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ABSTRACT

This work presents a communication paradigm, using a context-aware mixed reality

approach, for instructing human workers when collaborating with robots. The main

objective of this approach is to utilize the physical work environment as a canvas to

communicate task-related instructions and robot intentions in the form of visual cues. A

vision-based object tracking algorithm is used to precisely determine the pose and state

of physical objects in and around the workspace. A projection mapping technique is

used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking

and projection onto objects enables the system to provide just-in-time instructions for

carrying out a procedural task. Additionally, the system can also inform and warn hu-

mans about the intentions of the robot and safety of the workspace. It was hypothesized

that using this system for executing a human-robot collaborative task will improve the

overall performance of the team and provide a positive experience to the human partner.

To test this hypothesis, an experiment involving human subjects was conducted and the

performance (both objective and subjective) of the presented system was compared with a

conventional method based on printed instructions. It was found that projecting visual

cues enabled human subjects to collaborate more effectively with the robot and resulted

in higher efficiency in completing the task.
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Chapter 1

INTRODUCTION

The ability to quickly understand each other’s intentions and goals is a critical ele-

ment of successful collaboration within human teams. Efficient teaming often emerges

as a result of explicit or implicit cues that are shared, recognized, and understood by

the participants. Such cues act as signals that maintain trust, situational awareness, and

mutual understanding among team members. The ability to communicate intentions

through implicit and explicit cues is also of critical importance to fluent human-robot

collaboration. As highlighted in the Roadmap for U.S. Robotics report, “humans must

be able to read and recognize robot activities in order to interpret the robot’s understand-

ing” (Christensen et al., 2009). Especially in close-contact physical interaction scenarios

that are safety critical, e.g., collaborative assembly, it is vital that the human partner

quickly understand a robot’s intentions. Recent work on this topic has focused on the

generation of legible robot motion (Dragan et al., 2015a; Mainprice et al., 2010; Stulp

et al., 2015), as well as the verbalization of robot intentions using natural language (Tellex

et al., 2014; Perera et al., 2016).

This work describes an alternative communication paradigm that is based on the

projection of explicit visual cues. In particular, a context-aware projection method has

been proposed, which embeds visual signals within the environment, such that they

can be intuitively understood and directly read by the human partner. The physical

environment is used as a medium to convey information about the intended actions of

the robot, the safety of the work space, or task-related instructions. To this end, a mixed

reality system has been developed that combines a vision-based object tracking algorithm
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Figure 1: Signaling during human-robot collaboration by projecting dynamic visual cues
into the environment.

with a context-aware projection mapping technique. Visual cues related to the robot and

the task being performed are dynamically synthesized and projected. The projection of

signals is performed in a just-in-time fashion based on the current state within the joint

collaboration plan. An example scenario is shown in Fig. 1.

A methodology for defining an extensible visual language that contains different

categories of cues has been introduced. The methodology is based on signal categories,

similar to parts of speech in natural language, from which complex visual messages can

be constructed. Following this conceptualization, a domain-specific visual language that

covers a reasonable fragment of visual cues related to physical collaboration tasks has

been proposed. Further, a set of new interaction modes, that are enabled by the use of

our mixed-reality system and object tracking is also described in detail.
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It was hypothesize that incorporating the proposed system into a complex, sequential

human-robot collaborative task can improve the efficiency and effectiveness of the team

and provide satisfaction to the human co-worker in collaborating with the robot. These

gains, in turn, will improve the human-robot team fluency and trust. To investigate

the validity of this hypothesis, a study was conducted with 20 participants in which

human subjects and a stationary manipulator jointly assembled a car door. Throughout

the collaboration, human subjects received just-in-time visual signals related to the task.

In addition to projecting instructions and information, the system also provided visual

feedback on effectiveness of the task currently being carried out by the human. The results

of the experiments were evaluated using a mixed methods approach including quantitative

and qualitative criteria to assess accuracy, efficiency, and participant satisfaction.

It was evident that incorporating visual guidelines in a human-robot shared work

environment results in increased performance for a given set of tasks. However, there was

not a significantly improved perception of safety in the projected mode, and there was

some concern that speed was sacrificed particularly in the perceived case of an experienced

human user. Still, the overall outcome of the study revealed that the subjects had a positive

experience working with the robot and would be willing to collaborate again when the

projection system is involved.
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Chapter 2

RELATED WORK

Advances in display systems and vision technology have paved the way for incorporat-

ing real-time augmented information with physical entities. One of the early attempts to

use projections to communicate with the robot was made by Sato and Sakane (2000). The

prototype of their system, “Interactive Hand Pointer” (IHP), consisted of a LCD projector

and a real-time vision algorithm to detect and track user hand gestures. The IHP system

projected visual marks inside the workspace at locations specified by the user and helped

the user to control and interact with the robot.

Related research studies have focused on providing a visual platform for human users

to directly interact and understand the internal states of robots. Watanabe et al. (2015) pre-

sented an approach to communicate navigational intentions using a projector mounted

on a robotic wheelchair. The robotic wheelchair projected its future trajectory on the

floor, which helped both the passenger and nearby people to navigate safely. Quantita-

tive and qualitative analysis comparing projected and non-projected states revealed that

users preferred the robotic wheelchair that explicitly conveyed its motion intentions. In

addition, the motion of other individuals passing by the wheelchair was significantly

smoother with projected intention communication.

In a similar approach, Chadalavada et al. (2015) reported that using on-floor pro-

jection to visualize the intended path of a mobile robot enhanced human reaction and

comfort working in a robotic environment. The subjective experiment showed that the

average user rating with the projection system increased by 53% and 65% respectively for

the robot moving in straight lines and for taking a sudden turn. Both studies suggest that
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humans find it more comfortable to interact and work with a robot when its intentions

are presented directly as visual cues.

Omidshafiei et al. (2015) demonstrated an advanced projection system, MAR-CPS,

which augmented the physical laboratory space with real-time status and intentions of

drones and ground vehicles in a cyber-physical system. Several other studies have also

used projection systems to convey information to the user (Omidshafiei et al., 2016; Shen

et al., 2013; Ishii et al., 2009; Mistry et al., 2010; Leutert et al., 2013). However, these

systems were confined to displaying on flat surfaces and did not consider the state of

physical objects while projecting information.

In contrast to that, Andersen et al. (2016) demonstrated an early prototype of a pro-

jection system that tracks physical objects in real-time and projects visual cues at specific

spatial locations. A preliminary usability study demonstrated improved effectiveness and

user satisfaction with the projection-based approach in a human-robot collaborative task.

However, the experimental study was limited to simple tasks like tracking, moving and

rotating a single object on a flat surface, which does not reflect a real-world workspace.

Also, the set of different signals that could be communicated was limited.

This work describes a novel system that is capable of tracking and projecting informa-

tion on multiple objects in three dimensions simultaneously. Also, a rich visual language

that goes beyond the display of trajectories or distances and allows for complex signaling,

has been presented.
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Chapter 3

VISUAL SIGNALING FRAMEWORK

This chapter describes the visual communication paradigm in detail. Information is

conveyed to a human interaction partner during a human-robot collaboration task using

mixed reality cues projected onto dynamic objects in the environment. This approach

ensures that the information is communicated (a) at the right time and (b) at the right

spatial location. First, A description of the underlying tracking and projection technology

is described. Next, a systematic construction of the visual signaling language is shown

in detail. Finally, a set of interaction metaphors based on mixed reality cues is described,

and how they can be used to communicate subtasks in a joint human-robot plan is also

shown. Note that the current approach assumes information about the environment. In

particular, it should be assumed that all objects involved in the collaboration task are

available as 3D CAD models.

3.1 Object Tracking

The presented system uses vision-based 3D object tracking to estimate the 6-DOF pose

of objects in the environment. To this end, a model-based tracking algorithm inspired

by Choi and Christensen (2010) is used to estimate the pose of objects in real-time. The

tracker uses polygonal mesh features from 3D CAD model to estimate the pose of a

desired object. Unlike the tracker proposed by Choi and Christensen (2010) that uses

only single low-level hypothesis for pose estimation, the approach presented in this work
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handles multiple low-level hypotheses simultaneously. This enhanced approach enables

robust tracking of objects even when projections are overlaid on objects.

(a) Input image (b) Canny edge image

(c) Sample points (green) and errors (col-
ored lines)

(d) Estimated pose

Figure 2: Edge-based object tracking

First, an input image is captured form a monocular RGB camera and edges are ex-

tracted using the Canny edge detector (Canny, 1986), as seen in Fig. 2a and Fig. 2b). The

3D CAD model is projected onto the image and nearby Canny edges are determined

using a 1-D search along the normal direction of the projected edge. Euclidean distances

between sample points and their corresponding nearest edge are computed and combined

together to form the distance error vector. The errors (colored lines) corresponding to

the sample points (green) are shown in Fig. 2c. The pose of an object is estimated by
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minimizing the distance error by Iterative Re-weighted Least Square (IRLS). Fig. 2d shows

the estimated pose of the object being tracked.

3.1.1 Pose Estimation using Multiple Hypotheses Approach

Since our object tracking algorithm is based on the work by Choi and Christensen

(2010), the mathematical model has been formulated in a similar approach by computing

the inter-frame motion. The object pose Et+1 at time t + 1 can be estimated from the

prior pose Et using the inter-frame motion M .

Et+1 = Et M (3.1)

Where E ∈ R4×4 is pose matrix and Motion M ∈ R4×4 is the inter-frame motion. M in

turn, can be represented using exponential map as shown below:

M = exp(µ) (3.2)

Where µ ∈ R6 represents the motion velocities of 6-DOF displacement of the tracked

object. The projection of 3D model coordinate point PM =
(
xM yM zM 1

)T into 2D

image coordinates p = (u v)T can be formulated using a standard pin-hole camera model

as shown below:

p = Proj
(
PM , E, K

)
(3.3)

Where K is the intrinsic matrix of the camera and E is the extrinsic matrix representing

the transformation between object coordinates and camera coordinates. The 3D coor-

dinate points in camera coordinates PC =
(
xC yC zC 1

)T can be computed as shown

below:

PC = EPM

8



The motion M can be estimated by minimizing the error between the prior pose Et

and current pose Et+1. First, the 3D CAD model of the object is projected onto the

Canny edge image using prior pose Et and points are sampled along the projected edges.

Next, the edges corresponding to sample points on the projected 2D edges are determined

using a 1-D search from each sample point along the normal direction of the projected

edge. For each sample point pi, the Euclidean distances to all the edge correspondents p′
ij

are computed and stacked to form a distance error vector e. Finally the pose is estimated

by minimizing the error e using Iterative Re-weight Least Square (IRLS) and M estimator.

µ̂ = arg min
µ

N∑
i=1

min
j

(∥∥∥pi − p′ij

∥∥∥2)

µ̂ = arg min
µ

N∑
i=1

min
j

(∥∥∥∥Proj(PM , Etexp(µ), K
)
− p′ij

∥∥∥∥2
)

(3.4)

Where µ̂ ∈ R6 is the estimated pose of the object in current frame, obtained by min-

imizing the distance error corresponding to N sample points. During each iteration

of optimization process, only one hypothesis corresponding to each sample point that

results in minimum error is taken into account.

3.1.2 Evaluation of Single versus Multiple Hypotheses Approach

Using multiple low-level hypotheses for estimating the pose resulted in more robust

tracking than using single hypothesis. To test this, we conducted an experiment to quan-

titatively measure the accuracy of the object tracker using single and multiple hypotheses

approaches. Fiducial markers were employed to measure the ground truth pose of the

object. The experimental setup is shown in Fig. 3. The ground truth transformation of

the object T ′
O can be calculated as shown in equation 3.5.

T ′
O = TM TE (3.5)
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Figure 3: Experimental Setup for measuring the accuracy of the object tracker

Where TM is the transformation between the camera and the marker, and TE is the

transformation between the marker and the object. TM is obtained by tracking the marker,

while TE is manually measured and remains constant throughout the experiment.

Table 1: Root Mean Square (RMS) errors of the tracked objects

Objects Translational Errors in meters Rotational Errors in degrees
x y z roll pitch yaw

Box
SHT 0.00436 0.00341 0.03141 5.33171 3.23881 1.37898
MHT 0.00184 0.00288 0.02018 1.87967 1.74491 1.00182

Car door
SHT 0.08636 0.01508 0.11473 24.90995 14.13488 40.69923
MHT 0.05024 0.01006 0.05210 9.14722 5.28910 9.29414

Toolbox
SHT 0.00850 0.00448 0.01239 2.00256 0.64617 1.58144
MHT 0.00877 0.00462 0.00956 1.61309 0.59072 1.31593

Circular SHT 0.00445 0.00306 0.03935 3.21225 4.41108 2.17598
Object MHT 0.00286 0.00171 0.00929 1.58369 0.78398 0.77677

The experiment was conducted with four different objects: box, car door, toolbox

and circular object. The objects were tracked using the single hypothesis and multiple

10



Figure 4: 6-DOF pose plots of the box object showing the measured translation and ro-
tation values using Single Hypothesis Tracking (SHT) and Multiple Hypothesis Tracking
(MHT). Ground truth is also shown for comparison.

hypotheses approaches. The 6-DOF pose data of the box and circular object measured

form the experiments are shown in Fig. 4 and 5. The data in the Table 1 shows the Root

Mean Square (RMS) errors of the tracked values in both approaches. It is evident from

the Table 1 that multiple hypotheses tracking outperforms the single hypothesis tracking

in terms of accuracy in all cases except for x and y translations of toolbox object.

It was observed from the experiment that using single hypothesis resulted in loss

of tracking when there was significant occlusion, while considering multiple hypotheses

enhanced the accuracy. This can be seen in Fig. 4 (Frame number 490–600) and Fig. 5

Frame number (200–330).
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3.2 Projection Mapping System

Given the 3D pose, projection mapping can be performed in order to display addi-

tional information on top of an object while taking into account the geometric structure.

Using a projection device, the visual cues are projected into the environment in order to

rapidly communicate important aspects of the tasks. The pose and shape of objects from

the tracker are incorporated into the generation of visual cues, which enables the system

to display only on objects-of-interest.

Since rendering of visualizations is performed within the reference frame of the projec-

tor, transforming the tracked object pose from the camera to projector frame of reference

is required. To this end, projector-camera calibration is performed between the two refer-

ence frames (Moreno and Taubin, 2012). The proposed system can simultaneously track,

render, and project on multiple objects in real-time at a frame rate of 20–30 Hz.

Figure 5: 6-DOF pose plots of the circular object showing the measured translation
and rotation values using Single Hypothesis Tracking (SHT) and Multiple Hypothesis
Tracking (MHT). Ground truth is also shown for comparison.
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3.3 Extensible Visual Language

In this section, we introduce a conceptualization for dynamic visual messaging using

projected mixed-reality cues. In particular, an extensible visual language has been pre-

sented to explicitly convey information to a human collaborator through visual signals.

A set of patterns, analogous to parts of speech, are used to form a visual language from

which visual messages can be formed. The language includes a reasonable fragment of

patterns for human-robot interaction tasks, but can be further extended according to the

application domain. Since the visual processing system in humans is very fast, visual

messages can rapidly be processed without additional cognitive effort.

The basic fragment of visual cues proposed here includes patterns for designating and

targeting objects (substantives), indicating positions, relations, and orientations (prepo-

(a) Highlight object (b) Highlight part of  an object (c) Move object

(d) Success (e) Failure (f) Caution

Figure 6: Examples of basic visual cues corresponding to different parts of speech of
the proposed visual language. Figures (a) and (b) represents substantives, Figure (c) repre-
sents verb, Figures (d) and (e) represents affirmations and Figure (f) represents safety and
hazards.
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Table 2: Subset of Proposed Visual Cues

Substantives
highlight_object(X)
highlight_object_part(X,Y)

Verbs
move_to(X,Y)
remove(X)
join(X,Y)
align(X,Y)

Prepositions
in_front_of(X)
left_of(X)
right_of(X)
at_position(X,Y)
relative_to(X,Y,Z)

Affirmation
success()
failure()

Safety and Hazard
stop(X)
caution(X)
robot_workarea()

Text
text(X)
text_flash(X)

sitions), basic movement instructions (verbs), success and failure (affirmation), hazards

and visualizing the robot work area, as can be seen in Table 2.

Basic cues can be composed to generate a sequence of instructions or a visual equiv-

alent of a phrase. Figure 6 depicts examples of generic visual cues. These, in turn, are

translated into a visual message by generating appropriate mixed-reality signals.

3.4 Visual Plan Signaling

Given the conceptualization of an extensible visual language in Sec. 3.3, a domain-

specific visual language for collaborative manufacturing tasks is demonstrated, such as a
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human and a robot jointly performing manipulations on a car door prototype. This is

an example of a generic language applied to a specific domain.

Fig. 7 shows a collection of visual cues and interaction metaphors that can be used

to signal the state of the collaboration, next tasks, etc. For example, the robot can (a)

project the boundaries of its work area, (b) communicate information about the success

of the current subtask, (c) highlight specific objects, or (d) highlight a particular object

part. Similarly, the user may be instructed to (e) move the object to a specified location.

In this case, a slider metaphor is used in order to dynamically indicate the remaining

amount of translation needed. The robot may also (f) indicate a safe position for the

human partner or instruct the user to (g) join specific components. Finally, as can be

seen in (h), the mixed-reality approach also allows us to visualize hidden objects, e.g.,

the contents of a box. This is particularly helpful in domains where information about

content can be derived from bar codes or other types of input that are not human-readable.

In our implementation, all visual cues are generated through a procedural approach:

specific patterns are produced in real-time by modifying the available 3D CAD model,

e.g., coloring the model, or overlaying textures. Hence, the approach can easily be applied

to different environments and object sets as long as the corresponding 3D models are

available. This is, however, typically the case in manufacturing environments.

The above signals can, in turn, be chained into sequences and incorporated into a

robot plan. This can be implemented as follows:

• highlight(CARDOOR)

• move(CARDOOR, right_of(ROBOT))

• align(CARDOOR, relative_to(ROBOT, [1.2m, 0.3m], -35°))

In the above example, the human is instructed to move the car door to a location

near the robot, see Fig. 7e. The distance to the goal position is projected onto the work
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(a) Robot work area (b) Success (c) Highlight object

(d) Highlight object part (e) Move to (f) Partner at location

(g) Join parts (h) Display contents

Figure 7: A set of visual cues used to signal states of the human-robot interaction, next
tasks, actions, intentions, or hidden objects during collaborative manufacturing.
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floor, which provides real-time feedback to the human. Finally, the system projects the

current (green) and desired (white) position and orientation of the car door, as shown in

Fig. 8. As the human tries to align the car door, the current position and orientation are

displayed in real-time as a circle and a line.

(a) (b) (c) (d) (e)

Figure 8: Sample use case - aligning a car door

Another example for instructing a human to join two assembly parts is shown below:

• highlight(PART_A)

• highlight(PART_B)

• join(PART_A, PART_B)

Here, the objects are first tracked and highlighted; then an arrow indicating to the

human to join the parts is projected. In addition to the arrow, the highlighted parts can

be animated to represent joining of the parts, as shown in Fig. 7g.
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Chapter 4

HUMAN SUBJECT EXPERIMENT

4.1 Experimental Objective

A human subject experiment was conducted to compare the performance and usability

of the proposed system using real-time projected cues in the workspace with a conven-

tional method using static printed instructions. The aim of the experiment was to collect

objective and subjective measurements from human subjects to analyze and evaluate the

efficiency, effectiveness and satisfaction of collaborating with a robot teammate.

4.1.1 Independent Variables

In this experiment, a single independent variable, mode of communication, was ma-

nipulated, which can have one of the two values:

1. Printed mode – The subject was provided with a printed set of instructions in the

form of a written description and corresponding figures. The printed instructions

were pasted on a wall adjacent to the workspace and were available to the subject

throughout the experiment.

2. Projection mode – The subject was provided with just-in-time instructions by aug-

menting (using projection mapping) the work environment with mixed reality cues.

Each participant was required to collaborate with the robot twice (printed and projec-

tion modes) in carrying out a procedural assembly task. The experiment used a within-

subject comparison design, which enabled the participants to compare and provide sub-
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jective measures for the two methodologies. The order of conditions was varied and order

of subtasks per test condition was randomized on a per-subject basis to eliminate order

effects.

4.1.2 Hypotheses

H1.1 Efficiency of a human-robot collaborative team will be greater when the human

subjects are provided with just-in-time instructions in the form of augmented visual cues

as opposed to printed instructions in the form of texts and figures.

H1.2 Effectiveness of a human-robot team in accomplishing a collaborative task will

be higher when the human subjects receive visual feedback as they perform and complete

tasks rather than having no feedback.

Communicating information and instructions visually and in the right place at the

right time is faster, intuitive, and improves overall task performance. In contrast, printed

instructions may be ambiguous in a real-time task situation. Efficiency is defined as the

time taken for the human subjects to complete the task and effectiveness is defined as

the accuracy percentage of task completion.

H2 Time taken by each human subject to understand a specific task will be con-

stant when the instructions are in the form of just-in-time visual cues. In contrast,

there will be high variation in understanding times between human subjects when the

instructions are printed without projected visual cues.

Providing just-in-time instructions eliminates the need for humans to keep track of

the completed tasks. It is anticipated that clear and concise information in augmented

visual form requires more or less the same time to understand by different human

19



subjects. Also it is expected to see large variations in task understanding times between

subjects in printed condition. To test this hypothesis, the time taken for each subject to

read or interpret a subtask in each task condition is measured and compared.

H3 Subjects will be more satisfied collaborating with the robot in projection mode

than printed mode. Additionally, explicit visual feedback will instill a positive attitude

in human subjects. In contrast, subjects will feel negative or neutral when they receive

no explicit feedback from the system or robot.

It is important to provide the human subjects with feedback of the robot’s intention

and the subject’s action. This, in turn, ensures that the human collaborator will feel com-

fortable and satisfied working with the robot. Satisfaction and attitude are composite

measures determined from subjective measurements of performance, task load and expe-

rience working with the robot. In order to obtain the subjective measurements, human

subjects completed a post-test questionnaire consisting of a series of Likert scale and free

response questions.

4.2 Experimental Methods

Subjects were asked to collaborate with a robot to carry out a well-specified assembly

task in a simulated manufacturing environment.The experiment was designed to reflect

a segment of a real-world assembly task within a car manufacturing line. The required

components were provided in kind by an automotive company. The joint assembly task

involved a human subject and a stationary manipulator with six degrees of freedom

(UR5 robot) performing a total of 12 manipulation steps on a car door. The assembly

process required removing new components and tools from a set of toolboxes, connecting
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components in a specific order, and finally attaching them at different locations on the

door. The car door was placed on a caster and could be moved to different locations.

4.2.1 Experiment Procedure

First, the participants were briefed on the experiment and the assembly task scenario.

The participants were informed that they must collaborate with the robot in complet-

ing a procedural task consisting of 12 subtasks that must be completed successfully in

sequence so that failing to complete one subtask would result in failing subsequent sub-

tasks. Nine of the 12 subtasks were assigned to the participant and rest were assigned

to the robot. The order of the subtasks was randomized in the printed condition for

each participant, while the order was maintained in the projection condition across all

participants. Each participant carried out a total of two task trials under each of the two

conditions (printed and projection mode). This approach enabled us to evaluate which

form of communication was more clear and effective.

The entire experiment was video and audio-taped for post-hoc analysis. The par-

ticipants were asked to verbalize their thoughts as they perform each task, using the

think-aloud protocol (Ericsson and Simon, 1980). The verbal data collected are useful

in better understanding the subjects’ real-time perceptions of interacting with the robot

using printed and projected instructions. After completing both task trials, participants

were asked to complete two identical post-task subjective questionnaires (one for each

trial) consisting of Likert-scale and free response questions.
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4.2.2 Experiment Task

The goal of the experimental task was to assist the robot in assembling a car door in a

simulated manufacturing environment. The task involved carrying out a set of sequential

subtasks τ = {τ1, τ2, . . . , τ12}, in a specified order. A subtask τi could be any one of the

following:

• Pick an assembly part (interchangeable part) or tool

• Place an assembly part or tool

• Move car door to specified location inside the workspace

• Align car door with specified reference point

• Join assembly parts together

• Screw assembly parts on the car door

The instructions to execute the subtasks were framed as sequential steps and were

provided to the participants as printed or projected instructions, depending on the test

condition. The instruction also specified whether the subtask was to be completed by

the human or robot.

The time taken by the subject to complete each subtask T subject
i was calculated as the

summation of time taken by the subject to understand the subtask T subject−understand
i and

the time taken to actually execute the subtask T subject−execute
i . In the case of the robot,

the time taken to understand the subtask was assumed to be zero. Hence, the overall

subtask time T robot
i was simply the time taken by robot to execute the subtask.

The total time taken by the team to complete the task T task was computed as the sum-

mation of time taken by all the subtasks. Summing the human subtasks completion time

provided the subject task time T subject, which was the total time the human collaborator

spent working on the task.
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4.2.3 Measurement Instruments

Efficiency and effectiveness were evaluated objectively by measuring the completion

time and accuracy of each subtask. Subtask completion time, for both human and robot,

was measured by recording the difference in time between start and end of the subtask.

For a human subject, the subtask completion time was expressed as the total time spent

on understanding the instructions and then executing it.

The percentage of task completion (fraction of successfully completed subtasks) was

used as a measure to evaluate the effectiveness of the collaborative task. Additionally,

accuracy of completing certain subtasks (e.g. aligning car door with a point on floor)

was also measured by computing the ground truth error.

After both task trials, participants were given a post-task questionnaire consisting of

seventeen 7-point Likert scale items and two free response questions, as shown in Table 3.

The questionnaire was designed to measure composite subjective metrics: human-robot

fluency, safety and trust in robot, task execution and task load. Questionnaire items were

inspired and adopted from works by Hoffman (2013), Gombolay et al. (2015) and Dragan

et al. (2015b). A few questions specific to the experiment (Questions 7-17) were added to

the questionnaire based on our intuition.

Apart from the post-task questionnaire, verbal data were collected by following the

think-aloud protocol. The subjects were asked to say aloud whatever went through their

mind as they understand and execute each subtask. The whole session was audio-taped.

During the post-experiment analysis, the audio recordings were transcribed and analyzed.
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Table 3: Subjective Measures - Post-task Questionnaire

Human-Robot fluency
1. The human-robot team worked fluently together.*
2. The robot contributed to the fluency of the interaction.*
Safety and Trust in Robot
3. I felt uncomfortable with the robot. (reverse scale)**
4. I was confident the robot will not hit me as it is moving.**
5. I felt safe working next to the robot.**
6. I trusted the robot to do the right thing at the right time.*
7. I was able to clearly understand robot’s intentions and actions.*
Task execution
8. How satisfied you feel about executing the whole task?*
9. I was comfortable in interpreting the instructions. The instructions were clear and
easy to understand.*
10. I feel that I accomplished the task successfully.*
11. I was able to assist the robot in completing its task successfully.*
12. The robot/system provided me with necessary feedback in order to complete the
task.*
13. I would work with the robot the next time the tasks were to be completed.*
14. How was your attitude towards the task while you were performing it?*
Task load
15. The task was mentally demanding (e.g., thinking, deciding, remembering, looking,
searching, etc.).***
16. The task was physically demanding. I had to put a lot of physical effort to complete
the task.**
17. I never felt discouraged, irritated, stressed or frustrated at any point of time during
the task execution.*
Free response questions
18. Which form of instruction (Printed or Projected) will you prefer if you were to
collaborate with the robot on a similar task and why?
19. Explain your overall experience working on the collaborative task in both the
scenarios (Printed and Projected).

Note: *p < .05 favoring the projected condition, **p = NS and ***p < .05 favoring the
printed condition as more mentally demanding.
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Chapter 5

RESULTS

In this chapter, the quantitative (objective and subjective) and qualitative (subjective)

findings from the human-robot collaborative experiment are analyzed and discussed in

detail. Also, statistically significant findings from the experiment are reported. A signif-

icance level of α = .05 was used for all statistical tests.

5.1 Participants

A total of 20 participants (aged 20–48, M = 25.85, SD = 5.88) consisting of un-

dergraduate and graduate engineering students at a large urban research university were

included in the study. All participants were recruited from the university campus via

email and word-of-mouth. Of the 20 participants, 10 reported having prior experience

directly interacting with a robot and 9 were native English speakers. Within-subjects de-

sign of the experiment enabled the participants to compare between the two modes of

communication. To control learning effect, participants were told that the two task trials

had different set of subtasks in assembling the car door, even though only the order of

the subtasks was randomized. To eliminate order effect, 10 participants were asked to

perform the printed mode first, followed by the projection mode and the other 10 were

asked to perform the projected mode first, followed by the printed mode.
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5.2 Objective Findings

5.2.1 Efficiency

Hypothesis H1.1 states that the efficiency of the human-robot collaborative team will

be higher in the case of the projected condition when compared to printed condition.

Total task completion time and subject task completion time were measured and compared

between the two conditions. On comparing the measured values from printed mode with

projection mode, the task times were found to be lower in the projection case. Fig. 9

illustrates the average task completion times in both test conditions.

Note: *Statistically significant difference (p < .05) was observed using paired t-test.

Figure 9: Mean and standard error for task completion times.

A paired t-test was used to evaluate the statistical significance of the task completion

times in different conditions. Total task completion time in the projected condition

(M = 468.20, SD = 112.58) was lower than in the printed condition (M = 736.4,

SD = 195.66), t(19) = 7.58, p < .0001. Also, subject’s task completion time in the
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projected condition (M = 268.50, SD = 112.38) was significantly lower than in the

printed condition (M = 521.65, SD = 200.26), t(19) = 6.81, p < .0001. The statistically

significant results reinforce our hypothesis that human-robot teams are more efficient

with just-in-time projected instructions than with static printed instructions.

5.2.2 Effectiveness

Hypothesis H1.2 states that the effectiveness will be higher in the case of the projected

mode than the printed mode. The effectiveness of the task in the two test conditions

were assessed by considering the percentage and accuracy of task completion in each test

scenario.

The percentage of task completion by the human-robot team was computed from the

fraction of successfully completed subtasks out of all given subtasks. The projected and

printed modes were compared using paired t-tests, and it was found that task completion

percentage is significantly higher in the projected mode (M = 97.50, SD = 5.47) than

in the projected mode (M = 58.75, SD = 17.83), t(19) = 8.19, p < .0001. It can be

seen from Fig. 10 that the average task completion percentage is significantly higher in

the projected condition than the printed condition. 16 of 20 subjects were able to finish

the task with (100%) success following projected instructions, while only one subject was

completely successful using printed instructions.

As a measure of accuracy, the ground truth errors for subtasks involving alignment

of the car door and objects in both task conditions were measured. The experiment

involved four error-measurable subtasks – three car door alignment and one circular

object alignment. In car door alignment, both translation and rotation errors were noted,

while in circular object alignment only the rotational error was noted. Both translation
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Note: *Statistically significant difference (p < .05) was observed using paired t-test.

Figure 10: Mean and standard error for percentage of task completion.

and rotation errors were comparably smaller in the projected condition when compared

to printed condition. Paired t-test on the translation errors show that there is a significant

difference between the two scenarios. In comparison, paired t-test on the rotation errors

revealed that there is a significant difference between scenarios only in subtasks car door

alignment 2 and circular object rotation, with no significant difference in rotational

errors of subtasks car door alignment 1 & 3 between scenarios, as illustrated in Fig. 11b.

This is acceptable because, the subtasks car door alignment 1 & 3 involved rotating and

aligning the car door parallel (0◦) to the robot, which is easier to accomplish even without

feedback when compared to subtask car door alignment 2 that involved rotating car door

to a specified angle.
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(a) Translational Errors

(b) Rotational Errors
Note: *Statistically significant difference (p < .05) was observed using paired t-test.

Figure 11: Mean and standard errors of task completion.
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5.2.3 Task Understanding Time

In hypothesis H2, It was postulated that the time taken by different subjects to un-

derstand a subtask will be constant if the instructions are provided in augmented visual

form. To prove the hypothesis, we measured the understanding times of the subject for

9 subtasks that were assigned to participants and analyzed the standard errors of means.

Task understanding time is defined as the time spent by the participant in reading or

looking into the instructions.

It was observed that the standard errors for all subtasks in the projected condition

were significantly lower than in the printed condition, implying that most participants

took a similar amount of time to understand a subtask. In contrast, standard errors in

the printed condition was comparatively higher, particularly for subtasks 1, 4, and 8, as

shown in Fig. 12. This finding supports our hypothesis that there will be less variance in

task understanding time in the projected condition as compared to the printed condition.

Figure 12: Mean and standard error for task understanding time.
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5.3 Subjective Findings

5.3.1 Questionnaire Items

Participant ratings for each questionnaire item was compared between test conditions

(printed vs. projected) using Wilcoxon signed rank test for ordinal data. Hypothesis

H3 states that subjects will experience higher satisfaction and positive attitude working

in the projected condition compared to the printed condition. Subjective responses sig-

nificantly favored the projected condition with regard to human-robot fluency, safety,

task execution, and attitude. Participants found the printed condition to be significantly

more mentally demanding. Participants reported no significant difference between the

printed and projected condition related to safety or physical demands. Hypothesis H3

also states that explicit visual feedback will instill a positive attitude in participants, and

that participants will feel negative or neutral when they receive no explicit feedback from

the system or robot (i.e. in the printed condition). Subjective responses supported this

hypothesis with the median central tendency for Q14 (How was your attitude to the task

while you were performing it?) being 6 (“positive”) for the projected case, compared to 4

(“neutral”) for the printed case.

5.3.2 Qualitative Free Response Data

Free response data was analyzed using qualitative content analysis methodology, in-

cluding line by line coding and theme induction (Krippendorff, 2012). All participants

but one favored the projected condition. One subject favored the printed and projected

conditions equally, and two participants noted that they would prefer the projected task
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Figure 13: Percentage of subjects mentioning theme per free response question.

condition with posted printed instructions for cross-referencing purposes. Major themes

included user perceptions of their own ability (e.g. ease of performing task, ability to

complete task accurately), user perceptions of robot system performance (e.g. clarity of

instructions, provision of feedback, intuitiveness of the overall process, system oversight

of the task series), human-robot interaction experience (including perceived safety), and

overall attitude toward task condition. Fig. 13 illustrates data reflecting the percentages

of subjects mentioning each theme.

Overall, free response comments were overwhelmingly positive for the projected in-

structions condition in contrast to more negative responses for the printed instructions

condition. Several respondents noted that the projection system felt game-like, whereas

the printed system felt like work. Respondents felt that the projection system was more

intuitive, leading to more fluid task performance in contrast to the printed task, which

required frequent reference to the instructions that were not always intuitive, and fre-

quently hampered by human imprecision in the manual measuring elements of the task.

However, one participant noted that the printed task condition was mentally stimulating,

forcing independent thought as opposed to the intuitive commands from the projected

task condition. Participants perceived that the projected condition yielded better accuracy

with improved efficiency compared to the printed condition. However, one participant

noted that in a manufacturing environment with compartmentalized worker task repeti-
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tion, a worker presented with printed task instructions would most likely become fluent

with the task after a few repetitions, so that the printed approach would ultimately be

more efficient than the projected instruction approach. Several participants referred to

the human-robot interaction as a team, and most participants felt that the human robot

interaction was safe. However, one participant noted that he felt as though he had to

keep visual contact on the robot in case it started moving unexpectedly, signaling a lack

of trust in the robot. Participants noted that it was a positive feature that the robotic

system kept track of overall task progress in the projection system, rather than relying on

human oversight.

The majority of qualitative free response themes were captured by the Likert-type

subjective questions (Table 3). Additional subjective questions related to system speed,

style of inputs, and system oversight may be warranted for future research. There is likely

bias in the thematic content of qualitative free responses due to conceptual priming

effect (Bargh et al., 1996) from administering subjective Likert scale questions on the

same printed form immediately before soliciting free response data. Additional research

capturing free response data separately and prior to completion of a formal themed

questionnaire may be useful to elicit additional themes.

5.3.3 Think-Aloud Findings

The verbal data obtained from think-aloud method was analyzed for common themes

and inferences were made from their thoughts. The analysis was made on six randomly

chosen subjects. The findings from the analysis are reported below.

• Safety: Safety is a concern expressed by the majority of subjects. In both cases, sub-

jects expressed a concern about drill stability in the robot grasp. Subjects expressed
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concerns about safety with regard to robot movement in the printed condition

only; there were no such concerns in the projected condition.

• Uncertainty: Subjects expressed a general lack of certainty in the printed condi-

tion, despite an opportunity to perform discrete measurements (i.e. with measuring

tape). Rotational angle is particularly difficult to achieve correctly in the printed

condition. Subjects in the projected condition expressed early uncertainty that

was quickly allayed and replaced with certainty after the first task was successfully

completed.

• Mental rehearsal: Subjects in the printed condition mentally rehearsed the tasks

while reading instructions, with particular focus on the numbered measurements

required. Although subjects in the projected condition did not do similar mental

rehearsal, one subject noted that it would be nice to have a pre-indication of the

robot’s intended movement in the projected case.

• Clarity: Subjects expressed a lack of clarity in the printed instructions, compared

to clarity in the projected instructions. Subjects in the projected condition noted

the clarity of projected symbols that quickly obviated the need for verbal cues.

• Uncertainty: Subjects committed several errors in the printed condition due to

uncertainty. There were no such errors or uncertainty experienced in the projected

condition.

• Difficulty: Subjects expressed difficulty remembering the printed instructions. Sub-

jects in the projected condition noted that the series of tasks was easier to complete

compared to the printed condition.

• Anthropomorphism: One subject in the projected condition assigned sentient qual-

ity to the robot: “It wants me to…”
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• Fun: One subject in the projected condition noted that it was fun, “like a video

game.”
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this work, a methodology for visual signalling during human-robot collaboration

has been proposed. A mixed reality system that combines a vision-based object tracking

algorithm with a context-aware projection mapping technique was introduced. The system

uses the physical environment as a medium for communication with the human user.

Also, a conceptualization for visual languages based on signal categories, similar to parts

of speech in natural language, was presented as a part of this work. The conceptualization

can guide the development of domain-specific visual languages.

A user study was performed to evaluate the introduced methodology. The objective

evaluation using the task completion time and accuracy measurements corroborated our

hypotheses H1.1 and H1.2 that using our mixed reality system would increase the effi-

ciency and effectiveness of a human-robot team. Participants took less time to complete

the task when following projected visual instructions. More than three-fourths of the par-

ticipants were successful in completing the overall task in the projected condition. The

analysis also confirmed that visual instructions were intuitive and took approximately

the same amount of time for different participants to understand, which supported our

hypothesis H2.

Subjective findings from structured and free response questions supported our hy-

pothesis H3 that participants would experience higher satisfaction with the projected

mode compared to the printed mode. Participants responded favorably to feedback and
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found the projected case to be enjoyable. However, there was not a significantly improved

perception of safety in the projected mode, and there was some concern that speed was

sacrificed particularly in the perceived case of an experienced human user. These findings

merit further exploration in a more heterogeneous participant sample, and may suggest

the need for additional program modification with regard to safety cues and robot speed.

Notably, multiple participants referred to the human-robot collaboration as a team,

reflecting the term offered by the experimental instructions and suggesting the opportu-

nity to explore development of qualities characterizing high-functioning teams, such as

trust, in the human-robot interaction. In addition, several participants mentioned that

the projected case had a game-like quality. This observation suggests the opportunity to

explore further integration of game design concepts (Salen and Zimmerman, 2004) to

enhance the human experience and task performance.

6.2 Future Work

In light of our relatively homogeneous participant cohort consisting of undergraduate

and graduate engineering students at a large urban research university, we cannot general-

ize our findings to a broad user group. Therefore, we plan further testing with additional

participant groups, including non-engineers, individuals with prior line manufacturing

experience, and individuals representing a broader age range.

Future plans include incorporating multiple projection devices into the system to

overcome the limitation due to occlusions and also to increase the projection area. One

of the limitations of the proposed system is that the information flow is unidirectional, i.e.

only the intentions of the robot are taken into account for planning and communicating

with the human. But in real life scenarios it is necessary to include intentions and actions
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of humans for robot planning and projection. Future plans on building a human-aware

system has been discussed in detail in the following section.

6.2.1 Human-aware System

As stated previously, tracking human actions and intentions can help the system

to effectively plan and project information. To this end, motion sensing devices like

Microsoft’s Kinect can be employed to track the position and state of humans within the

work arena. Some of the potential applications using a human-aware system are discussed

below.

• Adaptive Projection Mapping: One of the limitations of the current system is that

the projection mapping works best from the projector’s point of view. But the

human interacting with the robot will experience perspective distortion, if viewed

from a different angle. To over come this limitation, human position and viewing

angle can be tracked and the projection mapping can be made adaptive to eliminate

perspective distortion.

• Safety: By tracking the position of the human within the workspace, it is possible

be project timely information regarding the safety. For example, the system can

project warning cues when a human co-worker moves close to the robot when it

is in action. If the human gets too close to the robot, the system can trigger an

emergency stop and bring the robot to safe state, thereby avoiding any accident.

• Online robot plan: The present system computes the plan for the task offline. This

means that the task flow is fixed and might be inefficient. By predicting human

intentions and actions from the position tracking data, it is possible to make the

robot plan adaptive, thereby enabling online planning of the task.
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• Machine Learning to Predict Human Intentions: Human movement data from

different task trials can be used to train machine learning models to predict human

actions and intentions. This can help the system to plan actions well in advance

and ensure the safety of the workspace. Advanced vision algorithms like facial

expression recognition and human posture recognition can be used to predict the

emotional state of the human partner. This in turn can help the system to take

decisions during emergency situations and improve its performance over time.

• Interaction through Gestures: Human gestures can be detected and used as a direct

feedback to the system. This Non-verbal form of communication can help in

achieving the bi-directional information flow.
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Informed Consent 

Visual Augmented Reality Signals for Human-Machine Collaboration 

INTRODUCTION 

We invite you to take part in a research study because we would like to analyze how 

healthy users between 20 and 50 years react to a novel augmented reality method. The 

purposes of this form are to provide you (as a prospective research study participant) 

information that may affect your decision as to whether or not to participate in this 

research and to record the consent of those who agree to be involved in the study. 

Investigator 

Principal Investigator: Heni Ben Amor, PhD, Assistant Professor in the Ira A. Fulton 

School of Engineering at Arizona State University (ASU). 

PARTICIPATION REQUIREMENTS 

In order to participate, you must be between the ages of 20 and 50 years, have no current 

arm impairment, have no known neurological disorders, be in general good health, and be 

proficient in English. If you do not meet these criteria, please inform the researcher. 

STUDY PURPOSE 

In this study, we investigate a novel methodology for human-machine collaboration that 

uses augmented reality information that is projected into the environment. We are 

investigating the benefits of this approach when compared to traditional written or oral 

instructions. 

DESCRIPTION OF RESEARCH STUDY 

If you decide to participate, then as a study participant you will join a study involving 

research on human-machine interaction. You will be asked questions about your general 

health. You are encouraged to notify a researcher immediately if the experimental set-up 

is uncomfortable at any time so the problem can be fixed. The study session will be 

recorded through a video camera for a later analysis of your movements and responses. 

The video will capture your entire body, including posture and face. However, the 

subsequent analysis will only address your posture and uttered words and questions.  

If you say YES, then your participation will last for approximately 30 minutes for today’s 

session in the Centerpoint Building, Room 203-27. Approximately 20 subjects will be 

participating in this study. 
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RISKS 

Potential risks include temporary fatigue of the arm or the feet. This may occur during the 

experiment and last for approximately 5 minutes after completion of the experiment. 

There are no long-term risks to participants. 

BENEFITS 

Although there may be no direct benefits to you, the results of this study may enhance the 

scientific understanding of the interaction between robots and humans, that can enhance 

our understanding about robot-human cooperation, as well as create communication 

methods for robotic systems to better aid humans. This knowledge may benefit the fields 

of Human-Machine Interaction, Computer Graphics, and  Robotics and has practical 

applications for the advancement of the control of robotic systems. 

NEW INFORMATION 

If the researchers find new information during the study that would reasonably change 

your decision about participating, then they will provide this information to you. 

CONFIDENTIALITY 

All information obtained in this study is strictly confidential unless disclosure is required 

by law. The results of this research study may be used in reports, presentations, and 

publications, but the researchers will not identify you. In order to maintain confidentiality 

of your records, Dr. Ben Amor or a member of his research team will assign you a 

random participant ID. Your anonymity is guaranteed by the use of the random code, 

which will be used to anonymize all data and data collection forms. 

This informed consent form will be stored in a locked filing cabinet in Dr. Ben Amor’s 

office. Data files will be stored on computers in secure folders, accessible only by 

authorized researchers. Data will be retained for 2 years, after which, paper documents 

will be shredded and electronic documents will be deleted.  

WITHDRAWAL PRIVILEGE 

It is OK for you to say NO. Even if you say YES now, you are free to say NO later, and 

withdraw from the study at any time without penalty. Your decision will not affect your 

relationship with ASU or otherwise cause a loss of benefits to which you might otherwise 

be entitled. Participation in this study is entirely voluntary and nonparticipation or 

withdrawal from the study will not affect your grades or employment status. 

COSTS AND PAYMENTS 

The researchers want your decision about participating in the study to be absolutely 

voluntary. Should you have any concerns, do not hesitate to talk to Dr. Ben Amor. 
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COMPENSATION FOR ILLNESS AND INJURY 

If you agree to participate in the study, then your consent does not waive any of your 

legal rights. While no funds have been set aside to compensate you in the event of injury, 

the researchers do not foresee any risk of injury to you in this study. 

VOLUNTARY CONSENT 

Any questions you have concerning the research study or your participation in the study, 

before or after your consent, will be answered by the Principal Investigator: Heni Ben 

Amor, PhD, Assistant Professor in the Ira A. Fulton School of Engineering at ASU, 

Centerpoint, Room 203-07, (404) 234-8507. 

If you have questions about your rights as a subject/participant in this research, or if you 

feel you have been placed at risk; you can contact the Chair of the Human Subjects 

Institutional Review Board, through the ASU Office of Research Integrity and 

Assurance, at (480) 965-6788. 

This form explains the nature, demands, benefits and any risk of the project. By signing 

this form you agree knowingly to assume any risks involved. Remember, your 

participation is voluntary. You may choose not to participate or to withdraw your consent 

and discontinue participation at any time without penalty or loss of benefit. In signing 

this consent form, you are not waiving any legal claims, rights, or remedies. A copy of 

this consent form will be given (offered) to you. 

 

Your signature below indicates that you consent to participate in the above study.  

 

___________________________ _________________________ ____________ 

Subject's Signature Printed Name Date 

 

___________________________ _________________________ ____________ 

Investigator’s Signature Printed Name Date 
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