln
Π (I) = exp(

∑
w:F∈Π and I�F

w)

Pmln
Π (I) = lim

α→∞
Wmln

Π (I)∑
J
Wmln

Π (J)
.

We say I is satisfiable in Π if Pmln
Π (I) 6= 0. The probability of a first-order formula

F and the conditional probability of F1 given F2 (where F2 is satisfiable in Π) are

defined as (same as the definition in LPMLN):

Pmln
Π (F ) =

∑
I:I�F

Pmln
Π (I)

Pmln
Π (F1 | F2) =

Pmln
Π (F1∧F2)

Pmln
Π (F2)

.

Corollary 3 For any Markov Logic Network Π and any interpretation I of Π,

• Wmln
Π (I) = W (mln2wc(Π), I), and

• Pmln
Π (I) = P (mln2wc(Π), I).
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Corollary 4 Let Π be a Markov Logic Network, Π′ be the translated logic program

with weak constraints mln2wc(Π). If F2 is satisfiable in Π, the probability of F1 given

F2 under Π is:

Pmln
Π (F1 | F2) = lim

α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Example 5 Consider the MLN program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

There are 23 = 8 models of Π, among which

I = {p, q}

is the most probable model and Wmln
Π (I) = e15. The translation mln2wc yields

{p→ q}ch {p}ch :∼ p→ q [−10 @ 0]

{p→ r}ch {q}ch :∼ p→ r [−1 @ 0]

{p}ch {r}ch :∼ p [−5 @ 0]

{¬r → ⊥}ch :∼ ¬r → ⊥ [20 @ 0]

whose optimal stable model is also {p, q} with the penalty at level 0 being −15, while

{p, q, r} is a stable model whose penalty at level 0 is 4. Let Π′ denote mln2wc(Π),

W (Π′, I) = exp(−Penalty(I, 0)) = e15, which is equivalent to Wmln
Π (I).

3.2 Alternative Translations

3.2.1 Translation lpmln2wcpnt

Instead of aggregating the weights of satisfied formulas, we may aggregate the

weights of formulas that are not satisfied. Let lpmln2wcpnt(Π) be a modification of
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lpmln2wc(Π) by replacing (3.1) with

:∼ ¬F [1@1]

and (3.2) with

:∼ ¬F [w@0].

Intuitively, when F is not satisfied, the stable model gets the penalty 1 at level 1,

or w at level 0 depending on whether F is a hard or soft formula.

Corollary 5 For any LPMLN program Π, the set SM[Π] is exactly the set of the stable

models of the program with weak constraints lpmln2wcpnt(Π).

Corollary 6 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt(Π), I), and

• PΠ(I) = P (lpmln2wcpnt(Π), I).

Corollary 7 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt(Π). If F2 is satisfiable in Π, the probability of F1 given

F2 under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

This alternative view of assigning weights to stable models, in fact, originates

from Probabilistic Soft Logic (PSL) (Bach et al., 2015), where the probability density

function of an interpretation is obtained from the sum over the “penalty” from the

formulas that are “distant” from satisfaction. This view will lead to a slight advantage

when we further turn the translation into the input language of ASP solvers (See

Footnote 6).
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Example 1 Continued For LPMLN program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

The translation lpmln2wcpnt yields

{p→ q}ch :∼ p, not q [10 @ 0]

{p→ r}ch :∼ p, not r [1 @ 0]

{p}ch :∼ not p [5 @ 0]

{¬r → ⊥}ch :∼ not r [−20 @ 0]

whose optimal stable model is I1 = {p, q} with the penalty at level 0 being −19,

while I2 = {p, q, r} is a stable model whose penalty at level 0 is 0. Let Π′ de-

note lpmln2wcpnt(Π), k denote the summation of the weights of all soft rules in Π.

Then k = −4, and W (Π′, I1) = exp(−Penalty(I1, 0)) = e19 = WΠ(I1) × e−k, and

W (Π′, I2) = exp(−Penalty(I2, 0)) = e0 = WΠ(I2)× e−k.

3.2.2 Translation lpmln2wcpnt,rule

The current ASP solvers do not allow arbitrary formulas to appear in choice rules

or weak constraints. To omit the use of choice rules and random formulas F in

the weak constraints, we introduce a new atom unsat(i) for each weighted formula

wi : Fi ∈ Π to the construction of lpmln2wcpnt(Π).

Let lpmln2wcpnt,rule(Π) be the translation by turning each weighted formula wi : Fi

in Π into

¬Fi → unsat(i)

¬unsat(i) → Fi

:∼ unsat(i) [1@1].
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if wi is α, or

¬Fi → unsat(i)

¬unsat(i) → Fi

:∼ unsat(i) [wi@0].

otherwise, where unsat(i) is a new atom denoting the formula Fi is unsatisfied.

Corollary 8 Let Π be an LPMLN program. There is a 1-1 correspondence φ be-

tween the set SM[Π] and the stable models of lpmln2wcpnt,rule(Π), where φ(I) =

I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.

Corollary 9 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,rule(Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,rule(Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.

Corollary 10 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt,rule(Π). If F2 is satisfiable in Π, the probability of F1

given F2 under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

The corollaries allow us to compute the most probable stable models (MAP esti-

mates) and the probability distribution of the LPMLN program using the combination

of f2lp 3 and clingo 4 (assuming that the weights are approximated to integers).

System f2lp turns this program with formulas into the input language of clingo,

so clingo can be used to compute the theory.

3http://reasoning.eas.asu.edu/f2lp/

4http://potassco.sourceforge.net
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Example 1 Continued For LPMLN program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

The translation lpmln2wcpnt,rule yields

¬(p→ q)→ unsat(1) ¬unsat(1)→ (p→ q) :∼ unsat(1) [10 @ 0]

¬(p→ r)→ unsat(2) ¬unsat(2)→ (p→ r) :∼ unsat(2) [1 @ 0]

¬p→ unsat(3) ¬unsat(3)→ p :∼ unsat(3) [5 @ 0]

¬(¬r → ⊥)→ unsat(4) ¬unsat(4)→ (¬r → ⊥) :∼ unsat(4) [−20 @ 0]

whose optimal stable model is {p, q, unsat(2), unsat(4)} with the penalty at level 0

being −19, while {p, q, r} is a stable model whose penalty at level 0 is 0. Let Π′

denote lpmln2wcpnt,rule(Π), k denote the summation of the weights of all soft rules in

Π. Then k = −4, and W (Π′, I1) = exp(−Penalty(I1, 0)) = e19 = WΠ(I1) × e−k, and

W (Π′, I2) = exp(−Penalty(I2, 0)) = e0 = WΠ(I2)× e−k.

3.2.3 Translation lpmln2wcpnt,clingo

Until now, we provided three translations 5 from general LPMLN program to

ASP with weak constraints. One drawback of these translations is that they are not

in the input language of clingo because of the arbitrary formulas F in a general

LPMLN program. This motivates us to introduce the following fourth translation

lpmln2wcpnt,clingo.

Recall: The rule form that is allowed in the input languages of clingo and dlv is

A1; . . . ;Ak ← B1, . . . , Bm, not Bm+1, . . . , not Bn, not not Bn+1, . . . , not not Bp

5 lpmln2wc, lpmln2wcpnt, and lpmln2wcpnt,rule.
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where A1, . . . , Ak, B1, . . . , Bp are atoms; k,m, n, p are non-negative integers; and 0 ≤

m ≤ n ≤ p. We also abbreviate the rule form as Head ← Body .

If an unweighted LPMLN program is already in the rule form Head ← Body that is

allowed in the input languages of clingo and dlv, a new translation lpmln2wcpnt,clingo

may avoid the use of f2lp by slightly modifying the translation lpmln2wcpnt,rule by

turning each weighted rule

wi : Head i ← Body i

instead into

unsat(i) ← Body i, not Head i

Head i ← Body i, not unsat(i)

:∼ unsat(i) [1@1]

if wi is α, or

unsat(i) ← Body i, not Head i

Head i ← Body i, not unsat(i)

:∼ unsat(i) [wi@0]

otherwise.

Corollary 11 Let Π be an LPMLN program such that all unweighted rules of Π are

in the rule form Head ← Body. There is a 1-1 correspondence φ between the set

SM[Π] and the stable models of lpmln2wcpnt,clingo(Π), where φ(I) = I ∪ {unsat(i) |

wi : Head i ← Body i ∈ Π, I � Body i ∧ ¬Head i}.

Corollary 12 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,clingo(Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,clingo(Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Head i ← Body i ∈ Π, I � Body i ∧ ¬Head i}.
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Corollary 13 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt,clingo(Π). If F2 is satisfiable in Π, the probability of F1

given F2 under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Example 1 continued: For LPMLN program Π:

10 : p→ q (r1)

1 : p→ r (r2)

5 : p (r3)

−20 : ¬r → ⊥ (r4)

The translation lpmln2wcpnt,clingo yields

unsat(1)← p, not q q ← p, not unsat(1) :∼ unsat(1) [10@0]

unsat(2)← p, not r r ← p, not unsat(2) :∼ unsat(2) [1@0]

unsat(3)← not p p← not unsat(3) :∼ unsat(3) [5@0]

unsat(4)← not r ⊥ ← not r, unsat(4) :∼ unsat(4) [−20@0]

3.2.4 Translation lpmln2wcpnt,clingo
simp

Translation lpmln2wcpnt,clingo can be further simplified when Head i is ⊥.

For any LPMLN program Π such that all unweighted rules of Π are in the rule form

Head ← Body , let lpmln2wcpnt,clingo
simp (Π) be the translation by turning each weighted

rule wi : Head ← Body in Π into

:∼ Body i [w′i@l]
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if Head i is ⊥, or

unsat(i) ← Body i, not Head i

Head i ← Body i, not unsat(i)

:∼ unsat(i) [w′i@l]

otherwise, where “w′i@l” is “1@1” if wi is α, or “wi@0” if wi is a real number.

Corollary 14 Let Π be an LPMLN program such that all unweighted rules of Π are in

the rule form Head ← Body.There is a 1-1 correspondence φ between the set SM[Π]

and the stable models of lpmln2wcpnt,clingo
simp (Π), where φ(I) = I ∪ {unsat(i) | wi :

Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧ ¬Head i}.

Corollary 14 asserts that we can simply turn an LPMLN rule of the form

wi : ⊥ ← Body i

into

:∼ Body i [wi@l]

without introducing a new atom unsat(i).

Corollary 15 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,clingo
simp (Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,clingo
simp (Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧

¬Head i}.

Corollary 16 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt,clingo
simp (Π). If F2 is satisfiable in Π, the probability of F1

given F2 under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.
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Example 1 continued: For program Π in Example 1, the simplified translation

lpmln2wcpnt,clingo
simp (Π) is

unsat(1)← p, not q q ← p, not unsat(1) :∼ unsat(1) [10@0]

unsat(2)← p, not r r ← p, not unsat(2) :∼ unsat(2) [1@0]

unsat(3)← not p p← not unsat(3) :∼ unsat(3) [5@0]

:∼ not r [−20@0]

Example 2 continued: For program Π in Example 2, the simplified translation

lpmln2wcpnt,clingo
simp (Π) is

unsat(1)← ResidentBird(Jo), not Bird(Jo)

Bird(Jo)← ResidentBird(Jo), not unsat(1)

:∼ unsat(1) [1@1]

unsat(2)← MigratoryBird(Jo), not Bird(Jo)

Bird(Jo)← MigratoryBird(Jo), not unsat(2)

:∼ unsat(2) [1@1]

:∼ ResidentBird(Jo),MigratoryBird(Jo) [1@1]

unsat(4)← not ResidentBird(Jo)

ResidentBird(Jo)← not unsat(4)

:∼ unsat(4) [2@0]

unsat(5)← not MigratoryBird(Jo)

MigratoryBird(Jo)← not unsat(5)

:∼ unsat(5) [1@0]
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3.3 Simplification for Hard Rules

In some applications, one may not want any hard rules to be violated assuming

that hard rules encode definite knowledge. For that, the translations lpmln2wcpnt,clingo

and lpmln2wcpnt,clingo
simp can be modified by simply turning hard rules

α : Head ← Body

instead into the usual ASP rules

Head ← Body .

Example 2 continued: The program in Example 2 can be translated into programs

with weak constraints as follows.

Bird(Jo)← ResidentBird(Jo)

Bird(Jo)← MigratoryBird(Jo)

⊥ ← ResidentBird(Jo),MigratoryBird(Jo)

unsat(4)← not ResidentBird(Jo)

ResidentBird(Jo)← not unsat(4)

:∼ unsat(4) [2@0]

unsat(5)← not MigratoryBird(Jo)

MigratoryBird(Jo)← not unsat(5)

:∼ unsat(5) [1@0]

However, for any LPMLN program Π, this modification will make its translated

ASP program (with weak constraints) unsatisfiable if there is no element in SM[Π]

satisfying all hard rules in Π.
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Example 2’: Consider Π′ that is slightly modified from Π in Example 2 as follows:

α : Bird(Jo)← ResidentBird(Jo)

α : Bird(Jo)← MigratoryBird(Jo)

α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo)

α : ResidentBird(Jo)

α : MigratoryBird(Jo)

We know there exist three probabilistic stable models of Π′ and no element in SM[Π′]

satisfies all five hard rules in Π′. If we apply the simplification on the translation

lpmln2wcpnt,clingo(Π′), it yields

Bird(Jo)← ResidentBird(Jo)

Bird(Jo)← MigratoryBird(Jo)

⊥ ← ResidentBird(Jo),MigratoryBird(Jo)

ResidentBird(Jo)

MigratoryBird(Jo)

which does not have a stable model. Thus we cannot apply this simplification when an

LPMLN program Π does not have a probabilistic stable model (or element in SM[Π])

that satisfies all hard rules in Π.

3.4 Proofs

3.4.1 Proof of Proposition 1

Proposition 1 For any LPMLN program Π, the set SM[Π] is exactly the set of the

stable models of lpmln2wc(Π).

Proof. To prove Proposition 1, it is sufficient to prove

I ∈ SM[Π] iff I is a stable model of lpmln2wc(Π). (3.3)
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Since I ∈ SM[Π] iff I is a stable model of ΠI , by definition, (3.3) is equivalent to

saying

I is a minimal model of
∧

w:F∈Π,I�F

F I iff I is a minimal model of
∧

w:F∈Π

({F}ch)I ,

which is true because∧
w:F∈Π

({F}ch)I =
∧

w:F∈Π,I�F

({F}ch)I ∧
∧

w:F∈Π,I 6�F

({F}ch)I =
∧

w:F∈Π,I�F

F I .

3.4.2 Proof of Theorem 1

Let Π be an LPMLN program. By Πsoft we denote the set of all soft rules in Π, by

Πhard we denote the set of all hard rules in Π.

For any I ∈ SM[Π], let

W hard
Π (I) = exp

( ∑
w:F ∈ (Πhard)I

w

)
and

W soft
Π (I) = exp

( ∑
w:F ∈ (Πsoft)I

w

)
,

then I is a most probable stable model of Π iff

I ∈ argmax
J : J∈ argmax

K: K∈SM[Π]
Whard

Π (K)

W soft
Π (J).

Let Π′ be an ASP program with weak constraints such that Level ∈ {0, 1} for all

weak constraints

:∼ F [Weight @ Level ]

in Π′. I is an optimal stable model of Π′ iff

I ∈ argmin
J : J∈ argmin

K: K is a stable model of Π′
PenaltyΠ′ (K,1)

PenaltyΠ′(J, 0).
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Theorem 1 For any LPMLN program Π, the most probable stable models of Π are pre-

cisely the optimal stable models of the program with weak constraints lpmln2wc(Π).

Proof. Let Π′ denote lpmln2wc(Π). To prove Theorem 1, it is sufficient to prove

I is a most probable stable model of Π iff I is an optimal stable model of Π′

which is equivalent to proving

• I ∈ argmax
J : J∈ argmax

K: K∈SM[Π]
Whard

Π (K)

W soft
Π (J)

iff

• I ∈ argmin
J : J∈ argmin

K: K is a stable model of Π′
PenaltyΠ′ (K,1)

PenaltyΠ′(J, 0).
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This is clear because

argmax
J : J∈ argmax

K: K∈SM[Π]
Whard

Π (K)

W soft
Π (J)

= (by (3.3) and the definition of W hard
Π (I) and W soft

Π (I))

argmax
J : J∈ argmax

K: K is a stable model of Π′
exp
( ∑
α:F ∈ (Πhard)K

α
) exp( ∑

w:F ∈ (Πsoft)J

w
)

=

argmax
J : J∈ argmax

K: K is a stable model of Π′
exp
( ∑
α:F ∈ Πhard,K�F

1
) exp( ∑

w:F ∈ Πsoft,J�F

w
)

=

argmin
J : J∈ argmin

K: K is a stable model of Π′

( ∑
α:F ∈ Πhard,K�F

−1
) ( ∑

w:F ∈ Πsoft,J�F

−w
)

=

argmin
J : J∈ argmin

K: K is a stable model of Π′

( ∑
:∼F [−1@1]∈Π′,K�F

−1
) ( ∑

:∼F [−w@0]∈Π′,J�F
−w
)

=

argmin
J : J∈ argmin

K: K is a stable model of Π′
PenaltyΠ′ (K,1)

PenaltyΠ′(J, 0).

3.4.3 Proof of Corollary 1

Corollary 1 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) = W (lpmln2wc(Π), I), and

• PΠ(I) = P (lpmln2wc(Π), I).

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wc(Π). For any interpretation I of Π, there are only two
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cases:

• I ∈ SM[Π]: By Proposition 1, I is a stable model of Π′.

W (Π′, I)

= (by definition)

exp
(
− PenaltyΠ′(I, 1)× α− PenaltyΠ′(I, 0)

)
= (by the definition of PenaltyΠ(I, l))

exp
(
− (

∑
:∼F [−1@1]∈Π′,I�F

−1)× α− (
∑

:∼F [−w@0]∈Π′,I�F
−w)

)
=

exp
(
− (

∑
α:F ∈ Πhard,I�F

−1)× α− (
∑

w:F ∈ Πsoft,I�F

−w)
)

=

exp
( ∑
α:F ∈ Πhard,I�F

α +
∑

w:F ∈ Πsoft,I�F

w
)

=

exp
( ∑
w:F ∈ ΠI

w
)

=

WΠ(I)

• I 6∈ SM[Π]: By Proposition 1, I is not a stable model of Π′. Thus W (Π′, I) =

0 = WΠ(I).

Thus for any interpretation I of Π, WΠ(I) = W (lpmln2wc(Π), I).

It is also easy to see that

P (Π′, I) = lim
α→∞

W (Π′,I)∑
J is a stable model of Π′

W (Π′,J)

= lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J)

= PΠ(I).
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3.4.4 Proof of Corollary 2

The proof of Corollary 2 will use the following lemma, which is from Proposition

7 in (Ferraris, 2011).

Lemma 1 Let Π be an ASP program, F be a propositional formula. An interpretation

I is a stable model of Π such that I � F iff I is a stable model of Π ∧ F constr.

The proof of Corollary 2 will also use the following lemma.

Lemma 2 Let Π be an ASP program, F be a propositional formula. If I is a stable

model of Π ∧ F constr, then W (Π, I) = W (Π ∧ F constr, I).

Proof. Let I be a stable model of Π ∧ F constr. By Lemma 1, I is a stable model

of Π. Since the weak constraints in Π and the weak constraints in Π∧F constr are the

same, W (Π, I) = W (Π ∧ F constr, I).

Corollary 2 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wc(Π). The probability of F1 given F2 (F2 is satisfiable in Π)

under Π is :

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wc(Π).

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
=

∑
I�F1∧F2

PΠ(I)∑
I�F2

PΠ(I)
= lim

α→∞

∑
I�F1∧F2

WΠ(I)∑
I�F2

WΠ(I)
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Further,

PΠ(F1 | F2)

=

lim
α→∞

∑
I ∈ SM[Π] and I�F1∧F2

WΠ(I)∑
I ∈ SM[Π] and I�F2

WΠ(I)

= (by Proposition 1 and Corollary 1)

lim
α→∞

∑
I is a stable model of Π′ and I�F1∧F2

W (Π′,I)∑
I is a stable model of Π′ and I�F2

W (Π′,I)

= (By Lemma 1)

lim
α→∞

∑
I is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,I)∑
I is a stable model of Π′ ∧ Fconstr

2

W (Π′,I)

= (By the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.

3.4.5 Proof of Proposition 2

Proposition 2 For any Markov Logic Network program Π, the models of Π are

precisely the stable models of the program with weak constraints mln2wc(Π).

Proof. For any Markov Logic Network Π, we obtain an LPMLN program Π′ from

Π by adding

α : {A}ch

for every atom A in the signature of Π.

By Theorem 2 in (Lee and Wang, 2016), Π and Π′ have the same probability

distribution over all interpretations, and consequently, I is a model of Π iff I ∈ SM[Π′].

By Proposition 1, I ∈ SM[Π′] iff I is a stable model of lpmln2wc(Π′). Since

• I is a stable model of lpmln2wc(Π′)
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iff

• I is a stable model of lpmln2wc(Π) ∪ {{{A}ch}ch | A is an atom in Π}

iff (since for any interpretation I, the reduct of {{A}ch}ch relative to I is equivalent

to the reduct of {A}ch relative to I, lpmln2wc(Π) ∪ {{{A}ch}ch | A is an atom in Π}

is strongly equivalent to lpmln2wc(Π) ∪ {{A}ch | A is an atom in Π})

• I is a stable model of lpmln2wc(Π) ∪ {{A}ch | A is an atom in Π}

iff

• I is a stable model of mln2wc(Π),

then I is a model of Π iff I is a stable model of mln2wc(Π).

3.4.6 Proof of Theorem 2

Theorem 2 For any Markov Logic Network Π, the most probable models of Π are

precisely the optimal stable models of the program with weak constraints mln2wc(Π).

Proof. For any Markov Logic Network Π, we obtain an LPMLN program Π′ from

Π by adding

α : {A}ch

for every atom A in Π. By Theorem 2 in (Lee and Wang, 2016), Π and Π′ have the

same probability distribution over all interpretations. Then for any interpretation I

of Π,

• I is a most probable model of the MLN program Π
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iff

• I is a most probable stable model of the LPMLN program Π′

iff (by Theorem 1)

• I is an optimal stable model of the ASP program with weak constraints

lpmln2wc(Π′)

iff (since a choice rule is always satisfied, omiting the weak constraint “:∼{A}ch. [−1@1]”

for all atoms A in Π doesn’t affect what is an optimal stable model of lpmln2wc(Π′))

• I is an optimal stable model of the ASP program with weak constraints

lpmln2wc(Π) ∪ {{{A}ch}ch | A is an atom in Π}

iff (since lpmln2wc(Π) ∪ {{{A}ch}ch | A is an atom in Π} is strongly equivalent to

lpmln2wc(Π) ∪ {{A}ch | A is an atom in Π})

• I is an optimal stable model of the ASP program with weak constraints

lpmln2wc(Π) ∪ {{A}ch | A is an atom in Π}

Thus we proved I is a most probable model of an MLN program Π iff I is an optimal

stable model of the ASP program with weak constraints mln2wc(Π).

3.4.7 Proof of Corollary 3

Corollary 3 For any Markov Logic Network Π and any interpretation I of Π,

• Wmln
Π (I) = W (mln2wc(Π), I), and

• Pmln
Π (I) = P (mln2wc(Π), I).

48



Proof. Let Π be a Markov Logic Network, Π′ be the translated logic program with

weak constraints mln2wc(Π). By Πhard, we denote all rules with infinite weight (α)

in Π; and by Πsoft, we denote all rules whose weight is a real number in Π.

For any interpretation I of Π, I is always a model of Π, and by Proposition 2,

I is a stable model of Π′.

For any interpretation I,

W (Π′, I)

= (by definition)

exp
(
− PenaltyΠ′(I, 1)× α− PenaltyΠ′(I, 0)

)
= (by the definition of PenaltyΠ(I, l))

exp
(
− (

∑
:∼F [−1@1]∈Π′,I�F

−1)× α− (
∑

:∼F [−w@0]∈Π′,I�F
−w)

)
=

exp
(
− (

∑
α:F ∈ Πhard,I�F

−1)× α− (
∑

w:F ∈ Πsoft,I�F

−w)
)

=

exp
( ∑
α:F ∈ Πhard,I�F

α +
∑

w:F ∈ Πsoft,I�F

w
)

=

exp
( ∑
w:F ∈ Π,I�F

w
)

=

Wmln
Π (I)

Thus Wmln
Π (I) = W (mln2wc(Π), I). Further, by definition, it is easy to check that

Pmln
Π (I) = P (mln2wc(Π), I).
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3.4.8 Proof of Corollary 4

Corollary 4 Let Π be a Markov Logic Network, Π′ be the translated logic program

with weak constraints mln2wc(Π). The probability of F1 given F2 (F2 is satisfiable in

Π) under Π is:

Pmln
Π (F1 | F2) = lim

α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be a Markov Logic Network, and Π′ be its translated logic program

with weak constraints mln2wc(Π).

Pmln
Π (F1 | F2) =

Pmln
Π (F1 ∧ F2)

Pmln
Π (F2)

=

∑
I�F1∧F2

Pmln
Π (I)∑

I�F2

Pmln
Π (I)

= lim
α→∞

∑
I�F1∧F2

Wmln
Π (I)∑

I�F2

Wmln
Π (I)

Further,

Pmln
Π (F1 | F2)

= (by Corollary 3)

lim
α→∞

∑
I is a stable model of Π′ and I�F1∧F2

W (Π′,I)∑
I is a stable model of Π′ and I�F2

W (Π′,I)

= (by Lemma 1)

lim
α→∞

∑
I is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,I)∑
I is a stable model of Π′ ∧ Fconstr

2

W (Π′,I)

= (by the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.

3.4.9 Proof of Corollary 5

Corollary 5 For any LPMLN program Π, the set SM[Π] is exactly the set of the

stable models of the program with weak constraints lpmln2wcpnt(Π).
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Proof. For any LPMLN program Π, the logic program part (without weak con-

straints) of lpmln2wcpnt(Π) is exactly the same as that of lpmln2wc(Π), thus their

stable models are the same. By Proposition 1, the set SM[Π] is exactly the set of

the stable models of the program with weak constraints lpmln2wcpnt(Π).

3.4.10 Proof of Corollary 6

Corollary 6 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt(Π), I), and

• PΠ(I) = P (lpmln2wcpnt(Π), I).

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt(Π). For any interpretation I of Π, there are only two

cases:
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• I ∈ SM[Π]: By Corollary 5, I is a stable model of Π′.

W (Π′, I)

= (by definition)

exp
(
− PenaltyΠ′(I, 1)× α− PenaltyΠ′(I, 0)

)
= (by the definition of PenaltyΠ(I, l))

exp
(
− (

∑
:∼¬F [1@1]∈Π′,I�¬F

1)× α− (
∑

:∼¬F [w@0]∈Π′,I�¬F
w)
)

=

exp
(
− (

∑
α:F ∈ Πhard,I 6�F

1)× α− (
∑

w:F ∈ Πsoft,I 6�F
w)
)

=

exp
( ∑
α:F ∈ Πhard,I�F

α +
∑

w:F ∈ Πsoft,I�F

w
)
× exp

(
−

∑
w:F ∈ Πhard

α−
∑

w:F ∈ Πsoft

w
)

∝ (since exp
(
−

∑
w:F ∈ Πhard

α−
∑

w:F ∈ Πsoft

w
)

is fixed for Π)

exp
( ∑
w:F ∈ ΠI

w
)

=

WΠ(I)

• I 6∈ SM[Π]: By Corollary 5, I is not a stable model of Π′. Thus W (Π′, I) =

0 = WΠ(I).

Thus for any interpretation I of Π, WΠ(I) ∝ W (lpmln2wcpnt(Π), I). Further, by

definition, it is easy to check that PΠ(I) = P (lpmln2wcpnt(Π), I).

3.4.11 Proof of Corollary 7

Corollary 7 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt(Π). The probability of F1 given F2 (F2 is satisfiable in
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Π) under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt(Π).

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
=

∑
I�F1∧F2

PΠ(I)∑
I�F2

PΠ(I)
= lim

α→∞

∑
I�F1∧F2

WΠ(I)∑
I�F2

WΠ(I)

Further,

PΠ(F1 | F2)

=

lim
α→∞

∑
I ∈ SM[Π] and I�F1∧F2

WΠ(I)∑
I ∈ SM[Π] and I�F2

WΠ(I)

= (by Corollary 5 and Corollary 6)

lim
α→∞

∑
I is a stable model of Π′ and I�F1∧F2

W (Π′,I)∑
I is a stable model of Π′ and I�F2

W (Π′,I)

= (by Lemma 1)

lim
α→∞

∑
I is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,I)∑
I is a stable model of Π′ ∧ Fconstr

2

W (Π′,I)

= (by the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.

3.4.12 Proof of Corollary 8

Let σ and σ′ be signatures such that σ ⊆ σ′. For any two interpretations I, J of

the same signature σ′, we write I <σ J iff

• I|σ ( J |σ, and
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• I and J agree on σ′ \ σ.

The proof of Corollary 8 will use a restricted version of Theorem 1 from

(Bartholomew and Lee, 2013), which is reformulated as follows:

Lemma 3 Let F be a propositional formula. An interpretation I is a stable model

of F relative to signature σ iff

• I � F I ,

• and no interpretation J such that J <σ I satisfies F I .

The proof of Corollary 8 will use a restricted version of the splitting theorem

from (Ferraris et al., 2009), which is reformulated as follows:

Splitting Theorem Let Π1, Π2 be two finite ground programs, p, q be disjoint

tuples of distinct atoms. If

• each strongly connected component of the dependency graph of Π1 ∪ Π2 w.r.t.

p ∪ q is a subset of p or a subset of q,

• no atom in p has a strictly positive occurrence in Π2, and

• no atom in q has a strictly positive occurrence in Π1,

then an interpretation I of Π1 ∪ Π2 is a stable model of Π1 ∪ Π2 relative to p ∪ q

if and only if I is a stable model of Π1 relative to p and I is a stable model of Π2

relative to q.

Here and after, wi : Fi denotes the i-th rule in Π, where wi could be α or a real

number.

Corollary 8 Let Π be an LPMLN program. There is a 1-1 correspondence φ be-

tween the set SM[Π] and the stable models of lpmln2wcpnt,rule(Π), where φ(I) =

I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.
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Proof. Let σ be the signature of Π. We can check that the following mapping φ is

a 1-1 correspondence:

φ(I) = I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}

where φ(I) is of an extended signature σ ∪ {unsat(i) | wi : Fi ∈ Π}.

To prove φ is a 1-1 correspondence between the set SM[Π] and the set of the stable

models of ∧
wi: Fi∈Π

(
(Fi ← ¬unsat(i)) ∧ (unsat(i)← ¬Fi)

)
, (3.4)

it is sufficient to prove the following two bullets.

• prove: for every interpretation I ∈ SM[Π], φ(I) is a stable model of

(3.4).

Assume I ∈ SM[Π], by (3.3), I is a stable model of

∧
wi: Fi∈Π

(Fi ← ¬¬Fi).

By Lemma 3, we know

– I � ∧
wi: Fi∈Π,I�Fi

(
F I
i

)
, (3.5)

– and no interpretation K of signature σ such that K <σ I satisfies (3.5).

To prove φ(I) is a stable model of (3.4), by the splitting theorem, it is sufficient

to show

– φ(I) is a stable model of
∧

wi: Fi∈Π

(
unsat(i)← ¬ Fi

)
relative to {unsat(i) |

wi : Fi ∈ Π}, and

– φ(I) is a stable model of
∧

wi: Fi∈Π

(
Fi ← ¬unsat(i)

)
relative to σ;
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which is equivalent to showing

(a) φ(I) �
∧

wi: Fi∈Π

(
unsat(i)↔ ¬ Fi

)
,

(b.1) φ(I) �∧
wi: Fi∈Π,φ(I)�Fi

(
Fi ← ¬unsat(i)

)φ(I)

∧
∧

wi: Fi∈Π,φ(I)6�Fi

(
Fi ← ¬unsat(i)

)φ(I)

,

(3.6)

(b.2) and no interpretation L of signature σ∪{unsat(i) | wi : Fi ∈ Π} such that

L <σ φ(I) satisfies (3.6).

It’s clear that (a) is true by the definition of φ(I). As for (b.1), since φ(I) �

(Fi ↔ ¬unsat(i)) for all wi : Fi ∈ Π, (3.6) is equivalent to∧
wi: Fi∈Π,φ(I)�Fi

(
F
φ(I)
i ← >

)
∧

∧
wi: Fi∈Π,φ(I)6�Fi

(
⊥ ← ⊥

)
.

Then (b.1) is equivalent to saying φ(I) �∧
wi: Fi∈Π,φ(I)�Fi

(
F
φ(I)
i

)
, (3.7)

which is further equivalent to saying I � (3.5). As for (b.2), assume for the

sake of contradiction that there exists an interpretation L such that L <σ φ(I)

satisfies (3.6). Since (3.6) is equivalent to (3.7), L �
∧

wi: Fi∈Π,φ(I)�Fi

(
F
φ(I)
i

)
.

Thus we know L|σ <σ I and L|σ � (3.5), which contradicts with “there is no

interpretation K such that K <σ I satisfies (3.5)”. So both (b.1) and (b.2)

are true. Consequently, φ(I) is a stable model of (3.4).

• prove: for every stable model J of (3.4), J |σ ∈ SM[Π] and J = φ(J |σ).

Assume J is a stable model of (3.4), by the splitting theorem,

– J is a stable model of
∧

wi: Fi∈Π

(
unsat(i) ← ¬ Fi

)
relative to {unsat(i) |

wi : Fi ∈ Π}, and
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– J is a stable model of
∧

wi: Fi∈Π

(
Fi ← ¬unsat(i)

)
relative to σ.

Thus we have

(c) J � unsat(i) ↔ ¬Fi for all wi : Fi ∈ Π, which follows that J = J |σ ∪

{unsat(i) | wi : Fi ∈ Π, J |σ � ¬ Fi}. In other words, J = φ(J |σ).

(d.1) Since J � (Fi ← ¬unsat(i)) for all wi : Fi ∈ Π, J �

∧
wi: Fi∈Π

(
F J
i ← (¬unsat(i))J

)
, (3.8)

(d.2) and no interpretation L of signature σ∪{unsat(i) | wi : Fi ∈ Π} such that

L <σ J satisfies (3.8).

Since J � unsat(i)↔ ¬Fi for all wi : Fi ∈ Π, (3.8) is equivalent to

∧
wi: Fi∈Π,J |σ�Fi

(
F J
i ← >

)
∧

∧
wi: Fi∈Π,J |σ 6�Fi

(
⊥ ← ⊥

)
,

which is further equivalent to

∧
wi: Fi∈Π,J |σ�Fi

(
F
J |σ
i

)
. (3.9)

Thus by (d.1), J |σ � (3.9); and by (d.2), it’s easy to show that no interpretation

K such that K <σ J |σ satisfies (3.9). (Assume for the sake of contradiction,

there exists an interpretation K such that K <σ J |σ satisfies (3.9). Let L =

K ∪ {unsat(i) | wi : Fi ∈ Π, J � ¬ Fi}. Then L <σ J and L � (3.9). Since (3.9)

is equivalent to (3.8), L � (3.8), which contradicts with (d.2).)

Then by Lemma 3, J |σ is a stable model of
∧

wi: Fi∈Π

(Fi ← ¬¬Fi). By (3.3),

J |σ ∈ SM[Π].
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3.4.13 Proof of Corollary 9

Corollary 9 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,rule(Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,rule(Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt,rule(Π). For any interpretation I of Π, there are only

two cases:

• I ∈ SM[Π]: By Corollary 8, φ(I) is a stable model of Π′.

W (Π′, φ(I))

= (by definition)

exp
(
− PenaltyΠ′(φ(I), 1)× α− PenaltyΠ′(φ(I), 0)

)
= (by the definition of PenaltyΠ(I, l))

exp
(
− (

∑
:∼unsat(i)[1@1]∈Π′,φ(I)�unsat(i)

1)× α− (
∑

:∼unsat(i)[wi@0]∈Π′,φ(I)�unsat(i)
wi)
)

=

exp
(
− (

∑
α:Fi ∈ Πhard,I 6�Fi

1)× α− (
∑

w:Fi ∈ Πsoft,I 6�Fi
wi)
)

∝ (from the proof of Corollary 6)

WΠ(I)

• I 6∈ SM[Π]: By Corollary 8, φ(I) is not a stable model of Π′. ThusW (Π′, φ(I)) =

0 = WΠ(I).

Thus for any interpretation I of Π, WΠ(I) ∝ W (lpmln2wcpnt,rule(Π), φ(I)). Fur-

ther, by definition, it is easy to check that PΠ(I) = P (lpmln2wcpnt,rule(Π), φ(I)).
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3.4.14 Proof of Corollary 10

Corollary 10 Let Π be an LPMLN program, Π′ be the translated logic program with

weak constraints lpmln2wcpnt,rule(Π). The probability of F1 given F2 (F2 is satisfiable

in Π) under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt,rule(Π).

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
=

∑
I�F1∧F2

PΠ(I)∑
I�F2

PΠ(I)
= lim

α→∞

∑
I�F1∧F2

WΠ(I)∑
I�F2

WΠ(I)

Further,

PΠ(F1 | F2)

=

lim
α→∞

∑
I ∈ SM[Π] and I�F1∧F2

WΠ(I)∑
I ∈ SM[Π] and I�F2

WΠ(I)

= (by Corollary 8 and Corollary 9)

lim
α→∞

∑
φ(I) is a stable model of Π′ and φ(I)�F1∧F2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ and φ(I)�F2

W (Π′,φ(I))

= (by Lemma 1)

lim
α→∞

∑
φ(I) is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ ∧ Fconstr

2

W (Π′,φ(I))

= (by the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.
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3.4.15 Proof of Corollary 11

Corollary 11 Let Π be an LPMLN program such that all unweighted rules of Π are

in the rule form Head ← Body . There is a 1-1 correspondence φ between the set

SM[Π] and the stable models of lpmln2wcpnt,clingo(Π), where φ(I) = I ∪ {unsat(i) |

wi : Head i ← Body i ∈ Π, I � Body i ∧ ¬Head i}.

Proof. Let σ denote the signature of Π. By Corollary 8, it suffices to prove that

for any interpretation I of the signature σ ∪ {unsat(i) | wi : Head i ← Body i ∈ Π},

I is a stable model of lpmln2wcpnt,clingo(Π)

iff I is a stable model of lpmln2wcpnt,rule(Π).
(3.10)

By the splitting theorem, it is equivalent to proving

(a) I is a stable model of
∧

wi: Headi←Bodyi∈Π

(
unsat(i) ← Body i ∧ ¬Head i

)
relative

to {unsat(i) | wi : Head i ← Body i ∈ Π}, and

(b) I is a stable model of
∧

wi: Headi←Bodyi∈Π

(
Head i ← Body i ∧ ¬unsat(i)

)
relative

to σ;

iff

(c) I is a stable model of
∧

wi: Headi←Bodyi∈Π

(
unsat(i)← ¬(Head i ← Body i)

)
relative

to {unsat(i) | wi : Head i ← Body i ∈ Π}, and

(d) I is a stable model of
∧

wi: Headi←Bodyi∈Π

(
(Head i ← Body i)← ¬unsat(i)

)
relative

to σ.

This is clear because

• (a) and (c) are equivalent to saying I �
∧

wi: Headi←Bodyi∈Π

(
unsat(i)↔ Body i ∧

¬Head i

)
(by completion), and
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• (b) and (d) are equivalent because Head i ← Body i ∧ ¬unsat(i) is strongly

equivalent to (Head i ← Body i) ← ¬unsat(i). It is because for any interpreta-

tion J ,

(
(Head i ← Body i)← ¬unsat(i)

)J
= 

(Head i ← Body i)
J ← (¬unsat(i))J if J � Head i ∨ ¬Body i ∨ unsat(i),

⊥ otherwise;

= 

(HeadJi ← BodyJi )← (¬unsat(i))J if J � Head i ∨ ¬Body i,

⊥ ← ⊥ if J 6� Head i ∨ ¬Body i and J � unsat(i),

⊥ otherwise;

⇔ 

HeadJi ←
(
BodyJi ∧ (¬unsat(i))J

)
if J � Head i ∨ ¬Body i,

HeadJi ←
(
BodyJi ∧ (¬unsat(i))J

)
if J 6� Head i ∨ ¬Body i and J � unsat(i),

⊥ otherwise;

= 
HeadJi ←

(
BodyJi ∧ (¬unsat(i))J

)
if J � Head i ∨ ¬Body i ∨ unsat(i),

⊥ otherwise;

= 
HeadJi ←

(
Body i ∧ (¬unsat(i))

)J
if J � Head i ∨ ¬Body i ∨ unsat(i),

⊥ otherwise;

= (
Head i ← Body i ∧ ¬unsat(i)

)J
.
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By Proposition 5 from (Ferraris, 2011), Head i ← Body i ∧ ¬unsat(i) is strongly

equivalent to (Head i ← Body i)← ¬unsat(i).

3.4.16 Proof of Corollary 12

Corollary 12 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,clingo(Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,clingo(Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Head i ← Body i ∈ Π, I � Body i ∧ ¬Head i}.

Proof.

Let Π be an LPMLN program. We know that the weak constraints of

lpmln2wcpnt,clingo(Π) are exactly the same as the weak constraints of lpmln2wcpnt,rule(Π).

By (3.10), for any interpretation I of Π

W (lpmln2wcpnt,clingo(Π), φ(I))

= (by the definition of W (Π, I))

W (lpmln2wcpnt,rule(Π), φ(I))

∝ (by Corollary 9)

WΠ(I)

Further, by definition, it is easy to check that PΠ(I) = P (lpmln2wcpnt,clingo(Π), φ(I)).

3.4.17 Proof of Corollary 13

Corollary 13 Let Π be an LPMLN program, Π′ be the translated logic program

with weak constraints lpmln2wcpnt,clingo(Π). The probability of F1 given F2 (F2 is
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satisfiable in Π) under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt,clingo(Π).

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
=

∑
I�F1∧F2

PΠ(I)∑
I�F2

PΠ(I)
= lim

α→∞

∑
I�F1∧F2

WΠ(I)∑
I�F2

WΠ(I)

Further,

PΠ(F1 | F2)

=

lim
α→∞

∑
I ∈ SM[Π] and I�F1∧F2

WΠ(I)∑
I ∈ SM[Π] and I�F2

WΠ(I)

= (By Corollary 11 and Corollary 12)

lim
α→∞

∑
φ(I) is a stable model of Π′ and φ(I)�F1∧F2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ and φ(I)�F2

W (Π′,φ(I))

= (By Lemma 1)

lim
α→∞

∑
φ(I) is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ ∧ Fconstr

2

W (Π′,φ(I))

= (By the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.

3.4.18 Proof of Corollary 14

Lemma 4 For any interpretation I of an LPMLN program Π, let Πconstr denote a set

of weighted rules of the form w : ⊥ ← F , where w is α or a real number, F is a

first-order formula. Then I ∈ SM[Π ∪ Πconstr] iff I ∈ SM[Π].
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Proof.

• I ∈ SM[Π ∪ Πconstr]

iff (by definition)

• I is a stable model of ΠI ∧
∧

w: ⊥←F∈Πconstr

I�⊥←F

(
⊥ ← F

)
iff (by theorem 3 in (Ferraris et al., 2011))

• I is a stable model of ΠI and I �
∧

w: ⊥←F∈Πconstr

I�⊥←F

(
⊥ ← F

)

iff (since I �
∧

w: ⊥←F∈Πconstr

I�⊥←F

(
⊥ ← F

)
is always true)

• I ∈ SM[Π].

Corollary 14 Let Π be an LPMLN program such that all unweighted rules of Π

are in the rule form Head ← Body .There is a 1-1 correspondence φ between the set

SM[Π] and the stable models of lpmln2wcpnt,clingo
simp (Π), where φ(I) = I ∪ {unsat(i) |

wi : Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧ ¬Head i}.

Proof.

We can check that the following mapping φ is a 1-1 correspondence:

φ(I) = I ∪{unsat(i) | wi : Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧¬Head i},

where φ(I) is of an extended signature σ ∪ {unsat(i) | wi : Head i ← Body i ∈

Π,Head i is not ⊥}.

By Lemma 4, we know I ∈ SM[Π] iff I ∈ SM[
∧

wi: Headi←Bodyi∈Π
Headi is not ⊥

(
wi : Headi ←

Bodyi

)
].
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By Corollary 11, we know φ is a 1-1 correspondence between the set

SM[
∧

wi: Headi←Bodyi∈Π
Headi is not ⊥

(
wi : Headi ← Bodyi

)
]

and the set of the stable models of

∧
wi: Headi←Bodyi∈Π
and Headi is not ⊥

(
(unsat(i)← Body i ∧ ¬Head i) ∧ (Head i ← Body i ∧ ¬unsat(i))

)
,

where φ(I) = I ∪ {unsat(i) | wi : Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧

¬Head i}.

Thus φ is a 1-1 correspondence between the set SM[Π] and the set of the stable

models of lpmln2wcpnt,clingo
simp (Π).

3.4.19 Proof of Corollary 15

Corollary 15 For any LPMLN program Π and any interpretation I of Π,

• WΠ(I) ∝ W (lpmln2wcpnt,clingo
simp (Π), φ(I)), and

• PΠ(I) = P (lpmln2wcpnt,clingo
simp (Π), φ(I)),

where φ(I) = I ∪ {unsat(i) | wi : Head i ← Body i ∈ Π,Head i is not ⊥, I � Body i ∧

¬Head i}.

Proof. Let Π be an LPMLN program, Π′ be its translated logic program with weak

constraints lpmln2wcpnt,clingo
simp (Π), Πc11 be lpmln2wcpnt,clingo(Π), and φc11 be the 1-1

correspondence in Corollary 11.

We can prove that for any interpretation I ∈ SM[Π] and l ∈ {0, 1}

PenaltyΠ′(φ(I), l) = PenaltyΠc11
(φc11(I), l). (3.11)
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This is clear because

PenaltyΠ′(φ(I), 0)

= ∑
:∼unsat(i)[wi@0]∈Π′ and φ(I)�unsat(i)

or :∼Bodyi[wi@0]∈Π′ and φ(I)�Bodyi

wi

= (since, by the definition of φ(I), when Head i is not ⊥,

φ(I) � unsat(i) iff I � Body i ∧ ¬Head i)∑
wi:Headi←Bodyi ∈ Πsoft, Headi is not ⊥, and I�Bodyi∧¬Headi
or wi:Headi←Bodyi ∈ Πsoft, Headi is ⊥, and I�Bodyi∧¬Headi

wi

= ∑
wi:Headi←Bodyi ∈ Πsoft and I�Bodyi∧¬Headi

wi

= (since φc11(I) � unsat(i) iff I � Bodyi ∧ ¬Headi)∑
:∼unsat(i)[wi@0]∈Πc11 and φc11(I)�unsat(i)

wi

=

PenaltyΠc11
(φc11(I), 0) ;

and similarly,

PenaltyΠ′(φ(I), 1) = PenaltyΠc11
(φc11(I), 1).

66



Then for any interpretation I of Π,

W (Π′, φ(I))

= (by definition)

exp
(
− PenaltyΠ′(φ(I), 1)× α− PenaltyΠ′(φ(I), 0)

)
= (by (3.11))

exp
(
− PenaltyΠc11

(φc11(I), 1)× α− PenaltyΠc11
(φc11(I), 0)

)
=

W (Πc11, φc11(I))

∝ (by Corollary 12)

WΠ(I)

Further, by definition, it is easy to check that PΠ(I) = P (lpmln2wcpnt,clingo
simp (Π), φ(I)).

3.4.20 Proof of Corollary 16

Corollary 16 Let Π be an LPMLN program, Π′ be the translated logic program

with weak constraints lpmln2wcpnt,clingo
simp (Π). The probability of F1 given F2 (F2 is

satisfiable in Π) under Π is:

PΠ(F1 | F2) = lim
α→∞

Z(Π′ ∧ F constr
1 ∧ F constr

2 )

Z(Π′ ∧ F constr
2 )

.

Proof. Let Π be an LPMLN program, and Π′ be its translated logic program with

weak constraints lpmln2wcpnt(Π).

PΠ(F1 | F2) =
PΠ(F1 ∧ F2)

PΠ(F2)
=

∑
I�F1∧F2

PΠ(I)∑
I�F2

PΠ(I)
= lim

α→∞

∑
I�F1∧F2

WΠ(I)∑
I�F2

WΠ(I)
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Further,

PΠ(F1 | F2)

=

lim
α→∞

∑
I ∈ SM[Π] and I�F1∧F2

WΠ(I)∑
I ∈ SM[Π] and I�F2

WΠ(I)

= (by Corollary 14 and Corollary 15)

lim
α→∞

∑
φ(I) is a stable model of Π′ and φ(I)�F1∧F2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ and φ(I)�F2

W (Π′,φ(I))

= (by Lemma 1)

lim
α→∞

∑
φ(I) is a stable model of Π′ ∧ Fconstr

1 ∧ Fconstr
2

W (Π′,φ(I))∑
φ(I) is a stable model of Π′ ∧ Fconstr

2

W (Π′,φ(I))

= (by the definition of Z(Π) and Lemma 2)

lim
α→∞

Z(Π′∧F constr1 ∧F constr2 )

Z(Π′∧F constr2 )
.
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Chapter 4

TURNING P-LOG INTO LPMLN

In this chapter, we show how P-log can be completely characterized in LPMLN.

Let Π be a P-log program of signature σ1 ∪ σ2 where

Π = 〈R,S,P,Obs,Act〉,

σ1 and σ2 are defined in Section 2.3, we define translation plog2lpmln(Π) that turns

Π into an LPMLN program.

4.1 Signature of plog2lpmln(Π)

Before introducing the signature of plog2lpmln(Π), we need to define some nota-

tions that will be used in the signature. For any real number p ∈ [0, 1] and b ∈ {t, f},

we define [p]b as follows:

[p]b =


p if b = t;

0 if b = f.

Further, for any c(~u) in S of Π, we define the set of all possible remaining (unas-

signed) probabilities of c(~u) in Π, prem(c(~u),Π), as

{p | p = 1−
∑

pi: prr(c(~u)=vi | Ci)=pi∈Π

[pi]
bi , where each bi ∈ {t, f}}.

The signature of plog2lpmln(Π) is

σ1 ∪ σ2 ∪ {Intervene(c(~u)) | c(~u) is an attribute occurring in S} ∪ σ3,
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where σ3 is a propositional signature constructed from Π as follows:

σ3 = {Possr(c(~u)=v) | r is a random selection rule for c(~u) in Π and v ∈ Range(c)}

∪ {PossWithAssPr r,C(c(~u)=v) | there is a pr-atom prr(c(~u) = v | C) = p in Π}

∪ {AssPr r,C(c(~u)=v) | there is a pr-atom prr(c(~u) = v | C) = p in Π}

∪ {PossWithAssPr(c(~u)=v) | there is a random selection rule for c(~u) in Π

and v ∈ Range(c)}

∪ {PossWithDefPr(c(~u)=v) | there is a random selection rule for c(~u) in Π

and v ∈ Range(c)}

∪ {NumDefPr(c(~u),m) | there is a random selection rule for c(~u) in Π

and m ∈ {1, . . . , |Range(c)|}

∪ {RemPr(c(~u), k) | there is a random selection rule for c(~u) in Π

and k ∈ prem(c(~u),Π)}

∪ {TotalDefPr(c(~u), k) | there is a random selection rule for c(~u) in Π,

k ∈ prem(c(~u),Π), and k > 0}.

4.2 Translation plog2lpmln

We define translation plog2lpmln(Π) that turns a P-log program Π into an LPMLN

program in a modular way. First, every rule

R

in τ(Π) (used in defining the possible worlds in P-log) is turned into a hard rule

α : R

in plog2lpmln(Π).
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In addition, plog2lpmln(Π) contains the following rules to associate probability to

each possible world of Π. Below x, y denote schematic variables, and W is a possible

world of Π.

Possible Atoms: For each random selection rule (2.2) for c(~u) in S and for each

v ∈ Range(c), plog2lpmln(Π) includes

Possr(c(~u) = v)← Body , p(v), not Intervene(c(~u)) (4.1)

Rule (4.1) expresses that c(~u) = v is possible in W due to r if W � Body ∧ p(v) ∧

¬Intervene(c(~u)).

Assigned Probability: For each pr-atom (2.3) in P, plog2lpmln(Π) contains the

following rules:

α : PossWithAssPr r,C(c(~u)=v)←

Possr(c(~u) = v), C (4.2)

α : AssPr r,C(c(~u)=v)←

c(~u)=v,PossWithAssPr r,C(c(~u)=v) (4.3)

ln(p) : ⊥ ← not AssPr r,C(c(~u)=v) (p > 0) (4.4)

α : ⊥ ← AssPr r,C(c(~u)=v) (p = 0)

α : PossWithAssPr(c(~u)=v)← PossWithAssPr r,C(c(~u)=v).

Rule (4.2) expresses the condition under which pr-atom (2.3) is applied in a possible

world W . Further, if c(~u) = v is true in W as well, rules (4.3) and (4.4) contribute

the assigned probability eln(p) = p to the unnormalized probability of W as a factor

when p > 0.

Denominator for Default Probability: For each random selection rule (2.2) for

c(~u) in S and for each v ∈ Range(c), plog2lpmln(Π) includes
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α : PossWithDefPr(c(~u)=v)←

Possr(c(~u)=v), not PossWithAssPr(c(~u)=v)
(4.5)

α : NumDefPr(c(~u), x)←

c(~u)=v,PossWithDefPr(c(~u) = v),

x = #count{y : PossWithDefPr(c(~u)=y)}

(4.6)

ln( 1
m

) : ⊥ ← not NumDefPr(c(~u),m)

(m = 2, . . . , |Range(c)|)
(4.7)

Rule (4.5) asserts that c(~u) = v is possible in W with a default probability if it

is possible in W and not possible with an assigned probability. Rule (4.6) expresses,

intuitively, that NumDefPr(c(~u), x) is true if there are exactly x different values v

such that c(~u) = v is possible in W with a default probability, and there is at least

one of them that is also true in W . This value x is the denominator of (2.4). Then

rule (4.7) contributes the factor 1/x to the unnormalized probability of W as a factor.

Numerator for Default Probability:

• Consider each random selection rule [r] random(c(~u) : {x : p(x)})← Body for

c(~u) in S along with all pr-atoms associated with it in P:

prr(c(~u)=v1 | C1) = p1

. . .

prr(c(~u)=vn | Cn) = pn

where n ≥ 1, and vi and vj (i 6= j) may be equal. For each v ∈ Range(c),

plog2lpmln(Π) contains the following rules: 1

1The sum aggregate can be represented by ground first-order formulas under the stable model
semantics under the assumption that the Herbrand Universe is finite (Ferraris, 2011). In the general
case, it can be represented by generalized quantifiers (Lee and Meng, 2012) or infinitary propositional
formulas (Harrison et al., 2014). In the input language of ASP solvers, which does not allow real
number arguments, pi can be approximated to integers of some fixed interval.
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α : RemPr(c(~u), 1−y)← Body

c(~u)=v,PossWithDefPr(c(~u)=v),

y = #sum{p1 : PossWithAssPr r,C1(c(~u)=v1);

. . . ; pn : PossWithAssPr r,Cn(c(~u)=vn)}. (4.8)

α : TotalDefPr(c(~u), x)← RemPr(c(~u), x), x > 0 (4.9)

ln(x) : ⊥ ← not TotalDefPr(c(~u), x) (4.10)

α : ⊥ ← RemPr(c(~u), x), x ≤ 0. (4.11)

In rule (4.8), y is the sum of all assigned probabilities. Rules (4.9) and (4.10)

are to account for the numerator of (2.4) when n > 0. The variable x stands for

the numerator of (2.4). Rule (4.11) is to avoid assigning a non-positive default

probability to a possible world.

Note that most rules in plog2lpmln(Π) are hard rules. The soft rules (4.4), (4.7),

(4.10) cannot be simplified as atomic facts, e.g., ln( 1
m

) : NumDefPr(c(~u),m) in

place of (4.7), which is in contrast with the use of probabilistic choice atoms in

the distribution semantics based probabilistic logic programming language, such as

ProbLog. This is related to the fact that the probability of each atom to happen in

a possible word in P-log is derived from assigned and default probabilities, and not

from independent probabilistic choices like the other probabilistic logic programming

languages. In conjunction with the embedding of ProbLog in LPMLN (Lee and Wang,

2016), it is interesting to note that both kinds of probabilities can be captured in

LPMLN using different kinds of rules.

Clearly, the signature of plog2lpmln(Π) is a superset of the signature of Π. Fur-

ther, plog2lpmln(Π) is linear-time constructible. The following theorem tells us that
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there is a 1-1 correspondence between the set of the possible worlds with non-zero

probabilities of Π and the set of the probabilistic stable models of plog2lpmln(Π) such

that each stable model is an extension of the possible world, and the probability of

each possible world of Π coincides with the probability of the corresponding stable

model of plog2lpmln(Π).

Theorem 3 Let Π be a consistent P-log program. There is a 1-1 correspondence φ

between the set of the possible worlds of Π with non-zero probabilities and the set of

probabilistic stable models of plog2lpmln(Π) such that

• For every possible world W of Π that has a non-zero probability, φ(W ) is a

probabilistic stable model of plog2lpmln(Π), and µΠ(W ) = Pplog2lpmln(Π)(φ(W )).

• For every probabilistic stable model I of plog2lpmln(Π), the restriction of I

onto the signature of τ(Π), denoted I|σ(τ(Π)), is a possible world of Π and

µΠ(I|σ(τ(Π))) > 0.

The following mapping φ is such a 1-1 correspondence:

1. φ(W ) |= Possr(c(~u)=v) iff c(~u)=v is possible in W due to r.

2. For each pr-atom prr(c(~u)=v | C) = p in Π,

φ(W ) |= PossWithAssPr r,C(c(~u)=v) iff this pr-atom is applied in W .

3. For each pr-atom prr(c(~u)=v | C) = p in Π,

φ(W ) |= AssPr r,C(c(~u)=v) iff this pr-atom is applied in W , and W |= c(~u)=v.

4. φ(W ) |= PossWithAssPr(c(~u)=v) iff v ∈ AVW (c(~u)).

5. φ(W ) |= PossWithDefPr(c(~u) = v) iff c(~u) = v is possible in W and v 6∈

AVW (c(~u)).
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6. φ(W ) |= NumDefPr(c(~u),m) iff there exist exactly m different values v such

that c(~u) = v is possible in W ; v 6∈ AVW (c(~u)); and, for one of such v, W |=

c(~u)=v.

7. φ(W ) |= RemPr(c(~u), k) iff there exists a value v such that W |= c(~u) = v;

c(~u)=v is possible in W ; v 6∈ AVW (c(~u)); and

k = 1−
∑

v∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v).

8. φ(W ) |= TotalDefPr(c(~u), k) iff φ(W ) |= RemPr(c(~u), k) and k > 0.

Example 6 Consider a variant of the Monty Hall Problem encoding in P-log from

(Baral et al., 2009) to illustrate the probabilistic nonmonotonicity in the presence of

assigned probabilities. There are four doors, behind which are three goats and one

car. The guest picks door 1, and Monty, the show host who always opens one of the

doors with a goat, opens door 2. Further, while the guest and Monty are unaware, the

statistics is that in the past, with 30% chance the prize was behind door 1, and with

20% chance, the prize was behind door 3. Is it still better to switch to another door?

This example can be formalized in P-log program Π, using both assigned probability

and default probability, as

∼CanOpen(d)← Selected =d. (d ∈ {1, 2, 3, 4}),

∼CanOpen(d)← Prize =d.

CanOpen(d)← not ∼CanOpen(d).

random(Prize). random(Selected).

random(Open : {x : CanOpen(x)}).

pr(Prize =1) = 0.3. pr(Prize =3) = 0.2.

Obs(Selected =1). Obs(Open =2). Obs(Prize 6= 2).

The possible worlds of Π are as follows:
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• W1 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6= 2), Selected =1,Open =

2,Prize =1,CanOpen(1) = f,CanOpen(2) = t,CanOpen(3) = t,CanOpen(4) =

t}

• W2 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6= 2), Selected =1,Open =

2,Prize =3,CanOpen(1) = f,CanOpen(2) = t,CanOpen(3) = f,CanOpen(4) =

t}

• W3 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6= 2), Selected =1,Open =

2,Prize =4,CanOpen(1) = f,CanOpen(2) = t,CanOpen(3) = t,CanOpen(4) =

f}.

The probability of each atom to happen is

P (Wi, Selected =1) = PossWithDefPr(W, Selected =1) = 1/4

P (W1,Open =2) = PossWithDefPr(W1,Open =2) = 1/3

P (W2,Open =2) = PossWithDefPr(W2,Open =2) = 1/2

P (W3,Open =2) = PossWithDefPr(W3,Open =2) = 1/2

P (W1,Prize =1) = PossWithAssPr(W1,Prize =1) = 0.3

P (W2,Prize =3) = PossWithAssPr(W2,Prize =3) = 0.2

P (W3,Prize =4) = PossWithDefPr(W3,Prize =4) = 0.25

So,

• µ̂Π(W1) = 1/4× 1/3× 0.3 = 1/40

• µ̂Π(W2) = 1/4× 1/2× 0.2 = 1/40

• µ̂Π(W3) = 1/4× 1/2× 0.25 = 1/32.
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Thus, in comparison with staying (W1), switching to door 3 (W2) does not affect the

chance, but switching to door 4 (W3) increases the chance by 25%.

After the translation, the LPMLN program plog2lpmln(Π) is as follows:

// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : ∼CanOpen(d)← Selected = d

α : ∼CanOpen(d)← Prize = d

α : CanOpen(d)← not ∼CanOpen(d)

α : ← CanOpen(d),∼CanOpen(d)

α : ← Prize = d1,Prize = d2, d1 6= d2

α : ← Selected = d1,Selected = d2, d1 6= d2

α : ← Open = d1,Open = d2, d1 6= d2

α : Prize = 1;Prize = 2;Prize = 3;Prize = 4← not Intervene(Prize)

α : Selected = 1;Selected = 2;Selected = 3;Selected = 4← not Intervene(Selected)

α : Open = 1;Open = 2;Open = 3;Open = 4← not Intervene(Open)

α : ← Open = d,not CanOpen(d),not Intervene(Open)

α : Obs(Selected = 1)

α : ← Obs(Selected = 1),not Selected = 1

α : Obs(Open = 2)

α : ← Obs(Open = 2),not Open = 2

α : Obs(Prize 6= 2)

α : ← Obs(Prize 6= 2),Prize = 2

// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Poss(Prize = d)← not Intervene(Prize)

α : Poss(Selected = d)← not Intervene(Selected)

α : Poss(Open = d)← CanOpen(d),not Intervene(Open)
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// ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

α : PossWithAssPr(Prize = 1)← Poss(Prize = 1)

α : AssPr(Prize = 1)← Prize = 1,PossWithAssPr(Prize = 1)

ln(0.3) : ⊥ ← not AssPr(Prize = 1)

α : PossWithAssPr(Prize = 3)← Poss(Prize = 3)

α : AssPr(Prize = 3)← Prize = 3,PossWithAssPr(Prize = 3)

ln(0.2) : ⊥ ← not AssPr(Prize = 3)

// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(Prize = d)← Poss(Prize = d),not PossWithAssPr(Prize = d)

α : PossWithDefPr(Selected = d)← Poss(Selected = d), not PossWithAssPr(Selected = d)

α : PossWithDefPr(Open = d)← Poss(Open = d),not PossWithAssPr(Open = d)

α : NumDefPr(Prize, x)← Prize = d,PossWithDefPr(Prize = d),

x = #count{y : PossWithDefPr(Prize = y)}

α : NumDefPr(Selected , x)← Selected = d,PossWithDefPr(Selected = d),

x = #count{y : PossWithDefPr(Selected = y)}

α : NumDefPr(Open, x)← Open = d,PossWithDefPr(Open = d),

x = #count{y : PossWithDefPr(Open = y)}

ln( 1
m) : ← not NumDefPr(c,m) //c ∈ {Prize,Selected ,Open},m ∈ {2, 3, 4}

// ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

α : RemPr(Prize, 1− x)← Prize = d,PossWithDefPr(Prize = d),

x = #sum{0.3 : PossWithAssPr(Prize=1); 0.2 : PossWithAssPr(Prize=3)}

α : TotalDefPr(Prize, x)← RemPr(Prize, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Prize, x)

α : ⊥ ← RemPr(Prize, x), x ≤ 0
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Note that in part “Assigned Probability”, we simplified slightly not to distinguish

PossWithAssPr(·) and PossWithAssPr r,C(·) because there is only one random selec-

tion rule for Prize and both pr-atoms for Prize has empty conditions.

plog2lpmln(Π) has three probabilistic stable models I1, I2, and I3, each of which

is an extension of W1, W2, and W3 respectively, and satisfies the following atoms:

Poss(Prize = i) for i = 1, 2, 3, 4;

Poss(Selected = i) for i = 1, 2, 3, 4;

PossWithAssPr(Prize = i) for i = 1, 3;

PossWithDefPr(Prize = i) for i = 2, 4;

PossWithDefPr(Selected = i) for i = 1, 2, 3, 4;

NumDefPr(Selected , 4).

In addition,

• I1 |= {AssPr(Prize =1),

Poss(Open =2),Poss(Open =3),Poss(Open =4),

PossWithDefPr(Open =2),PossWithDefPr(Open =3),

PossWithDefPr(Open =4),NumDefPr(Open, 3)}

• I2 |= {AssPr(Prize =3),

Poss(Open =2),Poss(Open =4),

PossWithDefPr(Open =2),PossWithDefPr(Open =4),NumDefPr(Open, 2)}

• I3 |= {NumDefPr(Prize, 2),RemPr(Prize, 0.5),TotalDefPr(Prize, 0.5)

Poss(Open =2),Poss(Open =3),

PossWithDefPr(Open =2),PossWithDefPr(Open =3),NumDefPr(Open, 2)}.

The unnormalized weight WΠ′(Ii) of each probabilistic stable model Ii is shown

below, where w(AssPr r,C(c(~u) = v)) denotes the exponentiated weight of rule (4.4),
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w(NumDefPr(c(~u),m)) denotes the exponentiated weight of rule (4.7), and

w(TotalDefPr(c(~u), x)) denotes the exponentiated weight of rule (4.10).

• WΠ′(I1) = w(NumDefPr(Selected , 4)) × w(AssPr(Prize =1))

× w(NumDefPr(Open, 3))

= 1
4
× 3

10
× 1

3
= 1

40
;

• WΠ′(I2) = w(NumDefPr(Selected , 4)) × w(AssPr(Prize =3))

× w(NumDefPr(Open, 2))

= 1
4
× 2

10
× 1

2
= 1

40
;

• WΠ′(I3) = w(NumDefPr(Selected , 4)) × w(NumDefPr(Open, 2))

× w(NumDefPr(Prize, 2) × w(TotalDefPr(Prize, 0.5)

= 1
4
× 1

2
× 1

2
× 5

10
= 1

32
.

We can check that Ii = φ(Wi) and µΠ(Wi) = Pplog2lpmln(Π)(φ(Wi)). Consequently,

φ is a 1-1 correspondence between the possible world of Π and the probabilistic stable

models of plog2lpmln(Π), and µΠ(Wi) = Pplog2lpmln(Π)(φ(Wi)).

Combining the translations plog2lpmln and lpmln2wc, one can compute P-log

MAP inference using standard ASP solvers.

4.3 Proofs

4.3.1 Proof of Theorem 3

Lemma 5 (proposition 2 in Lee and Wang (2016)) If SM′[Π] is not empty, for every

interpretation I of Π, P ′Π(I) coincides with PΠ(I).

It follows from Lemma 5 that if SM′[Π] is not empty, then
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• I is a probabilistic stable model of Π iff I ∈ SM′[Π],

• every probabilistic stable model of Π should satisfy all hard rules in Π.

Theorem 3 Let Π be a consistent P-log program, σ be the signature of τ(Π). There

is a 1-1 correspondence φ between the set of the possible worlds of Π with non-zero

probabilities and the set of probabilistic stable models of plog2lpmln(Π) such that

(a) For every possible world W of Π that has a non-zero probability, φ(W ) is a

probabilistic stable model of plog2lpmln(Π), and µΠ(W ) = Pplog2lpmln(Π)(φ(W )).

(b) For every probabilistic stable model I of plog2lpmln(Π), I|σ is a possible world

of Π, I = φ(I|σ), and µΠ(I|σ) > 0.

Note that we make (b) a little bit more stronger than the statement in the the

previous section by adding “I = φ(I|σ)” (which is already covered by “1-1 corre-

spondence”). In this case, to prove Theorem 3, it is sufficient to prove (a) and

(b).

Proof. For any possible world W of a P-log program Π, we define the mapping φ

as follows.

1. φ(W ) |= Possr(c(~u)=v) iff c(~u)=v is possible in W due to r.

2. For each pr-atom prr(c(~u)=v | C) = p in Π,

φ(W ) |= PossWithAssPr r,C(c(~u)=v) iff this pr-atom is applied in W .

3. For each pr-atom prr(c(~u)=v | C) = p in Π,

φ(W ) |= AssPr r,C(c(~u)=v) iff this pr-atom is applied in W , and W |= c(~u)=v.

4. φ(W ) |= PossWithAssPr(c(~u)=v) iff v ∈ AVW (c(~u)).
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5. φ(W ) |= PossWithDefPr(c(~u) = v) iff c(~u) = v is possible in W and v 6∈

AVW (c(~u)).

6. φ(W ) |= NumDefPr(c(~u),m) iff there exist exactly m different values v such

that c(~u) = v is possible in W ; v 6∈ AVW (c(~u)); and, for one of such v, W |=

c(~u)=v.

7. φ(W ) |= RemPr(c(~u), k) iff there exists a value v such that W |= c(~u) = v;

c(~u)=v is possible in W ; v 6∈ AVW (c(~u)); and

k = 1−
∑

v∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v).

8. φ(W ) |= TotalDefPr(c(~u), k) iff φ(W ) |= RemPr(c(~u), k) and k > 0.

Let’s denote plog2lpmln(Π) as Π′. In the following two parts, we will prove each of

the two bullets of Theorem 3.

(a) For every possible world W of Π with a non-zero probability, to prove φ(W )

is a probabilistic stable model of Π′, it is sufficient to prove φ(W ) is a stable

model of Π′ hard. Indeed, if we prove φ(W ) is a stable model of Π′ hard, then

φ(W ) is a stable model of Π′ hard
φ(W ) and PΠ′ hard(φ(W )) is always greater than 0.

Consequently, φ(W ) must be a probabilistic stable model of Π′ hard. Since Π′ =

Π′ hard∪Π′ soft, and Π′ soft is a set of soft rules of the form “w :← not A”, where

A is an atom and w is a real number, by Lemma 4 (it follows from Lemma

4 that, if all w in Πconstr are real numbers, I is a probabilistic stable model of

Π ∪ Πconstr iff I is a probabilistic stable model of Π), φ(W ) is a probabilistic

stable model of Π′.

Let σ denote the signature of τ(Π), ΠAUX = Π′ hard \ τ(Π). It can be seen that

no atom in σ has a strictly positive occurrence in ΠAUX , and no atom in σ3

has a strictly positive occurrence in τ(Π). Furthermore, the construction of Π′
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guarantees that all loops of size greater than one involves atoms in σ only. So

each strongly connected component of the dependency graph of Π′ hard relative

to σ ∪ σ3 is a subset of σ or a subset of σ3. By the splitting theorem, it is

equivalent to show that φ(W ) is a stable model of τ(Π) relative to σ and φ(W )

is a stable model of ΠAUX relative to σ3.

• φ(W ) is a stable model of τ(Π) relative to σ : Since W is a possible

world of Π, W is a stable model of τ(Π) relative to σ. Since φ(W ) is an

extension of W and no atom in φ(W ) \W belongs to σ, φ(W ) is a stable

model of τ(Π) relative to σ.

• φ(W ) is a stable model of ΠAUX relative to σ3 : Since there is no loop

of size greater than one in ΠAUX , we could apply completion on it. Let

Comp[ΠAUX ;σ3] denote the program obtained by applying completion on

ΠAUX with respect to σ3, which is as follows:

– For each random selection rule (2.2) for c(~u), for each v ∈ Range(c)

and x ∈ {2, . . . , |Range(c)|}, Comp[ΠAUX ;σ3] contains:

Possr(c(~u) = v)↔ Body ∧ p(v) ∧ ¬Intervene(c(~u)) (4.12)

PossWithDefPr(c(~u) = v)↔ ¬PossWithAssPr(c(~u) = v) ∧∨
r’ :

[r′] random(c(~u):{X:p(X)})←Body∈Π

Possr′(c(~u) = v)

(4.13)

NumDefPr(c(~u), x)↔ x = #count{y : PossWithDefPr(c(~u)=y)}∧∨
z∈Range(c)

(
c(~u) = z ∧ PossWithDefPr(c(~u) = z)

)
(4.14)

– For each random selection rule (2.2) for c(~u) along with all pr-atoms
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associated with it in P:

prr(c(~u)=v1 | C1) = p1

. . .

prr(c(~u)=vn | Cn) = pn

(4.15)

where n ≥ 1, for i ∈ {1, . . . , n}, Comp[ΠAUX ;σ3] also contains:

PossWithAssPr r,Ci(c(~u) = vi)↔ Possr(c(~u) = vi) ∧ Ci (4.16)

AssPr r,Ci(c(~u) = vi)↔ c(~u) = vi ∧ PossWithAssPr r,Ci(c(~u) = vi) (4.17)

¬AssPr r,Ci(c(~u) = vi) (if pi = 0) (4.18)

PossWithAssPr(c(~u) = vi)↔
∨

r’, j :
prr′ (c(~u)=vi|Cj)=pj∈Π

PossWithAssPr r′,Cj (c(~u) = vi)

(4.19)

– For each c(~u) in S and x ∈ prem(c(~u),Π), Comp[ΠAUX ;σ3] also con-

tains:

RemPr(c(~u), x)↔
∨

v∈Range(c)

(
c(~u) = v ∧ PossWithDefPr(c(~u) = v)

)
∧

∨
r’ :

[r′] random(c(~u):{X:p(X)})←Body∈Π

(
Body ∧ x = 1−y ∧

y = #sum{p1 : PossWithAssPr r′,C1(c(~u)=v1); . . . ;

pn : PossWithAssPr r′,Cn(c(~u)=vn)}
)
(4.20)

TotalDefPr(c(~u), x)↔ RemPr(c(~u), x) ∧ x > 0 (4.21)

¬(RemPr(c(~u), x) ∧ x ≤ 0) (4.22)

First, let’s expand some notations in the definition of φ(W ):
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– c(~u) = v is possible in W

By definition, it is equivalent to “there exists a random selection rule

(2.2) such that W � Body ∧ p(v) ∧ ¬Intervene(c(~u))”.

– a pr-atom prr(c(~u) = vi | Ci) = pi is applied in W

By definition, it is equivalent to “c(~u) = vi is possible in W due to r,

and W � Ci”.

– v ∈ AVW (c(~u))

By the definition of AVW (c(~u)), it is equivalent to “there exists a pr-

atom prr(c(~u) = v | Ci) = pi that is applied in W for some r and i

”.

Then we will prove that each formula in Comp[ΠAUX ;σ3] is satisfied by

φ(W ) based on the definition of φ(W ):

– Let’s take formula (4.12) into account. Consider the random

selection rule [r] random(c(~u) : {X : p(X)}) ← Body , where formula

(4.12) is obtained. By definition,

∗ φ(W ) � Possr(c(~u) = v)

iff

∗ c(~u) = v is possible in W due to r

iff

∗ W � Body ∧ p(v) ∧ not Intervene(c(~u))

iff (since φ(W ) is an extension of W )

∗ φ(W ) � Body ∧ p(v) ∧ not Intervene(c(~u))

Thus formula (4.12) is satisfied by φ(W ).

– Let’s take formula (4.13) into account. By definition,
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∗ φ(W ) � PossWithDefPr(c(~u) = v)

iff

∗ c(~u) = v is possible in W

∗ v 6∈ AVW (c(~u))

iff (by definition)

∗ there exists a random selection rule r such that c(~u) = v is possible

in W due to r

∗ φ(W ) 6� PossWithAssPr(c(~u) = v)

iff (by definition)

∗ there exists a random selection rule r such that

φ(W ) � Possr(c(~u) = v)

∗ φ(W ) � ¬PossWithAssPr(c(~u) = v)

Thus formula (4.13) is satisfied by φ(W ).

– Let’s take formula (4.14) into account. By definition,

∗ φ(W ) � NumDefPr(c(~u), x)

iff

∗ there exist exactly x different v such that

· c(~u) = v is possible in W

· v 6∈ AVW (c(~u))

· for one of such v, W |= c(~u) = v

iff (by definition and since φ(W ) is an extension of W )

∗ there exists exactly x different v such that

· φ(W ) � PossWithDefPr(c(~u) = v)

· for one of such v, φ(W ) � c(~u) = v ∧ PossWithDefPr(c(~u) = v)

86



Thus formula (4.14) is satisfied by φ(W ).

– Let’s take formula (4.16) into account. Consider the pr-atom

prr(c(~u) = vi | Ci) = pi where formula (4.16) is obtained. By defini-

tion,

∗ φ(W ) � PossWithAssPr r,Ci(c(~u) = vi)

iff

∗ this pr-atom is applied in W

iff

∗ c(~u) = vi is possible in W due to r, and W � Ci

iff (by definition and since φ(W ) is an extension of W )

∗ φ(W ) � Possr(c(~u) = vi) ∧ Ci

Thus formula (4.16) is satisfied by φ(W ).

Remark: By Condition 1, r is the only random selection rule for

c(~u) whose “Body” is satisfied by W . And by Condition 2, there

won’t be another pr-atom prr(c(~u) = v | C ′) = p′ ∈ Π such that

W � C ′. Thus for any c(~u) = v, φ(W ) could at most satisfy one

PossWithAssPr r,Ci(c(~u) = vi) for any r and Ci.

– Let’s take formula (4.17) into account. Consider the pr-atom

prr(c(~u) = vi | Ci) = pi in Π, where formula (4.17) is obtained, by

definition,

∗ φ(W ) � AssPr r,Ci(c(~u) = vi)

iff

∗ this pr-atom is applied in W

∗ W � c(~u) = vi

iff (by definition and since φ(W ) is an extension of W )
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∗ φ(W ) � PossWithAssPr r,Ci(c(~u) = vi) ∧ c(~u) = vi

Thus formula (4.17) is satisfied by φ(W ).

– Let’s take formula (4.18) into account. For any pr-atom

prr(c(~u) = vi | Ci) = pi

in Π such that pi = 0, assume for the sake of contradiction that φ(W ) �

AssPr r,Ci(c(~u) = vi). Then by definition, this pr-atom is applied and

W � c(~u) = vi. In other words, c(~u) = vi ∈ W , c(~u) = vi is possible

in W , and P (W, c(~u) = vi) = 0. Thus µ̂Π(W ) = 0, which contradicts

that µΠ(W ) > 0.

Thus formula (4.18) is satisfied by φ(W ).

– Let’s take formula (4.19) into account. By definition,

∗ φ(W ) � PossWithAssPr(c(~u) = vi)

iff

∗ vi ∈ AVW (c(~u))

iff

∗ there exist a pr-atom prr(c(~u) = vi | Cj) = pj that is applied in

W for some r and j (where i and j may be different)

iff (by definition)

∗ there exist r and j such that φ(W ) � PossWithAssPr r,Cj(c(~u) =

vi)

Thus formula (4.19) is satisfied by φ(W ).

– Let’s take formula (4.20) into account. By definition,

∗ φ(W ) � RemPr(c(~u), x)

iff
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∗ there exists a v such that

· W � c(~u)=v

· c(~u)=v is possible in W

· v 6∈ AVW (c(~u)), and

∗ x = 1−
∑

v′∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v′)

iff (by definition and since φ(W ) is an extension of W )

∗ there exists a v such that φ(W ) � c(~u) = v∧PossWithDefPr(c(~u) =

v),

∗ x = 1− y, and

∗ y =
∑

φ(W )�PossWithAssPr(c(~u)=v′)

PossWithAssPr(W, c(~u)=v′)

iff (by formula (34) and the definition of PossWithAssPr(W, c(~u)=v))

∗ there exists a v such that φ(W ) � c(~u) = v∧PossWithDefPr(c(~u) =

v),

∗ x = 1− y, and

∗ there exists a random selection rule r (2.2) along with all pr-atoms

(4.15) associated with it such that

· φ(W ) � Body

· y =
∑

j:φ(W )�PossWithAssPrr,Cj (c(~u)=vj)

pj

Thus formula (4.20) is satisfied by φ(W ).

Remark: By Condition 1, there exits at most one random selection

rule whose “Body” is satisfied by W . Thus there is no other random se-

lection rule r′ such that φ(W ) � PossWithAssPr r′,Cj(c(~u)=vj) for any

j. Morevoer, for any c(~u) ∈ Π, there exits at most one RemPr(c(~u), x)

that can be satisfied by φ(W ).

– Let’s take formula (4.21) into account. By definition,
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∗ φ(W ) � TotalDefPr(c(~u), x)

iff

∗ φ(W ) � RemPr(c(~u), x) ∧ x > 0

Thus formula (4.21) is satisfied by φ(W ).

– Let’s take formula (4.22) into account. Consider the random

selection rule (2.2) for c(~u) along with all pr-atoms (4.15) associated

with it (n ≥ 1), where formula (4.22) is obtained. Assume for the sake

of contradiction that φ(W ) � (RemPr(c(~u), x) ∧ x ≤ 0) for some x,

which (by definition) follows that

∗ there exists a v such that

· W � c(~u)=v

· c(~u)=v is possible in W

· v 6∈ AVW (c(~u))

∗ x = 1−
∑

v∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v) and x ≤ 0

In other words, c(~u)=v ∈ W , c(~u)=v is possible inW , and P (W, c(~u)=

v) = PossWithDefPr(W, c(~u) = v) = 0. Thus µ̂Π(W ) = 0, which con-

tradicts that µΠ(W ) > 0.

Thus formula (4.22) is satisfied by φ(W ).

Now we see the definition of φ(W ) guarantees that φ(W ) is a model of

Comp[ΠAUX ;σ3]. Thus φ(W ) is a stable model of ΠAUX relative to σ3.

Until now we proved φ(W ) is a stable model of Π′. Then, we are going to prove

µΠ(W ) = PΠ′(φ(W )).

Recall that Π′ denotes the translated LPMLN program plog2lpmln(Π), W ′
Π(I)

denotes the unnormalized weight of I under Π with respect to soft rules only.
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Firstly we will prove µ̂Π(W ) = W ′
Π′(φ(W )). From the definition of µ̂Π(W )

(unnormalized probability) and P (W, c(~u) = v) in the semantics of P-log, we

have

µ̂Π(W ) =
∏

c(~u) = v :
c(~u) = v is possible in W

and W � c(~u) = v

P (W, c(~u) = v)

=
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
and v ∈ AVW (c(~u))

P (W, c(~u) = v)×
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
and v 6∈ AVW (c(~u))

P (W, c(~u) = v)

=
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
and v ∈ AVW (c(~u))

PossWithAssPr(W, c(~u) = v)×

∏
c(~u) = v :

c(~u) = v is possible in W
and W � c(~u) = v

and v 6∈ AVW (c(~u))

PossWithDefPr(W, c(~u) = v)

Since W is a possible world of Π with a non-zero probability, µ̂Π(W ) > 0. Since

the statement “v ∈ AVW (c(~u))” is equivalent to saying “c(~u) = v is possible

in W , and there exists prrW,c(~u)
(c(~u) = v | C) = p ∈ Π for some C and p, and
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W � C”, we have

µ̂Π(W ) =
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
prrW,c(~u)

(c(~u) = v | C) = p ∈ Π

and W � C

p×

∏
c(~u) = v :

c(~u) = v is possible in W
W � c(~u) = v

and v 6∈ AVW (c(~u))

1−
∑

v′∈AVW (c(~u)) PossWithAssPr(W, c(~u) = v′)

|{v′′ | c(~u)=v′′ is possible in W and v′′ 6∈ AVW (c(~u))}|

=
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
prrW,c(~u)

(c(~u) = v | C) = p ∈ Π

and W � C

p×

∏
c(~u) = v :

c(~u) = v is possible in W
W � c(~u) = v

and v 6∈ AVW (c(~u))

1

|{v′ | c(~u)=v′ is possible in W and v′ 6∈ AVW (c(~u))}|
×

∏
c(~u) = v :

c(~u) = v is possible in W
W � c(~u) = v

and v 6∈ AVW (c(~u))

(1−
∑

c(~u) = v′ :
c(~u) = v′ is possible in W

prrW,c(~u)
(c(~u) = v′ | C) = p ∈ Π

and W � C

p)

Note that by Condition 1, the subscript rW,c(~u) of the applied pr-atom is the

only random selection rule for c(~u) whose body could be satisfied by W .

We then calculate W ′
Π′(φ(W )), the unnormalized weight of φ(W ) with respect

to all soft rules in Π′. From the construction of Π′, it’s easy to see that there

are only 3 kinds of soft rules: Rule (4.4), Rule (4.7), and Rule (4.10), which

are satisfied iff φ(W ) � AssPr r,C(c(~u) = v), φ(W ) � NumDefPr(c(~u),m),

and φ(W ) � TotalDefPr(c(~u), x), respectively. Let’s denote the unnormalized

weight of φ(W ) with respect to each of these three rules as W ′
Π′(φ(W ))|4.4,

W ′
Π′(φ(W ))|4.7, W ′

Π′(φ(W ))|4.10. It’s clear that W ′
Π′(φ(W )) = W ′

Π′(φ(W ))|4.4 ×

W ′
Π′(φ(W ))|4.7 ×W ′

Π′(φ(W ))|4.10.
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Consider a c(~u) = v that is possible in W and W � c(~u) = v. Since µ̂Π(W ) > 0,

if v ∈ AVW (c(~u)), prrW,c(~u)
(c(~u) = v | C) = p ∈ Π and W � C, then P (W, c(~u) =

v) = p and p > 0; if f v 6∈ AVW (c(~u)), then 1 −
∑

v′∈AVW (c(~u))

PossWithAssPr(W,

c(~u)=v′) must be greater than 0. By the definition of φ(W ),

W ′Π′(φ(W ))|4.4 = exp

( ∑
c(~u) = v :

prr(c(~u) = v | C) = p ∈ Π
φ(W ) � AssPrr,C(c(~u) = v)

ln(p)

)

(Note that by Condition 1, r must be the same as rW,c(~u))

=
∏

c(~u) = v :
prrW,c(~u)

(c(~u) = v | C) = p ∈ Π

c(~u) = v is possible in W
W � C

and W � c(~u) = v

p

W ′Π′(φ(W ))|4.7 = exp

( ∑
c(~u),m :
m ≥ 2

φ(W ) � NumDefPr(c(~u),m)

ln(
1

m
)

)

= exp

( ∑
c(~u),m :

φ(W ) � NumDefPr(c(~u),m)

ln(
1

m
)

)

=
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
and v 6∈ AVW (c(~u))

1

|{v′ | c(~u)=v′ is possible in W and v′ 6∈ AVW (c(~u))}|
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W ′Π′(φ(W ))|4.10 = exp

( ∑
c(~u), x :

φ(W )�TotalDefPr(c(~u),x)

ln(x)

)

= exp

( ∑
c(~u) = v :

c(~u) = v is possible in W
v 6∈ AVW (c(~u))

and W � c(~u) = v

ln(1−
∑

v′∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v′)

)

= exp

( ∑
c(~u) = v :

c(~u) = v is possible in W
v 6∈ AVW (c(~u))

and W � c(~u) = v

ln(1−
∑

c(~u) = v′ :
c(~u) = v′ is possible in W

prrW,c(~u)
(c(~u) = v′ | C) = p ∈ Π

and W � C

p)

)

=
∏

c(~u) = v :
c(~u) = v is possible in W

W � c(~u) = v
and v 6∈ AVW (c(~u))

(1−
∑

c(~u) = v′ :
c(~u) = v′ is possible in W

prrW,c(~u)
(c(~u) = v′ | C) = p ∈ Π

and W � C

p)

It is easy to see that W ′
Π′(φ(W )) = W ′

Π′(φ(W ))|4.4 × W ′
Π′(φ(W ))|4.7 ×

W ′
Π′(φ(W ))|4.10 = µ̂Π(W ). We already proved that for any possible world W

of Π, φ(W ) is a probabilistic stable model of Π′. Then to prove µΠ(W ) =

PΠ′(φ(W )), it is sufficient to prove for any probabilistic stable model I of Π′,

I|σ is a possible world of Π and I = φ(I|σ) (which will be proved in the next

part). Indeed, if we proved this, we know φ(W ) and W are 1-1 correspondent,

thus P ′Π′(φ(W )) = µΠ(W ). Since φ(W ) ∈ SM′[Π′], by Lemma 5, PΠ′(φ(W )) =

P ′Π′(φ(W )) = µΠ(W ).

(b) Since Π is consistent, there exists a possible world W ′ of Π with a non-zero

probability. It’s proved that φ(W ′) is a probabilistic stable model of Π′ and

φ(W ′) satisfies Π′ hard. So SM′[Π′] is not empty. Let I be a probabilistic stable

model of Π′, by Lemma 5, I � Π′ hard. Besides, since Π′ \ Π′ hard is a set of

rules of the form w :← F , by Lemma 4, I is a stable model of Π′ hard
I . Thus I

is a stable model of Π′ hard.
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Since (1) I is a stable model of τ(Π) ∪ ΠAUX , (2) no atom in σ has a strictly

positive occurrence in ΠAUX , (3) no atom in σ3 has a strictly positive occurrence

in τ(Π), (4) each strongly connected component of the dependency graph of

τ(Π)∪ΠAUX relative to σ∪σ3 is a subset of σ or a subset of σ3, by the splitting

theorem

• I is a stable model of τ(Π) relative to σ. Thus I|σ is a stable model of

τ(Π), which means I|σ is a possible world of Π.

• I is a stable model of ΠAUX relative to σ3. So I � Comp[ΠAUX ;σ3].

Let’s denote I|σ by W , we’ll prove I = φ(W ) by checking if I satisfies all

conditions in the definition of φ(W ).

• Let’s consider condition (1) in the definition of φ. Take any random selec-

tion rule [r] random(c(~u) : {X : p(X)})← Body , since I satisfies formula

(4.12),

– I � Possr(c(~u) = v)

iff

– I � Body ∧ p(v) ∧ ¬Intervene(c(~u))

iff (since all atoms in the above conjunction part belong to σ)

– W � Body ∧ p(v) ∧ ¬Intervene(c(~u))

iff

– c(~u) = v is possible in W due to r.

• Let’s consider condition (2) in the definition of φ. Take any pr-atom

prr(c(~u) = vi | Ci) = pi in Π, since I satisfies formula (4.16),

– I � PossWithAssPr r,Ci(c(~u) = vi)
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iff

– I � Possr(c(~u) = vi) ∧ Ci

iff (from the proof of condition (1), and since Ci belongs to σ)

– c(~u) = vi is possible in W due to r and W � Ci

iff

– this pr-atom is applied in W

Thus condition (2) is satisfied by I.

• Let’s consider condition (3) in the definition of φ. Take any pr-atom

prr(c(~u) = vi | Ci) = pi in Π, since I satisfies formula (4.17),

– I � AssPr r,Ci(c(~u) = vi)

iff

– I � PossWithAssPr r,Ci(c(~u) = vi) ∧ c(~u) = vi

iff (from the proof of condition (2), and since c(~u) = vi belongs to σ)

– this pr-atom is applied in W

– W � c(~u) = vi

Thus condition (3) is satisfied by I.

• Let’s consider condition (4) in the definition of φ. Since I satisfies formula

(4.19),

– I � PossWithAssPr(c(~u) = vi)

iff (from the proof of condition (2))

– there exist a r and j such that I � PossWithAssPr r,Cj(c(~u) = vi)

iff
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– there exist a pr-atom prr(c(~u) = vi | Cj) = pj that is applied in W for

some r and j (where i and j may be different)

iff

– vi ∈ AVW (c(~u))

Thus condition (4) is satisfied by I.

• Let’s consider condition (5) in the definition of φ. Since I satisfies formula

(4.13),

– I � PossWithDefPr(c(~u) = v)

iff

– I � ¬PossWithAssPr(c(~u) = v)

– there exists a random selection rule [r] random(c(~u) : {X : p(X)})←

Body , such that I � Possr(c(~u) = v)

iff (by condition (4) and (1))

– v 6∈ AVW (c(~u))

– c(~u) = v is possible in W

Thus condition (5) is satisfied by I.

• Let’s consider condition (6) in the definition of φ. Since I satisfies formula

(4.14),

– I � NumDefPr(c(~u), x)

iff

– x = #count{y : PossWithDefPr(c(~u)=y)}

– there exists a c(~u) = z such that I � c(~u) = z∧PossWithDefPr(c(~u) =

z)
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iff

– there exist exactly x different values v such that

∗ I � PossWithDefPr(c(~u) = v)

∗ for one of such v, I � c(~u) = v

iff (by condition (5), and since c(~u) = v belongs to σ)

– there exist exactly x different values v such that

∗ c(~u) = v is possible in W

∗ v 6∈ AVW (c(~u))

∗ for one of such v, W � c(~u) = v

Thus condition (6) is satisfied by I.

• Let’s consider condition (7) in the definition of φ. Since I satisfies formula

(4.20),

– I � RemPr(c(~u), x)

iff

– there exists a v such that φ(W ) � c(~u) = v∧PossWithDefPr(c(~u) = v)

– there exists a random selection rule (2.2) along with all pr-atoms (4.15)

associated with it such that

∗ I � Body

∗ y =
∑

prr(c(~u)=v|C)=p∈Π,φ(W )�PossWithAssPrr,C(c(~u)=v)

p

∗ x = 1− y

iff (by condition (5) and (2), and since c(~u) = v belongs to σ)

– there exists a v such that

∗ c(~u) = v is possible in W
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∗ v 6∈ AVW (c(~u))

∗ W � c(~u) = v

– x = 1−
∑

v′∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v′)

Thus condition (7) is satisfied by I.

• Let’s consider condition (8) in the definition of φ. Since I satisfies formula

(4.21),

– I � TotalDefPr(c(~u), x)

iff

– I � RemPr(c(~u), x)

– x > 0

Thus condition (8) is satisfied by I.

Now we proved that I is exactly φ(W ), in other words, I = φ(I|σ). Thus

for every probabilistic stable model I of plog2lpmln(Π), I|σ is a possible

world of Π and I = φ(I|σ). Consequently, W and φ(W ) (or I|σ and I) are

1-1 correspondent. Since I is a probabilistic stable model of Π′, PΠ′(I) > 0.

Then µΠ(I|σ) = PΠ′(I) > 0.
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Chapter 5

MORE EXAMPLES

In this chapter, we show more examples of how we translate a P-log program into

an LPMLN program, and further into an answer set program with weak constraints.

5.1 Variant of Monty Hall Problem (Continued)

In Example 6, we translated a P-log program Π of a varient of Monty Hall Problem

into an LPMLN program plog2lpmln(Π). We can further translate plog2lpmln(Π) into

an ASP program with weak constraints, denoted by Π′, by applying the translation

lpmln2wcpnt,clingo
simp and the simplification for hard rules.

Recall: The simplication for hard rules says that when all hard rules in an LPMLN

program Π encode definite knowledge (i.e., we are sure that there exists a probabilistic

stable model of Π that satisfies all hard rules of Π), we can simply translated each

hard rule in Π

α : Head ← Body

into the usual ASP rules

Head ← Body .

Π′ is constructed as follows.
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% ∗ ∗ ∗ ∗ Declaration Part ∗ ∗ ∗ ∗

door(1..4).

% ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

canOpen, (D, f)← selected(D).

canOpen, (D, f)← prize(D).

canOpen, (D, t)← not canOpen(D, f), door(D).

← canOpen, (D, t), canOpen, (D, f).

← prize(D1), prize(D2), D1 6= D2.

← selected(D1), selected(D2), D1 6= D2.

← open(D1), open(D2), D1 6= D2.

1{prize(D) : door(D)}1← not intervene(prize).

1{selected(D) : door(D)}1← not intervene(selected).

1{open(D) : door(D)}1← not intervene(open).

← open(D),not canOpen, (D, t),not intervene(open).

obs(selected , 1).

← obs(selected , 1),not selected(1).

obs(open, 2).

← obs(open, 2),not open(2).

nobs(prize, 2).

← nobs(prize, 2), prize(2).

% ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

poss(prize, D)← not intervene(prize), door(D).

poss(selected , D)← not intervene(selected), door(D).

poss(open, D)← canOpen(D),not intervene(open), door(D).
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% ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

possWithAssPr(prize, 1)← poss(prize, 1).

assPr(prize, 1)← prize(1), possWithAssPr(prize, 1).

possWithAssPr(prize, 3)← poss(prize, 3).

assPr(prize, 3)← prize(3), possWithAssPr(prize, 3).

% ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

possWithDefPr(prize, D)← poss(prize, D),not possWithAssPr(prize, D).

possWithDefPr(selected , D)← poss(selected , D),not possWithAssPr(selected , D).

possWithDefPr(open, D)← poss(open, D),not possWithAssPr(open, D).

numDefPr(prize, X)← prize(D), possWithDefPr(prize, D),

X = #count{Y : possWithDefPr(prize, Y )}.

numDefPr(selected , X)← selected(D), possWithDefPr(selected , D),

X = #count{Y : possWithDefPr(selected , Y )}.

numDefPr(open, X)← open(D), possWithDefPr(open, D),

X = #count{Y : possWithDefPr(open, Y )}.

% ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

remPr(prize, Y )← prize(D), possWithDefPr(prize, D),

X = #sum{0.3 : possWithAssPr(prize, 1); 0.2 : possWithAssPr(prize, 3)}, Y = 1−X.

totalDefPr(prize, X)← remPr(prize, X), X > 0.

← remPr(prize, X), X ≤ 0.
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% ∗ ∗ ∗ ∗ Weak Constraints ∗ ∗ ∗ ∗

:∼ assPr(prize, 1). [−ln(0.3)]

:∼ assPr(prize, 3). [−ln(0.2)]

:∼ numDefPr(C,M). [−ln(1/M)]

:∼ totalDefPr(prize, X). [−ln(X)]

Note that, by default, the level of a weak constraint is 0. We can check all stable

models of this program by simply removing “Weak Constraints” part.

5.2 Dice Problem

Example 7 The following P-log program Π describes Dice Problem. There are two

dices, one is owned by Mike and one is owned by John. The statistics shows that

John’s dice is a fair one but Mike’s dice is unfair with 25% chance to roll 5 and 20%

chance to roll 6. (d ∈ {D1, D2}, n ∈ {1, . . . , 6})

Owner(D1) = Mike.

Owner(D2) = John.

Even(d)← Roll(d) = n, n mod 2 = 0.

∼Even(d)← not Even(d).

[r(d)] random(Roll(d)).

prr(d)(Roll(d) = 5 | Owner(d) = Mike) = 1
4 .

prr(d)(Roll(d) = 6 | Owner(d) = Mike) = 1
5 .

The translated LPMLN encoding plog2lpmln(Π) is as follows, where Cd represents the

condition “Owner(d) = Mike” in two pr-atoms.
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// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : Owner(D1) = Mike

α : Owner(D2) = John

α : Even(d) = t← Roll(d) = n, n mod 2 = 0

α : Even(d) = f← not Even(d) = t

α : ← Roll(d) = n1, Roll(d) = n2, n1 6= n2

α : ← Even(d) = t, Even(d) = f

α : ← Owner(d) = p1, Owner(d) = p2, p1 6= p2

α : Roll(d) = 1;Roll(d) = 2;Roll(d) = 3;Roll(d) = 4;Roll(d) = 5;Roll(d) = 6

← not Intervene(Roll(d))

// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Possr(d)(Roll(d) = n)← not intervene(Roll(d))

// ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

α : PossWithAssPr r(d),Cd(Roll(d) = 5)← Possr(d)(Roll(d) = 5), Owner(d) = Mike

α : AssPr r(d),Cd(Roll(d) = 5)← Roll(d) = 5,PossWithAssPr r(d),Cd(Roll(d) = 5)

ln(1
4) : ⊥ ← not AssPr r(d),Cd(Roll(d) = 5)

α : PossWithAssPr(Roll(d) = 5)← PossWithAssPr r(d),Cd(Roll(d) = 5)

α : PossWithAssPr r(d),Cd(Roll(d) = 6)← Possr(d)(Roll(d) = 6), Owner(d) = Mike

α : AssPr r(d),Cd(Roll(d) = 6)← Roll(d) = 6,PossWithAssPr r(d),Cd(Roll(d) = 6)

ln(1
5) : ⊥ ← not AssPr r(d),Cd(Roll(d) = 6)

α : PossWithAssPr(Roll(d) = 6)← PossWithAssPr r(d),Cd(Roll(d) = 6)
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// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(Roll(d) = n)← Possr(d)(Roll(d) = n),

not PossWithAssPr(Roll(d) = n)

α : NumDefPr(Roll(d), x)← Roll(d) = n,PossWithDefPr(Roll(d) = n),

x = #count{y : PossWithDefPr(Roll(d) = y)}

ln( 1
m) : ⊥ ← not NumDefPr(Roll(d),m) (m ∈ {2, . . . , 6})

// ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

α : RemPr(Roll(d), 1− y)← Roll(d) = n,PossWithDefPr(Roll(d) = n),

y = #sum{1
4 : PossWithAssPr r(d),Cd(Roll(d) = 5);

1
5 : PossWithAssPr r(d),Cd(Roll(d) = 6)}

α : TotalDefPr(Roll(d), x)← RemPr(Roll(d), x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Roll(d), x)

α : ⊥ ← RemPr(Roll(d), x), x ≤ 0

Let Π′ denotes the further translated ASP program with weak constraints, which

is obtained from plog2lpmln(Π) by applying the translation lpmln2wcpnt,clingo
simp and the

simplification for hard rules. Π′ is as follows:
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% ∗ ∗ ∗ ∗ Declaration Part ∗ ∗ ∗ ∗

dice(d1; d2).

number(1..6).

% ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

owner(d1,mike).

owner(d2, john).

even(D, t)← roll(D,N), N mod 2 = 0.

even(D, f)← not even(D, t), dice(D).

← roll(D,N1), roll(D,N2), N1 6= N2.

← even(D, t), even(D, f).

← owner(D,P1), owner(D,P2), P1 6= P2.

1{roll(D,N) : number(N)}1← not intervene(roll(D)), dice(D).

% ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

poss(r(D), roll(D,N))← not intervene(roll(D)), dice(D), number(N).
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% ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

possWithAssPr(r(D), owner(D,mike), roll(D, 5))←

poss(r(D), roll(D, 5)), owner(D,mike).

assPr(r(D), owner(D,mike), roll(D, 5))←

roll(D, 5), possWithAssPr(r(D), owner(D,mike), roll(D, 5)).

possWithAssPr(roll(D, 5))← possWithAssPr(r(D), owner(D,mike), roll(D, 5)).

possWithAssPr(r(D), owner(D,mike), roll(D, 6))←

poss(r(D), roll(D, 6)), owner(D,mike).

assPr(r(D), owner(D,mike), roll(D, 6))←

roll(D, 6), possWithAssPr(r(D), owner(D,mike), roll(D, 6)).

possWithAssPr(roll(D, 6))← possWithAssPr(r(D), owner(D,mike), roll(D, 6)).

% ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

possWithDefPr(roll(D,N))← poss(r(D), roll(D,N)),not possWithAssPr(roll(D,N)).

numDefPr(roll(D), X)← roll(D,N), possWithDefPr(roll(D,N)),

X = #count{Y : possWithDefPr(roll(D,Y ))}.

% ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

remPr(roll(D), X)← roll(D,N), possWithDefPr(roll(D,N)), X = 1− Y,

Y = #sum{1
4 : possWithAssPr(r(D), owner(D,mike), roll(D, 5));

1
5 : possWithAssPr(r(D), owner(D,mike), roll(D, 6))}.

totalDefPr(roll(D), X)← remPr(roll(D), X), X > 0.

← remPr(roll(D), X), x ≤ 0.
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% ∗ ∗ ∗ ∗ Weak Constraints ∗ ∗ ∗ ∗

:∼ assPr(r(D), owner(D,mike), roll(D, 5)).
[
−ln(1

4)
]

:∼ assPr(r(D), owner(D,mike), roll(D, 6)).
[
−ln(1

5)
]

:∼ numDefPr(roll(D), X). [−ln(1/X)]

:∼ totalDefPr(roll(D), X). [−ln(X)]

It is easy to check that there are 6× 6 = 36 possible worlds of the P-log program:

W1 = {Roll(D1) = 1, Roll(D2) = 1, Even(D1) = f, Even(D2) = f,

Owner(D1) = Mike,Owner(D2) = John}

W2 = {Roll(D1) = 1, Roll(D2) = 2, Even(D1) = f, Even(D2) = t,

Owner(D1) = Mike,Owner(D2) = John}

. . .

W36 = {Roll(D1) = 6, Roll(D2) = 6, Even(D1) = t, Even(D2) = t,

Owner(D1) = Mike,Owner(D2) = John}

The probability of each atom (that is possible in Wi) to happen is: (i = 1, . . . , 36,

n = 1, . . . , 6)

P (Wi, Roll(D1) = n) =



1
4

if n = 5,

1
5

if n = 6,

11
80

otherwise;

P (Wi, Roll(D2) = n) = 1
6
;
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then

µ̂Π(W1) = P (W1, Roll(D1) = 1)× P (W1, Roll(D2) = 1)

= 11
80
× 1

6
= 11

480
,

. . .

µ̂Π(W36) = P (W36, Roll(D1) = 6)× P (W36, Roll(D2) = 6)

= 1
5
× 1

6
= 1

30
.

As for the translated LPMLN program plog2lpmln(Π), it has 36 probabilistic stable

models I1, . . . , I36, each of which is an extension of W1, . . . ,W36 respectively, and

satisfies the following atoms:

Possr(d)(Roll(d) = n) for d = D1, D2 and n = 1, . . . , 6;

PossWithAssPr r(D1),CD1
(Roll(D1) = n) for n = 5, 6;

PossWithAssPr(Roll(D1) = n) for n = 5, 6;

PossWithDefPr(Roll(D1) = n) for n = 1, 2, 3, 4;

PossWithDefPr(Roll(D2) = n) for n = 1, . . . , 6;

NumDefPr(Roll(D2), 6);

RemPr(Roll(D2), 1);

TotalDefPr(Roll(D2), 1).

In addition, for i = 1, . . . , 36,

• if Ii satisfies Roll(D1) = 5, Ii also satisfies

{AssPr r(D1),CD1
(Roll(D1) = 5)},

and Wplog2lpmln(Π)(Ii) (the unnormalized weight of Ii) is 1
6
× 1× 1

4
= 1

24
;

• if Ii satisfies Roll(D1) = 6, Ii also satisfies

{AssPr r(D1),CD1
(Roll(D1) = 6)},

and Wplog2lpmln(Π)(Ii) = 1
6
× 1× 1

5
= 1

30
;
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• otherwise, Ii also satisfies

{NumDefPr(Roll(D1), 4),RemPr(Roll(D1), 0.55),TotalDefPr(Roll(D1), 0.55)},

and Wplog2lpmln(Π)(Ii) = 1
6
× 1× 1

4
× 0.55 = 11

480
.

As we see, the unnormalized weight of Ii under plog2lpmln(Π) exactly equals to

the unnormalized probability of Wi under Π. Thus after the translation, the probability

distribution still remains the same (Pplog2lpmln(Π)(φ(Wi)) = µΠ(Wi)).

As for the further translated ASP program with weak constraints, Π′, if we ig-

nore the syntax difference between Π′ and plog2lpmln(Π), and ingore the newly added

declaration atoms (dice(d1; d2), number(1..6)), the stable models of Π′ are exactly

I1, . . . , I36.

The penalty of each stable model of Π′ at level 0 is:

PenaltyΠ(I1, 0) = −ln(1
6
)− ln(1)− ln(1

4
)− ln(0.55) = −ln( 11

480
),

. . .

PenaltyΠ(I36, 0) = −ln(1
6
)− ln(1)− ln(1

5
) = −ln( 1

30
).

Thus the most probable stable models of plog2lpmln(Π) are exactly the optimal

stable models of Π′.

5.3 Simpson’s Paradox

Example 8 Consider Simpson’s Paradox from (Baral et al., 2009). A patient is

thinking about trying an experimental drug and decides to consult a doctor. The

doctor has the following statistics of the recovery rates that have been observed among

males and females, taking and not taking the drug.
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Males :

fraction of population recovery rate

drug 3/8 60%

¬drug 1/8 70%

Females :

fraction of population recovery rate

drug 1/8 20%

¬drug 3/8 30%
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The following P-log program Π describes this problem.

[r1] random(Male).

[r2] random(Recover).

[r3] random(Drug).

prr1(Male) = 0.5.

prr2(Recover |Male,Drug) = 0.6.

prr2(Recover |Male,∼Drug) = 0.7.

prr2(Recover |∼Male,Drug) = 0.2.

prr2(Recover |∼Male,∼Drug) = 0.3.

prr3(Drug |Male) = 0.75.

prr3(Drug |∼Male) = 0.25.

The translated LPMLN encoding plog2lpmln(Π) is as follows: (where b ∈ {t, f}, and

we denote the conditions “Male,Drug”,“Male,∼Drug”,“∼Male,Drug”,“∼Male,∼

Drug”, “Male”, and “∼Male” by C1, C2, . . . , C6 respectively)

// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : ←Male = t,Male = f

α : ← Recover = t, Recover = f

α : ← Drug = t, Drug = f

α : Male = t;Male = f← not Intervene(Male)

α : Recover = t;Recover = f← not Intervene(Recover)

α : Drug = t;Drug = f← not Intervene(Drug)
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// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Possr1(Male = b)← not Intervene(Male)

α : Possr2(Recover = b)← not Intervene(Recover)

α : Possr3(Drug = b)← not Intervene(Drug)

// ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

α : PossWithAssPr r1(Male = t)← Possr1(Male = t)

α : AssPr r1(Male = t)←Male = t,PossWithAssPr r1(Male = t)

ln(0.5) : ⊥ ← not AssPr r1(Male = t)

α : PossWithAssPr(Male = t)← PossWithAssPr r1(Male = t)

α : PossWithAssPr r2,C1(Recover = t)← Possr2(Recover = t),Male = t, Drug = t

α : AssPr r2,C1(Recover = t)← Recover = t,PossWithAssPr r2,C1(Recover = t)

ln(0.6) : ⊥ ← not AssPr r2,C1(Recover = t)

α : PossWithAssPr(Recover = t)← PossWithAssPr r2,C1(Recover = t)

α : PossWithAssPr r2,C2(Recover = t)← Possr2(Recover = t),Male = t, Drug = f

α : AssPr r2,C2(Recover = t)← Recover = t,PossWithAssPr r2,C2(Recover = t)

ln(0.7) : ⊥ ← not AssPr r2,C2(Recover = t)

α : PossWithAssPr(Recover = t)← PossWithAssPr r2,C2(Recover = t)

α : PossWithAssPr r2,C3(Recover = t)← Possr2(Recover = t),Male = f, Drug = t

α : AssPr r2,C3(Recover = t)← Recover = t,PossWithAssPr r2,C3(Recover = t)

ln(0.2) : ⊥ ← not AssPr r2,C3(Recover = t)

α : PossWithAssPr(Recover = t)← PossWithAssPr r2,C3(Recover = t)

α : PossWithAssPr r2,C4(Recover = t)← Possr2(Recover = t),Male = f, Drug = f

α : AssPr r2,C4(Recover = t)← Recover = t,PossWithAssPr r2,C4(Recover = t)

ln(0.3) : ⊥ ← not AssPr r2,C4(Recover = t)

α : PossWithAssPr(Recover = t)← PossWithAssPr r2,C4(Recover = t)
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// ∗ ∗ ∗ ∗ Assigned Probability Continued ∗ ∗ ∗ ∗

α : PossWithAssPr r3,C5(Drug = t)← Possr3(Drug = t),Male = t

α : AssPr r3,C5(Drug = t)← Drug = t,PossWithAssPr r3,C5(Drug = t)

ln(0.75) : ⊥ ← not AssPr r3,C5(Drug = t)

α : PossWithAssPr(Drug = t)← PossWithAssPr r3,C5(Drug = t)

α : PossWithAssPr r3,C6(Drug = t)← Possr3(Drug = t),Male = f

α : AssPr r3,C6(Drug = t)← Drug = t,PossWithAssPr r3,C6(Drug = t)

ln(0.25) : ⊥ ← not AssPr r3,C6(Drug = t)

α : PossWithAssPr(Drug = t)← PossWithAssPr r3,C6(Drug = t)

// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(Male = b)← Possr1(Male = b),not PossWithAssPr(Male = b)

α : NumDefPr(Male, x)←Male = b,PossWithDefPr(Male = b),

x = #count{y : PossWithDefPr(Male = y)}

ln( 1
m) : ⊥ ← not NumDefPr(Male,m) (m ∈ {2})

α : PossWithDefPr(Recover = b)←

Possr2(Recover = b),not PossWithAssPr(Recover = b)

α : NumDefPr(Recover, x)← Recover = b,PossWithDefPr(Recover = b),

x = #count{y : PossWithDefPr(Recover = y)}

ln( 1
m) : ⊥ ← not NumDefPr(Recover,m) (m ∈ {2})

α : PossWithDefPr(Drug = b)← Possr3(Drug = b),not PossWithAssPr(Drug = b)

α : NumDefPr(Drug, x)← Drug = b,PossWithDefPr(Drug = b),

x = #count{y : PossWithDefPr(Drug = y)}

ln( 1
m) : ⊥ ← not NumDefPr(Drug,m) (m ∈ {2})
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// ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

α : RemPr(Male, 1− y)←Male = b,PossWithDefPr(Male = b),

y = #sum{0.5 : PossWithAssPr r1(Male = t)}

α : TotalDefPr(Male, x)← RemPr(Male, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Male, x)

α : ⊥ ← RemPr(Male, x), x ≤ 0

α : RemPr(Recover, 1− y)← Recover = b,PossWithDefPr(Recover = b),

y = #sum{0.6 : PossWithAssPr r2,C1(Recover = t);

0.7 : PossWithAssPr r2,C2(Recover = t);

0.2 : PossWithAssPr r2,C3(Recover = t);

0.3 : PossWithAssPr r2,C4(Recover = t)}

α : TotalDefPr(Recover, x)← RemPr(Recover, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Recover, x)

α : ⊥ ← RemPr(Recover, x), x ≤ 0

α : RemPr(Drug, 1− y)← Drug = b,PossWithDefPr(Drug = b),

y = #sum{0.75 : PossWithAssPr r3,C5(Drug = t);

0.25 : PossWithAssPr r3,C6(Drug = t)}

α : TotalDefPr(Drug, x)← RemPr(Drug, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Drug, x)

α : ⊥ ← RemPr(Drug, x), x ≤ 0

115



Let Π′ denotes the further translated ASP program with weak constraints, which

is obtained from plog2lpmln(Π) by applying the translation lpmln2wcpnt,clingo
simp and the

simplification for hard rules. Π′ is as follows:

% ∗ ∗ ∗ ∗ Declaration Part ∗ ∗ ∗ ∗

boolean(t; f).

% ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

← male(t),male(f).

← recover(t), recover(f).

← drug(t), drug(f).

male(t);male(f)← not intervene(male).

recover(t); recover(f)← not intervene(recover).

drug(t); drug(f)← not intervene(drug).

% ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

poss(r(1),male(B))← not intervene(male), boolean(B).

poss(r(2), recover(B))← not intervene(recover), boolean(B).

poss(r(3), drug(B))← not intervene(drug), boolean(B).
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% ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

possWithAssPr(r(1),male(t))← poss(r(1),male(t)).

assPr(r(1),male(t))← male(t), possWithAssPr(r(1),male(t)).

possWithAssPr(male(t))← possWithAssPr(r(1),male(t)).

possWithAssPr(r(2), c(1), recover(t))← poss(r(2), recover(t)),male(t), drug(t).

assPr(r(2), c(1), recover(t))← recover(t), possWithAssPr(r(2), c(1), recover(t)).

possWithAssPr(recover(t))← possWithAssPr(r(2), c(1), recover(t)).

possWithAssPr(r(2), c(2), recover(t))← poss(r(2), recover(t)),male(t), drug = f.

assPr(r(2), c(2), recover(t))← recover(t), possWithAssPr(r(2), c(2), recover(t)).

possWithAssPr(recover(t))← possWithAssPr(r(2), c(2), recover(t)).

possWithAssPr(r(2), c(3), recover(t))← poss(r(2), recover(t)),male = f, drug(t).

assPr(r(2), c(3), recover(t))← recover(t), possWithAssPr(r(2), c(3), recover(t)).

possWithAssPr(recover(t))← possWithAssPr(r(2), c(3), recover(t)).

possWithAssPr(r(2), c(4), recover(t))← poss(r(2), recover(t)),male = f, drug = f.

assPr(r(2), c(4), recover(t))← recover(t), possWithAssPr(r(2), c(4), recover(t)).

possWithAssPr(recover(t))← possWithAssPr(r(2), c(4), recover(t)).

possWithAssPr(r(3), c(5), drug(t))← poss(r(3), drug(t)),male(t).

assPr(r(3), c(5), drug(t))← drug(t), possWithAssPr(r(3), c(5), drug(t)).

possWithAssPr(drug(t))← possWithAssPr(r(3), c(5), drug(t)).

possWithAssPr(r(3), c(6), drug(t))← poss(r(3), drug(t)),male = f.

assPr(r(3), c(6), drug(t))← drug(t), possWithAssPr(r(3), c(6), drug(t)).

possWithAssPr(drug(t))← possWithAssPr(r(3), c(6), drug(t)).
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% ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

possWithDefPr(male(B))← poss(r(1),male(B)),not possWithAssPr(male(B)).

numDefPr(male,X)← male(B), possWithDefPr(male(B)),

X = #count{Y : possWithDefPr(male(Y ))}.

possWithDefPr(recover(B))← poss(r(2), recover(B)),not possWithAssPr(recover(B)).

numDefPr(recover,X)← recover(B), possWithDefPr(recover(B)),

X = #count{Y : possWithDefPr(recover(Y ))}.

possWithDefPr(drug(B))← poss(r(3), drug(B)),not possWithAssPr(drug(B)).

numDefPr(drug,X)← drug(B), possWithDefPr(drug(B)),

X = #count{Y : possWithDefPr(drug(Y ))}.

% ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

remPr(male,X)← male(B), possWithDefPr(male(B)), X = 1− Y,

Y = #sum{0.5 : possWithAssPr(r(1),male(t))}.

totalDefPr(male,X)← remPr(male,X), X > 0.

⊥ ← remPr(male,X), X ≤ 0.

remPr(recover,X)← recover(B), possWithDefPr(recover(B)), X = 1− Y,

Y = #sum{0.6 : possWithAssPr(r(2), c(1), recover(t));

0.7 : possWithAssPr(r(2), c(2), recover(t));

0.2 : possWithAssPr(r(2), c(3), recover(t));

0.3 : possWithAssPr(r(2), c(4), recover(t))}.

totalDefPr(recover,X)← remPr(recover,X), X > 0.

⊥ ← remPr(recover,X), X ≤ 0.

remPr(drug,X)← drug(B), possWithDefPr(drug(B)), X = 1− Y,

Y = #sum{0.75 : possWithAssPr(r(3), c(5), drug(t));

0.25 : possWithAssPr(r(3), c(6), drug(t))}.

totalDefPr(drug,X)← remPr(drug,X), X > 0.

⊥ ← remPr(drug,X), X ≤ 0.
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% ∗ ∗ ∗ ∗ Weak Constraints ∗ ∗ ∗ ∗

:∼ assPr(r(1),male(t)). [−ln(0.5)]

:∼ assPr(r(2), c(1), recover(t)). [−ln(0.6)]

:∼ assPr(r(2), c(2), recover(t)). [−ln(0.7)]

:∼ assPr(r(2), c(3), recover(t)). [−ln(0.2)]

:∼ assPr(r(2), c(4), recover(t)). [−ln(0.3)]

:∼ assPr(r(3), c(5), drug(t)). [−ln(0.75)]

:∼ assPr(r(3), c(6), drug(t)). [−ln(0.25)]

:∼ numDefPr(A,X).
[
−ln( 1

X )
]

(A ∈ {male, recover, drug}, X ∈ {2})

:∼ totalDefPr(A,X). [−ln(X)]

It is easy to check that there are 23 = 8 possible worlds of the P-log program Π:

W1 = {Male = f, Recover = f, Drug = f}

W2 = {Male = f, Recover = f, Drug = t}

. . .

W8 = {Male = t, Recover = t, Drug = t},

and their unnormalized probabilities are as follows:

µ̂Π(W1) = P (W1,Male = f)× P (W1, Recover = f)× P (W1, Drug = f)

= 1
2
× 7

10
× 3

4
= 21

80
,

µ̂Π(W2) = P (W2,Male = f)× P (W2, Recover = f)× P (W2, Drug = t)

= 1
2
× 4

5
× 1

4
= 1

10
,

. . .

µ̂Π(W8) = P (W8,Male = t)× P (W8, Recover = t)× P (W8, Drug = t)

= 1
2
× 3

5
× 3

4
= 9

40
.

As for the translated LPMLN program plog2lpmln(Π), it has 8 probabilistic stable

models I1, I2, . . . , I8, each of which is an extension of W1,W2, . . . ,W8 respectively, and
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satisfies the following atoms:

Possr1(Male = b) for b ∈ {t, f},

Possr2(Recover = b) for b ∈ {t, f},

Possr3(Drug = b) for b ∈ {t, f},

PossWithAssPr r1(Male = t),

PossWithAssPr(Male = t),

PossWithDefPr(Male = f),

PossWithAssPr(Recover = t),

PossWithDefPr(Recover = f),

PossWithAssPr(Drug = t),

PossWithDefPr(Drug = f).

In addition,

I1 � { NumDefPr(Male, 1),RemPr(Male, 0.5),TotalDefPr(Male, 0.5),

PossWithAssPr r2,C4(Recover = t),

NumDefPr(Recover, 1),RemPr(Recover, 0.7),TotalDefPr(Recover, 0.7),

PossWithAssPr r3,C6(Drug = t),

NumDefPr(Drug, 1),RemPr(Drug, 0.75),TotalDefPr(Drug, 0.75) }

I2 � { NumDefPr(Male, 1),RemPr(Male, 0.5),TotalDefPr(Male, 0.5),

PossWithAssPr r2,C3(Recover = t),

NumDefPr(Recover, 1),RemPr(Recover, 0.8),TotalDefPr(Recover, 0.8),

PossWithAssPr r3,C6(Drug = t),

AssPr r3,C6(Drug = t) }
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I3 � { NumDefPr(Male, 1),RemPr(Male, 0.5),TotalDefPr(Male, 0.5),

PossWithAssPr r2,C4(Recover = t),

AssPr r2,C4(Recover = t),

PossWithAssPr r3,C6(Drug = t),

NumDefPr(Drug, 1),RemPr(Drug, 0.75),TotalDefPr(Drug, 0.75) }

I4 � { NumDefPr(Male, 1),RemPr(Male, 0.5),TotalDefPr(Male, 0.5),

PossWithAssPr r2,C3(Recover = t),

AssPr r2,C3(Recover = t),

PossWithAssPr r3,C6(Drug = t),

AssPr r3,C6(Drug = t) }

I5 � { AssPr r1(Male = t),

PossWithAssPr r2,C2(Recover = t),

NumDefPr(Recover, 1),RemPr(Recover, 0.3),TotalDefPr(Recover, 0.3),

PossWithAssPr r3,C5(Drug = t),

NumDefPr(Drug, 1),RemPr(Drug, 0.25),TotalDefPr(Drug, 0.25) }

I6 � { AssPr r1(Male = t),

PossWithAssPr r2,C1(Recover = t),

NumDefPr(Recover, 1),RemPr(Recover, 0.4),TotalDefPr(Recover, 0.4),

PossWithAssPr r3,C5(Drug = t),

AssPr r3,C5(Drug = t) }

I7 � { AssPr r1(Male = t),

PossWithAssPr r2,C2(Recover = t),

AssPr r2,C2(Recover = t),

PossWithAssPr r3,C5(Drug = t),

NumDefPr(Drug, 1),RemPr(Drug, 0.25),TotalDefPr(Drug, 0.25) }
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I8 � { AssPr r1(Male = t),

PossWithAssPr r2,C1(Recover = t),

AssPr r2,C1(Recover = t),

PossWithAssPr r3,C5(Drug = t),

AssPr r3,C5(Drug = t) }

It is easy to check that Ii = φ(Wi) for i ∈ {1, . . . , 8}. The unnormalized weight

Wplog2lpmln(Π)(Ii) of each probabilistic stable model Ii is shown below:

Wplog2lpmln(Π)(I1) = w(TotalDefPr(Male, 0.5))× w(TotalDefPr(Recover, 0.7))×

w(TotalDefPr(Drug, 0.75))

= 1
2
× 7

10
× 3

4
= 21

80

Wplog2lpmln(Π)(I2) = w(TotalDefPr(Male, 0.5))× w(TotalDefPr(Recover, 0.8))×

w(AssPr r3,C6(Drug = t))

= 1
2
× 4

5
× 1

4
= 1

10

Wplog2lpmln(Π)(I3) = w(TotalDefPr(Male, 0.5))× w(AssPr r2,C4(Recover = t))×

w(TotalDefPr(Drug, 0.75))

= 1
2
× 3

10
× 3

4
= 9

80

Wplog2lpmln(Π)(I4) = w(TotalDefPr(Male, 0.5))× w(AssPr r2,C3(Recover = t))×

w(AssPr r3,C6(Drug = t))

= 1
2
× 1

5
× 1

4
= 1

40

Wplog2lpmln(Π)(I5) = w(AssPr r1(Male = t))× w(TotalDefPr(Recover, 0.3))×

w(TotalDefPr(Drug, 0.25))

= 1
2
× 3

10
× 1

4
= 3

80
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Wplog2lpmln(Π)(I6) = w(AssPr r1(Male = t))× w(TotalDefPr(Recover, 0.4))×

w(AssPr r3,C5(Drug = t))

= 1
2
× 2

5
× 3

4
= 3

20

Wplog2lpmln(Π)(I7) = w(AssPr r1(Male = t))× w(AssPr r2,C2(Recover = t))×

w(TotalDefPr(Drug, 0.25))

= 1
2
× 7

10
× 1

4
= 7

80

Wplog2lpmln(Π)(I8) = w(AssPr r1(Male = t))× w(AssPr r2,C1(Recover = t))×

w(AssPr r3,C5(Drug = t))

= 1
2
× 3

5
× 3

4
= 9

40

As we see, the unnormalized weight Wplog2lpmln(Π)(Ii) of the translated LPMLN pro-

gram coincide with the unnormalized probability µ̂Π(Wi) of the original P-log program

(i ∈ {1, . . . , 8}). The probabilities of recover when a person takes drug or not are as

follows: (Wplog2lpmln(Π)(Ii) is denoted by ω(Ii))

P (recover |∼drug) = ω(I3)+ω(I7)
ω(I1)+ω(I3)+ω(I5)+ω(I7)

= 0.4

P (recover | drug) = ω(I4)+ω(I8)
ω(I2)+ω(I4)+ω(I6)+ω(I8)

= 0.5

1

The result above coincide with our understanding of this Simpson’s Paradox: the

drug is beneficial to patients of unknown gender — though this drug is harmful to the

patients of known gender, whether they are male or female.

1 Note that these two probabilities calculated in (Baral et al., 2009) are wrong where some
mistakes were made when calculating P (W,drug = t) and P (W,drug = f).
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5.4 Moving Robot

Example 9 Let’s consider Moving Robot Problem from (Baral et al., 2009). There

are three rooms, R1, R2, and R3, each of which is either open or closed. A robot cannot

open a door and we navigate it to go into an open room, say R1. However, a possible

malfunction can cause the robot to abnormally go into any one of the open rooms,

while there is 50% chance for the robot to go into the navigated room. This problem

is represented by the following P-log program Π. (r ∈ {R1, R2, R3}):

Open(r)← not ∼Open(r).

In = r ← GoIn = r,not Ab.

Ab← Break.

GoIn = R1.

Break.

[1] random(In : {X : Open(X)})← GoIn = r,Break.

pr1(In = r|GoIn = r,Break) = 1/2.

The translated LPMLN encoding plog2lpmln(Π) is as follows, where we denote the

condition “GoIn(r), Break” by Cr.
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// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : Open(r) = t← not Open(r) = f

α : In = r ← GoIn = r,not Ab = t

α : Ab = t← Break = t

α : GoIn = R1

α : Break = t

α : ← Open(r) = t, Open(r) = f

α : ← In = r1, In = r2, r1 6= r2

α : ← GoIn = r1, GoIn = r2, r1 6= r2

α : ← Ab = t, Ab = f

α : ← Break = t, Break = f

α : In = R1; In = R2; In = R3 ← GoIn = r,Break = t,not Intervene(In)

α : ← In = r′,not Open(r′) = t, GoIn = r,Break = t,not Intervene(In)

// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Poss1(In = r′)← GoIn = r,Break = t, Open(r′) = t,not Intervene(In)

// ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

α : PossWithAssPr1,C1(In = r)← Poss1(In = r), GoIn = r,Break = t

α : AssPr1,C1(In = r)← In = r, PrAtomApplied1,C1(In = r)

ln(1
2) : ← not AssPr1,C1(In = r)

α : PossWithAssPr(In = r)← PossWithAssPr1,C1(In = r)
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// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(In = r)← Poss1(In = r),not PossWithAssPr(In = r)

α : NumDefPr(In, x)← In = r,PossWithDefPr(In = r),

x = #count{y : PossWithDefPr(In = y)}

ln( 1
m) : ⊥ ← not NumDefPr(In,m) (m ∈ {2, 3})

// ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

α : RemPr(In, 1− y)← In = r,PossWithDefPr(In = r),

y = #sum{0.5 : PossWithAssPr1,C1(In = r′)}

α : TotalDefPr(In, x)← RemPr(In, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(In, x)

α : ⊥ ← RemPr(In, x), x ≤ 0

Let Π′ denotes the further translated ASP program with weak constraints, which

is obtained from plog2lpmln(Π) by applying the translation lpmln2wcpnt,clingo
simp and the

simplification for hard rules. Π′ is as follows:
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% ∗ ∗ ∗ ∗ Declaration Part ∗ ∗ ∗ ∗

room(r1; r2; r3).

% ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

open(R, t)← not open(R, f), room(R).

in(R)← goIn(R),not ab(t).

ab(t)← break(t).

goIn(r1).

break(t).

← open(R, t), open(R, f).

← in(R), in(R1), R 6= R1.

← goIn(R), goIn(R1), R 6= R1.

← ab(t), ab(f).

← break(t), break(f).

in(r1); in(r2); in(r3)← goIn(R), break(t),not intervene(in).

← in(R),not open(R, t), goIn(R1), break(t),not intervene(in).

% ∗ ∗ ∗ ∗ possible Atoms ∗ ∗ ∗ ∗

poss(1, in(R))← goIn(R1), break(t), open(R, t),not intervene(in).

% ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

possWithAssPr(1, c(1), in(R))← poss(1, in(R)), goIn(R), break(t).

assPr(1, c(1), in(R))← in(R), possWithAssPr(1, c(1), in(R)).

possWithAssPr(in(R))← possWithAssPr(1, c(1), in(R)).
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% ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

possWithDefPr(in(R))← poss(1, in(R)),not possWithAssPr(in(R)).

numDefPr(in,X)← in(R), possWithDefPr(in(R)),

X = #count{Y : possWithDefPr(in(Y ))}.

% ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

remPr(in,X)← in(R), possWithDefPr(in(R)), X = 1− Y,

Y = #sum{0.5 : possWithAssPr(1, c(1), in(R1))}.

totalDefPr(in,X)← remPr(in,X), X > 0.

⊥ ← remPr(in,X), X ≤ 0.

% ∗ ∗ ∗ ∗ Weak Constraints ∗ ∗ ∗ ∗

:∼ assPr(1, c(1), in(R)). [−ln(0.5)]

:∼ numDefPr(in,X).
[
−ln( 1

X )
]

:∼ totalDefPr(in,X). [−ln(X)]

It is easy to check that there are 3 possible worlds of the P-log program Π:

W1 = {In = R1, GoIn = R1, Break,Ab,Open(R1), Open(R2), Open(R3)}

W2 = {In = R2, GoIn = R1, Break,Ab,Open(R1), Open(R2), Open(R3)}

W3 = {In = R3, GoIn = R1, Break,Ab,Open(R1), Open(R2), Open(R3)},

and their unnormalized probabilities are as follows:

µ̂Π(W1) = P (W1, In = R1) = 0.5

µ̂Π(W2) = P (W2, In = R2) = 1−0.5
2

= 0.25

µ̂Π(W3) = P (W3, In = R3) = 1−0.5
2

= 0.25

As for the translated LPMLN program plog2lpmln(Π), it has 3 probabilistic stable

models I1, I2, I3, each of which is an extension of W1,W2,W3 respectively, and satisfies
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the following atoms:

Poss1(In = R1),Poss1(In = R2),Poss1(In = R3),

PossWithAssPr 1,C1(In = R1),

PossWithAssPr(In = R1),

PossWithDefPr(In = R2),PossWithDefPr(In = R3).

In addition,

I1 � {AssPr1,C1(In = R1)},

I2 � {NumDefPr(In, 2),RemPr(In, 0.5),TotalDefPr(In, 0.5)},

I3 � {NumDefPr(In, 2),RemPr(In, 0.5),TotalDefPr(In, 0.5)}.

It is easy to check that Ii = φ(Wi) for i ∈ {1, 2, 3}. The unnormalized weight

Wplog2lpmln(Π)(Ii) of each probabilistic stable model Ii is shown below:

Wplog2lpmln(Π)(I1) = w(AssPr1,C1(In = R1)) = 1
2

Wplog2lpmln(Π)(I2) = w(NumDefPr(In, 2))× w(TotalDefPr(In, 0.5)) = 1
2 ×

1
2 = 1

4

Wplog2lpmln(Π)(I3) = w(NumDefPr(In, 2))× w(TotalDefPr(In, 0.5)) = 1
2 ×

1
2 = 1

4

As we see, the unnormalized weight Wplog2lpmln(Π)(Ii) of the translated LPMLN pro-

gram coincide with the unnormalized probability µ̂Π(Wi) of the original P-log program

(i ∈ {1, 2, 3}).
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5.5 Bayesian squirrel

Example 10 The following P-log program Π describes Bayesian Squirrel from (Baral

et al., 2009). The squirrel has hidden its acorns in one of two patches, say P1 and

P2, but cannot remember which. The squirrel is 80% certain the food is hidden in P1.

Also, it knows there is a 20% chance of finding food per day when it looking in the

right patch (and, of course, a 0% probability if it is looking in the wrong patch).(p ∈

{P1, P2}, d ∈ {1, 2, 3, 4, 5}):

∼Found(p, d)← not Found(p, d).

[r1] random(HiddenIn).

[r2] random(Found(p, d))← HiddenIn = p, Look(d) = p.

prr1(HiddenIn = P1) = 0.8.

prr2(Found(p, d)) = 0.2.

Do(Look(1) = P1).

Found(p, d) represents that the squirrel found food at patch p at day d, and

Look(d) = p represents that the squirrel looked in patch p at day d. The translated

LPMLN encoding plog2lpmln(Π) is as follows:
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// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : Found(p, d) = f← not Found(p, d) = t

α : ← Found(p, d) = t, Found(p, d) = f

α : ← HiddenIn = P1, HiddenIn = P2

α : ← Look(d) = P1, Look(d) = P2

α : HiddenIn = P1;HiddenIn = P2 ← not Intervene(HiddenIn)

α : Found(p, d) = t;Found(p, d) = f←

HiddenIn = p, Look(d) = p,not Intervene(Found(p, d))

α : Do(Look(1) = P1)

α : Look(1) = P1 ← Do(Look(1) = P1)

α : Intervene(Look(1))← Do(Look(1) = P1)

// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Possr1(HiddenIn = p)← not Intervene(HiddenIn)

α : Possr2(Found(p, d) = b)← HiddenIn = p, Look(d) = p,not Intervene(Found(p, d))

// ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

α : PossWithAssPr r1(HiddenIn = P1)← Possr1(HiddenIn = P1)

α : AssPr r1(HiddenIn = P1)← HiddenIn = P1,PossWithAssPr r1(HiddenIn = P1)

ln(0.8) : ⊥ ← not AssPr r1(HiddenIn = P1)

α : PossWithAssPr(HiddenIn = P1)← PossWithAssPr r1(HiddenIn = P1)

α : PossWithAssPr r2(Found(p, d) = t)← Possr2(Found(p, d) = t)

α : AssPr r2(Found(p, d) = t)← Found(p, d) = t,PossWithAssPr r2(Found(p, d) = t)

ln(0.2) : ⊥ ← not AssPr r2(Found(p, d) = t)

α : PossWithAssPr(Found(p, d) = t)← PossWithAssPr r2(Found(p, d) = t)
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// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(HiddenIn = p)← Possr1(HiddenIn = p),

not PossWithAssPr(HiddenIn = p)

α : NumDefPr(HiddenIn, x)← HiddenIn = p,PossWithDefPr(HiddenIn = p),

x = #count{y : PossWithDefPr(HiddenIn = y)}

ln( 1
m) : ⊥ ← not NumDefPr(HiddenIn,m) (m ∈ {2})

α : PossWithDefPr(Found(p, d) = b)← Possr2(Found(p, d) = b),

not PossWithAssPr(Found(p, d) = b)

α : NumDefPr(Found(p, d), x)← Found(p, d) = b,PossWithDefPr(Found(p, d) = b),

x = #count{y : PossWithDefPr(Found(p, d) = y)}

ln( 1
m) : ⊥ ← not NumDefPr(Found(p, d),m) (m ∈ {2})

// ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

α : RemPr(HiddenIn, 1− y)← HiddenIn = p,PossWithDefPr(HiddenIn = p),

y = #sum{0.8 : PossWithAssPr r1(HiddenIn = P1)}

α : TotalDefPr(HiddenIn, x)← RemPr(HiddenIn, x), x > 0

ln(x) : ⊥ ← not TotalDefPr(HiddenIn, x)

α : ⊥ ← RemPr(HiddenIn, x), x ≤ 0

α : RemPr(Found(p, d), 1− y)← HiddenIn = p, Look(d) = p,

Found(p, d) = b,PossWithDefPr(Found(p, d) = b),

y = #sum{0.2 : PossWithAssPr r2(Found(p, d) = t)}

α : TotalDefPr(Found(p, d), x)← RemPr(Found(p, d), x), x > 0

ln(x) : ⊥ ← not TotalDefPr(Found(p, d), x)

α : ⊥ ← RemPr(Found(p, d), x), x ≤ 0
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Let Π′ denotes the further translated ASP program with weak constraints, which

is obtained from plog2lpmln(Π) by applying the translation lpmln2wcpnt,clingo
simp and the

simplification for hard rules. Π′ is as follows:

% ∗ ∗ ∗ ∗ Declaration Part ∗ ∗ ∗ ∗

patch(p1; p2).

day(1..5).

boolean(t; f).

% ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

found(P,D, f)← not found(P,D, t), patch(P ), day(D).

← found(P,D, t), found(P,D, f).

← hiddenIn(p1), hiddenIn(p2).

← look(D, p1), look(D, p2).

hiddenIn(p1);hiddenIn(p2)← not intervene(hiddenIn).

found(P,D, t); found(P,D, f)← hiddenIn(P ), look(D,P ),not intervene(found(P,D)).

do(look(1, p1)).

look(1, p1)← do(look(1, p1)).

intervene(look(1))← do(look(1, p1)).

% ∗ ∗ ∗ ∗ possible Atoms ∗ ∗ ∗ ∗

possr1(hiddenIn(P ))← not intervene(hiddenIn), patch(P ).

possr2(found(P,D,B))← hiddenIn(P ), look(D,P ),

not intervene(found(P,D)), boolean(B).
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% ∗ ∗ ∗ ∗ Assigned Probability ∗ ∗ ∗ ∗

possWithAssPr r1(hiddenIn(p1))← possr1(hiddenIn(p1)).

assPr r1(hiddenIn(p1))← hiddenIn(p1), possWithAssPr r1(hiddenIn(p1)).

possWithAssPr(hiddenIn(p1))← possWithAssPr r1(hiddenIn(p1)).

possWithAssPr r2(found(P,D, t))← possr2(found(P,D, t)).

assPr r2(found(P,D, t))← found(P,D, t), possWithAssPr r2(found(P,D, t)).

possWithAssPr(found(P,D, t))← possWithAssPr r2(found(P,D, t)).

% ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

possWithDefPr(hiddenIn(P ))← possr1(hiddenIn(P )),

not possWithAssPr(hiddenIn(P )).

numDefPr(hiddenIn,X)← hiddenIn(P ), possWithDefPr(hiddenIn(P )),

X = #count{Y : possWithDefPr(hiddenIn(Y ))}.

possWithDefPr(found(P,D,B))← possr2(found(P,D,B)),

not possWithAssPr(found(P,D,B)).

numDefPr(found(P,D), X)← found(P,D,B), possWithDefPr(found(P,D,B)),

X = #count{Y : possWithDefPr(found(P,D, Y ))}.
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% ∗ ∗ ∗ ∗ Numerator for Default Probability ∗ ∗ ∗ ∗

remPr(hiddenIn,X)← hiddenIn(P ), possWithDefPr(hiddenIn(P )), X = 1− Y,

Y = #sum{0.8 : possWithAssPr r1(hiddenIn(p1))}.

totalDefPr(hiddenIn,X)← remPr(hiddenIn,X), X > 0.

⊥ ← remPr(hiddenIn,X), X ≤ 0.

remPr(found(P,D), X)← hiddenIn(P ), look(D,P ), X = 1− Y,

found(P,D,B), possWithDefPr(found(P,D,B)),

Y = #sum{0.2 : possWithAssPr r2(found(P,D, t))}.

totalDefPr(found(P,D), X)← remPr(found(P,D), X), X > 0.

⊥ ← remPr(found(P,D), X), X ≤ 0.

% ∗ ∗ ∗ ∗ Weak Constraints ∗ ∗ ∗ ∗

:∼ assPr r1(hiddenIn(p1)). [−ln(0.8)]

:∼ assPr r2(found(P,D, t)). [−ln(0.2)]

:∼ numDefPr(hiddenIn,X).
[
−ln( 1

X )
]

:∼ numDefPr(found(P,D), X).
[
−ln( 1

X )
]

:∼ totalDefPr(hiddenIn,X). [−ln(X)]

:∼ totalDefPr(found(P,D), X). [−ln(X)]

It is easy to check that there are 3 possible worlds of the P-log program Π:

W1 = {HiddenIn = P1, Found(P1, 1) = t, Look(1) = P1, . . . }

W2 = {HiddenIn = P1, Found(P1, 1) = f, Look(1) = P1, . . . }

W3 = {HiddenIn = P2, Found(P2, 1) = f, Look(1) = P1, . . . },
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and their unnormalized probabilities are as follows:

µ̂Π(W1) = P (W1, HiddenIn = P1)× P (W1, Found(P1, 1) = t) = 4
5
× 1

5
= 4

25

µ̂Π(W2) = P (W2, HiddenIn = P1)× P (W1, Found(P1, 1) = f) = 4
5
× (1− 1

5
) = 16

25

µ̂Π(W3) = P (W3, HiddenIn = P2) = 1− 4
5

= 1
5

As for the translated LPMLN program plog2lpmln(Π), it has 3 probabilistic stable

models I1, I2, I3, each of which is an extension of W1,W2,W3 respectively, and satisfies

the following atoms:

Possr1(HiddenIn = P1),Possr1(HiddenIn = P2),

PossWithAssPr r1(HiddenIn = P1),

PossWithAssPr(HiddenIn = P1),PossWithDefPr(HiddenIn = P2)

In addition,

I1 � {AssPr r1(HiddenIn = P1),

Possr2(Found(P1, 1) = t),Possr2(Found(P1, 1) = f),

PossWithAssPr(Found(P1, 1) = t),PossWithDefPr(Found(P1, 1) = f),

PossWithAssPr r2(Found(P1, 1) = t),AssPr r2(Found(P1, 1) = t)}

I2 � {AssPr r1(HiddenIn = P1)

Possr2(Found(P1, 1) = t),Possr2(Found(P1, 1) = f),

PossWithAssPr(Found(P1, 1) = t),PossWithDefPr(Found(P1, 1) = f),

PossWithAssPr r2(Found(P1, 1) = t),

NumDefPr(Found(P1, 1), 1),

RemPr(Found(P1, 1), 0.8),TotalDefPr(Found(P1, 1), 0.8)}

I3 � {NumDefPr(HiddenIn, 1),RemPr(HiddenIn, 0.2),TotalDefPr(HiddenIn, 0.2)}.

It is easy to check that Ii = φ(Wi) for i ∈ {1, 2, 3}. The unnormalized weight

Wplog2lpmln(Π)(Ii) of each probabilistic stable model Ii is shown below:

136



Wplog2lpmln(Π)(I1) = w(AssPr r1(HiddenIn = P1))× w(AssPr r2(Found(P1, 1))

= 4
5 ×

1
5 = 4

25

Wplog2lpmln(Π)(I2) = w(AssPr r1(HiddenIn = P1))× w(TotalDefPr(Found(P1, 1), 0.8))

= 4
5 ×

4
5 = 16

25

Wplog2lpmln(Π)(I3) = w(TotalDefPr(HiddenIn, 0.2)) = 1
5

As we see, for i ∈ {1, 2, 3}, the unnormalized weight Wplog2lpmln(Π)(Ii) of the trans-

lated LPMLN program coincide with the unnormalized probability µ̂Π(Wi) of the original

P-log program. Consequently, the probability Pplog2lpmln(Π)(Ii) of the translated LPMLN

program also coincide with the probability µΠ(Wi) of the original P-log program.
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5.6 When a P-log program is not consistent

Example 11 An Example for Theorem 3 if Π is not consistent

The following P-log program describes Coin Problem, where we deliberately make

the coin to be head but at the same time observe that the coin is tail. It’s obvious that

this P-log program is not consistent.(v ∈ {H,T}):

[r] random(Flip).

Do(Flip = H).

Obs(Flip = T ).

It is easy to check that Π has no possible world. The translated LPMLN encoding

plog2lpmln(Π) is as follows:

// ∗ ∗ ∗ ∗ τ(Π) ∗ ∗ ∗ ∗

α : ← Flip = H,F lip = T

α : Flip = H;Flip = T ← not Intervene(Flip)

α : Do(Flip = H) (1)

α : Flip = H ← Do(Flip = H)

α : Intervene(Flip)← Do(Flip = H)

α : Obs(Flip = T ) (2)

α : ← Obs(Flip = T ),not Flip = T (3)

// ∗ ∗ ∗ ∗ Possible Atoms ∗ ∗ ∗ ∗

α : Possr(Flip = v)← not Intervene(Flip)
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// ∗ ∗ ∗ ∗ Denominator for Default Probability ∗ ∗ ∗ ∗

α : PossWithDefPr(Flip = v)← Possr(Flip = v),not PossWithAssPr(Flip = v)

α : NumDefPr(Flip, x)← Flip = v,PossWithDefPr(Flip = v),

x = #count{y : PossWithDefPr(Flip = y)}

ln(1
2) : ← not NumDefPr(Flip, 2)

Although Π has no possible world, its translated LPMLN program above has three

stable models below, each of which doesn’t satisfy one hard rule (marked in the program

with the same number as the subscript of each interpretation):

I1 = {Obs(Flip = T ), F lip = T,Possr(Flip = H),Possr(Flip = T ),

PossWithDefPr(Flip = H),PossWithDefPr(Flip = T ),NumDefPr(Flip, 2)}

I2 = {Do(Flip = H), Intervene(Flip), F lip = H}

I3 = {Do(Flip = H), Intervene(Flip), F lip = H,Obs(Flip = T )}

The reason of this is that LPMLN tries to find a sub-optimal solution when the

program is inconsistent, i.e., LPMLN considers some hard rules incorrect when it is

impossible to satisfy all hard rules. This intuition is different from that in P-log,

where all hard rules represent definite knowledge. Thus Theorem 3 is only suitable

for consistent P-log programs.
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Chapter 6

EXPERIMENTS

In this chapter, we present the results of benchmarking our translations.

The existing solvers of P-log (P-log 1, using Smodels based engine, and P-log

2, using Partial Grounding Algorithm based engine) and a solver of ASP programs

with weak constraints (Clingo) have different functionalities. With a pre-declared

query (a set of atoms), P-log 1 and P-log 2 show the probability of one queried

atom that has the highest marginal probability. However, Clingo shows a stable

model that maximum a posteriori probability. Besides, Clingo is capable of showing

all stable models along with their quantitative penalties, which can be turned into

probabilities by normalization. In other words, Clingo is good at finding an optimal

stable model or the probability of any stable model, while P-log 1 and P-log 2

are good at finding an optimal choice of a single random event or the probability of

a single atom.

We examine our translation by testing all consistent P-log examples in this thesis

on P-log 1 and P-log 2, and also testing their translated ASP programs with weak

constraints on Clingo. 1 The outputs of P-log 1, P-log 2, and Clingo coincide

for each domain. For example, consider the domain “Variant of Monty Hall”, the only

stable model that contains “prize=4” (whose unnormalized probability is 1
32

) has the

highest probability 0.3846. P-log 1 and P-log 2 output “prize = 4 with probability

0.3846”, while Clingo outputs an optimal stable model containing “prize(4)” with

penalty 3465.

1 These encodings can be found at https://github.com/zhunyoung/MS-Thesis.
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Note that, we can further obtain the unnormalized probability of this stable model

by e−3.465 = 1
32

. 2

We record their run time in Table 6.1.

Domain P-log 1 (Smodels) P-log 2 (Partial Grounding) Clingo 4.5

Variant of Monty Hall 0.000s + 0.000385s a 0.00191s + 0.000386s b 0.016s

Dice Problem 0.000s + 0.003114s 0.001333s + 0.000298s 0.015s

Simpson’s Paradox 0.000s + 0.000666s 0.001381s + 0.000194s 0.019s

Moving Robot 0.000s + 0.000146s 0.001795s + 0.000085s 0.013s

Bayesian Squirrel 0.000s + 0.000478s core dumped 0.017s

Table 6.1: Runtime of Examples on P-log 1, P-log 2, and Clingo

aSmodels answer set finding time + probability computing time

bpartial grounding time + probability computing time

Since the domains above are too small, we show the difference of computing the

original P-log program on the existing P-log solver and computing the translated

answer set program with weak constraints on Clingo by benchmarking domains

“Variant of Monty Hall” and “Dice Problem”.

To test the efficiency of P-log 1, P-log 2, and Clingo under different domain size,

we benchmarked the Varient of Monty Hall Problem where the number of doors is

increased from 4 to 1000 with a fixed number of pr-atoms as 2. We record their run

time in Table 6.2.

As we can see, P-log 1 and P-log 2 have much better performance over Clingo

when we only increase the domain size. And P-log 2 has a even better performance

over P-log 1 because the former one uses sampling method while the latter one uses

exact inference. However, when the number of doors is increased to 1000, P-log 1

showed a random output after about 84 seconds. Thus for exact inference under

large domain size, using clingo conjunction with our translations is a better means of

2 Clingo restricts all numbers to be integers, thus in practice, we scale up all numbers by 1000.
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#doors + #pr-atoms P-log 1 (Smodels) P-log 2 (Partial Grounding) Clingo 4.5

4 + 2 0.000s + 0.000224s a 0.001228s + 0.000221s b 0.014s

10 + 2 0.000s + 0.001265s 0.003765s + 0.00142s 0.020s

100 + 2 0.086s + 0.076525s 0.032208s + 0.09779s 1.400s

200 + 2 0.633s + 0.316585s 0.094238s + 0.585789s 10.258s

300 + 2 2.242s + 0.724783s 0.193164s + 1.77677s 34.456s

400 + 2 5.063s + 1.31343s 0.335731s + 3.99656s 80.680s

500 + 2 10.021s + 2.14988s 0.505037 + 7.59064 153.535s

1000 + 2 ? + 0.709586s(84s) 2.05518s + 55.6697s 1216.697s

Table 6.2: Benchmarks of Varient Monty Hall Problem

aSmodels answer set finding time + probability computing time

bpartial grounding time + probability computing time

computing P-log.
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Chapter 7

CONCLUSION

Combining logic and probability has received attention in artificial intellegence.

Some formalisms have been proposed by extending one of the most logic-expressive

paradigm, Answer Set Programming, to overcome the deterministic nature of ASP

and incorporate probability into its syntax or semantics. In this thesis, we focus on

three such extensions: LPMLN, weak constraints, and P-log. Weak constraints are a

relatively simple extension to ASP programs, while P-log is highly structured but a

more complex extension. LPMLN is shown to be a good middle ground language that

clarifies the relationships.

In this thesis, we proposed a translation of LPMLN into programs with weak con-

straints and a translation of P-log into LPMLN, which complement the existing trans-

lations in the opposite directions. It shows how different weight schemes of LPMLN

and weak constraints are related, and how the probabilistic reasoning in P-log can be

expressed in LPMLN.

The results imply that MAP inference in P-log and other probabilistic logic lan-

guages, such as Markov Logic, ProbLog, and Pearl’s Causal Models, can be computed

by standard ASP solvers because they are known to be embeddable in LPMLN, thereby

allowing us to apply combinatorial optimization in standard ASP solvers to MAP in-

ference in these languages to increase the efficiency.

Moreover, P-log has been viewed distant from Statistical Relational Learning.

In this thesis, we show how P-log is reduced to LPMLN. Since LPMLN is shown to

be translatable into MLN, it yields a way to compute P-log using MLN solvers and
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allows us to learn the probabilities in P-log by turning it into MLN and applying

SRL methods.

We expect the relationships will help us to apply the mathematical and compu-

tational results developed for one language to another language.

This work has been published within

• Lee and Yang (2017), “LPMLN, Weak Constraints, and P-log”, in “Proceedings

of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017)”.
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