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ABSTRACT    

The study of subwavelength behavior of light and nanoscale lasing has broad 

potential applications in various forms of computation i.e. optical and quantum, as well as 

in energy engineering. Although this field has been under active research, there has been 

little work done on describing the behaviors of threshold and saturation. Particularly, how 

the gain-molecule behavior affects the lasing behavior has yet to be investigated.  

In this work, the interaction of surface-plasmon-polaritons (SPPs) and molecules is 

observed in lasing. Various phenomenologies are observed related to the appearance of the 

threshold and saturation regions. The lasing profile, as a visual delimiter of lasing threshold 

and saturation, is introduced and used to study various parametrical dependencies of lasing, 

including the number-density of molecules, the molecular thickness and the frequency 

detuning between the molecular transition frequency and the SPP resonant frequency. The 

molecular population distributions are studied in terminal and dynamical methods and are 

found to contain unexpected and theoretically challenging properties. Using an average 

dynamical analysis, the simulated spontaneous emission cascade can be clearly seen. 

Finally, theoretical derivations of simple 1D strands of dipoles are presented in both 

the exact and mean-field approximation, within the density matrix formalism. Some 

preliminary findings are presented, detailing the observed behaviors of some simple 

systems. 
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I. INTRODUCTION 

A. Opening 

The following is a comprehensive presentation of detailed computational and 

theoretical work on the subject of lasing systems – particularly on the gain media of 4-level 

molecules in 2-dimensions. The author had completed a simpler work of this nature 

previously in 1-dimension, this being the natural extension. The personal motivation to 

pursue the in-depth research presented, apart from the academic, is not only to advance the 

general research enterprise, but to grow as a physicist, in the hope of benefiting humanity 

with current and subsequent findings. 

The work is meant to be taken as a comprehensive whole, however, the reader is 

encouraged to customize the experience as deemed necessary as many sections can stand 

alone.  

1)  Motivation 

Control and behavior of light under ordinary circumstances is limited to the diffraction 

limit and wavelength of the radiation of interest. For visible light, that range is 

approximately 400 nm to 700nm. This is not the complete story, however. A variety of 

plasmons can be supported by various materials [1] which will be described in more detail 

in Section I-C3, but are collective excitations of the electrons in a metal [2]. These 

plasmons are due to evanescent fields caused by internal reflection. The primary interest 

in them is that the radiation is localized by at least an order of magnitude smaller than the 

vacuum wavelength [1]. With this subwavelength control, a variety of possibilities and 
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application have been proposed such as advances in lenses and optical nonlinearities [3] to 

optical and quantum computers [4].  

To understand and thereby advance these proposed applications, research has been 

growing to develop accurate and useful, self-consistent models that describe the plasmons 

and their coupling to various materials [5], [6], [3], and [7]. Since metals cause high optical 

loss, much concentration has been put into coupling plasmons with lasing material to 

compensate [8]. This work develops a model, similar to the state-of-the-art and 

demonstrates various features and behaviors. Of particular emphasis in this work is, 

however, the behavior of the gain medium interacting with the plasmons. This is an area 

that seems to have been left behind. The semi-classical model for the gain medium 

developed in Section I-C4 is rather standard. Since the model produces experimentally 

verifiable results, it has remained largely unexplored, and the behavior of the gain material 

is rarely, if ever, discussed. This work endeavors to investigate the various features of 

lasing with Plasmon-molecule coupled lasing systems, particularly asking the questions: 

why does lasing occur? what happens in the gain medium? And how does the gain material 

behave? As these questions are quite ambitions and usually lead to more questions, this 

work presents findings up-to-date and will hopefully lead to the answering of the above 

questions, and perhaps development of better theory and understanding. 

2) Opening Summary 

Now, to provide the reader with a brief orientation on the layout of this work. This first 

section provides relevant theory and background to appreciate the work. Section II details 

computational research completed on lasing system, with computational analysis into the 
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molecular dynamics. Section III lays the groundwork for a deeper theoretical endeavor to 

compare the exact quantum formulation of the gain medium, and the mean-field 

approximation used in Section II and almost every other work of this nature. A few parting 

words and summary are given in Section IV.   

B. Simulated System 

Before a discussion of the physics given, a description of the system under simulation 

will motivate the physics needed and provide a mental picture of what the work is all about. 

The system is a periodic structure of silver nanoslits with a nanolayer of 4-level molecules 

as the gain medium, depicted below. 

 

 

The parameters governing the geometry of the silver nanoslits are the slit radius, 𝑅, and 

the thickness, 𝑡, keeping in mind that the z-axis extends to infinity. The periodicity is 

Figure 1: Rendition of the Simulated System. The Gray is the silver (Ag), the blue is the 

molecular layer. The dotted lines depict the periodicity. The nanoslit geometrical 

parameters are R and t. One of the molecular layer parameters is the thickness, Mt. 
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depicted by the dotted lines. The molecular layer, has the geometric parameter of its 

thickness, 𝑀𝑡. The little levels depicted in the molecular layer will become apparent in 

Section I-C4. 

C. The Physics  

All proper academic endeavors are set apart from the ordinary, the simplistic and the 

metaphysical by, in addition to concrete analysis and testing, having a firm foundation in 

previous work and a concrete (or the closest possible) understanding of empirically 

confirmed theory. This work endeavors no less. The following will deliver to the reader 

the most cogent aspects of relevant theory to understand and appreciate the work. 

Following, the computational aspects of this work will be presented including the famous 

Yee’s Algorithm and the implementation of the simulation system. 

1) Maxwell’s Equations and Modes 

Perhaps one of the most seminal works in physics was the development of a 

comprehensive and self-consistent description of electric and magnetic phenomena. 

Maxwell is regarded as the progenitor of the famous Maxwell’s Equations. While Maxwell 

did connect the known phenomena together in his work and was the first to successfully 

predict the speed of light theoretically, he developed 20 equations and were somewhat 

difficult use. Oliver Heaviside was the one that packaged Maxwell’s discoveries into the 

form in which we are familiar today [9]: 

 ∇ ∙ �⃑⃑� =
1

𝜖0
ρ (1. 1) 

 ∇×�⃑⃑� = −
𝜕�⃑⃑� 

𝜕𝑡
 (1. 2) 
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 ∇ ∙ �⃑⃑� = 0 (1. 3) 

 ∇×�⃑⃑� = 𝜇0𝑱 + 𝜇0𝜖0
𝜕�⃑⃑� 

𝜕𝑡
 (1. 4) 

For propagation in matter, the auxiliary fields are used and since the gradient equations can 

be derived from the curl equations, the equations necessary for simulation are given as the 

following with the appropriate adjustments made for propagation in matter: 

 𝛻×�⃑⃑� = −𝜇
𝜕�⃑⃑⃑� 

𝜕𝑡
 (1. 5) 

 𝛻×�⃑⃑⃑� = 𝜎�⃑⃑� + 𝜖
𝜕�⃑⃑� 

𝜕t
  (1. 6) 

The simulations in this work are 2-D, or there is one dimension (z for this work) in which 

there are no changes a.k.a. the derivatives with respect to the third dimension are all zero. 

In practical applications, this means that one dimension is comparably infinite to the other 

two dimensions i.e. the vertical dimension of a system is in μm and the horizontal 

dimensions are in nm. Carrying out simulations in 2-D greatly reduces computational 

complexity while still being useful in physical investigations. An interesting physical 

phenomenon can be shown if the curl equations are written in component form: 

 

𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −𝜇

𝜕𝐻𝑥

𝜕𝑡

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= −𝜇

𝜕𝐻𝑦

𝜕𝑡
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝜇

𝜕𝐻𝑧

𝜕𝑡

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝜎𝐸𝑥 + 𝜖

𝜕𝐸𝑥

𝜕𝑡

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝜎𝐸𝑦 + 𝜖

𝜕𝐸𝑦

𝜕𝑡
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝜎𝐸𝑧 + ϵ

𝜕𝐸𝑧

𝜕𝑡

 (1. 7) 
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In 2-D, as mentioned, the spatial derivatives of the comparably infinite dimension are null, 

therefore eliminating the spatial derivatives of z: 

 

TM Mode

{
 
 

 
 

𝜕𝐸𝑧

𝜕𝑦
= −𝜇

𝜕𝐻𝑥

𝜕𝑡

𝜕𝐸𝑧

𝜕𝑥
= 𝜇

𝜕𝐻𝑦

𝜕𝑡
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝜎𝐸𝑧 + 𝜖

𝜕𝐸z

𝜕𝑡

TE Mode

{
 
 

 
 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝜇

𝜕𝐻𝑧

𝜕𝑡

𝜕𝐻𝑧

𝜕𝑦
= 𝜎𝐸𝑥 + 𝜖

𝜕𝐸𝑥

𝜕𝑡

𝜕𝐻𝑧

𝜕𝑥
= −𝜎𝐸𝑦 − 𝜖

𝜕𝐸𝑦

𝜕𝑡

       

 (1. 8) 

The component forms have been grouped into two modes given the names Transverse 

Magnetic and Transverse Electric modes. Notice that each of the modes requires no 

information from the other mode. Since these two modes are independent, only one need 

be simulated, again, reducing computational complexity. As was described in Section I-B, 

the system under simulation is infinite in the z-dimension. Only the TE mode will stimulate 

plasmon phenomena and is the only mode simulated. To demonstrate that the TE mode 

contains the necessary information to fully describe the EM wave phenomena, the 

following derivatives are taken: 

 

𝜕

𝜕𝑡
 [

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝜇0

𝜕𝐻𝑧

𝜕𝑡
]

𝜕

𝜕𝑦
 [

𝜕𝐻𝑧

𝜕𝑦
= 𝜎𝐸𝑥 + 𝜖

𝜕𝐸𝑥

𝜕𝑡
]

𝜕

𝜕𝑥
 [

𝜕𝐻𝑧

𝜕𝑥
= −𝜎𝐸𝑦 − 𝜖

𝜕𝐸𝑦

𝜕𝑡
]

→
𝜕2𝐸𝑦

𝜕𝑡𝜕𝑥
−

𝜕2𝐸𝑥

𝜕𝑡𝜕𝑦
= −𝜇0

𝜕2𝐻𝑧

𝜕𝑡2

→
𝜕2𝐻𝑧

𝜕𝑦2 = 𝜎
𝜕𝐸𝑥

𝜕𝑦
+ 𝜖

𝜕2𝐸𝑥

𝜕𝑡𝜕𝑦

→
𝜕2𝐻𝑧

𝜕𝑥2 = −𝜎
𝜕𝐸𝑦

𝜕𝑥
− 𝜖

𝜕2𝐸𝑦

𝜕𝑡𝜕𝑥

 (1. 9) 

And upon addition of the three resulting equations: 

 
𝜎

𝜖

𝜕Ey

𝜕𝑥
−

𝜎

𝜖

𝜕Ex

𝜕𝑦
+

1

𝜖

𝜕2Hz

𝜕𝑥2
+

1

𝜖

𝜕2Hz

𝜕𝑦2
= μ0

𝜕2Hz

∂𝑡2
 (1. 10) 
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The underlined portion is one of the 2-D wave equations. The extra curl portion is only 

relevant in matter. In vacuum, 𝜎 = 0 and the standard wave equation is recovered. The TE 

mode equations form the backbone of the simulations. In vacuum, they are complete. In 

the metal and the molecular layer however, more theory is needed.   

2) Drude Model 

For the electric fields in the silver, the Drude model is used. Around 1900, Drude 

developed the first iteration of what is known as the Drude model by assuming the electrons 

in a metal formed an ideal gas, using the classical equation of motion [2]: 

 𝑚�̇� +
𝑚

𝜏
𝑣𝐷 = −𝑒𝐸 (1. 11) 

where 𝑚 is the electron mass, 𝜏 is a relaxation time, 𝑣𝐷 is a frictional term, 𝑒 is the 

elementary charge unit, and 𝐸 is the external field. Derivations are plentiful and will not 

be shown here. The final expression for the relative permittivity is given by [10]: 

 𝜖(𝜔) = 𝜖∞ −
𝜔𝑝

2

𝜔2−𝑗𝜔𝛾𝑝
 (1. 12) 

where 𝜔𝑝 is the pole frequency and 𝛾𝑝 is the inverse relaxation time. 

3) Plasmons 

Plasmons refer to the collective excitations of conductive electrons. These excitations 

are highly localized and behave, in some ways, similarly to particles. There can be localized 

surface plasmon-polaritons and propagating plasmon-polaritons [1] which are the result of 

the relative magnitude of the permittivities of the material at an interface. Detailed 

derivations of SPPs that result in evanescent waves can be found in a variety of sources 
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such as [11] but will not be provided here as the plasmons in the simulation result from 

direct application of the Maxwell equations, the Drude model, and the lasing model which 

is presented next, not from other external equations or parameters.  

4) Lasing and Molecules 

To understand the concept of light amplification by stimulated emission of radiation 

or a laser, three fundamental energy exchange process must be understood – stimulated 

absorption, stimulated emission and spontaneous emission. Stimulated absorption is 

perhaps the most intuitive of the three. Consider a molecule in some state. When a photon 

with the energy equivalent to the difference between the molecule’s next energy level and 

the current state is absorbed by the molecule, the molecule has the energy to vibrate at the 

next energy level. Stimulated emission is similar but perhaps less intuitive. The molecule, 

now in the first excited state absorbs another photon of the same energy, but instead of 

rising in energy to the next level, the molecule re-emits the photon that it absorbed, along 

with another identical one, falling back down to the ground state. Quantum mechanically, 

the probability of stimulated emission or absorption happening is identical in this simple 

scenario [12].  

Stimulated emission was first described by Einstein through his famous A and B 

coefficients. Consider a group of molecules that can be in state 𝑎 or 𝑏. Performing a simple 

dynamic balance assuming a probability distribution 𝜌(𝜔0): 

 
𝑑𝑁𝑏

𝑑𝑡
= −𝑁𝑏𝐴 − 𝑁𝑏𝐵𝜌(𝜔0) + 𝑁𝑎𝐵𝜌(𝜔0) (1. 13) 

where A is the spontaneous emission and B is the stimulated emission/absorption 

coefficient [12]. Einstein compared the distribution derived from the above equation to the 
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blackbody emission equation and found expressions for A and B. For a system in thermal 

equilibrium [11]:  

 
𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑎𝑢𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
=

1

𝑒ℎ𝜈/𝑘𝑇−1
 (1. 14) 

The expressions for spontaneous emission are well-known. It is a well-known result from 

Quantum Electro Dynamics (QED), such as described in [12] that spontaneous emission is 

stimulated emission in which the stimulation comes from the vacuum fluctuations. As may 

have become clear, the method of simulation that will be presented is semi-classical, which 

is why the Maxwell equations are used. Unless full QED is implemented, spontaneous 

emission must be simulated somehow. More on this in a bit. 

The lasing model used in this work consists of a four-level molecule formulation. 

Consider a molecule with 4 distinct energy states, 𝐸0, 𝐸1, 𝐸2, and 𝐸3. The spacing between 

levels 𝐸3 and 𝐸2 and 𝐸1 and 𝐸0 are small in comparison to 𝐸2 and 𝐸1. The levels will be 

referred to by their number density, 𝑁𝑖, respectively. Figure 2 shows the rendition that was 

used in the molecular layer in Figure 1. 

Figure 2: 4-level molecular model. N2 and N1 are considered the lasing levels. 

Population inversion is achieved when N3 is greater than N1. 



10 

The lifetimes of the states 𝑁3 and 𝑁1 are small due to non-radiative decay such as phonon 

scattering. Coupling this model to an external electromagnetic field, the working equations 

for the molecules are finally generated: 

 

𝜕𝑁3

𝜕𝑡
=

1

ℏ𝜔𝑏
�⃑⃑� ∙

𝜕�⃑� 𝑏

𝜕𝑡
−

𝑁3

𝜏32
          

𝜕𝑁2

𝜕𝑡
=

𝑁3

𝜏32
+

1

ℏ𝜔𝑎
�⃑⃑� ∙

𝜕�⃑� 𝑎

𝜕𝑡
−

𝑁2

𝜏21

𝜕𝑁1

𝜕𝑡
=

𝑁2

𝜏21
−

1

ℏ𝜔𝑎
�⃑⃑� ∙

𝜕�⃑� 𝑎

𝜕𝑡
−

𝑁1

𝜏10

𝜕𝑁0

𝜕𝑡
= −

1

ℏ𝜔𝑏
�⃑⃑� ∙

𝜕�⃑� 𝑏

𝜕𝑡
+

𝑁1

𝜏10
      

 (1. 15) 

Lasing occurs as a chain reaction. The input radiation or pump stimulates the molecules to 

the upper most level with a frequency/energy, 𝜔3↔0 = 𝜔𝑏 = 𝐸3 − 𝐸0. The molecules at 

the top level rapidly decay (small 𝜏32) to level 𝑁2. If there were no spontaneous emission, 

the molecules would just pile up there and nothing would happen. Due to numerical errors, 

there are tiny amounts of various other frequencies besides the pump frequency that is used. 

Observe Figure 3 below. 

Figure 3: FFT of CW. Blue is the Transmission, Red is the noise 

floor (the Reflection) 
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The blue curve shows a CW (continuous wave). The code is set to generate a single sine 

wave with a frequency of 4.716 eV. A perfect simulation would show a delta spike at 4.716 

eV only. Considering the noise floor in red, all frequencies are present at small magnitudes. 

Because of this, the numeric error can mimic the vacuum fluctuations and stimulate the 

molecules in 𝑁2 to decay to 𝑁1 by emitting radiation at the lasing frequency, 𝜔2↔1 = 𝜔𝑎 =

𝐸2 − 𝐸1. Molecules at 𝑁1decay rapidly as well via small 𝜏10. The equations that are used 

in the simulations have now been generated as equations 1.8, 1.12 and 1.15.  

D. Yee’s Algorithm 

The Yee algorithm, developed by Kane Yee in 1966 is the method of choice for high 

level, computation optics simulations. Of course, numerical methods must be used in a 

computation setting. For example, using the Finite Difference Time Domain for the 

following equations: 

 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝜇0

𝜕𝐻𝑧

𝜕𝑡

𝜕𝐻𝑧

𝜕𝑦
= 𝜎𝐸𝑥 + 𝜖

𝜕𝐸𝑥

𝜕𝑡

𝜕𝐻𝑧

𝜕𝑥
= −𝜎𝐸𝑦 − 𝜖

𝜕𝐸𝑦

𝜕𝑡

 (1. 16) 

Converting them to their numerical approximations: 

 

 

→
𝐸𝑦(𝑖+1,𝑗)−𝐸𝑦(𝑖,𝑗)

  ∆ 𝑥
−

𝐸𝑥(𝑖,𝑗+1)−𝐸𝑥(𝑖,𝑗)

  ∆ 𝑦
= −𝜇0

𝐻𝑧,𝑡(𝑖,𝑗)−𝐻𝑧,𝑡−1(𝑖,𝑗)

  ∆ 𝑡

→  
𝐻𝑍(𝑖+1,𝑗)−𝐻𝑍(𝑖,𝑗)

  ∆ 𝑦
= 𝜎𝐸𝑥(𝑖, 𝑗) + 𝜖

𝐸𝑥,𝑡(𝑖,𝑗)−𝐸𝑥,𝑡−1(𝑖,𝑗)

  ∆ 𝑡

→  
𝐻𝑍(𝑖,𝑗+1)−𝐻𝑍(𝑖,𝑗)

  ∆ 𝑦
= −𝜎𝐸𝑦(𝑖, 𝑗) − 𝜖

𝐸𝑦,𝑡(𝑖,𝑗)−𝐸𝑦,𝑡−1(𝑖,𝑗)

  ∆ 𝑡

 (1. 17) 
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Yee brilliantly realized that if the electric field and the magnetic field were put on 

interlocking grids, the equations would be explicitly solvable in the above form. The grid 

used is visualized in Figure 4. The curls needed are easily seen around each vertex of the 

cubes in c).  

 

In addition to its ease, the Yee algorithm has several advantages including implicit use of 

boundary conditions just by the setup of the simulation [10]. The code is then written to 

create the interlocking grids. In vacuum, the Maxwell equations are used alone. In metal 

or molecules, the Maxwell equations are used in conjunction with either the Drude model 

or the Population model, respectively. 

II. PLASMON SYSTEM 

A. Plasmon Resonance 

To provide the strongest coupling between the metal Plasmons and the molecular layer, 

the system was first simulated without molecules. A series of tests were conducted to 

observe the frequency response of the transmission and reflection when the silver slits were 

Figure 4: Visualization of Yee’s Algorithm. Note the interlocking grid 

from which the curl is immediately obvious. Creative Commons 

Copyright. 
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stimulated by an electric field pulse with a variant of a Blackman-Harris line shape for 

various geometries: 

𝐸(𝑡) = 𝐸0× cos(𝜔𝑡)× (𝑎0 − 𝑎1 cos (
2𝜋𝑡

𝜏
) + 𝑎2 cos (

4𝜋𝑛

𝜏
) + 𝑎3 cos (

6𝜋𝑛

𝜏
)) (2. 1) 

In which 𝑎0, 𝑎1, 𝑎2, and 𝑎3 where set to produce a large amount of stimulating frequencies. 

The transmission (𝑇𝑟), reflection (𝑅𝑒), and absorption (𝐴𝑏) of the slits given as normalized 

fractions are then observed. Of course, as energy is conserved: 

 𝐴𝑏 = 1 − 𝑇𝑟 − 𝑅𝑒 (2. 2)  

Nine geometries were tested. The transmission results are given in Figure 6 and Figure 5. 

As the molecular sheet in subsequent tests is placed on the transmission side of the system, 

the resonant frequency of the transmission is frequency of interest. For increasing 𝑡 and 

decreasing 𝑅, there is a redshift in resonance as the respective dimensions are increased. 

Interestingly, there does seem to be a threshold for resonance for the parameter 𝑡. 

Figure 5: Transmission Frequency Response of Ag silts of 

various geometries, varying t-parameter 
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B. Molecular Simulations 

Due to the time involved in collecting data, and, as will be shown in the remainder of 

this section, the volume of data that was collected and processed for one specific geometry, 

only one silver-slit geometry – 𝑅 = 45𝑛𝑚 and 𝑇 = 150𝑛𝑚 – was used. The resonant 

Plasmon frequency of this geometry, as determined in the previous section, is 𝜔 =

2.358 𝑒𝑉. The primary system parameters that were changed during tests where the 

number density of the molecules (𝑛𝐷), the molecular thickness (𝑀𝑡), and the input electric 

field amplitude (𝐸0).  

1) A note on Transient Responses 

As a caution to other researchers in this field – transience can be difficult to determine. 

From previous experience, the number of time steps was originally set to 4 million, which 

was thought to be sufficient to reach a steady state. This assumption yielded spectra with 

general shapes resembling the following: 

Figure 6: Transmission Frequency Response of Ag silts of 

various geometries, varying R-parameter 
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Originally it was assumed that these were in steady state; however, by just sheer curiosity, 

the number of time steps was increased to 8 million and the same spectra came out like in 

Figure 7. 

Figure 8: Standard geometry with FFT over complete 10 ps 

simulation.  

Figure 7: Standard geometry with FFT over 10 ps after initial 

10 ps simulation. 
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Only after analysis of the molecular populations does this behavior become clear. 

Without analysis of molecular population densities, the researcher is somewhat in the dark 

as to when to begin taking the FFT. As will be shown however, there is generally little to 

no qualitative behavior loss. Much of the analysis in the following section will be done 

using responses containing transience as this was not discovered till later in analysis. One 

battery of simulations was conducted without transience, the similarities and differences of 

which are noted in Section II-B3.   

2) FFT Results 

FFT analysis was conducted to explore the effect the molecular layer thickness, the 

molecular density, the input electric field frequency, and the input electric field intensity 

on the lasing response of the system. The original system that was tested was the 20 𝑛𝑚 

system with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 4 million time steps 

for a total of 10 𝑝𝑠, during which FFT was conducted throughout.  

Figure 9: Complete Transient FFT spectra for Mt = 20nm, 

varying E0 from  1.00𝑑7
𝑣

𝑚
 to 1.00𝑑9

𝑣

𝑚
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The spectra are graphed on top of each other showing the relative power increase as input 

power increased in Figure 9. The transient signatures in each of the spectra can be observed. 

The excitation peak at 4.716 eV is due to the pump input. The lasing peak can be observed 

in some of the spectra around the expected 2.358 eV. In Figure 10, the spectra are 

graphically separated to demonstrate more subtleties of behavior. On the left, the range of 

E0 is 5.10𝑑8
𝑣

𝑚
 to 7.00𝑑8

𝑣

𝑚
 from left to right and on the left the range of E0 is 9.00𝑑7

𝑣

𝑚
 

to 3.00𝑑7
𝑣

𝑚
 from left to right.  

The appearance and increase in amplitude of the lasing peak can be seen on the right and 

the decrease in amplitude and subsequent disappearance of the peak can be seen on the left. 

Closer details of the above spectra are given in the Appendix, Figure 52 and Figure 53. 

Some of the spectra have Fano-resonances, some are seen to contain minute numerical 

graininess, and the transient signatures are apparent; however, what is most interesting is 

the rather sudden appearance and disappearance of the lasing peak. Spectral data as 

Figure 10: The left figure shows the transient Mt=20nm spectra from E0 5.10𝑑8
𝑣

𝑚
 to 

7.00𝑑8
𝑣

𝑚
 spaced out to see the decrease and disappearance of the lasing peak. The right 

figure shows the spectra from E0 from 9.00𝑑7
𝑣

𝑚
 to 3.00𝑑7

𝑣

𝑚
 spaced out to see the 

appearance and increase of the lasing peak.  
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contained in the above figures was likewise generated for various 𝑀𝑡 and 𝑛𝐷 as functions 

of varying 𝐸0, the analysis of which is given in the following section. After it was realized 

that the “texture” in the above spectra was due to transience, the 𝑀𝑡 tests were conducted 

again. For comparison, the “revised” system that was tested was the 𝑀𝑡 = 20 𝑛𝑚 system 

with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3
 with a total of 8 million time steps for a total 

of 20 𝑝𝑠, during which FFT was conducted throughout the final 20 𝑝𝑠. The difference 

between Figure 9 and Figure 11 is dramatic – the spectra are now incredibly smooth out 

side of the pump and lasing peaks. 

 

Closer details of the Figure 12 are given in the Appendix, Figure 54 and Figure 55. 

Contrasting with the transient response, the smoothness of the spectra is evident; however, 

the sudden appearance and disappearance of the lasing peak remains unchanged.  

Figure 11: Complete Revised FFT spectra, varying E0 

7.00𝑑6
𝑣

𝑚
 to 3.00𝑑9

𝑣

𝑚
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Even with the care taken to get numerical convergent results, the extreme nature of the 

plasmon-molecule system is such that there are still numerical issues. This is evident in 

Figure 56 given in the Appendix, which gives the detail of four of the spectra from the 

above figure. Even though the graininess is not extreme enough to pose a problem, it must 

be noted and kept in mind during further analysis. 

The similarities and differences will become more clear in the following section but 

although the quantitative realization of the transient and revised results is different, the 

qualitative results seem to match. This assumption is only partially valid. The transient 

spectra, given in Figure 14, of the 15 𝑛𝑚 system with a molecular density of 

4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3
 with a total of 4 million time steps for a total of 10 𝑝𝑠, during which FFT 

was conducted throughout.. These transient spectra show no signs of a lasing peak. 

However, the 15 𝑛𝑚 system with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 

Figure 12: The left figure shows the revised Mt=20 nm spectra from E0 from 7.00𝑑8
𝑣

𝑚
 to 

5.60𝑑8
𝑣

𝑚
 spaced out to see the decrease and disappearance of the lasing peak. The right 

figure shows the spectra from E0 from 9.00𝑑7
𝑣

𝑚
 to 3.00𝑑7

𝑣

𝑚
 spaced out to see the 

appearance and increase of the lasing peak. 
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8 million time steps for a total of 20 𝑝𝑠, during which FFT was conducted throughout the 

final 20 𝑝𝑠 has the following behavior, given in Figure 13 does show lasing. 

Figure 14: Complete Transient FFT spectra for Mt=15nm, 

varying E0 from 5.00𝑑6
𝑣

𝑚
 to 5.00𝑑11

𝑣

𝑚
 

Figure 13: Complete Revised FFT spectra for Mt=15nm, 

varying E0 from 5.00𝑑6
𝑣

𝑚
 to 5.00𝑑9

𝑣

𝑚
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If the lasing section of Figure 13 is zoomed in: 

 

There is lasing. the problem with the transient spectra is that the time in which lasing 

manifests itself is roughly at 10 ps as will be shown in Section II-C2. In the case of the 

15nm, the lasing is quite weak and is not able to show up in the transient response. In the 

case for the 20nm, the lasing was stronger and could be detected in the FFT in the transient 

response. Therefore, the transient response gives an attenuated idea of the full dynamics of 

the system. Similar figures are given in the Appendix for a system with Mt = 30nm for 

completeness. The same behaviors as in the Mt = 20nm case are observed.  

3) FFT Analysis and The Lasing Profile  

To clearly see the effects that the various parameters have on the lasing response of the 

system, the need for a more convenient method of analyzing the FFT spectra is apparent. 

Figure 15: Zoomed in portion of 15nm spectra detailing the 

lasing section 
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Concentrating on the lasing peak and recalling that there is still some numerical graininess, 

the following algorithm is used:  

1. a peak search in the 0.500 to 3.000 eV range finds the frequency of the highest point 

(if there is no peak, this corresponds to the 3.000 eV frequency) per spectra. 

2. This is conducted for all spectra of a specific nD and Mt and gathered into a peak 

frequency out vs. input power 

3. A numerical integration is calculated between 2.3499 to 2.3702 eV to gather to 

minimize effects of the graininess per spectra. 

4. This is conducted for all spectra of a specific nD and Mt and gathered into a power 

output vs. power input. 

The result of 2 shows the frequency dependence on input power and the result of 4 is termed 

the “lasing profile”. The lasing profile is something that is not used in the literature, with 

the signature of lasing being reserved to the lasing peaks demonstrated in the previous 

section. Although the lasing profile does not technically generate any new information, it 

does have the advantage of clearly demonstrating the characteristic threshold and saturation 

responses of a lasing system. Taking the original system that was tested was the 20 𝑛𝑚 

system with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 4 million time steps 

for a total of 10 𝑝𝑠, during which FFT was conducted throughout and running it through 

the above algorithm: 
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Just given in Figure 16, clearly, there is a “region of interest” in the middle that exists. The 

equation below gives the power law dependence which will be referred to from time to 

time: 

 𝑛 =
log𝑃𝑜𝑢𝑡,𝑓𝑖𝑛𝑎𝑙−log𝑃𝑜𝑢𝑡,𝑖𝑛𝑡𝑖𝑎𝑙

log𝑃𝑖𝑛,𝑓𝑖𝑛𝑎𝑙−log𝑃𝑖𝑛,𝑖𝑛𝑡𝑖𝑎𝑙
 (2. 3)  

where 𝑛 is the power-dependence. If this equation is applied to the “linear” regions, a value 

of 1 ± 0.9% (depending on which points are used) is obtained. Applying the above 

equation to the profile with the initial and final values being the closet data points, an 

estimate for the power law throughout the profile is obtained. 

 

Figure 16: Total Transmission Power between 2.3499 to 2.3702 

eV for nD=4d24 and Mt=20nm vs. Input Power 
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The absolute value was taken to place the data in a log scale. Notice that there is some 

noticeable symmetry (of course the second half of the graph is negative). The two regions 

in Figure 16 where the output power is suddenly far greater correspond to the two spikes 

in Figure 17 in which the 𝑛 ≈ 30. These regions are what are referred to as the lasing 

threshold and saturation regions, respectively. The lasing peaks in the FFT spectra 

appear/disappear in these regions, before there is a pre-threshold, post-saturation, and in-

between, there is, to an approximation, a linear dependence on input power.  

Figure 17: Power Law exponent as a function of input power, 

absolute value 
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Figure 18 shows the behavior of the lasing peak frequency. Notice, the frequency does not 

change by much, however there is a definite decrease as a function of input power. This is 

the standard behavior for all the lasing profiles. Since the lasing profile was most finely 

determined for 𝑀𝑡 = 20𝑛𝑚 in both the transient and revised data, only in those analyses 

will the power law functionality be demonstrated. The above lasing profile was for a 

specific geometry of the lasing system. In the transient data, quite a few geometries were 

investigated. In the Figure 19 below, the lasing profiles of the system with increasing 

molecular thickness are overlaid on one another. 

Figure 18: Peak Frequency as a function of input Power 
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As the molecular thickness is increased, the lasing profile gets larger, both in the input powers in 

which lasing can occur – threshold decrease and saturation increase, and in the output powers. The 

lasing threshold gets steeper as the molecular thickness increases. The notch in the 60 nm lasing 

profile is a numerical artifact due to the size of the simulation space. Lasing profiles with 𝑀𝑡 >

60𝑛𝑚 will have the same notch. Figure 64, given in the Appendix, shows the lasing profile as a 

function of molecular density. The profile increases in width and height with increasing density. 

Numerical stability seems to be a problem for 𝑛𝐷 = 5.0𝑑24 due to the small peaks at the end of 

the saturation region. Also, given in the Appendix, Figure 65 shows the lasing profile as a function 

of the detuning. The 𝜔2↔1 value refers to the transition frequency of the molecules from n2 to n1. 

There is a very small window of frequency detuning between the Plasmon resonance and the 

molecular transition frequency of approximately ±2% of the plasmon resonance frequency. 

Interestingly, the largest lasing profile did not occur at perfectly matching frequencies, it seems 

that slight detuning towards the blue frequencies is favorable. Finally, the same procedure was 

conducted for the revised data with the longer simulation time, shown in Figure 20. The behavior 

of the lasing profiles for the transient and revised data is the same. The difference is that the 

transient lasing profiles are smaller in every respect. This confirms that the qualitative aspects of 

the transient profiles are useful. 
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4) Super-florescence 

An interesting phenomenon that was tested was that of super-florescence. The system 

that was tested was the 20 𝑛𝑚 system with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with 

a total of 4 million time steps for a total of 10 𝑝𝑠, during which FFT was conducted 

throughout; but, instead of the molecules starting in the ground state n0, the molecules are 

started in the lasing excited state, n2. The same pulse with the Blackman-Harris window 

of equation 2.1 that was used in Section II-A was sent through the system. The pulse would 

theoretically simulate a spontaneous emission, which would set off the lasing chain 

reaction. However, the pulse is short, and there would be no pump source to continue the 

lasing cycle, so there would just be a lase pulse. This phenomenon was observed over 

several molecular densities. For relatively low densities: 

Figure 21: Transmission Frequency Response of Superfloresent system. Inset 

shows detail at 2.358 eV: nD = Green: 4d23 | Red: 5d23 | Blue: 7d23 
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All the tests were stimulated by a pulse amplitude 𝐸0 = 1𝑑4
𝑉

𝑚
 and a central frequency of 

𝜔 = 2.358, only the molecular density was changed.  

 

As the molecular density of the system is increased, the lasing peaks grow because there 

is, effectively, more energy in the system. Considering the molecules to each “contain” the 

lasing photon, as the number of molecules is increased, the total number of photons that 

can be emitted is increased. The peak widens and starts demonstrating other resonances as 

Figure 22: Transmission Frequency Response of Super-florescent system. Black square 

gives the location of inset in Figure 21. nD = Brown: 5d24 | Green: 7d24 | Orange: 4d25 | 

Yellow: 5d25 | Orange: 7d25 | Purple: 4d26   
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the density is increased. This due to the increasing internal reflections and resonances that 

are formed within the molecular layer. Especially for 𝑛𝐷 = 4𝑑26, these resonances and 

reflections become so great that the spectrum looks like a mess. Since there is no steady 

state achieved as the system is purely dissipative, this simple example demonstrates why 

there was such a difference between the transient and revised spectra in Section II-B2. 

5) Separation 

The molecular layer was separated from the silver slits to test the localization of the 

plasmons. The system that was tested was the 20 𝑛𝑚 system with a molecular density of 

4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 4 million time steps for a total of 10 𝑝𝑠, during which FFT 

was conducted throughout. 

Figure 23: The Transmission Power Response of the system in which the 

molecular layer was separate by 1nm, 5nm, 10nm, 20nm, 30nm, and 40 nm. 

None are labeled as the response were identical. The spectra are spread out 

over the x-axis to demonstrate that they are identical. The peaks are each at 

4.716 eV. 
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6) No-metal 

Finally, the system with the 20 𝑛𝑚 thickness and a molecular density of 

4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3
 with a total of 4 million time steps for a total of 10 𝑝𝑠, during which FFT 

was conducted throughout was run but without the silver slits, just the molecular layer. 

Since there are no plasmons, this test would confirm that the presence of plasmons 

influences the lasing capabilities of the system. 

 

An attempt was made to see when/if lasing occurred at even higher input electric field 

amplitudes. With the time and spatial resolutions used in the code, 𝐸0 > 5𝑑11 where 

uncalculatable. To ensure numerical convergence would involve reducing the grid and 

generating far more memory and time requirements. Regardless of whether the localized 

Figure 24: Transmission Spectra of the molecular system without the silver 

slits over same E0 range as in Figure 9 and Figure 11. No lasing is observed. 
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intensity of the plasmon resonance or something related to reflections and energy transfer 

back and forth, it is obvious that the plasmons are necessary for lasing to occur within the 

given parameters.  

7) Summary 

The work presented in the previous sections was plentiful. A summary of the most 

important/interesting findings is in order.  

1. For a CW stimulation of a lasing system, there is a transient period. This must be 

considered when spectra are reviewed. Unfortunately, via spectra analysis alone, there 

is no way to determine the transient period before tests are conducted. 

2. The existence of a lasing region with relatively sharp threshold and saturation regions 

was confirmed for a variety of system parameters.  

3. The “lasing profile” was presented and shown to be a useful analytical tool to observe 

phenomenological behavior of a lasing system.  

4. The effect of plasmons on lasing was demonstrated in the following ways: 

a. The range of frequency detuning between the lasing frequency and the Plasmon 

resonance in which lasing could occur was shown to be ≈ ±2%. 

b. The elimination of the plasmons entirely made lasing impossible over testable range 

C. Populations Analysis 

Through the above analyses, the effect of the plasmons is apparent, by (lowering the 

input power needed to achieve lasing for the molecular system). However, the exact 

behavior of the lasing profile is still hidden. To attempt an understanding of why exactly 

lasing occurs and see how that lines up with the explanation given in Section I-C4, the 
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behavior of the population densities of each energy level were examined in various ways. 

As far as the author is aware, this is the first analysis of its kind and has revealed some 

fascinating phenomenology, which is still under investigation.  

1) Terminal Behavior 

Of initial interest was to confirm that, indeed, lasing happens under the condition of 

population inversion as discussed in the introduction. This was done by running a 

simulation (a single point on a lasing profile) and recording the final population distribution 

at the end of the simulation. What will be shown are the results from the 20 𝑛𝑚 system 

with a molecular density of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 8 million time steps for a total 

of 20 𝑝𝑠, the population distribution which is recorded at the last time step. Figure 25 

shows the population distribution for an input parameter of 𝐸0 = 1.00𝑑7
𝑉

𝑚
, well below 

the threshold region. Notice that there is no population inversion. The “lasing level” 𝑁2 

greater than the ground state (𝑁0).   
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Figure 25: Terminal Population Distribution. Slits are located at 𝑦 = 0 and the center of 

the slit is at 𝑥 = 100. n0 = Blue | n1 = Yellow | n2 = Green | n3 = Red, for 20nm system 

with nD=4d24 and E0=1d7 (pre-threshold region on lasing profile) 

Figure 26: Terminal Population Distribution. Slits are located at 𝑦 = 0 and the center of 

the slit is at 𝑥 = 100. n0 = Blue | n1 = Yellow | n2 = Green | n3 = Red, for 20nm system 

with nD=4d24 and E0=1d8 (central lasing region on lasing profile) 
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Figure 28: Terminal Population Distribution. Slits are located at 𝑦 = 0 and the center of 

the slit is at 𝑥 = 100. n0 = Blue | n1 = Yellow | n2 = Green | n3 = Red, for 20nm system 

with nD=4d24 and E0=3d9 (further saturation region on lasing profile) 

Figure 27: Terminal Population Distribution. Slits are located at 𝑦 = 0 and the center of 

the slit is at 𝑥 = 100. n0 = Blue | n1 = Yellow | n2 = Green | n3 = Red, for 20nm system 

with nD=4d24 and E0=1d9 (saturation region on lasing profile) 
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Figure 26 shows the terminal response within the lasing region. Note the that there is 

population inversion. Note, as well, that in the small portion shown, 𝑁1 and 𝑁4 are not 

consistently one over the other. Figure 27 shows the terminal response in the saturation 

region. Notice that there is still population inversion. Figure 28 shows the terminal response 

for an input even further from the lasing region than in Figure 27. The density of 𝑁2 

decreased as the input power increased. Also, the density of 𝑁4 surpassed that of 𝑁0 and 

𝑁2 is visible. 

Various terminal analyses were conducted for several molecular thicknesses. The 

general patterns presented in the previous figures were followed, however the specific 

distributions of 𝑁1 and 𝑁3 especially were not consistent. This behavior suggested that 

either the system had not reached a steady state (which would seem unlikely due to the 

FFT spectra), or that the system was in an oscillatory equilibrium, and that the terminal 

analysis, had captured that equilibrium at various points within the oscillations.  

2) Selected Dynamic Behavior 

The above analysis was conducted due to the initial visualization of the system when 

lasing. After the terminal analysis did not show a uniformity in region distributions, more 

out of curiosity than realization, scripts where written that would take record the population 

distributions at set time intervals during the simulation. Due to memory and time 

considerations, 500 evenly spaced recordings were made for 12 different parameter 

settings. Videos were made to make the visual processing easier. Now, the videos, although 

aesthetically interesting, are not informative, beyond that in which they demonstrated the 

following two things: 
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1. What appeared to be some oscillatory behavior during lasing 

2. And, when lasing was present, a “state” change which is depicted in Figure 29 

would occur 

 

The oscillatory behavior that was observed was small, and will be discussed in the 

following section. The “change in state that is depicted corresponds to the accumulation of 

numerical error that mimics spontaneous emission. 

3) Average Dynamic Behavior 

After determining that there were unexpected dynamics in the system, some way of 

visualizing it had to be determined. Ideally, all 8 million time steps, 𝑛 = 8,000,000, could 

be saved and analyzed. The problem with that, with double precision numbers and the grid 

size used, each simulation would generate > 6 𝑇𝐵 of data. To avoid this, at each time step, 

the average of the energy state population was taken and recorded, resulting in only 1 GB 

Figure 29: Population distributions at different time steps showing “change of state” that 

occurs after which the FFT is performed. On the left the time step is 1952000 and on the 

left is 2400000, both out of 8000000. n0 = Blue | n1 = Yellow | n2 = Green | n3 = Red, for 

20nm system with nD=4d24 and E0=1d8.  



39 

of data. It remains to be determined if there is a significant loss of important information 

but this analysis did provide some insights.  

 

Figure 30 shows the results of this analysis for the 20 𝑛𝑚 system with a molecular density 

of 4×1024 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚3  with a total of 8 million time steps for a total of 20 𝑝𝑠, and 𝐸0 = 1𝑑8, 

well within the lasing region. First, population inversion is clear. Second, the reader is 

asked to note the appearance of four different segments, one which exists from 0 < 𝑛 <

~250,000 in which the largest and most violent changes in population occur, including 

population inversion, the 1st “flat” segment from ~250,000 < 𝑛 < 2,000,000, in which 

the population seems to be constant, another transient segment 2,000,000 < 𝑛 <

Figure 30: Average population of each level as a function of the time step, 

n0 = Blue | n1 = Orange (not visible) | n2 = Yellow | n3 = Red. Mt=20nm, 

nD=4d24, E0=1d8.  
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~2,333,000, and finally the 2nd flat segment from ~2,333,000 < 𝑛 < 8,000,000. 

Zooming in on n1 population in the 4th region discussed, oscillations are present: 

 

 

The oscillations are not large in amplitude which are ascribed to numerical artifacts. The 

“nudge” in the population during the second transient region shows the accumulation of 

the numerical errors which allow the system to finally lase, essentially, the errors built up 

enough to simulate the spontaneous emission of a photon which starts the cascade effect of 

lasing. 

III. MOLECULAR ELECTRONICS 

The theory of the molecules as used in Section II, is a manifestation of the Mean-filed 

approximation. To simulate molecules within a dynamic system, in addition to the electric 

properties, the quantum mechanical behavior must be modeled. The full mathematical 

treatment of quantum mechanics, however, can prove to be intractable, especially when 

Figure 31: Zoomed in detail of n1 population 

dynamics in the 4th region 



41 

simulating many molecules within a greater system, since the full quantum solution would 

require every molecule to be entangled to the other in some way through the Hamiltonian 

of the system. A common approach to ease computation burden is to use the mean-field 

approximation in a simulation. In essence, the mean-field approximation decouples the 

dynamics of the molecules from each other directly and allows each to behave in a field 

generated by all of the others. Although, this approximation has been used extensively, 

generating experimentally verified results, and is perhaps the only way in which certain 

simulations can be accomplished, a more intimate knowledge the mean-field 

approximation would allow researchers to more finely tune simulations and to have a more 

complete picture of any subtleties that are perhaps hidden when using the approximation. 

The following preliminary work is an effort in the afore mentioned goals by comparing 

exact quantum formulations (EQFs) and the mean-field approximation (MFA) through 

Hamiltonian formalism. This part of the work is dedicated to laying the theoretical ground 

work for this endeavor and demonstrating preliminary findings. Work in this area is being 

actively pursued.  

A. The Initial System - Dipoles 

Of course, to begin this study, the system of molecules used in the previous simulations 

is far too complicated. This section will “build from the ground up” so to speak. 

1) Molecules 

The system with which we are concerning ourselves consists of a 1-D strand of 

dipoles, with an initial distribution of excitons. A general visualization of this system is 

given below: 
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This general model allows for 𝑁 number of dipoles, any number of which is in the excited 

or ground states. The general model allows for the dipoles to each be a unique distance, 𝑟𝑖, 

apart and have a unique dipole moment, 𝜇𝑖, as well. The degree of randomness in the 

number and locations of the excited states and the relative distances between dipoles is 

arbitrary.  

However, to begin analysis of the system and conduct a comparison of the EQF and 

MFA, the general model is reduced to a more amenable one in which the dipoles are a 

fixed, identical distance, 𝑟, apart. Additionally, all dipoles have identical dipole moments, 

𝜇, and the system contains a singular exciton (dipole in the excited state) in the strand at 

any time, shown in Figure 33 below: 

 

Figure 32: The General Model for a 1-D Strand of Molecules 

Figure 33: The Restricted Model for a 1-D Strad of Molecules with fixed, 

identical relative distances and a singular exciton present 
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An equivalent visualization of the above system is given below. Both schemes will be used, 

depending on the relative convenience of each scheme with respect to the scenario or 

methods under analysis: 

2) The Potentials 

Since the time dependent dipole distribution is sought, there will be dipole oscillations 

as the exciton moves from one dipole to another. To fully describe this, the electric field 

produced by an oscillating dipole is given below [13]: 

 �⃑� (𝑟 ) =
1

4𝜋𝜖0
{
𝜔2

𝑐2𝑟
(�̂�×𝜇 )×𝑟 + (

1

𝑟3 −
𝑖𝜔

𝑐𝑟2) [3�̂�(�̂� ∙ 𝜇 ) − 𝜇 ]} e𝑖𝜔𝑟/𝑐 (3. 1) 

The dipole moment of the dipole producing the field is given by 𝜇 = 𝑞𝑑  and the wave 

vector is given by 𝑘 =
𝜔

𝑐
. Now the system of dipoles is such that 𝑟 ≪ 𝑘, the electrostatic 

limit is approached and the only relevant part of the field produced by the dipole is given 

by the electrostatic expression: 

 �⃑� (𝑟 ) =
1

4𝜋𝜖0

3�̂�(�̂�∙�⃑⃑� )−�⃑⃑� 

𝑟3
 (3. 2) 

3) Molecular Orientations 

From the above equation, it is simple to surmise that the relative orientation of the 

dipoles is important. For the time being, only identically oriented dipoles will be 

Figure 34: Equivalent Visualization with Arrows 

and orientation describing dipoles and states, 

respectively 
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considered; however, even with this constraint, electric field for each dipole has several 

possibilities given below. 

 

In this work, the horizontal equation will be used, however, the methods can easily be 

extended to the general case, if working with a strand of dipoles in which all the dipoles 

are oriented the same was (a.k.a. 𝜃 is identical for all dipoles, even though the dipoles can 

be in the excited or ground state).  

B. The Density Operator 

The density operator of a system is generally defined as the following: 

 𝜌 = |𝜓⟩⟨𝜓|  (3. 3) 

where 𝜓 is the wave function of the system. Looking at the individual matrix elements of 

the density operator: 

 𝜌 = ∑ 𝜌𝑗,𝑗′|𝑗⟩⟨𝑗′|𝑗,𝑗′   (3. 4) 

Figure 35: The General and Extrema Equations of the Electric field 
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In which the indices, 𝑗 and 𝑗′ correspond to the various states of the system. Density 

matrices are always square, with the diagonal elements 𝜌𝑗,𝑗 interpreted as the probability 

of the system being in state 𝑗 and the off diagonal terms 𝜌𝑗,𝑗′  interpreted as coherences 

between states 𝑗 and 𝑗′. To find the time dependence of the density operator: 

 
𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑡
|𝜓⟩⟨𝜓| (3. 5) 

 
𝜕𝜌

𝜕𝑡
= |𝜓⟩

𝜕⟨𝜓|

𝜕𝑡
+

𝜕|𝜓⟩

𝜕𝑡
⟨𝜓| (3. 6) 

Taking the time dependent Schrödinger equation and its complex conjugate: 

 
𝜕

𝜕𝑡
|𝜓⟩ = −

𝑖

ℏ
𝐻|𝜓⟩  𝑎𝑛𝑑  

𝜕

𝜕𝑡
⟨𝜓| =

𝑖

ℏ
⟨𝜓|𝐻   (3. 7) 

 
𝜕𝜌

𝜕𝑡
=

−𝑖

ℏ
(|𝜓⟩⟨𝜓|𝐻 − 𝐻|𝜓⟩⟨𝜓|) (3. 8) 

 
𝜕𝜌

𝜕t
= −

𝑖

ℏ
[𝐻, 𝜌] (3. 9) 

We arrive at the time dependence of the density operator. This is the fundamental working 

equation that will reveal the dynamics of an exciton in either the EQF or the MFA methods 

of evaluating the Hamiltonians and density matrices. 

C. The Exact Quantum Formulation 

The Exact Quantum Formulation refers the formalism that will be developed in the 

following section. The motivation of the name comes from the fact that this method 

considers the strand of dipoles as a singular system with multiple states, and does not 

assume any clever superposition or product of individual dipole states or systems to specify 
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the system. For the initial treatment and development of this work, a system of only three 

dipoles will be considered. 

1) The system and ρ 

In the density matrix formulation, the general states of the system are considered, as 

shown below for a three-dipole system with one exciton: 

 

 

For a system with on exciton, there are 𝑁 states equal to the number of dipoles. Recalling 

the definition of 𝜌, in matrix form for this three-state system, would result in a 3×3 matrix. 

At initial time 𝑡 = 0, the exciton would be at one of the dipoles corresponding to one of 

the above states, resulting in the following initial matrix: 

 (

𝜌𝑎𝑎 0 0
0 𝜌𝑏𝑏 0
0 0 𝜌𝑐𝑐

) (3. 10) 

where one of the diagonals is equal to 1, corresponding to a probability of 100% of the 

exciton “existing at that dipole” or “in that state” (whichever one prefers), and the other 

Figure 36: EQF Demarcation of States for a Three-dipole System with One 

Exciton 
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diagonals equal zero. Under the influence of the Hamiltonian, the density matric will 

evolve with time per equation 3. 9. 

2) The Hamiltonian 

To determine the time dependence of the density matrix, the Hamiltonian is needed. 

The Hamiltonian consists of the following parts, written in density operator form: 

 𝐻𝑒 = ∑ 𝐸𝑗|𝑗⟩⟨𝑗|𝑗  (3. 11) 

 𝑉 = ∑ 𝑉𝑗,𝑗′|𝑗⟩⟨𝑗′|𝑗≠𝑗′  (3. 12) 

where the states 𝑗 and 𝑗′ correspond to states 𝑎, 𝑏, and 𝑐. 𝐻𝑒 represents the energy of the 

exciton in system. Under the present restrictions, the exciton exists with energy 𝐸𝑗 = 𝐸 for 

all 𝑗. In matrix form, this corresponds to the diagonals being populated with the exciton 

energy. 𝑉 represents the coupling between states. The states are coupled by the potential 

the dipoles exert on their neighbors, allowing the exciton to move between neighbors. In 

the definition above, the coupling only happens between different states, but could be 

achieved by defining all 𝑉𝑗,𝑗 = 0 and summing over all combinations. The 𝑉𝑗,𝑗′ matrix 

elements are the potential between states 𝑗 and 𝑗′. In the vertical orientation discussed 

above: 

 𝑉𝑗,𝑗 = ∑ 𝜇𝑗𝑗′

𝜇
𝑗′

𝑟
𝑗,𝑗′
3  (3. 13) 

Because we are considering only one exciton, the dipole which has the exciton will always 

be in the opposite orientation of the other dipoles, which is why the term is positive. In the 

nearest neighbor approximation, only state 𝑏 consists of a sum of terms as it can couple to 
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both states 𝑎 or 𝑏, while 𝑎 and 𝑐 cannot directly couple to each other. The Hamiltonian is 

given as the following: 

 𝐻 = 𝐻𝑒 + 𝑉 (3. 14) 

For the nearest neighbor approximation in the three-state system with identical distances 𝑟 

and identical dipole moments 𝜇, the Hamiltonian will take the following matrix form: 

 (

𝐸 𝜇2/𝑟3 0

𝜇2/𝑟3 𝐸 𝜇2/𝑟3

0 𝜇2/𝑟3 𝐸

) (3. 15) 

D. The Mean Field Approximation 

The Mean Field Approximation refers the formalism developed in the following 

section. As will be shown, the name derives from the final form of the approximation which 

decouples all the dipoles from each other, each one acting through the collective influence 

of the others through a “mean field.” 

1) The system and ρ 

The mean field approximation seeks to simplify the resulting equations given by the 

DFA. To do this, the system is considered to be a product of the individual density matrices 

of the individual dipoles instead of an explicit entity. The system is shown as follows: 

Figure 37: MFA 

System as a product 

of 3, two state 

systems 
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For the above picture, which is one of the three possible ways that this product system can 

be, the density matrix is given as the following: 

 𝜌 =⊗𝑗 𝜌𝑗 (3. 16) 

 𝜌 = (
1 0
0 0

) ⊗ (
0 0
0 1

) ⊗ (
0 0
0 1

) (3. 17) 

Where 𝜌11 is the excited state for a dipole and 𝜌22 is the ground state, and 𝑗 is the dipole 

index, not the state index as in the EQF. 

2) The Hamiltonian 

Because of the density matrix being formulated as above, this approximation allows 

for a simplification of the final dynamical equations, only after some more complicated 

manipulations however. The Hamiltonian for the system itself is a bit more complicated 

and is given as follows: 

 𝐻 = ∑ 𝐻𝑗
(1)

𝑗 + ∑ 𝐻
𝑗𝑗′ 

(2)
𝑗≠𝑗′  (3. 18) 

The operators 𝐻𝑗
(1)

 correspond to the single body Hamiltonians that act only on the dipole 

𝑗 and delineate the energy of the excited state and the ground state, for example: 

 𝐻𝑗
(1)

= (
E 0
0 0

) (3. 19) 

And are all identical as the dipoles are identical, however, it is important to emphasize that 

each 𝐻𝑗
(1)

 only operates on the dipole 𝑗. The operators 𝐻
𝑗𝑗′ 

(2)
 are the coupling operators 

which serve to connect the individual dipoles together though potentials. Again, each 𝐻
𝑗𝑗′ 

(2)
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will only act upon states 𝑗 and 𝑗′ at a time. As an example, since dipole 2 can couple with 

both 1 and 3 in the nearest neighbor approximation: 

 𝐻21 
(2)

= (
0 0 

𝜇2/𝑟3 0
) (3. 20) 

 𝐻23 
(2)

= (0 𝜇2/𝑟3 
0 0

) (3. 21) 

Again, these matrices were generated under the assumption that the dipole moments and 

inter-dipole distances are identical. Now, the power of the mean field approximation is 

apparent in the derivation that follows. Taking the time dependent equation of the density 

operator and substituting equation (3. 16): 

 
𝜕𝜌

𝜕𝑡
= −

𝑖

ℏ
[𝐻, 𝜌] (3. 22) 

 
𝜕

𝜕𝑡
(⊗𝑗 𝜌𝑗) = −

𝑖

ℏ
[𝐻, (⊗𝑗 𝜌𝑗)] (3. 23) 

 
𝜕

𝜕𝑡
(⊗𝑗 𝜌𝑗) = −

𝑖

ℏ
(𝐻 ⊗𝑗 𝜌𝑗 −⊗𝑗 𝜌𝑗𝐻) (3. 24) 

The terms of the commutator can be expanded as follows, recalling that the indexed 

Hamiltonians only act on the corresponding indexed density matrices: 

 𝐻(⊗𝑗 𝜌𝑗) = ∑ 𝐻𝑗
(1)

(⊗𝑗 𝜌𝑗)𝑗 + ∑ 𝐻
𝑗𝑗′ 

(2)
(⊗𝑗 𝜌𝑗)𝑗≠𝑗′  

 = ∑ (⊗𝑘≠𝑗 𝜌𝑘) ⊗ 𝐻𝑗
(1)

𝑗 𝜌𝑗 + ∑ (⊗𝑘≠𝑗,𝑗′ 𝜌𝑘) ⊗ 𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′𝑗≠𝑗′  (3. 25) 

And: 

 (⊗𝑗 𝜌𝑗)𝐻 = ∑ (⊗𝑗 𝜌𝑗)𝐻𝑗
(1)

𝑗 + ∑ (⊗𝑗 𝜌𝑗)𝐻𝑗𝑗′ 

(2)
𝑗≠𝑗′  
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 = ∑ (⊗𝑘≠𝑗 𝜌𝑘) ⊗ 𝜌𝑗𝐻𝑗
(1)

𝑗 + ∑ (⊗𝑘≠𝑗,𝑗′ 𝜌𝑘) ⊗ 𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
𝑗≠𝑗′  (3. 26) 

At this point, the MFA seems to be far more trouble than its worth, with rather large 

matrices as the result of the tensor products. However, if the trace is taken of all states 

except for state 𝑗 = 𝑎, a very useful result is obtained. Recalling that the trace of a density 

matrix of a pure state is 1 and some other useful identities (where 𝐴 and 𝐵 are matrices and 

𝑐 is a scalar): 

 Tr(𝜌) = 1 (3. 27) 

 Tr(𝐴 + 𝐵) = Tr(𝐴) + Tr(𝐵) (3. 28) 

 Tr(𝐴𝐵) = Tr(𝐵𝐴) (3. 29) 

 Tr(𝑐𝐵) = cTr(𝐴) (3. 30) 

 Tr(𝐴 ⊗ 𝐵) = Tr(𝐴) Tr(𝐵) (3. 31) 

 Tr(𝜌𝐻) = 〈𝐻〉 (3. 32) 

The last of which is that the trace of an operator and the density matrix is the expectation 

value of the operator. The trace over all dipoles except dipole 𝑗 = 𝑎 is taken: 

 Trj≠a (
𝜕

𝜕𝑡
(⊗𝑗 𝜌𝑗) = −

𝑖

ℏ
(𝐻 ⊗𝑗 𝜌𝑗 −⊗𝑗 𝜌𝑗𝐻)) (3. 33) 

Recalling the identity in equation (3. 31): 

 
𝜕

𝜕𝑡
(∏ Tr(𝜌𝑗)𝑗≠𝑎 ×𝜌𝑎) = Trj≠a (−

𝑖

ℏ
(𝐻 ⊗𝑗 𝜌𝑗 −⊗𝑗 𝜌𝑗𝐻)) (3. 34) 

And as the trace of a density matrix is unity: 
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𝜕𝜌𝑎

𝜕𝑡
= −

𝑖

ℏ
(Trj≠a(𝐻 ⊗𝑗 𝜌𝑗) − Trj≠a(⊗𝑗 𝜌𝑗𝐻)) (3. 35) 

Already, an interesting simplification in that we can look at the time dependence of a single 

dipole’s density matrix. Now, let’s look at just the first term of the commutator in (3. 35) 

Trj≠a (𝐻(⊗𝑗 𝜌𝑗))

= Trj≠a (∑(⊗𝑘≠𝑗 𝜌𝑘) ⊗ 𝐻𝑗
(1)

𝑗

𝜌𝑗 + ∑(⊗𝑘≠𝑗,𝑗′ 𝜌𝑘) ⊗ 𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′

𝑗≠𝑗′

) 

Using Equation 3. 28: 

= ∑Trj≠a(⊗𝑘≠𝑗 𝜌𝑘)×Trj≠a(𝐻𝑗
(1)

𝜌𝑗)

𝑗

+ ∑ Trj≠a(⊗𝑘≠𝑗,𝑗′ 𝜌𝑘)×Trj≠a (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)

𝑗≠𝑗′

 

Followed by Equation 3. 31: 

= ∑∏Trj≠a(𝜌𝑘)

𝑘≠𝑗

×Trj≠a(𝐻𝑗
(1)

𝜌𝑗)

𝑗

+ ∑ ∏ Trj≠a(𝜌𝑘)

𝑘≠𝑗,𝑗′

×Trj≠a (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)

𝑗≠𝑗′

 

And due to Equation 3. 27: 

 = ∑ Trj≠a(𝐻𝑗
(1)

𝜌𝑗)j + ∑ Trj≠a (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)𝑗≠𝑗′  (3. 36) 

Now expanding the sums: 

= 𝐻𝑎
(1)

𝜌𝑎 + ∑Tr(𝐻𝑗
(1)

𝜌𝑗)

𝑗≠𝑎

+ ∑ Tr (𝐻
𝑎𝑗′ 

(2)
𝜌𝑗′) 𝜌𝑎

𝑗=𝑎,𝑗′

+ ∑ Tr(𝐻𝑗𝑎 
(2)

𝜌𝑗)𝜌𝑎

𝑗,𝑗′=𝑎

+ ∑ Tr (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)

𝑗≠𝑗′≠𝑎

 

Which can be rewritten using equation 3. 32: 
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 = 𝐻𝑎
(1)

𝜌𝑎 + ∑ Tr(𝐻𝑗
(1)

𝜌𝑗)𝑗≠𝑎 + ∑ 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′ 𝜌𝑎𝑗=𝑎,𝑗′ + ∑ 〈𝐻𝑗𝑎 

(2)
〉𝑗𝜌𝑎𝑗,𝑗′=𝑎 +

∑ Tr (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)𝑗≠𝑗′≠𝑎   (3. 37) 

Where 〈𝐻𝑗𝑎 
(2)〉 is taken to mean the expectation value of the coupling term between state 𝑎 

and state 𝑗. The subscript 𝑗 within the sums serves to indicate the sum over all 𝑗 ≠ 𝑎. And 

similarly, for the second term in (3.35): 

Trj≠a ((⊗𝑗 𝜌𝑗)𝐻) = Trj≠a (∑(⊗𝑘≠𝑗 𝜌𝑘) ⊗ 𝜌𝑗𝐻𝑗
(1)

𝑗

+ ∑(⊗𝑘≠𝑗,𝑗′ 𝜌𝑘) ⊗ 𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)

𝑗≠𝑗′

) 

Using Equation 3. 28: 

= ∑Trj≠a(⊗𝑘≠𝑗 𝜌𝑘)×Trj≠a(𝜌𝑗𝐻𝑗
(1)

)

𝑗

+ ∑ Trj≠a(⊗𝑘≠𝑗,𝑗′ 𝜌𝑘)×Trj≠a (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)

j≠𝑗′

 

Followed by Equation 3. 31 and 3. 27: 

= ∑∏Trj≠a(𝜌𝑘)

𝑘≠𝑗

×Trj≠a(𝜌𝑗𝐻𝑗
(1)

)

𝑗

+ ∑ ∏ Trj≠a(𝜌𝑘)

𝑘≠𝑗,𝑗′

×Trj≠a (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)

𝑗≠𝑗′

 

 = ∑ Trj≠a(𝜌𝑗𝐻𝑗
(1)

)𝑗 + ∑ Trj≠a (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)𝑗≠𝑗′  (3. 38) 

Now expanding the sums: 

= 𝜌𝑎𝐻𝑎
(1)

+ ∑Tr(𝜌𝑗𝐻𝑗
(1)

)

𝑗≠𝑎

+ ∑ 𝜌𝑎 Tr (𝜌𝑗′𝐻
𝑎𝑗′ 

(2)
)

𝑗=𝑎,𝑗′

+ ∑ 𝜌𝑎 Tr(𝜌𝑗𝐻𝑗𝑎 
(2)

)

𝑗,𝑗′=𝑎

+ ∑ Tr (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)

𝑗≠𝑗′≠𝑎

 

Which can be rewritten using equation 3. 32: 
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 = 𝜌𝑎𝐻𝑎
(1)

+ ∑ Tr(𝜌𝑗𝐻𝑗
(1)

)𝑗≠𝑎 + ∑ 𝜌𝑎 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′𝑗=𝑎,𝑗′ + ∑ 𝜌𝑎〈𝐻𝑗𝑎 

(2)
〉𝑗𝑗,𝑗′=𝑎 +

∑ Tr (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)𝑗≠𝑗′≠𝑎   (3. 39) 

Now, taking the difference of Equations 3. 37 and 3. 39 to evaluate Equation 3. 35: 

(𝐻𝑎
(1)

𝜌𝑎 + ∑Tr(𝐻𝑗
(1)

𝜌𝑗)

𝑗≠𝑎

+ ∑ 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′ 𝜌𝑎

𝑗=𝑎,𝑗′

+ ∑ 〈𝐻𝑗𝑎 
(2)〉𝑗𝜌𝑎

𝑗,𝑗′=𝑎

+ ∑ Tr (𝐻
𝑗𝑗′ 

(2)
𝜌𝑗𝜌𝑗′)

𝑗≠𝑗′≠𝑎

)

− (𝜌𝑎𝐻𝑎
(1)

+ ∑Tr(𝜌𝑗𝐻𝑗
(1)

)

𝑗≠𝑎

+ ∑ 𝜌𝑎 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′

𝑗=𝑎,𝑗′

+ ∑ 𝜌𝑎〈𝐻𝑗𝑎 
(2)〉𝑗

𝑗,𝑗′=𝑎

+ ∑ Tr (𝜌𝑗𝜌𝑗′𝐻
𝑗𝑗′ 

(2)
)

𝑗≠𝑗′≠𝑎

) = Trj≠a(𝐻 ⊗𝑗 𝜌𝑗) − Trj≠a(⊗𝑗 𝜌𝑗𝐻) 

The second and third terms of each of the commutator terms are the same, and subtract out: 

= 𝐻𝑎
(1)

𝜌𝑎 + ∑ 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′ 𝜌𝑎

𝑗=𝑎,𝑗′

+ ∑ 〈𝐻𝑗𝑎 
(2)〉𝑗𝜌𝑎

𝑗,𝑗′=𝑎

− 𝜌𝑎𝐻𝑎
(1)

− ∑ 𝜌𝑎 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′

𝑗=𝑎,𝑗′

− ∑ 𝜌𝑎〈𝐻𝑗𝑎 
(2)〉𝑗

𝑗,𝑗′=𝑎

 

And rewriting in terms of commutators: 

Trj≠a(𝐻 ⊗𝑗 𝜌𝑗) − Trj≠a(⊗𝑗 𝜌𝑗𝐻) = [𝐻𝑎
(1)

, 𝜌𝑎] + ∑[〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′ , 𝜌𝑎]

𝑗′

+ ∑[〈𝐻𝑗𝑎 
(2)〉𝑗 , 𝜌𝑎]

𝑗

 

 = [(𝐻𝑎
(1)

+ ∑ 〈𝐻
𝑎𝑗′ 

(2)
〉𝑗′𝑗′ + ∑ 〈𝐻𝑗𝑎 

(2)〉𝑗𝑗 ) , 𝜌𝑎] (3. 40) 
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Now, considering these terms as matrices, and considering the 𝑗 index to be the row index 

and 𝑗′ to be the column index, the first sum sums the column portions of the coupling terms 

and the second sum sums the row portions of the coupling terms. Putting these together, 

the final expression, which is also quite intuitive is as follows: 

 
𝜕𝜌𝑎

𝜕𝑡
= −

𝑖

ℏ
[(𝐻𝑎

(1)
+ ∑ 〈𝑉〉𝑗→𝑎𝑗 ), 𝜌𝑎] (3. 41) 

This final equation reads: The time-rate of change in the density matrix of dipole 𝑎 is 

proportional to the commutator of single-body Hamiltonian of dipole 𝑎 plus the potential 

(coupling) felt by dipole 𝑎 from all other dipoles 𝑗. In other words, each dipole will react 

based its energy and the potential of all the other dipoles to which it is coupled.  

To emphasize, the formulation of the mean-field approximation as derived above uses 

Hamiltonian formalism. In practice, especially when the potential is a function of electric 

fields, the Hamiltonian formalism may not be explicitly used but the idea is equivalent. 

Equations 1.15 are mean-field equations, but however were not developed with 

Hamiltonian formalism since they are semi-classical, not quantum based. 

E.  Preliminary Results 

1) A brief description of the code 

The development of a robust code that could generate preliminary results was an 

enlightening, yet difficult process. In the first iteration, the nine differential equations 

necessary for the EQF of a system of three dipoles under nearest neighbor approximation 

were determined by defining a commutation relationship, and letting Mathematica do the 

algebra. Then, by hand, the 4th order Runge-Kutta procedure was implemented. Needless 
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to say, this was problematic because every system with a different number of dipoles, 𝑁, 

would have a different number of differential equations. The way in which the Hamiltonian 

was defined was similarly lacking in robustness. When the MFA of a system of 3 dipoles 

was attempted the first time, the 12 resulting equations made it necessary to develop a way 

more advanced than implementation by hand. About 60 iterations later, a robust script that 

will generate the Runge-Kutta for system of 𝑁 dipoles (with reasonable neighbor 

approximations in the potential) and equal dipole moments was developed. The user need 

only specify a few parameters. The results from this code will be presented in the following.  

 Although the code works and generates results, it is inefficient and does not run 

quickly on personal computers. As will be mentioned in Section IV, the translation of the 

code to a MPI capable system will be pursued. 

All the results that follow share the following restrictions: 1) for the two-body 

Hamiltonians (the potential terms), the nearest neighbor condition is enforced, 2) all the 

dipole moments have identical magnitudes, and 3) the exciton energy at every dipole is 

identical as well. 

 The variations will be stated and include the number of dipoles and the time step 

size, ℎ. Included with each result are the expectation value of the Hamiltonian, 𝐸 = 〈𝐻〉 =

Tr(𝜌𝐻) at each time step and the Tr(𝜌) to verify whether the energy of the system is 

conserved and the density is conserved, respectively. The standard variable values are 𝐸 =

2, 𝜇 = 1, and ℏ = 1, in atomic units.  
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2) Coherence-less Initial Conditions in EQF 

The coherence-less initial conditions result in an initial density matrix with elements 

𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0. The first system observed was a simple 2-dipole system. The 

probability density of the dipoles oscillates consistently between 0 and 1 as shown in Figure 

38. The energy of the system is indeed conserved as demonstrated in  Figure 39. Finally, 

in Figure 40, the trace of the density matrix is consistently at unity for the simulation. 

Unless there is deviation, the energy and density trace plots will not be demonstrated.  
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Figure 38: EQF population density result of a 2-dipole system with 

elements 𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 

Figure 39: EQF energy result of a 2-dipole system with elements 𝜌11 =
𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 
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With 3-dipoles, shown in Figure 41, the exciton’s probability of being at any dipole 

oscillates consistently, although the chance that the exciton finds itself at the center dipole 

is half that of the others. The energy and the density are conserved, as before. 

 

With 4-dipoles, the exciton’s probability of being at any dipole has a more complicated 

oscillation for each dipole. The energy and the density are conserved. The simulations for 

Figure 40: EQF density result of a 2-dipole system with elements 

𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 

Figure 41: EQF population density result of a 3-dipole system with 

elements 𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 
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5 and 6 dipoles are not included here but increase in complexity, respectively, but the 

energy and density are conserved. 

 

3) Coherence-less Initial Conditions in MFA 

The simulation for the MFA was run with varying numbers of dipoles, but, the results 

were the same as in Figure 43 for two dipoles– no dynamics. 

 

Figure 42: EQF population density result of a 4-dipole system with 

elements 𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 

Figure 43: MFA population density result of a 2-dipole system with 

elements 𝜌11 = 𝐸 and 𝜌𝑖𝑗≠1 = 0 initial condition. 
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The first comparative result: EQF gives dynamics while the MFA does not. This holds true 

for any number of dipoles in the MFA: the exciton stays at its initial dipole and has no 

dynamics. This can be shown mathematically theoretically. Since 𝜌𝑎 is a 2×2 matrix with 

off-diagonal zeros, and the 2-body Hamiltonian for each 𝜌𝑗 is a 2×2 matrix with on off-

diagonal terms: 

 𝜌𝑎𝑉 = (
𝜌11 0
0 𝜌22

) (
0 𝑉𝑗→𝑎

𝑉j→𝑎 0
) = 𝑉𝑗→𝑎 (

0 𝜌11

𝜌22 0
) (3. 42) 

Which will always lead to a trace of zero: 

 Tr(𝜌𝑎𝑉) = 0 (3. 43) 

Which leads to a dynamical equation of the following from: 

𝜕𝜌𝑎

𝜕𝑡
= −

𝑖

ℏ
[𝐻𝑎

(1)
, 𝜌𝑎] = −

𝑖

ℏ
((

𝐸 0
0 0

) (
𝜌11 0
0 𝜌22

) − (
𝜌11 0
0 𝜌22

) (
𝐸 0
0 0

)) 

 = −
𝑖

ℏ
((

𝐸𝜌11 0
0 0

) − (
𝐸𝜌11 0

0 0
)) = 0 (3. 44) 

Which demonstrates a limitation of the MFA. Only through an initial condition containing 

coherences (off-diagonal matrix terms in 𝜌) can the MFA deliver dynamics. The density 

and energy are, obviously conserved and this behavior was observed for all simulations 

conducted with the MFA under coherence-less initial conditions. 

4) Coherence Initial Conditions EQF 

The following results were started with the initial condition of the singular exciton 

starting at dipole 1 with coherences. The physicality of setting the off-diagonal elements 

to a number, arbitrarily, is hard to justify. These simulations are to be taken more as a proof 
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of concept. Also, not included in this section are some of the simulations done for 3-dipole 

systems with coherence since the placement of coherences in the EQF was very difficult 

to match for the MFA case and there was no good comparison. 𝐸 = 1 for these tests. Unless 

otherwise noted, all parameters remain unchanged. 

Adding a coherence of 1, did not alter the general appearance of the EQF 2-dipole 

system as observed in Figure 44. The energy was constant but at a value of 3 and the trace 

was unity throughout. Adding the coherence of 1 to the MFA did produce dynamics as 

shown in Figure 45. The population densities do oscillate, however, not in a similar way to 

the EQF and not in a physical way, as 𝜌11 becomes greater than 1 and less than 0. The 

energy of the system has oscillations and a downward trend that, while small, is noticeable 

in Figure 46. 

 

 

Figure 44: EQF population density result of a 2-dipole system with 

elements 𝜌11 = 𝐸, 𝜌𝑖≠𝑗 = 1 and 𝜌22 = 0 initial condition. 
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The coherence term was reduced to a value of 0.1 for both the EQF and MFA. The densities 

of the EQF had the exact same behavior as when the coherence was set to 1, The only 

difference being that the energy was conserved at a value of 1.2 instead of 3, and will not 

Figure 45: MFA population density result of a 2-dipole system with 

elements 𝜌11 = 𝐸, 𝜌𝑖≠𝑗 = 1 and 𝜌22 = 0 initial condition. 

Figure 46: Energy of MFA in Figure 45 
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be shown. The MFA however had a significant change, shown in Figure 47 and Figure 48. 

The oscillations are physical and the energy is far closer to the EQF value.  

 

 

 

 

Figure 47: MFA population density result of a 2-dipole system with 

elements 𝜌11 = 𝐸, 𝜌𝑖≠𝑗 = 0.1 and 𝜌22 = 0 initial condition. 

Figure 48: Energy of MFA in Figure 47 

  
  
  
 E

n
er

g
y
 



64 

5) Time step Testing 

The time step importance was first noticed by accident, when the dipole moment was 

set to 𝜇 = 6 instead of unity as in the previous tests. The time step interval was left as the 

original value of ℎ = 0.01. Figure 49 shows the difference between the time step results. 

With a larger time step, the dipoles collapse to their average value, while with the smaller 

time step, the oscillations are sustained. The total number of time steps was adjusted for 

viewing ease. The energy is conserved at 77 and the density is covered at unity. 

 

 

Figure 49: EQF population density results. Top: ℎ = 0.01. Bottom: ℎ =
0.001. Both with coherence term of unity and 𝜇 = 6 
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Essentially the same behavior is noticed for the MFA. The larger time step cause the 

oscillations to collapse to their average values while the oscillations are sustained with a 

smaller time step, as noted in Figure 50.  

 

 

The density is conserved for both scenarios, but the behavior of the energy is quite different 

as shown in Figure 51. The Energy is far off from the EQF value (most likely due to the 

Figure 50: MFA population density results. Top: ℎ = 0.01. 

Bottom: ℎ = 0.001. Both with coherence term of unity and 𝜇 =
6 
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high coherence). Note that the energy falls to a value for the larger time step but stays right 

around that value for the smaller time step. 

 

 

The primary results that have been determined in this section are as follows:  

1. The MFA cannot produce dynamics unless coherences are present. 

2. The MFA rarely, perfectly conserves energy, but does approach the EQF when the 

coherences are small. 

3. The time step which is used must be chosen carefully, as a large enough time step 

will cause the oscillation to collapse to their average. 

Figure 51: Energy results for Figure 50 
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IV. CONCLUSION 

A. Reiteration of Findings 

Several key insights and phenomenologies were developed and observed in this work. 

In Section II, the lasing profile was developed as a useful analysis graphic to view threshold 

and saturation phenomenology. The increase of the lasing region was observed as a 

function of molecular layer thickness and molecular density, and it was determined that the 

system can tolerate detuning only up to ±2%.  

The molecular population dynamics were observed to behave in exceeding interesting 

ways. There are two distinct flat segments that appear when a system will lase, showing 

the accumulation or error that causes the simulated, spontaneous emission. Outside of the 

lasing region, population inversion might occur, but there are no longer two flat segments, 

just one.  

Finally, in Section III, the EQF and MFA were compared in a preliminary study. It was 

found that The MFA cannot produce dynamics unless coherences are present. The MFA 

rarely perfectly conserves energy, but does approach the EQF when the coherences are 

small. The time step which is used my be chosen carefully, as a large enough time step will 

cause the oscillation to collapse to their average.  

B. Future Work 

There are three major areas of research which will be pursed due to the findings of this 

work – Molecular Population Density dynamics analysis, System Identification 

Phenomenology, and Molecular Approximation Analysis. Each is described briefly in turn. 
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1) Molecular Population Density Dynamics Analysis 

The work completed to date in analyzing the behavior of molecular population density 

is far from complete. Currently, the results are based on averages or samplings, which 

remains to be ascertained if this causes as loss of important information. Also, a more 

fundamental description of the lasing threshold and saturation regions is sought. 

2) System Identification Phenomenology 

The reader will notice that no phenomenological equations were given with regards to 

the lasing profile. Although some basic fitting procedures could be applied to determine 

some phenomenology, the simplistic nature of those equation would not be particularly be 

helpful. As far as the author is aware, there have not been attempts to apply system 

identification methods to generate phenomenology, especially in the field of optics. By 

using system identification, not only will a systematically verifiable and statistically sound 

phenomenology be developed, but insights could be developed linking the theory presented 

in the introduction to the phenomenology beyond intuitive reasoning. 

3) Molecular Approximation Analysis  

The work presented comparing the EQF and MFA is still in inception. (The coupling 

of light to more than one molecule still needs to be implemented). Perhaps of most interest 

though are the following two things: Extension of the EQF and MFA to higher level 

molecules (particularly 4 levels to compare with the work in Section II-C, and to translate 

the algorithm developed from MATHEMATICA to FORTRAN so that hundreds or greater 

numbers of dipoles can be simulated, in reasonable amounts of time. Both areas will be 

pursued. 
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APPENDIX A: FFT RESULTS 

Contained in the following section – supplementary figures referred to in Section II-B2: 

selected spectra and various zoomed figures to observe referred to subtleties. 
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Figure 52: Detail of Figure 10 in section 2) FFT Results. E0 from 7.00𝑑8
𝑣

𝑚
 to 

5.10𝑑7
𝑣

𝑚
 from left to right. 
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Figure 53: Detail of Figure 10 in section 2) FFT Results. E0 from 9.00𝑑7
𝑣

𝑚
 to 

3.00𝑑7
𝑣

𝑚
 from left to right. 
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Figure 54: Detail of Figure 12 in section 2) FFT Results, E0 from 7.00𝑑8
𝑣

𝑚
 to 

5.60𝑑8
𝑣

𝑚
. 
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Figure 55: Detail of Figure 12 in section 2) FFT Results, E0 from 9.00𝑑7
𝑣

𝑚
 to 

3.00𝑑7
𝑣

𝑚
. 
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Figure 56: Detail of Figure 55 highlighting some numerical graininess and 

remnants of transient response, E0 from 4.30𝑑7
𝑣

𝑚
 to 3.80𝑑7

𝑣

𝑚
 from left to right. 
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Figure 59: Detail of Figure 58, left side from 6.00𝑑8
𝑣

𝑚
 to 7.90𝑑8

𝑣

𝑚
. 
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Figure 60: Detail of Figure 58, right side from 2.00𝑑7
𝑣

𝑚
 to 5.00𝑑7

𝑣

𝑚
. 
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Figure 62: Detail of Figure 61, left side from 5.80𝑑8
𝑣

𝑚
 to 9.00𝑑8

𝑣

𝑚
. 
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Figure 63: Detail of Figure 61, right side from 1.80𝑑7
𝑣

𝑚
 to 3.00𝑑7

𝑣

𝑚
. 
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APPENDIX B: LASING PROFILES 

Contained in the following section – supplementary figures referred to in Section II-B3.  
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