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ABSTRACT 

The South African Middle Stone Age (MSA), spanning the Middle to Late Pleistocene 

(Marine Isotope Stages (MIS) 8-3) witnessed major climatic and environmental change 

and dramatic change in forager technological organization including lithic raw material 

selection. Homo sapiens emerged during the MSA and had to make decisions about how 

to organize technology to cope with environmental stressors, including lithic raw material 

selection, which can effect tool production and application, and mobility. 

 This project studied the role and importance of lithic raw materials in the 

technological organization of foragers by focusing on why lithic raw material selection 

sometimes changed when the behavioral and environmental context changed. The study 

used the Pinnacle Point (PP) MSA record (MIS6-3) in the Mossel Bay region, South 

Africa as the test case. In this region, quartzite and silcrete with dramatically different 

properties were the two most frequently exploited raw materials, and their relative 

abundances change significantly through time. Several explanations intertwined with 

major research questions over the origins of modern humans have been proposed for this 

change. 

 Two alternative lithic raw material procurement models were considered. The 

first, a computational model termed the Opportunistic Acquisition Model, posits that 

archaeological lithic raw material frequencies are due to opportunistic encounters during 

random walk. The second, an analytical model termed the Active-Choice Model drawn 

from the principles of Optimal Foraging Theory, posits that given a choice, individuals 

will choose the most cost effective means of producing durable cutting tools in their 

environment and will strategically select those raw materials. 
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 An evaluation of the competing models found that lithic raw material selection 

was a strategic behavior in the PP record. In MIS6 and MIS5, the selection of quartzite 

was driven by travel and search cost, while during the MIS4, the joint selection of 

quartzite and silcrete was facilitated by a mobility strategy that focused on longer or more 

frequent stays at PP coupled with place provisioning. Further, the result suggests that 

specific raw materials and technology were relied on to obtain food resources and 

perform processing tasks suggesting knowledge about raw material properties and 

suitability for tasks. 
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CHAPTER 1: PROJECT INTRODUCTION 

Introduction 

The South African Middle Stone Age (MSA), spanning the Middle to Late Pleistocene 

witnessed major climatic and environmental change and dramatic change in forager 

technological organization including stone tool raw material selection. The MSA lasted 

from ~300 ka, maybe as early as 500 ka to ~35 ka (Deino and McBrearty 2002, Herries 

2011, Johnson and McBrearty 2010, Marean and Assefa 2005, Tryon and McBrearty 

2002), spanning minimally Marine Isotope Stage 8 (MIS8) to MIS3. Genetic research 

(Fagundes et al. 2007, Gronau et al. 2011, Henn et al. 2011, Relethford 2008), the fossil 

record (Bräuer, Deacon, and Zipfel 1992, Day 1969, Hublin 1992, White et al. 2003), and 

the archaeological record (Clark et al. 2003, Marean 2010b, McBrearty and Brooks 2000, 

Shea 2008) strongly suggest that modern humans emerged during the Middle to Late 

Pleistocene, coinciding with the African MSA. 

 These prehistoric hominin hunter-gatherers lived in a dynamic world wherein 

survival depended upon decisions about how to organize technology to cope with 

environmental stressors. Since anatomically and behaviorally modern Homo sapiens 

emerged during the MSA, any decisions these forager groups made that enabled the 

continued survival of the human lineage are of particular interest. When organizing 

technology, potentially crucial decisions were made about raw material choice for stone 

tool production and application. The raw material selection stage is potentially important 

as it can set the range of possibilities for the later tool production and tool application. 

Because stone tools are the most predictably durable aspect of the archaeological record 

and were an important part of prehistoric technology, they provide an excellent 
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opportunity to study the technological organization of prehistoric foragers in relation to 

environmental challenges. 

 Following the Oldowan, decisions regarding stone tool raw material selection, the 

changing use, and co-use of different stone tool raw materials is well known from a wide 

range of environmental and climatic contexts, time-periods, and ‘cultures’ (Andrefsky Jr 

1994, Bamforth 1990, Bar-Yosef 1991, Braun et al. 2009, Clark 1980, Goldman-Neuman 

and Hovers 2012, Jelinek 1991, Kuhn 2004, 1991, Stout et al. 2005). However, there is 

disagreement about why raw material patterns change, and the role and importance of 

stone raw material choice in the technological organization of foragers (Ambrose and 

Lorenz 1990, Binford and Stone 1985, Binford 1979, Brantingham 2003, Clark 1980, 

Deacon 1989, Gould 1985, Gould and Saggers 1985, Kuhn 2004, Mackay 2008, McCall 

2007, Stout 2002, Torrence 1986, Wurz 1999).  

 Based upon Optimal Foraging Theory (OFT) models (Stephens and Krebs 1986) 

it is often assumed that all species of animals, including humans, are utility efficient 

(Alexander 1996, Krebs and Davies 1984) and choices are made to achieve maximum 

return on investments of time and energy (Bleed 1986, Nelson 1991, Torrence 1983). 

Raw material choices may also have been made due to style preference (Close 2002, 

Mackay 2011, Sackett 1982, 1986) and symbolic value (Clendon 1999, Gould, Koster, 

and Sontz 1971, Wurz 1999), which may be motivated by other goals. This dissertation 

focuses on two broader questions. First, what is the role and importance of stone raw 

materials in the technological organization of foragers? Second, why did some prehistoric 

foragers, while having several stone raw material options available, change their lithic 

raw material preference when the behavioral and environmental context changed? 
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 To address these two broader questions this dissertation investigates raw material 

selection by early anatomically modern human foragers who lived in the Mossel Bay 

region (Figure 1) on the south coast of South Africa during the South African MSA.  

 
Figure 1. The location of the Mossel Bay region. Location of Pinnacle Point also shown. 

Satellite Imagery from Google Earth Pro 7.1.5.1557. 

 

The Mossel Bay region has several MSA sites (Figure 2) that combined yield a 

long archaeological sequence that is well suited for the study of raw material selection 

during important periods of human evolution. The archaeological sequences from these 

sites have been excavated with great precision, are thoroughly dated (Brown et al. 2012, 

Brown et al. 2009, Jacobs 2010, Marean et al. 2010, Marean et al. 2007), and are 

complemented by local paleoclimatic and paleoenvironmental records of high resolution 
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(Albert and Marean 2012, Bar-Matthews et al. 2010, Braun et al. ms, Copeland et al. 

2015, Esteban et al. 2016, Fisher et al. 2010, Marean et al. 2014, Matthews et al. 2011, 

Matthews, Marean, and Nilssen 2009, Rector and Reed 2010). In addition, the local 

geology is well understood (Cawthra et al. 2015, Malan and Viljoen 2008, Pickering et al. 

2013, Roberts et al. 2012, Thamm and Johnson 2006, Viljoen and Malan 1993), and 

thorough surveys for stone raw material sources have been undertaken (Brown 2011, 

Oestmo et al. 2014).  

 
Figure 2. Location of Pinnacle Point sites. Satellite Imagery from Google Earth Pro 

7.1.5.1557. Images of localities by the author.  

 

 The MSA stone tool record from the Mossel Bay region ranges from ~164-48 ka, 

which temporally overlaps a wide range of stone tool variation along with some notable 

technologies including the early microlithic (Brown et al. 2012) and Howiesons Poort 

(Brown et al. 2012, Brown et al. 2009) at site Pinnacle Point 5-6 (PP5-6). In addition to 

the Still Bay that is of similar age to the early microlithic and is observed at nearby 

localities, they figure heavily in the study of the origin of modern human behavior 
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(Brown et al. 2012, Deacon 2001, Henshilwood and Dubreuil 2011, Henshilwood and 

Marean 2003, Klein 2000, McBrearty and Brooks 2000, Shea 2011). In the early 

microlithic, Still Bay, and Howiesons Poort foragers shifted to a regular use of fine-

grained raw materials in addition to the use of more coarse-grained quartzite, and the 

reasons for this are debated (Ambrose 2006, Ambrose and Lorenz 1990, Brown 2011, 

Deacon 1989, Mackay 2008, McCall and Thomas 2012, McCall 2006, Minichillo 2006, 

Wurz 1999). 

 The PP13B and PP9 records that precede the PP5-6 record shows a long record of 

procurement of quartzite from cobble beaches or other secondary sources (Thompson, 

Williams, and Minichillo 2010). In the PP5-6 record there is a marked increase in the 

selection of silcrete early in the MIS5 part of the sequence, and then particularly during 

MIS4 that coincides with an increase in procurement from primary outcrop sources, and 

the shift to a more blade-based technology (Brown 2011, Wilkins et al. 2017). This study 

investigates the following questions to help clarify why there is a change in raw material 

frequencies in the early microlithic and Howiesons Poort stone tool technologies at PP5-

6. First, are the lithic raw material frequencies observed in the Pinnacle Point MSA 

record due to opportunistic behavior or strategic choice? Second, if strategically chosen, 

in what contexts, environmentally and/or behaviorally, was it more efficient to use 

quartzite rather than silcrete to produce and use stone tools?  

Two mutually exclusive models facilitate testing of hypotheses about raw material 

selection and creating expectations that can be applied to the archaeological record at 

Pinnacle Point. First, a computational model of stone tool raw material procurement 

termed the Opportunistic Acquisition Model (OAM) is evaluated. The OAM posits that 
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archaeological raw material type frequencies are due to opportunistic encounters with 

stone sources during random-walk (see Brantingham (2003)) in the environment. Second, 

an analytical resource-choice model termed the Active-Choice Model (ACM) drawn from 

OFT is presented, which posits that a forager when selecting a stone raw material will try 

to maximize the amount and duration of tool cutting edge produced per unit time 

investment in producing the tool. While there may be other variables important to raw 

material choice, our formal models must begin simply and then expand later, and tool 

cutting edge is a widely recognized variable of interest (Braun 2005, Brown 2011, 

Mackay 2008). The study of raw material selection is well suited to the OFT approach 

because raw material decisions are part of a tool making process where the decisions can 

be modeled as optimization problems (Kuhn 1994, Metcalfe and Barlow 1992, Surovell 

2009).  

To evaluate hypotheses drawn from the OAM and ACM, model outcomes under 

three different model conditions (MIS4, MIS5, and MIS6) are compared to 

archaeological raw material frequency data from PP13B, PP9, and PP5-6 at Pinnacle 

Point. To identify the conditions that could shift raw material frequencies under the 

different MIS conditions I compare the model outcomes under two derived 

environmental effects (coastline position and raw material source distribution, and 

vegetation type) and one derived behavioral effect (mobility rate and strategy) to 

archaeological frequencies. 

Following the evaluations of the hypotheses, a sensitivity analysis of each model 

is conducted to examine the robustness of the model outcomes with respect to changes in 

parameter values. Additionally, one model constraint assumption is tested, which is what 
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effect the presence of offshore silcrete sources during lower sea-levels has one the raw 

material frequencies. The sensitivity analysis (one-factor-at-the-time – OFAT) for the 

OAM includes: 1) changing the amount of time the forager can move about the 

landscape; 2) simulating what happens when Pinnacle Point is not an exclusive site on the 

landscape but instead one of three that the forager can return too; 3) changing 

independent behavioral variables one at the time to look at the effects on raw material 

outcome; 4) changing behavioral variables wholesale to simulate curated, expedient, and 

site caching behavior. For the ACM, the sensitivity analysis includes changing the 

assumed currency. The two alternative currencies are the amount and duration of cutting 

edge on blades produced per unit time investment in producing the blade, and the amount 

of blades and duration of cutting edge on those blades produced per unit time investment 

in producing the blade. 

 

Intellectual merit and broader impacts 

In the social sciences, there is an ongoing growth in the development of formal modeling 

of human behavior and social and cultural systems. This research significantly 

contributes to archaeological method and theory. Changing raw material patterns are 

evident in many if not most archaeological sequences in any time-period, and although 

some previous studies (e.g. Brantingham 2006, 2003, Pop 2015) present formal models to 

address this issue, a more comprehensive methodological framework using two mutually 

exclusive formal models that specifically target raw material selection is missing in the 

archaeological literature. To rectify this, this project produces a framework of two formal 

models (one computational and one analytical) of raw material selection that can be 
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applied to other examples of tool resource choice regardless of raw material type in 

archaeological sequences throughout the world. Formal models are important tools in any 

scientific enterprise and their strength lay in the fact that they are logically grounded, thus 

making it is easier to pinpoint why a model is supported or not. All models must begin 

simply, and this research, through its use of two simple models, illustrates how formal 

models can be applied to questions of technological change and the procurement of 

materials and thus contributes to that ongoing development of social science modeling. 

 This study explores the formative period of modern human origins, where our 

human ancestors faced climatic and environmental change, to explore how raw material 

choices were developed and elaborated in one of the most ancient and longest living of 

human technologies: stone tool technology. The two formal models (one computational 

and one analytical) of raw material selection presented here, employ several independent 

methods (agent-based computational modeling, analytical modeling, and experimental 

archaeology) that build on efforts by Barton and Riel-Salvatore (2014), Brantingham 

(2003, 2006), and Surovell (2009). This investigation differs from previous studies with 

an informal approach (e.g. Ambrose and Lorenz 1990, Binford and Stone 1985, Brown 

2011, Gould and Saggers 1985, McCall 2006, Minichillo 2006) because it simultaneously 

considers different  hypotheses and the effects independent variables have on raw 

material selection, is formal (analytical and computational), and calculates net-return 

rates of raw material selection as the environmental and behavioral context changed by 

using high-resolution climate/environmental data from the Mossel Bay region. The study 

provides net-return rates on stone tool raw material selection that will be integrated into 

the ’Paleoscape model’ project for the Mossel Bay region and contribute to the 
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comprehensive model of hunter-gatherer resources (Franklin et al. 2015, Marean et al. 

2015). 

 Additionally, this research makes significant contributions to the Modern Human 

Origins debate. The project aims to settle a debate concerning rapid shifts in raw material 

selection that is evident at the onset of new climatic and environmental conditions in the 

late Pleistocene during the African Middle Stone Age (MSA). This research will provide 

needed clarity as to whether lithic raw material selection was a strategic behavior or if 

other lifestyle constraints caused the observed raw material pattern. Moreover, the 

research will highlight if the cultural adaptive response to climatic and environmental 

change in the MSA was driven by a mobility strategy that precluded any specific 

investment in stone technology and only prioritized moving people to the food resources, 

or if the response was an increased reliance on technological innovation facilitated by 

strategic selection of raw materials that demanded technical insight in raw material 

characteristics. 

 

Organization of dissertation 

Chapter 2 provides a literature review starting with the concept of technological 

organization and how it is linked to the concepts of mobility systems and foraging 

strategies. It then reviews informal and formal models that have been proposed to explain 

technological change when corresponding with behavioral and/or environmental change. 

Then the chapter turns to raw material selection, the role and importance of raw materials 

in the technological organization of foragers, and the concept of raw material quality 

including a summary of examples of ethnographic observations of raw material selection. 
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This is followed by a review of the application of mechanical testing to lithic raw 

material, and the examination of other claims for why raw materials are selected. At the 

end of the chapter, I organize the models that have been proposed for explaining why raw 

materials change in the archaeological record into a framework with two broad categories 

called ‘Non preference-based change’ and ‘Preference-based change’. 

Chapter 3 provides a review of raw material selection in the African Early (ESA) 

and Later Stone Age (LSA), and then a thorough review of the evidence for raw material 

selection from the Middle Stone Age (MSA) record from South Africa. At the end of the 

chapter, I present the existing informal models proposed to explain raw material selection 

and thus change in archaeological raw material frequencies in the South African MSA. 

Chapter 4 provides an in-depth overview of the geology of the Mossel Bay region 

presents pertinent data on lithologies and sources types that are pertinent to this study. 

Both onshore and offshore data are presented. 

Chapter 5 outlines the models and hypotheses evaluated in this study. This is 

followed by a full presentation of the Opportunistic Acquisition Model (OAM) and 

Active-Choice Model (ACM). The OAM is presented using the ODD (Overview, Design 

concepts, and Details) protocol for presenting agent-based models. Then the ACM is 

presented. The ACM has two variants called the (ACM-P (sequential encounter and 

embedded procurement; travel and search time-cost is excluded) and the ACM-R 

(simultaneous encounter and direct procurement; travel and search time-cost is included) 

and both are detailed. A description of the variables needed to calculate the net-return 

rates used in the ACM is presented. After presenting the models, the model conditions 

and model condition variables are described. The model conditions are Marine Isotope 
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Stages 6, 5, and 4, while the model condition variables are coastline position and raw 

material source distribution, vegetation type, and mobility rate and strategy. Then the 

hypotheses drawn from both models are presented. This is followed by the presentation 

of a testing framework that will be used to evaluate the model outcomes for both the 

OAM and the ACM. Finally, predicted relationships between time-costs and the three 

different model condition variables are presented. The predicted relationships show how 

different time-costs potentially relates to model conditions variables thus can potentially 

explain archaeological raw material frequencies during the different model conditions.  

 Chapter 6 presents the methods used in this study. It starts by detailing how the 

Opportunistic Acquisition Model (OAM) was constructed. The building blocks of the 

OAM include geological and geophysical data, raw material survey data, GIS analysis, 

and agent-based modeling. Second, I describe how the variables needed for both variants 

of the Active-Choice Model were obtained. Methods used to obtain estimates of variable 

values includes a stone tool reduction experiment, a raw material quality and fracture 

mechanics experiment, published data, raw material survey data, and GIS analysis. The 

chapter ends with describing how archaeological data were recorded and analyzed, 

including artifact metric attributes, raw material frequency, cortex type, cutting 

edge/mass ratios, and the ratio of retouch frequency to artifact volumetric density. 

 Chapter 7 presents the archaeological record from Pinnacle Point (PP). It starts 

with summarizing the site chronologies and stratigraphy of PP13B, PP9, and PP5-6. Then 

the stone tool data from these sites that are relevant for evaluating archaeological 

expectations are presented. Stone tool data are first presented by MIS designation using 

the major stratigraphic aggregate from the three different sites. Then all three sites will be 
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presented together at the stratigraphic aggregate level. Additionally, raw material 

frequency data on the sub-aggregate level from PP5-6 are presented. 

 Chapter 8 presents the Opportunistic Acquisition Model (OAM) modeling results. 

First, the raw material frequency result of same-day return simulations are presented and 

compared to archaeological frequencies under the different model conditions. Second, the 

model outcome of simulations where the forager can move for longer time away from the 

Pinnacle Point locality are presented (the first round of the one-factor-at-the-time 

(OFAT1) sensitivity analysis) and compared to the archaeological raw material 

frequencies under the different model conditions. Then I evaluate Hypothesis 1 (H1) 

drawn from the OAM. The first step in the evaluation was to investigate the assumption 

whether it is realistic to move randomly in relation to raw material sources in the Mossel 

Bay region. The key criterion examined is the time without raw material in the toolkit. 

The next step was to evaluate H1 based on the result of the same-day return simulations 

and the results of the OFAT1 sensitivity analysis. Following the discussion of these 

results, a set of results from round 2 (OFAT2), 3 (OFAT3), and 4 (OFAT4) of the 

sensitivity analysis is presented with subsequent discussions of those results. The goal of 

the sensitivity analysis was to gauge the effect different model parameters have on the 

raw material output thus checking the robustness of the initial Hypothesis 1 evaluation 

conclusion. 

 Chapter 9 first presents the obtained measurements and estimates of the variables 

needed in the Active-Choice model (ACM). Starting with the currency variables, e 

(cutting edge per mass) and d (cutting edge durability), then looking at the actual 

currency, which is e times d (cutting edge per mass multiplied by the duration of use 
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before dulling). This followed by the presentation of the ts (raw material travel and search 

time-cost), tp (raw material procurement time-cost), m1 (wood fuel for heat-treatment 

travel and search time-cost), m2 (heat-treatment time-cost), and m3 (flake manufacturing 

time-cost) variables.  

Chapter 10 presents the net-return rates under all model conditions for both the 

ACM-P (sequential encounter and embedded procurement; travel and search time-cost is 

excluded) and ACM-R (simultaneous encounter and direct procurement; travel and 

search time-cost is included) variants are presented. Raw material rankings are created 

based on the net-return rates and compared to archaeological raw material frequencies 

under five different model conditions. Then the model outcomes under three different 

model condition variables are presented to understand whether changes in individual 

time-costs drive the net-return rates and thus explain the archaeological raw material 

frequencies. The presentation of the model outcomes allows for a ranking that can be 

used compare to archaeological frequencies. Then, the comparison to the archaeological 

frequencies, which allows for testing predicted relationships between time-costs and 

model condition variables, are presented.  

The last section of the chapter presents the evaluation of Hypothesis 2 (H2) and 

Hypothesis 3 (H3) from the Active-Choice Model (ACM) using two alternative 

currencies. The AMC-P (embedded procurement; excludes travel and search time-cost) 

net-return rates are used to evaluate H2, while ACM-R (direct procurement; includes 

travel and search time-cost) net-return rates are used to evaluate H3. Both these 

currencies are then used to gauge whether individual time-costs under the three different 

model condition variables can explain archaeological raw material frequencies. 
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Chapter 11 discusses potential issues and problems with the Active-Choice Model 

and the Opportunistic Acquisition Model.  

 Chapter 12 presents a synthesis and discussion of the results of both models and 

put the results in a broader context. 

 Chapter 13 presents the conclusions of this study. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

The focus of this chapter will be on reviewing the broader theoretical, experimental, and 

archaeological context that the concept and act of lithic raw material selection are based 

in. The raw material selection stage in lithic manufacture is potentially important as it can 

set the range of possibilities for the later tool production and tool application. However, 

lithic raw material selection is only one facet of how hunter-gatherers organize their 

technology, which makes it necessary to discuss the concept of technological 

organization and how it is linked to hunter-gatherers movement and subsistence 

strategies. Thus, this dissertation takes an organizational approach (c.f. McCall 2012) to 

investigate technological change. 

In this chapter, I will first review the concept of technological organization and 

how it is linked to the concepts of mobility systems and foraging strategies. A summary 

then follows of proposed informal models to explain technological change when 

corresponding with behavioral and/or environmental change. Then I will provide a 

review of optimal foraging theory and its application to archaeology, followed by a 

summary of formal models that have been utilized to explain technological change when 

corresponding with behavioral and/or environmental change. Then the chapter turns to 

raw material selection with a focus on the role and importance of raw materials in the 

technological organization of foragers. This is followed by a review of the concept of raw 

material quality and the application of mechanical testing to lithic raw materials. Then I 

examine other claims for why raw materials are selected by including a summary of 

examples of ethnographic observations of raw material selection. At the end of the 
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chapter, I organize the models that have been proposed to explain raw material 

frequencies in archaeological records and why sometimes the raw material frequencies 

change. 

 

Technological organization, mobility systems, and foraging strategies 

Prehistoric hunter-gatherers lived in a dynamic world, where on a yearly, monthly, 

weekly, and even daily basis the weather changed, and seasons came and went, which in 

turn had a potential effect on the subsistence base. Moreover, through the lifetime of an 

individual hunter-gatherer or over a couple of generations, the climate changed and the 

environment was altered drastically by geophysical processes such as coastline change 

and biological processes such as vegetation change, which in turn could change the 

subsistence base. Thus, in any given environmental context, a hunter-gatherer group had 

to make decisions about how to organize technology that could affect survivorship of the 

group in an environment, potentially including raw material selection, when they faced 

problems such as time stress (Torrence 1983), energy costs (Bleed 1986), mobility 

requirements (Binford 1979, Kelly 1988, Shott 1986, Torrence 1983), resource 

procurement scheduling (Binford 1979), risk management (Bousman 1993, Torrence 

1989), and raw material availability (Andrefsky Jr 1994, Bamforth 1986, Gould and 

Saggers 1985, Kelly 1988). These problems were all obstacles to achieving maximum 

return on investments of time and energy (Bleed 1986, Nelson 1991, Torrence 1983).  

 Nelson (1991: 57) defined technological organization as “the selection and 

integration of strategies for making, using, transporting, and discarding tools and the 

materials needed for their manufacture and maintenance.” Technological organization 
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can also refer to a tactic, which is the means to implementing strategies. Moreover, 

Nelson (1991: 58) defined strategies as “problem-solving processes that are responsive to 

conditions created by the interplay between humans and their environment.” or 

differently, strategies are a set of contingent rules for how to behave on specified 

constraint values. Insights into the technological organization of a prehistoric forager 

group can be gained by using sequence models in archaeology by studying the steps 

taken to produce tools (Bleed 2001). Several studies suggest that stone tool production is 

affected by the mobility strategy of a given forager group (Andrefsky 1991, Bamforth 

1991, 1990, Kelly 1988, Parry and Kelly 1987, Torrence 1989, 1983). This suggests that 

aspects of the technological organization of a forager group can act as a proxy for 

mobility and foraging strategies. What this means is that by studying technological 

organization it is possible to infer about forager mobility and foraging strategies. Faunal 

and floral remains can also provide evidence for mobility and foraging strategies (see 

Winterhalder and Smith 2000 for review). By using multiple proxies, it is possible to 

build a more robust and complete picture of foraging strategies. 

 Mobility is one of the distinguishing characteristics of hunter-gatherers (Kelly 

1995: 111) and should be considered an important research focus because many aspects 

of a hunter-gatherer’s life such as resource foraging, religion, kinship, trade, artistic, and 

personal obligations are influenced by mobility (Kelly 1992: 48). It is important to point 

out however that these connections between mobility and hunter-gatherer lifeways are 

often hypothetical and rarely empirically demonstrated. The emphasis on foraging life 

and mobility does not imply that mobility is seen as being the deterministic factor on 

hunter-gatherer lifeways, but rather that the aspects of hunter-gatherer life and mobility 
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are inter-linked. Kelly (1983: 277) defined hunter-gatherer mobility strategies as “the 

way in which hunter-gatherers move about a landscape over the course of a year.” This is 

different daily foraging in which resources are acquired.” In addition, Kelly (1983: 277) 

defined mobility strategies as “one facet of the way in which hunter-gatherers organize 

themselves in order to cope with problems of resource acquisition.” As Kelly (1992: 60) 

put it: “there are no Gardens of Eden on earth, no single locales that can provide for all 

human needs. Mobility-residential, logistical, long-term, and migration was the first 

means humans used to overcome this problem. Changes in the way humans choose to be 

mobile dramatically affect other aspects of human life, from demography to 

enculturation. Theoretically, then, mobility must be critical to understanding human 

evolutionary change.” The challenge is how to operationalize methods in the form of 

models to gauge mobility and linked concepts such as food and resource procurement in 

the archaeological record. 

 Binford created much of the theoretical foundation for explaining technological 

change and organization and its link to mobility systems and foraging strategies (Binford 

1980, 1979, 1978, 1977). Binford presented dichotomies where he conceptualized a range 

of different technological strategies that the hunter-gatherer could utilize to cope with 

environmental problems and resource distribution (Brown 2011).  

 In 1977, based on observations of Nunamiut gear use during hunting trips, 

Binford presented preliminary expectations for the technological composition of 

archaeological assemblages. Binford (1977) documented that gear that was transported 

on hunting trips almost always was returned back to their residential camp and that even 

broken equipment seldom failed to make it back. Tools that did not make it were either 
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lost or purposefully discarded, while equipment left at task-specific localities reflected 

the result of work that had been done there. He introduced the concepts of ‘curated’ and 

‘non-curated’ technology but the two hypothetical extremes were used without regard to 

procurement strategy (Brown 2011). The Nunamiut ‘curated’ their equipment according 

to Binford.  

Later, in 1979 Binford introduced the concepts of ‘household’ and ‘personal’ gear 

that is distinct from ‘situational’ gear. Household and personal gear were classified as 

gear made for anticipated or scheduled tasks, while situational gear was classified as gear 

made and used out of necessity due to unanticipated events (Binford 1979). Household 

and personal tools were made of materials that have been deliberately selected for that 

purpose, meaning materials suited for that task, and such household and personal tools 

were curated. On the other hand, situational gear was made expediently on the spot and 

made out of materials available on the landscape or materials that have been stored and 

was intended to be used for another purpose. Binford proposed that this difference 

between household/personal and situational gear can explain how intra-assemblage 

variation can be partly explained by convergence. Thus, planned tools and expediently 

made tools may be used for the same purpose but they were produced differently (Brown 

2011).  

 Based on his fieldwork observation, Binford (1979) asserted that raw material 

procurement was usually embedded in other subsistence activities that the hunter-

gatherers had scheduled. Further, he contended that raw material acquisition rarely 

happens by direct and devoted forays with the sole purpose of collecting stones. Instead, 

he proposed, the variability in the proportion of stones in the archaeological assemblages 
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is the function of the scale of the habitat that has been exploited from the locality but also 

the function of discard of tools that have been previously manufactured at some other 

locality. The Nunamiut were observed to always collect raw materials when they 

encounter them during scheduled subsistence activities. The encountered raw materials 

were then stored on the landscape at locations that the Nunamiut would likely visit again 

during other scheduled activities (Binford 1979). 

 Although it was important that Binford used ethnographic observations (direct 

observation leading to empirical data on forager behavior) to build his expectations for 

archaeological assemblages it is important to note that Binford was observing the use of 

rifles, steel knives, and sleds among other things. These objects have very different use-

lives compared to objects used by Stone Age hunter-gatherers. Curation (maintenance) of 

a steel knife is different than curation of a stone tipped knife.  

In 1980, Binford (1980), following Beardsley et al. (1956) and Murdock (1967), 

demonstrated that hunter-gatherer mobility maps onto variation in the environment. One 

of the proxies that Binford used for the environment was the effective temperature (ET) 

measure, which although is sensitive to seasonality, was used to show that there is a 

systematic relationship between environments and hunter-gatherer settlement types. 

Then, while looking at ethnographic data about hunter-gatherers, Binford divided the 

variability in hunter-gatherer foraging strategies into two broad strategies, called foragers 

and collectors, and then described the probable archaeological signature of each 

settlement type (Binford 1980). 

 The forager strategy rests on the concept of residential mobility (Binford 1980). 

In short, residential mobility is the movement of the entire group from one location to 
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another, where the hunter-gatherers move the consumers, themselves, to the resources. 

The foragers use an encounter-based strategy, and gather food on a daily basis and 

seldom store food. Resource distribution and group size determine the number of 

residential moves. Group size and duration of stay and seasonal use of camps will all 

have an effect on the archaeological visibility of residential mobility. Localities, which 

Binford called sites where resources were extracted, should have a low density of 

archaeology. Residential mobility is expected in landscapes where resources are 

homogeneously distributed and available year-round, and thus maximum foraging 

efficiency will result from dispersing the group to resource locations (Kelly 1995: 120). 

Year-round resource availability does not mean that all resources are available at all 

times but rather that there are no parts of the year that are characterized by no resource 

availability.  

 The collector strategy is tied to logistical mobility (Binford 1980). Logistical 

mobility is the movement of a subset of the entire residential group to and from a key 

residential location in order to perform specific tasks. The key residential locations are 

not necessarily defined by food (Kelly 1995: 120). Although collectors usually exhibit 

residential mobility, they typically obtain resources through special trips and they store 

food. Logistical mobility is expected when resources are patchily distributed on the 

landscape and temporally punctuated. Such resources were often predictable on the 

landscape and seasonally abundant. The logistical trips occur when the group is located 

away from critical resources but it is not practical or possible to move the whole group 

from the current place to where the resource occurs. In situations where access to food 

resources is restricted by seasonality, hunter-gatherers have a need for obtaining critical 
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resources in a shorter period of time. Binford proposed that if several critical resources 

need to be obtained during the same short period of time it would lead to more logistical 

mobility. A hunter-gatherer group will obtain maximum foraging efficiency in such a 

situation by aggregation at key residential sites and sending out foraging parties (Kelly 

1995: 120). Archaeologically, resource extraction sites may reflect similar or repetitive 

site function due to many recurring visits through time (Brown 2011).   

 Kelly (1983), following Binford (1980), investigated mobility strategies further 

by focusing on how they relate to the environmental resource structure. Kelly used five 

different variables to measure dimensions of mobility, one example being the average 

distance moved per residential move (Kelly 1995, Kelly 1983). The different dimensions 

were analyzed in relation to the gross abundance and distribution of food, using effective 

temperature (ET) and primary biomass as their measurements. Kelly demonstrated 

several patterns between residential mobility and the environmental resource structure. 

One example is that there is a strong positive relationship between the average distance 

moved per residential move and measures of ET, which in this case Kelly related to 

seasonality (Kelly 1983). 

 

Informal models for understanding technological change 

Many informal models have been developed to explain technological variability not only 

in terms of lithics but all technology used by a foraging group when the changes 

correspond with changes in the behavioral and/or environmental context. The early 

ethnographic studies by Binford are the foundation for much of the body of theory that 

these models are based on (Shott 1986). The models are developed with the goal to 
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explain technological change that has been observed in the archaeological record (Kelly 

1992). What these models have in common is that either they deal with technological 

organization and technological choices directly or they deal with concepts such as risk, 

foraging strategies, and population size that all are potentially linked to technological 

organization and choices foragers make about technology. Binford’s foundational work, 

summarized above,  resulted in studies of technological organization systems with focus 

on different factors including optimization of technology (Bleed 1986), time stress 

(Torrence 1983), amelioration of risk (Bamforth and Bleed 1997, Bousman 1993, Collard 

et al. 2012, Collard et al. 2011, Torrence 1989), technological strategies associated with 

settlement systems (Kuhn 2004, 1991), population size (Collard, Buchanan, and O’Brien 

2013, Collard et al. 2013), and curated and expedient technologies (Bousman 1993, 

Nelson 1991). Common for most of these studies following Binford is that they take a 

cost/benefit or risk avoidance approach when trying to understand technological 

variability (Brown 2011). It is important to note that these concepts are likely all linked 

and this needs to be taken into consideration. What follows is a discussion and summary 

of the most important work relating to these concepts and technological organization and 

I draw on Brown’s (2011) comprehensive review of these works when appropriate.  

Early efforts focused on the concept of time-stress and the optimization of 

technology (Torrence 1983, Bleed 1986). Torrence (1983) proposed that technology used 

for subsistence should vary according to two factors related to time stress: the severity 

and the character of time stress. Scheduling of toolmaking with respect to the overall 

requirement of the subsistence activity should influence technological variability. 

Binford’s embedded procurement, according to Torrence, is a good example where time 
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scheduled for tool making and maintenance is built into other activities. She further 

proposed that the time available to accomplish tasks should be inversely correlated with 

the diversity and complexity in a tool assemblage because tools that are more specialized 

perform tasks more efficiently. The presence of complex and modular tools may indicate 

forward investment in the production of compound tools or modular tools, which 

facilitated easy replacement of parts when time is at a minimum (Brown 2011). Using 

this foundation, Torrence (1983) ranked time stress encountered by ethnographic hunter-

gatherers using ethnographic data from Oswalt (1973). Time stress was ranked according 

to latitude and seasonality, which were used as a proxy for time stress. She found that as 

latitude increases so do tool diversity and complexity (both in number of components per 

tool and per toolkit). She used this linear relationship to propose that time stress and 

scheduling conflict in higher latitudes where availability of resources are seasonally 

controlled are at least partially responsible for the level of investment of technology 

observed in the ethnographic data (Brown 2011). A problem with using Oswalt’s (1973) 

study is that the concepts of tool diversity and complexity are both subjective. Diversity 

is based on the number of subjectively identified tools, while tool complexity is based on 

the number of subjectively identified tool components. Thus, calculations of tool 

diversity and complexity can be skewed depending on how many tool types or parts one 

recognizes in a tool system. 

 Bleed (1986) took a different approach. He used principles of modern engineering 

and ethnographic observations to predict the most efficient or optimal design of weapons 

and tools within the forager versus collector framework created by Binford (1979). He 

defined efficiency as the output of a technology divided by its cost. Bleed then created a 
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distinction between ‘reliable’ and ‘maintainable’ tools. Reliable tools are designed to 

always work when they are needed and tend to be overbuilt to minimize failure and be 

able to function well below their maximum capacity, which is facilitated by having many 

redundant components and typically having a built-in backup system. A specialist with a 

toolkit designed to be able to handle all situations that can arise during repairs performs 

maintenance at scheduled events in advance of use. Reliable technologies are more likely 

to be adopted by collectors since they have scheduled resource acquisition where food 

resources need to be acquired in bulk during narrow and predictable time windows, and 

that the predictable nature of the food resources allows predictable downtime for 

scheduled maintenance of tools in advance of resource extraction (Brown 2011). Bleed 

contended that the Nunamiut that Binford studied used reliable technology particularly in 

terms of maintenance of tools in advance of hunting. Bleed cited the observations of 

periods of intensive equipment preparation prior to hunts, the carrying of multiple rifles 

for caribou hunting, and repair kits with the possibility to fix a range of problems. An 

issue with comparing the reliable technology concept with Binford’s study is the fact that 

the Nunamiut used rifles, which is not comparable to weaponry used by Stone Age 

hunter-gatherers.  

 Conversely, ‘maintainable’ tools are simpler in design and construction, consist of 

relatively fewer parts than reliable tools, and are created to be easily repaired or to be 

easily repurposed for a different use (Bleed 1986). Because the failure of one part results 

in the failure of the whole tool, the repair kit is more specialized and incorporates spares 

for parts that might be expected to fail. However, maintainable tools may still work when 

compromised and can be easily adapted for another unanticipated use. Maintainable tools 
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are typically repaired by the user as they break and not during scheduled events in 

advance of subsistence activities (Brown 2011). Bleed used the !Kung and Yanomami 

groups, considered to be foragers, as an example of hunter-gatherers that used 

maintainable technology. Both groups use modular-based hunting kits that are simple and 

lightweight with no redundancy in design, and they carry repair kits with modular parts. 

Although there is observed specialized tips among the Yanomama they have to be 

repaired after each shot so they can be used again. 

 Based on this, Bleed (1986) proposed that the best means for evaluating 

efficiency in design of hunting technology is to look at scheduling of tool use and the cost 

of failure. One could envision situations where both reliable and maintainable design 

elements could be incorporated into a single system. However, reliable systems are 

typically very costly to build, maintain, and transport. This may be the case but not when 

using rifles as the example as Bleed did with the Nunamiut. A rifle might be costly in 

monetary terms but the forager does not have to procure all the different parts of the 

weapon and manufacture it. The rifle comes ready-made. This needs to be kept in mind. 

Nevertheless, according to Bleed, when the cost of failure is high (e.g. failure to capture 

prey can lead to starvation due to lack of alternative resources to extract), meaning that 

the risk is high, the hunter-gatherer should use reliable tools. On the other hand, when the 

cost of failure is low (risk is low), the hunter-gatherer should rely on maintainable tools 

because they are less costly to manufacture and transport. Bleed (1986) contended, in 

disagreement with Torrence, that latitude is not always a good predictor of the type of 

technology in the past because the Central Eskimo toolkit in terms of maintainability is 

very similar to the !Kung and Yanomama. That is not to say that the Central Eskimo and 
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the !Kung had the same technology but that their technology was built on similar 

principles of maintainability, and available opportunistic hunting opportunities. Further, 

he proposed based on his observations that hunter-gatherers in the past would alter their 

technology to reach an optimal solution in their environmental context (Brown 2011). 

 Torrence (1989) took Bleed’s reliable and maintainable tools concepts and 

proposed that they should be treated as separate variables and not as a continuum. She 

proposed that human mobility is not necessarily associated with choice of technological 

strategy but rather that technological strategy is more likely associated with tool use 

frequency, prey mobility, and the temporal and spatial availability of prey. According to 

Torrence, hunter-gatherers will invest in technology and will make a greater diversity of 

tools when the risk of failure is high (if the forager risks going without food because the 

food resource will not be available for a considerable amount of time (e.g. seasonal 

availability) then the risk of failing to extract such a resource is high – the forager might 

face starvation). Technology for hunting mobile prey is the most complex, while plant-

gathering tools are the least complex because hunter-gatherers that have broad diets are 

under less stress and typically have plant foods in their diets, and they invest less in 

technology (Brown 2011). Additionally, Torrence pointed out that some of the most 

complex tools, what Oswalt (1973) called untended facilities for trapping and disabling 

prey, are very seldom found in the archaeological record due to poor preservation. This is 

a good point. However, preservation has most likely also eroded away evidence for more 

complex technology linked to plant or other edible organic food processing. 

 Others, however, contend that it is not the case that hunter-gatherers that have 

broad diets are under less stress (Broughton 1997, 1994, Broughton and Grayson 1993, 
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Hawkes and O’Connell 1992). Broad diets reflect more stress as the forager has to pursue 

lower ranking prey items to maintain the caloric budget. A plausible effect of having to 

pursue lower ranked prey due to decline in returns from high-ranked prey is investment in 

technology to be able to handle such prey (Bright, Ugan, and Hunsaker 2002, Knecht 

1993, Kuhn and Stiner 2001, Ugan, Bright, and Rogers 2003). 

 Torrence (1989) made another important point by cautioning against viewing 

technological complexity as a linear trend in time. She pointed out several examples in 

the more recent archaeological record where more formal tools have been replaced by 

more expedient technologies made from lower quality materials. To her, risk and the 

severity of loss condition the investment in technology. Risk and severity of loss can be 

assessed by looking at the abundance of alternative resources, which according to her 

were plant-resources. Torrence (1989) argued that risk arises whenever a hunter-gatherer 

group is dependent on mobile prey, which may only be available on a seasonal basis. She 

divided tools into two classes: tools that are good at minimizing resource variation in 

space, and tools that are good at coping with temporal variability. 

 Using that framework Torrence (1989) then proposed that when hunter-gatherers 

were selecting raw materials they would choose the least costly raw materials suited for 

the intended task. An example of this is that maintainable tools may require materials that 

are more amenable to recycling. Torrence argued that raw material choice is not 

independent of tool use. She disagreed that raw material availability (c.f. Andrefsky 

1994) has an influence on selection, and she viewed the total technological system 

including raw material choice as a way to solve a problem. Bamforth and Bleed (1997) 

echoed that view and contended that the raw material selection stage of stone tool 
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technology was potentially very important because it could set the range for what types of 

tool-forms and flaking outcome that could be produced. Bamforth and Bleed’s arguments 

will be discussed further in a later part of this chapter when discussing the role and 

importance of raw materials in technological organization. 

In an effort to coalesce earlier work by Torrence, Bleed and others, Bousman 

(1993) tried to unite foraging theory with the concept of technological organization. He 

pointed out that patch and prey foraging models from optimal foraging theory do not 

include the input of technology and that archaeologists need a uniform body of theory to 

explain why past technologies changed. Because patch and prey foraging models 

normally lack the input of technology, Bousman (1993) proposed that technology should 

be included in the search and handling costs due to the need for tools when humans are 

foraging. Based on this, he proposed similarly to Torrence (1989) that diet-breadth should 

increase if technology costs are minimized and conversely should decrease when 

technologies that are more expensive are utilized. As noted above, this has been contested 

by researchers using prey-choice models drawn from Optimal Foraging Theory (e.g. 

Broughton 1997, 1994, Broughton and Grayson 1993, Hawkes and O’Connell 1992).  

Further, Bousman (1993) proposed that the resource structure of a given 

environment should be characterized by abundance, temporal availability, and spatial 

distribution of the resources. This created needed nuance to how archaeologists discuss 

the characteristics of resources in the environment. He proposed that the predictability of 

food resources should be viewed in terms of constancy, which is when resources are 

spatially and temporally stable all year round, and contingency, which is when resources 

are predictable but only seasonally available. Shellfish are examples of food resources 
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that have a degree of constancy, while seasonal fish runs have a degree of contingency. 

This is an important point. Resources that have a low degree of both constancy and 

contingency have low predictability. 

Based on this way of characterizing resource structure Bousman predicted 

expected technological patterns for Binford’s (1980) foragers versus collectors 

framework. Foragers were proposed to be time-minimizers favoring extending the use 

life of extractive technology and work to reduce production and maintenance costs of the 

repair kit. The forager pattern is associated with more spatially disbursed and less 

predictable resources. Conversely, collectors spend more time investing and maintaining 

extractive tools and the associated repair kit and are associated with a predictable 

resource structure (Brown 2011). Bousman proposed that depending on the resource 

structure, the forager and collector patterns could alternate and coexist. 

Similar to Torrence, Bousman (1993) assessed risk based on the outcome of food 

collection. However, he contended that costs and benefits of technology could be 

manipulated in different ways. Bousman proposed that toolmakers have four primary 

strategies to increase the efficiency in terms of time allocation and handling costs. 1) The 

toolmakers can decrease the production time by making expedient tools, which are tools 

defined by minimal alteration. If such an expedient strategy is planned then either raw 

materials need to be readily available in terms of abundance on the landscape or available 

at pre-stocked caches of stone. 2) The toolmakers can increase the use life of the tools by 

making maintainable tools as defined by Bleed (1986). The life of such tools is extended 

by repair or resharpening. The cost of raw material acquisition is reduced by maintaining 

the tools. 3) Efficiency can be increased by creating reliable tools as defined by Bleed 
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(1986). When the risk of failure is high (meaning that failure to extract the particular 

resource leads to the forager having to wait a long time to get a similar chance) and when 

food resource packages are big and can be obtained in bulk then toolmakers should use 

reliable tools. However, reliable tools are costly and require a lot of planning. 4) The 

toolmakers can increase production volume to increase the efficiency of tools (e.g. 

increase the amount of cutting edge produced per unit of stone). Technologies that are 

more efficient can increase the yield of tools from a given amount of raw material. 

Bousman proposed that this type of strategy can decrease raw material acquisition costs. 

Building on the work of Bleed and Binford, Bousman (1993) proposed that the 

concept of curated tools should be subdivided into maintainable tools and reliable tools. 

The characteristics of curated tools should include tools that are made and planned in 

advance of use, tools that are transported maintained, flexible, reshaped, and tools that 

are stored (Brown 2011). He proposed a hypothetical triangle where maintainable, 

reliable, and expedient technologies are the three corners but they do not necessarily 

represent mutually exclusive strategies. There are two reasons for why the strategies are 

not mutually exclusive: (1) stone types will greatly influence tool use-life and curation 

rates for all tools made regardless of strategy; (2) raw material availability, which 

constrains what can be accessed to make tools regardless of strategy, is a function of 

mobility range size and pattern, natural abundance, and potentially material exchange 

(Bousman, 1993). 

 A different approach to looking at technological variability is to look at how the 

mobility and foraging strategy affected the archaeological assemblages in terms of 

diversity; whether tools were curated or used expediently when linked to specific 
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mobility strategies. Shott (1986) following Binford (1980) conducted a study aimed at 

technological organization and mobility. He investigated the relationship between 

assemblage diversity and relative mobility. Shott (1986) used artifact data and mobility 

information from many ethnographically described hunter-gatherer groups. He found that 

artifact diversity has an inverse relationship with residential mobility, where artifact 

diversity decreases as mobility increases (Shott 1986). 

 Parry and Kelly (1987) who focused on the relationship between the relative 

abundance of formal and expedient stone tools in relation to mobility strategies and 

hunter-gatherer sedentism presented a similar finding. Sedentism is a term closely linked 

to hunter-gatherer mobility, and many archaeologists tend to see sedentism as emerging 

on a continuum of residential mobility and see sedentism as an important social and 

behavioral threshold (Kelly 1992). Parry and Kelly (1987) demonstrated a general trend 

from formal tool use to expedient tool use relative to mobile and sedentary populations in 

the North American prehistory. They showed that, as hunter-gatherer groups became 

more sedentary, their technological organization became more expedient, in which the 

groups relied less on formal tools and conserving raw materials (Parry and Kelly 1987).  

Kuhn (1991) following Parry & Kelly (1987), used the amount of retouch on 

stone tools, which Kuhn saw as a proxy for how formal a tool technology was, to 

investigate mobility when studying Italian Mousterian Middle Paleolithic assemblages. 

Kuhn demonstrated a positive relationship between short occupation span and high 

frequency of retouch. Frequent moves with a residential mobility system put pressure on 

curating materials to prevent shortfalls. However, Kuhn (1991) also showed that raw-
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material availability, differential transport of raw materials and tool functions all affected 

stone tool variability, and thus the technological organization. 

 Riel-Salvatore and Barton (2004) proposed a new methodology to study the 

technological organization of hunter-gatherer groups in relation to their mobility 

strategies. Using volumetric artifact density from excavations and the frequency of 

retouched tools within a given lithic assemblage, they gauged if tool assemblages resulted 

from a residential or logistical mobility strategy (Riel-Salvatore and Barton 2004). This 

approach was different from past ones as it relied on palimpsests of assemblages to 

understand technological variability. Using palimpsests is important as it limits the 

inherent variability of technological change or change in site use in the short term, which 

both can be subject to taphonomic bias. Instead, a palimpsests approach gives a view of 

the long-term technological adaptation and mobility strategy at a site (Barton and Riel-

Salvatore 2014). 

 To link assemblage composition and mobility strategy, they used the concepts of 

curated and expedient tools following Nelson (1991), which articulated a clear difference 

between curated and expedient lithic assemblages in the archaeological record. The two 

concepts occupy the ends of a continuum of economic behavior where curated 

assemblages are recognized by highly conservative use of raw materials and a high 

frequency of retouch, and expedient assemblages resulting from a liberal use of raw 

materials and a relatively low frequency of retouch (Riel-Salvatore and Barton 2004). 

Relying on a behavioral ecology theoretical framework (Bird and O’Connell 2006, 

Winterhalder and Smith 2000) and optimal use of tool utility under different mobility 
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strategies, they align curated assemblages with residential mobility and expedient 

assemblages with logistical mobility on a continuum (Riel-Salvatore and Barton 2004). 

Overall, these informal models created to gauge mobility in the archaeological 

record share the strength of being easy to operationalize because they are general in form 

and thus easy to apply to archaeological contexts. Although grounded in a behavioral 

ecology theoretical framework and concerned with optimization of currencies relative to 

some constraint, these informal models are empirically built on ethnographical and other 

archaeological data, which have helped make the concepts operational and testable. 

These informal models set the foundation for a better understanding of technological 

variability and organization and its connection to mobility and foraging strategies. 

 

From informal to formal modeling 

A problem with most of these previous studies is that they developed propositions by 

building verbal arguments based on archaeological patterns and sometimes ethnographic 

observations, and then tested those patterns with interpretations of archaeological data 

(Surovell 2009: 10). The risk arising from this is that the chain of inference about 

proposed human behavior in the archaeological record becomes circular if observed 

archaeological patterns are tested against a model built on interpretations of 

archaeological data. It is important to note that although some of the informal models 

were built using ethnographic observations (e.g. Binford 1980, 1979, 1977, Shott 1986) 

there is a lack of empirical tests using ethnographic data of either key assumptions or 

predicted relationships in most of these cases. Further, the models are so generalized that 

it can be unclear whether the predictions follow directly from implied goals, currencies, 



35 
 

and constraints (Bird and O’Connell 2006, Surovell 2009). One can risk creating and 

applying a model that lacks a logical foundation due to imperfect or at least 

unsubstantiated premises (Surovell, 2009: 2). It is worth noting however that all models 

(formal or informal) began as informal ideas, concepts, and frameworks. Nevertheless, 

Kelly (1995: 56) argued: “at present, then, many interpretations of stone tools 

assemblages as indicators of mobility are subjective, intuitive, and sometimes 

contradictory.” 

 Some of the contradictions can arise from the data itself. There are several 

problems and limitations in linking aspects of technological organization such as 

frequency of retouched tools recovered today or raw material selection with past 

ecological behaviors such as mobility and foraging strategies. The first set of problems 

are caused by taphonomic processes starting with the discard behavior of the foragers 

(Binford 1977), and then post-depositional processes acting on the assemblages 

(Bernatchez 2010, Dibble et al. 1997, Enloe 2006, Kuman 1989, Lenoble and Bertran 

2004, Lenoble, Bertran, and Lacrampe 2008, McPherron, Dibble, and Goldberg 2005, 

Oestmo et al. 2014, Schiffer 1975), and finally, the recovery methods of archaeologists 

(Lombard 2008b, Marean et al. 2004). These three sets of problems are not exclusive to 

informal models but also apply to formal models. However, a problem that is more 

associated with informal models is the use of subjectively created artifact classes and 

typologies. One example is the model created by Shott (1986) where artifact diversity 

was found to be inversely correlated with mobility. The measure of artifact diversity is 

obviously subjective and depends on how many artifact types one has built into a 

typological or classification system. When using typologies an archaeologist runs the risk 
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of having automatic prior assumptions about what a technology should look like or what 

it constitutes. This risks defining measures that ensure the outcome that is proposed. 

Ideally, when drawing a hypothesis from operational variables that are subjectively 

defined the hypothesis should be blind-tested. 

 A good example of contradictory results is the use of the concept of curation to 

investigate mobility strategies by Binford (1977, 1973) and Bamforth (1986). Binford 

(1977: 35) proposed that a greater reliance on curation was the optimal solution to the 

problem of moving food to the consumers because it increased tool efficiency in terms of 

the work output relative to the investment in manufacturing (Binford 1977). Conversely, 

Bamforth (1986) contended that raw-material availability is the ultimate conditioning 

factor on stone tool maintenance and recycling (retouch) (Bamforth 1986: 40). Bamforth 

(1986) found when testing his model against both ethnographical and interpretation of 

archaeological data that high rates of stone tool maintenance and recycling were in some 

cases more associated with foraging strategies as opposed to collecting strategies. 

 These differing results when using the same concept highlights a serious problem 

with informal models. Binford and Bamforth had different and implicit assumptions and 

did not define curation specifically. As noted above, Binford studied steel knives, rifles, 

and sleds among other things used by the Nunamiut, which of course have different use-

lives compared to stone tools. They both tested their predictions against archaeological 

data and some ethnographic observations and found their hypotheses to be supported. 

However, there are no direct systematic observations of any group making and using 

stone tools where we also know mobility patterns and foraging strategies. Thus, there is a 

risk of being right for the wrong reason since there is no reason to trust the validity of the 
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theoretical model (Surovell 2009: 11). Further, because many informal models do not 

have explicit predictions that have to follow the assumptions it potentially makes the 

models not logically valid (Surovell 2009: 2). 

 Based on this, this study advocate for the formalization of models that tries to 

explain technological variation or aspects of technological organization. This study is far 

from being the first to attempt such an approach. Most of these models are grounded in 

an Optimal Foraging Theory (OFT) model framework or in the broader overlaying 

Behavioral Ecology (BE) theory. What follows is a review and summary of attempts to 

formalize such models.  

 

Optimal foraging theory (OFT) and its applications to archaeology 

The study of how a hunter-gatherer group organizes technology is well suited to an OFT 

framework (Charnov 1976, Charnov and Orians 1973, Krebs and Davies 1984, Maynard 

Smith 1978, Stephens and Krebs 1986) because decisions about raw material selection, 

procurement, tool production (including heat-treatment), and use must be made at 

virtually every stage of the process, and those decisions can be modeled as optimization 

problems (Surovell 2009). Formal models from OFT is a subset of models from 

Behavioral Ecology (BE), and are tools that can help a researcher formulate testable 

hypotheses about potential fitness-related trade-offs individuals could face in a given 

socio-ecological context (Bird and O’Connell 2006). In other words, they offer a 

framework for researchers to organize testable propositions about behavior (Bird and 

O’Connell 2006). Specifically, models from OFT are designed to test hypotheses about 

individual behavior under a specified set of conditions (Bird and O’Connell 2006).  
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A formal model is a model that is constructed mathematically, built from 

equations, expressions, algorithm, or code. Formal models have the advantage of having 

explicit predictions that must derive from their assumptions, making them logically valid 

(Surovell 2009: 2). By nature, mathematical formal models entail causal relations that 

have unambiguous predictions (Surovell 2009). Additionally, the behavioral ecology and 

OFT grounding and the mathematical construct should result in more objective models 

compared to verbally constructed informal models. 

 It is important to note that the “models themselves are never tested” (Bird and 

O’Connell 2006: 146). Instead, “it is the situation-specific assumptions” or hypotheses 

that the given model application require that will be tested. These assumptions or 

hypotheses apply to the fitness-related goal of behavior, the decision variable that is 

associated with achieving that goal, the trade-offs linked with the decision variable, one 

or more currencies used to evaluate the trade-offs, and the constraints that define or limits 

the agent’s situational response (Bird and O’Connell 2006: 146). When modeled as a 

series of dependent relationships, the assumptions (hypotheses) enable the researcher to 

generate predictions about behavior under the given circumstances (Bird and O’Connell 

2006: 146). If there is a mismatch between predicted and archaeologically inferred 

behavior it implies “either that one or more of the specific hypotheses about goals, 

decision variables, trade-offs, currencies, and constraints are wrong” and thus needs 

reassessment, or it might imply that the model itself is “inappropriate to the behavioral 

question being addressed” (Bird and O’Connell 2006: 146). Additionally, a mismatch can 

happen because instead of testing against direct observations of behavior the testing is 
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against archaeologically inferred behavior where the inferences themselves are 

potentially erroneous. 

 It is useful here to summarize the most well-known OFT model, the Prey Choice 

Model (PCM) (Bird and O’Connell 2006, Emlen 1966, MacArthur and Pianka 1966). 

Bird and O’Connell (2006: 147) give a good summary of the PCM so I draw on their 

summary below. The PCM makes a distinction between search and handling, which are 

two mutually exclusive aspects of foraging. Bird and O’Connell (2006) defined handling 

as including all activities associated with pursuit, capture or collection that happens after 

whatever is targeted is encountered. A more useful definition of handling when applying 

the PCM to non-edible resources such as lithic raw materials is all the time required after 

a resource is encountered and before the utility of a resource can be realized. It also 

includes activities associated with prepping the prey for consumption. For this study, that 

means the manufacturing part of stone tool production. The PCM is designed to address 

whether a hunter-gatherer should handle the encountered prey or continue to search for 

another prey that might give the hunter-gatherer a better return relative to time spent 

searching for, collecting, and processing (Bird and O’Connell 2006). To be able to 

answer this question, Bird and O’Connell (2006: 147) stated that the PCM assumes that 

the goal of the foraging activity is to maximize the rate of energy capture, which is the 

currency. A more precise description is that the PCM assumes rate maximization of 

nutrient capture but t to be able to operationalize the PCM the currency was simplified to 

energy capture. The decision the agent faces is whether to handle a particular prey when 

encountered or to move on to search for another prey that might yield a higher net-return 

rate, which is the trade-off (Bird and O’Connell 2006). Further, the PCM operated under 



40 
 

the constraints that the agent can estimate or knows the encounter or post-encounter 

return rate relative to the handling cost of all potential prey types. In addition, the agent 

searches in a landscape where types of prey are mixed and the chance of encounter is 

random relative to the abundance of the prey types (Bird and O’Connell 2006: 147).  

 The PCM posits that if an agent wants to maximize foraging efficiency, the post-

encounter profitability of a targeted item needs to be “equal to or greater than the 

expected overall foraging net return, including search.” Further, the model predicts that 

the prey that has the highest rank will always be taken when encountered, while prey 

types that are less profitable are added to the diet in descending rank order until the on-

encounter return from the prey type with the next lowest-rank falls below the expected 

return from searching for and handling all resources of higher rank (Bird and O’Connell 

2006: 147). All such resources that fall below will by definition decrease the average 

return of the environment as a whole, which means that they “will be bypassed 

consistently in favor for a continued search for profitable prey” (Bird and O’Connell 

2006: 147). In addition, the PCM also predicts that the post-encounter profitability of a 

given prey type and the rate at which all higher-ranked prey types are encountered 

controls the inclusion of a given prey type rather than the abundance of a given prey type 

or the encounter rate (Bird and O’Connell 2006: 147). 

 There is evidence for the assumption that living organisms are designed to be 

optimizers (Alexander 1996, Krebs and Davies 1984) because natural selection favors 

behaviors that maximize fitness, rewarding optimization within a given environmental 

context (Surovell 2009). However, it is important to note that (1) nothing is never 

perfectly maximized, and (2) it is not always the case that an organism maximizes any 
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specified currency other than fitness because of tradeoffs and realities of biological 

mechanisms. Currencies and other fitness-related goals can conflict, which can lead to 

inevitable tradeoffs. Nevertheless, a number of studies show that aspects of hunter-

gatherer behavior can be better understood in the context of optimal foraging theory 

(Hawkes, Hill, and O’Connell 1982, Hill et al. 1987, Hill and Hawkes 1983, O’Connell 

and Hawkes 1981, Smith 1991, Smith 1981, Winterhalder 1981). However, whether the 

concept of optimality behavior can be applied to hunter-gatherers has been debated and 

critiqued (Bishop 1983, Dawkins 2006, Jochim 1983, Keene 1983, Lee 1979, Sahlins 

1976, Schrire 2009). Those against argue that optimal foraging models treat cultural 

factors as trivial (Bishop, 1983), and dehumanize the behavior of foragers (Schrire, 

2009), or obscures the difference between the needs of an individual and the needs of the 

society (Keene, 1983). These are important concerns. Another concern, the assumption 

that the forager has perfect knowledge about the environment and encounter rates with 

prey items, which is inter-linked with the concept of risk as it pertains to the effect of risk 

on a forager’s utility or fitness and thus optimal choice between strategies (Smith 1991, 

Smith and Boyd 1990) will be discussed further below (Chapter 11). 

Applications of OFT models to the archaeological record have focused on six 

general issues (Bird and O’Connell 2006): 

1) Diet breadth change among hunter-gatherers and the question of intensification 

(e.g., Basgall 1987, Bayham 1979, Beaton 1991b, Botkin 1980, Bouey 1987, Broughton 

2004, 2002, 1999, 1997, 1994, Cannon 2000, Edwards and O’Connell 1995, Erlandson 

1991, Glassow 1996, Glassow and Wilcoxin 1988, Grayson 1991, Hildebrandt and Jones 

1992, Jones and Richman 1995, Kennett 2005, Kennett and Kennett 2000, Mannino and 
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Thomas 2002, Nagaoka 2002, O’Connell, Jones, and Simms 1982, Raab and Bradford 

1997, Raab and Larson 1997, Raab 1996, Raab et al. 1995, Raab 1992, Raab and Yatsko 

1992, Perlman 1980, Porcasi, Jones, and Raab 2000, Simms 1987, Stiner and Munro 

2002, Stiner, Munro, and Surovell 2000, Stiner et al. 1999, Szuter and Bayham 1989, 

Wolgemuth 1996, Yesner 1989). 

2) The origins and diffusion of domestication of plants and animals (e.g., Alvard 

and Kuznar 2001, Diehl 1997, Dominguez 2002, Foster 2003, Gremillion 2004, Hawkes 

and O’Connell 1992, Keegan and Butler 1987, Keegan 1986, Kennett and Winterhalder 

2006, Layton, Foley, and Williams 1991, Piperno and Pearsall 1998, Redding 1988, 

Russell 1988, Winterhalder and Goland 1997, Wright 1994). 

3) Central place foraging (e.g.,Barlow and Metcalfe 1996, Bettinger, Mahli, and 

McCarthy 1997, Bird et al. 2002, Cannon 2003, Elston and Zeanah 2002, Metcalfe and 

Barlow 1992, Lupo 2001, Lupo and Schmitt 1997, O’Connell and Marshall 1989, Orians 

and Pearson 1979, Zeanah 2004, 2000),  

4) Colonization processes and competitive exclusion among hunter-gatherers 

(e.g., Beaton 1991a, Bettinger and Baumhoff 1982, Keegan 1995, Keegan and Diamond 

1987, Kennett, Anderson, and Winterhalder 2006, Kelly 1999, Meltzer 2002),  

5) Animal skeletal element transport (see Marean and Cleghorn 2003 and 

references therein), and  

6) Links between foraging and technology. Compared to the other issues such as 

diet breadth and origins of domestication, links between foraging and technology have 

received relatively little attention (Bird and O’Connell 2006). Although, as stated above, 

many early studies on technological organization and its link to foraging behavior used a 
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BE framework they did not use formal models with explicitly stated goals, currencies, 

decisions, trade-offs, and constraints (Bird and O’Connell 2006). However, applying 

OFT to technological choices has several issues: 1) there is no theory to predict the suite 

of alternative technologies that will arise. Instead one can only evaluate alternative 

technologies that are known to exist; 2) Adaptation of technology is affected by cognitive 

mechanisms other than just those that evaluate rate gain maximization. Such cognitive 

mechanisms include social learning prejudices (Bandura 1977) and signaling (Gurven et 

al. 2009, Bird, Smith, and Bird 2001) that can both affect which technologies are chosen 

regardless of gain rates. 3) In addition, the evolution of cultural preferences in tandem 

with functionally optimal technologies sometimes requires cultural group selection 

(Soltis, Boyd, and Richerson 1995, Henrich 2004). These issues need to be taken into 

account when applying an OFT framework to technological choices. Models derived 

from the OFT or BE framework that have focused on links between foraging and 

technology pertain to this dissertation and will be summarized and discussed in the 

following section. 

 

Formal models for understanding technological change 

The formal models reviewed below can be divided into two broader categories: 1) 

analytical optimization models, 2) simulation-based models that utilize agent-based 

models or other computer-based tools to understand technological or behavioral change. 

In the first category, some of the models have investigated investment in technology or 

focused on time-costs linked to technology as a part of the rate maximization equation. 

These will be the focus of a summary and review below. Others have focused on why 
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certain core types such as Levallois core technology prevail across large spans of time 

and space (Brantingham and Kuhn 2001), or when one should field-process a stone 

nodule instead of bringing the whole nodule back to a campsite (Beck, Taylor, and Jones 

2002, Metcalfe and Barlow 1992). Additionally, work by Surovell (2003, 2009) has 

focused on creating a behavioral ecology framework for lithic technology.  

 Surovell (2009, 2003) built on the previous formal models by Kuhn (1994) and 

others (e.g. Brantingham and Kuhn 2001, Metcalfe and Barlow 1992) to create a whole 

suite of new formal models aimed at building a stronger foundation for lithic technology, 

technological organization and mobility strategy studies in behavioral ecology. I will 

review one of his models here. Surovell (2009) called it the “Mean Per Capita 

Occupation Span” model, and it models artifact accumulation where the goal is to derive 

archaeological measures of occupation span and reoccupation of sites using only 

attributes of technological organization (Surovell 2009: 58). Surovell (2009: 58) stated, 

“Because occupation span and the frequency of residential mobility are inversely related, 

measures of occupation by their very nature are also measures of mobility.” Thus, these 

measures of mobility can then be used as independent variables for the investigation of 

technological variability or technological organization (Surovell 2009: 58). 

 Surovell (2009: 68) defined the concept of “mean per capita occupation span as 

“the average length of stay per site occupant.” and (2009: 70) argued that it is more 

useful than occupation span because it should be independent of the number of 

occupations. Moreover, Surovell (2009: 70) argued, “If the archaeological record is seen 

as the product of individual agents operating in time and space, and the behavioral 

phenomena we wish to study are the cumulative product of individuals, then the per 
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capita measure should be a more accurate reflection of the by-products of those 

behaviors.” 

 Surovell (2009: 74) constructed the model with two main variables; transported 

and locally acquired artifacts. The model assumes that a forager arrives at a site with a 

transported toolkit, and upon arrival, the forager replenishes the toolkit to some optimum 

size of artifacts with locally acquired raw materials (Surovell 2009: 74). All things being 

equal; the model predicts that as occupation span is lengthened, artifacts acquired locally 

will increasingly dominate archaeological assemblages. Thus, short-term occupation of a 

site should equate to a relatively high proportion of transported artifacts, while long-term 

occupation of a site should equate to a relatively low proportion of non-locally acquired 

artifacts (Surovell 2009: 77). Because the size of a transported toolkit is limited (a forager 

only has so much space to carry things), it influences the discard rates of transported 

artifacts into a site. Thus, the ratio of local to nonlocal raw materials represented by 

transported and locally acquired tools should provide a proxy measure for mean 

occupation span per site occupant (Surovell, 2009). Support for this proposition was 

found with archaeological data from both North America and Australia. 

 A limitation with the occupation span models is that it relies on the proper 

identification of local versus non-local raw materials. Surovell’s study cases from North 

America and Australia involves distinct raw materials with well-known proveniences on 

the landscape (Surovell, 2009). However, the distinction of what is local and what is non-

local materials in the South African Middle Stone Age (MSA) record has been debated, 

where the identification of silcrete being an exotic non-local raw material features 

prominently (Ambrose 2006, 2002, Ambrose and Lorenz 1990, Minichillo 2006). The 
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original argument that silcrete was an exotic and non-local material was based on the 

observation of its rise in frequency during the Marine Isotope Stage (MIS5) to MIS4 

transition, which was argued to indicate that foragers changed how they moved about the 

landscape (Ambrose and Lorenz 1990). 

 However, two different studies have changed that perception. 1) Minichillo 

(2006) argued that silcrete and other fine-grained raw materials as observed in the Klasies 

River record are local raw materials obtained from secondary sources, mainly cobble 

beaches. This suggested that these exotic raw materials could be obtained inexpensively 

in terms of time-cost (Minichillo, 2006). An outcome of this was more pressure to 

conduct more detailed provenience studies of raw material to be able to discern which 

raw materials are local and which are not, and to highlight whether raw materials come 

from primary sources or secondary sources. 2) In the second important study, Brown et 

al. (2009) showed that silcrete at Pinnacle Point has been heat-treated. They showed that 

the appearance of silcrete as fine-grained and ‘exotic’ as observed in the archaeological 

record from PP5-6 is due to heat-treatment. Prior to this finding, it had been hard to 

source silcrete because the archaeological silcrete seldom looked like the silcrete found 

on the landscape. The finding that foragers heat-treated silcrete showed that what 

appeared as a fine-grained non-local raw material without any clear proveniences on the 

landscape could instead be local silcrete that was heat-treated to improve the quality. 

 Combined these two findings show that what constitute local and non-local raw 

materials in the MSA record at Pinnacle Point, and potentially elsewhere is complex. The 

“Mean Per Capita Occupation Span” model appears to be an excellent avenue to look 

independently at mobility in the archaeological record at Pinnacle Point but in the 
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absence of proper identification of what constitutes local and non-local raw materials, 

this study will not attempt to utilize Surovell’s model. 

 

OFT-derived models 

The following review will focus on formal models that have investigated investment in 

technology, or focused on the time-costs of technology as a part of the rate-maximization 

equation. 

 An early formal model dealing with technological organization and mobility in 

the first category is the “Mobile Toolkits” model created by Kuhn (1994). The model 

explored two different technological trade-offs in the design of mobile toolkits. The 

alternative technological strategies have associated costs and benefits that can be 

modeled with respect to a currency and thus to define optimizing behaviors (Surovell 

2009: 16). The two central questions asked by the model (Kuhn 1994: 426) were that if 

one assumes that mobile toolkits are designed to maximize durability, functionality, and 

versatility at the same time as minimizing weight, 1) should a group of foragers carry 

cores (mostly unused mass of raw materials) or tools/tool blanks?; 2) should they 

transport a few large tools or a number of small tools? Kuhn (1994: 438) stated that the 

major assumption of his model is that when a forager is making tools for more or less 

continuous transport the predominant concern is to maximize potential utility relative to 

the cost of transport. More specifically the model assumes a currency of utility divided by 

mass, and the goal of the model is to find the technological solution that maximizes this 

quantity for a toolkit. Utility is defined as the potentiality to produce usable flake edges, 

measurable relative to a minimum usable size for tools and cores (Surovell 2009: 16). 
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Kuhn (1994) derived two predictions. First, mobile toolkits should contain tools or tool 

blanks rather than cores because of more usable flake edge per unit mass. Secondly, 

transported tool blanks should optimally be between 1.5 and 3 times bigger than their 

minimum usable size. This result is based on the assumption that utility is proportional to 

artifact length, which in turn is assumed to be proportional to the potential for 

resharpening or renewal. Kuhn (1994: 439) did not test his model against ethnographical 

or archaeological data but states that it is “one potential avenue for recognizing even 

more fundamental limitations in how we think humans behave.” Kuhn’s model stands 

today as perhaps the only model put forward that uses an explicit currency combined with 

trade-offs and time-cost in an attempt to predict technological change. Because of the 

inherent detail needed in testing Kuhn’s model it has not been applied to archaeological 

records because of a lack necessary resolution in the archaeological data. 

 Elston and Brantingham (2002) focused on microlithic technology and its role in 

hunter-gatherer adaptive strategies by looking at tool design and risk. This is different 

from previous studies, which have focused on origins, technological lineages, and 

cultural history. They contrasted organic points that have microblade insets with simple 

organic points and flaked stone points by outlining the general costs and benefits of the 

different designs. In addition, by using the Z-score model (a risk sensitivity model) they 

focused on the relative advantages of wedge-shaped and split-pebble microcores. Based 

on ethnographic and archaeological data they found that bone and wooden points 

equipped with microblades are significantly more expensive to manufacture than simple 

stone or organic points. However, in terms of risk of failure, they perform much better, 

and the points with microblade insets are much easier to repair. To Elston and 
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Brantingham risk of failure refers to the probability of shortfalls in finding and extracting 

resources in a given environment. Thus under certain climatic and demographic 

circumstances, microlithic technology should be preferred. Blade cores such as wedge-

shaped and split-pebble also have trade-offs, and Elston and Brantingham (2002) 

proposed that the most expensive forms should be adopted in high latitude environments 

despite their costs because they provide advantages in tool maintenance such as ease of 

repair. They reviewed the role of microlithic technology as a risk-minimizing strategy 

(strategy to minimize the risk of shortfalls in capture food resources) of arctic and sub-

arctic large game hunters in Northern Asia. They proposed that microlithic technology 

provided aid to provisioning efforts through long winters with diminished food resources 

that were hard to access. The use of microlithic technology minimized the risk of failure 

to capture sufficient resources. The role of microlithic technology as a risk-minimizing 

strategy helped it spread in the Northeast during the Late Upper Pleistocene (Elston and 

Brantingham 2002). 

 Ugan and colleagues (2003) building on the work of Bright et al. (2002) proposed 

a technological investment model. In their model, intensification of technology is treated 

as a series of decisions. These decisions are related to how tools are used and how extra 

time and energy used on technology has an effect on search and handling time for food 

resources. They proposed that the costs associated with technological investment are as 

important to consider as the potential benefits. Further, they cautioned that diminishing 

returns could result from continued investment in technology (Ugan, Bright, and Rogers 

2003). The goal to be achieved in their model is to maximize the net-return rate of food 

resources in the most efficient way possible (Brown 2011). They proposed that there is a 
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critical balance between time costs resulting from search and handling time cost and time 

costs associated with improvement of technology. Further, they proposed that search and 

handling and technological improvement are two mutually exclusive activities. Using 

their model, they found that there is a positive relationship between technological 

investment and amount of time spent handling a food resource. Investment should 

increase with the amount of time spent in handling. The tradeoff is that the time spent on 

investment reduces the time that can be spent searching (Ugan, Bright, and Rogers 2003). 

The study highlighted the potential conflict between time spent on improving technology 

and the time needed to procure energy resources. However, tool work can be done at 

night, during periods of bad weather, during time spent waiting for people, or conditions 

to change. Hence, if tool work is timed properly it does not have to be conducted during 

potential foraging time and thus the two activities are not mutually exclusive. 

 Further, Ugan and colleagues (2003) contend that the use-life of an artifact affects 

the time that mobile hunter-gatherers would have available to forage, and based on that 

they proposed at least three ways that technological investment can manifest itself. The 

hunter-gatherers can decide to invest in high-quality materials and construction that result 

in artifacts with longer use-lives. Alternatively, the hunter-gatherers can invest in 

expedient tool manufacture and spend most of the time on maintenance to extend tool 

use-life. The third strategy is to replace the entire tool on a regular basis (Brown 2011). 

They contended that technological investment cost could be decreased by embedding the 

cost in other activities such as embedding raw material procurement into daily foraging 

movement. This is similar to my point above that tool work can be embedded with duties 

performed in the evening and at night at a campsite or performed when waiting out 
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adverse weather conditions. However, if tool work is embedded in such a way the 

optimal solutions arrived on by Ugan et al. (2003) will change. 

 Bettinger et al. (2006) disagreed with Ugan and colleagues’ (2003) explanation 

for how technological investment occurs and proposed an alternative model of 

technological intensification. Because not all tools perform the same task they cautioned 

against using a single gain curve when comparing rates of procurement function. In their 

model, they used points and lines to connect between different curve functions of gain 

and manufacture time to be able to predict when a hunter-gatherer should switch to a 

more expensive technology (Brown 2011). Bettinger and colleagues (2006) asserted that 

it would not make sense for a hunter-gatherer to invest in a technology that yields a lower 

net-return rate than a cheaper technology. Thus, a hunter-gatherer should keep using an 

inexpensive technology if a more expensive technology does not yield a higher net-return 

rate (Brown 2011). Their model also predicted that when diffusion or transmission of 

ideas introduces a new technology that increases net-return rates than the existing 

technologies if retained should revert to cheaper and simpler designs (Bettinger, 

Winterhalder, and McElreath 2006).   

A big issue with both Bettinger and Ugan’s studies is that they both present very 

little testing of their concepts using ethnographic data. Central assumptions have not been 

grounded in observed behaviors or experiments. For example, the proposition that search 

and handling and technological improvement are two mutually exclusive activities is 

most likely wrong. That proposition could have been checked by comparing it to 

ethnographically observed behavior. 
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Mackay and Marvick (2011) also considered technological time-costs when 

applied to stone tool manufacture. They created a model where it is assumed that there is 

a positive correlation between technological cost and improvement in resource capture. 

The model showed, similar to ethnographic observations of the relationship between 

subsistence risk and technological complexity, that the viability of technologies with 

increased time costs is constrained by the resource abundance across the landscape. They 

found that it is more likely that costly technologies should be pursued in landscapes with 

fewer resources. This is because improvements that might arise from investing in costly 

technologies are most likely going to be marginal when the net-return is already high. 

This result mirror earlier observations about the relationship between risk and 

technological complexity (c.f. Bousman 1993, Torrence 1989). 

However, increased investment in technology is not the only way to mitigate risk 

related to fewer resources. Establishing and maintaining social networks providing 

information among scattered social groups that can act as a safety net in situations of 

resource scarcity is another way to mitigate risk (Whallon 2006). Additionally, 

ethnographic observations suggest that technology does not have to be complex and 

costly to be able to survive in a resource-poor environment. Ethnographic observations 

from the Western Central desert in Australia, for example, show that the toolkit consisted 

of three types of tools: 1) multipurpose tools that were lightweight and easy to carry; 2) 

appliances that can be left where they were used, and reused at a later time if needed; 3) 

instant tools that are created on the spot using local raw materials and discarded 

expediently on the landscape (Gould 1978, Gould, Koster, and Sontz 1971). It is 
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important to note here that nothing is known about the economies and net-return rates 

associated with a different toolkit in this Australian example. 

 Mackay and Marvick (2011) compared the ethnographic observations and the 

hypothetical models they created to archaeological changes in technological costs from 

three late Pleistocene sites (Diepkloof, Elands Bay Cave, and Klein Kliphuis). Based on 

their findings they proposed that while costly technologies are generally pursued under 

global glacial conditions, at the peak of glacial conditions there is a reversion to 

technological systems with minimum cost (Mackay and Marwick 2011). Specifically, 

they proposed that this most likely reflects a switch in the optimization goal from the 

focus on gaining maximum resource net-return rates to instead focusing on maximizing 

early resource acquisition and/or a focus on maximizing the number of subsistence 

encounters. 

However the proposition that there is a reversal at the peak of glacial conditions is 

not clear-cut in South Africa. The argument hinges on that the evidence uncovered so far 

is representative for the overall technology. It is possible and highly likely that with more 

excavations the technology organization during the peak of glacial and in interglacial 

periods will reflect more complex and thus costly technology. Evidence from Sibudu in 

the Eastern Cape shows that in the moderate interglacial MIS3 there is no simple reversal 

to a less costly technology but instead increased variability in technology (Conard and 

Will 2015, Will, Bader, and Conard 2014). Additionally, the assumption that glacial 

conditions during the MSA in South Africa presents the forager with fewer resources is 

also potentially wrong. 
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 One pressing problem with the models reviewed above is that they treat 

technology as a single monolithic entity. Most technologies consist of several 

components made up of several types of materials, which all require separate actions to 

acquire and process. By concocting technology into one entity of costs and benefits one 

risks washing out what parts of the technology are costly to procure and manufacture and 

which ones are not. To obtain a better estimate of the cost of technology one should look 

at the currency and cost of single raw materials needed in the technology. Once a web of 

cost and benefits for each raw material is obtained then one can combine these to 

calculate the full cost of technology that can be used to understand benefits and costs of 

technology in food-getting activities. By looking at raw materials needed for a particular 

technology individually one will get a clearer picture of which parts were more important 

in the overall technological organization. 

 

Formal simulation models 

Brantingham (2003) challenged the argument that changes in stone tool raw material 

frequencies in archaeological assemblages can be considered a reliable proxy for hunter-

gatherer adaptive variability (Féblot-Augustins 1993, Kuhn 1995, Mellars 1996). He 

further challenged the traditional explanations that changes in raw material usage  

frequencies is due to mobility and procurement strategies that co-vary with 

climate/environmental change (Ambrose and Lorenz 1990, Binford and Stone 1985, 

Kuhn 2004), selection of certain raw materials for their physical properties (Braun et al. 

2009, Gould and Saggers 1985, Minichillo 2006), changes in demography (Clark 1980), 

the preference for appearance or color (Akerman, Fullagar, and van Gijn 2002, Clendon 
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1999, Stout 2002), symbolic value (Wurz 1999), and style (Close 2002). Brantingham 

(2003) presented a neutral model using agent-based computational simulation. He 

showed that his neutral model can explain most patterning observed in raw material use. 

 In the neutral model, one forager with a mobile toolkit of fixed capacity is 

randomly placed on the environment. At each time step, the forager moves to one of the 

nearest eight neighboring cells or stays in the present cell, with equal probability (=1/9). 

At each time step, a fixed amount of raw material is consumed dependent only upon its 

frequency in the mobile toolkit. If a raw material source is encountered, the toolkit is re-

provisioned up to its maximum capacity before moving again at random. If no raw 

material source is encountered, the forager moves immediately at random. Simulations 

are run until 200 unique raw material sources are encountered, or the edge of the 

simulation world is reached (Oestmo, Janssen, and Marean 2016). The model is 

replicated in Netlogo by (Janssen and Oestmo 2013).  

 Brantingham (2003) presented three important results. 1) The raw material 

richness in an assemblage should always be less than the available range of raw materials 

on the landscape. 2) The model predicted that the mobile toolkit of a forager should 

mostly consist of raw materials that can be encountered in close proximity to the site. 3) 

Raw materials from distant sources should be minimally represented (Brantingham 

2003). Brantingham (2003: 506) asserted that in order to demonstrate the deliberate 

selection of raw materials, patterning must be shown to be different from the results of 

the neutral model, which provides a baseline for comparison where archaeologists can be 

certain that an observed raw material pattern is not the result of strategic selection. 
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However, a problem with Brantingham’s model is that it simulates what is being carried 

not what is being discarded and observable in an assemblage.  

 Pop (2015) contested that Brantingham’s model in its original form is suited to 

identify archaeological patterns because it can only simulate processes that govern toolkit 

composition and these processes differ substantially from the processes that influences 

discard records (Pop, 2015). In Pop’s study, archaeological sites or assemblages are 

demonstrated to not offer an adequate proxy for the average composition of ancient 

forager toolkits. He pointed out that richness of assemblage is by itself a poor predictor of 

site occupation history. Additionally, Pop showed that practice of calculating 

archaeological raw material frequencies from distances to sources is flawed. An issue 

with Pop’s study is that because site occupation history is also an archaeological 

interpretation, using one to predict the other is not a valid test. The only way this would 

be a valid test, I propose, is to base the relationship on ethnographically observed 

populations. 

Neverthelss, Pop’s (2015) work is important as it calibrates Brantingham’s model. 

His revised model predicted that: 1) raw materials from any given source should always 

occur in similar quantities at archaeological sites with similar access costs, and it should 

happen regardless of direction of access. Major deviation in the archaeological record 

from this expectation can only be explained by behaviors affecting mobility patterns. 2) 

The most heavily utilized (meaning curated or retouched) raw material will be from 

relatively isolated sources. Deviation from this pattern suggests avoidance of that raw 

material source. 3) Because there is a sharp decline in raw material abundance with 

increasing distance to source, large sites will only form at or very near to raw material 
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sources. Deviation from this expectation is only explainable by behaviors resulting from 

biased, non-random movement. 4) The probability of observing a given number of raw 

material types in an archaeological assemblage depends on the distance between 

assemblage and source, and the distance between the source and neighboring sources. 

Deviation from modeled frequencies is indicative of behaviors that resulted in targeted 

procurement or avoidance of particular raw material types. 5) Maximum transfer 

distances and the ratio of maximum to median transport-distances that have been 

observed in an assemblage should be smaller under conditions of low source densities 

compared to conditions where source densities are higher. Deviation from these 

expectations can indicate mobility patterns that are biased, or it may reflect factors such 

as lithic recycling. 6) The number of unique raw materials should be low under 

conditions of low source densities. Deviation reflects preference or avoidance of certain 

raw materials. Given these predictions Pop (2015) argued that a requirement to accurate 

interpretation of the model output is high-resolution raw material sourcing data. The 

research presented in this study attempts to apply Brantingham’s random walk approach 

to a real landscape with high-resolution data on source locations and extents. Pop’s third 

prediction will be tested when appropriate below in Chapter 12. 

 Following up on his early work (2003), Brantingham (2006) addressed the 

problem of being able to translate patterns of archaeological raw material frequencies into 

quantitative characteristics of forager mobility. He pointed out that it is a challenging 

problem because forager mobility is interlinked with a number of potential variables 

including raw material quality and abundance, individual movement and technological 

decisions, which makes it hard to analyze mobility independent of those variables. He 
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proposed a formal model of forager mobility that is based on a well-known stochastic 

process from biology called the Lévy walk (Brantingham 2006, Shlesinger, Zaslavsky, 

and Klafter 1993, Viswanathan et al. 2002). Lévy walks are based on a simple equation 

that states that the probability of a move of a certain length (L) is commanded by a 

negative power-law with properties defined by an exponent (u). Moves of length L are 

straight-line paths between two stops along a single route. Foraging stops can be 

“interpreted as turning points along a continuous path that represents a single foraging 

bout, temporary camps or resting spots for special-purpose activity groups” during 

logistical forays, or residential camps used by hunter-gatherers using a residential 

mobility strategy (Brantingham 2006: 437). Thus, the Lévy walk processes can represent 

both daily foraging bouts and residential moves that the forager group makes. Lévy walk 

is generated from the power-law distribution when forager moves between two points in 

incremental steps corresponding to a minimum possible step, which is also called the 

characteristic step length. However, the probability distribution can also generate Lévy 

flights, which are instances of the forager jumping instantaneously between two points 

that are separated by distance L (Brantingham 2006).  

From a forager perspective, the Lévy walk allows the forager to detect foraging 

targets at the end point of Lévy paths or at intermediate steps between them. Conversely, 

the Lévy flight allows the forager to only detect targets at the end of individual flights. 

Short distance moves tend to be most common as the density of the probability 

distribution is concentrated around lower values of L, while long-distance moves occur 

with finite probability (Brantingham 2006: 437-438). He pointed out that studies of a 

diverse set of organisms such as dinoflagellates, honey bees, albatross, deer, and howler 
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monkeys have shown that Lévy walks describe the empirical frequency distribution of 

move lengths for these organisms (Bartumeus et al. 2003, Boyer et al. 2004, Ramos-

Fernandez et al. 2004, Viswanathan et al. 1999, Viswanathan et al. 1996). Because of this 

Brantingham (2006) proposed based on a theoretical and empirical basis that one can also 

expect that the movement of human foragers can be structured similarly. Specifically, 

Brantingham (2006) asserted that this model, in combination with neutral assumptions 

about raw material procurement and use (Brantingham 2003), could be used to recover 

detailed quantified information about organization of mobility from raw material 

transport distances and provide potential currencies for comparative studies of mobility 

strategies. The results of his formal modeling are consistent with informal models 

presented in the past that have suggested that greater mean and maximum stone transport 

distances reflect increased planning depth and greater optimization of mobility and risk 

sensitivity (Brantingham 2006). Brantingham’s formal model was supported by recent 

ethnographic observations by Raichlen et al. (2014) that show that the movement-pattern 

of Hadza foragers (both sexes) approximate a Levy walk. 

 Brantingham (2006) noted that his model does not imply that hunter-gatherers 

calculated probabilities to structure their mobility. The rationale behind modeling hunter-

gatherer mobility as a Lévy process, he contended, is linked to how one brings 

individuals and food resources together at the same time and place, which is a 

fundamental ecological problem faced by all organisms (Cashdan 1992, Potts 1988, 

Stephens and Krebs 1986). When studying non-human organisms some ecologists 

favored the assumption that foragers do not have any prior knowledge about the resource 

distribution across the landscape (Viswanathan et al. 2002, Viswanathan et al. 1999), and 
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argued that the organisms have evolved behaviors that approximate a Lévy random 

search because these behaviors offer an optimal solution to finding heterogeneously 

distributed resources (i.e. patchy) (Brantingham 2006). Based on this Brantingham 

proposed that it is not unreasonable to expect that hunter-gatherers would deploy a Lévy 

search strategy when entering new environments for which they did not have any prior 

information about the resource structure. However, once information was gathered about 

the environment then random search would no longer be necessary. Brantingham (2006: 

450) pointed out that a Lévy search strategy can provide an adequate explanation of 

hunter-gatherer mobility for those cases when foragers have moved to new environments 

because we lack information about why hunter-gatherers moved to certain locations at 

different distances, which is a function of the lack of scale discernible from the 

archaeological record. However, one issue an archaeologist faces is that it is very 

challenging, if not impossible, to pinpoint in the archaeological record at what point a 

foraging group first moved into a new environment and at which point the foragers had 

enough knowledge about their surroundings to stop using random search. The 

implementation of the Levy walk is beyond the scope of the study presented here but will 

be the focus of a future study. 

 Barton and Riel-Salvatore (2014) conducted agent-based modeling to simulate 

how lithic assemblages form. They pointed out that studying formation processes is 

important as they are the key link between the materials being studied and the behavior 

that archaeologists want to understand (Barton and Riel-Salvatore 2014). They focused 

on four variables that can affect the formation of lithic assemblages, and systematically 

evaluate the individual and combined effect of the length of stay at sites, distribution of 
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raw materials, differences in site activities, and movement patterns on assemblages over 

different time intervals. Barton and Riel-Salvatore found that when you increase the 

access to raw materials you decrease the frequency of retouched lithics. On the other 

hand, tasks that require more use of lithics results in assemblages with a higher frequency 

of retouched lithics. Further, Barton and Riel-Salvatore (2014) found that the length of 

stay under any mobility strategy has an effect on the density of lithic accumulation, while 

it has little effect on the composition of an assemblage. Similarly, they found that 

mobility patterns have a limited effect on the composition of an assemblage. However, 

when they coupled mobility pattern with place provisioning or individual provisioning, 

which are associated with logistical and residential mobility strategies respectively (Kuhn 

2004), they found that it has a significant effect on the compositions of assemblages. 

Another important finding was that lithic palimpsests resulting from multiple occupations 

might provide better information about hunter-gatherer ecology and adaptability than 

assemblages that have resulted from single or few occupations (Barton and Riel-

Salvatore 2014). 

 They contended that the model experiments support their interpretation (Barton et 

al. 2011, Riel-Salvatore, Popescu, and Barton 2008, Riel-Salvatore and Barton 2004) that 

the relationship between retouched artifact frequency and density is a robust proxy for 

hunter-gatherer land-use strategies. The pattern should be most apparent for 

archaeological sites that have alternating occupations between LMS (logistical mobility 

strategy) base camps and RMS (residential mobility strategy) residential camps. They 

argued that place provisioning that usually goes along with logistical mobility drives the 
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distinctive patterns observed in lithic assemblages accumulated at localities that have 

periodically acted as LMS base camps (Barton and Riel-Salvatore 2014).  

 Their modeling predicted the quantitative signature for localities that served 

exclusively as RMS residential camps and/or LMS resource extraction camps based on 

the composition of the assemblage. This signature is a positive relationship between 

retouched frequency and artifact density, which is the opposite of localities that have 

been used as LMS base camps and RMS residential camps on an alternating basis (Barton 

and Riel-Salvatore 2014). 

 It is important to note that Barton and Riel-Salvatore utilized retouch frequencies 

reported from European Middle and Upper Paleolithic assemblages. The retouch 

frequencies from South African MSA assemblages are relatively low (e.g. Brown, 2011; 

Singer and Wymer, 1981). No study has explicitly compared the amount of retouch 

frequency between the Middle Paleolithic and Middle Stone Age assemblages but the 

relative lack of retouch in the MSA record is curious and warrants more research. It could 

be that access to raw materials was so prevalent due to either abundance or lack of 

competitions because of low population numbers that it let the foragers be more 

expedient overall with raw materials. Because of this, Barton and Riel-Salvatore’s model 

might not be as useful for MSA records as it will likely suggest that most MSA 

assemblages are due to have been used as LMS base camps and RMS residential camps 

on an alternating basis. However, the simulation predictions they presented will be 

contrasted against the Pinnacle Point record in conjunction with the discussion and 

synthesis of model results in Chapter 12. The predictions are: 1) increase in access to raw 

materials decreases the frequency of retouched lithics; 2) tasks that require more use of 
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lithics results in assemblages with a higher frequency of retouched lithics; 3) length of 

stay regardless of mobility strategy affects the density of lithic accumulation but at the 

same time has little effect on the composition of an assemblage; 4) mobility patterns have 

a limited effect on the composition of an assemblage; 5) when mobility pattern is coupled 

with place provisioning or individual provisioning it has significant effect on assemblage 

composition (Barton and Riel-Salvatore, 2014). 

 

Issues with formal models 

Because the formal models have such explicitly stated assumptions, currencies, 

constraints, and goals, they are increasingly harder to operationalize and apply to the 

archaeological record. Metcalfe and Barlow (1992: 352) argued that testing their “field 

processing model” would be very hard to do rigorously because it would require 

estimates of different parameters of their model at a level of precision unlikely to ever be 

available in the archaeological record. Kuhn (1994) did not test his model either. 

However, as Surovell (2009) showed, it is possible to test formal models and find support 

for them by carefully selecting proxy measures of currencies and constraints to test the 

models. However, these proxies need to be verified by ethnographic observations. 

 However, Surovell (2009: 20) argued that because there is a reliance on proxy 

measures of currencies and constraints to test formal models in lithic technology, 

uncertainties will start to compound that could make the formal mathematical models 

lose their formality because it cannot be demonstrated that the assumptions have been 

met. This, of course, is a problem but the utility of formal models are not that they are 
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easily operationalized and tested, which they are not, but that they have a sound logical 

foundation (Surovell 2009: 20). 

 Conversely, an advantage with computer-based simulation models is that, if 

model assumptions about human behavior and environmental context that are based on 

direct ethnographic and physical, observations respectfully are used, they allow for the 

investigation of human behavioral variation. This is because one can simulate long time-

periods, and variables associated with human behavior and/or environmental context can 

be changed one at the time. This is important because lithic technology is largely an 

extinct technology, and direct observations of the accumulation of lithic assemblages 

over similar timeframes comparable to those observed in the archaeological record are 

not achievable (Barton and Riel-Salvatore, 2014).  

The last point to consider when using a mathematical view of the world is that 

mathematical models are simple views of the complex world, where assumptions are 

often simplified (Surovell 2009: 21). However, as Winterhalder and Smith (1992: 13-14) 

put it “simple is not simple-minded. Simple models are a necessary, not temporary or 

primitive stage of scientific development.” This same notion goes for simulation models. 

By starting simple and by investigating the interconnectedness of the variables one can 

potentially get a better understanding of what the causal factors are. These causal factors 

can be verified with ethnographic observations creating a causal model for behavioral 

change and then that model can be applied to the archaeological record. Once the simple 

causal model is understood it is possible to build more complex models with more 

variables. 
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The preceding review of informal and formal models to understand technological 

organization systems has highlighted that if you are choosing a model to investigate 

mobility strategies and want to apply it to a given archaeological assemblage you have a 

dilemma. On one side, informal models offer you the ease of operationalizing and 

applicability to the archaeological record, however, they can be potentially illogical 

because predictions do not follow ambiguous assumptions. On the other side, formal 

models offer you a logical foundation with explicit predictions following assumptions, 

however, they are very hard to operationalize and apply to the archaeological record 

because their explicitly stated currencies, assumptions, constraints, and goals would 

require estimates of at a level of resolution unlikely ever to be available in the 

archaeological record.  

Although there are models presented above that are hard to test with 

archaeological data or ethnographic observations potentially making them scientifically 

less valid, there are, however, some models such as Dibble’s cortex model (Lin, 

McPherron, and Dibble 2015, Dibble et al. 2005) and Barton’s retouch frequency model 

(Barton 1991) that are specified for archaeological materials. The cortex model has been 

experimentally tested and verified several times and has been found to be a robust 

method (Douglass and Holdaway 2011, Douglass et al. 2008, Holdaway et al. 2008, 

Douglass 2010, Lin et al. 2010, Parker 2011). In addition, the successful application of 

the method to multiple different assemblages (Holdaway, Douglass, and Fanning 2013, 

Douglass 2010, Douglass et al. 2008, Ditchfield et al. 2014, Holdaway, Wendrich, and 

Phillipps 2010, Dibble et al. 2012, Brown 2011, Phillipps 2012) suggest that the 

differences in cortex composition among lithic assemblages can provide an objective and 
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quantitative way of comparing prehistoric variations in movement and technology (Lin, 

McPherron, and Dibble 2015).  

The important takeaway from the discussion on formal models is that a model that 

only deals with living people and the calories that they expend with no consideration of 

the material record they produce and discard is poorly specified for the archaeological 

record regardless of whether it is expressed as a narrative (informal model), computer 

algorithm (e.g. agent-based model simulation) or as an equation. Put another way, for a 

model to be useful for the archaeologist the model needs to produce explicit outcomes or 

expectations that are testable by direct comparison to the archaeological record. This 

dissertation takes such an approach and presents two formal models that produce 

outcomes that can be tested by comparison to the archaeological record. 

 

Raw material selection 

Of the formal models reviewed above, only Brantingham (2006, 2003) and Pop (2015) 

explicitly proposed processes for why raw materials change in the archaeological record. 

However, several informal models have been proposed for why raw materials change. In 

the following sections, I review and summarize research that has focused on the role and 

importance of raw materials in the technological organization of foragers. Then I move to 

discuss why raw materials are selected starting with the concept of quality and how it can 

be quantified by using mechanical tests. This is followed by a review of other hypotheses 

for why raw materials are selected and thus potentially why raw material frequencies 

change in archaeological records. At the end, I organize the different models that been 
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proposed for why raw materials change into a framework subdivided into two broader 

categories called ‘Non preference-based change’ and ‘Preference-based change’. 

 

The role and importance of raw materials in technological organization 

Following the Oldowan, a wide range of environmental and climatic contexts, time-

periods, and ‘cultural traditions’ have yielded a pattern of changing use, and co-use of 

coarse-grained and fine-grained stone tool raw materials (e.g., Andrefsky 1994, Bamforth 

1990, Bar-Yosef 1991, Braun et al. 2009, Clark 1980, Goldman-Neuman and Hovers 

2012, Jelinek 1991, Kuhn 2004, 1991). However, the explanation for this variation and 

the significance of stone raw materials in the technological organization of foragers are 

heavily debated. Generally, the arguments can be divided into two camps. Some argue 

that raw materials are directly procured (Gould 1985, Gould and Saggers 1985), perhaps 

for their physical properties linked to functional needs (Mackay 2008, Minichillo 2006, 

Stout 2002), or symbolic (Clendon 1999, Gould, Koster, and Sontz 1971, Wurz 1999) 

and stylistic needs (Close 2002, Mackay 2011, Sackett 1986, 1982). The other argument 

is that raw materials are acquired during an embedded and encounter-based procurement 

strategy (Binford and Stone 1985, Binford 1979), where the changing frequencies are 

either due to changes in the mobility strategy affecting the foraging range size (Ambrose 

and Lorenz 1990, Kuhn 2004, 1991, McCall 2007) or changes in the natural availability 

of raw materials on the landscape (Brantingham 2003, Brown 2011, Volman 1981). 

Changes in raw material usage frequencies have also been hypothesized to be linked to 

changes in demography (Clark 1980) and trade and exchange (Akerman, Fullagar, and 

van Gijn 2002, Deacon 1989, Torrence 1986, Wurz 1999). Similar possibilities need to 
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be kept in mind when investigating raw material selection and why raw material 

frequencies change in the archaeological record. 

 The direct procurement versus embedded procurement is a useful heuristic 

framework to contrast raw material selection behavior but it is useful to note that, for 

example, the Australian record shows that the most likely scenario for a raw material 

selection strategy is a mix of both direct and embedded procurement in addition to trade 

and exchange (Akerman 2007, Akerman, Fullagar, and van Gijn 2002). Examples from 

the Australian record show that special stones used for circumcision were mostly directly 

procured using special task groups or traded for, while other stone was procured while 

moving for other purposes (Gould 1978). 

Binford’s (1980, 1979) models, particularly his proposition that raw material 

procurement always should be embedded with other resource extraction activities were 

not always well received. The ensuing debate between Binford (Binford and Stone 

1985:1) and Gould (Gould 1985, Gould and Saggers 1985, Sackett 1986) is called the 

“righteous rocks debate”. Gould and Saggers (1985) contended that Binford’s embedded 

and encounter-based procurement strategy model is inflexible, and they pointed to 

Gould’s ethnographic observations in addition to archaeological patterns that both show 

clear evidence of direct procurement of lithic raw materials. Using the localities of James 

Creek East and West, Gould and Saggers (1985) conducted experiments showing that 

non-local materials that were selected for adze production were superior for 

woodworking compared to local materials. Conversely, they found that at James Creek 

West, the local materials were suitable for specific purposes and thus the preferential 

selection of those materials is reflected in the archaeological sequence. Gould and 
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Saggers’ (1985) main argument was that factors other than an encounter-based strategy 

can explain raw material preference at certain localities. However, they did agree with 

Binford that many examples of exotic or non-local stone materials can be explained by 

embedded procurement. 

 Following the ‘righteous rock debate’, Bamforth and Bleed (1997) focused on the 

role of raw material selection in the technological organization of hunter-gatherers. They 

proposed that the stage that includes the selection and procurement of raw materials is 

critical because it sets the range of possibilities for how a hunter-gatherer produces tools 

and how the tools can later be used. They pointed out that once raw materials are 

acquired, it can be used to produce the most complex flaked stone tools in an hour by a 

skilled knapper. They used a conceptual framework based on risk and the potential cost 

of failure of the tool, and they balance the decisions made by hunter-gatherers regarding 

procurement, production, and use (Brown 2011). Bamforth and Bleed argued that the cost 

of failure can be high or low in each of these different decisions. Hunter-gatherers should 

avoid technological strategies where the cost of failure is unacceptably high, which 

should lead to the selection of strategies that minimizes failure. However, the strategy of 

minimizing risk to find food resources at the expense of greater mean return rates is not 

part of any empirically supported model in foraging theory (Brown 2011). When 

considering the concept of risk, they argued that if suitable stone is not available when 

needed it can result in the failure of tool production scheduling, which in turn can result 

in the canceling of the intended activity. An important thing to note is that cost and risk 

of canceling the intended activity can be compared directly to efficiency and procurement 

costs and benefits. Canceling the intended activity is just a part of the overall income 
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equation. Further, special efforts to procure stone could be costly and interfere with other 

activities. However, hunter-gatherers may need to bear these costs in situations where 

high failure rates linked to production requires access to large amounts of raw materials 

and increased efforts in procurement (Bamforth and Bleed 1997).  

 To define how ethnographic groups manage risk they used the number of tools as 

the proxy for technological diversity, and number of tool parts as the proxy for 

technological complexity (Bamforth and Bleed 1997). They found, similar to Torrence 

(1983) that in higher latitudes the risk and the cost of failure increase because there is a 

general lack of alternative food sources. They posited that if alternative food sources are 

taken into account when hunter-gatherers are targeting mobile prey, then increasing 

latitude results in greater toolkit diversity but not necessarily toolkit complexity. A 

critical thing to note again concerning Bamforth and Bleed’s (1997) and Torrence’s 

(1983) studies is that tool classes are potentially subjective in nature, and the same is true 

for tool parts. This can skew the calculation of complexity. 

 

Distance-decay models 

Two aspects that can affect the role and importance of raw materials in the technological 

organization is the availability of raw materials and the distance to source (Andrefsky Jr 

1994, Goodyear 1989, Kuhn 1991). How distance to source affects technological 

variability is best understood by using the distance-decay concept (Blumenschine et al. 

2008). The concept holds that raw materials from non-local, distant sources, or that are 

costly to obtain will be represented in lower frequencies (Renfrew 1969), show more 

evidence of conservation (Bamforth 1990, Neeley and Barton 1994), be found in smaller 
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sizes (Ambrose 2002), and be in a more finished form compared to local materials 

(Géneste 1985). 

 Several studies have been presented that are versions of distance-decay models, 

and the made the case for the importance of geographic setting and distance to source in 

interpreting assemblage variability (e.g. Géneste 1985, Féblot-Augustins 1997, Bamforth 

1986, Andrefsky 1994). In an early study that supports the distance-decay concept 

Géneste (1985) examined Middle Paleolithic (MP) assemblages from sites in the Perigord 

region of France. He demonstrated that local raw materials were mostly represented by 

all phases of reduction, while non-local materials were mostly represented as finished and 

discarded tools. Based on this he argued that the makers of the Mousterian technology 

had a dual strategy of provisioning places and provisioning individuals. Places (e.g. 

campsites, home bases, central places) were provisioned with local raw materials that 

were used more expediently, while individuals were provisioned with curated and 

maintained tools made on non-local raw materials (Géneste 1985).  

Following Geneste’s study, studies by Bamforth (1986) and Andrefsky (1994) 

and Feblot-Augustins (1997) presented more data supporting the distance-decay 

argument. In a classic study, Andrefsky (1994) focused on the availability of raw 

materials and how it determines the technological organization of hunter-gatherers and 

the resulting lithic technology. Andrefsky hypothesized that it was the relative abundance 

of raw materials on the landscape and quality of the available raw materials that 

determined whether an archaeological assemblage would be formal or informal in nature. 

He argued against using settlement system as a factor explaining changes between formal 

(curated) and informal (expedient) tool use. He defined raw material quality in terms of 
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flakeability, which can be further defined as the suitability of a stone to facilitate the 

production of formal tools that require craftsmanship. The problem with formal tools is 

that it is a subjective designation based on a given typology. In the South African MSA 

record, there are few formal tools compared to unretouched and expediently flaked tools. 

Nevertheless, the MSA record suggests that flakeability was a preferred quality driving 

the selection of raw materials (Brown et al. 2009, Mackay 2008). Stone raw materials 

that are fine-grained usually meet that definition (Brown 2011).  

Andrefsky (1994) used three archaeological examples from the western United 

States that showcase both sedentary and mobile site occupations. He showed that raw 

material availability and abundance, and not settlement system are the most important 

factors determining assemblage composition. Andrefsky (1994) showed that when the 

hunter-gatherer faced a situation where raw materials regardless of quality were locally 

abundant then they made the majority of the tools on local materials, although formal 

tools were made more commonly with high-quality materials. Conversely, when the 

hunter-gatherers faced a situation where local materials were scarce and of relatively 

lower quality they used the local materials to make expedient tools, while the majority of 

the tools were imported as formal tools made on non-local materials. These formal tools 

were conserved, maintained, re-sharpened, and used again for a variety of tasks 

(Andrefsky 1994). The important point made by the work by Andrefsky and others is that 

availability of raw materials and the intended tool use both need to be considered as 

important factors alongside mobility and time stress when discussing technological 

variability. 
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 However, several studies have argued that constraints on raw material availability 

do not explain technological variability (e.g. Kuhn 2004, 1991, Milliken 1998). Kuhn 

(1991) investigated the intensity of lithic reduction at two Mousterian sites in Italy called 

Guattari and Sant’Augostino. At both sites, there was evidence for the use of small flint 

pebbles, which limited the size of debitage and the use of the Levallois reduction 

technique. While the Guattari site has unworked pebbles in the vicinity of it Sant’ 

Augostino does not. Kuhn put forward a hypothesis that the decision to reuse or 

economize stone material relates to the cost of raw material acquisition. To test his 

hypothesis, Kuhn used indices of core size, frequency of tools with multiple edges, ratios 

of retouched to unretouched tools, and scraper reduction to estimate the intensity of core 

reduction and tool maintenance. The archaeological record at Guattari showed the 

expected pattern of greater intensity of core reduction but tools where not reduced as 

intensely. Based on this he contended that the intensity of core reduction is associated 

with raw material availability but not tool reduction and that the differential conservation 

of non-local ‘exotic’ raw materials is more likely due to mobility strategy and extended 

tool use than with the cost of raw material acquisition. Kuhn then proposed that sites that 

are occupied for longer durations are more amenable to lowering costs by stockpiling raw 

materials using embedded procurement. According to Kuhn (1991), this would result in a 

more expedient use of non-local material than can be expected from a simple distance 

decay model (Brown 2011). 

 Following up on his earlier paper, Kuhn (2004) focused on provisioning strategies 

to explain changes in raw material use in the Upper Paleolithic site of Űçağızlı in Turkey. 

He found that there is a continuity of raw material selection throughout the sequence. 
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Change is visible in the steady increase of the use of flint from secondary to primary 

sources and the increased transfer distances that occurred with the shift from episodic to 

more intensive occupation of the cave at 12 ka. Scrapers made from non-local materials 

from distant sources that are found in the layers that reflect intensive occupation, actually 

are less reduced than scrapers that are made on local materials that are found in layers 

reflecting less intensive occupations. This result is similar to his findings in a MP context 

that limited support for the distance-decay premise.  

 Using the record from Űçağızlı, Kuhn outlined three potential provisioning 

strategies that the hunter-gatherers may have designed to overcome supply constraints. In 

the first strategy, the individual is provisioned with finished transportable formal tools. 

This strategy is appropriate for hunter-gatherers that have a mobility system with frequent 

moves, which requires the population to keep weight at a minimum (Kuhn 1994). In the 

second strategy, it is the location that is provisioned. If hunter-gatherers make more 

frequent use of a cave or if they are more sedentary it makes more sense to keep lithic 

raw materials in ready supply. In the third strategy, Kuhn (2004) described the 

provisioning of unplanned activities. In this strategy, materials are provisioned for tools 

that are made as needed. Further, Kuhn showed that the occupants of Űçağızlı over time 

changed their provisioning strategy from focusing on provisioning individuals when the 

site was occupied less intensively to provisioning the site when the site was more 

intensively occupied. According to Kuhn this shift in provisioning strategy would allow 

fewer restrictions on conserving raw materials leading to a more expedient use of 

scrapers. Conclusively, Kuhn (2004) asserted that changes in raw material economy 

should correspond with changes in settlement system and provisioning strategies. This 
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argument has been supported by simulation work done by Barton and Riel-Salvatore 

(2014) that showed, using agent-based modeling, that assemblage composition is strongly 

affected by mobility strategy in conjunction with place or individual provisioning. 

 An important lesson from the studies in support for and against the distance-decay 

concept is that we should be investigating multiple variables within a larger settlement 

system instead of just looking at single conditioners of technology such as raw material 

availability, time stress, risk, or mobility system (Milliken 1998).  

The preceding discussion highlights arguments for or against whether raw 

material abundance and distance to source have an effect on technological organization of 

a hunter-gatherer, in turn affecting the composition of an archaeological assemblage. 

However, the discussion does not highlight why hunter-gatherers select a raw material, 

and thus potentially why raw material frequencies change in the archaeological record.  

 

Raw material quality 

Archaeologists and modern knappers most often cite quality as a key feature that drives 

raw material selection (Brantingham et al. 2000). Knappers today usually emphasize 

replicating formal tools and not producing tools needed for their own fitness or survival; 

this has led to a bias towards the ease of flaking being considered the most important raw 

material quality (Brown 2011, Luedtke 1992, Magne 2001). Similarly, archaeologist’s 

definition of raw material quality has been based on stone grain size (Goodyear 1989) 

and ease of shaping and reduction (Andrefsky 1994). Goodyear (1989) used stone grain 

size to define quality. The advantage of using fine-grained raw materials according to 

Goodyear is that it provides a reliable isotropic fracture and increases the control over 
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core reduction. Goodyear (1989) argued that fine-grained stones can be reduced with 

minimal undesired breakage due to the plasticity of the material. Andrefsky (1994), 

similar to Goodyear, defined quality based on how easily a stone material can be shaped 

and retouched. To him, fine-grained materials provide the knapper with greater control 

over the reduction process compared to coarse-grained materials, which are more difficult 

to shape. It has also been proposed that the size of the raw material package may play a 

part in the consideration of raw material quality as the nodule size or configuration of the 

raw material may constrain the technological approach to core reduction (Brantingham et 

al. 2000, Hiscock et al. 2009, Kuhn 1991) 

 Ethnographic observations have also highlighted how quality was defined by 

traditional people with knowledge of stone tool making. In an early account, Nelson 

(1916) noted that Ishi, a Yahi Californian Native American, favored glass when making 

bifacial projectile points because of its superior workability. Heider (1967) observed the 

Dugum Dani of the West New Guinea highlands and noted that they prefer harder black 

stone over softer speckled stone when making ground stone axes and adze heads. 

However, they do not provide any names for their raw materials for what archaeologists 

would classify as different types of raw materials. Binford and O’Connell (1984) while 

observing Alywaran tool makers in the Australian Central Desert noted that the Alywaran 

men look for purity of color and smooth texture when selecting stone raw materials. They 

deliberately select and prepare materials to create men’s knives, and avoid materials 

found at the surface as they consider that material to be rotten and thus will not fracture 

properly. To find good materials, they not only investigated the flaking properties of the 
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quartzite materials in the quarry area by striking off large test flakes but also considered 

previously knapped waste products (Binford and O'Connell 1984). 

 Stout (2002) summarized ethnographic observations of how Irian Jaya adze 

makers in Indonesia select and describe raw materials. Among the raw materials, the 

Irian Jaya use are metamorphosed basalt and andesitic basalt, which they quarry during 

several days in groups led by expert craftsmen. The prospective raw material source 

cobbles and boulders are evaluated according to crystalline structure, grain size, and 

internal flaws. The quarry group breaks up the boulders using large hammerstones and 

sometimes by fire, which is a process that can take all day (Stout 2002). As the quarry 

group creates cores and flake blanks they are shared, while early-stage (‘roughed out’) 

adzes are stockpiled and wrapped in leaves and carried back to the village. Ultimately, 

the adzes are finished by a group by knapping and grinding at the village. Although the 

Irian Jaya have a complex vocabulary to describe and teach the adze production process, 

including how to identify the desired properties of potential nodules prior to core 

preparation, they do not have formal names for the raw materials. This suggested that the 

classification of the raw materials is less important than the act of identifying the physical 

and aesthetic properties of the raw materials (Stout 2002). 

 In a more recent ethnographic study, Arthur (2010) studied how Ethiopian Konso 

women make scrapers from stone and glass for hide-working. Traditionally, the Konso 

women preferred chalcedony, which they had to travel a distance of 25 kilometers to 

acquire. They preferred chalcedony because it was homogeneous and easy to flake. They 

avoided stone that fell apart easily and broke into small pieces. After the 1970s 

chalcedony was partly replaced by glass and local quartz and quartz crystal.  
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 In summary, the ethnographic observations suggest that the tool makers 

considered quality with respect to both flaking properties and the suitability to the 

intended task (Brown 2011). The tool makers knew and thought about fundamental 

differences that can occur in the manufacture and performance quality of raw materials. 

However, preferences associated with non-functional stone properties were only 

understood after mechanical properties were evaluated. The quality traits considered 

being important to archaeologists and modern knappers such as homogeneity, fracture 

predictability, and edge durability are grounded in fracture mechanics theory (Cotterell 

and Kamminga 1992, Erdogan 2000). These traits can be quantified in actualistic 

experiments and standardized laboratory tests (Brown 2011). Brown (2011) provided a 

comprehensive review of the methods used to characterize lithic raw materials and I will 

draw on his review below.  

 

Mechanical testing of lithic stone properties 

Brown (2011) pointed out that researchers have several variables to test when it comes to 

evaluating and comparing the physical properties of stone raw materials. These include 

stone hardness, toughness, abrasion resistance, uniformity, elasticity, and stiffness 

(Domanski, Webb, and Boland 1994). Goodman (1944) used stone hardness and 

toughness in an early ground-breaking study where she mechanically tested lithic stone 

properties. She identified two major hurdles a researcher faces when wanting to quantify 

the fracture properties of a raw material. The first hurdle is that archaeologists and 

geologists often do not identify and describe stone in a similar way. Second, when a 

researcher wants to attempt to test raw materials to rank them according to physical 
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properties these tests should be constructed so that they mimic conditions of human 

flaking and tool use. Goodman addressed the observation that prehistoric hunter-

gatherers and ethnographically observed hunter-gatherers did not always select the raw 

material that was the easiest to flake. She argued that when describing the range of 

properties that could be desirable to prehistoric toolmakers a researcher should evaluate a 

variety of variables. To that effect, Goodman used raw material density, hardness, 

toughness, and resiliency to rank flint, obsidian, quartzite, fossilized wood, and tuff.  

  Hardness, toughness, abrasion resistance, uniformity, elasticity, and stiffness all 

evaluate a material’s resistance to applied pressure (Brown 2011). This resistance is 

given in units of pound-force per square inch (PSI) or in megapascals (MPa). However, 

the manner of the directionality of the applied force simulates different aspects of how a 

tool is manufactured or used (Brown 2011). A problem with these tests is that they 

generally show the variability within similar lithologies and might only be useful for 

statistical comparison on a regional basis or across single localities (Luedtke 1992). In a 

study comparing chert from volcanic and sedimentary origins, Domanski and colleagues 

(1994) found that the mechanical properties can vary greatly (Brown 2011). 

 However, the homogeneity, grain size, and isotropism of a sample also control 

mechanical properties (Cotterell and Kamminga 1992). What these variables have in 

common is that they are used in uniformity studies (Brantingham et al. 2000, Braun et al. 

2009, Domanski, Webb, and Boland 1994, Domanski and Webb 1992) that seek to 

quantify the frequency or the encounter rate of flaws in a given mass of stone (Brown 

2011). Two early examples of such uniformity studies are by Domanski et al. (1994) that 

ranked stone raw materials by the number of samples that fail during preparation, and 
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Brantingham and colleagues (2000) that ranked raw material quality by tabulating visible 

flaws and crystal impurities to calculate an impurity encounter rate.  

However, two tests that are better at tracking flakeability (the ease of which a 

stone can be fractured) are the fracture toughness and rebound hardness tests (Domanski 

and Webb 1992). Domanski et al. (Domanski, Webb, and Boland 1994) stated that 

fracture toughness is the resistance of a material to fracture propagation. To test 

toughness a researcher notches one end of a core shaped like a cylinder and then apply 

and simultaneously measure the force required to pull apart the notched side and 

completely fracture the core. Lower values indicate that it is relatively easy to initiate 

fractures in the stone, and they are approached in glass or obsidian (Brown 2011). 

Sevillano (1997) showed that published fracture toughness values for quartzites 

generally ranges between 2.0-4.0 MPa m
1/2

, which is on average higher than chert values 

that ranges between 1.2-1.8 MPa m
1/2 

(Sevillano 1997), untreated silcrete that ranges 

between 2.0-2.5 MPa m
1/2 

(Domanski, Webb, and Boland 1994), heat-treated silcrete that 

ranges between 1.4-1.8 MPa m
1/2

 (Domanski, Webb, and Boland 1994), and quartz that 

ranges between 0.3-2.1 MPa m
1/2

 (Atkinson 1984). This study follows Brown (2011) in 

arguing that abovementioned values provide a good relative scale of flaking quality for 

materials found in the Mossel Bay region. What the values above indicate are that 

untreated silcrete may overlap in flaking quality with quartzite. However, the flaking 

quality of heat-treated silcrete is close to chert (Brown 2011). A caveat is that heat-

treated silcrete also overlaps with quartz. 

Rebound hardness, on the other hand, is an estimate of the resistance of a raw 

material to strain or deformation. Hardness is usually measured using a Schmidt hammer 
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(Goudie 2006). Hardness is heavily influenced by how homogeneous or pure a stone is, 

which means that it represents a measure of fracture predictability (Braun et al. 2009). 

Noll (2000) argued that stone raw materials with higher rebound values are stiffer, which 

makes them fracture easier and predictably (Braun et al. 2009). In an important study, 

Braun and colleagues (2009) found that rebound hardness correlates with other measures 

of hardness and elasticity but do not seem to correlate well with abrasion-resistance. 

 Raw material stiffness, an important variable for evaluating the performance of 

blade manufacture, can also be measured using Young’s Modulus (Domanski, Webb, and 

Boland 1994). Young’s Modulus measures how resistant a material is to deformation 

when a compressive load is gradually increased to the point of material failure by 

calculating stress curves (Domanski, Webb, and Boland 1994). Greater material stiffness 

is reflected in high values of Young’s Modulus. To measure Young’s Modulus a 

researcher divides the amount of the compressive load required to fracture the raw 

material by the cross-sectional area of the sample core (Domanski, Webb, and Boland 

1994). It has been found that heat-treatment of certain lithologies such as chert and 

silcrete can increase the overall stiffness of the raw material, which results in an 

increased flakeability (Brown et al. 2009, Domanski, Webb, and Boland 1994, Domanski 

and Webb 1992, Webb and Domanski 2008). 

 Fracture toughness, rebound hardness, and Young’s Modulus all evaluate strain 

on material associated with tool manufacture but they do not test what the strain on the 

material is during use. The Los Angles (Kahraman and Fener 2007) and Taber Abrasion 

(Braun et al. 2009) tests are two methods available to test the abrasion resistance of a 

material. In both methods, blocks of material are subjected to controlled amounts of 
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abrasive force. A researcher then measures the percentage of lost material resulting from 

the tests. Noll (2000) noted that less resistant materials yield greater percentage values. 

The demonstration by Braun and colleagues (2009) that abrasion resistance and rebound 

hardness are not always correlated is very important. It suggests that when hunter-

gatherers select raw materials they might have to choose between increased flakeability 

(high rebound hardness) and increased durability (low percentage of material loss).  

 Brown (2011) contended that on average quartzite is more difficult flake 

compared to other raw materials such as silcrete, chert, and quartz. This assertion is 

supported by other studies that argued that coarse granular raw materials such as quartzite 

are less desirable for the production of small blades because they are increasingly 

susceptible to step fracture terminations and limits the potential for reshaping and retouch 

(Kuhn 1989, Webb and Domanski 2008). Given the result by Braun and colleagues 

(2009) that abrasion resistant and rebound hardness is not necessarily correlated, the 

higher fracture toughness values of quartzite might point to advantages in using it (Brown 

2011). A correlation between critical strain, meaning where catastrophic fracture occurs 

from strain, fracture toughness, Young’s Modulus, and edge toughness has been 

demonstrated (McCormick 1985). Materials that have been shown to have high fracture 

toughness values and lower overall Young’s Modulus values will have edges that are 

more wear-resistant because edge toughness (wear-resistance) increases with critical 

strain, which is correlated with fracture toughness and Young’s Modulus (Brown 2011). 

Further, edge toughness is also positively correlated with edge angle, where a decrease in 

the edge angle (acuter) decreases edge toughness (McCormick and Almond 1990). In 

sum, edge toughness (strength) is an advantage that quartzite has over other finer-grained 
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raw materials such as heat-treated silcrete, chert, and quartz. However, edge strength is 

not the same as edge sharpness, which is dependent on the grain size of the material 

(Brown 2011). The finer-grained materials, which are more brittle and less resistant to 

strain induced fracture have the sharpest edges (McCormick and Almond, 1990). Heat-

treatment of silcrete should thus reduce edge toughness but create sharper and more 

brittle edges (Crabtree 1967, Wilke, Flenniken, and Ozbun 1991) because of the 

decreased fracture toughness and/or increased Young’s Modulus (Beauchamp and Purdy 

1986, Brown et al. 2009, Domanski, Webb, and Boland 1994). Table 1 summarizes the 

different raw material qualities that have been highlighted to be attractive qualities when 

selecting a raw material and which physical measurements that account for those 

qualities. 

 

Table 1. Raw material properties by physical measurements 
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More Durable 
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Increased Edge Sharpness 

       
X

h
 

Increased Edge Toughness/Wear-
Resistance X

a
           X

g
   

a b (Brown 2011); c (Braun et al. 2009, Sevillano 1997); d (Noll 2000); e (Brown et al. 2009, Domanski, 

Webb, and Boland 1994, Domanski and Webb 1992, Webb and Domanski 2008); f (Braun et al. 2009, Noll 

2000); g (McCormick and Almond 1990); h (McCormick and Almond, 1990). 

 

Given these qualities, edge strength (toughness), edge sharpness, overall 

durability, and flakeability, quartzite and heat-treated silcrete offer two different choices. 

One choice is to select quartzite, which would give you improved edge strength but at the 
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cost of decreased flakeability. Jones (1979) and Noll (2000) noted a more durable edge 

on ESA hand axes made on quartzite. On the other, if silcrete is selected and heat-treated 

then you gain flakeability and edge sharpness, potentially at the cost of decreased edge 

strength (Brown 2011). 

 In summary, it strengthens the results of the mechanical testing that ethnographic 

observations also suggest strategic or deliberate selection of raw materials for physical 

properties. However, it is important to note that the concept of stone quality is subjective 

and depends upon the intended use of the tool (Brown 2011). However, researchers can 

rank materials based on mechanical properties such as hardness, elasticity, and edge 

durability (Braun et al. 2009, Domanski, Webb, and Boland 1994, Noll 2000). This type 

of ranking will be useful for predicting the materials that should be selected for different 

tasks (Brown 2011). However, the range of materials in the local environment and the 

local knowledge of source locations will limit the raw material selectivity (Brown 2011). 

 

Other factors influencing raw material selection and frequency 

Although raw materials sometimes are selected by an individual for specific qualities 

linked to mechanical properties and are procured either during direct or embedded 

procurement, other factors such as such as stylistic (Close 2002, Mackay 2011, Sackett 

1986, 1982) or symbolic needs (Clendon 1999, Gould, Koster, and Sontz 1971, Wurz 

1999) might influence why some raw materials are selected over others, thus potentially 

change raw material frequencies in archaeological records. Additionally, others factors 

linked to whole populations or groups over longer time scales such as demographic 

change (Clark 1980) and trade and/or exchange (Akerman, Fullagar, and van Gijn 2002, 
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Torrence 1986) might also explain why raw material usage frequencies change in the 

archaeological record. 

In the first group of alternative factors, Gould et al. (1971) observed that the 

aborigines under study tend to place aesthetic value on chert with different colors and 

texture. Aborigines from Warburton prefer white chert, while the Nyatunyatjara and 

northern Ngatatjara prefer yellowish quartzites and creamy yellow chert. Gould and 

colleagues (1971) noted that these preferences appears not to be driven by the actual 

working qualities of the different materials but instead is a reflection of the close 

‘totemic’ tie each man has to the region he was born in and he claims totemic decent 

from. Further, they noted that a man feels a sense of kinship to these localities and value 

them as a part of themselves (Gould, Koster, and Sontz 1971). According to Gould et al. 

the raw materials are not sacred but they observe that the materials are carried over long 

distances by their owners. Similarly, ethnographic observations by Clendon (1999) 

showed that shiny and semitranslucent stone was chosen for the production of some stone 

tools in order to imbue them with aesthetic value and to derive magic and curative 

powers from that value. The observations of Gould and colleagues and Clendon suggest 

that hunter-gatherers sometimes choose raw materials that have symbolic value to them. 

However, questions remain about how frequent raw materials are subject to direct 

selection based on style, totemic ties, or color; how frequent are they in an assemblage? 

These are very hard questions to answer and will be crucial to address in future studies. 

For example, one needs to come up with a way to quantify what are potentially semi-

precious stones in an assemblage. 
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Close (2002) investigated the size and shape of backed microblades from North 

African assemblages dating to the late upper Paleolithic. She (2002) found that when 

selecting raw materials for making backed microblades that the distance to the source and 

the type of raw material did not have a profound effect on the size and shape of the tools. 

The research by Close (2002) suggested to her that among these groups the cultural 

constraints on the size and shape of tools and the use of tools in ‘face to face’ group 

interactions suggests that the main driver behind raw material selection (or the lack of 

raw material preference) was style preference. It is important to point out that Closes’ 

arguments are all inferred from archaeological data. It is not clear how Close was able to 

infer ‘face to face’ group interactions. 

In the other group of alternative factors, which are linked to whole groups of 

people over longer time scales, Akerman et al. (2002) contended that the selection of raw 

materials to make Kimberly points in Australia was driven by trade and exchange of the 

points themselves. They noted that Aborigines that they observed did not pay any regard 

to real or perceived physical capabilities of the raw materials that they used to make 

points. That is, they did not select the raw materials for edge strength or edge durability 

for example. Instead, semitranslucent and shiny stones were selected so that some of the 

Kimberly points could be of value in trade and exchange with other groups. This 

ethnographic observation suggests that the trade and exchange of raw materials can have 

an effect on archaeological raw material frequencies.  

 Clark (1980) argued that the change from one raw material to another in 

archaeological sequences in Africa might be due to changes in demography. He used the 

raw material frequency data from both South and North African LSA and MSA sites to 
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argue that the changing raw material preference is due to the replacement of 

technological tradition at the sites, and not perhaps an evolution of a single developing 

tradition. 

 In summary, all these factors, either linked to individual selection of raw materials 

or population or group-wide behaviors, need to be taken into account when discussing 

why archaeological raw material frequencies change. 

 

Models for why raw materials change 

Given the multiple hypotheses and models that have been proposed to explain why 

forager select certain raw materials and why raw material frequencies change in the 

archaeological record it is here useful to create a systematic framework that highlights 

how the different factors can change the raw material frequencies. Brown (1999) 

presented a useful model framework that categorized the different models in this respect. 

Brown (1999: 57) divided the models into an “Encounter Based Procurement” model 

category and a “Deliberate Procurement” model category. Both sets of model categories 

had two variants each. The “Encounter Based Procurement” model category included a 

“Natural Availability” variant and a “Mobility-linked” variant, whereas the “Deliberate 

Procurement” model category had a “Symbolic” variant and a “Functional” variant.  

Below I build on and modify Brown’s framework but make two important 

changes. 1) The two main model categories are renamed to ‘Non preference-based 

change’ and ‘Preference-based change’. This is because it allows for the inclusion of 

other hypotheses proposed about raw material change and selection that are linked to 

whole populations or groups of people over longer time-spans and not just individual 
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actions. 2) The ‘Non preference-based change’ model category include three variants 

called ‘Natural availability’, ‘Mobility-Linked’, and ‘New tranport abilities/Carrying 

costs’, while the ‘Preference-based change’ model category includes three variants called 

‘Utilitarian’, ‘Non-functional’, and ‘Social learning/Culture’. 

 

Non preference-based change 

In this model category, which is similar to Brown’s (1999) “Encounter-Based 

Procurement” model category, raw material change in the archaeological record is the 

result of the availability of raw materials that are encountered on the landscape either due 

to availability of new sources or changes in mobility system that result in the forager 

encountering new sources of raw materials. This model category can be viewed as an 

example of ‘embedded procurement’ as proposed by Binford (1979). The forager when 

moving about the landscape acquires raw materials opportunistically. However, a third 

variant can also be envisioned and that is the introduction of new transport abilities, 

which can change the carrying costs. 

 

Natural availability 

In the ‘Natural Availability’ variant, changes in environmental and climatic conditions 

with accompanying natural processes result in the alternating exposure and cover-up of 

potential raw materials sources on the landscape, which influences the availability of raw 

materials. However, erosion of raw material sources without replacement can also affect 

the availability of sources. In this variant, the frequency of raw materials in the 

archaeological record is due to abundance and availability of sources on the surrounding 
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landscape. Thus, changes in archaeological raw material frequencies are due to changes 

in the natural availability and abundance of raw material sources on the landscape (c.f. 

Andrefsky 1994, Brown 2011, Volman 1981). 

 

Mobility-linked 

In the second variant called “Mobility-linked”, archaeological raw material frequencies 

are linked to the foraging range size, foraging pattern, and frequency of residential moves 

of foragers. When foraging range size increases it can change the type of raw materials 

that are encountered. Conversely, as foraging range size decreases it can limit the 

availability of some resources because some sources would be rarely visited. Thus, raw 

material availability co-varies with changes in human mobility strategies. Changes to 

foraging pattern to included new areas, while precluding old ones can also change the 

type of raw material that are encountered. Additionally, the changes in the frequency of 

residential moves can alter the type of raw materials that are encountered as new 

residential sites can be situated more frequently close to new raw material sources. Thus, 

in this variant, raw material frequencies in the archaeological record can be due to 

foraging range size and pattern or the frequency of residential moves. It follows then that 

change in archaeological raw material frequencies can result from changes in foraging 

range size, pattern, or frequency of residential moves (c.f. Ambrose and Lorenz 1990, 

Kuhn 2004, 1991, McCall 2007, McCall and Thomas 2012).  
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New transport abilities/Carrying costs 

In this variant archaeological raw material frequencies are linked to changes in the 

transport abilities or the carrying costs of a group. The introduction of technologies such 

as bags, baskets, sleds, watercrafts or the use of horses can lower the cost of carrying or 

transporting raw materials, in turn, affecting what is transported back to and discarded at 

the site. Archaeological raw material frequencies are due to the ability to transport raw 

materials that is possessed by a forager group. Thus, when changes in transport 

abilities/carrying cost occur it changes the archaeological raw material frequencies. 

 

Preference-based change 

In the ‘Preference-based change’ model category, it is posited that changes in the 

archaeological raw material frequencies can be due to three different possibilities: 1) 

Changes in the strategic selection of raw materials that takes advantage of raw material 

qualities for a specific functional or utilitarian purpose; 2) Changes in the selection due to 

symbolic properties of the raw materials; 3) Changes in social learning or cultural aspects 

performed by the group in the form of traditions of tool procurement and use or trade and 

exchange of materials,  

The selection for symbolic value seemingly does not belong to this model. The 

question whether symbolic value is something that is deliberately selected is linked to the 

debate about function versus culture. This debate was most famously undertaken by 

Binford (1966, 1973) and Bordes (1970) in the 1960’s and 70’s. However, ethnographic 

examples from Australia shows that raw materials were directly procured for qualities 

linked to symbolic value (e.g. Clendon 1999). Therefore the ‘Non-functional’ model 
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variant presented in the ‘preference-based change’ model category should be seen as a 

strategy that targets a raw material for a specific quality regardless of whether that quality 

is linked to function/utility or symbolic value. 

 

Utilitarian 

In the ‘Utilitarian’ variant, the changing proportion of raw materials that are used to 

create tools results from the changing functional/utilitarian requirements of the 

technological strategy that is employed (c.f. Gould 1985, Gould and Saggers 1985, 

Mackay 2008). When selecting a raw material for a utilitarian purpose the forager can 

exploit new resource making new tools with new requirements and use the tools in new 

ways. Conversely, the forager can also exploit old resources making new tools with new 

requirements and use the tools in new ways. Different raw materials present the forager 

with tradeoffs (e.g. abundance of raw material, flakeability, edge sharpness, edge 

toughness). By strategically selecting a raw material for a utilitarian purpose the forager 

also faces costs linked to travel and search, procurement, and manufacturing. Depending 

on the utility (e.g. flakeability, edge strength, edge sharpness) that is being sought, the 

forager selects whatever raw material has the lowest cost in terms of search, procurement, 

manufacture, and use given the climatic or environmental context. Thus, the raw material 

with the highest net-return rate of utility is selected. In this variant, archaeological raw 

material frequencies are due to the strategic selection of the raw material with the highest 

net-return rate of the sought-after utility. Changes in the archaeological frequencies are 

due to changes in the net-return rates of raw materials, which can be affected by the 

environmental and/or behavioral context of the forager (c.f. Mackay 2008). 
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Non-functional 

In the “Non-functional” variant, the selection of raw materials and the changing 

proportions of raw materials reflect changes in the symbolic needs of the tool maker. The 

symbolic value of the final product is determined by raw material selection. In this 

variant, archaeological raw materials frequencies change because of changes in the 

symbolic value of raw materials (c.f. Clendon 1999, Gould et al. 1971, Wurz 1999). 

 

Social learning/Culture 

In this variant, raw material frequencies are linked to endogenous culturally transmitted 

preference or horizontal transmission of preference introduced from outside. Changes to 

the traditions of a group (vertically transmitted and relatively stable in a group), which 

are enforced by social learning can be brought on from inside the group, maybe due to a 

new discovery and invention. A change in the culturally transmitted preference of a raw 

material, perhaps needed for a new tool, leads to a change in raw material selection. 

Alternatively, raw material change is due to the influx of change from the outside either 

by trade or exchange or dominance by a new group (c.f. Akerman et al. 2002, Deacon 

1989, Torrence 1996). Thus, in this variant, changes in archaeological raw material 

frequencies are the result of endogenous changes in culturally transmitted preference or 

due to horizontal transmission of change introduced from outside. 

This model framework that outlines models that propose why raw material 

frequencies change in the archaeological record will be the used when I below present the 

archaeological evidence for raw material selection and change in the South African 

Middle Stone Age. 
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CHAPTER 3: RAW MATERIAL SELECTION IN THE AFRICAN STONE AGE 

Introduction 

In this chapter, I will first briefly look at raw material selection and technological 

organization in the African Early (ESA) and Later Stone Age (LSA), and then I will 

thoroughly review the evidence for raw material selection and technological organization 

from the Middle Stone Age (MSA) record from South Africa and Lesotho. At the end of 

this chapter, I will present a framework for different models that have been proposed to 

explain raw material change in the South African MSA. 

It is has been argued that the African continent has a greater diversity of stone 

materials available for stone tool manufacturing compared to Western Europe. Because 

of this raw material selection has figured prominently in studies of hominin technological 

variability in Africa (Brown 2011, Clark 1980). Goodwin and Van Riet Lowe (1929, 

1929) divided the African Stone Age into three major phases based at a general level by 

the presence of large core tools in the ESA, prepared cores with flakes and blades as the 

products in the MSA, and microlithic, scraper and flake tool technologies in the LSA. In 

other words, the overall pattern in the African Stone age is a long and punctuated 

progression from larger and cruder to smaller and refined tools, and increased complexity 

in core reduction techniques, which reveals an elevated depth of planning (Brown 2011). 

Lithic raw material preference changes over time from the preference of tougher and 

durable materials through the ESA and most of the MSA towards an increased use of 

fine-grained and what has been argued to be higher quality raw materials in the late MSA 

and early LSA (Ambrose 2002, Brown 2011). 
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Earlier Stone Age  

The ESA dates from as early as 3.3ma (Harmand et al. 2015, McPherron et al. 2010) or at 

least 2.6ma (Delagnes and Roche 2005, Roche 1999, Semaw et al. 2003, Semaw 2000, 

1997, Stout et al. 2010, Stout et al. 2005) to approximately 500ka with the onset of blade 

production and hafting of points (Herries 2011, Johnson and McBrearty 2010, Porat et al. 

2010, Wilkins and Chazan 2012, Wilkins et al. 2012) but definitively 300ka-250ka 

(Marean and Assefa 2005). The ESA was potentially the result of the behavior of at least 

4 hominin species including A. afarensis, H. habilis, H. erectus, and H. heidelbergensis. 

The ESA can be classified as core-tool technology but flake removals were also utilized, 

and the ESA can be divided into three major periods, the ‘Lomekwian’ dating from at 

least 3.3ma to perhaps 2.6ma (Harmand et al. 2015), the Oldowan dating from 2.6ma to 

1.8ma (Semaw et al. 2003, Semaw 2000, 1997), and the Acheulian dating from 1.8ma to 

perhaps 500ka (Herries 2011, Lepre et al. 2011).  

Broadly, the Oldowan (post-Lomekwian) can be characterized by the production 

of simple flaked pieces and detached pieces made on river cobbles resulting from erosion 

of volcanic deposits (Brown 2011). The earliest evidence of the ESA all comes from 

Eastern African sites in Kenya, Tanzania, and Ethiopia but evidence is also found for the 

Oldowan and Acheulian in Southern Africa at sites such as Sterkfontein, Swartkrans, and 

Wonderwork Cave. Leakey (1971) originally defined the Oldowan as being typologically 

diverse with some specialized tool forms. However, Toth (1985) showed that most flakes 

could be viewed as stages in a continuum, while Potts (1991) proposed that much of the 

variability observed in the Oldowan is attributable to morphology of the raw material 

package, form and reduction degree (Brown 2011).  



95 
 

It has been previously proposed that the ESA does not show a lot of evidence for 

cognitive complexity (Ambrose 2001). However, more recent research shows that the 

makers of the Oldowan in some cases selected and transported materials in a preferential 

manner (Braun et al. 2009, Braun, Plummer, et al. 2008, Braun, Rogers, et al. 2008, 

Goldman-Neuman and Hovers 2012, Harmand 2009, Stout et al. 2005). Several studies 

have shown that early hominins preferentially selected raw materials due to certain 

qualities or properties such as having few flaws and not being weathered (Schick and 

Toth 1993), being fine-grained and easy to flake (Stout et al. 2005), and being abrasion-

resistant, predictable, and having few impurities (Braun et al. 2009, 2008). The work by 

Braun and colleagues (2008) showed that non-local raw materials were transported as far 

as 10 kilometers. Harmand (2009) showed that occupants at Lokalaei 1 and 2c localities 

in West Turkana preferentially selected medium-grained phonolite. Goldman and Hovers 

(2012) investigated Oldowan localities in the Makaamitalu basin in Hadar, Ethiopia. 

They found that at A.L. 894 the hominins selected against non-homogeneous materials, 

while at A.L. 666 the hominins selected high-quality raw materials and procured rare 

materials from unknown sources. 

 Following the Oldowan is the Acheulian period. The Acheulian spans from 1.8ma 

to 500ka (Herries, Curnoe, and Adams 2009, Lepre et al. 2011) and it marks the 

introduction to true bifacial shaping technology usually recognized in the form of the 

hand axe or the cleaver core tool. However, the Acheulian also includes flake tools and 

unmodified flakes and scrapers. Compared to the Oldowan, the regular shape of the hand 

axe has been used as evidence to argue that hominins making Acheulian technology had 

advanced cognition in both planning and tool making (Delagnes and Roche 2005). Early 
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studies of the tool diversity and the cultural implications of the hand axe form and shape 

argued that it reflects cultural traditions (Isaac 1975, Noll 2000). However, raw material 

selection by the makers of the Acheulian has been heavily studied to understand inter-

assemblage variability (Sharon 2008). Isaac (1986) and Clark (1980) contended for a 

similar approach in the form of residual analyses where the goal is to remove the effects 

that raw materials have on the finished tool before discussing whether different biface 

shapes and forms indicate different cultural traditions. Clark argued that we should try to 

separate those material-based aspects of the Acheulian technology that can be easily 

tested such as the primary form of the raw material, distance and quantity of materials on 

the landscape, material texture or fabric of material from those aspects that are harder to 

test such as range of variability expected within and between groups, mental templates, 

and task-specific demands (Brown 2011). Clark’s argument still holds, and this study 

focuses on the material-based aspects of the South African Middle Stone Age that are 

potentially easier to test. 

 Using Isaac and Clark’s approach early experimental studies aimed to understand 

the relationship between raw material diversity and edge characteristics (Brown 2011). 

Jones (1979) found that experimentally created bifaces made on quartzite are excellent 

for butchery because the edges do not dull easily. However, the quartzite did not allow 

for careful retouch. Given that, Jones proposed that tools made on finer-grained materials 

that have been retouched to keep the edge sharp are not refined. Instead, Jones contended 

that it takes the same level of skill to manufacture bifaces on coarse-grained quartzite as 

it does with finer-grained materials (Brown 2011). 
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Later efforts have sought to rate raw materials based on their mechanical 

properties to better understand technological variability. Noll (2000) used Taber abrasion 

(resistance to abrasive force), rebound hardness (flakeability) and uniaxial compressive 

strength (material stiffness) tests to rate igneous stone available surrounding the 

Acheulian site of Olorgesaile in Kenya. Noll found that cutting edge seemed to be more 

important than symmetry, while the frequency of raw materials has significant effect on 

tool thickness, scar stepping, and edge angle (Brown 2011). In conclusion, Noll (2000) 

proposed that the raw materials at Olorgesaile were selected for hardness and strength 

and that the large cutting tools were manufactured to provide its makers with long cutting 

edges. Sharon (2008) found that makers of hand axes and cleavers at a suite of Acheulian 

sites in Africa and Western Asia preferred durable materials. Sharon’s (2008) research 

alongside others (Braun et al. 2009, Stout et al. 2005) suggested that hominins that 

created Oldowan and Acheulian assemblages sometimes selected durable materials even 

though raw materials that were more predictable were available (Brown 2011). This, in 

combination with the evidence of relatively long-distance transport of some materials 

(Braun, Plummer, et al. 2008, Clark and Kurashina 1979), implies that the ability to 

preferentially select materials for specific mechanical properties is a trait shared by all 

hominin toolmakers (Brown 2011).   

 

Later Stone Age 

The following review of the LSA will focus on the South African record. The LSA can 

be broadly defined as a microlithic, scraper, and flake tool technology. The LSA in the 

Cape can be divided into four major industries, the Robberg Industry dating from 22ka to 
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12ka (Deacon 1978), the Oakhurst formerly known as Smithfield A and generally 

recognized in the eastern Cape dating from 12ka to 8ka (Mitchell 2002), the Albany 

generally recognized on the southern cape dating from 12ka to 8 ka (Deacon 1978), and 

the Wilton dating from 8ka to 2ka (Deacon and Deacon 1999, Deacon 1978). In addition, 

after the Wilton more informal technologies appear that sometimes are termed the 

Smithfield or the ‘macrolithic’ that date from 2ka to contact (Deacon and Deacon 1999). 

 The Robberg is well represented at three sites: Nelson Bay Cave (NBC) in 

Plettenberg Bay (Deacon 1978), Rose Cottage Cave (RCC) in the Free State (Wadley 

1996), and Sehonghong (SHH) in Lesotho (Carter, Mitchell, and Vinnicombe 1988, 

Mitchell 1996, 1995). The Robberg assemblages are characterized by microlithic 

bladelets with no retouch that are made on blade cores and a small number of backed 

tools and scrapers (Brown 2011). There are also bone tools at Nelson Bay Cave. 

However, undescriptive flakes and debitage represent the vast majority of the 

assemblages. Not surprisingly, the raw material preferences between the sites are 

different. At Nelson Bay Cave on the south coast, quartz was the preferred raw material 

(Figure 3), followed by quartzite and some silcrete (Deacon 1978). However, the raw 

material frequencies change in a moderately vectored way through time with quartz 

decreasing while quartzite and silcrete increase. At Rose Cottage Cave and Sehonghong 

located in the Free State and mountainous Lesotho respectively the preferred material 

was Opaline (Mitchell 1995, Wadley 1996). In terms of the blade technology, Mitchell 

(1995) argued that the presence of crested blades in the Robberg suggests standardized 

blade reduction, while Deacon (Deacon 1995a) argued that the small blades in the 

Robberg and the Howiesons Poort was both made by indirect percussion (punch). 
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Figure 3. Relative Frequencies of raw materials from LSA layers for all stone artifacts at 

Nelson Bay Cave (NBC). Frequencies are shown in comparison to comparable glacial 

and inter-glacial states (Marine Isotope Stages). Raw material frequencies and ages from 

Deacon (1978). 

 

 Following the Robberg is the Oakhurst, also known as Smithfield A. The 

Oakhurst industry was named after the rock shelter near Wilderness and is characterized 

by round endscrapers, duckbill scrapers, some polished bone and a few backed pieces 

(Deacon and Deacon 1999). Mostly the Oakhurst assemblages are made on more coarse-

grained raw material than the preceding Robberg and the following Wilton (Deacon 

1978, Mitchell 2002). The Oakhurst has been divided into regional variants including the 

Albany in the Southern Cape and Lockshoek in the Karro (Deacon and Deacon 1999). At 

Nelson Bay Cave quartzite dominates the Albany (Oakhurst) levels with more than 90% 

of the artifacts made on Quartzite (Figure 3). At Boomplaas (BP) the Albany layers show 
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the highest percentage of quartzite during the LSA in its sequence (Deacon 1978, 

Mitchell 2002). A reasonable argument for the lack of fine-grained materials in the 

Oakhurst is that the fine-grained materials were replaced by bone tools that are found in 

Oakhurst assemblages (Brown 2011). 

 The Wilton follows the Oakhurst and it applies to mid to late Holocene 

microlithic assemblages (Barham and Mitchell 2008). These assemblages can be 

subdivided into Classic Wilton (Mid-Holocene) dating from 8ka to 4.5ka and the Late 

Holocene Wilton dating from 4.5ka to 2ka (Deacon and Deacon 1999). The Late 

Holocene Wilton is also termed the Interior Wilton, Late Wilton or Post-Classic Wilton 

(Deacon and Deacon 1999). Classic Wilton is characterized by a wide range of 

microliths, borers, small scrapers, double scrapers, ornaments, and polished bones, while 

the Late Holocene Wilton showcases fewer segments but an increase in bladelets (Brown 

2011). At Nelson Bay Cave quartzite was the preferred raw material (Figure 3), while 

Opaline was the dominant raw material at Rose Cottage Cave (Wadley 2000). However, 

at the type-site quartz, silcrete and chalcedony are all preferred materials in all artifact 

categories (Deacon 1972). 

 After the Wilton, there is a lot of variability in terms of artifact size and raw 

material use but at least two kinds of assemblages are identified (Deacon and Deacon 

1999, Orton 2008). Both types of assemblages reflect a decrease in the percentage of 

formal tools and reduced diversity of raw materials. The first type of assemblage is 

sometimes termed the Smithfield, which have pottery and stone tools made on fine-

grained materials such as indurated shale, chalcedony, quartz and silcrete. If the 

assemblage includes long scrapers with backed bladelets it is called Smithfield. 
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Boomplaas has an assemblage post-dating the Wilton that consists of faunal remains 

reflecting pastoralism and small scrapers and backed blades made on fine-grained raw 

materials (Deacon and Deacon 1999)  The second type of assemblage sometimes termed 

the ‘marcolithic’ precedes and is contemporary with the Smithfield. The ‘macrolithic’ 

assemblages have no pottery and they exhibit large unretouched flakes made on coarse-

grained raw materials such as quartzite. At NBC, the assemblage that post-dates the 

Wilton consists of large and informal stone tools (Deacon and Deacon 1999). It has been 

argued that this change to a very informal technology with less formal tools and less raw 

material diversity is the result of changes in activity (Deacon and Deacon 1999, Schrire 

and Deacon 1989) but it could also be the result of imposed territory constraints imposed 

by expanding pastoralists (Jerardino 2007, Smith et al. 1991). 

 

Southern African Middle Stone Age 

Compared to the rest of the countries in southern Africa the MSA record from South 

Africa and Lesotho is very rich. There are sites that have yielded both stratified ESA and 

MSA layers such as Montagu Cave (Keller 1973, 1970) and sites that have a sequence 

from the ESA to the LSA such as Cave of Hearths (Mason 1957, McNabb and Sinclair 

2009, van Riet Lowe 1954). A great number of sites have yielded stratified MSA and 

LSA layers; in South Africa: Blombos cave, Boomplaas Cave, Nelson Bay Cave, Rose 

Cottage Cave, and Die Kelders Cave 1. In Lesotho: Sehonghong, Melikane, Moshebi’s 

Shelter, and Ntloana Tsoana. There have been at least 5 proposed nomenclature systems 

for the MSA in South Africa (Goodwin 1929, Goodwin and Van Riet Lowe 1929, 

Goodwin 1928, Lombard et al. 2012, Sampson 1974, 1972, Volman 1984, Wurz 2002). 
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Today the recognized stone age sequence in South Africa combining Volman's (1984), 

Wurz's (2002), and Lombard and colleagues’ (2012) nomenclatures goes roughly like 

this: ESA, early MSA, Klasies River (MSA I or MSA 2a), Mossel Bay (MSA II or MSA 

2b), pre-Still Bay, Still Bay, Howiesons Poort, post- Howiesons Poort (Sibudan, late 

MSA or MSA 3), final MSA (MSA 4 or MSA IV), and LSA. Important to note that this 

is not likely the consensus nomenclature but it will be used as the nomenclature in this 

study. 

The first one to define the MSA in southern Africa was A.J.H. Goodwin, which in 

1928 after looking at numerous artifacts he could not assign to either the ESA or the 

LSA, decided to make an intermediate sub‐stage in the Stone Age called the Middle 

Stone Age (MSA). He noticed that there were assemblages that did not have the large 

hand‐axes and cleavers of the ESA or the microliths of the LSA and that these 

assemblages were dominated by a flake‐based technology (Goodwin 1928). Goodwin 

(1928) outlined a system that grouped the MSA into several groups of industries and 

variations. Goodwin (1928: 99-100) stated that the term industry could only be used 

when a group of tools was definable and certain, and the term variation would be used 

when there were uncertainties about the specific tool group relations to the other tool 

groups or if there was a lack of data accumulated. One of the tool morphologies he used 

to separate variations were points. Goodwin separated the MSA into 8 groups; these were 

the Glen Grey variation, Mossel Bay variation, Still Bay variation, Howiesons Poort 

variation, Pietersburg variation, Hagenstad variation, Alexandersfontein variation, and 

Sawmills variation (Goodwin 1928). Even though there were all these different industries 

and variations Goodwin (1929) stated that they all shared certain features: convergent 
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flakes, use of points and facetted flake butts. He argued that they all had a common origin 

point up north and had all been influenced by the Mousterian (Goodwin 1929: 143). The 

assemblages Goodwin used for his classification came from either selected surface 

collections or excavations where the excavator had no proper training. This resulted in a 

classification system that was based on selected tool types. 

Through the 1930's up to the 1970’s several new sites were excavated. Two sites 

that became important at the time were the Cave of Hearths in the Transvaal (Mason 

1957, McNabb and Sinclair 2009, van Riet Lowe 1954) and Skildergat Cave in the 

Southern Cape (Jolly 1948, 1947). The Cave of Hearths yielded a MSA sequence that 

was unparalleled at that time and gave the first long MSA sequence in the Transvaal 

(Volman 1981). The Cave of Hearths clearly showed that the MSA was stratified 

between the ESA and the LSA (McNabb and Sinclair 2009). Skildersgat Cave (now 

named Peers Cave) is located in the Western Cape. This cave, which was excavated 

several times, was crucial at the time to understand the relationship between the 

Howiesons Poort and Still Bay variations (Jolly 1948, 1947). Other sites that were 

excavated and contributed to understanding the MSA sequence were: Tunnel Cave and 

Skildergat Kop (Malan 1955), Howiesons Poort Rock Shelter (Deacon 1995b), Mwulu’s 

Cave (Tobias 1949), Bushman Rock Shelter (Louw 1969, Vogel 1969),  Peers’ Shelter 

(Goodwin and Peers 1953), Border Cave (Beaumont, de Villiers, and Vogel 1978, 

Butzer, Beaumont, and Vogel 1978, Grün et al. 2003, Grün and Beaumont 2001, Grün, 

Beaumont, and Stringer 1990), and Boomplaas Cave (Deacon 1979, Deacon et al. 1983, 

Deacon, Deacon, and Brooke 1976). 
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In the 1970’s Garth Sampson (1974, 1972) designed a new nomenclature for the 

MSA in Southern Africa. Using a chronology based on statistical analysis of lithic 

assemblages from several sites he structured the MSA into, from oldest to newest, the 

Pietersburg complex, the Bambata complex, and the Howiesons Poort and Umguzan 

related assemblages (Magosian) (Sampson 1974). Sampson’s nomenclature soon came 

under critique because of a steadily increasing radiocarbon database, which suggested 

that the MSA assemblages were far older than suspected, and the fact that the transitional 

Magosian had inconsistent radiocarbon ages (Klein 1970). 

Following the original excavations and publication of the Klasies River 

assemblages by Singer and Wymer (1982) Volman (1984) introduced a new 

nomenclature for the MSA in Southern Africa. Based on the descriptions Singer and 

Wymer gave about the different stratified layers and the change in raw material and tool 

types throughout the sequence Volman introduced a sequence that he argued could be 

used for any MSA assemblage south of the Limpopo River (Volman 1984: 200-209):  

 MSA 1: Characterized by a high percentage of convergent flake cores and 

small broad flakes that rarely shows evidence of faceting. Denticulates are 

the most abundant retouched tool, while there are no retouched points and 

scrapers with retouch are rare. Volman assigned MSA 1 assemblages to 

MIS6. 

 MSA 2a & 2b: Characterized by large narrow flakes and blades that 

decrease in average length from MSA 2a to MSA 2b. There is an increase 

in the abundance of retouched artifact types from MSA 2a to MSA 2b. 
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Denticulates are common in MSA 2a, while retouch points are common in 

MSA 2b. Volman assigned MSA 2a and 2b assemblages to MIS5e-5a. 

 Howiesons Poort: Characterized by a high percentage of retouched tools in 

the form of segments, trapezoids, and allied backed or truncated pieces, 

while flakes are not usually facetted, and they are smaller and broader 

compared to flakes in MSA 2. Additionally, there is an increase in the use 

of fine-grained material in contrast to preceding and following MSA 

phases. The Howiesons Poort contains scrapers and variable proportions 

of unifacially and bifacially retouched points. Volman assigned 

Howiesons Poort assemblages to MIS4. 

 MSA 3: Characterized by the same types of artifacts as in MSA 2 

assemblages; very similar to MSA 2b. There is a trend towards large flake-

blades in the final stage of the phase. Volman assigned MSA 3 

assemblages to MIS3. 

In 2002, Sarah Wurz (2002) designed a new nomenclature system for the MSA in 

southern Africa. She bases her system on the KRM sequence. It is not a widely used 

nomenclature so I will not outline its details but one important thing Wurz did was to add 

the Still Bay technological phase to her nomenclature, wedged between Volman’s stage 

MSA 2b and the Howiesons Poort (Wurz 2002). 

The most updated nomenclature is presented by Lombard et al. (2012). They 

subdivided the MSA into eight South Africa and Lesotho (SAL) technocomplexes.  

 The earliest technocomplex is the early Middle Stone Age, which they 

argued lasted between 300 ka to 130 ka coinciding with MIS8 to MIS6.  
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 The Klasies River technocomplex dates from 130 to 105 ka and is the 

same as the MSA I at Klasies River or MSA 2a generally. It coincided 

with MIS5d and 5e.  

 The Mossel Bay technocomplex followed, known as MSA II at Klasies 

River and MSA 2b generally. It dates to 105 ka to 77 ka and it coincided 

with MIS5a to 5c. 

 The Mossel Bay was followed by a technocomplex informally termed the 

pre-Still Bay, dating from 90 ka to 72 ka. This technocomplex, they 

argued, coincided with MIS5 to MIS4 transition.  

 The Still Bay dates from 77 ka to 70 ka and coincided with the MIS5a to 

MIS4 transition.  

 The Howiesons Poort followed and it dates from 66 ka to 58 ka coinciding 

with MIS4 to MIS3 transition.  

 Following the Howiesons Poort is the Sibudu technocomplex, which is 

known as the late MSA/post-Howiesons Poort or MSA 3 generally, or 

MSA III at Klasies River. It coincided with MIS3.  

 Finally, they have the final Middle Stone technocomplex that they date 

from 40 ka to 20 ka. It is known as MSA IV at Klasies River or MSA 4 

generally. It coincided with the MIS3 to MIS2 transition. 

In the late 1990’s and 2000's several new sites started to be excavated, with higher 

attention to detail and where state of the art dating techniques are being applied to date 

their sequences. These new sites have improved our understanding of the MSA and I will 

review them here focusing on raw material selection and technological organization. The 
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focus here will be on sites that have been dated with the single-grain OSL technique (e.g., 

Jacobs, Roberts, et al. 2008a) and that have a well-understood stratigraphy yielding 

relatively high-resolution data on lithic technology. I will omit open-air sites. 

I will first review sites from western South Africa and the Cape region (Figure 4): 

Klasies River (KRM), Blombos Cave (BBC), Diepkloof Rockshelter (DRS), Die Kelders 

Cave 1 (DK1), Nelson Bay Cave (NBC), Klein Kliphuis (KKH), Klipdrift Shelter (KDS), 

Apollo 11 (AP), and then I will shift my focus to eastern and central South Africa and 

Lesotho and review the following sites: Sibudu (SIB), Rose Cottage Cave (RCC), 

Sehonghong (SHE), Umhlatuzana (UHM), and Ntloana Tsoana (NT) (Figure 4). 

 
Figure 4. The geographic location of MSA sites with well-stratified and well-described 

deposits. Satellite image from Google Earth. AP: Apollo 11, DRS: Diepkloof Rock 

Shelter, KKH: Klein Kliphuis, DK1: Die Kelders Cave 1, BBC: Blombos Cave, PP5-6: 

Pinnacle Point 5-6, PP13B: Pinnacle Point 13B, NBC: Nelson Bay Cave, KRM: Klasies 

River, RCC: Rose Cottage Cave, NT: Ntloana Tsoana, UHM: Umhlatuzana, KDS: 

Klipdrift Shelter, SIB: Sibudu. 
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Klasies River (KRM) 

Klasies River is a cave complex on the coast in the Eastern Cape Province, which was 

first excavated by Singer and Wymer (1982) in 1966‐1968 and then by Deacon in the 

Mid 1980’s (Deacon and Geleijnse 1988), and is presently being excavated by Sarah 

Wurz. The site has yielded a deeply stratified MSA to LSA sequence. Singer and Wymer 

(1982) divided the MSA into five different stages based on tool typology, stratigraphy, 

and raw material change (Figure 5): 

 MSA I: Characterized by large numbers of finely struck flake-blades of local 

quartzite and a fair quantity of pointed flake-blades of fine quality. Many of 

the flake-blades are thin and symmetrical and the striking platform has been 

reduced and rounded, the thinned platforms suggest that indirect percussion 

was used to make the flake-blades (Singer and Wymer 1982: 112). The cores 

reflect systematic work, and well-developed single and double platform cores 

outnumber the irregular types. Some of the points had been reworked into 

denticulates and points.  

 MSA II: Characterized by a decline in the quality of the flake-blades, a rise in 

the number of pointed flake-blades and a corresponding decrease in the 

number of worked points. However, denticulates and scrapers are the most 

common specialized form. Quartzite dominates the assemblage, while there is 

a slight increase in the use of non-local rock at the end of the stage (Figure 5). 

There is no increase in single platform cores even though there is an increase 

in struck flake-blades. 
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 Howiesons Poort (HP): Characterized by a drastic reduction in both size and 

number of flake-blades made on the local quartzite, while the number of 

flakes and segments made on non-local rock are drastically increased. New 

tool types such as crescents, trapezes, triangles, obliquely blunted points 

appear. Diffuse bulbs and striking platforms on flakes made on non-local rock 

suggest the use of indirect percussion. Gravers and scrapers are present and 

are neatly made on local quartzite. While local quartzite is still being used for 

flake-blade production, there is a marked increase in the use of non-local 

silcrete and other raw fine-grained raw materials (Figure 5).  

 MSA III (Post- Howiesons Poort): Characterized by being very similar to 

MSA II. It has the same artifact classes with the addition of a few small 

unifacial points. However, some of the worked points are more specialized 

than those from earlier MSA stages, especially flake-blades that are steeply 

backed or worked all along one edge, which make them effective cutting 

knives. Quartzite dominates the assemblage (Figure 5).  

 MSA IV: Characterized by being clearly related to other MSA stages. Flake-

blades are less common, but there is an increase in the number of pointed 

flake-blades. The size ranges of the flake-blades are more typical of the 

Howiesons Poort flake-blades. Single platform cores more numerous than 

double platform cores, but irregular and undeveloped cores are most common 

(Singer and Wymer 1982). 
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Figure 5. Relative frequencies of raw materials from MSA layers at Klasies River. 

Frequencies are shown in the context of glacial and inter-glacial states (Marine Isotope 

Stages). The designation of the different layers to specific Marine Isotope Stages is solely 

based on the OSL ages. Raw material frequencies are from Wurz (2002) and stratigraphic 

designations from Singer and Wymer (1982) and Deacon and Geleijnse (1988). OSL ages 

from Jacobs et al. (2008a) and Feathers (2002). Non-quartzite raw materials include 

silcrete, quartz, chert, chalcedony, and other CCS rocks.  

 

Klasies River was first dated by correlating the different stages to the global 

marine isotope stages (MIS) by Butzer (1978). Klasies River has since been dated with 

OSL by Feathers (2002), who dated the bottom of the MSA I stage to about ~110 ka and 

the top of the MSA to about ~50 ka. A recent re‐dating of selected layers puts the 

Howiesons Poort stage at between 65.5±1.9–63.4±2.2 ka, a minimum date for the MSA II 

stage at 72.1±3.1ka, and the start of the MSA III stage at 57.9±1.9 ka (Jacobs and Roberts 

2008, Jacobs, Roberts, et al. 2008a). Research at KRM had three effects on the 

archaeology at that time after the first excavations by Singer and Wymer. First, it 
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provided a deeply stratified sequence, which gave birth to new ways of classifying the 

MSA. Second, the site became tied to the global marine isotope stages, which provided 

the researchers with relative dates for the sequence and a chance to look at stone tool 

technology variability versus environmental change. Third, it showed that the Howiesons 

Poort stage was well stratified between two MSA stages. Following the Singer and 

Wymer 1982 publication, Thackeray and Kelly (1988) looked at technological change 

over time. They argued that there is no major technological change throughout the MSA 

sequence only subtle stylistic shifts (Thackeray and Kelly 1988). Wurz (2002) 

investigated variability; she argued that the variability seen throughout the sequence is 

the result of changes between the dominant blade and/or point technological convention 

(traditions) through time. Sarah Wurz and collaborators studied the end products (Wurz 

et al. 2003); they argued that the MSA I and MSA II stages represent distinct 

technological traditions aimed at producing different end‐products. Others took a 

multivariate approach to understanding the variability and emergence of the Howiesons 

Poort within the MSA (McCall 2006). McCall found that the Howiesons Poort 

assemblage correlates strongly with blade production. A study by Villa et al. (2010) 

suggested that the backed pieces in the Howiesons Poort had been hafted, and was an 

innovative way of hafting spears tips. They proposed that the disappearance of the 

Howiesons Poort at the onset of MIS3 was not linked to population contraction and 

isolation causing the collapse of social networks. Instead, they proposed that the internal 

evolution and process of change in the Howiesons Poort was associated with changes in 

the environment and subsistence base. 
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Blombos Cave (BBC) 

In 1992, Christopher Henshilwood started excavating Blombos Cave, which is located in 

the Southern Cape (Henshilwood et al. 2001). This cave site has yielded some very 

important data concerning the origins of modern human behavior (Archer et al. 2015, 

d’Errico and Henshilwood 2007, d’Errico et al. 2005, Henshilwood et al. 2011, 

Henshilwood, d’Errico, and Watts 2009, Henshilwood et al. 2004, Henshilwood et al. 

2002, Mourre, Villa, and Henshilwood 2010). The site is well‐stratified with an Aeolian 

sand dune (67.8±4.2 ka) separating the MSA and LSA (Jacobs, Duller, and Wintle 2003, 

Jacobs, Wintle, and Duller 2003, Jacobs et al. 2012). Several TL (Tribolo 2003) and OSL 

(Henshilwood et al. 2011, Jacobs et al. 2006, Jacobs et al. 2012) dates have been taken to 

establish a well-defined MSA sequence. Because of the accuracy of single‐grain OSL 

dates, I will use the work by Jacobs (Henshilwood et al. 2011, Jacobs et al. 2012). The 

MSA sequence is divided into 3 phases (from youngest to oldest): BBC M1a and b, BBC 

M2, and BBC M3). The description of the lithic assemblages from Henshilwood et al. 

(2001) follows.  

The youngest phases, BBC M1a and b, are OSL dated to between 74.9±4.3 and 

72.5±4.6 ka (Jacobs et al. 2012). The cores in this phase are mostly made on quartz and 

silcrete, but also some quartzite. More than 60 % of the detached pieces are made on 

silcrete; quartz is the second most common. Overall, silcrete is the preferred raw material 

in the M1 phase (Figure 6). Cortical silcrete is mostly of cobble origin. Curved flakes 

with small-lipped platforms and widening flakes that are the products soft‐hammer 

bifacial retouch dominate the assemblages. Approximately 50 % of the retouched tools 

are bifacially flaked points or parts of them, unbroken points are elongated and most have 
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two opposed points to give them a lanceolate or narrowly elliptic leaf shape. The bifacial 

points are made on both silcrete and quartzite. Henshilwood et al. (2001: 429) argued that 

these bifacial points are ‘Still Bay’ points. Villa et al. (2009) investigated the Still Bay 

points from the BBC M1 layers and argue that wear evidence suggests that some of the 

points were hafted axially and used as spear tips. Scrapers are also a significant 

component. End scrapers are more numerous than side scrapers.  

 
Figure 6. Relative frequencies of raw materials from MSA layers at BBC. Frequencies 

are shown in the context of glacial and inter-glacial states (Marine Isotope Stages). The 

designation of the different layers to specific Marine Isotope Stages is solely based on the 

OSL ages. Raw material frequencies and stratigraphic designations from Henshilwood et 

al. (2001) and ages from Henshilwood et al. (2011) and Jacobs et al. (2012). 

 

The BBC M2 phase has OSL dates ranging between 84.6±5.8 ka and 75.5±5 ka 

(Henshilwood et al. 2011, Jacobs et al. 2012). Overall, the M2 assemblage is dominated 
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by quartzite followed by silcrete (Figure 6). The cores are mostly made on quartz. The 

silcrete cores from this phase are similar to the ones in BBC M3 but the quartz cores are 

irregular and nugget‐like and many are less than 4 cm in maximum dimension. Flakes are 

predominantly on quartz and they differ from BBC M1 in having well-developed hard‐

hammer bulbs of percussion. There is a low frequency of bifacially flaked points. An 

assessment of more retouched tools is difficult to attain since they are almost all made on 

quartz (Henshilwood et al. 2001).  

The oldest phase, BBC M3, is dated by OSL to between 101±4 to 94±3 ka 

(Henshilwood et al. 2011). The cores are predominantly for the production of flakes 

rather than flake‐blades. There is an almost even split between silcrete and quartz cores 

with quartz being the most dominant. In plan-view, the silcrete cores show that flake 

removals are mostly centripetal with prominent bulbs of percussion probably achieved by 

hard‐hammer percussion. The majority of the silcrete and quartzite cores are exhausted. 

In BBC3, 60 % of the detached pieces are silcrete. Hard‐hammer flakes with a 

pronounced bulb of percussion are standard and prepared cores that are typical of MSA 

are abundant. Flake‐blades are uncommon. There are no bifacially flaked points and the 

number of retouched artifacts is very low. There is a higher percentage of denticulates 

than in overlaying phases. The dating of the site puts the BBC M2 and M3 phases in 

Volman’s (1984) MSA 2b lithic Stage. 

 

Diepkloof Rock Shelter (DRS) 

Diepkloof Rock Shelter is located approximately 180 kilometers north of Cape Town on 

the west coast of South Africa (Parkington et al. 2013). It is an inland site located 18 
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kilometers from the coast and overlooks the Verlorenvlei River that drain out in Elands 

Bay. Excavations at the site have been intermittent since 1973 and continue presently 

(Parkington et al. 2013, Porraz, Parkington, et al. 2013). The excavations have yielded 

3.1 meters of deposits. Although the lithics from early excavation of the site have been 

studied (Mackay 2009, Porraz et al. 2008, Rigaud et al. 2006), I will focus on the more 

recent publication provided by Porraz et al. (2013) because it presents the most 

comprehensive lithic analysis to date. The current research team also provides the most 

up to date stratigraphic description (Porraz, Parkington, et al. 2013, Porraz, Texier, et al. 

2013). However, the dating of the site is controversial and has implications for the span 

and timing of the different technocomplexes within the MSA sequence (Jacobs and 

Roberts 2017, 2015, 2008, Jacobs, Roberts, et al. 2008a, Porraz, Parkington, et al. 2013, 

Tribolo et al. 2013, Tribolo et al. 2009). Jacobs’ single-grain methodology and dating has 

been independently verified at PP5-6 (Ciravolo, 2016; Smith et al., 2015), and she has 

published two re-analyses of her own samples (2017, 2015). Additionally, the Pinnacle 

Point OSL chronologies have been blind tested with U-Th dating in two separate caves 

and found to be concordant (Bar-Matthews et al., 2010; Marean et al., 2010). For this 

reason, I here use Jacobs’ OSL ages when available (Jacobs and Roberts 2017, 2015, 

Jacobs, Roberts, et al. 2008a) alongside Porraz and colleagues lithic description. 

 The following is summarized from Porraz (2013). From the newest excavation, 

there are 53 stratigraphic units spanning from Noel (at the base) to Claude. The SUs are 

then grouped into technocomplexes based on age, patterns of raw material selection, 

blank production, and tool manufacture. In addition, the technocomplexes are sometimes 

divided into sub-phases. The sequence of technocomplexes goes as follows: MSA-MIKE, 
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Pre-Still Bay, Still Bay, Early HP, MSA-JACK, Intermediate HP, Late HP, and Post-HP. 

HP refers to Howiesons Poort, 

 

MSA-MIKE (Stratigraphic units Mike and Lauren) 

At the bottom of the sequence is a technocomplex termed MSA-MIKE (Stratigraphic 

units Mike and Lauren). Local materials (90%) dominate it with quartzite being over 

86.3% of the assemblage. MSA-MIKE contains a low percentage of formal tools. The 

techno-economic aspect of the assemblage represents on-site knapping activities because 

all phases of the reduction sequence are present. However, the products made on non-

local materials such as silcrete and hornfels have been introduced to the site as isolated 

products in the form of triangular flakes and blades.  

 

Pre-Still Bay (Stratigraphic unit Lynn) 

The assemblage is dominated by local quartzite (64.5%) followed by silcrete (15.4%) and 

then quartz (11.9%). Irregular flakes and laminar blanks dominate the assemblages. There 

is a correlation between distance and quality of raw material sources exploited to create 

certain tools and the intensity of reduction of the tools (Porraz, Parkington, et al. 2013). 

The tools that are made on quartzite are dominated by denticulates and notches, while 

tools that are made on silcrete and other fine-grained materials are more frequent and are 

more intensely retouched. 
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The Still Bay (Stratigraphic units Leo to Keeno) 

This assemblage is dominated by quartzite (68.9%) followed by silcrete (14.7%) and then 

quarts (7%) and YB silcrete (7.6%). The amount of non-local rocks increases coupled 

with a decrease in the use of local rocks as the phase approaches the early HP 

technocomplex. The lithic assemblage is dominated by bifacial shaping reduction debris 

and debitage. The bifacial pieces are lanceolate in general morphology and are made on 

different raw materials. Porraz et al. (2013) argued that the bifacial pieces and/or bifacial 

shaping flakes were circulated, curated by Still Bay inhabits, and then transported during 

forays. Local quartzite was the main raw material but only a few bifacial products made 

on local quartzite are in the finished tool form. Conversely, bifacial tools made on fine-

grained rocks are more extensively reduced and also transported over longer distances. 

 

The Early-HP (Stratigraphic units Kegan to Jess) 

This lithic assemblage is characterized by two distinct sub-phases termed ‘Kerry’ and 

‘Kate’. ‘Kerry’ is dominated by exotic fine-grained silcrete (53.6%) followed by quartzite 

(25.3%) and quartz (11.7%), while ‘Kate’ is dominated by local quartzite (34.6%) then 

followed by quartz (29.7%) and silcrete (28.2%). The production was aimed at blade and 

bladelet production. Geometric backed tools are present but the dominant formal tool 

class is pieces esquillees, which are produced on different blank forms and on different 

raw materials. There is also a small frequency of bifacial pieces and shaping flakes. This 

part of the sequence was attributed to the Still Bay by earlier analyses (Porraz et al. 2008, 

Rigaud et al. 2006, Tribolo et al. 2009). 
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MSA-JACK (Stratigraphic units Jude and Jack) 

In these assemblages locally available quartzite (45.4%) and quartz (32.9%) were 

preferred, followed by silcrete (10.3%) and hornfels (8.3%). The production is geared 

towards flake production. The flake products are very variable in size and morphology. 

The production is either in the form of a Levallois-like or non-invasive flaking strategy. 

Usually large backed pieces are present.  

 

Intermediate- HP (Stratigraphic units Joy to Fred) 

This assemblage is subdivided into two sub-phases termed ‘Jeff’ and ‘Fiona’. ‘Jeff’ is 

dominated by fine-grained silcrete (47.1%) followed by quartzite (20%), then YB Silcrete 

(19.1%), and quartz (10.7%). ‘Fiona’ is dominated by Silcrete (60.7%), followed by 

quartz (19%), and then quartzite (10.3%). The two sub-phases were divided based on the 

difference in mean blade dimensions. The aim of the production in both phases is blades 

using a laminar core reduction system. There is a high frequency of strangulated-notched 

pieces, while denticulates and pieces esquillees are also present. Geometric backed pieces 

are present in relatively low frequencies compared to the early-HP. 

 

The Late-HP (Stratigraphic units Frans to Debbie) 

The Late-HP assemblage is subdivided into two sub-phases termed ‘Frans’ and ‘Eric’. 

‘Frans’ is dominated by silcrete (48.8%) followed by quartz (22.5%), and then quartzite 

(12.3%) and hornfels (10.8%). Sub-phase ‘Eric’ is dominated equally by quartz (40.6%) 

and silcrete (39.1%) followed by quartzite (7.8%) and YB silcrete (6.1%). Overall, 

typical Howiesons Poort core forms dominate the assemblage. The Late-HP displays an 
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increased frequency of geometrics, which represents about 50% of the formal tools. The 

geometrics are divided equally between truncated pieces and segments.  

 

The Post-HP (Stratigraphic units Danny to Claude)  

This assemblage is dominated by the use of silcrete (43.5%) followed by quartz (19.9%) 

and quartzite (19.5%), and then YB silcrete (12.1%). The production is aimed at laminar 

products including Howiesons Poort-type debitage. The formal tools are dominated by 

scrapers but unifacial points, denticulates, notches, and some rare backed pieces are 

present. 

 

Diepkloof chronology 

Tribolo et al. (2013) provided an OSL age of 100±10 ka for the lower MSA layer called 

‘Noel’, and a similar OSL age of 100±10 ka is also given for the Pre-Still Bay (layer 

‘Lynn’). However, Jacobs and Roberts (2015) provided the ages of 93.3±4.4 and 

88.2±4.4 for the lower MSA layers. The Still Bay (layer ‘Logan’) is OSL dated to 

70.9±2.3 by Jacobs et al. (2008a), while the early-HP (layer ‘Kerry’) OSL dates to 

73.6±2.5 ka (Jacobs, Roberts, et al. 2008a). The ‘Kerry’ layer, which contains backed 

pieces, is potentially a similar early emergence of backed blade technology as seen at 

PP5-6 with the ‘early microlithic’ in the SADBS stratigraphic aggregate (Brown et al. 

2012, Wilkins et al. 2017). Further, Jacobs et al. (2008a) provided OSL ages for the 

intermediate-HP (layer ‘John’) at 63.3±2.2 ka, while the late-HP is given an OSL date of 

61.8±1.7 (Layer ‘Edgar’). Finally, Jacobs provided two OSL ages of 55.4±2.0 ka and 

47.7±1.7 ka for the post-HP (layers ‘Anne’ and ‘Allie’ respectfully). 
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Figure 7. Relative frequencies of raw materials from MSA layers at Diepkloof Rock 

Shelter. Frequencies are shown in the context of glacial and inter-glacial states (Marine 

Isotope Stages). The designation of the different layers to specific Marine Isotope Stages 

is solely based on the OSL ages. Raw material frequencies and stratigraphic designations 

from Porraz et al. (2013) and ages from Jacobs and Roberts (2015). 

 

Diepkloof raw material procurement 

In terms of raw material procurement, the selection of local (less than 20 kilometers) 

versus non-local (more than 20 kilometers) raw materials varies throughout the sequence. 

The local versus non-local designation is based on geological surveys conducted at two 

scales. At the first scale, 20 km perimeters around Diepkloof were surveyed to document 

the full spectrum of available raw materials. At the second scale, the survey focused on 

the greater west coast region mostly directed at documenting silcrete sources (Porraz et 

al., 2013b). In the MSA-Mike, Pre-Still Bay, and the Still Bay the local materials 
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dominate (Figure 7). The pattern changes drastically in the early-HP (layer ‘Kerry’) 

where non-local materials dominate. In the early-HP (layer ‘Kate’) and the MSA-Jack 

technocomplexes, local materials are again preferred. However, from the Intermediate-

HP to the post-HP technocomplex non-local materials dominate again. Porraz et al. 

(2013) argued that the drastic shift to non-local materials in the Howiesons Poort is 

suggestive of behaviors consistent with a provisioning of place model (Kuhn 1995). 

Further, the shift is interpreted to suggest higher predictability and control of desired 

resources. However, the HP backed pieces do not seem to be in a response to a 

modification in hunting weapons and they were not designed for a specific task (Igreja 

and Porraz 2013). 

 

Die Kelders Cave 1(DK1) 

Die Kelders Cave 1 refers to a cave complex located on the Walker Bay coast of the 

southern Cape. The first excavations of Die Kelders Cave 1 (DK1) were conducted by 

Schweitzer (1979, 1974, 1970) from 1969 to 1973. Although Schweitzer was not overly 

concerned with the MSA but mainly focused on the LSA, he was surprised to find MSA 

lithics beneath a sterile sand layer that signaled the beginning of the LSA sequence 

(Schweitzer 1979). In 1991 to 1995 additional excavations of the MSA deposits were 

conducted (Marean 2000, Marean et al. 2000). Volman analyzed the MSA lithics from 

the Schweitzer excavations (Grine, Klein, and Volman 1991, Volman 1981), while 

Thackeray (2000) investigated the new assemblage of lithics and found that they were 

very comparable with Volman’s study. What follows is a summary from Grine et al. 

(1991) and Volman (1981). Volman noted that most of the lithics come from even-



122 
 

numbered layers (4, 6, 8, 10, 12, 14), separated by odd-numbered layers with few 

artifacts (5, 7, 9, 11, 13). Throughout the sequence, there is evidence for centripetal 

reduction, and there are some cores with elongated, parallel and sub-parallel scars. In 

addition, convergent flakes are common in all layers. Overall, there is a low frequency of 

retouched pieces. The few retouched pieces usually take the form of notches or edge-

damaged pieces. The earlier and later MSA layers yield longer and narrower flakes 

compared to the middle MSA layers, which yield shorter and broader flakes.  

 Volman noted that quartzite, quartz, and silcrete were the only raw materials that 

were used. Overall, quartzite is used throughout the sequence (Figure 8) but in levels 11 

and 12 there is an increase in the use of silcrete (Volman 1981).  

 
Figure 8. Relative frequencies of raw materials from MSA layers at Die Kelders Cave 1. 

Raw material frequencies and stratigraphic designations from Volman (1981). 
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There is, however, no increase or presence of typical Howiesons Poort-like tools 

such as backed pieces or notched-blades in the corresponding layers with increased 

silcrete. Whereas Volman (1981) argued that all raw materials were reduced the same 

way, Thackeray (2000) argued that most of the silcrete blades are smaller. Further, 

Thackeray argued that the small size of the silcrete blades results from a difference in 

size of the available nodule. Most of the silcrete cores are small and irregular or 

centripetally prepared, while the majority of the quartzite cores are centripetally prepared 

with some cores showing evidence of flake and flake-blade removal. Thus, there is more 

variability in the reduction strategies that previously argued (Brown 2011). 

 No convincing dating regime with single-grain OSL dating has been undertaken 

at DK1. However, Feathers and Bush (2000) used several dating techniques such as TL, 

IRSL, and single and multi-aliquot OSL that yields dates ranging from 70.3±5.8 to 

59.4±5 for Layers 11 and 13. The single-aliquot OSL age of Layer 11 is 70.3±5.8, while 

Layer 13 has single-aliquot OSL age of 58.6±5.4 (Feathers and Bush 2000). In addition, 

the ESR ages suggest an average age of the deposits of 70±4 ka (Schwarcz and Rink 

2000). These results suggest that layer 12, which has a drastic increase in the use of fine-

grained silcrete, might date to the Howiesons Poort or Still Bay. However, as noted above 

layer 12 does note exhibit any lithic technology such as backed pieces or bifacial points. 

 

Nelson Bay Cave (NBC) 

Nelson Bay Cave is located on the Robberg Peninsula on the south coast of South Africa. 

Ray Inskeep excavated first in 1964-1966, 1970-1971, and 1979 (Inskeep and Avery 

1987), and then Klein excavated in 1970 and 1971 (Klein 1972). The MSA deposits 
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begin with pre- Howiesons Poort MSA (levels 10-7), followed by the Howiesons Poort 

(level 7 to crust layers). Above the MSA, after a sterile occupation layer, the LSA 

follows, represented by the Robberg, Albany (Oakhurst), and Wilton industries. In his 

dissertation, Volman (1981) described the MSA lithics from Klein’s excavation. Below I 

will summarize his findings. Overall, quartzite is the most abundant raw material (usually 

above 90% in all levels) followed by quartz, silcrete and other crypto-crystalline silicates 

including chert variants (Figure 9). Only in the Howiesons Poort is there a moderate 

increase in the use of silcrete, quartz, and crypto-crystalline silicates (Figure 9). Volman 

assigned pre-Howiesons Poort MSA level 8 to MSA 2b, Levels 9 and 10 as MSA 2a. The 

pre-Howiesons Poort is associated with long and narrow flakes, retouched points and 

sidescrapers, while the Howiesons Poort is associated with small flakes, some unifacial 

points, and retouched segments, triangles, trapezoids, other backed pieces, and 

denticulated endscrapers. In addition, there are multiple-notched and strangulated pieces. 

The backed tools are made on similar frequencies of quartzite and fine-grained raw 

materials. Some strangled and multiple-notched pieces were made on silcrete and chert 

but quartzite was used to make all other formal tools. 

 Overall, Volman (1981) described a low ratio of primary cortical flakes to cores 

within the Cave. He suggested that the primary reduction occurred outside the cave, 

leaving only successfully prepared cores to be transported into the cave. There is an 

absence of single-removal prepared cores. Once in the cave, the cores were highly 

reduced suggesting that once prepared, the cores were nearly exhausted. The majority of 

the cores were centripetal with single and multiple platform cores facilitating the 

production of parallel and sub-parallel flakes.  
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Figure 9. Relative frequencies of raw materials from MSA layers at Nelson Bay Cave. 

Frequencies are shown in the context of glacial and inter-glacial states (Marine Isotope 

Stages). The designation of the different layers to specific Marine Isotope Stages is here 

based on the technocomplexes. Raw material frequencies and stratigraphic designations 

from Volman (1981). 

 

Although no ages are available, work by Jacobs et al. (2008a) showed that other 

Howiesons Poort assemblages are tightly constricted to between 65-60 ka at a range of 

other MSA sites all over South Africa. This suggests that the Howiesons Poort 

assemblage at Nelson Bay Cave can be dated to this age range. 

 

Klein Kliphuis (KKH) 

Klein Kliphuis (little rock house) was first excavated in 1984 and again in 2006 and is 

located low on the north-facing slope of Spitskop, a hill at the junction of the Kliphuis 
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and Olifants Rivers (Jacobs, Roberts, et al. 2008a, Mackay and Welz 2008, Mackay 

2006). The site is 60 km from the present coastline. The MSA layers (D, D1, D2, and D3) 

from the original excavation are subdivided into somewhat arbitrary units, although 

Mackay (2006) noted that the excavators tried to follow changes in soil color and 

composition. Mackay (2006) described the lithics from the 1984 excavations. Layer D is 

dominated by quartz (61.2%) followed by silcrete (10.3%). There are some backed 

artifacts and an increased prevalence of bipolar core reduction. Layer D1 is 35.4% quartz, 

37.3% quartzite, and 18.1% silcrete. Flakes discarded in this layer are heavier, longer, 

wider, and thicker on average compared to the other MSA layers. Unifacial points are 

present and there are no backed artifacts. Layer D2 is dominated significantly by silcrete 

(80.2%) followed by other crypto-crystalline silicates (CCS) (10.1%). There is an 

increased prevalence of backed artifacts, a high frequency of elongated artifacts (blades), 

a use of dorsal ridges to control flaking, and a high instance of platform cores. Layer D3 

is 59.8% silcrete followed by 26.2% quartz. There are fewer backed artifacts than in layer 

D2 but very similar otherwise. 

Jacobs et al. (2008a, b) in their supplementary material provided OSL ages for the 

sequence and a short summary of the 2006 excavation. Unfortunately, their stratigraphy 

division is not directly compatible with the early excavations. All the layers that 

corresponded to the Pleistocene are denoted D where any subdivisions are denominated 

with roman numerals. Layers were dug in 25mm spits. The transition from Howiesons 

Poort to post-Howiesons Poort occurs in Dvi7 and Dvi6. The original D2 unit is more or 

less equivalent to the Dvi unit from the new excavation, which is bracketed with two 
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OSL ages from 66.0±3.4 ka to 55.2±2.0 ka. This supports Mackay’s (2006) assertion that 

the D2 unit represents the Howiesons Poort.  

 

Klipdrift Shelter (KDS) 

Klipdrift Shelter is located in the De Hoop Nature Reserve on the south coast of South 

Africa at a height of 19 meters above sea level. Excavations commenced in 2011 and 

revealed MSA occupations (Henshilwood et al. 2014). The uppermost layers are OSL 

dated to 51±3.3 ka, the middle layer is OSL dated to 65±4.8 ka to 59.4±4.6 ka, while the 

lowermost currently excavated layer dates to 71.6±5.1 ka. The ages of the middle 

occupation layers and the lithic component are compatible with a Howiesons Poort 

designation (Henshilwood et al. 2014). A description of the Howiesons Poort lithic 

assemblages was presented by Henshilwood et al. (2014). The tools of the Howiesons 

Poort layers are typical of the Howiesons Poort with formal tools composed of backed 

tools, notched tools, borers, retouched blades, and points. However, only 5% of the 

assemblage is retouched. Significant changes occur in terms of raw material frequency 

and tool production. In the lowest layers (PCA, PBE, PBD) silcrete dominates and is used 

to produce blades. There is also a relatively high prevalence of notched tools, the 

presence of strangulated blades and highly standardized truncated blades. In the two 

overlaying layers (PBC, PBA/PBB) quartz usage increases significantly, and the main 

tool group is backed tools including typical segments. In the uppermost layers (PAZ and 

PAY) quartzite and calcrete become more abundant; there is an increase in blade size and 

the emergence of an independent and structured Levallois-based flake production 

coinciding with a decrease in the frequency of backed tools. Henshilwood et al. argued 
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that the pattern of change throughout the Howiesons Poort sequence at KDS echoes 

patterns observed with the Howiesons Poort at Klasies River (Villa et al. 2010, Wurz 

2000), and in the Intermediate and late Howiesons Poort layers at Diepkloof Rock Shelter 

(Porraz, Parkington, et al. 2013, Porraz, Texier, et al. 2013) 

In terms of raw material procurement, the closest known potential silcrete source 

is 10 km to the north, while quartzite and sometimes quartz are most likely of a local 

origin. In terms of tool production, quartz, silcrete, and other CCS rocks are almost 

entirely devoted to the production of blades. Quartzite was expediently reduced and was 

used to produce both flakes and blades with direct hard hammer percussion. 

 

Apollo 11 (AP) 

Although not in South Africa, AP is a cave site situated in the Huns Mountains in 

southwestern Namibia and was excavated by Wendt in the late 1960's and early 1970's 

(Wendt 1976, 1974). Wendt (1976: 7) describes the artifact assemblages from the MSA 

layers as follows from bottom to top:  

 Layer H: The basal layer has several large points and flake-blades in addition 

to a number of true medium to small-sized blades. Only a few retouched 

artifacts with notched/denticulated/serrated edges and coarse ventral retouch 

are present. 

 Layer G: Blades in this layer are on average larger than in the overlying Layer 

F. There are numerous retouched flakes and blades in addition to a few burins 

and unifacial and bifacial points. This layer is OSL dated to 70.7±2.1 ka and 
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the artifact assemblage is classified as Still Bay, similar to the Still Bay 

industry of the Western and Southern Cape (Jacobs, Roberts, et al. 2008a). 

 Layer F: This layer has facies of blade industries, and the blades are 

frequently snapped and on average smaller than in the underlying Layer G. 

There are variously retouched blades and flakes but also several burins, 

backed blades, backed points, a few large "crescents" and several partially 

unifacial points present. Wendt (1976: 7) stated that this layer has certain 

affinities with the Howiesons Poort. Jacobs et al. (2008a) OSL dated this layer 

to 63.2±1.9 ka, which falls within the range of other Howiesons Poort layers 

dated in their research.  

 Layer E: The top of the MSA sequence consists of several distinct horizons 

with a low artifact density. The horizons contain blades assigned to the MSA 

but it lacks other typical tools. The layer radiocarbon dates to between 46 

400±2500 years BP at the bottom to 26 300±400 BP at the top. A rock fall 

horizon that separates Layer E from F is OSL dated to 57.9±1.9 ka (Jacobs, 

Roberts, et al. 2008a).  

 

Sibudu Cave (SIB) 

Sibudu is located 40km north of Durban in the KwaZulu‐Natal Province. It was first 

excavated by Mazel in 1983, but the in‐progress excavation at the cave started in 1998 

led by Lyn Wadley (2004) but is today led by Nick Conard (Conard, Porraz, and Wadley 

2012, Will, Bader, and Conard 2014). The MSA sequence at this site from bottom to top 

is the: pre‐Still Bay industry, Still Bay, Howiesons Poort, post‐Howiesons Poort 
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(‘Sibudan’), late MSA, and final MSA (Jacobs, Roberts, et al. 2008a, b, Jacobs, Wintle, 

et al. 2008, Wadley 2007, 2005, Wadley and Jacobs 2004).  

A short description of the pre‐Still bay artifacts is offered in the supporting 

material to Jacobs et al. (Jacobs, Roberts, et al. 2008b). It is described as a flake rather 

than a blade industry and the raw material used are local dolerite and non-local hornfels. 

Wadley (2007) reports that the Still Bay retouched tools are on local dolerite, with non-

local hornfels, quartz, and quartzite also being used. Hornfels does not occur within a 10 

km radius of the site. In the Still Bay, 48 % of all retouched tools and 54 % of points and 

bifacial tools are made from dolerite, while 76 % of all flake, blade, and chunk classes 

are also made on dolerite. Other raw material types are hornfels, quartz, and quartzite. 

Further, 42 % of the retouched tools are bifacially worked. Few whole specimens of 

bifacial points are found, but both distal and proximal ends are found. Other retouched 

tools include unifacial points, a segment, and a crescent. The assemblage is flake rather 

than blade oriented. Cores are rare but there are two radially worked cores, one 

cylindrical core and one core with opposed platforms. Residue analysis on the Still Bay 

double‐pointed bifacial artifacts suggests they were used as butcher knives rather than 

hunting weapons (Lombard 2006).  

From the Howiesons Poort layers, Lombard (2008a) reported that there are no 

retouched points and the segments and other backed pieces are the formal tools. The 

majority of the backed tools are made on dolerite and hornfels, but there are some quartz 

artifacts. Some of the quartz is used to produce a laminar technology that emphasizes 

small bladelets. It is argued that there is a deliberate production of microliths using the 

quartz (de la Peña and Wadley 2014). There are a higher proportion of blades and more 
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large sandstone flakes than in overlaying MSA layers. Experimental work and residue 

analysis suggest that the backed segments and crescents were hafted and created a multi‐

component tool used for hunting (Lombard 2008a, Lombard and Pargeter 2008).  

Wadley and Jacobs (2004) and Jacobs et al. (Jacobs, Roberts, et al. 2008b, a) 

described the post‐Howiesons Poort, late MSA, and final MSA. In the post‐Howiesons 

Poort quartz is a preferred raw material and there are no backed blades and segments, 

which separates it from the late and final MSA. There are few technological and 

typological changes occurred throughout this phase. During the late MSA unifacial points 

made mostly on dolerite and hornfels occur in high frequencies and their tip angle falls 

within the range considered suitable for spearheads. Residue analysis on these points 

suggests they were hafted onto bone or wooden shafts and used as hunting weapons 

(Lombard 2005, 2004). The final MSA contains examples of hollow‐based bifacial stone 

points, and small bifacial and unifacial points, as well as sidescrapers and segments. 

Dolerite and hornfels are the main raw materials used. The sequence at Sibudu has 

several OSL dates: The pre‐Still Bay is dated from 77.2±2.1 ‐ 72.5±2.0 ka, the Still Bay 

to 70.5±2.0 ka, the Howiesons Poort from 61.7±1.5 to 64.7±1.9 ka, the post‐Howiesons 

Poort to 58.5±1.4 ka, the late MSA to 48.0±1.4 ka, and the final MSA to 38.6±1.9 ka 

(Jacobs, Roberts, et al. 2008a, Jacobs, Wintle, et al. 2008). The Still Bay and Howiesons 

Poort ages fit within the range of dated Still Bay and HP assemblages at other sites 

(Jacobs, Roberts, et al. 2008a).  

More recent excavations led by Conard have expanded the sample of the post-

Howiesons Poort. Conrad and colleagues (Conard, Porraz, and Wadley 2012, Will, 

Bader, and Conard 2014) renamed the post-Howiesons Poort (layers BSP-BM) into a 
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‘cultural-taxonomic’ unit termed the ‘Sibudan’. They argued that the Sibudan dates to 

roughly 58ka reflecting many occupations over a short amount of time (Jacobs, Wintle, et 

al. 2008, Wadley and Jacobs 2006, Wadley 2013a). Will et al. (2014) found that the new 

assemblage under study is dominated by dolerite (62%) followed by Hornfels (34%). 

These frequencies are very different from the post-Howiesons Poort assemblage studied 

by Wadley, which is dominated by quartz (Jacobs and Roberts 2008). This discrepancy 

might suggest inter-site variation in raw material usage. This is possible because Conard 

and Wadley excavated different areas of the site. Will et al. (2014) noted that the dolerite 

is a local material most likely procured from a dolerite dyke in the sandstone cliff located 

some hundred meters away from the site. The local dolerite is an igneous, granular-

appearing rock with varying grain size and mineral composition. The material is hard, 

rough, and homogenous. The hornfels is the most fine-grained material at SIB and yields 

favorable knapping characteristics and a sharp but potentially fragile edge. The closest 

known potential source of the hornfels is an outcrop located ~15-20 km to the south 

(Will, Bader, and Conard 2014). Overall, Will et al. (2014) noted that the lithic 

assemblage from the BSP-BM layers indicates a consistent pattern of raw material 

procurement in terms of both variety and abundance. Both dolerite and hornfels were 

reduced in the same manner and the tool makers used the same approach when producing 

blanks with both raw materials. The hornfels is more reduced, which is correlated with its 

longer transport distance and higher quality. The non-local raw material frequency varies 

between 25-38% and Will et al. (2014) argued that variability might be due to differential 

access to sources or changes in mobility. The older layers (BM, IV) are more reduced 

with higher flake blank to core ratios and smaller debitage products. Will et al. (2014) 
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argued that the subtle differences between the lower and upper layers in terms of 

reduction intensity and debitage sizes are either due to site use intensity, or change in 

access to raw material sites, or change in mobility system, or a combination of any of 

these factors.  

 

Rose Cottage (RCC) 

Rose Cottage Cave is located in the eastern Free State Province and was first excavated 

by Malan between 1943 and 1946, and then by Beaumont in 1962. Two recent 

excavations in the late 1980’s to the late 1990’s were undertaken by Wadley (1997) and 

Harper (1997). The unpublished assemblages excavated by Malan were analyzed by 

Wadley and Harper in 1989. They recognize a pre‐Howiesons Poort assemblage, a 

Howiesons Poort assemblage, and a post‐Howiesons Poort assemblage (Wadley and 

Harper 1989). The pre‐Howiesons Poort industry is dominated by points, large flakes, 

and large parallel‐sided flake‐blades (Wadley and Harper (1989). The dominant raw 

material is opaline but tuff and siltstone is also common. Towards the end of the industry, 

knives are more dominant and there are as many backed tools as points. The opaline and 

tuff almost certainly come from the Caledon river some 8 km away (Harper 1997). 

Wadley and Harper (1989: 31) stated that there is a strong possibility that the pre‐

Howiesons Poort industry is related to the MSA 2b assemblages described by Volman 

(1984), which is found at sites in the Southern Cape. The Howiesons Poort industry at 

Rose Cottage Cave is dominated by backed tools and a wide range of tool types. There is 

an increase in the use of opaline and an increase in the percentage of small flakes and 

both small and large irregular flake‐blades. Wadley and Harper (1989: 31) argued that the 
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Howiesons Poort at Rose Cottage Cave has all the attributes of a ‘classic’ Howiesons 

Poort industry. They note some difference between RCC and other sites; fewer segments 

or trapezoids in contrast to Border Cave, KRM, and NBC (Wadley and Harper 1989). 

The post‐Howiesons Poort industry has some rare backed pieces, but is dominated by 

scrapers and has many points and knives. There are many small flakes and a relatively 

high proportion of irregular flakes. Wadley and Harper (1989: 31) argued that the post‐

Howiesons Poort industry might be equivalent to MSA 3 industries from other sites such 

as Border Cave and Klasies River. Further, Wadley and Harper (1989) noted that 

throughout the whole MSA sequence there is a gradual progression from large to small 

flakes, a decline in the percentages of parallel‐sided flake‐blades, and a continuous 

increase in irregular flake‐blades. Recent OSL dating by Jacobs and collaborators (2008a) 

dated the Howiesons Poort industry to between 65.0±1.9  ka and 63.0±1.9 ka and the 

post‐Howiesons Poort industry to 56.0±2.3 ka. These dates fit with OSL dates for the 

MSA 3 (post‐Howiesons Poort) and the Howiesons Poort at other sites (Jacobs, Roberts, 

et al. 2008a). A recent study by Soriano and colleagues (2007) looked at the blade 

technology and tool forms of the Howiesons Poort and post‐Howiesons Poort at Rose 

Cottage Cave. They concluded that the blade production in Howiesons Poort was a real 

technical innovation but was not made by using indirect percussion (Soriano, Villa, and 

Wadley 2007). 

 

Umhlatuzana (UMH) 

Umhlatuzana was first excavated in 1985 by Kaplan. It is a north-facing shelter located 

100m above the Umhlatuzana River in KwaZulu-Natal (Lombard et al. 2010, Kaplan 
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1990, Kaplan 1989). The MSA sequence at Umhlatuzana can be divided into the Pre-

Howiesons Poort, Howiesons Poort, and Late MSA. A summary of the stone assemblages 

from Lombard et al. (2010) follows. Pre-Howiesons Poort (levels 28-25): This 

technocomplex has been given an OSL age of 70.5±4.7 ka. Lombard et al. (2010) argued 

that the high frequency of bifacial foliate and serrated points and its age designates it as a 

Still Bay assemblage. Quartz dominates the raw material frequency with 80.5% followed 

by hornfels (18.3%). The Howiesons Poort (layers 24-22) has an OSL age of 60±3.5 ka 

and is dominated by quartz (76.9%) followed by hornfels (22.3%). The late-MSA (layers 

21 to 19) has an OSL age of 41.9±2.6 ka and is dominated by 99% debitage, chips, 

chunks, and flakes. Hornfels is the dominant raw material (61%) followed by quartz 

(34.5%).  

 

Sehonghong (SEH) 

Sehonghong is a rock shelter located in the Sehonghong valley in Eastern Lesotho. Carter 

(1988) excavated it in 1971. The site has an archaeological sequence going from the 

MSA to the LSA. Carter et al. (1988) divided the MSA sequence into four phases (oldest 

to youngest): MSA 3, 5, 6, and 9. I will here focus on the artifact assemblage descriptions 

of the MSA 5 and 3 phases because they have been dated by using OSL. A description of 

the MSA 5 and 3 phases from Carter et al. (1988) follows: 

 In the MSA 3 the most dominant raw material is opalines (55%) followed by 

hornfels (40%). Almost all cores are irregular but some cylindrical cores 

occur. No bladelet or prepared cores are present, while two backed flakes and 
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one segment occur in the assemblage. The MSA 3 phase is OSL dated to 

between 57.6±2.0 ka and 46.5±2.3 ka ago (Jacobs, Roberts, et al. 2008a). 

 In the MSA 5 hornfels is the dominant raw material (57 %) followed by 

opaline (36%). There are some blades, bladelet, and Levallois cores, but most 

cores are irregular. Scrapers and knives are the most abundant common formal 

tool types. The MSA 5 phase is OSL dated to between 31.6±1.2 ka and 

30.3±3.3 ka ago. 

 The OSL date and the artifact assemblage from the MSA 3 layer suggest that it 

belongs to Volman's stage MSA III (Volman 1984). But the occurrence of backed flakes 

and a segment, and considering the error on the OSL date of 59.9 ka, suggests that the 

MSA 3 might be an Howiesons Poort layer (Jacobs, Roberts, et al. 2008a). 

 

Ntloana Tsoana (NT) 

Ntloana Tsoana is a rock shelter located in the Masaru district in Western Lesotho. It was 

excavated in 1989 (Mitchell and Steinberg 1992). The MSA sequence is divided into 

three stratigraphic units named (oldest to youngest): CBS, HBL, and GWS. I will focus 

on the CBS and HBL stratigraphic units because they have been dated by OSL (Jacobs, 

Roberts, et al. 2008a). 

 The CBS unit is dominated by opalines (45%) and tuff (40%), while other raw 

materials including siltstone, hornfels, chert, quartz, quartzite, sandstone and 

petrified wood are also present. Irregular cores are most abundant but there some 

few blade and bladelet cores. Formal tools are rare but slightly more abundant 

than in the overlying HBL. Backed pieces are the most common formal tool 
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category, which includes backed segments, backed blades, backed flakes, and 

obliquely backed blades. Other formal tools include points, knives, and scrapers. 

The CBS unit is OSL dated to 60.9±2.5 ka (Jacobs, Roberts, et al. 2008a). 

 In the HBL unit Tuff (50%) is dominant followed by opalines (38%), and hornfels 

(6%). Other raw materials are chert, quartz, quartzite, and sandstone. Irregular 

cores are most abundant, while the cores are larger than those from the underlying 

CBS unit. There are some rare examples of prepared, blade, and bladelet cores. 

Facetted platforms are more common than in the CBS unit. The percentages of 

formal tools are very low but unifacial points and knives are most abundant with 

some scrapers and backed pieces. The HBL unit is OSL dated to 56±1.4 ka. 

The MSA sequence from NT is comparable to the MSA sequence at RCC 40 km to 

the west. Both sites have post‐Howiesons Poort layers that OSL dates to approximately 

56 ka and they have Howiesons Poort layers that date to between 60 to 65 ka (Jacobs, 

Roberts, et al. 2008a, Mitchell and Steinberg 1992). 

 

Summary of MSA raw material selection and technological organization 

Several generalizations arise from the MSA records from South Africa and Lesotho. In 

the southern Cape, quartzite is the preferred raw material during the early MSA (MIS5), 

‘Klasies River’, and ‘Mossel Bay’ technocomplexes but silcrete and other fine-grained 

raw materials become increasingly important during the Still Bay and Howiesons Poort 

technological (MIS4) entities at some sites (Figure 10). However, some sites show this 

pattern more than others do. At Diepkloof Rock Shelter and Blombos Cave this pattern is 

clearly visible (Figure 10). The four sites highlighted in Figure 10 are particularly 
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important because they have long archaeological sequences. Additionally, these 

particular sites show raw material frequencies that include quartzite and non-quartzite 

raw materials such as silcrete and quartz. 

 
Figure 10. Composite figure of MSA raw material frequencies at Klasies River, Nelson 

Bay Cave, Blombos, and Diepkloof. Stratigraphic aggregates corresponding to MIS4 is 

highlighted. 

 

The OSL dating of these sites shows that the change in raw material frequencies 

occurs at the MIS5 to MIS4 boundary (Brown et al. 2012, Jacobs and Roberts 2015, 

Jacobs et al. 2012, Jacobs and Roberts 2008, Jacobs, Roberts, et al. 2008a). In this 

dissertation I will build on previous research (Brown 2011, Brown et al. 2012, Brown et 

al. 2009) and highlight that the record for PP 5-6 shows an exaggerated increase in fine-

grained materials such as silcrete comparable to Blombos Cave (Figure 6) and Diepkloof 

Rock Shelter (Figure 7), and perhaps Die Kelders Cave 1 (Figure 8). In fact, silcrete 

dominates the assemblages from MIS 4 at these three sites. The dominance of silcrete 

exceeds that at other south coast sites such as Klasies River (Figure 5) and Nelson Bay 
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Cave (Figure 9).Outside the Cape in sites such as Sibudu, Rose Cottage Cave, Ntloana 

Tsoana, Sehonghong, and Umhlatuzana raw materials such as dolerite, hornfels, quartz 

and opaline are used in varying frequencies but also at these sites there is an increase of 

fine-grained raw materials such as opaline during the MIS5 to MIS4 transition. The 

pattern is not as pronounced as in the coastal sites in the Cape. 

The materials chosen to manufacture backed pieces in the Howiesons Poort and 

bifacial points in the Still Bay somewhat mirror the raw material that dominates the rest 

of the assemblages during the same technocomplexes. At Blombos Cave, Still Bay points 

are mainly made on silcrete (Henshilwood et al. 2001), while at Diepkloof Rock Shelter 

the production of Still Bay points are dominated by local quartzite but few are in finished 

form (Porraz, Texier, et al. 2013). In the Howiesons Poort, the backed pieces at PP5-6 are 

made mainly on silcrete (Brown et al. 2012), whereas quartzite dominates the backed 

piece assemblages at Klasies River (Singer and Wymer 1982, Wurz 2002) and Nelson 

Bay Cave (Volman 1981).  

The argument that post-Howiesons Poort industries (MIS3) reflect a return to a 

rudimentary prepared-core flaking strategy based on quartzite (e.g., Singer and Wymer 

1982, Volman 1981) has been contested with data from new excavations. Evidence from 

Sibudu (Will, Bader, and Conard 2014), Diepkloof Rock Shelter (Porraz, Texier, et al. 

2013), and PP5-6 (Brown et al. 2012, Brown et al. 2009) suggest that there was much 

more variability in the post-Howiesons Poort than previously acknowledged. However, 

some sites such as Klasies River, Nelson Bay Cave, and Die Kelders Cave 1 exhibit 

quartzite-dominated technology in MIS3. 
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Existing informal models of raw material change 

As discussed above in Chapter 2, there is consensus on what mechanisms can cause 

changes in raw material frequencies at a general level including direct procurement due 

to physical qualities needed for specific tasks or qualities linked to symbolic values, 

embedded procurement, trade/exchange, and demographic change. In the South African 

MSA that was reviewed above, there are examples of major changes in raw material 

frequencies especially at the MIS5 to MIS4 transition. This transition coincides with a 

shift in technology as well with the introduction of symmetrical bifacial points and 

microlithic technology as expressed in the early microlithic (SADBS) at PP5-6, and Still 

Bay and Howiesons Poort technocomplexes. 

 However, there is no consensus as to what caused the raw material shifts observed 

with the early microlithic (SADBS), Still Bay and Howiesons Poort in the South African 

Middle Stone Age (Ambrose 2006, Brown 2011, Minichillo 2006). At least six different 

competing informal models for the shift in raw material use have been proposed 

including hypotheses linked to increased mobility (Ambrose and Lorenz 1990, McCall 

2007, McCall and Thomas 2012), trade/exchange (Deacon 1989), symbolic value (Wurz 

1999), functional demands (Mackay 2008), changing cost of wood fuel for heat-treatment 

(Brown and Marean 2010), and changing availability of raw materials (Brown 2011, 

Volman 1981). 

As discussed in the preceding chapter, explanations for changes in raw material 

frequencies can be divided into two broad camps: ‘Non preference-based change’ (also 

called encounter-based procurement) or ‘Preference-based change’. In the following 

subsections, I will summarize the six informal models that have been proposed to explain 
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the change in raw materials between MIS5 and MIS4. I will do so by categorizing them 

under the framework outlined above at the end of Chapter 2. 

 

Natural Availability 

An example of the ‘Natural availability’ variant of the ‘Non preference-based change’ 

model category is work by Volman (1981). He proposed that as the global temperatures 

fluctuate in MIS5 and MIS4, potential high-quality raw materials on the coastal shelf on 

the southern coast of South Africa became available when the coastal shelf was exposed. 

New access to raw materials explains why silcrete is more frequently procured during 

MIS4. 

 Brown (2011) built on the proposed relationship between an exposed coastal shelf 

and the change in raw materials. Brown (2011) presented a model termed the “Site-

context Model” that proposed that the differential use of quartzite and fine-grained lithic 

raw materials in the MSA is possibly linked to the position of PP5-6 on the landscape in 

relation to the position of the coastline for a given time interval. Compared to a 

“Mobility-linked” variant of the encounter-based models where people increase their 

movement, Brown pointed out that in the “Site Context Model” it is the relative context 

of the site on the landscape that is moving. During warm periods, the site is located next 

to the coast, while during cold periods PP5-6- is located as far as 30 to 40 km inland. 

Brown (2011) posited that during coastal occupations of PP5-6, the makers of the MSA 

tools likely gathered locally available quartzite from cobble beaches. The reshuffling and 

replenishing of the active beaches by ocean swell, tidal activity, and storm surges provide 

a regular source for new materials. Other secondary context raw materials such as silcrete 
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may also be found in lower frequencies at these beaches creating a pattern at PP5-6 that 

reflects a selection of materials locally available in secondary context. 

 Conversely, during colder periods, Brown (2011) posited that when the coastline 

is regressing and PP5-6 is an inland site the toolmakers would still have access to cobbles 

but high-quality materials would be depleted quickly. This is because there is no active 

energy source to replenish the cobble source. Brown asserted that since the distance to a 

secondary source increases it leads to the increased attractiveness of terrestrial sources.  

Brown and colleagues (2011, 2009) proposed that one strategy to reduce the search cost 

during inland occupations is to improve the flaking quality of more locally available 

silcrete through heat-treatment. 

 The “Site Context Model” assumed that the primary sources of raw materials on 

the landscape did not change position since the MSA. Further, it is assumed that the 

dynamic cobble beaches hypothesized to be a major source of quartzite cobbles for MSA 

tool manufacture will move closer and farther away from PP5-6 as the coastline shifts 

during the interglacial and glacial cycles. In addition, the “Site Context Model” assumed 

that materials are chosen based on distance to source as a proxy measure for procurement 

cost. The model assumed that all materials have equal value and the selection of materials 

was strictly based on procurement cost. Because the model links the selection of silcrete 

with changes in the distance to secondary sources of quartzite, and the distance to 

primary silcrete sources does not change through time, the model assumptions are made 

to evaluate the potential baseline effects of coastline movement on stone tool raw 

materials. An important additional assumption of the “Site Context” model is that there 

are no submerged silcrete sources within 8 to 10 km to PP5-6. The study presented here 
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will test that constraint assumption and will investigate what effect that a potential 

silcrete source on the now submerged plain has on the raw material frequencies. 

 Brown (2011) presented a set of text expectations for the model. During 

interglacial conditions when the coastline is near Brown expects that there should be a 

greater use of quartzite, more beach cobble cortex, a lower percentage of heat-treated 

silcrete, more cortical products, larger flaking products, and lower cutting edge to mass 

ratios. For glacial conditions when the coastline is far away, Brown (2011) expected that 

there should be an increase in materials from inland sources, more primary cortex, higher 

percentages of heat-treated silcrete, less cortical flaking products, smaller products, and 

higher ratios of cutting to mass. Brown found mixed support for his expectations. Some 

expectations like increased cobble cortex in layers dating to MIS5 when cobble beaches 

are present in close vicinity to PP5-6 was met. However, expectations about increased 

use of materials from outcrop sources during MIS4 were not met in most stratigraphic 

units. The expectation about smaller tools during MIS4 was not met either in most 

stratigraphic units. 

 Another informal model that is an example of a ‘Natural availability’ variant is 

the “Wood-fuel availability” model proposed by Brown and Marean (2010). Although 

not specifically dealing with the availability of stone resource it instead deals with the 

changing abundance and availability of wood-fuel needed to heat-treat silcrete. They 

(2010) proposed that the shift to increased heat-treatment of silcrete during MIS4 occurs 

simultaneously with a shift to more summer rain and a vegetation type that includes more 

C4 grass. They stated that climates and vegetation with these characteristics have more 

trees suitable for heat-treatment since C4 grasslands normally have abundant acacias and 
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these trees typically provide high-quality wood. They proposed that the appearance and 

disappearance of silcrete are constrained by the abundance and availability of wood 

suitable for heat-treatment. More precisely, what they proposed was that when the cost to 

procure wood fuel to heat-treat silcrete increases, the selection of silcrete decreases. 

During MIS4 there was an increase in summer rains and woody vegetation that decreased 

the cost of procuring wood fuel, which made committing to heat-treatment a viable 

technology (Brown and Marean 2010). 

 

Mobility-linked 

Ambrose and Lorenz’s (1990) application of Dyson-Hudson and Smith’s (1978) 

ecological model of resource structure is an example of the ‘Mobility-linked’ variant of 

the ‘Non preference-based change’ model category. Ambrose and Lorenz (1990) 

proposed an inverse relationship between exotic non-local raw materials and stone tool 

source abundance and predictability. In their model, technological change is the result of 

a change in foraging range size, the degree of information sharing, and territoriality. The 

changes are proposed to have happened due to the fluctuation in the abundance and 

predictability of stone tool raw material sources. Ambrose and Lorenz argued that the 

Howiesons Poort occurred during a period in MIS4 when the climate was cooler and 

drier, and point to faunal remains that suggest that there was a shift to more open 

grassland. They proposed that the resource base was less predictable but more abundant. 

The human response to this is to increase mobility and this leads to a corresponding 

increase in the frequency of non-local raw materials encountered on the landscape. 

Ambrose and Lorenz’s (1990) model is an example of Binford’s (1979) ‘embedded 
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procurement strategy’ model, which suggests that all tool raw materials are procured 

during other subsistence activities. They rejected the argument that the changing 

procurement pattern of raw materials is the result of a change in technology (Brown 

2011). 

 McCall (2007) and later McCall and Thomas (2012) presented a similar argument 

to Ambrose and Lorenz. They proposed that the emergence of the biface-dominated Still 

Bay technocomplex is related to increased mobility, which took the foragers away from 

lithic raw material sources. Increased mobility resulted from environmental change at the 

transition from MIS5 to 4, which led to a decline in plant productivity, lower densities of 

food resources and increased foraging territory size. In turn, the ecological changes led to 

a reorganization of the mobility strategy of the foragers and new strategies to supply raw 

materials (McCall 2007). 

 McCall and Thomas (2012) proposed that the increased selection of exotic and 

non-local raw materials in the Howiesons Poort technocomplex was due to the 

acquisition of such materials during long distance logistical hunting trips. They argued 

that the Howiesons Poort tool makers manufactured specialized and reliable tools that 

were used in a technological organization system that indicates longer-term residential 

occupations and logistical targeting of resources that were predictable, clumped and 

perhaps distant. They argued that the tools and weapons that Howiesons Poort segments 

and backed pieces were incorporated into fit within Bleed’s (1986) concept of reliable 

tools. 
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Utilitarian 

Mackay (2008) offered an informal model that is an example of a ‘Utilitarian’ variant of 

the ‘Preference-based change’ model category. Mackay (2008) proposed that 

environmental and climate conditions during MIS4 pressured the makers of the 

Howiesons Poort technocomplex to maximize the recovery of edge length from a given 

mass of stone. Mackay contended that MSA toolmakers gradually intensified efforts to 

locate raw materials that would facilitate maximization of cutting edge to mass. He 

(2008) proposed that towards the end of MIS4 when the selective pressure eased it 

diminished the requirement for fine-grained materials. Mackay (2008) argued, in contrast 

to model variants in the ‘Non preference-based change’ model category, that raw material 

selection was not a function of the distance to source but rather a function of the need for 

materials that could facilitate the manufacture of thin flake and blade blanks that allowed 

for a higher cutting edge to mass ratio, thus conserving core volume. The informal model 

proposed by Mackay is most aligned with Gould, Saggers, and colleagues’ (1985, 1985, 

1971) argument that archaeological stone tool raw material patterns represent evidence 

for deliberate selection of specific raw materials due to functional properties, which 

makes some raw materials better than others for a specific task. 

 

Non-functional 

Wurz (1999) performed a comparative metric analysis of backed artifacts resulting from 

Deacon’s excavation of Klasies River finding only marginal differences in terms of size 

between backed artifacts made all types of raw materials. She pointed out that although 

there was an overall increase in the use of non-local materials, and the selection of these 
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materials was deliberate and significant, she found no functional difference in the way the 

local and non-local materials were used. All raw materials were used in the same manner. 

Thus, to Wurz, the advantage of using non-local materials was interpreted as being 

symbolic or provided by the artifact maker. Wurz’s hypothesis is an example of the 

‘Non-functional’ variant of the ‘Preference-based change’ model category. She proposed 

that the non-local stone or backed artifacts in the Howiesons Poort made on non-local 

materials have an abstract value that is unrelated to the physical properties of the rock, 

except the color of the rock. 

 

Social learning/Culture 

Deacon (1989) presented a competing informal model to Ambrose and Lorenz. Deacon’s 

hypothesis is an example of a ‘Social learning/Culture’ variant of the ‘Preference-based 

change’ model category. Deacon argued that the selection of exotic and non-local raw 

materials during the Howiesons Poort technocomplex resulted from reciprocal exchange 

of hunting equipment similar to observed behavior in San hunter-gatherer groups. Further 

he proposed that reciprocal exchange was a means for coping with environmental stress 

that was brought on by colder climates during MIS4. Deacon proposed that this aspect of 

raw material selection supports his argument that anatomically modern humans in the 

MSA were behaviorally modern. 

 

Summary 

Two of the model variants presented above will be explicitly tested. The ‘Natural 

availability’ variant of the ‘Non preference-based’ model category will be tested with the 
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Opportunistic Acquisition Model (OAM), while the ‘Utilitarian’ variant of the 

‘Preference-based’ model category will be tested with the Active-choice Model (ACM). 

However, by changing model variables in the OAM the ‘Mobility-linked’ variant will be 

evaluated as well. Testing of the ‘New transport abilities/Carrying costs’, ‘Non-

functional’, and ‘Social learning/Culture’ variants is beyond the scope of this study. 
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CHAPTER 4:  GEOLOGY OF THE MOSSEL BAY REGION AND STONE RAW 

MATERIAL SOURCES 

General overview 

To evaluate the two different formal models presented in this dissertation requires an 

understanding of the local geology of the Mossel Bay region as it pertains to potential 

primary and secondary context sources for stone tool raw materials. Brown (2011) 

presented an overview of the Mossel Bay region geology in this respect and I will 

summarize his overview in the following subsections. Stone tool raw material sources 

that will be discussed here were identified by field work by Brown and this author 

(2014). In addition, Brown based his designation of potential sources on published 

literature of the geology in the Mossel Bay region. Figure 11 shows the distribution and 

extent of important geological formations visible during interglacial conditions discussed 

in more detail below. 

 Brown pointed out that even though no geochemical sourcing work has been done 

owing to the challenges associated with the positive identification of a specific location in 

space from which archaeological materials originated from, it is possible to assign 

probability to a source area or region (Shackley 1998). Because of this Brown (2011) 

stated that the potential source materials highlighted by him are discussed in terms of 

their geological distribution and general proximity to PP. 

 Elements of the Cape Supergroup, which formed as a thick wedge in a deep 

trough associated with the Gondwana breakup, are the primary context bedrock 

exposures in the Mossel Bay region (Malan and Viljoen 2008). The Cape Supergroup 

dates from 550 ma to 330 ma, is up to 10 km thick, and is divided into the Table 
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Mountain, Bokkeveld, and Witteburg groups (Thamm and Johnson 2006). Only the Table 

Mountain and Bokkeveld groups are represented in the Mossel Bay region. The Table 

Mountain Group consists of sheets of sandstone with some alternating beds of shale and 

conglomerates (Thamm and Johnson 2006). 

 
Figure 11. Geology map of the Mossel Bay region during interglacial conditions. The 

map shows the distribution and extent of important geological formation of interest in 

this study. 

 

 In the area surrounding PP, the Table Mountain Group is well represented by the 

Skurweberg and Bavianskloof formations of the Nardouw Subgroup and by the Ceres 

Subgroup. The PP cave and rock shelters occur in Skurweberg quartzitic sandstone. The 

Nardouw and Ceres Subgroups occur as thick cross-bedded layers that are composed of 

former marine and fluvial sediments (Thamm and Johnson 2006). Overlaying the Table 
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Mountain group is the Bokkeveld group, which consists of alternating sandstone and 

mud/siltstone layers. The Bokkeveld layers were deposited during episodes of coastline 

transgression and regression. This action shifted deposition from lower energy deltaic 

environments to more high-energy wave-influenced marine environments (Thamm and 

Johnson 2006). 

 The below-ground geology of the now submerged Agulhas Bank in the vicinity of 

the Mossel Bay region consists of sandstone elements of the Table Mountain Group and 

Robberg Formation sandstone of the Uitehage Group. Further out, at -20 masl to over -80 

masl the subsurface deposits are Cretaceous deposits. Multibeam bathymetry and side-

scan sonar show that a low-relief plains landscape occurred between PP5-6 and the 

coastline when sea levels where lower than present (Cawthra et al. 2015). The presence 

of offshore quartzite-outcrops and eroded outcrops, and shelf sand would have provided a 

substrate for the creation of both sandy and rocky shorelines during lower sea level stands 

(Cawthra et al. 2015). Figure 12 and 13 shows the interpreted distribution and extents of 

wave ravinement surfaces, cover sand, rivers and floodplains, and hardgrounds during 

MIS4 and MIS6 respectfully. 
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Figure 12. Geology map of the Mossel Bay region during MIS4. The map shows the 

distribution and extent of important geological occurrences on the exposed Agulhas 

platform. Distance to the coastline from Pinnacle Point is ~15km. 
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Figure 13. Geology map of the Mossel Bay region during MIS6. The map shows the 

distribution and extent of important geological occurrences on the exposed Agulhas 

platform. Distance to the coastline is ~42km. 
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The breakup of Gondwana and the following developing of land surfaces also had 

an effect on the formation and distribution of silcrete (Partridge, Botha, and Haddon 

2006). After Gondwana underwent rifting, the land surfaces above and below the Great 

Escarpment underwent parallel erosion due to warm and wet conditions during the 

Cretaceous. This resulted in more or less continuous and flat surfaces on the seaward and 

inland sides of the escarpment, which is also called the “African Surface” (King 1948). 

Following the late Cretaceous, the ‘African Surface’ was capped and cemented by 

ferricrete, calcrete and most extensively by silcrete (Grahamstown Formation) along the 

southern coast (Partridge, Botha, and Haddon 2006). It has been argued that the ‘African 

Surface’ is most likely the product of multiple erosional episodes that resulted in a non-

uniform and multi-level topography (Marker and McFarlane 1997). An example of the 

change in elevation of the silcrete-capped surface is found in the Riversdale-Albertinia 

area where the silcretes are located at 300 meters above sea level (masl) in the north and 

slopes down to less than 120 masl in the southeast (Summerfield 1981). Brown (2011) 

pointed out that the environmental conditions, mechanism, and timing of the processes 

that led to the formation of silcrete on the cape coast are not well understood. Silcrete 

appears to have formed at different elevations, and it has been proposed that the silcrete 

at different elevations have different formation ages (Marker and McFarlane 1997, 

Roberts 2003). Brown (2011) noted that silcrete formation research has several 

challenges including 1) there is a lack of modern analogs for modern silcrete formation 

(Roberts 2003); 2) competing hypotheses of formation drawn from the fact that silcrete 

will precipitate at both low and high soil PH (Partridge, Botha, and Haddon 2006); 3) a 
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lack of published absolute dates from weathering profiles of silcrete from southern Africa 

(Roberts 2003). 

One proposed model for silcrete formation was presented by Summerfield (1983), 

who argued that silcrete forms during low pH environments, based on the apparent co-

precipitation of silica and titanium. Summerfield argued that the precipitation happened 

in a humid and well-vegetated tropical environment. Alternatively, precipitation of silica 

happened due to cooler temperatures and increased aridity in the late Cretaceous that 

resulted in raised soil pH (Partridge and Maud 1987). However, there seems to be a 

consensus that silcrete formed multiple times during humid environments because soil 

pH was lowered resulting in silica precipitation due to increased ground water and dense 

vegetation, and because coastal-belt silcretes formed during the Miocene/Pliocene 

(Roberts 2003, Summerfield 1981). 

 Brown (2011) noted that the term ‘silcrete’ describes the eventual outcome of 

pedogenic processes that have formed in association with degraded bedrock. This 

degraded bedrock is termed ‘weathering profile silcrete’. The parent geology of a given 

local area therefore heavily influences the physical properties of the resulting silcrete 

(Roberts 2003, Summerfield 1981). However, while parent geology influences the 

formation if silcrete it does not heavily influence the mineralogy of the silcretes 

(Summerfield 1981). Most silcretes are predominantly composed of silica dioxide, with 

minor percentages of titanium, iron (goethite or hematite), and assorted other trace 

elements (Brown 2011) The silcrete in the southern coastal belt and in the exposures 

closest to the Mossel Bay region generally occur in association with weathered 

Bokkeveld clay/silt profiles (Summerfield 1981). Silcretes farther to the north occur in 
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the Buffelskloof formation sandstone/conglomerates of the Uitenhage group, in 

Kirkwood formation silt and mudstones of the Uitenhage group, and also within 

weathered profiles of the Cape Granite Suite (Brown 2011). 

 Brown (2011) noted that silcrete can be characterized as being either ‘globular’ 

where the rounded masses are surrounded by uncemented sediment, or ‘conglomerate’ 

where silcrete and quartz pebbles are cemented together, or ‘massive’ where the materials 

are homogeneous, fine-grained and relatively hard compared to the other types (Frankel 

1952, Summerfield 1981). Massive silcretes often contain a lighter and more ‘powdery’ 

material termed rind (Summerfield 1981). The rind is undesirable for experimental 

flaking because it does not fracture predictably (Brown 2011). Another way to classify 

silcrete is according to the fabric of the material by using petrographic thin sections 

(Brown 2011). Brown (2011: 79) noted that “Summerfield (1981) defined four different 

silcrete fabrics: ‘grain-supported’ (GS), ‘matrix supported’ (M), ‘floating’ (F), and 

‘conglomerate’ (C).” Summerfield’s (1981) classification is based on the relative 

proportions of cementing silica matrix (M fabric), inclusive quartz grains (F fabric), the 

inclusion of previously cemented materials (C fabric), and the presence and absence of 

pre-existing structure (GS fabric) (Brown 2011). 

 Because parent geology does not heavily influence the mineralogy, geochemically 

fingerprinting silcrete is very challenging (Brown 2011, Summerfield 1981). Brown 

(2011) noted that it is challenging because the subsamples from the same weathering 

profile may show more variability in the composition of trace elements than compared to 

samples from widely separate exposures of differing geology (Corkill 1999). However, 

more recent work in Botswana (Nash et al. 2016, Nash, Coulson, Staurset, Ullyott, et al. 
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2013), the Western Cape (Nash, Coulson, Staurset, Smith, et al. 2013), and in Australia 

(Cochrane et al. 2016) has been more successful. 

 

Primary context quartzite sources 

Table Mountain Group sandstones outcrop throughout the Mossel Bay region with the 

Skurweberg formation being very prominently displayed. However, most of this quartzite 

is coarse-grained, cross-bedded, and does not fracture in a predictable manner (Brown 

2011). At PP, the local Skurweberg quartzite is yellowish-grey to light brown in color, 

crumbly and coarse in texture (Brown 2011). Some Table Mountain sandstones are 

outcropping in drainages that dissect Vleesbaai but this material is also coarse-grained 

(Oestmo et al. 2014). 

 Presently, there are two good sources of primary context quartzite in the Mossel 

Bay region (Figure 14): The closest source is Robberg formation sandstone towards the 

Mossel Bay point. Robberg formation sandstones from the more recent Uitenhage Group 

that dates to 145 ma to 65 ma is highly indurated, which means that it has been hardened 

by heat or the introduction of cementing siliceous materials (Shone 2006). Robberg 

quartzite outcrops at the base of Cape St. Blaize Cave (CBC) at Mossel Bay point, and 

occurs intermittently to the west towards the PP site complex. The closest known outcrop 

of Robberg quartzite to PP is ~5.3 km away. The Robberg quartzites are very fine-

grained with individual sand grains often only visible with magnification. The quartzite is 

generally light and ranges from grey to red to brown. The exposure below Cape St. 

Blaize Cave exhibits distinctive dark red and grey “Leopard spots” (Brown 2011). 

Thompson and Marean (2008) noted that based on cortex type present in the MSA 
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assemblage from Cape St. Blaize Cave, the local outcrop appears to be have been 

preferentially selected over secondary context beach cobbles. Brown (2011) noted that 

surface scatters of MSA artifacts along the Cape St. Blaize trail seem to be concentrated 

near outcrops of Robberg quartzite. Schoville and Brown (2010) stated that this material 

is very suitable for experimental production of flakes and blades. 

 
Figure 14. An example of a primary outcrop of quartzite. Quartzite of Skurweberg 

formation located at Fransmanhoek located about 23 km southwest of PP along coast. 

  

The second potential outcrop source is located at Fransmanhoek at the 

southeastern tip of Vleesbaai located some 24 km away when following the coastline 

(Figure 14). This material is coarser than the Robberg formation quartzite but is of 

higher quality than the local Skurweberg around the PP sites. The quartzite is light in 

color ranging from grey to blue with red bands and flakes conchoidally. 
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 With lower sea levels, there would have been increased access to Table Mountain 

sandstones and Robberg Formation sandstones to the west of Cape St. Blaize as now 

submerged outcrops extend for 1.5 km. These outcrops form an offshore extension of the 

cliff feature that extends from PP to Mossel Bay point and would have been the only 

additional outcrop available on the low-relief plains landscape during lower sea level 

stands (Cawthra et al. 2015). 

 

Primary context silcrete sources 

Silcrete sources from a variety of parent geological formations are available and abundant 

to the Northwest of PP (Figure 15). Brown sampled silcrete from the Grahamstown 

formation of the Bokkeveld group, Kirkwood Formation of the Uitehage Group, and the 

Cape Granite Suite (Brown 2011, Brown et al. 2009). Brown found that almost all the 

silcrete he sampled, regardless of parent geology, yield materials of suitable quality for 

flaking once the materials have been heat-treated (Brown 2011, Brown et al. 2009). He 

noted, however, that some locations require more search time to procure suitable nodules. 

Brown (2011) also noted that compared to other MSA sites where the sources of the 

silcrete are not known and the silcrete is assumed to be non-local or exotic, the silcrete in 

the Mossel Bay region would have been abundant and recognizable to MSA tool makers 

as close as 8.5 km from PP. 

 Brown (2011: 80) argued using four lines of evidence that there would be no 

available silcrete sources on the now submerged Agulhas Bank during lower sea levels in 

the Pleistocene: 1) “The Agulhas Bank would have been submerged during the Post-

Cretaceous periods when silcrete on the higher land surfaces formed”; 2) more recent 
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Pleistocene sea level transgressions would have created terraces that would have likely 

planed off any southern extensions of the deeply weathered profiles that the silcrete 

would have formed on; 3) There are no observed silcrete outcrops below 140 masl in the 

Mossel Bay region; 4) based on elevations of known silcrete exposures, there is no 

evidence to suggest that coastline movement during the Pleistocene resulted in an overlap 

between the coastline and silcrete outcrops that would have created silcrete-rich cobble 

beaches.  

 
Figure 15. An example of a primary outcrop of silcrete. Note the pavement-like surface 

in the forefront. This silcrete source is an example of a Grahamstown formation silcrete 

and it is located 56 km north of PP. 

 

 Conversely, marine geophysical work by Dr. Haley Cawthra shows that there are 

prominent erosional surfaces (hardgrounds) interpreted as either calcretes or silcretes on 
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the inner shelf of the now submerged Paleo-Agulhas plain (Cawthra, pers comm.), which 

extends on average for 8km in the Mossel Bay region (Cawthra et al. 2015) (Figures 12-

13). These hardgrounds formed during long exposures during lower sea stands. The case 

for offshore silcrete is based on several lines of evidence: 1) Silcrete has been found in 

inshore cores at depths of -50 masl (Rogers 1980); 2) on the south coast, the onshore 

silcrete mostly overlies Bokkeveld Group and Enon formation elements. Often these 

silcretes might later be covered by aeolianites on the south coast between Bredarsdorp 

and Cape Agulhas; 3) when aeolianites directly overly cretaceous rocks then silcrete is 

typically not found; 4) there are a limited amount of aeolianites near the present onshore 

cliffs and before the -40 masl coastline. The formation of silcrete on the offshore shelf 

could be possible if there was exposure in the Miocene. The silcrete could have formed if 

there was a high ground water table, fluvial drainages for entrapment and exposure and 

aridity for the formation processes to take place (Cawthra, pers comm.).  

 

Other primary context lithologies 

Quartz can be found locally as vein quartz in the Skurweberg formation (Figure 16) 

(Minichillo 2005, Thompson, Williams, and Minichillo 2010), and angular quartz is very 

frequently found associated with silcrete from the Bokkeveld group (Brown 2011). 

Brown (2011) noted that crystalline quartz and other semi-precious raw materials are 

known to form in pegmatites of the Cape Granite Suite. Examples from the PP5-6 

assemblage show that almost all samples with cortex exhibit outcrop cortex. The closest 

Cape Granite Suite formation with pegmatite occurs some 21 km from PP near the town 

of George, thus sets a minimum radius for the direct procurement or transfer of this type 
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of raw material (Ferré and Améglio 2000, Walker and Mathias 1946). The closest known 

occurrence of cherts in primary context is two sedimentary formations in the southern 

Karoo Basin more than 100 km away. These two formations are the southern facies of the 

Prince Albert Formation of the Ecca Group and the Abrahamskraal Formation of the 

Beaufort Group (Brown 2011, Catuneanu et al. 2005, Johnson et al. 2006, Johnson et al. 

1996).  

 
Figure 16. An example of a primary outcrop of milky vein quartz. This one formed in 

Skurweberg formation outcrops close to surf zone at Pinnacle Point. 

 

Secondary context sources 

Brown noted that while primary context raw material sources receive a lot of attention 

due to the possibility of geochemical tracing, secondary sources, on the other hand, are 
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often overlooked (Shackley 1998). Because the secondary sources are often overlooked it 

has led to some raw materials to be termed exotic and non-local although they might 

originate from a local secondary source (Brown 2011, Minichillo 2006). The Mossel Bay 

region would have presented a prehistoric hunter-gatherer with a range of secondary 

sources including active cobble beaches and river drainages, static fossil river/beach 

terraces, and ancient alluvial gravels that occur in stratified formations (Brown 2011). 

 

Cobble beaches 

Surveys by Brown (2011) and this author (2014) have mapped the presence of several 

modern coastal cobble beaches with nodules suitable for stone tool manufacture in the 

Mossel Bay region (Figure 17). They occur at the following locations in decreasing 

walking distance to PP: Kanon Beach near the Gouritz River mouth (c. 27 km southwest 

of PP along coast); Fransmanhoek (c. 25 km southwest of PP along coast); Mossel Bay 

point (c. 6.8 km to the east); Dana Bay (5 km west of PP); and Eden Bay (directly 

adjacent to PP sites). The local Eden Bay beach is dominated by Skurweberg formation 

quartzite, which has been found to not fracture in a predictable manner (Brown 2011). 

However, with increased search time and a lot of material testing, it is possible to find 

suitable material for tool manufacture (Brown 2011, Minichillo 2005). Minichillo 

(Minichillo 2005) also noted the occurrence of small quartz nodules (4%) at Eden Bay 

during a quantitative survey. 

The materials at the Mossel Bay point cobble beach are relatively homogeneous 

in nature and appear to derive from the locally outcropping Robberg formation quartzite 

(Brown 2011). Most of the materials that are found on the beach or in the intertidal zone 
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are sub-angular in nature, which suggests it is more recent detachments from the Robberg 

exposures that make up the Mossel Bay Point (Brown 2011). 

 The closest cobble beach to Pinnacle Point that consistently provides good quality 

raw materials is located at Dana Bay (~5 km west of Pinnacle Point). Brown (2011) 

visited this location over a four year period to collect materials for experimental MSA 

stone tool manufacturing. During two procurement bouts lasting 1 hour each, Brown 

collected 91 cobbles that included 86 (95%) fine quartzite cobbles, four hornfels cobbles 

(4%), and 1 silcrete nodule (1%) (Brown 2011). Brown’s survey showed that silcrete is 

available at the Dana Bay cobble beach in unpredictable quantities. Brown found that he 

would encounter his own tested nodules the next time he visited the source but sufficient 

turnover and reshuffling of cobbles had also provided a supply of new cobbles. Brown 

noted that cobbles are not always available at the Dana Bay beach owing to the fact that it 

is frequently covered by beach sand. Brown (2011) observed the lack of cobbles when 

visiting the source for two straight years but he could not recover any cobbles the second 

year due to covering beach sands. This modern observation of the covering of a cobble 

beach yields a good example of how beach cobble availability during the Pleistocene 

could have been unpredictable (Brown 2011). 

 The cobble beaches or perhaps boulder beaches at Fransmanhoek (Figure 17) 

yield quartzite cobbles and boulders of good quality that are very suitable for tool 

manufacture. The presence of well-rounded boulders is a testament to the homogeneous 

nature of this material. The production of cobbles seems to be the result of erosion of the 

local high-quality Skurweberg formation quartzite (Oestmo et al. 2014). 
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Figure 17. An example of a cobble/boulder beach. This one at Fransmanhoek, some 25 

km southwest of PP along the coast. 

 

 The marine geophysics work by Cawthra suggests that at lower sea level stands 

when the coastline was 1 km further out and more compared to today’s conditions there 

were readily available cobbles belonging to extensive wave-ravinement surfaces within 

Vleesbaai, and around the Skurweberg and Robberg formation quartzite that outcrop to 

the east of the Mossel Bay Point (Cawthra et al. 2015) (Figures 12-13). The cobbles in 

Vleesbaai are most likely the result of erosion of outcropping Table Mountain sandstones 

that today is visible as subdued sandstones (Cawthra et al. 2015). 

 The wave-ravinement surfaces are associated with a regional marine flooding 

event across the rapidly drowning continental shelf. Using seismic methods the surfaces 

were sampled offshore of the Great Brak River in Mossel Bay (Cawthra 2014) and 

offshore of Vleesbaai (Cawthra, Personal comment) where they are exposed beneath 
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modern marine sands. The surfaces are composed of well-rounded cobbles and boulders 

and are interpreted to be the transgressive ravinement of the Holocene transgression. 

Erosion by wave action in the surf zone acts as a winnowing agent, eroding bedrock and 

resulting in the formation of these lag deposits (Nordfjord et al. 2009, Posamentier 2002). 

Similar wave ravinement surfaces have been described off the South African east coast 

(Cawthra, Uken, and Ovechkina 2012, Green 2009, Hay 1984), and offshore of the 

Wilderness Embayment (Cawthra et al. 2014). 

Brown (2011) stated that though it has been easy to find modern primary and 

secondary sources for silcrete, quartzite, hornfels, and quartz, it has been harder to find 

sources for raw materials commonly referred to as ‘CCS’ (cryptocrystalline silicates) 

including chert, opaline, and chalcedony. Following Brown (2011) and recent geological 

convention, I will use the term ‘chert’ for all crypto- and microcrystalline silicates that 

fracture conchoidally including chalcedony but not including silcrete. As noted above, no 

local source of chert has been discovered by systematic pedestrian and vehicle survey in 

the Mossel Bay region. This is not unexpected as the local geology does not exhibit 

geological formations that contain chert (Thamm and Johnson 2006). The closest known 

occurrence of primary-context chert is over 100 km away in the southern Karoo basin, 

where the Gourtiz River and its tributaries have cut through geological formations 

containing chert. Archaeological examples from PP5-6 exhibit pebble and cobble cortex 

suggesting that they could have been water transported over long distances (Brown 

2011). Several drainages dissect the Mossel Bay region but only the Gouritz River 

extends north of the Cape Super Group in the present day and thus cuts through the 

aforementioned primary context cherts. 
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Gouritz River 

The Gouritz River and its tributaries extend 250 km inland and cut through six major 

geological entities. Brown has been unsuccessful in finding chert in the Gouritz drainage 

but several massive river bars containing river rolled cobbles offers good probability for 

finding chert. Brown (2011) argued that long stretches of the Gouritz, which today is 

lined with fine silt and sand that could obscure more cobble beds, could have been 

exposed in the past following high-water volume scouring of the drainage. In addition, at 

the mouth of the drainage, there is an extensive cobble and boulder beach. A visit to 

cobble-rich terraces along the Gouritz River in the Little Karoo by Brown and this author 

identified MSA primary lithic reduction areas. These areas contained chert artifacts with 

rolled cobble cortex suggesting that these materials where available in the drainage in 

prehistoric times.  

 Brown’s surveys showed that the Gouritz transports a wide variety of raw 

materials in the shape of cobbles from the interior to the coastline. Additionally, survey 

of the river terraces in the Little Karoo also shows that MSA tool makers used the 

Gouritz river terrace deposits as sources for stone tool materials. However, Brown (2011) 

pointed out that it is not known if Pinnacle Point MSA tool-makers would have made a 

60 km round trip to procure chert in the Gouritz River drainage. He argued that, 

alternatively, the foragers could wait for raw materials to be transported down the 

coastline. The swell direction of the Agulhas current in the Mossel Bay region is 

predominantly from the Southwest (Lavrenov 1998). Brown cited a study from the 

Oregon coast (Allan, Hart, and Tranquili 2006) that showed that cobbles driven by 

stronger winter wave action traveled farther than 285 meters in 8 months. If the cobbles 
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being deposited into the Indian Ocean by the Gouritz River underwent similar high-

energy wave transport, Brown hypothesized that a sample of the cobbles would have 

been available at the different Mossel Bay region cobble beaches to the east of Gouritz 

River Mouth. Brown pointed to Kanon beach, located some 2 km to the east of the mouth 

of the Gouritz River, where he found 6 chert nodules of sufficient size to produce cores 

seen in the PP5-6 assemblage (Brown 2011). 

Brown also argued that silcrete cobbles found at Dana Bay could be the result of 

the same phenomena. However, I would argue based on my survey that the silcrete at 

Dana Bay most likely is coming from the Blinde River that dissects Vleesbaai and cuts 

through several Bokkeveld Group silcretes by the modern day N2. Silcrete is then 

transported down the Blinde River and deposited in the Indian Ocean, and then 

subsequently wave rolled over to Dana Bay. This could have occurred during glacial 

periods such as MIS4 also but the silcrete cobbles would have been deposited at a beach 

now submerged by the ocean. 

 In addition to the Gouritz drainage, there are several small drainages that dissect 

Vleesbaai adjacent to the Pinnacle Point sites. Quartzite cobbles suitable for flaking are 

available in these currently low energy non-perennial streambeds. The cobbles are 

formed on material that has been eroded out by the dissecting drainages into the Enon 

and De Hoopvleei conglomerates that occur in drainages and are the likely sources for the 

cobbles (Oestmo et al. 2014). An additional source of chert unrelated to the Gouritz River 

appears to be riverbeds and conglomerates by the Hartenbos River located 10 km to the 

north of Pinnacle Point (Minichillo 2005). 
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Conglomerates 

Another type of secondary context material is conglomerates (Figure 18). Brown (2011) 

pointed out that conglomerates are a possible source for quartzite cobbles when exposed 

in eroded profiles. They are also a potential source for beach cobbles where sea level 

transgressions could have churned up the formations. Cobble deposits in a conglomerate 

are found at several locations across the Mossel Bay region. These local conglomerate 

occurrences have yet to yield materials from outside the Cape Super Group (Shone 2006) 

and therefore they are an unlikely source for non-quartzite materials.  

 
Figure 18. An example of a conglomerate. This one is likely to be an exposure of Enon 

Formation. The exposure is located in one of the drainages dissecting Vleesbaai. Jake 

Harris appears for scale. 

 

The two conglomerates of interest to this dissertation are the Enon Formation of 

the Uitenhage Group, approximately contemporary to the Robberg Formation, and the De 
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Hoopvlei formation of the Bredasdorp Group (Brown 2011, Roberts et al. 2006, Shone 

2006). Brown (2011) noted that the Enon Formation is found in thick beds in the Mossel 

Bay region, and is modeled to have formed in alluvial fans (Shone 2006). It consists 

primarily of quartzite and slate pebbles and cobbles set in an iron-rich limonite matrix. 

This matrix has a bright red appearance. Notable occurrences of this conglomerate are in 

an exposed profile of two drainages that dissect Vleesibaai (12-13 km west of Pinnacle 

Point), and in the town of Vleesbaai (21.5 km to the southwest along the coastline). I 

have also observed this conglomerate on the Cape St. Blaize Trail between Mossel Bay 

Point and Pinnacle Point. 

The second conglomerate of interest is the De Hoopvlei formation, which is more 

localized compared to the Enon formation conglomerate. However, it does occur in the 

same drainages that dissect Vleesbaai (12-13 km west of Pinnacle Point) and it occurs on 

the Cape St. Blaize hiking trail midway between Pinnacle Point and Mossel Bay Point 

(5.5 km to the east) (Brown 2011). Brown (2011) noted that this conglomerate on the 

hiking trail occurs as well-cemented clasts, and appears to have been utilized as a source 

for quartzite in past based on the large amount of debitage on the ground. 

 

Summary of raw material distribution 

To the MSA toolmakers at the Pinnacle Point sites, low-quality quartzite was easily 

procured from the local Eden Bay beach. However, high-quality quartzite required either 

increased search time at the Eden Bay beach, or transport of 5 km to the west from the 

Dana Bay cobble beach when present, or transport of between 5.5 to 6.8 km to the east 

from the De Hoopvlei conglomerate or Robberg formation quartzite. Silcrete is rare in the 
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vicinity of the Pinnacle Point sites and would have required either increased search time 

at the Dana Bay cobble beach 5 km to the west when it was present or transport of 8.5 km 

from the closest known primary context silcrete source located at Rietvlei near the N2 to 

the northwest. The procurement of quartz required either search for abundant veins in the 

local Skurweberg sandstone, or through increased search at the local Eden Bay beach, or 

transport of at least 8.5 km from an occurrence of quartz associated with silcretes formed 

on Bokkeveld shales. Chert was likely available at local beaches but observed cherts are 

found at riverbeds and cobble beaches that are located 10 km and 27 km away, 

respectfully. Crystalline quartz in primary context is available at Cape Granite Suite 

formations 21 km away.  

 The knowledge of the potential raw material sources across the landscape allows 

for modeling of raw material procurement by hunter-gatherers. Below, two such models 

will be outlined: the Opportunistic Acquisition Model (OAM) and the Active-Choice 

Model (ACM). 
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CHAPTER 5: MODELS, MODEL CONDITIONS, AND HYPOTHESES 

Introduction 

The six informal models discussed in Chapter 3 show that there is no consensus on why 

and how raw materials were acquired in the MSA. This dissertation will attempt to create 

some clarity to this debate and will use the Mossel Bay region (Figure 1) as the test case 

for understanding raw material selection in the MSA. To test my research questions I will 

consider and contrast two mutually exclusive formal models that facilitate testing 

hypotheses about raw material selection and creating expectations that can be applied to 

the MSA record in the Mossel Bay region. 

 

Opportunistic Acquisition Model (OAM)  

The OAM is a computational neutral model of stone tool raw material procurement 

(Brantingham 2003) and posits that archaeological raw material frequencies are due to 

opportunistic encounters with stone sources during random walk in the environment. The 

core foundation of a neutral model consists of two parts: 1) all same-level components of 

a system are identical in terms of their elemental behaviors, 2) and the impact that the 

environment has on the expression of those same elemental behaviors is identical (Bell 

2001, Brantingham 2003, Gotelli and Graves 1996). In order to demonstrate that stone 

tool raw material patterns are due to strategic targeting, patterning must be shown to be 

different from the result of a neutral model, which discards the assumption that 

differences between raw material properties necessarily influence procurement decisions, 

and how stone tools in toolkits are maintained and discarded (Brantingham 2003). 

Specifically, a neutral model provides a baseline for comparison where archaeologists 
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can be certain that observed stone tool raw material patterns are not the result of selective 

choice based on quality and abundance, time and energy optimization associated with 

procurement of stone from spatially distant sources, planning depth that embed raw 

material procurement into greater foraging and mobility strategies, and risk minimization 

that results in quantities and forms of materials that are energetically economical and are 

least likely to fail (Brantingham 2003).  

 The OAM is an example of a ‘Natural Availability’ model variant in the ‘Non 

preference-based change’ model category or Binford’s (1979) embedded procurement 

model. In the neutral model as originally presented by Brantingham (2003, see also 

Janssen and Oestmo 2013), the forager engages in random walk in a landscape with 

randomly distributed raw material sources. In the OAM, raw material procurement is 

embedded into the foraging movement; any material that is encountered will be procured 

if there is room in the toolkit, and raw materials are discarded at a fixed rate 

(Brantingham 2003).  

 

Model description – ODD (Overview, Design concepts, and Details) protocol 

This is a model description following the ODD protocol (Grimm et al. 2010). The ODD 

protocol is used to present a standardized description of individual-based and agent-based 

models. Primarily, the ODD aims to make model descriptions more understandable and 

complete, which can help an agent-based model be less subject to criticism that it cannot 

be reproduced. The OAM is an application of the neutral model of stone tool raw material 

procurement by Brantingham (2003) to a real landscape with real stone source locations 
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and the location of a known archaeological locality. Hereby, raw material refers to stone 

tool raw materials while sources refer to potential stone tool raw material sources. 

 

Overview 

Purpose: Apply Brantingham’s neutral model to a real landscape with real locations of 

potential sources. The sources are represented as their sizes during current conditions, 

and from marine geophysics surveys, and the agent starts at an archaeological site at 

Pinnacle Point (PP), South Africa. Depending on whether the movement strategy 

(“movement-scenario”) at the start is set to “return-to-starting-location” or “move-to-

closest-locality” the agent either returns to Pinnacle Point, Vleesbaai or Cape St. Blaize 

Cave when it has exhausted the movement budget (all available ticks to move;  a tick is 

one time step in the model). Once the agent has returned to a locality, it discards raw 

materials based on a discard probability function, and then it starts another foraging bout. 

 

State variables and scales: The agent is foraging according to a random walk procedure 

after starting at the Pinnacle Point locality and has a toolkit of a fixed size. Three 

coastline configurations can be simulated: 1) The Mossel Bay coastline observed in the 

region today represents MIS5 (interglacial conditions) (Figure 19). 2) The average 

coastline during MIS4 represents moderate glacial conditions (Figure 20). 3) The 

average coastline during MIS 6 represents strong glacial conditions (Figure 21). The 

potential sources are distributed on the landscape according to their actual location and 

their real scale based on surveys of their locations, while the location and extent of 

potential sources on the now submerged coastal shelf are based on marine geophysics 
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surveys. The landscape during interglacial conditions has 74996 patches and 40 sources 

(Figure 19).  

 
Figure 19. OAM interglacial raw material sources. Mossel Bay region during interglacial 

conditions with sources represented as their close to real size and distributed according to 

their real locations, and one forager (yellow figure) starting at known archaeological 

localities (purple houses). 
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During MIS4, the landscape has 121018 patches and depending on whether the 

closest potential offshore silcrete source is projected 49 or 50 sources (Figure 20). 

During MIS6 conditions, the landscape has 202186 patches and depending on whether 

the closest potential offshore silcrete source is projected 55 or 56 sources (Figure 21). 

 
Figure 20. OAM MIS4 raw material sources. Mossel Bay region during MIS4 moderate 

glacial conditions with sources represented as their close to real size and distributed 

according to their real locations, and one forager (yellow figure) starting at known 

archaeological localities (purple houses). The map on the left shows material sources 

without the closest hardground assumed to be a silcrete source on the Paleo-Agulhas 

plain. The map on the right shows material sources including the closest hardground (red) 

assumed to be a silcrete source on the Paleo-Agulhas plain. Coastline 15km further out 

compared to interglacial conditions. 
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Figure 21. OAM MIS6 raw material sources. Mossel Bay region during MIS6 glacial 

conditions with sources represented as their close to real size and distributed according to 

their real locations, and one forager (yellow figure) starting at known archaeological 

localities (purple houses).The map on the left shows material sources without the closest 

hardground assumed to be a silcrete source on the Paleo-Agulhas plain. The map on the 

right shows material sources including the closest hardground (red) assumed to be a 

silcrete source on the Paleo-Agulhas plain. Coastline 42km further out compared to 

interglacial conditions. 

 

Process overview and scheduling: Figure 22 shows the main structure of the scheduling 

of activities in the model. One agent with a mobile toolkit of fixed capacity is placed at 

the Pinnacle Point locality on the landscape. Before moving, the agent is given a moving 

budget (“totticks”), movement strategy (“movement-scenario”), probability of discard on 

the landscape (“probdiscard”), and probability of discard at an archaeological locality 

(“probdiscardcamp”). The size of the moving budget indicates how long the agent can 

stay away from Pinnacle Point. The agent then moves randomly. At each time step, the 

agent moves to one of the nearest eight neighboring cells or stays in the present cell, with 
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equal probability (=1/9). Each time step one raw material unit is potentially consumed 

(discarded) dependent only upon on a probability of a discard function (“probdiscard”) 

and the frequency of the specific raw material in the mobile toolkit. The probability of 

discard is set as a base parameter to be the same as the probability of discard in 

Brantingham’s original neutral model (see Chapter 6 for procedure). While moving, the 

agent will continue to evaluate if it has more ticks in its moving budget. If a source is 

encountered, the agent checks if the toolkit has room, if it has room the toolkit is re-

provisioned up to its maximum capacity before moving again at random. If no source is 

encountered, the agent moves immediately at random. If the agent has no more ticks in 

the moving budget (“totticks”) the agent move directly back to Pinnacle Point if the 

movement-scenario is “return-to-starting-locality”, while the agent moves to the closest 

locality that could be Vleesbaai, Cape St. Blaize cave or Pinnacle Point if the movement-

scenario is “move-to-closest-locality”. If the agent has returned to Pinnacle Point or the 

other two localities, all raw materials are potentially discarded dependent only upon a 

probability of discard at the locality function (“probdiscardcamp”). The probability of 

discard at the campsite is set as a base parameter to be the same as the probability of 

discard in Brantingham’s original neutral model (see Chapter 6 for procedure). Each raw 

material unit still present in the toolkit when returning to a site is separately considered in 

sequence. Thus, the chance of one specific raw material type to end up in the 

archaeological assemblage depends on the frequency of the specific raw material in the 

mobile toolkit. Once the agent has discarded raw materials at the locality, the agent will 

start a new foraging bout with a fresh moving budget and a fresh toolkit. 



179 
 

 
Figure 22. Overview over OAM steps and scheduling. Based on Figure 5 from 

Brantingham (2003). 

 

Design concepts 

Basic principles: Which general concepts, theories, hypotheses, or modeling approaches 

are underlying the model’s design? There is debate whether changes in stone tool raw 
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material frequencies in an archaeological assemblage can be considered a reliable proxy 

for human forager adaptive variability (Brantingham 2003, Féblot-Augustins 1993, Kuhn 

1995, Mellars 1996). Brantingham (2003) pointed out that a commonly made argument is 

that raw material richness, transport distances, and the character of transported 

technologies should signal four behaviors. First, it should signal raw material selection 

variation due to material quality and abundance. Then, secondly, it should signal time and 

energy cost optimization associated with raw material procurement from spatially 

dispersed sources. Thirdly, it should signal planning depth that combines raw material 

procurement with other forager activities such as food procurement. Fourth and finally, it 

should signal risk minimization resulting in raw material transportation strategies 

focusing on quantities and forms that are energetically economical and least likely to fail.  

 To test if raw material richness, transport distance, and the character of 

transported technologies in an archaeological assemblage is the result of adaptive 

behavior, Brantingham (2003: 487) presented a behaviorally neutral agent-based model 

that involves “…a forager engaged in a random walk within a uniform environment.” The 

neutral model relies on the core principle that within a system, all same-level parts or 

factors are the same both in terms of their internal behaviors, and the impact that the 

environment has on those behaviors (Brantingham 2003). Brantingham’s (2003: 491) 

model provides a baseline for comparison where archaeologists can test their “observed 

patterns in raw material richness, transport distance, and both quantity-distance and 

reduction intensity-distance relationships” against a model that simulates raw material 

patterns that are not the result of adaptation. Here Brantingham’s model is applied to a 
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real landscape with real source locations. A baseline neutral model result is created that 

can be compared to an archaeological record. 

 

Emergence: What key results or outputs of the model are modeled as emerging from the 

adaptive traits, or behaviors, of individuals? Relative frequency of raw materials 

deposited at site Pinnacle Point (“ppmaterialcamp-list”). Relative frequency of raw 

materials collected on the landscape (“materialcol-list”). Time steps without raw 

materials in the toolkit (“timesteps-empty”). 

  

Adaptation: What adaptive traits do the individuals have? What rules do they have for 

making decisions or changing behavior in response to changes in themselves or their 

environment? The agent will randomly move until the movement-budget (“totticks”) is 

exhausted. When the allotted “totticks” are exhausted the agent moves directly back to 

Pinnacle Point if the “movement-scenario” is set to “return-to-starting-locality” or 

whatever locality is the closest if the “movement-scenario” is set to “move-to-closest-

locality.” The higher the allotted “totticks” budget the longer the agent randomly moves 

without moving back to any site. The agent picks up raw material if toolkit has room. 

 

Objectives: If adaptive traits explicitly act to increase some measure of the individual’s 

success at meeting some objective, what exactly is that objective and how is it measured? 

The objective of the agent is to move about the landscape at random and if encountering a 

raw material source the agent will fill up the toolkit to maximum capacity with that raw 

material type. The agent moves until movement-budget is used up, which at that point the 
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agent returns to either the Pinnacle Point locality if the movement scenario is set to 

“return-to-starting-locality” or whichever locality is the closest if the movement-scenario 

is set to “move-to-closest-locality.” Once at Pinnace Point or at the other localities, the 

objective is to deposit raw materials. The amount of raw material at a locality will be 

measured by a relative frequency of raw material deposited at Pinnacle Point 

(“ppmaterialcamp-list”). 

 

Learning: Many individuals or agents (but also organizations and institutions) change 

their adaptive traits over time as a consequence of their experience? If so, how? The 

agent does not learn. 

 

Prediction: Prediction is fundamental to successful decision-making; if an agent’s 

adaptive traits or learning procedures are based on estimating future consequences of 

decisions, how do agents predict the future conditions (either environmental or internal) 

they will experience? The agent does not predict. 

 

Sensing: What internal and environmental state variables are individuals assumed to 

sense and consider in their decisions? The agent can sense whether there is a source on 

the patch it occupies. The agent can sense the amount and distribution of raw materials in 

its toolbox. The agent can sense that its moving budget (“totticks”) is depleted such that it 

needs to move back towards Pinnacle Point or to the other two localities. 
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Interaction: What kinds of interactions among agents are assumed? Are there direct 

interactions in which individuals encounter and affect others, or are interactions indirect, 

e.g., via competition for a mediating resource? There are no interactions between agents. 

 

Stochasticity: What processes are modeled by assuming they are random or partly 

random? Before the agent has exhausted all of its ticks in the moving budget (“totticks”), 

the agent moves randomly at all times, and decisions on use of raw materials are done 

randomly. Discard of raw materials on the landscape and discard of raw materials at a 

locality are controlled by a probability function. At each time-step, the agent will draw a 

random number between 0-1, depending on the probability of discard (“probdiscard”), if 

the drawn number is below the probability of discard number the agent will discard one 

raw material unit. When returning to a locality, the agent will draw a random number, 

depending on the probability of discard at a locality (“probdiscardcamp”); if the drawn 

number is below the probability of discard number, the agent will discard a raw material. 

Every raw material unit present in the toolkit is subjected to the same random draw. For 

both probability functions, the higher the probability of discard number (0.000-1), the 

higher the chance of discarding a raw material. When the Movement-scenario is set to 

“move-to-closest-locality” it introduces randomness to the raw material frequency output 

at Pinnacle Point because the agent does not always move back there. The chance of the 

agent returning to Pinnacle Point is based on the chance of being close enough at the end 

of the movement budget. 
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Collectives: Do the individuals form or belong to aggregations that affect, and are 

affected by, the individuals? No. 

 

Observation: What data are collected from the ABM for testing, understanding, and 

analyzing it, and how and when are they collected? Three sets of data were collected 

from each simulation run: 1) Relative frequency of raw materials discarded at site 

Pinnacle Point. 2) Relative frequency of raw materials collected while moving on the 

landscape. 3) Time-steps without raw material in agent toolkit. Relative frequency of raw 

materials is collected by having an agent depositing procured raw materials still present 

in the toolkit when returning to Pinnacle Point. The raw material units to be discarded 

depend on the “probdiscardcamp” function. Each remaining raw material unit in the 

toolkit is subjected to the same random draw of a number. If the random number is less 

than the “probdiscardcamp” number the raw material unit is discarded. The chance of one 

specific raw material type to be deposited at the archaeological locality depends on the 

frequency of that type in the toolkit. When “probdiscardcamp” is increased there is an 

increased chance of raw materials in toolkit being deposited at Pinnacle Point. Raw 

materials being collected while moving only depends on the chance of encountering a 

raw material source on the landscape and if there is room in the toolkit. Time-steps 

without raw materials are collected by calculating at each time step if the agent has any 

raw materials in the toolkit.  

 

Details 
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Initialization: What is the initial state of the model world, i.e., at time t = 0 of a 

simulation run? Table 2 provides the variables used in the application of the model. 

Table 2: OAM model variables 

Variable description Variable Units 
Model 

Variables/Range 

Simulated world size in X dimension X grid cells 421 

Simulated world size in Y dimension Y grid cells 571 

x-coordinate position of raw material/foragers x grid cells 
Sources at real 

locations, foragers at 31 

y-coordinate position of raw material/foragers y grid cells 

Sources at real 

locations, foragers at 

114 

Number of agents moving about the landscape nr-agents 
arbitrary 

units 
Minimum =1; 

Maximum = 10 

Toolkit size toolkit 
arbitrary 

units 
Minimum = 1; 

maximum = 100 

Type of movement strategy used to return to locality 
Movement-

scenario 

arbitrary 

units 

return-to-starting-

locality; move-to-
closest-locality 

Starting locality used by agent Starting-Locality 
arbitrary 

units 
PP, VBB, CSB 

Landscape Landscape 
arbitrary 

units 

Interglacial, MIS4, 

MIS6 

Source distribution on the landscape SourceDistribution 
arbitrary 

units 

default; 

PlusClosestSilcrete 

Number of unique raw material sources n sources 

33 (IG), 49 (MIS4), 50 

(MIS4PlusClosestSilcre

te), 55 (MIS6), 56 
(MIS6PlusClosestSilcre

te) 

Raw material type/source label rm materialtype 0, 1, 2…7 

Raw material unit from any source i 
arbitrary 

units 
1 

Quantity of material from source i in mobile toolkit vi 
arbitrary 

units 
Minimum = 0; 

maximum = 100 

Total material of all types in mobile toolkit sumv 
arbitrary 

units 

Minimum = 0; 

maximum = 100 

Probability of discarding material of source i in toolkit probdiscard 
arbitrary 

units 
(0.000, 1.0) 

Probability of discarding material of type rm in toolkit, min and 

max amount 

∑materialtype / 

sumv 

arbitrary 

units 

Minimum = 0; 

maximum = 100 

Maximum forager move length at each time step l grid cells 1 

Distance traveled in N time steps; per maximum move length N meters 200 meters 

An observed number of simulated time steps totticks ticks 
Minimum = 1; 

maximum = 2000 

Probability of discard material of source i in mobile toolkit at 

locality 
probdiscardcamp 

arbitrary 

units 
(0.000, 1.0) 

Probability of discard material of type rm in mobile toolkit at 

locality 

∑materialtype / 

sumv 

arbitrary 

units 

Minimum = 0, 

Maximum = 100 

Amount of foraging trips undertaken per one model run maxnrtrips nrtrips 
Minimum = 0, 

Maximum = 1000 
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Input data: Does the model use input from external sources such as data files or other 

models to represent processes that change over time? The model uses ascii data files that 

contain map information such as coastline configuration and source locations. These ascii 

files are projected in Netlogo using the GIS extension. 

 

Submodels: What, in detail, are the submodels that represent the processes listed in 

‘Process overview and scheduling’? What are the model parameters, their dimensions, 

and reference values? How were submodels designed or chosen, and how were they 

parameterized and then tested? The toolkit is simulated as a vector “vi” where each 

element represents the amount of raw material in the toolkit of unique material types. The 

maximum size of the toolkit is 100, and the sum of the elements of vi (quantity of 

material sources of any type in mobile toolkit) has to be smaller or equal to 100 or what 

the size of the toolkit has been set at when a simulation is started. The amount of material 

added to the toolbox when a material source is encountered is 100 - ∑i vi (100 raw 

material units minus the sum of all raw material units already present in toolkit), meaning 

that the toolbox is filled up to the maximum capacity. 

 With each time step, one unit of material is potentially consumed (discarded) 

from the toolbox. The probability that a material unit is consumed depends on the 

probability of discard function (“probdiscard”) while the probability of one specific raw 

material type to be discarded depends on ∑materialtype / sumv (sum of one specific raw 

material type in toolkit divided by the sum of all raw material types in toolkit), meaning 

that it is relative to the frequency of one type compared to all available raw material types 

in the toolkit. Material sources do not deplete in the environment during the duration of 
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the simulation. The agent will monitor its moving budget when moving, if the agent has 

exhausted the moving budget (“totticks”) the agent moves either back to the Pinnacle 

Point locality if the moving-scenario is set to “return-to-starting-locality” or the agent 

moves to the locality closest to it when done moving if the moving-scenario is set to 

“move-to-closest-locality.” At any locality, the agent discards raw materials from the 

toolkit depending on the “probdiscardcamp” function. Each remaining raw material unit 

in the toolkit is subjected to the same random draw of a number. If the random number is 

less than the “probdiscardcamp” number, the raw material unit is discarded. The chance 

of one specific raw material type to be deposited at the archaeological locality depends on 

∑materialtype / sumv (sum of one specific raw material type in toolkit divided by the 

sum of all raw material types in toolkit). 

 

Model implementation: The application of the neutral model is implemented in Netlogo 

5.2. 

 

Active-Choice Model (ACM) 

The Active-Choice Model (ACM) is an analytical resource-choice model, which 

presumes that given a choice, individuals will choose the most cost-effective means of 

producing cutting tools in their environment. The ACM posits that a forager when 

selecting a stone raw material will try to maximize the utility that is gained from the tool 

per unit time investment in the tool. It considers the time-cost (in minutes) of the 

following three aspects of raw material selection: (1) travel and search (ts), (2) 

procurement (tp), and (3) manufacturing (m). The utility of the tool is measured in cutting 
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edge available multiplied by the duration of use, or cm-min (centimeters multiplied by 

minutes of use before dulling) of tool cutting edge. The ACM is a ‘Utilitarian’ variant in 

the ‘Preference-based change’ model category as present above in Chapter 2. 

  Critical to the ACM are the assumptions that foragers optimize their behavior in 

most cases, and that foragers are aware of the two choices of stone tool raw material 

(quartzite or silcrete) facing them at the start of each foraging bout. In addition, there are 

two other observations that are critical to the development of the ACM. First, silcrete in 

the Mossel Bay region was heat-treated to make it more flakeable (Brown et al. 2009), 

and this created more edge and perhaps better edge per unit of source material collected. 

Second, quartzite has been found to be more durable compared to more fine-grained raw 

materials (Jones 1979), though it is important to note that silcrete has not been directly 

tested for durability. This probably means that quartzite edges can be utilized for more 

minutes of cutting before being discarded. Two variants of the ACM will be considered: 

ACM-P (sequential encounter and embedded procurement; travel and search time-cost is 

not included because the forager embedded raw material procurement into normal 

foraging movement) and ACM-R (simultaneous encounter and direct procurement; travel 

and time-cost is included in the costs to select a material because the forager makes a 

special trip to procure a material either from a central location or at a distance from the 

source). In both model variants, a net utility gain rate can be calculated for both quartzite 

(q) and silcrete (s). 
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ACM-P 

In the ACM-P, the precise location of raw material does not determine movement 

because procurement is embedded, and stone sources are encountered sequentially. The 

forager moves as specified in the OAM but then may extract only one of the two raw 

material raw materials (quartzite or silcrete) due to its higher net-return rate upon 

encounter (and partially depending on the encounter rate with both source types). If Pq > 

Ps (P stands for post-encounter net-return rate) a forager will ignore silcrete (s) when it is 

found, and continue foraging until quartzite (q) is encountered. If waiting to encounter 

the highest profitability source will lead the forager to run out of tool material, then the 

forager is expected to sometimes exploit the lower profitability source as well. This is 

similar to the sequential encounter and prey-choice model (Charnov and Orians 1973, 

Stephens and Krebs 1986), where one type of raw material might be ignored if the costs 

of using it are so high that it would be more efficient to continue searching and only 

extract the other raw material type when encountered. However, search time is cost-free 

in this variant because the foragers will be moving in search of food or other resources 

regardless. 

 The profitability of acquisition when sequentially encountering each source type 

(ACM-P) can be expressed as follows:  

P=e*d/(tp+m),  

where  

P = rate of edge use production per time investment. P can be Pq (quartzite) or Ps 

(silcrete). 

e = cutting edge; cm of usable cutting edge produced from a unit weight of core material. 
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d = durability; minutes of cutting use before dulling per cm of edge.  

tp = procurement time; time to procure the source material by extracting it from its natural 

placement per unit of weight of core material. 

m = manufacturing time per unit of weight of core material; time to manufacture the 

desired tool or object (can include time to travel and search for wood fuel for heat-

treatment (m1) per unit weight of core material. time to heat-treat the material prior to 

flaking (m2) per unit weight of core material, time to reduce the core to useable edge from 

a unit weight of core material (m3), or other manufacturing processes such as time to 

retouch the material to preferred shape.  

(See Table 3 for further details and operationalization of model variables). 

 

ACM-R 

The above equation can also be modified, however, to estimate the overall efficiency of 

utility gain when targeting a source type from a central place or a campsite. In this variant 

called ACM-R, the forager has complete information about the location of raw material 

sources and makes decisions from a central place/campsite or at a distance about which 

source to visit and exploit (Figure 23). This is a simultaneous encounter model (Stephens 

and Krebs 1986, Waddington and Holden 1979), similar to the habitat choice model of 

(Smith 1991). The raw material with the highest net-return of a utility currency would be 

exploited while the other raw material would be ignored. Hence special forays will be 

conducted to obtain silcrete (s) if Rs > Rq (R stands for net-return rate when all travel and 

search time is included). The simultaneous encounter model requires the net-return rate 

of each raw material type to include the travel and search time if the raw material types 
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are not encountered during normal foraging movement. In other words, the ACM-R 

simulates a direct procurement strategy where the forager targets a resource and deviates 

from its normal movement to procure that resource. 

 In the ACM-R, the time to travel and search (ts) for the source material per unit 

weight of core material, and to transport it back to the manufacturing site is added into 

the equation. Hence: R=e*d/(ts+tp+m), 

where 

R = rate of edge use production per time investment. R can be Rq (quartzite) or Rs 

(silcrete). 

ts = travel and search time; time to travel and search for material and to transport back to 

manufacturing site per unit of weight of core material. 

(See Table 3 for further details and operationalization of model variables). 

This measure of the efficiency return will determine which raw material type 

should be exploited when the forager knows beforehand where they are located, and must 

make a special trip out to obtain the raw material. 
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Figure 23. Depiction of simultaneous encounter model. Locations of raw materials are 

known beforehand and the forager at the encounter point, which in this case is the central 

place, decides to travel to and extract whichever source provides greatest net return rate 

of utility. Figure modified from Stephens and Krebs (1986). 
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Table 3. ACM Model variables. 

Model Variable Definition 

P and R 

P and R are the currencies the forager wants to maximize. In this model, the currency 

is cutting edge (e)*edge durability (d) divided by time cost invested in the tool (TS + 

TP + m). The P and R rate for each raw material is calculated by measuring the 

variables described below for both the two different model conditions (Table 3). 

Cutting Edge (e) 

A cutting edge (e) is any edge of a stone tool that is not broken or snapped, part of the 

tool platform, or part of the raw material rind (specifically associated with silcrete). 

Values of e (cm/kg) are quantified by a stone tool analysis conducted on data from 

the actualistic stone tool reduction study described below. 

Durability (d) 

Values of d (min) will be measured as minutes that a tool cutting edge can be used 

before dulling during cutting activities. Values of d (min) are quantified by a 

controlled cutting edge abrasion experiment to get values of how long a cutting edge 

lasts before dulling. 

Travel and Search 

(ts) 

Raw material travel and search (ts) is here defined as extra travel and search that 

occurs outside of the time-cost of normal hunting-gathering movement. Values of ts 

(min/kg) are quantified by using ethnographic data and a GIS analysis. 

Procurement (tp) 

Raw material procurement (tp) is here defined as the act of obtaining suitable raw 

materials at the source. Values of tp (min/kg) are quantified by using survey data from 

raw material sources in the Mossel Bay region. 

Manufacture (m) 

m will be measured as three different sub-variables. When heat-treatment is included 

in the manufacturing process, m includes search and procurement time-costs of wood 

fuel (m1) and the actual heat-treatment time-cost (m2). Flaking time-cost (m3) is the 

time to reduce the core to useable edge from a unit weight of core material. Values of 

wood fuel search and procurement time-cost (min/kg) will be quantified using a 

combined GIS and agent-based modeling analysis. Values of the actual heat-

treatment (min/kg)) will be based on published experiments of silcrete heat-treatment 

(Brown et al. 2009, Schmidt et al. 2015, Schmidt et al. 2013). Values of flake 

manufacturing time (min/kg) will be quantified by a stone tool analysis conducted on 

data from the actualistic stone tool reduction study. 

 

Model conditions and variables 

This dissertation will examine the way three model variables (coastline position and raw 

material source distribution, vegetation type, and foraging mobility strategy and rate) 

from three different model conditions affect predicted raw material use patterns 

according to each model. Coastline position and raw material source distribution are 

viewed as one variable because, depending on coastline position, more potential raw 

material sources are exposed on the now submerged Paleo-Agulhas plain. Table 4 shows 

details of all three model conditions, which are marine isotope stages (MIS4, MIS5, and 

MIS6), while Figure 24 shows the coastline position for each MIS used in this study. 
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Figure 24. Depiction of coastline configuration used in the three different model 

conditions.  
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All three model conditions have different expressions of the same variables that 

can hypothetically affect the outcome of raw material frequencies in the OAM, and P 

(post-encounter net-return rates) or R (net-return rate when travel and search cost is 

included) for both raw materials in the ACM. These three marine isotope stages were 

chosen because they cover the majority of site occupations at Pinnacle Point between 

~165-50 ka, and reflect three different states of site distance to the coastline (Figure 24) 

and raw material source distribution, vegetation types, and hypothetical foraging mobility 

strategies. In addition, the first major change in raw material selection in the Cape occurs 

roughly coincident with a shift from warmer conditions (MIS5) with quartzite dominating 

to glacial conditions (MIS4) with a rise in silcrete (Brown et al. 2012, Brown et al. 2009, 

Henshilwood 2012, Henshilwood and Dubreuil 2011, Villa et al. 2010, Wurz 2013). 

 

Table 4. Model conditions. 

Marine 

Isotope 

Stage 

Climate and 

environmental 

condition 

Date range 
a
 Avg. average distance to coastline (km) 

b
 

MIS6 Strong Glacial 186-130 ka 42 km 

MIS5 Interglacial 130-74 ka 1 km 

MIS4 Moderate Glacial 74-57 ka 15 km 

Note. 
a 
Marine Isotope Stage date ranges from Barham and Mitchell (Barham and Mitchell 2008) and 

Jouzel et al. (Jouzel et al. 2007). 
b
Avg. average distance to coastline (km) calculated from the full age range 

of a Marine Isotope Stage. Data from Fisher et al. (2010). 

 

 To elaborate the model conditions and variables needed for this study I use data 

from four major sources: Speleothem data (Bar-Matthews et al. 2010, Braun et al. ms), 

strontium isotope data (Copeland et al. 2015), faunal data (Rector and Reed 2010), and 

sea-level curve modeling (Fisher et al. 2010). These four types of data are particularly 

important as they provide estimates of environmental and climatic context during all 

three model conditions. Specifically, speleothem data (oxygen and carbon isotopes) can 
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act as a proxy for rainfall regime and accompanying vegetation type during different 

climatic conditions, which is important when trying to reconstruct whether vegetation 

types with more tree species are present, which can give an estimate of the availability of 

wood fuels in the environment. The faunal data can support the speleothem data by 

highlighting the feeding adaptation of an animal community. In addition, the faunal data 

in conjunction with a strontium isotopic analysis can highlight migration or movement 

patterns of animals. Finally, the sea-level curve modeling can provide estimates of 

distance to coastline during glacial periods. Below I review how estimates of climatic and 

environmental data have been obtained in the four sources of data.  

Bar-Matthews et al. (2010) analyzed multiple overlapping speleothems from 

Crevice Cave at Pinnacle Point. Crevice Cave is located approximately midway between 

PP13B and PP5-6, or 150 meters from PP5-6. They used U-Th dating to date the samples 

from 90 ka to 53 ka from a time-period when Crevice Cave was sealed by a dune. They 

report 152 growth laminae that they have sampled, providing extremely high-resolution 

δ18O and δ13C isotopic curves. Braun et al. (ms) extended that composite record from 

Crevice Cave to cover the time-period between 463 and 41 ka using speleothem samples 

from Staircase Cave and PP29.  

 Changes in the δ18O are proposed to be controlled by alternating moisture 

sources more so than temperature changes (Braun et al. ms). Further, changes in δ18O are 

also argued to be the result of variation in summer and winter rainfall regime by 

comparing the δ18O values to modern rainfall samples that were systematically collected 

from Mossel Bay (Braun et al. ms, Bar-Matthews et al. 2010). Changes in the δ13C are 

interpreted to be the result of fluctuations in the proportions of C3 shrubby vegetation and 
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C3 grasses, and the influx of C4 grasses. The C3 shrubby vegetation and C3 grasses are 

relatively depleted in δ13C, similar to modern Proteoid and Restioid Fynbos 

communities, while the C4 grasses are relatively enriched in δ13C and may be 

representing grassier Fynbos or thicket vegetation. The vegetation type is mostly 

dependent on rainfall amount and season and atmospheric CO2 concentration (Braun et 

al. ms). 

 Bar-Matthews et al. (2010) compared their samples against a Holocene δ13C 

record from Pinnacle Point and a mixed C3/C4 signal from Cango Cave speleothem 

(Talma and Vogel 1992). The Crevice Cave δ18O and δ13C curves are correlated, which 

is interpreted to mean that when δ18O values are low it indicates more winter rainfall 

correlated with an increase in C3 vegetation, while when δ18O values are high it 

indicates more summer rainfall that correlates with an increase in C4 grasses, as would be 

expected. 

 Braun et al. (ms) using the extended record subdivided the speleothem composite 

record into two glacial-interglacial cycles to analyze the climate and environmental 

variability. They found that there was a decoupling between rainfall source, temperatures, 

and vegetation during glacial and transitional phases manifested by a low correlation 

between δ18O and δ13C. However, different glacials (MIS4 and MIS6) show distinct 

patterns due to the Agulhas current and precession. On the other hand, peak interglacial 

shows a stronger correlation between δ18O and δ13C, meaning that rain sources, 

vegetation, and temperatures co-varied. Braun and colleagues (ms) found that there is no 

one-to-one correlation between variables such as temperature, rainfall source and 

vegetation and glacial or interglacial periods.  
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 Fisher et al. (2010) presented a GIS-based model for the position of the southern 

African coastline. The model takes into account the topography of the submerged and 

gently sloping Agulhas Bank and the sea cliffs at Pinnacle Point and the global sea level 

curve. Fisher and colleague’s’ approach is a major upgrade from prior 2-dimensional 

models that calculate the distance to coast using vertical sea height and distance from a 

single point to the coastline. Their model is dynamic providing estimates of distance to 

coastline in 1500 kyr increments. The model was tested by using strontium isotopes from 

Pinnacle Point speleothem, which is used as a proxy for distance to coastline, and 

shellfish abundance at PP13B and Blombos Cave, which is used to check if the distance 

to coastline is within the daily foraging range of ethnographically described hunter-

gatherer. 

 Rector and Reed (2010) investigated the faunal remains from MSA assemblages 

from PP13B and a carnivore assemblage from PP30 in an attempt to reconstruct the 

environment of MIS6 and MIS5 at a localized geographical scale. They used 53 modern 

communities that sample a range of African habitats to establish the relationship between 

mammalian community structure and habitat to facilitate comparison with the fossil 

assemblages. Fossil assemblages from 25 levels of eight sites on the South African Coast 

are used to provide examples of Fynbos habitats. Four fossil carnivore dens of 

Pleistocene age are used to provide a comparison to the PP30 assemblage. To compare 

the PP assemblages to the other fossil assemblages and the modern communities, they 

used two different approaches to reconstruct habitat. In the univariate analysis, they 

compared the number of species in each substrate and the trophic category at each site by 

habitats in a one-way ANOVA. They tested the null hypothesis that different habitats 
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have the same number of species in each adaptation category. In the multivariate 

analyses, they compared the proportions of the adaptations found in mammalian 

communities from fossil sites to data from extant habitats using a correspondence 

analysis. Plotting the Pinnacle Point fossil sites using the variation from modern habitats 

allowed the identification of the most similar analog based on the proximity in the plot 

(Rector and Reed 2010). 

 Copeland and colleagues (2015) investigated ungulate movement patterns using 

strontium isotopes from enamel sampled from fossil fauna from PP13B and PP30. They 

presented a bioavailable 
87

Sr/
86

Sr isoscape for the Mossel Bay region that includes 171 

sampling sites. Their analysis showed that Pleistocene ungulates from Pinnacle Point 

preferred the Paleo-Agulhas plain habitats to the habitats north of the current modern 

coastline. The ungulates avoided dissected plain, foothill, and mountain habitats more 

than 15km north of the modern coastline. This further suggested that the Pinnacle Point 

ungulates did not migrate from the coast to the interior (south to north). However, the 

strontium isotopic evidence is not able to falsify the hypothesis that large grazers 

migrated east-west on the Paleo-Agulhas Plain (Copeland et al. 2015). 

 

MIS4 conditions 

Coastline position and raw material source distribution variable 

Based on the sea level curve modeling by Fisher et al. (2010), the coastline during MIS4 

is close to the Pinnacle Point sites, and within or near the daily foraging radius of hunter-

gatherers. Estimates from Fisher et al. (2010) put the average coastline configuration 

during MIS4 15 km away from the Pinnacle Point sites. Two raw material distribution 
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scenarios will be considered here based on marine geophysics work. In the first one, 

while wave-ravinement surfaces containing quartzite are present it is assumed that no 

silcrete sources are present on the low relief Paleo-Agulhas Plain (Cawthra et al. 2015). 

In this scenario, the closest primary context quartzite is 5.3 km from Pinnacle Point, 

while the closest primary context silcrete is 8.5 km away at Rietvlei. In the second 

scenario, in addition to the wave-ravinement surfaces, it is assumed that silcrete outcrops 

become available on the low-relief Paleo-Agulhas Plain (Cawthra et al. 2015). In this 

scenario, the closest primary context quartzite is 5.3 km from Pinnacle Point, while the 

closest primary context silcrete is 0.8 km away. For both scenarios, however, following 

Brown (2011) is is assumed here that cobble beaches that formed during interglacial 

periods such as MIS5 are depleted in high-quality raw materials by normal foraging 

activity and/or buried due to the lack of dynamic ocean swells, tidal forces, and storm 

surges acting on the stationary and inactive cobble beaches. 

 

Vegetation type variable 

During MIS4, the proportions of summer rain increases in the Mossel Bay region due to 

high precession parameters that included increased summer insolation on the southern 

hemisphere, which leads to a strong continental summer heat low (thermal low) that 

periodically connected with northward shifted westerlies to form tropical-temperate 

troughs that bring tropical rain  (Braun et al. ms), which is accompanied by a vegetation 

type that includes C4 grasses and more trees such as acacias (Bar-Matthews et al. 2010).  
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Forager mobility rate and strategy variable 

During MIS4  when the submerged coastal platform is uncovered due to lower sea levels 

(Fisher et al. 2010) and a summer rainfall regime dominates (Bar-Matthews et al. 2010), 

which brings C4 grasses with it, it is here assumed following Marean (2010b) and 

Copeland et al. (2015) that there is an increase in migratory animals feeding on the C4 

grasslands. During MIS4, the forager groups living at Pinnacle Point have access to 

predictable marine resources because the coastline is within or near to the daily foraging 

radius. In addition, the coastal band is wider than during MIS5 potentially allowing for 

bigger populations of animals (Marean 2016). The combination of access to a larger 

population of migratory animals and access to predictable coastal resources increases the 

attractiveness of the Mossel Bay region. The hypothetical resulting mobility rate and 

strategy involved a decreased number of residential moves, making the groups more 

sedentary. Increased conservation of raw materials during MIS4 at PP5-6 potentially 

suggests limited access to raw material sources due to fewer moves that could intercept 

them (Brown 2011). Additionally, sedimentological work by Karkanas et al. (2014) 

suggests site occupation that is more intensive during MIS4 at PP5-6. 

 

MIS5 conditions 

Coastline position and raw material source distribution variable 

Based on the sea level curve modeling by Fisher et al. (2010) the coastline is close to or 

at the present position, and easily within the daily foraging radius of hunter-gatherers 

(Fisher et al. 2010). Estimates from Fisher and colleagues put the coastline during MIS5 

on average 1 km away from the Pinnacle Point sites. For ease of modeling, I will use the 
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current coastline configuration. Cobble beaches occur directly adjacent to the Pinnacle 

Point sites, and at Dana Bay, Mossel Bay Point, Fransmanhoek, and Kanon Beach. The 

dynamic forces of ocean swells, tidal forces, and storm surges help produce and replenish 

hi-energy cobble beaches present in close vicinity to Pinnacle Point. Closest primary 

context quartzite is 5.3 km from Pinnacle Point, while the closest primary context silcrete 

is 8.5 km away. Quartz is available in close vicinity (100-200 meters) to the Pinnacle 

Point locality as veins in the local Skurweberg Fm. 

 

Vegetation type variable 

During MIS5e with warm temperatures, the prevailing rainfall regime on the south coast 

is summer rainfall (Braun et al., ms). Post MIS5e, during the rest of MIS5 the 

temperature decreased and the prevailing rainfall regime changed to winter rainfall (Bar-

Matthews et al. 2010, Braun et al. ms). The winter rainfall regime is accompanied by a 

C3 photosynthesis dominant vegetation type called Fynbos (Rebelo et al. 2006). The C3 

dominant Fynbos is depleted in trees (O'Brien 1993, Van Wyk and Van Wyk 1997). The 

C3 signal is also supported by the faunal assemblage from PP13B and PP30 (Rector and 

Reed 2010). 

 

Forager mobility rate and strategy variable 

During MIS5, a forager group at Pinnacle Point would hypothetically conduct more 

residential moves than during moderate glacial periods due to a combination of restricted 

migratory animal availability and a higher abundance of predictable marine resources 

available within the daily foraging radius. A narrower width of the Agulhas plain 
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hypothetically restricts the abundance of migratory animals during interglacial periods 

(Marean 2016). Sedimentological work suggests less intensive occupation of PP5-6 

during MIS5 compared to MIS4 (Karkanas et al. 2014). The hypothetical resulting 

mobility rate and strategy utilized more frequent moves between inland and coastal areas 

to intercept coastal resources during low spring tides. 

 

MIS6 conditions 

Coastline position and raw material source distribution variable 

During MIS6 the coastline is far away from the Pinnacle Point sites, only reachable after 

multiple days of travel. Estimates from Fisher et al. (2010) put the coastline during MIS6 

on average 42 km away from the Pinnacle Point sites. Similar to MIS4 conditions, two 

raw material distribution scenarios will be considered here based on marine geophysics 

work. In the first one, while wave-ravinement surfaces containing quartzite are present it 

is assumed that no silcrete sources are present on the low relief Paleo-Agulhas plain 

(Cawthra et al. 2015). In this scenario, the closest primary context quartzite is 1.4 km 

from Pinnacle Point, while the closest primary context silcrete is 8.5 km away at Rietvlei. 

In the second scenario, in addition to the wave-ravinement surface, it is assumed that 

silcrete outcrops become available on the low relief Paleo-Agulhas plain (Cawthra et al. 

2015). In this scenario, the closest primary context quartzite is 1.4 km from Pinnacle 

Point, while the closest primary context silcrete is 0.8 km away. However, as with MIS4 

conditions, following Brown (2011), it is assumed that any previous interglacial cobble 

beaches are depleted in high-quality raw materials and/or buried. 
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Vegetation type variable 

The speleothem record suggests that the vegetation was stable C3 throughout MIS6. 

There was decoupling between rainfall source and vegetation manifested by low 

correlation between δ18Oc and δ13C. There was a gradual increase of Indian Ocean 

rainfall and likely only affected the coastal regions during winter, which was most likely 

related to changing dynamics of the Agulhas current. The faunal assemblage from PP13B 

and PP30 suggest that there was a mosaic habitat that consisted of both C3 and C4 

vegetation (Rector and Reed 2010). The PP30 assemblage shows that large mammals 

such as alcelaphines and springbok dominate the large faunal assemblage suggesting 

open grassy habitats. This habitat type was most likely present on the exposed Paleo-

Agulhas plain at lower sea levels (Copeland et al 2015). However, the presence of 

grysbok and Southern reedbuck indicate a cape floral region ecosystem is present too in 

addition to floodplains. This habitat was most likely always present in the interior 

regardless of the presence of an exposed Paleo-Agulhas plain (Marean et al. 2014). 

 

Forager mobility rate and strategy variable 

During MIS6  when the submerged coastal platform is uncovered due to lower sea levels 

(Fisher et al. 2010) and although C3 grasses dominates (Braun et al. ms), it is here 

assumed following Marean (2010b) and Copeland et al. (2015) that there is an increase in 

migratory animals feeding on the Paleo-Agulhas plain. During MIS6, the groups living at 

Pinnacle Point loose access to predictable coastal resources within the daily foraging 

radius. The coastal plain is wider compared to MIS4 resulting in the increase of the 

population of migratory animals. The increased width of the coastal shelf makes the 
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migratory animals a dense but unpredictable resource. The combination of less access to 

migratory animals and no daily access to predictable coastal resources hypothetically 

increased the frequency of residential moves to find resources.  

 

Research hypotheses 

Hypothesis 1 (H1) 

H1 will be drawn from the OAM and states that opportunistic encounters during random 

walk in the environment result in a raw material usage frequency similar to the 

archaeological record. Prediction: I predict that opportunistic encounters during random 

walk in the environment will create a raw material pattern similar to the archaeological 

record. This is because it can be assumed either that random walk in the environment can 

be an optimal way to move or that there is no difference in utility currency profitability 

between the lithic raw materials. Archaeological implications: If H1 is supported, it 

minimally suggests that the observed raw material usage frequency reflects availability 

and abundance of raw materials in the environment (c.f. Brown 2011, Volman 1981). 

Further, it suggests that raw material procurement was embedded (e.g. Binford, 1979; 

Binford and Stone, 1985) in the overall forager movement and that raw material was 

opportunistically procured at any chance. This might imply expedient procurement, use, 

and discard of raw materials, suggesting that stone raw materials did not play a 

significant role in the technological organization and were insignificant. Support for H1 

might indicate that the response to climatic and environmental change was a mobility 

strategy that involved targeting food resources that disregarded stone raw material 
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differences to obtain such resources; investment in stone tool technology was not a 

priority or needed. 

 

Hypothesis 2 (H2) 

Drawn from the Active-Choice Model (ACM), I propose to test two alternative 

hypotheses. The alternative hypothesis (H2) drawn from the ACM-P variant states that 

the archaeological stone raw material usage frequency is due to the selection of the raw 

material with the highest post encounter net-return of cm-min tool cutting edge (P) unless 

waiting to encounter the high profitability stone source will lead the forager to run out of 

tool material. Prediction: the raw material with the highest post encounter P rate will be 

selected. The switch from one raw material to another depends on which material has the 

highest P rate. Archaeological implications: if H2 is supported it minimally suggests that 

during embedded procurement foragers strategically selected the raw material with the 

highest post-encounter net-return rate of cm*min cutting edge available in the 

environment. This supports a ‘Utilitarian’ model of raw material selection and change 

(c.f. Mackay 2008). Further, it suggests that other lifestyle constraints controlled the 

mobility strategy and foraging movement but that stone raw materials played a role in the 

technological organization of the foragers because stone raw materials were strategically 

chosen when encountered. Support for H2 suggests that the act of encountering raw 

materials was embedded within the greater mobility strategy (c.f. Binford, 1979; Binford 

and Stone, 1985). Thus, support for H2 suggests that the response to a given climatic and 

environmental context was relatively complex. There was a need for a mobility system 

that targeted food resources (disregarding the location of lithic raw material sources) that 
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relied on investment in a specific stone raw material and technology that could be used to 

extract such resources. 

 An implication of seeking raw materials with the highest net-return rate (highest 

rank) is that if raw materials show up in the archaeological record that under the given 

environmental context does not have the highest net-return rate (lower rank) selecting 

these raw materials did not minimize opportunity-cost for the forager. If lower ranked 

materials show up in the archaeological record it might suggest that foragers made 

specific trips (c.f. Gould, 1985; Gould and Saggers, 1985) or utilized embedded 

procurement to obtain these raw materials for other reasons such as symbolic needs 

(Clendon, 1999; Gould et al., 1971; Wurz, 1999), or stylistics needs (Close, 2002; 

Mackay, 2011; Sackett, 1982, 1986). 

 

Hypothesis 3 (H3) 

The other alternative hypothesis (H3), which is drawn from the ACM-R model variant, 

states that the archaeological stone raw material usage frequency is due to the selection of 

the raw material with the highest net-return of cm-min tool cutting edge (R) when all 

travel and procurement time-costs are considered. Prediction: the raw material with 

highest R rate will be selected. The switch from one raw material to another depends on 

which material has the highest R rate given the current environmental conditions. 

Archaeological implications: if H3 is supported it minimally suggests that the foragers are 

strategically selecting the raw material with the highest net-return of cm*min cutting 

edge that is available in the environment when all travel and search costs are included. 

This supports a ‘Utilitarian’ model of raw material selection and change (c.f. Mackay 
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2008). Further, this suggests that stone tool raw materials played an important part in the 

technological organization because the raw material was travel and searched for at added 

cost (c.f. Gould, 1985; Gould and Saggers, 1985). Traveling and searching for a raw 

material suggests planning of the stone procurement activities because travel and search 

time needs to be included in the greater foraging mobility strategy. Hence, support for H3 

suggests that the response to climatic and environmental conditions was to use specific 

stone raw materials obtained during direct procurement and to manufacture technology to 

obtain food resources and/or performing processing tasks, which suggests increased 

knowledge about raw material characteristics and how to use them. 

 As with H2, an implication of seeking raw materials with the highest net-return 

rate is that if raw materials show up in the archaeological record that under the given 

environmental context does not have the highest net-return rate selecting these raw 

materials did not minimize opportunity-cost for the forager. This can suggest raw 

material selection, through either direct or embedded procurement, for other reasons such 

symbolic (Clendon, 1999; Gould et al., 1971; Wurz, 1999) or stylistic needs (Close, 

2002; Mackay, 2011; Sackett, 1982, 1986).  

 

Alternative hypotheses 

Alternatively, finding no support for any of the above stated hypotheses will strengthen 

informal models that has proposed that the observed variation in raw material frequencies 

is due to factors such as shifts in the geographical range of foragers (Clark 1980) and/or 

trade and exchange (Deacon 1989), which both are examples of the ‘Social 

learning/Culture’ variant in the ‘Preference-based change’ model category. Further 
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testing of these informal models cannot be done in this study but requires separate studies 

such as identifying how far raw materials have traveled. Other researchers are working on 

this problem (e.g. Nash, Coulson, Staurset, Smith, et al. 2013). 

 

Model condition variables – Testing framework for model outcomes 

The hypothesis drawn from the Opportunistic Acquisition Model (OAM) is only 

evaluated under coastline position and raw material source distribution variable. Model 

outcomes are directly compared to archaeological frequencies to evaluate whether the 

state of the coastline position and raw material source distribution during an MIS 

explains the archaeological raw material frequencies. The initial test is conducted using 

simulations of same-day returns (one daily foraging radius) of the agent to the Pinnacle 

Point locality. Then the outcomes of four rounds of a one-factor-at-a-time (OFAT) post-

hoc sensitivity analysis are compared to the archaeological frequency data to evaluate the 

robustness of the same-day return results. 

To evaluate the two hypotheses drawn from the Active-Choice Model (ACM) the 

net-return rates from both the ACM-P and ACM-R will be presented. The net-return rates 

of the raw materials are then used to rank the materials and the ranking is compared to 

the archaeological raw material frequencies. Comparisons between the rankings based 

net-return rates under the different model conditions (Marine Isotope Stages) and 

archaeological frequency data from the same MIS at Pinnacle Point are used to test 

Hypothesis 2 (derived from ACM-P) and 3 (derived from ACM-R)  

To identify the conditions that would shift the optimal decision from one raw 

material type to another under different MIS conditions I compare the model outcomes to 
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archaeological frequencies under two derived environmental effects (coastline position 

and raw material source distribution, and vegetation type) and one derived behavioral 

effect (mobility rate and strategy).  

The following steps were taken to test predicted relationships between time-costs 

and model conditions variables (outlined below) under the different model conditions that 

can explain changes in archaeological raw material frequencies at Pinnacle Point. First, 

net-return rates from the different model condition variables are presented, which allows 

for a ranking that can be used to compare to archaeological frequencies. Then, the 

comparison to the archaeological frequencies allows for testing of the predictions 

outlined for each model condition variable. If the raw material with the highest ranking 

under a model condition variable is the same as the raw material with the highest 

frequency in the archaeological record, the predicted relationship between time-cost and 

model condition variable is supported. 

The coastline position and raw material source distribution predictions are based 

on distance to closest known source and raw material abundance on the landscape during 

the different model conditions. The predictions linked to vegetation type come from 

assumed change in vegetation type based on speleothem and faunal data, published 

literature on wood fuel travel and search cost and cost of heat-treatment. Mobility rate 

and strategy predictions come from archaeological observations and experimental data on 

raw material conservation and tool manufacture. How all the variables used to calculate 

the net-return rates were obtained is presented below in Chapter 6. It is important to note 

that the coastline position and raw material source distribution variable and vegetation 

type variable are not direct environmental variables; rather they are inferred from sea-
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level modeling, modern raw material source locations and extents, and climate proxy data 

respectfully. The mobility rate and strategy variable is even more inferred because it is 

based on changes in the two derived environmental variables.   

For both models (OAM and ACM), two different scenarios in regards to a Paleo-

Agulhas plain silcrete source are assessed for the coastline position and raw material 

distribution variable for both models. This allows for testing the effect that a constraint 

assumption has on the raw material frequencies. In one scenario, it is assumed that there 

is no silcrete source on the Paleo-Agulhas Plain during MIS4 and MIS6, while in the 

other scenario it is assumed that the closest identified hardground to Pinnacle Point is a 

silcrete source available during MIS4 and MIS6. 

 

ACM – Predicted relationships between time-costs and model condition variables 

Coastline position and raw material source distribution 

MIS4 – Without Paleo-Agulhas plain silcrete: The travel and search time-cost (ts) to 

acquire quartzite is increased because of the depletion and/or disappearance of local 

quartzite cobble beaches leaving the closest quartzite source 5.3km away (Figure 25). 

Expected net-return rate result: The increase in quartzite ts time-cost is great enough to 

decrease the net-return rate for quartzite (Rq) to fall below the net-return rate for silcrete 

(Rs). 

 

MIS4 – With Paleo-Agulhas plain silcrete: The travel and search time-cost (ts) to acquire 

quartzite is increased, while the ts time-cost to acquire silcrete is decreased because of the 

depletion and/or disappearance of local quartzite cobble beaches and the addition of the 
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close Paleo-Agulhas silcrete source only ~800 meters away (Figure 26). Expected net-

return rate result: The combination of an increase in quartzite ts time-cost and decrease 

in silcrete ts time-cost is great enough to decrease the net-return rate for quartzite (Rq) to 

fall below the net-return rate for silcrete (Rs). 

 

MIS5: The travel and search time-cost (ts) to acquire quartzite is low relative to the ts 

time-cost to acquire silcrete because of the availability of local quartzite cobble beaches 

(closest is ~400 meters away) and an 8.5km distant silcrete source (Figure 25 and 26). 

Expected net-return rate result: The difference between the low quartzite ts time-cost and 

high silcrete ts time-cost is great enough to decrease the net-return rate for silcrete (Rs) to 

fall below the net-return rate for quartzite (Rq). 

 

MIS6 – Without Paleo-Agulhas plain silcrete: The travel and search time-cost (ts) to 

acquire quartzite is only increased slightly compared to MIS5 conditions because, even 

though close cobble beaches were depleted and/or disappeared, there was an addition of 

available wave-ravinement surfaces on the Paleo-Agulhas plain only 1.5 km from PP 

(Figure 25). Expected net-return rate result: The slight increase in quartzite ts time-cost 

is not great enough to decrease the net-return rate for quartzite (Rq) to fall below the net-

return rate for silcrete (Rs). 

 

MIS6 – With Paleo-Agulhas plain silcrete: The travel and search time-cost (ts) to acquire 

quartzite increases slightly compared to MIS5, while the ts time-cost to acquire silcrete 

decreases because of the depletion and/or disappearance of local quartzite cobble beaches 
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leaving the closest quartzite source 5.3km away and the addition of the close Paleo-

Agulhas silcrete source only ~800 meters away (Figure 26). Expected net-return rate 

result: The combination of a slight increase in quartzite ts time-cost and decrease in 

silcrete ts time-cost is great enough to decrease the net-return rate for quartzite (Rq) to fall 

below the net-return rate for silcrete (Rs). 

 Archaeological implications if any of the predicted relationships are supported: 

Raw material travel and search (ts) time-cost determine selection. It lends support 

to Torrence’s (1989, 1983) assertion that the cost of procurement drives the raw 

material selection if the qualtiy of the raw material being selected is good enough. 

 
Figure 25. Predicted relationship between travel and search time-cost (ts) to acquire 

quartzite and silcrete and model condition variable when no Paleo-Agulhas plain silcrete 

source is assumed to be present. 
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Figure 26. Predicted relationship between travel and search time-cost (ts) to acquire 

quartzite and silcrete and model condition variable when the presence of a Paleo-Agulhas 

plain silcrete source is assumed. 

 

Vegetation type 

Two different heat-treatment methods are considered when evaluating the effect of this 

variable: the sand-bath method (Brown et al. 2009) hereby referred to as the insulated 

method, and the ember method (Schmidt et al. 2013) hereby referred to as the exposed 

method. In addition, a scenario where silcrete is not heat-treated is also considered. This 

scenario will allow for testing if the omission of heat-treatment affects the net-return of 

silcrete. In the insulated method, it is here assumed that wood-fuel travel and search time-

cost (m1) is not embedded in the time-cost of normal foraging movement, while time-cost 

of the actual heat-treatment (m2) is embedded in the time-cost of normal forager camp 

activities. In the exposed method, it is assumed that m1 time-cost is embedded in the 
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normal time-cost of foraging movement, while the m2 time-cost is additional to the time-

cost of normal forager camp activities. 

 

MIS4: under the insulated method scenario, the availability of more trees in the C4 

component of the vegetation type decreases the manufacturing time-cost (m) for silcrete 

because m1 time-cost is decreased and the m2 time-cost is not additional to time-cost of 

normal forager camp activities (Figure 27). Expected net-return rate result: The decrease 

in m time-cost is not great enough to decrease the net-return for silcrete (Ps) to fall below 

the net-return rate for quartzite (Pq).  

Under the exposed method scenario, the vegetation type has no effect on the 

manufacturing time-cost (m) because the m1 time-cost is embedded into the normal 

foraging movement. While the m2 time-cost is additional to time-cost of normal forager 

camp activities regardless of environmental conditions (Figure 27). Expected net-return 

rate result: Combined, the m time-cost is not great enough to decrease the net-return for 

silcrete (Ps) to fall below the net-return rate for quartzite (Pq). 

 

MIS5: Under the insulated method scenario, the dominance of C3 vegetation depleted in 

trees increases the manufacturing time-cost (m) for silcrete because m1 time-cost is 

increased while the m2 time-cost is not additional to time-cost of normal forager camp 

activities (Figure 27). Expected net-return rate result: The increase in m time-cost is 

great enough to decrease the net-return for silcrete (Ps) to fall below the net-return rate 

for quartzite (Pq).  
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Under the exposed method scenario, the change in vegetation type has no effect 

on the manufacturing time-cost (m) because the m1 time-cost is embedded into the normal 

foraging movement. While the m2 time-cost is additional to time-cost of normal forager 

camp activities regardless of environmental conditions (Figure 27). Expected net-return 

rate result: Combined, the m time-cost is not great enough to decrease the net-return for 

silcrete (Ps) to fall below the net-return rate for quartzite (Pq). 

 

MIS6: under the insulated method scenario, the dominance of C3 vegetation type 

depleted in trees increases the manufacturing time-cost (m) for silcrete because m1 time-

cost is increased, while the m2 time-cost is not additional to time-cost of normal forager 

camp activities (Figure 27). Expected net-return rate result: The increase in m time-cost 

is great enough to decrease the net-return for silcrete (Ps) to fall below the net-return rate 

for quartzite (Pq).  

Under the exposed method scenario, the change in vegetation type has no effect on 

the manufacturing time-cost (m) because the m1 time-cost is embedded into the normal 

foraging movement. While the m2 time-cost is additional to time-cost of normal forager 

camp activities regardless of environmental conditions (Figure 27). Expected net-return 

rate result: Combined, the m time-cost is not great enough to decrease the net-return for 

silcrete (Ps) to fall below the net-return rate for quartzite (Pq). 

 Archaeological implications if any predicted relationships are supported: Time-

cost of heat-treatment as part of the manufacturing (m) variable determines 

selection. In addition, it supports the informal “wood fuel availability” model that 

proposes that the increase or decrease of heat-treated silcrete is constrained by the 
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abundance of wood fuels, which fluctuates with the dominating rainfall regime 

and resulting vegetation types, thereby changing the cost of the manufacture of 

silcrete (Brown and Marean 2010). 

 
Figure 27. Predicted relationship between heat-treatment time-cost (m1 and m2) to 

acquire wood fuel for heat-treatment (m1) and heat-treating (m2) and model condition 

variable. 

 

Mobility rate and strategy 

MIS4: The hypothetical residential mobility system with less frequent moves and more 

sedentary behavior due to the assumed attractiveness of PP during MIS4 puts a premium 

on having raw materials that can be optimized in terms of cutting edge per mass in case 

of shortfall in finding new raw materials due to infrequent moves or due to length of stays 

at PP. This hypothetical mobility rate and strategy increases the manufacturing time-cost 

(m) for quartzite because flaking outcomes for coarse-grained quartzite are assumed less 
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predictable (Mackay 2008) yielding a lower e value and a higher value of flake 

manufacturing time-cost (m3) relative to silcrete (Figure 28). Expected net-return rate 

result: The higher m time-cost and lower measured e value of quartzite is great enough to 

decrease the net-return rate for quartzite (P or Rq) to fall below the net-return rate for 

silcrete (P or Rs). 

 

MIS5: The hypothetical residential mobility system with frequent moves during MIS5 

does not put a premium on having a raw material that can be optimized in terms of 

cutting edge per mass due to the chance of encountering new raw material sources such 

as cobble beaches when moving to intercept the coastline. This mobility rate and strategy 

make the manufacturing time-cost (m) for quartzite irrelevant even though flaking 

outcomes for coarse-grained quartzite are assumed less predictable (Mackay 2008) 

yielding a lower e value and a higher value of flake manufacturing time-cost (m3) relative 

to silcrete (Figure 28). 

 

MIS6: The hypothetical residential mobility system with frequent moves and shorter 

duration stays at PP during MIS6 because of the extensive Paleo-Agulhas plain, which 

leads to ungulates on the plain being a dense but unpredictable resource does not put a 

premium on having a raw material that can be optimized in terms of cutting edge per 

mass due to the chance of encountering new raw material sources when moving about the 

landscape. This mobility rate and strategy make the manufacturing time-cost (m) for 

quartzite irrelevant even though flaking outcomes for coarse-grained quartzite are 
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assumed less predictable (Mackay 2008) yielding a lower e value and a higher value of 

flake manufacturing time-cost (m3) relative to silcrete (Figure 28). 

 Archaeological implications if the predicted relationship is supported: The 

amount of raw material cutting edge per mass (e) and manufacturing time-cost 

(m) determine selection. Further, it supports similar assertions by Gould and 

Saggers (1985, 1985) who argued that foragers select raw materials specifically 

for their qualities. 

 
Figure 28. Predicted relationship between flake manufacturing time-cost (m3) to 

manufacture quartzite and silcrete and model condition variable. 
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CHAPTER 6: METHODOLOGY 

Introduction 

The models presented in this study require a range of methodological steps to be 

operationalized. Below I describe these steps starting by detailing how the Opportunistic 

Acquisition Model (OAM) was constructed. The building blocks of the OAM include 

geological and geophysical data, raw material survey data, GIS analysis, and agent-based 

modeling. Second, I describe how the variables needed for both variants of the Active-

choice Model (ACM) were obtained. Methods used to obtain estimates of variable values 

includes a stone tool reduction experiment, a raw material quality and fracture mechanics 

experiment, published data, raw material survey data, and GIS analysis. 

 

Building the Opportunistic Acquisition Model 

The OAM is at its core a type of agent-based model (ABM). Because the OAM does not 

entail any agent to agent interaction it is not a ‘pure’ agent-based model. To build the 

ABM the author collaborated with Dr. Marco Janssen, an expert on agent-based modeling 

(e.g. Delre et al. 2010, Salau et al. 2012, Janssen and Ostrom 2006), at Arizona State 

University. The author used the free Netlogo (Wilensky 1999) software platform for the 

modeling and conducted the modeling on computers at ASU. ABM is a useful tool 

because a collection of autonomous decision-making entities or ‘agents’ (in our case 

representing foragers) can be modeled as they interact with a constrained environment -- 

in this case representing a landscape (Axelrod and Tesfatsion 2006, Bonabeau 2002, 

Railsback and Grimm 2012, Gilbert 2007). Each agent individually assesses its situation 

and makes decisions based on a set of rules. An ABM is an algorithmic way of describing 
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the world, meaning that it consists of describing a system from the perspective of its 

constituent units, and ABM is ideal to use for calculating time-cost in our case because 

our foragers have decisions to make (Bonabeau 2002). An ABM was used to evaluate the 

OAM during both strong glacial and interglacial conditions against the archaeological 

record. 

 To build the OAM several steps were taken. 1) Brantingham’s (2003) neutral 

model of stone procurement was replicated in Netlogo. 2) GIS was used to combine raw 

material source data with actual physical environmental map data. 3) Netlogo was used to 

run simulations with projected maps imported from the GIS. Each of these steps is 

detailed below. 

 

Recreating Brantingham’s neutral model 

Brantingham’s (2003) original model was created in a program called RePast. To 

facilitate the analysis in this study the neutral model was recreated in Netlogo (Janssen 

and Oestmo 2013) (Figure 29), a low-threshold and streamlined ABM software. The 

ODD protocol (Overview, Design concepts, and Details) of the recreated neutral model 

can be found in Appendix B. 
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Figure 29. Screenshot of Brantingham’s neutral model. Brantingham’s (2003) neutral 

model was recreated by (Janssen and Oestmo 2013) in Netlogo (Wilensky 1999). 

 

Modeling the effect of spatial clustering of raw material sources 

After recreating the neutral model in Netlogo, a pilot study (Oestmo, Janssen, and 

Marean 2016) was undertaken to evaluate if random walk as a procurement strategy is a 

realistic assumption and to explore two limitations observed in the original neutral model 

by Brantingham (2003). In the original model, each raw material location is randomly 

distributed across the landscape without clustering and each location represents a unique 

raw material, while both are unrealistic assumptions. The pilot study explored how spatial 

clustering of source locations (Figure 30) affects the raw material pattern outcome. 

Figure 30 show the three different clustering conditions that were used by Oestmo et al. 
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(2016) to gauge what effect spatial clustering of raw material sources have on the neutral 

model outcomes. The ODD for the spatial clustering model is in Appendix C. 

 
Figure 30. Effect of spatial clustering of raw material sources. Reprinted from Oestmo et 

al. (2016). pr stands for probability of random distribution of sources. At pr=0 all the 

sources are clustered together in the middle, while at pr=1 all the sources are randomly 

distributed across the whole landscape with single source joined together. 

 

 Oestmo et al. (2016) addressed three different model outcomes, raw material 

richness (number of different raw material types), distance materials move before being 

discarded, and steps that the agent takes without raw materials in the toolkit. The two first 

model outcomes were used to evaluate the effect of spatial clustering on the neutral 

model outcomes. The number of steps taken without raw materials in the toolkit was used 

to evaluate whether the criticism that a forager can never engage in random walk in an 

environment is a valid criticism (Brantingham 2003). 
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 To address the second limitation noted above, that 5000 unique raw materials on 

an extended landscape is unrealistic, a second round of model simulations were run with 

only 20 unique raw materials distributed among the 5000 raw material locations. By 

chance, this can lead to clusters on the landscape where the majority of the raw materials 

distributed next to each other are of the same type. 

 Oestmo et al. (2016) simulated in addition to the original random walk behavior 

two other walk behaviors: ‘seeking walk’ and ‘wiggle walk’. The wiggle walk simulates 

movement forward one cell at the time but at each time step the forager changes the 

direction by taking a left turn using a degree based on a drawn uniform distribution 

between 0 and 90 degrees, and then taking a right turn using a degree based on a 

uniformed distribution between 0 and 90 degrees. The seeking walk behavior is an 

analogy for returning to a stone cache at a central location. Seeking walk behavior 

models that the forager moves towards the closest material sources if the level of raw 

material in the toolkit is below a certain limit. Oestmo et al. (2016) used zero material in 

the toolkit as the limit, which means that anytime the toolkit is empty the forager will 

seek the nearest raw material source. 

 The pilot study did not rule out using the OAM as a model of foraging behavior, 

and a more rigorous test of its viability will be against an actual archaeological raw 

material frequency outlined below. The result of the pilot study will be discussed in 

Chapter 8 where Hypothesis 1 drawn from the Opportunistic Acquisition Model is 

evaluated. 
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Neutral model application 

Following the pilot study that investigated the effect of spatial clustering, when applying 

the OAM to the Mossel Bay Region, the physical locations of potential raw material 

sources were used, and different stone raw material types were distributed among those 

sources according to surveys (Brown 2011, Oestmo et al. 2014). The OAM was then 

evaluated by directly comparing the raw material frequency pattern resulting from 

random walk in the Mossel Bay region during MIS4, MIS5, and MIS6 model conditions 

to the archaeological sequence from Pinnacle Point (PP). 

 Three major steps were taken to be able to apply Brantingham’s neutral model to 

an actual landscape and use physical positions and extents of raw material sources. 1) 

Several pedestrian surveys combined with manual in-field testing of flakeability of raw 

material were conducted (Brown 2011, Minichillo 2005, Oestmo et al. 2014). 2) Data 

containing the physical location and extents of raw material sources was combined with 

actual physical environmental data. GIS was used to project geological maps, coastline 

configurations, and raw material source locations in one project. 3) Maps from the GIS 

were imported into Netlogo for ABM simulations. An evaluation of model predictions 

and hypothesis testing was first conducted followed by a post-hoc sensitivity analysis 

(Broeke, van Voorna, and Ligtenberg 2016, Cariboni et al. 2007, Saltelli et al. 2004, 

Thiele, Kurth, and Grimm 2014) to evaluate how different model parameters affected the 

model outcome. 
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Raw material survey 

To be able to model how a random walk in an actual environment would affect the raw 

material frequencies at archaeological localities, the locations and extents of potential raw 

material sources in the Mossel Bay region were needed. Data from raw material surveys 

over several years were used (Brown 2011, Oestmo et al. 2014) including a raw material 

survey conducted in March of 2012 by Brown and by Dr. Jayne Wilkins and this author 

in July of 2016. Figure 31 shows a survey grid map of the Mossel Bay region 

highlighting areas of the landscape where systematic pedestrian and vehicle survey have 

been conducted.  

The methods used during these pedestrian and vehicle surveys varied somewhat 

but the core components remained the same. Generally, by using available geological 

maps, topographic maps, and road maps the surveyor and one or more assistants would 

drive to a grid square and then follow internal roads in a grid square area to find 

geological formations of interest noted beforehand. If possible, all such areas would be 

visited if landowners granted access. At all sources, the GPS coordinates were recorded. 

The surveys focused on three different major source types: Outcrop (e.g. cliff and 

pavement surfaces), secondary (e.g. cobble beach and river deposits), and conglomerates. 

These source types were approached slightly differently but the data on cortex roundness 

(well-rounded to very angular), clast size (max length and mass), clast shape (e.g. tabular, 

spherical), and raw material type (e.g. quartzite, silcrete, quartz) were all recorded.  
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Figure 31. Survey grid map of the Mossel Bay region. The green star at the boundary 

between grid squares D10 and D11 marks the location of Pinnacle Point. Crosses in grid 

squares indicate that these squares have been visited and surveyed. Yellow-colored 

shapes indicate formations that have been geologically identified to be conglomerates. 

Red-colored shapes indicate formations that have been geologically identified to be 

silcrete. Light blue-colored shapes indicate positions of river cobble bars or coastal 

cobble beaches. 
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The collection of data at secondary sources was the most complex due to the 

potential variance in all the data categories. At the secondary sources, one or more 

sampling squares (25 by 25 cm) were laid down on the surface of clasts (Figure 32). The 

distance between multiple sampling-squares was determined based on the scale of the 

sampled area. Each clast (above 50mm) visible at the surface within a square was 

recorded and each clast was broken using a geological hammer so that interior 

characteristics such as flaws and banding could be recorded. Once the initial surface layer 

was collected a second and potential third layer was recorded the same way. 

 
Figure 32. Raw material survey in progress. Location: Dana Bay cobble beach. 



229 
 

GIS data 

To simulate strong interglacial conditions, already acquired actual physical 

environmental data for the Mossel Bay region was imported into ArcMap 10.4. The 

interglacial coastline configuration came from Mucina and Rutherford (2006). Source 

locations were based on GPS coordinates captured during surveys (Brown 2011, Oestmo 

et al. 2014). To create source extents, the GPS coordinate of sources were projected on 

top of an onshore geological map showing the underlying geology. The polygon of the 

underlying geology corresponding to the GPS point was then traced to create the extent 

of the potential source. This resulted in polygon shapefiles in ArcMap of the potential 

sources. 

  Distance to coastline estimations were based on the coastline distances calculated 

in the coastline model (Fisher et al. 2010). To create the MIS4 and MIS6 coastline 

configurations the distance estimates from Fisher et al (2010) were superimposed on a 

bathymetric map of the Mossel Bay region. Using the measure distance tool in ArcMap a 

line was traced from Pinnacle Point outwards directly perpendicular to the bathymetric 

elevation lines that are running northeast to southwest. The bathymetric elevation line 

located closest to the end of the measured distance line at 15km and 42 km was chosen as 

the new coastline for both MIS4 and MIS6 respectfully (Figure 24).  

 Estimated raw material source locations and extents on the submerged offshore 

platform were based on high-resolution marine geophysics survey data (Cawthra et al. 

2015) provided by SACP4 member Dr. Hayley Cawthra from the South African Council 

for Geoscience (funded by the NGS). To create shapefiles showing superficial offshore 

geology and potential raw material sources in the Mossel Bay region a combination of 
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reports on mapping projects in the Mossel Bay region from the Council for Geoscience 

(CGS) and data from side-scan sonar was used (Cawthra et al. 2015). 

 Other environmental data such as drainage, vegetation, and slope was considered 

for input in the model but was not included. Drainage and vegetation data was not 

included to keep the model as simple as possible. A pilot run using slope data found that 

there would not be enough difference in slope to significantly affect human mobility due 

to the resolution used in the modeling. 

 For all GIS datasets, a set sequence of events was undertaken to conform the data 

to the same scale and raster resolution allowing for export of ascii files that were usable 

by Netlogo. All datasets were first imported into one ArcMap project where the 

coordinate system was set to WGS84. First, a clip box was created that set the outline of 

the region that was going to be simulated. All source shapefiles and coastline 

configuration shapefiles were cut by this clip box to create matching map sizes. 

Secondly, the clip box was then converted to a raster dataset with a raster size of 200, 

meaning that each raster cell was 200 by 200 meters.  This resolution was chosen so that 

adequate resolution was provided in the model while still being able to project the whole 

Mossel Bay region in Netlogo. Third, all the clipped source and coastline configuration 

shapefiles were converted to raster using the same extent and raster size as the clip box 

raster, and they were snapped to the clip box raster to ensure identical raster map size and 

position. Fourth, the clipped raster maps were exported as ascii files allowing for easy 

import into Netlogo. 

 In total, three coastline configuration maps were created and exported, MIS4 

(moderate glacial), MIS5 (Interglacial), and MIS6 (strong glacial). Each of these maps 
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had two data variables: land and ocean. Five raw material maps were produced. One for 

interglacial (MIS5) conditions (Figure 33), two for MIS4 conditions (Figure 34), and 

two for MIS6 conditions (Figure 35). These five maps had one variable (raw material) 

subdivided into raw material source types.  

 
Figure 33. Interglacial raw material sources. Mossel Bay region during interglacial 

conditions with sources represented as their close to real size and distributed according to 

their real locations. 

 

 The major difference between the raw material distribution maps for MIS4 and 

MIS6 was the presence or absence of a hardground assumed to be a silcrete source on the 

Paleo-Agulhas plain that would be available during lower sea levels. This particular 

hardground was selected to be modeled because of its particular close proximity to 

Pinnacle Point. 



232 
 

 
Figure 34. MIS4 raw material sources. Map shows the location of potential raw material 

source types used during MIS4 modeling conditions. Map on the left shows material 

sources without the closest hardground assumed to be a silcrete source on the Paleo-

Agulhas plain. Map on the right shows material sources including the closest hardground 

(Burgundy) assumed to be a silcrete source on the Paleo-Agulhas plain. Distance to 

coastline from Pinnacle Point is ~15km. 

 



233 
 

 
Figure 35. MIS6 raw material sources. Map shows the location of potential raw material 

source types used during MIS6 modeling conditions. Map on the left shows material 

sources without the closest hardground assumed to be a silcrete source on Paleo-Agulhas 

plain. Map on the right shows material sources including the closest hardground 

(Burgundy) assumed to be a silcrete source on the Paleo-Agulhas plain. Distance to 

coastline from Pinnacle Point is ~42km. 

 

Netlogo application 

Ascii files created in ArcMap were imported and employed in Netlogo using the GIS 

extension (Figures 36-38). All model simulations were run with the ‘behaviorspace’ 

function. Data were exported as Excel files for statistical analysis.  
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Figure 36. Interglacial raw material sources projected in Netlogo. 

 

 
Figure 37. MIS4 raw material sources projected in Netlogo. This example shows the raw 

material source distributions including the closest hardground assumed to be a silcrete 

source on the Paleo-Agulhas Plain. 
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Figure 38. MIS6 raw material sources projected in Netlogo. This example shows the raw 

material source distributions including the closest hardground assumed to be a silcrete 

source on the Paleo-Agulhas plain. 

 

OAM analytical methods – Base settings 

The analysis of the OAM output was performed in several steps. First, the coastline 

position and raw material distribution variable outcomes were compared to 

archaeological frequencies under all five model conditions to test Hypothesis 1. In this 

initial test, only same-day returns of the agent were considered. ‘Same-day returns’ refers 

to one single foraging day of movement (~70-100 “totticks”, assuming a walking pace of 

3.5 to 2.5km/hr (Binford 2001, Marlowe 2010, Marlowe 2006)) where the agent starts 

and returns to the same locality in one day. This was undertaken by running the model 

(see Table 2 for model variables) at base variable settings (Table 5). Same-day return 

simulations were run 1000 times. Because “maxnrtirps” were set to 1000 trips that means 

that the raw material frequency outcome from each model simulation resulted from 1 

million foraging trips. The “probdiscard” and “probdiscardcamp” values used in all three 
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model conditions were set by using the following formula (count of sources/patches) / 

(5000/250000). This formula made the discard probability be similar to the probability of 

encountering a raw material source in Brantingham’s (2003) original neutral model, 

which was 0.02 (5000 sources / 250000 patches). 

 

Table 5. OAM Base variable settings 

Model Condition Model Variable Base Variable Setting 

MIS4 Movement-scenario return-to-starting-locality 

MIS4 Starting-Locality PP 

MIS4 nr-agents 1 

MIS4 toolkit 100 

MIS4 probdiscard 0.02 

MIS4 probdiscardcamp 0.02 

MIS4 totticks 100 

MIS4 maxnrtrips 1000 

MIS4 Landscape MIS4 

MIS4 SourceDistribution default or PlusClosestSilcrete 

MIS5 Movement-scenario return-to-starting-locality 

MIS5 Starting-Locality PP 

MIS5 nr-agents 1 

MIS5 toolkit 100 

MIS5 probdiscard 0.03 

MIS5 probdiscardcamp 0.03 

MIS5 totticks 100 

MIS5 maxnrtrips 1000 

MIS5 Landscape Interglacial 

MIS5 SourceDistribution default 

MIS6 Movement-scenario return-to-starting-locality 

MIS6 Starting-Locality PP 

MIS6 nr-agents 1 

MIS6 toolkit 100 

MIS6 probdiscard 0.01 

MIS6 probdiscardcamp 0.01 

MIS6 totticks 100 

MIS6 maxnrtrips 1000 

MIS6 Landscape MIS6 

MIS6 SourceDistribution default or PlusClosestSilcrete 

 



237 
 

OAM analytical methods – Sensitivity analysis 

To evaluate the robustness of the model outcome in comparison to the archaeological 

frequency data a sensitivity analysis was performed (Broeke, van Voorna, and Ligtenberg 

2016, Cariboni et al. 2007, Saltelli et al. 2004, Thiele, Kurth, and Grimm 2014). This 

sensitivity analysis followed a one-factor-at-a-time (OFAT) approach (Broeke, van 

Voorna, and Ligtenberg 2016). When using an OFAT sensitivity analysis a set of base 

settings for the model variables are selected and then one variable is varied keeping all 

other variables fixed. An OFAT sensitivity analysis is used to reveal the form of the 

relationship between the changing variable and the model output given that all the other 

variables are at their base value (Broeke, van Voorna, and Ligtenberg 2016). An OFAT 

analysis, for example, can show whether the response between the changing variable and 

the outcome is linear or nonlinear, whether there are tipping points where the model 

outcome responds dramatically to a small change in the varied variable (Broeke, van 

Voorna, and Ligtenberg 2016). An OFAT analysis has the potential to increase the 

understanding of model mechanisms (Broeke, van Voorna, and Ligtenberg 2016). All 

four rounds of the OFAT were conducted on Hypothesis 1 (H1) after the initial evaluation 

using base settings. 

In the first round of the OFAT, the effect of increasing the amount of time 

allowed by the forager to be away from PP was modeled. This was accomplished by 

varying the “totticks” (movement-budget) variable. To examine the effect of increasing 

the amount of both time and distance the forager can move away from PP, effectively 

increasing residential mobility or foraging range size, “totticks” values of 50, 100, 500, 

1000, 1500, and 2000 were simulated. This allowed for testing H1 under both same-day 
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returns (~70-100 “totticks”, assuming a walking pace of 3.5 to 2.5km/hr (Binford 2001, 

Marlowe 2010, Marlowe 2006)) and up to ~15-20 foraging days away from Pinnacle 

Point (~2000” totticks”, assuming a walking pace of 3.5 to 2.5km/hr (Binford 2001, 

Marlowe 2010, Marlowe 2006)). Table 6 shows simulations that were run in OFAT 

round one. All settings were kept the same as the base settings except for the changes in 

”totticks”. The simulations in the first round of the OFAT were run 1000 times, meaning 

that the raw material frequency outcome from each model simulation resulted from 1 

million foraging trips. 

 

Table 6. OFAT round one simulation overview. 
Model 

Condition 
Movement-scenario 

variable 
SourceDistribution 

variable Totticks values simulated 

MIS4 return-to-starting-locality default 50 100 500 1000 1500 2000 

MIS4 return-to-starting-locality PlusClosestSilcrete 50 100 500 1000 1500 2000 

MIS5 return-to-starting-locality default 50 100 500 1000 1500 2000 

MIS6 return-to-starting-locality default 50 100 500 1000 1500 2000 

MIS6 return-to-starting-locality PlusClosestSilcrete 50 100 500 1000 1500 2000 

 

 In the second round of the OFAT (OFAT2), the effect of having two more 

foraging localities (represented by two actual archaeological MSA localities) to return too 

was modeled. The factor of having more than two localities to return too introduced 

randomness to the model and simulated Pinnacle Point as being just one of three 

localities that the forager can access on the landscape. Table 7 shows simulations that 

were run in OFAT2. All settings were kept the same as the base settings except for the 

changes in “totticks” and changing the “Movement-Scenario” to “move-to-closest-

locality”. The simulations in the second round of the OFAT were run 1000 times, 
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meaning that the raw material frequency outcome from each model simulation resulted 

from 1 million foraging trips. 

  

Table 7. OFAT round two simulation overview. 
Model 

Condition 
Movement-scenario 

variable 
SourceDistribution 

variable totticks values simulated 

MIS4 
move-to-closest-

locality default 50 100 500 1000 1500 2000 

MIS4 
move-to-closest-

locality PlusClosestSilcrete 50 100 500 1000 1500 2000 

MIS5 
move-to-closest-

locality default 50 100 500 1000 1500 2000 

MIS6 
move-to-closest-

locality default 50 100 500 1000 1500 2000 

MIS6 
move-to-closest-

locality PlusClosestSilcrete 50 100 500 1000 1500 2000 

 

 In the third round of the OFAT (OFAT3), a test of the effect of changing of the 

probability of discard of raw materials on the landscape, the effect of changing the 

probability of discard of raw materials in the campsite, and the effect of changing the 

toolkit size on the raw material frequency output at Pinnacle Point was modelled. This 

round focused on what happens to the raw material frequency output at Pinnacle Point 

when the probability of discard on the landscape is lowered or raised; what happens to 

the raw material frequency output at Pinnacle Point when the probability of discard at 

Pinnacle Point is lowered and raised; what happens to the raw material frequency output 

at Pinnacle Point when the toolkit size is lowered from the original 100. Table 8 shows 

the simulations that were run in OFAT3. All settings were kept the same as the base 

settings except for changes in the “probdiscard”, “probdiscardcamp”, and “toolkit.” 

Additionally, totticks was set to 100 to simulate same-day returns. Simulations changing 

these variables one at the time were run under both movement-scenarios and both 

scenarios where Paleo-Agulhas silcrete is available or not. The simulations in the third 
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round of the OFAT were run 100 times, meaning that the raw material frequency 

outcome from each model simulation resulted from 100 000 foraging trips. OFAT3 

simulations were only run 100 times after early test runs showed that the range of 

variance was narrow. 

 

Table 8. OFAT round three simulation overview. 
Model 

Condition 
Movement-scenario 

variable 
SourceDistribution 

variable probdiscard values simulated 

MIS4 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS4 return-to-starting-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS4 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS4 move-to-closest-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS5 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS5 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 return-to-starting-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS6 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 move-to-closest-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

Model 
Condition 

Movement-scenario 
variable 

SourceDistribution 
variable 

probdiscardcamp values 
simulated 

MIS4 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS4 return-to-starting-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS4 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS4 move-to-closest-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS5 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS5 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 return-to-starting-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 return-to-starting-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

MIS6 move-to-closest-locality default 0.001 0.1 0.5 0.75 0.95 

MIS6 move-to-closest-locality PlusClosestSilcrete 0.001 0.1 0.5 0.75 0.95 

Model 
Condition 

Movement-scenario 
variable 

SourceDistribution 
variable toolkit values simulated 

MIS4 return-to-starting-locality default 5 10 50 75 100 

MIS4 return-to-starting-locality PlusClosestSilcrete 5 10 50 75 100 

MIS4 move-to-closest-locality default 5 10 50 75 100 

MIS4 move-to-closest-locality PlusClosestSilcrete 5 10 50 75 100 

MIS5 return-to-starting-locality default 5 10 50 75 100 

MIS5 move-to-closest-locality default 5 10 50 75 100 

MIS6 return-to-starting-locality default 5 10 50 75 100 

MIS6 return-to-starting-locality PlusClosestSilcrete 5 10 50 75 100 
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MIS6 move-to-closest-locality default 5 10 50 75 100 

MIS6 move-to-closest-locality PlusClosestSilcrete 5 10 50 75 100 

 

 In the final and fourth round of the OFAT (OFAT4), three different scenarios of 

hunter-gatherer technological behavior were examined for their effect on the raw material 

frequency at Pinnacle Point: expedient, site caching, and conservative behaviors.  

 Expediency as technological strategy refers to “minimized technological effort 

under conditions where time and place of use are highly predictable” (Nelson 1991: 64). 

In the simulations of expedient behavior, it was assumed that the forager does not want, 

or needs, or cares whether it retains raw materials at any time step when moving about 

the landscape and does not need to conserve raw materials when returned to a locality. 

Once at a locality the forager discards or uses everything it has without concern for 

preserving material for future use (Nelson 1991). This type of behavior is linked to 

scenarios where the forager has decreased its residential mobility, become more 

sedentary making less frequent moves (Parry and Kelly 1987, Riel-Salvatore and Barton 

2004). (Nelson 1991: 64) noted that expedient technological behavior relies on at least 

three conditions: 1) planning of stockpiling or caching of raw materials, or anticipated 

undertaking of activities where the raw materials are located (Bamforth 1986, Parry and 

Kelly 1987); 2) time available to manufacture tools as part the activity of their use, 

indicates no time stress (Torrence 1983); 3) increased occupations or regular reuse of the 

place where raw material are available in order to take advantage of the stockpile or 

cache (Parry and Kelly 1987).  

 Site caching or stock-piling technological behavior refers to the act of storing raw 

materials at a planned place in anticipation of future use (Nelson 1991). In the 
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simulations of site caching behavior, it was assumed that the forager wanted to not lose or 

discard raw materials when moving about the landscape but when returned to a locality it 

would dump all the collected raw materials still present in the toolkit. This type of 

behavior is linked to expedient behavior scenarios where there are often visited localities 

that functioned as home-bases where stone is cached for future use or provisioned to 

multiple people (Kuhn 1992, Nelson 1991).  

 A conservative or curated technological strategy refers to the “caring for tools and 

toolkits that can include advanced manufacture, transport, and reshaping” (Nelson 1991: 

62). In the simulations of conservative behavior, it was assumed that the forager did not 

want to lose or discard raw materials when moving about the landscape with a limited 

toolkit size. When returning to a locality the forager also does not want to lose or discard 

raw materials. This type of behavior is linked to situations where the forager has 

increased its residential mobility, moving camp often, or where there is a need to 

provision individuals with gear that serves as a hedge against a variety of eventualities 

such as lack of raw materials, time, or facilities for repair at the time and place of use 

(Kuhn 1992, 1991, Nelson 1991, Parry and Kelly 1987, Riel-Salvatore and Barton 2004).  

 Table 9 shows the simulations that were run in OFAT3. All settings were kept the 

same as the base settings except for changes in the “probdiscard”, “probdiscardcamp”, 

and “toolkit”. They were changed at the same time to a fixed value. Simulations running 

these behaviors were run under both movement-scenarios and both scenarios where 

Paleo-Agulhas silcrete is available or not. The simulations in the fourth round of the 

OFAT were run 100 times, meaning that the raw material frequency outcome from each 

model simulation resulted from 100 000 foraging trips. OFAT4 simulations were run 100 
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times because test runs showed that the range variance in the outcomes was sufficiently 

narrow. 

 

Table 9. OFAT round four simulation overview. 

Behavior 

Model 
Condit

ion 

Movement-
scenario 
variable 

SourceDist
ribution 
variable 

probdiscard 
setting 

probdiscardcamp 
setting 

toolkit 
setting 

Expedient MIS4 
return-to-starting-

locality default 0.99 0.99 100 

Expedient MIS4 
return-to-starting-

locality 
PlusClosest

Silcrete 0.99 0.99 100 

Expedient MIS4 
move-to-closest-

locality default 0.99 0.99 100 

Expedient MIS4 
move-to-closest-

locality 
PlusClosest

Silcrete 0.99 0.99 100 

Expedient MIS5 
return-to-starting-

locality default 0.99 0.99 100 

Expedient MIS5 
move-to-closest-

locality default 0.99 0.99 100 

Expedient MIS6 
return-to-starting-

locality default 0.99 0.99 100 

Expedient MIS6 
return-to-starting-

locality 
PlusClosest

Silcrete 0.99 0.99 100 

Expedient MIS6 
move-to-closest-

locality default 0.99 0.99 100 

Expedient MIS6 
move-to-closest-

locality 
PlusClosest

Silcrete 0.99 0.99 100 

Behavior 

Model 
Condit

ion 

Movement-
scenario 
variable 

SourceDist
ribution 
variable probdiscard probdiscardcamp 

toolkit 
setting 

Site 
Caching MIS4 

return-to-starting-
locality default 0.001 0.99 100 

Site 
Caching MIS4 

return-to-starting-
locality 

PlusClosest
Silcrete 0.001 0.99 100 

Site 
Caching MIS4 

move-to-closest-
locality default 0.001 0.99 100 

Site 
Caching MIS4 

move-to-closest-
locality 

PlusClosest
Silcrete 0.001 0.99 100 

Site 
Caching MIS5 

return-to-starting-
locality default 0.001 0.99 100 

Site 
Caching MIS5 

move-to-closest-
locality default 0.001 0.99 100 

Site 
Caching MIS6 

return-to-starting-
locality default 0.001 0.99 100 

Site 
Caching MIS6 

return-to-starting-
locality 

PlusClosest
Silcrete 0.001 0.99 100 

Site 
Caching MIS6 

move-to-closest-
locality default 0.001 0.99 100 

Site 
Caching MIS6 

move-to-closest-
locality 

PlusClosest
Silcrete 0.001 0.99 100 

Behavior 

Model 
Condit

ion 

Movement-
scenario 
variable 

SourceDist
ribution 
variable probdiscard probdiscardcamp 

toolkit 
setting 

Conservati
ve MIS4 

return-to-starting-
locality default 0.001 0.001 10 
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Conservati
ve MIS4 

return-to-starting-
locality 

PlusClosest
Silcrete 0.001 0.001 10 

Conservati
ve MIS4 

move-to-closest-
locality default 0.001 0.001 10 

Conservati
ve MIS4 

move-to-closest-
locality 

PlusClosest
Silcrete 0.001 0.001 10 

Conservati
ve MIS5 

return-to-starting-
locality default 0.001 0.001 10 

Conservati
ve MIS5 

move-to-closest-
locality default 0.001 0.001 10 

Conservati
ve MIS6 

return-to-starting-
locality default 0.001 0.001 10 

Conservati
ve MIS6 

return-to-starting-
locality 

PlusClosest
Silcrete 0.001 0.001 10 

Conservati
ve MIS6 

move-to-closest-
locality default 0.001 0.001 10 

Conservati
ve MIS6 

move-to-closest-
locality 

PlusClosest
Silcrete 0.001 0.001 10 

 

OAM analytical methods – Statistical analysis 

All excel table outputs from the OAM were formatted the same way. A data conversion 

was conducted because the raw material frequency output created by the OAM is not 

strictly a pure raw material frequency but instead a frequency of the eight raw material 

source types that the agent has encountered. The raw material source type output was 

formatted to reflect individual raw material type frequencies by using published raw 

material survey data (Brown 2011, Oestmo et al. 2014) plus data from Brown’s 2012 

survey and Wilkins and this author’s 2016 survey that contained the percentage of a 

specific raw material type at raw material source. This conversion based on survey data 

was applied to secondary sources such as the cobble beaches and the Gouritz River as 

they contain multiple types of raw materials. The average of the raw material frequency 

survey data from Eden Bay, Dana Bay, and Fransmanhoek was applied to output results 

where the agent had encountered and discarded material from those sources. The average 

frequency survey data from Kanon Beach, Gouritsmond Beach, and Gourtiz River was 

applied to the output results when the agent had encountered and discarded materials 
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from those sources (Table 10). Silcrete primary sources were assumed to yield 99% 

silcrete and 1% quartz to the agent when encountered based on surveys by Brown (2011). 

Quartzite primary sources were assumed to only contain quartzite. River flood plains and 

wave-ravinement surfaces present on the Paleo-Agulhas plain when the sea level was 

lower were assumed to only contain quartzite. The one hardground assumed to be a 

silcrete source on the Paleo-Agulhas plain was assumed to only contain silcrete. Primary 

quartz sources were assumed to only contain quartz. After this conversion was conducted 

the frequency data was run in JMP Pro 12 (Hodgson 2015), statistical software, to create 

descriptive statistics, and to test if the sample populations were significantly different. 

 

Table 10. Source raw material frequencies. 

Sources 
Source 
Type 

Quartzite 
% 

Silcrete 
% 

Hornfels 
% 

Quartz 
% 

Chert or 
Chalcedony 

% 

Eden Bay, Dana 
Bay, 
Fransmanhoek,  

Cobble 
Beach 98.5 0.6 0.4 0.5 0 

Kanon beach, 
Gourtismond, 
Gourtiz River 

Cobble 
Beach and 
River 
Deposits 95.8 0.97 0.6 1.6 0.97 

 

 To test the OAM model outcomes under the coastline position and raw material 

distribution variable, two separate testing procedures were conducted. In both procedures, 

the OAM raw material frequency (percent of overall assemblage) output data using the 

base variable settings were first created. In the first procedure, the frequencies were 

compared to archaeological frequency data by comparing the mean value and 95% 

confidence intervals against bootstrapped archaeological raw material frequencies. The 

median raw material frequency of the different raw materials was investigated to check if 

the outcomes were significantly different, meaning that the frequencies were outside the 
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95% confidence intervals of each other. In the second procedure, the model frequencies 

were used to create a ranking where the raw material with the highest frequency obtained 

the highest rank. The ranking was then compared to the archaeological raw material 

frequencies. Similarly, the outcomes from all OFAT sensitivity analysis rounds were 

tested using the same two procedures.  

 

Obtaining variable estimates for the Active-Choice Model 

Table 11 re-summarizes the variables needed in both variants of the Active-Choice 

Model (ACM). Table 3 defines the variables. Below follows a description of how each of 

these variables were obtained. 

 

Table 11. ACM variables 

Model Variable 

P and R 

Cutting Edge (e) 

Durability (d) 

Travel and Search Time (ts) 

Procurement Time (tp) 

Manufacture Time (m) - Wood fuel travel and search (m1), Heat-treatment (m2), Flake manufacturing (m3) 

 

Cutting edge per mass experiment 

A stone tool reduction experiment was conducted in collaboration with Dr. Kyle S. 

Brown to obtain measurements of the cutting edge (e) and flake manufacturing (m3) 

variables needed to calculate the net-return rates from both ACM variants. 

 It has been shown archaeologically and experimentally that a flint-knapper can 

efficiently manage the amount of flake cutting edge/mass by altering the exterior 
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platform angle and by controlling the flake platform area (Davis and Shea 1998, Dibble 

1997, Dibble and Rezek 2009, Pelcin 1998). The control of these flake variables has 

important implications for core maintenance and thus raw material economy (Brown 

2011, Dibble 1997). It is expected that more expedient use of a raw material will result in 

a lower cutting edge length/mass ratio compared to more conservative use that seeks to 

maximize the cutting edge length/mass ratio (Braun 2005, Brown 2011). The optimal 

strategy to achieve a high cutting edge length/mass ratio, meaning that more raw material 

is conserved, is to increase the exterior platform angle while minimizing the ratio of 

platform width to platform thickness (Braun 2005, Brown 2011). 

 For the pilot study, quartzite and silcrete raw material samples were collected 

from primary outcrops and secondary sources during surveys of the Mossel Bay region 

conducted by Brown. Subsequently, thirty-six samples were precut into similar sized and 

shaped blocks to minimize shape and size variance (20 quartzite and 16 silcrete) (Figure 

39).  
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Figure 39. Flaking experiment. A) Sample of blocks ready to be knapped. B) Dr. Kyle S. 

Brown knapping a block. C) Assemblage of purposefully detached products from a block, 

in order top left to bottom right. 

 

Half of the silcrete blocks were heat-treated using temperature and duration 

specifications outlined by Brown et al. (2009) (Figure 40). After heat-treatment, Brown 

then reduced each block (both quartzite and silcrete) for 14 min using direct percussion 

with a hard-hammer cobble, while this author videotaped the process, collected, and 

bagged in sequence every product above 14mm that Brown purposely detached from the 

block (Figure 39). A product refers here to all flakes, blades, points, or fragments thereof 

that were purposefully detached from a raw material block. After each flaking bout, this 

author collected the rest of the reduction-waste in a single bag. 
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Figure 40. Heat-treatment of silcrete. A) Kiln and temperature-controller setup. B) 

Sample blocks in the kiln ready to be heat-treated. C) Sample blocks after heat-treatment.  

 

 The cutting edge length (cm) was measured on all complete and broken flakes 

above 14 mm in maximum dimension from the pilot study (See Table 3 for the definition 

of cutting edge) to quantify the e values for both raw materials (Quartzite and both heat-

treated silcrete and untreated silcrete). The e values were measured directly and 

accurately by tracing the outline of the cutting edge (Braun 2005). The weight of all 

complete flakes and all broken reduction debris were recorded to quantify the m3 time-

cost values for both raw materials. To quantify the cutting edge length (mm) / mass (g) 

rates (Braun 2005, Mackay 2008), the measurements of all complete flakes above 14mm 

in maximum dimension from the e value measurements were used, while each complete 

flake that was collected in sequence during each flaking bout was weighted. 
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 In total, 1241 purposefully detached products or product fragments were 

measured from quartzite blocks. Additionally, 1374 debitage pieces denoted as ‘extra’ 

were also measured. The ‘extra’ pieces were all debitage or fragments above 14mm not 

purposefully detached from the block but that were collected at the end as part of the 

waste resulting from the reduction of a raw material block. In addition, 23 cores or core 

fragments were measured. For untreated silcrete, 438 purposefully detached products or 

product fragments were measured. The untreated silcrete blocks yielded 547 ‘extra’ and 9 

core or core fragments. Heat-treated silcrete blocks yielded 597 purposefully detached 

products or product fragments, 1016 ‘extra’ pieces, and 9 core or core fragments. 

 

Cutting edge durability experiment 

A Taber Linear Abraser (Figure 41) and a TESC sharp edge tester (Figure 42) were used 

to calculate the length of time the edge of a tool lasts when cutting a material (d), which 

is needed in the ACM. There are multiple ways that stone tools could have been used, but 

one behavior that is universal among hunter-gatherers is butchery of animals. Animals 

are exploited for several reasons but mostly to extract resources such as food or materials 

for tools and clothing. However, the acquisition, sharing, and consumption of meat have 

great personal, social and symbolic significance among living humans (Bicchieri 1972, 

Clark 1972, Coon 1971, Lee and DeVore 1968, Milo 1994, Ortega Y Gasset 1972). 

 The TESC sharp edge tester (https://sharpedgetester.com/set50) provides an 

objective pass/fail test to judge the sharpness of an edge. Typically, a sharpness 

measurement takes a couple of seconds to perform and requires no special training.  
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Figure 41. Taber Linear Abraser setup. A) Machine fully assembled. Note the horizontal 

arm with attached free-floating vertical boom with weights and abrasion tip on the right, 

B) Universal sample holder allowing for holding the stone tool with edge up. Note the red 

light, which is the guiding laser to allow for aligning the stone tool edge with the path of 

the abrader.  
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Figure 42. TESC sharp edge tester. A) Sharp Edge Tester Model SET-90. B) Tape caps 

in TC-3 kit. 

 

The Taber Linear Abraser (http://www.taberindustries.com/linear-abraser) 

provided a standardized and replicable method to create consistent damage on a tool 

cutting edge. It is engineered to test either contoured or flat surface. It incorporates a 

horizontal arm that reciprocates in a linear motion. Attached to the end of the arm is a 

free-floating test system that is placed onto the stone tool cutting edge at the start of each 

test. As the arm with the free-floating system cycles back and forth, a spline shaft raises 

or lowers as the abrader attachment follows the contours of the cutting edge being tested. 

A stainless steel bit was used as the abrasion material to control for abrasion material on 
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all samples. The goal of the experiment was to measure the length of time the edge of a 

tool lasts when cutting a material, which is effectively a measure of raw material 

durability. The experiment was conducted in a controlled lab environment at ASU. The 

author randomly selected 140 complete tools for both quartzite and silcrete (70 untreated 

and 70 heat-treated) from the pilot study for this experiment. 

 Each stone tool sample had a straight edge controlling for documented variation 

in edge attrition associated with edge shape (Collins 2008) and had a standardized size 

based on archaeological material from the Mossel Bay region and the pilot study (length: 

40-80 mm). Several steps were taken to obtain the d value. 1) Three edge angle 

measurements along the 2 cm part of the edge to be abraded were measured using the 

caliber technique (Dibble and Bernard 1980, Eren and Lycett 2016, Key and Lycett 

2015). The average of the three measurements was recorded as the edge angle for each 

tool. The edge angles from the randomly selected tools ranged from ~15 to 60 degrees. 2) 

Photos of dorsal and ventral sides plus dorsal and ventral close-ups of the 2cm abrasion 

part were taken (Figure 43). 3) A tool sample was placed in the sample vice of the Taber 

linear abrader and then a TESC testing cap was used to record whether the tool could cut 

the testing cap before being abraded. 4) The linear abrader bit was placed on the tool 

edge at one end of the 2 cm testing area (Figure 43), and then the abrader was run for 2 

seconds. 5) The sharpness test was redone using a TESC testing cap. If the sample failed 

to cut the TESC testing cap the sample was removed and re-photographed the same way 

as before abrasion. If the sample could still cut the cap, the abrasion bit was lowered back 

onto the edge and the abrader was run for 3 seconds. 6) A cycle of retesting with a TESC 

testing cap and abrading the edge more (5 seconds at the time) was conducted until the 
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edge could not cut the TESC testing cap. All samples were photographed again after 

being abraded the same way as before abrasion. 6) The mass (grams) of the sample after 

abrasion was measured. 

 
Figure 43. Edge abrasion. A) Abrasion tip resting on stone tool edge. Note, two black 

marks that show the 2cm area to be abraded. B) Ventral side of the sample before 

abrasion. C) Same sample after abrasion.  

 

 After abrading all samples and measuring their time to dullness (durability), the 

relationship between edge angle (degrees) and time to dullness (minutes) was examined 

using regression analysis. For quartzite and heat-treated silcrete samples there were 

significantly moderate (r= 0.3 to 0.5) relationships between edge angle and durability, 

while for untreated silcrete samples there was a significantly strong (r=0.5 to 1) 
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relationship between edge angle and durability. Figure 44 shows the significant moderate 

relationship for all quartzite samples (r
2
=0.5233; p=<0.0001). Figure 45 shows the 

significant strong relationship for all untreated silcrete samples (r
2
=0.6472; p=<0.0001). 

Figure 46 shows the significant moderate relationship for all heat-treated silcrete samples 

(r
2
=0.450; p=<0.0001). 

 
Figure 44. Relationship between edge angle and durability (time to dullness in minutes) 

for quartzite tools. 

 

The linear regression results showed that all three raw material sample types do 

not exhibit the same relationship between edge angle and durability. Quartzite and 

untreated silcrete samples can best be explained by an exponential relationship where an 

increase in edge angle exponentially increases the time to dullness (minutes). Heat-

treated silcrete samples can be best explained by a linear relationship. The difference in 

relationships between the samples suggests that quartzite and untreated silcrete should 

have exponentially increased time to dullness as the edge angles get acuter relative to 
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heat-treated silcrete samples. What that means is that heat-treated silcrete should be at a 

disadvantage in terms of time to dullness when only acute edge angles are considered. A 

subsample was selected to quantify the d variable (average edge angle: ~0-40 degrees) 

using edge angles similar to edge angles ethnographically observed on tools used for 

butchery (Gould, Koster, and Sontz 1971). In total, measurements from 54 quartzite 

samples, 28 untreated silcrete samples, and 35 heat-treated silcrete samples were used for 

quantifying the d variable. 

 
Figure 45. Relationship between edge angle and durability (time to dullness in minutes) 

for untreated silcrete tools. 
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Figure 46. Relationship between edge angle and durability (time to dullness in minutes) 

for heat-treated silcrete tools. 

 

Travel and search cost 

To calculate the travel and search time cost (ts) needed in the ACM-R several steps were 

taken. 1) Geological maps of the Mossel Bay region were georectified and projected in 

ArcMap 10.4. 2) Using GPS coordinates of the potential raw material sources obtained 

by extensive raw material surveys (Brown 2011, Oestmo et al. 2014) these sources were 

created into polygon shapefiles and projected in the same map space. Then the location of 

the Pinnacle Point sites was projected on the same map. A centroid location located 

halfway between PP5-6 and PP13B was used as the representative location for all 

Pinnacle Point sites. Using the measure distance tool the distance between Pinnacle Point 

and the closest Quartzite and silcrete source during all different model conditions 

obtained. Then, assuming a walking pace of 3.5 km/hr  (Marlowe 2010, Marlowe 2006) 

the search and travel time-cost (ts) for each source were calculated (time = 
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distance/speed). Table 12 shows the distance to and from the closest known quartzite and 

silcrete sources during MIS5 and the travel and search time (min) values for ts used in the 

ACM-R variant. Table 13 shows the distance to sources and the travel and search time 

(min) values for ts for sources during MIS4 and MIS6 used in the ACM-R variant. Note 

that the analysis considered both the scenario with an offshore hardground assumed to be 

a silcrete source and the scenario where no offshore silcrete is present. 

 

Table 12. Summary of GIS calculations and survey data on travel and search time-cost. 

Model Condition Raw Material 
Closest 
Source 

Travel Distance 
To and From 

Closest 
Source(km) 

Assumed 
Walking 

Pace 
(km/hr)* 

Travel and 
search 

time (min) 
(ts) 

MIS5 Quartzite Eden Bay 0.7 3.5 12.7 

MIS5 Silcrete Rietvlei 17 3.5 291.4 

*walking pace from Marlowe (2010, 2006). 

 

Table 13. Summary of GIS calculations and survey data on travel and search time-cost 

during MIS4 and MIS6 conditions. 

Model Condition 
Raw 

Material 

Closest 
Known 
Source 

Travel 
Distance To 

and From 
Closest 

Source(km) 

Assumed 
Walking 

Pace 
(km/hr)* 

Travel and 
search time 

(min) (ts) 

MIS4 Quartzite 
Robberg 

Formation 
10.5 3.5 180 

MIS6 Quartzite 
Wave-

ravinement 
surface 

2.9 3.5 48.8 

MIS4&MIS6- 
With a Paleo-
Agulhas pain 

silcrete source 

Silcrete 
Submerged 
Hardground 

1.6 3.5 28 

MIS4&MIS6- 
Without a Paleo-

Agulhas pain 
silcrete source 

Silcrete Rietvlei 17 3.5 291.4 

*walking pace from Marlowe (2010, 2006). 
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Procurement cost 

Procurement time in this study is the time it takes to find a rock suitable for knapping 

after a raw material source is encountered. To calculate the procurement time-cost (tp) 

needed in the ACM, survey data collected by Brown in 2012 was used. Brown, when 

encountering a source, measured the time (in minutes) it took to find suitable raw 

material to flake. Table 14 shows the Tp values used in both variants of the ACM.  

 

Table 14. Summary of survey data on procurement time-cost. 

Model 
Condition 

Raw 
Materials 

Number of 
Surveyed Sources 

(n=) 
Type of source 

Average Procurement 
Time (min) (tp) 

MIS5 Quartzite 1 Primary Quartzite 5.4 

MIS5 Silcrete 8 Primary Silcrete 8.1 

MIS4 & 
MIS6 

Quartzite 7 
Secondary 

Quartzite (cobble 
beach) 

5 

MIS4 & 
MIS6 

Silcrete 8 Primary Silcrete 8.1 

 

Manufacturing cost – Wood fuel travel and search cost and heat-treatment cost 

Ethnographic and cultural anthropology literature was surveyed to obtain estimates of 

wood fuel travel and search time cost (m1). Observations from traditional and rural 

societies from across Africa (Biran, Abbot, and Mace 2004, Brouwer, Hoorweg, and Van 

Liere 1997, Fleuret and Fleuret 1978, Madubansi and Shackleton 2007, Tabuti, Dhilliona, 

and Lye 2003) were used to estimate the average time-cost that traditional groups accrue 

when procuring wood fuel for consumption.  

 Tabuti et al. (2003) showed that women in Bulamogi County, Uganda search for 

and collect firewood between 2-3hours (120-180 minutes) and walk rarely more than 

2km to forage wood. Biran and colleagues (2004) noted that Malawian women living 



260 
 

around Lake Malawi National Park use on average ~4 hours (241 minutes) to search for 

and collect firewood and walk on average 4.2 km to forage wood. However, wood 

collecting does not happen every day. The mean daily time spent collecting wood is 63 

minutes. Further, Biran and colleagues (2004) noted that Maasai women living in 

Simanjiro, Tanzania use on average 1.5 hours (90 minutes) to search for and collect 

firewood, and walk on average 2.2 km to forage wood. Here the mean daily time is 10 

minutes. Brouwer et al. (1997) reported on a survey from the Ntcheu District in Malawi. 

They find that in four different villages that the collection distances people walk to obtain 

firewood on average ranges between 1.1 to 4 km, while the average time spent searching 

for and collecting firewood ranges between 2-5 hours (120-300 minutes). Madubansi and 

Shackleton (2007) reported that people living in the Bushbuckridge Lowveld in South 

Africa use on average between ~4-4.5 hours (~239-268 minutes) to search for and collect 

firewood per wood collection trip. 

 Table 15 shows the m1values used in both variants of the ACM. To keep the m1 

calculations similar to the ts variable a walking pace of 3.5km/hr was used (Marlowe 

2010, Marlowe 2006). It was assumed that the exposed heat-treatment method does not 

require extra wood fuel in addition to the normal load brought home during daily 

foraging trips, meaning that during daily wood foraging trips the wood collected then also 

is enough to heat-treat the silcrete. Conversely, it was assumed that the insulated heat-

treatment method requires at least twice as much wood fuel as collected during a normal 

wood collecting foraging trip thereby resulting in a doubling of the search and travel time 

to procure the wood. Additionally, it was assumed that during MIS4 when there is an 

increase in C4 grasses with a component of trees it lowered the search and travel cost for 



261 
 

wood fuel to be more comparable to the exposed method even through twice as much 

wood fuel is needed. 

 

Table 15. Summary of wood fuel travel and search time-cost. 

Model 
Condition 

Heating 
Scenario 

Assumed 
Walking 

Pace 
(km/Hr)* 

Wood Fuel 
Travel and 

Search Time 
(min) (m1) 

Comment 

MIS5 Insulated 3.5 180 
20kg wood fuel needed, 3 hours 

Travel and Search 

MIS4 Insulated 3.5 90 
20kg wood fuel needed, 1.5 

hours Travel and Search 

MIS6 Insulated 3.5 180 
20kg wood fuel needed, 3 hours 

Travel and Search 

MlS5 Exposed 3.5 90 
10kg wood fuel needed, 1.5 

hours Travel and Search 

MIS4 Exposed 3.5 90 
10kg wood fuel needed, 1.5 

hours Travel and Search 

MIS6 Exposed 3.5 90 
10kg wood fuel needed, 1.5 

hours Travel and Search 

*walking pace from Marlowe (2010, 2006). 

 

 Heat-treatment time-cost (m2) was obtained from heat-treatment experiments 

conducted by Brown (2009) and Schmidt and colleagues (2015, 2013). Table 16 shows 

the m2 values used in both variants of the ACM. During the insulated method, time will 

be spent starting the fire but after that the fire can be left to itself because the silcrete is 

buried in the sand below the hearth and does not need extra attention. Conversely, during 

the exposed method extra attention needs to be paid to the samples, as they are placed 

directly in the ash cone below flames or underneath coals in direct contact with heat. 

Because there is an increased risk of destroying the samples (Wadley and Prinsloo 2014), 

more time needs to be spent monitoring the fire. 
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Table 16. Summary of heat-treatment time-cost. 

Heat-treatment method 
Heat-treatment time (min) 

(m2) 
Comment 

Insulated 15 15 min needed to start fire 

Exposed 50 50 min annealing needed  

 

ACM analytical methods 

To evaluate the ACM outcomes under the coastline positions and raw material source 

distribution, vegetation type, and mobility rate and strategy variables and test predictions 

for each variable, the ACM experimental data were bootstrapped 10000 times using a 

simple bootstrapping procedure. The bootstrapped standard errors were used to create 

95% confidence intervals around the means to statistically investigate if the outcomes 

were significantly different. To be able to conduct a bootstrap variance is needed. For the 

e (cutting edge per mass), d (cutting edge durability), and m3 (flake manufacturing time-

cost) variables the variance was created organically by the different experimental 

outcomes. For the ts (travel and search time-cost), tp (procurement time-cost), m1 (wood 

fuel travel and search time-cost) and m2 (heat-treatment time-cost) variables variance was 

created by taking variable estimate for a model condition and dividing it by the total 

flaked core mass of each individual raw material block used in the flaking experiment. 

For quartzite that meant 20 measurements of for example travel and search time-cost (e.g. 

12.7 minutes travel and search / 1.96 kg total flaked core mass = 6.47 travel and search 

time (min) per total flaked core mass (kg)).  

 The resource-choice model equations outlined above were used to calculate which 

raw material net-return rate is the greatest during different model conditions. Pq and Ps, 

and Rq and Rs were solved for by plugging in the measurements from the GIS analysis, 
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field survey data, flaking experiment and edge durability experiment. The data was 

bootstrapped 10000 times using a simple bootstrap procedure. The bootstrapped standard 

errors were used to calculate 95% confidence intervals around the means to statistically 

investigate the different outcomes of the net-return rate. 

 

Archaeological data 

The archaeological material originates in stone tool assemblages from PP5-6, PP9, 

PP13B (Brown 2011, Brown et al. 2012, Brown et al. 2009, Thompson, Williams, and 

Minichillo 2010, Wilkins et al. 2017, Wilkins et al. 2014). This data has been coded 

during several coding sessions. This author conducted a statistical analysis on the coded 

data, focusing on summarizing raw material frequency, artifact type frequency, artifact 

metric attributes, cortex type frequency, cutting edge length/mass ratio, and the ratio of 

frequency of retouch to artifact volumetric density. The data was summarized at different 

levels of resolution: all data was first summarized by marine isotope stages for the 

different localities, and then the data was summarized by stratigraphic aggregates at the 

different localities, Finally, for raw material frequencies, the data was summarized at the 

sub-aggregate level.  

Raw material percentages are typically presented based on artifact counts. 

However, tallying raw material frequency by count is susceptible to taphonomic bias due 

post-depositional breakage of artifacts and on-site flaking of a given raw material 

package, which can overemphasize the contribution a raw material type has to the overall 

raw material frequency (Brown 2011, 1999). Total mass (kg) of each raw material in a 

given assemblage should reflect what has been transported and deposited at a locality, 
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acting as a proxy measure for the cost of transporting raw material to the site, instead of 

what has been flaked thereby increasing the count of a particular raw material or 

fragmented after being deposited at a locality (Brown 2011). Because the models 

evaluated in this study deal with procurement and transport of raw materials, the 

frequencies resulting from tallying by mass will be reported. 

Cortex type is potentially a useful indicator of the source of a raw material. The 

roundness of a cortex of a raw material clast reflects the amount of reworking and/or 

transport by kinetic energy (Stow 2007). Generally, when the kinetic energy is increased 

it results in clasts with more rounded cortex (Stow 2007). Field observations in the 

Mossel Bay region suggests that high-energy environments such as cobble beaches and 

active stream beds produce on average more clasts with well-rounded to rounded cortex 

(also referred to as cobble cortex), while fixed geological structures such as cliffs or 

outcrops tend to produce cortex that is more sub-angular to very angular (also referred to 

as outcrop cortex) (Oestmo et al. 2014).  

The cutting edge length/mass ratio was estimated for all complete artifacts with a 

maximal dimension greater than 14mm using the CE/M ratio equation formulated by 

Mackay (2008). As mentioned above, cutting edge per mass ratio is a proxy for flaking 

efficiency (Braun 2005, Brown 2011, Mackay 2008). Flaking efficiency is in this study 

referring to the degree to which a cutting edge of a stone tool is maximized for the 

amount of raw material used (Andrefsky Jr 1994, Bar-Yosef and Kuhn 1999, Braun 2005, 

Clark 1987, Hofman 1987, Mackay 2008, Nelson 1991, Parry and Kelly 1987, Sheets and 

Muto 1972, Wilkins et al. ms). It is not referring to the degree to which a cutting edge is 

maximized for a given mass of raw materials after retouch (Eren, Greenspan, and 
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Sampson 2008), and it does not refer to the maximization of usable blanks (Jennings, 

Pevny, and Dickens 2010). 

The ratio of frequency of retouched artifacts to artifact volumetric density will be 

based on methods developed by Riel-Salvatore and Barton et al. (Barton, 1998; Riel-

Salvatore and Barton, 2004; Riel-Salvatore et al., 2008). Barton (1991, 1990) suggested 

that the shape and the frequency of retouched tools may be related more to the intensity 

of which a site was occupied or reoccupied rather than being either the residue of ethnic 

groups (Bordes 1973, Bordes, Kelley, and Cinq-Mars 1969) or the result of different 

functions (Binford 1979, 1973). Building on that argument, Riel-Salvatore, Barton, and 

colleagues (Barton, 1998; Riel-Salvatore and Barton, 2004; Riel-Salvatore et al., 2008) 

created a method that incorporates measures of artifact volumetric density and relative 

frequency of retouched pieces. Because they assumed that there is a direct relationship 

between relative frequency of retouched tools and artifact volumetric density, and that 

they analyze whole assemblages including tools and debitage, and that they view 

morphological variability of retouched lithics as a function of the variations in the length 

and nature of use life of the retouch lithics, they can use their method as a heuristic 

device to reconstruct time-averaged land-use patterns (Riel-Salvatore et al. 2008). In their 

model, a higher frequency of retouched tools and low artifact volumetric density are 

associated with residential mobility because residentially mobile foragers are assumed to 

conserve their raw materials by curation due to raw material scarcity, which can be due to 

both their mobility pattern and relative abundance of raw material sources. On the other 

hand, a low frequency of retouched tools and high artifact volumetric density is 

associated with logistical mobility because logistically mobile foragers are assumed to 
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not conserve their raw materials due to raw material abundance, which can be due to 

local availability, embedded procurement, and stockpiling of raw materials at the site 

(Riel-Salvatore and Barton 2004). Their method offers, because of its focus on mobility 

and technological organization, “a means to assess whether technological changes are 

paralleled by changes in mobility strategies, as they can legitimately be expected to be.” 

(Riel-Salvatore et al. 2008: 405).  

A Bonferroni correction was not used in the analysis of the archaeological data 

because a single false positive in this set of tests is not a problem. The Bonferroni 

correction is useful when only a few multiple comparisons are undertaken and you are 

testing to see if one or two might be significant. However, in this case, where there are a 

large number of multiple comparisons and where many are potentially significant the 

Bonferroni correction can lead to a very high rate of false negatives 

(http://www.biostathandbook.com/multiplecomparisons.html). 

To evaluate H1, H2 and H3, and test model predictions for the different model 

conditions variables the archaeological raw material frequency data were bootstrapped 

10000 times using a simple bootstrap procedure. Data from stratigraphic aggregates and 

sub-aggregates were used to allow for potential variance in raw material frequency. The 

bootstrapped standard errors were used to create 95% confidence intervals around the 

means to statistically investigate if the raw material frequencies were different.  

 To support Hypothesis 1 (H1), the archaeological quartzite, silcrete and quartz 

frequencies needed to be statistically similar to any model simulation outcome from the 

OAM during any model condition or the ranking of model raw material frequencies need 

to match the ranking archaeological raw material frequencies. To support either 

http://www.biostathandbook.com/multiplecomparisons.html
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Hypothesis 2 (H2) or Hypothesis 3 (H3), the raw material with the highest frequency 

during any model condition (MIS4, MIS5, and MIS6) needed to be equivalent to the raw 

material with the highest net-return rate during the same model conditions. 

 

Methods summary 

The models presented in this study require a range of methodological steps to be 

operationalized. The building blocks of the OAM include geological and geophysical 

data, raw material survey data, GIS analysis, and agent-based modeling. A specific set of 

steps needs to be executed: 1) build the GIS dataset that includes the geological and 

geophysical data; 2) export this data to Netlogo for simulations; 3) after simulations the 

output data needs to be formatted and adjusted based on raw material survey data to be 

able to obtain raw material frequencies usable for comparison with archaeological data. 

 The ACM used a stone tool reduction experiment, a raw material quality and 

fracture mechanics experiment, published data, raw material survey data, and GIS 

analysis to obtain estimates of variable values. For this model, the sequence of events is 

not tightly constrained except that a standard stone tool attribute analysis (length, width, 

mass etc.) needs to be undertaken first, then the durability experiment can be undertaken 

to obtain time to dullness of the edges. Estimates of the other model variables can be 

obtained at any time in any sequence. 
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CHAPTER 7: PINNACLE POINT ARCHAEOLOGICAL RECORD 

Site chronology and stratigraphy overview 

Pinnacle Point (PP) is a geographical location centered on a small headland about 10 km 

west of the Mossel Bay point (Figure 1). The coastal cliff between Pinnacle Point and 

Mossel Bay point is heavily dissected and displays a range of caves and rock shelters. 

The rockshelters and caves are formed in the quartzitic cliffs that belong to the Table 

Mountain Sandstone Group (Karkanas and Goldberg 2010, Marean et al. 2004, Pickering 

et al. 2013). Archaeological excavations have been ongoing since 2000 with early work 

focusing on PP13B, then PP9 and lately at PP5-6 (Marean et al. 2004). The Pinnacle 

Point caves and rock shelters are argued to have formed roughly 1 ma ago (Pickering et 

al. 2013). Presently the archaeological record dates from ~162 ka to 51 ka (Brown et al. 

2012, Jacobs 2010, Karkanas et al. 2015). It is possible to extend that record backward 

and forward in time. However, due to high sea-level stands during MIS11 any deposits in 

caves or rock shelters lower than +20 m prior to MIS11 will be limited but there are some 

present in PP13G and Opera House Cave (Pickering et al. 2013) in addition to PP9. 

Excavated sediments at Pinnacle Point sites are at the coarsest scale divided into 

stratigraphic aggregates (StratAggs). The StratAggs are defined based on broad-scale 

sedimentological change. StratAggs are horizontally continuous entities that represent a 

sedimentologically homogeneous set of formation processes but can be composed of 

thinner layers dominated by either anthropogenic or geogenic processes. The formation 

processes are recognized based on field observations, micromorphology, and GIS-based 

analysis of the structure of plotted finds provenience (Brown et al. 2012, Karkanas et al. 

2015, Oestmo and Marean 2015, Wilkins et al. 2017). StratAggs are further subdivided 
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into sub-aggregates (SubAggs), which captures more subtle changes in sedimentation and 

normally are predominantly geogenic or anthropogenic in formation process. SubAggs 

are horizontally continuous beyond a 1x1 square and typically present themselves as 

palimpsests of combustion features with a high density of artifacts that are interstratified 

with geogenic units (Wilkins et al. 2017). Within SubAggs even smaller units of 

stratigraphic units called StratUnits are present. The StratUnits represents small 

stratigraphic lenses and features and capture the most subtle sedimentological changes in 

terms of color and texture (Marean et al. 2004, Oestmo and Marean 2015). A StratUnit 

does not typically extend horizontally beyond a 50x50 cm quadrant. When a StratUnit 

does extend beyond a quadrant it is further divided into Lots. A Lot represents the 

smallest unit within the stratigraphic grouping system used at Pinnacle Point and is the 

scale of which excavation occurs at Pinnacle Point. All excavated finds are piece-plotted 

using a total station, which yields a 3D provenience of each find (Marean 2010b, Marean 

et al. 2004, Oestmo and Marean 2015). 

In the following sections, I will provide a summary of the relevant major 

StratAggs at sites PP13B, PP9, and PP5-6 using already published data. The summaries 

will be given in connection with available age estimates allowing for an MIS designation. 

After the stratigraphy and chronology overview, I will present the stone tool data from 

these sites that are relevant for evaluating archaeological expectations resulting from 

testing predictions derived from the model condition variables and the testing of the 

hypotheses presented earlier. Stone tool data will be presented first by MIS Designation 

using the major StratAggs from the three different sites. Then the data will be presented 
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by StratAggs from the three different sites. When applicable the data will also be 

presented by SubAggs. 

 

PP13B 

Excavations at PP13B started in 2000 and concluded in 2008, and have yielded a 

complex depositional and erosional history (Marean et al. 2010, Marean et al. 2004). 

PP13B is located roughly 300 meters to the southwest of PP5-6 (Figure 2). The 

excavations have yielded the earliest secure date of shellfish consumption by modern 

humans (Marean et al. 2007), early securely dated modified pigments (Marean et al. 

2007, Watts 2010), the presence of heat-treatment of silcrete (Brown et al. 2009), and the 

potential use of shells as symbolic objects (Jerardino and Marean 2010). Thompson et al. 

(2010) reported on the lithics from the sequence. They argued that the PP13B sequence 

shows little size-related change over time but there is evidence for varying reduction 

strategies between the different areas that have been excavated. 

Excavations at PP13B have focused on three areas called: Northeastern, Eastern, 

and Western. Below I will summarize the context of the stratigraphic aggregates/units 

that contain archaeology present at these three areas. The stratigraphy and artifact context 

summary will follow from Marean et al. (2010), Bernatchez (2010), Karkanas and 

Goldberg (2010), and Herries and Fisher (2010), while the stone tool summary comes 

from Thompson et al. (2010).  
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Northeastern area 

LC-MSA Lower: Compared to the overlaying LC-MSA Middle and Upper sedimentary 

units, the LC-MSA Lower sediments are the archaeologically richest and are the least 

cemented (Marean et al. 2010). The sediments contain multiple lenses of carbonaceous 

materials that appear heavily burnt and magnetic susceptibility (MS) testing of these 

lenses show presence of anthropogenic activity (Herries and Fisher 2010, Marean et al. 

2010). Some of these combustion features are in situ and appear very fine with hearth 

cleanout separating them while others have been disturbed by trampling (Karkanas and 

Goldberg 2010, Marean et al. 2010). Three OSL ages result in a weighted mean age of 

162±5ka making these sediments date to MIS6 (Jacobs 2010, Marean 2010b). The lithic 

assemblage is dominated by quartzite, with blades more common than points. There are 

few ‘Levallois’ flakes. There are slightly more plain platforms than facetted platforms. 

Retouch is rare. Prepared cores are the most common core type (Thompson, Williams, 

and Minichillo 2010). 

LC-MSA Middle: The sediments contain multiple lenses of dark organic matter 

and ash that contain charcoal and in situ hearths. There is some evidence of trampling and 

cobbles and roof fall is common (Karkanas and Goldberg 2010, Marean et al. 2010). 

Comparable to the underlying LC-MSA Lower the MS signal and lithic density is 

moderate, while marine shellfish densities are high (Herries and Fisher 2010, Marean et 

al. 2010). The sediments have an OSL age of 125 ± 5ka (Jacobs 2010) indicating that the 

sediments belong close to the transition from MIS6 to MIS5 (Marean et al. 2010). The 

presence of shellfish in the deposits suggests a date in the later part of the transition 

perhaps to MIS5e (Jacobs 2010, Marean et al. 2010).  
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LC-MSA Upper (Lower Dune): These sediments cap the anthropogenic sequence 

and are composed of multiple heavily cemented layers.  There are several phases of 

cementation. These cementation events postdate the deposition of the layers in the LC-

MSA sequence and they both stabilized and hardened the archaeological deposits and the 

two aeolian dunes that sealed the deposits (Karkanas and Goldberg 2010, Marean et al. 

2010). Compared to the LC-MSA Middle and LC-MSA Lower deposits the lithic density 

and the MS are both lower (Herries and Fisher, 2010), which suggest a decrease in 

occupation intensity (Marean et al. 2010). There is some evidence of slight aeolian 

activity, very low energy water flow and gravity (Bernatchez 2010, Karkanas and 

Goldberg 2010, Marean et al. 2010). 

 Summarized from Marean et al. (2010) three layers are recognized within the 

aggregate: 1) a lower, harder sandy and silty layer with multiple lenses of black to dark 

brown organic matter that lays directly on top of the richer archaeological deposits of the 

underlying LC-MSA Middle. 2) A sandy horizon with a weighted mean OSL age of 126 

± 4 ka (Jacobs 2010) that contains a lens with shellfish, which suggest that this layer 

dates to MIS5e (Marean et al. 2010). 3) A dune that caps the LC-MSA Upper deposits 

and has a weighted mean OSL age of 93 ± 4 ka (Jacobs 2010). This dune closed the cave 

to human occupation (Karkanas and Goldberg, 2010; Marean et al. 2010). Further, a 

flowstone that caps the ~93 ka dune has a U-Th date of ~92 ka proving a minimum age of 

the LC-MSA Upper (Marean et al. 2010, Marean et al. 2007).  

 Thompson et al. (2010) noted that the LC-MSA Middle and Upper lithics 

assemblages are dominated by quartzite but there is an increase in silcrete use compared 
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to underlying LC-MSA Lower. Facetted platforms are more common as well as blades 

compared to points. There are few formal tools.  

 

Eastern area 

Lower Roof Spall: The Lower Roof Spall (Roof Spall-Lower) sediment are stratified on 

top of the bedrock and is an MSA horizon consisting of a clast supported matrix 

primarily made up by roof spall, and cemented patches and sand in some places 

(Karkanas and Goldberg 2010, Marean et al. 2010). Archaeological finds are sparse. Two 

OSL ages both at 110 ± 4 ka (Jacobs 2010) indicate that these deposits date to MIS5 

(Marean et al. 2010). 

Upper Roof Spall and Shelly Brown Sand Facies: The Upper Roof Spall (Roof 

Spall-Upper) and Shelly Brown Sand aggregates overlap and blend together. The 

sediments consist of connected or isolated thin burning layers that are sometimes visible 

in the matrix as stratified small, thin, well-preserved hearths (Karkanas and Goldberg 

2010). These hearths sometimes have lithics and fauna associated with them, laying in 

and besides the hearths. The hearths have distinct layering consisting of bands of ash, 

charcoal, and reddish-colored baked sediments (Karkanas and Goldberg 2010). Overall, 

lithics, fauna, and shell artifacts are dense in these deposits. The MS signal is also high 

(Herries and Fisher 2010). Where the Shelly Brown Sand aggregate is positively 

recognized the density of shellfish is particularly high. Six OSL ages indicate that these 

sediments have an adjusted maximum age of 98 ka and an adjusted minimum age of 91 

ka (Jacobs 2010), which indicates that the archaeological remains where deposited during 

MIS5 (Marean et al. 2010). 
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 The lithics assemblages from the eastern area during MIS5 are dominated by 

quartzite. Facetted platforms are slightly more common. Blades are also more common 

than points. Prepared and point cores occur. There is evidence for rare scraper retouch but 

other than that there are very few formal tools (Thompson et al. 2010). 

 

Western area 

LB Silt: The sediments of the LB Silt aggregate are poorly sorted silty sands with 

significant guano input (Marean et al. 2010). There is a stabilizing surface and increased 

organic input towards the top of the layer that leads to archaeological layers. However, 

artifact density and MS (Herries and Fisher 2010) are both low. An OSL age of 157 ± 8 

ka (Jacobs 2010) indicates that these deposits date to MIS6 (Marean et al. 2010).  

Thompson and colleagues (2010) note that the lithics assemblage from the 

western area that dates to MIS6 is dominated by quartzite. Points are more common 

accompanied by a higher frequency of point cores, while bladelets are infrequent. There 

are slightly more plain platforms than facetted platforms. There is evidence for rare 

scraper retouch as well as other types of retouch.  

Dark Brown Sand Facies (DB Sand) – DB Sand 4(a-c): The DB Sand facies are 

defined based on their dark greasy brown sandy characteristics. The dark layers are 

interstratified with lighter brown to gray sandy horizons (Karkanas and Goldberg 2010, 

Marean et al., 2010). There are low to moderate artifact density but the dark nature of the 

material and sediments suggest burning, which is supported by the MS signal (Herries 

and Fisher 2010). All the sediments have a strong Aeolian sand input (Karkanas and 

Goldberg 2010, Marean et al. 2010). More specifically, the DB Sand 4 aggregates (a, b, 
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and c) are a set of dark brown lenses stratified within the LBG Sands with DB Sand 4c at 

the base (Karkanas and Goldberg 2010, Marean et al. 2010). There is a slight increase in 

artifact density compared to the underlying LB Silt but the MS signal remains low 

(Herries and Fisher 2010). Numerous skeletal remains of large animals (size 4) are 

present in association with several hammerstones in the DB Sand 4 (Marean et al. 2010). 

The surface of DB Sand 4c consists of decayed organic matter that suggests exposure for 

a long time, further indicating a living surface (Karkanas and Goldberg 2010, Marean et 

al. 2010). DB Sand 4b shows evidence for the first real charcoal and burnt bone layer in 

the western area. DB Sand 4a has abundant charcoal and suggests in situ burning 

(Karkanas and Goldberg 2010, Marean et al. 2010). An OSL age of 159 ± 7 ka (Jacobs 

2010) indicates that the DB Sand 4 dates to MIS6 (Marean et al. 2010).  

The Light Brown Gray Sand Facies (LBG Sand): The LBG Sand consists of 

lighter brown to gray sediments that are stratified below the DB Sand that is situated 

below DB Sand 3 (Karkanas and Goldberg 2010, Marean et al. 2010). One single LBG 

Sand layer was first recognized (LBG Sand 1) but now it is further subdivided into LBG 

Sand 2-4 where LBG Sand 2 is stratified under DB Sand 4a and so forth. Artifact density 

is lower in the LBG Sand layer than in DB Sand 4 lenses, and the sediments are less 

greasy (Karkanas and Goldberg 2010, Marean et al. 2010). In the LBG Sand 1 the 

sediments consist of decalcified sediments of Aeolian sand with a guano input (Karkanas 

and Goldberg 2010, Marean et al. 2010). The lower LBG Sand layers (2-4) consist of a 

mixture of roof spall and Aeolian sand and guano input (Karkanas and Goldberg 2010, 

Marean et al. 2010). Two OSL ages in LBG Sand 1 at the contact with the overlying DB 
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Sand 3 have ages of 127 ± 7 ka and 122 ± 5 ka (Jacobs 2010) indicating that LBG Sand 1 

dates to MIS5 (Marean et al. 2010). 

Dark Brown Sand Facies (DB Sand) – DB Sand 3 and 2: The DB Sand 3 and 2 

aggregates are not disturbed by subsidence events or cutting that occurred in the 

underlying layers and they are draped over the slumped LBG Sand 1 presenting a clean 

contact, which likely represents an erosion event (Karkanas and Goldberg 2010, Marean 

et al. 2010). DB Sand 3 is a dark greasy horizon that includes dense MSA material. It 

stands out visually due to its dark color and it is laterally extensive. It is stratigraphically 

underlain by the much lighter LBG Sand 1 (Marean et al. 2010). The sediments of DB 

Sand 3 consist of significant amounts of charcoal and burnt bone (Karkanas and 

Goldberg 2010). A Uranium-Thorium (U-Th) age of 102 ± 0.08 (Marean et al. 2010) in 

DB Sand 2 and the three OSL ages from LBG Sand deposits that overlays DB Sand 4 

ranging from 127 ± 7 to 98 ± 4 ka (Jacobs 2010) indicates that DB Sand 3 and 2 dates to 

MIS5 (Marean et al. 2010). 

Light Brown Sand Facies (LB Sand): LB Sand sediments are the light brown 

materials situated below the surface that have a high artifact density. The LB Sand 1 is 

situated above the dark greasy horizons of DB Sand 2, while LB Sand 2 is situated below 

(Marean et al. 2010). The lithic density is higher compared to the DB Sand units but the 

MS signal is lower (Herries and Fisher 2010). The sediments are coarse-grained with a 

high frequency of 1 to 5 cm roof spall (Karkanas and Goldberg 2010, Marean et al. 

2010). An OSL age of 90 ± 4 ka (Jacobs 2010) from DB Sand 3 in the middle of the 

interstratified sequence and an OSL age of 90 ± 4 from just above DB Sand 3 indicates 

that the LB Sand facies dates to MIS5 (Maren et al. 2010).  
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 The lithics assemblages from the western area that date to MIS5 are dominated by 

quartzite. Facetted platforms are more common than plain platforms. Prepared cores are 

common. Points are more common as well as point cores being more common than blade 

cores. There are very few formal tools (Thompson et al. 2010). 

 

PP9 

PP9 is a coastal cave complex situated roughly 200 meters northeast of PP13B and 

contains both archeological and geological deposits, as well as fossil micromammal 

accumulations (Figure 2). The archaeological sediments were excavated under the 

direction of Dr. Andy Herries. Information about PP9 is very limited except for a study 

focusing on micromammals (Marean et al. 2004, Matthews et al. 2011). The little 

information provided about the dating and stratigraphy of PP9 will be summarized from 

Matthews et al. (2011). Micromammals were analyzed from facies accumulated close to 

the transition from MIS6 to MIS5 with OSL ages of between 130±9 and120±7 ka 

(Matthews et al. 2011). The PP9 cave complex consists of a number of smaller separate 

cavities called PP9A-E. The archaeological material comes from PP9B and C. The 

archaeological material from these two deposits will be sampled in the analysis presented 

below. PP9B was excavated in 2006 and its sediments consist of eroded raised beach 

deposits, MSA occupation horizons, and sterile capping dune (Matthews et al. 2011). 

PP9C lies directly above PP9B and was excavated in 2006. PP9C contains a complex 

stratigraphy with series of geological deposits and MSA occupations (Matthews et al., 

2011).  
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PP5-6 

PP5-6 is a rockshelter located approximately130 meters from the PP9B and PP9C 

complex and 300 meters from PP13B (Figure 2). PP5-6 consists of two main sections, 

PP5-6 North and PP5-6 South. PP5-6 North is the focus of this study and consists of one 

connected excavated area called the Long Section. The Long Section is a ~30 meter cone 

of sediment that built up against the cliff face under a rock shelter. The sediment stack 

rests on a dune that is at least 4 meters thick, and probably is the same dune that sealed 

many of the caves on the western side of Pinnacle Point ~90 ka (Brown et al. 2012, 

Karkanas et al. 2015, Wilkins et al. 2017). The rockshelter follows a southwest-trending 

fault breccia. Along the back wall of the shelter, an erosion gully has formed in the past 

removing a large chunk of the original deposits resulting in the creation of a west-facing 

cliff-face. This west-facing cliff-face is one of two major sections of the long-section 

(Brown et al. 2012, Brown et al. 2009, Karkanas et al. 2015, Wilkins et al. 2017). The 

other section is south-facing and it resembles a catastrophic detachment of sediment, 

most likely due to high sea-stands (Karkanas et al., 2015). In total, the excavated portion 

of the Long Section has exposed a >14m high continuous section of MSA deposits 

(Brown et al. 2009, Brown et al. 2012, Karkanas et al. 2015, Wilkins et al. 2017). 

 The Long Section consists of 12 major StratAggs. Below follows a summary of 

the StratAggs at PP5-6, from bottom to the top. The stratigraphy and artifact context 

summary will follow from Karkanas et al. (2015), Brown et al. (2012), and Wilkins et al. 

(2017). The chronology of PP5-6 is based on more than 65 single-grain OSL age 

estimates by Zenobia Jacobs (Brown et al. 2012, Brown et al. 2009, Karkanas et al. 

2015). Karkanas et al. (2015) provided updated weighted mean OSL ages and those ages 
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are used here when available. The Pinnacle Point OSL chronologies have been blind 

tested with U-Th dating in two separate caves and found to be concordant (Bar-Matthews 

et al. 2010, Marean et al. 2010). Additionally, the Pinnacle Point 5-6 OSL chronology has 

been tied to the Toba eruption and subsequent eruption downfall - The Toba eruption 

dates to 74 ka and Toba tephra shards were discovered in the SADBS and ALBS 

StratAggs (concordant with their OSL age estimates) (Ciravolo 2016, Smith et al. 2015). 

 

Yellow Brown Sand (YBS) 

The YBS is an aeolian dune at the base of the Long Section. The dune is at least 4 meters 

thick. There is no evidence for anthropogenic input except for rare artifacts close to the 

contact with the overlying YBSR StratAgg. The YBS corresponds with an aeolian event 

recognized at other Pinnacle Point sites and it tightly constrained to ~90 ka (Bar-

Matthews et al. 2010, Jacobs 2010, Marean et al. 2010).  

 

Yellowish Brown Sand and Roofspall (YBSR) 

The YBSR is OSL dated to 89 ± 5 ka, belongs to MIS5, and consists of roof spall rich 

sediments with lenses of combustion features that represent single intact hearth structures 

interbedded with geogenic layers containing roof spall with little anthropogenic input. 

The aggregate is ~ 1.25 meters thick. 

 

Light Brown Sand and Roofspall (LBSR) 

The LBSR dates to 81 ± 4 ka, belongs to MIS5 and is 4.5 meters thick. The sediments of 

LBSR is very similar to the YBSR in that it consists of roofspall, lenses of combustion 
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features representing single intact hearth structures interbedded with layers of roofspall 

lacking in anthropogenic input. 

 

Ashy Light Brown Sand (ALBS) 

The ALBS dates to 72 ± 3 ka and is the oldest aggregate in MIS4 at PP5-6. ALBS 

sediments are 0.8 meters thick. It consists of aeolian sand with ash-rich combustion 

microfacies in the lower part that was deposited after rock fall, perhaps a roof collapse. 

 

Shelly Ashy Dark Brown Sand (SADBS) 

The SADBS dates to 71 ± 3 ka, belongs to MIS4 and is 0.7 meters thick. The SADBS is 

divided into a Lower (SADBS Lower) and Upper (SADBS Upper) part. The sediments 

consist of thick deposits of trampled combustion microfacies representing cumulative 

palimpsests of hearth features that are not individually discernable. This StratAgg has 

yielded the oldest microliths in the world (Brown et al. 2012). 

 

Orange Brown Sand 1 (OBS1) 

The OBS 1 dates to 69 ± 3 ka, belonging to MIS4 and is 0.7 meters thick. The sediments 

of OBS1 consist of aeolian sand layers interstratified with thin layers of trampled and 

reworked palimpsests of combustion features. 

 

Shelly Gray Sand (SGS) 

The SGS dates to 64 ± 3ka, belonging to MIS4 and is 0.3 meters thick. The SGS consists 

of palimpsest of concentrated input of trampled and reworked combustion features. 
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Orange Brown Sand 2 (OBS2) 

The OBS2 dates to 63 ± 3 ka, belonging to MIS4 and is 1 meter thick. OBS2 sediments 

consist of aeolian sand layers interstratified with palimpsests of reworked combustion 

features.  

 

Dark Brown Compact Sand (DBCS) 

The DBCS is the debris flow that truncates BAS, OBS2, SGS, and OBS1. It has lithics 

artifacts consistent with the strict definition of the Howiesons Poort technocomplex that 

likely derives from OBS2 (Brown et al. 2012). The OSL age of 62 ± 3 ka supports this 

assessment. The DBCS belongs to MIS4. 

 

Black Ashy Sand (BAS) 

The BAS sediment is a thick black layer that is rich in burnt finds. It sits directly on top 

of the OBS2, and is horizontally extensive. 

 

Black Brown Compact Sand and Roofspall (BBCSR) 

The BBCSR dates to 52 ± 3 ka, belonging to MIS3, and is < 0.5 meters thick. The 

BBCSR consists of alternating bands of brown (geogenic) and black (anthropogenic) 

sediments. 
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Northwest Remnant (NWR) 

The NWR sits directly on top of the BBCSR and dates to 59 ± 3 ka (Brown, 2011) and 

belongs to MIS3. The NWR sediments are similar to that of the DBCS. There is an 

absence of shellfish, but the sand component is finer in texture (Brown, 2011).  

 

Reddish Brown Sand and Roofspall (RBSR) 

The RBSR dates to 51 ± 2 ka, belonging to MIS3 and is 2.75 meters thick. The RBSR 

sediments consist of aeolian sand with a paleosol at the top with centimetric and 

decametric roofspall. This aggregate drapes the entirety of the northern part of the Long 

Section. The artifact density is low. 

 

Stratigraphic aggregate to MIS designation  

In the following lithic analysis, the StratAggs described above were lumped into marine 

isotope stages based on mean OSL estimates. MIS5 consists of YBSR and LBSR, MIS4 

consists of ALBS through DBCS, while MIS3 consists of BBCSR/BAS through RBSR. 

The BBCSR and the BAS StratAggs are combined in this study due to a limited amount 

of stone tools available for analysis from either StratAgg. In total 22861 lithics from the 

Pinnacle Point locality was used in the following analysis. The PP13B assemblage 

consisted of 5608 lithics, the PP9 assemblage of 154 lithics, while the PP5-6 assemblage 

consisted of 17099 lithics. 
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Stone tool data – grouped by site and Marine Isotope Stage (MIS) 

Raw material frequency 

Figure 47 shows the frequencies of raw material types in assemblages by site and MIS 

designation. The raw material frequencies are tallied by artifact count (Table 17).  

 
Figure 47. Frequency of raw material type in assemblage tallied by artifact count by site 

and MIS designation. The age of assemblages increases along the x-axis (from left to 

right). 

 

Several observations can be made from Figure 47. Quartzite dominates the MIS6 

assemblage from PP13B, and the MIS5 assemblages from PP13B, PP9B, PP9C, and PP5-

6. The frequency of quartzite is significantly different from silcrete in all these 

assemblages (Every sample: Fisher’s exact test – Two-tailed p=<0.00001). The increase 

in silcrete from MIS5 to MIS4 is significant (Fisher’s exact test – Two-tailed 

p=<0.00001). During MIS4 there is significantly more silcrete than quartzite (Fisher’s 
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exact test – Two-tailed p=<0.00001).This is followed by a significant decrease in the 

selection of silcrete in MIS3 compared to MIS4 (Fisher’s exact test: Two-tailed 

p=<0.00001). However, during MIS3 there is still significantly more silcrete than 

quartzite (Fisher’s exact test: Two-tailed p=<0.00001). 

 Another observation is that the quartz frequency relative to other raw materials is 

greatest in the MIS5 and MIS6 assemblages from PP13B and in the MIS5 assemblages 

from PP9B and PP9C. In the PP5-6 assemblages, quartz rises to the highest frequency 

relative to other raw material during MIS4. Additionally, chert (chalcedony) also rises to 

its highest frequency during MIS4 at PP5-6.  

 

Table 17. Count of raw material type by site and MIS designation. 
Site/MIS 
Designation 

Other 
(n=) 

Chert or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

PP5-6-MIS3 126 203 235 3126 1344 5034 

PP5-6-MIS4 92 707 1005 5509 1654 8967 

PP5-6-MIS5 83 68 168 772 2007 3098 

PP9B-MIS5 1 0 15 0 52 68 

PP9C-MIS5 0 0 19 4 63 86 

PP13B-MIS5 34 11 406 108 2950 3509 

PP13B-MIS6 16 6 253 80 1471 1826 

Total (n=) 352 995 2101 9599 9541 22588 

 

Figure 48 shows the raw material frequencies using mass (kg) for sites and MIS 

designation (Table 18). Quartzite still dominates the MIS5 (91.8%) and MIS6 (92.4%) 

assemblages at PP13B and the MIS5 assemblages at PP9B (79.84%) and PP9C (92.5%), 

and PP5-6 (83.3%). There is, however, a change in the frequencies in the MIS4 and MIS3 

assemblages at PP5-6. During MIS3 (64.2%) and MIS4 (52.3%) there is more quartzite 

than silcrete in terms of total artifact mass (kg). This means that although raw material 

count suggests that silcrete dominates the MIS4 assemblage when tallying by mass (kg), 
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which should reflect what has actually been transported to the locality, quartzite is the 

dominant raw material type. Another observation is that the relative frequency of quartz 

has decreased in all assemblages except for PP9B (20.1%). This suggests that in the other 

assemblages the elevated quartz frequency is due to many small fragments driving the 

frequency up.  

Figure 49 shows a regression analysis between artifact count and mass for 

quartzite, quartz, and silcrete in each MIS assemblage. Two observations can be made: 1) 

Silcrete counts are strongly correlated with mass (R
2
=0.959). An increase in mass results 

in a sharp increase in counts. The slope of the regression result for silcrete values shows 

that it is steeper than the result for quartz and quartzite. What this means is that an 

increase in the mass of silcrete lithics leads to an increased artifact count compared to 

quartzite and quartz. What drive this pattern, in particular, are the values from MIS3 and 

MIS4, which exhibit increased count values but low mass values. 2) Counts of quartzite 

lithics are also strongly correlated with mass (R
2
=0.7683). However, quartzite values 

during MIS3 and MIS4 very different from silcrete values. Although mass values are 

similar the counts of lithics are much lower (Tables 17-18). This supports the assertion 

made above that when using counts as the means to calculating raw material frequency it 

overestimates what has actually be transported into the site. The increased count in 

silcrete can be attributed to increased fragmentation. However, if this is the case the 

fragmentation would equally affect quartzite as well resulting in an increased count. A 

second explanation for the increased count in silcrete is a more conservative reduction 

approach to the material, where the focus is on gaining as much cutting edge per unit of 

raw material as possible. This will be explored further below. 
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Figure 48. Frequency of raw material type in assemblage tallied by artifact mass (kg) by 

site and MIS designation. The age of assemblages increases along the x-axis (from left to 

right). 

 

Table 18. Raw material type tallied by artifact mass (kg) by site and MIS designation. 

Site/MIS Designation 
Other 
(kg) 

Chert or Chalcedony 
(kg) 

Quartz 
(kg) 

Silcrete 
(kg) 

Quartzite 
(kg) 

Total 
(kg) 

PP5-6-MIS3 (n=5034) 0.311 0.327 0.452 4.641 10.270 16.001 

PP5-6-MIS4 (n=8967) 0.285 0.645 1.063 7.614 10.508 20.115 

PP5-6-MIS5 (n=3098) 0.666 0.280 0.594 2.706 21.194 25.439 

PP9B-MIS5 (n=68) 0.001 0.000 0.206 0.000 0.818 1.025 

PP9C-MIS5 (n=86) 0.000 0.000 0.046 0.069 1.423 1.539 

PP13B-MIS5 (n=3509) 0.586 0.059 3.860 1.037 61.836 67.377 

PP13B-MIS6 (n=1826) 0.041 0.016 1.068 0.535 20.125 21.786 

Total (kg) 1.889 1.326 7.288 16.603 126.174 153.280 
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Figure 49. Regression analysis of artifacts counts against artifact mass (kg) for quartzite, 

quartz, and silcrete in MIS assemblages. Each single point represents a MIS assemblage. 

 

By using the sub-aggregate (PP5-6) or stratigraphic aggregate (PP9B, PP9C, and 

PP13B) raw material frequencies from each MIS one can bootstrap the different raw 

material frequencies to obtain 95% confidence intervals around each mean raw material 

frequency. This can then be used to test whether a mean raw material frequency from an 

MIS is significantly different from the mean frequency of another in the same MIS. The 

MIS3 assemblage consists of sub-aggregate frequencies from RBSR (n=2), NWR (n=3), 

and BBCSR/BAS (n=6), The MIS4 assemblage consists of sub-aggregate frequencies 

from OBS2 (n=9), DBCS (n=9), SGS (n=6), OBS1 (n=8), SADBS Upper (n=9), SADBS 

Lower (n=2), and ALBS (n=3), while the MIS5 assemblage consists of sub-aggregate 

frequencies from LBSR (n=26) and ALBS (n=5), the PP9B and PP9C assemblage 

frequencies in addition to PP13B stratigraphic aggregate frequencies from LB Sand 1, 
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DB Sand 2, LB Sand 3, DB Sand 3, Shelly Brown Sand, Roof Spall-Upper, Roof Spall-

Lower, LBG Sand 1, LC-MSA Upper, and LC-MSA Middle. The MIS6 assemblage 

consists of PP13B stratigraphic aggregate frequencies from DB Sand 4a, LBG Sand 2, 

DB Sand 4b, DB Sand 4c, LC-MSA Lower, LB Silt-G, and LB Silt. 

Figure 50 shows the mean frequencies of quartzite, silcrete, and quartz with 95% 

confidence intervals resulting from a bootstrap of the standard error 10000 times. Starting 

in the MIS6, quartzite is significantly more frequent than quartz and silcrete, which have 

statistically similar frequencies. In the aggregates from MIS5, quartzite is significantly 

more frequent than silcrete and quartz. However, silcrete is now significantly more 

frequent than quartz (Table 19). From MIS5 to MIS4 the frequency of silcrete increases, 

while the frequency of quartzite decreases. The frequencies of silcrete and quartzite 

during MIS4 are significantly different from the silcrete and quartzite frequencies during 

MIS5. However, during MIS4 the frequencies of quartzite and silcrete are statistically 

similar (Table 19). When moving into MIS3, the frequency of quartzite increases again, 

while silcrete decreases. During MIS3, all three raw material frequencies are significantly 

different from each other (Table 19). The frequency of quartz is statistically similar 

across all four marine isotope stages (Table 19). Another interesting observation is that 

the frequency of silcrete during MIS5 is statistically similar to the frequency of quartz 

during MIS4 (Table 19).  
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Figure 50. Bootstrapped raw material frequencies at Pinnacle Point by site and MIS 

designation. The plot shows the mean and the upper and lower 95% confidence intervals 

for quartz, quartzite, and silcrete. The age of assemblages increases along the x-axis 

(from left to right). 

 

 

Table 19. Summary statistics and bootstrap test results for quartz, silcrete, and quartzite 

at PP5-6 by MIS Designation. 
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n (aggregate samples) 11 11 11 46 46 46 43 43 43 7 7 7 

First Quartile 0.9 8.9 61.9 1.2 13.8 5.2 0.1 0.9 64.3 1.7 0 87.6 

Min 0.4 2.6 47.2 0 0 0 0 0 26.9 0 0 87.6 

Median 2.5 21.7 69.4 3.7 39.1 43.0 2.6 6.4 83.7 2.1 0 97.9 

Mean 4.2 21.0 72.0 8.4 40.0 44.6 4.6 13.0 77.2 4.4 1.1 94.3 
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Max 15.3 39.2 90.0 66.1 96.6 96.5 24.9 64.8 100 9.4 5.0 100 

Third Quartile 7.4 34.2 85.8 10.5 62.8 68.2 6.9 21.2 92.8 9.3 2.6 98.3 

SD 4.5 12.8 13.8 11.8 27.5 25.5 6.0 16.5 20.0 3.9 2.0 5.4 

Boot strapped SE 1.3 3.8 4.1 1.7 4.0 3.7 0.9 2.5 3.0 1.4 0.7 1.9 

Margin of error (95% CI) 2.6 7.4 8.0 3.3 7.9 7.3 1.8 4.8 5.9 2.7 1.3 3.8 

Bootstrapped Upper 95% CI 6.8 28.4 80.0 11.7 47.9 51.9 6.4 17.9 83.1 7.1 2.4 98.1 

Bootstrapped Lower 95% CI 1.6 13.6 64.0 5.1 32.1 37.4 2.8 8.2 71.3 1.7 0 90.6 

*Bootstrapped 10000 times 

 

Stone artifact type frequency 

Figure 51 shows the frequencies of artifact types in assemblages according to site and 

MIS designation. Table 20 shows the counts of the different artifact types.  

 
Figure 51. Frequency of artifact type in assemblage based on counts by site and MIS 

designation. The age of assemblages increases along the x-axis (from left to right). 

 

There are several observations available from Figure 51 and Table 20. Flake and 

flake fragments dominate all the assemblages (52.3% to 71%). In all assemblages there 
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are significantly more flakes and flake fragments than blades and blade fragments (Every 

sample: Fisher’s exact test – Two-tailed p=<0.00001). Blade and blade fragments are 

always a small component of the total assemblage (3.5% to 19.9%). However, there is a 

significant increase in complete blades and blade fragments in MIS4 compared to MIS5 

(Fisher’s exact test: Two-tailed p=<0.00001). This is followed by a significant decrease 

in blades and blade fragments in MIS3 compared to MIS4 (Fisher’s exact test: Two-tailed 

p=<0.00001). 

 

Table 20. Count of artifact type by site and MIS designation. 

Site/MIS 
Designation 

Hammer or 
Manuport (n=) 

Core 
(n=) 

Retouched 
Piece (n=) 

Shatte
r (n=) 

Flake or Flake 
Fragment (n=) 

Blade or 
Blade 

Fragment (n=) 
Total 
(n=) 

PP5-6-MIS3 7 59 113 1189 3088 577 5033 

PP5-6-MIS4 8 113 440 1927 4693 1787 8968 

PP5-6-MIS5 9 61 95 354 2199 380 3098 

PP9B-MIS5 1 8 3 10 42 4 68 

PP9C-MIS5 1 4 1 19 58 3 86 

PP13B-MIS5 350 189 89 666 2119 284 3697 

PP13B-MIS6 131 63 16 332 1230 122 1894 

Total (n=) 507 497 757 4497 13429 3157 22844 

 

 By tallying artifact types by mass the shift to more blade production still holds in 

MIS5, MIS4, and MIS3 at PP5-6 compared to the older assemblages at PP9 and PP13B 

(Figure 52 and Table 21). Additionally, the frequencies of cores and hammer or 

manuports at PP9 and PP13B increase. That means that more of the raw materials at 

those sites are contained to cores and hammerstones or manuports. The MIS5 record from 

PP9 and PP13B, and the MIS6 record from PP13B suggest knapping on more locally 

acquired raw materials such as quartzite, while the MIS5, MIS4, and MIS3 record from 
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PP5-6 suggest an increase in stone tool production on non-local raw materials such as 

silcrete. 

 
Figure 52. Frequency of artifact type in assemblage based on mass by site and MIS 

designation. The age of assemblages increases along the x-axis (from left to right). 

 

Table 21. Artifact type tallied by mass (kg) by site and MIS designation. 

Site/MIS Designation 

Hammer or 
Manuport 

(kg) 
Core 
(kg) 

Retouched 
Piece (kg) 

Shatter 
(kg) 

Flake or 
Flake 

Fragment 
(kg) 

Blade or 
Blade 

Fragment 
(kg) 

Total 
(kg) 

PP5-6-MIS3 (n=5028) 0.3 1.4 0.9 1.8 9.0 2.5 16.0 

PP5-6-MIS4 (n=8960) 0.5 2.2 1.7 2.0 10.6 3.0 20.1 

PP5-6-MIS5 (n=3094) 0.8 2.6 1.7 1.5 15.7 3.1 25.4 

PP9B-MIS5 (n=68) 0.1 0.3 0.1 0.0 0.5 0.1 1.0 

PP9C-MIS5 (n=86) 0.1 0.6 0.0 0.1 0.7 0.0 1.5 

PP13B-MIS5 (n=3700) 10.1 18.7 2.6 4.9 29.2 3.7 69.2 

PP13B-MIS6 (n=1888) 3.3 6.0 0.5 1.1 10.6 0.9 22.4 

Total (kg) 15.2 31.8 7.5 11.5 76.4 13.3 155.8 
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 When looking at what the complete blades of the assemblages are made of it 

shows a big shift in the materials used to make the blades (Figure 53 and Table 22). 

During MIS5 there are significantly more complete blades made on quartzite than silcrete 

(Fisher’s exact test: Two-tailed p=0.026). However, in the following MIS4 there is a 

significant increase in the usage of silcrete in MIS4 compared to MIS5 (Fisher’s exact 

test: Two-tailed p=<0.00001). During MIS4 there are significantly more complete blades 

made on silcrete than quartzite (Fisher’s exact test: Two-tailed p=<0.00001). This is 

followed by a significant decrease in complete blades made on silcrete during MIS3 

compared to MIS4 (Fisher’s exact test: Two-tailed p=<0.00001) but silcrete still 

dominates the production of blades compared to quartzite (Fisher’s exact test: Two-tailed 

p=0.0004). 

 
Figure 53. Frequency of complete blades made on all raw material types in assemblage 

by site and MIS designation. The age of assemblages increases along the x-axis (from left 

to right). 
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Table 22. Count of complete blades made on all raw material types by site and MIS 

designation. 
Site/MIS 
Designation 

Other 
(n=) 

Chert Or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

PP5-6-MIS3 4 10 3 66 31 114 

PP5-6-MIS4 6 53 9 420 62 550 

PP5-6-MIS5 3 6 0 65 94 168 

PP9B-MIS5 0 0 0 0 3 3 

PP9C-MIS5 0 0 0 0 2 2 

PP13B-MIS5 0 1 3 11 142 157 

PP13B-MIS6 1 0 2 4 30 37 

Total (n=) 14 70 17 566 364 1031 

 

Stone artifact metrics 

Figure 54 shows the maximum dimension (mm) of all artifacts by site and MIS 

designation. Supplementary Table B1 shows the summary statistics for each artifact 

assemblage, while Supplementary Table B2 shows the Kruskal-Wallis test result and 

the uncorrected pairwise Mann-Whitney comparisons of the artifact assemblages. The 

median maximum dimension of MIS6 artifacts is significantly smaller than the following 

MIS5 artifacts (Mann-Whitney p=<0.00001). The median maximum dimension of MIS5 

artifacts from PP13B is statistically similar in maximum dimension to PP9B (Mann-

Whitney p=0.3641) and PP9C artifacts (Mann-Whitney p=0.5336). The median 

maximum dimension of MIS5 artifacts from PP5-6 is significantly larger than the MIS6 

artifacts from PP13B (Mann-Whitney p=<0.00001) and the MIS3 and MIS4 artifacts 

from PP5-6 (Both: Mann-Whitney p=<0.00001). The median maximum dimension of 

MIS4 artifacts from PP5-6 is significantly smaller than MIS3 artifacts from PP5-6 

(Mann-Whitney p=0.017).  
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Figure 54. Boxplot of maximum dimension (mm) of all artifacts classes made on all raw 

material types by site and MIS designation. The age of assemblages increases along the 

x-axis (from left to right). 

 

 Figure 55 shows the maximum dimension (mm) of all quartzite and silcrete 

artifacts by site and MIS designation. Supplementary Table B3 shows the summary 

statistics for each artifact assemblage, while Supplementary Table B4 shows the 

Kruskal-Wallis test result and the uncorrected pairwise Mann-Whitney comparisons of 

the artifact assemblages. One pattern is instantly visible for the PP5-6 assemblages. The 

maximum dimension (mm) of silcrete artifacts are significantly smaller than the 

maximum dimension (mm) of quartzite artifacts in MIS3, MIS4 and MIS5 (All 

assemblages: Mann-Whitney p=<0.00001). This is different from the PP13B assemblages 

where the MIS6 silcrete artifacts are not significantly different from the quartzite artifacts 

(Mann-Whitney p=0.2189), and MIS5 silcrete artifacts are not significantly different 

from MIS6 quartzite (Mann-Whitney p=0.06) and silcrete artifacts (Mann-Whitney 

p=0.5125). The MIS3 quartzite artifacts from PP5-6, MIS5 quartzite artifacts from PP5-6, 
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PP9B, and PP9C have the largest maximum dimension (mm) values (Supplementary 

Table B4).  

 
Figure 55. Boxplot of maximum dimension (mm) of all artifact classes made on quartzite 

(Q) and silcrete (S) by site and MIS designation. The age of assemblages increases along 

the x-axis (from left to right). 

 

 Figure 56 shows the maximum thickness (mm) of all artifacts by site and MIS 

designation. Supplementary Table B5 shows the summary statistics for each artifact 

assemblage, while Supplementary Table B6 shows the Kruskal-Wallis test result and 

the uncorrected pairwise Mann-Whitney comparisons of the artifact assemblages. MIS3 

and MIS4 artifacts from PP5-6 are significantly thinner than artifacts from all other 

assemblages (All assemblages: Mann-Whitney p=<0.00001). The median maximum 

thickness (mm) of MIS5 artifacts from PP5-6 is significantly different from artifacts from 

all other assemblages expect from MIS5 artifacts from PP9C (Mann-Whitney p=0.4740). 

The maximum thickness (mm) of MIS5 artifacts from PP9C is not significantly different 

from aforementioned MIS5 artifacts from PP5-6 but also MIS5 artifacts from PP9B and 

PP13B and MIS6 artifacts from PP13B (Supplementary Table B6).  
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Figure 56. Boxplot of maximum thickness (mm) of all artifact classes made on all raw 

material types by site and MIS designation. The age of assemblages increases along x-the 

axis (from left to right). 

 

 Figure 57 shows the maximum thickness (mm) of all quartzite and silcrete 

artifacts by site and MIS designation. Supplementary Table B7 shows the summary 

statistics for each lithic artifact assemblage, while Supplementary Table B8 shows the 

Kruskal-Wallis test result and the uncorrected pairwise Mann-Whitney comparisons of 

the artifact assemblages. A similar pattern to the maximum dimension values is 

observable. The maximum thickness (mm) of silcrete artifacts from MIS3, MIS4, and 

MIS5 is significantly smaller than artifacts from all other assemblages (all assemblages: 

Mann-Whitney p=<0.00001), except for MIS5 silcrete stone tools from PP5-6 that is 

statistically similar to MIS5 silcrete stone tools from PP13B (Mann-Whitney p=0.08).  
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Figure 57. Boxplot of maximum thickness (mm) of all artifact classes made on quartzite 

(Q) and silcrete (S) by site and MIS designation. The age of assemblages increases along 

the x-axis (from left to right). 

 

 Figure 58 shows the technological length (mm) of all complete flakes and blades 

by site and MIS designation. Supplementary Table B9 shows the summary statistics for 

each flake and blade assemblage, while Supplementary Table B10 shows the Kruskal-

Wallis test result and the uncorrected pairwise Mann-Whitney comparisons of the flake 

and blade assemblages. The technological length of complete flakes and blades from 

MIS3 and MIS4 at PP5-6 is significantly smaller than flakes and blades from the older 

assemblages (all assemblages: Mann-Whitney p=<0.00001). MIS5 complete flakes and 

blades from PP5-6 have a median technological length that is significantly different from 

artifacts from all other assemblages except for complete flakes and blades from the MIS6 

assemblage at PP13B (Supplementary Table B10). The MIS5 assemblages from PP9B, 

PP9C, and PP13B have the highest median technological length (mm) values, and they 

are statistically similar (Supplementary Table B10).  
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Figure 58. Boxplot of technological length (mm) of all complete flakes and blades made 

on all raw material types by site and MIS designation. The age of assemblages increases 

along the x-axis (from left to right). 

 

 Figure 59 shows the technological length (mm) of all complete quartzite and 

silcrete artifacts by site and MIS designation. Supplementary Table B11 shows the 

summary statistics for each artifact assemblage, while Supplementary Table B12 shows 

the Kruskal-Wallis test result and the uncorrected pairwise Mann-Whitney comparisons 

of the artifact assemblages. The median technological length (mm) of silcrete artifacts in 

MIS3, MIS4, and MIS5 are all significantly smaller than the quartzite artifacts in the 

same assemblages (all assemblages: Mann-Whitney p=<0.00001). The median 

technological length (mm) of MIS5 quartzite artifacts from PP9B, PP9C, and PP13B is 

the largest, and are all statistically similar (Supplementary Table B12). The median 

technological length (mm) of MIS6 quartzite artifacts is statistically similar to the MIS6 

silcrete artifacts (Mann-Whitney p=0.8692). 



300 
 

 
Figure 59. Boxplot of technological length (mm) of all complete flakes and blades made 

on quartzite (Q) and silcrete (S) by site and MIS designation. The age of assemblages 

increases along the x-axis (from left to right). 

 

 Figure 60 shows the technological width (mm) of all complete artifacts by site 

and MIS designation. Supplementary Table B13 shows the summary statistics for each 

artifact assemblage, while Supplementary Table B14 shows the Kruskal-Wallis test 

result and the uncorrected pairwise Mann-Whitney comparisons of the artifact 

assemblages. Similar to the technological length (mm) statistics, the median 

technological width of the MIS3 and MIS4 artifacts from PP5-6 are significantly smaller 

than artifacts from all other assemblages (all assemblages: Mann-Whitney p=<0.00001). 

MIS6 artifacts from PP13B is significantly smaller than the MIS5 artifacts from PP13B 

(Mann-Whitney p=<<0.00001). The median technological width (mm) of MIS5 artifacts 

from PP9B, PP9C, and PP13B is the largest, and they are statistically similar 

(Supplementary Table B14).  
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Figure 60. Boxplot of technological width (mm) of all complete flakes and blades made 

on all raw material types by site and MIS designation. The age of assemblages increases 

along the x-axis (from left to right). 

 

 Figure 61 shows the technological width (mm) of all complete quartzite and 

silcrete artifacts by site and MIS designation. Supplementary Table B15 shows the 

summary statistics for each artifact assemblage, while Supplementary Table B16 shows 

the Kruskal-Wallis test result and the uncorrected pairwise Mann-Whitney comparisons 

of the artifact assemblages. The median technological width (mm) of silcrete artifacts in 

MIS3, MIS4, and MIS5 are all significantly smaller than the quartzite artifacts in the 

same assemblages (all assemblages: Mann-Whitney p=<0.00001). The median 

technological width (mm) of MIS5 quartzite artifacts from PP9B, PP9C, and PP13B is 

the largest, and are all statistically similar (Supplementary Table B16). The median 

technological width (mm) of MIS5 complete quartzite artifacts from PP5-6 is statistically 

similar to MIS5 silcrete artifacts from PP13B, and MIS6 quartzite and silcrete artifacts 

from PP13B (Supplementary Table S16). The median technological width (mm) of 
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MIS6 quartzite artifacts is statistically similar to the MIS6 silcrete artifacts (Mann-

Whitney p=0.9590). 

 
Figure 61. Boxplot of technological width (mm) of all complete flakes and blades made 

on quartzite (Q) and silcrete (S) by site and MIS designation. The age of assemblages 

increases along the x-axis (from left to right). 

 

Cortex type frequency 

Cortex type is potentially a useful indicator of from where a raw material was collected. 

It can be looked at two ways. One can look at the overall strategy regardless of raw 

material and one can look at the raw material-specific strategy to gauge whether different 

strategies were used for different raw materials. In the Pinnacle Point sequence, cobble 

cortex dominates overall, which suggests mostly procurement of raw materials from 

high-energy cobble beaches or stream beds (Figure 62). Table 23 shows the count of 

cortex type by site and MIS designation. While cobble cortex dominates overall 

throughout the sequence there is, however, a significant increase overall in outcrop cortex 

in MIS4 (53.5%) compared to MIS5 (46.5%) (Fisher’s exact test: Two-tailed 

p=<0.00001). This increase in outcrop cortex is enough to make there be significantly 

more outcrop cortex than cobble cortex (Fisher’s exact test: Two-tailed p=<0.00001). 



303 
 

This is followed by a significant decrease in outcrop cortex during MIS3 compared to 

MIS4 (Fisher’s exact test: Two-tailed p=<0.00001). During MIS3 there is significantly 

more cobble cortex than outcrop cortex (Fisher’s exact test: Two-tailed p=<0.00001). 

 
Figure 62. Frequency of cortex type on all raw materials in assemblage by site and MIS 

designation. The age of assemblages increases along the x-axis (from left to right). 

 

Table 23. Count of cortex type on all raw materials by site and MIS designation. 

Site/MIS Designation Cobble (n=) Outcrop (n=) Total (n=) 

PP5-6-MIS3 389 176 565 

PP5-6-MIS4 612 705 1317 

PP5-6-MIS5 679 44 723 

PP9B-MIS5 19 0 19 

PP9C-MIS5 22 0 22 

PP13B-MIS5 794 47 841 

PP13B-MIS6 359 5 364 

Total (n=) 2874 977 3851 
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Above, the overall strategy of raw material procurement was investigated, which 

suggested that regardless of raw material, secondary sources were targeted more 

frequently throughout the sequence except for during MIS4 where outcrop dominates 

overall. However, when investigating the cortex type of quartzite and silcrete lithics 

separately several observations can be made (Figure 63 and Table 24). During MIS6 and 

MIS5 at PP13B, and MIS5 at both PP9 sites quartzite and silcrete are dominated by 

cobble cortex. However, when moving into MIS5 at PP5-6, there is a slight increase in 

outcrop cortex on silcrete lithics but overall there is significantly more cobble cortex than 

outcrop cortex on both quartzite and silcrete (Fisher’s exact test: both raw materials: 

Two-tailed p=<0.00001). During MIS4 there is a significant increase in outcrop cortex 

for both silcrete and quartzite during MIS4 compared to MIS5 (Fisher’s exact test: 

Quartzite: Two-tailed p=<0.00001; Silcrete: Two-tailed p=<0.00001). However, what 

drives the overall pattern of more outcrop cortex during MIS4 is that there is significantly 

more outcrop cortex than cobble cortex on silcrete lithics (Fisher’s exact test: Two-tailed 

p=<0.00001). Although there is a significant increase in outcrop cortex on quartzite 

lithics during MIS4 compared to MIS5 there is still significantly more cobble cortex than 

outcrop cortex on quartzite (Fisher’s exact test: Two-tailed p=<0.00001). This is followed 

by a significant decrease in outcrop cortex on silcrete and quartzite during MIS3 

compared to MIS4 (Fisher’s exact test: quartzite: Two-tailed p=0.038; silcrete: Two-

tailed p=<0.00001). Similar to MIS4, during MIS3 there is significantly more outcrop 

cortex than cobble cortex on silcrete (Fisher’s exact test: Two-tailed p=<0.00001), while 

there is significantly more cobble cortex than outcrop cortex on quartzite (Fisher’s exact 

test: Two-tailed p=<0.00001). 
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Figure 63. Frequency of cortex type on quartzite and silcrete artifacts in assemblage by 

site and MIS designation. Q=quartzite; S=Silcrete. The age of assemblages increases 

along the x-axis (from left to right). 

 

Table 24. Count of cortex type on quartzite and silcrete lithics by site and MIS 

designation. 

Site/MIS Designation Cobble (n=) Outcrop (n=) Total (n=) 

PP5-6-MIS3-Quartzite 247 32 279 

PP5-6-MIS3-Silcrete 64 122 186 

PP5-6-MIS4-Quartzite 338 52 390 

PP5-6-MIS4-Silcrete 154 630 784 

PP5-6-MIS5-Quartzite 532 16 548 

PP5-6-MIS5-Silcrete 77 22 99 

PP9B-MIS5-Quartzite 19 0 19 

PP9C-MIS5-Quartzite 20 0 20 

PP9C-MIS5-Silcrete 2 0 2 

PP13B-MIS5-Quartzite 724 18 742 

PP13B-MIS5-Silcrete 22 2 24 

PP13B-MIS6-Quartzite 324 3 327 

PP13B-MIS6-Silcrete 22 0 22 

Total (n=) 2545 897 3442 
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 Figure 64 shows that frequencies of cobble cortex on quartzite and silcrete co-

vary in all assemblages. This is particularly true in the PP13B and PP9 assemblages. 

However, when moving into the MIS5 assemblage at PP5-6 the increase in outcrop 

cortex on silcrete is much sharper compared to quartzite. The increase in MIS4 is even 

more different but both raw materials have an increase in outcrop cortex. In MIS3, both 

raw materials have a decline in outcrop cortex but again the decline is sharper in silcrete. 

 
Figure 64. Timeline plot showing frequencies of cobble or outcrop cortex on quartzite 

and silcrete. The age of assemblages increases along the the x-axis (from left to right). 

 

Cutting edge per mass ratio 

Cutting edge per mass ratio (CE/M) is a proxy for flaking efficiency (Braun 2005, Brown 

2011, Mackay 2008). Figure 65 and Table 25 show that MIS3 and MIS4 complete flakes 

and blades have higher values of CE/M. Supplementary Table B17 shows that the 

median CE/M values of MIS3 and MIS4 complete flakes and blades at PP5-6 is 
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significantly larger than artifacts from all other assemblages (all assemblages: Mann-

Whitney p=<0.00001). The median CE/M values of MIS5 artifacts from PP5-6 are 

statistically similar to MIS5 artifacts from PP9B and MIS6 artifacts from PP13B 

(Supplementary Table B17). Median CE/M values of MIS5 artifacts from PP9B, PP9C, 

and PP13B is the lowest and they are statistically similar (Supplementary Table B17).  

 
Figure 65. Boxplot with outliers showing distribution of Cutting Edge (mm) / Mass (m) 

(CE/M) values for all raw materials by site and MIS designation. The age of assemblages 

increases along the x-axis (from left to right). 

 

Table 25. Cutting edge (mm) / Mass (g) (CE/M) descriptive statistics for all raw 

materials by site and MIS designation. 

  PP5-6-MIS3 PP5-6-MIS4 PP5-6-MIS5 PP9B-MIS5 PP9C-MIS5 PP13B-MIS5 PP13B-MIS6 

N 885 2260 1134 24 43 1307 608 

Min 1.35 0.16 1.48 3.45 3.43 1.73 1.22 

Max 957.73 905.50 900.00 130.00 130.00 280.00 340.00 

Mean 78.35 91.57 31.52 24.58 17.81 20.05 32.71 

Std. error 3.10 2.09 1.44 6.78 3.12 0.71 1.68 

Variance 8487.71 9909.22 2355.89 1102.31 419.12 652.23 1724.18 

Stand. dev 92.13 99.55 48.54 33.20 20.47 25.54 41.52 

Median 49.94 60.00 17.75 11.01 13.12 11.74 17.02 

25 prcntil 21.95 28.92 9.46 8.17 7.73 6.88 9.16 

75 prcntil 94.93 116.67 36.28 22.94 19.13 22.18 42.19 
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Figure 66 and Table 26 shows that complete flakes and blades made on silcrete 

from MIS3, MIS4, and MIS5 at PP5-6 have the highest median CE/M values (all 

assemblages: Mann-Whitney p=<0.00001). The median CE/M values of MIS5 quartzite 

artifacts from PP9B, PP9C, and PP13B is the largest, and are all statistically similar 

(Supplementary Table B18). The median CE/M values of MIS3 and MIS4 quartzite 

artifacts from PP5-6 are statistically similar to MIS5 and MIS6 silcrete artifacts from 

PP13B (Supplementary Table B18). The median CE/M of MIS5 complete quartzite 

artifacts from PP5-6 is statistically similar to MIS5 quartzite artifacts from PP9B and 

PP9C (Supplementary Table B18). The median CE/M values of MIS6 quartzite artifacts 

from PP13B are statistically similar to the MIS5 and MIS6 silcrete artifacts from PP13B 

(Supplementary Table B18). 

 
Figure 66. Boxplot with outliers showing distribution of Cutting Edge (mm) / Mass (g) 

(CE/M) values for quartzite and silcrete by site and MIS designation. Q=Quartzite; 

S=Silcrete. The age of assemblages increases along the x-axis (from left to right). 
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Table 26. Descriptive statistics of Cutting edge (mm) / Mass (m) (CE/M) for quartzite 

(Q) and silcrete (S) by site and MIS designation. 
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N 249 534 507 1399 742 298 24 34 1153 47 512 41 

Min 2.14 1.35 0.16 1.55 1.48 3.04 3.45 3.43 1.73 1.93 1.22 3.86 

Max 274.2 957.7 390.2 905.5 260.0 567.1 130.0 130.0 280.0 185.0 340.0 85.0 

Mean 32.91 101.10 41.04 105.71 22.60 48.31 24.58 16.36 19.19 29.92 31.31 27.79 

Std. error 2.52 4.54 2.19 2.76 0.91 3.30 6.78 3.81 0.75 4.61 1.71 3.45 

Variance 1576.5 10982.9 2428.9 10664.4 613.2 3249.2 1102.3 492.4 645.8 997.4 1502.3 488.5 

Stand. dev 39.71 104.80 49.28 103.27 24.76 57.00 33.20 22.19 25.41 31.58 38.76 22.10 

Median 20.22 68.86 23.97 72.86 14.21 30.14 11.01 11.96 11.00 19.52 16.21 21.94 

25 prcntil 9.58 38.30 11.62 40.14 8.07 17.01 8.17 7.45 6.59 10.07 8.75 11.17 

75 prcntil 40.54 132.54 49.29 132.50 28.23 54.50 22.94 15.57 21.36 41.43 39.07 41.72 

 

Retouch frequency versus artifact volumetric density 

The ratio of retouch frequency to artifact volumetric density is here used as a tool to 

understand technological organization and land-use patterns (Barton 1998, Riel-Salvatore 

and Barton 2004, Riel-Salvatore, Popescu, and Barton 2008). Figure 67 and Table 27 

show that the MIS4 assemblage from PP5-6 has both the highest retouched frequency and 

the lowest artifact density compared to the other assemblages. The MIS4 assemblage 

plots towards the curated end of the curation-expediency continuum. The MIS3 

assemblage from PP5-6 tends towards the curated end but the retouch frequency and the 

artifact volumetric density is three times as low as the MIS4 assemblage. The MIS5 

assemblage from PP5-6 tends towards the expedient end of the continuum with seven 

times lower retouch frequency and four times lower artifact volumetric density. The 

MIS5 and MIS6 assemblages from PP13B are at the expedient end of the continuum.  
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Figure 67. Linear regression between frequency of retouched pieces per total artifact 

mass (kg) from each marine isotope stage and artifact volumetric density (total artifact 

mass (kg) per total sediment volume (m
3
)) from each marine isotope stage. 

 

Table 27. Marine Isotope Stage summary data for retouched piece frequency, total 

artifact mass (kg), and sediment volume (m
3
). 

Site and MIS 
Designation 

Total 
Artifact 

Mass (kg) 
Retouched 
Pieces (n=) Sediment Volume (m

3
) 

Frequency of 
retouched pieces 
(Retouch piece 

count / artifact mass 
(kg)) 

Artifact Density 
(Artifact Mass 
(kg) / Sediment 
Volume (m3)) 

PP5-6-MIS3 16.00 113 21.13 7.06 0.76 

PP5-6-MIS4 20.12 440 79.81 21.87 0.25 

PP5-6-MIS5 25.44 95 23.34 3.73 1.09 

PP13B-MIS5 69.25 89 34.46 1.29 2.01 

PP13B-MIS6 22.41 16 14.62 0.71 1.53 

 

Marine Isotope Stage summary 

Quartzite is the dominant raw material in terms of mass (kg) throughout the Pinnacle 

Point sequence. However, from MIS5 to MIS4 at PP5-6 there is significant increase in 

the use of silcrete. Silcrete frequency decreases slightly in MIS3 but is still more frequent 

compared to MIS5. When stone tool type frequencies are based on counts flakes and 

flake fragments dominate the stone tool artifact classes throughout the Pinnacle Point 
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sequence. However, as with the silcrete increase in MIS4, there is a similar significant 

increase in blade and blade fragments in MIS4 at PP5-6. The blades in the PP9B, PP9C, 

and PP13B assemblages are most frequently made on quartzite. However, silcrete 

increases as a preferred material to make blades in the MIS5 assemblage at PP5-6. 

During MIS4 and MIS3, the blades are most frequently made on silcrete. When the stone 

tool artifact type frequencies are based on mass (kg), the increase in blades in MIS5, 

MIS4, and MIS3 at PP5-6 is still present. However, the frequencies of cores and 

hammerstone/manuports in PP9 and PP13B assemblages increase. This means that a 

greater percentage of raw materials that have been transported to the sites are bound up in 

unused material. 

The stone artifacts from MIS3 and MIS4 assemblages at PP5-6 are smaller and 

thinner than the lithics from the other assemblages. The maximum dimension and 

thickness of the MIS5 stone artifacts at PP5-6 is similar to the MIS6 stone artifacts from 

PP13B. The MIS5 lithics from PP9B, PP9C, and PP13B are longest and thickest in the 

sequence. When looking at quartzite and silcrete lithics separately silcrete stone artifacts 

from the MIS3, MIS4, and MIS5 at PP5-6 are significantly smaller and thinner than 

quartzite and silcrete lithics from all other assemblages, while the quartzite stone artifacts 

from MIS3, MIS4, and MIS5 at PP5-6 are more similar to the quartzite and silcrete stone 

artifacts from the other assemblages.  

The technological lengths and widths of complete flakes and blades show a very 

similar pattern to the maximum dimension and thickness results. MIS3 and MIS4 stone 

artifacts from PP5-6 are shorter and narrower than stone tools from all other assemblages. 
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The silcrete stone artifacts from MIS3, MIS4, and MIS5 at PP5-6 are shorter and 

narrower than quartzite and silcrete lithics from all other assemblages. 

The relative cortex frequency suggests that throughout the Pinnacle Point 

sequence, raw materials were mostly procured from high-energy environments such as 

cobble beaches and/or streambeds, or alternatively from conglomerates that include well-

rounded clasts. However, in MIS4 at PP5-6 there is evidence that the dominant 

procurement strategy for silcrete shifted to focusing on fixed primary sources such as 

cliffs or outcrops. There is also an increase in outcrop cortex on quartzite but not enough 

to be the dominant strategy for that material. This pattern also holds in MIS3 at PP5-6; 

silcrete is dominated by outcrop cortex but in a smaller frequency compared to MIS4, 

whereas quartzite is dominated by cobble cortex with a small decrease in outcrop cortex. 

MIS3 and MIS4 stone artifacts at PP5-6 were flaked more efficiently than lithics 

from all other assemblages. The MIS5 lithics from PP5-6 were flaked similarly in terms 

of efficiency compared to MIS6 stone artifacts from PP13B. MIS5 stone artifacts from 

PP9B, PP9C, and PP13B were flaked less efficiently. The flaking efficiency of MIS3, 

MIS4, and MIS5 silcrete stone artifacts are the highest comparable to quartzite and 

silcrete lithics from all other assemblages. The flaking efficiency of both quartzite and 

silcrete stone artifacts from MIS5 and MIS6 assemblages at PP13B is very similar. 

The retouch frequency to artifact volumetric density ratio method suggests that 

the MIS4 assemblage at PP5-6 is due to curated behavior. The ratios of the MIS3 and 

MIS5 assemblages at PP5-6 indicate that they are a mix of curated and expedient 

behavior. The ratios of the MIS5 and MIS6 assemblages at PP13B suggest that they are 

due to expedient behavior. 
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Stone tool data – grouped by stratigraphic aggregate/unit 

In the following section, the pertinent archaeological data (raw material frequency, lithic 

type frequency, cortex type frequency, technological length, cutting edge per mass ratios, 

and retouch frequency per artifact density ratios) will be presented by StratAggs 

(stratigraphic aggregates) from the localities in question. Additionally, raw material 

frequency from PP5-6 will be presented by SubAggs (sub-aggregates) to present an even 

higher resolution raw material frequency from that site. 

 

Raw material frequency 

Figure 68 and Tables 28 (corresponding counts of raw materials in each StratAgg can be 

found in Supplementary Table B19) show that quartzite is the dominant raw material 

throughout the PP13B sequence in terms of transported mass (kg) (75.8% to 100%). 

Quartz is the second dominant raw material (0% to 13.4%), while silcrete frequencies 

only rise to prominence in the LC-MSA Lower (5%), LC-MSA Middle (5.8%), LC-MSA 

Upper (9.3%), and LB Sand 2 (6.4%) based on artifact mass (kg). 
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Figure 68. Relative frequency of raw material type in assemblage tallied by artifact mass 

(kg) by stratigraphic aggregates. The age of assemblages decreases along the y-axis 

(oldest at bottom).  

 

Table 28. Raw material type tallied by mass (kg) for PP13B stratigraphic aggregates. 

Stratigraphic aggregate 
Other 
(kg) 

Chert Or 
Chalcedony (kg) 

Quartz 
(kg) 

Silcrete 
(kg) 

Quartzite 
(kg) 

Total 
(kg) 

LB Sand  1 (n=356) 0.045 0.011 0.709 0.216 8.045 9.03 

DB Sand 2 (n=249) 0.012 0.000 0.321 0.030 6.285 6.65 

LB Sand  2 (n=57) 0.039 0.000 0.121 0.058 0.685 0.90 

DB Sand 3 (n=674) 0.128 0.019 0.942 0.432 10.603 12.12 

Shelly Brown Sand (n=199) 0.000 0.001 0.118 0.002 1.581 1.70 

Roof Spall-Upper (n=964) 0.233 0.011 0.677 0.115 11.132 12.17 

Roof Spall-Lower (n=303) 0.022 0.000 0.394 0.043 2.720 3.18 

LBG Sand 1  (n=464) 0.099 0.001 0.518 0.005 18.952 19.58 

LC-MSA Upper (n=59) 0.007 0.002 0.002 0.044 0.415 0.47 

LC-MSA Middle (n=184) 0.000 0.014 0.057 0.092 1.418 1.58 

DB Sand 4a (n=36) 0.000 0.000 0.046 0.000 2.082 2.13 

LBG  Sand 2 (n=86) 0.001 0.000 0.172 0.000 1.657 1.83 

DB Sand 4b (n=47) 0.000 0.006 0.109 0.030 1.024 1.17 

DB Sand 4c (n=22) 0.000 0.000 0.034 0.000 1.955 1.99 
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LC-MSA Lower (n=1522) 0.037 0.010 0.642 0.496 8.718 9.90 

LB Silt-G (n=16) 0.000 0.000 0.000 0.000 1.114 1.11 

LB Silt (n=91) 0.003 0.000 0.065 0.001 3.488 3.56 

Total (kg) 0.627 0.075 4.928 1.564 81.874 89.07 

 

 The record from PP9B and PP9C show that quartzite is the dominant raw material 

throughout at both PP9B (79.8%) and PP9C (92.5%) in terms of transported mass (kg) 

(Figure 68 and Table 29; corresponding counts of raw materials at each site can be 

found in Supplementary Table B20). Quartz is the second dominant raw material 

(20.1% at PP9B), while silcrete is found at low frequency at PP9C (4.5%). 

 

Table 29. Raw material type tallied by mass (kg) for PP9B and PP9C. 

Cave Site 
Other 
(kg) 

Chert or Chalcedony 
(kg) 

Quartz 
(kg) 

Silcrete 
(kg) 

Quartzite 
(kg) 

Total 
(kg) 

PP9B-MIS5 (n=68) 0.0009 0 0.2056 0 0.818 1.0245 

PP9C-MIS5 (n=86) 0 0 0.0462 0.0694 1.4233 1.5389 

Total (kg) 0.0009 0 0.2518 0.0694 2.2413 2.5634 

 

 At PP5-6 there is great variability in the raw material frequencies throughout the 

sequence at the StratAgg level based on what has been transported to the site (Figure 68 

and Table 30; corresponding counts of raw materials in each StratAgg can be found in 

Supplementary Table B21). Several interesting observations can be made from Figure 

68. In the three earliest stratigraphic aggregates YBSR (51%), LBSR (85.6%), and ALBS 

(90.9%), and in the SADBS Lower (65.5%) and OBS1 (67.2%) StratAggs quartzite 

dominates, while silcrete is dominant in the interstratified SADBS Upper (61.9%) and 

SGS (48.8%) StratAggs. The following OBS2 (45.1%), BBCSR/BAS (72.2%), NWR 

(81.9%), and RBSR (66.9%) StratAggs are dominated by quartzite. Quartz only rises to a 

relatively high frequency (~ ≥5%) in terms of mass (kg) in OBS1 (17.2%), OBS2 
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(13.9%) and BBCSR (5%). Materials such as hornfels and indurated shale designated as 

‘other’ raw materials only rise to relatively high frequencies (~ ≥5%) in the YBSR 

StratAgg (15.1%). Chert (Chalcedony) has elevated frequencies (~ ≥4%) in YBSR 

(5.2%), OBS1 (4.7%), OBS2 (4.9%), and RBSR (4%). 

 

Table 30. Raw material type tallied by mass (kg) for PP5-6 stratigraphic aggregates. 
Stratigraphic 
aggregate Other (kg) 

Chert or 
Chalcedony (kg) 

Quartz 
(kg) 

Silcrete 
(kg) 

Quartzite 
(kg) 

Total 
(kg) 

RBSR (n=552) 0.127 0.138 0.086 0.801 2.332 3.484 

NWR (n=275) 0.0001 0.002 0.01 0.266 1.25 1.526 

BBCSR/BAS (n=3309) 0.097 0.133 0.311 1.206 4.527 6.273 

OBS2 (n=1194) 0.014 0.105 0.300 0.768 0.974 2.161 

SGS (n=339) 0.011 0.021 0.030 0.368 0.325 0.754 

OBS1 (n=725) 0.011 0.105 0.383 0.232 1.495 2.226 

SADBS Upper (n=3783) 0.076 0.100 0.198 3.735 1.925 6.034 

SADBS Lower (n=294) 0.032 0.034 0.056 0.450 1.086 1.658 

ALBS (n=316) 0.051 0.005 0.005 0.130 1.901 2.092 

LBSR (n=2811) 0.399 0.188 0.576 2.211 20.055 23.429 

YBSR (n=280) 0.266 0.092 0.018 0.487 0.899 1.763 

Total (kg) 1.0841 0.923 1.973 10.654 36.769 51.4 

Only stratigraphic aggregates with 10 or more stone artifacts are included. 

 

Raw material frequency – Sub-aggregate data from PP5-6 

In the following text, the analysis will focus on individual SubAggs within each StratAgg 

and MIS Designation at PP5-6. I start with the earliest deposits. During MIS 5 at PP5-6, 

quartzite dominates throughout and there is decreasing raw material variability with 

younger sediments. Figure 69 and Table 31 (corresponding counts of raw materials in 

each sub-aggregate can be found in Supplementary Table B22) show that quartzite is 

the dominant raw material in all sub-aggregates (45.5% to 100%) except for in Kirsty 

(26.9%), Elizabeth Sand and Roof spall (28.4%), Tove Sand and Roofspall (46.8%), and 

Logan Sand and Roofspall 2 (33.9%). Chert (Chalcedony) dominates in Kirsty (29.3%). 
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Silcrete dominates in Elizabeth Sand and Roofspall (48.2%), Tove Sand and Roofspall 

(49.7%), and Logan Sand and Roofspall 2 (64.8%). Quartz has relatively increased 

frequencies (~ ≥5%) in Simen Red (7.1%), Arnold Red (25%), Logan Red (16.4%), 

Logan Sand and Roofspall 1 (15.2%), Sondra Red (4.9%), Luke Shell (6.1%), and Cobus 

Shell (12.7%).  

 
Figure 69. Relative frequency of raw material type tallied by artifact mass (kg) at PP5-6 

by sub-aggregates during MIS3, MIS4, and MIS5. The age of assemblages increases 

along the x-axis (from left to right). Only sub-aggregates with 10 or more stone artifacts 

are included. 

 

Other than Kirsty (29.3%), chert (chalcedony) only rises to relatively elevated 

frequencies (~ ≥5%) in Bryant (7.2%) and Logan Red (5.2%). ‘Other’ raw materials such 

as hornfels and indurated shale have very varied frequencies but rise to relatively 

elevated frequencies (~ ≥5%) in Kirsty (18.4%), Bryant (6.8%), Elizabeth Sand and 
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Roofspall (21.4%), Meghan Sand and Roofspall (24.3%), Arnold Red (12.1%), Sondra 

Sand and Roofspall (5.5%), Aaron Sand and Roofspall (7.15), Lwando Shell (6%), Hope 

Red (20.6%), and Ludumo Sand and Roofspall (17.3%). 

 

Table 31. Raw material type tallied by artifact mass (kg) at PP5-6 by MIS5 sub-

aggregates. 

Stratigraphic 
aggregate Sub-aggregate 

Other 
(kg) 

Chert or 
Chalcedony 

(kg) 
Quartz 

(kg) 
Silcret
e (kg) 

Quartzit
e (kg) 

Total 
(kg) 

LBSR Jed 2 0.081 0.062 0.005 0.047 8.868 9.062 

LBSR Jed 1 0.000 0.006 0.008 0.019 1.265 1.299 

LBSR Ludumo Red 0.018 0.000 0.002 0.048 0.873 0.941 

LBSR Ludumo Sand and Roofspall 0.021 0.000 0.001 0.000 0.101 0.124 

LBSR Martin Red 0.000 0.000 0.000 0.000 0.104 0.104 

LBSR Hope Red 0.040 0.000 0.000 0.066 0.089 0.195 

LBSR Lwando Shell 0.052 0.000 0.000 0.017 0.797 0.866 

LBSR Aaron Sand and Roofspall 0.029 0.010 0.000 0.027 0.336 0.402 

LBSR Kyle Shell 0.000 0.000 0.000 0.196 0.228 0.424 

LBSR Adrian Sand and Roofspall 0.004 0.000 0.001 0.066 0.127 0.197 

LBSR Adrian Shell 0.020 0.001 0.005 0.001 0.407 0.435 

LBSR Leba Shell 0.006 0.006 0.035 0.014 0.959 1.020 

LBSR Cobus Shell 0.000 0.000 0.012 0.001 0.080 0.093 

LBSR Luke Sand and Roofspall 0.000 0.000 0.000 0.004 0.865 0.868 

LBSR Luke Shell 0.010 0.000 0.047 0.082 0.644 0.784 

LBSR Sondra Sand and Roofspall 0.047 0.000 0.000 0.157 0.648 0.851 

LBSR Sondra Red 0.000 0.010 0.028 0.193 0.351 0.583 

LBSR Logan Sand and Roofspall 1 0.001 0.008 0.081 0.114 0.332 0.536 

LBSR Logan Sand and Roofspall 2 0.000 0.000 0.005 0.236 0.123 0.364 

LBSR Logan Red 0.006 0.034 0.107 0.065 0.439 0.651 

LBSR Arnold Sand and Roofspall 0.000 0.002 0.000 0.000 0.343 0.346 

LBSR Arnold Red 0.027 0.000 0.055 0.025 0.114 0.221 

LBSR Simen Sand and Roofspall 0.002 0.000 0.011 0.024 0.254 0.292 

LBSR Simen Red 0.000 0.001 0.043 0.152 0.403 0.599 

LBSR Tove Sand and Roofspall 0.000 0.002 0.009 0.154 0.145 0.309 

LBSR Tove Red 0.028 0.040 0.026 0.478 0.878 1.450 

YBSR Lee 0.000 0.000 0.000 0.019 0.092 0.111 

YBSR Meghan Sand and Roofspall 0.060 0.000 0.000 0.023 0.162 0.245 

YBSR Elizabeth Sand and Roofspall 0.143 0.006 0.008 0.322 0.190 0.669 

YBSR Bryant 0.032 0.034 0.004 0.048 0.355 0.474 

YBSR Kirsty 0.031 0.050 0.006 0.038 0.046 0.171 
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Total (kg)   0.657 0.271 0.501 2.637 20.620 
24.68

6 

Only sub-aggregates with 10 or more stone tools are included. 

 

Figure 69 and Table 32 (corresponding counts of raw materials in each SubAgg 

can be found in Supplementary Table B23) show that there is great variability in raw 

material frequencies in the MIS4 SubAggs. Several observations can be made. Quartzite 

is dominant in the two early ALBS sub-aggregates (Conrad Cobble and Sand: 96.5%; 

Conrad Shell: 74.1%) and in the two SADBS Lower aggregates (Jocelyn: 65%; Erich: 

69.5%). Silcrete dominates in the SADBS Upper aggregates (46.4% to 82%) except for in 

House (37.2%). In the OBS1 stratigraphic aggregate, quartzite dominates in all sub-

aggregates (52.1% to 90.9%) except for Joanne 1 (5.1%) and Sasha (5.3%). Silcrete 

dominates in Joanne 1 (76.2%) and quartz dominates in Sasha (66.1%). The frequencies 

in the SGS sub-aggregates are dominated by silcrete (39.7% to 75.5%) except for in Zuri 

Upper (9.9%) and Jinga Upper (44.65%). Quartzite dominates in Zuri Upper (84.4%) and 

Jinga Upper (45.8%). In the following OBS2, the raw material frequencies are very 

variable. Quartzite dominates in sub-aggregates Josh (74.8%), Sarah (45.1%), Elizabeth 

(71.4%), and Andy (79.1%). Silcrete dominates in Alicen (48%), Chantal (96.6%), Hans 

(82.2%), and Emma Sand (55.9%). Kevin Sand is dominated by Chert (Chalcedony) 

(100%).  

In addition to Sasha where quartz dominates the assemblage (66.1%), Quartz has 

relatively elevated frequencies (~ ≥10%) in House (12.4%), Joanne 1 (10.6%), Spencer 

(28.5%), Celeste (24.5%), Orfer (11.4%), Lizelle 1 (17.4%), Josh (17.5%), Sarah 

(31.2%), Elizabeth (10.5%), and Andy (17.4%). Other than Kevin Sand (100%), chert 

(chalcedony) has relatively increased frequencies (~ ≥5%) in Bettina (5.7%), Joanne 1 
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(8.1%), Spencer (5%), Orfer (9.7%), Lizelle 1 (6%), Jinga Lower Dark 2 (14.9%), Jinga 

Upper (5.2%), and Sarah (8.4%). 

 

Table 32. Raw material type tallied by artifact mass (kg) at PP5-6 by MIS4 sub-

aggregates. 

Stratigraphic 
aggregate Sub-aggregate 

Other 
(kg) 

Chert or 
Chalcedony 

(kg) 
Quartz 

(kg) 
Silcrete 

(kg) 
Quartzite 

(kg) 
Total 
(kg) 

OBS2 Emma Sand (n=53) 0.000 0.001 0.006 0.038 0.023 0.069 

OBS2 Andy (n=135) 0.000 0.006 0.070 0.010 0.323 0.409 

OBS2 Elizabeth (n=97) 0.000 0.011 0.030 0.040 0.202 0.283 

OBS2 Kevin Sand (n=47) 0.000 0.038 0.000 0.000 0.000 0.038 

OBS2 Sarah (n=488) 0.002 0.042 0.157 0.075 0.227 0.505 

OBS2 Hans (n=219) 0.011 0.001 0.009 0.443 0.074 0.539 

OBS2 Chantal (n=20) 0.000 0.000 0.003 0.083 0.000 0.086 

OBS2 Alicen (=99) 0.000 0.005 0.010 0.071 0.062 0.148 

OBS2 Josh (n=33) 0.000 0.000 0.015 0.006 0.063 0.084 

SGS Zuri Upper (n=37) 0.001 0.001 0.005 0.013 0.113 0.134 

SGS Zuri Lower (n=68) 0.000 0.006 0.003 0.106 0.025 0.141 

SGS Jinga Upper (n=56) 0.001 0.007 0.005 0.063 0.064 0.140 

SGS Jinga Middle (n=40) 0.001 0.001 0.003 0.073 0.057 0.135 

SGS Jinga Lower Dark 3 (n=120) 0.007 0.003 0.012 0.106 0.059 0.188 

SGS Jinga Lower Dark 2 (n=16) 0.000 0.002 0.001 0.006 0.006 0.016 

OBS1 Lizelle 2 (n=35) 0.008 0.002 0.014 0.016 0.116 0.156 

OBS1 Lizelle 1 (n=20) 0.000 0.007 0.019 0.008 0.076 0.110 

OBS1 Orfer (n=114) 0.000 0.047 0.092 0.056 0.294 0.489 

OBS1 Chris (n=55) 0.001 0.018 0.007 0.026 0.513 0.564 

OBS1 Celeste (n=87) 0.002 0.003 0.085 0.004 0.253 0.345 

OBS1 Sasha (n=33) 0.001 0.001 0.028 0.011 0.002 0.042 

OBS1 Spencer (n=301) 0.000 0.022 0.128 0.065 0.234 0.449 

OBS1 Joanne 1 (n=77) 0.000 0.005 0.007 0.047 0.003 0.062 

SADBS Upper Joanne (n=372) 0.023 0.020 0.079 0.761 0.474 1.356 

SADBS Upper Bettina (n=339) 0.006 0.035 0.016 0.305 0.250 0.611 

SADBS Upper House (n=92) 0.000 0.001 0.022 0.065 0.087 0.176 

SADBS Upper Kim (n=58) 0.000 0.001 0.008 0.064 0.026 0.098 

SADBS Upper Enrico (n=161) 0.001 0.012 0.025 0.177 0.168 0.381 

SADBS Upper Gert (n=717) 0.010 0.018 0.026 0.793 0.430 1.277 

SADBS Upper Holly (n=193) 0.000 0.002 0.008 0.170 0.082 0.262 

SADBS Upper Sydney (n=1492) 0.037 0.012 0.010 1.015 0.314 1.388 

SADBS Upper Thandesizwe (n=356) 0.000 0.000 0.004 0.386 0.080 0.470 

SADBS Lower Erich (n=79) 0.001 0.000 0.000 0.055 0.127 0.182 
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SADBS Lower Jocelyn (n=215) 0.031 0.034 0.056 0.396 0.959 1.476 

ALBS Conrad Sand (n=19) 0.002 0.002 0.000 0.058 0.008 0.071 

ALBS Conrad Shell (n=54) 0.022 0.002 0.001 0.041 0.189 0.254 

ALBS 
Conrad Cobble and Sand 
(n=243) 0.026 0.001 0.004 0.031 1.704 1.767 

Total (kg)   0.194 0.369 0.968 5.683 7.687 
14.90

1 

Only sub-aggregates with 10 or more artifacts are included. 

  

A separate StratAgg called DBCS also belongs to the MIS4 designation based on 

OSL dating as noted above. It is overlaying the SGS but is most likely derived from 

materials from the BAS, OBS2, and SGS. Figure 70 and Supplementary Table B24 

(corresponding counts of raw materials in each sub-aggregate can be found in 

Supplementary Table B25) show that both quartzite and silcrete are the dominant raw 

materials throughout the DBCS sequence in terms of transported mass (kg).  

 
Figure 70. Frequency of raw material type in assemblage tallied by artifact mass (kg) at 

PP5-6 by DBCS sub-aggregates during MIS4. The age of assemblages increases along 

the x-axis (from left to right). 
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Quartzite dominates SubAggs Quinn Lower-B (68%), Quinn Upper (60.1%), Sam 

(41.9%, Coco (51%), Colleen (49.1%), Miller (56.8%), while silcrete dominates Sorel 

(56.2%), Leonides (74.1%), and Ollie (78%). Quartz has relatively elevated frequencies 

(~ ≥5%) in Sam (23.4%) and Leonides (7%). Chert (Chalcedony) has relatively elevated 

frequencies (~ ≥5%) in all aggregates (5% to 15.1%) except for Sorel (3.5%), Miller 

(4.1%), and Ollie (4.7%). ‘Other’ raw material types only rise to a relatively elevated 

frequency (~ ≥3%) in Quinn Lower B (3.6%) and Quinn Upper (4.9%). 

During MIS3, quartzite is the dominant raw material in every SubAgg in terms of 

what has been transported (47.2% to 90%) (Figure 69 and Table 33; corresponding 

counts of raw materials in each SubAgg can be found in Supplementary Table B26). 

Silcrete has elevated frequencies in Dark Brown Silty Sand (15.5%), Compact Brown and 

Red Sand (29.5%), Coarse Grained Dark Brown Sand (34.2%), Zenobia (39.2%), Emily 

(21.7%), Ellis (36.3%), and Takis (24.8%), while quartz has elevated frequencies (~ 

≥5%) in James (15.3%), Emily (8.1%), and Denise (7.4%). Chert (Chalcedony) and 

‘other’ raw materials such as hornfels and indurated shale only rise to a relatively high 

frequency (~ ≥4%) in Zenobia (Chert: 4.5%; ‘other’: 4.3%) and Takis (Chert: 4.5%; 

‘other’: 4.1%). 

 

Table 33. Raw material type tallied by artifact mass (kg) at PP5-6 by MIS3 sub-

aggregates. 

Stratigraphic aggregate Sub-aggregate 
Other 
(kg) 

Chert or 
Chalcedony 

(kg) 
Quartz 

(kg) 
Silcrete 

(kg) 
Quartzite 

(kg) 
Total 
(kg) 

RBSR Denise (n=26) 0.000 0.000 0.026 0.009 0.319 0.354 

RBSR Takis (n=523) 0.127 0.138 0.060 0.773 2.013 3.111 

NWR 
Dark Brown Silty 

Sand (n=207) 0 0.0006 0.01 0.205 1.11 1.33 

NWR 

Compact Brown 
and Red Sand 

(n=57) 0.0001 0.0009 0 0.048 0.11 0.164 
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NWR 

Coarse Grained 
Dark Brown Sand 

(n=11) 0 0.0005 0 0.013 0.023 0.037 

BBCSR/BAS Ellis (n=1867) 0.076 0.005 0.025 1.071 1.776 2.954 

BBCSR/BAS Nkosi (n=178) 0.006 0.030 0.062 0.101 1.630 1.829 

BBCSR/BAS Sydwell (n=108) 0.001 0.000 0.012 0.145 0.953 1.110 

BBCSR/BAS Emily (n=521) 0.024 0.027 0.127 0.338 1.044 1.560 

BBCSR/BAS James (n=36) 0.001 0.008 0.037 0.022 0.178 0.245 

BBCSR/BAS Zenobia (n=599) 0.065 0.069 0.073 0.600 0.722 1.529 

Total (kg)   0.3001 0.279 0.432 3.325 9.878 14.223 

Only sub-aggregates with 10 or more stone artifacts are included. 

 

Bootstrapped raw material frequencies 

By using the raw material frequencies from StratAggs or SubAggs from each MIS 

designation one can bootstrap the different raw material frequencies to obtain 95% 

confidence intervals around each mean raw material frequency. If StratAggs are used, 

which is the case with PP13B data then that data can be used to test whether a mean raw 

material frequency from a Marine Isotope Stage is significantly different from the mean 

frequency of another in the same Marine Isotope Stage. If SubAggs are used, which is the 

case with PP5-6 data then that data can be used to test whether a mean raw material 

frequency from a StratAgg is significantly different from the mean frequency of another 

in the same StratAgg.  

 The MIS5 assemblage from PP13B consists of 10 StratAgg samples (LB Sand 1, 

DB Sand 2, LB Sand 2, DB Sand 3, Shelly Brown Sand, Roof Spall-Upper, Roof Spall-

Lower, LBG Sand 1, LCA-MSA Upper, and LC-MSA Lower, while the MIS6 

assemblage from PP13B consists of seven StratAggs (DB Sand 4a, LBG Sand 2, DB 

Sand 4b, DB Sand 4c, LC-MSA Lower, LB Silt-G, and LB Silt. From PP5-6 six 

SubAggs were used from the BBCSR/BAS StratAgg, nine from the OBS2 StratAgg, six 
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from SGS, eight from OBS1, nine from SADBS Upper, five from SADBS Lower and 

ALBS combined, 26 from LBSR, and five from YBSR. 

Figure 71 shows the mean frequencies of quartzite, silcrete, and quartz with 95% 

confidence intervals resulting from the bootstrap of the standard error 10000 times. In 

both the MIS5 and MIS6 assemblages at PP13B, quartzite is significantly more frequent 

than silcrete and quartz (Table 34). Additionally, in both MIS5 and MIS6, silcrete and 

quartz frequencies are statistically similar to each other in each assemblage and between 

both assemblages (Table 34). The silcrete frequency from the MIS5 assemblage at 

PP13B is statistically similar to the silcrete frequencies from the OBS1 and SADBS 

Lower/ALBS StratAggs at PP5-6, while the quartzite frequency is statistically similar to 

the quartzite frequency from the SADBS Lower/ALBS StratAgg (Tables 34-35).  

At PP5-6 during MIS5, quartzite is significantly more frequent than silcrete and 

quartz in LBSR, while in the older YBSR quartzite and silcrete has statistically similar 

frequencies (Figure 71 and Table 35). From LBSR in MIS5 to SADBS Lower/ALBS in 

MIS4, the frequency of silcrete increases, while the frequency of quartzite decreases. 

However, in the SADBS Lower/ALBS, the frequency of quartzite and silcrete are 

statistically similar. 

When moving into the SADBS Upper the frequency of silcrete increases further 

while the quartzite frequency drops making the frequencies significantly different (Table 

35). In next three aggregates, OBS1, SGS, and OBS2 in MIS4, quartzite and silcrete 

frequencies are statistically similar. In both OBS1 and OBS2, quartz frequencies are also 

statistically similar to silcrete frequencies (Table 35). When moving into MIS3, the 

frequency of quartzite increases again, while silcrete decreases making the two 
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frequencies significantly different. However, the quartz frequency is statistically similar 

to the silcrete frequency (Table 35). The frequency of quartz is relatively low in all 

StratAggs expect for in OBS1 and OBS2 stages (Table 35). 

 
Figure 71. Bootstrapped raw material frequencies at PP13B by MIS designation and at 

PP5-6 by stratigraphic aggregate and MIS Designation. Plot shows the mean and the 

upper and lower 95% confidence intervals for quartz, quartzite, and silcrete. From PP5-6 

only stratigraphic aggregates with five or more sub-aggregates with available raw 

material data are included. The age of assemblages increases along the x-axis (from left 

to right). 

 

Another interesting observation is that the frequencies of quartzite and silcrete 

have overall greater margins of error during MIS4 compared to MIS3 and MIS5, which 

reflects a greater variance in what raw material in terms of mass was transported most 

frequently to PP5-6 relative to other raw materials. A shorter length between the upper 

and lower 95% CI bars indicates that a given raw material is the most frequently 
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transported material in terms of mass to PP5-6 across several SubAggs (Table 35). The 

only two StratAggs that do not showcase wide margins of error on all three raw materials 

are SADBS Upper, which shows that more silcrete in terms of mass is consistently 

transported more frequently to PP5-6 than quartzite and quartz, and LBSR, which shows 

that quartzite in terms of mass is consistently transported more frequently to PP5-6 than 

silcrete and quartz (Table 35). Additionally, the MIS5 and MIS6 assemblages from 

PP13B have narrow margins of error on all three raw materials (Table 34). 

 

Table 34. Summary statistics and bootstrap test results for quartz, silcrete, and quartzite 

at PP13B by MIS Designation. 
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n (aggregate samples) 10 10 10 7 7 7 

First Quartile 3.352 0.375 86.993 1.709 0.000 87.621 

Min 0.468 0.026 75.800 0.000 0.000 87.621 

Median 6.256 1.862 89.412 2.148 0.000 97.852 

Mean 6.545 3.046 89.153 4.413 1.085 94.341 

Max 13.395 9.336 96.815 9.391 5.006 100.000 

Third Quartile 8.989 5.981 93.287 9.331 2.551 98.291 

SD 4.071 3.182 5.794 3.913 1.972 5.371 

Boot strapped SE* 1.196 0.937 1.691 1.396 0.682 1.917 

Margin of error (95% CI) 2.344 1.837 3.315 2.736 1.337 3.757 

Bootstrapped Upper 95% CI* 8.889 4.883 92.468 7.150 2.423 98.097 

Bootstrapped Lower 95% CI* 4.202 1.209 85.838 1.677 0.000 90.584 

*Bootstrapped 10000 times 
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Table 35. Summary statistics and bootstrap test results for quartz, silcrete, and quartzite 

at PP5-6 by stratigraphic aggregate. 
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*Bootstrapped 10000 times. Only stratigraphic aggregates with five or more sub-aggregates with 
available raw material data are included. 

 

Stone tool artifact type frequency 

In terms of the frequency of stone artifact types at PP13B, several observations can be 

made (Figure 72 and Table 36). Flakes and flake fragments dominated throughout the 

sequence (42.5% to 70.2%) with a few exceptions, LBG Sand 1 (35.8%), DB Sand 4c 
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(31.6%), LB Silt-G (38.9%), and LB Silt (31.3%). There are more cores (0.5% to 27.8%) 

and hammerstones/manuports (1.8% to 55.3%) in the MIS6 StratAgg. There is a 

tendency towards a higher blade frequency in the MIS5 StratAggs (2.5% to 24.6%) 

compared to the MIS6 StratAggs (0% to 8.2%). There is significantly more blade and 

blade fragments in MIS5 StratAggs compared to MIS6 StratAggs (Fisher’s exact test – 

Two-tailed p=<0.00001). 

 
Figure 72. Relative frequency of stone artifact type at PP13B, PP9B, PP9C, and PP5-6 

by stratigraphic aggregate. The age of assemblages decreases along the y-axis (oldest at 

bottom). 

 

 At PP9B and PP9C flakes and flake fragments dominated both PP9B (61.8%) and 

PP9C (67.4%) assemblages (Figure 72 and Table 37). There are more cores at PP9B 

(11.8%) compared to PP9C (4.7%) but the frequencies are not statistically different 
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(Fisher’s exact test – Two-tailed p=0.3876). There is a tendency towards a higher blade 

frequency in PP9B (5.9%) compared to PP9C (3.5%) but again, the frequencies are not 

statistically different (Fisher’s exact test – Two-tailed p=1.0000). 

 When moving into MIS5 at PP5-6 several observations can be made (Figure 72 

and Table 38). Flake and flake fragments dominated throughout the sequence (48.2% to 

71.85). However, the tendency towards higher blade frequencies that started in MIS5 

StratAggs at PP13B and at both PP9 sites continue into MIS5 StratAggs at PP5-6. The 

frequency of blades and blade fragments are even more pronounced in MIS4 StratAggs 

(13.3% to 27.1%) compared to MIS3 (6.6% to 17.6%) and MIS5 (11.7% to 16.7%) 

StratAggs. There is a significant increase in blade and blade fragments in SADBS Lower 

compared to the ALBS (Fisher’s exact test: Two-tailed p=0.0007). This is followed by a 

significant increase in blade and blade fragments in SADBS Upper compared to SADBS 

Lower (Fisher’s exact test: Two-tailed p=<0.00001). 

 Another observation to be made is the decline in the frequencies of cores and 

hammerstones/manuports of the total assemblages as the archaeological sediments gets 

younger (Figure 72). However, both PP9 sites are exceptions with lower frequencies of 

hammerstones/manuports compared to most MIS5 and MIS6 StratAggs from PP13B. 

 

Table 36. Count of stone artifact types by class at PP13B by stratigraphic aggregate. 

Stratigraphic 
aggregate 

Hammer or 
Manuport 

(n=) Core (n=) 
Retouched 
Piece (n=) Shatter (n=) 

Flake or 
Flake 

Fragment 
(n=) 

Blade or 
Blade 

Fragment 
(n=) 

Total 
(n=) 

LB Sand  1 17 26 13 76 209 22 363 

DB Sand 2 8 18 12 51 137 21 247 

LB Sand  2 2 1 1 14 28 11 57 

DB Sand 3 26 34 16 98 468 38 680 

Shelly Brown Sand 8 2 0 24 142 31 207 

Roof Spall-Upper 68 26 22 175 625 94 1010 
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Roof Spall-Lower 33 5 5 108 146 27 324 

LBG Sand 1 167 75 16 74 212 10 554 

LC-MSA Upper 6 1 1 11 40 5 64 

LC-MSA Middle 15 1 3 35 116 25 195 

DB Sand 4a 16 6 0 2 15 0 39 

LBG  Sand 2 22 3 1 17 47 0 90 

DB Sand 4b 9 6 1 10 21 2 49 

DB Sand  4c 13 4 0 3 10 0 30 

LC-MSA Lower 29 25 11 274 1090 118 1547 

LB Silt-G 4 5 0 2 7 0 18 

LB Silt 35 14 2 24 35 2 112 

Total (n=) 478 252 104 998 3348 406 5586 

 

Table 37. Count of stone artifact types by class at PP9B and PP9C. 

Cave Site 

Hammer or 
Manuport 

(n=) Core (n=) 
Retouched 
Piece (n=) Shatter (n=) 

Flake or Flake 
Fragment (n=) 

Blade or 
Blade 

Fragment (n=) 
Total 
(n=) 

PP9B 1 8 3 10 42 4 68 

PP9C 1 4 1 19 58 3 86 

Total (n=) 2 12 4 29 100 7 154 

 

Table 38. Count of stone artifact types by class at PP5-6 by stratigraphic aggregate. 

Stratigraphic 
aggregate 

Hammer or 
Manuport (n=) 

Core 
(n=) 

Retouched 
Piece (n=) 

Shat
ter 

(n=) 
Flake or Flake 
Fragment (n=) 

Blade or Blade 
Fragment (n=) 

Total 
(n=) 

RBSR 2 22 34 64 333 97 552 

NWR 0 8 23 57 125 62 275 

BBCSR/BAS 4 28 41 885 2131 220 3309 

OBS2 0 12 28 244 733 177 1194 

SGS 0 5 12 78 168 76 339 

OBS1 1 18 21 148 420 117 725 

SADBS Upper 2 36 183 878 1824 860 3783 

SADBS Lower 0 9 24 45 137 80 295 

ALBS 1 5 8 33 227 42 316 

LBSR 7 50 91 332 2000 330 2810 

YBSR 1 11 4 21 197 47 281 

Total (n=) 18 204 469 2785 8295 2108 13879 

Only stratigraphic aggregates with 10 or more stone artifacts are included. 
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Raw Material Frequency - Complete blades 

When investigating what the complete blades are made on, quartzite dominates at PP13B, 

while a small frequency of the complete blade is made on silcrete (Figure 73 and Table 

39). At PP9B and PP9C all the complete blades are made on quartzite (Table 40). 

However, at PP5-6 silcrete dominates the complete blades, while the second dominant 

raw material is quartzite (Figure 73 and Table 41).  

 
Figure 73. Frequency of raw material types used to make complete blades at PP13B and 

PP5-6 by stratigraphic aggregate. The age of assemblages decreases along the y-axis 

(oldest at bottom). 

 

Silcrete dominates in YBSR (50%), SADBS Lower (42.9%), SADBS Upper 

(85.8%), OBS1 (62.5%), SGS (82.4%), OBS2 (70%), BBCSR/BAS (66.7%), and RBSR 

(47.8%). Quartzite dominates in the LBSR (60%), while quartzite and silcrete are tied in 
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the ALBS (50% each). There is a significant increase in silcrete used to produce blades in 

the SADBS Upper stratigraphic aggregate compared to the underlying SADBS Lower 

(Fisher’s exact test: Two-tailed p=<0.00001). In all aggregates where silcrete dominates 

except for YBSR, SADBS Lower, and RBSR, the count of silcrete blades are 

significantly larger than the count of quartzite (all samples: Fisher’s exact test – Two-

tailed test p= <0.05). During the YBSR, SADBS Lower, and the RBSR the count of 

quartzite and silcrete blades are statistically similar. During the LBSR, when quartzite 

dominates the count of quartzite blades is significantly larger than the count of silcrete 

blades (Fisher’s exact test – Tow-tailed p=0.0051). During the ALBS, the count of 

quartzite and silcrete is statistically similar. 

Count frequencies of chert (chalcedony) blades has elevated frequencies (~ 

≥10%) in YBSR (18.2%), SADBS Lower (21.4%), OBS1 (12.5%), SGS (11.8%), OBS2 

(20%) and RBSR (15.2%). The count of quartz blades rises to elevated frequencies (~ 

≥5%) in OBS1 (8.3%) and OBS2 (6.7%). Frequencies of blades made on ‘other’ raw 

materials such as hornfels and indurated shale only rise to elevated frequencies (~≥5%) in 

SGS (5.9%) and BBCSR (8.3%). 

 

Table 39. Count of complete blades made on all raw material types at PP13B by 

stratigraphic aggregate. 
Stratigraphic 
aggregate 

Other 
(n=) 

Chert or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

LB Sand 1 0 0 0 2 12 14 

DB Sand 2 0 0 0 1 15 16 

DB Sand 3 0 1 0 0 29 30 

Roof Spall-Upper 0 0 1 2 43 46 

Roof Spall-Lower 0 0 0 0 13 13 

LC-MSA Middle 0 0 0 2 13 15 

LC-MSA Lower 0 0 0 4 29 33 

Total (n=) 0 1 1 11 154 167 

Only stratigraphic aggregates with 10 or more complete blades are included. 
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Table 40. Count of complete blades made on all raw materials at PP9B and PP9C. 

Cave Site Other (n=) Chert or Chalcedony (n=) Quartz (n=) Silcrete (n=) Quartzite (n=) 

PP9B 0 0 0 0 3 

PP9C 0 0 0 0 0 

Total (n=) 0 0 0 0 3 

 

Table 41. Count of complete blades made on all raw materials at PP5-6 by stratigraphic 

aggregate. 
Stratigraphic 
aggregate 

Other 
(n=) 

Chert or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

RBSR 2 7 1 22 14 46 

NWR 0 0 0 5 12 17 

BBCSR/BAS 2 1 1 16 4 24 

OBS2 0 6 2 21 1 30 

SGS 1 2 0 14 0 17 

OBS1 0 3 2 15 4 24 

SADBS Upper 3 14 3 296 29 345 

SADBS Lower 0 3 0 6 5 14 

ALBS 0 0 0 8 8 16 

LBSR 3 2 0 53 87 145 

YBSR 0 4 0 11 7 22 

Total (n=) 11 42 9 462 159 683 

 

Stone tool technological length 

Figure 74 shows the technological lengths of complete flakes and blades in stratigraphic 

aggregates at PP13B. Supplementary Table B27 shows the summary statistics. 

Complete lithics from LC-MSA Upper are significantly shorter than stone artifacts from 

most other StratAggs, except for Shelly Brown Sand, LBG Sand 2, LC-MSA Lower, and 

LB Silt (Supplementary Table B28). Complete flakes and blades from LC-MSA Lower 

are significantly shorter than lithics from most other StratAggs, except for LC-MSA 

Upper. At PP9B and PP9C the median of technological length (mm) of complete stone 

artifacts from PP9B and PP9C are statistically similar (Figure 74 and Supplementary 

Tables B29-30). 
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 At PP5-6 several observations can be made (Figure 74 and Supplementary 

Tables B31-32: Complete lithics from the OBS2 are significantly shorter than stone 

artifacts from all other StratAggs at PP5-6 (Supplementary Table B32). The 

technological length of stone artifacts in the YBSR is significantly smaller than lithics 

from the overlying LBSR (Supplementary Table B32). The technological length of the 

LBSR and ALBS stone artifacts are statistically similar. The length of the complete 

lithics from SADBS Upper, OBS1, and SGS are statistically similar (Supplementary 

Table B32). RBSR stone artifacts are significantly larger than the underlying 

BBCSR/BAS stone artifacts but they are statistically similar to SADBS Lower, ALBS, 

and YBSR stone artifacts (Supplementary Table B32). 

 
Figure 74. Boxplot of technological length (mm) of all complete flakes and blades made 

on all raw material types at PP13B, PP9B, PP9C, and PP5-6 by stratigraphic aggregate. 

The age of assemblages decreases along the y-axis (oldest at bottom). Only stratigraphic 

aggregates with 10 or more complete flakes and blades are included. 
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Stone tool technological length – Quartzite versus silcrete 

Figure 74 above shows a trend towards complete flakes and blades with shorter 

technological lengths as the assemblages get younger. Figure 75 shows a boxplot of 

technological length of complete stone tools when quartzite and silcrete lithics are viewed 

separately. At PP13B (Supplementary Table B33 shows the descriptive statistics for 

each stratigraphic aggregate) silcrete from Roof Spall-Upper, quartzite from LC-MSA 

Upper, and both quartzite and silcrete from LC-MSA Lower have complete flakes and 

blades with the lowest median technological length. The median technological length 

(mm) of LC-MSA Lower complete flakes and blades made on quartzite and silcrete are 

significantly different than quartzite and silcrete artifacts from most assemblages except 

for quartzite from Shelly Brown Sand, silcrete from Roof Spall-Upper, quartzite from 

LC-MSA Upper, and quartzite from LBG Sand 2 (Supplementary Table B34). 

 
Figure 75. Boxplot of technological length (mm) of all complete flakes and blades made 

on quartzite (Q) and silcrete (S) at PP13B and PP5-6 by stratigraphic aggregate. The age 

of assemblages decreases along the y-axis (oldest at bottom). Only stratigraphic 

aggregates with 10 or more complete flakes and blades are included. 
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In each assemblage at PP5-6, the median technological length of complete silcrete 

flakes and blades is significantly smaller than the length of quartzite stone artifacts except 

for in the SGS and ALBS StratAggs (Supplementary Tables B35-36). Complete 

quartzite stone artifacts from the RBSR are significantly larger than both complete 

quartzite and silcrete lithics from all other aggregates except for quartzite stone artifacts 

from the NWR, LBSR, and the YBSR StratAggs. 

 

Cortex type frequency 

At PP13B, overall, there is significantly more outcrop cortex in MIS5 StratAggs 

compared to MIS6 StratAggs (Fisher’s exact test: Two-tailed p=<0.00001) (Figure 76 

and Table 42). In each single StratAgg, the frequency of outcrop cortex is significantly 

lower than the frequency of cobble cortex (all assemblages: Mann-Whitney p=<0.00001). 

There is a significant increase in outcrop cortex in the Roof Spall-Lower aggregate 

compared to the underlying LBG Sand 1 (Fisher’s exact test – Two-tailed p=<0.00001). 

 Table 43 shows the count of cobble and outcrop frequency for PP9B and PP9C. 

Overall, there is significantly more outcrop cortex than cobble cortex in at both caves 

(both caves: Fisher’s exact test – Two-tailed p=<0.00001). In fact, there is no outcrop 

cortex recorded at either cave site. 

 At PP5-6, during MIS5 StratAggs (LBSR and YBSR) there is significantly more 

cobble cortex than outcrop cortex (Fisher’s exact test: Two-tailed p=<0.00001) (Figure 

76 and Table 44). This pattern continues in the ALBS, the oldest stratigraphic aggregate 

in MIS4 (Fisher’s exact test: Two-tailed p=<0.00001). In SADBS Lower there is no 

significant difference between the frequency of cobble cortex and outcrop cortex 
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(Fisher’s exact test: Two-tailed p=1.0000). However, there is a significant increase in 

outcrop cortex in the SADBS Upper compared to SADBS Lower (Fisher’s exact test: 

Two-tailed p=<0.00001). During the SADBS Upper there is significantly more outcrop 

cortex than cobble cortex (Fisher’s exact test: Two-tailed p=<0.00001). Following the 

SADBS Upper, all stratigraphic aggregates except for the SGS (Fisher’s exact test: Two-

tailed p=0.3123) contains significantly more cobble cortex than outcrop cortex (Fisher’s 

exact test: Two-tailed p=<0.00001). 

 
Figure 76. Relative frequency of cortex types at PP13B, PP9B, PP9C, and PP5-6 by 

stratigraphic aggregate. The age of assemblages decreases along the y-axis (oldest at 

bottom). Only stratigraphic aggregates with 10 or more lithics with cortex are included. 
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Table 42. Count of cortex types at PP13B by stratigraphic aggregate. 

Stratigraphic aggregate Cobble (n=) Outcrop (n=) Total (n=) 

LB Sand 1 97 4 101 

DB Sand 2 76 8 84 

LB Sand 2 15 0 15 

DB Sand 3 136 9 145 

Shelly Brown Sand 17 2 19 

Roof Spall-Upper 125 8 133 

Roof Spall-Lower 42 11 53 

LBG Sand 1 254 3 257 

LC-MSA Middle 24 1 25 

DB Sand 4a 23 0 23 

LBG  Sand 2 40 0 40 

DB Sand 4b 22 1 23 

DB Sand 4c 13 1 14 

LC-MSA Lower 210 2 212 

LB Silt 44 1 45 

Total (n=) 1138 51 1189 

Only stratigraphic aggregates with 10 or more stone tools with cortex recorded are included. 

 

Table 43. Count of cortex types at PP9B and PP9C. 

Cave Site Cobble (n=) Outcrop (n=) Total (n=) 

PP9B 19 0 19 

PP9C 22 0 22 

Total (n=) 41 0 41 

 

Table 44. Count of cortex types at PP5-6 by stratigraphic aggregate. 

Stratigraphic aggregate Cobble (n=) Outcrop (n=) Total (n=) 

RBSR 100 35 135 

NWR 28 16 44 

BBCSR/BAS 223 105 328 

OBS2 80 28 108 

SGS 28 20 48 

OBS1 47 13 60 

SADBS Upper 138 490 628 

SADBS Lower 27 26 53 

ALBS 71 12 83 

LBSR 609 35 644 

YBSR 68 9 77 

Total (n=) 1419 789 2208 
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Cortex type frequency – Quartzite versus silcrete 

The investigation of the overall strategy in terms of procuring from cobble sources or 

outcrop sources show that during MIS5 and MIS6 at PP13B, and during MIS5 at PP9B 

and PP9C cobble cortex dominates throughout but this is not the case at PP5-6. When 

investigating the cortex type of quartzite and silcrete stone artifacts separately which can 

indicate if different strategies were used for the two materials several observations can be 

made (Figure 77). At PP5-6, silcrete stone tools have consistently higher frequencies of 

outcrop cortex than quartzite stone artifacts, while quartzite lithics have consistently 

higher cobble cortex frequencies compared to silcrete stone artifacts (Table 45). In the 

YBSR there is significantly more outcrop cortex than cobble cortex on both quartzite and 

silcrete (Fisher’s exact test: Two-tailed p=<0.00001). In the LBSR, there is significantly 

more outcrop cortex than cobble cortex on quartzite (Fisher’s exact test: Two-tailed 

p=<0.00001), while the frequency of cobble and outcrop cortex on silcrete is statistically 

similar (Fisher’s exact test –Two-tailed p=0.6636).  

During MIS4, silcrete lithics have significantly more outcrop cortex than cobble 

cortex in the SGS and SADBS Upper (both samples: Fisher’s exact test –Two-tailed 

p=<0.01), while the frequency of cobble and outcrop cortex on silcrete is statistically 

similar in the ALBS, SADBS Lower, OBS1, and the OBS2 (all samples: Fisher’s exact 

test –Two-tailed p=>0.09). Conversely, during MIS4 quartzite artifacts have significantly 

more cobble cortex than outcrop cortex in all aggregates (all samples: Fisher’s exact test 

–Two-tailed p=<0.001) except SADBS Lower (Fisher’s exact test – Two-tailed 

p=0.3770). Moving into MIS3, silcrete has significantly more outcrop cortex than cobble 

cortex in the BBCSR/BAS (Fisher’s exact test –Two-tailed p=<0.00001), while in the 
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RBSR and NWR the frequency of cobble and outcrop cortex on silcrete is statistically 

similar (Fisher’s exact test: RBSR – Two-tailed p=0.0988; NWR – Two-tailed 

p=0.0654). Quartzite stone artifacts have significantly more cobble cortex than outcrop 

cortex in the RBSR, NWR, and BBCSR/BAS (RBSR and BBCSR/BAS: Fisher’s exact 

test – Two-tailed p=<0.00001; NWR: Two-tailed p=0.0021). 

 
Figure 77. Relative frequency of cortex types on quartzite and silcrete artifacts at PP5-6 

by stratigraphic aggregate. The age of assemblages decreases along the y-axis (oldest at 

bottom). 

 

Table 45. Count of cortex types on quartzite and silcrete artifacts at PP5-6 by 

stratigraphic aggregate. 

Stratigraphic aggregate Cobble (n=) Outcrop (n=) Total (n=) 

RBSR-Quartzite 62 4 66 

RBSR-Silcrete 13 24 37 

NWR-Quartzite 25 7 32 

NWR-Silcrete 2 9 11 
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BBCSR/BAS-Quartzite 148 18 166 

BBCSR/BAS-Silcrete 31 73 104 

OBS2-Quartzite 32 1 33 

OBS2-Silcrete 23 22 45 

SGS-Quartzite 19 3 22 

SGS-Silcrete 4 17 21 

OBS1-Quartzite 32 1 33 

OBS1-Silcrete 6 10 16 

SADBS Upper-Quartzite 52 26 78 

SADBS Upper-Silcrete 67 457 524 

SADBS Lower-Quartzite 19 13 32 

SADBS Lower-Silcrete 5 11 16 

ALBS-Quartzite 51 2 53 

ALBS-Silcrete 2 8 10 

LBSR-Quartzite 310 11 321 

LBSR-Silcrete 12 9 21 

YBSR-Quartzite 200 5 205 

YBSR-Silcrete 57 9 66 

Total (n=) 1172 740 1912 

 

Cutting edge per mass (CE/M) 

Figure 78 and Supplementary Table B37 show low values of CE/M overall throughout 

the PP13B sequence. Supplementary Table B38 shows that the median CE/M values of 

LC-MSA Upper complete flakes and blades are significantly larger than CE/M values 

from complete flakes and blades from all other assemblages, except for complete lithics 

from the Shelly Brown Sand and LC-MSA Lower StratAggs. The median CE/M values 

of complete flakes and blades from the LBG Sand 1 aggregate are significantly smaller 

than the CE/M values from complete stone artifacts from all other assemblages except for 

LBG Sand 2, DB Sand 4b, and LB Silt (Supplementary Table B38). At PP9B and 

PP9C, the median CE/M values of complete flakes and blades from both sites are 

statistically similar, and the mean values are similar to most MIS5 and MIS6 values from 

PP13B (Figure 78 and Supplementary Tables B39-40). 
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 When moving into MIS5 at PP5-6 the CE/M values increase. However, 

throughout the PP5-6 sequence there is variability (Figure 78 and Supplementary 

Tables B41-42). The median CE/M values of SADBS Upper and OBS2 complete flakes 

and blades are significantly larger than the CE/M values from complete flakes and blades 

from all other assemblages. On the other hand, the median CE/M values of ALBS, LBSR, 

and YBSR complete stone artifacts are statistically similar, and the values are 

significantly smaller than the CE/M values from stone artifacts from all other aggregates 

(Supplementary Table B42). 

 
Figure 78. Boxplot showing distribution of Cutting edge / Mass (CE/M) values for all 

raw materials at PP13B, PP9B, PP9C, and PP5-6 by stratigraphic aggregate. The age of 

assemblages decreases along the y-axis (oldest at the bottom). Only stratigraphic 

aggregates with 10 or more complete flakes and blades are included. 

 

Cutting edge per mass (CE/M) – Quartzite versus silcrete 

Figure 79 and Supplementary Table B43 shows that complete flakes and blades made 

on silcrete overall do not have higher CE/M values compared to complete quartzite stone 

artifacts in the same StratAgg. The three sample populations with the highest median 
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CE/M values are complete silcrete flakes and blades from Roof Spall-Upper and LC-

MSA Lower, and complete quartzite flakes and blades from LC-MSA Upper 

(Supplementary Table B44). The CE/M values of silcrete artifacts from LB Sand 1 are 

statistically similar to CE/M values from complete quartzite lithics from the same 

StratAgg (Supplementary Table B44). The complete silcrete stone artifacts from LC-

MSA Lower have statistically similar CE/M values to complete quartzite stone artifacts 

from the same StratAgg (Supplementary Table B44). However, the median CE/M value 

of complete silcrete flakes and blades from Roof Spall-Upper is significantly larger than 

the values of complete quartzite stone artifacts from the same StratAgg (Mann-Whitney: 

p=0.02). 

 
Figure 79. Boxplot showing distribution of Cutting edge / Mass (CE/M) values for 

quartzite and silcrete at PP13B and PP5-6 by stratigraphic aggregate. The age of 

assemblages decreases along the y-axis (oldest at the bottom). Only stratigraphic 

aggregates with 10 or more complete flakes and blades are included. 

 

At PP5-6 complete flakes and blades made on silcrete overall have higher CE/M 

values compared to quartzite artifacts in the same StratAgg (Figure 79 and 
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Supplementary Table B45). In each assemblage, the median CE/M values of complete 

silcrete flakes and blades are significantly smaller than the CE/M values from complete 

quartzite stone artifacts (Supplementary Table B46). Complete flakes and blades made 

on silcrete from the OBS2 and SADBS Upper have the highest median CE/M values 

(Supplementary Table B46). Conversely, complete flakes and blades made on quartzite 

from the RBSR, LBSR, and YBSR have the lowest median CE/M values 

(Supplementary Table B46). 

 

Retouch frequency versus artifact volumetric density 

Figure 80 and Table 46 show that at PP13B, StratAggs have a wide spread of retouch 

frequency and artifact volumetric density values. MIS6 StratAggs LBG Sand 2, DB Sand 

4b, LB Silt, and LB Sand 2 have the lowest combined retouch frequency and artifact 

volumetric density, which makes them plot towards the expedient end of the continuum. 

The MIS5 StratAgg LBG Sand 1 also has a low combined retouch frequency and artifact 

volumetric density. Towards the middle of the continuum the DB Sand 2, DB Sand 3, and 

LB Sand 2 StratAggs can be observed suggesting a less expedient behavior in these 

StratAggs. In the middle of the continuum the StratAggs Roof Spall-Upper, Roof Spall-

Lower, LC-MSA Upper, LC-MSA Middle, LB Sand 1, and LC-MSA Lower is found. 

The behavior in these StratAggs suggests comparatively less expedient behavior. 

 PP5-6 aggregates have a wide spread of retouch frequency and artifact volumetric 

density values (Figure 80 and Table 47). Overlapping in the middle of the continuum 

with the PP13B StratAggs and plotting towards the expedient end several PP5-6 

StratAggs can be observed. The BBCSR/BAS have the lowest combined retouch 
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frequency and artifact volumetric density, which makes it plot towards the expedient end 

of the continuum. In the middle, StratAggs YBSR, ALBS, LBSR, NWR, and SADBS 

Lower can be observed. Towards the curated end of the continuum the SGS, OBS1, and 

RBSR are found. At the curated end of the continuum, the SADBS Upper and OBS2 

StratAggs can be observed suggesting a curated behavior in those aggregates. 

 
Figure 80. Linear regression using logged values between frequency of retouched pieces 

per total artifact mass (kg) from PP13B and PP5-6 stratigraphic aggregates and artifact 

volumetric density (total artifact mass (kg) per total sediment volume (m
3
)) from PP13B 

and PP5-6 stratigraphic aggregates. Upper box of figure legend indicates PP5-6 

stratigraphic aggregates, while lower box indicates PP13B stratigraphic aggregates. 

 

Table 46. PP13B stratigraphic aggregate summary data for retouched piece frequency, 

total artifact mass (kg), and sediment volume (m
3
). 

Stratigraphic 
aggregate 

Total 
Artifact 
Mass 
(kg) 

Retouched 
Pieces (n=) Sediment Volume (m

3
) 

Frequency of 
Retouched Pieces 

(Retouch piece 
count / artifact 

mass (kg)) 

Artifact 
Volumetric 

Density (Artifact 
Mass (kg) / 

Sediment Volume 
(m

3
)) 

LB Sand  1 9.05 13 5.301 1.44 1.71 

DB Sand 2 6.65 12 2.596 1.80 2.56 

LB Sand  2 0.90 1 0.281 1.11 3.21 

DB Sand 3 12.16 16 4.114 1.32 2.96 

Roof Spall-Upper 12.30 22 8.816 1.79 1.40 

Roof Spall-Lower 3.23 5 4.055 1.55 0.80 

LBG Sand 1 21.11 16 5.265 0.76 4.01 
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LC-MSA Upper 0.48 1 0.533 2.10 0.89 

LC-MSA Middle 1.60 3 2.501 1.87 0.64 

LBG  Sand 2 1.84 1 0.325 0.54 5.66 

DB Sand 4b 1.18 1 0.276 0.84 4.29 

LC-MSA Lower 9.99 11 11.709 1.10 0.85 

LB Silt 3.78 2 1.430 0.53 2.65 

 

Table 47. PP5-6 stratigraphic aggregate summary data for retouched piece frequency, 

total artifact mass (kg), and sediment volume (m
3
). 

Stratigraphic 
aggregate 

Total 
Artifact 
Mass 
(kg) 

Retouched 
Pieces (n=) Sediment Volume (m

3
) 

Frequency of 
Retouched Pieces 

(Retouch piece 
count / artifact 

mass (kg)) 

Artifact Volumetric 
Density (Artifact 

Mass (kg) / 
Sediment Volume 

(m
3
)) 

RBSR 3.484 34 12.308 9.758 0.283 

NWR 1.526 23 0.830 15.077 1.839 

BBCSR/BAS 9.227 41 3.780 4.443 2.441 

OBS2 2.161 28 22.803 12.957 0.095 

SGS 0.754 12 1.280 15.925 0.589 

OBS1 2.226 21 5.295 9.433 0.420 

SADBS Upper 6.034 183 33.393 30.329 0.181 

SADBS Lower 1.663 24 1.595 14.432 1.042 

ALBS 2.092 8 1.823 3.824 1.147 

LBSR 23.428 91 21.963 3.884 1.067 

YBSR 1.763 4 1.333 2.269 1.323 

 

Site summaries 

PP13B summary 

Quartzite is the dominant raw material in terms of mass (kg) throughout the PP13B 

sequence. Quartz has relatively increased frequencies in LC-MSA Lower, DB Sand 4b, 

LBG Sand 2, Roof Spall-Lower, DB Sand 3, and LB Sand 2. Silcrete has relatively 

increased frequencies in LC-MSA Middle, LC-MSA Upper, and LB Sand 2. Flakes and 

flake fragments dominate the stone artifact type classes throughout the PP13B sequence. 

However, overall there are more blade and blade fragments in the MIS5 StratAggs. The 

frequency of blade and blade fragments increases to relatively high frequencies in several 
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MIS5 StratAggs such as LC-MSA Middle, LC-MSA Upper, Roof Spall-Lower, Roof 

Spall-Upper, Shelly Brown Sand, and LB Sand 2. Conversely, there are more 

hammerstones/manuports, and cores in the MIS6 StratAggs. The LB Silt, LB Silt-G, DB 

Sand 4c, DB Sand 4b, LBG Sand 2, and DB Sand 4a StratAggs have relatively high 

frequencies of hammerstones/manuports and/or cores. DB Sand 4c has a higher 

frequency of hammerstones/manuports than flake and flake fragments, while DB Sand 4a 

has relatively similar frequencies of flake and flake fragments and 

hammerstones/manuports. In MIS5, the LBG Sand 1 StratAgg has similar frequencies of 

flake and flake fragment and hammerstones/manuports. The complete blades are 

throughout the PP13B sequence mostly made on quartzite. However, in the LC-MSA 

Lower, LC-MSA Middle and LB Sand 1 about 10% of the blades are made on silcrete. 

The stone artifacts from the LC-MSA Upper and LC-MSA Lower StratAggs are 

smaller in terms of technological length than lithics from the other aggregates. When 

looking at quartzite and silcrete stone artifacts separately silcrete artifacts from the LB 

Sand 1 and LC-MSA Lower StratAggs are not significantly smaller in terms of 

technological length than quartzite from the same aggregates. The silcrete stone artifacts 

from the Roof Spall-Upper are significantly smaller than the quartzite stone artifacts from 

the same aggregate.  

The relative cortex frequency suggests that throughout the PP13B sequence raw 

materials were mostly procured from high-energy environments such as cobble beaches 

and/or streambeds, or alternatively from conglomerates that include well-rounded clasts. 

Outcrop cortex has relatively increased frequencies in the Roof Spall-Lower, Shelly 

Brown Sand, and DB Sand 2 StratAggs.  
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Complete flakes and blades from the LC- MSA Lower and LC-MSA Upper 

StratAggs were flaked more efficiently than stone artifact from all other assemblages. 

The MIS5 stone artifacts from PP5-6 were flaked similarly in terms of efficiency 

compared to MIS6 stone artifacts from PP13B. MIS5 stone artifacts from PP9B, PP9C, 

and PP13B were flaked less efficiently. The flaking efficiency of complete silcrete flakes 

and blades from LC-MSA Lower, Roof Spall-Upper, and LB Sand 1 are similar to the 

flaking efficiency of quartzite in the same aggregates. 

 The retouch frequency to artifact (stone tools) volumetric density ratios show that 

comparatively to PP5-6 StratAggs, the PP13B StratAggs tend to reflect behavior that is 

more expedient. MIS6 StratAggs LBG Sand 2, DB Sand 4b, LB Silt, and LB Sand 2 have 

the lowest combined retouch frequency and artifact volumetric density, which makes 

them plot towards the expedient end of the continuum. Additionally, the MIS5 StratAgg 

LBG Sand 1 also has a low combined retouch frequency and artifact volumetric density. 

Further, the rest of the StratAggs from PP13B plot towards the middle of the continuum 

overlapping with several PP5-6 StratAggs. 

 

PP9 summary 

Quartzite is the dominant raw material in terms of mass (kg) at both PP9B and PP9C. 

Quartz has a relatively increased frequency at PP9B, while silcrete is present at PP9C. 

Flakes and flake fragments dominate the stone tool artifact classes at both PP9B and 

PP9C. However, there are relatively more cores at PP9B and a slightly higher frequency 

of blade and blade fragments. The complete flakes and blades from PP9B and PP9C are 

similar in size, in terms of technological length. The relative cortex frequency suggests 
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that at both PP9B and PP9C raw materials were mostly procured from high-energy 

environments such as cobble beaches and/or streambeds, or alternatively from 

conglomerates that include well-rounded clasts. Complete flakes and blades from PP9B 

and PP9C were flaked similarly in terms of efficiency. 

 

PP5-6 summary 

Quartzite is the dominant raw material in terms of mass (kg) throughout the PP5-6 

sequence, expect for in the SADBS Upper where significantly more silcrete was 

transported to site in terms of mass compared to quartzite. Silcrete has relatively 

increased frequencies in most StratAggs except for LBSR, ALBS, and OBS1. The 

frequency of silcrete in MIS4 overall is significantly higher than the frequency of silcrete 

in both the underlying MIS5 aggregates and in the overlaying MIS3 aggregates. 

However, at the level of StratAgg only in SADBS Upper is the silcrete frequency 

significantly different from the quartzite frequency. In all other MIS4 aggregates 

(SADBS Lower, ALBS, OBS1, SGS, and OBS2), the quartzite and silcrete frequencies 

are statistically similar. Quartzite and silcrete frequencies are also statistically similar in 

the YBSR, while in the LBSR and BBCSR/BAS quartzite is significantly more frequent 

than silcrete. Quartz has relatively increased frequencies in OBS1 and OBS2 making the 

frequencies statistically similar to silcrete frequencies in those two aggregates. In 

addition, the quartz frequency in the BBCSR/BAS is statistically similar to the silcrete 

frequency. Chert (chalcedony) is uncommon throughout, while ‘other’ raw materials such 

as hornfels and indurated shale only have a relatively elevated frequency in the YBSR. 
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When looking at the sub-aggregate level, during MIS3, quartzite is dominant in 

all sub-aggregates in terms of transported mass (kg). Silcrete rises to relatively elevated 

frequencies in Zenobia, Emily, Ellis, and Takis. Quartz only rises to a relatively elevated 

frequency in James. Chert (chalcedony) and ‘other’ raw materials are uncommon 

throughout. In the NWR, like the other MIS3 aggregates, quartzite dominates, while 

silcrete is the second most dominant material. Quartz, chert, and ‘other’ raw materials are 

very uncommon. 

 MIS4 sees a lot of variability in terms of raw material frequency. Quartzite 

dominates in the sub-aggregates of the ALBS, and SADBS Lower except for in Conrad 

Sand. In the SADBS Upper there is a switch to a preference for silcrete and silcrete 

dominance extends into the OBS1 in the Joanne 1 sub-aggregate. Overall, in OBS1 there 

is a preference for quartzite. However, sub-aggregate Sasha is dominated by quartz, and 

quartz has relatively elevated frequencies in all OBS1 sub-aggregates except for Chris. In 

the SGS there is again a switch to a preference for silcrete. Silcrete dominates in all 

SubAggs except for in Zuri Upper, where quartzite is most frequent. In the following 

OBS1 stratigraphic aggregates there is a lot of variability in terms of raw material 

preference. Sub-aggregates Josh, Sarah, Elizabeth, and Andy are dominated by quartzite, 

while silcrete dominates in Alicen, Chantal, Hans, and Emma Sand. Kevin Sand is totally 

dominated by chert (Chalcedony). Quartz has relatively elevated frequencies in Josh, 

Sarah, Elizabeth, and Andy. In the DBCS, quartzite dominates in all sub-aggregates 

except for Sorel, Leonides, and Ollie where silcrete is dominant. Quartz only rises to a 

relatively elevated frequency in Sam, while chert (chalcedony) only rises to a relatively 

elevated frequency in Leonides. 
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During MIS5 quartzite dominates throughout except for sub-aggregate Kirsty 

(YBSR), Tove Sand and Roofspall and Logan Sand and Roofspall 2 (LBSR). Kirsty is 

dominated by chert (chalcedony) whereas Tove Sand and Roofspall and Logan Sand and 

Roofspall 2 are dominated by silcrete. Silcrete has also relatively elevated frequencies in 

Kirsty (YBSR) Elizabeth Sand and Roofspall (YBSR), Lee (YBSR), Tove Red (LBSR), 

Simen Red (LBSR), Logan Sand and Roofspall 1(LBSR), Sondra Red (LBSR), Sondra 

Sand and Roofspall (LBSR), Adrian Sand and Roofspall (LBSR), Kyle Shell (LBSR), 

and Hope Red (LBSR). The frequency of quartz varies throughout but it has relatively 

elevated frequencies in Arnold Red (LBSR), Logan Red (LBSR), Logan Sand and 

Roofspall 1 (LBSR), and Cobus Shell (LBSR). Other than in the Kirsty sub-aggregate, 

chert (chalcedony) is relatively uncommon in all other MIS5 sub-aggregates. ‘Other’ raw 

materials such as hornfels and indurated shale on the other hand have relatively elevated 

frequencies in multiple sub-aggregates such as Kirsty (YBSR), Elizabeth Sand and 

Roofspall (YBSR), Meghan Sand and Roofspall (YBSR), Arnold Red (LBSR), Hope Red 

(LBSR), and Ludumo Sand and Roofspall (LBS). 

Flakes and flake fragments dominate the stone tool artifact classes throughout the 

PP5-6 sequence. However, overall there is an increase in the production of blades in the 

MIS4 StratAggs. Particularly, in SADBS Lower, SADBS Upper, and SGS the frequency 

of blades and blade fragments are relatively elevated. The complete blades are throughout 

the PP5-6 sequence mostly made on silcrete except for in the LBSR aggregate and in the 

ALBS where the frequency of quartzite blades and silcrete blades are statistically similar. 

In the MI3 StratAggs, the frequency of blades made on quartzite increase but enough to 

be more frequent than blades made on silcrete. 
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The lithics from the SADBS Upper and OBS2 StratAggs are smaller in terms of 

technological length than stone tools from the other aggregates. When looking at 

quartzite and silcrete lithics separately silcrete lithics from each stratigraphic aggregate 

are significantly smaller in terms of technological length than quartzite lithics from the 

same aggregates.  

The relative cortex frequency suggests that in the PP5-6 sequence raw materials 

were mostly procured from high-energy environments such as cobble beaches and/or 

streambeds, or alternatively from conglomerates that include well-rounded clasts except 

for in the SADBS Upper aggregates where outcrop cortex dominates. There is a tendency 

towards more outcrop cortex starting in the SADBS Lower aggregate and all aggregates 

from then on compared to the older ALBS, LBSR, and YBSR aggregates. When looking 

at quartzite and silcrete artifacts separately, silcrete artifacts always have a higher outcrop 

cortex frequency than quartzite in every aggregate. In MIS4 and MIS3 the frequency of 

cortex type on silcrete is dominated by outcrop cortex except in OBS2 where the 

frequency of cobble and outcrop cortex is similar. Quartzite only has relatively elevated 

outcrop cortex frequencies in SADBS Lower and SADBS Upper. However, there is still 

significantly more cobble cortex than outcrop cortex on quartzite in those aggregates. 

Complete flakes and blades from the SADBS Upper and the OBS2 stratigraphic 

aggregates were flaked more efficiently than lithics from all other assemblages. Lithics 

from the ALBS, LBSR, and YBSR were flaked the least efficient compared to lithics 

from the other aggregates. Overall, lithics from the MIS4 aggregates have been flaked the 

most efficiently compared to MIS5 and MI3 aggregates. When comparing the flaking 

efficiency of complete silcrete flakes and blades the result is that silcrete lithics always 
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have been flaked more efficiently than quartzite lithics from the same aggregates. Silcrete 

stone artifacts from the OBS2 and SADBS Upper have the highest values of CE/M 

indicating that they have been flaked the most efficiently in the sequence, while quartzite 

lithics from the RBSR, LBSR, and YBSR have the lowest CE/M values suggesting that 

they were flaked the least efficiently in the sequence.  

The retouch frequency to artifact volumetric density ratio method suggests that 

the SADBS Upper and OBS2 assemblages at PP5-6 are due to curated behavior. 

However, assemblages from OBS1, SGS, and RBSR can be considered more curated 

compared to assemblages from SADBS Lower, ALBS, LBSR, and YBSR. The ratio of 

the BBCSR/BAS assemblage suggests that it is due to expedient behavior. 

 

Pinnacle Point Sequence – Archaeology summary 

The PP13B and PP9 sequences show that quartzite stone tools made on cobbles dominate 

the lithic assemblages. There is relatively little change in flaking efficiency between 

aggregates, and there is little difference between quartzite and silcrete artifacts in the 

PP13B and PP9 part of the sequence. Although quartzite dominates throughout the 

Pinnacle Point sequence in terms of transported materials to the localities, there is a shift 

to silcrete as the most transported material in terms of mass in the SADBS Upper 

aggregate. This increase in silcrete is correlated with an increase in blade products and 

the increase in procurement of silcrete from outcrop sources. The majority of the blades 

are made on silcrete. Additionally, the flaking efficiency of both quartzite and silcrete 

increases in the SADBS upper aggregate, and this pattern of increased flaking efficiency 

persists throughout MIS4. However, the flaking efficiency of silcrete is significantly 
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higher than quartzite in all the MIS4 aggregates. The retouch frequency to artifact 

volumetric density ratio also suggests that the SADBS Upper and OBS2 assemblages 

particularly but also perhaps the OBS1 and SGS assemblages are due to curated behavior 

potentially resulting from increased residential mobility and/or raw material scarcity. 
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CHAPTER 8: OPPORTUNISTIC ACQUISITION MODEL HYPOTHESIS 

EVALUATION AND SENSITIVITY ANALYSIS 

Introduction 

In the section below modeling data from the Opportunistic Acquisition Model (OAM) 

will be presented from all five model conditions: MIS4 conditions with or without a 

Paleo-Agulhas plain silcrete source, MIS5 conditions, and MIS6 with or without a Paleo-

Agulhas plain silcrete source. These five model conditions have five different states of 

coastline position and raw material source distribution. I will first test Hypothesis 1 (H1) 

drawn from the Opportunistic Acquisition Model (OAM) using the outcomes of same-

day return simulations and the one-factor-at-a-time (OFAT) round one (OFAT1) model 

outcomes that simulated raw material frequency outcomes at different movement-

budgets. These tests are conducted by comparing model raw material outcomes with 

archaeological raw material frequencies. Following the initial test of Hypothesis 1 I ask if 

it is realistic to move randomly in relation to raw material sources in an environment. The 

key criterion that is looked at is the time without raw material in the toolkit. Then H1 is 

evaluated further by a one-factor-at-a-time (OFAT) sensitivity analysis. The goal of the 

sensitivity analysis is to gauge the effect different model parameters have on the raw 

material output thus testing the robustness of the initial Hypothesis 1 evaluation. 

 

Hypothesis 1 – Same-day return outcomes 

Hypothesis 1 (H1) states that opportunistic encounters during random walk in the 

environment result in a raw material usage frequency similar to the archaeological record. 

Because it can be assumed either that random walk in the environment can be an optimal 
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(or realistic) way to move or that there is no difference in utility currency profitability 

between the lithic raw materials, the prediction is that opportunistic encounters during 

random walk in the environment will create a raw material pattern similar to the 

archaeological record. 

The first test of Hypothesis 1 under the coastline position and raw material source 

distribution variable only consider the result of model runs with a movement budget 

(TT= totticks) value= 100, which if assuming a walking pace of 3.5 to 2.5 km/hr 

(Binford, 2001; Marlowe, 2010; Marlowe, 2006) can be argued to reflect a daily foraging 

radius of a forager (same-day return). 

 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Figure 81 and Table 48 show that quartz has the highest frequency while quartzite has 

the second highest frequency during same-day returns during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. Silcrete was not deposited at all at PP. None of the 

model raw material frequencies match the archaeological frequencies. The model predicts 

more quartz than what is represented in the archaeological record, while silcrete and 

quartzite are both underpredicted. There is also no ranking match (Supplementary Table 

B47). This result does not support Hypothesis 1. 
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Figure 81. Comparison between same-day return modeling outcomes during MIS4 

model conditions without a Paleo-Agulhas plain silcrete source and bootstrapped MIS4 

archaeological raw material frequency data from PP5-6. Plot shows the mean and the 

upper and lower 95% confidence intervals for raw material frequencies. 

 

Table 48. Summary statistics and test results for same-day return simulations of MIS4 

conditions without a Paleo-Agulhas plain silcrete source compared to MIS4 

archaeological raw material frequency data from PP5-6. 

  Quartz Silcrete Quartzite 

PP5-6-
MIS4-
Quartz 

PP5-6-
MIS4-
Silcrete 

PP5-6-
MIS4-
Quartzite 

n (number of assemblages) 1000 1000 1000 46 46 46 

First Quartile 99.85 0.00 0.00 1.21 13.79 5.19 

Min 98.34 0.00 0.00 0.00 0.00 0.00 

Median 100.00 0.00 0.00 3.73 39.13 43.00 

Mean 99.89 0.00 0.11 8.39 40.00 44.63 

Max 100.00 0.00 1.66 66.11 96.55 96.45 

Third Quartile 100.00 0.00 0.15 10.53 62.77 68.24 

SD 0.23 0.00 0.23 11.83 27.52 25.54 

SE 0.01 0.00 0.01 1.67* 4.01* 3.71* 

Margin of error (95% CI) 0.01 0.00 0.01 3.28 7.85 7.27 

Upper 95% CI 99.90 0.00 0.13 11.66* 47.85* 51.90* 
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Lower 95% CI 99.87 0.00 0.10 5.11* 32.15* 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

Figure 82 and Table 49 show that quartz has the highest frequency while silcrete has the 

second highest frequency during same-day returns during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. Quartzite has a very low frequency. The model 

predicts much more quartz than what is represented in the archaeology, while quartzite is 

underpredicted. However, the silcrete frequency from the model statistically matches the 

archaeological silcrete frequency. There is also no ranking match (Supplementary Table 

B48). Overall, this result does not support Hypothesis 1. 

 
Figure 82. Comparison between same-day return modeling outcomes during MIS4 

model conditions with a Paleo-Agulhas plain silcrete source and bootstrapped MIS4 

archaeological raw material frequency data from PP5-6. Plot shows the mean and the 

upper and lower 95% confidence intervals for raw material frequencies. 
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Table 49. Summary statistics and test results for same-day return simulations of MIS4 

conditions with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological 

raw material frequency data from PP5-6. 

  Quartz Silcrete Quartzite 

PP5-6-
MIS4-
Quartz 

PP5-6-
MIS4-
Silcrete 

PP5-6-
MIS4-
Quartzite 

n (number of assemblages) 1000 1000 1000 46 46 46 

First Quartile 58.65 37.65 0.00 1.21 13.79 5.19 

Min 52.24 30.43 0.00 0.00 0.00 0.00 

Median 60.45 39.52 0.00 3.73 39.13 43.00 

Mean 60.54 39.42 0.04 8.39 40.00 44.63 

Max 69.57 47.61 0.79 66.11 96.55 96.45 

Third Quartile 62.29 41.32 0.00 10.53 62.77 68.24 

SD 2.78 2.77 0.10 11.83 27.52 25.54 

SE 0.09 0.09 0.00 1.67* 4.01* 3.71* 

Margin of error (95% CI) 0.17 0.17 0.01 3.28 7.85 7.27 

Upper 95% CI 60.71 39.59 0.05 11.66* 47.85* 51.90* 

Lower 95% CI 60.37 39.25 0.03 5.11* 32.15* 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions 

Figure 83 and Table 50 show that quartz has the highest frequency while quartz has the 

second highest frequency during same-day returns during MIS5 conditions. Silcrete has a 

very low frequency. None of the model raw material frequencies match the 

archaeological frequencies except for silcrete that matches the frequency of silcrete from 

the MIS5 record at PP13B. The model predicts more quartz than what is represented in 

the MIS5 record at PP5-6 and PP13B, and in the total MIS5 assemblage at Pinnacle 

Point, while quartzite and silcrete are underpredicted. There is also no ranking match 

(Supplementary Table B49). This result does not support Hypothesis 1. 
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Figure 83. Comparison between same-day return modeling outcomes during MIS5 

model conditions and bootstrapped MIS5 archaeological raw material frequency data 

from PP5-6, PP13B, and all MIS5 assemblages from the PP sequence including PP5-6, 

PP13B, PP9B, and PP9C. Plot shows the mean and the upper and lower 95% confidence 

intervals for raw material frequencies. 

 

Table 50. Summary statistics and test results for same-day return simulations of MIS5 

conditions compared to MIS5 archaeological raw material frequency data from PP5-6, 

PP13B, PP9B, and PP9C. 
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n 
(number 
of 
assembl
ages) 1000 1000 1000 31 31 31 7 7 7 43 43 43 

First 
Quartile 80.63 0.10 16.46 0.00 1.45 60.24 1.71 0.00 87.62 0.10 0.95 64.30 

Min 75.65 0.06 10.42 0.00 0.00 26.94 0.00 0.00 87.62 0.00 0.00 26.94 

Median 82.14 0.11 17.69 0.89 10.19 76.11 2.15 0.00 97.85 2.65 6.44 83.74 
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Mean 82.03 0.11 17.79 3.53 16.97 72.77 4.41 1.09 94.34 4.61 
13.0

5 77.20 

Max 89.47 0.15 24.10 24.87 64.83 100.00 9.39 5.01 
100.0

0 
24.8

7 
64.8

3 
100.0

0 

Third 
Quartile 83.38 0.12 19.17 3.92 32.95 92.83 9.33 2.55 98.29 6.95 

21.2
1 92.83 

SD 2.02 0.01 2.00 5.94 17.85 21.79 3.91 1.97 5.37 6.03 
16.4

5 20.01 

SE 0.06 0.00 0.06 1.03* 3.14* 3.85* 1.40* 0.68* 1.92* 
0.90

* 
2.46

* 3.00* 

Margin 
of error 
(95% 
CI) 0.13 0.00 0.12 2.03 6.16 7.55 2.74 1.34 3.76 1.76 4.82 5.87 

Upper 
95% CI 82.15 0.11 17.92 5.56* 23.12* 80.32* 7.15* 2.42* 

98.10
* 

6.37
* 

17.8
6* 

83.07
* 

Lower 
95% CI 81.90 0.11 17.67 1.51* 10.81* 65.21* 1.68* 0.00* 

90.58
* 

2.85
* 

8.23
* 

71.33
* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Figure 84 and Table 51 show that quartz has the highest frequency while quartzite has 

the second highest frequency during same-day returns during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. Silcrete was not deposited at all in the simulated 

Pinnacle Point assemblage. The model predicts much more quartz than what is 

represented in the archaeology, while quartzite is underpredicted. However, the silcrete 

frequency from the model statistically matches the archaeological silcrete frequency. 

There is also no ranking match (Supplementary Table B50). Overall, this result does not 

support Hypothesis 1. 
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Figure 84. Comparison between same-day return modeling outcomes during MIS6 

model conditions without a Paleo-Agulhas plain silcrete source and bootstrapped MIS6 

archaeological raw material frequency data from PP13B. Plot shows the mean and the 

upper and lower 95% confidence intervals for raw material frequencies. 

 

Table 51. Summary statistics and test results for same-day return simulations of MIS6 

conditions without a Paleo-Agulhas plain silcrete source compared to MIS6 

archaeological raw material frequency data from PP13B. 

  Quartz Silcrete Quartzite 

PP13-
MIS6-
Quartz 

PP13B-
MIS6-

Silcrete 

PP13B-
MIS6-

Quartzite 

n (number of assemblages) 1000 1000 1000 7 7 7 

First Quartile 73.10 0.00 22.17 1.71 0.00 87.62 

Min 65.00 0.00 15.67 0.00 0.00 87.62 

Median 75.79 0.00 24.21 2.15 0.00 97.85 

Mean 75.41 0.00 24.59 4.41 1.09 94.34 

Max 84.33 0.00 35.00 9.39 5.01 100.00 

Third Quartile 77.83 0.00 26.90 9.33 2.55 98.29 

SD 3.55 0.00 3.55 3.91 1.97 5.37 

SE 0.11 0.00 0.11 1.40* 0.68* 1.92* 

Margin of error (95% CI) 0.22 0.00 0.22 2.74 1.34 3.76 

Upper 95% CI 75.63 0.00 24.81 7.15* 2.42* 98.10* 

Lower 95% CI 75.19 0.00 24.37 1.68* 0.00* 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS6 conditions with a Paleo-Agulhas plain silcrete source 

Figure 85 and Table 52 show that quartz has the highest frequency while silcrete has the 

second highest frequency during same-day returns during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. Quartzite has a low frequency. None of the model 

frequencies statistically match the archaeological frequencies. The model predicts more 

quartz and silcrete than what is represented in the archaeology, while quartzite is 

underpredicted. There is also no ranking match (Supplementary Table B51). This result 

does not support Hypothesis 1. 

Figure 85. Comparison between same-day return modeling outcomes during MIS6 

model conditions with a Paleo-Agulhas plain silcrete source and bootstrapped MIS6 

archaeological raw material frequency data from PP13B. Plot shows the mean and the 

upper and lower 95% confidence intervals for raw material frequencies. 
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Table 52. Summary statistics and test results for same-day return simulations of MIS6 

conditions with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological 

raw material frequency data from PP13B. 

  Quartz Silcrete Quartzite 

PP13-
MIS6-
Quartz 

PP13B-
MIS6-

Silcrete 

PP13B-
MIS6-

Quartzite 

n (number of assemblages) 1000 1000 1000 7 7 7 

First Quartile 56.24 31.92 5.75 1.71 0.00 87.62 

Min 46.67 23.34 1.86 0.00 0.00 87.62 

Median 58.57 34.58 6.73 2.15 0.00 97.85 

Mean 58.60 34.54 6.86 4.41 1.09 94.34 

Max 71.18 45.87 16.76 9.39 5.01 100.00 

Third Quartile 61.21 36.98 7.78 9.33 2.55 98.29 

SD 3.81 3.68 1.72 3.91 1.97 5.37 

SE 0.12 0.12 0.05 1.40* 0.68* 1.92* 

Margin of error (95% CI) 0.24 0.23 0.11 2.74 1.34 3.76 

Upper 95% CI 58.84 34.77 6.96 7.15* 2.42* 98.10* 

Lower 95% CI 58.37 34.31 6.75 1.68* 0.00* 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

OFAT1 modeling outcomes - Effect of increased movement budget 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Figure 86 and Table 53 compare model outcomes from MIS4 conditions without a 

Paleo-Agulhas plain silcrete source with MIS4 archaeological raw material frequencies 

from PP5-6. When the movement budget (TT=totticks) is increased, the frequency of 

silcrete is increased. However, the same is true for quartzite. Conversely, the frequency 

of quartz decreases with an increased movement-budget. When ~20 foraging days 

(TT=2000) are simulated, quartzite is the most frequent followed by quartz, while silcrete 

has the lowest frequency. All the frequencies are significantly different from each other 

during each type of movement budget (TT=totticks) simulation except for when TT=50 

and TT=100 are simulated then silcrete and quartzite frequencies are statistically similar. 

Looking across the simulations of different movement budgets the model outcomes does 

not match the archaeological frequencies at any time. There is also no ranking match 
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during any of the movement budgets (Supplementary Table B52).This result does not 

support Hypothesis 1. 

 
Figure 86. Comparison between OFAT1 modeling outcomes using different movement 

budgets (TT values) during MIS4 model conditions without a Paleo-Agulhas plain 

silcrete source and bootstrapped MIS4 archaeological raw material frequency data from 

PP5-6. Plot shows the mean and the upper and lower 95% confidence intervals for raw 

material frequencies. 

 

Table 53. Summary statistics and test results for OFAT1 simulations of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  

TT=50-

Quartz 

TT=100-

Quartz 

TT=500-

Quartz 

TT=1000-

Quartz 

TT=1500-

Quartz 

TT=2000-

Quartz 

PP5-6-MIS4-

Quartz 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 99.85 76.75 53.14 40.19 32.20 1.21 

Min 100.00 98.34 70.36 46.56 34.36 27.03 0.00 

Median 100.00 100.00 78.46 55.11 41.84 33.77 3.73 

Mean 100.00 99.89 78.36 54.99 41.87 33.89 8.39 

Max 100.00 100.00 84.87 63.38 50.53 40.78 66.11 

Third Quartile 100.00 100.00 79.93 56.80 43.52 35.53 10.53 

SD 0.00 0.23 2.37 2.69 2.51 2.43 11.83 
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SE 0.00 0.01 0.07 0.09 0.08 0.08 1.67* 

Margin of error 

(95% CI) 0.00 0.01 0.15 0.17 0.16 0.15 3.28 

Upper 95% CI 100.00 99.90 78.50 55.16 42.03 34.04 11.66* 

Lower 95% CI 100.00 99.87 78.21 54.82 41.72 33.74 5.11* 

 
TT=50-

Silcrete 

TT=100-

Silcrete 

TT=500-

Silcrete 

TT=1000-

Silcrete 

TT=1500-

Silcrete 

TT=2000-

Silcrete 

PP5-6-MIS4-

Silcrete 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.33 2.30 4.13 5.59 13.79 

Min 0.00 0.00 0.00 0.51 1.82 3.32 0.00 

Median 0.00 0.00 0.64 2.89 4.83 6.42 39.13 

Mean 0.00 0.00 0.70 2.95 4.86 6.48 40.00 

Max 0.00 0.00 3.12 6.78 8.92 10.38 96.55 

Third Quartile 0.00 0.00 0.97 3.50 5.57 7.32 62.77 

SD 0.00 0.00 0.49 0.95 1.12 1.25 27.52 

SE 0.00 0.00 0.02 0.03 0.04 0.04 4.01* 

Margin of error 

(95% CI) 0.00 0.00 0.03 0.06 0.07 0.08 7.85 

Upper 95% CI 0.00 0.00 0.73 3.01 4.93 6.56 47.85* 

Lower 95% CI 0.00 0.00 0.67 2.89 4.79 6.40 32.15* 

  

TT=50-

Quartzite 

TT=100-

Quartzite 

TT=500-

Quartzite 

TT=1000-

Quartzite 

TT=1500-

Quartzite 

TT=2000-

Quartzite 

PP5-6-MIS4-

Quartzite 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 19.28 40.29 51.51 58.06 5.19 

Min 0.00 0.00 14.80 34.16 45.68 52.83 0.00 

Median 0.00 0.00 20.84 41.96 53.36 59.64 43.00 

Mean 0.00 0.11 20.94 42.06 53.26 59.63 44.63 

Max 0.00 1.66 28.64 49.75 60.13 66.67 96.45 

Third Quartile 0.00 0.15 22.53 43.93 55.01 61.27 68.24 

SD 0.00 0.23 2.34 2.64 2.61 2.46 25.54 

SE 0.00 0.01 0.07 0.08 0.08 0.08 3.71* 

Margin of error 

(95% CI) 0.00 0.01 0.15 0.16 0.16 0.15 7.27 

Upper 95% CI 0.00 0.13 21.08 42.23 53.43 59.79 51.90* 

Lower 95% CI 0.00 0.10 20.79 41.90 53.10 59.48 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

Figure 87 and Table 54 compare model outcomes from MIS4 conditions with a Paleo-

Agulhas plain silcrete source with MIS4 archaeological raw material frequencies from 

PP5-6.By increasing the movement budget (TT=totticks) the frequency of silcrete is 
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increased, however at TT=1500 and 2000 the silcrete frequency starts to decrease. 

Quartzite increases steadily up to TT=2000. Conversely, the frequency of quartz 

decreases with increased movement budget (TT=totticks) values. When ~20 foraging 

days (TT=2000) are simulated, silcrete is the most frequent raw material followed by 

quartzite, while quartz has the lowest frequency. All frequencies are significantly 

different from each other during each type of movement budget (TT=totticks) simulation. 

 
Figure 87. Comparison between OFAT1 modeling outcomes using different movement 

budgets (TT values) during MIS4 model conditions with a Paleo-Agulhas plain silcrete 

source and bootstrapped MIS4 archaeological raw material frequency data from PP5-6. 

Plot shows the mean and the upper and lower 95% confidence intervals for raw material 

frequencies. 

 

Looking across the simulations of different movement budgets the silcrete 

frequencies do not match the archaeological silcrete frequencies at TT=50 and TT=500 

simulations but do match at TT=1000 and TT=1500 simulations. When ~20 foraging 
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days (TT=2000) of movement are simulated, both quartzite and silcrete frequencies from 

the model statistically match the archaeological frequencies, while quartz does not. The 

model predicts a higher quartz frequency than the observed archaeological frequency. 

There is also no ranking match during any of the movement budgets (Supplementary 

Table B53).This result does not support Hypothesis 1. 

 

Table 54. Summary statistics and test results for OFAT1 simulations of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  

TT=50-

Quartz 

TT=100-

Quartz 

TT=500-

Quartz 

TT=1000-

Quartz 

TT=1500-

Quartz 

TT=2000-

Quartz 

PP5-6-MIS4-

Quartz 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 66.25 58.65 38.36 28.03 22.12 18.28 1.21 

Min 59.25 52.24 31.71 22.92 16.94 14.03 0.00 

Median 68.36 60.45 40.01 29.36 23.55 19.43 3.73 

Mean 68.32 60.54 40.02 29.43 23.52 19.43 8.39 

Max 77.23 69.57 48.41 37.51 29.68 24.15 66.11 

Third Quartile 70.49 62.29 41.57 30.82 24.93 20.64 10.53 

SD 2.99 2.78 2.39 2.16 2.02 1.71 11.83 

SE 0.09 0.09 0.08 0.07 0.06 0.05 1.67* 

Margin of error 

(95% CI) 0.19 0.17 0.15 0.13 0.13 0.11 3.28 

Upper 95% CI 68.50 60.71 40.17 29.56 23.65 19.54 11.66* 

Lower 95% CI 68.13 60.37 39.87 29.29 23.40 19.33 5.11* 

  

TT=50-

Silcrete 

TT=100-

Silcrete 

TT=500-

Silcrete 

TT=1000-

Silcrete 

TT=1500-

Silcrete 

TT=2000-

Silcrete 

PP5-6-MIS4-

Silcrete 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 29.51 37.65 48.34 45.58 42.06 39.36 13.79 

Min 22.77 30.43 41.65 38.33 36.25 33.52 0.00 

Median 31.64 39.52 49.92 47.01 43.68 41.04 39.13 

Mean 31.68 39.42 49.85 47.10 43.65 40.96 40.00 

Max 40.75 47.61 58.71 54.37 51.75 48.33 96.55 

Third Quartile 33.75 41.32 51.41 48.71 45.28 42.49 62.77 

SD 2.99 2.77 2.44 2.34 2.34 2.31 27.52 

SE 0.09 0.09 0.08 0.07 0.07 0.07 4.01* 

Margin of error 

(95% CI) 0.19 0.17 0.15 0.14 0.14 0.14 7.85 

Upper 95% CI 31.87 39.59 50.00 47.25 43.80 41.11 47.85* 
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Lower 95% CI 31.50 39.25 49.70 46.96 43.51 40.82 32.15* 

  

TT=50-

Quartzite 

TT=100-

Quartzite 

TT=500-

Quartzite 

TT=1000-

Quartzite 

TT=1500-

Quartzite 

TT=2000-

Quartzite 

PP5-6-MIS4-

Quartzite 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 9.13 22.17 31.20 37.97 5.19 

Min 0.00 0.00 6.01 16.95 21.73 32.41 0.00 

Median 0.00 0.00 10.05 23.51 32.85 39.64 43.00 

Mean 0.00 0.04 10.13 23.47 32.82 39.61 44.63 

Max 0.00 0.79 15.61 29.57 39.41 46.09 96.45 

Third Quartile 0.00 0.00 11.11 24.72 34.43 41.12 68.24 

SD 0.00 0.10 1.45 1.96 2.33 2.28 25.54 

SE 0.00 0.00 0.05 0.06 0.07 0.07 3.71* 

Margin of error 

(95% CI) 0.00 0.01 0.09 0.12 0.14 0.14 7.27 

Upper 95% CI 0.00 0.05 10.22 23.59 32.97 39.75 51.90* 

Lower 95% CI 0.00 0.03 10.04 23.35 32.68 39.46 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions 

Figure 88 and Table 55 compare model outcomes from MIS5 conditions with MIS5 

archaeological raw material frequencies from PP5-6, PP9B, PP9C, and PP13B. As the 

movement budget (TT=totticks) is increased, the frequency of silcrete is increased at the 

same time as quartzite increases. Conversely, the frequency of quartz decreases with 

increased movement budget (TT=totticks). When ~20 foraging days (TT=2000) are 

simulated, quartzite is the most frequent raw material followed by quartz, while silcrete 

has the lowest frequency. All the frequencies are significantly different from each other 

during each type of movement budget (TT=totticks) simulation. 

 Looking across the simulations of different movement budgets the quartz and 

quartzite frequencies do not match the archaeological frequencies at any time. The model 

predicts higher quartz frequencies at any movement budget than the observed 

archaeological frequencies, while it predicts lower quartzite frequencies at any movement 
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budget than the observed archaeological frequencies. Silcrete frequencies from TT=2000 

simulations statistically match the silcrete frequency from PP5-6 during MIS5, whereas 

the silcrete frequency from TT=1500 simulations statistically matches the silcrete 

frequencies from both PP5-6 and the total PP MIS5 assemblage. TT=50, 100, and 500 

silcrete frequencies statistically match the silcrete frequency from PP13B. There is also 

no ranking match during any of the movement budgets (Supplementary Table 

B54).This result does not support Hypothesis 1. 

 
Figure 88. Comparison between OFAT1 modeling outcomes using different movement 

budgets (TT values) during MIS5 model conditions and bootstrapped MIS5 

archaeological raw material frequency data from PP5-6, PP13B, and all MIS5 

assemblages from the PP sequence including PP5-6, PP13B, PP9B, and PP9C. Plot 

shows the mean and the upper and lower 95% confidence intervals for raw material 

frequencies. 
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Table 55. Summary statistics and test results for OFAT1 simulations of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  

TT=50-

Quartz 

TT=100

-Quartz 

TT=500

-Quartz 

TT=100

0-

Quartz 

TT=150

0-

Quartz 

TT=200

0-

Quartz 

PP5-6-

MIS5-

Quartz 

PP13B-

MIS5-

Quartz 

AllPP-

MIS5-

Quartz 

n (number 

of 

assemblage

s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 

Quartile 83.15 80.63 69.05 55.38 45.45 38.19 0.00 1.71 0.10 

Min 77.10 75.65 63.79 49.60 40.38 32.27 0.00 0.00 0.00 

Median 84.52 82.14 70.53 57.05 47.12 39.73 0.89 2.15 2.65 

Mean 84.47 82.03 70.53 57.06 47.05 39.72 3.53 4.41 4.61 

Max 90.66 89.47 77.54 63.66 55.27 47.61 24.87 9.39 24.87 

Third 

Quartile 85.82 83.38 72.04 58.67 48.52 41.22 3.92 9.33 6.95 

SD 2.07 2.02 2.22 2.33 2.30 2.33 5.94 3.91 6.03 

SE 0.07 0.06 0.07 0.07 0.07 0.07 1.03 1.40 0.90 

Margin of 

error (95% 

CI) 0.13 0.13 0.14 0.14 0.14 0.14 2.03 2.74 1.76 

Upper 95% 

CI 84.60 82.15 70.66 57.20 47.19 39.86 5.56 7.15 6.37 

Lower 95% 

CI 84.34 81.90 70.39 56.91 46.90 39.57 1.51 1.68 2.85 

  

TT=50-

Silcret

e 

TT=100

-

Silcrete 

TT=500

-

Silcrete 

TT=100

0-

Silcrete 

TT=150

0-

Silcrete 

TT=200

0-

Silcrete 

PP5-6-

MIS5-

Silcrete 

PP13B-

Silcrete 

AllPP-

MIS5-

Silcrete 

n (number 

of 

assemblage

s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 

Quartile 0.09 0.10 1.03 6.18 11.85 17.20 1.45 0.00 0.95 

Min 0.06 0.06 0.14 3.19 7.65 12.21 0.00 0.00 0.00 

Median 0.09 0.11 1.40 7.09 12.88 18.50 10.19 0.00 6.44 

Mean 0.09 0.11 1.45 7.05 12.95 18.47 16.97 1.09 13.05 

Max 0.14 0.15 4.11 11.85 17.94 25.51 64.83 5.01 64.83 

Third 

Quartile 0.10 0.12 1.81 7.88 14.05 19.66 32.95 2.55 21.21 

SD 0.01 0.01 0.58 1.26 1.63 1.89 17.85 1.97 16.45 

SE 0.00 0.00 0.02 0.04 0.05 0.06 3.14 0.68 2.46 

Margin of 

error (95% 

CI) 0.00 0.00 0.04 0.08 0.10 0.12 6.16 1.34 4.82 

Upper 95% 

CI 0.09 0.11 1.49 7.13 13.05 18.59 23.12 2.42 17.86 

Lower 95% 

CI 0.09 0.11 1.42 6.97 12.85 18.36 10.81 0.00 8.23 

  

TT=50-

Quartzi

TT=100

-

TT=500

-

TT=100

0-

TT=150

0-

TT=200

0-

P5-6-

MIS5-

PP13B-

Silcrete 

AllPP-

MIS5-
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te Quartzi

te 

Quartzi

te 

Quartzit

e 

Quartzit

e 

Quartzit

e 

Quartzite Quartzite 

n (number 

of 

assemblage

s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 

Quartile 14.04 16.46 26.47 34.31 38.37 40.12 60.24 87.62 64.30 

Min 9.25 10.42 21.01 29.56 32.44 34.41 26.94 87.62 26.94 

Median 15.33 17.69 27.97 35.84 39.94 41.79 76.11 97.85 83.74 

Mean 15.37 17.79 27.92 35.79 39.91 41.72 72.77 94.34 77.20 

Max 22.67 24.10 34.54 44.82 47.43 49.03 100.00 100.00 100.00 

Third 

Quartile 16.68 19.17 29.41 37.32 41.46 43.32 92.83 98.29 92.83 

SD 2.05 2.00 2.17 2.27 2.31 2.33 21.79 5.37 20.01 

SE 0.06 0.06 0.07 0.07 0.07 0.07 3.85 1.92 3.00 

Margin of 

error (95% 

CI) 0.13 0.12 0.13 0.14 0.14 0.14 7.55 3.76 5.87 

Upper 95% 

CI 15.50 17.92 28.06 35.93 40.05 41.86 80.32 98.10 83.07 

Lower 95% 

CI 15.25 17.67 27.79 35.65 39.76 41.57 65.21 90.58 71.33 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Figure 89 and Table 56 compare model outcomes from MIS6 conditions without a 

Paleo-Agulhas plain silcrete source with MIS6 archaeological raw material frequencies 

from PP13B. When the movement budget (TT=totticks) is increased, the frequency of 

silcrete is increased at the same time as quartzite increases, while the frequency of quartz 

decreases. An interesting observation is that the quartzite frequency increases rapidly 

from 24.6% to 53.7% when going from TT=100 to TT=500. When ~20 foraging days 

(TT=2000) are simulated, quartzite is the most frequent followed by quartz, while silcrete 

has the lowest frequency. All the frequencies are significantly different from each other 

during each type of movement budget (TT=totticks) simulation. 

Looking across the simulations of different movement budgets, the quartz and 

quartzite frequencies never match the archaeological frequencies, while the silcrete 
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frequencies match the archaeological frequencies at TT=50, 100, 500, and 1000. When 

~20 foraging days (TT=2000) of movement are simulated, none of the model frequencies 

statistically matches the archaeological frequencies. The model predicts a lower quartz 

frequency than the observed archaeological frequency, while it predicts higher quartzite 

and silcrete values than the observed archaeological frequencies. There is also no ranking 

match during any of the movement budgets (Supplementary Table B55).The result does 

not support Hypothesis 1. 

 
Figure 89. Comparison between OFAT1 modeling outcomes using different movement 

budgets (TT values) during MIS6 model conditions without a Paleo-Agulhas plain 

silcrete source and bootstrapped MIS6 archaeological raw material frequency data from 

PP13B. Plot shows the mean and the upper and lower 95% confidence intervals for raw 

material frequencies. 
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Table 56. Summary statistics and test results for OFAT1 simulations of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  

TT=50-

Quartz 

TT=100-

Quartz 

TT=500-

Quartz 

TT=1000-

Quartz 

TT=1500-

Quartz 

TT=2000-

Quartz 

PP13-MIS6-

Quartz 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 84.59 73.10 43.55 31.70 25.86 22.34 1.71 

Min 73.16 65.00 35.90 23.54 17.44 15.97 0.00 

Median 86.73 75.79 45.82 33.85 27.68 24.15 2.15 

Mean 86.35 75.41 45.81 33.79 27.77 24.12 4.41 

Max 94.72 84.33 56.69 43.70 37.64 33.75 9.39 

Third Quartile 88.61 77.83 48.06 35.77 29.66 25.83 9.33 

SD 3.29 3.55 3.25 2.99 2.84 2.59 3.91 

SE 0.10 0.11 0.10 0.09 0.09 0.08 1.40* 

Margin of error 

(95% CI) 0.20 0.22 0.20 0.19 0.18 0.16 2.74 

Upper 95% CI 86.55 75.63 46.01 33.97 27.95 24.28 7.15* 

Lower 95% CI 86.14 75.19 45.61 33.60 27.59 23.96 1.68* 

  

TT=50-

Silcrete 

TT=100-

Silcrete 

TT=500-

Silcrete 

TT=1000-

Silcrete 

TT=1500-

Silcrete 

TT=2000-

Silcrete 

PP13B-MIS6-

Silcrete 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.27 1.52 3.12 4.42 0.00 

Min 0.00 0.00 0.00 0.00 0.65 1.32 0.00 

Median 0.00 0.00 0.54 2.07 3.86 5.33 0.00 

Mean 0.00 0.00 0.54 2.23 3.97 5.36 1.09 

Max 0.00 0.00 3.04 6.45 8.62 10.90 5.01 

Third Quartile 0.00 0.00 0.87 2.81 4.81 6.18 2.55 

SD 0.00 0.00 0.48 0.97 1.18 1.37 1.97 

SE 0.00 0.00 0.02 0.03 0.04 0.04 0.68* 

Margin of error 

(95% CI) 0.00 0.00 0.03 0.06 0.07 0.09 1.34 

Upper 95% CI 0.00 0.00 0.57 2.29 4.04 5.44 2.42* 

Lower 95% CI 0.00 0.00 0.51 2.17 3.89 5.27 0.00* 

  

TT=50-

Quartzite 

TT=100-

Quartzite 

TT=500-

Quartzite 

TT=1000-

Quartzite 

TT=1500-

Quartzite 

TT=2000-

Quartzite 

PP13B-MIS6-

Quartzite 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 11.39 22.17 51.39 61.92 66.45 68.77 87.62 

Min 5.28 15.67 43.02 54.60 59.15 60.52 87.62 

Median 13.27 24.21 53.63 63.95 68.27 70.52 97.85 

Mean 13.65 24.59 53.65 63.98 68.26 70.52 94.34 

Max 26.84 35.00 63.37 75.07 77.64 79.87 100.00 

Third Quartile 15.41 26.90 55.89 66.07 70.25 72.47 98.29 

SD 3.29 3.55 3.24 3.05 2.90 2.83 5.37 



376 
 

SE 0.10 0.11 0.10 0.10 0.09 0.09 1.92* 

Margin of error 

(95% CI) 0.20 0.22 0.20 0.19 0.18 0.18 3.76 

Upper 95% CI 13.86 24.81 53.85 64.17 68.44 70.69 98.10* 

Lower 95% CI 13.45 24.37 53.45 63.79 68.08 70.34 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

Figure 90 and Table 57 compare model outcomes from MIS6 conditions with a Paleo-

Agulhas plain silcrete source with MIS6 archaeological raw material frequencies from 

PP13B. As the movement budget (TT=totticks) is increased, the frequency of silcrete is 

increased but at TT=1000, 1500, and 2000 simulations the frequency of silcrete 

decreases. The frequency of quartzite, on the other hand, increases rapidly from TT=100 

to TT=500 and steadily increases with increased movement-budget after that. Conversely, 

the quartz frequency decreases with increased movement budget (TT=totticks). When 

~20 foraging days (TT=2000) are simulated, quartzite is the most frequent raw material 

followed by silcrete, while quartz has the lowest frequency. All the frequencies are 

significantly different from each other during each type of movement budget 

(TT=totticks) simulation. 

Looking across the simulations of different movement budgets the frequencies do 

not match the archaeological frequencies at any time including when ~20 foraging days 

(TT=2000) of movement are simulated. During all movement budget simulations, the 

model predicts higher quartz and silcrete frequencies than the observed archaeological 

frequencies, while it predicts a lower quartzite frequency than the archaeological 

frequency. There is also no ranking match during any of the movement budgets 

(Supplementary Table B56). This result does not support Hypothesis 1. 
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Figure 90. Comparison between OFAT1 modeling outcomes using different movement 

budgets (TT values) during MIS6 model conditions with a Paleo-Agulhas plain silcrete 

source and bootstrapped MIS6 archaeological raw material frequency data from PP13B. 

Plot shows the mean and the upper and lower 95% confidence intervals for raw material 

frequencies. 

 

Table 57. Summary statistics and test results for OFAT1 simulations of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  

TT=50-

Quartz 

TT=100-

Quartz 

TT=500-

Quartz 

TT=1000-

Quartz 

TT=1500-

Quartz 

TT=2000-

Quartz 

PP13B-MIS6-

Quartz 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 64.56 56.24 33.53 24.80 20.56 17.97 1.71 

Min 52.88 46.67 25.91 18.78 15.86 12.92 0.00 

Median 67.93 58.57 35.53 26.94 22.21 19.49 2.15 

Mean 67.39 58.60 35.67 26.81 22.29 19.57 4.41 

Max 79.32 71.18 43.53 34.20 30.04 26.98 9.39 

Third Quartile 70.54 61.21 37.72 28.74 23.91 21.16 9.33 

SD 4.40 3.81 3.02 2.76 2.55 2.36 3.91 

SE 0.14 0.12 0.10 0.09 0.08 0.07 1.40 

Margin of error 

(95% CI) 0.27 0.24 0.19 0.17 0.16 0.15 2.74 
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Upper 95% CI 67.66 58.84 35.86 26.98 22.45 19.72 7.15 

Lower 95% CI 67.11 58.37 35.48 26.64 22.13 19.42 1.68 

  

TT=50-

Silcrete 

TT=100-

Silcrete 

TT=500-

Silcrete 

TT=1000-

Silcrete 

TT=1500-

Silcrete 

TT=2000-

Silcrete 

PP13B-MIS6-

Silcrete 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 26.63 31.92 32.85 29.75 27.94 26.54 0.00 

Min 18.83 23.34 26.41 23.73 21.81 20.41 0.00 

Median 29.11 34.58 34.88 31.66 29.88 28.45 0.00 

Mean 29.76 34.54 34.85 31.66 29.89 28.44 1.09 

Max 43.84 45.87 44.11 40.66 38.20 39.09 5.01 

Third Quartile 32.48 36.98 36.90 33.51 31.75 30.26 2.55 

SD 4.33 3.68 2.95 2.77 2.78 2.59 1.97 

SE 0.14 0.12 0.09 0.09 0.09 0.08 0.68 

Margin of error 

(95% CI) 0.27 0.23 0.18 0.17 0.17 0.16 1.34 

Upper 95% CI 30.02 34.77 35.03 31.84 30.06 28.60 2.42 

Lower 95% CI 29.49 34.31 34.66 31.49 29.71 28.28 0.00 

  

TT=50-

Quartzite 

TT=100-

Quartzite 

TT=500-

Quartzite 

TT=1000-

Quartzite 

TT=1500-

Quartzite 

TT=2000-

Quartzite 

PP13B-MIS6-

Quartzite 

n (number of 

assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 1.93 5.75 27.52 39.47 45.82 49.84 87.62 

Min 0.30 1.86 22.19 33.12 37.10 42.61 87.62 

Median 2.66 6.73 29.50 41.46 47.85 51.98 97.85 

Mean 2.86 6.86 29.48 41.53 47.82 51.99 94.34 

Max 14.51 16.76 39.21 51.63 56.92 62.76 100.00 

Third Quartile 3.37 7.78 31.31 43.56 49.85 53.98 98.29 

SD 1.48 1.72 2.80 2.94 3.01 2.99 5.37 

SE 0.05 0.05 0.09 0.09 0.10 0.09 1.92 

Margin of error 

(95% CI) 0.09 0.11 0.17 0.18 0.19 0.19 3.76 

Upper 95% CI 2.95 6.96 29.66 41.71 48.01 52.18 98.10 

Lower 95% CI 2.77 6.75 29.31 41.35 47.64 51.80 90.58 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

OAM – Same-day return outcomes and OFAT round 1results summary 

Hypothesis 1 was not supported under any of the five different model conditions when 

considering only same-day returns to Pinnacle Point. The model persistently predicted 

more quartz than what is found in the archaeological record at Pinnacle Point (Table 58). 

Quartzite also never matches the archeological frequency of quartzite. Silcrete was found 
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to match the archaeological frequency of silcrete during MIS4 and MIS6 conditions 

without a Paleo-Agulhas silcrete source and during MIS5 conditions (Table 58). 

When looking at the OFAT1 outcomes the comparison of the model outputs under 

different model conditions and the archaeological raw material frequencies show 

coastline position and raw material source distribution does not explain the 

archaeological raw material pattern (Table 58). 

 

Table 58. Summary of whether model outcomes are the same as archaeological 

frequency data. 

Model 

Condition 

Variable 

Model 

Conditio

n 

Same-Day 

Returns 

Quartzite 

Frequency 

Same as 

Archaeolog

y 

Same-Day 

Returns 

Silcrete 

Frequency 

Same as 

Archaeolog

y 

Same-Day 

Returns 

Quartz 

Frequency 

Same as 

Archaeolog

y 

OFAT 1 

Quartzite 

Frequency 

Same as 

Archaeolog

y at Any 

Time 

OFAT 1 

Silcrete 

Frequency 

Same as 

Archaeolog

y at Any 

Time 

OFAT 1 

Quartz 

Frequency 

Same as 

Archaeolog

y at Any 

Time 

Coastline 

Position 

and Raw 

Material 

Distributio

n 

MIS4 

without a 

Paleo-

Agulhas 

Silcrete 

Source Not Met Not Met Not Met Not Met Not Met Not Met 

Coastline 

Position 

and Raw 

Material 

Distributio

n 

MIS4 with 

a Paleo-

Agulhas 

Silcrete 

Source Not Met Met Not Met Met Met Not Met 

Coastline 

Position 

and Raw 

Material 

Distributio

n MIS5 Not Met Met Not Met Not Met Met Not Met 

Coastline 

Position 

and Raw 

Material 

Distributio

n 

MIS6 

without a 

Paleo-

Agulhas 

Silcrete 

Source Not Met Met Not Met Not Met Met Not Met 

Coastline 

Position 

and Raw 

Material 

Distributio

n  

MIS6 with 

a Paleo-

Agulhas 

Silcrete 

Source Not Met Not Met Not Met Not Met Not Met Not Met 

 



380 
 

Increasing and decreasing the movement budget thereby increasing and 

decreasing the range size of the forager does not result in a model output that matches the 

archaeological frequencies. The closest the model simulations come to match the 

archaeological pattern is under MIS4 conditions with a Paleo-Agulhas plain silcrete 

source when both quartzite and silcrete frequencies at TT=2000 statistically match the 

archaeological frequencies. However, the quartz frequency does not statistically match 

the archaeological frequency (Table 58). When looking at ranking comparisons there is 

also no match during same-day return simulations or during OFAT1 simulations. Overall, 

the results from same-day return simulations and OFAT1 presents no support for 

Hypothesis 1. 

 

Is random walk a realistic raw material procurement strategy? 

As noted previously the archaeological record indicates that hunter-gatherers changed 

their selection for stone tool raw materials even when several types of stone materials 

were available. Records from a wide range of environmental and climatic contexts, time-

periods, and ‘cultures’ show the changing use, and co-use of different stone tool raw 

materials (e.g. Andrefsky Jr 1994, Bamforth 1990, Bar-Yosef 1991, Clark 1980, Jelinek 

1991, Kuhn 2004, 1991). There is debate about what explains changing raw material 

selection and whether changing raw material frequencies in the archaeological record can 

be considered a reliable proxy for human forager adaptive variability (Brantingham 2003, 

Féblot-Augustins 1993, Kuhn 1995, Mellars 1996). Many hypotheses have been put 

forward to explain the changes in raw material usage frequency. These hypotheses 

include climate and environmental change and its co-variability with mobility and 
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procurement strategies (Ambrose and Lorenz 1990, Binford and Stone 1985, Kuhn 2004), 

direct selection of certain raw materials for their physical properties (Braun et al. 2009, 

Gould and Saggers 1985, Minichillo 2006), demographic change (Clark 1980), color or 

appearance preference (Akerman, Fullagar, and van Gijn 2002, Clendon 1999, Stout 

2002), symbolic value (Wurz 1999), and style (Close 2002). These were all outlined 

above in Chapter 2 and categorized into either ‘Non Preference-based change’ or 

‘Preference-based change’ model categories. 

 Brantingham (2003) put forward an alternative to these hypotheses. He presented 

a neutral model that he argues explains some of the observed patterns in the record of raw 

material abundance. To demonstrate the deliberate selection of raw materials, he argued 

that patterning in the archaeological record must be shown to be different from the result 

of the neutral model. The neutral model provides a baseline for comparison where 

archaeologist can be certain that observed raw material patterns are not the result of 

strategic selection (Brantingham, 2003).  

 Oestmo and colleagues (2016) agreed with that sentiment but they highlighted 

that Brantingham (2003: 505) pointed out that an appropriate criticism of the neutral 

model is that a “forager could never engage in a random-walk foraging strategy and could 

never ignore the differences between stone raw material types.” Oestmo et al. (2016) 

explored if such a criticism is valid and they followed Brantingham’s (2003) suggestion 

that quantitative development of the observations presented in his study requires 

calibration of the ABM to run in simulated worlds built around the known geographic 

distribution of actual raw material sources. Oestmo et al. (2016) partly addressed 

Brantingham’s suggestion by exploring two major limitations of the neutral model. The 
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first limitation is that raw material sources are distributed randomly without any 

clustering across the model landscape, which is not the case on most real landscapes 

where the locations of raw material sources are controlled by the underlying geological 

structure and geophysical processes. They suggested that an example of such structures 

and processes, which they draw from their own research region (Mossel Bay Region), are 

coastal cliffs and embayed beaches that potentially can produce cobbles beaches along a 

stretch of coastline. These cobble beaches appear clustered due to the geological 

structures and geophysical processes of the landscape. 

 The second limitation addressed by Oestmo et al. (2016) was the unrealistic 

assumption that each raw material location in the model (n=5000) represents a unique 

raw material. Five thousand raw material sources are possible across an extended 

landscape but not 5000 unique raw materials. They further argued that it is more likely 

that a smaller amount of raw materials such as 1-25 is represented by the 5000 source 

locations. Additionally, they note that the 1-25 unique raw materials are not randomly 

distributed in isolation away from the same type raw materials. They pointed out that not 

only are source locations clustered due to the underlying geological structure and 

geophysical processes but that several sources of the same material can be available in a 

cluster, depending on the geological formation.  

 The result of the study by Oestmo et al. (2016) showed that both the ‘seeking 

walk’, which is a simplified analogy for a forager that returns to a stone cache, and the 

random walk behavior both show that increased clustering of the raw material sources 

leads to increased time without raw materials in the toolkit. They noted, however, that 

time between procurement instances and time without materials in the toolkit have 
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different implications. On one hand, if the forager can stockpile a cache at a central 

location and can return to such a place then the forager can go extended periods without 

procuring raw material because it could return to the cache to fill up on raw materials. 

Conversely, if the forager engages in random walk and the random walk takes the forager 

away from the central location and never or very seldom returns directly to a stone cache 

then random walk is potentially an unrealistic or at least risky strategy because there is a 

high probability that the foragers will run out of materials (Oestmo, Janssen, and Marean 

2016). 

 Based on the result of their study, Oestmo et al. (2016) predicted two things 

should hold true when the random walk model approach (the process of randomly 

walking while only picking up a raw material if one is encountered by chance, and 

discarding a raw material unit a set probability) is tested on real source locations with real 

extents in the Mossel Bay Region. First, raw material richness should be low 

comparatively to the default neutral model as the actual number of unique raw materials 

on the landscape in the Mossel Bay region is low. This prediction holds true due to the 

fact that only 5-6 raw materials (quartz, quartzite, silcrete, chert or chalcedony, hornfels, 

and silicified shale) are recognized broadly in the Mossel Bay region. Second, as the 

forager is moving about the landscape of the Mossel Bay region, the time spent without 

any raw materials in the toolkit will be high, in order of days and weeks. They proposed 

that if the second prediction holds true, then an alternative procurement strategy needs to 

be evaluated that meets the demands of the stone tool economy.  

 Presented below are the results of the second prediction that as the agent is 

moving across a real landscape (Mossel Bay region), and given the assumptions of the 
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random walk model, the time spent without any raw material in the toolkit will be high, 

on the order of days and weeks. The five different model conditions show different 

outcomes in regards to time without raw material in toolkit at different movement budget 

values (TT=totticks). None of the model conditions exhibit results that are consistent with 

the predictions outlined in Oestmo, Janssen, and Marean (2016). In all movement budget 

(totticks) simulations under all the five model conditions, the forager never goes above 

1% of the time without raw material in the toolkit (Supplementary Figures A1-A5 – 

Raw data can be found in Supplementary Tables B57-B66). If one assumes a leisurely 

pace of 2.5 km/hr and daily movement of up to 8 hours, then if the agent only moves 

TT=50 this translates to about 4 hours of foraging movement. Given this, 1% of 4 hours 

(240 minutes) is equal to (240 minutes*1/100) 2.4 minutes. In other words, when a 

forager conducts the foraging movement in a random fashion in regards to stone raw 

material sources for a half a foraging day, the agent is only without raw materials for ~2.4 

minutes. Given the same pace and daily max movement budget of 8 hours, when the 

agent moves the full amount it is only without stone raw material for ~5 minutes during 

that period. 

 What this suggests is that under assumptions of a random walk model as 

presented by Brantingham, random walk is a realistic procurement strategy for stone tool 

raw materials when the forager is moving in the Mossel Bay Region. Further tests of the 

effect that changing the discard probability has on the time the forager spends without 

raw material in the toolkit should be undertaken. One can predict that by lowering the 

discard probability that time spent without raw material in the toolkit will decrease. 

However, it is beyond the scope of this study.  
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OAM – Hypothesis 1 evaluation 

Knowing that random walk in relation to raw material sources can be considered a 

realistic mobility strategy to procure stone raw materials in the MBR. H1 can now be 

evaluated. Below an evaluation using results from same-day return simulations during all 

the five different model conditions, and the results of round one of the sensitivity analysis 

(OFAT 1) is presented. 

As noted above, in the first round of the OFAT (OFAT1), the effect of increasing 

the amount of time allowed by the forager to be away from PP was modeled. This was 

accomplished by varying the movement-budget (totticks) variable. This examined the 

effect of increasing the amount of both time and distance the forager can move away 

from Pinnacle Point, effectively increasing residential mobility. Movement budget 

(TT=totticks) values of 50, 100, 500, 1000, 1500, and 2000 were simulated. This allowed 

for testing H1 under both same-day returns (~70-100 “totticks”, assuming a walking pace 

of 3.5 to 2.5km/hr (Binford 2001, Marlowe 2010, Marlowe 2006)) and up to ~15-20 

foraging days away from Pinnacle Point (~2000” totticks”, assuming a walking pace of 

3.5 to 2.5km/hr (Binford 2001, Marlowe 2010, Marlowe 2006)).  

 Given the failed prediction that the forager would be without raw materials in the 

toolkit for extended periods of time, up to days and weeks, during random walk in the 

environment of the Mossel Bay region, opportunistic acquisition is a realistic foraging 

strategy in terms of obtaining stone tool raw materials in the Mossel Bay region. 

However, the modeling outcomes from same-day return and OFAT1 (effect of increased 

movement budget) simulations of the coastline position and raw material source 

distribution variable show that H1 is not supported under any of the five model conditions 



386 
 

(MIS4 with or without a Paleo-Agulhas plain silcrete source, MIS5, and MIS6 with or 

without a Paleo-Agulhas plain silcrete source). This suggests that the raw material 

frequencies observed in the Pinnacle Point record are not due to the distribution and 

availability of raw material sources in the Mossel Bay region or due to changes to 

foraging range size as exemplified by changing the movement budget that can lead to 

encounters with new and different raw material sources.  

Further, it suggests that opportunistic behavior does not explain the raw material 

pattern; it suggests that raw material procurement was not embedded into the overall 

foraging movement. This can imply that expedient procurement, use, and discard of raw 

materials was not a preferred raw material strategy, and that stone tool raw material did 

play a significant role in the technological organization of the foragers. Whether 

expedient behavior in regards to raw material economy can result in model raw material 

frequencies that are statistically similar to the archaeological frequencies will be 

addressed in OFAT round 4 below. 

The evaluation of Hypothesis 1 (H1) suggests that other factors than opportunistic 

acquisition resulted in the raw material pattern observed at Pinnacle Point. The outcome 

suggests that the response to climatic and environmental change as observed in the 

changing coastline position and raw material source distribution was not a mobility 

strategy involving targeting food resources that disregarded stone tool raw material 

differences and where investment in stone tool technology was not a priority to obtain the 

food resources. 

 The results above do not rule out other hypotheses that the raw material pattern 

can be due to factors such as shifts in the geographical range of foragers (Clark, 1980) 
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and/or trade and exchange (Deacon 1989, Wurz 1999), which both examples of the 

‘Social learning/Culture’ variant in the ‘preference-based change’ model category as 

outlined above. Further testing of these informal models cannot be done in this study but 

requires separate studies such as identifying how far these raw materials have traveled. 

Other researchers are working on this problem (e.g. Nash, Coulson, Staurset, Smith, et al. 

2013). 

 To check the robustness of the initial evaluation of H1 an expanded sensitivity 

analysis was also conducted. A number of factors can be argued to have an influence on 

the outcome of the H1 evaluation, and warrant further examination: 1) the assumption that 

Pinnacle Point is an exclusive locality on the landscape where all foraging bouts start and 

end is most likely wrong. By using Pinnacle Point as the central place for each foraging 

bout the foraging pattern is restricted to the areas surrounding Pinnacle Point. 2) The 

assumptions about probability of discard on the landscape or at the campsite (Pinnacle 

Point) and the size of the toolkit are potentially incorrect. As noted in the methods 

chapter (Chapter 6), this analysis uses the same discard probability and toolkit size as 

used by Brantingham (2003). It is possible that different values of these factors can 

change the model outcome of same-day simulation to be similar to the archaeological raw 

material pattern. 3) The simple random walk using Brantingham’s (2003) assumptions as 

a whole (base settings) is potentially incorrect. More complex behaviors that use discard 

probability and toolkit size assumptions that simulate either conservative, expedient, or 

site caching behavior are potentially more realistic. Below the results of simulations 

addressing these factors are presented starting with the assumption that Pinnacle Point is 

the exclusive locality that the forager can return too. 
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One-factor-at-the-time (OFAT) sensitivity analysis results 

OFAT round 2 – Pinnacle Point only one of three localities to return too 

As stated in the methods chapter (Chapter 6), in the second round of the OFAT 

(OFAT2), the effect of having two more central localities (represented by two actual 

archaeological MSA localities) to return too was modeled. The factor of having more 

than two localities to return too introduced randomness but also realism to the model and 

simulated Pinnacle Point as being just one of three localities that the forager can access 

on the landscape. By adding two more localities, the foraging pattern of the forager is 

also altered because the area around two more places on the landscape will now be more 

frequently visited. 

 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Figure 91 and Supplementary Table B67 compare the MIS4 archaeological raw 

material frequencies from PP5-6 with simulation results of MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. The frequencies resulting from same-day returns do 

not statistically match the archaeological frequencies. In fact, the model result suggests 

that quartz should be the most frequent material, while the archaeology shows that quartz 

is the least frequent raw material. Looking across the simulations of different movement 

budgets, the model outcomes never match the archaeological frequencies. There is also 

no ranking match during any of the movement budgets (Supplementary Figure B68). 
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Figure 91. Comparison between OFAT2 outcomes using different movement budgets 

(TT values) during MIS4 model conditions without a Paleo-Agulhas plain silcrete source 

where the agent moves to the closest locality when the movement budget (totticks) is 

exhausted and bootstrapped MIS4 archaeological raw material frequency data from PP5-

6. Plot shows the mean and the upper and lower 95% confidence intervals for the raw 

materials deposited at the both the simulated PP locality and at PP5-6. 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS4 conditions when a Paleo-Agulhas plain silcrete source is 

present, the quartzite and quartz frequencies resulting from same-day returns do not 

statistically match the archaeological frequencies, while the silcrete frequencies do 

statistically match (Figure 92 and Supplementary Table B69). Looking across the 

simulations of different movement budgets the silcrete frequencies match the 

archaeological silcrete frequencies at all TT simulations except for TT=50, while the 

quartz frequency statistically matches the archaeological quartz frequency during 

TT=1500 and TT=2000 simulations, and the quartzite frequency statistically matches the 
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archaeological quartzite frequency during TT=500 simulations. That means that during 

TT=500 simulations the model is close to explaining the archaeological raw material 

frequencies. However, the model predicts a higher quartz frequency than what is 

observed in the archaeological record. There is also no ranking match during any of the 

movement budgets (Supplementary Figure B70). 

 
Figure 92. Comparison between OFAT2 outcomes using different movement budgets 

(TT values) during MIS4 model conditions with a Paleo-Agulhas plain silcrete source 

where the agent moves to the closest locality when the movement budget (totticks) is 

exhausted and bootstrapped MIS4 archaeological raw material frequency data from PP5-

6. Plot shows the mean and the upper and lower 95% confidence intervals for the raw 

materials deposited at the both the simulated PP locality and at PP5-6. 

 

MIS5 conditions 

During MIS5 conditions quartz and quartzite raw material frequencies resulting from 

same-day returns again do not statistically match the archaeological frequencies, while 

the silcrete frequency does statistically match the MIS5 silcrete frequency from PP13B 



391 
 

(Figure 93 and Supplementary Table B71). Looking across the simulations of different 

movement budgets the quartz and quartzite frequencies do not match the archaeological 

frequencies at any time, while the silcrete frequency from TT=1000 and TT=1500 

simulations statistically match the silcrete frequency from PP5-6, whereas the silcrete 

frequency from TT=500 simulations statistically match silcrete frequencies from both 

PP5-6 and the total Pinnacle Point MIS5 assemblage. TT=50 and TT=100 silcrete 

frequencies statistically match the silcrete frequency from PP13B. There is no ranking 

match during any of the movement budgets (Supplementary Table B72). 

 
Figure 93. Comparison between OFAT2 outcomes using different movement budgets 

(TT values) during MIS5 model conditions where the agent moves to the closest locality 

when the movement budget (totticks) is exhausted and bootstrapped MIS5 archaeological 

raw material frequency data from PP5-6, PP13B, and all MIS5 assemblages from the PP 

sequence including PP5-6, PP13B, PP9B, and PP9C. Plot shows the mean and the upper 

and lower 95% confidence intervals for the raw materials deposited at the both the 

simulated PP locality and at PP5-6, PP9B, PP9C, and PP13B. 
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MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Figure 94 and Supplementary Table B73 compare the MIS6 archaeological raw 

material frequencies from PP13B with simulation results of MIS6 conditions without a 

Paleo-Agulhas plain silcrete source.  

 
Figure 94. Comparison between OFAT2 outcomes using different movement budgets 

(TT values) during MIS6 model conditions without a Paleo-Agulhas plain silcrete source 

where the agent moves to the closest locality when the movement budget (totticks) is 

exhausted and bootstrapped MIS6 archaeological raw material frequency data from 

PP13B. Plot shows the mean and the upper and lower 95% confidence intervals for the 

raw materials deposited at the both the simulated PP locality and at PP13B. 

 

The quartz and quartzite frequencies resulting from same-day returns do not 

statistically match the archaeological frequencies, while the silcrete frequency does 

match the archaeological frequency. Looking across the simulations of different 

movement budgets, the quartz and quartzite frequencies never match the archaeological 

frequencies, while the silcrete frequencies match the archaeological frequencies at TT=50 
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and TT=100. Although the frequencies of quartzite and quartz move in a direction of 

compatibility with the archaeological record as the movement budget is increased, the 

model underpredicts the amount of quartzite and over predicts the amount of quartz at 

TT=2000. There is no ranking match during any of the movement budgets 

(Supplementary Table B74). 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS6 conditions when a Paleo-Agulhas plain silcrete source is 

present, all the raw material frequencies resulting from same-day returns do not 

statistically match the archaeological frequencies (Figure 95 and Supplementary Table 

B75). Looking across the simulations of different movement budgets the frequencies do 

not match the archaeological frequencies at any time including when ~20 foraging days 

(TT=2000) of movement are simulated. As with simulations where Pinnacle Point is the 

exclusive locality that is accessible to foragers, during all movement budget simulations, 

the model predicts higher quartz and silcrete frequencies than the observed 

archaeological frequencies, while it predicts a lower quartzite frequency than the 

archaeological frequency. There is no ranking match during any of the movement 

budgets (Supplementary Table B76). 
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Figure 95. Comparison between OFAT2 outcomes using different movement budgets 

(TT values) during MIS6 model conditions without a Paleo-Agulhas plain silcrete source 

where the agent moves to the closest locality when the movement budget (totticks) is 

exhausted and bootstrapped MIS6 archaeological raw material frequency data from 

PP13B. Plot shows the mean and the upper and lower 95% confidence intervals for the 

raw materials deposited at the both the simulated PP locality and at PP13B. 

 

 The introduction of two more localities for the agent to be able to return too, 

which in effect changes the foraging pattern of the forager, injects a more realistic 

scenario where the agent is not fully dependent on Pinnacle Point as a home base or 

central location but instead Pinnacle Point is just one of three localities on the landscape 

that the forager can access. One can argue that this scenario thus more closely simulates 

residential mobility (Binford 1980) where the forager can move from site to site freely 

and is only dependent on whether the random walk takes the forager close to a locality at 

the end of a foraging bout. In addition, all simulations using a movement budget of TT-

500 or more implies that the forager will set up a campsite on the landscape every 8 hours 
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of foraging regardless of the location until the movement budget is exhausted. We do not 

see these campsites in the model but they are there unless the forager stayed at any of 

three sites every day of every week and only moved between them, which they do not 

when they randomly walk. 

The combination of more sites to return too and increased movement budget can 

create a situation where the forager starts at one site then moves out on the landscape for 

5-20 days depending on the movement budget (TT=500 to TT=2000 and assuming a 

movement speed of 2.5 km/hr) only to return to a different site than it started at. When 

the forager subsequently moves again it can travel across the landscape for another 5-20 

days and return to another site different from the two first ones. This type of movement I 

would argue resembles residential mobility. 

 The results above show that the under a more realistic scenario where Pinnacle 

Point is not an exclusive locality and the foraging pattern is extended to included areas 

around two more localities, the Opportunistic Acquisition Model (OAM) does not explain 

the archaeological raw material pattern during any model conditions. However, what if 

the model parameters themselves are changed making the agent more or less conservative 

with the raw material in the toolkit that is also of a varying size? 

 

OFAT round 3 – Changing discard probabilities and toolkit size 

In the third round of the OFAT (OFAT3), a test of the effect of changing the probability 

of discard of raw materials on the landscape, the effect of changing the probability of 

discard of raw materials in the campsite, and the effect of changing the toolkit size on the 

raw material frequency output at Pinnacle Point was modelled. This round focused on 
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what happens to the raw material frequency output at Pinnacle Point when the probability 

of discard on the landscape is lowered or raised, what happens to the raw material 

frequency output at Pinnacle Point when the probability of discard at Pinnacle Point is 

lowered and raised, and what happens to the raw material frequency output at Pinnacle 

Point when the toolkit size is lowered from the original 100.  

 These changes to the model parameters where considered both when Pinnacle 

Point is an exclusive locality and when Pinnacle Point is one of three localities that the 

forager can return too. This allows for evaluating whether the introduction of a more 

residential mobility strategy with more possible localities open to the forager changes the 

raw material frequency model outcomes. It is important to note here though that the 

simulations reported on below only consider same-day returns to a locality. This 

simulates what the raw material frequencies would look like when the forager will always 

return to a locality in close vicinity to the starting point every day. When the simulations 

use Pinnacle Point as an exclusive locality, the forager always returns there after a day’s 

foraging movement, while during simulations where Pinnacle Point is one of three 

localities the forager can hypothetically switch locality at the end of each day without any 

intervening stops at other localities or potential ‘stops’ on the landscape. 

 

Return to starting locality simulations 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Supplementary Figure A6 and Supplementary Tables B77-B79 compare the MIS4 

archaeological raw material frequencies from PP5-6 with simulation results of MIS4 

conditions without a Paleo-Agulhas plain silcrete source. The frequencies resulting from 
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same-day returns do not statistically match the archaeological frequencies under any 

parameter setting of ProbDiscardCamp (PDC), ProbDiscard (PD), or Toolkit size. The 

results of all settings for all three model-parameters predicts that quartz should be the 

most frequent material, while the archaeology shows that quartz is the least frequent raw 

material of the three. There is no ranking match (Supplementary Table B80). 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS4 conditions when a Paleo-Agulhas plain silcrete source is 

present, the quartzite and quartz frequencies from PDC, PD, and Toolkit size simulations 

do not statistically match the archaeological frequencies at any model parameter setting 

during same-day returns (Supplementary Figure A7 and Supplementary Tables B81-

B83). However, silcrete frequencies from PDC, PD, and Toolkit size simulation do match 

the archaeological frequencies during PDC=0.001, PD=0.1, and Toolkit sizes 100, 75, 50, 

and 10 model parameters settings (Supplementary Figure A8, and Supplementary 

Tables B81-B83). This means that when the forager is more conservative compared to 

the base setting (0.02) with its discard of material at Pinnacle Point the frequency of 

silcrete statistically matches the archaeological frequency, while under all other model 

parameter settings, the model predicts a silcrete frequency that is lower than the 

archaeological frequency. The result of the simulations of the probability of discard on 

the landscape (PD) model parameter shows that when the agent is being more 

conservative with discard on the landscape compared to the base-setting (0.02) the 

frequency of silcrete matches the archaeological frequency, while under a lower PD 

setting (0.001) the model predicts a lower silcrete frequency than observed 
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archaeologically. Under higher PD settings than 0.01, the model predicts silcrete 

frequencies that are higher than the archaeological frequency. The Toolkit size parameter 

simulations show that frequency of silcrete matches the archaeological frequency even 

when you lower the toolkit size to half and even a tenth of the original size. Only when 

you have a Toolkit size of five does the model predict a silcrete frequency that is higher 

than the archaeological frequency. 

 Considering all this, it is important to note that quartzite and quartz frequencies do 

not match the archaeological frequency at any time, which means that changing the 

model parameters during MIS4 conditions with a Paleo-Agulhas plain silcrete source 

does not lead to model outcomes that match the archaeological frequencies overall. There 

is no ranking match (Supplementary Table B84). 

 

MIS5 conditions 

During MIS5 conditions, the quartzite and quartz frequencies from PDC, PD, and Toolkit 

size simulations do not statistically match the archaeological frequencies at any model 

parameter setting during same-day returns from any archaeological site (Supplementary 

Figure A8 and Supplementary Tables B85-B87). However, silcrete frequencies from 

PDC, PD, and Toolkit size simulation do match the archaeological frequencies from 

PP13B under all settings of PDC, PD, and Toolkit size (Supplementary Figure A8, and 

Supplementary Tables B85-B87). 

 Again, considering all this, it is important to note that quartzite and quartz 

frequencies do not match the archaeological frequency at any time, which means that 

changing the model parameters during MIS5 conditions does not lead to model outcomes 
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that match the archaeological frequencies overall. There is no ranking match 

(Supplementary Table B88). 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Supplementary Figure A9 and Supplementary Tables B89-B91 compare the MIS6 

archaeological raw material frequencies from PP13B with simulation results of MIS6 

conditions without a Paleo-Agulhas plain silcrete source. The quartzite and quartz 

frequencies from PDC, PD, and Toolkit size simulations do not statistically match the 

archaeological frequencies at any model parameter setting during same-day returns from 

any archaeological site. However, silcrete frequencies from PDC, PD, and Toolkit size 

simulation do match the archaeological frequencies from PP13B under all settings of 

PDC, PD, and Toolkit size. 

 As with the MIS5 results, this shows that changing the model parameters during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source does not lead to model 

outcomes that match the archaeological frequencies overall. There is no ranking match 

(Supplementary Table B92). 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS6 conditions when a Paleo-Agulhas plain silcrete source is 

present, all the raw material frequencies from PDC, PD, and Toolkit size simulations do 

not statistically match the archaeological frequencies from PP13B at any model 

parameter setting during same-day returns (Supplementary Figure A10 and 
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Supplementary Tables B93-B95). There is also no ranking match (Supplementary 

Table B96). 

 Overall, the results of all simulations when Pinnacle Point is an exclusive locality 

under all five model conditions show that changing how conservative a forager is with 

raw material discard on the landscape or at the campsite, or changing the size of the 

toolkit do not result in a raw material frequency model output that matches the 

archaeological frequencies. Again, it is important to note that only same-day returns were 

considered. In the following section, Pinnacle Point will be only one of three localities 

that the forager can access.  

 

Move to closest locality simulations 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Supplementary Figure A11 and Supplementary Table B97-B99 compare the MIS4 

archaeological raw material frequencies from PP5-6 with simulation results of MIS4 

conditions without a Paleo-Agulhas plain silcrete source. The frequencies resulting from 

same-day returns for any of the raw materials do not statistically match the 

archaeological frequencies under any parameter setting of ProbDiscardCamp (PDC), 

ProbDiscard (PD), or Toolkit size. The results of all settings for all three model-

parameters predicts that quartz should be the most frequent material, while the 

archaeology shows that quartz is the least frequent raw material. There is no ranking 

match (Supplementary Table B100). 
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MIS4 conditions with a Paleo-Agulhas plain silcrete source: When considering MIS4 

conditions when a Paleo-Agulhas plain silcrete source is present, the quartzite and quartz 

frequencies from PDC, PD, and Toolkit size simulations do not statistically match the 

archaeological frequencies at any model parameter setting during same-day returns 

(Supplementary Figure A12 and Supplementary Tables B101-B103). However, 

silcrete frequencies from PDC, PD, and Toolkit size simulation do match the 

archaeological frequencies during PDC=0.001, PD=0.1, and Toolkit sizes 100, 75, 50, 

and 10 model parameters settings (Supplementary Figure A12, and Supplementary 

Tables B101-B103). Similar to simulations when Pinnacle Point is the exclusive locality 

to return too, when the forager is more conservative compared to the base setting (0.02) 

with its discard of material at any locality, the frequency of silcrete statistically matches 

the archaeological frequency. While under all other model parameter settings, the model 

predicts a silcrete frequency that is lower than the archaeological frequency. The result of 

the simulations of the probability of discard on the landscape (PD) model parameter show 

that when the agent is being more conservative with discard on the landscape compared 

to the base-setting (0.02) the frequency of silcrete matches the archaeological frequency, 

while under a lower PD setting (0.001) the model predicts a lower silcrete frequency than 

observed archaeologically. Under higher PD settings than 0.01, the model predicts higher 

silcrete frequencies that are higher than the archaeological frequency. The simulations of 

the toolkit size parameter show that frequency of silcrete matches the archaeological 

frequency even when you lower the toolkit size to half and even a tenth of the original 

size. Only when you have a toolkit size of five does the model predict a silcrete 

frequency that is higher than the archaeological frequency. 
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 Considering all this, it is important to note that quartzite and quartz frequencies do 

not match the archaeological frequency at any time, which means that changing the 

model parameters during MIS4 conditions with a Paleo-Agulhas plain silcrete source 

does not lead to model outcomes that match the archaeological frequencies overall. There 

is no ranking match (Supplementary Table B104). 

 

MIS5 conditions: During MIS5 conditions, the quartzite and quartz frequencies from 

PDC, PD, and Toolkit size simulations do not statistically match the archaeological 

frequencies at any model parameter setting during same-day returns from any 

archaeological site (Supplementary Figure A13 and Supplementary Tables B105-

B107). However, silcrete frequencies from PDC, PD, and Toolkit size simulation do 

match the archaeological frequencies from PP13B under all settings of PDC, PD, and 

Toolkit size (Supplementary Figure A13, and Supplementary Tables B105-B107). 

 Again, considering all this, it is important to note that quartzite and quartz 

frequencies do not match the archaeological frequency at any time, which means that 

changing the model parameters during MIS5 conditions does not lead to model outcomes 

that match the archaeological frequencies overall. There is no ranking match 

(Supplementary Table B108). 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Supplementary Figure A14 and Supplementary Tables B109-B111 compare the MIS6 

archaeological raw material frequencies from PP13B with simulation results of MIS6 

conditions without a Paleo-Agulhas plain silcrete source. The quartzite and quartz 
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frequencies from PDC, PD, and Toolkit size simulations do not statistically match the 

archaeological frequencies at any model parameter setting during same-day returns from 

any archaeological site. However, silcrete frequencies from PDC, PD, and Toolkit size 

simulation do match the archaeological frequencies from PP13B under all settings of 

PDC, PD, and Toolkit size. 

 As with the MIS5 conditions results, changing the model parameters during MIS6 

conditions without a Paleo-Agulhas plain silcrete source do not lead to model outcomes 

that match the archaeological frequencies overall. There is no ranking match 

(Supplementary Table B112). 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS6 conditions when a Paleo-Agulhas plain silcrete source is 

present, all the raw material frequencies from PDC, PD, and Toolkit size simulations do 

not statistically match the archaeological frequencies from PP13B at any model 

parameter setting during same-day returns (Supplementary Figure A15 and 

Supplementary Tables B113-B115). There is no ranking match (Supplementary Table 

B116). 

 Overall, what the results of all simulations when Pinnacle Point is only one of 

three localities available to the forager under all five model conditions suggest is that 

changing how conservative a forager is with raw material discard on the landscape or at 

the campsite, or changing the size of the toolkit does not result in a raw material 

frequency model output that matches the archaeological frequencies. Again, it is 

important to note that only same-day returns were considered.  
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 Taken together, both the simulations that treat Pinnacle Point as an exclusive 

locality and the simulations where Pinnacle Point is only one of three available localities 

show that altering how conservative the forager is and how large the toolkit of the forager 

is during same-day returns do not change the raw material frequency outcomes in such a 

way to match up with the archaeological frequencies. Further, this suggests that the H1 

evaluation using both simple same-day returns and OFAT1 results presented above is 

robust.  

 Given the results of OFAT2 and OFAT3, the initial evaluation of H1 is robust but 

questions remain about how the model outcomes respond when the assumption about the 

base-settings of PDC, PD, and Toolkit size are all changed at once. Will the model 

outcomes change and match the archaeological frequencies when the model parameters 

in question are changed to reflect foraging behaviors that are based on ethnographic 

observations and archaeological data? 

 

OFAT round 4 – Changing toolkit size, raw material consumption and discard strategy 

simultaneously 

In the final and fourth round of the OFAT (OFAT4) as noted above, three different 

scenarios of hunter-gatherer technological behavior are examined for their effect on the 

raw material frequency at Pinnacle Point: expedient, site caching, and conservative 

behaviors. 

 Expediency as a technological strategy refers to “minimized technological effort 

under conditions where time and place of use are highly predictable” (Nelson 1991: 64). 

This type of behavior is linked to scenarios where the forager has decreased its residential 
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mobility, become more sedentary making less frequent moves (Parry and Kelly 1987, 

Riel-Salvatore and Barton 2004). Nelson (1991: 64) noted that expedient technological 

behavior relies on at least three conditions: 1) planning of stockpiling or caching of raw 

materials, or anticipated undertaking of activities where the raw materials are located 

(Bamforth 1986, Parry and Kelly 1987); 2) time available to manufacture tools as part of 

the activity of their use, which indicates no time stress (Torrence 1983); 3) increased 

occupations or regular reuse of the place where raw material are available in order to take 

advantage of the stockpile or cache (Parry and Kelly 1987).  

 Site caching or stockpiling technological behavior refers to the act of storing raw 

materials at a planned place in anticipation of future use (Nelson 1991). This type of 

behavior is linked to expedient behavior scenarios where there are often visited localities 

that functioned as home bases where stone is cached for future use or provisioned to 

multiple people (Kuhn 1992, Nelson 1991).  

 A conservative or curated technological strategy refers to the “caring for tools and 

toolkits that can include advanced manufacture, transport, and reshaping” (Nelson 1991: 

62). This type of behavior is linked to situations where the forager has increased its 

residential mobility, moving camp often, or where there is a need to provision individuals 

with gear that serves as a hedge against a variety of eventualities such as lack of raw 

materials, time, or facilities for repair at the time and place of use (Kuhn 1992, 1991, 

Nelson 1991, Parry and Kelly 1987, Riel-Salvatore and Barton 2004).  

 These changes to every model parameters simultaneously were again both 

considered when Pinnacle Point is an exclusive locality and when Pinnacle Point is one 

of three localities that the forager can return too. Again, this allows for evaluating 
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whether the introduction of a more residential mobility strategy and a change in the 

foraging pattern with more possible localities open to the forager changes the raw 

material frequency outcomes from the model. However, compared to OFAT3 where only 

same-day returns were considered, here different values of movement budget 

(TT=totticks) were simulated. This allows for simulations of what happens when the 

forager can move freely across the landscape for extended periods of time and either 

always return to Pinnacle Point when it is treated as an exclusive campsite or by chance 

returning to one of three localities only depending on the proximity to any given locality 

at the end of a foraging bout.  

 

Return to starting locality simulations 

MIS4 conditions without a Paleo-Agulhas plain silcrete source: Figure 96 and 

Supplementary Tables B117-B119 compare the MIS4 archaeological raw material 

frequencies from PP5-6 with simulation results of MIS4 conditions without a Paleo-

Agulhas plain silcrete source. The quartzite frequency resulting from conservative 

behavior simulations statistically match the archaeological frequencies under TT=1000, 

TT=1500, and TT=2000 movement budgets, while quartz and silcrete frequencies never 

match the archaeological frequencies under any movement budget.  

When considering expedient behavior, the quartz frequency statistically matches 

the archaeological quartz frequency under TT=1000, TT=1500, and TT=2000 movement 

budgets. Quartzite and silcrete frequencies never match the archaeological frequencies 

under any movement budget. Finally, when considering the site caching behavior, none 

of the raw material frequencies match the archaeological frequencies under any 
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movement budget. There is also no ranking match for any behavior during any movement 

budget (Supplementary Table B120). 

 
Figure 96. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS4 model 

conditions without a Paleo-Agulhas plain silcrete source where the agent returns to the 

starting locality (PP) and bootstrapped MIS4 archaeological raw material frequency data 

from PP5-6. Plot shows the mean and the upper and lower 95% confidence intervals for 

the raw materials deposited at the both the simulated PP locality and at PP5-6. 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS4 conditions when a Paleo-Agulhas plain silcrete source is 

present, the quartzite frequency resulting from conservative behavior simulations 

statistically match the archaeological frequencies under a TT=2000 movement budget, 

while the quartz frequency never matches the archaeological quartz frequencies under 

any movement budget. However, the silcrete frequency statistically matches the 
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archaeological frequency under all movement budgets (Figure 97 and Supplementary 

Tables B121-B123).  

 
Figure 97. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS4 model 

conditions with a Paleo-Agulhas plain silcrete source where the agent returns to the 

starting locality (PP) and bootstrapped MIS4 archaeological raw material frequency data 

from PP5-6. Plot shows the mean and the upper and lower 95% confidence intervals for 

the raw materials deposited at the both the simulated PP locality and at PP5-6. 

 

When considering expedient behavior, the quartzite frequency statistically 

matches the archaeological quartzite frequency under a TT=1000 movement budget, 

while the quartz frequency matches the archaeological frequency under a TT=500 

movement budget. The silcrete frequency statistically matches the archaeological 

frequency under TT=50, TT=1000, TT=1500 movement budgets. The simulation of site 

caching behavior shows that both quartzite and quartz frequencies never matches the 
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archaeological frequencies under any movement budget, while the silcrete frequency 

matches the archaeological frequency under TT=500, TT=1000, TT=1500, and TT=2000 

movement budgets. Taken together, the results of simulating all three foraging behaviors 

it is important to note that not at any time do all three materials match the archaeological 

frequencies under the same movement budget. There also is no ranking match for any 

behavior during any movement budget (Supplementary Table B124). 

 

MIS5 conditions 

During MIS5 conditions, the quartz frequency resulting from simulations of conservative 

behaviors never statistically match the archaeological frequencies from any of the 

archaeological sites. The silcrete frequencies from TT=50, TT=100, and TT=500 

movement budget match the archaeological frequency from PP13B, while the silcrete 

frequency from a TT=1000 movement budget matches the archaeological frequency from 

the total MIS5 aggregate. Additionally, the silcrete frequency from TT=1500 and 

TT=2000 movement budgets matches the archaeological frequencies from PP5-6 and the 

total MIS5 aggregate (Figure 98 and Supplementary Tables B125-B127).  

When considering expedient behavior, the quartzite and quartz frequencies never 

statistically match the archaeological frequencies under any movement budget. The 

silcrete frequencies from TT=50 and TT=100 movement budgets statistically match the 

archaeological frequency from PP13B, the frequency from TT=1000 matches the 

archaeological frequency from the total MIS5 aggregate, while the frequency from 

TT=1500 matches the archaeological frequency from PP5-6. The simulation of site 

caching behavior shows that both quartzite and quartz frequencies never matches the 
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archaeological frequencies under any movement budget, while the silcrete frequencies 

from TT=50, TT=100, TT=500, and TT=1000 matches the archaeological frequency 

from PP13B. 

 
Figure 98. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS5 model 

conditions where the agent returns to the starting locality (PP) and bootstrapped MIS5 

archaeological raw material frequency data from PP5-6, PP13B, and all MIS5 

assemblages from the PP sequence including PP5-6, PP13B, PP9B and PP9C. Plot shows 

the mean and the upper and lower 95% confidence intervals for the raw materials 

deposited at the both the simulated PP locality and at PP5-6, PP9B, PP9C, and PP13B. 

Purple bar indicates a ranking match. 

 

 Again, considering all this, it is important to note that the results of simulating all 

three foraging behaviors show that not at any time do all three materials match the 

archaeological frequencies under the same movement budget, which means that changing 
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the foraging behavior during MIS5 conditions does not lead to model outcomes that 

match the archaeological frequencies overall. 

There is, however, a ranking match between expedient behavior simulations using 

a movement budget of TT=2000 and MIS5 archaeological frequencies from PP5-6 and 

the total MIS5 aggregate (Supplementary Table B128). A purple bar in Figure 98 

indicates the ranking match. However, the quartzite model frequency at this movement 

budget is 51% of the assemblage while the archaeological quartzite frequency is 73% of 

the assemblage at PP5-6 and 77% of the assemblage in the total MIS5 aggregate. This is 

not a good fit. Additionally, the model quartz frequency is 23% of the assemblage while 

the archaeological quartz frequency is 3.5% of the assemblage at PP5-6 and 5% of the 

assemblage in the total MIS5 aggregate. 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Figure 99 and Supplementary Tables B129-B131 compare the MIS6 archaeological 

raw material frequencies from PP13B with simulation results of MIS6 conditions without 

a Paleo-Agulhas plain silcrete source. The quartzite and quartz frequencies resulting from 

conservative behavior simulations never statistically match the archaeological frequency, 

while the silcrete frequencies from all movement budgets match the archaeological 

frequency from PP13B.  

When considering expedient behavior, the quartz frequency statistically matches 

the archaeological quartz frequency under TT=1000, TT=1500, and TT=2000 movement 

budgets. Similarly, the quartzite frequencies from TT=500, TT=1000, TT=1500 and 

TT=2000 movement budgets statistically match the archaeological frequency from 
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PP13B. Additionally, the silcrete frequencies from TT=50, TT=100, TT=500, and 

TT=1000 movement budget match the archaeological frequency from PP13B. The 

simulation of expedient behavior during MIS6 conditions without a Paleo-Agulhas plain 

silcrete source shows that during a movement budget of TT=1000 (oranger bar in Figure 

99 indicates frequency match) all three of the raw material frequencies match with their 

respective raw material frequencies at PP13B (Figure 99 and Supplementary Tables 

B129-B131).  

 
Figure 99. Comparison between OFAT4 modeling outcomes using different movement 

budgets (TT values) for expedient, conservative, and site caching behaviors during MIS6 

model conditions without a Paleo-Agulhas plain silcrete source where the agent returns to 

the starting locality (Pinnacle Point) and bootstrapped MIS6 archaeological raw material 

frequency data from PP13B. Plot shows the mean and the upper and lower 95% 

confidence intervals for the raw materials deposited at both the simulated Pinnacle Point 

locality and at PP13B. Orange bar indicates frequency match; Purple bar indicates a 

ranking match. 
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Quartzite and quartz frequencies never match the archaeological frequencies 

under any movement budget when considering site caching behavior, while the silcrete 

frequencies from all movement budgets do match the archaeological frequency from 

PP13B. 

 The simulations of conservative and site caching behavior showed no overall 

match between model frequencies and archaeological frequencies. However, the 

simulations of expedient behavior provide a statistical match between model and 

archaeological frequencies when the movement budget is set to TT=1000. Assuming a 

leisurely walking pace of 2.5 km/hr (Binford, 2001) and a daily foraging time budget of 8 

hours, a TT=1000 movement budget suggests a total foraging distance of 200km over the 

course of 10 foraging days before returning to Pinnacle Point. This result supports H1 and 

suggests that opportunistic acquisition explains the raw material pattern during MIS6 if 

one does not assume that there is a silcrete source on the Paleo-Agulhas plain. Further, it 

suggests that the raw material pattern seen during MIS6 is the result of expedient 

behavior. The frequency match result is supported by a ranking match between expedient 

behavior using a movement budget of TT=2000 and MIS6 archaeological frequencies 

from PP13B (Supplementary Table B132). A purple bar in Figure 99 indicates the 

ranking match. This ranking is a good fit. This is because the model quartzite frequency 

is 93.3% of the assemblage while the archaeological quartzite frequency is 94.3% of the 

MIS6 assemblage at PP13B. The model quartz frequency is 3.3% of the assemblage 

while the archaeological quartz frequency is 4.4% of the assemblage. Finally, the model 

silcrete frequency is 4% of the assemblage while the archaeological silcrete frequency is 

1.1% of the MIS6 assemblage at PP13B. 
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MIS6 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS6 conditions when a Paleo-Agulhas plain silcrete source is 

present, none of the raw material frequencies statistically match the archaeological 

frequencies under any movement budget (Figure 100 and Supplementary Tables B133-

B135).  

 
Figure 100. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS6 model 

conditions with a Paleo-Agulhas plain silcrete source where the agent returns to the 

starting locality (PP) and bootstrapped MIS6 archaeological raw material frequency data 

from PP13B. Plot shows the mean and the upper and lower 95% confidence intervals for 

the raw materials deposited at the both the simulated PP locality and at PP13B. Purple bar 

indicates a ranking match. 

 

When considering expedient behavior, the quartzite and silcrete frequencies never 

match the archaeological frequencies from PP13B under any movement budget, while the 
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quartz frequencies from TT=500, TT=1000, TT=1500, and TT=2000 movement budgets 

match the archaeological frequency. The silcrete frequency statistically matches the 

archaeological frequency under TT=50, TT=1000, TT=1500 movement budgets. The 

simulation of site caching behavior shows that none of the raw material frequencies 

match the archaeological frequencies from PP13B under any movement budget. 

Together, the results of simulating all three foraging behaviors show that not at any time 

do all three materials match the archaeological frequencies under the same movement 

budget.  

 However, there is a ranking match between the conservative behavior using a 

movement budget of TT=1000 and TT=1500 and MIS6 archaeological frequencies from 

PP13B (Supplementary Table B136). A purple bar in Figure 100 indicates the ranking 

match. This ranking is not a good fit. This is because the model quartzite frequency is 

44.5% to 47% of the assemblage while the archaeological quartzite frequency is 94.3% of 

the MIS6 assemblage at PP13B. Both quartz and silcrete are overpredicted. The model 

quartz frequency is between 24-25% of the assemblage while the archaeological quartz 

frequency is 4.4% of the assemblage. Finally, the model silcrete frequency is between 28-

30% of the assemblage while the archaeological silcrete frequency is 1.1% of the 

assemblage at PP13B. 

 Overall, what the results of all simulations under all five model-conditions 

suggest is that simulating different foraging behaviors that are based on ethnographic 

observations and archaeological data do not produce raw material frequency outputs that 

match the archaeological frequencies. There is, however, one exception. Simulations of 

expedient behavior during MIS6 conditions without a Paleo-Agulhas plain silcrete source 
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using a TT=1000 movement budget do produce a coherent raw material frequency output 

that matches the archaeological frequencies from PP13B. This result is also backed up by 

a ranking match between expedient behavior using a movement budget of TT=2000 and 

MIS6 archaeological frequencies from PP13B. To test whether this result is robust, I 

present below the results of simulations where Pinnacle Point is just one of three 

localities when the forager engages in any of the three foraging behaviors. 

 

Move to closest locality simulations 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

Figure 101 and Supplementary Tables B137-B139 compare the MIS4 archaeological 

raw material frequencies from PP5-6 with simulation results of MIS4 conditions without 

a Paleo-Agulhas plain silcrete source. The quartzite frequency resulting from 

conservative behavior simulations statistically match the archaeological frequencies 

under TT=500, TT=1000, TT=1500, and TT=2000 movement budgets, while quartz 

frequencies from TT=1500 and TT=2000 movement budgets match the archaeological 

frequencies. However, the silcrete frequency never matches the archaeological frequency 

from PP5-6 under any movement budget.  

When considering expedient behavior, none of the raw material frequencies 

statistically matches the archaeological frequencies from PP5-6 under any movement 

budgets. Finally, when considering the site caching behavior, the quartz and silcrete 

frequencies never matches the archaeological frequencies under any movement budget, 

while the quartzite frequency from a TT=1000 movement budget matches the 



417 
 

archaeological frequency from PP5-6. There is also no ranking match for any behavior 

during any movement budget (Supplementary Table B140). 

 
Figure 101. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS4 model 

conditions without a Paleo-Agulhas plain silcrete source where the agent moves to the 

closest locality when the movement budget (totticks) is exhausted and bootstrapped MIS4 

archaeological raw material frequency data from PP5-6. Plot shows the mean and the 

upper and lower 95% confidence intervals for the raw materials deposited at the both the 

simulated PP locality and at PP5-6. 

  

MIS4 conditions with a Paleo-Agulhas plain silcrete source  

During MIS4 conditions when a Paleo-Agulhas plain silcrete source is present, the 

quartzite and quartz frequencies resulting from conservative behavior simulations 

statistically match the archaeological frequencies under TT=500, TT=1000, TT1500, and 

TT=2000 movement budgets, while the silcrete frequency from a TT=50 movement 
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budget matches the archaeological frequency from PP5-6 (Figure 102 and 

Supplementary Tables B141-B143). When considering expedient behavior, the 

quartzite frequency statistically matches the archaeological frequency under a TT=2000 

movement budget, while the quartz frequency matches the archaeological frequency from 

PP5-6 under TT=500, TT=1000, TT=1500, and TT=2000 movement budgets. The 

silcrete frequency statistically matches the archaeological frequency under a TT=50 

movement budget.  

 
Figure 102. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS4 model 

conditions with a Paleo-Agulhas plain silcrete source where the agent moves to the 

closest locality when the movement budget (totticks) is exhausted and bootstrapped MIS4 

archaeological raw material frequency data from PP5-6. Plot shows the mean and the 

upper and lower 95% confidence intervals for the raw materials deposited at the both the 

simulated PP locality and at PP5-6. 
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The simulation of site caching behavior shows that both quartz and silcrete 

frequencies never match the archaeological frequencies under any movement budget, 

while the quartzite frequency matches the archaeological frequency under TT=1000 and 

TT=1500 movement budgets. The results of simulating all three foraging behaviors show 

that the three materials never match the archaeological frequencies under the same 

movement budget. Neither, conservative, expedient, or site caching behavior seem to 

explain raw material frequencies during MIS4 at PP5-6 if a silcrete source is assumed to 

be present on the Paleo-Agulhas plain. There is also no ranking match for any behavior 

during any movement budget (Supplementary Table B144). 

 

MIS5 conditions 

During MIS5 conditions, the quartz and quartzite frequencies resulting from simulations 

of conservative behaviors never statistically match the archaeological frequencies from 

any of the archaeological sites under any movement budget. The silcrete frequencies 

from TT=50 and TT=100 movement budgets match the archaeological frequency from 

PP13B, while the silcrete frequency from TT=500, TT=1000, TT=1500, and TT=2000 

movement budget matches the archaeological frequency from PP5-6 and the total MIS5 

aggregate (Figure 103 and Supplementary Tables B145-B147). When considering 

expedient behavior, the quartzite and quartz frequencies never statistically match the 

archaeological frequencies from any site under any movement budget. The silcrete 

frequencies from every movement budgets statistically match the archaeological 

frequency from PP13B. 
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 The simulation of site caching behavior shows that both quartzite and quartz 

frequencies never match the archaeological frequencies from any site under any 

movement budget. The silcrete frequencies from TT=50 and TT=100 movement budgets 

match the archaeological frequency from PP13B, while the frequency from TT=1500 and 

TT=2000 match the archaeological frequency from PP5-6 and the total MIS5 aggregate. 

Additionally, the silcrete frequency from TT=1000 also matches the archaeological 

silcrete frequency from the total MIS5 aggregate. 

 
Figure 103. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS5 model 

conditions where the agent moves to the closest locality when the movement budget 

(totticks) is exhausted and bootstrapped MIS5 archaeological raw material frequency data 

from PP5-6, PP13B, and all MIS5 assemblages from the PP sequence including PP5-6, 

PP13B, PP9B, and PP9C. Plot shows the mean and the upper and lower 95% confidence 

intervals for the raw materials deposited at the both the simulated PP locality and at PP5-

6, PP9B, PP9C, and PP13B. Purple bar indicates a ranking match. 
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There is, however, a ranking match between expedient behavior simulations using 

a movement budget of TT=1500 and MIS5 archaeological frequencies from PP13B 

(Supplementary Table B148). A purple bar in Figure 103 indicates the ranking match. 

However, this match is not a good fit because the quartzite model frequency at this 

movement budget is 41.4% of the assemblage while the archaeological quartzite 

frequency is 94.3% of the assemblage at PP13B. Additionally, quartz and silcrete 

frequencies are overpredicted. The model quartz frequency is 16% of the assemblage 

while the archaeological quartz frequency is 4.4% of the assemblage at PP13B. The 

model silcrete frequency is 23% of the assemblage while the archaeological silcrete 

frequency is 1.1% of the MIS5 assemblage at PP13B. 

 Again, similar to simulations when Pinnacle Point is treated as an exclusive 

locality, the results of simulating all three foraging behaviors show that all three materials 

never match the archaeological frequencies under the same movement budget, which 

means that changing the foraging behavior during MIS5 conditions does not lead to 

model outcomes that match the archaeological frequencies overall. 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

Figure 104 and Supplementary Table B149-B51 compare the MIS6 archaeological raw 

material frequencies from PP13B with simulation results of MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. The quartzite frequencies resulting from 

conservative behavior simulations never statistically match the archaeological frequency 

from PP13B under any movement budget, while the silcrete frequencies from all 
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movement budgets match the archaeological frequency from PP13B. The quartz 

frequencies from TT=1000, TT=1500, and TT=2000 movement budgets match the 

archaeological frequency from PP13B. 

 
Figure 104. Comparison between model OFAT4 modeling outcomes using different 

movement budgets (TT values) for expedient, conservative, and site caching behaviors 

site during MIS6 model conditions without a Paleo-Agulhas plain silcrete source where 

the agent moves to the closest locality when the movement budget (totticks) is exhausted 

and bootstrapped MIS6 archaeological raw material frequency data from PP13B. Plot 

shows the mean and the upper and lower 95% confidence intervals for the raw materials 

deposited at the both the simulated Pinnacle Point locality and at PP5-6. Orange bar 

indicates frequency match; Purple bar indicates a ranking match. 

 

 When considering expedient behavior, the quartz frequency statistically matches 

the archaeological quartz frequency under TT=1000, TT=1500, and TT=2000 movement 

budgets, which is the same as simulations where Pinnacle Point is an exclusive locality. 

Similarly, the quartzite frequencies from TT=500, TT=1000, TT=1500 and TT=2000 
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movement budgets statistically match the archaeological frequency from PP13B. 

Additionally, the silcrete frequencies from all movement budgets match the 

archaeological frequency from PP13B. The simulation of expedient behavior during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source when Pinnacle Point is 

only one of three localities accessible to the forager show that with movement budgets 

between TT=1000 and TT=2000 all three of the raw material frequencies match with 

their respective raw material frequencies at PP13B (Figure 104 and Supplementary 

Tables B149-B151). Orange bar in Figure 104 indicates the frequency matches. 

 Finally, when considering the site caching behavior, the quartzite and quartz 

frequencies never match the archaeological frequencies under any movement budget, 

while the silcrete frequencies from TT=50, TT=100, TT=500, TT=1000, and TT=1500 

movement budgets do match the archaeological frequency from PP13B. 

 The simulations of conservative and site caching behavior showed no overall 

match between model frequencies and archaeological frequencies. However, the 

simulations of expedient behavior when Pinnacle Point is only one of three localities 

accessible to the forager provide a statistical match between model and archaeological 

frequencies when the movement budget is set to between TT=1000 and TT=200. 

Assuming a leisurely walking pace of 2.5 km/hr (Binford, 2001) and a daily foraging 

time budget of 8 hours, a TT=1000 movement budget indicates a total foraging distance 

of 200km over the course of 10 foraging days before returning to one of three localities. 

A movement budget set to TT=2000 indicates a total foraging distance of 400km over the 

course of 20 foraging days before returning to any of the sites. This result strengthens the 

outcome from simulations where Pinnacle Point is the exclusive locality. Both results 
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support H1 and suggest that scenarios, where the forager are moving widely on the 

landscape and only return to either one of three localities between 10 to 20 days, explain 

the raw material pattern during MIS6. This type of pattern can suggest movement 

between the interior and the coast, perhaps intersecting the coast to procure coastal 

resources at spring tides (Marean 2014).  

 However, the ranking procedure produces a different result because there is a 

ranking match between conservative behavior using a movement budget of TT=1500 and 

TT=2000 and MIS6 archaeological frequencies from PP13B (Supplementary Table 

B152). A purple bar in Figure 104 indicates the ranking match. This ranking is not a 

good fit. This is because the model quartzite frequency is 63% to 64% of the model 

assemblage while the archaeological quartzite frequency is 94.3% of the MIS6 

assemblage at PP13B. Both quartz and silcrete are overpredicted. The model quartz 

frequency is 8% to 9% of the assemblage while the archaeological quartz frequency is 

4.4% of the assemblage. Finally, the model silcrete frequency is 3.8% to 5.3% of the 

assemblage while the archaeological silcrete frequency is 1.1% of the assemblage at 

PP13B.  

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

When considering MIS6 conditions when a Paleo-Agulhas plain silcrete source is 

present, the silcrete and quartzite frequencies never statistically match the archaeological 

frequencies from PP13B under any movement budget. The quartz frequencies from 

TT=500, TT=1000, TT=1500, TT=2000 movement budgets do match the archaeological 

frequency from PP13B (Figure 105 and Supplementary Tables B153-B155). When 
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considering expedient behavior, again the silcrete and quartzite frequencies never match 

the archaeological frequencies from PP13B under any movement budget, while the quartz 

frequencies from TT=500, TT=1000, TT=1500, and TT=2000 movement budgets match 

the archaeological frequency from PP13B. 

 
Figure 105. Comparison between OFAT4 outcomes using different movement budgets 

(TT values) for expedient, conservative, and site caching behaviors during MIS6 model 

conditions with a Paleo-Agulhas plain silcrete source where the agent moves to the 

closest locality when the movement budget (totticks) is exhausted and bootstrapped MIS6 

archaeological raw material frequency data from PP13B. Plot shows the mean and the 

upper and lower 95% confidence intervals for the raw materials deposited at the both the 

simulated PP locality and at PP13B. Purple bar indicates a ranking match. 

 

 The simulation of site caching behavior shows that none of the raw material 

frequencies matches the archaeological frequencies from PP13B under any movement 

budget. Together, the results of simulating all three foraging behaviors show that not at 
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any time do all three materials match the archaeological frequencies under the same 

movement budget.  

 Although there is no positive frequency match there is a ranking match between 

conservative behavior using a movement budget of TT=1000 and TT=2000 and MIS6 

archaeological frequencies from PP13B (Supplementary Table B156). The purple bars 

in Figure 105 indicate the ranking matches. These ranking matches are not a good fit. 

This is because the model quartzite frequency is 44.5% to 53% of the model assemblage 

while the archaeological quartzite frequency is 94.3% of the MIS6 assemblage at PP13B. 

Additionally, silcrete is overpredicted. The model silcrete frequency is 11% to 21% of the 

assemblage while the archaeological silcrete frequency is 1.1% of the assemblage at 

PP13B.  

 Similar to simulations where Pinnacle Point is the exclusive locality accessible to 

the forager, what the results of all simulations when Pinnacle Point is one of three 

localities under all five model-conditions suggest is that simulating different foraging 

behaviors that are based on ethnographic observations and archaeological data do not 

produce raw material frequency outputs that match the archaeological frequencies. 

However, as with the simulations where Pinnacle Point is the exclusive locality, 

simulations of expedient behavior during MIS6 conditions without a Paleo-Agulhas plain 

silcrete source using movement budgets between TT=1000 and TT=2000 do produce a 

coherent raw material frequency output that matches the archaeological frequencies from 

PP13B. A ranking match result during MIS6 conditions without a Paleo-Agulhas plain 

silcrete source between expedient behavior and archaeological frequencies from PP13B 

supports the findings of the frequency match results. 
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 There are several other positive ranking matches during MIS5 and MIS6 

conditions. However, except for the ranking match during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source when Pinnacle Points is the exclusive locality all the 

other ranking matches is based on raw material frequencies that either overpredicts or 

underpredicts the raw material frequencies present in the archaeological record. For this 

reason they are not discussed further in this study but it should be kept in mind. 

 Given the results of OFAT1, OFAT2, OFAT3, the initial conclusion of the 

evaluation of H1 can be modified somewhat. H1 has support from simulations conducted 

in OFAT3. Specifically, this pertains to the results from simulations of expedient 

behavior during simulations when Pinnacle Point is the exclusive locality and simulations 

when Pinnacle Point is just one of three localities during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. The results show that if one assumes that there are 

no silcrete sources on the Paleo-Agulhas plain during MIS6 the model outcomes 

statistically match up with the archaeological frequencies from PP13B.  

 What the results suggest is a mobility strategy and foraging movement that saw 

the forager utilize the three sites in random fashion but only in 10 to 20 day intervals. The 

forager would move out on the landscape and would not return to any of the three sites 

before 10 to 20 days had passed and then the sites would be reoccupied. Because MIS6 is 

a strong glacial phase where the coastline is on average 42 km away, this means that the 

coastline was removed from the present location making Pinnacle Point, Cape St. Blaze, 

and Vleesbaai all inland localities. A movement strategy where these localities where 

only returned to every 10-20 days can potentially imply movement between the coast and 

interior or latitudinal movement along the coast and small inward moves to these 
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localities when the forager found itself randomly close to one of them. A movement 

system to intercept the coast at particular times is a possibility, perhaps to be close to the 

coast at spring tides to reap significant coastal resources (Marean 2014). However, what 

is important to note here is that the forager in the OAM moves randomly in any direction 

and does not adhere to any particular strategy about where and when to be close to the 

coast. More precisely, the 10-20 day strategy could also mean movement between the 

inland localities of the Mossel Bay region and other even more interior-located localities. 

 Regardless of where the forager moves, the result suggests that when the forager 

moves across the landscape it did so in an expedient fashion in relation to raw material 

discard. Expedient behavior is often linked to scenarios where the forager has decreased 

its residential mobility by making less frequent moves thus becoming more sedentary 

(Parry and Kelly, 1987; Riel-Salvatore and Barton, 2004). On the face of it, this suggests 

that the expedient pattern does not hold because the model outcomes only match the 

archaeological pattern when the forager is allowed a movement budget where it can move 

very frequently before returning to any of the sites. However, it is not known if that is too 

frequent and it could be that the modeled behavior during increased movement budgets 

and the accessibility of three localities do not resemble actual residential mobility and 

thus instead resembles more restricted residential mobility.  

 Additionally, there are some requirements that have been proposed that are 

needed to be met to be able to expediently use and discard raw materials (Nelson (1991). 

1) there has to be a plan to stockpile or cache raw materials or at least an anticipation of 

undertaking activities where raw materials are located (Bamforth, 1986; Parry and Kelly, 

1987). 2) There has to be time to manufacture needed tools as a part of the activity of 
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their use, which implies that there is no time-stress involved with the activity (Torrence, 

1983). 3) There have to be increased occupations or regular reuse of the places where raw 

materials are available in order to take advantage of the stockpile or cache of raw 

materials (Parry and Kelly, 1987). 

 The first and second point can be investigated by looking at whether raw material 

packages at these localities exhibit evidence for more complete or tested raw material 

packages such as complete cobbles and manuports/hammerstones, lower core-reduction 

intensity, and minimal retouch and maintenance of tools. All these would indicate that the 

raw material packages were not reduced, maintained, and used in a conservatory manner 

and that raw materials were potentially left for future occupations. Only PP13B has an 

MIS6 record of the three localities in question (see Chapter 7).  

 The MIS6 record from PP13B indicates expedient behavior based on the ratio of 

retouched pieces to artifact volumetric density. The MIS6 record has a higher artifact 

volumetric density compared to the MIS5 record but it has a similar frequency of 

retouched pieces. This suggests a more expedient use of raw materials during MIS6 

compared to MIS5. However, the MIS6 record has fewer manuports/hammerstones 

compared to the overlaying MIS5 record, and the MIS6 artifacts are shorter and narrower 

than the artifacts from the MIS5 record. Additionally, the MIS6 artifacts have a higher 

mean cutting edge to mass ratio indicating a more conservative approach to reduction of 

the raw materials (c.f. Mackay, 2008). Together this suggests that MIS6 record indicates 

more conservative and later-stage reduction of the available raw materials. Assuming that 

the raw material packages that were brought into PP13B during MIS5 and MIS6 were of 

similar sizes this means that raw material packages during MIS6 were more often 
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reduced compared MIS5 packages and when the packages were reduced the focus was on 

getting more cutting edge from each raw material package compared to in the MIS5 

record. This type of conservative approach to reducing the raw materials most likely 

resulted in later stages of reduction of the raw material packages, which in turn resulted 

in the production of stone tools with smaller sizes. 

 However, questions remain whether this expedient behavior in combination with 

random walk is realistic in the Mossel Bay region. This goes to the third point where it is 

argued that there have to be increased occupations and regular reuse of the places where 

raw materials are available in order to take advantage of the stockpiling. One way to 

evaluate whether the expedient random walk is realistic is to measure how much time the 

forager walks around in the landscape without raw material in the landscape. Figure 106 

shows the frequency of time without raw material in the toolkit at different movement 

budgets when the forager is conducting expedient foraging during MIS6 conditions 

without a Paleo-Agulhas silcrete source. Under a scenario where Pinnacle Point is the 

exclusive locality, the forager spends ~48 to ~59 % of the time without raw materials in 

the toolkit (Figure 106 and Table 59). The number decreases when Pinnacle Point is 

only one of three localities. Then the forager spends around ~29 to ~56% of the time 

without raw material in the toolkit (Figure 106 and Table 59). Is it realistic that the 

forager spends between ~30 to ~60 % of the time it is moving about the landscape 

without any raw materials in the toolkit? 
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Figure 106. Plot with means and 95% confidence intervals showing the distribution of 

the frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS6 conditions without a Paleo-Agulhas plain silcrete source. Star 

with capped whiskers is the mean with the 95% confidence interval (CI). 

 

Table 59. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS6 conditions without a Paleo-Agulhas plain silcrete source. 
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 Oestmo, Janssen, and Marean (2016) argued based on their simulations that if the 

agent does, in fact, return regularly to places where raw materials are cached then it can 

be realistic to go extended periods without raw materials. To obtain a robust answer here 
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one needs to investigate whether the MIS6 record from PP13B reflects stockpiling 

behavior, which allowed the forager to return there to replenish. 

 

OAM Hypothesis 1 evaluation summary 

The initial test of whether random walk in regards to raw material sources is a realistic 

procurement strategy for stone raw materials in the Mossel Bay region suggests that is 

realistic with less than 1% of the time without material in the toolkit. However, the result 

of simulations using the base settings of assumptions suggests that the OAM does not 

explain the raw material pattern at Pinnacle Point. Further, the results of the OFAT2 and 

3 show that when Pinnacle Point is just one of three accessible localities, or that if single 

model assumptions such as probability of discard on the landscape or at the locality, or 

the size of the toolkit are altered, the model outcomes do not match up with the 

archaeological raw material frequencies. This mostly holds true in OFAT4 where three 

different foraging behaviors based on ethnographic observations and archaeological data 

produce model outcomes that do not match the archaeological frequencies. However, 

simulations of expedient behavior during MIS6 conditions without a Paleo-Agulhas plain 

silcrete source regardless of whether Pinnacle Point is an exclusive site or one of three 

produce raw material frequencies that statistically match the archaeological frequencies. 

A ranking match during MIS6 conditions without a Paleo-Agulhas plain silcrete source 

between expedient behavior using a movement budget of TT=2000 and archaeological 

frequencies from PP13B strengthens the frequency match outcome. 

 However, it can be argued that expedient behavior in the Mossel Bay region is 

unrealistic due to the amount of time the forager moves about the landscape without raw 
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materials in the toolkit. This is especially true if no stone is cached at a central location 

and the random walk takes the forager away from such central locations without 

returning frequently. The MIS6 stone tool record at PP13B does not present clear-cut 

evidence for stockpiling or caching behavior. Future research needs to be focused on 

whether the raw material pattern observed at PP13B during MIS6 does, in fact, represent 

stockpiling or caching behavior. 

 The failure to find conclusive evidence to support the OAM in any of the model 

conditions at the MIS scale suggests that “Non preference-based” or ‘pure’ encounter-

based procurement models that involve embedded procurement of raw materials either 

based on arguments linked to natural availability as advocated by Volman (1981) and 

Brown (2011), or based on arguments linked to changes in mobility strategy or ranging 

behavior of foragers as advocated by Ambrose and Lorenz (1990), and later McCall 

(2007), and McCall and Thomas (2012), are not supported. 

 Finally, what these results mean is that other factors than just opportunistic 

acquisition account for the raw material patterns observed in the Pinnacle Point record. 

That does not mean that embedded procurement can be ruled out completely because a 

deliberate choice of a raw material can also happen during embedded procurement when 

a source is encountered. The opposite model to the OAM is one where raw materials are 

selected based on a criteria or a ranking. Either this selection can happen while moving 

about the landscape and the forager encounters raw material sources and then makes a 

choice, or the selection can happen when the forager is at a home base or campsite and 

directly moves to a source to procure a wanted raw material. Below the evaluation of the 
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two hypotheses drawn from the two variants of the Active-Choice Model (ACM) will be 

presented: ACM-P and ACM-R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



436 
 

CHAPTER 9: ACTIVE-CHOICE MODEL RESULTS 

Introduction 

Below I will first summarize the obtained measurements and estimates of Active-Choice 

Model (ACM) variables. Starting with the currency variables, e (cutting edge per total 

flaked core mass) and d (cutting edge durability (time to dullness)), then looking at the 

actual currency (e * d). This followed by the presentation of the ts (travel and search time-

cost), tp (procurement time-cost), m1 (heat-treatment wood fuel travel and search time-

cost), m2 (heat-treatment time-cost), and m3 (flake manufacturing time-cost) variables. 

Finally, in the first section of this chapter the net-return rates under all model conditions 

for both the ACM-P (sequential encounter and embedded procurement; travel and search 

time-cost excluded) and ACM-R (simultaneous encounter and direct procurement; travel 

and search time-cost included) variants are presented. 

  

ACM experiment results 

e variable – Cutting Edge (cm)/Total Flaked Core Mass (kg) 

Figure 107 and Table 60 show that heat-treated silcrete blocks have significantly higher 

e value of cutting edge per mass (cm/kg) compared to both untreated silcrete and 

quartzite (Supplementary Tables B157-B159 show raw data for each experimental raw 

material block). This result follows several studies that show that silcrete yields a higher 

cutting edge per mass value than quartzite in archaeological assemblages (Brown 2011, 

Mackay 2008, Schmidt and Mackay 2016). Quartzite blocks have the second highest 

mean e value but it is statistically similar to the mean e value of untreated silcrete blocks 

(Table 60). Schmidt and Mackay (2016) argued that a reason for heat-treatment of 
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silcrete is to increase the cutting edge per mass. The experimental result presented here 

supports that assertion showing that by heat-treating the silcrete it is possible, on average, 

to increases the e value output by 172.2 cm of cutting edge per mass (kg).  

 

Figure 107. Plot with means and 95% confidence intervals showing the distribution of 

the e variable (available cutting edge per mass) data (Cutting Edge (cm)/ Total Flaked 

Core Mass (kg)) for all experimental sample types. Star with capped whiskers are the 

mean with the 95% confidence interval (CI). The CI was created by bootstrapping the 

standard error 10000 times. 

 

Table 60. Summary statistics and bootstrap test results for e variable (available cutting 

edge per mass) for all experimental sample types. 

  Quartzite Untreated Silcrete Heat-treated Silcrete 

n sample blocks 20 8 8 

First Quartile 366.4 323.75 480.9 

Min 352.66 275.22 445.94 

Median 404.95 381.74 548.87 

Mean 415.7 365.44 537.66 

Max 546.36 426.38 614.8 

Third Quartile 474.23 410.27 591.1 

SD 56.67 51.51 59.61 

Bootstrapped SE* 12.22 17.56 20.4 

Margin of error (95% CI) 23.95 34.42 39.99 

Bootstrapped Upper 95% CI* 439.65 399.87 577.65 

Bootstrapped Lower 95% CI* 391.75 331.02 497.67 

*Samples bootstrapped 10000 times. 
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d variable – Cutting edge durability (time to dullness (minutes)) 

Figure 108 and Table 61 show that heat-treated silcrete has cutting edges that last 

significantly longer before dulling (d variable value – minutes) compared to untreated 

silcrete and quartzite (Supplementary Tables B160-162 show raw data for each 

experimental raw material block). Untreated silcrete blocks have the second highest mean 

d value but it is statistically similar to the mean e value of quartzite blocks (Table 61). 

 Given the fact that quartzite and untreated silcrete have similar overlapping 

fracture toughness values (Sevillano 1997) it is not surprising that they have similar d 

variable values. However, it is surprising that after heat-treatment, silcrete edges last 

almost one more minute longer before dulling compared to quartzite and untreated 

silcrete. This surprising result will be elaborated on more when discussing the evaluation 

of the ACM hypotheses (Chapter 12).  

 
Figure 108. Plot with means and 95% confidence intervals showing the distribution of 

the d variable (cutting edge durability) data (time to dullness (minutes)) for all 

experimental sample types. Star with capped whiskers are the mean with the 95% 

confidence interval (CI). The CI was created by bootstrapping the standard error 10000 

times. 
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Table 61. Summary statistics and bootstrap test results for the d variable (raw material 

durability – time to dullness (minutes)) for all experimental sample types. 

  Quartzite Untreated Silcrete Heat-treated Silcrete 

n samples 54 28 35 

First Quartile 0.833 1.167 1.500 

Min 0.083 0.583 0.083 

Median 1.500 1.750 3.000 

Mean 1.819 1.881 2.824 

Max 4.000 3.500 6.500 

Third Quartile 3.000 2.875 4.000 

SD 1.187 0.899 1.659 

Bootstrapped SE* 0.160 0.169 0.277 

margin of error 0.314 0.330 0.543 

Bootstrapped Upper 95% CI* 2.134 2.211 3.367 

Bootstrapped Lower 95% CI* 1.505 1.551 2.281 
*Samples bootstrapped 10000 times. 

 

e * d currency – Cutting Edge per Mass* Cutting Edge Durability 

Figure 109 and Table 62 show that heat-treated silcrete has a significantly greater mean 

e * d currency value compared to untreated silcrete and quartzite (Supplementary 

Tables B163-B165 show the raw data for each experimental raw material block). 

Quartzite blocks have the second highest mean e * d currency value but it is statistically 

similar to the mean e * d currency value of untreated silcrete blocks (Table 62). By heat-

treating silcrete it is possible to more than double the assumed currency compared to 

untreated silcrete and quartzite. More specifically, given the results of the e and d 

variable experiments, this means that if silcrete is the choice and you heat-treat it you get 

increased flakeability and edge sharpness in addition to edge durability.  
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Figure 109. Plot with means and 95% confidence intervals showing the distribution of 

the e * d currency (cutting edge per mass * durability) data (CE/M * Minutes) for all 

experimental sample types. Star with capped whiskers are the mean with the 95% 

confidence interval (CI). The CI was created by bootstrapping the standard error 10000 

times. 

 

Table 62. Summary statistics and bootstrap test results for the e * d currency (Cutting 

edge per mass * cutting edge durability) for all experimental sample types. 

  Quartzite Untreated Silcrete Heat-treated Silcrete 

 20 8 8 

First Quartile 572.4925 608.9475 1357.963 

Min 551.03 517.68 1259.25 

Median 726.5 718.04 1549.9 

Mean 755.831 687.385 1518.249 

Max 1106.37 802.01 1736.07 

Third Quartile 960.3025 771.695 1669.155 

Standard Deviation 191.8367 96.88077 168.3226 

Bootstrapped SE 41.61719 33.04335 57.8113 

Margin of error (95% CI) 81.56969 64.76497 113.3101 

Bootstrapped Upper 95% CI mean 837.4007 752.15 1631.559 

Bootstrapped Lower 95% CI mean 674.2613 622.62 1404.939 
*Samples bootstrapped 10000 times. 
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ts variable – Travel and search time (minutes) 

MIS4 conditions 

Figure 110 and Table 63 show that under MIS4 conditions without a Paleo-Agulhas 

plain silcrete source, the untreated and heat-treated silcrete blocks have significantly 

higher travel and search time-costs (ts values) compared to quartzite. The ts values of 

untreated and heat-treated silcrete are statistically similar (Supplementary Tables B166-

B168 show the raw data for each experimental raw material block). However, when 

MIS4 conditions with a Paleo-Agulhas plain silcrete source is assumed both the untreated 

and heat-treated silcrete blocks have significantly lower travel and search time-cost 

values compared to quartzite (Supplementary Tables B166 & B169-B170 show the raw 

data for each experimental raw material block). Again, the ts values of untreated and heat-

treated silcrete are statistically similar (Table 63). 

 
Figure 110. Plot with means and 95% confidence intervals showing the distribution of 

the ts variable (travel and search time-cost) data (procurement time (min)/Total Flaked 

Core Mass (kg)) for all experimental sample types during MIS4 conditions. Star with 

capped whiskers are the mean with the 95% confidence interval (CI). The CI was created 

by bootstrapping the standard error 10000 times. 
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Table 63. Summary statistics and bootstrap test results for the ts variable (travel and 

search time-cost) for all experimental sample types during MIS4 conditions. 

  Quartzite 

Untreated 
Silcrete-With 

Paleo-
Agulhas 
Silcrete 

Untreated 
Silcrete-

Without Paleo-
Agulhas 
Silcrete 

Heat-treated 
Silcrete-With 

Paleo-Agulhas 
Silcrete 

Heat-treated 
Silcrete-Without 
Paleo-Agulhas 

Silcrete 

n sample blocks 20 8 8 8 8 

First Quartile 84.35 11.00 116.88 11.36 120.65 

Min 73.46 9.48 100.66 10.60 112.62 

Median 91.64 12.73 135.19 11.84 125.75 

Mean 90.19 12.79 135.83 12.04 127.92 

Max 100.90 16.22 172.34 14.19 150.73 

Third Quartile 95.15 14.85 157.75 12.49 132.65 

SD 6.92 2.27 24.17 1.07 11.34 

Bootstrapped SE* 1.50 0.78 8.26 0.36 3.84 

Margin of error (95% CI) 2.93 1.53 16.19 0.71 7.52 
Bootstrapped Upper 95% 
CI* 93.12 14.31 152.02 12.75 135.44 
Bootstrapped Lower 95% 
CI* 87.26 11.26 119.64 11.33 120.40 

*Samples bootstrapped 10000 times. 

 

MIS5 conditions 

Figure 111 and Table 64 show that under MIS5 conditions, the untreated and heat-

treated silcrete blocks have significantly higher travel and search time-costs (ts values) 

compared to quartzite. The ts values of untreated and heat-treated silcrete are statistically 

similar (Supplementary Tables B171-B173 show the raw data for each experimental 

raw material block). 
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Figure 111. Plot with means and 95% confidence intervals showing the distribution of 

the ts variable (travel and search time-cost) data (procurement time (min)/Total Flaked 

Core Mass (kg)) for all experimental sample types during MIS5 conditions. Star with 

capped whiskers are the mean with the 95% confidence interval (CI). The CI was created 

by bootstrapping the standard error 10000 times. 

 

Table 64. Summary statistics and bootstrap test results for the ts variable (travel and 

search time-cost) for all experimental sample types during inter-glacial conditions. 

  Quartzite Untreated Silcrete Heat-treated Silcrete 

n sample blocks 20 8 8 

First Quartile 5.95 116.88 120.65 

Min 5.18 100.66 112.62 

Median 6.47 135.19 125.75 

Mean 6.36 135.83 127.92 

Max 7.12 172.34 150.73 

Third Quartile 6.72 157.75 132.65 

SD 0.49 24.17 11.34 

Bootstrapped SE* 0.11 8.26 3.84 

Margin of error (95% CI) 0.21 16.19 7.52 

Bootstrapped Upper 95% CI* 6.57 152.02 135.44 

Bootstrapped Lower 95% CI* 6.16 119.64 120.40 
*Samples bootstrapped 10000 times. 
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MIS6 conditions 

Figure 112 and Table 65 show that under MIS6 conditions without a Paleo-Agulhas 

plain silcrete source, the untreated and heat-treated silcrete blocks have significantly 

higher travel and search time-costs (ts values) compared to quartzite.  

 
Figure 112. Plot with means and 95% confidence intervals showing the distribution of 

the ts variable (travel and search time-cost) data (procurement time (min)/Total Flaked 

Core Mass (kg)) for all experimental sample types during MIS6 conditions. Star with 

capped whiskers are the mean with the 95% confidence interval (CI). The CI was created 

by bootstrapping the standard error 10000 times. 

 

The ts values of untreated and heat-treated silcrete are statistically similar 

(Supplementary Tables B174 & B169-B170 show the raw data for each experimental 

raw material block). However, when MIS6 conditions with a Paleo-Agulhas plain silcrete 

source is assumed both the untreated and heat-treated silcrete blocks have significantly 

lower time-cost values compared to quartzite (Supplementary Tables B174 & B169-

B170 show the raw data for each experimental raw material block). Again, the ts values 

of untreated and heat-treated silcrete are statistically similar (Table 65). An interesting 

observation is that the mean travel and search time-costs (ts values) of quartzite is much 
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lower during MIS6 conditions (24.5 minutes) compared to MIS4 conditions (90.2 

minutes). 

 

Table 65. Summary statistics and bootstrap test results for the ts variable (travel and 

search time-cost) for all experimental sample types during MIS6 conditions. 

  Quartzite 

Untreated 
Silcrete-With 

Paleo-
Agulhas 
Silcrete 

Untreated 
Silcrete-

Without Paleo-
Agulhas 
Silcrete 

Heat-treated 
Silcrete-With 

Paleo-Agulhas 
Silcrete 

Heat-treated 
Silcrete-Without 
Paleo-Agulhas 

Silcrete 

n sample blocks 20 8 8 8 8 

First Quartile 22.88 11.00 116.88 11.36 120.65 

Min 19.92 9.48 100.66 10.60 112.62 

Median 24.86 12.73 135.19 11.84 125.75 

Mean 24.46 12.79 135.83 12.04 127.92 

Max 27.36 16.22 172.34 14.19 150.73 

Third Quartile 25.81 14.85 157.75 12.49 132.65 

SD 1.877 2.274 24.174 1.068 11.338 

Bootstrapped SE* 0.404 0.779 8.260 0.360 3.837 

Margin of error (95% CI) 0.792 1.527 16.190 0.705 7.521 
Bootstrapped Upper 
95% CI* 25.25 14.31 152.02 12.75 135.44 
Bootstrapped Lower 
95% CI* 23.67 11.26 119.64 11.33 120.40 

*Samples bootstrapped 10000 times. 

 

tp variable – Procurement time (minutes) 

Figure 113 and Table 66 show that untreated and heat-treated silcrete have significantly 

higher procurement time-cost (tp values) compared to quartzite. The tp values of untreated 

and heat-treated silcrete are statistically similar (Supplementary Tables B175-B177 

show the raw data for each experimental raw material block).  
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Figure 113. Plot with means and 95% confidence intervals showing the distribution of 

the tp variable (procurement time-cost) data (procurement time (min)/ Total Flaked Core 

Mass (kg)) for all experimental sample types. Star with capped whiskers are the mean 

with the 95% confidence interval (CI). The CI was created by bootstrapping the standard 

error 10000 times. 

 

Table 66. Summary statistics and bootstrap test results of tp variable (procurement time-

cost) for all experimental sample types. 

  Quartzite Untreated Silcrete Heat-treated Silcrete 

n sample blocks 20 8 8 

First Quartile 2.493 3.255 3.368 

Min 2.190 2.810 3.140 

Median 2.710 3.770 3.505 

Mean 2.674 3.786 3.566 

Max 3.010 4.800 4.200 

Third Quartile 2.840 4.400 3.698 

Standard Deviation 0.213 0.673 0.315 

Bootstrapped SE* 0.047 0.235 0.109 

Margin of error (95% CI) 0.092 0.462 0.214 

Bootstrapped Upper 95% CI* 2.766 4.248 3.780 

Bootstrapped Lower 95% CI* 2.581 3.325 3.353 
*Samples bootstrapped 10000 times. 
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m variable – manufacturing time (minutes) 

m1 variable – Heat-treatment wood fuel travel and search time (minutes) 

Figure 114 and Table 67 show that under MIS4 conditions, silcrete assumed to be heat-

treated using the exposed method and the silcrete assumed to be heat-treated using the 

insulated methods have statistically similar travel and search time-cost for wood fuel (m1) 

(Supplementary Tables B178 & B179 show the raw data for each experimental raw 

material block). During MIS5 and MIS6 conditions, the insulated silcrete has 

significantly higher m1 values compared to silcrete heat-treated with the exposed method 

(Supplementary Tables B180-B183 show the raw data for each experimental raw 

material block). 

 
Figure 114. Plot with means and 95% confidence intervals showing the distribution of 

the m1 variable (wood fuel travel and search time-cost) data (Wood Fuel Travel and 

Search Time (min)/Total Flaked Core Mass (kg)) for heat-treated silcrete sample types. 

Star with capped whiskers are the mean with the 95% confidence interval (CI). The CI 

was created by bootstrapping the standard error 10000 times. 
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Table 67. Summary statistics and bootstrap test results of m1 variable (wood fuel travel 

and search time-cost) for heat-treated silcrete. 

  

MIS4-
Silcrete-
Insulated 

MIS4-
Silcrete-
Exposed 

IG-Silcrete-
Insulated 

IG-
Silcrete-
Exposed 

MIS6-
Silcrete-
Insulated 

MIS6-
Silcrete-
Exposed 

N sample blocks 8 8 8 8 8 8 

First Quartile 37.26 37.26 74.52 37.26 74.52 37.26 

Min 34.78 34.78 69.56 34.78 69.56 34.78 

Median 38.83 38.83 77.67 38.83 77.67 38.83 

Mean 39.50 39.50 79.01 39.50 79.01 39.50 

Max 46.55 46.55 93.10 46.55 93.10 46.55 

Third Quartile 40.96 40.96 81.93 40.96 81.93 40.96 

SD 3.501 3.501 7.003 3.501 7.003 3.501 

Bootstrapped SE* 1.171 1.167 2.344 1.172 2.325 1.172 

Margin of error (95% CI) 2.295 2.288 4.594 2.297 4.556 2.298 

Bootstrapped Upper 95% CI* 41.80 41.79 83.60 41.80 83.56 41.80 

Bootstrapped Lower 95% CI* 37.21 37.22 74.41 37.21 74.45 37.21 

*Samples bootstrapped 10000 times. 

 

m2 variable – Heat-treatment time (minutes) 

Figure 115 and Table 68 show that silcrete assumed to be heat-treated using the exposed 

method have significantly higher heat-treatment cost (m2 value) compared to silcrete 

assumed to be heat-treated using the insulated method (Supplementary Tables B184-

B185 show the raw data for each experimental raw material block).  
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Figure 115. Plot with means and 95% confidence intervals showing the distribution of 

the m2 variable (heat-treatment time-cost) data (Heat-treatment Time (min)/Total Flaked 

Core Mass (kg)) for heat-treated silcrete sample types. Star with capped whiskers are the 

mean with the 95% confidence interval (CI). The CI was created by bootstrapping the 

standard error 10000 times. 

 

Table 68. Summary statistics and bootstrap test results of m2 variable (heat-treatment 

time-cost) for heat-treated silcrete. 

  Silcrete-Insulated Silcrete-Exposed 

n sample blocks 8 8 

First Quartile 6.210 20.699 

Min 5.797 19.322 

Median 6.472 21.574 

Mean 6.584 21.946 

Max 7.758 25.860 

Third Quartile 6.827 22.858 

SD 0.584 1.945 

Bootstrapped SE* 0.194 0.649 

Margin of error (95% CI) 0.379 1.272 

Bootstrapped Upper 95% CI* 6.963 23.219 

Bootstrapped Lower 95% CI* 6.204 20.674 
*Samples bootstrapped 10000 times. 
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m3 variable – Flake manufacturing time (minutes) 

Figure 106 and Table 69 show that quartzite has significantly higher flake 

manufacturing time-cost (m3 values) compared to heat-treated silcrete. However, 

untreated silcrete has statistically similar m3 values to both heat-treated silcrete and 

quartzite (Supplementary Tables B186-B188 show the raw data for each experimental 

raw material block).  

 
Figure 116. Plot with means and 95% confidence intervals showing the distribution of 

the m3 variable (flake manufacturing time-cost) data (flake manufacturing time (14min)/ 

Total Flaked Core Mass (kg)) for all experimental sample types. Star with capped 

whiskers are the mean with the 95% confidence interval (CI). The CI was created by 

bootstrapping the standard error 10000 times. 
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Table 69. Summary statistics and bootstrap test results of m3 variable (flake 

manufacturing time-cost) for all experimental sample types. 

  Quartzite Untreated Silcrete Heat-Treated Silcrete 

n sample blocks 20 8 8 

First Quartile 6.560 5.615 5.796 

Min 5.714 4.836 5.410 

Median 7.128 6.494 6.041 

Mean 7.015 6.525 6.145 

Max 7.848 8.279 7.241 

Third Quartile 7.401 7.580 6.372 

Standard Deviation 0.539 1.161 0.545 

Bootstrapped SE* 0.116 0.398 0.182 

Margin of error (95% CI) 0.227 0.781 0.357 

Bootstrapped Upper 95% CI* 7.242 7.306 6.502 

Bootstrapped Lower 95% CI* 6.788 5.744 5.788 
*Samples bootstrapped 10000 times. 

 

Experiment results summary 

Heat-treated silcrete has the highest cutting edge per mass value (e variable) and the 

highest value of edge durability (d variable – time to dullness (minutes)). Combined this 

makes heat-treated silcrete have the highest value of the assumed currency (e * d). 

Quartzite and untreated silcrete have statistically similar e variable values and d variable 

values making them have statistically similar values of the assumed currency.  

 Both untreated and heat-treated silcrete under assumed MIS4 and MIS6 

conditions without a Paleo-Agulhas plain silcrete source have the highest travel and 

search time-costs (ts variable). Conversely, both untreated and heat-treated silcrete under 

assumed MIS4 and MIS6 conditions with a Paleo-Agulhas plain silcrete source have the 

lowest ts variable values. Under MIS5 conditions, quartzite has the lowest travel and 

search time-cost (ts variable). Both untreated and heat-treated silcrete have higher 

procurement time-costs (tp variable) compared to quartzite. 
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 When looking at manufacturing time-costs (m), silcrete assumed to have been 

heat-treated using the insulated method have the highest wood fuel travel and search 

time-cost (m1 variable) during MIS5 and MIS6. However, during MIS4 both heat-

treatment methods have equal m1 variable values. Silcrete assumed to have been heat-

treated using the exposed methods has the highest actual heat-treatment time-cost (m2 

variable). Heat-treated silcrete has a significantly lower flake manufacturing time-cost 

(m3 variable) compared to quartzite but it is not significantly lower than the m3 value of 

untreated silcrete. 

 By obtaining these ACM variables, the net-return rates of raw material selection 

can now be calculated. In the next chapter below, the net-return rates for the ACM-P and 

ACM-R variants will be presented. The net-return rates from each model variant will be 

used to create rankings of raw materials. The rankings will be used to test Hypothesis 2 

and 3 by comparing the rankings to archaeological raw material frequencies. 
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CHAPTER 10: ACTIVE-CHOICE MODEL – HYPOTHESES EVALUATION 

Introduction 

In this chapter, the evaluation of Hypothesis 2 (H2) and Hypothesis 3 (H3) from the 

Active-Choice Model (ACM) is presented. The ACM-P (active-choice without travel and 

search costs) net-return rates are used to evaluate Hypothesis 2 (H2), while ACM-R 

(active-choice with travel and search costs) net-return rates are used to evaluate 

Hypothesis 3 (H3). This is followed by the presentation of the model outcomes under the 

three different model condition variables to understand whether changes in individual 

time-costs drive the net-return rates and thus can explain the archaeological raw material 

frequencies. First, net-return rates from the different model condition variables are 

presented, which allows for a ranking that can be used compare to archaeological 

frequencies. Then, the comparison to the archaeological frequencies allows for testing of 

the predicted relationships between time-costs and model condition variables presented in 

Chapter 5. 

 

Active-Choice Model – Testing Hypotheses 2 and 3 

ACM-P net-return rates – Hypothesis 2 

An observation when looking across all model conditions is that quartzite and untreated 

silcrete have significantly higher net-return rates than either type of heat-treated silcrete 

(exposed and insulated) (Figure 117 and Table 70). Under MIS4 conditions quartzite 

and untreated silcrete, while having statistically similar net-return rates have significantly 

higher net-return rates (Pq and Ps) compared to both exposed and insulated heat-treated 

silcrete. The net-return rate of silcrete heat-treated using the insulated method is 
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significantly higher than silcrete heat-treated using the exposed method (MIS4 raw data 

in Supplementary Tables B189 and B190). 

Under MIS5 and MIS6 conditions (Figure 117 and Table 70), quartzite and 

untreated silcrete, while having statistically similar net-return rates have significantly 

higher net-return rates (Pq and Ps) compared to both exposed and insulated heat-treated 

silcrete. However, compared to MIS 4 conditions the net-return rate of exposed silcrete is 

significantly higher than insulated silcrete (MIS5 raw data in Supplementary Tables 

B189 and B191: MIS6 data in Supplementary Tables B189 and B192). 

 
Figure 117. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates for all experimental sample types during MIS4, MIS5, and 

MIS6 conditions. Star with capped whiskers is the mean with the 95% confidence 

interval (CI). The CI was created by bootstrapping the standard error 10000 times. 
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Table 70. Summary statistics and bootstrap test results of ACM-P net-return rates (for all 

experimental sample types during MIS4, MIS5, and MIS6 conditions. 

  MIS4 MIS5 MIS6 
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*Samples bootstrapped 10000 times. 

  

Hypothesis 2 (H2) is drawn from the ACM-P variant of the Active-Choice Model 

(ACM), and states that the archaeological stone raw material usage frequency is due to 

the selection of the raw material with the highest post-encounter net-return of cm-min 

tool cutting edge (P) unless waiting to encounter the high profitability stone source will 

lead the forager to run out of tool material. The prediction is that the forager will select 

the raw material with highest post-encounter P rate. Foragers will switch from one raw 

material to another depending on which material has the highest P rate.  

 To evaluate Hypothesis 2 (H2), raw material rankings based on net-return rates 

from each model condition are compared to the archaeological frequencies from the 

respective Marine Isotope Stage (MIS). It is important to note that here the overall net-

return rates are evaluated whereas model outcomes from the different model condition 

variables only consider time-costs under question to compile net-return rates. What that 

means is, for example, that net-return rates computed when considering the vegetation 
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type variable for each model conditions are potentially different from the ACM-P net-

return rates when all relevant time-costs are included. However, the model outcomes 

under the different model condition variables will help understand if any time-cost 

explains the archaeological raw materials frequencies at Pinnacle Point. 

 Table 71 shows the ranking of raw materials based on the overall ACM-P net-

return rates compared to the archaeological frequencies under different model conditions. 

For H2 to be supported, the raw material with the highest rank based on net-return rate 

should be the same as the raw material with the highest frequency. In addition, the 

material with the second highest rank should be the same as the raw material with the 

second highest frequency. 

 

Table 71. Comparison between a raw material ranking based on ACM-P net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM-P Results-Ranked* Archaeological Data 

MIS4       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-
treated 

Silcrete (%) 

1 (77.8) 1 (68) 2 (27.3) 3 (21.4) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-
treated 

Silcrete (%) 

1 (77.8) 1 (68) 3 (16) 2 (21.4) 77.2 13.1 11.6 88.4 

MIS6       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-
treated 

Silcrete (%) 

1 (77.8) 1 (68) 3 (16) 2 (21.4) 94.3 1.1 NA NA 

* Ranking based on which raw materials have the highest mean Pq or Ps (in parenthesis). Similar rankings in the table 
are due to statistically similar Pq or Rs. MIS4, MIS5, and MIS6 Archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

 During all three model-conditions, quartzite and untreated silcrete have the 

highest rankings, which are all based on statistically similar net-return rates (Table 71). 
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During both MIS6 and MIS5 quartzite has the highest archaeological frequency, which 

does not match the tied ACM-P ranking of quartzite and untreated silcrete. During MIS4 

quartzite and silcrete have statistically similar archaeological frequencies, which do 

match the tied ranking of quartzite and untreated silcrete based on net-return rates. 

However, the archaeological data show that 83.1% of the silcrete is heat-treated. 

Therefore, while the ACM-P net-return rates can explain the dual selection of quartzite 

and untreated silcrete it does not explain why you would heat-treat the silcrete. 

 Taken together, the ACM-P net-return rates show little support for Hypothesis 2 

(H2). The lack of support for H2 limits the support for a scenario where during embedded 

procurement (e.g. Binford 1979, Binford and Stone 1985) a forager strategically selects 

the raw material with the highest net-return rate of cm*min cutting edge available in the 

environment. This result suggests that the response to the climatic and environmental 

conditions throughout the Pinnacle Point sequence was not a combination of a mobility 

system that disregarded the location of raw material sources (embedded procurement) to 

target food resources and the selection of raw materials that could be used to produce 

extractive technology for such resources. 

 However, this result does not rule out the ACM completely as the ACM-R 

(simultaneous encounter and direct procurement) variant can still explain the raw 

material pattern. In the ACM-R the time-cost resulting from travel and search for a raw 

material is included. This makes the distribution of raw material sources on the landscape 

very important because it is very feasible that increased time-cost to travel and search for 

a raw material can negatively affect the willingness to select that raw material. It also can 
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be that the ACM-P can explain the pattern if a different currency is assumed, which will 

be addressed below in separate sections. 

 

ACM-R net-return rates – Hypothesis 3 

Figure 118 and Table 72 show that under MIS4 conditions without a Paleo-Agulhas 

plain silcrete source quartzite and untreated silcrete, while having statistically similar net-

return rates, have significantly lower net-return rates (Rq and Rs) compared to both 

exposed and insulated heat-treated silcrete. The net-return rate of silcrete heat-treated 

using the exposed is statistically similar to silcrete heat-treated using the insulated 

method (Supplementary Tables B193-B194 show the raw data for each experimental 

raw material block).  

During MIS4 conditions with a Paleo-Agulhas plain silcrete source untreated 

silcrete have significantly higher net-return rates (Rq and Rs) compared to both exposed 

and insulated heat-treated silcrete, and quartzite (Figure 118 and Table 72). The net-

return rate of silcrete heat-treated using the exposed method is significantly lower than 

silcrete heat-treated using the insulated method (Supplementary Tables B193 & B195 

show the raw data for each experimental raw material block). 

 Quartzite has significantly higher net-return rates (Rq and Rs) compared to both 

types of heat-treated silcrete (exposed and insulated), and untreated silcrete during MIS5 

conditions (Figure 118 and Table 72). Untreated silcrete has a significantly lower net-

return compared to both types of heat-treated silcrete, while the net-return rate of silcrete 

heat-treated using the exposed method is statistically similar to silcrete heat-treated using 
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the insulated method (Supplementary Tables B196-B197 show the raw data for each 

experimental raw material block). 

 Under MIS6 conditions without a Paleo-Agulhas plain silcrete source quartzite 

has significantly higher net-return rates (Rq and Rs) compared to both types of heat-

treated silcrete (exposed and insulated), and untreated silcrete (Figure 118 and Table 

72). Untreated silcrete has a significantly lower net-return compared to both types of 

heat-treated silcrete, while the net-return rate of silcrete heat-treated using the exposed is 

statistically similar to silcrete heat-treated using the insulated method (Supplementary 

Tables B198-B199 show the raw data for each experimental raw material block). 

 
Figure 118. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (for all experimental sample types) during all model 

conditions. Star with capped whiskers is the mean with the 95% confidence interval (CI). 

The CI was created by bootstrapping the standard error 10000 times. 
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 Figure 118 and Table 72 show that under MIS6 conditions with a Paleo-Agulhas 

plain silcrete source untreated silcrete have significantly higher net-return rates (Rq and 

Rs) compared to both types of heat-treated silcrete (exposed and insulated), and quartzite. 

Silcrete assumed to be heat-treated using the insulated method have a significantly higher 

net-return compared to silcrete heat-treated using the exposed method, and quartzite, 

while the net-return rate of silcrete heat-treated using the exposed method is statistically 

similar to quartzite (Supplementary Tables B198 & B200 show the raw data for each 

experimental raw material block). 

 

Table 72. Summary statistics and bootstrap test results of ACM-R net-return rates (for all 

experimental sample types) during all model conditions. 

 

MIS4 without  
Paleo-Agulhas Plain 

silcrete 

MIS4 with  
Paleo-Agulhas Plain 

silcrete MIS5 

MIS6 without  
Paleo-Agulhas Plain 

silcrete 

MIS6 with  
Paleo-Agulhas Plain 

silcrete 

  

Q
u

a
rtz

ite
 (R

q
) 

U
n

tre
a
te

d
 S

ilc
re

te
 (R

s
) 

In
s

u
la

te
d

-S
ilc

re
te

 (R
s
) 

E
x
p

o
s

e
d

-S
ilc

re
te

 (R
s
) 

Q
u

a
rtz

ite
 (R

q
) 

U
n

tre
a
te

d
 S

ilc
re

te
 (R

s
) 

In
s

u
la

te
d

-S
ilc

re
te

 (R
s
) 

E
x
p

o
s

e
d

-S
ilc

re
te

 (R
s
) 

Q
u

a
rtz

ite
 (R

q
) 

U
n

tre
a
te

d
 S

ilc
re

te
 (R

s
) 

In
s

u
la

te
d

-S
ilc

re
te

 (R
s
) 

E
x
p

o
s

e
d

-S
ilc

re
te

 (R
s
) 

Q
u

a
rtz

ite
 (R

q
) 

U
n

tre
a
te

d
 S

ilc
re

te
 (R

s
) 

In
s

u
la

te
d

-S
ilc

re
te

 (R
s
) 

E
x
p

o
s

e
d

-S
ilc

re
te

 (R
s
) 

Q
u

a
rtz

ite
 (R

q
) 

U
n

tre
a
te

d
 S

ilc
re

te
 (R

s
) 

In
s

u
la

te
d

-S
ilc

re
te

 (R
s
) 

E
x
p

o
s

e
d

-S
ilc

re
te

 (R
s
) 

n
 s

a
m

p
le

 b
lo

c
k
s
 

2
0
 

8
 

8
 

8
 

2
0
 

8
 

8
 

8
 

2
0
 

8
 

8
 

8
 

2
0
 

8
 

8
 

8
 

2
0
 

8
 

8
 

8
 

F
irs

t Q
u
a
rtile

 

3
.2

9
9
 

3
.9

4
0
 

7
.8

1
0
 

7
.2

0
7
 

3
.2

9
9
 

2
4
.6

3
7
 

2
1
.0

7
1
 

1
7
.1

9
2
 

4
2
.1

8
5
 

3
.9

4
0
 

6
.4

2
8
 

7
.2

0
7
 

1
1
.7

2
4
 

3
.9

4
0
 

6
.4

2
8
 

7
.2

0
7
 

1
1
.7

2
4
 

2
4
.6

3
7
 

1
3
.3

3
5
 

1
7
.1

9
2
 



462 
 

M
in

 

2
.8

7
6
 

3
.7

9
8
 

7
.0

7
0
 

6
.5

2
4
 

2
.8

7
6
 

2
3
.7

4
9
 

1
9
.0

7
3
 

1
5
.5

6
2
 

3
6
.6

0
8
 

3
.7

9
8
 

5
.8

1
9
 

6
.5

2
4
 

1
0
.2

0
3
 

3
.7

9
8
 

5
.8

1
9
 

6
.5

2
4
 

1
0
.2

0
3
 

2
3
.7

4
9
 

1
2
.0

7
1
 

1
5
.5

6
2
 

M
e

d
ia

n
 

4
.1

2
4
 

4
.6

6
1
 

8
.3

0
5
 

7
.6

6
4
 

4
.1

2
4
 

2
9
.1

4
9
 

2
2
.4

0
5
 

1
8
.2

8
1
 

5
1
.6

3
6
 

4
.6

6
1
 

6
.8

3
5
 

7
.6

6
4
 

1
4
.3

9
1
 

4
.6

6
1
 

6
.8

3
5
 

7
.6

6
4
 

1
4
.3

9
1
 

2
9
.1

4
9
 

1
4
.1

7
9
 

1
8
.2

8
1
 

M
e

a
n
 

4
.1

7
1
 

4
.7

9
7
 

8
.2

7
8
 

7
.6

4
0
 

4
.1

7
1
 

2
9
.9

9
8
 

2
2
.3

3
5
 

1
8
.2

2
3
 

5
2
.4

7
6
 

4
.7

9
7
 

6
.8

1
3
 

7
.6

4
0
 

1
4
.6

1
4
 

4
.7

9
7
 

6
.8

1
3
 

7
.6

4
0
 

1
4
.6

1
4
 

2
9
.9

9
8
 

1
4
.1

3
5
 

1
8
.2

2
3
 

M
a

x
 

5
.6

1
7
 

6
.2

9
1
 

9
.7

7
3
 

9
.0

1
9
 

5
.6

1
7
 

3
9
.3

4
3
 

2
6
.3

6
7
 

2
1
.5

1
3
 

7
3
.1

4
9
 

6
.2

9
1
 

8
.0

4
3
 

9
.0

1
9
 

2
0
.3

8
6
 

6
.2

9
1
 

8
.0

4
3
 

9
.0

1
9
 

2
0
.3

8
6
 

3
9
.3

4
3
 

1
6
.6

8
7
 

2
1
.5

1
3
 

T
h

ird
 Q

u
a
rtile

 

5
.1

1
8
 

5
.6

1
7
 

8
.6

7
8
 

8
.0

0
8
 

5
.1

1
8
 

3
5
.1

2
4
 

2
3
.4

1
3
 

1
9
.1

0
3
 

6
3
.7

6
7
 

5
.6

1
7
 

7
.1

4
2
 

8
.0

0
8
 

1
7
.7

7
2
 

5
.6

1
7
 

7
.1

4
2
 

8
.0

0
8
 

1
7
.7

7
2
 

3
5
.1

2
4
 

1
4
.8

1
7
 

1
9
.1

0
3
 

S
D

 

0
.9

8
7
 

0
.8

9
8
 

0
.7

9
2
 

0
.7

3
1
 

0
.9

8
7
 

5
.6

1
3
 

2
.1

3
7
 

1
.7

4
4
 

1
1
.9

6
9

 

0
.8

9
8
 

0
.6

5
2
 

0
.7

3
1
 

3
.3

4
6
 

0
.8

9
8
 

0
.6

5
2
 

0
.7

3
1
 

3
.3

4
6
 

5
.6

1
3
 

1
.3

5
3
 

1
.7

4
4
 

B
o
o
ts

tra
p
p
e
d
 S

E
* 

0
.2

1
5
 

0
.3

0
7
 

0
.2

6
7
 

0
.2

4
6
 

0
.2

1
5
 

1
.9

0
9
 

0
.7

2
2
 

0
.5

9
0
 

2
.6

0
1
 

0
.3

0
7
 

0
.2

2
0
 

0
.2

4
7
 

0
.7

2
7
 

0
.3

0
7
 

0
.2

2
1
 

0
.2

4
6
 

0
.7

2
7
 

1
.9

1
8
 

0
.4

5
7
 

0
.5

8
8
 

M
a

rg
in

 o
f e

rro
r (9

5
%

 C
I) 

0
.4

2
1
 

0
.6

0
3
 

0
.5

2
4
 

0
.4

8
3
 

0
.4

2
1
 

3
.7

4
2
 

1
.4

1
6
 

1
.1

5
7
 

5
.0

9
7
 

0
.6

0
1
 

0
.4

3
1
 

0
.4

8
3
 

1
.4

2
4
 

0
.6

0
2
 

0
.4

3
2
 

0
.4

8
3
 

1
.4

2
4
 

3
.7

5
9
 

0
.8

9
6
 

1
.1

5
2
 



463 
 

B
o
o
ts

tra
p
p
e
d
 U

p
p
e
r 9

5
%

 C
I* 

4
.5

9
2
 

5
.4

0
0
 

8
.8

0
2
 

8
.1

2
3
 

4
.5

9
2
 

3
3
.7

3
9
 

2
3
.7

5
0
 

1
9
.3

8
1
 

5
7
.5

7
3
 

5
.3

9
8
 

7
.2

4
5
 

8
.1

2
3
 

1
6
.0

3
8
 

5
.3

9
9
 

7
.2

4
6
 

8
.1

2
3
 

1
6
.0

3
8
 

3
3
.7

5
6
 

1
5
.0

3
1
 

1
9
.3

7
6
 

B
o
o
ts

tra
p
p
e
d
 L

o
w

e
r 9

5
%

 C
I* 

3
.7

5
0
 

4
.1

9
4
 

7
.7

5
5
 

7
.1

5
7
 

3
.7

5
0
 

2
6
.2

5
6
 

2
0
.9

1
9
 

1
7
.0

6
6
 

4
7
.3

7
9
 

4
.1

9
6
 

6
.3

8
2
 

7
.1

5
6
 

1
3
.1

8
9
 

4
.1

9
5
 

6
.3

8
1
 

7
.1

5
7
 

1
3
.1

8
9
 

2
6
.2

3
9
 

1
3
.2

3
8
 

1
7
.0

7
1
 

*Samples bootstrapped 10000 times. 

 

Hypothesis 3 (H3) drawn from the ACM-R model variant states that the 

archaeological stone raw material usage frequency is due to the selection of the raw 

material with the highest net-return rate of cm-min tool cutting edge (R) when all travel 

and search time-costs are considered. It predicts that the raw material with highest R rate 

will be selected, and the switch from one raw material to another depends on which 

material has the highest R rate given the current environmental conditions. 

 The evaluation of H3 proceeds in the same way as with H2: raw material rankings 

based on net-return rates from each model condition are compared to the archaeological 

frequencies from the respective marine isotope stage. Again, it is important to note that 

here the overall net-return rates are evaluated whereas model outcomes from the different 

model condition variables only consider time-costs under question to compile net-return 

rates. For ACM-R net-return rates, what that means is that the ACM-R net-return rates 

computed when considering the coastline position and raw material source distribution 
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variable and the mobility rate and strategy variable for each model conditions are 

potentially different from the ACM-R net-return rates when all relevant time-costs are 

included.   

Table 73 shows the ranking of raw materials based on the overall ACM-R net-

return rates compared to the archaeological frequencies under different model conditions. 

For H3 to be supported, the raw material with the highest rank based on net-return rate 

should be the same as the raw material with the highest frequency, and so forth.  

 If it is assumed that there is not a silcrete source on the Paleo-Agulhas plain 

during MIS4 both potential types of heat-treated silcrete have the highest rankings 

followed by quartzite and untreated silcrete, which also have tied rankings due to 

statistically similar net-return rates. The ranking does not match the archaeological 

frequencies, which have statistically similar frequencies of quartzite and silcrete of which 

83.1% is heat-treated (Table 73). This result does not support H3. 

During MIS4 conditions with a Paleo-Agulhas plain silcrete source, untreated 

silcrete has the highest ranking followed by silcrete heat-treated by the insulated method 

(Table 73). This result does not match the archaeological frequency pattern where 

quartzite and silcrete, which is dominated by heat-treated silcrete (83.1%), have 

statistically similar frequencies. The result of the model outcome from simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and the raw material 

frequencies from MIS4 does not support H3. 

During MIS5 conditions there is a match between net-return rankings and 

archaeological raw material frequencies (Table 73). Quartzite has the highest ranking and 

it has the highest frequency in the archaeological record. Heat-treated silcrete has the 
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second highest ranking and the highest frequency in the archaeological record because 

88.4% of the silcrete has been heat-treated. The MIS5 result supports H3. 

 

Table 73. Comparison between a raw material ranking based on ACM- R net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM-R Results-Ranked* Archaeological Data 

MIS4 without a Paleo-
Agulhas plain silcrete 

source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreate
d Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

2 (4.2) 2 (4.8) 1 (8.3) 1 (7.6) 44.6* 40* 16.9 83.1 

MIS4 with a Paleo-Agulhas 
plain silcrete source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreate
d Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

4 (4.2) 1 (30) 2 (22.3) 3 (18.2) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreate
d Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

1 (52.5) 3 (4.8) 2 (6.8) 2 (7.6) 77.2 13.1 11.6 88.4 

MIS6 without a Paleo-
Agulhas plain silcrete 

source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreate
d Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

1 (14.6) 3 (4.8) 2 (6.8) 2 (7.6) 94.3 1.1 NA NA 

MIS6 with a Paleo-Agulhas 
plain silcrete source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreate
d Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

3 (14.6) 1 (30) 3 (14.1) 2 (18.2) 94.3 1.1 NA NA 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in the table 
are due to statistically similar Rq or Rs. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

When one assumes that a Paleo-Agulhas plain silcrete source is not present during 

MIS6, the highest ranked raw material is quartzite. This result matches the archaeological 
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data where quartzite has the highest frequency (Table 73). The match between model 

outcome and raw material frequency from MIS6 conditions supports H3. 

During MIS6 conditions with a Paleo-Agulhas plain silcrete source, untreated 

silcrete has the highest ranking (Table 73). This ranking does not match with the 

archaeological data from MIS6, which shows that quartzite has the highest frequency. 

This result does not support Hypothesis 3. 

 What the support for Hypothesis 3 (H3) during MIS5 conditions and MIS6 

conditions without a Paleo-Agulhas silcrete source minimally suggests is that the foragers 

are strategically selecting the raw material with the highest net-return of cm*min cutting 

edge that is available in the environment. This suggests that stone tool raw materials 

played an important part in the technological organization because the forager traveled 

and searched for raw materials at added cost. Support for H3 suggests that the response to 

climatic and environmental conditions during MIS5 and MIS6 was a mobility system that 

involved targeted stone tool raw material procurement bouts (c.f. Gould, 1985; Gould and 

Saggers, 1985) to select specific stone raw materials needed to manufacture tools to 

obtain food resources and/or performing processing tasks. This, in turn, suggests that the 

foragers had increased knowledge about the characteristics of the raw materials and how 

to utilize them. 

 

Testing Hypothesis 2 and 3 summary 

Quartzite and untreated silcrete have significantly higher net-return rates compared to 

either type of heat-treated silcrete when investigating the ACM-P net-return rates. This 

pattern holds under MIS4, MIS5 and MIS6 conditions. The ranking of ACM-P net-return 
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rates did not match the archaeological frequencies during any model conditions, which 

limits support for Hypothesis 2. 

The net-return rates change after adding travel and search time-cost (ts variable) to 

the equation when considering the ACM-R. Under MIS4 conditions without a Paleo-

Agulhas plain silcrete source, heat-treated silcrete under both assumed heat-treatment 

methods have statistically similar net-return rates that both are significantly higher than 

quartzite and untreated silcrete, which in turn also have statistically similar net-return 

rates. When one assumes that there is an available silcrete source on the Paleo-Agulhas 

plain during MIS4 then untreated silcrete have a significantly higher net-return rate 

compared to both types of heat-treated silcrete, while quartzite has a significantly lower 

net-return rate compared to both untreated and heat-treated silcrete. Important to note is 

that silcrete (heat-treated with the insulated method) has a significantly higher net-return 

rate compared to the exposed method.  

Conversely, during MIS5 conditions quartzite has a significantly higher net-return 

rate compared to both types of heat-treated silcrete and untreated silcrete. Both types of 

heat-treated silcrete have statistically similar net-return rates that are both significantly 

higher than the net-return rate of untreated silcrete. This pattern also holds under MIS6 

conditions without a Paleo-Agulhas plain silcrete source.  

If a Paleo-Agulhas plain silcrete source is assumed to be present during MIS6 

then untreated silcrete has a significantly higher net-return rate compared to quartzite and 

both types of heat-treated silcrete (exposed and insulated). Silcrete heat-treated using the 

exposed method has a significantly higher net-return rate compared to silcrete heat-
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treated using the insulated method and quartzite, which have statistically similar net-

return rates. 

Support was found for Hypothesis 3 (H3) during MIS5 conditions and MIS6 

conditions without a Paleo-Agulhas silcrete source. The raw material ranking made from 

ACM-R net-return rates match the archaeological frequencies at Pinnacle Point. This 

suggests that quartzite was strategically selected during both MIS5 and MIS6 due to 

having the highest net-return rate of cutting edge per mass multiplied by the duration that 

the edges last before dulling. This result supports the ‘Utilitarian’ model of raw material 

selection and change (c.f. Mackay 2008). 

 Next follows the presentation of the model outcomes under the different model 

conditions variables (coastline position and raw material source distribution, vegetation 

type, mobility rate and strategy) to understand whether changes in individual time-costs 

drive the net-return rates and thus explain the archaeological raw material frequencies. 

First, net-return rates from the different model condition variables are presented, which 

allows for a ranking that can be used compare to archaeological frequencies. Then, the 

comparison to the archaeological frequencies allows for testing of predicted relationships 

between time-costs and model condition variable presented in Chapter 5.  

In the following section, only the relevant model variables will be used keeping 

all other variables constant. For the coastline position and raw material source 

distribution variable only the travel and search time-cost (ts variable) is considered in the 

denominator side of the ACM equation. For the vegetation type variable, only the wood 

fuel travel and search time-cost (m1) and heat-treatment time-cost (m2) are considered, 
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while for the mobility rate and strategy variable only flake manufacturing time-cost (m3) 

is considered. 

 

ACM – Model condition variable outcomes 

Coastline position and raw material source distribution 

Heat-treated silcrete have the highest net-return during MIS4 conditions without a Paleo-

Agulhas plain silcrete source, while untreated silcrete and quartzite have statistically 

similar frequencies during conditions without a Paleo-Agulhas silcrete source (Figure 

119 and Table 74; raw data from MIS 4 conditions without a Paleo-Agulhas plain silcrete 

source in Supplementary Tables B201-B202). During MIS4 conditions without a Paleo-

Agulhas plain silcrete source, heat-treated silcrete has the highest net-return rate followed 

by untreated silcrete then quartzite (raw data in Supplementary Tables B201 and B203). 

During MIS5 conditions quartzite has the highest net-return rate followed by heat-

treated silcrete then untreated silcrete (Figure 119 and Table 74; MIS5 conditions raw 

data in Supplementary Tables B204-B205). This result also holds during MIS6 

conditions without a Paleo-Agulhas plain silcrete source. Quartzite has a significantly 

higher net-return rate compared to both untreated and heat-treated silcrete. All net-return 

rates are significantly different from each other (Figure 106 and Table 74; raw data in 

Supplementary Tables B206-B207).   

During MIS6 conditions with a Paleo-Agulhas plain silcrete source, heat-treated 

silcrete has a significantly higher net-return rate compared to both untreated silcrete ad 

quartzite. Untreated silcrete has a significantly higher net-return rate than quartzite 

(Figure 119 and Table 74; raw data in Supplementary Tables B206 and B208). 
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Figure 119. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (Rq and Rs) when only ts time-cost (travel and search time) is 

considered (for all experimental sample types) during all model conditions. Star with 

capped whiskers is the mean with the 95% confidence interval (CI). The CI was created 

by bootstrapping the standard error 10000 times. 

 

Table 74. Summary statistics and bootstrap test results of ACM-R net-return rates (Rq 

and Rs) when only ts time-cost (travel and search time) is considered during all model 

conditions. 
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Table 75 compares the archaeological raw material frequencies from Pinnacle 

Point with ACM-R net-return rates when only travel and search time-cost (ts variable) is 

considered in the denominator part of the equation. A comparison to the archaeological 

frequency data shows that the predicted relationship between travel and search time-cost 

(ts) and the coastline position and raw material source distribution variable (with: Figure 

25; without: Figure 26) during MIS4 conditions with or without a Paleo-Agulhas plain 

silcrete source is not supported. The archaeological frequency data show that quartzite 

and silcrete have statistically similar frequencies, while the model ranking shows that 
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heat-treated silcrete has the highest frequency (Table 75). This suggests that travel and 

search time-cost (ts) does not explain raw material frequencies at Pinnacle Point during 

MIS4. 

 The predicted relationship (Figure 25 and Figure 26) for MIS5 conditions is 

supported. The archaeological frequency data show that quartzite has the highest 

frequency while the highest ranked raw material is quartzite (Table 75). This suggests 

that during MIS5 travel and search time-cost (ts) explains the raw material frequencies at 

Pinnacle Point. 

A comparison between the archaeological frequency data to the ranked raw 

materials from MIS6 conditions without a Paleo-Agulhas plain silcrete source shows that 

the predicted relationship (Figure 25) is supported. The archaeological data show that 

quartzite has the highest frequency during MIS6, while the highest ranked raw material 

during MIS6 conditions with a Paleo-Agulhas plain silcrete source is quartzite. This 

suggests that during MIS6 travel and search time-cost (ts) explains the raw material 

frequencies at Pinnacle Point. 

A comparison of archaeological frequency data to the ranked raw materials from 

MIS6 conditions with a Paleo-Agulhas plain silcrete source shows that the predicted 

relationship (Figure 26) is not supported. Heat-treated silcrete have the highest net-return 

rate but the highest quartzite has the highest frequency in the archaeological record 

(Table 75). This suggests that travel and search time-cost does not explain raw material 

frequencies during MIS6 if it is assumed that a silcrete source is present on the Paleo-

Agulhas plain silcrete source. 
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Table 75. Comparison between ranked raw materials resulting from testing predictions 

drawn from the coastline position and raw material source distribution variable and 

archaeological data. 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in table are 
due to statistically similar Rq or Rs.* MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19.  

 

The outcome of testing the predicted relationship between travel and search time-

cost (ts) and the coastline position and raw material source distribution variable shows 

that during both MIS5 conditions and MIS6 conditions without a Paleo-Agulhas plain 

silcrete source travel and search time-cost (ts) does drives the net-return rates of raw 

materials so that it explains the archaeological raw material frequencies. When the coast 

is near during MIS5 conditions the travel and search time-cost (ts) decreases enough for 

quartzite to drive the net-return rate above silcrete. In other words, the distribution of 

coastal cobble beaches in close vicinity to Pinnacle Point during MIS5 conditions 

ACM Results-Ranked* Archaeological Data 

MIS4 Without a Paleo-
Agulhas plain silcrete source     MIS4*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete Quartzite 

Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

2 (8.4) 3 (5.2) 1 (11.9) (44.6%)  (40.0%) 16.9 83.1 

MIS4 With a Paleo-Agulhas 
plain silcrete source     MIS4*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete Quartzite 

Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

3 (8.4) 2 (53.7) 1 (123.7)  (44.6%)  (40.0%) 16.9 83.1 

MIS5     MIS5*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete Quartzite 

Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

1 (118.5) 3 (5.2) 2 (11.9)  (77.2%)  (13.1%) 11.6 88.4 

MIS6 Without a Paleo-
Agulhas plain silcrete source     MIS6*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete Quartzite 

Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

1 (30.8) 3 (5.2) 2 (11.9)  (94.3%)  (1.1%) NA NA 

MIS6 With a Paleo-Agulhas 
plain silcrete source     MIS6*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete Quartzite 

Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

3 (30.8) 2 (53.7) 1 (123.7)  (94.3%)  (1.1%) NA NA 
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facilitates decreased travel and search time to procure quartzite and this drives the 

selection of quartzite. Similarly, during MIS6 conditions the close proximity of a wave-

ravinement surface to Pinnacle Point facilitates decreased travel and search time to 

procure quartzite. This result lends support to Torrence’s (1989, 1983) assertion that the 

frequencies of quartzite and silcrete are driven by the cost of procuring the raw materials. 

The raw material that is the least costly to procure will be selected if the quality of the 

raw material is good enough for the forager. 

 

Vegetation type  

During MIS4, MIS5, and MIS6 conditions quartzite and untreated silcrete have the 

highest net-return rates, and the net-return rates are statistically similar (Figure 120 and 

Table 76). During MIS4 silcrete heat-treated using insulated method has a significantly 

higher net-return compared to silcrete heat-treated using the exposed method (raw data 

from MIS 4 conditions can be found in Supplementary Tables B209-B210). During 

MIS5 and MIS6 conditions, silcrete heat-treated using the exposed method has a 

significantly higher net-return rate compared to silcrete heat-treated using the insulated 

method (raw data from MIS5 conditions in Supplementary Tables B209 and B211; 

MIS6 conditions: Supplementary Tables B209 and B212). 
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Figure 120. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates (Pq and Ps) when only m1 (wood fuel travel and search time) 

and m2 time-costs (heat-treatment time) are considered (for all experimental sample 

types) during all model conditions. Star with capped whiskers are the mean with the 95% 

confidence interval (CI). The CI was created by bootstrapping the standard error 10000 

times. 

 

Table 76. Summary statistics and bootstrap test results of ACM-P net-return rates (Pq 

and Ps) when only m1 (wood fuel travel and search time) and m2 time-costs (heat-

treatment time) are considered during all model conditions. 
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Table 77 compares the archaeological raw material frequencies from Pinnacle 

Point with ACM-P net-return rates when wood fuel travel and search time-cost (m1 

variable) and heat-treatment time-cost (m2 variable) are considered in the denominator 

part of the equation. A comparison to the archaeological frequency data shows that the 

predicted relationship between wood fuel travel and search time-cost (m1) and heat-

treatment time-cost (m2) and the vegetation type variable (Figure 27) during MIS4 

conditions is not supported. The archaeological raw material frequency data show that 

quartzite and silcrete (overall) have statistically similar raw material frequencies (Table 

77). However, 83.1% of the silcrete has been heat-treated and only 16.9% are untreated. 

This does not fit with the ranking, which shows statistically similar net-return rates for 

quartzite and untreated silcrete (Table 77). This result suggests that wood fuel travel and 

search time-cost (m1) and heat-treatment time-cost (m2) do not explain the archaeological 

raw material frequencies at Pinnacle Point during MIS4. 

A comparison between the archaeological frequency data to the ranked raw 

materials from MIS5 and MIS6 conditions show that the predicted relationships (Figure 

27) are not supported. The archaeological data show that quartzite has the highest 

frequency during MIS5 and MIS6, while the highest ranked raw materials during MIS5 

and MIS6 are quartzite and untreated silcrete that have statistically similar net-return 

rates (Table 77). This result suggests that wood fuel travel and search time-cost (m1) and 

heat-treatment time-cost (m2) do not explain raw material frequencies during MIS5 and 

MIS6. The result for all model conditions limits support for the “Wood-fuel availability” 

model proposed by Brown and Marean (2010). 
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Table 77. Comparison between ranked raw materials resulting from testing predictions 

drawn from the vegetation type variable and archaeological data. 

ACM Results-Ranked* Archaeological Data 

MIS4       MIS4*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite  Silcrete Overall  

Untreated 
Silcrete  

Heat-
treated 
Silcrete 

1 (755.8) 1 (687.4) 2 (33) 3 (24.8) (44.6%*) (40%*) 16.9% 83.1% 

MIS5       MIS5*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite  Silcrete Overall  

Untreated 
Silcrete 

Heat-
treated 
Silcrete 

1 (755.5) 1 (687.4) 3 (17.8) 2 (24.8) (77.2%)  (13.1%) 11.6% 88.4% 

MIS6       MIS6*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite Silcrete Overall 

Untreated 
Silcrete 

Heat-
treated 
Silcrete 

1 (755.5) 1 (687.4) 3 (17.8) 2 (24.8) (94.3%)  (1.1%) NA NA 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in table are 
due to statistically similar Pq or Ps. *MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

Mobility rate and strategy 

During MIS4 conditions heat-treated silcrete has a significantly higher net-return rate 

compared to both untreated silcrete and quartzite. Quartzite and untreated silcrete have 

statistically similar net-return rates (Figure 121 and Table 78; raw data in 

Supplementary Tables B213-B214).  

Table 79 compares the MIS4 archaeological raw material frequencies from PP5-6 

with ACM net-return rates resulting from MIS4 conditions when only the flake 

manufacturing time-cost (m3 variable) is considered in the denominator part of the 

equation. The predicted relationship between flake manufacturing time-cost (m3) and the 

mobility rate and strategy variable (Figure 28) during MIS4 conditions is not supported. 

The archaeological data show that quartzite and silcrete (83.1% of the silcrete has been 

heat-treated and 16.9% is untreated) have statistically similar frequencies during MIS4, 

while the highest ranked raw material during MIS4 is heat-treated silcrete (Table 79). 
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This result suggests that the higher cutting edge per mass outcome (e variable) of heat-

treated silcrete and flake manufacture time-cost (m3) do not explain raw material 

frequencies during MIS4 at Pinnacle Point. This result limits support for assertions made 

by Gould and Saggers (1985, 1985) that foragers select raw material specifically for their 

qualities.  

 
Figure 121. Plot with means and 95% confidence intervals showing the distribution of 

the ACM net-return rates (Pq and Ps or Rq and Rs) when only m3 time-cost (flaking 

manufacturing time) is considered for all experimental sample types during MIS4 

conditions. Star with capped whiskers is the mean with the 95% confidence interval (CI). 

The CI was created by bootstrapping the standard error 10000 times. 

 

Table 78. Summary statistics and bootstrap test results of ACM net-return rates (Pq and 

Ps or Rq and Rs) when only m3 time-cost (flaking manufacturing time) is considered for 

all experimental sample types during MIS4 conditions. 

  Quartzite (Pq or Rq) 
Untreated Silcrete (Ps or 

Rs) 
Heat-treated Silcrete (Ps 

or Rs) 

n sample blocks 20 8 8 

First Quartile 86.028 88.235 233.500 

Min 75.070 85.060 211.360 

Median 105.880 104.400 248.285 

Mean 107.491 107.438 247.501 

Max 149.990 140.910 292.180 

Third Quartile 130.755 125.798 259.445 
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SD 24.643 20.103 23.683 

Bootstrapped SE* 5.345 6.887 8.013 

Margin of error (95% CI) 10.475 13.499 15.706 

Bootstrapped Upper 95% CI* 117.966 120.937 263.207 

Bootstrapped Lower 95% CI* 97.015 93.938 231.795 

*Samples bootstrapped 10000 times. 

 

Table 79. Comparison between ranked raw materials resulting from testing predictions 

drawn from the mobility rate and strategy variable and archaeological data. 

ACM Results-Ranked* Archaeological Raw Material Frequencies-MIS4 

Quartzite 
Untreated 
Silcrete 

Heat-treated 
Silcrete 

Quartzite 
Silcrete 
Overall 

Untreated 
Silcrete 

Heat-treated 
Silcrete 

2 (107.5) 2 (107.9) 1 (247.5) (44.6%) (40%) 16.9 83.1 
a 
Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in table are 

due to statistically similar Rq or Rs.* MIS4 archaeological raw material frequencies from bootstrapped data in Figure 50 
and Table 19. 

 

ACM model condition variable results summary 

The model outcomes under the three different model condition variables presented above 

show that the only predicted relationship that was supported was travel and search time-

cost (ts) explaining raw material frequencies during MIS5 conditions and MIS6 

conditions without a Paleo-Agulhas plain silcrete source (Table 80). This suggests that 

during MIS5 and MIS6 the selection of quartzite was driven by the lower travel and 

search time-cost (ts) of acquiring the quartzite. The low cost of quartzite was in turn 

affected by the position of the coastline and the distribution of raw material sources. 

During MIS6, if one assumes that no silcrete sources are present on the Paleo-Agulhas 

plain, the close proximity of an extensive cobble-rich wave-ravinement surface to 

Pinnacle Point lowered the travel and search cost for quartzite enough to increase the net-

return rate above silcrete. When the coastline moved closer during MIS5 and was 

configured similarly to today’s conditions, abundant cobble beaches kept the travel and 

search time-cost for quartzite low keeping the net-return rate of quartzite above silcrete. 
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While changes in coastline position and raw material source distribution explains raw 

material patterns during MIS5 and MIS6, the result shows that neither change in 

vegetation type or mobility rate and strategy directly explain the raw material frequencies 

during any Marine Isotope Stage at Pinnacle Point.  

 

Table 80. Summary of whether model outcomes are the same as archaeological raw 

material frequencies 

Model Condition Variable Model Condition 
Prediction 
Supported 

Coastline Position and Raw Material Distribution MIS4 without a Paleo-Agulhas Silcrete Source Not Supported 

Coastline Position and Raw Material Distribution MIS4 with a Paleo-Agulhas Silcrete Source Not Supported 

Coastline Position and Raw Material Distribution MIS5 Supported 

Coastline Position and Raw Material Distribution MIS6 without a Paleo-Agulhas Silcrete Source Supported 

Coastline Position and Raw Material Distribution MIS6 with a Paleo-Agulhas Silcrete Source Not Supported 

Vegetation Type MIS4-Exposed Not Supported 

Vegetation Type MIS4-Insulated Not Supported 

Vegetation Type MIS5-Exposed Not Supported 

Vegetation Type MIS5-Insulated Not Supported 

Vegetation Type MIS6-Exposed Not Supported 

Vegetation Type MIS6-Insulated Not Supported 

Mobility Rate and Strategy MIS4 Not Supported 

 

During MIS4 conditions with or without a Paleo-Agulhas plain silcrete source, 

travel and search time-cost (ts) does not explain the raw material frequency pattern at 

Pinnacle Point. The model predicts more heat-treated silcrete than is observed in the 

archaeological record. The pattern observed during MIS4 is not explained by a change in 

vegetation type either. The lower time-cost accrued by traveling and searching for wood 

fuel (m1) to heat-treat silcrete and the act of heat-treatment (m2) regardless of method 

(exposed or insulated) during MIS4 conditions do not increase the net-return rate of heat-
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treated silcrete above quartzite. The model outcome, in fact, predicts that quartzite and 

untreated silcrete should be equally represented in the archaeological record, which is not 

the case; heat-treated silcrete and quartzite have statistically similar frequencies. The 

MIS4 pattern is also not explained by a change in mobility rate and strategy. The lower 

cost of flake manufacturing of heat-treated silcrete and the higher output of cutting edge 

per mass (e variable) from heat-treated silcrete results in the model predicting more heat-

treated silcrete than what is observed in the archaeological record.  

 

ACM sensitivity analysis – Changing assumed currency 

The results above show that neither the ACM-P (sequential encounter and embedded 

procurement; travel and search cost not included) nor ACM-R (simultaneous encounter 

and direct procurement; travel and search cost is included) explains the raw material 

frequency patterns observed in MIS4 with or without a Paleo-Agulhas plain silcrete 

source. A common explanation for why an Optimal Foraging Theory (OFT) model does 

not explain an observed pattern is that the assumed currency that the forager is seeking to 

rate maximize is incorrect (Stephens and Krebs 1986, Bird and O’Connell 2006). Given 

that neither ACM-P nor the ACM-R explains the raw material pattern during MIS4 when 

the original currency is used, below the result evaluating both hypotheses again using two 

different alternative currencies will be presented. 

The first alternative currency assumes that the forager seeks to maximize 

available cutting edge of blades produced multiplied by the duration of use before dulling 

(cutting edge of complete blades (cm) / total flaked core mass (kg) * d (minutes)). In 

other words, the forager seeks to maximize the amount of cutting edge of blades made 
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from a core mass, and the forager wants the cutting edge on those blades to last as long as 

possible. The second alternative currency assumes that the forager seeks to maximize the 

amount of produced blades for a given raw material mass, and that the forager wants the 

cutting edge on those blades to last as long as possible (count of complete blade (n=) 

/total flaked core mass (kg) * d (minutes)). 

 Both these currencies are plausible due to the increase in blade production in 

MIS4 at PP5-6 and the fact that a majority of the blades during MIS4 are made on silcrete 

(see Chapter 7) (Brown et al. 2012, Brown et al. 2009, Wilkins et al. 2017). Below first 

the ACM-P and ACM-R net-return rates for the two alternative currencies are presented. 

The net-return rates are used to create rankings that are compared to the archaeological 

raw material frequencies. This comparison is used to test Hypothesis 2 and 3. This is 

followed by a presentation of the model outcomes under the different model condition 

variables to understand whether changes in individual time-costs drive the net-return 

rates, in turn explaining the archaeological raw material frequencies at Pinnacle Point. 

 

Maximizing cutting edge of complete blades per mass multiplied by duration of use 

before dulling 

ACM-P net-return rates – Testing Hypothesis 2 

As with the original currency when looking across all model conditions quartzite and 

untreated silcrete have significantly higher net-return rates than either type of heat-treated 

silcrete (exposed and insulated) (Figure 122 and Supplementary Table B215). Under 

MIS4 conditions the net-return rate of insulated silcrete is significantly higher than 

exposed silcrete, while under MIS5 and MIS6 conditions the net-return rates of exposed 
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silcrete are significantly higher than insulated silcrete (Supplementary Tables B216-

B219 show the raw data for each experimental raw material block). 

 
Figure 122. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates (for all experimental sample types) during MIS4, MIS5, and 

MIS6 conditions. Star with capped whiskers is the mean with the 95% confidence 

intervals (CI). The CI was created by bootstrapping the standard error 10000 times. 

 

 Table 81 shows the ranking of raw materials based on the overall ACM-P net-

return rates compared to the archaeological frequencies under different model conditions. 

For Hypothesis 2 (H2) to be supported, the raw material with the highest rank based on 

net-return rate should be same as the raw material with the highest frequency, and so 

forth. During both MIS6 and MIS5 quartzite has the highest frequencies at Pinnacle 

Point, which does not match the tied ranking of quartzite and untreated silcrete (Table 

81). During MIS4 quartzite and silcrete have statistically similar frequencies, which do 
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match the tied ranking of quartzite and untreated silcrete based on net-return rates (Table 

81). However, the archaeological data show that 83.1% of the silcrete is heat-treated. 

 Therefore, while the ACM-P net-return rates can explain the dual selection of 

quartzite and untreated silcrete it does not explain why you would heat-treat the silcrete. 

These results are the same as when using the original currency. Compared to the original 

currency, the net-return rates of untreated silcrete and both types of heat-treated silcrete 

have moved closer to each other. 

 

Table 81. Comparison between a raw material ranking based on ACM-P net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM-P Results-Ranked* Archaeological Data 

MIS4       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (16.6) 1.5 (12.3) 1.5 (9) 2 (7) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (16.6) 1 (12.3) 2 (5.3) 2 (7) 77.2 13.1 11.6 88.4 

MIS6       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (16.6) 1 (12.3) 2 (5.3) 2 (7) 94.3 1.1 NA NA 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in the table 
are due to statistically similar Pq or Ps. MIS4, MIS5, MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

 As with the original currency, taken together, the ACM-P net-return rates show no 

support for Hypothesis 2 (H2). The lack of support for H2 limits the support for a scenario 

where during embedded procurement a forager strategically select raw material and 

produce blades with the highest net-return of cm*min cutting edge on blades. 
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Nevertheless, the ACM-R variant can still explain the raw material frequency pattern. In 

the ACM-R the time-cost resulting from travel and search for a raw material is included. 

 

ACM-R net-return rates – Testing Hypothesis 3 

During MIS4 conditions without a Paleo-Agulhas plain silcrete source both types of heat-

treated  silcrete (exposed and insulated) have the highest net-return rates that are 

statistically similar (Figure 123 and Supplementary Table B220; raw data in 

Supplementary Tables B221-B222), whereas during MIS4 conditions with at Paleo-

Agulhas plain silcrete source untreated silcrete, and both types of heat-treated silcrete 

(exposed and insulated) have the highest net-return rates that are statistically similar 

(Supplementary Table B220; raw data in Supplementary B221 and B223).  

MIS5 condition model outcomes show that quartzite has the highest net-return 

rate while both types of heat-treated silcrete (exposed and insulated) have the second 

highest net-return rates, which are statistically similar (Figure 123 and Supplementary 

Table B220; raw data in Supplementary Tables B224-B225).  

Model outcomes from MIS6 conditions without a Paleo-Agulhas plain silcrete 

source show that quartzite and both types of heat-treated silcrete (exposed and insulated) 

have the highest net-return rates, which all are statistically similar (Figure 123 and 

Supplementary Table B220; raw data in Supplementary Tables B226-B227). During 

MIS6 conditions with a Paleo-Agulhas plain silcrete source, untreated silcrete and silcrete 

heat-treated using the exposed method have the highest net-return rates, which are 

statistically similar. However, their net-return rates are also statistically similar to silcrete 
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heat-treated using the insulated method and quartzite (Figure 123 and Supplementary 

Table B220; raw data in Supplementary Tables B226 and B228).  

 
Figure 123. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (for all experimental sample types) during all model 

conditions. Star with capped whiskers is the mean with the 95% confidence intervals 

(CI). The CI was created by bootstrapping the standard error 10000 times. 

 

Table 82 shows the ranking of raw materials based on the overall ACM-R net-

return rates compared to the archaeological frequencies under different model conditions. 

For Hypothesis 3 (H3) to be supported, the raw material with the highest rank based on 

net-return rate should be same as the raw material with the highest frequency, and so 

forth. Hypothesis 3 is only supported by the result from MIS5 conditions. During MIS4 

and MIS6 conditions, the archaeological raw material frequencies do not match the raw 

material rankings. 
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Table 82. Comparison between a raw material ranking based on ACM- R net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM-R Results-Ranked* Archaeological Data 

MIS4 without a Paleo-
Agulhas plain silcrete 

source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

2 (0.9) 2 (0.9) 1 (2.7) 1 (2.5) 44.6* 40* 16.9 83.1 

MIS4 with a Paleo-Agulhas 
plain silcrete source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

2 (0.9) 1 (5.4) 1(7.4) 1 (6) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

1 (11.2) 3 (0.9) 2 (2.2) 2 (2.5) 77.2 13.1 11.6 88.4 

MIS6 without a Paleo-
Agulhas plain silcrete 

source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

1 (3.1) 2 (0.9) 1 (2.2) 1 (2.5) 94.3 1.1 NA NA 

MIS6 with a Paleo-Agulhas 
plain silcrete source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 
Silcrete 

(%) 

1.5 (3.1) 1 (5.4) 1 (4.7) 1 (6) 94.3 1.1 NA NA 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in the table are 
due to statistically similar Rq or Rs. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

 What the support for H3 during MIS5 conditions minimally suggests is that the 

foragers are strategically selecting the raw material with the highest net-return of cm*min 

cutting edge that is available in the environment. This result suggests that raw materials 

played an important role the overall technological organization because raw materials 

were procured at an added cost. The direct procurement of raw materials suggests 

planning of activities because the procurement of the raw materials had to be integrated 
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into the overall mobility strategy. Thus, the result suggests that during MIS5 a part of the 

response to climatic and environmental conditions was to utilize specific stone raw 

materials obtained during direct procurement trips (c.f. Gould, 1985; Gould and Saggers, 

1985) and to manufacture technology to obtain food resources and/or perform processing 

tasks. This, in turn, suggests increased knowledge about raw material properties and how 

to best use the raw materials. 

 

Hypothesis 2 and 3 evaluation summary 

The ranking of ACM-P net-return rates did not match the archaeological frequencies 

during any model conditions, which limits support for Hypothesis 2. However, there is 

support for Hypothesis 3 during MIS5 conditions. This suggests that quartzite was 

strategically selected during MIS5 due to having the highest net-return rate of cutting 

edge per mass on blades multiplied by the duration that the edges of those blades last 

before dulling. This result suggests that both the original currency (cutting edge per mass 

on all stone tool types multiplied by the duration that the edges on those stone tools last 

before dulling) and this alternative currency can explain the raw material frequencies in 

the MIS5 record at Pinnacle Point. This result, as with the orginal currency, supports the 

‘Utilitarian’ model of raw material selection and change (c.f. Mackay 2008). 

 Next follows the presentation of the model outcomes under the different model 

conditions variables (coastline positions and raw material source distribution, vegetation 

type, and mobility rate and strategy) to understand whether changes in individual time-

costs drive the net-return rates and thus explain the archaeological raw material 

frequencies. First, net-return rates from the different model condition variables are 
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presented, which allows for a ranking that can be used compare to archaeological 

frequencies. Then, the comparison to the archaeological frequencies allows for testing 

predicted relationships between time-costs and model condition variables presented in 

Chapter 5. 

 

ACM – Model condition variable outcomes 

Coastline position and raw material source distribution 

Heat-treated silcrete have the highest net-return during MIS4 conditions with or without a 

Paleo-Agulhas plain silcrete source, while untreated silcrete and quartzite have 

statistically similar frequencies (Supplementary Figure A16 and Supplementary Table 

B229; Raw data from MIS 4 conditions without a Paleo-Agulhas plain silcrete source: 

Supplementary Tables B230-B231; MIS 4 conditions with a Paleo-Agulhas plain 

silcrete source: Supplementary Tables B232-B233).  

During MIS5 conditions quartzite has the highest net-return rate followed by heat-

treated silcrete (Supplementary Figure A16 and Supplementary Table B229; MIS5 

conditions raw data: Supplementary Tables B234-B235).  

Quartzite and heat-treated silcrete have statistically similar net-return rates during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source, while during MIS6 

conditions with a Paleo-Agulhas plain silcrete source heat-treated silcrete has the highest 

net-return rate. Quartzite and untreated silcrete have statistically similar net-return rates 

(Supplementary Figure A16 and Supplementary Table B229; MIS6 conditions 

without a Paleo-Agulhas plain silcrete source raw data in Supplementary Tables B236-
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B237; MIS6 conditions with a Paleo-Agulhas plain silcrete source: Supplementary 

Tables B238-B239). 

 A comparison to the archaeological frequency data shows that the predicted 

relationships between travel and search time-cost (ts) and coastline position and raw 

material source distribution (with: Figure 25; without: Figure 26) during MIS4 

conditions with or without a Paleo-Agulhas plain silcrete source are not supported. The 

archaeological frequency data show that quartzite and silcrete have statistically similar 

frequencies, while the model ranking shows that heat-treated silcrete has the highest 

frequency (Supplementary Table B240). This suggests that travel and search time-cost 

(ts) does not explain raw material frequencies at Pinnacle Point during MIS4. 

 The predicted relationship (Figure 25 and Figure 26) for MIS5 conditions is 

supported. The archaeological frequency data show that quartzite has the highest 

frequency while the highest ranked raw material is quartzite (Supplementary Table 

B240). This suggests that during MIS5 travel and search time-cost (ts) explains the raw 

material frequencies at Pinnacle Point when using this alternative currency. This lends 

support to Torrence’s (1989, 1983) argument that procurement cost of raw materials 

drive selection if the quality of the raw material that is selected is sufficiently good. 

A comparison between the archaeological frequency data to the ranked raw 

materials from MIS6 conditions with or without a Paleo-Agulhas plain silcrete source 

shows that the predicted relationships (with: Figure 25; without: Figure 26) are not 

supported. The archaeological data show that quartzite has the highest frequency during 

MIS6, while the highest ranked raw material during MIS6 conditions with a Paleo-

Agulhas plain silcrete source is heat-treated silcrete whereas during MIS6 conditions 
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without a Paleo-Agulhas silcrete source quartzite and heat-treated silcrete have the 

highest but statistically similar net-return rates (Supplementary Table B240). This 

suggests that travel and search time-cost does not explain raw material frequencies during 

MIS6 when using this alternative currency. 

The results of testing the predicted relationships between travel and search time 

cost and the coastline position and raw material source distribution variable show that 

only during MIS5 conditions does travel and search time-cost (ts) drives the net-return 

rates of raw materials so that it explains the archaeological raw material frequencies. 

When the coast is near during MIS5 conditions the ts time-cost decreases enough for 

quartzite to drive the net-return rate above silcrete. In other words, the distribution of 

coastal cobble beaches in close vicinity to Pinnacle Point during MIS5 conditions 

facilitates decreased travel and search time to procure quartzite and this drives the 

selection of quartzite. 

 

Vegetation type 

During MIS4, MIS5, and MIS6 conditions quartzite and untreated silcrete have the 

highest net-return rates, and the net-return rates are statistically similar (Supplementary 

Figure A17 and Supplementary Table B241; Raw data from MIS 4 conditions can be 

found in Supplementary Tables B242-B243; MIS5 and MIS6 conditions: 

Supplementary Tables B242 and B244). 

 A comparison to the archaeological frequency data shows that the predicted 

relationship between wood fuel travel and search time-cost (m1) and heat-treatment time-

cost (m2) and the vegetation type variable (Figure 27) during MIS4 conditions is not 
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supported. The archaeological raw material frequency data show that quartzite and 

silcrete (overall) have statistically similar raw material frequencies (Supplementary 

Table B245). However, 83.1% of the silcrete has been heat-treated and only 16.9% are 

untreated. This does not fit with the ranking, which shows statistically similar net-return 

rates for quartzite and untreated silcrete (Supplementary Table B245). This result 

suggests that wood fuel travel and search time-cost (m1) and heat-treatment time-cost 

(m2) do not explain the archaeological raw material frequencies at Pinnacle Point during 

MIS4 when using this alternative currency. A comparison between the archaeological 

frequency data to the ranked raw materials from MIS5 and MIS6 conditions show that the 

predicted relationships (Figure 27) are not supported. The archaeological data show that 

quartzite has the highest frequency during MIS5 and MIS6, while the highest ranked raw 

materials during MIS5 and MIS6 are quartzite and untreated silcrete that have statistically 

similar net-return rates (Supplementary Table B245). This result suggests that wood 

fuel travel and search time-cost (m1) and heat-treatment time-cost (m2) do not explain raw 

material frequencies during MIS5 and MIS6 when using this alternative currency. The 

result from all model condition again limits support for the “Wood-fuel availability” 

model proposed by Brown and Marean (2010). 

 

Mobility rate and strategy 

During MIS4 conditions heat-treated silcrete has the highest net-return rate followed by 

quartzite and untreated silcrete, which have statistically similar net-return rates 

Supplementary Figure A18 and Supplementary Table B246; Raw data in 

Supplementary Tables B247-B248). 
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A comparison between the archaeological frequency data to the ranked raw 

materials from MIS4 conditions shows that the predicted relationship between flake 

manufacturing time-cost (m3) and the mobility rate and strategy variable (Figure 28) is 

not supported. The archaeological data show that quartzite and silcrete (overall; where 

83.1% of the silcrete has been heat-treated and 16.9% is untreated) have statistically 

similar frequencies during MIS4, while the highest ranked raw material during MIS4 is 

heat-treated silcrete (Supplementary Table B249). This result suggests that the higher 

cutting edge per mass outcome (e variable) of heat-treated silcrete and flake manufacture 

time-cost (m3) do not directly explain raw material frequencies during MIS4 at Pinnacle 

Point when using this alternative currency. Again, this result limits support for arguments 

made by Gould and Saggers (1985, 1985) that foragers select raw material specifically 

for their qualities. 

 

ACM – Model condition variable outcomes summary 

The model outcomes under the three different model condition variables presented above 

show that the only predicted relationship that was supported was travel and search time-

cost (ts) explaining raw material frequencies during MIS5 conditions. This suggests, 

similar to the Hypothesis 3 (H3) evaluation using the original currency that during MIS5 

the selection of quartzite was driven by the lower travel and search time-cost (ts) of 

acquiring the quartzite. The low cost of quartzite was in turn affected by the position of 

the coastline and the distribution of raw material sources. As with the original currency, 

when using this alternative currency neither change in vegetation type or mobility rate 

and strategy explain the net-return rates of the raw materials.  
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As with the original currency, the results above show that when changing the 

currency to maximizing the amount of cutting edge per mass from blades multiplied by 

duration of use neither the ACM-P (sequential encounter and embedded procurement; 

travel and search cost not included) nor ACM-R (simultaneous encounter and direct 

procurement; travel and search cost is included) explain the raw material frequency 

patterns observed in MIS4 with or without a Paleo-Agulhas plain silcrete source. Below 

the currency is changed again to investigate whether a simpler currency where 

maximizing the number of blades produced per mass multiplied by the duration of use is 

what the forager is seeking when selecting raw materials. 

 

Maximizing number of complete blades produced per core multiplied by duration of use 

before dulling 

ACM-P net-return rates – Testing Hypothesis 2 

During MIS 4 conditions the net-return rate of insulated silcrete is statistically similar to 

both quartzite and untreated silcrete, while exposed silcrete is statistically similar to 

insulated silcrete (Figure 124 and Tables 83; raw data for MIS4 conditions in 

Supplementary Tables B250-B251). When looking at MIS5 and MIS 6 conditions 

quartzite and untreated silcrete have only significantly higher net-return rates than 

exposed silcrete, while insulated silcrete has the lowest net-return (Figure 124 and Table 

83; raw data for MIS5 conditions in Supplementary Tables B250 and B252; MIS6 

conditions: Supplementary Tables B250 and B253). 
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Figure 124. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates for all experimental sample types during MIS4, MIS5, and 

MIS6 conditions. Star with capped whiskers is the mean with the 95% confidence 

interval (CI). The CI was created by bootstrapping the standard error 10000 times. 

 

Table 83. Summary statistics and bootstrap test results of ACM-P net-return rates (for all 

experimental sample types during MIS4, MIS5, and MIS6 conditions. 
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Table 84 shows the comparison between the ranking of raw material based on 

net-return rates and archaeological raw material frequencies. For Hypothesis 2 (H2) to be 

supported, the raw material with the highest rank based on net-return rate should be the 

same as the raw material with the highest frequency, and so forth. 

 

Table 84. Comparison between a raw material ranking based on ACM- P net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM-P Results-Ranked Archaeological Data 

MIS4       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.4) 1 (0.4) 1 (0.2) 1.5 (0.2) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.4) 1 (0.4) 2 (0.1) 1.5 (0.2) 77.2 13.1 11.6 88.4 

MIS6       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.4) 1 (0.4) 2 (0.1) 1.5 (0.2) 94.3 1.1 NA NA 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in the table are 
due to statistically similar Pq or Ps. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

During both MIS6 and MIS5, quartzite has the highest frequencies at PP, which 

does not match the tied ranking of quartzite and untreated silcrete (Table 84). However, 

during MIS4 quartzite and silcrete have statistically similar frequencies where heat-

treated silcrete accounts for 83.1% of the silcrete. The tied ranking based on net-return 

rates of quartzite, untreated silcrete, and insulated silcrete matches the archaeological 

frequencies (Table 84). Therefore, under the assumption that the forager seeks to 

maximize the amount of blades produced from a given core and the forager wants those 

blades to last as long as possible in terms of edge durability, the ACM-P net-return rates 
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can explain the dual selection of quartzite and silcrete during MIS4 conditions at Pinnacle 

Point. 

 As with the original currency and the first alternative currency, the ACM-P net-

return rates show no support for Hypothesis 2 (H2) during MIS5 or MIS6 conditions. 

However, the ACM-P results do support H2 during MIS4 conditions. The support for H2 

during MIS4 indicates a scenario where during embedded procurement where other life 

style constraints (for example, foraging for food resources, social interactions) control the 

mobility strategy and foraging movement a forager strategically selects a raw material 

that could produce the highest net-return of produced blades per core multiplied by 

duration of use when encountered. Thus, support for H2 suggests that the response to 

climatic and environmental conditions during MIS4 was relatively complex. There was a 

need for a mobility system that targeted food resources (disregarding the location of lithic 

raw material sources) that at the same time relied on investment in specific stone raw 

materials and technology that could be used to extract such resources. Given this positive 

result, can support for Hypothesis 3 (H3) also be found for MIS4 conditions using the 

same alternative currency? 

 

ACM-R net-return rates -Testing Hypothesis 3 

Figure 125 shows that during MIS4 conditions without a Paleo-Agulhas plain silcrete 

source that both types of heat-treated  silcrete (exposed and insulated) have the highest 

net-return rates that are statistically similar (Supplementary Table B254; raw data in 

Supplementary Tables B255-B256), whereas during MIS4 conditions with at Paleo-

Agulhas plain silcrete source untreated silcrete, and both types of heat-treated silcrete 
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(exposed and insulated) have the highest net-return rates that are statistically similar 

(Supplementary Table B254; raw data in Supplementary Tables B255 and B257). 

During MIS5 conditions quartzite has the highest net-return rate while both types 

of heat-treated silcrete (exposed and insulated) have the second highest net-return rates, 

which are statistically similar (Figure 125 and Supplementary Table B254; raw data in 

Supplementary Tables B258-B259).  

 
Figure 125. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (for all experimental sample types) during all model 

conditions. Star with capped whiskers is the mean with the 95% confidence intervals 

(CI). The CI was created by bootstrapping the standard error 10000 times. 

 

Model outcomes from MIS6 conditions without a Paleo-Agulhas plain silcrete 

source show that quartzite and both types of heat-treated silcrete (exposed and insulated) 

have the highest net-return rates, which all are statistically similar (Figure 125 and 
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Supplementary Table B254; raw data in Supplementary Tables B260-B261). During 

MIS6 conditions with a Paleo-Agulhas plain silcrete source, untreated silcrete and silcrete 

heat-treated using the exposed method have the highest net-return rates, which are 

statistically similar. However, their net-return rates are also statistically similar to silcrete 

heat-treated using the insulated method and quartzite (Figure 125 and Supplementary 

Table B254; raw data in Supplementary Tables B260 and B262).  

Table 85 shows the ranking of raw materials based on the overall ACM-R net-

return rates compared to the archaeological frequencies under different model conditions. 

For Hypothesis 3 (H3) to be supported, the raw material with the highest rank based on 

net-return rate should be same as the raw material with the highest frequency, and so 

forth. Similar to the evaluation using the first alternative currency, Hypothesis 3 is only 

supported by the result from MIS5 conditions. During MIS4 and MIS6 conditions, the 

archaeological raw material frequencies do not match the raw material rankings. 

 Again there is support for H3 during MIS5 conditions, which minimally suggests 

that the foragers are strategically selecting the raw material with the highest net-return of 

cm*min cutting edge that is available in the environment. As with the original and first 

alternative currency, this result suggests that raw materials played an important role the 

overall technological organization because raw materials were procured at an added cost. 

Further, the direct procurement of raw materials suggests planning of activities because 

the procurement of the raw materials had to be integrated into the overall mobility 

strategy. Thus, the result suggests that during MIS5 a part of the response to climatic and 

environmental conditions was to utilize specific stone raw materials obtained during 

direct procurement trips and to manufacture technology to obtain food resources and/or 
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perform processing tasks. This, in turn, suggests increased knowledge about raw material 

properties and how to best use the raw materials.  

 

Table 85. Comparison between a raw material ranking based on ACM- R net-return rates 

and archaeological data from MIS4, MIS5, and MIS6. 

ACM Results-Ranked* Archaeological Data 

MIS4 without a 
Paleo-Agulhas plain 

silcrete source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

2 (0.02) 2 (0.02) 1 (0.07) 1 (0.06) 44.6* 40* 16.9 83.1 

MIS4 with a Paleo-
Agulhas plain 
silcrete source       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

3 (0.02) 1 (0.2) 1 (0.2) 1 (0.2) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.3) 3 (0.02) 2 (0.06) 2 (0.06) 77.2 13.1 11.6 88.4 

MIS6 without a 
Paleo-Agulhas plain 

silcrete source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.08) 2 (0.02) 1 (0.06) 1 (0.6) 94.3 1.1 NA NA 

MIS6 with a Paleo-
Agulhas plain 
silcrete source       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated
-Silcrete 

Exposed-
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1.5 (0.08) 1 (0.2) 1.5 (0.1) 1 (0.2) 94.3 1.1 NA NA 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis). Similar rankings in the table are 
due to statistically similar Rq or Rs. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped 
data in Figure 50 and Table 19. 

 

Hypothesis 2 and 3 evaluation summary 

The results above show that only during MIS5 as with the first alternative currency does 

the raw material ranking made from ACM-R net-return rates match the archaeological 

frequencies, which supports Hypothesis 3 (H3). This result suggests that both the original 

currency (cutting edge per mass on all stone tool types multiplied by the duration that the 

edges on those stone tools last before dulling) and both alternative currencies can explain 
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the raw material frequencies in the MIS5 record at Pinnacle Point. Again, this result 

supports the ‘Utilitarian’ model of raw material selection and change (c.f. Mackay 2008). 

However, as with the original currency and the first alternative currency, the results 

above show that when changing the currency to maximizing the amount blades produced 

per core mass multiplied by the duration that the edges of those blades last before dulling 

the ACM-R does not explain the raw material frequency patterns observed in the MIS4 

record at Pinnacle Point. 

However, compared to evaluations of Hypothesis 2 (H2) using the original 

currency or the first alternative currency, when the currency (maximizing the number of 

blades produced per core mass multiplied by the duration that the edges of those blades 

last before dulling) was changed again the ranking of ACM-P net-return rates during 

MIS4 conditions does match the raw material frequency pattern observed during MIS4 at 

Pinnacle Point. This supports Hypothesis 2. Further, this result supports the ‘Utilitarian’ 

model of raw material selection and change (c.f. Mackay 2008). Additionally, it suggests 

encounters of raw material sources during embedded procurement (c.f. Binford 1979). 

 As with the first alternative currency, next follows the presentation of the model 

outcomes under the different model conditions variables to understand whether changes 

in individual time-costs drive the raw material net-return rates, in turn explaining the 

material frequencies at Pinnacle Point. First, net-return rates from the different model 

condition variables are presented, which allows for a ranking that can be used compare to 

archaeological frequencies. Then, the comparison to the archaeological frequencies 

allows for testing of predicted relationships between time-costs and model condition 

variables presented in Chapter 5. 
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ACM - Model condition variable outcomes 

Coastline position and raw material source distribution 

Heat-treated silcrete have the highest net-return during MIS4 conditions with or without a 

Paleo-Agulhas plain silcrete source, while untreated silcrete and quartzite have 

statistically similar frequencies (Supplementary Figure A19 and Supplementary Table 

B263; Raw data from MIS 4 conditions without a Paleo-Agulhas plain silcrete source: 

Supplementary Tables B264-B265; MIS 4 conditions with a Paleo-Agulhas plain 

silcrete source: Supplementary Tables B264 and B266).  

During MIS5 conditions quartzite has the highest net-return rate followed by heat-

treated silcrete (Supplementary Figure A19 and Supplementary Table B263; raw data 

in Supplementary Tables B267-B268).  

Quartzite and heat-treated silcrete have statistically similar net-return rates during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source, while during MIS6 

conditions with a Paleo-Agulhas plain silcrete source heat-treated silcrete has the highest 

net-return rate followed by quartzite and untreated silcrete that have statistically similar 

net-return rates (Supplementary Figure A19 and Supplementary Table B263; MIS6 

conditions without a Paleo-Agulhas plain silcrete source raw data in Supplementary 

Tables B269-B270; MIS6 conditions with a Paleo-Agulhas plain silcrete source: 

Supplementary Tables B269 and B271). 

 A comparison to the archaeological frequency data shows that the predicted 

relationships between travel and search time-cost (ts) and the coastline position and raw 

material source distribution variable during MIS4 conditions with or without a Paleo-

Agulhas plain silcrete source is not supported (with: Figure 25; without: Figure 26). The 
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archaeological frequency data show that quartzite and silcrete have statistically similar 

frequencies, while the model ranking shows that heat-treated silcrete has the highest 

frequency (Supplementary Table B272). This suggests that travel and search time-cost 

(ts) does not explain archaeological raw material frequencies during MIS4 at Pinnacle 

Point when using this alternative currency. 

 The predicted relationship (Figure 25 and Figure 26) for MIS5 conditions is 

supported. The archaeological frequency data show that quartzite has the highest 

frequency while the highest ranked raw material is quartzite (Supplementary Table 

B272). This suggests that during MIS5 travel and search time-cost (ts) explains 

archaeological raw material frequencies in the MIS4 record at Pinnacle Point when using 

this alternative currency. As with original currency and the first alternative currency this 

result supports the assertion made by Torrence’s (1989, 1983) that the cost of 

procurement explains why raw materials are selected if the quality of the raw material is 

good enough. 

The predicted relationships (with: Figure 25; without: Figure 26) for MIS6 

conditions with or without a Paleo-Agulhas plain silcrete source are not supported. A 

comparison between the archaeological frequency data to the ranked raw materials show 

that quartzite has the highest frequency during MIS6 at Pinnacle Point, while the highest 

ranked raw material during MIS6 conditions with a Paleo-Agulhas plain silcrete source is 

heat-treated silcrete whereas during MIS6 conditions without a Paleo-Agulhas silcrete 

source quartzite and heat-treated silcrete have statistically similar net-return rates 

(Supplementary Table B272). This suggests that travel and search time-cost does not 
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explain archaeological raw material frequencies during MIS6 at Pinnacle Point when 

using this alternative currency. 

Similar to using the first alternative currency, the results of testing the predicted 

relationships between the travel and search time-cost (ts) and the coastline position and 

raw material source distribution variable show that only during MIS5 conditions does 

travel and search time-cost (ts) explain the archaeological raw material frequencies at 

Pinnacle Point. When the coast is near during MIS5 conditions the ts time-cost decreases 

enough for quartzite to drive the net-return rate above silcrete. In other words, the 

distribution of coastal cobble beaches in close vicinity to Pinnacle Point during MIS5 

conditions facilitates decreased travel and search time to procure quartzite and this drives 

the selection of quartzite. 

 

Vegetation type 

During MIS4, MIS5, and MIS6 conditions quartzite and untreated silcrete have the 

highest net-return rates, and the net-return rates are statistically similar. Both types of 

heat-treated silcrete (exposed and insulated) have statistically similar net-return rates 

during all model conditions (Supplementary Figure A20 and Supplementary Table 

B273; Raw data from MIS 4 conditions can be found in Supplementary Tables B274-

B275; MIS5 raw data in Supplementary Tables B274 and B276; MIS6 raw data in 

Supplementary Tables B274 and B277). 

 A comparison to the archaeological frequency data shows that the predicted 

relationship between wood fuel travel and search time-cost (m1) and heat-treatment time-

cost (m2) and the vegetation type variable (Figure 27) during MIS4 conditions is not 
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supported. The archaeological raw material frequency data show that quartzite and 

silcrete (83.1% of the silcrete has been heat-treated and only 16.9% are untreated) have 

statistically similar raw material frequencies (Supplementary Table B278). This does 

not fit with the ranking, which shows statistically similar net-return rates for quartzite and 

untreated silcrete (Supplementary Table B278). This result suggests that wood fuel 

travel and search time-cost (m1) and heat-treatment time-cost (m2) do not explain the 

archaeological raw material frequencies at Pinnacle Point during MIS4 when using this 

alternative currency. A comparison between the archaeological frequency data to the 

ranked raw materials from MIS5 and MIS6 conditions show that the predicted 

relationships (Figure 27) are not supported. The archaeological data show that quartzite 

has the highest frequency during MIS5 and MIS6, while the highest ranked raw materials 

during MIS5 and MIS6 are quartzite and untreated silcrete that have statistically similar 

net-return rates (Supplementary Table B278). This result suggests that wood fuel travel 

and search time-cost (m1) and heat-treatment time-cost (m2) do not explain raw material 

frequencies during MIS5 and MIS6 at Pinnacle Point when using this alternative 

currency. As with the original currency and the first alternative currency, the result from 

all model conditions limits support for the “Wood-fuel availability” model (Brown and 

Marean 2010). 

 

Mobility rate and strategy 

During MIS4 conditions heat-treated silcrete has the highest net-return rate followed by 

quartzite and untreated silcrete, which have statistically similar net-return rates 

Supplementary Figure A21and Supplementary Table B279; Raw data in 
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Supplementary Tables B280-B281). This result is the same as the test using the original 

currency and the first alternative currency. 

When comparing the archaeological frequency data to the ranked raw materials 

from MIS4 conditions it shows that the predicted relationship between flake 

manufacturing time-cost (m3) and the mobility rate and strategy variable (Figure 28) is 

not supported. The archaeological data show that quartzite and silcrete (83.1% of the 

silcrete has been heat-treated and 16.9% is untreated) have statistically similar 

frequencies during MIS4, while the highest ranked raw material during MIS4 is heat-

treated silcrete (Supplementary Table B282). This result suggests that the higher cutting 

edge per mass outcome (e variable) of heat-treated silcrete and flake manufacture time-

cost (m3) do not directly explain raw material frequencies during MIS4 at Pinnacle Point 

when using this alternative currency. Again, similar to using the original currency and the 

first alternative currency this result limits support for assertions made by Gould and 

Saggers (1985, 1985) that foragers select raw material specifically for their qualities. 

 

ACM model condition variable outcomes summary  

The model outcomes under the three different model condition variables presented above 

show that the only predicted relationship that was supported was travel and search time-

cost (ts) explaining raw material frequencies during MIS5 conditions. This suggests, 

similar to the evaluation of Hypothesis 3 (H3) using the original currency and the 

alternative currency that during MIS5 the selection of quartzite was driven by the lower 

travel and search time-cost (ts) of acquiring the quartzite. The position of the coastline 

and the distribution of raw material sources affected the cost of the quartzite.  
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The positive result comparing ACM-P net-return rates from MIS4 conditions to 

archaeological frequencies from the MIS4 record at Pinnacle Point suggests strategic 

selection of both quartzite and heat-treated silcrete. This suggests a complex raw material 

selection process. The vegetation type variable model outcomes under MIS4 conditions 

show that when heat-treatment time-costs (m1 and m2) are the only time-costs considered 

both types of heat-treated silcrete has significantly lower net-return rates compared to 

quartzite and untreated silcrete. Conversely, the mobility rate and strategy variable model 

outcome under MIS4 conditions shows that when considering only the flake 

manufacturing time-cost (m3), heat-treated silcrete has a significantly higher net-return 

rate compared to quartzite and untreated silcrete. However, the higher net-return rate of 

heat-treated silcrete using only the m3 time-cost results not only because the time-cost of 

m3 is lower in heat-treated silcrete but also because by heat-treating silcrete the values of 

e (count of complete blades per mass) and d (duration of use before the edges of those 

blades dulls) both increases and are higher than quartzite and untreated silcrete. 

 When combined, when considering all time-costs (Figure 111 and Table 83), 

including procurement time-cost (tp), heat-treatment wood fuel travel and search time-

cost (m1), heat-treatment time-cost (m2), and flake manufacturing time-cost (m3) heat-

treated silcrete (when assuming the insulated method) has a net-return rate that is 

statistically similar to quartzite and untreated silcrete. 

 What the conflicting results of heat-treatment time-costs (m1 and m2) and flake 

manufacturing time-cost (m3) suggest is that what drives the net-return rate for heat-

treated silcrete up is the higher gross-value of the assumed currency (count of blades 

multiplied by the duration of use) and a lower flake-manufacturing time-cost (m3). The 
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net-return rates of quartzite and untreated silcrete is driven by the lack of heat-treatment 

time-costs and the higher flake-manufacturing time-costs. Together, the lack of having to 

invest in heat-treatment in quartzite and the gained currency value and decreased flake-

manufacturing time-cost in heat-treated silcrete is what results in a tied ranking, which in 

turn potentially explains the raw material frequencies in the MIS4 record at Pinnacle 

Point. 

 

Summary of evaluations using two alternative currencies 

The evaluations using the two alternative currencies show that comparison between 

ACM-R net-return rates and archaeological frequencies during MIS5 conditions support 

hypothesis 3 (H3), which is the same result as when using the original currency. This 

strongly suggests that quartzite was selected due to having the highest net-return rate 

during MIS5 conditions because regardless of currency quartzite has the highest ranking. 

The modeling outcome of the coastline position and raw material source distribution 

variable shows that travel and search time-cost (ts) of quartzite is significantly lower than 

the travel and search time-cost of silcrete, which in turn increases the net-return rate of all 

three types of assumed currencies for quartzite to rise above the net-return rate of silcrete. 

The benefit of selecting quartzite was its low travel and search time-cost regardless of 

currency but the trade-off was that it did not have the highest gross-return rate of any of 

the assumed currencies. This result supports the argument made by Torrence’s (1989, 

1983) that cost of procurement explains why raw materials are selected if the quality of 

the raw material is good enough. 
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Unlike the evaluation using the original currency, when evaluating the two 

alternative currencies there was no support for Hypothesis 3 (H3) during MIS6 conditions 

without a Paleo-Agulhas plain silcrete source. This suggests that currencies linked to 

blade production were not sought to be maximized during MIS6 at Pinnacle Point. 

Rather, the result using the original currency suggests that quartzite was strategically 

selected because it could offer, when conducting a non-blade focused flaking strategy, the 

highest net-return of cutting edge per mass multiplied by the duration that those edges 

could be used before dulling. This fits well with the MIS6 record at PP13B, which 

suggests little blade production compared to later periods such as the MIS4 record at 

PP5-6 (Thompson, Williams, and Minichillo 2010 also see Chapter 7 above). 

 Support for H2 was found during simulation of MIS4 conditions when comparing 

the ranking of raw materials based on ACM-P net-return rates and archaeological 

frequencies while using the assumption that the forager seeks to maximize the number of 

blades that can be produced per core mass multiplied by the duration of use. A lower 

flake manufacturing time-cost when producing heat-treated silcrete tools compared to 

higher flake manufacturing time-costs when producing quartzite toold in addtition to the 

lack of heat-treatment cost for quartzite resulted in tied net-return rates. The tied ranking 

of heat-treated silcrete with quartzite provided the forager with raw material that yielded 

the highest possible gross value of the assumed currency, which in turn allowed the 

forager to produce blades in a more standardized fashion, including microlithic 

technology (Brown et al. 2012). 
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CHAPTER 11: ISSUES AND PROBLEMS PERTAINING TO THE ACM AND 

OAM 

Introduction 

Before putting the raw material selection in the MIS6 to MIS4 sequence at Pinnacle Point 

in a broader context in terms of both theoretical work and the overall technological 

organization in MSA record at Pinnacle Point it is important to highlight issues and 

problems facing the analysis and discussion just presented. These issues include the scale 

of analysis, the assumption of perfect knowledge about the environment, energy cost as 

another factor when selecting a raw material, and assumptions about time-costs. They 

will all be discussed below. 

 Before discussing  those issues it is worth restating a potential criticism that can 

be directed at mathematically-based models, which is that they are often simple views of 

a complex world and they have assumptions that are often simplified (Surovell 2009: 21). 

However, simple models are a first necessary step of scientific development 

(Winterhalder and Smith 1992). This study advocates that one should test simpler models 

first such as the OAM and the ACM to see if they explain human behavior before 

attempting to explain human behavior using more complex chains of arguments. Such 

complex models are inherently hard to evaluate on an empirical basis, resulting in a 

potential situation where a negative model outcome can be hard to explain because of 

poorly measured or understood variables (Smith 1991, Surovell 2009). 
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Scale of analysis 

An obvious potential criticism of this study is the scale of analysis, which uses Marine 

Isotope Stages as the time-periods to investigate behavior. Such a coarse-grain approach 

based on the MIS scale has the potential to erase all climatic and environmental 

fluctuations occurring within each stage (Wilkins et al. 2017). There is a lot of debate 

about the paleoenvironmental conditions within each MIS, especially MIS4 (Bar-

Matthews et al. 2010, Chase 2010, Marean et al. 2014). One can also argue that the issue 

of distance to coastline, for example, should be investigated in much finer detail to better 

understand fluctuation in behavior (Fisher et al. 2010). 

 Although Marine Isotope Stages most certainly consists of variability, they do 

reflect a global trend. Marine Isotope Stages are by definition a climatic framework 

deduced by a dataset (e.g. deep-sea oxygen isotopes) that is completely independent from 

archaeological investigations. They signal a trend towards either warmer or cooler global 

temperatures. This makes Marine Isotope Stages useful for summarizing coarse-grained, 

long-term, time-averaged environmental conditions (Wilkins et al. 2017). Given this, 

there is precedent for making interpretations about behavioral variability in the MSA at 

the scale of MIS (e.g. Ambrose and Lorenz 1990, Compton 2011, Deacon and Brooker 

1976, Deacon 1978, Foley and Lahr 1997, Henshilwood and Marean 2003, Karkanas et 

al. 2015, Mackay, Stewart, and Chase 2014, McCall and Thomas 2012, Mellars 2006). 

Additionally, for the purpose of this study the MIS scale provides a palimpsest of human 

behavior over a long time-period that is more suited to investigating human adaptations 

to environmental or climatic context (Barton and Riel-Salvatore 2014, Riel-Salvatore and 

Barton 2004). 
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 Another related issue to the scale of analysis and use of Marine Isotope Stages to 

look at long-term adaptation to environmental and climatic condition is that other factors 

other than external environmental forces can act as the causal mechanism behind changes 

in behavioral variability. Other researchers have focused on other potential causal 

mechanisms such as information transmission dynamics, socio-cultural factors, and 

hyper-flexibility, ratcheting, and other multi-dimensional models (Clark 2013, Conard 

and Will 2015, Kandel et al. 2015, Lombard 2016, 2012, Porraz, Parkington, et al. 2013) 

 Considering this, it is important to note that they are discussing behaviors linked 

to several phenomena at once such as complete technological packages such as bow and 

arrow technology, heat-treatment, or symbolic artifact, etc. The focus of this study is on 

one independent behavior, raw material selection. Other studies in the past that have 

taken a ‘selectionist’ approach to technological behavior have combined too many 

variables that are included in a total package of technology. I propose that the selection of 

raw materials using a ‘selectionist’ approach is feasible because when a forager goes out 

on the landscape it has to select raw materials before it can construct a bow and arrow 

combination, or a stone-tipped spear. Put differently, the forager cannot go out on the 

landscape and search for fully assembled bows hanging in trees that they can 

subsequently procure and use. By applying an OFT approach to raw material selection 

one is focusing on the outermost base of the chain of behaviors linked to stone tool 

technology and behavior. Since the raw materials are individual types with potential 

differences much like food resources, one can rank them based on net-returns rates in a 

given environmental and climatic context. 
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Assumption of perfect knowledge 

Another important issue to discuss with OFT models is that they assume that the forager 

has perfect knowledge about the environment (Stephen and Krebs 1986). This 

assumption is most likely false. However, one has to take into consideration that by 

cultural transmission over generations that a landscape in which a band or ethnolinguistic 

group lives would be very familiar to them. In fact, not being familiar with the 

surroundings would most likely be detrimental to survival. This issue is interlinked with 

the concept of risk. The concept of risk, when associated with OFT models, refers to 

variation in outcome (Smith 1991: 53). It pertains to situations where the outcomes are 

variable, regardless of whether the forager has complete knowledge or information about 

the probability of outcomes (Smith 1991). Smith (1991: 54-55) noted that risk theory has 

at least three predictions concerning foraging strategies: 1) risk should vary as a function 

of the prospects facing the forager. When resources are scarce, or there is competition the 

forager should be risk-seeking, while if the conditions are more moderate, the forager 

should be risk-averse. If the resources are abundant, the forager should be indifferent to 

risk. 2) There should be differences between individuals in their approach to risk. 3) 

Activities such as sharing and storage that happen after a resource has been procured can 

have an effect on the significance of risk. Given these three predictions, if running out of 

cutting edge and sharp durable edges is the utility then foragers that are faced with a 

budget that is negative (average rate of procured cutting edge and sharp durable edges is 

less than what is needed) should be risk-seeking, while foragers that face a budget that is 

positive (average rate of procured cutting edge and sharp durable edges is greater than 

what is needed) should be risk-averse (Smith 2011). 
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Only considering time-cost 

A third issue is the fact that in the ACM only time-cost was considered without 

considering energy cost when the forager is making decisions about raw materials. Future 

studies need to include both time and energy as costs when calculating net-return rates. 

Normally, OFT models focus on energy as the currency that the forager seeks to 

maximize by minimizing time spent acquiring that energy. However, in this study the 

currency is not linked to food in a direct manner. That means it is extra costly to the 

forager to conduct this type of activity because when selecting a raw material it will not 

directly gain energy. Put simply, one cannot eat a rock to gain energy. A forager can do 

as much as it can to procure the material with the highest net-return rate, which results in 

minimized opportunity costs so it can focus on gaining energy through food-related 

foraging. Simultaneously, the forager when searching for, procuring and manufacturing 

stone tools from the selected raw material also uses up valuable energy needed to survive. 

Therefore, to make the ACM more realistic one should incorporate both time and energy 

as costs to model how the forager makes decisions in a given environmental and climatic 

context. 

 

Assumptions about time-cost 

All assumptions about the individual time-costs can be questioned in relation to the 

calculation of the ACM-P and ACM-R net-return rates. However, most would probably 

here not differentially affect quartzite and silcrete. 
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Travel and search time-cost (ts) assumptions 

The assumption that the forager moves 3.5 km/hr is based on how the Hadza move in east 

Africa (Marlowe 2010, Marlowe 2006). Their environment is not a perfect analogy to the 

environment on the South African coast but the well-studied Hadza gives use an estimate 

of how fast an African hunter-gatherer can move when foraging in a woody savannah-

like environment. It is important to note however that by changing the speed of which a 

forager moves it does not affect the result of the net-return rates other than increasing or 

decreasing the time-cost for all raw materials at the same time. 

 

Procurement time-cost (tp) assumptions 

The time-cost for procuring raw materials from both primary and secondary sources is 

based on systematic surveys. These time-costs can potentially be reduced due to the 

expertise that a forager would possess due the fact that their life most likely depended on 

having good materials to conduct a whole range of tasks. However, silcrete primary 

sources could have provided the forager with a challenge in terms of obtaining packages 

of raw materials suitable for transport. Today we use sledgehammers and rock hammers 

to break big boulders apart to obtain samples for analysis and experiments. However, in 

the past these types of tools obviously would not have been available. There is one 

example from Australia that illustrates however how a forager could have broken off 

smaller parts of a big boulder using fire (Binford and O'Connell 1984). The obvious 

implication of this type of behavior is that the time-cost associated with procuring silcrete 

would have increased. Future studies can investigate the time-cost involved in such an 
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operation to create smaller packages of stone and then the time-cost can be plugged into 

both the ACM-P and ACM-R to calculate net-return rates. 

 

Flake manufacturing time-cost (m3) assumptions 

Amount of manufacturing time-cost (m3) is likely correlated with the skill or expertise of 

the knapper. Thus, it is possible to predict that when the expertise of a knapper increases 

it potentially leads to greater minimizing of waste that is created from a given mass of 

raw material. In addition, an experienced knapper is more likely able to handle several 

different raw materials, meaning that the knapper knows tricks or techniques to knap 

individual types of raw materials. In this study, only one knapper was used to limit the 

variation in the manufacturing time-cost. Given this, future studies should involve more 

knappers to look at the variability of manufacturing time-cost that can arise from 

different expertise and experience levels. Such time-costs can then be quantified and 

plugged into the ACM-P and ACM-R models to calculate net-return rates. 

 

Heat-treatment wood fuel travel and search time-cost (m1) and heat-treatment time-cost 

(m2) assumptions 

The final set of time-costs are the ones linked to travel and search for wood fuel to heat-

treat silcrete (m1) and the actual act of heat-treatment itself (m2). Changing these two 

time-costs will have different effects on quartzite and silcrete because it only pertains to 

silcrete. Increasing or decreasing the time-costs associated with silcrete will likely have 

big effects on the relative net-return rates of silcrete compared to quartzite.  
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 While there is no debate over whether early modern humans in South Africa 

understood and used heat treatment perhaps as early as 160 ka (Brown et al. 2009, 

Schmidt 2016, Wadley and Prinsloo 2014), there is significant debate over what method 

was used (Brown and Marean 2010, Brown et al. 2009, Schmidt 2016, Schmidt and 

Mackay 2016, Schmidt et al. 2015, Schmidt et al. 2013, Wadley and Prinsloo 2014, 

Wadley 2013b). One method, the sand bath method or insulation method (Brown et al. 

2009, Wadley and Prinsloo 2014: 50), implies “planning, patience, and considerable 

expertise and understanding of the natural properties of the products” that are being 

handled; it is suggestive of “analog reasoning and the ability to envisage action removed 

from view” (Wadley and Prinsloo 2014: 50). Similarly to the production of compound 

adhesives (Charrié-Duhaut et al. 2013, Wadley 2010), the heat-treatment of stone tool 

raw materials uses innovative processes, such as controlled pyrotechnology, to transform 

natural products, and is strongly suggestive of the first evidence of modern human’s 

controlled use of fire to transform naturally available materials (Schmidt 2016). If the 

insulation method was used, it suggests all these abilities as early as 160 ka.  

 The alternative method called the ember method or exposed method (Schmidt and 

Mackay 2016, Schmidt 2016, Schmidt et al. 2015, Schmidt et al. 2013), is a much less 

complex process. This method implies less planning and patience, but it is debated 

whether it also implies less expertise and understanding about the natural properties of 

the products being handled (Schmidt 2016, Schmidt et al. 2015, Wadley and Prinsloo 

2014). 

 Knowledge and utilization of heat-treatment may have been decisive in the 

evolutionary history of anatomically modern humans (Wadley and Prinsloo 2014); it is 
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argued that knapping of heat-treated rock requires decreased force and allows increased 

accuracy in obtaining a desired outcome such as shape, or the maximization of currency 

(Brown et al. 2009, Crabtree and Butler 1964, Domanski, Webb, and Boland 1994, 

Mercieca and Hiscock 2008, Purdy and Brooks 1971, Schmidt and Mackay 2016, 

Schmidt et al. 2012). It follows that stone tool heat-treatment is a transformative 

technology that generates discernable links between complex cognition and material 

culture (Wadley and Prinsloo 2014: 50). In addition, heat-treatment would have been 

interconnected with the overall technological organization of a forager group, a 

potentially important step in the overall chain of production of stone tools (Mercieca and 

Hiscock 2008, Schmidt 2016, Schmidt and Mackay 2016, Wadley and Prinsloo 2014). 

Thus, it remains of great importance to understand the procedures used to heat-treat stone 

tools, and the degree of complexity and investment associated with the procedures 

(Mercieca and Hiscock 2008, Schmidt 2016, Wadley and Prinsloo 2014). Moreover, 

given the mineralogical alterations that occur during raw material heat treatment for stone 

tool production, the identification and understanding of the processes associated with this 

behavior is critical to understanding and reconstructing raw material acquisition as heat-

treated stone will have a different chemical signature to its source material (Nash, 

Coulson, Staurset, Smith, et al. 2013). Research on heat-treatment including the 

procedures linked to it, the benefits and cost to MSA foragers, and the reasons for its 

invention, poses important questions according to Schmidt (2016: 1): when and why did 

MSA foragers start using heat-treatment? What does it tell us about their technological 

toolkit? Additionally, does heat-treatment imply complex cognition and social learning 

processes? Schmidt (2016: 1) contended that answering these questions will shed light on 
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human behavioral, social, and cognitive processes during key periods of our evolution. I 

agree. 

 Research focusing on the South African MSA record has yielded an increasing 

amount of evidence for heat-treatment of silcrete (an abundant rock type on the west and 

south coast of South Africa) (Brown et al. 2012, Brown et al. 2009, Mourre, Villa, and 

Henshilwood 2010, Schmidt and Mackay 2016, Schmidt 2016, Schmidt et al. 2015, 

Schmidt et al. 2013, Wadley and Prinsloo 2014, Wadley 2013b). As mentioned above, in 

this context, two heat-treatment procedures have been suggested. Some authors (Brown 

and Marean 2010, Brown et al. 2009, Wadley and Prinsloo 2014, Wadley 2013b) have 

proposed that heat-treatment was a complicated, resource and time-consuming activity 

that relied on slow and indirect heating of silcrete in a sand-bath (insulated) below a 

campfire, also called a ‘slow and steady’ strategy (Mercieca and Hiscock 2008). In the 

ethnographic and archaeological record, there are observations of such a strategy from 

North America, Europe, and Australia (Akerman 1979, Arthur 2010, Eriksen 1997, 

Griffiths et al. 1987, Mandeville and Flenniken 1974). The sand-bath method or 

insulation method creates slow heating rates and low temperature that decreases the 

chance of unwanted overheating of the rocks (Wadley and Prinsloo 2014). Experiments 

show that the maximum temperatures reached in the subsurface sediments directly 

covering the silcrete are in the range of 300-400°C, which has been achieved by using 

between 9 to 20 kg of wood-fuel (Brown et al. 2009, Wadley and Prinsloo 2014). It has 

been proposed that this method reduces risk in terms of raw material fracturing and 

cracking in situations when raw materials are distant and effort is invested in preform 

production (Wadley and Prinsloo 2014). However, this strategy is potentially time-
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intensive because the raw materials are placed under the fire itself and can only be taken 

out after the fire has burned out and the sand has cooled (Schmidt 2016). This could 

require an investment in time of up to a full day or more to let the silcrete cool (Brown et 

al. 2009, Eriksen 1997). This assertion that the sand-bath method is time-intensive has 

been challenged by (Wadley and Prinsloo 2014) who argued that the sand-bath method 

allows for simultaneous use of a fire for both domestic use and heat-treatment negating 

the construction of a special fire. The sand-bath method does require more wood fuel per 

heated stone because the sediment around the buried rocks consumes most of the radiated 

heat below the fire. As presented earlier, Brown and Marean (2010) hypothesized that 

silcrete’s appearance and disappearance in the MSA record is constrained by the 

abundance of wood fuel. How much wood is available in the environment is proposed to 

be driven by the relative distribution of summer rain in this predominantly winter rainfall 

region. Summer rain brings in more acacia trees and thus better wood-fuel than the 

bushland of the winter rainfall regime (Brown and Marean 2010).  

 Conversely, Schmidt and colleagues (Schmidt 2016, Schmidt et al. 2015, Schmidt 

et al. 2013) have proposed that silcrete was heat-treated using embers from a regular 

domestic hearth (exposed), also called a ‘fast’ strategy (Mercieca and Hiscock 2008). In 

the ember method or exposed method, the silcrete is either placed under a pile of embers 

that has been pulled aside from the regular fire or the silcrete is pushed into the ash cone 

below the burning fire. Both approaches put the silcrete in direct contact with burning 

fuel (Wadley and Prinsloo 2014, Schmidt 2016, Schmidt et al. 2015). Maximum 

temperatures reached varies with experiments yielding temperatures ranging from ~350 

to ~570°C when using the ember pile approach and ranging between ~390 to ~760°C 
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when using the ash cone approach. Based on structural and crystallographic research, 

Schmidt and colleagues (Schmidt et al. 2013) argued that the properties of silcrete do not 

require a slow heating rate compared to other rock raw materials and it can be heated 

relatively quickly (Schmidt 2016, Schmidt et al. 2015, Schmidt et al. 2013). The 

implication of the ember method is that it requires minimal time investment because of 

the faster heating cycle and no extra investment in wood fuels since the embers directly 

heat the rocks thus energy is not expended heating the subsurface sediments (Schmidt 

2016). However, even with the ember (exposed) approach the silcrete was left in place 

for ~4.5 hours following heat-treatment to avoid rapid cooling (Schmidt et al. 2015). The 

ember method could also utilize a regular campfire that is simultaneously used for 

cooking, heating, and other social activities (Schmidt 2016). 

 Given the potential differences in planning depth, time investment, wood fuel 

cost, risk, and material outcome between a ‘slow and steady’ strategy (insulated method)  

and ‘fast’ strategy (exposed method), Mercieca and Hiscock (2008: 2638) proposed that 

the selection of a specific heat-treatment strategy could alternate depending on the 

context. The fast strategy (ember or ash cone method or exposed method) would be used 

by groups that rely on increased residential mobility, encounter difficulties with 

scheduling activities, are unable to plan tool production in advance of anticipated need, 

find themselves in regions without abundant suitable stone for knapping, and require 

incidental heat-treatment of small pieces of rock. In such situations, a method that 

required little time investment and little wood fuel cost would be preferred (Mercieca and 

Hiscock 2008: 2638). On the other hand, they proposed that the ‘slow and steady’ 

approach (sand-bath method or insulated method) would be used when groups are more 
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sedentary, obtain stone tool raw materials through logistic forays or via exchange, 

anticipate future events and can produce tools long in advance of use, require large-scale 

production perhaps to support more people, need larger preforms for tool production, or 

are using raw materials that are susceptible to thermal shock leading to raw material 

failure. In such a scenario, the potentially increased time-investment and wood fuel cost 

would be tolerable (Mercieca and Hiscock, 2008: 2638).  

 To summarize, more research is needed to fully understand the costs in terms of 

time and energy involved with heat-treatment of silcrete. As noted above, heat-treatment 

only pertains to silcrete thus only affects the net-return of silcrete and not quartzite, and 

can potentially swing the net-return rate of silcrete above or below quartzite due to 

increased or decreased heat-treatment time-costs. By conducting more modeling to 

investigate changes in wood fuel abundance in an integrated Paleoscape approach 

(Marean et al. 2015) one can potentially obtain estimates of the cost to procure wood 

fuels during changing glacial to interglacial conditions. If such an approach is successful, 

obtained numbers can be plugged into the ACM and new net-return rates for silcrete can 

be presented. 

 The main point about discussing these issues above is two-fold: 1) you have to be 

aware of them, and consider them going forward. The ACM is not a final model to 

answer all questions about raw material selection. It is a model, from which new 

hypotheses and predictions can be drawn again at a later stage when more data are 

available; 2) Related, the model is set up so that when better estimates of time-costs are 

obtained, through either theoretical work or experimental work, such numbers can be 

plugged into the equation to recalculate net-return rates. This means that support that this 
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study found for respective hypotheses drawn from the ACM might be falsified later when 

more data that are accurate is obtained. 
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CHAPTER 12: SYNTHESIS AND DISCUSSION 

Introduction 

Brown (2011), Wilkins et al. (2017), and this study (Chapter 7) demonstrate that there 

are significant technological differences between silcrete and quartzite stone tools at 

Pinnacle Point (PP), especially at PP5-6. The differences include patterns of procurement 

(outcrop versus secondary), how the raw materials are prepared (blade production versus 

prepared core), size of the debitage and tools (length and width), production of formal 

tools such as microliths, and how conservative the material is handled in terms of cutting 

edge per mass. 

 In addition, Brown (2011: 262) pointed out that there are three innovations that 

happen in the Pinnacle Point record, especially at PP5-6, which indicate potential 

differences in the roles that the major types of raw materials play at PP5-6. The first 

innovation is pyro-technology or heat-treatment technology, and the cost associated with 

it. Heat-treatment appears much earlier in the record, as far back as MIS6 at PP13B, 

compared to the prominent shift in raw material use that happens at PP5-6- in the ALBS-

SADBS Lower to SADBS Upper transition during MIS4. It is hard to separate the 

technological decision to use silcrete from the investment in heat-treatment because it is 

likely that almost all silcrete that has been observed in the Pinnacle Point record, starting 

in MIS6 at PP13B has been heat-treated (Brown, 2011). Even when quartzite dominates 

an assemblage, heated silcrete appears in low frequencies. The second innovation or 

important behavioral change, Brown (2011) noted, is the selection of silcrete from 

outcrop sources during MIS4, which is a significant shift from earlier periods (Wilkins et 

al. 2017). The third innovation is the adaptation and production of small blades and 



528 
 

segments constituting microlithic technology made on fine-grained raw materials. Brown 

(2011: 262) proposed that each of these innovations represents investments in more time-

intensive technologies. 

 Brown (2011: 262) added that when considering technological investment one 

should question whether one technology replaced another, or whether different 

technologies represent parallel classes that performed different roles within a larger 

resource procurement system (Bettinger, Winterhalder, and McElreath 2006). In light of 

this, Brown (2011: 262) noted that even though all the aforementioned innovations are 

associated with silcrete, there is evidence of quartzite and silcrete selection side by side 

throughout the Pinnacle Point sequence. Additionally, there is a consistency in many 

attributes listed above for both quartzite and silcrete throughout the Pinnacle Point 

sequence (Brown, 2011). That includes that silcrete is usually heat-treated even when not 

associated with backed blades and microlithic technology. Although no thorough analysis 

exists about the amount of heat-treatment in the PP13B record, the foundational paper by 

Brown and colleagues (2009) showed that there is evidence of heat-treatment during 

MIS6 at PP13B. The analysis presented above (Chapter 7), the analysis by Brown (2011) 

and Wilkins et al. (2017) all show that silcrete tools consistently have smaller mean 

dimensions in terms of length and width compared to quartzite tools except for in the LC-

MSA Lower. The analyses also show that silcrete consistently yields more cutting edge 

per mass compared to quartzite. 

 Brown (2011) found that his ‘site-context’ model did not predict all technological 

investments because it did not take into account all costs and benefits that raw material 

selection is associated with in addition to distance to source. This study provides 
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estimates of such costs and benefits associated with raw material selection and highlights 

why raw material selection changed. 

 

MIS6 record – Opportunistic acquisition or strategic choice? 

For MIS6 conditions, two different results are available for the model evaluations above, 

one from the Opportunistic Acquisition Model (OAM) and one from the Active-Choice 

Model (ACM). No conclusive evidence was found to support Hypothesis 1 (H1) drawn 

from the OAM under any model condition. An extensive sensitivity analysis showed that 

only when you assumed that the forager engages in expedient behavior during MIS6 

conditions without a Paleo-Agulhas plain silcrete source did the model outcomes match 

the archaeological frequencies. However, a subsequent check to see how much of the 

time the forager spends without raw material in the toolkit suggests that it is unrealistic 

that the forager engages in expedient behavior in the Mossel Bay Region without 

consistently returning to a stone cache (c.f. Oestmo, Janssen, and Marean 2016). As noted 

above (see Chapter 8: more in-depth discussion about the results), future research should 

focus on whether the MIS6 record from PP13B reflects stockpiling or caching behavior. 

 However, the net-return rate outcome using the original currency from ACM-R 

variant supports Hypothesis 3 (H3). As noted above, the support for H3 during MIS6 

conditions without a Paleo-Agulhas silcrete source minimally suggests that the foragers 

are strategically selecting the raw material with the highest net-return rate of cm*min 

cutting edge that is available in the environment. This suggests that stone tool raw 

materials played an important part in the technological organization because raw 

materials were travel and searched for at added cost. Heat-treated silcrete has the highest 
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gross value of the assumed currency (cutting edge per mass multiplied by the duration of 

use), while quartzite has the highest net-return rate. Given that, the selection of quartzite 

implies that assumed currency value of quartzite was good enough. The MIS6 result 

suggests that a part of the response to the climatic and environmental context during 

MIS6 was reliance on specific raw materials and technology to obtain food resources 

and/or performing processing tasks. This, in turn, suggests increased knowledge about 

raw material characteristics and how to utilize them during MIS6.  

 During MIS6 conditions, the coastline was on average 42 km away from the 

Pinnacle Point sites (Fisher et al. 2010). On the exposed Paleo-Agulhas plain, wave-

ravinement surfaces containing quartzite were present (Cawthra et al. 2015). The closest 

quartzite source in the form of a wave-ravinement surface was 1.4 km from Pinnacle 

Point, while the closest primary context silcrete was 8.5 km away at Rietvlei. In addition, 

following Brown (2011), it is assumed that any previously deposited interglacial cobble 

beaches became depleted in high-quality raw materials and/or buried. The speleothem 

record suggests that the vegetation was stable C3 throughout MIS6 (Braun et al. ms), 

while the faunal assemblage from PP13B and PP30 suggest that there was a mosaic 

habitat that consisted of both C3 and C4 vegetation (Rector and Reed 2010). On the 

Paleo-Agulhas plain, a migration system consisting of ungulates was most likely 

operating in the form of a disperse-congregate system, or an east-west migration 

(Copeland et al. 2015). The longer distance to the coast during MIS6 likely meant that the 

groups living at Pinnacle Point lost access to predictable coastal resources within the 

daily foraging radius. However, the wide coastal plain offered more space for an increase 

in the population of migratory animals (Marean 2016). This increased width of the 
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coastal shelf makes the migratory animals a dense but unpredictable resource. The 

combination of less access to migratory animals and no daily access to predictable coastal 

resources could have put pressure on increasing the frequency of residential moves to 

find resources either on the plain or at the coast. Once at Pinnacle Point, the forager 

strategically chose quartzite because the travel and search time-cost (ts) made the net-

return rate rise above untreated and heat-treated silcrete. After procurement, the quartzite 

was expediently handled and discarded as observed in the low flaking efficiency, low 

frequency of blades, and the low ratio of retouch frequency to artifact density in MIS6 

assemblages at PP13B (see Chapter 7). This supports the prediction made by Barton and 

Riel-Salvatore (2014) that an increase in access to raw materials decreases the frequency 

of retouched lithics. 

 Traveling and searching for a raw material suggests planning of the stone 

procurement activities because travel and search time needs to be included in the greater 

foraging mobility strategy. Hence, support for H3 suggests that the response to climatic 

and environmental conditions during MIS6 was a mobility system that involved targeted 

stone tool raw material procurement bouts (c.f. Gould, 1985; Gould and Saggers, 1985) 

to select the raw material that yielded the highest value of a wanted utility. Further, this 

echoes arguments made by Torrence (1989, 1983) that the least costly raw material 

should be selected that meets the need of the forager in terms of desired flaking quality. It 

also supports the ‘Utilitarian’ variant of the Preference-based model category (c.f. 

Mackay 2008). 

 Given the assumed currency (cutting edge per mass multiplied by the duration of 

use), quartzite should always be selected, while silcrete should be the second priority. In 
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the archaeological record (see Chapter 7) from PP13B during MIS6 there is evidence for 

the selection of silcrete and other materials. At PP13B in some of the MIS6 stratigraphic 

aggregates silcrete constitutes ~2.5 to ~5% of the total assemblages in terms of weight. 

There is no significant difference in flaking efficiency between quartzite and silcrete in 

the MIS6 record, and the tools are of similar size, which suggests that silcrete was used in 

a similar fashion to quartzite. 

 However, the selection of silcrete given the assumed currency and the 

environmental and climatic context implies that opportunity cost was not minimized in 

those cases. Given that the raw material sources, especially primary sources of silcrete 

have a very low depletion rate (e.g. erosion rates) and can be seen as infinite with respect 

to the lifespan of a human, the implication of not selecting the raw material with the 

highest net-return rate under a given environmental or climatic context can be that they 

were selected for other reasons unrelated to an utilitarian-based net-return rate. Such 

selection might indicate that silcrete, through either direct or embedded procurement, 

were selected due to other needs such as symbolic (Clendon 1999, Gould et al. 1971, 

Wurz 1999) or stylistics needs (Close 2002, Mackay 2011, Sackett 1986, 1982). Both 

hypothetical explanations for raw material change are variants in the ‘Preference-based 

change’ model category presented in Chapter 2. However, it is difficult to predict what is 

being selected when selection of raw materials for style or symbolic needs is being 

conducted. 
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MIS5 – direct procurement of quartzite 

During MIS5, the coastline was close to or at present location, easily within the daily 

foraging radius of a hunter-gatherer. Estimates by Fisher et al. (2010) put the coastline on 

average 1km away during MIS5. Cobble beaches occur directly adjacent to the Pinnacle 

Point sites, and at Dana Bay, Mossel Bay Point, Fransmanhoek, and Kanon Beach. 

Dynamic forces such as ocean swells, tidal forces, and storm surges help produce and 

replenish hi-energy cobble beaches (Brown 2011). The closest primary context quartzite 

was 5.3 km from Pinnacle Point, while the closest primary context silcrete was 8.5 km 

away at Rietvleei. As during MIS6 and in the later MIS4, quartz was available in close 

vicinity (100-200 meters) to the Pinnacle Point complex as veins in the local Skurweberg 

Formation. 

 During the peak interglacial in MIS5e there where warm temperatures and the 

prevailing rainfall regime on the south coast was summer-rainfall (Braun et al. ms). 

However, post-MIS5e the temperature decreased during the MIS5 and the prevailing 

rainfall regime changed to winter rainfall (Bar-Matthews et al. 2010, Braun et al. ms). A 

vegetation type called Fynbos, which is dominated by C3 photosynthesis, accompanied 

this winter-rainfall regime (Rebelo et al. 2006). The C3 dominant Fynbos was depleted in 

trees (O'Brien 1993, Van Wyk and Van Wyk 1997). The C3 signal is also supported by 

the faunal assemblage from PP13B and PP30 (Rector and Reed 2010). The Paleo-

Agulhas plain narrowed, hypothetically restricting the abundance of migratory animals 

(Marean 2016). This potentially forced the foragers to perform an increased number of 

moves between inland and coastal areas, only moving to intercept coastal resources 

during low spring tides. 
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 Given the proximity of cobble beaches during MIS5, one expects that quartzite 

will be selected. Indeed, support for Hypothesis 3 (H3) was also found under MIS5 

conditions. This suggests that the foragers during MIS5 conditions selected the raw 

material with the highest net-return rate of cutting edge per mass multiplied by the 

duration of use before dulling that was available on the landscape. This supports the 

‘Utilitarian model’ of raw material selection and change (c.f. Mackay 2008). Similar to 

MIS6 conditions, this was quartzite. Coastline position and raw material distribution 

variable model outcomes show that what drove the net-return rate of quartzite to go 

above the net-return rate of untreated and heat-treated silcrete was the low travel and 

search time-cost (ts). Because travel and search time-cost is included in the ACM-R this 

suggests that stone tool raw materials played an important part in the technological 

organization because raw materials were traveled and searched for at added cost. As with 

the support for H3 during MIS6 conditions, the result for MIS5 conditions also suggests 

that the response to the climatic and environmental conditions was to rely on specific 

stone raw materials obtained during direct procurement (c.f. Gould, 1985; Gould and 

Saggers, 1985) and to manufacture technology to obtain food resources and/or 

performing processing tasks, which suggests increased knowledge about the properties of 

the raw materials and how best to use them. Further, as with quartzite during MIS6, the 

tools made on quartzite during MIS5 also reflects expedient behavior witnessed in the 

low flaking efficiency (even lower than MIS6), low frequency of blades, and a low ratio 

of retouch frequency to artifact density (see Chapter 7). This again follows the prediction 

by Barton and Riel-Salvatore (2014) that states that easy access to raw materials 

decreases the frequency of retouched lithics. 
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 Brown (2011) pointed out that untreated silcrete has similar properties to 

quartzite. This assertion is supported by experimental work conducted in this study 

(Chapter 9). Quartzite and untreated silcrete have both statistically similar e values 

(cutting edge per mass) and d values (duration of use). Given this, if the quality of the 

raw material was the strict driver (with no attention to the cost of procurement) of which 

raw material should be selected and not the net-return rate of cutting edge per mass 

multiplied by the duration of use we should see more untreated silcrete. However, Brown 

(2011) pointed out, in line with the results of this study, that it would be less costly for a 

forager to select quartzite over untreated silcrete because of the abundant quartzite cobble 

beaches in the vicinity of Pinnacle Point. However, the small amount of heat-treated 

silcrete present at PP13B during MIS5 and a surprisingly increased amount of silcrete 

present in the YBSR stratigraphic aggregate at PP5-6 could have been brought to 

Pinnacle Point by residential moves from the interior where people were provisioned (c.f. 

Kuhn, 2004) with small and lightweight tools (Brown, 2011). Interior sources of silcrete 

are plentiful starting 8.5km away from Pinnacle Point. However, silcrete could also have 

been procured when encountered in small frequencies at the cobble beaches, which is 

supported by field observations by this author and Brown. 

 Given the assumed currency (cutting edge per mass multiplied by the duration of 

use before dulling), quartzite should always be selected during MIS5 conditions, while 

silcrete should be the second priority. In the archaeological record (see Chapter 7) from 

PP13B, PP9, and PP5-6 during MIS5 there is evidence for the selection of silcrete and 

other materials. At PP13B during MIS5 and at PP9, silcrete and these other raw materials 

are present in low quantities. However, at PP13B in some of the MIS5 stratigraphic 
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aggregates silcrete constitutes 5 to ~10% of the total assemblages in terms of weight. At 

PP5-6 during MIS5, overall silcrete constitutes 27.7% of the assemblage in terms of 

weight (kg). Within the YBSR stratigraphic aggregate (a combination of sub-aggregates) 

at the base of the PP5-6 archaeological sequence, the quantity of silcrete ranges from 

9.5% to 48.2% of the total assemblages in terms of weight within each sub-aggregate. 

Compared to the silcrete in the MIS6 record however, the silcrete in the MIS5 record was 

handled more conservatively. Proportionally, more silcrete was used to create blades, 

while the silcrete lithics are also smaller (see Chapter 7).  

 Selection of silcrete given the assumed currency and the environmental and 

climatic context implies that opportunity cost was not minimized. As with MIS6 

conditions, the implication of not selecting the raw material with the highest net-return 

rate under a given environmental or climatic context can be that silcrete was selected for 

other reasons unrelated to a utilitarian-based net-return rate. Such selection could mean 

that silcrete, obtained through direct or embedded procurement, was selected due to other 

needs such as symbolic (Clendon 1999, Gould et al. 1971, Wurz 1999), or stylistics needs 

(Close 2002, Mackay 2011, Sackett 1986, 1982). 

 Following Mackay et al.’s (2014) argument for evidence of ‘place provisioning’ 

in the Howiesons Poort, Wilkins et al. (2017) argues that foraging behavior during MIS5, 

and also MIS6, I will add, represents provisioning of individuals (c.f. Kuhn, 2004). In 

such a scenario, silcrete was transported across the landscape, to a lesser extent, and in 

smaller quantities compared to the later MIS4 period. The transport happened on a needs-

basis with less long-term planning involved (Wilkins et al. 2017). Such an explanation is 
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consistent with the lack of earlier stages of reduction of silcrete lithics in MIS5 at PP5-6 

(Wilkins et al. 2017). 

 The support for H3 during both MIS5 and MIS6 conditions without a Paleo-

Agulhas plain silcrete source suggests similar procurement systems for stone tool raw 

materials under two different environmental conditions. The biggest difference seems to 

be the distance to coastline. However, the MIS6 record from PP13B shows that shellfish 

was procured, which indicates that the coastline was within 10km at least at some parts of 

MIS6 (Fisher et al. 2010). That being said, on average the Paleo-Agulhas plain was wider 

and more exposed during MIS6 so the environmental context around PP13B would have 

been different. Nevertheless, what this study suggests is that the raw material selection 

response was the same during both periods. If the argument made by Wilkins et al. 

(2017) holds, that raw material selection during MIS5 and MIS6 indicates provisioning of 

individuals, it, in turn, suggests that people were more mobile. By provisioning 

individuals, the foragers were anticipating uncertainty related to raw material access 

when moving about the landscape. This can further indicate time-stress to intercept food 

resources. If there was time-stress during both periods, this would favor selecting the raw 

material with the highest net-return rate because it would lead to the least amount of cost 

related to opportunity to pursue other activities. Quartzite in this light must be seen as 

selected not because it offered the best quality but because it was good enough and cost 

the least (c.f. Torrence 1989, 1983), while silcrete was perhaps procured while moving, 

provisioned to the person and reduced in a different manner indicated by smaller size, 

more blade production, and harvested for more cutting edge per mass (Chapter 7). 
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MIS4 record – The rise of silcrete, microliths, and conservative behavior 

Support for Hypothesis 2 (H2) was only found when using an alternative currency during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. The alternative currency 

that was assumed was that the forager wanted to maximize the number of complete 

blades produced per core mass, and the forager wanted the cutting edge of those blades to 

last as long as possible. This is different from the original currency where it was assumed 

that the forager wanted to maximize cutting edge on all tool types per a given core mass, 

and that the forager wanted the cutting edges of all those tools to last as long as possible. 

A reason why the alternative currency might be working is because in the MIS5 to MIS4 

transition at PP5-6 there is a shift to blade production focusing on small blades and an 

emerging microlithic technology mostly made on heat-treated silcrete that lasts until 

MIS3 (Brown et al. 2012, Wilkins et al. 2017). 

 MIS4 conditions see a shift back towards glacial conditions. However, the glacial 

conditions are not as strong as during MIS6. Estimates from Fisher et al. (2010) put the 

coastline on average 15km from Pinnacle Point during MIS4, which is within or near the 

daily foraging radius of hunter-gatherers. There is evidence of shellfish in the MIS4 

record throughout suggesting that the site was occupied consistently when the site was 

close enough to the coast for that type of procurement (Brown 2011). The closest primary 

context quartzite source was 5.3 km away, while the closest primary silcrete was 8.5 km 

away at Rietvlei. This is the same distance and sources as during MIS5 and MIS6. There 

are wave-ravinement surfaces on the Paleo-Agulhas plain offering an increased 

abundance of quartzite accessible on the landscape (Cawthra et al 2015). The lack of 

dynamic ocean swells, tidal forces, and storms to replenish cobble beaches that formed 
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during interglacial MIS5 resulted in those cobble beaches becoming depleted in high-

quality raw materials by normal foraging activity and/or burial (Brown 2011). Compared 

to MIS5, the proportions of summer rain increased accompanied by a vegetation type that 

included more C4 grasses and more trees such as acacias (Bar-Matthews et al. 2010, 

Braun et al. ms). The Paleo-Agulhas plain expanded again compared to MIS5 but not as 

much as during MIS6. However, the increase in C4 grasses and an expanded coastal plain 

most likely reintroduced the migratory animal system present during MIS6 (Copeland et 

al. 2015, Marean 2010). However, because the coastal plain was kept relatively narrow 

compared to MIS6 conditions, this allowed the foragers to have access to larger 

populations of migratory animals compared to the preceding MIS5 (Marean 2016), and 

access to predictable coastal resources. This increased the attractiveness of the Pinnacle 

Point location. 

 The support for H2 during MIS4 indicates a scenario where during embedded 

procurement where other lifestyle constraints (e.g. food resource gathering and social 

behavior) controlled the mobility strategy and foraging movement, the MIS4 foragers 

strategically selected a raw material that could produce the highest post-encounter net-

return rate of blades produced per core multiplied by duration of use when encountered. 

Thus, the support for H2 during MIS4 is an example of how raw material procurement is 

embedded within the greater mobility strategy (Binford, 1979; Binford and Stone, 1985). 

 However, because quartzite and heat-treated silcrete have a tied rank and have 

statistically similar raw material frequencies in the PP5-6 record during MIS4 it suggests 

a complex situation of foraging decisions and strategies. When looking at the MIS4 

record from PP5-6 (see Chapter 7), during the ALBS (90.9%), SADBS Lower (65.5%), 
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OBS1 (67.2%), and OBS2 (45.1%) stratigraphic aggregates quartzite dominates, while 

during the SADBS Upper (61.9%) and the SGS (48.8%) stratigraphic aggregate silcrete 

dominates. The variability between major stratigraphic aggregates and the variability 

within each aggregate potentially indicates changes in how the forager used the 

landscape, specifically in which direction the forager moved or came from. Variability 

can also indicate how the site was used differently. 

 A hypothetical explanation for this shifting raw material selection when both 

dominating raw materials have a tied ranking is that by heat-treating, which although cost 

is high, nevertheless creates a raw material for which the flake manufacturing time-cost is 

low enough compared to quartzite and untreated silcrete to equal the net-return rates. Put 

differently, the reason for the tied ranking has to do with both heat-treatment time-cost of 

silcrete and the rate and strategy of mobility. 

 Hence, support for H2 suggests that the response to MIS4 climatic and 

environmental conditions was a combination of a mobility system and foraging 

movement that practiced embedded procurement of stone tool raw materials when 

targeting food resources (c.f. Binford 1979) and the selection of raw materials when 

encountered that both could be used to extract such resources and allowed the forager to 

spend more time on other activities because the opportunity costs were minimized. The 

dual selection of quartzite and silcrete depended on which one was encountered. If 

quartzite was encountered the forager would use it raw, while if silcrete was encountered, 

time-cost had to be front-loaded to achieve a net-return rate that was similar to quartzite. 

The changing selection of the raw materials had potentially different effects on the 

associated technology. 
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 For example, the dominance of silcrete is accompanied by an increase in blade 

production in SADBS Upper stratigraphic aggregate at PP5-6. This suggests a different 

technological focus where silcrete was selected because it had the tied highest ranking 

but it also lent itself, due to physical properties such as flakeability to produce blades and 

microlithic technology, and for maximizing cutting edge produced per core (Brown et al. 

2012, Mackay 2008). 

 The experimental work presented above (Chapter 9) shows that by heat-treating 

silcrete it is possible to more than double the amount of cutting edge per mass multiplied 

by the duration of use (e*d) that one can get out of a core compared to untreated silcrete 

and quartzite. More specifically, this means that if silcrete is procured and you heat-treat 

it you get increased flakeability and edge sharpness (Rick and Chappell 1983) in addition 

to edge durability. Additionally, heat-treatment of silcrete also results in fewer step 

fractures during manufacture in comparison to unheated stone (Mandeville and Flenniken 

1974). Brown (2011) noted that change in color or luster also may have been desirable.  

 The increase in flakeability attained by heat-treating is not surprising because the 

silcrete becomes more fine-grained meaning that one has more control over the flaking 

outcomes (Brown et al. 2009). However, given that more fine-grained materials have 

sharper edges that are more brittle, heat-treatment of silcrete should reduce edge 

toughness (Crabtree 1967, Wilke, Flenniken, and Ozbun 1991) because of the decreased 

fracture toughness and/or increased Young’s Modulus often associated with fine-grained 

materials (Beauchamp and Purdy 1986, Brown et al. 2009, Domanski, Webb, and Boland 

1994). It is surprising that after heat-treatment, the edge of the silcrete lasts almost one 

more minute before dulling compared to quartzite and untreated silcrete. 
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 Additionally, because finer-grained materials allow better control of flaking 

properties this allows for production of thinner flakes with edges that are more acute. 

Given that edge toughness is also positively correlated with edge angle, where a decrease 

in the edge angle (more acute) decreases edge toughness (McCormick and Almond 

1990), it is also surprising that heat-treated silcrete has more durable edges than untreated 

silcrete and quartzite. Given that heat-treated silcrete has much lower fracture toughness 

than quartzite and untreated silcrete it should have decreased edge strength compared to 

those materials. This result goes against the relationships outlined in Table 1. 

 In the experiment, (see Chapter 9), edge angles of quartzite and untreated silcrete 

have an exponential relationship with time to dullness, which should give them an 

advantage over heat-treated silcrete when more acute edge angles are considered. 

However, the edge of heat-treated silcrete nevertheless lasts significantly longer than 

untreated silcrete and quartzite. Given that the abrasion on the edge conducting this study 

runs on and parallel to the edge, future studies will have to investigate whether strain 

perpendicular to the edge might better follow the predicted relationship between fracture 

toughness and edge strength. 

 Conversely, when quartzite was selected it was used in a prepared-core flaking 

strategy to create convergent-points, flakes, and blades. Although the gross utility of 

quartzite was not as high as heat-treated silcrete, the net-return rate, mostly driven by the 

lack of heat-treatment cost, made quartzite good enough for use. 

 As with the discussion of the Hypothesis 3 (H3) results when using the original 

currency presented above, an implication of seeking raw materials with the highest net-

return rate is that if raw materials show up in the archaeological record that do not have 



543 
 

the highest net-return rate, the selection of those raw materials did not minimize 

opportunity-cost for the forager. However, this time, compared to MIS5 and MIS6 

conditions, quartzite and heat-treated silcrete have a tied ranking, which means that it did 

not matter which raw material was selected because both would minimize opportunity 

cost in a similar way. However, there are other raw materials present in the MIS4 record 

from PP5-6 such as quartz and chalcedony, which sometimes dominate individual sub-

aggregates (see Chapter 7). However, because net-return rates were not calculated for 

those raw materials it is hard to judge whether selecting them would have had 

implications for opportunity-cost. 

 Nevertheless, it is important to note again that by selecting a raw material in 

disregard of the raw material that has the highest net-return rate could suggest that 

foragers made specific trips or utilized embedded procurement to procure these raw 

materials due to symbolic (Clendon 1999, Gould et al. 1971, Wurz 1999), or stylistics 

needs (Close 2002, Mackay 2011, Sackett 1986, 1982). 

 The ACM result in support for H2 during MIS4 suggests that the mobility strategy 

changed compared to during MIS6 and MIS5 conditions. Because inhabitants of PP5-6 

during MIS4 consistently foraged for shellfish and returned with them to PP5-6 (Wilkins 

et al. 2017), it suggests a mobility strategy that consistently intercepted the coast. Marean 

(2010) proposed that the reliance of coastal ecosystems and the interception of spring low 

tides provides the forager with logistical challenges because net-return rates are the 

highest during spring tides, and so you want to be at the coast when that happens twice a 

month. During neap tide, Marean (2010) proposed, the foragers should place residential 

camps further inland to obtain the best net-return rates from terrestrial food resources. 
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However, there is risk involved with intercept hunting of animals. The risk involved with 

intercept hunting on the Paleo-Agulhas plain or in interior areas in the Mossel Bay region 

is the failure to obtain such resources during temporally constrained availability of the 

prey species arising from seasonal migrations and the risk of using non-projectile 

weapons against dangerous animals such as Buffalo (Bousman 1993, Brown 2011).  

 Brown (2011) proposed that due to potential scheduling conflicts arising between 

shellfish harvesting during spring low tides (c.f. Marean, 2010) and the intercept of 

migratory animals a scenario may have been created where the forager was pressured to 

use a procurement strategy that would provision PP5-6 with silcrete. The pressure would 

come from time-constraints and a risk of raw material supply failure (Bamforth and 

Bleed 1997). This potential provision strategy, which is what Kuhn (1992; 2004) termed 

place provisioning would have made sure PP5-6 would always be supplied with adequate 

amounts of stone tool raw materials (Wilkins et al. 2017). The suggested change in 

mobility pattern during MIS4 in conjunction with a place provisioning strategy could 

explain the change in the overall technological composition of the assemblage from MIS5 

to MIS4. The change is best exemplified by the transition from a mostly prepared-core 

technology to a technology with a significant prismatic blade production component that 

included microlithic technology (Brown et al. 2012, Wilkins et al. 2017, see also Chapter 

7). Barton and Riel-Salvatore (2014) found that model assemblages exhibited changes in 

assemblage composition only when mobility system was changed in conjunction with 

either place or individual provisioning. Their result suggests that changes in mobility 

system by itself cannot explain changes in assemblage composition but that whether a 

site was provisioned or the individual foragers were provisioned has to be taken into 
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account. Pop (2015) predicted, using his adjusted neutral model of stone procurement, 

that there should be a sharp decline in raw material abundance at a site with increasing 

distance to source leading to large sites (high frequency of discarded raw materials) only 

being formed at or very near to raw material sources. The formation of a large site with 

abundant discarded materials that is not located at or very near a raw material source 

indicates non-random and biased movement on the part of the foragers. PP5-6 is not 

situated on top of primary or secondary sources of either quartzite or silcrete during 

MIS4, which suggests that the increased use of PP5-6 and discard of quartzite and silcrete 

during MIS4 at PP5-6 was due to a specific mobility strategy. 

 When silcrete was the supplied material, it offered the opportunity to create a 

standardized blade technology and a means to conserve material. Blade technology has 

been argued to be linked to flaking efficiency and raw material conservation due to 

higher output of cutting edge compared to flakes (Andrefsky 1994, Bar-Yosef and Kuhn 

1999, Clark 1987). However, this has been contested by experimental work, and when 

different measures of efficiency have been used. When the whole process of blade 

making and retouch is taken into consideration then blades do not have more cutting edge 

and higher cutting edge per mass ratios than flakes (Eren, Greenspan, and Sampson 

2008). In addition, blade cores do not produce more useable blanks then bifacial cores 

(Jennings, Pevny, and Dickens 2010). Moreover, Muller and Clarkson (2016) proposed 

based on extensive experimental work that the increase in prismatic blades, Levallois 

technology, and small foliate bifaces during the MSA and Middle Paleolithic is correlated 

with the most significant increase in efficiency in the global stone tool record. In this 

light, blade technology is a way of increasing flaking efficiency but small foliate bifaces 
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and Levallois technology can also achieve comparable efficiency. The increase in blade 

production in MIS4 at PP5-6 is correlated with an increase in cutting edge per mass ratios 

on silcrete stone tools, which suggests that compared to the preceding MIS5, conserving 

raw material seem to be a priority (Wilkins et al. 2017). 

 Wilkins et al. (2017) point out that the need to maximize flaking efficiency when 

using silcrete is potentially linked to three different causes: 1) increased distance to raw 

material sources; 2) changes in mobility; and 3) increased group or population size that 

can be combined with changes in mobility. Because all different raw material types at 

PP5-6 exhibit increased flaking efficiency during MIS4, the first explanation can be ruled 

out. The source distribution was most likely similar in the following MIS3 compared to 

MIS4 but during MIS3 the overall flaking efficiency for silcrete declined even though the 

distance to the closest silcrete source remained the same (Wilkins et al. 2017, also see 

Chapter 7). The two latter explanations are more plausible, either by themselves or as a 

combination of both. 

 An increase in conservative raw material practices and more blade production 

during MIS4 might have been due to the need to conserve a limited silcrete supply 

(Wilkins et al. 2017). The supply might have been restricted due to decreased residential 

mobility as Wilkins et al. (2017) propose. This proposition is based on the rational that 

when local raw material availability is low and/or depleted, hunter-gatherers that are less 

mobile will react by increasing flaking efficiency (Andrefsky Jr 1994, Riel-Salvatore and 

Barton 2004). Such an argument with decreased residential mobility and increased 

sedentariness runs counter to Ambrose and Lorenz’s (1990) hypothesis that foragers 

during MIS4 increased their mobility (Wilkins et al. 2017). 



547 
 

 The raw material quality in silcrete that could facilitate blade production and 

increased cutting edge per mass ratios could only be achieved after heat-treatment. This 

means that the cost to gain that outcome had to be front-loaded (Brown et al. 2009). 

However, by changing the procurement strategy by routing movement on the landscape 

by silcrete sources to procure silcrete, and sources of wood and then provisioning that to 

PP5-6, the cost of such heat-treatment could be lowered since all activities could be 

undertaken at the same place (Brown 2011). This assertion is supported by the 

observation that the MIS4 record exhibits a higher frequency of silcrete pieces that lack 

visible luster that indicates heat-treatment and exhibits cortex, which both suggest that 

there was increased reduction of pre-heat-treatment nodules prior to heat-treatment 

during MIS4 at PP5-6 than during MIS5 (Wilkins et al. 2017). 

 The ACM results presented above appear to support such a procurement strategy. 

During embedded procurement, the forager would take the highest ranked raw material 

when encountering one, which was either quartzite or silcrete. The changing frequencies 

of both materials in the record suggests that when silcrete is dominant the forager moved 

from an area of the landscape that had a higher abundance of silcrete, while when 

quartzite is dominant the movement came from a direction where quartzite was more 

abundant. What this can indicate is that when more heat-treated silcrete is observed in the 

sequence, most of the movement on the landscape was towards the interior or 

perpendicular to the coast in the interior, while when quartzite is most frequent, most of 

the movement on the landscape was outwards onto the Paleo-Agulhas plain or 

perpendicular to the coast close to the actual coastline. Support for this type of scenario is 

that during MIS4, there was a significant increase in the frequency of outcrop cortex on 
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silcrete, which indicates that the silcrete came from the interior, while the cortex type on 

quartzite remains dominated by cobble cortex (Brown 2011, Wilkins et al. 2017, also see 

Chapter 7). 

 The increase observed in blade production, increase in raw material conservation, 

and the advent of microlithic technology, which suggests projectile technology (Brown et 

al. 2012) was facilitated by the increased selection of silcrete and subsequent heat-

treatment. The risk of failure to intercept animals when not procuring coastal resources 

would have been another pressure to develop technology that was more reliable so that 

tools would not fail when animals were encountered (Bleed 1986). The innovation of 

projectile technology was potentially one appropriate answer to a situation where the cost 

of failure was high (Elston and Brantingham 2002). 

 However, a question arises as to why innovation of projectile technology did not 

happen during MIS6 when intercept hunting must have also been a part of the mobility 

strategy. MIS6 conditions would have been similar to MIS4 conditions. The Paleo-

Agulhas plain would have been expansive with potential migratory animals and the 

archaeological record shows that these early modern human foragers did intercept the 

coast because shellfish remains are present even in the LC-MSA Lower. However, there 

is a big difference between the shellfish record from the MIS6 and the MIS4. Although 

the MIS6 record shows intercept forays with the coast, it is only the MIS5 and in MIS4 

records that showcase evidence for a ‘true’ coastal adaptation as indicated mostly by 

shell-supported matrixes in the observed stratigraphy (Marean 2015). The support for H3 

during MIS6 suggest that raw material selection played an important part in the 

technological organization because raw materials were actively chosen based on net-
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return rates. As noted above, the selection of the material with the highest net-return rate 

implies that opportunity-cost was minimized. This suggests that other activities were 

prioritized. Additionally, the limited evidence for early stage reduction and conservation 

of raw materials suggest that PP13B was not a locality that was used often or for longer 

time-periods. This further suggests that perhaps those residential moves were frequent 

and that people were provisioned with raw materials and not sites. 

 Taken together, the indications that MIS6 foragers engaged in increased 

residential moves, was not fully involved in a coastal adaptation, decreased opportunity-

cost by selecting the material with the highest net-return rate, and provisioned their 

people instead of localities suggest that they should have a greater reason to want to use 

technologies that would decrease the risk of failure to intercept animals while moving 

frequently. Future research needs to focus on why composite technologies such as 

projectile weapons were not invented earlier given such conditions.  

 I propose the following chain of events that led to the advent and innovation of 

microlithic technology and possible projectile technology during MIS4. The 

environmental context during MIS4 made PP5-6 very attractive. This is supported by 

work by Armstrong (2016) that showed that foragers at PP5-6 did not utilize small 

mammals, considered lower rank, but instead only focused on larger mammals and 

shellfish, considered higher quality resources. Further, this suggested to Armstrong 

(2016) that the foragers at PP5-6 could afford to only go after the higher quality resources 

because PP5-6 was situated in a higher yield environment. Additionally, work by 

Karkanas and colleagues (2014) showed that more people used the site for longer times 
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or that there was an increased use of the site on a regular basis during MIS4 compared to 

MIS5.  

 A potential foraging behavior outcome of living in an attractive environmental 

context with dense (migratory animals and coastal resources such as shellfish) and 

predictable resources (coastal resources) is elevated territoriality (Dyson-Hudson and 

Smith 1978). Under such circumstances, there is also commonly a decrease in mobility 

(Harpending and Davis 1977). Further, when a forager is faced with predictable resources 

the technology should reflect over-designed reliable hunting weapons (Bleed 1986). 

Wilkins et al. (2017) note that environments with predictable and dense resources often 

provide greater carrying capacity supporting larger populations and/or group sizes. The 

evidence from MIS4 occupations at PP5-6 is consistent with a model of increased 

resource predictability and density compared to earlier MIS5 occupations and later MIS3 

occupations (Wilkins et al. 2017). 

 The attractiveness, I propose, could only be maintained if the forager switched 

between coastal foraging during spring low tides and intercept hunting during neap tides 

on a regular basis. However, it needs to be noted that that intercept hunting opportunity is 

potentially highly seasonal due to movement of prey (Bousman 1993, Brown 2011).The 

intercept hunting did not require a new technology to succeed but projectile technology 

would lower the risk of failure when a prey was encountered. To make projectile 

technology, raw materials that allowed for better control over flaking properties was 

needed and certain types of tools had to be made. Blade technology and heat-treatment 

was already invented prior to MIS4 (Brown et al. 2009). Having that knowledge, what 

the foragers sought was to maximize the number of blades that they could produce for a 
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given unit of raw material, and they wanted the edges of those blades to last as long as 

possible. The differential movement to intercept either coastal resources or migrating 

prey made the forager move past both quartzite and silcrete sources depending on the 

direction of movement, and because both raw materials provided similar net-return rates, 

they were both procured and provisioned to the locality when encountered. When the raw 

material happened to be silcrete, it allowed the foragers to produce needed tools for 

intercept hunting that would lower risk of failure. 

 However, attractiveness, associated mobility strategy, and efforts to minimize risk 

in terms of failure to effectively procure prey when encountered cannot explain fully why 

we see investment in costly projectile technology during MIS4 and not in MIS6 when 

intercept hunting most likely was even more prevalent. Another possibility is the need for 

innovation of a new technology to be able to procure lower ranked prey that was harder 

to acquire using non-projectile weapons or other simpler technologies. The reason for 

having to attack lower ranking prey could be due to a population increase that required 

more resources to be obtained to meet the calorie requirement of the group. However, 

work by Armstrong (2016) as noted above suggested that foragers at PP5-6 did not utilize 

smaller mammals, which are considered lower quality in terms of yield.  

Future studies should focus on why it is that microlithic technology was invented 

in MIS4 and not in MIS6 when seemingly the attractiveness and the environmental 

conditions of the region would have been similar. However, one notable difference is that 

during MIS6 there was strong winter rainfall, while during MIS4 there was prevailing 

summer rainfall. This would have resulted in different vegetation regimes, which in turn 

could have yielded different animals on the Paleo-Agulhas plain or at least different 
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abundances of animals. The different types of animals or abundances during MIS6 might 

not have required a composite microlithic technology to minimize the risk of failure to 

procure prey when encountered. 

 Brown (2011) proposed that the combination of potentially direct procurement of 

silcrete, heat-treatment (Brown et al., 2009), and production of small standardized blades 

and microliths (Brown et al., 2012) during MIS4 demonstrates that the cognitive ability 

to create composite technology was in place by 70 ka. This argument has also been 

echoed by Wadley (2013b, 2010, 2008). Brown (2011: 283) and Marean (2010a) 

proposed that long-chain composite technologies include a series of linked steps or 

processes that can occur at different points on the landscape and requires independent 

planning and scheduling so that a final integrated finished product is produced.  

 The MIS4 record highlights several such steps and processes that in the end 

potentially created a composite projectile technology including active choice of silcrete 

during embedded procurement, heat-treatment of such selected silcrete to improve 

flaking ability but also perhaps edge durability, and production of standardized blades 

and microliths. In addition, the steps to create a composite projectile technology would 

include collection of wood fuels to heat-treat the silcrete, organic materials for arrow 

shafts and bow structure, sinew or twine for bowstring, and resin or other binding-agents 

to join components together. 

 The Active-Choice Model presented in this study allows for an analytical and 

logic-driven investigation of the independent steps and processes needed to create a 

composite technology or more simple technologies for that matter. Each resource (wood, 

resin, twine, bone etc.) needed to build a package of technology can be subjected to the 
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same ACM equations presented above. For example, one can switch out stone as the 

resource sought with wood intended to be used to build a bow. In such a scenario, one 

can argue that the assumed currency that the forager seeks to maximize is wood strength 

and flexibility. Given several known species of wood available in an environment, the 

ACM can be used to predict under what environmental and climatic conditions or 

behavioral conditions the forager would switch from one type of wood to another to build 

a bow. Assuming that the forager will engage in optimal or near-optimal behavior to the 

solve problems it faces, the net-return rate of an assumed currency should drive the 

selection of different resources. This way the ACM can be used to estimate the net-return 

rate of different resources that a forager needs to build its technology, and we will obtain 

a fuller picture of the web of decisions that forager faced during important parts of 

modern human origins.  

 It is important to note the model framework presented in this study needs to be 

applied on a site-by-site basis. This study lays out all the methodological steps needed to 

build a situation-specific agent-based model that can be used to test hypotheses related to 

neutral procurement of stone or to calculate or obtain estimates of variables needed to 

calculate net-return rates of raw materials. As reviewed above (Chapter 3) the change in 

preference from coarse-grained quartzite to fine-grained heat-treated silcrete or other 

CCS stone raw materials are visible at all major MSA sites in the Cape Region in South 

Africa. Well-studied sites such as Diepkloof Rock Shelter, where comprehensive raw 

material surveys have been conducted to establish potential sources on the landscape, are 

primed to employ the model framework presented in this study. 
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CHAPTER 13: CONCLUSIONS 

The exhaustive evaluation of the Opportunistic Acquisition Model (OAM) suggests 

limited support for the hypothesis that raw material frequencies observed in the MSA 

record at Pinnacle Point (PP) are due to opportunistic encounters of raw material sources 

when randomly walking in the environment. There is, however, one exception. During 

MIS6 conditions without a Paleo-Agulhas plain silcrete source, the model frequencies 

match the archaeological frequencies at PP13B if the forager engages in expedient 

behavior. However, this behavior is potentially not realistic as the forager would spend 

between 30 and 60% of the time without raw materials in the toolkit. An argument can be 

made that it is a realistic behavior if the forager regularly returns to a locality where stone 

is stockpiled or cached. However, the MIS6 stone tool assemblage at PP13B does not 

offer conclusive evidence that it represents stockpiling or site-caching behavior. A future 

study should be aimed at resolving this issue. 

 One goal of this dissertation was to create a model framework that can be applied 

to any record. The failure to find conclusive support for the OAM using the Pinnacle 

Point record does not mean that it will not be found supported in a different context 

surrounding a different archaeological record. This means that the OAM, which 

simulated embedded and opportunistic procurement of raw materials, can still explain 

raw material selection at other sites. The methods laid out in this study can guide 

researchers in how to build their own situation-specific agent-based model to be able to 

test the OAM using their own data. 

 In contrast to the OAM results, this study has shown that the early modern 

humans living in the Mossel Bay region strategically selected raw materials that offered 
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the highest net-return rate of a desired currency. This result supports a utilitarian model 

of raw material selection and change (c.f. Mackay 2008). During MIS6 at PP13B, the net-

return rate of quartzite was higher than silcrete even after heat-treatment because of the 

presence of a wave-ravinement surface close to Pinnacle Point during lower sea levels 

that offered abundant quartzite cobbles facilitating easy procurement. The selection of the 

raw material with the highest net-return rate implies that opportunity cost was minimized. 

This allowed the forager to spend more time on other pressing activities, while at the 

same time using a material for tasks without compromising suitability. The MIS6 

foragers faced an expanded Paleo-Agulhas plain with a diverse ecosystem and potentially 

migrating ungulates in addition to the rich coastline. This most likely made them move 

frequently to conduct intercept hunting and to take advantage of rich coastal resources 

when available. A mobility strategy that supplied the individual with raw materials that 

was procured at minimal cost was likely operating. 

 During MIS5, the foragers at Pinnacle Point faced a coastal environment with the 

coastline close to or at the current configuration. The abundant cobble sources in the form 

of cobble beaches in vicinity to Pinnacle Point offered the foragers easily accessible raw 

materials. Although the coastline was closer during MIS5, shellfish remains from PP13B 

during MIS6 suggest that the site was occupied when the coast was within 10km. This 

makes the environmental context similar. As during MIS6, the low travel and search cost 

of quartzite drove the net-return rate of quartzite to exceed silcrete. The selection of 

quartzite during MIS5 suggests similar procurement systems for raw materials during 

MIS5 and MIS6 regardless of environmental conditions. 
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 The raw material selection during MIS6 and MIS5 indicates provisioning of 

people, which can suggest that they were more mobile. The provision of people helps 

minimize risk related to shortfall resulting from finding new materials when moving 

about the landscape. Quartzite selection during these two periods indicates that quartzite 

was not selected because it had the best quality but because it was good enough and was 

the least costly in terms of net-return rate (c.f. Torrence 1989, 1983). However, because 

the currency assumed to be sought by the foragers is based on physical properties of the 

raw materials, the result from MIS5 and MIS6 conditions suggests that part of the 

response to climatic and environmental conditions was reliance on quartzite obtained 

through direct procurement (c.f. Gould, 1985; Gould and Saggers, 1985) and to 

manufacture technology to obtain food resources and/or conduct processing tasks thus 

suggesting knowledge about physical properties of raw materials and how to utilize them. 

 In MIS4, the increase in silcrete, the increase in procurement from outcrop 

sources, the increase in blade production, and the emergence of microlithic technology 

were underpinned by a raw material procurement strategy where both quartzite and 

silcrete was selected due to tied net-return rates. The foragers sought to maximize the 

number of blades they could produce per core, and they wanted the edges of those blades 

to last as long as possible. The low flake manufacturing cost and high gross value of the 

assumed currency for silcrete and the high flaking manufacturing cost and lack of heat-

treatment cost for quartzite resulted in tied net-return rates. The raw materials were 

selected during embedded procurement where the mobility strategy was not dictated by 

locations of raw material sources (c.f. Binford 1979). Once encountered, both materials 

could be selected because they provided the same payoff. Both raw materials were 
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conservatively handled and discarded at site in a system that indicates place provisioning. 

However, the quality of heat-treated silcrete made it amenable to produce microlithic 

technology. Microlithic technology limited the risk of failure when conducting intercept 

hunting. In summary, the response to climatic and environmental conditions during MIS4 

was relatively complex combining a mobility system that targeted food resources with a 

reliance on investment in specific stone raw materials and technology that would 

facilitate the extraction of the resources. 

 This study offers a new model framework to study human resource-choice 

behavior. The model framework can be used for different resources and under any 

archaeological context. It offers a researcher the tools to understand whether 

opportunistic behavior or strategic choice has driven the frequency of a raw material to be 

dominant in the given archaeological record. The two different behaviors have different 

implications for the role and importance the resource had in the technological 

organization of the foragers. This study indicates that raw material selection played an 

important role in the technological organization of the MSA foragers at Pinnacle Point. 

Further, this study suggests that external environmental-linked factors affected human 

behavior during MIS6 and MIS5. The position of the coastline and the distribution of 

sources on the landscape during these two periods drove the profitability of quartzite up. 

Whereas during MIS4, human behavior in terms of flaking manufacturing and heat-

treatment, and the physical properties of the different raw material drove the profitability 

of the raw materials. Finally, the results presented in this study limit the support for other 

‘Preference-based’ models that propose that raw material change at the MIS5 to MIS4 

transition in the MSA is linked to symbolic value (Wurz 2009), or trade and/or exchange  
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(Deacon 1989). However, it is hard to rule out these models. Each site needs to be looked 

at individually. 
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SUPPLEMENTARY FIGURES 
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CHAPTER 8- OPPORTUNISTIC ACQUISITION MODEL – HYPOTHESIS 

EVALUATION AND SENSITIVITY ANALYSIS 

 

Is random walk a realistic lithic raw material procurement strategy? 

 

MIS4 without a Paleo-Agulhas plain silcrete  

 

 
Figure A1. Plot with means and 95% confidence intervals showing the distribution of the 

frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS4 conditions without a Paleo-Agulhas plain silcrete source. Star 

with capped whiskers is the mean with the 95% confidence interval (CI). 
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MIS4 with a Paleo-Agulhas plain silcrete  

 

 
Figure A2. Plot with means and 95% confidence intervals showing the distribution of the 

frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS4 conditions with a Paleo-Agulhas plain silcrete source. Star 

with capped whiskers is the mean with the 95% confidence interval (CI). 
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MIS5 

 

 
Figure A3. Plot with means and 95% confidence intervals showing the distribution of the 

frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS5 conditions. Star with capped whiskers is the mean with the 

95% confidence interval (CI). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



615 
 

MIS6 without a Paleo-Agulhas plain silcrete  

 

 
Figure A4. Plot with means and 95% confidence intervals showing the distribution of the 

frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS6 conditions without a Paleo-Agulhas plain silcrete source. Star 

with capped whiskers is the mean with the 95% confidence interval (CI). 
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MIS6 without a Paleo-Agulhas plain silcrete  

 

 
Figure A5. Plot with means and 95% confidence intervals showing the distribution of the 

frequency of time without raw material in toolkit at different movement budgets 

(TT=totticks) during MIS6 conditions with a Paleo-Agulhas plain silcrete source. Star 

with capped whiskers is the mean with the 95% confidence interval (CI). 
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OFAT3 – Changing Discard probabilities and toolkit size 

 

Return to starting location simulations 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

 
Figure A6. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS4 model conditions without a Paleo-Agulhas plain silcrete source from 

same-day return simulations (TT=100) where the agent returns to the starting locality 

(PP) and bootstrapped MIS4 archaeological raw material frequency data from PP5-6. Plot 

shows the mean and the upper and lower 95% confidence intervals for the raw materials 

deposited at the both the simulated PP locality and at PP5-6. 
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MIS4 with a Paleo-Agulhas plain silcrete source 

 

 
Figure A7. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS4 model conditions with a Paleo-Agulhas plain silcrete source. from 

same-day return simulations (TT=100) where the agent returns to the starting locality 

(PP) and bootstrapped MIS4 archaeological raw material frequency data from PP5-6. Plot 

shows the mean and the upper and lower 95% confidence intervals for the raw materials 

deposited at the both the simulated PP locality and at PP5-6. 
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MIS5 conditions 

 

 
Figure A8. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS5 model conditions from same-day return simulations (TT=100) where 

the agent returns to the starting locality (PP) and bootstrapped MIS5 archaeological raw 

material frequency data from PP5-6, PP13B, and all MIS5 assemblages from the PP 

sequence including PP5-6, PP13B, PP9B, and PP9C. Plot shows the mean and the upper 

and lower 95% confidence intervals for the raw materials deposited at the both the 

simulated PP locality and at PP5-6, PP9B, PP9C, and PP13B. 
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MIS6 without a Paleo-Agulhas plain silcrete source 

 

 
Figure A9. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS6 model conditions without a Paleo-Agulhas plain silcrete source from 

same-day return simulations (TT=100) where the agent returns to the starting locality 

(PP) and bootstrapped MIS6 archaeological raw material frequency data from PP13B. 

Plot shows the mean and the upper and lower 95% confidence intervals for the raw 

materials deposited at the both the simulated PP locality and at PP13B. 
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MIS6 with a Paleo-Agulhas plain silcrete source 

 

 
Figure A10. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS6 model conditions with a Paleo-Agulhas plain silcrete source from 

same-day return simulations (TT=100) where the agent returns to the starting locality 

(PP) and bootstrapped MIS6 archaeological raw material frequency data from PP13B. 

Plot shows the mean and the upper and lower 95% confidence intervals for the raw 

materials deposited at the both the simulated PP locality and at PP13B. 
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Move to closest locality simulations 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

 
Figure A11. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS4 model conditions without a Paleo-Agulhas plain silcrete source from 

same-day returns simulations (TT=100) where the agent moves to the closest locality 

when the movement budget (totticks) is exhausted and bootstrapped MIS4 archaeological 

raw material frequency data from PP5-6. Plot shows the mean and the upper and lower 

95% confidence intervals for the raw materials deposited at the both the simulated PP 

locality and at PP5-6. 
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MIS4 with a Paleo-Agulhas plain silcrete source 

 

 
Figure A12. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS4 model conditions with a Paleo-Agulhas plain silcrete source from 

same-day returns simulations (TT=100) where the agent moves to the closest locality 

when the movement budget (totticks) is exhausted and bootstrapped MIS4 archaeological 

raw material frequency data from PP5-6. Plot shows the mean and the upper and lower 

95% confidence intervals for the raw materials deposited at the both the simulated PP 

locality and at PP5-6. 
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MIS5 conditions 

 

 
Figure A13. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS5 model conditions from same-day returns simulations (TT=100) 

where the agent moves to the closest locality when the movement budget (totticks) is 

exhausted and bootstrapped MIS5 archaeological raw material frequency data from PP5-

6, PP13B, and all MIS5 assemblages from the PP sequence including PP5-6, PP13B, 

PP9B, and PP9C. Plot shows the mean and the upper and lower 95% confidence intervals 

for the raw materials deposited at the both the simulated PP locality and at PP5-6, PP9B, 

PP9C, and PP13B. 
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MIS6 without a Paleo-Agulhas plain silcrete source 

 

 
Figure A14. Comparison between model outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS6 model conditions without a Paleo-Agulhas plain silcrete source from 

same-day returns simulations (TT=100) where the agent moves to the closest locality 

when the movement budget (totticks) is exhausted and bootstrapped MIS6 archaeological 

raw material frequency data from PP13B. Plot shows the mean and the upper and lower 

95% confidence intervals for the raw materials deposited at the both the simulated PP 

locality and at PP13B. 
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MIS6 with a Paleo-Agulhas plain silcrete source 

 

 
Figure A15. Comparison between OFAT3 outcomes using different PDC (Probability 

discard on landscape), PD (Probability discard at locality), and toolkit (toolkit size) 

values during MIS6 model conditions with a Paleo-Agulhas plain silcrete source from 

same-day returns simulations (TT=100) where the agent moves to the closest locality 

when the movement budget (totticks) is exhausted and bootstrapped MIS6 archaeological 

raw material frequency data from PP13B. Plot shows the mean and the upper and lower 

95% confidence intervals for the raw materials deposited at the both the simulated PP 

locality and at PP13B. 
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CHAPTER 11: ACTIVE-CHOICE MODEL – CHANGING ASSUMED 

CURRENCY 

 

Maximizing cutting edge of complete blades per mass multiplied by duration of use 

before dulling 

 

ACM – Model condition variable outcomes 

 

Coastline position and raw material source distribution 

 

 
Figure A16. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (Rq and Rs) when only ts time-cost (travel and search time) is 

considered (for all experimental sample types) during all model conditions. Star with 

capped whiskers is the mean with the 95% confidence intervals (CI). The CI was created 

by bootstrapping the standard error 10000 times. 
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Vegetation type 

 

 
Figure A17. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates (Pq and Ps) when only m1 (wood fuel travel and search time) 

and m2 time-costs (heat-treatment time) are considered (for all experimental sample 

types) during all model conditions. Star with capped whiskers is the mean with the 95% 

confidence intervals (CI). The CI was created by bootstrapping the standard error 10000 

times. 
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Mobility rate and strategy 

 

 
Figure A18. Plot with means and 95% confidence intervals showing the distribution of 

the ACM net-return rates (Pq and Ps or Rq and Rs) when only m3 time-cost (flaking 

manufacturing time) is considered (for all experimental sample types) during MIS4 

conditions. Star with capped whiskers is the mean with the 95% confidence intervals 

(CI). The CI was created by bootstrapping the standard error 10000 times. 
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Maximizing number of complete blades produced per core multiplied by duration of 

use before dulling 

 

ACM – Model condition variable outcomes 

 

Coastline position and raw material distribution 

 

 
Figure A19. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-R net-return rates (Rq and Rs) when only ts time-cost (travel and search time) is 

considered (for all experimental sample types) during all model conditions. Star with 

capped whiskers is the mean with the 95% confidence intervals (CI). The CI was created 

by bootstrapping the standard error 10000 times. 
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Vegetation type 

 

 
Figure A20. Plot with means and 95% confidence intervals showing the distribution of 

the ACM-P net-return rates (Pq and Ps) when only m1 (wood fuel travel and search time) 

and m2 time-costs (heat-treatment time) are considered (for all experimental sample 

types) during all model conditions. Star with capped whiskers is the mean with the 95% 

confidence intervals (CI). The CI was created by bootstrapping the standard error 10000 

times. 
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Mobility rate and strategy 

 

 
Figure A21. Plot with means and 95% confidence intervals showing the distribution of 

the ACM net-return rates (Pq and Ps or Rq and Rs) when only m3 time-cost (flaking 

manufacturing time) is considered (for all experimental sample types) during MIS4 

conditions. Star with capped whiskers is the mean with the 95% confidence intervals 

(CI). The CI was created by bootstrapping the standard error 10000 times. 
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APPENDIX B 

SUPPLEMENTARY TABLES 
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CHAPTER 7 – PINNACLE POINT ARCHAEOLOGICAL RECORD 

 

By Marine Isotope Stage 

 

Maximum Dimension 

 

Table B1. Maximum Dimension (mm) descriptive statistics for all stone artifact classes 

made on all raw material types by site and MIS designation. 

  PP5-6-MIS3 PP5-6-MIS4 PP5-6-MIS5 PP9B-MIS5 PP9C-MIS5 PP13B-MIS5 PP13B-MIS6 

N 5027 8958 3098 68 86 3684 1890 

Min 2.43 1.00 2.00 10.00 9.00 3.00 5.00 

Max 153.45 100.00 116.07 102.00 106.00 164.00 175.00 

Mean 21.06 19.61 31.36 40.50 40.16 38.44 29.82 

Std. error 0.19 0.11 0.29 2.59 2.38 0.35 0.42 

Variance 190.44 115.47 262.15 455.18 487.81 439.99 326.87 

Stand. dev 13.80 10.75 16.19 21.33 22.09 20.98 18.08 

Median 17.32 17.00 28.00 37.00 38.50 34.00 25.00 

25 prcntil 12.24 12.89 19.85 23.25 21.75 22.00 16.00 

75 prcntil 25.46 24.00 39.00 55.00 54.75 52.00 39.00 

 

Table B2. Maximum Dimension (mm) test results for all stone artifact classes made on 

all raw material types by site and MIS designation. 

All raw materials: Maximum Dimension 
(mm) 

Total n = 
22811 Kruskal-Wallis H: 4311  

p (Significant ≤0.05) 
<0.00001   

Uncorrected Mann-Whitney pairwise comparisons - (p):       

Site/MIS 
Designation 

PP5-6-
MIS3 

PP5-6-
MIS4 

PP5-6-
MIS5 

PP9B-
MIS5 

PP9C-
MIS5 PP13B-MIS5 PP13B-MIS6 

PP5-6-MIS3   0.017 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS4 0.017   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS5 <0.00001 <0.00001   0.0002 0.0003 <0.00001 <0.00001 

PP9B-MIS5 <0.00001 <0.00001 0.0002   0.8514 0.3641 <0.00001 

PP9C-MIS5 <0.00001 <0.00001 0.0003 0.8514   0.5336 0.00001 

PP13B-MIS5 <0.00001 <0.00001 <0.00001 0.3641 0.5336   <0.00001 

PP13B-MIS6 <0.00001 <0.00001 <0.00001 <0.00001 0.00001 <0.00001   

Values shaded in grey are significant (≤0.05). 
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Maximum Dimension – quartzite versus silcrete 

 

Table B3. Maximum Dimension (mm) descriptive statistics for all stone artifact classes 

made on all raw material types by site and MIS designation. 
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N 2007 3121 1654 5500 2007 772 52 63 2939 108 1468 80 

Min 4.24 2.43 1.00 1.00 2.00 2.59 13.00 9.00 3.00 6.00 6.00 14.00 

Max 153.45 78.14 100.00 85.00 116.07 79.36 102.00 106.00 164.00 104.00 175.00 77.00 

Mean 38.51 17.35 27.89 18.45 34.79 25.20 42.06 44.79 41.29 33.57 31.69 31.64 

Std. error 0.47 0.16 0.36 0.12 0.38 0.44 2.99 2.72 0.39 1.67 0.49 1.55 

Variance 436.30 78.15 220.02 74.12 291.99 148.26 464.76 465.84 453.52 300.45 354.52 191.15 

Stand. dev 20.89 8.84 14.83 8.61 17.09 12.18 21.56 21.58 21.30 17.33 18.83 13.83 

Median 38.00 15.20 24.00 17.00 31.00 22.55 39.00 43.00 38.00 32.00 26.00 27.00 

25 prcntil 21.18 11.10 17.00 13.00 22.54 15.87 25.00 31.00 24.00 21.25 17.00 21.00 

75 prcntil 50.34 21.28 36.00 22.35 43.73 32.53 55.75 58.00 55.00 44.25 42.00 39.75 

 

Table B4. Maximum Dimension (mm) test results for all stone artifact classes made on 

quartzite (Q) and silcrete (S) by site and MIS designation. 

Quartzite and Silcrete: Maximum 
Dimension (mm) 

Total n =  
19771  

Kruskal-Wallis H: 
5976  p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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<0.000
01 
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3 0.005 0.0002 
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7 0.5125 0.2189   

Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 



636 
 

 

Maximum Thickness 

 

Table B5. Maximum thickness (mm) descriptive statistics for all stone artifact classes 

made on all raw material types by site and MIS designation. 

  PP5-6-MIS3 PP5-6-MIS4 PP5-6-MIS5 PP9B-MIS5 PP9C-MIS5 PP13B-MIS5 PP13B-MIS6 

N 4866 6791 2709 68 85 2935 1683 

Min 0.27 0.23 0.76 1.00 1.00 1.00 1.00 

Max 38.89 59.97 40.85 31.00 51.00 59.00 60.00 

Mean 4.59 4.23 7.61 9.25 8.81 9.56 7.59 

Std. error 0.05 0.04 0.09 0.70 0.86 0.14 0.16 

Variance 13.47 12.46 23.26 33.71 63.56 55.74 41.54 

Stand. dev 3.67 3.53 4.82 5.81 7.97 7.47 6.45 

Median 3.57 3.00 6.57 8.00 7.00 7.00 6.00 

25 prcntil 2.23 2.00 4.10 5.00 4.50 5.00 4.00 

75 prcntil 5.73 5.00 9.58 12.00 10.50 11.00 9.00 

 

Table B6. Maximum thickness (mm) test results for all stone artifact classes made on all 

raw material types by site and MIS designation. 

All raw materials: Maximum Thickness 
(mm) 

Total n = 
19137  Kruskal-Wallis H: 3981  

 p (Significant ≤0.05) 
<0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p):       

Site/MIS 
Designation 

PP5-6-
MIS3 

PP5-6-
MIS4 

PP5-6-
MIS5 

PP9B-
MIS5 

PP9C-
MIS5 PP13B-MIS5 PP13B-MIS6 

PP5-6-MIS3   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS4 <0.00001   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS5 <0.00001 <0.00001   0.01 0.4740 <0.00001 0.00001 

PP9B-MIS5 <0.00001 <0.00001 0.01   0.1629 0.5720 0.0007 

PP9C-MIS5 <0.00001 <0.00001 0.4740 0.1629   0.1218 0.062 

PP13B-MIS5 <0.00001 <0.00001 <0.00001 0.5720 0.1218   <0.00001 

PP13B-MIS6 <0.00001 <0.00001 0.00001 0.0007 0.062 <0.00001   

Values shaded in grey are significant (≤0.05). 
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Maximum Thickness – quartzite versus silcrete 

 

Table B7. Maximum thickness (mm) descriptive statistics for all stone artifact classes 

made on quartzite (Q) and silcrete (S) by site and MIS designation. 
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N 1279 3062 1194 4097 1658 751 52 62 2372 88 1310 73 

Min 0.66 0.27 0.77 0.23 1.00 0.76 1.00 2.00 1.00 1.00 1.00 2.00 

Max 38.89 36.79 59.97 55.00 40.85 27.48 31.00 51.00 59.00 40.00 60.00 16.00 

Mean 6.72 3.73 6.45 3.83 8.59 5.78 9.44 10.19 9.95 6.92 7.90 6.30 

Std. error 0.13 0.05 0.14 0.05 0.13 0.14 0.74 1.11 0.16 0.61 0.19 0.36 

Variance 21.88 7.98 23.75 9.04 26.17 13.69 28.84 76.52 59.65 33.06 46.69 9.21 

Stand. dev 4.68 2.82 4.87 3.01 5.12 3.70 5.37 8.75 7.72 5.75 6.83 3.04 

Median 5.46 3.00 5.00 3.00 7.47 4.90 9.00 8.00 8.00 5.50 6.00 6.00 

25 prcntil 3.63 1.97 3.40 2.00 5.00 3.21 6.00 5.75 5.00 4.00 4.00 4.00 

75 prcntil 8.53 4.64 8.00 4.69 10.72 7.21 12.00 12.00 12.00 8.00 9.00 8.00 

 

 

Table B8. Maximum thickness (mm) test results for all stone artifact classes made on 

quartzite (Q) and silcrete (S) by site and MIS designation. 

Quartzite and Silcrete: Maximum 
Thickness (mm) Total n = 15998   Kruskal-Wallis H: 4564 p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 
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Technological Length 

 

Table B9. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on all raw materials by site and MIS designation. 

  PP5-6-MIS3 PP5-6-MIS4 PP5-6-MIS5 PP9B-MIS5 PP9C-MIS5 PP13B-MIS5 PP13B-MIS6 

N 886 2282 1135 24 43 1313 620 

Min 1.56 1.41 2.11 11.00 6.00 5.00 5.00 

Max 143.04 98.00 117.72 101.00 104.00 121.00 119.00 

Mean 22.88 19.99 31.05 41.71 40.98 43.09 32.05 

Std. error 0.53 0.23 0.48 4.24 3.18 0.55 0.70 

Variance 250.69 121.57 258.15 431.52 435.26 393.08 307.27 

Stand. dev 15.83 11.03 16.07 20.77 20.86 19.83 17.53 

Median 18.40 17.00 27.00 44.00 36.00 41.00 28.00 

25 prcntil 13.08 12.10 19.00 23.50 25.00 28.00 18.00 

75 prcntil 27.42 25.00 40.00 57.75 53.00 56.00 43.00 

 

Table B10. Technological length (mm) test results for all complete flakes and blades 

made on all raw materials by site and MIS designation. 

All raw materials: Technological 
Length (mm) 

Total n = 
6303 Kruskal-Wallis H: 1623  

 p (Significant ≤0.05) 
<0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p):       

Site/MIS 
Designation 

PP5-6-
MIS3 

PP5-6-
MIS4 

PP5-6-
MIS5 

PP9B-
MIS5 

PP9C-
MIS5 PP13B-MIS5 PP13B-MIS6 

PP5-6-MIS3   0.0007 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS4 0.0007   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS5 <0.00001 <0.00001   0.007 0.0008 <0.00001 0.5557 

PP9B-MIS5 <0.00001 <0.00001 0.007   0.7735 0.7726 0.015 

PP9C-MIS5 <0.00001 <0.00001 0.0008 0.7735   0.3562 0.003 

PP13B-MIS5 <0.00001 <0.00001 <0.00001 0.7726 0.3562   <0.00001 

PP13B-MIS6 <0.00001 <0.00001 0.5557 0.015 0.003 <0.00001   

Values shaded in grey are significant (≤0.05). 
 

Technological Length – quartzite versus silcrete 

 

Table B11. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on quartzite (Q) and silcrete (S) by site and MIS designation. 
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N 249 535 510 1416 742 299 24 34 1158 47 520 41 

Min 5.72 1.56 5.03 1.41 7.00 2.11 11.00 6.00 5.00 12.00 5.00 9.00 

Max 143.04 75.56 98.00 74.00 117.72 78.77 101.00 104.00 121.00 85.00 119.00 74.00 
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Mean 33.73 18.11 26.95 18.32 33.27 26.95 41.71 44.50 44.52 36.89 32.89 31.63 

Std. error 1.38 0.43 0.65 0.24 0.63 0.75 4.24 3.74 0.59 2.50 0.79 2.04 

Variance 473.58 97.50 216.45 78.46 294.01 168.80 431.52 475.05 402.57 292.88 328.11 170.84 

Stand. dev 21.76 9.87 14.71 8.86 17.15 12.99 20.77 21.80 20.06 17.11 18.11 13.07 

Median 27.86 15.98 24.00 16.69 29.00 25.32 44.00 41.00 43.00 36.00 29.00 29.00 

25 prcntil 18.00 11.00 16.00 12.00 20.98 17.00 23.50 27.75 29.00 22.00 18.00 21.00 

75 prcntil 42.56 22.75 35.45 23.00 42.36 35.30 57.75 57.25 58.00 50.00 44.00 40.50 

 

Table B12. Technological length (mm) test results for all complete flakes and blades 

made on quartzite (Q) and silcrete (S) by site and MIS designation. 

Quartzite and Silcrete: 
Technological Length (mm) Total n = 5575    Kruskal-Wallis H: 1737  p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 
 

Technological Width 

 

Table B13. Technological width (mm) descriptive statistics for all complete flakes and 

blades made on all raw materials by site and MIS designation. 

  PP5-6-MIS3 PP5-6-MIS4 PP5-6-MIS5 PP9B-MIS5 PP9C-MIS5 PP13B-MIS5 PP13B-MIS6 

N 887 2281 1138 25 43 1328 632 

Min 3.10 1.53 4.07 11.00 12.00 6.00 3.00 

Max 81.94 74.71 80.00 117.00 62.00 104.00 83.00 

Mean 17.19 14.75 24.42 33.84 30.23 32.07 26.99 

Std. error 0.35 0.18 0.34 4.52 1.57 0.39 0.56 

Variance 106.45 72.67 135.09 510.22 105.99 198.18 195.25 

Stand. dev 10.32 8.52 11.62 22.59 10.30 14.08 13.97 

Median 14.46 12.13 22.19 28 29 30 25 

25 prcntil 10.25 9.00 16.00 24.00 23.00 22.00 16.25 

75 prcntil 21.01 18.00 30.00 34.00 35.00 40.00 35.00 
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Table B14. Technological width (mm) test results for all complete flakes and blades 

made on all raw materials by site and MIS designation. 

All raw materials: Technological Width 
(mm) 

Total n = 
6334  Kruskal-Wallis H: 2023 

 p (Significant ≤0.05) 
<0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p):       

Site/MIS 
Designation 

PP5-6-
MIS3 

PP5-6-
MIS4 

PP5-6-
MIS5 

PP9B-
MIS5 

PP9C-
MIS5 PP13B-MIS5 PP13B-MIS6 

PP5-6-MIS3   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS4 <0.00001   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS5 <0.00001 <0.00001   0.007 0.00008 <0.00001 0.0007 

PP9B-MIS5 <0.00001 <0.00001 0.007   0.8635 0.6631 0.1081 

PP9C-MIS5 <0.00001 <0.00001 0.00008 0.8635   0.5793 0.02 

PP13B-MIS5 <0.00001 <0.00001 <0.00001 0.6631 0.5793   <0.00001 

PP13B-MIS6 <0.00001 <0.00001 0.0007 0.1081 0.02 <0.00001   

Values shaded in grey are significant (≤0.05). 
 

Technological Width – quartzite versus silcrete 

 

Table B15. Technological width (mm) descriptive statistics for all complete flakes and 

blades made on quartzite (Q) and silcrete (S) by site and MIS designation. 
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N 249 536 509 1415 744 300 25 34 1172 47 530 42 

Min 4.0 3.1 5.0 1.5 5.0 4.1 11.0 16.0 6.0 10.0 3.0 8.0 

Max 81.9 53.0 74.7 63.0 80.0 47.5 117.0 62.0 98.0 104.0 83.0 57.0 

Mean 24.3 14.0 22.3 12.5 27.0 18.6 33.8 32.2 32.9 26.9 27.6 26.4 

Std. error 0.841 0.308 0.486 0.163 0.448 0.441 4.518 1.741 0.413 2.360 0.622 1.665 

Variance 176.1 50.8 120.2 37.5 149.1 58.3 510.2 103.0 200.2 261.7 205.1 116.4 

Stand. dev 13.3 7.1 11.0 6.1 12.2 7.6 22.6 10.1 14.1 16.2 14.3 10.8 

Median 22.0 12.2 20.0 11.0 24.8 17.3 28.0 30.5 31.0 23.0 25.0 25.0 

25 prcntil 15.1 9.3 14.0 8.4 18.0 13.1 24.0 26.0 23.0 16.0 17.0 18.5 

75 prcntil 28.6 17.0 28.0 15.0 34.0 22.8 34.0 37.0 41.0 32.0 35.0 33.3 

 

 

 

 

 

 

 

 



643 
 

Table B16. Technological width (mm) test results for all complete flakes and blades 

made on quartzite (Q) and silcrete (S) by site and MIS designation. 

Quartzite and Silcrete: Technological 
width (mm) Total n = 5603 Kruskal-Wallis H: 2334   p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 
 

Cutting edge per mass 

 

Table B17. Cutting edge / Mass (CE/M) test results for all raw materials by site and MIS 

designation. 

All raw materials: Cutting Edge / Mass 
values 

Total n = 
6261 

 Kruskal-Wallis H: 
1801  

p (Significant ≤0.05) 
<0.00001   

Uncorrected Mann-Whitney pairwise comparisons - (p):  

Site/MIS 
Designation 

PP5-6-
MIS3 

PP5-6-
MIS4 

PP5-6-
MIS5 

PP9B-
MIS5 

PP9C-
MIS5 PP13B-MIS5 PP13B-MIS6 

PP5-6-MIS3   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS4 <0.00001   <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 

PP5-6-MIS5 <0.00001 <0.00001   0.08 0.007 <0.00001 0.8635 

PP9B-MIS5 <0.00001 <0.00001 0.08   0.9063 0.8355 0.1184 

PP9C-MIS5 <0.00001 <0.00001 0.007 0.9063   0.7435 0.02 

PP13B-MIS5 <0.00001 <0.00001 <0.00001 0.8355 0.7435   <0.00001 

PP13B-MIS6 <0.00001 <0.00001 0.8635 0.1184 0.02 <0.00001   

Values shaded in grey are significant (≤0.05). 
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Cutting edge per mass – quartzite versus silcrete 

 

Table B18. Cutting edge / Mass (CE/M) test results for quartzite and silcrete by site and 

MIS designation. 

Quartzite and Silcrete: Cutting Edge / 
Mass values 

 Total n = 
5540  

Kruskal-Wallis H: 
2186   

 p (Significant ≤0.05) 
<0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p): 

Site/MIS 
Designation 

P
P

5
-6

-M
IS

3
-Q

 

P
P

5
-6

-M
IS

3
-S

 

P
P

5
-6

-M
IS

4
-Q

 

P
P

5
-6

-M
IS

4
-S

 

P
P

5
-6

-M
IS

5
-Q

 

P
P

5
-6

-M
IS

5
-S

 

P
P

9
B

-M
IS

5
-Q

 

P
P

9
C

-M
IS

5
-Q

 

P
P

1
3
B

-M
IS

5
-Q

 

P
P

1
3
B

-M
IS

5
-S

 

P
P

1
3
B

-M
IS

6
-Q

 

P
P

1
3
B

-M
IS

6
-S

 

PP5-6-MIS3-Q 

 

<
0
.0

0
0
0
1
 

0
.0

1
8
 

<
0
.0

0
0
0
1
 

0
.0

0
0
1
1
 

<
0
.0

0
0
0
1
 

0
.0

7
 

0
.0

0
1
0
 

<
0
.0

0
0
0
1
 

0
.9

2
3
8
 

0
.2

1
9
0
 

0
.8

3
2
9
 

PP5-6-MIS3-S 

<
0
.0

0
0
0
1
 

 

<
0
.0

0
0
0
1
 

0
.1

2
4
7
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

PP5-6-MIS4-Q 

0
.0

1
8
 

<
0
.0

0
0
0
1
 

 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

0
0
6
 

0
.0

0
7
 

0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.2

3
9
2
 

0
.0

0
0
0
1
 

0
.3

0
3
2
 

PP5-6-MIS4-S 

<
0
.0

0
0
0
1
 

0
.1

2
4
7
 

<
0
.0

0
0
0
1
 

 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

0
0
0
0
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

PP5-6-MIS5-Q 

0
.0

0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

 

<
0
.0

0
0
0
1
 

0
.4

7
1
9
 

0
.0

6
 

<
0
.0

0
0
0
1
 

0
.0

3
5
 

0
.0

0
2
9
 

0
.0

3
 

PP5-6-MIS5-S 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

0
0
6
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

 

0
.0

0
0
0
6
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

0
3
 

<
0
.0

0
0
0
1
 

0
.0

0
7
 

PP9B-MIS5-Q 

0
.0

7
 

<
0
.0

0
0
0
1
 

0
.0

0
7
 

<
0
.0

0
0
0
1
 

0
.4

7
1
9
 

0
.0

0
0
0
6
 

 

0
.6

4
7
1
 

0
.6

0
3
3
 

0
.0

7
 

0
.1

7
1
9
 

0
.0

7
 

PP9C-MIS5-Q 

0
.0

0
0
9
8
 

<
0
.0

0
0
0
1
 

0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

5
9
 

<
0
.0

0
0
0
1
 

0
.6

4
7
1
 

 

0
.8

8
7
4
 

0
.0

0
3
 

0
.0

1
 

0
.0

0
3
 



646 
 

PP13B-MIS5-Q 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.6

0
3
3
 

0
.8

8
7
4
 

 

0
.0

0
0
2
 

<
0
.0

0
0
0
1
 

0
.0

0
0
2
 

PP13B-MIS5-S 

0
.9

2
3
8
 

<
0
.0

0
0
0
1
 

0
.2

3
9
2
 

<
0
.0

0
0
0
1
 

0
.0

3
5
 

0
.0

0
3
 

0
.0

7
 

0
.0

0
3
 

0
.0

0
0
2
 

 

0
.4

5
0
0
 

0
.9

0
6
8
 

PP13B-MIS6-Q 

0
.2

1
9
0
 

<
0
.0

0
0
0
1
 

0
.0

0
0
0
1
 

<
0
.0

0
0
0
1
 

0
.0

0
2
9
 

<
0
.0

0
0
0
1
 

0
.1

7
1
9
 

0
.0

1
 

<
0
.0

0
0
0
1
 

0
.4

5
0
0
 

 

0
.3

6
7
6
 

PP13B-MIS6-S 

0
.8

3
2
9
 

<
0
.0

0
0
0
1
 

0
.3

0
3
2
 

<
0
.0

0
0
0
1
 

0
.0

3
 

0
.0

0
7
 

0
.0

7
 

0
.0

0
3
 

0
.0

0
0
2
 

0
.9

0
6
8
 

0
.3

6
7
6
 

 

Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 

 

By Stratigraphic Aggregate/Unit 

 

Raw Material Type 

 

PP13B 

 

Table B19. Count of raw material type at PP13B by stratigraphic aggregate. 
Stratigraphic 
Aggregate/Unit 

Other 
(n=) 

Chert or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

LB Sand  1 3 1 43 22 287 356 

DB Sand 2 3 0 22 3 221 249 

LB Sand  2 1 0 9 5 42 57 

DB Sand 3 13 3 96 13 549 674 

Shelly Brown 
Sand 0 1 30 3 165 199 

Roof Spall-Upper 7 2 88 21 846 964 

Roof Spall-Lower 4 0 59 7 233 303 

LBG Sand 1 2 1 37 5 419 464 

LC-MSA Upper 1 1 2 9 46 59 

LC-MSA Middle 0 2 20 20 142 184 

DB Sand 4a 0 0 2 0 34 36 

LBG  Sand 2 2 1 10 0 73 86 

DB Sand 4b 0 1 6 3 37 47 

DB Sand  4c 0 0 2 0 20 22 

LC-MSA Lower 12 4 226 74 1206 1522 

LB Silt-G 0 0 0 0 16 16 

LB Silt 2 0 7 1 81 91 
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Total (n=) 50 17 659 186 4417 5329 

 

PP9B and PP9C 

 

Table B20. Count of raw material type at PP9B and PP9C. 

Cave site Other (n=) Chert or Chalcedony (n=) Quartz (n=) Silcrete (n=) Quartzite (n=) Total (n=) 

PP9B 1 0 15 0 52 68 

PP9C 0 0 19 4 63 86 

Total (n=) 1 0 34 4 115 154 

 

PP5-6 

 

Table B21. Count of raw material type at PP5-6 by stratigraphic aggregate. 

Stratigraphic Aggregate Other Chert or Chalcedony Quartz Silcrete Quartzite Total 

RBSR 18 67 26 259 182 552 

NWR 1 4 10 111 149 275 

BBCSR/BAS 100 99 165 2015 930 3309 

OBS2 11 200 379 473 131 1194 

SGS 5 31 37 198 68 339 

OBS1 5 60 318 190 152 725 

SADBS Upper 19 102 136 2990 536 3783 

SADBS Lower 5 12 12 131 134 294 

ALBS 5 6 2 49 254 316 

LBSR 45 49 164 628 1925 2811 

YBSR 38 19 4 143 76 280 

Total (n=) 252 649 1253 7187 4537 13878 

 

PP5-6 sub-aggregate raw material frequencies 

 

Table B22. Count of raw material type at PP5-6 by MIS5 sub-aggregates. 

Stratigraphic 
Aggregate Sub-aggregate 

Other 
(n=) 

Chert or 
Chalcedon

y (n=) 
Quartz 

(n=) 
Silcrete 

(n=) 
Quartzite 

(n=) 
Total 
(n=) 

LBSR Jed 2 8 11 3 20 1028 1070 

LBSR Jed 1 0 2 3 5 112 122 

LBSR Ludumo Red 6 0 1 12 131 150 

LBSR Ludumo Sand and Roofspall 1 0 1 1 19 22 

LBSR Martin Red 0 0 0 0 13 13 

LBSR Hope Red 4 0 0 19 5 28 

LBSR Lwando Shell 3 0 0 2 61 66 

LBSR Aaron Sand and Roofspall 2 1 0 7 23 33 

LBSR Kyle Shell 0 0 0 105 17 122 

LBSR Adrian Sand and Roofspall 2 0 1 15 9 27 

LBSR Adrian Shell 1 1 4 3 28 37 
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LBSR Leba Shell 2 5 14 5 74 100 

LBSR Cobus Shell 0 0 3 1 6 10 

LBSR Luke Sand and Roofspall 0 0 0 1 45 46 

LBSR Luke Shell 3 0 6 3 71 83 

LBSR Sondra Sand and Roofspall 3 0 0 40 24 67 

LBSR Sondra Red 0 2 5 68 32 107 

LBSR Logan Sand and Roofspall 1 1 2 10 41 20 74 

LBSR Logan Sand and Roofspall 2 0 0 3 73 6 82 

LBSR Logan Red 1 9 36 23 45 114 

LBSR Arnold Sand and Roofspall 0 1 1 0 19 21 

LBSR Arnold Red 2 0 27 1 19 49 

LBSR Simen Sand and Roofspall 1 0 11 3 7 22 

LBSR Simen Red 0 1 12 31 26 70 

LBSR Tove Sand and Roofspall 0 2 6 46 8 62 

LBSR Tove Red 4 10 7 94 60 175 

YBSR Lee 0 0 0 6 8 14 

YBSR Meghan Sand and Roofspall 3 0 0 5 9 17 

YBSR Elizabeth Sand and Roofspall 17 6 2 99 25 149 

YBSR Bryant 7 9 1 12 23 52 

YBSR Kirsty 11 3 1 16 7 38 

Total (n=)   82 65 158 757 1980 3042 

 

Table B23. Count of raw material type at PP5-6 by MIS4 sub-aggregates. 

Stratigraphic 
Aggregate Sub-aggregate 

Other 
(n=) 

Chert or 
Chalcedony 

(n=) 
Quartz 

(n=) 
Silcrete 

(n=) 
Quartzite 

(n=) 
Total 
(n=) 

OBS2 Emma Sand (n=53) 0 6 9 31 7 53 

OBS2 Andy (n=135) 0 17 89 17 12 135 

OBS2 Elizabeth (n=97) 1 19 24 35 18 97 

OBS2 Kevin Sand (n=47) 0 47 0 0 0 47 

OBS2 Sarah (n=488) 5 104 215 104 60 488 

OBS2 Hans (n=219) 3 2 10 194 10 219 

OBS2 Chantal (n=20) 0 0 2 18 0 20 

OBS2 Alicen (=99) 1 4 12 67 15 99 

OBS2 Josh (n=33) 1 0 17 6 9 33 

SGS Zuri Upper (n=37) 2 3 6 11 15 37 

SGS Zuri Lower (n=68) 0 5 1 53 9 68 

SGS Jinga Upper (n=56) 1 9 8 24 14 56 

SGS Jinga Middle (n=40) 1 1 4 28 6 40 

SGS Jinga Lower Dark 3 (n=120) 1 8 15 76 20 120 

SGS Jinga Lower Dark 2 (n=16) 0 5 2 5 4 16 

OBS1 Lizelle 2 (n=35) 2 2 10 6 15 35 

OBS1 Lizelle 1 (n=20) 0 4 7 3 6 20 

OBS1 Orfer (n=114) 0 15 38 20 41 114 
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OBS1 Chris (n=55) 1 11 14 12 17 55 

OBS1 Celeste (n=87) 1 5 35 4 42 87 

OBS1 Sasha (n=33) 1 1 22 8 1 33 

OBS1 Spencer (n=301) 0 16 172 86 27 301 

OBS1 Joanne 1 (n=77) 0 6 18 51 2 77 

SADBS Upper Joanne (n=372) 2 15 39 254 62 372 

SADBS Upper Bettina (n=339) 4 22 17 260 36 339 

SADBS Upper House (n=92) 0 2 17 53 20 92 

SADBS Upper Kim (n=58) 0 1 5 46 6 58 

SADBS Upper Enrico (n=161) 1 11 10 120 19 161 

SADBS Upper Gert (n=717) 6 22 26 562 101 717 

SADBS Upper Holly (n=193) 0 3 4 139 47 193 

SADBS Upper Sydney (n=1492) 6 26 14 1224 222 1492 

SADBS Upper Thandesizwe (n=356) 0 0 4 331 21 356 

SADBS Lower Erich (n=79) 1 0 0 58 20 79 

SADBS Lower Jocelyn (n=215) 4 12 12 73 114 215 

ALBS Conrad Sand (n=19) 1 3 0 13 2 19 

ALBS Conrad Shell (n=54) 1 2 1 22 28 54 

ALBS Conrad Cobble and Sand (n=243) 3 1 1 14 224 243 

Total (n=)   50 410 880 4028 1272 6640 

 

Table B24. Raw material type tallied by artifact mass (kg) for PP5-6 DBCS sub-

aggregates. 
Sub-
aggregate 

Other 
(kg) 

Chert or Chalcedony 
(kg) 

Quartz 
(kg) 

Silcrete 
(kg) 

Quartzite 
(kg) 

Total 
(kg) 

Ollie 0.000 0.004 0.000 0.066 0.015 0.085 

Leonides 0.000 0.002 0.001 0.010 0.001 0.013 

Miller 0.040 0.121 0.031 1.087 1.683 2.962 

Colleen 0.000 0.002 0.001 0.011 0.012 0.025 

Sorel 0.011 0.023 0.005 0.366 0.246 0.652 

Coco 0.002 0.044 0.007 0.195 0.258 0.507 

Sam 0.002 0.008 0.026 0.029 0.046 0.110 

Quinn Upper 0.018 0.019 0.004 0.104 0.225 0.371 

Quinn Lower B 0.017 0.054 0.017 0.061 0.316 0.465 

Total (kg) 0.090 0.275 0.092 1.931 2.802 5.191 

 

Table B25. Count of raw material type for PP5-6 DBCS sub-aggregates. 
Sub-
aggregate 

Other 
(n=) 

Chert or Chalcedony 
(n=) 

Quartz 
(n=) 

Silcrete 
(n=) 

Quartzite 
(n=) 

Total 
(n=) 

Ollie 0 8 0 89 4 101 

Leonides 0 2 2 14 1 19 

Miller 18 105 37 791 168 1119 

Colleen 0 1 2 18 4 25 

Sorel 7 28 11 241 78 365 
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Coco 2 40 14 154 37 247 

Sam 1 23 31 26 8 89 

Quinn Upper 7 33 8 85 35 168 

Quinn Lower B 7 56 16 60 44 183 

Total (n=) 42 296 121 1478 379 2316 

 

Table B26. Count of raw material type at PP5-6 by MIS3 sub-aggregates. 

Stratigraphic Aggregate Sub-aggregate 
Other 
(n=) 

Chert or 
Chalcedony 

(n=) 
Quartz 

(n=) 
Silcrete 

(n=) 
Quartzite 

(n=) 
Total 
(n=) 

RBSR Denise 0 0 4 2 20 26 

RBSR Takis 18 67 22 256 162 523 

NWR 
Dark Brown 
Silty Sand 0 1 3 84 119 207 

NWR 

Compact 
Brown and Red 
Sand 1 1 5 23 27 57 

NWR 

Coarse 
Grained Dark 
Brown Sand 0 2 2 4 3 11 

BBCSR/BAS Ellis 52 6 12 1258 539 1867 

BBCSR/BAS Nkosi 5 2 8 32 131 178 

BBCSR/BAS Sydwell 2 0 4 29 73 108 

BBCSR/BAS Emily 19 35 95 278 94 521 

BBCSR/BAS James 1 1 13 9 12 36 

BBCSR/BAS Zenobia 21 55 33 409 81 599 

Total (n=)   119 170 201 2384 1261 4133 

 

Technological length 

 

PP13B 

 

Table B27. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on all raw materials at PP13B by stratigraphic aggregate. 
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Table B28. Technological length (mm) test results for all complete flakes and blades 

made on all raw materials at PP13B by stratigraphic aggregate. 

All raw materials: Technological Length 
(mm) 

Total n = 
1914  

Kruskal-Wallis H: 
199 

p (Significant ≤0.05) 
<0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). 
 

PP9B and PP9C 

 

Table B29. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on all raw materials by cave site. 

  PP9B-MIS5 PP9C-MIS5 

N 24 43 

Min 11 6 

Max 101 104 

Mean 41.71 40.98 

Std. error 4.24 3.18 

Variance 431.52 435.26 

Stand. dev 20.77 20.86 

Median 44 36 

25 prcntil 23.5 25 

75 prcntil 57.75 53 
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Table B30. Technological length (mm) test results for all complete flakes and blades 

made on all raw materials by cave site. 

All Raw Materials: Technological Length 
(mm) 

Total n = 
67 

Mann-Whitney U: 
493.5 

p (Significant ≤0.05) 
0.77352 

Uncorrected Mann-Whitney pairwise comparisons - (p): 

Stratigraphic aggregate/Unit PP9B-MIS5 PP9C-MIS5   

PP9B-MIS5   0.7735   

PP9C-MIS5 0.7735     

 

PP5-6 

 

Table B31. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on all raw materials at PP5-6 by stratigraphic aggregate 

  RBSR NWR BCCSR OBS2 SGS OBS1 
SADBS 
Upper 

SADBS 
Lower ALBS LBSR YBSR 

N 180 77 476 237 85 188 1078 72 108 1015 117 

Min 1.6 6 2.5 1.4 3.0 3.5 5.0 8.0 8.0 5.0 2.1 

Max 111.4 82 143.0 53.6 53.0 72.0 72.0 68.0 98.0 117.7 76.8 

Mean 28.7 26.8 22.1 16.6 20.3 20.4 19.3 25.1 29.3 31.5 26.8 

Std. error 1.4 1.9 0.7 0.6 1.1 0.9 0.3 1.6 1.5 0.5 1.3 

Variance 341.2 286.1 235.9 96.3 110.1 138.5 87.8 173.6 233.0 263.5 195.3 

Stand. dev 18.5 16.9 15.4 9.8 10.5 11.8 9.4 13.2 15.3 16.2 14.0 

Median 25.0 21 17.7 14.2 18.5 18.0 17.0 20.0 27.6 27.8 25.1 

25 prcntil 17.0 15.5 13.1 9.7 11.4 12.0 13.0 14.0 18.0 19.3 16.5 

75 prcntil 32.7 34 26.0 21.1 26.5 26.0 24.0 34.8 39.0 40.5 31.9 
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Table B32. Technological length (mm) test results for all complete flakes and blades 

made on all raw materials at PP5-6 by stratigraphic aggregate. 

All raw materials: Technological 
Length (mm) Total n = 3633  Kruskal-Wallis H: 564.4  p (Significant ≤0.05) <0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). 

 

Technological length – quartzite versus silcrete 

 

PP13B 

 

Table B33. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on quartzite (Q) and silcrete (S) at PP13B by stratigraphic aggregate. 
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Table B34. Technological length (mm) test results for all complete flakes and blades 

made on quartzite (Q) and silcrete (S) at PP13B by stratigraphic aggregate. 

Quartzite and Silcrete: Technological 
Length (mm) 

Total n = 
1721 

Kruskal-Wallis H: 
185.8 

p (Significant ≤0.05) 
<0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 

 

PP5-6 

 

Table B35. Technological length (mm) descriptive statistics for all complete flakes and 

blades made on quartzite (Q) and silcrete (S) at PP5-6 by stratigraphic aggregate. 
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Table B36. Technological length (mm) test results for all complete flakes and blades 

made on quartzite (Q) and silcrete (S) at PP5-6 by stratigraphic aggregate. 

Quartzite and Silcrete: Technological Length 
(mm) 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 

 

Cutting edge per mass 

 

PP13B 

 

Table B37. Cutting edge / Mass (CE/M) descriptive statistics for all raw materials at 

PP13B by stratigraphic aggregate. 
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Table B38. Cutting edge / Mass (CE/M) test results for all raw materials at PP13B by 

stratigraphic aggregate. 

All raw materials: Cutting Edge / 
Mass values  Total n = 1896 Kruskal-Wallis H: 164.1   p (Significant ≤0.05) <0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p): 
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Values shaded in grey are significant (≤0.05). 
 

PP9B and PP9C 

 

Table B39. Cutting edge / Mass (CE/M) descriptive statistics for all raw materials at PP9. 

  PP9B PP9C 

N 24 43 

Min 3.45 3.43 

Max 130 130 

Mean 24.58 17.81 

Std. error 6.78 3.12 

Variance 1102.31 419.12 

Stand. dev 33.20 20.47 

Median 11.01 13.12 

25 prcntil 8.17 7.73 

75 prcntil 22.94 19.13 

 

Table B40. Cutting edge / Mass (CE/M) test results for all raw materials at PP9B and 

PP9C. 

All raw materials: Cutting Edge / Mass 
values 

Total n = 
67 

Mann-Whitney U: 
506.5 

p (Significant ≤0.05) 
0.90631 

Uncorrected Mann-Whitney pairwise comparisons - (p): 

Cave site PP9B PP9C   

PP9B   0.906   

PP9C 0.906     
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PP5-6 

 

Table B41. Cutting edge / Mass (CE/M) descriptive statistics for all raw materials at 

PP5-6 by stratigraphic aggregate 
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Table B42. Cutting edge / Mass (CE/M) test results for all raw materials at PP5-6 by 

stratigraphic aggregate 

All raw materials: Cutting Edge / 
Mass Values Total n = 3622  Kruskal-Wallis H: 844.9 p (Significant ≤0.05) <0.00001 
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Values shaded in grey are significant (≤0.05). 
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Table B43. Cutting edge / Mass (CE/M) descriptive statistics for quartzite and silcrete at 

PP13B by stratigraphic aggregate. 
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Table B44. Cutting edge / Mass (CE/M) test results for quartzite and silcrete at PP13B by 

stratigraphic aggregate. 

Quartzite and Silcrete: Cutting Edge / 
Mass values 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete. 
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PP5-6 

 

Table B45. Cutting edge / Mass (CE/M) descriptive statistics for quartzite and silcrete at 

PP5-6 by stratigraphic aggregate. 
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Table B46. Cutting edge / Mass (CE/M) test results for quartzite and silcrete at PP5-6 by 

stratigraphic aggregate. 
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Values shaded in grey are significant (≤0.05). Q=Quartzite; S=Silcrete 
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CHAPTER 8: OAM HYPOTHSIS EVALUATION AND SENSITIVY ANALYSIS 

 

Hypothesis 1 Evaluation 

 

Hypothesis 1 – Same-day return outcomes 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

Table B47. Comparison between ranked model frequencies from same-day return 

simulations of MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked 

MIS4 archaeological frequencies from PP5-6. 

Raw material 
MIS4 without a Paleo-Agulhas  

plain silcrete source* MIS4-PP5-6 

Quartz 1 2 

Silcrete 3 1 

Quartzite 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B48. Comparison between ranked model frequencies from same-day return 

simulations of MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked 

MIS4 archaeological frequencies from PP5-6. 

Raw material 
MIS4 with a Paleo-Agulhas  

plain silcrete source* MIS4-PP5-6 

Quartz 1 2 

Silcrete 2 1 

Quartzite 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS5 

 

Table B49. Comparison between ranked model frequencies from same-day return 

simulations of MIS5 conditions and ranked MIS5 archaeological frequencies from PP5-6, 

PP13B, PP9B, and PP9C. 

Raw material MIS5 conditions* MIS5-PP5-6 MIS5-PP13B MIS5-All PP 

Quartz 1 3 2 3 

Silcrete 3 2 2 2 

Quartzite 2 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B50. Comparison between ranked model frequencies from same-day return 

simulations of MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked 

MIS6 archaeological frequencies from PP13B. 

Raw material 
MIS6 without a Paleo-Agulhas  

plain silcrete source* MIS6-PP13B 

Quartz 1 2 

Silcrete 3 2 

Quartzite 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B51. Comparison between ranked model frequencies from same-day return 

simulations of MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked 

MIS6 archaeological frequencies from PP13B. 

Raw material 
MIS6 with a Paleo-Agulhas  

plain silcrete source* MIS6-PP13B 

Quartz 1 2 

Silcrete 2 2 

Quartzite 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

OFAT1 modeling outcomes - Effect of increased movement budget 

 

Table B52. Comparison between ranked model frequencies from OFAT1 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6.   

  MIS4 without a Paleo-Agulhas plain silcrete source* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 1 2 2 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 2 2 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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Table B53. Comparison between ranked model frequencies from OFAT1 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  MIS4 with a Paleo-Agulhas plain silcrete source* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 2 2 3 3 2 

Silcrete 2 2 1 1 1 1 1 

Quartzite 3 3 3 3 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

TableB54. Comparison between ranked model frequencies from OFAT1 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP5-6, PP13B, 

PP9B, and PP9C. 

  MIS5 conditions* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

MIS5-
PP5-6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 2 3 2 3 

Silcrete 3 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

TableB55. Comparison between ranked model frequencies from OFAT1 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  MIS6 without a Paleo-Agulhas plain silcrete source Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

Table B56. Comparison between ranked model frequencies from OFAT1 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  MIS6 with a Paleo-Agulhas plain silcrete source Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 3 3 3 2 

Silcrete 2 2 2 2 2 2 2 

Quartzite 3 3 3 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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Is random walk a realistic raw material procurement strategy? 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

Table B57. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

n (number of simulated assemblages) 1000 1000 1000 1000 1000 1000 

First Quartile 0.000000 0.000000 0.000000 0.000000 0.000532 0.001847 

Min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Median 0.000000 0.000989 0.000199 0.000599 0.001531 0.003145 

Mean 0.002456 0.002011 0.001048 0.001192 0.001943 0.003598 

Max 0.031341 0.027695 0.008973 0.009980 0.012646 0.013080 

Third Quartile 0.003918 0.002967 0.001595 0.001896 0.002862 0.005130 

SD 0.003726 0.003043 0.001560 0.001510 0.001820 0.002315 

SE 0.000118 0.000096 0.000049 0.000048 0.000058 0.000073 

Margin of error (95% CI) 0.000231 0.000189 0.000097 0.000094 0.000113 0.000144 

Upper 95% CI 0.002687 0.002199 0.001145 0.001285 0.002055 0.003741 

Lower 95% CI 0.002225 0.001822 0.000951 0.001098 0.001830 0.003454 

 

Table B58. Frequency (%) of time without raw material in toolkit test results during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

MIS4 without a Paleo-Agulhas Plain Silcrete 
Source-Frequency (%) of time without raw 

material in toolkit 
Total n 
=6000 

Kruskal-Wallis H: 
926.4  p (Significant ≤0.05) <0.00001 

Uncorrected Mann-Whitney pairwise comparisons - (p):     

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

TT=50   0.5127 0.0001 0.2390 <0.00001 <0.00001 

TT=100 0.5127   0.00001 0.1789 <0.00001 <0.00001 

TT=500 0.0001 0.00001   0.00001 <0.00001 <0.00001 

TT=1000 0.2390 0.1789 0.00001   <0.00001 <0.00001 

TT=1500 <0.00001 <0.00001 <0.00001 <0.00001   <0.00001 

TT=2000 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001   

Values shaded in grey are significant (≤0.05). 
 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B59. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

n (number of simulated assemblages) 1000 1000 1000 1000 1000 1000 

First Quartile 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Median 0.000000 0.000000 0.000000 0.000000 0.000067 0.000200 

Mean 0.001579 0.001153 0.000421 0.000347 0.000375 0.000642 

Max 0.015671 0.012858 0.008175 0.004990 0.005591 0.006241 

Third Quartile 0.001959 0.001978 0.000399 0.000299 0.000399 0.000949 

SD 0.002372 0.001835 0.000829 0.000687 0.000680 0.000904 

SE 0.000075 0.000058 0.000026 0.000022 0.000022 0.000029 

Margin of error (95% CI) 0.000147 0.000114 0.000051 0.000043 0.000042 0.000056 

Upper 95% CI 0.001726 0.001267 0.000473 0.000390 0.000417 0.000698 

Lower 95% CI 0.001432 0.001040 0.000370 0.000305 0.000333 0.000586 

 

Table B60. Frequency (%) of time without raw material in toolkit test results during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

MIS4 with a Paleo-Agulhas Plain Silcrete 
Source-Frequency (%) of time without raw 

material in toolkit 
Total n = 

6000 
Kruskal-Wallis H: 

150.1 p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p):     

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

TT=50   0.2448 <0.00001 <0.00001 0.00001 0.6866 

TT=100 0.2448   <0.00001 <0.00001 0.00010 0.053 

TT=500 <0.00001 <0.00001   0.6519 0.008 <0.00001 

TT=1000 <0.00001 <0.00001 0.6519   0.06 <0.00001 

TT=1500 0.00001 0.0001 0.008 0.06   <0.00001 

TT=2000 0.6866 0.053 <0.00001 <0.00001 <0.00001   

Values shaded in grey are significant (≤0.05). 
 

MIS5 

 

Table B61. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS5 conditions. 

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

n (number of simulated assemblages) 1000 1000 1000 1000 1000 1000 

First Quartile 0.000000 0.000000 0.000000 0.005589 0.025025 0.058812 

Min 0.000000 0.000000 0.000000 0.000000 0.009651 0.030255 

Median 0.001959 0.000989 0.000399 0.008982 0.030882 0.067349 

Mean 0.002662 0.002074 0.001628 0.009980 0.031737 0.067671 

Max 0.021547 0.020771 0.016550 0.036228 0.069484 0.105791 

Third Quartile 0.003918 0.002967 0.002592 0.013373 0.037854 0.075811 

SD 0.003598 0.003016 0.002352 0.005815 0.009369 0.012073 

SE 0.000114 0.000095 0.000074 0.000184 0.000296 0.000382 

Margin of error (95% CI) 0.000223 0.000187 0.000146 0.000360 0.000581 0.000748 

Upper 95% CI 0.002885 0.002261 0.001774 0.010340 0.032317 0.068419 

Lower 95% CI 0.002439 0.001887 0.001482 0.009620 0.031156 0.066923 
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Table B62. Frequency (%) of time without raw material in toolkit test results during 

MIS5 conditions. 

MIS5-Frequency (%) of time without raw 
material in toolkit 

Total n = 
6000 

Kruskal-Wallis H: 
4824  p (Significant ≤0.05) <0.00001  

Uncorrected Mann-Whitney pairwise comparisons - (p):     

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

TT=50   0.1020 0.003 <0.00001 <0.00001 <0.00001 

TT=100 0.1020   0.6146 <0.00001 <0.00001 <0.00001 

TT=500 0.003 0.6146   <0.00001 <0.00001 <0.00001 

TT=1000 <0.00001 <0.00001 <0.00001   <0.00001 <0.00001 

TT=1500 <0.00001 <0.00001 <0.00001 <0.00001   <0.00001 

TT=2000 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001   

Values shaded in grey are significant (≤0.05). 
 

MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B63. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

n (number of simulated assemblages) 1000 1000 1000 1000 1000 1000 

First Quartile 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Mean 0.001005 0.000759 0.000342 0.000189 0.000168 0.000139 

Max 0.013712 0.007913 0.005184 0.003094 0.002862 0.001997 

Third Quartile 0.001959 0.000989 0.000399 0.000200 0.000133 0.000100 

SD 0.001824 0.001237 0.000572 0.000393 0.000355 0.000299 

SE 0.000058 0.000039 0.000018 0.000012 0.000011 0.000009 

Margin of error (95% CI) 0.000113 0.000077 0.000035 0.000024 0.000022 0.000019 

Upper 95% CI 0.001118 0.000835 0.000377 0.000213 0.000190 0.000157 

Lower 95% CI 0.000892 0.000682 0.000307 0.000164 0.000146 0.000120 

 

Table B64. Frequency (%) of time without raw material in toolkit test results during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

MIS6 without a Paleo-Agulhas Plain 
Silcrete Source-Frequency (%) of time 

without raw material in toolkit 
Total n = 

6000 
Kruskal-Wallis H: 

42.49 p (Significant ≤0.05) <0.00001   

Uncorrected Mann-Whitney pairwise comparisons - (p):     

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

TT=50   0.1297 0.7004 0.059 0.3396 0.4555 

TT=100 0.1297   0.026 <0.00001 <0.00001 <0.00001 

TT=500 0.7004 0.026   <0.00001 <0.00001 <0.00001 

TT=1000 0.059 <0.00001 <0.00001   0.8326 0.3708 
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TT=1500 0.3396 <0.00001 <0.00001 0.8326   0.2820 

TT=2000 0.4555 <0.00001 <0.00001 0.3708 0.2820   

Values shaded in grey are significant (≤0.05). 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B65. Frequency (%) of time without raw materials in toolkit descriptive statistics 

during MIS6 conditions witha Paleo-Agulhas plain silcrete source. 

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

n (number of simulated assemblages) 1000 1000 1000 1000 1000 1000 

First Quartile 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Mean 0.000803 0.000575 0.000208 0.000140 0.000133 0.000096 

Max 0.011753 0.008902 0.003390 0.002894 0.003594 0.001548 

Third Quartile 0.001959 0.000989 0.000199 0.000100 0.000067 0.000050 

SD 0.001543 0.001062 0.000446 0.000332 0.000325 0.000245 

SE 0.000049 0.000034 0.000014 0.000010 0.000010 0.000008 

Margin of error (95% CI) 0.000096 0.000066 0.000028 0.000021 0.000020 0.000015 

Upper 95% CI 0.000899 0.000640 0.000236 0.000160 0.000153 0.000111 

Lower 95% CI 0.000707 0.000509 0.000180 0.000119 0.000113 0.000081 

 

Table B66. Frequency (%) of time without raw material in toolkit test results during 

MIS6 conditions with a Paleo-Agulhas plain silcrete source. 

MIS6 with a Paleo-Agulhas Plain Silcrete 
Source-Frequency (%) of time without raw 

material in toolkit 
Total n 
=6000 

Kruskal-Wallis H: 
15.46 p (Significant ≤0.05) <0.00001   

Uncorrected Mann-Whitney pairwise comparisons - (p):     

  TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

TT=50   0.4512 0.1011 0.1464 0.6343 0.2667 

TT=100 0.4512   0.0005 0.00007 0.002 0.00009 

TT=500 0.1011 0.0005   0.2828 0.6290 0.047 

TT=1000 0.1464 0.00007 0.2828   0.7497 0.2943 

TT=1500 0.6343 0.002 0.6290 0.7497   0.01838 

TT=2000 0.2667 0.00009 0.047 0.2943 0.01838   

Values shaded in grey are significant (≤0.05). 
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OFAT 2 - Pinnacle Point only one of three localities to return too 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

Table B67. Summary statistics and test results for OFAT2 modeling  MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 76.83 31.93 23.18 18.74 16.27 1.21 

Min 0.00 31.84 20.05 15.79 10.96 8.84 0.00 

Median 100.00 83.52 35.29 25.65 21.31 18.60 3.73 

Mean 99.73 82.22 35.25 25.79 21.31 18.62 8.39 

Max 100.00 100.00 48.69 40.24 32.32 28.79 66.11 

Third Quartile 100.00 88.88 38.29 28.18 23.72 20.89 10.53 

SD 3.30 9.54 4.75 3.71 3.52 3.42 11.83 

SE 0.10 0.30 0.15 0.12 0.11 0.11 1.67* 

Margin of error (95% 
CI) 0.20 0.59 0.29 0.23 0.22 0.21 3.28 

Upper 95% CI 99.93 82.81 35.54 26.02 21.53 18.84 11.66* 

Lower 95% CI 99.53 81.63 34.95 25.56 21.09 18.41 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 3.05 4.63 5.70 6.32 13.79 

Min 0.00 0.00 0.00 1.06 0.56 0.00 0.00 

Median 0.00 0.00 3.94 5.81 6.94 7.84 39.13 

Mean 0.00 0.29 4.12 5.91 7.11 7.91 40.00 

Max 0.00 6.53 11.06 12.24 15.50 15.82 96.55 

Third Quartile 0.00 0.36 5.09 7.07 8.43 9.37 62.77 

SD 0.00 0.64 1.65 1.90 2.10 2.27 27.52 

SE 0.00 0.02 0.05 0.06 0.07 0.07 4.01* 

Margin of error (95% 
CI) 0.00 0.04 0.10 0.12 0.13 0.14 7.85 

Upper 95% CI 0.00 0.33 4.22 6.03 7.24 8.05 47.85* 

Lower 95% CI 0.00 0.25 4.02 5.80 6.98 7.77 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 10.80 57.58 65.61 68.93 70.87 5.19 

Min 0.00 0.00 47.14 55.96 58.29 61.59 0.00 

Median 0.00 16.12 60.65 68.37 71.66 73.43 43.00 
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Mean 0.17 17.49 60.64 68.30 71.58 73.46 44.63 

Max 11.11 65.91 75.00 80.11 81.82 85.21 96.45 

Third Quartile 0.00 22.77 63.89 70.87 74.35 76.15 68.24 

SD 0.96 9.39 4.71 3.80 3.83 3.72 25.54 

SE 0.03 0.30 0.15 0.12 0.12 0.12 3.71* 

Margin of error (95% 
CI) 0.06 0.58 0.29 0.24 0.24 0.23 7.27 

Upper 95% CI 0.23 18.07 60.93 68.53 71.82 73.69 51.90* 

Lower 95% CI 0.11 16.91 60.34 68.06 71.35 73.23 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B68. Comparison between ranked model frequencies from OFAT2 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  MIS4 without a Paleo-Agulhas plain silcrete source* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 3 1 

Quartzite 2 2 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B69. Summary statistics and test results for OFAT2 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 66.15 46.08 16.34 11.49 9.35 7.76 1.21 

Min 0.00 0.00 8.40 5.97 3.54 3.03 0.00 

Median 68.59 51.24 18.37 13.49 10.88 9.32 3.73 

Mean 68.35 50.60 18.56 13.45 11.04 9.50 8.39 

Max 100.00 100.00 29.22 23.67 20.38 18.38 66.11 

Third Quartile 71.02 55.51 20.68 15.27 12.63 11.05 10.53 

SD 5.82 8.55 3.27 2.75 2.51 2.36 11.83 

SE 0.18 0.27 0.10 0.09 0.08 0.07 1.67* 

Margin of error (95% 
CI) 0.36 0.53 0.20 0.17 0.16 0.15 3.28 

Upper 95% CI 68.71 51.13 18.77 13.62 11.19 9.65 11.66* 

Lower 95% CI 67.99 50.07 18.36 13.28 10.88 9.36 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 1000 1000 1000 1000 1000 1000 46 
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assemblages) 

First Quartile 28.81 28.95 29.52 30.24 30.07 29.61 13.79 

Min 0.00 0.00 19.70 22.24 20.84 19.49 0.00 

Median 31.28 33.53 32.03 32.82 32.72 32.35 39.13 

Mean 31.25 32.79 32.15 32.81 32.71 32.44 40.00 

Max 71.23 100.00 44.97 44.35 44.62 44.60 96.55 

Third Quartile 33.69 37.07 34.82 35.34 35.22 35.19 62.77 

SD 5.16 7.33 3.82 3.77 3.89 3.90 27.52 

SE 0.16 0.23 0.12 0.12 0.12 0.12 4.01* 

Margin of error (95% 
CI) 0.32 0.45 0.24 0.23 0.24 0.24 7.85 

Upper 95% CI 31.57 33.25 32.39 33.05 32.95 32.68 47.85* 

Lower 95% CI 30.93 32.34 31.92 32.58 32.46 32.20 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 10.24 46.19 51.03 53.23 55.24 5.19 

Min 0.00 0.00 37.23 42.03 44.81 44.86 0.00 

Median 0.00 14.81 49.23 53.70 56.30 58.06 43.00 

Mean 0.20 16.30 49.28 53.74 56.26 58.06 44.63 

Max 44.44 75.00 62.79 67.02 69.14 68.99 96.45 

Third Quartile 0.00 20.90 52.28 56.27 59.16 61.04 68.24 

SD 1.75 8.85 4.45 4.06 4.20 4.11 25.54 

SE 0.06 0.28 0.14 0.13 0.13 0.13 3.71* 

Margin of error (95% 
CI) 0.11 0.55 0.28 0.25 0.26 0.26 7.27 

Upper 95% CI 0.31 16.85 49.56 53.99 56.52 58.31 51.90* 

Lower 95% CI 0.09 15.75 49.01 53.49 56.00 57.80 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B70. Comparison between ranked model frequencies from OFAT2 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  MIS4 with a Paleo-Agulhas plain silcrete source* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 3 3 3 3 2 

Silcrete 2 2 2 2 2 2 1 

Quartzite 3 3 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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MIS5 

 

Table B71. Summary statistics and test results for OFAT2 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 82.79 70.10 40.19 32.75 28.09 24.92 0.00 1.71 0.10 

Min 0.00 44.40 29.91 22.69 20.36 17.69 0.00 0.00 0.00 

Median 84.39 73.91 42.58 35.24 30.10 27.16 0.89 2.15 2.65 

Mean 84.12 73.50 42.60 35.14 30.26 27.17 3.53 4.41 4.61 

Max 100.00 100.00 54.30 47.46 41.37 38.95 24.87 9.39 24.87 

Third 
Quartile 86.00 77.40 45.30 37.41 32.37 29.28 3.92 9.33 6.95 

SD 5.11 6.47 3.81 3.43 3.25 3.32 5.94 3.91 6.03 

SE 0.16 0.20 0.12 0.11 0.10 0.10 1.03 1.40 0.90* 

Margin of 
error (95% 
CI) 0.32 0.40 0.24 0.21 0.20 0.21 2.03 2.74 1.76 

Upper 95% 
CI 84.43 73.90 42.84 35.35 30.46 27.38 5.56 7.15 6.37* 

Lower 95% 
CI 83.80 73.10 42.36 34.93 30.05 26.96 1.51 1.68 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.08 0.10 13.35 17.64 20.13 22.09 1.45 0.00 0.95 

Min 0.00 0.00 7.71 10.61 12.97 15.29 0.00 0.00 0.00 

Median 0.09 0.14 15.25 19.61 22.41 24.11 10.19 0.00 6.44 

Mean 0.09 1.32 15.45 19.74 22.49 24.25 16.97 1.09 13.05 

Max 0.89 43.35 27.15 34.05 32.97 35.67 64.83 5.01 64.83 

Third 
Quartile 0.10 1.84 17.36 21.66 24.67 26.34 32.95 2.55 21.21 

SD 0.03 2.51 3.11 3.14 3.26 3.23 17.85 1.97 16.45 

SE 0.00 0.08 0.10 0.10 0.10 0.10 3.14 0.68 2.46* 

Margin of 
error (95% 
CI) 0.00 0.16 0.19 0.19 0.20 0.20 6.16 1.34 4.82 

Upper 95% 
CI 0.10 1.48 15.64 19.93 22.69 24.45 23.12 2.42 17.86* 

Lower 95% 
CI 0.09 1.16 15.25 19.54 22.29 24.05 10.81 0.00 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Silcrete 

AllPP-
MIS5-

Quartzite 
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n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 13.84 21.40 39.15 42.50 44.68 46.02 60.24 87.62 64.30 

Min 0.00 0.00 30.45 33.61 36.01 36.50 26.94 87.62 26.94 

Median 15.44 24.91 41.80 44.94 47.29 48.61 76.11 97.85 83.74 

Mean 15.53 25.11 41.88 45.05 47.18 48.50 72.77 94.34 77.20 

Max 58.63 55.04 56.20 59.54 58.41 61.19 100.00 100.00 100.00 

Third 
Quartile 17.02 28.53 44.52 47.51 49.70 50.98 92.83 98.29 92.83 

SD 3.49 6.15 3.82 3.57 3.67 3.87 21.79 5.37 20.01 

SE 0.11 0.19 0.12 0.11 0.12 0.12 3.85 1.92 3.00* 

Margin of 
error (95% 
CI) 0.22 0.38 0.24 0.22 0.23 0.24 7.55 3.76 5.87 

Upper 95% 
CI 15.74 25.49 42.12 45.27 47.40 48.74 80.32 98.10 83.07* 

Lower 95% 
CI 15.31 24.73 41.65 44.83 46.95 48.26 65.21 90.58 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B72. Comparison between ranked model frequencies from OFAT2 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP13B, PP9B, PP9C, 

and PP5-6. 

  MIS5 conditions* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 

MIS5-
PP5-6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 2 2 2 3 2 3 

Silcrete 3 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 1 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B73. Summary statistics and test results for OFAT2 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 84.62 50.01 16.01 11.03 9.17 7.93 1.71 

Min 0.00 0.00 7.28 4.75 2.18 1.14 0.00 

Median 86.91 58.09 18.95 13.40 11.20 9.90 2.15 

Mean 86.16 57.01 18.97 13.58 11.40 10.06 4.41 

Max 100.00 100.00 34.55 27.02 23.96 22.32 9.39 

Third Quartile 88.92 65.15 21.92 16.04 13.44 12.13 9.33 

SD 6.30 12.51 4.36 3.58 3.22 3.17 3.91 
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SE 0.20 0.40 0.14 0.11 0.10 0.10 1.40* 

Margin of error 
(95% CI) 0.39 0.78 0.27 0.22 0.20 0.20 2.74 

Upper 95% CI 86.55 57.79 19.24 13.80 11.60 10.26 7.15* 

Lower 95% CI 85.77 56.24 18.70 13.36 11.20 9.86 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 2.72 4.18 5.16 6.06 0.00 

Min 0.00 0.00 0.00 0.00 0.98 0.87 0.00 

Median 0.00 0.00 4.02 5.77 6.91 7.88 0.00 

Mean 0.00 0.41 4.23 5.99 7.16 8.11 1.09 

Max 0.00 14.14 14.56 15.84 16.50 18.56 5.01 

Third Quartile 0.00 0.50 5.55 7.60 9.00 10.00 2.55 

SD 0.00 0.99 2.11 2.53 2.69 2.86 1.97 

SE 0.00 0.03 0.07 0.08 0.08 0.09 0.68* 

Margin of error 
(95% CI) 0.00 0.06 0.13 0.16 0.17 0.18 1.34 

Upper 95% CI 0.00 0.47 4.36 6.14 7.33 8.28 2.42* 

Lower 95% CI 0.00 0.35 4.10 5.83 6.99 7.93 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 11.06 34.62 74.02 77.67 78.87 79.32 87.62 

Min 0.00 0.00 61.95 63.46 65.14 69.95 87.62 

Median 13.07 41.47 76.86 80.58 81.57 81.96 97.85 

Mean 13.64 42.58 76.80 80.44 81.44 81.83 94.34 

Max 51.16 100.00 89.25 93.26 93.26 95.40 100.00 

Third Quartile 15.38 49.35 80.00 83.33 84.28 84.69 98.29 

SD 5.02 12.36 4.52 4.22 4.04 4.06 5.37 

SE 0.16 0.39 0.14 0.13 0.13 0.13 1.92* 

Margin of error 
(95% CI) 0.31 0.77 0.28 0.26 0.25 0.25 3.76 

Upper 95% CI 13.95 43.35 77.08 80.70 81.69 82.08 98.10* 

Lower 95% CI 13.33 41.81 76.52 80.17 81.19 81.58 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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Table B74. Comparison between ranked model frequencies from OFAT2 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  MIS6 without a Paleo-Agulhas plain silcrete source* Archaeology 

Raw 
Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B75. Summary statistics and test results for OFAT2 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 64.21 38.11 12.02 8.39 7.06 5.87 1.71 

Min 0.00 0.00 1.09 1.92 0.05 0.05 0.00 

Median 68.09 45.29 14.42 10.72 9.14 7.72 2.15 

Mean 67.24 44.83 14.58 10.73 9.21 7.96 4.41 

Max 100.00 100.00 28.60 24.04 23.42 20.88 9.39 

Third Quartile 70.99 51.77 17.11 12.77 11.05 9.73 9.33 

SD 8.89 11.71 3.87 3.19 3.11 2.93 3.91 

SE 0.28 0.37 0.12 0.10 0.10 0.09 1.40* 

Margin of error 
(95% CI) 0.55 0.73 0.24 0.20 0.19 0.18 2.74 

Upper 95% CI 67.79 45.56 14.82 10.93 9.40 8.14 7.15* 

Lower 95% CI 66.69 44.10 14.34 10.53 9.02 7.77 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 26.25 20.61 19.67 19.20 19.27 19.25 0.00 

Min 0.00 0.00 9.16 8.10 8.67 7.02 0.00 

Median 29.07 25.65 22.56 22.18 22.01 21.87 0.00 

Mean 29.68 26.16 22.68 22.27 22.14 22.04 1.09 

Max 100.00 100.00 37.52 36.63 36.87 36.73 5.01 

Third Quartile 32.52 31.20 25.59 25.34 24.91 24.93 2.55 

SD 8.36 9.11 4.36 4.49 4.11 4.44 1.97 

SE 0.26 0.29 0.14 0.14 0.13 0.14 0.68* 

Margin of error 
(95% CI) 0.52 0.56 0.27 0.28 0.25 0.28 1.34 

Upper 95% CI 30.20 26.73 22.95 22.55 22.40 22.31 2.42* 
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Lower 95% CI 29.16 25.60 22.41 21.99 21.89 21.76 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 1.88 21.13 58.97 63.64 65.22 66.67 87.62 

Min 0.00 0.00 46.02 52.34 53.21 51.49 87.62 

Median 2.64 27.95 62.73 67.11 68.82 70.09 97.85 

Mean 3.08 28.91 62.74 67.00 68.65 70.01 94.34 

Max 72.73 88.24 79.81 81.25 82.98 86.49 100.00 

Third Quartile 3.47 35.57 66.35 70.59 72.03 73.42 98.29 

SD 3.94 12.07 5.25 4.99 4.83 5.09 5.37 

SE 0.12 0.38 0.17 0.16 0.15 0.16 1.92* 

Margin of error 
(95% CI) 0.24 0.75 0.33 0.31 0.30 0.32 3.76 

Upper 95% CI 3.33 29.65 63.07 67.31 68.95 70.32 98.10* 

Lower 95% CI 2.84 28.16 62.42 66.69 68.35 69.69 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B76. Comparison between ranked model frequencies from OFAT2 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  MIS6 with a Paleo-Agulhas plain silcrete source* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 3 3 3 3 2 

Silcrete 2 3 2 2 2 2 2 

Quartzite 3 2 1 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

OFAT 3 - Changing Discard probabilities and toolkit size 

 

Return to starting locality 

 

MIS4 without a Paleo-Agulhas plain silcrete source - Discard probability at locality 

(PDC-ProbDiscardCamp parameter) 

 

Table B77. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 100.00 99.84 99.90 99.84 99.82 1.21 

Min 88.89 99.27 99.51 99.13 99.45 0.00 

Median 100.00 100.00 100.00 100.00 100.00 3.73 
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Mean 99.79 99.91 99.94 99.92 99.91 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 100.00 100.00 100.00 10.53 

SD 1.21 0.16 0.12 0.13 0.14 11.83 

SE 0.12 0.02 0.01 0.01 0.01 1.67* 

Margin of error (95% 
CI) 0.24 0.03 0.02 0.03 0.03 3.28 

Upper 95% CI 100.03 99.94 99.96 99.95 99.94 11.66* 

Lower 95% CI 99.55 99.88 99.91 99.90 99.88 5.11* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 0.00 0.00 0.00 40.00 

Max 0.00 0.00 0.00 0.00 0.00 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.00 62.77 

SD 0.00 0.00 0.00 0.00 0.00 27.52 

SE 0.00 0.00 0.00 0.00 0.00 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.00 0.00 0.00 7.85 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 47.85* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 32.15* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.21 0.09 0.06 0.08 0.09 44.63 

Max 11.11 0.73 0.49 0.87 0.55 96.45 

Third Quartile 0.00 0.16 0.10 0.16 0.18 68.24 

SD 1.21 0.16 0.12 0.13 0.14 25.54 

SE 0.12 0.02 0.01 0.01 0.01 3.71* 

Margin of error (95% 
CI) 0.24 0.03 0.02 0.03 0.03 7.27 

Upper 95% CI 0.45 0.12 0.09 0.10 0.12 51.90* 

Lower 95% CI 0.00 0.06 0.04 0.05 0.06 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS4 without a Paleo-Agulhas plain silcrete source – Discard probability on landscape 

(PD-ProbDiscard parameter) 

 

Table B78. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 99.85 99.69 99.69 99.62 99.62 1.21 

Min 99.22 98.84 98.78 99.07 98.61 0.00 

Median 100.00 100.00 100.00 100.00 100.00 3.73 

Mean 99.91 99.83 99.84 99.80 99.79 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 100.00 100.00 100.00 10.53 

SD 0.17 0.27 0.25 0.26 0.32 11.83 

SE 0.02 0.03 0.02 0.03 0.03 1.67* 

Margin of error (95% CI) 0.03 0.05 0.05 0.05 0.06 3.28 

Upper 95% CI 99.95 99.88 99.89 99.85 99.85 11.66* 

Lower 95% CI 99.88 99.78 99.80 99.74 99.73 5.11* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 0.00 0.00 0.00 40.00 

Max 0.00 0.00 0.00 0.00 0.00 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.00 62.77 

SD 0.00 0.00 0.00 0.00 0.00 27.52 

SE 0.00 0.00 0.00 0.00 0.00 4.01* 

Margin of error (95% CI) 0.00 0.00 0.00 0.00 0.00 7.85 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 47.85* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 32.15* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.09 0.17 0.16 0.20 0.21 44.63 

Max 0.78 1.16 1.22 0.93 1.39 96.45 

Third Quartile 0.15 0.31 0.31 0.38 0.38 68.24 
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SD 0.17 0.27 0.25 0.26 0.32 25.54 

SE 0.02 0.03 0.02 0.03 0.03 3.71* 

Margin of error (95% CI) 0.03 0.05 0.05 0.05 0.06 7.27 

Upper 95% CI 0.12 0.22 0.20 0.26 0.27 51.90* 

Lower 95% CI 0.05 0.12 0.11 0.15 0.15 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source– Toolkit size (Toolkit parameter) 

 

Table B79. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 100.00 100.00 100.00 99.80 99.85 1.21 

Min 95.00 97.87 98.79 97.43 99.22 0.00 

Median 100.00 100.00 100.00 100.00 100.00 3.73 

Mean 99.62 99.83 99.92 99.87 99.92 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 100.00 100.00 100.00 10.53 

SD 1.10 0.50 0.19 0.32 0.15 11.83 

SE 0.11 0.05 0.02 0.03 0.01 1.67* 

Margin of error (95% 
CI) 0.22 0.10 0.04 0.06 0.03 3.28 

Upper 95% CI 99.84 99.93 99.96 99.94 99.95 11.66* 

Lower 95% CI 99.41 99.74 99.88 99.81 99.89 5.11* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP5-6-MIS4-

Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 0.00 0.00 0.00 40.00 

Max 0.00 0.00 0.00 0.00 0.00 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.00 62.77 

SD 0.00 0.00 0.00 0.00 0.00 27.52 

SE 0.00 0.00 0.00 0.00 0.00 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.00 0.00 0.00 7.85 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 47.85* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 32.15* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP5-6-MIS4-
Quartzite 
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n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.38 0.17 0.08 0.13 0.08 44.63 

Max 5.00 2.13 1.21 2.57 0.78 96.45 

Third Quartile 0.00 0.00 0.00 0.20 0.15 68.24 

SD 1.10 0.50 0.19 0.32 0.15 25.54 

SE 0.11 0.05 0.02 0.03 0.01 3.71* 

Margin of error (95% 
CI) 0.22 0.10 0.04 0.06 0.03 7.27 

Upper 95% CI 0.59 0.26 0.12 0.19 0.11 51.90* 

Lower 95% CI 0.16 0.07 0.04 0.06 0.05 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B80. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 2 3 3 3 3 1 

Quartzite 2 2 2 2 2 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 1 

Quartzite 2 2 2 2 2 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 1 

Quartzite 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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MIS4 with a Paleo-Agulhas plain silcrete source- Discard probability at locality (PDC-

ProbDiscardCamp parameter) 

 

Table B81. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 44.85 64.70 67.08 67.43 67.49 1.21 

Min 34.88 60.99 64.41 63.54 63.62 0.00 

Median 51.09 66.19 68.17 68.67 68.68 3.73 

Mean 51.26 66.00 68.21 68.55 68.69 8.39 

Max 71.43 70.16 72.91 72.62 73.50 66.11 

Third Quartile 57.37 67.30 69.24 70.03 69.68 10.53 

SD 8.24 1.92 1.65 1.89 1.80 11.83 

SE 0.82 0.19 0.16 0.19 0.18 1.67* 

Margin of error (95% 
CI) 1.61 0.38 0.32 0.37 0.35 3.28 

Upper 95% CI 52.87 66.37 68.53 68.92 69.04 11.66* 

Lower 95% CI 49.64 65.62 67.89 68.18 68.33 5.11* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 42.63 32.70 30.70 29.97 30.20 13.79 

Min 28.21 29.78 27.09 27.38 26.50 0.00 

Median 48.91 33.67 31.83 31.27 31.31 39.13 

Mean 48.56 33.97 31.76 31.43 31.30 40.00 

Max 63.83 39.01 35.35 36.46 36.38 96.55 

Third Quartile 55.15 35.29 32.92 32.57 32.47 62.77 

SD 8.28 1.93 1.64 1.89 1.80 27.52 

SE 0.83 0.19 0.16 0.19 0.18 4.01* 

Margin of error (95% 
CI) 1.62 0.38 0.32 0.37 0.35 7.85 

Upper 95% CI 50.18 34.35 32.09 31.80 31.65 47.85* 

Lower 95% CI 46.94 33.59 31.44 31.06 30.94 32.15* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.18 0.03 0.03 0.01 0.02 44.63 

Max 2.94 0.41 0.24 0.28 0.21 96.45 

Third Quartile 0.00 0.03 0.01 0.00 0.00 68.24 
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SD 0.63 0.07 0.06 0.05 0.05 25.54 

SE 0.06 0.01 0.01 0.00 0.00 3.71* 

Margin of error (95% 
CI) 0.12 0.01 0.01 0.01 0.01 7.27 

Upper 95% CI 0.31 0.04 0.04 0.02 0.03 51.90* 

Lower 95% CI 0.06 0.02 0.01 0.01 0.01 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source– Discard probability on landscape (PD-

ProbDiscard parameter) 

 

Table B82. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 66.33 52.40 46.65 44.58 43.63 1.21 

Min 60.94 46.77 40.81 40.61 41.06 0.00 

Median 69.04 53.85 48.46 46.37 45.81 3.73 

Mean 68.88 53.90 48.50 46.59 45.43 8.39 

Max 76.43 59.08 53.74 54.08 50.94 66.11 

Third Quartile 71.21 55.80 50.35 48.38 46.87 10.53 

SD 3.40 2.46 2.52 2.66 2.29 11.83 

SE 0.34 0.25 0.25 0.27 0.23 1.67* 

Margin of error (95% CI) 0.67 0.48 0.49 0.52 0.45 3.28 

Upper 95% CI 69.55 54.38 48.99 47.11 45.88 11.66* 

Lower 95% CI 68.22 53.42 48.00 46.07 44.99 5.11* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 28.77 44.14 49.56 51.53 52.97 13.79 

Min 23.57 40.90 46.26 45.19 49.06 0.00 

Median 30.94 46.05 51.43 53.44 54.01 39.13 

Mean 31.09 46.04 51.43 53.31 54.48 40.00 

Max 39.06 53.23 59.06 59.28 58.94 96.55 

Third Quartile 33.67 47.57 53.24 55.24 56.34 62.77 

SD 3.39 2.46 2.52 2.67 2.28 27.52 

SE 0.34 0.25 0.25 0.27 0.23 4.01* 

Margin of error (95% CI) 0.67 0.48 0.49 0.52 0.45 7.85 

Upper 95% CI 31.75 46.53 51.93 53.83 54.93 47.85* 

Lower 95% CI 30.42 45.56 50.94 52.79 54.03 32.15* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 
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First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.03 0.06 0.07 0.10 0.09 44.63 

Max 0.61 0.54 0.76 0.73 0.73 96.45 

Third Quartile 0.00 0.14 0.13 0.13 0.12 68.24 

SD 0.10 0.12 0.13 0.16 0.16 25.54 

SE 0.01 0.01 0.01 0.02 0.02 3.71* 

Margin of error (95% CI) 0.02 0.02 0.03 0.03 0.03 7.27 

Upper 95% CI 0.05 0.08 0.10 0.13 0.12 51.90* 

Lower 95% CI 0.01 0.04 0.05 0.07 0.06 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source– Toolkit size (Toolkit parameter) 

 

Table B83. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 44.87 47.93 54.97 56.31 57.76 1.21 

Min 28.13 33.33 45.71 51.46 53.32 0.00 

Median 48.89 52.44 57.44 58.38 60.10 3.73 

Mean 48.44 51.73 56.95 58.79 59.95 8.39 

Max 70.00 65.52 65.02 65.30 65.15 66.11 

Third Quartile 53.64 56.38 58.74 61.12 61.84 10.53 

SD 8.24 6.60 3.17 2.97 2.65 11.83 

SE 0.82 0.66 0.32 0.30 0.26 1.67* 

Margin of error (95% 
CI) 1.62 1.29 0.62 0.58 0.52 3.28 

Upper 95% CI 50.06 53.02 57.57 59.37 60.46 11.66* 

Lower 95% CI 46.83 50.43 56.33 58.21 59.43 5.11* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP5-6-MIS4-

Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 46.20 43.62 41.19 38.88 38.03 13.79 

Min 30.00 34.48 34.67 34.70 34.73 0.00 

Median 50.51 47.56 42.56 41.62 39.82 39.13 

Mean 51.46 48.23 42.99 41.19 40.00 40.00 

Max 71.88 66.67 54.29 48.54 46.68 96.55 

Third Quartile 55.13 51.94 45.03 43.69 42.19 62.77 

SD 8.23 6.58 3.17 2.97 2.66 27.52 
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SE 0.82 0.66 0.32 0.30 0.27 4.01* 

Margin of error (95% 
CI) 1.61 1.29 0.62 0.58 0.52 7.85 

Upper 95% CI 53.07 49.52 43.62 41.78 40.52 47.85* 

Lower 95% CI 49.84 46.95 42.37 40.61 39.48 32.15* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 43.00 

Mean 0.10 0.04 0.05 0.01 0.05 44.63 

Max 3.03 2.53 0.79 0.21 0.61 96.45 

Third Quartile 0.00 0.00 0.00 0.00 0.10 68.24 

SD 0.48 0.28 0.16 0.05 0.11 25.54 

SE 0.05 0.03 0.02 0.01 0.01 3.71* 

Margin of error (95% 
CI) 0.10 0.06 0.03 0.01 0.02 7.27 

Upper 95% CI 0.19 0.09 0.08 0.02 0.07 51.90* 

Lower 95% CI 0.00 -0.02 0.02 0.00 0.03 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B84. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 1 2 2 2 2 1 

Quartzite 2 3 3 3 3 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 

Silcrete 2 2 1 1 1 1 

Quartzite 3 3 3 3 3 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 1 2 2 2 2 1 

Quartzite 2 3 3 3 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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MIS5 conditions - Discard probability at locality (PDC-ProbDiscardCamp parameter) 

 

Table B85. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
PDC=0.00
1-Quartz 

PDC=0.1
-Quartz 

PDC=0.5
-Quartz 

PDC=0.7
5-Quartz 

PDC=0.9
5-Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 77.04 81.78 82.44 82.05 82.39 0.00 1.71 0.10 

Min 64.69 79.20 80.14 79.84 80.47 0.00 0.00 0.00 

Median 80.10 83.02 83.50 83.01 83.41 0.89 2.15 2.65 

Mean 80.56 82.89 83.40 83.12 83.47 3.53 4.41 4.61 

Max 92.89 86.35 87.17 87.17 86.72 24.87 9.39 24.87 

Third 
Quartile 84.81 84.00 84.45 84.18 84.69 3.92 9.33 6.95 

SD 5.26 1.62 1.59 1.49 1.54 5.94 3.91 6.03 

SE 0.53 0.16 0.16 0.15 0.15 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 1.03 0.32 0.31 0.29 0.30 2.03 2.74 1.76 

Upper 95% 
CI 81.59 83.20 83.71 83.41 83.77 5.56* 7.15* 6.37* 

Lower 95% 
CI 79.53 82.57 83.09 82.83 83.17 1.51* 1.68* 2.85* 

  
PDC=0.00
1-Silcrete 

PDC=0.1
-Silcrete 

PDC=0.5
-Silcrete 

PDC=0.7
5-Silcrete 

PDC=0.9
5-Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.09 0.10 0.09 0.10 0.09 1.45 0.00 0.95 

Min 0.04 0.08 0.08 0.08 0.08 0.00 0.00 0.00 

Median 0.12 0.10 0.10 0.10 0.10 10.19 0.00 6.44 

Mean 0.12 0.10 0.10 0.10 0.10 16.97 1.09 13.05 

Max 0.21 0.13 0.12 0.12 0.12 64.83 5.01 64.83 

Third 
Quartile 0.14 0.11 0.11 0.11 0.11 32.95 2.55 21.21 

SD 0.03 0.01 0.01 0.01 0.01 17.85 1.97 16.45 

SE 0.00 0.00 0.00 0.00 0.00 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.01 0.00 0.00 0.00 0.00 6.16 1.34 4.82 

Upper 95% 
CI 0.12 0.11 0.10 0.10 0.10 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.11 0.10 0.10 0.10 0.10 10.81* 0.00* 8.23* 

  

PDC=0.00
1-

Quartzite 

PDC=0.1
-

Quartzit
e 

PDC=0.5
-

Quartzit
e 

PDC=0.7
5-

Quartzite 

PDC=0.9
5-

Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 43 
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First Quartile 15.04 15.84 15.40 15.66 15.15 60.24 87.62 64.30 

Min 7.04 13.51 12.71 12.70 13.15 26.94 87.62 26.94 

Median 19.70 16.81 16.33 16.82 16.43 76.11 97.85 83.74 

Mean 19.25 16.94 16.43 16.71 16.36 72.77 94.34 77.20 

Max 34.95 20.59 19.66 19.96 19.34 100.00 100.00 100.00 

Third 
Quartile 22.73 18.03 17.39 17.77 17.43 92.83 98.29 92.83 

SD 5.20 1.60 1.57 1.47 1.52 21.79 5.37 20.01 

SE 0.52 0.16 0.16 0.15 0.15 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 1.02 0.31 0.31 0.29 0.30 7.55 3.76 5.87 

Upper 95% 
CI 20.27 17.26 16.74 17.00 16.66 80.328 98.10* 83.07* 

Lower 95% 
CI 18.23 16.63 16.13 16.42 16.06 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 Conditions– Discard probability on landscape (PD-ProbDiscard parameter) 

 

Table B86. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
PD=0.001
-Quartz 

PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 81.81 79.49 78.61 77.97 78.31 0.00 1.71 0.10 

Min 77.53 75.95 75.01 74.86 74.81 0.00 0.00 0.00 

Median 84.27 81.29 79.97 79.25 79.93 0.89 2.15 2.65 

Mean 83.84 81.05 79.95 79.33 79.73 3.53 4.41 4.61 

Max 89.03 85.50 86.64 84.16 85.82 24.87 9.39 24.87 

Third Quartile 85.67 82.55 81.53 80.87 80.91 3.92 9.33 6.95 

SD 2.51 2.05 2.17 1.99 1.94 5.94 3.91 6.03 

SE 0.25 0.20 0.22 0.20 0.19 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 0.49 0.40 0.43 0.39 0.38 2.03 2.74 1.76 

Upper 95% 
CI 84.33 81.46 80.37 79.72 80.11 5.56* 7.15* 6.37* 

Lower 95% 
CI 83.35 80.65 79.52 78.94 79.35 1.51* 1.68* 2.85* 

  
PD=0.001
-Silcrete 

PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.09 0.11 0.11 0.12 0.12 1.45 0.00 0.95 

Min 0.07 0.09 0.08 0.10 0.09 0.00 0.00 0.00 

Median 0.09 0.11 0.12 0.13 0.12 10.19 0.00 6.44 

Mean 0.10 0.11 0.12 0.12 0.12 16.97 1.09 13.05 
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Max 0.14 0.15 0.15 0.15 0.15 64.83 5.01 64.83 

Third Quartile 0.11 0.12 0.13 0.13 0.13 32.95 2.55 21.21 

SD 0.02 0.01 0.01 0.01 0.01 17.85 1.97 16.45 

SE 0.00 0.00 0.00 0.00 0.00 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.00 0.00 0.00 0.00 0.00 6.16 1.34 4.82 

Upper 95% 
CI 0.10 0.12 0.12 0.13 0.12 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.09 0.11 0.12 0.12 0.12 10.81* 0.00* 8.23* 

  
PD=0.001
-Quartzite 

PD=0.1-
Quartzit

e 

PD=0.5-
Quartzit

e 
PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 14.18 17.27 18.28 18.94 18.90 60.24 87.62 64.30 

Min 10.86 14.35 13.23 15.69 14.04 26.94 87.62 26.94 

Median 15.57 18.52 19.83 20.54 19.86 76.11 97.85 83.74 

Mean 16.00 18.75 19.85 20.46 20.07 72.77 94.34 77.20 

Max 22.24 23.81 24.73 24.88 24.94 100.00 100.00 100.00 

Third Quartile 18.01 20.31 21.17 21.81 21.47 92.83 98.29 92.83 

SD 2.49 2.03 2.15 1.97 1.92 21.79 5.37 20.01 

SE 0.25 0.20 0.21 0.20 0.19 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 0.49 0.40 0.42 0.39 0.38 7.55 3.76 5.87 

Upper 95% 
CI 16.49 19.15 20.27 20.85 20.44 80.32* 98.10* 83.07* 

Lower 95% 
CI 15.51 18.36 19.43 20.08 19.69 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions– Toolkit size (Toolkit parameter) 

 

Table B87. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
Toolkit=
5-Quartz 

Toolkit=1
0-Quartz 

Toolkit=5
0-Quartz 

Toolkit=7
5-Quartz 

Toolkit=1
00-Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 76.21 77.42 79.86 80.48 81.16 0.00 1.71 0.10 

Min 65.96 70.28 75.23 75.85 77.87 0.00 0.00 0.00 

Median 79.67 80.10 81.34 81.92 82.54 0.89 2.15 2.65 

Mean 80.23 80.12 81.36 81.96 82.30 3.53 4.41 4.61 

Max 96.25 89.08 85.84 87.51 85.85 24.87 9.39 24.87 

Third 
Quartile 84.29 83.23 83.17 83.52 83.62 3.92 9.33 6.95 

SD 5.92 4.01 2.34 2.17 1.92 5.94 3.91 6.03 

SE 0.59 0.40 0.23 0.22 0.19 1.03* 1.40* 0.90* 
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Margin of 
error (95% 
CI) 1.16 0.79 0.46 0.43 0.38 2.03 2.74 1.76 

Upper 95% 
CI 81.39 80.91 81.82 82.39 82.67 5.56* 7.15* 6.37* 

Lower 95% 
CI 79.06 79.34 80.91 81.54 81.92 1.51* 1.68* 2.85* 

  

Toolkit=
5-

Silcrete 
Toolkit=1
0-Silcrete 

Toolkit=5
0-Silcrete 

Toolkit=7
5-Silcrete 

Toolkit=1
00-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.09 0.10 0.10 0.10 0.10 1.45 0.00 0.95 

Min 0.02 0.07 0.09 0.08 0.09 0.00 0.00 0.00 

Median 0.12 0.12 0.11 0.11 0.11 10.19 0.00 6.44 

Mean 0.12 0.12 0.11 0.11 0.11 16.97 1.09 13.05 

Max 0.21 0.18 0.15 0.15 0.13 64.83 5.01 64.83 

Third 
Quartile 0.14 0.14 0.12 0.12 0.11 32.95 2.55 21.21 

SD 0.04 0.02 0.01 0.01 0.01 17.85 1.97 16.45 

SE 0.00 0.00 0.00 0.00 0.00 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.01 0.00 0.00 0.00 0.00 6.16 1.34 4.82 

Upper 95% 
CI 0.13 0.12 0.12 0.11 0.11 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.11 0.12 0.11 0.11 0.10 10.81* 0.00* 8.23* 

  

Toolkit=
5-

Quartzite 

Toolkit=1
0-

Quartzite 

Toolkit=5
0-

Quartzite 

Toolkit=7
5-

Quartzite 

Toolkit=1
00-

Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 15.55 16.60 16.66 16.32 16.22 60.24 87.62 64.30 

Min 3.72 10.81 14.02 12.36 14.01 26.94 87.62 26.94 

Median 20.12 19.70 18.47 17.90 17.28 76.11 97.85 83.74 

Mean 19.58 19.68 18.45 17.85 17.53 72.77 94.34 77.20 

Max 33.70 29.42 24.52 23.90 21.91 100.00 100.00 100.00 

Third 
Quartile 23.55 22.35 19.94 19.32 18.66 92.83 98.29 92.83 

SD 5.86 3.97 2.31 2.15 1.90 21.79 5.37 20.01 

SE 0.59 0.40 0.23 0.21 0.19 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 1.15 0.78 0.45 0.42 0.37 7.55 3.76 5.87 

Upper 95% 
CI 20.73 20.45 18.90 18.28 17.90 80.32* 98.10* 83.07* 

Lower 95% 
CI 18.43 18.90 17.99 17.43 17.15 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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Table B88. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP13B, PP9B, PP9C, 

and PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw 
Material 0.001 0.1 0.5 0.75 0.95 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

  Discard probability on landscape (PD)* Archaeology 

Raw 
Material 0.001 0.1 0.5 0.75 0.95 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

  Toolkit size* Archaeology 

Raw 
Material 5 10 50 75 100 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 without a Paleo-Agulhas plain silcrete source- Discard probability at locality 

(PDC-ProbDiscardCamp parameter) 

 

Table B89. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 62.86 79.31 80.62 80.64 80.72 1.71 

Min 46.43 77.35 77.72 77.46 78.12 0.00 

Median 69.88 80.65 81.68 81.63 81.77 2.15 

Mean 69.28 80.62 81.65 81.66 81.75 4.41 

Max 87.10 84.35 85.42 85.05 84.94 9.39 

Third Quartile 75.68 81.80 82.78 82.66 82.82 9.33 

SD 8.62 1.66 1.59 1.56 1.34 3.91 

SE 0.86 0.17 0.16 0.16 0.13 1.40* 

Margin of error 
(95% CI) 1.69 0.33 0.31 0.31 0.26 2.74 

Upper 95% CI 70.97 80.95 81.96 81.97 82.01 7.158 

Lower 95% CI 67.59 80.29 81.34 81.36 81.48 1.68* 
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PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 0.00 0.00 0.00 1.09 

Max 0.00 0.00 0.00 0.00 0.00 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.00 0.00 0.00 0.00 0.00 1.97 

SE 0.00 0.00 0.00 0.00 0.00 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.00 0.00 0.00 1.34 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 2.42* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 0.00* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 24.32 18.20 17.22 17.34 17.18 87.62 

Min 12.90 15.65 14.58 14.95 15.06 87.62 

Median 30.12 19.35 18.32 18.37 18.23 97.85 

Mean 30.72 19.38 18.35 18.34 18.25 94.34 

Max 53.57 22.65 22.28 22.54 21.88 100.00 

Third Quartile 37.14 20.69 19.38 19.36 19.28 98.29 

SD 8.62 1.66 1.59 1.56 1.34 5.37 

SE 0.86 0.17 0.16 0.16 0.13 1.92* 

Margin of error 
(95% CI) 1.69 0.33 0.31 0.31 0.26 3.76 

Upper 95% CI 32.41 19.71 18.66 18.64 18.52 98.10* 

Lower 95% CI 29.03 19.05 18.04 18.03 17.99 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source– Discard probability on landscape 

(PD-ProbDiscard parameter) 

 

Table B90. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 78.55 67.21 63.20 61.32 60.27 1.71 

Min 68.77 63.04 54.14 55.98 56.33 0.00 

Median 82.14 69.24 65.11 62.61 62.17 2.15 

Mean 80.94 69.13 64.79 62.76 62.03 4.41 
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Max 88.24 75.96 70.41 70.10 67.76 9.39 

Third Quartile 84.03 71.16 66.83 64.21 63.87 9.33 

SD 4.24 2.83 2.90 2.53 2.57 3.91 

SE 0.42 0.28 0.29 0.25 0.26 1.40* 

Margin of error 
(95% CI) 0.83 0.56 0.57 0.50 0.50 2.74 

Upper 95% CI 81.78 69.69 65.36 63.26 62.53 7.15* 

Lower 95% CI 80.11 68.58 64.23 62.27 61.53 1.68* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 0.00 0.00 0.00 1.09 

Max 0.00 0.00 0.00 0.00 0.00 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.00 0.00 0.00 0.00 0.00 1.97 

SE 0.00 0.00 0.00 0.00 0.00 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.00 0.00 0.00 1.34 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 2.42* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 0.00* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 15.97 28.84 33.17 35.79 36.13 87.62 

Min 11.76 24.04 29.59 29.90 32.24 87.62 

Median 17.86 30.76 34.89 37.39 37.83 97.85 

Mean 19.06 30.87 35.21 37.24 37.97 94.34 

Max 31.23 36.96 45.86 44.02 43.67 100.00 

Third Quartile 21.45 32.79 36.80 38.68 39.73 98.29 

SD 4.24 2.83 2.90 2.53 2.57 5.37 

SE 0.42 0.28 0.29 0.25 0.26 1.92* 

Margin of error 
(95% CI) 0.83 0.56 0.57 0.50 0.50 3.76 

Upper 95% CI 19.89 31.42 35.77 37.73 38.47 98.10* 

Lower 95% CI 18.22 30.31 34.64 36.74 37.47 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS6 without a Paleo-Agulhas plain silcrete source– Toolkit size (Toolkit parameter) 

 

Table B91. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 57.28 60.72 70.15 72.26 73.09 1.71 

Min 33.33 41.67 62.36 61.02 65.98 0.00 

Median 66.67 67.61 72.39 74.30 75.55 2.15 

Mean 65.52 67.53 72.83 74.29 75.25 4.41 

Max 93.75 89.19 81.18 81.23 82.44 9.39 

Third Quartile 72.73 73.17 75.36 76.76 77.71 9.33 

SD 11.35 9.00 3.85 3.46 3.04 3.91 

SE 1.14 0.90 0.39 0.35 0.30 1.40* 

Margin of error 
(95% CI) 2.23 1.76 0.75 0.68 0.60 2.74 

Upper 95% CI 67.74 69.30 73.59 74.97 75.85 7.15* 

Lower 95% CI 63.29 65.77 72.08 73.61 74.66 1.68* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP13B-MIS6-

Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 0.00 0.00 0.00 1.09 

Max 0.00 0.00 0.00 0.00 0.00 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.00 0.00 0.00 0.00 0.00 1.97 

SE 0.00 0.00 0.00 0.00 0.00 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.00 0.00 0.00 1.34 

Upper 95% CI 0.00 0.00 0.00 0.00 0.00 2.42* 

Lower 95% CI 0.00 0.00 0.00 0.00 0.00 0.00* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 27.27 26.83 24.64 23.24 22.29 87.62 

Min 6.25 10.81 18.82 18.77 17.56 87.62 

Median 33.33 32.39 27.61 25.70 24.45 97.85 

Mean 34.48 32.47 27.17 25.71 24.75 94.34 

Max 66.67 58.33 37.64 38.98 34.02 100.00 

Third Quartile 42.72 39.28 29.85 27.74 26.91 98.29 

SD 11.35 9.00 3.85 3.46 3.04 5.37 
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SE 1.14 0.90 0.39 0.35 0.30 1.92* 

Margin of error 
(95% CI) 2.23 1.76 0.75 0.68 0.60 3.76 

Upper 95% CI 36.71 34.23 27.92 26.39 25.34 98.10* 

Lower 95% CI 32.26 30.70 26.41 25.03 24.15 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B92. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 with a Paleo-Agulhas plain silcrete source- Discard probability at locality (PDC-

ProbDiscardCamp parameter) 

 

Table B93. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 47.22 64.48 66.42 66.82 66.10 1.71 

Min 32.61 60.13 63.20 64.16 62.85 0.00 

Median 52.45 65.65 67.88 67.84 67.34 2.15 

Mean 53.69 65.75 67.71 67.94 67.41 4.41 

Max 75.68 70.31 71.66 72.54 71.54 9.39 

Third Quartile 60.24 67.20 68.89 68.99 68.66 9.33 
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SD 8.83 2.07 1.64 1.56 1.91 3.91 

SE 0.88 0.21 0.16 0.16 0.19 1.40* 

Margin of error 
(95% CI) 1.73 0.41 0.32 0.30 0.37 2.74 

Upper 95% CI 55.42 66.16 68.03 68.24 67.79 7.15* 

Lower 95% CI 51.96 65.35 67.39 67.63 67.04 1.68* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 30.52 29.26 28.09 28.22 27.95 0.00 

Min 21.62 25.45 24.54 24.42 25.00 0.00 

Median 36.85 30.23 29.21 29.05 29.72 0.00 

Mean 36.84 30.42 29.27 29.03 29.50 1.09 

Max 55.17 35.93 34.30 32.61 33.49 5.01 

Third Quartile 41.98 31.92 30.45 29.97 30.85 2.55 

SD 7.89 2.06 1.73 1.48 1.91 1.97 

SE 0.79 0.21 0.17 0.15 0.19 0.68* 

Margin of error 
(95% CI) 1.55 0.40 0.34 0.29 0.37 1.34 

Upper 95% CI 38.39 30.83 29.61 29.32 29.87 2.42* 

Lower 95% CI 35.29 30.02 28.93 28.74 29.13 0.00* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 6.03 3.22 2.54 2.57 2.57 87.62 

Min 0.00 2.16 1.12 1.57 1.85 87.62 

Median 8.66 3.68 3.00 2.95 3.07 97.85 

Mean 9.47 3.83 3.02 3.03 3.09 94.34 

Max 25.93 6.38 4.97 4.81 5.00 100.00 

Third Quartile 12.00 4.44 3.49 3.47 3.51 98.29 

SD 5.31 0.78 0.71 0.65 0.67 5.37 

SE 0.53 0.08 0.07 0.06 0.07 1.92* 

Margin of error 
(95% CI) 1.04 0.15 0.14 0.13 0.13 3.76 

Upper 95% CI 10.51 3.98 3.16 3.16 3.22 98.10* 

Lower 95% CI 8.42 3.67 2.88 2.90 2.96 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS6 with a Paleo-Agulhas plain silcrete source– Discard probability on landscape (PD-

ProbDiscard parameter) 

 

Table B94. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 84.62 47.04 44.35 43.22 41.56 1.71 

Min 0.00 42.22 39.49 39.34 38.11 0.00 

Median 86.91 50.07 46.41 44.79 43.51 2.15 

Mean 86.16 49.73 46.04 44.70 43.55 4.41 

Max 100.00 61.42 54.63 50.94 50.78 9.39 

Third Quartile 88.92 51.49 47.85 46.17 45.26 9.33 

SD 6.30 3.49 2.77 2.31 2.58 3.91 

SE 0.20 0.35 0.28 0.23 0.26 1.40* 

Margin of error 
(95% CI) 0.39 0.68 0.54 0.45 0.50 2.74 

Upper 95% CI 86.55 50.42 46.59 45.15 44.05 7.15* 

Lower 95% CI 85.77 49.05 45.50 44.24 43.04 1.68* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 26.75 36.85 39.68 40.20 40.34 0.00 

Min 20.35 31.50 33.99 36.52 34.84 0.00 

Median 29.94 39.27 41.04 41.51 41.50 0.00 

Mean 30.78 39.40 41.36 41.71 41.65 1.09 

Max 41.12 46.40 46.98 47.96 46.23 5.01 

Third Quartile 35.03 41.51 43.37 43.09 43.18 2.55 

SD 4.98 3.11 2.74 2.37 2.07 1.97 

SE 0.50 0.31 0.27 0.24 0.21 0.68* 

Margin of error 
(95% CI) 0.98 0.61 0.54 0.46 0.41 1.34 

Upper 95% CI 31.75 40.01 41.90 42.17 42.05 2.42* 

Lower 95% CI 29.80 38.79 40.82 41.25 41.24 0.00* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 2.63 9.13 11.72 12.66 13.48 87.62 

Min 1.29 6.28 8.60 8.42 9.79 87.62 

Median 3.39 10.77 12.61 13.61 14.72 97.85 

Mean 3.85 10.87 12.60 13.59 14.81 94.34 

Max 14.80 16.01 15.88 16.67 19.43 100.00 

Third Quartile 4.34 12.32 13.44 14.72 16.16 98.29 
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SD 2.30 2.13 1.63 1.55 1.89 5.37 

SE 0.23 0.21 0.16 0.15 0.19 1.92* 

Margin of error 
(95% CI) 0.45 0.42 0.32 0.30 0.37 3.76 

Upper 95% CI 4.30 11.29 12.92 13.90 15.18 98.10* 

Lower 95% CI 3.40 10.45 12.28 13.29 14.44 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source– Toolkit size (Toolkit parameter) 

 

Table B95. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 39.13 46.20 51.34 55.04 55.70 1.71 

Min 15.00 25.93 42.94 43.91 44.75 0.00 

Median 46.15 48.81 55.00 57.32 58.55 2.15 

Mean 46.93 49.85 54.64 57.53 58.25 4.41 

Max 73.33 71.05 65.50 67.25 65.55 9.39 

Third Quartile 55.56 54.94 58.74 60.14 61.05 9.33 

SD 11.62 7.84 4.90 4.56 3.93 3.91 

SE 1.16 0.78 0.49 0.46 0.39 1.40* 

Margin of error 
(95% CI) 2.28 1.54 0.96 0.89 0.77 2.74 

Upper 95% CI 49.21 51.39 55.60 58.43 59.02 7.15* 

Lower 95% CI 44.66 48.31 53.68 56.64 57.48 1.68* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP13B-MIS6-

Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 34.91 34.05 33.71 31.74 32.17 0.00 

Min 10.53 22.22 21.05 26.83 26.67 0.00 

Median 41.42 40.00 36.94 34.57 34.37 0.00 

Mean 41.07 39.61 36.83 35.07 34.77 1.09 

Max 66.67 62.96 46.86 49.82 47.22 5.01 

Third Quartile 47.77 44.62 39.97 37.69 36.96 2.55 

SD 11.02 7.73 4.70 4.20 3.72 1.97 

SE 1.10 0.77 0.47 0.42 0.37 0.68* 

Margin of error 
(95% CI) 2.16 1.51 0.92 0.82 0.73 1.34 

Upper 95% CI 43.23 41.13 37.75 35.90 35.50 2.42* 

Lower 95% CI 38.91 38.10 35.91 34.25 34.04 0.00* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 
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First Quartile 5.64 7.74 6.57 5.84 5.66 87.62 

Min 0.00 2.50 3.13 2.72 3.96 87.62 

Median 11.54 10.26 8.40 7.28 6.72 97.85 

Mean 12.00 10.54 8.53 7.40 6.98 94.34 

Max 32.00 24.32 15.69 13.58 13.44 100.00 

Third Quartile 15.79 13.29 9.91 8.78 8.02 98.29 

SD 7.68 4.21 2.44 1.89 1.92 5.37 

SE 0.77 0.42 0.24 0.19 0.19 1.92* 

Margin of error 
(95% CI) 1.51 0.83 0.48 0.37 0.38 3.76 

Upper 95% CI 13.50 11.36 9.01 7.77 7.35 98.10* 

Lower 95% CI 10.49 9.71 8.05 7.02 6.60 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B96. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 

Quartzite 3 3 3 3 3 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 

Quartzite 3 3 3 3 3 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 

Quartzite 3 3 3 3 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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Move to closest locality 

 

MIS4 without a Paleo-Agulhas plain silcrete source– Discard probability at locality 

(PDC-ProbDiscardCamp parameter) 

 

Table B97. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 69.23 89.86 96.69 97.34 97.58 1.21 

Min 25.00 70.42 90.34 94.20 94.56 0.00 

Median 77.78 92.33 97.63 98.19 98.23 3.73 

Mean 76.57 91.68 97.35 97.98 98.16 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 88.24 95.13 98.33 98.75 98.84 10.53 

SD 15.32 4.95 1.70 1.16 1.08 11.83 

SE 1.53 0.49 0.17 0.12 0.11 1.67* 

Margin of error (95% 
CI) 3.00 0.97 0.33 0.23 0.21 3.28 

Upper 95% CI 79.57 92.65 97.68 98.20 98.37 11.66* 

Lower 95% CI 73.56 90.71 97.02 97.75 97.95 5.11* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.25 0.11 0.01 0.01 0.00 40.00 

Max 8.25 0.72 0.36 0.16 0.03 96.55 

Third Quartile 0.00 0.15 0.00 0.00 0.00 62.77 

SD 1.15 0.20 0.06 0.03 0.00 27.52 

SE 0.11 0.02 0.01 0.00 0.00 4.01* 

Margin of error (95% 
CI) 0.22 0.04 0.01 0.01 0.00 7.85 

Upper 95% CI 0.47 0.15 0.03 0.01 0.00 47.85* 

Lower 95% CI 0.02 0.07 0.00 0.00 0.00 32.15* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 11.76 4.81 1.64 1.25 1.16 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 22.22 7.64 2.35 1.81 1.76 43.00 

Mean 23.19 8.21 2.64 2.02 1.84 44.63 
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Max 75.00 29.58 9.34 5.80 5.44 96.45 

Third Quartile 30.77 10.12 3.25 2.66 2.42 68.24 

SD 15.16 4.94 1.69 1.16 1.08 25.54 

SE 1.52 0.49 0.17 0.12 0.11 3.71* 

Margin of error (95% 
CI) 2.97 0.97 0.33 0.23 0.21 7.27 

Upper 95% CI 26.16 9.17 2.97 2.25 2.05 51.90* 

Lower 95% CI 20.22 7.24 2.31 1.79 1.63 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Discard probability on landscape 

(PD-ProbDiscard parameter) 

 

Table B98. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 69.89 90.99 96.62 97.76 97.89 1.21 

Min 50.00 0.00 84.62 87.88 94.23 0.00 

Median 78.77 93.36 98.15 98.51 98.59 3.73 

Mean 76.94 91.58 97.49 98.14 98.39 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 85.98 95.44 99.15 99.30 99.12 10.53 

SD 12.16 10.62 2.55 1.98 1.18 11.83 

SE 1.22 1.06 0.26 0.20 0.12 1.67* 

Margin of error (95% CI) 2.38 2.08 0.50 0.39 0.23 3.28 

Upper 95% CI 79.33 93.66 97.99 98.53 98.62 11.66* 

Lower 95% CI 74.56 89.49 96.99 97.75 98.16 5.11* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.45 0.08 0.00 0.02 0.02 40.00 

Max 4.08 2.83 0.36 1.51 1.04 96.55 

Third Quartile 0.65 0.00 0.00 0.00 0.00 62.77 

SD 0.81 0.33 0.04 0.15 0.12 27.52 

SE 0.08 0.03 0.00 0.02 0.01 4.01* 

Margin of error (95% CI) 0.16 0.06 0.01 0.03 0.02 7.85 

Upper 95% CI 0.61 0.15 0.01 0.04 0.04 47.85* 

Lower 95% CI 0.29 0.02 0.00 0.00 0.00 32.15* 
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PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 13.95 4.55 0.85 0.70 0.88 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 20.37 6.55 1.85 1.49 1.35 43.00 

Mean 22.60 8.34 2.51 1.84 1.60 44.63 

Max 50.00 100.00 15.38 12.12 5.77 96.45 

Third Quartile 28.52 9.01 3.38 2.24 2.09 68.24 

SD 11.93 10.55 2.55 1.97 1.17 25.54 

SE 1.19 1.06 0.26 0.20 0.12 3.71* 

Margin of error (95% CI) 2.34 2.07 0.50 0.39 0.23 7.27 

Upper 95% CI 24.94 10.41 3.01 2.23 1.83 51.90* 

Lower 95% CI 20.27 6.27 2.01 1.46 1.37 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Toolkit size (Toolkit parameter) 

 

Table B99. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 94.44 91.78 83.50 78.90 76.85 1.21 

Min 0.00 75.00 0.00 60.00 26.37 0.00 

Median 100.00 96.49 88.65 85.99 84.07 3.73 

Mean 95.73 95.01 87.03 84.57 80.66 8.39 

Max 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 93.46 90.33 88.23 10.53 

SD 11.58 5.94 11.59 8.75 13.64 11.83 

SE 1.16 0.59 1.16 0.87 1.36 1.67* 

Margin of error (95% 
CI) 2.27 1.16 2.27 1.71 2.67 3.28 

Upper 95% CI 98.00 96.17 89.30 86.28 83.33 11.66* 

Lower 95% CI 93.45 93.84 84.76 82.85 77.99 5.11* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP5-6-MIS4-

Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.39 0.12 0.25 0.25 40.00 
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Max 0.00 24.75 2.25 7.07 5.21 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.31 62.77 

SD 0.00 2.84 0.39 0.87 0.65 27.52 

SE 0.00 0.28 0.04 0.09 0.07 4.01* 

Margin of error (95% 
CI) 0.00 0.56 0.08 0.17 0.13 7.85 

Upper 95% CI 0.00 0.95 0.20 0.42 0.38 47.85* 

Lower 95% CI 0.00 0.00 0.04 0.08 0.13 32.15* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 6.21 9.45 11.74 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 3.39 11.12 13.68 15.74 43.00 

Mean 3.27 4.60 11.85 15.18 19.09 44.63 

Max 33.33 25.00 37.70 40.00 69.70 96.45 

Third Quartile 5.42 6.84 15.84 20.71 22.30 68.24 

SD 6.39 5.56 7.63 8.47 13.41 25.54 

SE 0.64 0.56 0.76 0.85 1.34 3.71* 

Margin of error (95% 
CI) 1.25 1.09 1.50 1.66 2.63 7.27 

Upper 95% CI 4.53 5.69 13.35 16.84 21.71 51.90* 

Lower 95% CI 2.02 3.51 10.35 13.52 16.46 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B100. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 1 

Quartzite 2 2 2 2 2 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 1 

Quartzite 2 2 2 2 2 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 1 
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Quartzite 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS4 with a Paleo-Agulhas plain silcrete source– Discard probability at locality (PDC-

ProbDiscardCamp parameter) 

 

Table B101. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 30.46 58.77 64.60 65.88 65.43 1.21 

Min 0.00 51.52 42.36 0.00 56.32 0.00 

Median 41.67 61.70 66.96 67.92 67.99 3.73 

Mean 41.32 61.52 66.47 67.31 67.54 8.39 

Max 100.00 77.27 79.26 98.41 75.27 66.11 

Third Quartile 53.40 64.09 68.13 69.62 69.56 10.53 

SD 19.31 4.42 3.73 8.00 3.33 11.83 

SE 1.93 0.44 0.37 0.80 0.33 1.67* 

Margin of error (95% 
CI) 3.79 0.87 0.73 1.57 0.65 3.28 

Upper 95% CI 45.11 62.39 67.20 68.87 68.19 11.66* 

Lower 95% CI 37.54 60.66 65.74 65.74 66.89 5.11* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 28.57 28.42 29.42 28.40 29.16 13.79 

Min 0.00 19.05 20.74 0.00 24.73 0.00 

Median 36.18 31.03 30.85 30.55 31.19 39.13 

Mean 37.70 30.74 31.13 30.02 31.28 40.00 

Max 100.00 38.18 51.75 39.50 40.82 96.55 

Third Quartile 45.74 32.98 32.80 32.71 33.19 62.77 

SD 18.87 3.61 3.29 5.20 3.31 27.52 

SE 1.89 0.36 0.33 0.52 0.33 4.01* 

Margin of error (95% 
CI) 3.70 0.71 0.64 1.02 0.65 7.85 

Upper 95% CI 41.40 31.45 31.77 31.03 31.93 47.85* 

Lower 95% CI 34.00 30.03 30.48 29.00 30.63 32.15* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 9.09 4.62 1.52 1.02 0.59 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 
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Median 16.67 7.30 2.05 1.42 1.05 43.00 

Mean 20.97 7.74 2.40 1.68 1.18 44.63 

Max 100.00 22.80 7.94 6.23 4.20 96.45 

Third Quartile 29.41 9.47 2.91 1.98 1.59 68.24 

SD 17.21 4.17 1.47 1.11 0.81 25.54 

SE 1.72 0.42 0.15 0.11 0.08 3.71* 

Margin of error (95% 
CI) 3.37 0.82 0.29 0.22 0.16 7.27 

Upper 95% CI 24.35 8.55 2.69 1.90 1.34 51.90* 

Lower 95% CI 17.60 6.92 2.11 1.46 1.02 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source– Discard probability on landscape (PD-

ProbDiscard parameter) 

 

Table B102. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 46.40 47.03 45.37 43.18 42.12 1.21 

Min 7.69 33.33 32.46 30.61 33.66 0.00 

Median 54.56 49.87 48.46 45.33 44.79 3.73 

Mean 52.21 49.96 47.80 45.69 45.28 8.39 

Max 73.08 65.52 59.30 61.32 59.83 66.11 

Third Quartile 60.14 53.09 50.45 47.85 48.00 10.53 

SD 11.44 5.21 4.61 4.60 4.39 11.83 

SE 1.14 0.52 0.46 0.46 0.44 1.67* 

Margin of error (95% CI) 2.24 1.02 0.90 0.90 0.86 3.28 

Upper 95% CI 54.45 50.98 48.70 46.59 46.14 11.66* 

Lower 95% CI 49.96 48.94 46.89 44.79 44.42 5.11* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 19.69 38.91 48.15 50.00 50.47 13.79 

Min 3.90 27.27 32.56 33.96 40.17 0.00 

Median 24.01 43.65 50.28 53.19 54.22 39.13 

Mean 24.04 42.63 50.48 52.72 53.52 40.00 

Max 53.85 66.67 66.67 67.35 66.34 96.55 

Third Quartile 28.88 46.09 53.02 55.39 56.76 62.77 

SD 7.86 5.92 4.83 4.91 4.38 27.52 

SE 0.79 0.59 0.48 0.49 0.44 4.01* 

Margin of error (95% CI) 1.54 1.16 0.95 0.96 0.86 7.85 
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Upper 95% CI 25.58 43.79 51.43 53.68 54.38 47.85* 

Lower 95% CI 22.50 41.47 49.54 51.76 52.66 32.15* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 16.34 4.40 0.87 0.62 0.49 5.19 

Min 1.96 0.00 0.00 0.00 0.00 0.00 

Median 21.33 6.81 1.51 1.26 0.91 43.00 

Mean 23.75 7.41 1.72 1.59 1.20 44.63 

Max 70.13 18.46 9.09 14.81 8.82 96.45 

Third Quartile 28.07 9.71 2.21 1.87 1.47 68.24 

SD 12.02 4.23 1.51 1.87 1.28 25.54 

SE 1.20 0.42 0.15 0.19 0.13 3.71* 

Margin of error (95% CI) 2.36 0.83 0.30 0.37 0.25 7.27 

Upper 95% CI 26.11 8.24 2.02 1.95 1.45 51.90* 

Lower 95% CI 21.40 6.58 1.42 1.22 0.95 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Toolkit size (Toolkit parameter) 

 

Table B103. Summary statistics and test results for OFAT3 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP5-6-MIS4-

Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 40.42 42.19 47.15 47.09 44.36 1.21 

Min 0.00 0.00 19.07 31.43 25.20 0.00 

Median 48.20 50.00 51.06 50.74 51.84 3.73 

Mean 47.29 49.86 51.76 50.58 50.24 8.39 

Max 80.00 85.71 100.00 94.12 65.71 66.11 

Third Quartile 55.42 56.22 55.64 53.56 56.06 10.53 

SD 13.56 12.79 9.71 7.30 8.27 11.83 

SE 1.36 1.28 0.97 0.73 0.83 1.67* 

Margin of error (95% 
CI) 2.66 2.51 1.90 1.43 1.62 3.28 

Upper 95% CI 49.95 52.36 53.67 52.02 51.86 11.66* 

Lower 95% CI 44.64 47.35 49.86 49.15 48.62 5.11* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP5-6-MIS4-

Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 41.96 40.16 34.42 30.39 28.52 13.79 

Min 20.00 0.00 0.00 5.88 8.00 0.00 
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Median 50.00 47.59 37.68 34.84 33.09 39.13 

Mean 50.74 46.77 37.02 34.46 32.55 40.00 

Max 87.50 100.00 53.02 51.82 49.99 96.55 

Third Quartile 58.44 54.55 41.46 39.68 36.77 62.77 

SD 13.78 13.53 7.72 7.20 6.62 27.52 

SE 1.38 1.35 0.77 0.72 0.66 4.01* 

Margin of error (95% 
CI) 2.70 2.65 1.51 1.41 1.30 7.85 

Upper 95% CI 53.44 49.42 38.53 35.87 33.84 47.85* 

Lower 95% CI 48.04 44.12 35.50 33.05 31.25 32.15* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 6.10 9.75 10.17 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 2.25 9.71 13.59 16.57 43.00 

Mean 1.96 3.38 11.22 14.95 17.21 44.63 

Max 16.67 25.00 45.24 36.96 62.00 96.45 

Third Quartile 0.00 5.20 15.54 19.93 24.17 68.24 

SD 3.91 4.44 7.81 7.89 9.68 25.54 

SE 0.39 0.44 0.78 0.79 0.97 3.71* 

Margin of error (95% 
CI) 0.77 0.87 1.53 1.55 1.90 7.27 

Upper 95% CI 2.73 4.25 12.75 16.50 19.11 51.90* 

Lower 95% CI 1.19 2.51 9.69 13.41 15.32 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B104. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 1 1 1 2 

Silcrete 1 2 2 2 2 1 

Quartzite 2 3 3 3 3 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 

Silcrete 2 2 1 1 1 1 

Quartzite 2 3 3 3 3 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS4-PP5-6 
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Quartz 1 1 1 1 1 2 

Silcrete 1 1 2 2 2 1 

Quartzite 2 2 3 3 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS5 conditions– Discard probability at locality (PDC-ProbDiscardCamp parameter) 

 

Table B105. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
PDC=0.00
1-Quartz 

PDC=0.1
-Quartz 

PDC=0.5
-Quartz 

PDC=0.7
5-Quartz 

PDC=0.9
5-Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 63.26 76.45 80.21 80.30 81.01 0.00 1.71 0.10 

Min 0.00 70.02 72.75 64.80 52.62 0.00 0.00 0.00 

Median 70.90 78.79 82.01 82.01 82.64 0.89 2.15 2.65 

Mean 70.15 78.82 81.81 81.50 82.22 3.53 4.41 4.61 

Max 100.00 88.67 98.51 86.92 100.00 24.87 9.39 24.87 

Third 
Quartile 77.82 81.62 83.83 83.90 84.29 3.92 9.33 6.95 

SD 15.04 3.89 3.31 3.78 4.57 5.94 3.91 6.03 

SE 1.50 0.39 0.33 0.38 0.46 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 2.95 0.76 0.65 0.74 0.90 2.03 2.74 1.76 

Upper 95% 
CI 73.10 79.58 82.45 82.24 83.12 5.56* 7.15* 6.37* 

Lower 95% 
CI 67.20 78.06 81.16 80.76 81.32 1.51* 1.68* 2.85* 

  
PDC=0.00
1-Silcrete 

PDC=0.1
-Silcrete 

PDC=0.5
-Silcrete 

PDC=0.7
5-Silcrete 

PDC=0.9
5-Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.08 0.09 0.09 0.09 0.09 1.45 0.00 0.95 

Min 0.00 0.07 0.01 0.07 0.00 0.00 0.00 0.00 

Median 0.11 0.14 0.10 0.10 0.10 10.19 0.00 6.44 

Mean 2.05 0.60 0.12 0.12 0.10 16.97 1.09 13.05 

Max 24.83 6.04 0.84 0.75 0.29 64.83 5.01 64.83 

Third 
Quartile 2.94 0.86 0.12 0.11 0.11 32.95 2.55 21.21 

SD 4.02 0.87 0.09 0.08 0.03 17.85 1.97 16.45 

SE 0.40 0.09 0.01 0.01 0.00 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.79 0.17 0.02 0.02 0.01 6.16 1.34 4.82 

Upper 95% 
CI 2.84 0.77 0.14 0.13 0.11 23.12* 2.42* 17.86* 
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Lower 95% 
CI 1.26 0.43 0.10 0.10 0.10 10.81* 0.00* 8.23* 

  

PDC=0.00
1-

Quartzite 

PDC=0.1
-

Quartzit
e 

PDC=0.5
-

Quartzit
e 

PDC=0.7
5-

Quartzite 

PDC=0.9
5-

Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblages
) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 19.79 18.06 15.99 15.95 15.56 60.24 87.62 64.30 

Min 0.00 11.21 1.47 12.95 0.00 26.94 87.62 26.94 

Median 26.47 20.89 17.83 17.79 17.20 76.11 97.85 83.74 

Mean 27.74 20.52 18.01 18.32 17.61 72.77 94.34 77.20 

Max 100.00 29.57 27.02 34.85 46.90 100.00 100.00 100.00 

Third 
Quartile 34.48 22.62 19.60 19.52 18.82 92.83 98.29 92.83 

SD 14.67 3.65 3.27 3.73 4.52 21.79 5.37 20.01 

SE 1.47 0.37 0.33 0.37 0.45 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 2.88 0.72 0.64 0.73 0.89 7.55 3.76 5.87 

Upper 95% 
CI 30.61 21.23 18.65 19.05 18.50 80.32* 98.10* 83.07* 

Lower 95% 
CI 24.86 19.80 17.37 17.59 16.72 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions – Discard probability on landscape (PD-ProbDiscard parameter) 

 

Table B106. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
PD=0.001
-Quartz 

PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 65.54 73.77 75.98 75.91 75.74 0.00 1.71 0.10 

Min 47.66 59.12 67.02 33.67 69.81 0.00 0.00 0.00 

Median 71.84 76.69 78.65 78.72 78.40 0.89 2.15 2.65 

Mean 70.24 76.16 78.73 77.94 78.24 3.53 4.41 4.61 

Max 86.09 87.02 100.00 87.04 85.54 24.87 9.39 24.87 

Third Quartile 75.52 79.82 81.00 80.68 80.42 3.92 9.33 6.95 

SD 7.19 4.99 4.25 5.85 3.31 5.94 3.91 6.03 

SE 0.72 0.50 0.43 0.59 0.33 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 1.41 0.98 0.83 1.15 0.65 2.03 2.74 1.76 

Upper 95% 
CI 71.64 77.13 79.56 79.09 78.89 5.56* 7.15* 6.37* 

Lower 95% 
CI 68.83 75.18 77.90 76.79 77.59 1.51* 1.68* 2.85* 

  
PD=0.001
-Silcrete 

PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 
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n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.08 0.10 0.11 0.11 0.12 1.45 0.00 0.95 

Min 0.05 0.03 0.00 0.08 0.08 0.00 0.00 0.00 

Median 0.94 0.12 0.12 0.12 0.13 10.19 0.00 6.44 

Mean 2.36 0.39 0.17 0.13 0.13 16.97 1.09 13.05 

Max 24.80 3.78 5.45 0.40 0.18 64.83 5.01 64.83 

Third Quartile 3.70 0.17 0.14 0.14 0.14 32.95 2.55 21.21 

SD 3.53 0.69 0.53 0.04 0.02 17.85 1.97 16.45 

SE 0.35 0.07 0.05 0.00 0.00 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.69 0.13 0.10 0.01 0.00 6.16 1.34 4.82 

Upper 95% 
CI 3.05 0.52 0.28 0.14 0.13 23.12* 2.42* 17.86* 

Lower 95% 
CI 1.67 0.25 0.07 0.12 0.12 10.81* 0.00* 8.23* 

  
PD=0.001
-Quartzite 

PD=0.1-
Quartzit

e 

PD=0.5-
Quartzit

e 
PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 21.89 19.68 18.84 19.13 19.39 60.24 87.62 64.30 

Min 12.37 12.85 0.00 12.83 14.31 26.94 87.62 26.94 

Median 26.93 23.14 21.14 21.07 21.39 76.11 97.85 83.74 

Mean 27.35 23.38 21.02 21.84 21.55 72.77 94.34 77.20 

Max 46.97 40.60 32.68 65.67 29.90 100.00 100.00 100.00 

Third Quartile 32.33 25.78 23.79 23.85 24.03 92.83 98.29 92.83 

SD 6.91 4.99 4.13 5.79 3.28 21.79 5.37 20.01 

SE 0.69 0.50 0.41 0.58 0.33 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 1.35 0.98 0.81 1.13 0.64 7.55 3.76 5.87 

Upper 95% 
CI 28.71 24.36 21.83 22.98 22.19 80.32* 98.10* 83.07* 

Lower 95% 
CI 26.00 22.41 20.21 20.71 20.91 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions – Toolkit size (Toolkit parameter) 

 

Table B107. Summary statistics and test results for OFAT3 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
Toolkit=
5-Quartz 

Toolkit=1
0-Quartz 

Toolkit=5
0-Quartz 

Toolkit=7
5-Quartz 

Toolkit=1
00-Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 72.04 74.09 72.17 72.73 69.33 0.00 1.71 0.10 

Min 50.25 0.00 54.08 57.61 47.10 0.00 0.00 0.00 

Median 78.12 77.68 75.89 75.16 74.03 0.89 2.15 2.65 
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Mean 78.24 77.84 75.32 75.19 73.00 3.53 4.41 4.61 

Max 100.00 100.00 95.48 92.57 94.10 24.87 9.39 24.87 

Third 
Quartile 86.07 84.69 79.12 78.24 78.12 3.92 9.33 6.95 

SD 10.24 11.38 6.39 5.55 7.24 5.94 3.91 6.03 

SE 1.02 1.14 0.64 0.55 0.72 1.03 1.40 0.90* 

Margin of 
error (95% 
CI) 2.01 2.23 1.25 1.09 1.42 2.03 2.74 1.76 

Upper 95% 
CI 80.25 80.07 76.57 76.28 74.42 5.56 7.15 6.37* 

Lower 95% 
CI 76.23 75.61 74.06 74.11 71.58 1.51 1.68 2.85* 

  

Toolkit=
5-

Silcrete 
Toolkit=1
0-Silcrete 

Toolkit=5
0-Silcrete 

Toolkit=7
5-Silcrete 

Toolkit=1
00-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 4.30E+01 

First Quartile 0.08 0.08 0.09 0.10 0.09 1.45 0.00 0.95 

Min 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 

Median 0.13 0.11 0.12 0.12 0.10 10.19 0.00 6.44 

Mean 0.12 0.14 0.61 0.86 0.88 16.97 1.09 13.05 

Max 0.30 2.70 5.48 5.22 7.18 64.83 5.01 64.83 

Third 
Quartile 0.16 0.15 0.73 1.25 0.65 32.95 2.55 21.21 

SD 0.06 0.26 1.02 1.28 1.60 17.85 1.97 16.45 

SE 0.01 0.03 0.10 0.13 0.16 3.14 0.68 2.46* 

Margin of 
error (95% 
CI) 0.01 0.05 0.20 0.25 0.31 6.16 1.34 4.82 

Upper 95% 
CI 0.14 0.19 0.81 1.11 1.19 23.12 2.42 17.86* 

Lower 95% 
CI 0.11 0.09 0.41 0.61 0.57 10.81 0.00 8.23* 

  

Toolkit=
5-

Quartzite 

Toolkit=1
0-

Quartzite 

Toolkit=5
0-

Quartzite 

Toolkit=7
5-

Quartzite 

Toolkit=1
00-

Quartzite 

P5-6-
MIS5-

Quartzite 
PP13B-

Quartzite 

AllPP-
MIS5-

Quartzite 

n (number of 
assemblage
s) 1000 1000 1000 1000 1000 31 7 43 

First Quartile 13.81 14.79 20.56 20.90 21.66 60.24 87.62 64.30 

Min 0.00 0.00 4.48 7.35 5.84 26.94 87.62 26.94 

Median 21.68 21.55 23.05 24.14 25.51 76.11 97.85 83.74 

Mean 21.55 20.95 24.01 23.88 26.06 72.77 94.34 77.20 

Max 49.25 42.76 45.76 39.47 52.82 100.00 100.00 100.00 

Third 
Quartile 27.69 25.47 27.34 26.16 29.06 92.83 98.29 92.83 

SD 10.14 8.42 6.42 5.44 6.89 21.79 5.37 20.01 

SE 1.01 0.84 0.64 0.54 0.69 3.85 1.92 3.00* 

Margin of 
error (95% 
CI) 1.99 1.65 1.26 1.07 1.35 7.55 3.76 5.87 

Upper 95% 
CI 23.54 22.60 25.26 24.95 27.41 80.32 98.10 83.07* 

Lower 95% 19.57 19.30 22.75 22.82 24.71 65.21 90.58 71.33* 
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CI 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B108. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP13B, PP9B, PP9C, 

and PP5-6. 

  Discard probability at locality (PDC)* Archaeology 

Raw 
Material 0.001 0.1 0.5 0.75 0.95 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

  Discard probability on landscape (PD)* Archaeology 

Raw 
Material 0.001 0.1 0.5 0.75 0.95 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

  Toolkit size* Archaeology 

Raw 
Material 5 10 50 75 100 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-
All PP 

Quartz 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 without a Paleo-Agulhas plain silcrete source– Discard probability at locality 

(PDC-ProbDiscardCamp parameter) 

 

Table B109. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 38.85 70.82 77.47 77.68 78.64 1.71 

Min 0.00 61.85 69.15 0.00 65.48 0.00 

Median 50.93 73.78 80.05 79.90 80.46 2.15 

Mean 50.45 73.59 79.49 78.28 80.08 4.41 

Max 100.00 83.43 86.93 85.30 87.09 9.39 

Third Quartile 64.12 77.04 81.09 81.75 81.78 9.33 

SD 20.78 4.78 2.72 10.42 3.04 3.91 

SE 2.08 0.48 0.27 1.04 0.30 1.40* 

Margin of error 
(95% CI) 4.07 0.94 0.53 2.04 0.60 2.74 
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Upper 95% CI 54.52 74.53 80.02 80.32 80.67 7.15* 

Lower 95% CI 46.37 72.65 78.95 76.24 79.48 1.68* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.65 0.10 0.01 0.00 0.00 1.09 

Max 19.80 1.47 0.20 0.14 0.09 5.01 

Third Quartile 0.00 0.12 0.00 0.00 0.00 2.55 

SD 2.69 0.23 0.03 0.02 0.01 1.97 

SE 0.27 0.02 0.00 0.00 0.00 0.68* 

Margin of error 
(95% CI) 0.53 0.05 0.01 0.00 0.00 1.34 

Upper 95% CI 1.18 0.15 0.02 0.01 0.00 2.42* 

Lower 95% CI 0.13 0.06 0.00 0.00 0.00 0.00* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 33.33 22.88 18.91 18.20 18.22 87.62 

Min 0.00 16.57 13.07 0.00 12.91 87.62 

Median 46.90 26.22 19.95 20.07 19.54 97.85 

Mean 47.90 26.31 20.50 20.72 19.92 94.34 

Max 100.00 38.15 30.85 81.69 34.52 100.00 

Third Quartile 60.00 28.96 22.53 22.20 21.36 98.29 

SD 20.61 4.72 2.71 7.11 3.04 5.37 

SE 2.06 0.47 0.27 0.71 0.30 1.92* 

Margin of error 
(95% CI) 4.04 0.93 0.53 1.39 0.60 3.76 

Upper 95% CI 51.94 27.23 21.04 22.11 20.52 98.10* 

Lower 95% CI 43.86 25.38 19.97 19.32 19.33 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source– Discard probability on landscape 

(PD-ProbDiscard parameter) 

 

Table B110. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 48.64 58.78 60.81 58.88 58.77 1.71 

Min 0.00 42.32 16.67 51.42 46.81 0.00 
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Median 57.41 62.76 63.77 61.78 61.42 2.15 

Mean 56.71 62.62 63.12 62.39 61.36 4.41 

Max 85.71 75.00 75.76 76.34 78.43 9.39 

Third Quartile 67.30 66.44 67.15 65.53 63.56 9.33 

SD 14.40 5.63 7.05 4.71 4.63 3.91 

SE 1.44 0.56 0.71 0.47 0.46 1.40* 

Margin of error 
(95% CI) 2.82 1.10 1.38 0.92 0.91 2.74 

Upper 95% CI 59.53 63.73 64.50 63.31 62.27 7.15* 

Lower 95% CI 53.89 61.52 61.74 61.47 60.46 1.68* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.37 0.18 0.03 0.06 0.01 1.09 

Max 3.81 2.63 1.49 4.95 0.66 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.91 0.43 0.16 0.50 0.09 1.97 

SE 0.09 0.04 0.02 0.05 0.01 0.68* 

Margin of error 
(95% CI) 0.18 0.08 0.03 0.10 0.02 1.34 

Upper 95% CI 0.55 0.26 0.06 0.16 0.03 2.42* 

Lower 95% CI 0.19 0.09 0.00 0.00 0.00 0.00* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 32.21 33.50 32.85 34.35 36.44 87.62 

Min 14.29 25.00 24.24 23.66 21.57 87.62 

Median 42.04 37.16 36.23 38.22 38.58 97.85 

Mean 42.92 37.20 36.85 37.55 38.62 94.34 

Max 100.00 56.41 83.33 48.58 53.19 100.00 

Third Quartile 51.05 41.05 39.19 41.12 41.23 98.29 

SD 14.24 5.61 7.05 4.75 4.62 5.37 

SE 1.42 0.56 0.70 0.48 0.46 1.92* 

Margin of error 
(95% CI) 2.79 1.10 1.38 0.93 0.91 3.76 

Upper 95% CI 45.71 38.30 38.24 38.48 39.53 98.10* 

Lower 95% CI 40.13 36.10 35.47 36.62 37.72 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS6 without a Paleo-Agulhas plain silcrete source – Toolkit size (Toolkit parameter) 

 

Table B111. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 40.71 56.35 54.66 52.36 50.01 1.71 

Min 0.00 0.00 38.24 8.00 8.11 0.00 

Median 61.81 63.64 59.70 60.92 58.03 2.15 

Mean 58.00 61.27 60.35 59.10 56.69 4.41 

Max 100.00 100.00 100.00 94.74 87.10 9.39 

Third Quartile 75.00 70.59 65.07 66.19 63.81 9.33 

SD 25.27 17.26 9.95 12.25 12.84 3.91 

SE 2.53 1.73 0.99 1.23 1.28 1.40* 

Margin of error 
(95% CI) 4.95 3.38 1.95 2.40 2.52 2.74 

Upper 95% CI 62.95 64.66 62.30 61.50 59.21 7.15* 

Lower 95% CI 53.04 57.89 58.40 56.70 54.17 1.68* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP13B-MIS6-

Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.14 0.20 0.38 0.31 0.47 1.09 

Max 14.14 9.90 14.14 3.41 7.33 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.82 2.55 

SD 1.41 1.22 1.56 0.70 0.97 1.97 

SE 0.14 0.12 0.16 0.07 0.10 0.68* 

Margin of error 
(95% CI) 0.28 0.24 0.31 0.14 0.19 1.34 

Upper 95% CI 0.42 0.44 0.68 0.45 0.66 2.42* 

Lower 95% CI 0.00 0.00 0.07 0.17 0.28 0.00* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 25.00 28.78 34.30 33.45 35.47 87.62 

Min 0.00 0.00 0.00 5.26 12.90 87.62 

Median 37.50 35.71 39.98 39.08 41.28 97.85 

Mean 40.86 37.53 39.27 40.59 42.84 94.34 

Max 100.00 100.00 61.76 92.00 91.89 100.00 

Third Quartile 56.75 43.21 44.44 46.98 49.14 98.29 

SD 24.87 16.63 9.81 12.25 12.60 5.37 
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SE 2.49 1.66 0.98 1.22 1.26 1.92* 

Margin of error 
(95% CI) 4.87 3.26 1.92 2.40 2.47 3.76 

Upper 95% CI 45.74 40.79 41.19 42.99 45.31 98.10* 

Lower 95% CI 35.99 34.27 37.35 38.19 40.37 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B112. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 3 3 3 3 2 

Quartzite 1 2 2 2 2 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Discard probability at locality (PDC-

ProbDiscardCamp parameter) 

 

Table B113. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
PDC=0.001-

Quartz 
PDC=0.1-

Quartz 
PDC=0.5-

Quartz 
PDC=0.75-

Quartz 
PDC=0.95-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 28.57 58.11 64.56 64.71 65.04 1.71 

Min 0.00 44.01 59.05 59.21 58.72 0.00 

Median 37.27 61.13 65.93 66.59 67.12 2.15 

Mean 38.83 60.66 66.16 66.46 67.04 4.41 

Max 100.00 69.68 76.52 78.55 75.42 9.39 

Third Quartile 50.00 64.15 67.75 68.17 69.36 9.33 

SD 17.07 4.89 2.89 3.21 3.04 3.91 



730 
 

SE 1.71 0.49 0.29 0.32 0.30 1.40* 

Margin of error 
(95% CI) 3.35 0.96 0.57 0.63 0.60 2.74 

Upper 95% CI 42.18 61.62 66.73 67.09 67.64 7.15* 

Lower 95% CI 35.49 59.70 65.59 65.83 66.45 1.68* 

  
PDC=0.001-

Silcrete 
PDC=0.1-
Silcrete 

PDC=0.5-
Silcrete 

PDC=0.75-
Silcrete 

PDC=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 20.00 25.32 27.41 27.53 26.49 0.00 

Min 0.00 10.58 21.99 19.75 22.81 0.00 

Median 29.29 28.04 28.75 28.90 28.94 0.00 

Mean 30.65 27.53 28.82 29.11 29.02 1.09 

Max 100.00 42.92 36.11 39.02 36.99 5.01 

Third Quartile 39.47 30.03 30.12 31.03 31.02 2.55 

SD 15.31 4.46 2.67 3.34 3.05 1.97 

SE 1.53 0.45 0.27 0.33 0.31 0.68* 

Margin of error 
(95% CI) 3.00 0.87 0.52 0.65 0.60 1.34 

Upper 95% CI 33.65 28.41 29.34 29.76 29.61 2.42* 

Lower 95% CI 27.65 26.66 28.30 28.45 28.42 0.00* 

  
PDC=0.001-

Quartzite 
PDC=0.1-
Quartzite 

PDC=0.5-
Quartzite 

PDC=0.75-
Quartzite 

PDC=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 18.64 7.51 3.96 3.65 3.26 87.62 

Min 0.00 2.62 0.16 0.00 0.36 87.62 

Median 30.00 10.81 4.71 4.28 4.04 97.85 

Mean 30.52 11.81 5.02 4.43 3.94 94.34 

Max 75.00 29.58 11.22 10.09 6.68 100.00 

Third Quartile 43.53 13.93 5.79 5.08 4.67 98.29 

SD 16.83 5.71 1.75 1.46 1.13 5.37 

SE 1.68 0.57 0.17 0.15 0.11 1.92* 

Margin of error 
(95% CI) 3.30 1.12 0.34 0.29 0.22 3.76 

Upper 95% CI 33.82 12.93 5.36 4.71 4.17 98.10* 

Lower 95% CI 27.22 10.69 4.68 4.14 3.72 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS6 with a Paleo-Agulhas plain silcrete source– Discard probability on landscape (PD-

ProbDiscard parameter) 

 

Table B114. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
PD=0.001-

Quartz 
PD=0.1-
Quartz 

PD=0.5-
Quartz 

PD=0.75-
Quartz 

PD=0.95-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 33.59 41.80 42.01 42.02 39.95 1.71 

Min 0.00 12.50 34.13 26.97 30.67 0.00 

Median 44.12 45.04 45.15 44.82 43.19 2.15 

Mean 44.79 45.03 44.74 44.65 42.83 4.41 

Max 100.00 63.81 57.05 56.86 58.54 9.39 

Third Quartile 57.99 49.42 47.70 47.38 45.85 9.33 

SD 16.38 7.13 4.64 5.24 4.82 3.91 

SE 1.64 0.71 0.46 0.52 0.48 1.40* 

Margin of error 
(95% CI) 3.21 1.40 0.91 1.03 0.94 2.74 

Upper 95% CI 48.00 46.43 45.65 45.68 43.78 7.15* 

Lower 95% CI 41.58 43.64 43.83 43.63 41.89 1.68* 

  
PD=0.001-

Silcrete 
PD=0.1-
Silcrete 

PD=0.5-
Silcrete 

PD=0.75-
Silcrete 

PD=0.95-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 13.41 33.46 38.00 38.26 38.24 0.00 

Min 0.00 18.60 29.73 26.89 31.71 0.00 

Median 19.87 38.18 40.88 40.08 42.11 0.00 

Mean 21.00 38.00 40.62 40.52 41.63 1.09 

Max 55.36 58.06 51.17 57.30 53.33 5.01 

Third Quartile 26.16 41.93 43.74 43.03 44.46 2.55 

SD 10.85 6.58 4.31 5.09 4.26 1.97 

SE 1.08 0.66 0.43 0.51 0.43 0.68* 

Margin of error 
(95% CI) 2.13 1.29 0.84 1.00 0.83 1.34 

Upper 95% CI 23.12 39.28 41.46 41.52 42.47 2.42* 

Lower 95% CI 18.87 36.71 39.78 39.52 40.80 0.00* 

  
PD=0.001-
Quartzite 

PD=0.1-
Quartzite 

PD=0.5-
Quartzite 

PD=0.75-
Quartzite 

PD=0.95-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 22.60 13.33 12.27 12.96 13.34 87.62 

Min 0.00 5.56 7.81 5.88 6.50 87.62 

Median 32.47 15.47 14.29 14.64 15.45 97.85 

Mean 34.22 16.97 14.64 14.83 15.54 94.34 

Max 100.00 37.50 24.32 25.00 25.52 100.00 

Third Quartile 42.98 19.53 16.17 16.66 17.96 98.29 
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SD 16.01 6.07 3.27 3.34 3.44 5.37 

SE 1.60 0.61 0.33 0.33 0.34 1.92* 

Margin of error 
(95% CI) 3.14 1.19 0.64 0.65 0.67 3.76 

Upper 95% CI 37.36 18.16 15.28 15.48 16.21 98.10* 

Lower 95% CI 31.08 15.78 14.00 14.17 14.86 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Toolkit size (Toolkit parameter) 

 

Table B115. Summary statistics and test results for OFAT3 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
Toolkit=5-

Quartz 
Toolkit=10-

Quartz 
Toolkit=50-

Quartz 
Toolkit=75-

Quartz 
Toolkit=100-

Quartz 
PP13-MIS6-

Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 34.37 37.50 38.89 34.84 37.58 1.71 

Min 0.00 0.00 14.74 0.00 16.67 0.00 

Median 50.00 47.73 45.76 42.87 43.66 2.15 

Mean 47.98 45.97 44.87 43.76 43.16 4.41 

Max 100.00 100.00 85.71 84.62 81.25 9.39 

Third Quartile 61.81 57.14 52.94 51.29 50.55 9.33 

SD 25.01 18.47 11.85 13.33 10.67 3.91 

SE 2.50 1.85 1.19 1.33 1.07 1.40* 

Margin of error 
(95% CI) 4.90 3.62 2.32 2.61 2.09 2.74 

Upper 95% CI 52.88 49.59 47.20 46.37 45.25 7.15* 

Lower 95% CI 43.08 42.35 42.55 41.15 41.07 1.68* 

  
Toolkit=5-

Silcrete 
Toolkit=10-

Silcrete 
Toolkit=50-

Silcrete 
Toolkit=75-

Silcrete 
Toolkit=100-

Silcrete 
PP13B-MIS6-

Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 

First Quartile 22.44 28.72 24.22 21.43 20.38 0.00 

Min 0.00 0.00 12.50 0.00 4.35 0.00 

Median 36.93 38.68 27.47 27.26 26.24 0.00 

Mean 35.22 39.79 28.46 28.17 27.63 1.09 

Max 100.00 100.00 59.09 55.56 71.88 5.01 

Third Quartile 50.00 49.50 32.92 34.58 34.35 2.55 

SD 21.34 19.20 8.36 10.34 11.53 1.97 

SE 2.13 1.92 0.84 1.03 1.15 0.68* 

Margin of error 
(95% CI) 4.18 3.76 1.64 2.03 2.26 1.34 

Upper 95% CI 39.40 43.55 30.10 30.19 29.89 2.42* 

Lower 95% CI 31.04 36.02 26.82 26.14 25.37 0.00* 

  
Toolkit=5-
Quartzite 

Toolkit=10-
Quartzite 

Toolkit=50-
Quartzite 

Toolkit=75-
Quartzite 

Toolkit=100-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 7 



733 
 

First Quartile 0.00 5.42 18.68 19.74 21.30 87.62 

Min 0.00 0.00 0.00 0.00 2.17 87.62 

Median 13.39 12.50 25.57 27.42 29.21 97.85 

Mean 15.80 13.25 26.66 28.08 29.21 94.34 

Max 100.00 35.71 60.00 100.00 60.87 100.00 

Third Quartile 25.00 20.00 31.99 34.67 36.05 98.29 

SD 15.87 9.81 12.05 13.58 11.99 5.37 

SE 1.59 0.98 1.20 1.36 1.20 1.92* 

Margin of error 
(95% CI) 3.11 1.92 2.36 2.66 2.35 3.76 

Upper 95% CI 18.91 15.17 29.03 30.74 31.55 98.10* 

Lower 95% CI 12.69 11.32 24.30 25.42 26.86 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B116. Comparison between ranked model frequencies from OFAT3 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Discard probability at locality (PDC)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 

Quartzite 2 3 3 3 3 1 

  Discard probability on landscape (PD)* Archaeology 

Raw Material 0.001 0.1 0.5 0.75 0.95 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 3 2 2 2 1 2 

Quartzite 2 3 3 3 2 1 

  Toolkit size* Archaeology 

Raw Material 5 10 50 75 100 MIS6-PP13B 

Quartz 1 1 1 1 1 2 

Silcrete 2 1 2 2 2 2 

Quartzite 3 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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OFAT 4 - Changing Raw Material consumption and discard strategy 

Return to starting locality 

 

MIS4 without a Paleo-Agulhas plain silcrete source - Conservative Behavior 

 

Table B117. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 100.00 57.14 40.00 20.40 17.62 1.21 

Min 0.00 80.00 0.00 0.00 0.00 0.00 0.00 

Median 100.00 100.00 78.89 60.00 50.00 37.69 3.73 

Mean 99.00 99.80 74.49 58.08 41.31 37.91 8.39 

Max 100.00 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 100.00 80.00 60.15 50.16 10.53 

SD 10.00 2.00 25.93 29.97 27.53 28.05 11.83 

SE 1.00 0.20 2.59 3.00 2.75 2.81 1.67* 

Margin of error (95% 
CI) 1.96 0.39 5.08 5.87 5.40 5.50 3.28 

Upper 95% CI 100.96 100.19 79.57 63.96 46.71 43.40 11.66* 

Lower 95% CI 97.04 99.41 69.40 52.21 35.92 32.41 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 0.00 2.58 4.99 6.61 40.00 

Max 0.00 0.00 0.00 49.50 49.50 99.00 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.00 8.28 62.77 

SD 0.00 0.00 0.00 8.07 11.43 14.65 27.52 

SE 0.00 0.00 0.00 0.81 1.14 1.47 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.00 1.58 2.24 2.87 7.85 

Upper 95% CI 0.00 0.00 0.00 4.16 7.23 9.48 47.85* 

Lower 95% CI 0.00 0.00 0.00 1.00 2.75 3.74 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 16.67 33.333 34.37 5.19 

Min 0.00 0.00 0.00 0.00 0.000 0.00 0.00 
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Median 0.00 0.00 20.00 33.33 50.000 50.00 43.00 

Mean 0.00 0.20 24.51 36.33 52.694 53.48 44.63 

Max 0.00 20.00 100.00 100.00 100.000 100.00 96.45 

Third Quartile 0.00 0.00 42.86 50.00 66.667 73.71 68.24 

SD 0.00 2.00 24.94 28.38 28.463 29.72 25.54 

SE 0.00 0.20 2.49 2.84 2.846 2.97 3.71* 

Margin of error (95% 
CI) 0.00 0.39 4.89 5.56 5.579 5.82 7.27 

Upper 95% CI 0.00 0.59 29.40 41.90 58.272 59.30 51.90* 

Lower 95% CI 0.00 0.00 19.63 30.77 47.115 47.65 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Expedient behavior 

 

Table B118. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 99.51 21.16 8.32 5.51 4.44 1.21 

Min 100.00 98.25 17.25 6.25 3.26 3.25 0.00 

Median 100.00 99.66 22.90 9.67 6.10 4.90 3.73 

Mean 100.00 99.67 23.19 9.51 6.29 5.04 8.39 

Max 100.00 100.00 30.48 14.19 10.52 7.78 66.11 

Third Quartile 100.00 100.00 25.22 10.57 7.10 5.55 10.53 

SD 0.00 0.40 3.00 1.59 1.21 0.87 11.83 

SE 0.00 0.04 0.30 0.16 0.12 0.09 1.67* 

Margin of error (95% 
CI) 0.00 0.08 0.59 0.31 0.24 0.17 3.28 

Upper 95% CI 100.00 99.75 23.78 9.82 6.53 5.21 11.66* 

Lower 95% CI 100.00 99.59 22.60 9.20 6.05 4.87 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.91 2.77 3.12 3.95 13.79 

Min 0.00 0.00 0.00 0.93 1.30 1.62 0.00 

Median 0.00 0.00 1.64 3.38 3.95 4.64 39.13 

Mean 0.00 0.00 1.67 3.44 4.05 4.65 40.00 

Max 0.00 0.00 4.21 7.05 7.71 6.85 96.55 

Third Quartile 0.00 0.00 2.21 4.02 4.78 5.37 62.77 

SD 0.00 0.00 0.95 1.06 1.29 1.03 27.52 

SE 0.00 0.00 0.10 0.11 0.13 0.10 4.01* 
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Margin of error (95% 
CI) 0.00 0.00 0.19 0.21 0.25 0.20 7.85 

Upper 95% CI 0.00 0.00 1.85 3.65 4.30 4.85 47.85* 

Lower 95% CI 0.00 0.00 1.48 3.23 3.80 4.44 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 73.09 85.77 88.78 89.43 5.19 

Min 0.00 0.00 67.70 81.76 83.72 87.73 0.00 

Median 0.00 0.34 75.28 87.17 89.87 90.31 43.00 

Mean 0.00 0.33 75.14 87.05 89.66 90.31 44.63 

Max 0.00 1.75 81.59 91.32 93.56 93.91 96.45 

Third Quartile 0.00 0.49 77.51 88.41 91.02 90.91 68.24 

SD 0.00 0.40 3.00 1.95 1.98 1.25 25.54 

SE 0.00 0.04 0.30 0.19 0.20 0.13 3.71* 

Margin of error (95% 
CI) 0.00 0.08 0.59 0.38 0.39 0.25 7.27 

Upper 95% CI 0.00 0.41 75.73 87.43 90.05 90.55 51.90* 

Lower 95% CI 0.00 0.25 74.55 86.67 89.27 90.06 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Site caching 

 

Table B119. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 100.00 88.73 79.57 75.17 73.19 1.21 

Min 100.00 99.56 87.05 77.34 73.18 70.51 0.00 

Median 100.00 100.00 89.43 80.49 76.12 74.04 3.73 

Mean 100.00 99.95 89.54 80.46 76.20 73.99 8.39 

Max 100.00 100.00 93.55 83.07 78.82 76.17 66.11 

Third Quartile 100.00 100.00 90.17 81.23 77.33 74.91 10.53 

SD 0.00 0.10 1.21 1.15 1.29 1.22 11.83 

SE 0.00 0.01 0.12 0.11 0.13 0.12 1.67* 

Margin of error (95% 
CI) 0.00 0.02 0.24 0.22 0.25 0.24 3.28 

Upper 95% CI 100.00 99.97 89.78 80.68 76.46 74.23 11.66* 

Lower 95% CI 100.00 99.93 89.30 80.23 75.95 73.75 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 
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First Quartile 0.00 0.00 0.26 1.28 2.03 2.40 13.79 

Min 0.00 0.00 0.00 0.29 1.09 1.49 0.00 

Median 0.00 0.00 0.40 1.55 2.31 2.69 39.13 

Mean 0.00 0.00 0.42 1.54 2.33 2.77 40.00 

Max 0.00 0.00 0.97 2.72 3.30 3.96 96.55 

Third Quartile 0.00 0.00 0.53 1.79 2.72 3.15 62.77 

SD 0.00 0.00 0.24 0.38 0.51 0.51 27.52 

SE 0.00 0.00 0.02 0.04 0.05 0.05 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.05 0.07 0.10 0.10 7.85 

Upper 95% CI 0.00 0.00 0.46 1.61 2.43 2.87 47.85* 

Lower 95% CI 0.00 0.00 0.37 1.47 2.23 2.68 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 9.48 17.16 20.66 22.39 5.19 

Min 0.00 0.00 6.44 14.48 18.63 20.71 0.00 

Median 0.00 0.00 10.12 18.14 21.53 23.19 43.00 

Mean 0.00 0.05 10.05 18.00 21.47 23.24 44.63 

Max 0.00 0.44 12.58 20.87 24.53 26.89 96.45 

Third Quartile 0.00 0.00 10.77 18.91 22.32 24.03 68.24 

SD 0.00 0.10 1.15 1.17 1.15 1.20 25.54 

SE 0.00 0.01 0.12 0.12 0.12 0.12 3.71* 

Margin of error (95% 
CI) 0.00 0.02 0.23 0.23 0.23 0.23 7.27 

Upper 95% CI 0.00 0.07 10.27 18.23 21.69 23.47 51.90* 

Lower 95% CI 0.00 0.03 9.82 17.77 21.24 23.00 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B120. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 1 2 2 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 2 2 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 1 1 1 1 1 

  Site Caching* Archaeology 
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Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 1 1 1 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS4 with a Paleo-Agulhas plain silcrete source - Conservative Behavior 

 

Table B121. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 50.00 33.33 25.00 0.00 0.03 0.00 1.21 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 66.67 50.00 40.00 16.67 20.00 16.67 3.73 

Mean 63.57 51.92 43.55 22.00 23.01 18.52 8.39 

Max 100.00 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 85.71 75.00 60.00 36.46 36.46 33.33 10.53 

SD 29.54 28.12 28.07 25.03 21.12 20.57 11.83 

SE 2.95 2.81 2.81 2.50 2.11 2.06 1.67* 

Margin of error (95% 
CI) 5.79 5.51 5.50 4.91 4.14 4.03 3.28 

Upper 95% CI 69.36 57.43 49.05 26.91 27.15 22.55 11.66* 

Lower 95% CI 57.78 46.41 38.05 17.09 18.87 14.49 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 3.57 25.00 27.08 33.33 25.00 25.86 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 33.33 50.00 50.00 50.00 42.22 49.50 39.13 

Mean 35.43 47.08 44.47 52.44 46.10 46.10 40.00 

Max 100.00 100.00 100.00 100.00 100.00 100.00 96.55 

Third Quartile 50.00 65.63 61.88 75.00 61.88 60.00 62.77 

SD 29.05 28.03 28.06 29.84 27.11 27.53 27.52 

SE 2.91 2.80 2.81 2.98 2.71 2.75 4.01* 

Margin of error (95% 
CI) 5.69 5.49 5.50 5.85 5.31 5.39 7.85 

Upper 95% CI 41.12 52.58 49.97 58.28 51.42 51.49 47.85* 

Lower 95% CI 29.73 41.59 38.98 46.59 40.79 40.70 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 
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n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 16.67 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 25.00 33.33 33.33 43.00 

Mean 0.00 0.00 8.98 23.56 29.89 35.38 44.63 

Max 0.00 0.00 75.00 100.00 100.00 100.00 96.45 

Third Quartile 0.00 0.00 16.07 40.00 44.05 50.00 68.24 

SD 0.00 0.00 14.99 23.45 23.86 26.67 25.54 

SE 0.00 0.00 1.50 2.34 2.39 2.67 3.71* 

Margin of error (95% 
CI) 0.00 0.00 2.94 4.60 4.68 5.23 7.27 

Upper 95% CI 0.00 0.00 11.91 28.16 34.57 40.61 51.90* 

Lower 95% CI 0.00 0.00 6.04 18.97 25.22 30.15 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Expedient behavior 

 

Table B122. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 61.03 41.96 7.30 4.33 3.34 2.82 1.21 

Min 56.69 39.85 5.62 3.16 2.02 1.99 0.00 

Median 62.39 42.58 7.92 4.79 3.74 3.22 3.73 

Mean 62.37 42.82 8.12 4.88 3.71 3.22 8.39 

Max 66.49 45.66 11.10 7.40 5.24 4.28 66.11 

Third Quartile 63.69 43.70 8.76 5.39 4.07 3.61 10.53 

SD 1.68 1.25 1.14 0.79 0.61 0.52 11.83 

SE 0.17 0.13 0.11 0.08 0.06 0.05 1.67* 

Margin of error (95% 
CI) 0.33 0.25 0.22 0.16 0.12 0.10 3.28 

Upper 95% CI 62.70 43.07 8.34 5.04 3.83 3.32 11.66* 

Lower 95% CI 62.04 42.58 7.89 4.73 3.59 3.11 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 36.31 56.23 62.58 41.90 31.74 26.00 13.79 

Min 33.51 54.06 57.06 38.08 27.45 22.23 0.00 

Median 37.61 57.19 64.16 43.37 33.36 27.53 39.13 

Mean 37.63 57.07 63.99 43.41 33.29 27.68 40.00 

Max 43.31 60.15 69.64 49.82 39.12 32.40 96.55 
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Third Quartile 38.97 57.93 65.54 44.85 34.64 29.26 62.77 

SD 1.68 1.26 2.34 2.39 2.28 2.14 27.52 

SE 0.17 0.13 0.23 0.24 0.23 0.21 4.01* 

Margin of error (95% 
CI) 0.33 0.25 0.46 0.47 0.45 0.42 7.85 

Upper 95% CI 37.96 57.32 64.44 43.88 33.74 28.09 47.85* 

Lower 95% CI 37.30 56.83 63.53 42.94 32.84 27.26 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 26.33 50.16 61.43 67.69 5.19 

Min 0.00 0.00 23.80 44.08 56.75 63.82 0.00 

Median 0.00 0.00 27.82 51.43 62.87 69.24 43.00 

Mean 0.00 0.10 27.90 51.70 63.00 69.11 44.63 

Max 0.00 0.61 35.89 57.60 68.99 74.49 96.45 

Third Quartile 0.00 0.20 29.35 53.53 64.53 70.45 68.24 

SD 0.00 0.13 2.20 2.50 2.40 2.18 25.54 

SE 0.00 0.01 0.22 0.25 0.24 0.22 3.71* 

Margin of error (95% 
CI) 0.00 0.03 0.43 0.49 0.47 0.43 7.27 

Upper 95% CI 0.00 0.13 28.33 52.19 63.47 69.53 51.90* 

Lower 95% CI 0.00 0.08 27.47 51.21 62.53 68.68 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Site caching 

 

Table B123. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 72.07 67.93 61.03 58.70 57.68 56.16 1.21 

Min 69.28 62.39 58.36 56.65 54.34 53.62 0.00 

Median 73.21 68.70 62.42 60.01 58.59 57.34 3.73 

Mean 73.10 68.94 62.40 59.93 58.44 57.38 8.39 

Max 76.28 72.95 66.76 64.21 61.68 61.14 66.11 

Third Quartile 74.07 70.09 63.54 61.01 59.32 58.23 10.53 

SD 1.47 1.75 1.68 1.62 1.44 1.46 11.83 

SE 0.15 0.17 0.17 0.16 0.14 0.15 1.67* 

Margin of error (95% 
CI) 0.29 0.34 0.33 0.32 0.28 0.29 3.28 

Upper 95% CI 73.39 69.28 62.73 60.24 58.72 57.66 11.66* 

Lower 95% CI 72.81 68.60 62.07 59.61 58.16 57.09 5.11* 
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TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 25.93 29.91 33.60 34.58 34.88 34.93 13.79 

Min 23.72 27.05 31.10 31.13 31.19 32.47 0.00 

Median 26.79 31.23 34.92 35.45 35.65 36.06 39.13 

Mean 26.90 31.03 34.90 35.35 35.68 35.97 40.00 

Max 30.72 37.61 39.19 39.57 39.95 39.83 96.55 

Third Quartile 27.93 32.07 36.01 36.18 36.52 37.12 62.77 

SD 1.47 1.75 1.74 1.60 1.41 1.42 27.52 

SE 0.15 0.17 0.17 0.16 0.14 0.14 4.01* 

Margin of error (95% 
CI) 0.29 0.34 0.34 0.31 0.28 0.28 7.85 

Upper 95% CI 27.19 31.38 35.24 35.66 35.96 36.25 47.85* 

Lower 95% CI 26.61 30.69 34.56 35.03 35.40 35.69 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 2.35 4.18 5.41 6.14 5.19 

Min 0.00 0.00 1.35 3.17 3.92 5.18 0.00 

Median 0.00 0.00 2.65 4.75 5.89 6.57 43.00 

Mean 0.00 0.03 2.70 4.73 5.88 6.66 44.63 

Max 0.00 0.27 3.97 6.35 8.40 8.40 96.45 

Third Quartile 0.00 0.00 3.05 5.15 6.37 7.18 68.24 

SD 0.00 0.06 0.57 0.68 0.73 0.71 25.54 

SE 0.00 0.01 0.06 0.07 0.07 0.07 3.71* 

Margin of error (95% 
CI) 0.00 0.01 0.11 0.13 0.14 0.14 7.27 

Upper 95% CI 0.00 0.04 2.81 4.86 6.02 6.80 51.90* 

Lower 95% CI 0.00 0.01 2.59 4.59 5.74 6.52 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B124. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 2 2 3 2 

Silcrete 2 1 1 1 1 1 1 

Quartzite 3 2 2 2 2 2 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 2 3 3 3 3 2 
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Silcrete 2 1 1 2 2 2 1 

Quartzite 3 3 2 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 1 

Quartzite 3 3 3 3 3 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS5 Conditions - Conservative Behavior 

 

Table B125. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 66.83 68.02 52.03 50.03 33.50 30.18 0.00 1.71 0.10 

Min 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 

Median 83.42 83.42 75.13 60.25 50.13 50.06 0.89 2.15 2.65 

Mean 80.27 80.25 70.47 59.60 46.78 44.63 3.53 4.41 4.61 

Max 100.00 100.00 100.00 100.00 100.00 100.00 24.87 9.39 24.87 

Third 
Quartile 100.00 100.00 87.55 75.13 66.67 60.20 3.92 9.33 6.95 

SD 22.68 24.18 24.65 27.19 28.44 25.97 5.94 3.91 6.03 

SE 2.27 2.42 2.47 2.72 2.84 2.60 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 4.45 4.74 4.83 5.33 5.57 5.09 2.03 2.74 1.76 

Upper 95% 
CI 84.72 84.99 75.30 64.93 52.36 49.72 5.56* 7.15* 6.37* 

Lower 95% 
CI 75.82 75.51 65.63 54.27 41.21 39.54 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.00 0.00 0.00 0.00 0.09 0.20 1.45 0.00 0.95 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.10 0.09 0.15 0.20 0.30 14.23 10.19 0.00 6.44 

Mean 0.11 0.11 1.05 6.42 12.50 17.25 16.97 1.09 13.05 

Max 0.45 0.60 33.00 49.80 99.00 99.00 64.83 5.01 64.83 

Third 0.20 0.15 0.24 0.60 20.04 27.48 32.95 2.55 21.21 
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Quartile 

SD 0.12 0.13 4.72 13.25 20.30 20.72 17.85 1.97 16.45 

SE 0.01 0.01 0.47 1.33 2.03 2.07 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.02 0.03 0.93 2.60 3.98 4.06 6.16 1.34 4.82 

Upper 95% 
CI 0.13 0.13 1.98 9.02 16.47 21.31 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.08 0.08 0.13 3.83 8.52 13.18 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Quartzit

e 

AllPP-
MIS5-

Quartzite 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 0.00 0.00 0.00 16.48 19.70 20.00 60.24 87.62 64.30 

Min 0.00 0.00 0.00 0.00 0.00 0.00 26.94 87.62 26.94 

Median 16.42 14.07 24.63 32.83 36.37 39.40 76.11 97.85 83.74 

Mean 17.55 17.57 26.39 33.87 37.63 37.04 72.77 94.34 77.20 

Max 73.88 98.50 98.50 99.00 100.00 99.25 100.00 100.00 100.00 

Third 
Quartile 32.83 24.63 39.63 49.25 56.26 49.72 92.83 98.29 92.83 

SD 19.51 21.19 22.23 25.50 26.79 26.38 21.79 5.37 20.01 

SE 1.95 2.12 2.22 2.55 2.68 2.64 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 3.82 4.15 4.36 5.00 5.25 5.17 7.55 3.76 5.87 

Upper 95% 
CI 21.38 21.73 30.75 38.87 42.88 42.21 80.32* 98.10* 83.07* 

Lower 95% 
CI 13.73 13.42 22.04 28.87 32.38 31.87 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions – Expedient behavior 

 

Table B126. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 81.89 74.49 37.44 25.24 22.49 21.72 0.00 1.71 0.10 

Min 79.04 72.10 30.41 19.88 18.25 18.46 0.00 0.00 0.00 

Median 82.71 75.76 41.49 27.06 24.13 23.40 0.89 2.15 2.65 

Mean 82.75 75.67 41.15 27.37 24.14 23.33 3.53 4.41 4.61 

Max 85.62 80.43 52.88 35.58 33.09 30.15 24.87 9.39 24.87 

Third 
Quartile 83.81 76.77 43.80 29.60 25.70 24.71 3.92 9.33 6.95 
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SD 1.42 1.64 4.31 3.08 2.63 2.31 5.94 3.91 6.03 

SE 0.14 0.16 0.43 0.31 0.26 0.23 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 0.28 0.32 0.84 0.60 0.52 0.45 2.03 2.74 1.76 

Upper 95% 
CI 83.03 75.99 41.99 27.97 24.65 23.78 5.56* 7.15* 6.37* 

Lower 95% 
CI 82.47 75.35 40.30 26.76 23.62 22.87 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.10 0.14 4.04 13.48 18.25 22.90 1.45 0.00 0.95 

Min 0.09 0.12 1.79 8.04 11.31 13.42 0.00 0.00 0.00 

Median 0.10 0.15 4.80 15.44 21.12 25.29 10.19 0.00 6.44 

Mean 0.10 0.15 5.24 15.35 21.07 25.68 16.97 1.09 13.05 

Max 0.13 0.17 11.64 22.87 36.73 37.15 64.83 5.01 64.83 

Third 
Quartile 0.11 0.15 6.03 17.57 23.32 28.40 32.95 2.55 21.21 

SD 0.01 0.01 1.90 3.20 3.88 4.03 17.85 1.97 16.45 

SE 0.00 0.00 0.19 0.32 0.39 0.40 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.00 0.00 0.37 0.63 0.76 0.79 6.16 1.34 4.82 

Upper 95% 
CI 0.11 0.15 5.61 15.98 21.83 26.47 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.10 0.14 4.86 14.73 20.31 24.89 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Quartzit

e 

AllPP-
MIS5-

Quartzite 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 16.03 23.00 50.53 54.79 52.14 47.82 60.24 87.62 64.30 

Min 14.24 19.38 43.75 46.57 41.95 42.55 26.94 87.62 26.94 

Median 17.12 24.00 53.00 57.04 55.11 51.31 76.11 97.85 83.74 

Mean 17.07 24.09 53.51 57.21 54.73 50.94 72.77 94.34 77.20 

Max 20.75 27.62 63.81 66.65 64.45 61.17 100.00 100.00 100.00 

Third 
Quartile 17.92 25.26 56.45 59.73 57.37 53.74 92.83 98.29 92.83 

SD 1.41 1.63 4.21 3.81 4.01 4.08 21.79 5.37 20.01 

SE 0.14 0.16 0.42 0.38 0.40 0.41 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 0.28 0.32 0.83 0.75 0.79 0.80 7.55 3.76 5.87 

Upper 95% 
CI 17.35 24.41 54.33 57.96 55.52 51.74 80.32* 98.10* 83.07* 

Lower 95% 
CI 16.80 23.77 52.68 56.46 53.95 50.14 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS5 conditions – Site caching 

 

Table B127. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 84.45 83.16 76.79 72.32 69.82 68.04 0.00 1.71 0.10 

Min 82.08 81.67 75.07 70.31 67.41 65.45 0.00 0.00 0.00 

Median 85.42 84.21 78.06 73.61 71.00 69.04 0.89 2.15 2.65 

Mean 85.43 84.13 78.06 73.48 70.85 69.05 3.53 4.41 4.61 

Max 88.08 87.30 81.43 77.94 73.99 72.56 24.87 9.39 24.87 

Third 
Quartile 86.36 85.06 79.01 74.84 71.82 70.24 3.92 9.33 6.95 

SD 1.32 1.38 1.43 1.58 1.41 1.45 5.94 3.91 6.03 

SE 0.13 0.14 0.14 0.16 0.14 0.14 1.03* 1.40* 0.908 

Margin of 
error (95% 
CI) 0.26 0.27 0.28 0.31 0.28 0.28 2.03 2.74 1.76 

Upper 95% 
CI 85.69 84.40 78.34 73.79 71.13 69.34 5.56* 7.15* 6.37* 

Lower 95% 
CI 85.17 83.86 77.78 73.17 70.58 68.77 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.08 0.09 0.52 2.17 3.61 4.76 1.45 0.00 0.95 

Min 0.07 0.08 0.24 1.47 2.54 3.47 0.00 0.00 0.00 

Median 0.09 0.10 0.67 2.48 4.15 5.23 10.19 0.00 6.44 

Mean 0.09 0.10 0.72 2.50 4.07 5.25 16.97 1.09 13.05 

Max 0.11 0.11 1.33 3.65 6.05 6.86 64.83 5.01 64.83 

Third 
Quartile 0.09 0.10 0.90 2.82 4.45 5.70 32.95 2.55 21.21 

SD 0.01 0.01 0.26 0.49 0.68 0.66 17.85 1.97 16.45 

SE 0.00 0.00 0.03 0.05 0.07 0.07 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.00 0.00 0.05 0.10 0.13 0.13 6.16 1.34 4.82 

Upper 95% 
CI 0.09 0.10 0.78 2.60 4.20 5.38 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.09 0.09 0.67 2.41 3.93 5.12 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Quartzit

e 

AllPP-
MIS5-

Quartzite 
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n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 13.50 14.79 20.20 22.78 23.98 24.54 60.24 87.62 64.30 

Min 11.80 12.58 17.99 19.58 20.76 22.28 26.94 87.62 26.94 

Median 14.43 15.63 21.13 23.85 24.94 25.67 76.11 97.85 83.74 

Mean 14.43 15.71 21.14 23.93 25.00 25.62 72.77 94.34 77.20 

Max 17.74 18.14 24.08 27.18 28.51 28.62 100.00 100.00 100.00 

Third 
Quartile 15.39 16.67 22.31 25.13 26.04 26.84 92.83 98.29 92.83 

SD 1.30 1.36 1.40 1.54 1.47 1.41 21.79 5.37 20.01 

SE 0.13 0.14 0.14 0.15 0.15 0.14 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 0.26 0.27 0.27 0.30 0.29 0.28 7.55 3.76 5.87 

Upper 95% 
CI 14.68 15.98 21.41 24.24 25.28 25.89 80.32* 98.10* 83.07* 

Lower 95% 
CI 14.17 15.45 20.86 23.63 24.71 25.34 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B128. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP13B, PP9B, PP9C, 

and PP5-6. 

  Conservative* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 2 2 2 2 2 

Quartzite 2 2 2 2 1 1 1 1 1 

  Expedient* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 2 2 2 3 3 2 3 

Silcrete 3 3 3 3 3 2 2 2 2 

Quartzite 2 2 1 1 1 1 1 1 1 

  Site Caching* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 2 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. Grey shading indicates 
a ranking match. 
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MIS6 without a Paleo-Agulhas plain silcrete source - Conservative Behavior 

 

Table B129. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 72.32 57.14 20.00 3.37 0.00 0.00 1.71 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 100.00 73.21 33.33 30.95 25.00 16.67 2.15 

Mean 82.22 67.28 38.74 34.89 27.03 20.92 4.41 

Max 100.00 100.00 100.00 100.00 100.00 100.00 9.39 

Third Quartile 100.00 84.29 59.29 50.00 40.00 33.33 9.33 

SD 24.44 27.80 27.48 30.24 27.06 23.99 3.91 

SE 2.44 2.78 2.75 3.02 2.71 2.40 1.40* 

Margin of error 
(95% CI) 4.79 5.45 5.39 5.93 5.30 4.70 2.74 

Upper 95% CI 87.01 72.73 44.13 40.82 32.33 25.62 7.15* 

Lower 95% CI 77.43 61.83 33.36 28.97 21.73 16.22 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 0.33 1.67 4.94 4.08 1.09 

Max 0.00 0.00 33.00 49.50 66.00 49.50 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.00 0.00 3.30 7.14 13.11 10.60 1.97 

SE 0.00 0.00 0.33 0.71 1.31 1.06 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.65 1.40 2.57 2.08 1.34 

Upper 95% CI 0.00 0.00 0.98 3.07 7.50 6.16 2.42* 

Lower 95% CI 0.00 0.00 0.00 0.27 2.37 2.00 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 12.95 40.00 50.00 50.00 50.00 87.62 

Min 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Median 0.00 25.00 64.58 66.67 75.00 78.89 97.85 

Mean 14.78 29.72 59.93 61.44 68.03 74.00 94.34 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Third Quartile 25.00 40.00 80.00 85.12 100.00 100.00 98.29 

SD 19.83 25.67 27.60 31.46 28.45 26.00 5.37 
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SE 1.98 2.57 2.76 3.15 2.84 2.60 1.928 

Margin of error 
(95% CI) 3.89 5.03 5.41 6.17 5.58 5.10 3.76 

Upper 95% CI 18.67 34.75 65.34 67.60 73.61 79.10 98.10* 

Lower 95% CI 10.90 24.69 54.52 55.27 62.46 68.90 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source – Expedient behavior 

 

Table B130. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 80.27 53.63 7.11 3.94 3.35 2.96 1.71 

Min 77.93 50.53 5.37 2.87 2.41 2.48 0.00 

Median 81.46 54.89 7.66 4.51 3.75 3.29 2.15 

Mean 81.52 54.93 7.72 4.51 3.75 3.31 4.41 

Max 85.15 61.20 9.72 7.14 5.02 4.99 9.39 

Third Quartile 82.86 56.10 8.34 5.03 4.20 3.56 9.33 

SD 1.63 1.84 0.83 0.76 0.56 0.49 3.91 

SE 0.16 0.18 0.08 0.08 0.06 0.05 1.40* 

Margin of error 
(95% CI) 0.32 0.36 0.16 0.15 0.11 0.10 2.74 

Upper 95% CI 81.83 55.29 7.88 4.66 3.86 3.41 7.15* 

Lower 95% CI 81.20 54.57 7.56 4.36 3.64 3.22 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.30 1.32 2.12 2.84 0.00 

Min 0.00 0.00 0.00 0.67 0.91 1.96 0.00 

Median 0.00 0.00 0.52 1.68 2.57 3.33 0.00 

Mean 0.00 0.00 0.55 1.76 2.65 3.41 1.09 

Max 0.00 0.00 1.46 3.37 4.43 5.24 5.01 

Third Quartile 0.00 0.00 0.77 2.18 3.19 3.98 2.55 

SD 0.00 0.00 0.34 0.57 0.71 0.72 1.97 

SE 0.00 0.00 0.03 0.06 0.07 0.07 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.07 0.11 0.14 0.14 1.34 

Upper 95% CI 0.00 0.00 0.62 1.87 2.79 3.55 2.42* 

Lower 95% CI 0.00 0.00 0.49 1.65 2.51 3.27 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 17.14 43.90 91.11 93.12 93.09 92.58 87.62 
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Min 14.85 38.80 88.83 91.25 91.22 90.49 87.62 

Median 18.54 45.11 91.78 93.91 93.69 93.36 97.85 

Mean 18.48 45.07 91.73 93.74 93.60 93.27 94.34 

Max 22.07 49.47 93.94 95.69 95.70 95.19 100.00 

Third Quartile 19.73 46.37 92.42 94.55 94.24 93.90 98.29 

SD 1.63 1.84 0.92 0.99 0.85 0.93 5.37 

SE 0.16 0.18 0.09 0.10 0.08 0.09 1.92* 

Margin of error 
(95% CI) 0.32 0.36 0.18 0.19 0.17 0.18 3.76 

Upper 95% CI 18.80 45.43 91.91 93.93 93.77 93.46 98.10* 

Lower 95% CI 18.17 44.71 91.55 93.54 93.44 93.09 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source – Site caching 

 

Table B131. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 87.64 80.62 69.78 66.35 64.77 63.50 1.71 

Min 85.20 78.20 67.68 63.68 60.82 60.69 0.00 

Median 88.54 81.91 71.05 67.13 65.74 64.38 2.15 

Mean 88.54 81.83 70.99 67.43 65.69 64.54 4.41 

Max 91.89 85.14 74.67 71.98 69.07 67.95 9.39 

Third Quartile 89.35 82.85 72.20 68.56 66.79 65.81 9.33 

SD 1.41 1.46 1.49 1.58 1.53 1.46 3.91 

SE 0.14 0.15 0.15 0.16 0.15 0.15 1.40* 

Margin of error 
(95% CI) 0.28 0.29 0.29 0.31 0.30 0.29 2.74 

Upper 95% CI 88.82 82.11 71.28 67.74 65.99 64.83 7.15* 

Lower 95% CI 88.26 81.54 70.69 67.12 65.39 64.26 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.14 0.87 1.47 1.82 0.00 

Min 0.00 0.00 0.00 0.35 0.58 0.94 0.00 

Median 0.00 0.00 0.32 1.05 1.68 2.09 0.00 

Mean 0.00 0.00 0.33 1.11 1.72 2.14 1.09 

Max 0.00 0.00 1.17 2.26 2.92 3.33 5.01 

Third Quartile 0.00 0.00 0.47 1.35 2.00 2.43 2.55 

SD 0.00 0.00 0.22 0.36 0.41 0.45 1.97 

SE 0.00 0.00 0.02 0.04 0.04 0.05 0.68* 

Margin of error 0.00 0.00 0.04 0.07 0.08 0.09 1.34 
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(95% CI) 

Upper 95% CI 0.00 0.00 0.38 1.18 1.80 2.22 2.42* 

Lower 95% CI 0.00 0.00 0.29 1.04 1.64 2.05 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 10.65 17.15 27.47 30.39 31.49 32.07 87.62 

Min 8.11 14.86 25.15 27.43 28.87 30.14 87.62 

Median 11.46 18.09 28.56 31.66 32.63 33.71 97.85 

Mean 11.46 18.17 28.68 31.46 32.59 33.32 94.34 

Max 14.80 21.80 32.20 35.61 37.24 37.22 100.00 

Third Quartile 12.36 19.38 29.96 32.49 33.57 34.29 98.29 

SD 1.41 1.46 1.51 1.58 1.52 1.49 5.37 

SE 0.14 0.15 0.15 0.16 0.15 0.15 1.92* 

Margin of error 
(95% CI) 0.28 0.29 0.30 0.31 0.30 0.29 3.76 

Upper 95% CI 11.74 18.46 28.98 31.77 32.89 33.61 98.10* 

Lower 95% CI 11.18 17.89 28.38 31.16 32.29 33.03 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B132. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 2 2 

Quartzite 2 2 1 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 1 1 1 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 2 2 2 2 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. Grey shading indicates 
a ranking match. 

 

 

 



751 
 

MIS6 with a Paleo-Agulhas plain silcrete source - Conservative Behavior 

 

Table B133. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 33.33 29.76 3.82 0.00 0.00 0.00 1.71 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 50.00 50.00 33.33 25.00 25.00 16.67 2.15 

Mean 51.31 46.78 31.06 24.95 23.89 19.31 4.41 

Max 100.00 100.00 100.00 100.00 100.00 100.00 9.39 

Third Quartile 75.00 66.67 50.00 33.33 33.63 33.33 9.33 

SD 32.18 29.87 25.88 25.17 20.66 22.42 3.91 

SE 3.55 2.99 2.59 2.52 2.07 2.24 1.40* 

Margin of error 
(95% CI) 6.96 5.85 5.07 4.93 4.05 4.39 2.74 

Upper 95% CI 58.27 52.63 36.13 29.88 27.94 23.71 7.15* 

Lower 95% CI 44.35 40.92 25.99 20.02 19.84 14.92 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 20.00 16.67 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 40.00 33.33 35.42 28.50 25.00 26.71 0.00 

Mean 39.96 38.94 38.63 29.38 27.85 30.19 1.09 

Max 100.00 100.00 100.00 100.00 100.00 100.00 5.01 

Third Quartile 60.00 55.36 50.00 50.00 47.99 49.75 2.55 

SD 32.60 27.68 31.53 24.44 25.01 28.37 1.97 

SE 3.60 2.77 3.15 2.44 2.50 2.84 0.68* 

Margin of error 
(95% CI) 7.06 5.43 6.18 4.79 4.90 5.56 1.34 

Upper 95% CI 47.01 44.37 44.81 34.17 32.75 35.76 2.42* 

Lower 95% CI 32.90 33.51 32.45 24.59 22.94 24.63 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 25.00 25.00 33.33 87.62 

Min 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Median 0.00 0.00 26.79 43.65 50.00 50.00 97.85 

Mean 5.07 9.28 29.31 44.67 47.27 49.49 94.34 

Max 100.00 66.67 100.00 100.00 100.00 100.00 100.00 

Third Quartile 0.00 19.17 48.61 65.00 66.67 66.67 98.29 

SD 14.43 14.39 27.28 28.35 27.33 28.20 5.37 
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SE 1.59 1.44 2.73 2.83 2.73 2.82 1.92* 

Margin of error 
(95% CI) 3.12 2.82 5.35 5.56 5.36 5.53 3.76 

Upper 95% CI 8.20 12.10 34.66 50.22 52.62 55.02 98.10* 

Lower 95% CI 1.95 6.46 23.96 39.11 41.91 43.97 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Expedient behavior 

 

Table B134. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 60.36 39.42 5.33 3.09 2.71 2.32 1.71 

Min 57.23 36.97 4.35 1.98 1.73 1.73 0.00 

Median 61.31 40.28 5.84 3.47 2.97 2.59 2.15 

Mean 61.36 40.38 5.91 3.49 2.96 2.63 4.41 

Max 65.91 44.03 8.68 4.94 4.27 3.57 9.39 

Third Quartile 62.68 41.16 6.45 3.87 3.20 2.96 9.33 

SD 1.78 1.40 0.80 0.56 0.49 0.43 3.91 

SE 0.18 0.14 0.08 0.06 0.05 0.04 1.40* 

Margin of error 
(95% CI) 0.35 0.28 0.16 0.11 0.10 0.08 2.74 

Upper 95% CI 61.71 40.66 6.07 3.60 3.06 2.71 7.15* 

Lower 95% CI 61.01 40.10 5.75 3.38 2.87 2.54 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 33.04 43.67 26.79 18.38 15.58 13.54 0.00 

Min 29.47 41.37 23.74 15.04 13.25 11.67 0.00 

Median 34.00 44.78 27.75 19.44 16.51 14.48 0.00 

Mean 34.14 44.71 27.81 19.27 16.53 14.53 1.09 

Max 37.96 48.09 31.52 22.77 18.98 17.90 5.01 

Third Quartile 35.38 45.53 28.99 20.00 17.46 15.64 2.55 

SD 1.65 1.44 1.56 1.49 1.26 1.33 1.97 

SE 0.17 0.14 0.16 0.15 0.13 0.13 0.68* 

Margin of error 
(95% CI) 0.32 0.28 0.31 0.29 0.25 0.26 1.34 

Upper 95% CI 34.46 44.99 28.11 19.56 16.78 14.79 2.42* 

Lower 95% CI 33.81 44.43 27.50 18.97 16.28 14.27 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 4.04 14.28 65.06 76.38 79.66 81.72 87.62 
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Min 3.06 12.68 62.47 73.66 77.56 79.46 87.62 

Median 4.45 14.81 66.20 77.23 80.48 82.94 97.85 

Mean 4.51 14.91 66.28 77.24 80.51 82.85 94.34 

Max 5.91 17.70 71.52 82.07 83.77 85.91 100.00 

Third Quartile 4.99 15.45 67.48 78.11 81.41 83.85 98.29 

SD 0.61 0.91 1.73 1.64 1.30 1.41 5.37 

SE 0.06 0.09 0.17 0.16 0.13 0.14 1.92* 

Margin of error 
(95% CI) 0.12 0.18 0.34 0.32 0.25 0.28 3.76 

Upper 95% CI 4.63 15.09 66.62 77.56 80.76 83.12 98.10* 

Lower 95% CI 4.39 14.73 65.94 76.92 80.25 82.57 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Site caching 

 

Table B135. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 70.41 66.86 60.19 58.06 56.72 55.85 1.71 

Min 67.03 63.68 57.68 54.12 54.08 53.41 0.00 

Median 71.53 68.35 61.46 59.03 58.04 56.80 2.15 

Mean 71.73 68.13 61.35 59.05 58.04 57.04 4.41 

Max 77.25 71.61 66.26 62.64 62.79 61.60 9.39 

Third Quartile 72.89 69.32 62.50 60.08 59.20 58.22 9.33 

SD 1.85 1.67 1.67 1.56 1.70 1.64 3.91 

SE 0.18 0.17 0.17 0.16 0.17 0.16 1.40* 

Margin of error 
(95% CI) 0.36 0.33 0.33 0.31 0.33 0.32 2.74 

Upper 95% CI 72.09 68.46 61.67 59.35 58.37 57.36 7.15* 

Lower 95% CI 71.37 67.80 61.02 58.74 57.70 56.72 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 25.30 27.73 30.54 31.19 31.14 31.24 0.00 

Min 21.36 25.03 26.52 28.82 28.37 28.30 0.00 

Median 26.72 28.89 31.81 32.06 32.15 32.30 0.00 

Mean 26.57 29.04 31.69 32.15 32.09 32.25 1.09 

Max 30.63 33.66 35.68 36.44 35.96 35.58 5.01 

Third Quartile 27.93 30.21 32.93 33.24 33.22 33.42 2.55 

SD 1.77 1.67 1.71 1.51 1.50 1.41 1.97 

SE 0.18 0.17 0.17 0.15 0.15 0.14 0.68* 

Margin of error 0.35 0.33 0.34 0.30 0.29 0.28 1.34 
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(95% CI) 

Upper 95% CI 26.91 29.37 32.03 32.44 32.38 32.52 2.42* 

Lower 95% CI 26.22 28.72 31.36 31.85 31.79 31.97 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 1.41 2.48 6.23 8.10 9.285 10.09 87.62 

Min 0.66 1.69 4.56 6.17 8.082 7.68 87.62 

Median 1.70 2.80 6.91 8.78 9.874 10.78 97.85 

Mean 1.70 2.83 6.96 8.80 9.877 10.71 94.34 

Max 3.02 4.12 8.91 11.13 12.723 13.56 100.00 

Third Quartile 2.01 3.20 7.59 9.49 10.472 11.50 98.29 

SD 0.50 0.50 0.90 0.93 0.959 1.05 5.37 

SE 0.05 0.05 0.09 0.09 0.096 0.11 1.92* 

Margin of error 
(95% CI) 0.10 0.10 0.18 0.18 0.188 0.21 3.76 

Upper 95% CI 1.80 2.93 7.14 8.99 10.065 10.92 98.10* 

Lower 95% CI 1.60 2.73 6.79 8.62 9.689 10.51 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B136. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 2 2 3 2 

Silcrete 1 1 1 2 2 2 2 

Quartzite 2 2 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 3 3 3 3 3 2 

Silcrete 2 1 2 2 2 2 2 

Quartzite 3 3 1 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 1 1 1 2 

Silcrete 2 2 2 2 2 2 2 

Quartzite 3 3 3 3 3 3 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. Grey shading indicates 
a ranking match. 
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Move to closest locality  

 

MIS4 without a Paleo-Agulhas plain silcrete source – Conservative Behavior 

 

Table B137. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 0.00 0.00 0.00 0.00 0.00 1.21 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 100.00 46.43 0.00 0.00 0.00 0.00 3.73 

Mean 95.00 43.55 25.72 18.88 14.70 7.92 8.39 

Max 100.00 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 100.00 50.00 45.83 0.63 0.00 10.53 

SD 21.90 42.52 36.33 31.82 30.24 22.77 11.83 

SE 2.19 4.25 3.63 3.18 3.02 2.28 1.67* 

Margin of error (95% 
CI) 4.29 8.33 7.12 6.24 5.93 4.46 3.28 

Upper 95% CI 99.29 51.88 32.84 25.11 20.63 12.39 11.66* 

Lower 95% CI 90.71 35.21 18.60 12.64 8.78 3.46 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 4.04 4.46 3.80 5.53 40.00 

Max 0.00 0.00 99.00 99.00 99.00 99.00 96.55 

Third Quartile 0.00 0.00 0.00 0.00 0.00 0.00 62.77 

SD 0.00 0.00 14.39 15.53 14.99 20.38 27.52 

SE 0.00 0.00 1.44 1.55 1.50 2.04 4.01* 

Margin of error (95% 
CI) 0.00 0.00 2.82 3.04 2.94 3.99 7.85 

Upper 95% CI 0.00 0.00 6.86 7.50 6.73 9.52 47.85* 

Lower 95% CI 0.00 0.00 1.22 1.41 0.86 1.53 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 50.00 58.33 50.00 66.67 43.00 
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Mean 1.00 28.45 43.23 55.67 50.50 53.55 44.63 

Max 100.00 100.00 100.00 100.00 100.00 100.00 96.45 

Third Quartile 0.00 50.00 100.00 100.00 100.00 100.00 68.24 

SD 10.00 37.17 42.11 44.06 45.64 46.81 25.54 

SE 1.00 3.72 4.21 4.41 4.56 4.68 3.71* 

Margin of error (95% 
CI) 1.96 7.29 8.25 8.64 8.95 9.17 7.27 

Upper 95% CI 2.96 35.74 51.49 64.30 59.45 62.72 51.90* 

Lower 95% CI 0.00 21.17 34.98 47.03 41.55 44.38 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Expedient Behavior 

 

Table B138. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 97.59 32.49 20.19 17.06 14.78 1.21 

Min 99.22 92.59 22.64 13.50 8.46 9.35 0.00 

Median 100.00 98.53 37.96 25.28 21.62 17.70 3.73 

Mean 99.97 98.18 38.24 25.38 21.66 18.43 8.39 

Max 100.00 100.00 57.93 44.07 38.14 35.82 66.11 

Third Quartile 100.00 99.14 42.91 30.00 25.61 20.87 10.53 

SD 0.12 1.43 6.88 6.55 6.15 5.36 11.83 

SE 0.01 0.14 0.69 0.65 0.62 0.54 1.67* 

Margin of error (95% 
CI) 0.02 0.28 1.35 1.28 1.21 1.05 3.28 

Upper 95% CI 99.99 98.46 39.58 26.66 22.87 19.48 11.66* 

Lower 95% CI 99.95 97.90 36.89 24.10 20.46 17.38 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 0.00 0.00 0.22 0.47 0.21 0.17 40.00 

Max 0.00 0.00 2.89 3.95 3.17 1.66 96.55 

Third Quartile 0.00 0.00 0.00 0.64 0.00 0.00 62.77 

SD 0.00 0.00 0.54 0.85 0.54 0.40 27.52 

SE 0.00 0.00 0.05 0.08 0.05 0.04 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.11 0.17 0.11 0.08 7.85 
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Upper 95% CI 0.00 0.00 0.32 0.64 0.32 0.25 47.85* 

Lower 95% CI 0.00 0.00 0.11 0.30 0.10 0.09 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.86 56.84 69.37 74.02 78.98 5.19 

Min 0.00 0.00 41.43 55.93 61.86 64.18 0.00 

Median 0.00 1.47 62.04 74.27 78.24 82.25 43.00 

Mean 0.03 1.82 61.55 74.15 78.13 81.40 44.63 

Max 0.78 7.41 77.36 86.50 91.54 90.65 96.45 

Third Quartile 0.00 2.41 67.32 79.16 82.73 85.09 68.24 

SD 0.12 1.43 6.99 6.55 6.20 5.32 25.54 

SE 0.01 0.14 0.70 0.65 0.62 0.53 3.71* 

Margin of error (95% 
CI) 0.02 0.28 1.37 1.28 1.22 1.04 7.27 

Upper 95% CI 0.05 2.10 62.92 75.43 79.34 82.44 51.90* 

Lower 95% CI 0.01 1.54 60.18 72.87 76.91 80.36 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 without a Paleo-Agulhas plain silcrete source – Site Caching 

 

Table B139. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw 

material frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 100.00 97.56 63.72 44.74 36.62 30.95 1.21 

Min 99.30 91.34 59.27 39.74 31.18 24.47 0.00 

Median 100.00 98.43 65.34 46.88 38.39 33.05 3.73 

Mean 99.98 97.97 65.50 46.78 38.31 33.08 8.39 

Max 100.00 100.00 72.15 53.52 44.17 41.69 66.11 

Third Quartile 100.00 98.81 67.76 48.87 40.07 35.07 10.53 

SD 0.11 1.48 2.96 3.00 2.47 3.16 11.83 

SE 0.01 0.15 0.30 0.30 0.25 0.32 1.67* 

Margin of error (95% 
CI) 0.02 0.29 0.58 0.59 0.48 0.62 3.28 

Upper 95% CI 100.00 98.26 66.08 47.37 38.79 33.70 11.66* 

Lower 95% CI 99.96 97.68 64.91 46.20 37.82 32.46 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.36 1.48 2.13 2.67 13.79 
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Min 0.00 0.00 0.00 0.31 0.68 0.68 0.00 

Median 0.00 0.00 0.70 1.89 2.66 3.33 39.13 

Mean 0.00 0.00 0.77 1.95 2.68 3.46 40.00 

Max 0.00 0.00 2.41 4.20 4.76 8.25 96.55 

Third Quartile 0.00 0.00 1.13 2.37 3.17 4.10 62.77 

SD 0.00 0.00 0.59 0.76 0.80 1.14 27.52 

SE 0.00 0.00 0.06 0.08 0.08 0.11 4.01* 

Margin of error (95% 
CI) 0.00 0.00 0.12 0.15 0.16 0.22 7.85 

Upper 95% CI 0.00 0.00 0.88 2.10 2.84 3.69 47.85* 

Lower 95% CI 0.00 0.00 0.65 1.80 2.53 3.24 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 1.19 31.36 49.30 57.17 60.91 5.19 

Min 0.00 0.00 27.54 44.83 53.75 55.66 0.00 

Median 0.00 1.57 33.71 51.23 58.58 63.27 43.00 

Mean 0.02 2.03 33.74 51.27 59.01 63.46 44.63 

Max 0.70 8.66 40.22 58.18 66.28 71.62 96.45 

Third Quartile 0.00 2.44 35.65 53.37 60.87 65.83 68.24 

SD 0.11 1.48 2.91 2.97 2.60 3.36 25.54 

SE 0.01 0.15 0.29 0.30 0.26 0.34 3.71* 

Margin of error (95% 
CI) 0.02 0.29 0.57 0.58 0.51 0.66 7.27 

Upper 95% CI 0.04 2.32 34.31 51.85 59.52 64.12 51.90* 

Lower 95% CI 0.00 1.74 33.17 50.69 58.50 62.80 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B140. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS4 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 2 

Silcrete 2 3 3 3 3 2 1 

Quartzite 2 2 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 2 2 2 2 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 1 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 
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Quartz 1 1 1 2 2 2 2 

Silcrete 2 3 3 3 3 3 1 

Quartzite 2 2 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Conservative Behavior 

 

Table B141. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 33.33 0.00 0.00 0.00 0.00 0.00 1.21 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 66.67 0.00 0.00 0.00 0.00 0.00 3.73 

Mean 61.57 30.51 10.76 5.46 7.88 3.61 8.39 

Max 100.00 100.00 100.00 100.00 100.00 100.00 66.11 

Third Quartile 100.00 57.50 0.50 0.00 0.19 0.00 10.53 

SD 34.66 39.96 25.09 16.63 19.87 16.04 11.83 

SE 3.56 4.00 2.51 1.66 1.99 1.60 1.67* 

Margin of error (95% 
CI) 6.97 7.83 4.92 3.26 3.90 3.14 3.28 

Upper 95% CI 68.54 38.34 15.68 8.72 11.78 6.75 11.66* 

Lower 95% CI 54.60 22.67 5.84 2.20 3.99 0.46 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 13.79 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 25.00 0.00 0.00 0.00 0.00 0.00 39.13 

Mean 30.01 24.18 22.09 19.29 23.55 17.98 40.00 

Max 100.00 100.00 100.00 100.00 100.00 100.00 96.55 

Third Quartile 50.00 50.00 47.08 33.33 49.94 33.00 62.77 

SD 31.40 36.05 35.39 33.83 35.18 33.45 27.52 

SE 3.22 3.60 3.54 3.38 3.52 3.35 4.01* 

Margin of error (95% 
CI) 6.31 7.07 6.94 6.63 6.89 6.56 7.85 

Upper 95% CI 36.32 31.24 29.02 25.92 30.45 24.53 47.85* 

Lower 95% CI 23.69 17.11 15.15 12.66 16.66 11.42 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 1000 1000 1000 1000 1000 1000 46 
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assemblages) 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 5.19 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 29.17 50.00 29.17 43.00 

Mean 1.05 15.32 37.15 41.25 43.57 43.42 44.63 

Max 50.00 100.00 100.00 100.00 100.00 100.00 96.45 

Third Quartile 0.00 15.00 100.00 100.00 100.00 100.00 68.24 

SD 7.22 30.47 42.88 44.37 42.42 45.48 25.54 

SE 0.74 3.05 4.29 4.44 4.24 4.55 3.71* 

Margin of error (95% 
CI) 1.45 5.97 8.40 8.70 8.32 8.91 7.27 

Upper 95% CI 2.50 21.29 45.55 49.95 51.88 52.33 51.90* 

Lower 95% CI 0.00 9.35 28.75 32.55 35.25 34.50 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Expedient Behavior 

 

Table B142. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 60.73 40.86 7.81 6.28 5.81 5.70 1.21 

Min 45.56 28.66 4.95 3.74 2.95 3.90 0.00 

Median 61.94 42.29 9.38 7.50 7.11 7.00 3.73 

Mean 61.95 42.18 9.43 7.72 7.15 7.14 8.39 

Max 68.51 50.81 14.92 16.13 11.12 11.23 66.11 

Third Quartile 63.31 43.92 10.85 8.95 8.48 8.35 10.53 

SD 2.58 2.76 2.10 2.03 1.89 1.83 11.83 

SE 0.26 0.28 0.21 0.20 0.19 0.18 1.67* 

Margin of error (95% 
CI) 0.50 0.54 0.41 0.40 0.37 0.36 3.28 

Upper 95% CI 62.46 42.72 9.84 8.12 7.52 7.50 11.66* 

Lower 95% CI 61.45 41.64 9.02 7.32 6.78 6.78 5.11* 

 

TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 36.69 55.27 70.12 60.35 54.07 49.36 13.79 

Min 31.49 47.40 62.11 52.93 42.29 39.41 0.00 

Median 38.06 57.11 72.33 63.80 56.70 53.07 39.13 

Mean 38.04 57.00 71.88 63.35 57.00 52.44 40.00 

Max 54.44 67.46 80.69 73.14 71.12 63.77 96.55 
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Third Quartile 39.27 58.53 74.44 66.40 59.50 56.24 62.77 

SD 2.58 2.63 3.89 4.43 4.70 5.11 27.52 

SE 0.26 0.26 0.39 0.44 0.47 0.51 4.01* 

Margin of error (95% 
CI) 0.50 0.52 0.76 0.87 0.92 1.00 7.85 

Upper 95% CI 38.54 57.51 72.64 64.22 57.93 53.45 47.85* 

Lower 95% CI 37.53 56.48 71.11 62.48 56.08 51.44 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.40 16.05 26.18 32.89 36.78 5.19 

Min 0.00 0.00 10.68 21.21 23.77 25.09 0.00 

Median 0.00 0.70 18.04 28.25 35.69 40.85 43.00 

Mean 0.01 0.82 18.69 28.93 35.85 40.41 44.63 

Max 0.29 3.88 32.94 40.61 48.91 56.69 96.45 

Third Quartile 0.00 1.06 20.74 31.67 39.13 43.29 68.24 

SD 0.04 0.62 3.94 4.33 4.56 5.16 25.54 

SE 0.00 0.06 0.39 0.43 0.46 0.52 3.71* 

Margin of error (95% 
CI) 0.01 0.12 0.77 0.85 0.89 1.01 7.27 

Upper 95% CI 0.01 0.94 19.46 29.78 36.74 41.43 51.90* 

Lower 95% CI 0.00 0.70 17.92 28.08 34.95 39.40 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS4 with a Paleo-Agulhas plain silcrete source – Site Caching 

 

Table B143. Summary statistics and test results for OFAT4 modeling of MIS4 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS4 archaeological raw material 

frequency data from PP5-6. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP5-6-MIS4-
Quartz 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 71.56 66.04 44.40 32.83 27.04 23.45 1.21 

Min 68.92 58.32 40.11 27.80 22.34 18.82 0.00 

Median 72.53 68.09 46.11 34.89 29.27 25.22 3.73 

Mean 72.98 68.02 46.23 34.81 29.19 25.26 8.39 

Max 78.49 76.44 53.88 41.61 35.99 31.55 66.11 

Third Quartile 74.38 70.06 48.39 36.98 31.60 26.87 10.53 

SD 2.10 2.97 2.84 2.82 2.78 2.41 11.83 

SE 0.21 0.30 0.28 0.28 0.28 0.24 1.67* 

Margin of error (95% 
CI) 0.41 0.58 0.56 0.55 0.55 0.47 3.28 

Upper 95% CI 73.40 68.60 46.79 35.36 29.74 25.73 11.66* 

Lower 95% CI 72.57 67.44 45.67 34.25 28.65 24.79 5.11* 
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TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP5-6-MIS4-
Silcrete 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 25.62 28.87 25.60 21.12 19.03 17.70 13.79 

Min 21.51 23.56 20.51 17.07 14.76 14.21 0.00 

Median 27.47 30.44 27.22 23.03 21.20 19.21 39.13 

Mean 27.01 30.69 27.17 23.11 20.82 19.43 40.00 

Max 31.08 41.68 32.78 27.55 28.17 25.65 96.55 

Third Quartile 28.44 32.87 28.86 25.22 22.44 21.24 62.77 

SD 2.11 2.94 2.43 2.50 2.48 2.44 27.52 

SE 0.21 0.29 0.24 0.25 0.25 0.24 4.01* 

Margin of error (95% 
CI) 0.41 0.58 0.48 0.49 0.49 0.48 7.85 

Upper 95% CI 27.42 31.27 27.64 23.59 21.30 19.91 47.85* 

Lower 95% CI 26.60 30.12 26.69 22.62 20.33 18.95 32.15* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP5-6-MIS4-
Quartzite 

n (number of 
simulated 
assemblages) 1000 1000 1000 1000 1000 1000 46 

First Quartile 0.00 0.72 24.75 40.07 47.93 53.71 5.19 

Min 0.00 0.00 21.88 35.67 41.89 47.92 0.00 

Median 0.00 1.17 26.37 41.75 49.93 55.29 43.00 

Mean 0.01 1.29 26.60 42.09 49.99 55.31 44.63 

Max 0.33 3.42 32.53 50.46 60.90 62.81 96.45 

Third Quartile 0.00 1.62 28.53 43.87 51.78 57.16 68.24 

SD 0.04 0.78 2.40 2.80 3.29 2.97 25.54 

SE 0.00 0.08 0.24 0.28 0.33 0.30 3.71* 

Margin of error (95% 
CI) 0.01 0.15 0.47 0.55 0.65 0.58 7.27 

Upper 95% CI 0.02 1.44 27.07 42.64 50.64 55.89 51.90* 

Lower 95% CI 0.00 1.13 26.13 41.54 49.35 54.72 37.35* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B144. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS4 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS4 

archaeological frequencies from PP5-6. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1.5 3 3 3 2 

Silcrete 2 1 1 2 2 2 1 

Quartzite 3 1.5 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 2 3 3 3 3 2 
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Silcrete 2 1 1 1 1 1 1 

Quartzite 3 3 2 2 2 2 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS4-PP5-6 

Quartz 1 1 1 2 2 2 2 

Silcrete 2 2 2 3 3 3 1 

Quartzite 3 3 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS4 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 

 

MIS5 conditions – Conservative Behavior 

 

Table B145. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 66.83 0.00 0.34 0.06 0.00 0.00 0.00 1.71 0.10 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 83.42 50.25 29.23 1.00 0.50 0.75 0.89 2.15 2.65 

Mean 76.37 51.61 34.76 29.44 15.91 22.20 3.53 4.41 4.61 

Max 100.00 100.00 100.00 100.00 100.00 100.00 24.87 9.39 24.87 

Third 
Quartile 100.00 100.00 50.50 50.25 19.00 33.96 3.92 9.33 6.95 

SD 30.65 41.79 38.02 36.38 29.44 32.36 5.94 3.91 6.03 

SE 3.07 4.18 3.80 3.64 2.94 3.24 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 6.01 8.19 7.45 7.13 5.77 6.34 2.03 2.74 1.76 

Upper 95% 
CI 82.38 59.80 42.21 36.57 21.68 28.55 5.56* 7.15* 6.37* 

Lower 95% 
CI 70.37 43.42 27.30 22.31 10.13 15.86 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.00 0.00 0.00 0.00 0.00 0.00 1.45 0.00 0.95 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.15 0.00 0.30 0.25 10.19 0.00 6.44 

Mean 0.09 3.73 17.87 20.96 22.64 22.94 16.97 1.09 13.05 

Max 0.60 66.00 99.00 99.00 99.00 99.00 64.83 5.01 64.83 

Third 0.15 0.20 33.00 38.14 49.50 49.50 32.95 2.55 21.21 
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Quartile 

SD 0.12 12.99 28.27 33.12 33.57 31.96 17.85 1.97 16.45 

SE 0.01 1.30 2.83 3.31 3.36 3.20 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.02 2.55 5.54 6.49 6.58 6.26 6.16 1.34 4.82 

Upper 95% 
CI 0.11 6.28 23.42 27.46 29.21 29.20 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.06 1.19 12.33 14.47 16.06 16.67 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Quartzit

e 

AllPP-
MIS5-

Quartzite 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 0.00 0.00 0.00 0.00 0.00 0.00 60.24 87.62 64.30 

Min 0.00 0.00 0.00 0.00 0.00 0.00 26.94 87.62 26.94 

Median 0.00 0.00 33.33 49.25 49.25 33.08 76.11 97.85 83.74 

Mean 14.48 28.61 35.32 41.55 41.38 36.82 72.77 94.34 77.20 

Max 98.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Third 
Quartile 24.63 50.00 66.04 66.60 98.50 66.54 92.83 98.29 92.83 

SD 19.26 36.57 37.70 40.03 41.42 40.15 21.79 5.37 20.01 

SE 1.93 3.66 3.77 4.00 4.14 4.01 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 3.78 7.17 7.39 7.85 8.12 7.87 7.55 3.76 5.87 

Upper 95% 
CI 18.26 35.78 42.71 49.39 49.50 44.68 80.32* 98.10* 83.07* 

Lower 95% 
CI 10.71 21.45 27.93 33.70 33.26 28.95 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS5 conditions – Expedient Behavior 

 

Table B146. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 81.63 73.90 52.87 54.31 57.26 57.78 0.00 1.71 0.10 

Min 73.21 65.62 40.98 46.14 38.74 44.37 0.00 0.00 0.00 

Median 82.75 75.51 59.12 60.40 61.63 62.94 0.89 2.15 2.65 

Mean 82.76 75.24 58.15 60.32 61.52 62.62 3.53 4.41 4.61 

Max 88.02 80.31 71.74 78.91 77.33 76.99 24.87 9.39 24.87 

Third 
Quartile 84.06 77.04 62.46 64.34 66.64 66.97 3.92 9.33 6.95 
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SD 2.10 2.70 6.72 6.99 7.69 6.89 5.94 3.91 6.03 

SE 0.21 0.27 0.67 0.70 0.77 0.69 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 0.41 0.53 1.32 1.37 1.51 1.35 2.03 2.74 1.76 

Upper 95% 
CI 83.18 75.77 59.46 61.69 63.03 63.97 5.56* 7.15* 6.37* 

Lower 95% 
CI 82.35 74.71 56.83 58.95 60.01 61.27 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.10 0.14 0.23 0.24 0.20 0.21 1.45 0.00 0.95 

Min 0.07 0.11 0.16 0.12 0.13 0.14 0.00 0.00 0.00 

Median 0.10 0.14 0.36 1.06 0.26 0.93 10.19 0.00 6.44 

Mean 0.10 0.14 0.98 1.50 1.29 1.70 16.97 1.09 13.05 

Max 0.16 0.20 5.75 5.17 8.50 7.60 64.83 5.01 64.83 

Third 
Quartile 0.11 0.15 1.60 2.65 2.05 2.71 32.95 2.55 21.21 

SD 0.01 0.02 1.10 1.41 1.79 1.92 17.85 1.97 16.45 

SE 0.00 0.00 0.11 0.14 0.18 0.19 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.00 0.00 0.22 0.28 0.35 0.38 6.16 1.34 4.82 

Upper 95% 
CI 0.11 0.15 1.20 1.77 1.64 2.07 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.10 0.14 0.77 1.22 0.94 1.32 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Silcrete 

AllPP-
MIS5-

Quartzite 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 15.78 22.74 35.83 33.46 31.38 29.42 60.24 87.62 64.30 

Min 11.86 19.49 27.98 20.89 20.77 22.30 26.94 87.62 26.94 

Median 17.07 24.26 40.25 38.10 37.08 36.04 76.11 97.85 83.74 

Mean 17.06 24.52 40.72 38.04 37.05 35.54 72.77 94.34 77.20 

Max 26.52 34.05 58.45 53.37 57.95 51.48 100.00 100.00 100.00 

Third 
Quartile 18.18 25.84 45.91 43.63 42.13 40.42 92.83 98.29 92.83 

SD 2.08 2.67 6.75 7.03 7.46 6.69 21.79 5.37 20.01 

SE 0.21 0.27 0.68 0.70 0.75 0.67 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 0.41 0.52 1.32 1.38 1.46 1.31 7.55 3.76 5.87 

Upper 95% 
CI 17.47 25.04 42.04 39.42 38.51 36.85 80.32* 98.10* 83.07* 

Lower 95% 
CI 16.66 24.00 39.39 36.66 35.59 34.23 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 
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MIS5 conditions – Site Caching 

 

Table B147. Summary statistics and test results for OFAT4 modeling of MIS5 conditions 

compared to MIS5 archaeological raw material frequency data from PP5-6, PP13B, 

PP9B, and PP9C.  

  
TT=50-
Quartz 

TT=100
-Quartz 

TT=500
-Quartz 

TT=100
0-

Quartz 

TT=150
0-

Quartz 

TT=200
0-

Quartz 

PP5-6-
MIS5-
Quartz 

PP13B-
MIS5-
Quartz 

AllPP-
MIS5-
Quartz 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 84.13 81.17 61.51 47.83 41.96 37.79 0.00 1.71 0.10 

Min 80.72 72.57 54.59 44.77 36.09 33.21 0.00 0.00 0.00 

Median 85.41 82.42 62.91 50.87 43.95 39.38 0.89 2.15 2.65 

Mean 85.38 82.34 62.84 50.51 43.81 39.57 3.53 4.41 4.61 

Max 91.96 89.97 69.25 56.67 49.52 46.30 24.87 9.39 24.87 

Third 
Quartile 86.59 83.65 64.67 52.85 45.73 41.41 3.92 9.33 6.95 

SD 1.88 2.26 2.69 2.93 2.56 2.58 5.94 3.91 6.03 

SE 0.19 0.23 0.27 0.29 0.26 0.26 1.03* 1.40* 0.90* 

Margin of 
error (95% 
CI) 0.37 0.44 0.53 0.57 0.50 0.50 2.03 2.74 1.76 

Upper 95% 
CI 85.75 82.79 63.37 51.08 44.31 40.07 5.56* 7.15* 6.37* 

Lower 95% 
CI 85.01 81.90 62.31 49.93 43.31 39.06 1.51* 1.68* 2.85* 

  

TT=50-
Silcret

e 

TT=100
-

Silcrete 

TT=500
-

Silcrete 

TT=100
0-

Silcrete 

TT=150
0-

Silcrete 

TT=200
0-

Silcrete 

PP5-6-
MIS5-

Silcrete 
PP13B-
Silcrete 

AllPP-
MIS5-

Silcrete 

n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 4.30E+01 

First 
Quartile 0.08 0.09 1.99 8.26 13.32 16.56 1.45 0.00 0.95 

Min 0.05 0.06 1.22 5.94 8.99 14.03 0.00 0.00 0.00 

Median 0.09 0.10 2.80 9.79 14.54 17.81 10.19 0.00 6.44 

Mean 0.09 0.10 2.78 9.69 14.49 17.86 16.97 1.09 13.05 

Max 0.12 0.14 5.01 15.15 18.44 24.01 64.83 5.01 64.83 

Third 
Quartile 0.10 0.11 3.42 10.86 15.75 19.08 32.95 2.55 21.21 

SD 0.01 0.01 0.95 1.82 1.79 1.91 17.85 1.97 16.45 

SE 0.00 0.00 0.10 0.18 0.18 0.19 3.14* 0.68* 2.46* 

Margin of 
error (95% 
CI) 0.00 0.00 0.19 0.36 0.35 0.37 6.16 1.34 4.82 

Upper 95% 
CI 0.09 0.10 2.97 10.04 14.85 18.23 23.12* 2.42* 17.86* 

Lower 95% 
CI 0.09 0.10 2.60 9.33 14.14 17.48 10.81* 0.00* 8.23* 

  

TT=50-
Quartz

ite 

TT=100
-

Quartzi
te 

TT=500
-

Quartzi
te 

TT=100
0-

Quartzit
e 

TT=150
0-

Quartzit
e 

TT=200
0-

Quartzit
e 

P5-6-
MIS5-

Quartzit
e 

PP13B-
Quartzit

e 

AllPP-
MIS5-

Quartzite 
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n (number 
of 
assemblage
s) 1000 1000 1000 1000 1000 1000 31 7 43 

First 
Quartile 13.28 16.20 32.68 37.46 39.83 40.64 60.24 87.62 64.30 

Min 7.96 9.93 28.21 35.16 34.99 35.65 26.94 87.62 26.94 

Median 14.44 17.41 34.23 39.37 41.59 42.46 76.11 97.85 83.74 

Mean 14.47 17.49 34.30 39.73 41.62 42.51 72.77 94.34 77.20 

Max 19.08 27.20 42.16 45.92 50.02 48.45 100.00 100.00 100.00 

Third 
Quartile 15.71 18.65 35.94 41.37 43.53 44.49 92.83 98.29 92.83 

SD 1.86 2.24 2.69 2.69 2.75 2.77 21.79 5.37 20.01 

SE 0.19 0.22 0.27 0.27 0.27 0.28 3.85* 1.92* 3.00* 

Margin of 
error (95% 
CI) 0.36 0.44 0.53 0.53 0.54 0.54 7.55 3.76 5.87 

Upper 95% 
CI 14.84 17.93 34.83 40.26 42.16 43.05 80.32* 98.10* 83.07* 

Lower 95% 
CI 14.11 17.05 33.77 39.20 41.09 41.96 65.21* 90.58* 71.33* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B148. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS5 conditions and ranked MIS5 archaeological frequencies from PP13B, PP9B, PP9C, 

and PP5-6. 

  Conservative* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 1 1 2 1.5 3 2 3 

Silcrete 3 3 2 1 2 1 2 2 2 

Quartzite 2 2 1 1.5 1 1 1 1 1 

  Expedient* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 1 1 1 1 3 2 3 

Silcrete 3 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 2 1 1 1 

  Site Caching* Archaeology 

Raw 
Material 

TT=5
0 

TT=10
0 

TT=50
0 

TT=100
0 

TT=150
0 

TT=200
0 

MIS5-PP5-
6 

MIS5-
PP13B 

MIS5-All 
PP 

Quartz 1 1 1 1 1 2 3 2 3 

Silcrete 3 3 3 3 3 3 2 2 2 

Quartzite 2 2 2 2 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS5 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. Grey shading indicates 
a ranking match. 
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MIS6 without a Paleo-Agulhas plain silcrete source – Conservative Behavior 

 

Table B149. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 57.14 0.00 0.00 0.00 0.00 0.00 1.71 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 84.52 50.00 0.00 0.00 0.00 0.00 2.15 

Mean 75.08 44.96 12.85 11.11 7.75 9.12 4.41 

Max 100.00 100.00 100.00 100.00 100.00 100.00 9.39 

Third Quartile 100.00 100.00 0.31 0.00 0.00 0.00 9.33 

SD 32.13 43.07 27.71 26.95 23.62 24.12 3.91 

SE 3.21 4.31 2.77 2.69 2.36 2.41 1.40* 

Margin of error 
(95% CI) 6.30 8.44 5.43 5.28 4.63 4.73 2.74 

Upper 95% CI 81.38 53.40 18.28 16.39 12.38 13.85 7.15* 

Lower 95% CI 68.79 36.52 7.42 5.82 3.12 4.39 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 3.38 2.31 5.31 3.83 1.09 

Max 0.00 0.00 99.00 99.00 99.00 99.00 5.01 

Third Quartile 0.00 0.00 0.00 0.00 0.00 0.00 2.55 

SD 0.00 0.00 15.47 11.91 19.20 16.08 1.97 

SE 0.00 0.00 1.55 1.19 1.92 1.61 0.68* 

Margin of error 
(95% CI) 0.00 0.00 3.03 2.33 3.76 3.15 1.34 

Upper 95% CI 0.00 0.00 6.41 4.64 9.08 6.98 2.42* 

Lower 95% CI 0.00 0.00 0.35 0.00 1.55 0.68 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Min 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Median 0.00 0.00 50.00 100.00 100.00 100.00 97.85 

Mean 15.92 33.04 48.77 66.58 62.93 64.05 94.34 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Third Quartile 25.00 65.00 100.00 100.00 100.00 100.00 98.29 

SD 22.23 39.87 45.79 43.51 45.48 44.30 5.37 
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SE 2.22 3.99 4.58 4.35 4.55 4.43 1.92* 

Margin of error 
(95% CI) 4.36 7.81 8.98 8.53 8.91 8.68 3.76 

Upper 95% CI 20.27 40.85 57.74 75.11 71.85 72.73 98.10* 

Lower 95% CI 11.56 25.22 39.79 58.06 54.02 55.37 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source – Expedient Behavior 

 

Table B150. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 80.61 52.25 7.63 5.11 4.80 5.07 1.71 

Min 75.11 45.26 5.06 3.31 3.05 2.70 0.00 

Median 81.81 54.85 8.57 6.13 5.98 6.07 2.15 

Mean 81.74 54.57 8.78 6.31 6.00 6.21 4.41 

Max 85.50 61.71 12.64 12.91 9.32 10.04 9.39 

Third Quartile 82.96 56.61 9.91 6.95 7.15 7.32 9.33 

SD 1.78 3.08 1.66 1.63 1.50 1.54 3.91 

SE 0.18 0.31 0.17 0.16 0.15 0.15 1.40* 

Margin of error 
(95% CI) 0.35 0.60 0.32 0.32 0.29 0.30 2.74 

Upper 95% CI 82.09 55.18 9.10 6.62 6.30 6.51 7.15* 

Lower 95% CI 81.39 53.97 8.45 5.99 5.71 5.91 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.00 0.00 0.07 0.05 0.13 0.06 1.09 

Max 0.00 0.00 0.74 0.92 1.43 0.60 5.01 

Third Quartile 0.00 0.00 0.05 0.00 0.23 0.00 2.55 

SD 0.00 0.00 0.15 0.14 0.25 0.15 1.97 

SE 0.00 0.00 0.01 0.01 0.02 0.01 0.68* 

Margin of error 
(95% CI) 0.00 0.00 0.03 0.03 0.05 0.03 1.34 

Upper 95% CI 0.00 0.00 0.10 0.08 0.18 0.09 2.42* 

Lower 95% CI 0.00 0.00 0.04 0.02 0.08 0.03 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 17.04 43.39 90.00 92.98 92.77 92.68 87.62 
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Min 14.50 38.29 87.36 87.09 90.22 89.81 87.62 

Median 18.19 45.15 91.36 93.85 93.90 93.93 97.85 

Mean 18.26 45.43 91.15 93.64 93.86 93.73 94.34 

Max 24.89 54.74 94.94 96.26 96.83 97.30 100.00 

Third Quartile 19.39 47.75 92.35 94.73 95.08 94.79 98.29 

SD 1.78 3.08 1.66 1.63 1.54 1.54 5.37 

SE 0.18 0.31 0.17 0.16 0.15 0.15 1.92* 

Margin of error 
(95% CI) 0.35 0.60 0.33 0.32 0.30 0.30 3.76 

Upper 95% CI 18.61 46.03 91.48 93.96 94.16 94.03 98.10* 

Lower 95% CI 17.91 44.82 90.83 93.32 93.56 93.43 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 without a Paleo-Agulhas plain silcrete source – Site Caching 

 

Table B151. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

without a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw 

material frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 87.61 79.16 51.36 37.65 30.44 27.04 1.71 

Min 84.55 74.47 47.83 31.63 25.32 22.02 0.00 

Median 88.61 80.99 53.41 39.78 32.66 28.75 2.15 

Mean 88.65 80.75 53.44 39.53 32.59 28.55 4.41 

Max 100.00 89.09 59.09 46.66 41.88 34.09 9.39 

Third Quartile 89.61 82.58 55.68 41.66 34.53 29.97 9.33 

SD 1.82 2.84 2.77 3.20 3.10 2.22 3.91 

SE 0.18 0.28 0.28 0.32 0.31 0.22 1.40* 

Margin of error 
(95% CI) 0.36 0.56 0.54 0.63 0.61 0.43 2.74 

Upper 95% CI 89.01 81.31 53.99 40.16 33.19 28.98 7.15* 

Lower 95% CI 88.30 80.20 52.90 38.90 31.98 28.11 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.31 1.25 1.75 2.27 0.00 

Min 0.00 0.00 0.00 0.32 0.38 1.28 0.00 

Median 0.00 0.00 0.57 1.70 2.30 2.75 0.00 

Mean 0.00 0.00 0.63 1.75 2.40 2.90 1.09 

Max 0.00 0.00 2.31 3.41 4.76 4.99 5.01 

Third Quartile 0.00 0.00 0.85 2.19 2.98 3.60 2.55 

SD 0.00 0.00 0.52 0.65 0.87 0.90 1.97 

SE 0.00 0.00 0.05 0.07 0.09 0.09 0.68* 

Margin of error 0.00 0.00 0.10 0.13 0.17 0.18 1.34 
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(95% CI) 

Upper 95% CI 0.00 0.00 0.73 1.87 2.57 3.08 2.42* 

Lower 95% CI 0.00 0.00 0.53 1.62 2.23 2.73 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 10.39 17.42 43.81 56.30 62.82 67.03 87.62 

Min 0.00 10.91 40.25 51.41 56.50 63.21 87.62 

Median 11.39 19.01 45.81 58.55 65.09 68.51 97.85 

Mean 11.35 19.25 45.93 58.72 65.01 68.55 94.34 

Max 15.45 25.53 51.85 66.30 72.65 75.74 100.00 

Third Quartile 12.39 20.84 47.67 60.67 67.01 69.95 98.29 

SD 1.82 2.84 2.79 3.21 3.11 2.21 5.37 

SE 0.18 0.28 0.28 0.32 0.31 0.22 1.92* 

Margin of error 
(95% CI) 0.36 0.56 0.55 0.63 0.61 0.43 3.76 

Upper 95% CI 11.70 19.80 46.47 59.35 65.62 68.98 98.10* 

Lower 95% CI 10.99 18.69 45.38 58.10 64.40 68.12 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B152. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS6 conditions without a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 2 3 3 2 2 2 

Quartzite 2 1 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 2 2 2 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 1 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 2 2 2 2 

Silcrete 3 3 3 3 3 3 2 

Quartzite 2 2 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. Grey shading indicates 
a ranking match. 
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MIS6 with a Paleo-Agulhas plain silcrete source – Conservative Behavior 

 

Table B153. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 33.33 0.00 0.00 0.00 0.00 0.00 1.71 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 60.00 0.00 0.00 0.00 0.00 0.00 2.15 

Mean 56.50 31.13 11.60 6.65 5.37 4.90 4.41 

Max 100.00 100.00 100.00 100.00 100.00 100.00 9.39 

Third Quartile 96.43 60.00 0.00 0.00 0.00 0.00 9.33 

SD 35.65 39.34 28.14 19.56 20.90 18.69 3.91 

SE 3.56 3.93 2.81 1.96 2.09 1.87 1.40* 

Margin of error 
(95% CI) 6.99 7.71 5.52 3.83 4.10 3.66 2.74 

Upper 95% CI 63.48 38.84 17.12 10.48 9.47 8.56 7.15* 

Lower 95% CI 49.51 23.42 6.09 2.81 1.27 1.23 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 25.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 26.45 17.80 20.91 18.20 9.30 11.10 1.09 

Max 100.00 100.00 100.00 100.00 100.00 100.00 5.01 

Third Quartile 50.00 31.25 33.33 33.33 0.00 0.00 2.55 

SD 28.50 32.40 36.11 32.46 26.72 26.12 1.97 

SE 2.85 3.24 3.61 3.25 2.67 2.61 0.68* 

Margin of error 
(95% CI) 5.59 6.35 7.08 6.36 5.24 5.12 1.34 

Upper 95% CI 32.04 24.15 27.99 24.56 14.53 16.22 2.42* 

Lower 95% CI 20.86 11.45 13.84 11.84 4.06 5.98 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Min 0.00 0.00 0.00 0.00 0.00 0.00 87.62 

Median 0.00 0.00 50.00 50.00 75.00 50.00 97.85 

Mean 3.05 26.07 44.48 49.15 53.33 49.00 94.34 

Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Third Quartile 0.00 50.00 100.00 100.00 100.00 100.00 98.29 

SD 12.29 36.79 44.23 43.63 48.24 46.77 5.37 
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SE 1.23 3.68 4.42 4.36 4.82 4.68 1.92* 

Margin of error 
(95% CI) 2.41 7.21 8.67 8.55 9.46 9.17 3.76 

Upper 95% CI 5.46 33.28 53.15 57.70 62.79 58.17 98.10* 

Lower 95% CI 0.64 18.86 35.81 40.60 43.88 39.83 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Expedient Behavior 

 

Table B154. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 59.40 38.51 5.59 3.69 3.67 3.47 1.71 

Min 53.49 28.42 3.23 2.00 2.06 2.22 0.00 

Median 61.04 40.32 6.46 4.59 4.41 4.27 2.15 

Mean 60.96 40.14 6.49 4.68 4.52 4.32 4.41 

Max 65.17 46.43 9.92 8.01 8.46 7.87 9.39 

Third Quartile 62.26 41.82 7.34 5.25 5.42 4.97 9.33 

SD 2.03 2.71 1.35 1.25 1.18 1.13 3.91 

SE 0.20 0.27 0.14 0.13 0.12 0.11 1.40* 

Margin of error 
(95% CI) 0.40 0.53 0.27 0.25 0.23 0.22 2.74 

Upper 95% CI 61.36 40.67 6.75 4.93 4.75 4.55 7.15* 

Lower 95% CI 60.57 39.61 6.22 4.44 4.29 4.10 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 32.94 42.41 26.98 19.24 16.92 15.49 0.00 

Min 30.10 37.57 23.21 16.32 13.55 11.64 0.00 

Median 34.28 43.90 29.33 21.20 18.78 16.78 0.00 

Mean 34.42 44.32 29.23 21.26 18.76 17.31 1.09 

Max 40.41 60.21 34.97 25.87 26.83 26.29 5.01 

Third Quartile 35.83 46.17 31.17 23.04 20.78 19.34 2.55 

SD 1.96 3.01 2.77 2.29 2.56 2.62 1.97 

SE 0.20 0.30 0.28 0.23 0.26 0.26 0.68* 

Margin of error 
(95% CI) 0.38 0.59 0.54 0.45 0.50 0.51 1.34 

Upper 95% CI 34.81 44.91 29.78 21.71 19.26 17.83 2.42* 

Lower 95% CI 34.04 43.73 28.69 20.82 18.26 16.80 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 4.18 14.68 61.80 71.96 74.65 76.51 87.62 
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Min 3.30 11.37 56.29 67.44 71.12 69.02 87.62 

Median 4.55 15.68 64.21 74.03 76.89 79.00 97.85 

Mean 4.61 15.54 64.28 74.05 76.72 78.36 94.34 

Max 7.14 19.69 70.73 80.56 82.42 84.98 100.00 

Third Quartile 4.95 16.46 66.49 76.23 78.59 80.46 98.29 

SD 0.64 1.69 2.95 2.68 2.59 2.89 5.37 

SE 0.06 0.17 0.30 0.27 0.26 0.29 1.92* 

Margin of error 
(95% CI) 0.13 0.33 0.58 0.53 0.51 0.57 3.76 

Upper 95% CI 4.74 15.87 64.86 74.58 77.23 78.93 98.10* 

Lower 95% CI 4.49 15.21 63.70 73.53 76.21 77.80 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

MIS6 with a Paleo-Agulhas plain silcrete source – Site Caching 

 

Table B155. Summary statistics and test results for OFAT4 modeling of MIS6 conditions 

with a Paleo-Agulhas plain silcrete source compared to MIS6 archaeological raw material 

frequency data from PP13B. 

  
TT=50-
Quartz 

TT=100-
Quartz 

TT=500-
Quartz 

TT=1000-
Quartz 

TT=1500-
Quartz 

TT=2000-
Quartz 

PP13-MIS6-
Quartz 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 70.65 65.77 43.81 32.63 27.21 23.05 1.71 

Min 68.01 58.36 37.42 29.27 22.03 19.16 0.00 

Median 72.01 67.50 45.47 35.04 28.72 25.02 2.15 

Mean 72.02 67.37 45.18 34.89 28.73 25.07 4.41 

Max 78.91 74.93 52.85 42.65 35.64 32.54 9.39 

Third Quartile 73.27 68.97 46.91 36.93 30.27 27.29 9.33 

SD 1.91 2.64 2.89 2.82 2.37 2.79 3.91 

SE 0.19 0.26 0.29 0.28 0.24 0.28 1.40* 

Margin of error 
(95% CI) 0.37 0.52 0.57 0.55 0.46 0.55 2.74 

Upper 95% CI 72.40 67.88 45.75 35.44 29.20 25.62 7.15* 

Lower 95% CI 71.65 66.85 44.62 34.34 28.27 24.52 1.68* 

  
TT=50-
Silcrete 

TT=100-
Silcrete 

TT=500-
Silcrete 

TT=1000-
Silcrete 

TT=1500-
Silcrete 

TT=2000-
Silcrete 

PP13B-MIS6-
Silcrete 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 25.14 26.58 23.57 18.62 17.04 16.15 0.00 

Min 19.32 20.55 17.39 14.83 13.49 11.60 0.00 

Median 26.39 28.85 25.13 20.16 18.66 17.67 0.00 

Mean 26.30 28.58 25.10 20.14 18.85 17.65 1.09 

Max 30.16 37.75 30.09 25.59 24.46 22.14 5.01 

Third Quartile 27.72 30.11 26.81 21.66 20.88 19.19 2.55 

SD 1.87 2.76 2.41 2.30 2.45 2.11 1.97 

SE 0.19 0.28 0.24 0.23 0.25 0.21 0.68* 

Margin of error 0.37 0.54 0.47 0.45 0.48 0.41 1.34 
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(95% CI) 

Upper 95% CI 26.67 29.12 25.57 20.59 19.33 18.06 2.42* 

Lower 95% CI 25.93 28.04 24.63 19.68 18.37 17.23 0.00* 

  
TT=50-

Quartzite 
TT=100-
Quartzite 

TT=500-
Quartzite 

TT=1000-
Quartzite 

TT=1500-
Quartzite 

TT=2000-
Quartzite 

PP13B-MIS6-
Quartzite 

n (number of 
assemblages) 1000 1000 1000 1000 1000 1000 7 

First Quartile 1.38 3.06 27.91 43.12 50.33 55.89 87.62 

Min 0.44 1.85 25.07 37.22 45.75 48.50 87.62 

Median 1.64 4.01 29.39 44.54 52.57 57.33 97.85 

Mean 1.68 4.05 29.72 44.98 52.42 57.29 94.34 

Max 3.07 8.52 36.95 53.88 58.22 64.27 100.00 

Third Quartile 1.98 4.78 31.46 47.06 54.28 59.14 98.29 

SD 0.50 1.31 2.60 2.95 2.71 2.78 5.37 

SE 0.05 0.13 0.26 0.29 0.27 0.28 1.92* 

Margin of error 
(95% CI) 0.10 0.26 0.51 0.58 0.53 0.55 3.76 

Upper 95% CI 1.77 4.31 30.22 45.56 52.95 57.83 98.10* 

Lower 95% CI 1.58 3.79 29.21 44.40 51.89 56.74 90.58* 

*Margins of error (95% CI) for archaeological data were obtained by bootstrapping the standard errors 10000 times. 

 

Table B156. Comparison between ranked model frequencies from OFAT4 simulations of 

MIS6 conditions with a Paleo-Agulhas plain silcrete source and ranked MIS6 

archaeological frequencies from PP13B. 

  Conservative* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 2 3 2 2 2 

Silcrete 2 1.5 2 2 2 2 2 

Quartzite 3 1 1 1 1 1 1 

  Expedient* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 2 3 3 3 3 2 

Silcrete 2 1 2 2 2 2 2 

Quartzite 3 3 1 1 1 1 1 

  Site Caching* Archaeology 

Raw Material TT=50 TT=100 TT=500 TT=1000 TT=1500 TT=2000 MIS6-PP13B 

Quartz 1 1 1 2 2 2 2 

Silcrete 2 2 3 3 3 3 2 

Quartzite 3 3 2 1 1 1 1 

* Ranking based on which raw materials have the highest mean frequency. Similar rankings in the table are due to 
statistically similar frequencies. Ranking based on MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. Similar rankings in the table are due to statistically similar frequencies. 
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CHAPTER 9: ACTIVE-CHOICE MODEL – EXPERIMENT RESULTS 

 

e variable  

 

Table B157. e variable measurements for quartzite experimental blocks. 

Block Raw Material 

Total Cutting 
Edge Measured 

(cm) Total Flaked Core Mass (kg) 

e variable-
Cutting Edge 

(cm)/Total 
Flaked Core 
Mass (kg) 

D11-1-85C1 Quartzite 955.2 2.00 478.557 

D11-1-91A1 Quartzite 807.3 1.96 411.411 

D11-1-91A2 Quartzite 911.7 2.17 419.309 

D11-1-91B3 Quartzite 898.3 1.88 476.610 

D11-1-91B5 Quartzite 1037.0 2.22 467.058 

D11-1-91C3 Quartzite 809.5 1.96 412.547 

D11-1-94B2 Quartzite 905.9 1.83 495.620 

D11-1-94B3 Quartzite 974.7 1.78 546.357 

D11-1-94D2 Quartzite 797.3 1.966 405.526 

D11-1-97C Quartzite 887.2 1.83 483.986 

C9-1-1B8 Quartzite 774.8 1.92 403.491 

C9-1-1B9 Quartzite 769.9 2.06 373.662 

D11-1-100A Quartzite 758.8 2.15 353.094 

D11-1-90D1 Quartzite 864.1 2.45 352.656 

D11-1-95A Quartzite 725.6 2.03 357.187 

D11-1-95B Quartzite 790.4 2.16 365.895 

D11-1-97A1 Quartzite 708.2 1.93 367.896 

D11-1-98B1 Quartzite 773.4 1.91 404.358 

D11-1-98C1 Quartzite 781.2 2.09 373.660 

D11-1-98D Quartzite 672.6 1.84 365.042 

 
Table B158. e variable measurements for untreated silcrete experimental blocks. 

Block Sample Type Raw Material 
Total Cutting Edge 

Measured (cm) 
Total Flaked 

Core Mass (kg) 

e variable-Cutting Edge 
(cm)/Total Flaked Core Mass 

(kg) 

D9-1-10a Untreated Silcrete 633.1 1.98 319.72 

D9-1-12a Untreated Silcrete 860.8 2.25 382.64 

D9-1-12c Untreated Silcrete 757.3 1.81 419.07 

E3-1-1A Untreated Silcrete 695 2.07 335.82 

E3-1-5n Untreated Silcrete 1048.8 2.46 426.38 

E3-1-5o Untreated Silcrete 961.5 2.50 383.86 

E3-1-6b Untreated Silcrete 644 1.69 380.84 

I14-2-16a Untreated Silcrete 796.8 2.90 275.22 
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Table B159. e variable measurements for heat-treated silcrete experimental blocks. 

Block Sample Type Raw Material 
Total Cutting Edge 

Measured (cm) 
Total Flaked 

Core Mass (kg) 

e variable-Cutting Edge 
(cm)/Total Flaked Core Mass 

(kg) 

D9-1-10b Heat-treated Silcrete 1047.9 2.35 445.94 

D9-1-12b Heat-treated Silcrete 1239.2 2.20 563.25 

D9-1-12d Heat-treated Silcrete 1156.8 2.29 505.97 

E3-1-1b Heat-treated Silcrete 1160.2 1.93 600.05 

E3-1-5p Heat-treated Silcrete 1222.8 2.59 472.54 

E3-1-6a Heat-treated Silcrete 1239.1 2.20 564.24 

E3-1-6c Heat-treated Silcrete 1302 2.44 534.48 

I14-2-16l Heat-treated Silcrete 1448.6 2.36 614.80 

 
d variable 
 
Table B160. d variable measurements for quartzite experimental blocks. 

Block Raw Material 

d variable - 
Time to Edge 

Dullness (min)-
Average per 

block 

d variable - 
Time to 

dullness (min)-
Average of all 

samples 

d variable - 
Time to 

dullness (min)-
Average by 

source 

d variable - 
Time to 

dullness (min)-
Average 0-40 
degree angles 

C9-1-1B8 Quartzite 1.00 0.74 0.91 1.56 

C9-1-1B9 Quartzite 0.82 0.74 0.91 1.56 

D11-1-100A Quartzite 0.50 0.74 0.66 1.56 

D11-1-90D1 Quartzite 1.39 0.74 0.66 1.56 

D11-1-95A Quartzite 0.26 0.74 0.66 1.56 

D11-1-95B Quartzite 0.71 0.74 0.66 1.56 

D11-1-97A1 Quartzite 0.99 0.74 0.66 1.56 

D11-1-98B1 Quartzite 0.29 0.74 0.66 1.56 

D11-1-98C1 Quartzite 0.17 0.74 0.66 1.56 

D11-1-98D Quartzite 0.96 0.74 0.66 1.56 

D11-1-85C1 Quartzite 0.50 1.26 1.26 2.03 

D11-1-91A1 Quartzite 1.02 1.26 1.26 2.03 

D11-1-91A2 Quartzite 0.52 1.26 1.26 2.03 

D11-1-91B3 Quartzite 1.93 1.26 1.26 2.03 

D11-1-91B5 Quartzite 0.50 1.26 1.26 2.03 

D11-1-91C3 Quartzite 1.14 1.26 1.26 2.03 

D11-1-94B2 Quartzite 2.18 1.26 1.26 2.03 

D11-1-94B3 Quartzite 1.51 1.26 1.26 2.03 

D11-1-94D2 Quartzite 1.92 1.26 1.26 2.03 

D11-1-97C Quartzite 1.31 1.26 1.26 2.03 
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Table B161. d variable measurements for untreated silcrete experimental blocks. 

Block Sample Type Raw Material 

d variable - 
Time to Edge 

Dullness 
(min)-

Average per 
block 

d variable - 
Time to 
dullness 

(min)-
Average of 
all samples 

d variable - 
Time to 
dullness 

(min)-
Average by 

source 

d variable - 
Time to 
dullness 

(min)-
Average 0-40 

degree 
angles 

D9-1-10a Untreated Silcrete 0.67 1.08 1.20 1.88 

D9-1-12a Untreated Silcrete 1.49 1.08 1.20 1.88 

D9-1-12c Untreated Silcrete 1.56 1.08 1.20 1.88 

E3-1-1A Untreated Silcrete 1.52 1.08 1.07 1.88 

E3-1-5n Untreated Silcrete 1.60 1.08 1.07 1.88 

E3-1-5o Untreated Silcrete 0.87 1.08 1.07 1.88 

E3-1-6b Untreated Silcrete 0.47 1.08 1.07 1.88 

I14-2-16a Untreated Silcrete 0.78 1.08 0.78 1.88 

 

Table B162. d variable measurements for heat-treated silcrete experimental blocks. 

Block Sample Type Raw Material 

d variable - 
Time to Edge 

Dullness 
(min)-

Average per 
block 

d variable - 
Time to 
dullness 

(min)-
Average of 
all samples 

d variable - 
Time to 
dullness 

(min)-
Average by 

source 

d variable - 
Time to 
dullness 

(min)-
Average 0-40 

degree 
angles 

D9-1-10b Heat-treated Silcrete 0.61 1.90 1.30 2.82 

D9-1-12b Heat-treated Silcrete 1.95 1.90 1.30 2.82 

D9-1-12d Heat-treated Silcrete 1.33 1.90 1.30 2.82 

E3-1-1b Heat-treated Silcrete 1.76 1.90 1.96 2.82 

E3-1-5p Heat-treated Silcrete 2.79 1.90 1.96 2.82 

E3-1-6a Heat-treated Silcrete 1.88 1.90 1.96 2.82 

E3-1-6c Heat-treated Silcrete 1.57 1.90 1.96 2.82 

I14-2-16l Heat-treated Silcrete 2.79 1.90 2.79 2.82 

 

e * d currency 

 

Table B163. e * d currency calculations for quartzite experimental blocks. 

Block 
Raw 

Material 

Total Cutting 
Edge Measured 

(cm) 

Total Flaked 
Core Mass( 

kg) 

e (CE(cm)/Total 
Flaked Core 
Mass (kg)) 

d variable - 
Time to 

dullness (min)-
Average 0-40 
degree angles 

Cutting 
Edge * 

Durability 
(e * d) 

C9-1-1B8 Quartzite 774.80 1.92 403.49 1.56 630.46 

C9-1-1B9 Quartzite 769.90 2.06 373.66 1.56 583.85 

D11-1-100A Quartzite 758.80 2.15 353.09 1.56 551.71 

D11-1-90D1 Quartzite 864.10 2.45 352.66 1.56 551.03 

D11-1-95A Quartzite 725.60 2.03 357.19 1.56 558.10 

D11-1-95B Quartzite 790.40 2.16 365.90 1.56 571.71 
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D11-1-97A1 Quartzite 708.20 1.93 367.90 1.56 574.84 

D11-1-98B1 Quartzite 773.40 1.91 404.36 1.56 631.81 

D11-1-98C1 Quartzite 781.20 2.09 373.66 1.56 583.84 

D11-1-98D Quartzite 672.60 1.84 365.04 1.56 570.38 

D11-1-85C1 Quartzite 955.20 2.00 478.56 2.03 969.08 

D11-1-91A1 Quartzite 807.30 1.96 411.41 2.03 833.11 

D11-1-91A2 Quartzite 911.70 2.17 419.31 2.03 849.10 

D11-1-91B3 Quartzite 898.30 1.88 476.61 2.03 965.14 

D11-1-91B5 Quartzite 1037.00 2.22 467.06 2.03 945.79 

D11-1-91C3 Quartzite 809.50 1.96 412.55 2.03 835.41 

D11-1-94B2 Quartzite 905.90 1.83 495.62 2.03 1003.63 

D11-1-94B3 Quartzite 974.70 1.78 546.36 2.03 1106.37 

D11-1-94D2 Quartzite 797.30 1.97 405.53 2.03 821.19 

D11-1-97C Quartzite 887.20 1.83 483.99 2.03 980.07 

 
Table B164. e * d currency calculations for untreated silcrete experimental blocks. 

Block 
Sample 

Type 
Raw 

Material 

Total 
Cutting 
Edge 

Measured 
(cm) 

Total 
Flaked 
Core 

Mass (kg) 

e 
(CE(cm)/Tot

al Flaked 
Core Mass 

(kg)) 

d variable - 
Time to 
dullness 

(min)-
Average 0-
40 degree 

angles 

Cutting 
Edge * 
Durability 
(e * d) 

D9-1-10a Untreated Silcrete 633.10 1.98 319.72 1.88 601.38 

D9-1-12a Untreated Silcrete 860.80 2.25 382.64 1.88 719.74 

D9-1-12c Untreated Silcrete 757.30 1.81 419.07 1.88 788.25 

E3-1-1A Untreated Silcrete 695.00 2.07 335.82 1.88 631.65 

E3-1-5n Untreated Silcrete 1048.80 2.46 426.38 1.88 802.01 

E3-1-5o Untreated Silcrete 961.50 2.50 383.86 1.88 722.03 

E3-1-6b Untreated Silcrete 644.00 1.69 380.84 1.88 716.34 

I14-2-16a Untreated Silcrete 796.80 2.90 275.22 1.88 517.68 

 
Table B165. e * d currency calculations for heat-treated silcrete experimental blocks. 

Block Sample Type 
Raw 

Material 

Total 
Cutting 
Edge 

Measured 
(cm) 

Total 
Flaked 
Core 

Mass (kg) 

e 
(CE(cm)/Tot

al Flaked 
Core Mass 

(kg)) 

d variable - 
Time to 
dullness 

(min)-
Average 0-
40 degree 

angles 

Cutting 
Edge * 

Durability 
(e * d) 

D9-1-10b Heat-Treated Silcrete 1047.90 2.35 445.94 2.82 1259.25 

D9-1-12b Heat-Treated Silcrete 1239.20 2.20 563.25 2.82 1590.52 

D9-1-12d Heat-Treated Silcrete 1156.80 2.29 505.97 2.82 1428.77 

E3-1-1b Heat-Treated Silcrete 1160.20 1.93 600.05 2.82 1694.44 

E3-1-5p Heat-Treated Silcrete 1222.80 2.59 472.54 2.82 1334.36 

E3-1-6a Heat-Treated Silcrete 1239.10 2.20 564.24 2.82 1593.30 
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E3-1-6c Heat-Treated Silcrete 1302.00 2.44 534.48 2.82 1509.28 

I14-2-16l Heat-Treated Silcrete 1448.60 2.36 614.80 2.82 1736.07 

 

ts variable 

 

MIS4 conditions – quartzite 

 

Table B166. ts variable measurements for quartzite experimental blocks during MIS4 

conditions. 

Block Raw Material 
Travel and search 

time (min) 
Total Flaked Core 

Mass (kg) 

ts variable -Travel 
and search time 

(min)/Total Flaked 
Core Mass (kg) 

D11-1-85C1 Quartzite 180.0 2.00 90.18 

D11-1-91A1 Quartzite 180.0 1.96 91.73 

D11-1-91A2 Quartzite 180.0 2.17 82.79 

D11-1-91B3 Quartzite 180.0 1.88 95.50 

D11-1-91B5 Quartzite 180.0 2.22 81.07 

D11-1-91C3 Quartzite 180.0 1.96 91.73 

D11-1-94B2 Quartzite 180.0 1.83 98.48 

D11-1-94B3 Quartzite 180.0 1.78 100.90 

D11-1-94D2 Quartzite 180.0 1.97 91.55 

D11-1-97C Quartzite 180.0 1.83 98.19 

C9-1-1B8 Quartzite 180.0 1.92 93.74 

C9-1-1B9 Quartzite 180.0 2.06 87.36 

D11-1-100A Quartzite 180.0 2.15 83.76 

D11-1-90D1 Quartzite 180.0 2.45 73.46 

D11-1-95A Quartzite 180.0 2.03 88.61 

D11-1-95B Quartzite 180.0 2.16 83.33 

D11-1-97A1 Quartzite 180.0 1.93 93.51 

D11-1-98B1 Quartzite 180.0 1.91 94.11 

D11-1-98C1 Quartzite 180.0 2.09 86.10 

D11-1-98D Quartzite 180.0 1.84 97.69 

 

MIS4 and MIS6 conditions without a Paleo-Agulhas plain silcrete source – silcrete 

 

Table B167. ts variable measurements for untreated silcrete experimental blocks during 

MIS4 and MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 
Travel and 

search time (min) 
Weight Total 
Flaked (kg) 

ts variable -
Travel and 
search time 
(min)/Weight 

Total Flaked (kg) 

D9-1-10a Untreated Silcrete 291.4 1.98 147.18 

D9-1-12a Untreated Silcrete 291.4 2.25 129.55 

D9-1-12c Untreated Silcrete 291.4 1.81 161.27 
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E3-1-1A Untreated Silcrete 291.4 2.07 140.82 

E3-1-5n Untreated Silcrete 291.4 2.46 118.48 

E3-1-5o Untreated Silcrete 291.4 2.50 116.35 

E3-1-6b Untreated Silcrete 291.4 1.69 172.34 

I14-2-16a Untreated Silcrete 291.4 2.90 100.66 

 

Table B168. ts variable measurements for heat-treated silcrete experimental blocks 

during MIS4 and MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 
Travel and 

search time (min) 
Total Flaked 

Core Mass (kg)) 

ts variable -
Travel and 

search time 
(min)/ Total 
Flaked Core 
Mass (kg) 

D9-1-10b Heat-treated Silcrete 291.4 2.35 124.02 

D9-1-12b Heat-treated Silcrete 291.4 2.20 132.47 

D9-1-12d Heat-treated Silcrete 291.4 2.29 127.47 

E3-1-1b Heat-treated Silcrete 291.4 1.93 150.73 

E3-1-5p Heat-treated Silcrete 291.4 2.59 112.62 

E3-1-6a Heat-treated Silcrete 291.4 2.20 132.71 

E3-1-6c Heat-treated Silcrete 291.4 2.44 119.64 

I14-2-16l Heat-treated Silcrete 291.4 2.36 123.69 

 

MIS4 and MIS 6conditions with a Paleo-Agulhas plain silcrete source – silcrete 

 

Table B169. ts variable measurements for untreated silcrete experimental blocks during 

MIS4 and MIS6 conditions with a Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 

Travel and 
search time 

(min) 
Total Flaked 

Core Mass (kg) 

ts variable -
Travel and 
search time 
(min)/Total 

Flaked Core 
Mass (kg) 

D9-1-10a Untreated Silcrete 28.0 1.98 13.85 

D9-1-12a Untreated Silcrete 28.0 2.25 12.19 

D9-1-12c Untreated Silcrete 28.0 1.81 15.18 

E3-1-1A Untreated Silcrete 28.0 2.07 13.26 

E3-1-5n Untreated Silcrete 28.0 2.46 11.15 

E3-1-5o Untreated Silcrete 28.0 2.50 10.95 

E3-1-6b Untreated Silcrete 28.0 1.69 16.22 

I14-2-16a Untreated Silcrete 28.0 2.90 9.48 
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Table B170. ts variable measurements for heat-treated silcrete experimental blocks 

during MIS4 and MIS6 conditions with a Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 
Travel and 

search time (min) 
Total Flaked 

Core Mass (kg) 

ts variable -
Travel and 
search time 
(min)/Total 

Flaked Core 
Mass (kg) 

D9-1-10b Heated Silcrete 28.0 2.35 11.67 

D9-1-12b Heated Silcrete 28.0 2.20 12.47 

D9-1-12d Heated Silcrete 28.0 2.29 12.00 

E3-1-1b Heated Silcrete 28.0 1.93 14.19 

E3-1-5p Heated Silcrete 28.0 2.59 10.60 

E3-1-6a Heated Silcrete 28.0 2.20 12.49 

E3-1-6c Heated Silcrete 28.0 2.44 11.26 

I14-2-16l Heated Silcrete 28.0 2.36 11.64 

 

MIS5 conditions 

 

Table B171. ts variable measurements for quartzite experimental blocks during MIS5 

conditions. 

Block Raw Material 
Travel and search 

time (min) 
Total Flaked Core 

Mass (kg) 

ts variable -Travel 
and search time 

(min)/Total Flaked 
Core Mass (kg) 

D11-1-85C1 Quartzite 12.7 2.00 6.36 

D11-1-91A1 Quartzite 12.7 1.96 6.47 

D11-1-91A2 Quartzite 12.7 2.17 5.84 

D11-1-91B3 Quartzite 12.7 1.88 6.74 

D11-1-91B5 Quartzite 12.7 2.22 5.72 

D11-1-91C3 Quartzite 12.7 1.96 6.47 

D11-1-94B2 Quartzite 12.7 1.83 6.95 

D11-1-94B3 Quartzite 12.7 1.78 7.12 

D11-1-94D2 Quartzite 12.7 1.97 6.46 

D11-1-97C Quartzite 12.7 1.83 6.93 

C9-1-1B8 Quartzite 12.7 1.92 6.61 

C9-1-1B9 Quartzite 12.7 2.06 6.16 

D11-1-100A Quartzite 12.7 2.15 5.91 

D11-1-90D1 Quartzite 12.7 2.45 5.18 

D11-1-95A Quartzite 12.7 2.03 6.25 

D11-1-95B Quartzite 12.7 2.16 5.88 

D11-1-97A1 Quartzite 12.7 1.93 6.60 

D11-1-98B1 Quartzite 12.7 1.91 6.64 

D11-1-98C1 Quartzite 12.7 2.09 6.07 

D11-1-98D Quartzite 12.7 1.84 6.89 
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Table B172. ts variable measurements for untreated silcrete experimental blocks during 

MIS5 conditions. 

Block Sample Type Raw Material 

Travel and 
search time 

(min) 
Total Flaked 

Core Mass (kg) 

ts variable -
Travel and 
search time 
(min)/ Total 
Flaked Core 
Mass (kg) 

D9-1-10a Untreated Silcrete 291.4 1.98 147.18 

D9-1-12a Untreated Silcrete 291.4 2.25 129.55 

D9-1-12c Untreated Silcrete 291.4 1.81 161.27 

E3-1-1A Untreated Silcrete 291.4 2.07 140.82 

E3-1-5n Untreated Silcrete 291.4 2.46 118.48 

E3-1-5o Untreated Silcrete 291.4 2.50 116.35 

E3-1-6b Untreated Silcrete 291.4 1.69 172.34 

I14-2-16a Untreated Silcrete 291.4 2.90 100.66 

 

Table B173. ts variable measurements for heat-treated silcrete experimental blocks 

during MIS5 conditions. 

Block Sample Type Raw Material 

Travel and 
search time 

(min) 
Total Flaked 

Core Mass (kg)) 

ts variable -
Travel and 
search time 
(min)/ Total 
Flaked Core 
Mass (kg) 

D9-1-10b Heat-treated Silcrete 291.4 2.35 124.02 

D9-1-12b Heat-treated Silcrete 291.4 2.20 132.47 

D9-1-12d Heat-treated Silcrete 291.4 2.29 127.47 

E3-1-1b Heat-treated Silcrete 291.4 1.93 150.73 

E3-1-5p Heat-treated Silcrete 291.4 2.59 112.62 

E3-1-6a Heat-treated Silcrete 291.4 2.20 132.71 

E3-1-6c Heat-treated Silcrete 291.4 2.44 119.64 

I14-2-16l Heat-treated Silcrete 291.4 2.36 123.69 

 

MIS6 conditions – quartzite 

 

Table B174. ts variable measurements for heat-treated silcrete experimental blocks 

during MIS6 conditions. 

Block Raw Material 

Travel and 
search time 

(min) 
Total Flaked 

Core Mass (kg) 

ts variable -Travel and 
search time (min)/Total 
Flaked Core Mass (kg) 

C9-1-1B8 Quartzite 48.8 1.92 25.42 

C9-1-1B9 Quartzite 48.8 2.06 23.69 

D11-1-100A Quartzite 48.8 2.15 22.72 

D11-1-90D1 Quartzite 48.8 2.45 19.92 

D11-1-95A Quartzite 48.8 2.03 24.03 

D11-1-95B Quartzite 48.8 2.16 22.60 

D11-1-97A1 Quartzite 48.8 1.93 25.36 
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D11-1-98B1 Quartzite 48.8 1.91 25.52 

D11-1-98C1 Quartzite 48.8 2.09 23.35 

D11-1-98D Quartzite 48.8 1.84 26.49 

D11-1-85C1 Quartzite 48.8 2.00 24.46 

D11-1-91A1 Quartzite 48.8 1.96 24.88 

D11-1-91A2 Quartzite 48.8 2.17 22.45 

D11-1-91B3 Quartzite 48.8 1.88 25.90 

D11-1-91B5 Quartzite 48.8 2.22 21.99 

D11-1-91C3 Quartzite 48.8 1.96 24.88 

D11-1-94B2 Quartzite 48.8 1.83 26.71 

D11-1-94B3 Quartzite 48.8 1.78 27.36 

D11-1-94D2 Quartzite 48.8 1.97 24.83 

D11-1-97C Quartzite 48.8 1.83 26.63 

 

tp variable 

 

Table B175. tp variable measurements for quartzite experimental blocks. 

Block Raw Material 
Procurement Time 

(min) 
Total Flaked Core 

Mass (kg) 

tp variable - Procurement 
Time (min)/Total Flaked 

Core Mass (kg) 

D11-1-85C1 Quartzite 5.37 2.00 2.69 

D11-1-91A1 Quartzite 5.37 1.96 2.74 

D11-1-91A2 Quartzite 5.37 2.17 2.47 

D11-1-91B3 Quartzite 5.37 1.88 2.85 

D11-1-91B5 Quartzite 5.37 2.22 2.42 

D11-1-91C3 Quartzite 5.37 1.96 2.74 

D11-1-94B2 Quartzite 5.37 1.83 2.94 

D11-1-94B3 Quartzite 5.37 1.78 3.01 

D11-1-94D2 Quartzite 5.37 1.97 2.73 

D11-1-97C Quartzite 5.37 1.83 2.93 

C9-1-1B8 Quartzite 5.00 1.92 2.60 

C9-1-1B9 Quartzite 5.00 2.06 2.43 

D11-1-100A Quartzite 5.37 2.15 2.50 

D11-1-90D1 Quartzite 5.37 2.45 2.19 

D11-1-95A Quartzite 5.37 2.03 2.65 

D11-1-95B Quartzite 5.37 2.16 2.49 

D11-1-97A1 Quartzite 5.37 1.93 2.79 

D11-1-98B1 Quartzite 5.37 1.91 2.81 

D11-1-98C1 Quartzite 5.37 2.09 2.57 

D11-1-98D Quartzite 5.37 1.84 2.92 

 



785 
 

Table B176. tp variable measurements for untreated silcrete experimental blocks. 

Block Sample Type Raw Material 
Procurement 
Time (min) 

Total Flaked 
Core Mass (kg) 

tp variable - 
Procurement Time 

(min)/Total Flaked Core 
Mass (kg) 

D9-1-10a Untreated Silcrete 8.125 1.98 4.10 

D9-1-12a Untreated Silcrete 8.125 2.25 3.61 

D9-1-12c Untreated Silcrete 8.125 1.81 4.50 

E3-1-1A Untreated Silcrete 8.125 2.07 3.93 

E3-1-5n Untreated Silcrete 8.125 2.46 3.30 

E3-1-5o Untreated Silcrete 8.125 2.50 3.24 

E3-1-6b Untreated Silcrete 8.125 1.69 4.80 

I14-2-16a Untreated Silcrete 8.125 2.90 2.81 

 

Table B177. tp variable measurements for heat-treated silcrete experimental blocks. 

Block Sample Type Raw Material 
Procurement 

Time (min) 

Total Flaked 
Core Mass 

(kg) 

tp variable - Procurement 
Time (min)/Total Flaked 

Core Mass (kg) 

D9-1-10b Heat-treated Silcrete 8.125 2.35 3.46 

D9-1-12b Heat-treated Silcrete 8.125 2.20 3.69 

D9-1-12d Heat-treated Silcrete 8.125 2.29 3.55 

E3-1-1b Heat-treated Silcrete 8.125 1.93 4.20 

E3-1-5p Heat-treated Silcrete 8.125 2.59 3.14 

E3-1-6a Heat-treated Silcrete 8.125 2.20 3.70 

E3-1-6c Heat-treated Silcrete 8.125 2.44 3.34 

I14-2-16l Heat-treated Silcrete 8.125 2.36 3.45 

 

m1 variable 

 

MIS4 

 

Table B178. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the insulated heating scenario during MIS4 conditions. 

 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total Flaked 
Core Mass 

(kg) 

m1-Wood Fuel Search 
and Travel Time 

(min)/Total Flaked Core 
Mass (kg) 

D9-1-10b Heat-treated Silcrete Insulated 90.00 2.35 38.30 

D9-1-12b Heat-treated Silcrete Insulated 90.00 2.20 40.91 

D9-1-12d Heat-treated Silcrete Insulated 90.00 2.29 39.37 

E3-1-1b Heat-treated Silcrete Insulated 90.00 1.93 46.55 

E3-1-5p Heat-treated Silcrete Insulated 90.00 2.59 34.78 

E3-1-6a Heat-treated Silcrete Insulated 90.00 2.20 40.98 

E3-1-6c Heat-treated Silcrete Insulated 90.00 2.44 36.95 
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I14-2-16l Heat-treated Silcrete Insulated 90.00 2.36 38.20 

 

Table B179. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the exposed heating scenario during MIS4 conditions. 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total Flaked 
Core Mass 

(kg) 

m1-Wood Fuel Search 
and Travel Time 

(min)/Total Flaked Core 
Mass (kg) 

D9-1-10b Heat-treated Silcrete Exposed 90.00 2.35 38.30 

D9-1-12b Heat-treated Silcrete Exposed 90.00 2.20 40.91 

D9-1-12d Heat-treated Silcrete Exposed 90.00 2.29 39.37 

E3-1-1b Heat-treated Silcrete Exposed 90.00 1.93 46.55 

E3-1-5p Heat-treated Silcrete Exposed 90.00 2.59 34.78 

E3-1-6a Heat-treated Silcrete Exposed 90.00 2.20 40.98 

E3-1-6c Heat-treated Silcrete Exposed 90.00 2.44 36.95 

I14-2-16l Heat-treated Silcrete Exposed 90.00 2.36 38.20 

 

MIS5 

 

Table B180. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the insulated heating scenario during MIS5 conditions. 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total 
Flaked 

Core Mass 
(kg) 

m1-Wood Fuel Search and 
Travel Time (min)/Total 
Flaked Core Mass (kg) 

D9-1-10b Heat-treated Silcrete Insulated 180 2.3 76.60 

D9-1-12b Heat-treated Silcrete Insulated 180 2.2 81.82 

D9-1-12d Heat-treated Silcrete Insulated 180 2.3 78.73 

E3-1-1b Heat-treated Silcrete Insulated 180 1.9 93.10 

E3-1-5p Heat-treated Silcrete Insulated 180 2.6 69.56 

E3-1-6a Heat-treated Silcrete Insulated 180 2.2 81.96 

E3-1-6c Heat-treated Silcrete Insulated 180 2.4 73.89 

I14-2-16l Heat-treated Silcrete Insulated 180 2.4 76.39 

 

Table B181. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the exposed heating scenario during MIS5 conditions. 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total 
Flaked 

Core Mass 
(kg) 

m1-Wood Fuel Search and 
Travel Time (min)/Total 
Flaked Core Mass (kg) 

D9-1-10b Heat-treated Silcrete Exposed 90 2.3 38.30 

D9-1-12b Heat-treated Silcrete Exposed 90 2.2 40.91 

D9-1-12d Heat-treated Silcrete Exposed 90 2.3 39.37 

E3-1-1b Heat-treated Silcrete Exposed 90 1.9 46.55 

E3-1-5p Heat-treated Silcrete Exposed 90 2.6 34.78 

E3-1-6a Heat-treated Silcrete Exposed 90 2.2 40.98 



787 
 

E3-1-6c Heat-treated Silcrete Exposed 90 2.4 36.95 

I14-2-16l Heat-treated Silcrete Exposed 90 2.4 38.20 

 

MIS6 

 

Table B182. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the insulated heating scenario during MIS6 conditions. 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total 
Flaked 

Core Mass 
(kg) 

m1-Wood Fuel Search and 
Travel Time (min)/Total 
Flaked Core Mass (kg) 

D9-1-10b Heat-treated Silcrete Insulated 180 2.35 76.60 

D9-1-12b Heat-treated Silcrete Insulated 180 2.20 81.82 

D9-1-12d Heat-treated Silcrete Insulated 180 2.29 78.73 

E3-1-1b Heat-treated Silcrete Insulated 180 1.93 93.10 

E3-1-5p Heat-treated Silcrete Insulated 180 2.59 69.56 

E3-1-6a Heat-treated Silcrete Insulated 180 2.20 81.96 

E3-1-6c Heat-treated Silcrete Insulated 180 2.44 73.89 

I14-2-16l Heat-treated Silcrete Insulated 180 2.36 76.39 

 

Table B183. m1 variable measurements for heat-treated silcrete experimental blocks 

assuming the exposed heating scenario during MIS6 conditions. 

Block 
Sample 

Type 
Raw 

Material 
Heating 
Scenario 

Wood Fuel 
Search and 
Travel Time 

(min) 

Total 
Flaked 

Core Mass 
(kg) 

m1-Wood Fuel Search and 
Travel Time (min)/Total 
Flaked Core Mass (kg) 

D9-1-10b Heat-treated Silcrete Exposed 90 2.35 38.30 

D9-1-12b Heat-treated Silcrete Exposed 90 2.20 40.91 

D9-1-12d Heat-treated Silcrete Exposed 90 2.29 39.37 

E3-1-1b Heat-treated Silcrete Exposed 90 1.93 46.55 

E3-1-5p Heat-treated Silcrete Exposed 90 2.59 34.78 

E3-1-6a Heat-treated Silcrete Exposed 90 2.20 40.98 

E3-1-6c Heat-treated Silcrete Exposed 90 2.44 36.95 

I14-2-16l Heat-treated Silcrete Exposed 90 2.36 38.20 

 

m2 variable 

 

Table B184. m2 variable measurements for heat-treated silcrete experimental blocks 

assuming the insulated heating scenario. 

Block 
Sample 

Type 
Raw 

Material 
Heating 

Scenario 

Heat-
treatment time 

(min) 

Total Flaked 
Core Mass 

(kg) 

m2-Heat-treatment Time 
(min)/Total Flaked Core 

Mass (kg) 

D9-1-10b Heat-treated Silcrete Insulated 15 2.35 6.38 

D9-1-12b Heat-treated Silcrete Insulated 15 2.20 6.82 

D9-1-12d Heat-treated Silcrete Insulated 15 2.29 6.56 

E3-1-1b Heat-treated Silcrete Insulated 15 1.93 7.76 

E3-1-5p Heat-treated Silcrete Insulated 15 2.59 5.80 
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E3-1-6a Heat-treated Silcrete Insulated 15 2.20 6.83 

E3-1-6c Heat-treated Silcrete Insulated 15 2.44 6.16 

I14-2-16l Heat-treated Silcrete Insulated 15 2.36 6.37 

 

Table B185. m2 variable measurements for heat-treated silcrete experimental blocks 

assuming the exposed heating scenario. 

Block 
Sample 

Type 
Raw 

Material 
Heating 

Scenario 

Heat-
treatment time 

(min) 

Total Flaked 
Core Mass 

(kg) 

m2-Heat-treatment Time 
(min)/Total Flaked Core 

Mass (kg) 

D9-1-10b Heat-treated Silcrete Exposed 50 2.35 21.28 

D9-1-12b Heat-treated Silcrete Exposed 50 2.20 22.73 

D9-1-12d Heat-treated Silcrete Exposed 50 2.29 21.87 

E3-1-1b Heat-treated Silcrete Exposed 50 1.93 25.86 

E3-1-5p Heat-treated Silcrete Exposed 50 2.59 19.32 

E3-1-6a Heat-treated Silcrete Exposed 50 2.20 22.77 

E3-1-6c Heat-treated Silcrete Exposed 50 2.44 20.53 

I14-2-16l Heat-treated Silcrete Exposed 50 2.36 21.22 

 

m3 variable 

 

Table B186. m3 variable measurements for quartzite experimental blocks. 

Block Raw Material 
Flaking Time 

(min) 
Total Flaked  Core 

Mass (kg) 
m3 variable - Time (14min)/Total Flaked  

Core Mass (kg) 

C9-1-1B8 Quartzite 14 1.92 7.29 

C9-1-1B9 Quartzite 14 2.06 6.79 

D11-1-100A Quartzite 14 2.15 6.51 

D11-1-90D1 Quartzite 14 2.45 5.71 

D11-1-95A Quartzite 14 2.03 6.89 

D11-1-95B Quartzite 14 2.16 6.48 

D11-1-97A1 Quartzite 14 1.93 7.27 

D11-1-98B1 Quartzite 14 1.91 7.32 

D11-1-98C1 Quartzite 14 2.09 6.70 

D11-1-98D Quartzite 14 1.84 7.60 

D11-1-85C1 Quartzite 14 2.00 7.01 

D11-1-91A1 Quartzite 14 1.96 7.13 

D11-1-91A2 Quartzite 14 2.17 6.44 

D11-1-91B3 Quartzite 14 1.88 7.43 

D11-1-91B5 Quartzite 14 2.22 6.31 

D11-1-91C3 Quartzite 14 1.96 7.13 

D11-1-94B2 Quartzite 14 1.83 7.66 

D11-1-94B3 Quartzite 14 1.78 7.85 
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D11-1-94D2 Quartzite 14 1.97 7.12 

D11-1-97C Quartzite 14 1.83 7.64 

 

Table B187. m3 variable measurements for untreated silcrete experimental blocks. 

Block Sample Type Raw Material 

Flaking 
Time 
(min) 

Total Flaked 
Core Mass 

(kg) 

m3 variable - Time 
(14min)/Total Flaked Core 

Mass (kg) 

D9-1-10a Untreated Silcrete 14 1.98 7.07 

D9-1-12a Untreated Silcrete 14 2.25 6.22 

D9-1-12c Untreated Silcrete 14 1.81 7.75 

E3-1-1A Untreated Silcrete 14 2.07 6.76 

E3-1-5n Untreated Silcrete 14 2.46 5.69 

E3-1-5o Untreated Silcrete 14 2.50 5.59 

E3-1-6b Untreated Silcrete 14 1.69 8.28 

I14-2-16a Untreated Silcrete 14 2.90 4.84 

 

Table B188. m3 variable measurements for heat-treated silcrete experimental blocks. 

Block Sample Type Raw Material 

Flaking 
Time 
(min 

Total 
Flaked 
Core 

Mass (kg) 

m3 variable - Time 
(14min)/Total Flaked 

Core Mass (kg) 

D9-1-10b Heat-treated Silcrete 14 2.35 5.96 

D9-1-12b Heat-treated Silcrete 14 2.20 6.36 

D9-1-12d Heat-treated Silcrete 14 2.29 6.12 

E3-1-1b Heat-treated Silcrete 14 1.93 7.24 

E3-1-5p Heat-treated Silcrete 14 2.59 5.41 

E3-1-6a Heat-treated Silcrete 14 2.20 6.38 

E3-1-6c Heat-treated Silcrete 14 2.44 5.75 

I14-2-16l Heat-treated Silcrete 14 2.36 5.94 
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CHAPTER 10: ACTIVE-CHOICE MODEL HYPOTHESES EVALUATION 

 

ACM-P net-return rates 

 

MIS4, MIS5, and MIS6 conditions – Quartzite 

 

Table B189. ACM-P net-return rates (Pq) for quartzite experimental blocks during MIS4, 

MIS5, MIS 6 conditions. 

Model Conditions Block Raw Material 

Cutting Edge * 
Durability (e * 

d) 

tp 
(procurem
ent time 
(min)) 

m3 
(flake 

manufa
cture 
time 

(min)) Pq 

MIS4, MIS5, & MIS6 C9-1-1B8 Quartzite 630.455 2.604 7.291 63.717 

MIS4, MIS5, & MIS6 C9-1-1B9 Quartzite 583.846 2.427 6.795 63.314 

MIS4, MIS5, & MIS6 D11-1-100A Quartzite 551.710 2.501 6.515 61.196 

MIS4, MIS5, & MIS6 D11-1-90D1 Quartzite 551.026 2.193 5.714 69.688 

MIS4, MIS5, & MIS6 D11-1-95A Quartzite 558.104 2.646 6.892 58.518 

MIS4, MIS5, & MIS6 D11-1-95B Quartzite 571.712 2.488 6.481 63.744 

MIS4, MIS5, & MIS6 D11-1-97A1 Quartzite 574.838 2.792 7.273 57.115 

MIS4, MIS5, & MIS6 D11-1-98B1 Quartzite 631.810 2.810 7.320 62.373 

MIS4, MIS5, & MIS6 D11-1-98C1 Quartzite 583.844 2.571 6.696 63.002 

MIS4, MIS5, & MIS6 D11-1-98D Quartzite 570.377 2.917 7.598 54.244 

MIS4, MIS5, & MIS6 D11-1-85C1 Quartzite 969.078 2.693 7.014 99.837 

MIS4, MIS5, & MIS6 D11-1-91A1 Quartzite 833.108 2.739 7.135 84.379 

MIS4, MIS5, & MIS6 D11-1-91A2 Quartzite 849.101 2.472 6.439 95.291 

MIS4, MIS5, & MIS6 D11-1-91B3 Quartzite 965.135 2.851 7.428 93.890 

MIS4, MIS5, & MIS6 D11-1-91B5 Quartzite 945.793 2.421 6.306 108.387 

MIS4, MIS5, & MIS6 D11-1-91C3 Quartzite 835.408 2.739 7.135 84.609 

MIS4, MIS5, & MIS6 D11-1-94B2 Quartzite 1003.631 2.940 7.659 94.685 

MIS4, MIS5, & MIS6 D11-1-94B3 Quartzite 1106.372 3.012 7.848 101.876 

MIS4, MIS5, & MIS6 D11-1-94D2 Quartzite 821.190 2.733 7.121 83.334 

MIS4, MIS5, & MIS6 D11-1-97C Quartzite 980.072 2.932 7.637 92.730 
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MIS4 conditions – Silcrete 

 

Table B190. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions. 

Model 
Conditi

ons 
Heating 
Scenario Block 

Raw 
Material 

Cutting 
Edge * 

Durabili
ty (e * 

d) 

tp 
(procure

ment time 
(min)) 

m1 
(Wood 

fuel 
Travel 

and 
Search 

time 
(min)) 

m2 
(Heat-

treatmen
t time 
(min)) 

m3 
(Flake 
manuf
acture 
time 

(min)) Ps 

MIS4 Insulated D9-1-10b Silcrete 1259.248 3.458 38.300 6.383 5.958 23.277 

MIS4 Insulated D9-1-12b Silcrete 1590.524 3.693 40.908 6.818 6.363 27.526 

MIS4 Insulated D9-1-12d Silcrete 1428.770 3.554 39.365 6.561 6.123 25.696 

MIS4 Insulated E3-1-1b Silcrete 1694.441 4.202 46.548 7.758 7.241 25.771 

MIS4 Insulated E3-1-5p Silcrete 1334.362 3.140 34.780 5.797 5.410 27.162 

MIS4 Insulated E3-1-6a Silcrete 1593.300 3.700 40.982 6.830 6.375 27.524 

MIS4 Insulated E3-1-6c Silcrete 1509.278 3.335 36.946 6.158 5.747 28.921 

MIS4 Insulated I14-2-16l Silcrete 1736.073 3.448 38.197 6.366 5.942 32.178 

MIS4 Exposed D9-1-10b Silcrete 1259.248 3.458 38.300 21.278 5.958 18.252 

MIS4 Exposed D9-1-12b Silcrete 1590.524 3.693 40.908 22.727 6.363 21.584 

MIS4 Exposed D9-1-12d Silcrete 1428.770 3.554 39.365 21.869 6.123 20.149 

MIS4 Exposed E3-1-1b Silcrete 1694.441 4.202 46.548 25.860 7.241 20.208 

MIS4 Exposed E3-1-5p Silcrete 1334.362 3.140 34.780 19.322 5.410 21.298 

MIS4 Exposed E3-1-6a Silcrete 1593.300 3.700 40.982 22.768 6.375 21.582 

MIS4 Exposed E3-1-6c Silcrete 1509.278 3.335 36.946 20.525 5.747 22.678 

MIS4 Exposed I14-2-16l Silcrete 1736.073 3.448 38.197 21.220 5.942 25.231 

MIS4 Untreated D9-1-10a Silcrete 601.381 4.103 0 0 7.070 53.823 

MIS4 Untreated D9-1-12a Silcrete 719.735 3.612 0 0 6.223 73.181 

MIS4 Untreated D9-1-12c Silcrete 788.254 4.496 0 0 7.747 64.382 

MIS4 Untreated E3-1-1A Silcrete 631.653 3.926 0 0 6.765 59.085 

MIS4 Untreated E3-1-5n Silcrete 802.006 3.303 0 0 5.692 89.164 

MIS4 Untreated E3-1-5o Silcrete 722.028 3.244 0 0 5.589 81.742 

MIS4 Untreated E3-1-6b Silcrete 716.341 4.805 0 0 8.279 54.750 

MIS4 Untreated I14-2-16a Silcrete 517.679 2.806 0 0 4.836 67.740 
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MIS5 conditions – Silcrete 

 

Table B191. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 

Model 
Condition

s 

Heating 
Scenari

o Block 

Raw 
Materia

l 

Cutting 
Edge * 

Durability 
(e * d) 

tp 
(procure

ment 
time-

cost(min)
) 

m1 (Wood 
fuel 

Travel 
and 

Search 
time 

(min)) 

m2 
(Heat-
treatm

ent 
time 

(min)) 

m3 
(Flake 

manufac
ture time 

(min)) Ps 

MIS5 Insulated D9-1-10b Silcrete 1259.248 3.458 76.600 6.383 5.958 13.628 

MIS5 Insulated D9-1-12b Silcrete 1590.524 3.693 81.816 6.818 6.363 16.116 

MIS5 Insulated D9-1-12d Silcrete 1428.770 3.554 78.730 6.561 6.123 15.045 

MIS5 Insulated E3-1-1b Silcrete 1694.441 4.202 93.096 7.758 7.241 15.089 

MIS5 Insulated E3-1-5p Silcrete 1334.362 3.140 69.559 5.797 5.410 15.903 

MIS5 Insulated E3-1-6a Silcrete 1593.300 3.700 81.965 6.830 6.375 16.115 

MIS5 Insulated E3-1-6c Silcrete 1509.278 3.335 73.892 6.158 5.747 16.933 

MIS5 Insulated I14-2-16l Silcrete 1736.073 3.448 76.394 6.366 5.942 18.840 

MIS5 Exposed D9-1-10b Silcrete 1259.248 3.458 38.300 21.278 5.958 18.252 

MIS5 Exposed D9-1-12b Silcrete 1590.524 3.693 40.908 22.727 6.363 21.584 

MIS5 Exposed D9-1-12d Silcrete 1428.770 3.554 39.365 21.869 6.123 20.149 

MIS5 Exposed E3-1-1b Silcrete 1694.441 4.202 46.548 25.860 7.241 20.208 

MIS5 Exposed E3-1-5p Silcrete 1334.362 3.140 34.780 19.322 5.410 21.298 

MIS5 Exposed E3-1-6a Silcrete 1593.300 3.700 40.982 22.768 6.375 21.582 

MIS5 Exposed E3-1-6c Silcrete 1509.278 3.335 36.946 20.525 5.747 22.678 

MIS5 Exposed I14-2-16l Silcrete 1736.073 3.448 38.197 21.220 5.942 25.231 

MIS5 Untreated D9-1-10a Silcrete 601.381 4.103 0 0 7.070 53.823 

MIS5 Untreated D9-1-12a Silcrete 719.735 3.612 0 0 6.223 73.181 

MIS5 Untreated D9-1-12c Silcrete 788.254 4.496 0 0 7.747 64.382 

MIS5 Untreated E3-1-1A Silcrete 631.653 3.926 0 0 6.765 59.085 

MIS5 Untreated E3-1-5n Silcrete 802.006 3.303 0 0 5.692 89.164 

MIS5 Untreated E3-1-5o Silcrete 722.028 3.244 0 0 5.589 81.742 

MIS5 Untreated E3-1-6b Silcrete 716.341 4.805 0 0 8.279 54.750 

MIS5 Untreated I14-2-16a Silcrete 517.679 2.806 0 0 4.836 67.740 
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MIS6 conditions – Silcrete 

 

Table B192. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions. 

Model 
Condition

s 
Heating 

Scenario Block 

Raw 
Materi

al 

Cutting 
Edge * 

Durability 
(e * d) 

tp 
(procure

ment time 
(min)) 

m1 (Wood 
fuel 

Travel 
and 

Search 
time 

(min)) 

m2 
(Heat-
treatm

ent 
time 

(min)) 

m3 
(Flake 
manuf
acture 
time 

(min)) Ps 

MIS6 Insulated D9-1-10b Silcrete 1259.248 3.458 76.600 6.383 5.958 13.628 

MIS6 Insulated D9-1-12b Silcrete 1590.524 3.693 81.816 6.818 6.363 16.116 

MIS6 Insulated D9-1-12d Silcrete 1428.770 3.554 78.730 6.561 6.123 15.045 

MIS6 Insulated E3-1-1b Silcrete 1694.441 4.202 93.096 7.758 7.241 15.089 

MIS6 Insulated E3-1-5p Silcrete 1334.362 3.140 69.559 5.797 5.410 15.903 

MIS6 Insulated E3-1-6a Silcrete 1593.300 3.700 81.965 6.830 6.375 16.115 

MIS6 Insulated E3-1-6c Silcrete 1509.278 3.335 73.892 6.158 5.747 16.933 

MIS6 Insulated I14-2-16l Silcrete 1736.073 3.448 76.394 6.366 5.942 18.840 

MIS6 Exposed D9-1-10b Silcrete 1259.248 3.458 38.300 21.278 5.958 18.252 

MIS6 Exposed D9-1-12b Silcrete 1590.524 3.693 40.908 22.727 6.363 21.584 

MIS6 Exposed D9-1-12d Silcrete 1428.770 3.554 39.365 21.869 6.123 20.149 

MIS6 Exposed E3-1-1b Silcrete 1694.441 4.202 46.548 25.860 7.241 20.208 

MIS6 Exposed E3-1-5p Silcrete 1334.362 3.140 34.780 19.322 5.410 21.298 

MIS6 Exposed E3-1-6a Silcrete 1593.300 3.700 40.982 22.768 6.375 21.582 

MIS6 Exposed E3-1-6c Silcrete 1509.278 3.335 36.946 20.525 5.747 22.678 

MIS6 Exposed I14-2-16l Silcrete 1736.073 3.448 38.197 21.220 5.942 25.231 

MIS6 Untreated D9-1-10a Silcrete 601.381 4.103 0 0 7.070 53.823 

MIS6 Untreated D9-1-12a Silcrete 719.735 3.612 0 0 6.223 73.181 

MIS6 Untreated D9-1-12c Silcrete 788.254 4.496 0 0 7.747 64.382 

MIS6 Untreated E3-1-1A Silcrete 631.653 3.926 0 0 6.765 59.085 

MIS6 Untreated E3-1-5n Silcrete 802.006 3.303 0 0 5.692 89.164 

MIS6 Untreated E3-1-5o Silcrete 722.028 3.244 0 0 5.589 81.742 

MIS6 Untreated E3-1-6b Silcrete 716.341 4.805 0 0 8.279 54.750 

MIS6 Untreated I14-2-16a Silcrete 517.679 2.806 0 0 4.836 67.740 
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ACM-R net-return rates 

 

MIS4 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B193. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS4 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block 

Raw 
Material 

Cutting 
Edge * 

Durability 
(e * d) 

ts (Travel 
and 

search 
time 

(min)) 

tp 
(procurement 

time (min)) 

m3 (flake 
manufacture 
time (min)) Rq 

MIS4-Without Paleo-
Agulhas Silcrete C9-1-1B8 Quartzite 630.455 93.738 2.604 93.738 3.317 

MIS4-Without Paleo-
Agulhas Silcrete C9-1-1B9 Quartzite 583.846 87.361 2.427 87.361 3.296 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-100A Quartzite 551.710 83.760 2.501 83.760 3.245 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-90D1 Quartzite 551.026 73.462 2.193 73.462 3.695 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-95A Quartzite 558.104 88.608 2.646 88.608 3.103 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-95B Quartzite 571.712 83.326 2.488 83.326 3.380 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-97A1 Quartzite 574.838 93.506 2.792 93.506 3.029 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-98B1 Quartzite 631.810 94.110 2.810 94.110 3.307 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-98C1 Quartzite 583.844 86.097 2.571 86.097 3.341 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-98D Quartzite 570.377 97.692 2.917 97.692 2.876 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-85C1 Quartzite 969.078 90.180 2.693 93.738 5.193 

MIS4-Without Paleo-
Agulhas Silcrete D11-1-91A1 Quartzite 833.108 91.730 2.739 87.361 4.582 

MIS4-Without Paleo-

Agulhas Silcrete D11-1-91A2 Quartzite 849.101 82.786 2.472 83.760 5.024 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-91B3 Quartzite 965.135 95.502 2.851 73.462 5.617 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-91B5 Quartzite 945.793 81.071 2.421 88.608 5.496 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-91C3 Quartzite 835.408 91.734 2.739 83.326 4.699 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-94B2 Quartzite 1003.631 98.479 2.940 93.506 5.149 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-94B3 Quartzite 1106.372 100.897 3.012 94.110 5.587 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-94D2 Quartzite 821.190 91.552 2.733 86.097 4.552 
MIS4-Without Paleo-

Agulhas Silcrete D11-1-97C Quartzite 980.072 98.194 2.932 97.692 4.930 
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MIS4 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B194. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. 
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MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated D9-1-10b Silcrete 1259.248 124.021 3.458 38.300 6.383 5.958 7.070 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated D9-1-12b Silcrete 1590.524 132.465 3.693 40.908 6.818 6.363 8.360 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated D9-1-12d Silcrete 1428.770 127.470 3.554 39.365 6.561 6.123 7.804 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated E3-1-1b Silcrete 1694.441 150.729 4.202 46.548 7.758 7.241 7.827 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated E3-1-5p Silcrete 1334.362 112.622 3.140 34.780 5.797 5.410 8.250 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated E3-1-6a Silcrete 1593.300 132.707 3.700 40.982 6.830 6.375 8.360 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated E3-1-6c Silcrete 1509.278 119.636 3.335 36.946 6.158 5.747 8.784 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Insulated I14-2-16l Silcrete 1736.073 123.687 3.448 38.197 6.366 5.942 9.773 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed D9-1-10b Silcrete 1259.248 124.021 3.458 38.300 

21.27
8 5.958 6.524 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed D9-1-12b Silcrete 1590.524 132.465 3.693 40.908 

22.72
7 6.363 7.715 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed D9-1-12d Silcrete 1428.770 127.470 3.554 39.365 

21.86
9 6.123 7.202 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed E3-1-1b Silcrete 1694.441 150.729 4.202 46.548 

25.86
0 7.241 7.223 

MIS4-Without 
Paleo- Exposed E3-1-5p Silcrete 1334.362 112.622 3.140 34.780 

19.32
2 5.410 7.613 
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Agulhas 
Silcrete 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed E3-1-6a Silcrete 1593.300 132.707 3.700 40.982 

22.76
8 6.375 7.715 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed E3-1-6c Silcrete 1509.278 119.636 3.335 36.946 

20.52
5 5.747 8.106 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Exposed I14-2-16l Silcrete 1736.073 123.687 3.448 38.197 

21.22
0 5.942 9.019 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated D9-1-10a Silcrete 601.381 147.177 4.103 0 0 7.070 3.798 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated D9-1-12a Silcrete 719.735 129.548 3.612 0 0 6.223 5.164 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated D9-1-12c Silcrete 788.254 161.272 4.496 0 0 7.747 4.543 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated E3-1-1A Silcrete 631.653 140.817 3.926 0 0 6.765 4.169 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated E3-1-5n Silcrete 802.006 118.480 3.303 0 0 5.692 6.291 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated E3-1-5o Silcrete 722.028 116.350 3.244 0 0 5.589 5.768 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated E3-1-6b Silcrete 716.341 172.344 4.805 0 0 8.279 3.863 

MIS4-Without 
Paleo-

Agulhas 
Silcrete Untreated I14-2-16a Silcrete 517.679 100.664 2.806 0 0 4.836 4.780 
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MIS4 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B195. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions with a Paleo-Agulhas plain silcrete source. 
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MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated D9-1-10b Silcrete 1259.248 11.923 3.458 38.300 6.383 5.958 19.073 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated D9-1-12b Silcrete 1590.524 12.734 3.693 40.908 6.818 6.363 22.555 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated D9-1-12d Silcrete 1428.770 12.254 3.554 39.365 6.561 6.123 21.055 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated E3-1-1b Silcrete 1694.441 14.490 4.202 46.548 7.758 7.241 21.117 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated E3-1-5p Silcrete 1334.362 10.827 3.140 34.780 5.797 5.410 22.257 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated E3-1-6a Silcrete 1593.300 12.758 3.700 40.982 6.830 6.375 22.553 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated E3-1-6c Silcrete 1509.278 11.501 3.335 36.946 6.158 5.747 23.698 

MIS4-With 
Paleo-

Agulhas 
Silcrete Insulated I14-2-16l Silcrete 1736.073 11.891 3.448 38.197 6.366 5.942 26.367 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed D9-1-10b Silcrete 1259.248 11.923 3.458 38.300 21.278 5.958 15.562 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed D9-1-12b Silcrete 1590.524 12.734 3.693 40.908 22.727 6.363 18.403 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed D9-1-12d Silcrete 1428.770 12.254 3.554 39.365 21.869 6.123 17.180 

MIS4-With 
Paleo- Exposed E3-1-1b Silcrete 1694.441 14.490 4.202 46.548 25.860 7.241 17.230 
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Agulhas 
Silcrete 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed E3-1-5p Silcrete 1334.362 10.827 3.140 34.780 19.322 5.410 18.160 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed E3-1-6a Silcrete 1593.300 12.758 3.700 40.982 22.768 6.375 18.402 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed E3-1-6c Silcrete 1509.278 11.501 3.335 36.946 20.525 5.747 19.336 

MIS4-With 
Paleo-

Agulhas 
Silcrete Exposed I14-2-16l Silcrete 1736.073 11.891 3.448 38.197 21.220 5.942 21.513 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated D9-1-10a Silcrete 601.381 14.149 4.103 0 0 7.070 23.749 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated D9-1-12a Silcrete 719.735 12.454 3.612 0 0 6.223 32.291 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated D9-1-12c Silcrete 788.254 15.504 4.496 0 0 7.747 28.408 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated E3-1-1A Silcrete 631.653 13.537 3.926 0 0 6.765 26.071 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated E3-1-5n Silcrete 802.006 11.390 3.303 0 0 5.692 39.343 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated E3-1-5o Silcrete 722.028 11.185 3.244 0 0 5.589 36.069 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated E3-1-6b Silcrete 716.341 16.568 4.805 0 0 8.279 24.158 

MIS4-With 
Paleo-

Agulhas 
Silcrete Untreated I14-2-16a Silcrete 517.679 9.677 2.806 0 0 4.836 29.890 

 

MIS5 conditions 

 

Table B196. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS5 

conditions. 

Model 
Conditions Block 

Raw 
Material 

Cutting Edge 
* Durability (e 

* d) 

ts (Travel 
and search 
time (min)) 

tp 
(procure

ment time 
(min)) 

m3 (flake 
manufact
ure time 
(min)) Rq 

MIS5 C9-1-1B8 Quartzite 630.455 5.538 2.604 6.614 42.728 

MIS5 C9-1-1B9 Quartzite 583.846 5.161 2.427 6.164 42.458 

MIS5 D11-1-100A Quartzite 551.710 4.948 2.501 5.910 41.300 

MIS5 D11-1-90D1 Quartzite 551.026 4.340 2.193 5.183 47.031 

MIS5 D11-1-95A Quartzite 558.104 5.234 2.646 6.252 39.493 

MIS5 D11-1-95B Quartzite 571.712 4.922 2.488 5.879 43.020 

MIS5 D11-1-97A1 Quartzite 574.838 5.524 2.792 6.597 38.546 
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MIS5 D11-1-98B1 Quartzite 631.810 5.559 2.810 6.640 42.095 

MIS5 D11-1-98C1 Quartzite 583.844 5.086 2.571 6.075 42.519 

MIS5 D11-1-98D Quartzite 570.377 5.771 2.917 6.893 36.608 

MIS5 D11-1-85C1 Quartzite 969.078 5.327 2.693 6.363 67.379 

MIS5 D11-1-91A1 Quartzite 833.108 5.419 2.739 6.472 56.946 

MIS5 D11-1-91A2 Quartzite 849.101 4.890 2.472 5.841 64.310 

MIS5 D11-1-91B3 Quartzite 965.135 5.642 2.851 6.738 63.365 

MIS5 D11-1-91B5 Quartzite 945.793 4.789 2.421 5.720 73.149 

MIS5 D11-1-91C3 Quartzite 835.408 5.419 2.739 6.472 57.101 

MIS5 D11-1-94B2 Quartzite 1003.631 5.818 2.940 6.948 63.901 

MIS5 D11-1-94B3 Quartzite 1106.372 5.960 3.012 7.119 68.754 

MIS5 D11-1-94D2 Quartzite 821.190 5.408 2.733 6.460 56.241 

MIS5 D11-1-97C Quartzite 980.072 5.801 2.932 6.928 62.582 

 

Table B197. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 
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MIS5 Insulated D9-1-10b Silcrete 1259.248 124.021 3.458 76.600 6.383 5.958 5.819 

MIS5 Insulated D9-1-12b Silcrete 1590.524 132.465 3.693 81.816 6.818 6.363 6.881 

MIS5 Insulated D9-1-12d Silcrete 1428.770 127.470 3.554 78.730 6.561 6.123 6.423 

MIS5 Insulated E3-1-1b Silcrete 1694.441 150.729 4.202 93.096 7.758 7.241 6.442 

MIS5 Insulated E3-1-5p Silcrete 1334.362 112.622 3.140 69.559 5.797 5.410 6.790 

MIS5 Insulated E3-1-6a Silcrete 1593.300 132.707 3.700 81.965 6.830 6.375 6.880 

MIS5 Insulated E3-1-6c Silcrete 1509.278 119.636 3.335 73.892 6.158 5.747 7.229 

MIS5 Insulated I14-2-16l Silcrete 1736.073 123.687 3.448 76.394 6.366 5.942 8.043 

MIS5 Exposed D9-1-10b Silcrete 1259.248 124.021 3.458 38.300 21.278 5.958 6.524 

MIS5 Exposed D9-1-12b Silcrete 1590.524 132.465 3.693 40.908 22.727 6.363 7.715 

MIS5 Exposed D9-1-12d Silcrete 1428.770 127.470 3.554 39.365 21.869 6.123 7.202 

MIS5 Exposed E3-1-1b Silcrete 1694.441 150.729 4.202 46.548 25.860 7.241 7.223 
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MIS5 Exposed E3-1-5p Silcrete 1334.362 112.622 3.140 34.780 19.322 5.410 7.613 

MIS5 Exposed E3-1-6a Silcrete 1593.300 132.707 3.700 40.982 22.768 6.375 7.715 

MIS5 Exposed E3-1-6c Silcrete 1509.278 119.636 3.335 36.946 20.525 5.747 8.106 

MIS5 Exposed I14-2-16l Silcrete 1736.073 123.687 3.448 38.197 21.220 5.942 9.019 

MIS5 Untreated D9-1-10a Silcrete 601.381 147.177 4.103 0 0 7.070 3.798 

MIS5 Untreated D9-1-12a Silcrete 719.735 129.548 3.612 0 0 6.223 5.164 

MIS5 Untreated D9-1-12c Silcrete 788.254 161.272 4.496 0 0 7.747 4.543 

MIS5 Untreated E3-1-1A Silcrete 631.653 140.817 3.926 0 0 6.765 4.169 

MIS5 Untreated E3-1-5n Silcrete 802.006 118.480 3.303 0 0 5.692 6.291 

MIS5 Untreated E3-1-5o Silcrete 722.028 116.350 3.244 0 0 5.589 5.768 

MIS5 Untreated E3-1-6b Silcrete 716.341 172.344 4.805 0 0 8.279 3.863 

MIS5 Untreated I14-2-16a Silcrete 517.679 100.664 2.806 0 0 4.836 4.780 

 

MIS6 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B198. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS6 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block 

Raw 
Material 

Cutting 
Edge * 

Durability
(e * d) 

ts (Travel 
and 

search 
time 

(min)) 

tp 
(procurement 

time (min)) 

m3 (flake 
manufacture 
time (min)) Rq 

MIS6-Without Paleo-
Agulhas Silcrete C9-1-1B8 Quartzite 630.455 25.422 2.604 25.422 11.796 

MIS6-Without Paleo-
Agulhas Silcrete C9-1-1B9 Quartzite 583.846 23.693 2.427 23.693 11.721 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
100A Quartzite 551.710 22.716 2.501 22.716 11.510 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
90D1 Quartzite 551.026 19.923 2.193 19.923 13.107 

MIS6-Without Paleo-
Agulhas Silcrete D11-1-95A Quartzite 558.104 24.031 2.646 24.031 11.006 

MIS6-Without Paleo-
Agulhas Silcrete D11-1-95B Quartzite 571.712 22.598 2.488 22.598 11.989 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
97A1 Quartzite 574.838 25.359 2.792 25.359 10.743 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
98B1 Quartzite 631.810 25.523 2.810 25.523 11.732 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
98C1 Quartzite 583.844 23.350 2.571 23.350 11.850 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
98D Quartzite 570.377 26.494 2.917 26.494 10.203 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
85C1 Quartzite 969.078 24.457 2.693 24.457 18.778 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
91A1 Quartzite 833.108 24.878 2.739 24.878 15.871 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
91A2 Quartzite 849.101 22.452 2.472 22.452 17.923 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
91B3 Quartzite 965.135 25.901 2.851 25.901 17.659 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
91B5 Quartzite 945.793 21.987 2.421 21.987 20.386 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
91C3 Quartzite 835.408 24.879 2.739 24.879 15.914 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
94B2 Quartzite 1003.631 26.708 2.940 26.708 17.809 

MIS6-Without Paleo- D11-1- Quartzite 1106.372 27.364 3.012 27.364 19.161 
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Agulhas Silcrete 94B3 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
94D2 Quartzite 821.190 24.829 2.733 24.829 15.674 

MIS6-Without Paleo-
Agulhas Silcrete 

D11-1-
97C Quartzite 980.072 26.631 2.932 26.631 17.441 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B199. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source. 
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MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated D9-1-10b Silcrete 1259.248 124.021 3.458 76.600 6.383 5.958 5.819 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated D9-1-12b Silcrete 1590.524 132.465 3.693 81.816 6.818 6.363 6.881 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated D9-1-12d Silcrete 1428.770 127.470 3.554 78.730 6.561 6.123 6.423 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated E3-1-1b Silcrete 1694.441 150.729 4.202 93.096 7.758 7.241 6.442 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated E3-1-5p Silcrete 1334.362 112.622 3.140 69.559 5.797 5.410 6.790 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated E3-1-6a Silcrete 1593.300 132.707 3.700 81.965 6.830 6.375 6.880 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated E3-1-6c Silcrete 1509.278 119.636 3.335 73.892 6.158 5.747 7.229 

MIS6-Without 
Paleo-Agulhas 

Silcrete Insulated I14-2-16l Silcrete 1736.073 123.687 3.448 76.394 6.366 5.942 8.043 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed D9-1-10b Silcrete 1259.248 124.021 3.458 38.300 21.278 5.958 6.524 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed D9-1-12b Silcrete 1590.524 132.465 3.693 40.908 22.727 6.363 7.715 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed D9-1-12d Silcrete 1428.770 127.470 3.554 39.365 21.869 6.123 7.202 
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MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed E3-1-1b Silcrete 1694.441 150.729 4.202 46.548 25.860 7.241 7.223 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed E3-1-5p Silcrete 1334.362 112.622 3.140 34.780 19.322 5.410 7.613 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed E3-1-6a Silcrete 1593.300 132.707 3.700 40.982 22.768 6.375 7.715 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed E3-1-6c Silcrete 1509.278 119.636 3.335 36.946 20.525 5.747 8.106 

MIS6-Without 
Paleo-Agulhas 

Silcrete Exposed I14-2-16l Silcrete 1736.073 123.687 3.448 38.197 21.220 5.942 9.019 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated D9-1-10a Silcrete 601.381 147.177 4.103 0 0 7.070 3.798 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated D9-1-12a Silcrete 719.735 129.548 3.612 0 0 6.223 5.164 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated D9-1-12c Silcrete 788.254 161.272 4.496 0 0 7.747 4.543 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated E3-1-1A Silcrete 631.653 140.817 3.926 0 0 6.765 4.169 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated E3-1-5n Silcrete 802.006 118.480 3.303 0 0 5.692 6.291 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated E3-1-5o Silcrete 722.028 116.350 3.244 0 0 5.589 5.768 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated E3-1-6b Silcrete 716.341 172.344 4.805 0 0 8.279 3.863 

MIS6-Without 
Paleo-Agulhas 

Silcrete Untreated I14-2-16a Silcrete 517.679 100.664 2.806 0 0 4.836 4.780 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B200. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions with a Paleo-Agulhas plain silcrete source. 
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MIS6-With 
Paleo-Agulhas 

Silcrete Insulated D9-1-10b Silcrete 1259.248 11.923 3.458 76.600 6.383 5.958 12.071 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated D9-1-12b Silcrete 1590.524 12.734 3.693 81.816 6.818 6.363 14.274 

MIS6-With 
Paleo-Agulhas Insulated D9-1-12d Silcrete 1428.770 12.254 3.554 78.730 6.561 6.123 13.325 
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Silcrete 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated E3-1-1b Silcrete 1694.441 14.490 4.202 93.096 7.758 7.241 13.364 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated E3-1-5p Silcrete 1334.362 10.827 3.140 69.559 5.797 5.410 14.086 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated E3-1-6a Silcrete 1593.300 12.758 3.700 81.965 6.830 6.375 14.273 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated E3-1-6c Silcrete 1509.278 11.501 3.335 73.892 6.158 5.747 14.998 

MIS6-With 
Paleo-Agulhas 

Silcrete Insulated I14-2-16l Silcrete 1736.073 11.891 3.448 76.394 6.366 5.942 16.687 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed D9-1-10b Silcrete 1259.248 11.923 3.458 38.300 21.278 5.958 15.562 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed D9-1-12b Silcrete 1590.524 12.734 3.693 40.908 22.727 6.363 18.403 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed D9-1-12d Silcrete 1428.770 12.254 3.554 39.365 21.869 6.123 17.180 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed E3-1-1b Silcrete 1694.441 14.490 4.202 46.548 25.860 7.241 17.230 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed E3-1-5p Silcrete 1334.362 10.827 3.140 34.780 19.322 5.410 18.160 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed E3-1-6a Silcrete 1593.300 12.758 3.700 40.982 22.768 6.375 18.402 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed E3-1-6c Silcrete 1509.278 11.501 3.335 36.946 20.525 5.747 19.336 

MIS6-With 
Paleo-Agulhas 

Silcrete Exposed I14-2-16l Silcrete 1736.073 11.891 3.448 38.197 21.220 5.942 21.513 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated D9-1-10a Silcrete 601.381 14.149 4.103 0 0 7.070 23.749 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated D9-1-12a Silcrete 719.735 12.454 3.612 0 0 6.223 32.291 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated D9-1-12c Silcrete 788.254 15.504 4.496 0 0 7.747 28.408 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated E3-1-1A Silcrete 631.653 13.537 3.926 0 0 6.765 26.071 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated E3-1-5n Silcrete 802.006 11.390 3.303 0 0 5.692 39.343 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated E3-1-5o Silcrete 722.028 11.185 3.244 0 0 5.589 36.069 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated E3-1-6b Silcrete 716.341 16.568 4.805 0 0 8.279 24.158 

MIS6-With 
Paleo-Agulhas 

Silcrete Untreated I14-2-16a Silcrete 517.679 9.677 2.806 0 0 4.836 29.890 
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ACM – Model condition variable outcomes 

 

Coastline position and raw material source distribution 

 

MIS4 with or without a Paleo-Agulhas plain silcrete source 

 

Table B201. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS4 conditions with or without a 

Paleo-Agulhas plain silcrete source. 

Block 
Raw 

Material 

e (CE(cm)/Total 
Flaked Core 
Mass (kg)) d (durability (min) 

ts-Travel and 
search time 

(min)/Total Flaked 
Core Mass (kg) Rq (e * d / ts) 

C9-1-1B8 Quartzite 403.49 1.56 93.74 6.726 

C9-1-1B9 Quartzite 373.66 1.56 87.36 6.683 

D11-1-100A Quartzite 353.09 1.56 83.76 6.587 

D11-1-90D1 Quartzite 352.66 1.56 73.46 7.501 

D11-1-95A Quartzite 357.19 1.56 88.61 6.299 

D11-1-95B Quartzite 365.90 1.56 83.33 6.861 

D11-1-97A1 Quartzite 367.90 1.56 93.51 6.148 

D11-1-98B1 Quartzite 404.36 1.56 94.11 6.714 

D11-1-98C1 Quartzite 373.66 1.56 86.10 6.781 

D11-1-98D Quartzite 365.04 1.56 97.69 5.839 

D11-1-85C1 Quartzite 478.56 2.03 90.18 10.746 

D11-1-91A1 Quartzite 411.41 2.03 91.73 9.082 

D11-1-91A2 Quartzite 419.31 2.03 82.79 10.257 

D11-1-91B3 Quartzite 476.61 2.03 95.50 10.106 

D11-1-91B5 Quartzite 467.06 2.03 81.07 11.666 

D11-1-91C3 Quartzite 412.55 2.03 91.73 9.107 

D11-1-94B2 Quartzite 495.62 2.03 98.48 10.191 

D11-1-94B3 Quartzite 546.36 2.03 100.90 10.965 

D11-1-94D2 Quartzite 405.53 2.03 91.55 8.970 

D11-1-97C Quartzite 483.99 2.03 98.19 9.981 

 

MIS4 without a Paleo-Agulhas plain silcrete source 

 

Table B202. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time 
(min)/Total 

Flaked Core 
Mass (kg) Rs (e * d / ts) 

D9-1-10b Heat-treated Silcrete 445.94 2.82 124.02 10.154 
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D9-1-12b Heat-treated Silcrete 563.25 2.82 132.47 12.007 

D9-1-12d Heat-treated Silcrete 505.97 2.82 127.47 11.209 

E3-1-1b Heat-treated Silcrete 600.05 2.82 150.73 11.242 

E3-1-5p Heat-treated Silcrete 472.54 2.82 112.62 11.848 

E3-1-6a Heat-treated Silcrete 564.24 2.82 132.71 12.006 

E3-1-6c Heat-treated Silcrete 534.48 2.82 119.64 12.616 

I14-2-16l Heat-treated Silcrete 614.80 2.82 123.69 14.036 

D9-1-10a Untreated Silcrete 319.72 1.88 147.18 4.086 

D9-1-12a Untreated Silcrete 382.64 1.88 129.55 5.556 

D9-1-12c Untreated Silcrete 419.07 1.88 161.27 4.888 

E3-1-1A Untreated Silcrete 335.82 1.88 140.82 4.486 

E3-1-5n Untreated Silcrete 426.38 1.88 118.48 6.769 

E3-1-5o Untreated Silcrete 383.86 1.88 116.35 6.206 

E3-1-6b Untreated Silcrete 380.84 1.88 172.34 4.156 

I14-2-16a Untreated Silcrete 275.22 1.88 100.66 5.143 

 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B203. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs (e * d / ts) 

D9-1-10b Heat-treated Silcrete 445.94 2.82 11.92 105.618 

D9-1-12b Heat-treated Silcrete 563.25 2.82 12.73 124.899 

D9-1-12d Heat-treated Silcrete 505.97 2.82 12.25 116.594 

E3-1-1b Heat-treated Silcrete 600.05 2.82 14.49 116.937 

E3-1-5p Heat-treated Silcrete 472.54 2.82 10.83 123.246 

E3-1-6a Heat-treated Silcrete 564.24 2.82 12.76 124.889 

E3-1-6c Heat-treated Silcrete 534.48 2.82 11.50 131.229 

I14-2-16l Heat-treated Silcrete 614.80 2.82 11.89 146.005 

D9-1-10a Untreated Silcrete 319.72 1.88 14.15 42.504 

D9-1-12a Untreated Silcrete 382.64 1.88 12.45 57.791 

D9-1-12c Untreated Silcrete 419.07 1.88 15.50 50.843 

E3-1-1A Untreated Silcrete 335.82 1.88 13.54 46.660 

E3-1-5n Untreated Silcrete 426.38 1.88 11.39 70.413 

E3-1-5o Untreated Silcrete 383.86 1.88 11.19 64.552 

E3-1-6b Untreated Silcrete 380.84 1.88 16.57 43.236 

I14-2-16a Untreated Silcrete 275.22 1.88 9.68 53.495 
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MIS5 

 

Table B204. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS5 conditions. 

Block Raw Material 

e (Cutting Edge 
(cm)/Total 

Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rq (e * d / ts) 

C9-1-1B8 Quartzite 403.49 1.56 6.61 95.325 

C9-1-1B9 Quartzite 373.66 1.56 6.16 94.722 

D11-1-100A Quartzite 353.09 1.56 5.91 93.356 

D11-1-90D1 Quartzite 352.66 1.56 5.18 106.312 

D11-1-95A Quartzite 357.19 1.56 6.25 89.272 

D11-1-95B Quartzite 365.90 1.56 5.88 97.244 

D11-1-97A1 Quartzite 367.90 1.56 6.60 87.131 

D11-1-98B1 Quartzite 404.36 1.56 6.64 95.153 

D11-1-98C1 Quartzite 373.66 1.56 6.07 96.112 

D11-1-98D Quartzite 365.04 1.56 6.89 82.751 

D11-1-85C1 Quartzite 478.56 2.03 6.36 152.306 

D11-1-91A1 Quartzite 411.41 2.03 6.47 128.723 

D11-1-91A2 Quartzite 419.31 2.03 5.84 145.369 

D11-1-91B3 Quartzite 476.61 2.03 6.74 143.233 

D11-1-91B5 Quartzite 467.06 2.03 5.72 165.348 

D11-1-91C3 Quartzite 412.55 2.03 6.47 129.074 

D11-1-94B2 Quartzite 495.62 2.03 6.95 144.445 

D11-1-94B3 Quartzite 546.36 2.03 7.12 155.415 

D11-1-94D2 Quartzite 405.53 2.03 6.46 127.129 

D11-1-97C Quartzite 483.99 2.03 6.93 141.463 

 

Table B205. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS5 conditions. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs (e * d / ts) 

D9-1-10b Heat-treated Silcrete 445.94 2.82 124.02 10.154 

D9-1-12b Heat-treated Silcrete 563.25 2.82 132.47 12.007 

D9-1-12d Heat-treated Silcrete 505.97 2.82 127.47 11.209 

E3-1-1b Heat-treated Silcrete 600.05 2.82 150.73 11.242 

E3-1-5p Heat-treated Silcrete 472.54 2.82 112.62 11.848 

E3-1-6a Heat-treated Silcrete 564.24 2.82 132.71 12.006 

E3-1-6c Heat-treated Silcrete 534.48 2.82 119.64 12.616 
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I14-2-16l Heat-treated Silcrete 614.80 2.82 123.69 14.036 

D9-1-10a Untreated Silcrete 319.72 1.88 147.18 4.086 

D9-1-12a Untreated Silcrete 382.64 1.88 129.55 5.556 

D9-1-12c Untreated Silcrete 419.07 1.88 161.27 4.888 

E3-1-1A Untreated Silcrete 335.82 1.88 140.82 4.486 

E3-1-5n Untreated Silcrete 426.38 1.88 118.48 6.769 

E3-1-5o Untreated Silcrete 383.86 1.88 116.35 6.206 

E3-1-6b Untreated Silcrete 380.84 1.88 172.34 4.156 

I14-2-16a Untreated Silcrete 275.22 1.88 100.66 5.143 

 

MIS6 with or without a Paleo-Agulhas plain silcrete source 

 

Table B206. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS6 conditions with or without a 

Paleo-Agulhas plain silcrete source. 

Block Raw Material 

e (Cutting Edge 
(cm)/Total 

Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rq (e * d / ts) 

C9-1-1B8 Quartzite 403.49 1.56 25.42 24.799 

C9-1-1B9 Quartzite 373.66 1.56 23.69 24.643 

D11-1-100A Quartzite 353.09 1.56 22.72 24.287 

D11-1-90D1 Quartzite 352.66 1.56 19.92 27.658 

D11-1-95A Quartzite 357.19 1.56 24.03 23.225 

D11-1-95B Quartzite 365.90 1.56 22.60 25.299 

D11-1-97A1 Quartzite 367.90 1.56 25.36 22.668 

D11-1-98B1 Quartzite 404.36 1.56 25.52 24.755 

D11-1-98C1 Quartzite 373.66 1.56 23.35 25.004 

D11-1-98D Quartzite 365.04 1.56 26.49 21.528 

D11-1-85C1 Quartzite 478.56 2.03 24.46 39.623 

D11-1-91A1 Quartzite 411.41 2.03 24.88 33.488 

D11-1-91A2 Quartzite 419.31 2.03 22.45 37.819 

D11-1-91B3 Quartzite 476.61 2.03 25.90 37.263 

D11-1-91B5 Quartzite 467.06 2.03 21.99 43.017 

D11-1-91C3 Quartzite 412.55 2.03 24.88 33.579 

D11-1-94B2 Quartzite 495.62 2.03 26.71 37.578 

D11-1-94B3 Quartzite 546.36 2.03 27.36 40.432 

D11-1-94D2 Quartzite 405.53 2.03 24.83 33.073 

D11-1-97C Quartzite 483.99 2.03 26.63 36.803 
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MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B207. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs (e * d / ts) 

D9-1-10b Heat-treated Silcrete 445.94 2.82 124.02 10.154 

D9-1-12b Heat-treated Silcrete 563.25 2.82 132.47 12.007 

D9-1-12d Heat-treated Silcrete 505.97 2.82 127.47 11.209 

E3-1-1b Heat-treated Silcrete 600.05 2.82 150.73 11.242 

E3-1-5p Heat-treated Silcrete 472.54 2.82 112.62 11.848 

E3-1-6a Heat-treated Silcrete 564.24 2.82 132.71 12.006 

E3-1-6c Heat-treated Silcrete 534.48 2.82 119.64 12.616 

I14-2-16l Heat-treated Silcrete 614.80 2.82 123.69 14.036 

D9-1-10a Untreated Silcrete 319.72 1.88 147.18 4.086 

D9-1-12a Untreated Silcrete 382.64 1.88 129.55 5.556 

D9-1-12c Untreated Silcrete 419.07 1.88 161.27 4.888 

E3-1-1A Untreated Silcrete 335.82 1.88 140.82 4.486 

E3-1-5n Untreated Silcrete 426.38 1.88 118.48 6.769 

E3-1-5o Untreated Silcrete 383.86 1.88 116.35 6.206 

E3-1-6b Untreated Silcrete 380.84 1.88 172.34 4.156 

I14-2-16a Untreated Silcrete 275.22 1.88 100.66 5.143 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B208. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs (e * d / ts) 

D9-1-10b Heat-treated Silcrete 445.94 2.82 11.92 105.618 

D9-1-12b Heat-treated Silcrete 563.25 2.82 12.73 124.899 

D9-1-12d Heat-treated Silcrete 505.97 2.82 12.25 116.594 

E3-1-1b Heat-treated Silcrete 600.05 2.82 14.49 116.937 

E3-1-5p Heat-treated Silcrete 472.54 2.82 10.83 123.246 

E3-1-6a Heat-treated Silcrete 564.24 2.82 12.76 124.889 
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E3-1-6c Heat-treated Silcrete 534.48 2.82 11.50 131.229 

I14-2-16l Heat-treated Silcrete 614.80 2.82 11.89 146.005 

D9-1-10a Untreated Silcrete 319.72 1.88 14.15 42.504 

D9-1-12a Untreated Silcrete 382.64 1.88 12.45 57.791 

D9-1-12c Untreated Silcrete 419.07 1.88 15.50 50.843 

E3-1-1A Untreated Silcrete 335.82 1.88 13.54 46.660 

E3-1-5n Untreated Silcrete 426.38 1.88 11.39 70.413 

E3-1-5o Untreated Silcrete 383.86 1.88 11.19 64.552 

E3-1-6b Untreated Silcrete 380.84 1.88 16.57 43.236 

I14-2-16a Untreated Silcrete 275.22 1.88 9.68 53.495 

 

Vegetation type 

Quartzite MIS4, MIS5, and MIS6 

 

Table B209. ACM-P net-return rates (Pq) for quartzite experimental blocks when only 

m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS4, MIS5, and MIS6 conditions. 

Block Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

m1-Wood 
Fuel travel 
and search 

time 
(min)/Total 

Flaked Core 
Mass (kg) 

m2-Heat-
treatment 

time 
(min)/Total 
Flaked core 
Mass (kg) 

Pq (e 
*d/m1+m2) 

C9-1-1B8 Quartzite 403.49 1.56 0 0 630.46 

C9-1-1B9 Quartzite 373.66 1.56 0 0 583.85 

D11-1-100A Quartzite 353.09 1.56 0 0 551.71 

D11-1-90D1 Quartzite 352.66 1.56 0 0 551.03 

D11-1-95A Quartzite 357.19 1.56 0 0 558.10 

D11-1-95B Quartzite 365.90 1.56 0 0 571.71 

D11-1-97A1 Quartzite 367.90 1.56 0 0 574.84 

D11-1-98B1 Quartzite 404.36 1.56 0 0 631.81 

D11-1-98C1 Quartzite 373.66 1.56 0 0 583.84 

D11-1-98D Quartzite 365.04 1.56 0 0 570.38 

D11-1-85C1 Quartzite 478.56 2.03 0 0 969.08 

D11-1-91A1 Quartzite 411.41 2.03 0 0 833.11 

D11-1-91A2 Quartzite 419.31 2.03 0 0 849.10 

D11-1-91B3 Quartzite 476.61 2.03 0 0 965.14 

D11-1-91B5 Quartzite 467.06 2.03 0 0 945.79 

D11-1-91C3 Quartzite 412.55 2.03 0 0 835.41 

D11-1-94B2 Quartzite 495.62 2.03 0 0 1003.63 

D11-1-94B3 Quartzite 546.36 2.03 0 0 1106.37 

D11-1-94D2 Quartzite 405.53 2.03 0 0 821.19 

D11-1-97C Quartzite 483.99 2.03 0 0 980.07 
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MIS4 Silcrete 

 

Table B210. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 conditions. 

Block 
Heating 
Scenario 

Raw 
Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked 

Core Mass 
(kg)) 

d 
(durability 

(min) 

m1-Wood 
Fuel travel 
and search 

time 
(min)/Total 

Flaked Core 
Mass (kg) 

m2-Heat-
treatment 

time 
(min)/Total 
Flaked core 
Mass (kg) 

Ps (e 
*d/m1+m2) 

D9-1-10b Insulated Silcrete 445.94 2.82 38.300 6.383 28.182 

D9-1-12b Insulated Silcrete 563.25 2.82 40.908 6.818 33.326 

D9-1-12d Insulated Silcrete 505.97 2.82 39.365 6.561 31.110 

E3-1-1b Insulated Silcrete 600.05 2.82 46.548 7.758 31.202 

E3-1-5p Insulated Silcrete 472.54 2.82 34.780 5.797 32.885 

E3-1-6a Insulated Silcrete 564.24 2.82 40.982 6.830 33.324 

E3-1-6c Insulated Silcrete 534.48 2.82 36.946 6.158 35.015 

I14-2-16l Insulated Silcrete 614.80 2.82 38.197 6.366 38.958 

D9-1-10b Exposed Silcrete 445.94 2.82 38.300 21.278 21.136 

D9-1-12b Exposed Silcrete 563.25 2.82 40.908 22.727 24.995 

D9-1-12d Exposed Silcrete 505.97 2.82 39.365 21.869 23.333 

E3-1-1b Exposed Silcrete 600.05 2.82 46.548 25.860 23.401 

E3-1-5p Exposed Silcrete 472.54 2.82 34.780 19.322 24.664 

E3-1-6a Exposed Silcrete 564.24 2.82 40.982 22.768 24.993 

E3-1-6c Exposed Silcrete 534.48 2.82 36.946 20.525 26.261 

I14-2-16l Exposed Silcrete 614.80 2.82 38.197 21.220 29.218 

D9-1-10a Untreated Silcrete 319.72 1.88 0 0 601.381 

D9-1-12a Untreated Silcrete 382.64 1.88 0 0 719.735 

D9-1-12c Untreated Silcrete 419.07 1.88 0 0 788.254 

E3-1-1A Untreated Silcrete 335.82 1.88 0 0 631.653 

E3-1-5n Untreated Silcrete 426.38 1.88 0 0 802.006 

E3-1-5o Untreated Silcrete 383.86 1.88 0 0 722.028 

E3-1-6b Untreated Silcrete 380.84 1.88 0 0 716.341 

I14-2-16a Untreated Silcrete 275.22 1.88 0 0 517.679 
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MIS5 Silcrete 

 

Table B211. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 conditions. 

Block 
Heating 
Scenario 

Raw 
Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked 

Core Mass 
(kg)) 

d 
(durability 

(min) 

m1-Wood 
Fuel travel 
and search 

time 
(min)/Total 

Flaked 
Core Mass 

(kg) 

m2-Heat-
treatment 

time 
(min)/Total 

Flaked 
core Mass 

(kg) 
Ps (e 

*d/m1+m2) 

D9-1-10b Insulated Silcrete 445.94 2.82 76.600 6.383 15.175 

D9-1-12b Insulated Silcrete 563.25 2.82 81.816 6.818 17.945 

D9-1-12d Insulated Silcrete 505.97 2.82 78.730 6.561 16.752 

E3-1-1b Insulated Silcrete 600.05 2.82 93.096 7.758 16.801 

E3-1-5p Insulated Silcrete 472.54 2.82 69.559 5.797 17.707 

E3-1-6a Insulated Silcrete 564.24 2.82 81.965 6.830 17.943 

E3-1-6c Insulated Silcrete 534.48 2.82 73.892 6.158 18.854 

I14-2-16l Insulated Silcrete 614.80 2.82 76.394 6.366 20.977 

D9-1-10b Exposed Silcrete 445.94 2.82 38.300 21.278 21.136 

D9-1-12b Exposed Silcrete 563.25 2.82 40.908 22.727 24.995 

D9-1-12d Exposed Silcrete 505.97 2.82 39.365 21.869 23.333 

E3-1-1b Exposed Silcrete 600.05 2.82 46.548 25.860 23.401 

E3-1-5p Exposed Silcrete 472.54 2.82 34.780 19.322 24.664 

E3-1-6a Exposed Silcrete 564.24 2.82 40.982 22.768 24.993 

E3-1-6c Exposed Silcrete 534.48 2.82 36.946 20.525 26.261 

I14-2-16l Exposed Silcrete 614.80 2.82 38.197 21.220 29.218 

D9-1-10a Untreated Silcrete 319.72 1.88 0 0 601.381 

D9-1-12a Untreated Silcrete 382.64 1.88 0 0 719.735 

D9-1-12c Untreated Silcrete 419.07 1.88 0 0 788.254 

E3-1-1A Untreated Silcrete 335.82 1.88 0 0 631.653 

E3-1-5n Untreated Silcrete 426.38 1.88 0 0 802.006 

E3-1-5o Untreated Silcrete 383.86 1.88 0 0 722.028 

E3-1-6b Untreated Silcrete 380.84 1.88 0 0 716.341 

I14-2-16a Untreated Silcrete 275.22 1.88 0 0 517.679 
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MIS6 Silcrete 

 

Table B212. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS6 conditions. 

Block 
Heating 
Scenario 

Raw 
Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked 

Core Mass 
(kg)) 

d 
(durability 

(min) 

m1-Wood 
Fuel travel 
and search 

time 
(min)/Total 

Flaked 
Core Mass 

(kg) 

m2-Heat-
treatment 

time 
(min)/Total 

Flaked 
core Mass 

(kg) 
Ps (e 

*d/m1+m2) 

D9-1-10b Insulated Silcrete 445.94 2.82 76.600 6.383 15.175 

D9-1-12b Insulated Silcrete 563.25 2.82 81.816 6.818 17.945 

D9-1-12d Insulated Silcrete 505.97 2.82 78.730 6.561 16.752 

E3-1-1b Insulated Silcrete 600.05 2.82 93.096 7.758 16.801 

E3-1-5p Insulated Silcrete 472.54 2.82 69.559 5.797 17.707 

E3-1-6a Insulated Silcrete 564.24 2.82 81.965 6.830 17.943 

E3-1-6c Insulated Silcrete 534.48 2.82 73.892 6.158 18.854 

I14-2-16l Insulated Silcrete 614.80 2.82 76.394 6.366 20.977 

D9-1-10b Exposed Silcrete 445.94 2.82 38.300 21.278 21.136 

D9-1-12b Exposed Silcrete 563.25 2.82 40.908 22.727 24.995 

D9-1-12d Exposed Silcrete 505.97 2.82 39.365 21.869 23.333 

E3-1-1b Exposed Silcrete 600.05 2.82 46.548 25.860 23.401 

E3-1-5p Exposed Silcrete 472.54 2.82 34.780 19.322 24.664 

E3-1-6a Exposed Silcrete 564.24 2.82 40.982 22.768 24.993 

E3-1-6c Exposed Silcrete 534.48 2.82 36.946 20.525 26.261 

I14-2-16l Exposed Silcrete 614.80 2.82 38.197 21.220 29.218 

D9-1-10a Untreated Silcrete 319.72 1.88 0 0 601.381 

D9-1-12a Untreated Silcrete 382.64 1.88 0 0 719.735 

D9-1-12c Untreated Silcrete 419.07 1.88 0 0 788.254 

E3-1-1A Untreated Silcrete 335.82 1.88 0 0 631.653 

E3-1-5n Untreated Silcrete 426.38 1.88 0 0 802.006 

E3-1-5o Untreated Silcrete 383.86 1.88 0 0 722.028 

E3-1-6b Untreated Silcrete 380.84 1.88 0 0 716.341 

I14-2-16a Untreated Silcrete 275.22 1.88 0 0 517.679 
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Mobility rate and strategy 

 

MIS4 

 

Table B213. ACM net-return rates (Pq or Rq) for quartzite experimental blocks when 

only m3 time-cost (flake manufacturing time) is considered during MIS4 conditions. 

Block Raw Material 

e (CE(cm)/Total 
Flaked Core Mass 

(kg)) 
d (durability 

(min) 

m3-FlakingTime 
(14min)/Total 

Flaked Core Mass 
(kg) Pq or Rq 

C9-1-1B8 Quartzite 403.49 1.56 7.29 86.47 

C9-1-1B9 Quartzite 373.66 1.56 6.79 85.93 

D11-1-100A Quartzite 353.09 1.56 6.51 84.69 

D11-1-90D1 Quartzite 352.66 1.56 5.71 96.44 

D11-1-95A Quartzite 357.19 1.56 6.89 80.98 

D11-1-95B Quartzite 365.90 1.56 6.48 88.21 

D11-1-97A1 Quartzite 367.90 1.56 7.27 79.04 

D11-1-98B1 Quartzite 404.36 1.56 7.32 86.32 

D11-1-98C1 Quartzite 373.66 1.56 6.70 87.19 

D11-1-98D Quartzite 365.04 1.56 7.60 75.07 

D11-1-85C1 Quartzite 478.56 2.03 7.01 138.16 

D11-1-91A1 Quartzite 411.41 2.03 7.13 116.77 

D11-1-91A2 Quartzite 419.31 2.03 6.44 131.87 

D11-1-91B3 Quartzite 476.61 2.03 7.43 129.93 

D11-1-91B5 Quartzite 467.06 2.03 6.31 149.99 

D11-1-91C3 Quartzite 412.55 2.03 7.13 117.09 

D11-1-94B2 Quartzite 495.62 2.03 7.66 131.03 

D11-1-94B3 Quartzite 546.36 2.03 7.85 140.98 

D11-1-94D2 Quartzite 405.53 2.03 7.12 115.32 

D11-1-97C Quartzite 483.99 2.03 7.64 128.33 

 

Table B214. ACM net-return rates (Ps or Rs) for untreated and heat-treated silcrete 

experimental blocks when only m3 time-cost (flake manufacturing time) is considered 

during MIS4 conditions. 

Block Sample Type Raw Material 

e (Cutting 
Edge 

(cm)/Total 
Flaked Core 
Mass (kg)) 

d (durability 
(min) 

m3-
FlakingTime 
(14min)/Total 
Flaked Core 
Mass (kg) Ps or Rs 

D9-1-10b Heat-treated Silcrete 445.94 2.82 5.96 211.36 

D9-1-12b Heat-treated Silcrete 563.25 2.82 6.36 249.95 

D9-1-12d Heat-treated Silcrete 505.97 2.82 6.12 233.33 

E3-1-1b Heat-treated Silcrete 600.05 2.82 7.24 234.01 

E3-1-5p Heat-treated Silcrete 472.54 2.82 5.41 246.64 

E3-1-6a Heat-treated Silcrete 564.24 2.82 6.38 249.93 
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E3-1-6c Heat-treated Silcrete 534.48 2.82 5.75 262.61 

I14-2-16l Heat-treated Silcrete 614.80 2.82 5.94 292.18 

D9-1-10a Untreated Silcrete 319.72 1.88 7.07 85.06 

D9-1-12a Untreated Silcrete 382.64 1.88 6.22 115.65 

D9-1-12c Untreated Silcrete 419.07 1.88 7.75 101.75 

E3-1-1A Untreated Silcrete 335.82 1.88 6.76 93.38 

E3-1-5n Untreated Silcrete 426.38 1.88 5.69 140.91 

E3-1-5o Untreated Silcrete 383.86 1.88 5.59 129.18 

E3-1-6b Untreated Silcrete 380.84 1.88 8.28 86.52 

I14-2-16a Untreated Silcrete 275.22 1.88 4.84 107.05 

 

ACTIVE-CHOICE MODEL – CHANGING ASSUMED CURRENCY 

 

Maximizing cutting edge of blades multiplied by duration of use (cutting edge of 

complete blades (cm) / total flaked core mass (kg) * d (minutes)) 

 

ACM-P net-return rates 

 

Table B215. Summary statistics and test results of ACM-P net-return rates ((for all 

experimental sample types) during MIS4, MIS5, and MIS6 conditions. 
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MIS4, MIS5, and MIS6 conditions 

 

Table B216. ACM-P net-return rates (Pq) for quartzite experimental blocks during MIS4, 

MIS5, and MIS6 conditions. 

Model 
Conditions Block 

Raw 
Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Pq 

MIS4, MIS5, 
and MIS6 C9-1-1B8 Quartzite 92.6 1.920 48.223 75.349 7.615 

MIS4, MIS5, 
and MIS6 C9-1-1B9 Quartzite 83.2 2.060 40.380 63.094 6.842 

MIS4, MIS5, 
and MIS6 

D11-1-
100A Quartzite 156 2.149 72.592 113.425 12.581 
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MIS4, MIS5, 
and MIS6 

D11-1-
90D1 Quartzite 52.3 2.450 21.345 33.351 4.218 

MIS4, MIS5, 
and MIS6 D11-1-95A Quartzite 68.9 2.031 33.917 52.995 5.557 

MIS4, MIS5, 
and MIS6 D11-1-95B Quartzite 89.5 2.160 41.432 64.737 7.218 

MIS4, MIS5, 
and MIS6 

D11-1-
97A1 Quartzite 28.3 1.925 14.701 22.971 2.282 

MIS4, MIS5, 
and MIS6 

D11-1-
98B1 Quartzite 87 1.913 45.486 71.072 7.016 

MIS4, MIS5, 
and MIS6 

D11-1-
98C1 Quartzite 92.7 2.091 44.340 69.281 7.476 

MIS4, MIS5, 
and MIS6 

D11-1-
98D Quartzite 77.8 1.843 42.225 65.976 6.274 

MIS4, MIS5, 
and MIS6 

D11-1-
85C1 Quartzite 420.8 1.996 210.822 426.914 43.982 

MIS4, MIS5, 
and MIS6 

D11-1-
91A1 Quartzite 202.4 1.962 103.146 208.870 21.155 

MIS4, MIS5, 
and MIS6 

D11-1-
91A2 Quartzite 250.2 2.174 115.072 233.021 26.151 

MIS4, MIS5, 
and MIS6 

D11-1-
91B3 Quartzite 322.3 1.885 171.002 346.280 33.687 

MIS4, MIS5, 
and MIS6 

D11-1-
91B5 Quartzite 174 2.220 78.368 158.696 18.186 

MIS4, MIS5, 
and MIS6 

D11-1-
91C3 Quartzite 170.3 1.962 86.790 175.750 17.800 

MIS4, MIS5, 
and MIS6 

D11-1-
94B2 Quartzite 206.6 1.828 113.031 228.889 21.594 

MIS4, MIS5, 
and MIS6 

D11-1-
94B3 Quartzite 240.5 1.784 134.809 272.989 25.137 

MIS4, MIS5, 
and MIS6 

D11-1-
94D2 Quartzite 159 1.966 80.871 163.764 16.619 

MIS4, MIS5, 
and MIS6 

D11-1-
97C Quartzite 386.4 1.833 210.789 426.848 40.387 

 

MIS4 conditions 

 

Table B217. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions. 

Model 
Conditi

ons 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Ps 

MIS4 Insulated D9-1-10b Silcrete 311.700 2.350 132.646 374.566 6.924 

MIS4 Insulated D9-1-12b Silcrete 329.100 2.200 149.586 422.403 7.310 

MIS4 Insulated D9-1-12d Silcrete 307.900 2.286 134.672 380.289 6.839 

MIS4 Insulated E3-1-1b Silcrete 479.300 1.933 247.894 700.005 10.647 

MIS4 Insulated E3-1-5p Silcrete 362.400 2.588 140.046 395.463 8.050 

MIS4 Insulated E3-1-6a Silcrete 409.700 2.196 186.561 526.814 9.101 

MIS4 Insulated E3-1-6c Silcrete 451.500 2.436 185.345 523.378 10.029 

MIS4 Insulated I14-2-16l Silcrete 582.400 2.356 247.176 697.977 12.937 

MIS4 Exposed D9-1-10b Silcrete 311.700 2.350 132.646 374.566 5.429 

MIS4 Exposed D9-1-12b Silcrete 329.100 2.200 149.586 422.403 5.732 

MIS4 Exposed D9-1-12d Silcrete 307.900 2.286 134.672 380.289 5.363 

MIS4 Exposed E3-1-1b Silcrete 479.300 1.933 247.894 700.005 8.348 
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MIS4 Exposed E3-1-5p Silcrete 362.400 2.588 140.046 395.463 6.312 

MIS4 Exposed E3-1-6a Silcrete 409.700 2.196 186.561 526.814 7.136 

MIS4 Exposed E3-1-6c Silcrete 451.500 2.436 185.345 523.378 7.864 

MIS4 Exposed I14-2-16l Silcrete 582.400 2.356 247.176 697.977 10.144 

MIS4 Untreated D9-1-10a Silcrete 89.500 1.980 45.198 85.016 7.609 

MIS4 Untreated D9-1-12a Silcrete 179.700 2.250 79.881 150.251 15.277 

MIS4 Untreated D9-1-12c Silcrete 97.000 1.807 53.677 100.965 8.246 

MIS4 Untreated E3-1-1A Silcrete 150.800 2.070 72.865 137.055 12.820 

MIS4 Untreated E3-1-5n Silcrete 223.700 2.460 90.944 171.061 19.018 

MIS4 Untreated E3-1-5o Silcrete 255.100 2.505 101.844 191.565 21.687 

MIS4 Untreated E3-1-6b Silcrete 93.800 1.691 55.470 104.337 7.974 

MIS4 Untreated I14-2-16a Silcrete 64.200 2.895 22.175 41.711 5.458 

 

MIS5 conditions 

 

Table B218. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 

Model 
Conditi

ons 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Ps 

MIS5 Insulated D9-1-10b Silcrete 311.700 2.350 132.646 374.566 4.054 

MIS5 Insulated D9-1-12b Silcrete 329.100 2.200 149.586 422.403 4.280 

MIS5 Insulated D9-1-12d Silcrete 307.900 2.286 134.672 380.289 4.004 

MIS5 Insulated E3-1-1b Silcrete 479.300 1.933 247.894 700.005 6.234 

MIS5 Insulated E3-1-5p Silcrete 362.400 2.588 140.046 395.463 4.713 

MIS5 Insulated E3-1-6a Silcrete 409.700 2.196 186.561 526.814 5.328 

MIS5 Insulated E3-1-6c Silcrete 451.500 2.436 185.345 523.378 5.872 

MIS5 Insulated I14-2-16l Silcrete 582.400 2.356 247.176 697.977 7.574 

MIS5 Exposed D9-1-10b Silcrete 311.700 2.350 132.646 374.566 5.429 

MIS5 Exposed D9-1-12b Silcrete 329.100 2.200 149.586 422.403 5.732 

MIS5 Exposed D9-1-12d Silcrete 307.900 2.286 134.672 380.289 5.363 

MIS5 Exposed E3-1-1b Silcrete 479.300 1.933 247.894 700.005 8.348 

MIS5 Exposed E3-1-5p Silcrete 362.400 2.588 140.046 395.463 6.312 

MIS5 Exposed E3-1-6a Silcrete 409.700 2.196 186.561 526.814 7.136 

MIS5 Exposed E3-1-6c Silcrete 451.500 2.436 185.345 523.378 7.864 

MIS5 Exposed I14-2-16l Silcrete 582.400 2.356 247.176 697.977 10.144 

MIS5 Untreated D9-1-10a Silcrete 89.500 1.980 45.198 85.016 7.609 

MIS5 Untreated D9-1-12a Silcrete 179.700 2.250 79.881 150.251 15.277 

MIS5 Untreated D9-1-12c Silcrete 97.000 1.807 53.677 100.965 8.246 

MIS5 Untreated E3-1-1A Silcrete 150.800 2.070 72.865 137.055 12.820 

MIS5 Untreated E3-1-5n Silcrete 223.700 2.460 90.944 171.061 19.018 
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MIS5 Untreated E3-1-5o Silcrete 255.100 2.505 101.844 191.565 21.687 

MIS5 Untreated E3-1-6b Silcrete 93.800 1.691 55.470 104.337 7.974 

MIS5 Untreated I14-2-16a Silcrete 64.200 2.895 22.175 41.711 5.458 

 

MIS6 conditions 

 

Table B219. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions. 

Model 
Conditi

ons 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

Ps-e x 
d 

MIS6 Insulated D9-1-10b Silcrete 311.700 2.350 132.646 374.566 4.054 

MIS6 Insulated D9-1-12b Silcrete 329.100 2.200 149.586 422.403 4.280 

MIS6 Insulated D9-1-12d Silcrete 307.900 2.286 134.672 380.289 4.004 

MIS6 Insulated E3-1-1b Silcrete 479.300 1.933 247.894 700.005 6.234 

MIS6 Insulated E3-1-5p Silcrete 362.400 2.588 140.046 395.463 4.713 

MIS6 Insulated E3-1-6a Silcrete 409.700 2.196 186.561 526.814 5.328 

MIS6 Insulated E3-1-6c Silcrete 451.500 2.436 185.345 523.378 5.872 

MIS6 Insulated I14-2-16l Silcrete 582.400 2.356 247.176 697.977 7.574 

MIS6 Exposed D9-1-10b Silcrete 311.700 2.350 132.646 374.566 5.429 

MIS6 Exposed D9-1-12b Silcrete 329.100 2.200 149.586 422.403 5.732 

MIS6 Exposed D9-1-12d Silcrete 307.900 2.286 134.672 380.289 5.363 

MIS6 Exposed E3-1-1b Silcrete 479.300 1.933 247.894 700.005 8.348 

MIS6 Exposed E3-1-5p Silcrete 362.400 2.588 140.046 395.463 6.312 

MIS6 Exposed E3-1-6a Silcrete 409.700 2.196 186.561 526.814 7.136 

MIS6 Exposed E3-1-6c Silcrete 451.500 2.436 185.345 523.378 7.864 

MIS6 Exposed I14-2-16l Silcrete 582.400 2.356 247.176 697.977 10.144 

MIS6 Untreated D9-1-10a Silcrete 89.500 1.980 45.198 85.016 7.609 

MIS6 Untreated D9-1-12a Silcrete 179.700 2.250 79.881 150.251 15.277 

MIS6 Untreated D9-1-12c Silcrete 97.000 1.807 53.677 100.965 8.246 

MIS6 Untreated E3-1-1A Silcrete 150.800 2.070 72.865 137.055 12.820 

MIS6 Untreated E3-1-5n Silcrete 223.700 2.460 90.944 171.061 19.018 

MIS6 Untreated E3-1-5o Silcrete 255.100 2.505 101.844 191.565 21.687 

MIS6 Untreated E3-1-6b Silcrete 93.800 1.691 55.470 104.337 7.974 

MIS6 Untreated I14-2-16a Silcrete 64.200 2.895 22.175 41.711 5.458 
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ACM-R net-return rates 

 

Table B220. Summary statistics and test results of ACM-R net-return rates ((for all 

experimental sample types) during all model conditions. 
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MIS4 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B221. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS4 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block 

Raw 
Material 

Cutting Edge 
Complete 

Blades (cm) 

Total 
Flaked Core 
Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Rq 

MIS4 C9-1-1B8 Quartzite 92.600 1.920 48.223 75.349 0.396 

MIS4 C9-1-1B9 Quartzite 83.200 2.060 40.380 63.094 0.356 

MIS4 D11-1-100A Quartzite 156.000 2.149 72.592 113.425 0.667 

MIS4 D11-1-90D1 Quartzite 52.300 2.450 21.345 33.351 0.224 

MIS4 D11-1-95A Quartzite 68.900 2.031 33.917 52.995 0.295 

MIS4 D11-1-95B Quartzite 89.500 2.160 41.432 64.737 0.383 

MIS4 D11-1-97A1 Quartzite 28.300 1.925 14.701 22.971 0.121 

MIS4 D11-1-98B1 Quartzite 87.000 1.913 45.486 71.072 0.372 

MIS4 D11-1-98C1 Quartzite 92.700 2.091 44.340 69.281 0.396 

MIS4 D11-1-98D Quartzite 77.800 1.843 42.225 65.976 0.333 

MIS4 D11-1-85C1 Quartzite 420.800 1.996 210.822 426.914 2.288 

MIS4 D11-1-91A1 Quartzite 202.400 1.962 103.146 208.870 1.149 

MIS4 D11-1-91A2 Quartzite 250.200 2.174 115.072 233.021 1.379 

MIS4 D11-1-91B3 Quartzite 322.300 1.885 171.002 346.280 2.015 

MIS4 D11-1-91B5 Quartzite 174.000 2.220 78.368 158.696 0.922 

MIS4 D11-1-91C3 Quartzite 170.300 1.962 86.790 175.750 0.988 

MIS4 D11-1-94B2 Quartzite 206.600 1.828 113.031 228.889 1.174 

MIS4 D11-1-94B3 Quartzite 240.500 1.784 134.809 272.989 1.379 

MIS4 D11-1-94D2 Quartzite 159.000 1.966 80.871 163.764 0.908 

MIS4 D11-1-97C Quartzite 386.400 1.833 210.789 426.848 2.147 

 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B222. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 

Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Rs 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 2.103 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 2.220 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 2.077 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 3.234 

MIS4-Without Paleo- Insulated E3-1- Silcrete 362.400 2.588 140.046 395.463 2.445 
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Agulhas Silcrete 5p 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 2.764 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 3.046 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 3.929 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 1.941 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 2.049 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 1.917 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 2.984 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 2.256 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 2.551 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 2.811 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 3.626 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 89.500 1.980 45.198 85.016 0.537 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 179.700 2.250 79.881 150.251 1.078 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 97.000 1.807 53.677 100.965 0.582 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 150.800 2.070 72.865 137.055 0.905 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 223.700 2.460 90.944 171.061 1.342 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 255.100 2.505 101.844 191.565 1.530 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 93.800 1.691 55.470 104.337 0.563 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 64.200 2.895 22.175 41.711 0.385 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B223. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions with a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 

Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Rs 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 5.673 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 5.990 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 5.604 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 8.724 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 6.596 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 7.457 
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MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 8.218 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 

10.60
1 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 4.629 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 4.887 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 4.573 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 7.118 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 5.382 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 6.084 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 6.705 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 8.649 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 89.500 1.980 45.198 85.016 3.357 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 179.700 2.250 79.881 150.251 6.741 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 97.000 1.807 53.677 100.965 3.639 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 150.800 2.070 72.865 137.055 5.657 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 223.700 2.460 90.944 171.061 8.392 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 255.100 2.505 101.844 191.565 9.570 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 93.800 1.691 55.470 104.337 3.519 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 64.200 2.895 22.175 41.711 2.408 

 

MIS5 conditions 

 

Table B224. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS5 

conditions. 

Model 
Conditions Block Raw Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

Rq-e x 
d 

MIS5 C9-1-1B8 Quartzite 92.600 1.920 48.223 75.349 5.107 

MIS5 C9-1-1B9 Quartzite 83.200 2.060 40.380 63.094 4.588 

MIS5 D11-1-100A Quartzite 156.000 2.149 72.592 113.425 8.491 

MIS5 D11-1-90D1 Quartzite 52.300 2.450 21.345 33.351 2.847 

MIS5 D11-1-95A Quartzite 68.900 2.031 33.917 52.995 3.750 

MIS5 D11-1-95B Quartzite 89.500 2.160 41.432 64.737 4.871 

MIS5 D11-1-97A1 Quartzite 28.300 1.925 14.701 22.971 1.540 

MIS5 D11-1-98B1 Quartzite 87.000 1.913 45.486 71.072 4.735 

MIS5 D11-1-98C1 Quartzite 92.700 2.091 44.340 69.281 5.045 

MIS5 D11-1-98D Quartzite 77.800 1.843 42.225 65.976 4.235 

MIS5 D11-1-85C1 Quartzite 420.800 1.996 210.822 426.914 29.683 

MIS5 D11-1-91A1 Quartzite 202.400 1.962 103.146 208.870 14.277 
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MIS5 D11-1-91A2 Quartzite 250.200 2.174 115.072 233.021 17.649 

MIS5 D11-1-91B3 Quartzite 322.300 1.885 171.002 346.280 22.735 

MIS5 D11-1-91B5 Quartzite 174.000 2.220 78.368 158.696 12.274 

MIS5 D11-1-91C3 Quartzite 170.300 1.962 86.790 175.750 12.013 

MIS5 D11-1-94B2 Quartzite 206.600 1.828 113.031 228.889 14.573 

MIS5 D11-1-94B3 Quartzite 240.500 1.784 134.809 272.989 16.965 

MIS5 D11-1-94D2 Quartzite 159.000 1.966 80.871 163.764 11.216 

MIS5 D11-1-97C Quartzite 386.400 1.833 210.789 426.848 27.256 

 

Table B225. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 

Model 
Conditi

ons 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 
Mass 
(kg) 

Cutting 
Edge * 

Durability 
(e * d) Rs 

MIS5 Insulated D9-1-10b Silcrete 311.700 2.350 132.646 374.566 1.731 

MIS5 Insulated D9-1-12b Silcrete 329.100 2.200 149.586 422.403 1.827 

MIS5 Insulated D9-1-12d Silcrete 307.900 2.286 134.672 380.289 1.710 

MIS5 Insulated E3-1-1b Silcrete 479.300 1.933 247.894 700.005 2.661 

MIS5 Insulated E3-1-5p Silcrete 362.400 2.588 140.046 395.463 2.012 

MIS5 Insulated E3-1-6a Silcrete 409.700 2.196 186.561 526.814 2.275 

MIS5 Insulated E3-1-6c Silcrete 451.500 2.436 185.345 523.378 2.507 

MIS5 Insulated I14-2-16l Silcrete 582.400 2.356 247.176 697.977 3.234 

MIS5 Exposed D9-1-10b Silcrete 311.700 2.350 132.646 374.566 1.941 

MIS5 Exposed D9-1-12b Silcrete 329.100 2.200 149.586 422.403 2.049 

MIS5 Exposed D9-1-12d Silcrete 307.900 2.286 134.672 380.289 1.917 

MIS5 Exposed E3-1-1b Silcrete 479.300 1.933 247.894 700.005 2.984 

MIS5 Exposed E3-1-5p Silcrete 362.400 2.588 140.046 395.463 2.256 

MIS5 Exposed E3-1-6a Silcrete 409.700 2.196 186.561 526.814 2.551 

MIS5 Exposed E3-1-6c Silcrete 451.500 2.436 185.345 523.378 2.811 

MIS5 Exposed I14-2-16l Silcrete 582.400 2.356 247.176 697.977 3.626 

MIS5 Untreated D9-1-10a Silcrete 89.500 1.980 45.198 85.016 0.537 

MIS5 Untreated D9-1-12a Silcrete 179.700 2.250 79.881 150.251 1.078 

MIS5 Untreated D9-1-12c Silcrete 97.000 1.807 53.677 100.965 0.582 

MIS5 Untreated E3-1-1A Silcrete 150.800 2.070 72.865 137.055 0.905 

MIS5 Untreated E3-1-5n Silcrete 223.700 2.460 90.944 171.061 1.342 

MIS5 Untreated E3-1-5o Silcrete 255.100 2.505 101.844 191.565 1.530 

MIS5 Untreated E3-1-6b Silcrete 93.800 1.691 55.470 104.337 0.563 

MIS5 Untreated I14-2-16a Silcrete 64.200 2.895 22.175 41.711 0.385 
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MIS6 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B226. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS6 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block Raw Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) Rq 

MIS6 C9-1-1B8 Quartzite 92.600 1.920 48.223 75.349 1.410 

MIS6 C9-1-1B9 Quartzite 83.200 2.060 40.380 63.094 1.267 

MIS6 D11-1-100A Quartzite 156.000 2.149 72.592 113.425 2.366 

MIS6 D11-1-90D1 Quartzite 52.300 2.450 21.345 33.351 0.793 

MIS6 D11-1-95A Quartzite 68.900 2.031 33.917 52.995 1.045 

MIS6 D11-1-95B Quartzite 89.500 2.160 41.432 64.737 1.358 

MIS6 D11-1-97A1 Quartzite 28.300 1.925 14.701 22.971 0.429 

MIS6 D11-1-98B1 Quartzite 87.000 1.913 45.486 71.072 1.320 

MIS6 D11-1-98C1 Quartzite 92.700 2.091 44.340 69.281 1.406 

MIS6 D11-1-98D Quartzite 77.800 1.843 42.225 65.976 1.180 

MIS6 D11-1-85C1 Quartzite 420.800 1.996 210.822 426.914 8.272 

MIS6 D11-1-91A1 Quartzite 202.400 1.962 103.146 208.870 3.979 

MIS6 D11-1-91A2 Quartzite 250.200 2.174 115.072 233.021 4.919 

MIS6 D11-1-91B3 Quartzite 322.300 1.885 171.002 346.280 6.336 

MIS6 D11-1-91B5 Quartzite 174.000 2.220 78.368 158.696 3.421 

MIS6 D11-1-91C3 Quartzite 170.300 1.962 86.790 175.750 3.348 

MIS6 D11-1-94B2 Quartzite 206.600 1.828 113.031 228.889 4.061 

MIS6 D11-1-94B3 Quartzite 240.500 1.784 134.809 272.989 4.728 

MIS6 D11-1-94D2 Quartzite 159.000 1.966 80.871 163.764 3.126 

MIS6 D11-1-97C Quartzite 386.400 1.833 210.789 426.848 7.596 

 

MIS6 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B227. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 
Mass 
(kg) 

Cutting 
Edge * 

Durability 
(e * d) Rs 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 1.731 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 1.827 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 1.710 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 2.661 
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MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 2.012 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 2.275 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 2.507 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 3.234 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 1.941 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 2.049 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 1.917 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 2.984 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 2.256 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 2.551 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 2.811 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 3.626 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 89.500 1.980 45.198 85.016 0.537 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 179.700 2.250 79.881 150.251 1.078 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 97.000 1.807 53.677 100.965 0.582 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 150.800 2.070 72.865 137.055 0.905 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 223.700 2.460 90.944 171.061 1.342 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 255.100 2.505 101.844 191.565 1.530 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 93.800 1.691 55.470 104.337 0.563 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 64.200 2.895 22.175 41.711 0.385 

 

MIS6 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B228. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions with a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 

Scenario Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Blade 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Blade 
Mass 
(kg) 

Cutting 
Edge * 

Durability 
(e * d) Rs 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 3.591 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 3.791 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 3.547 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 5.521 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 4.175 
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MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 4.719 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 5.201 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 6.709 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 311.700 2.350 132.646 374.566 4.629 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 329.100 2.200 149.586 422.403 4.887 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 307.900 2.286 134.672 380.289 4.573 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 479.300 1.933 247.894 700.005 7.118 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 362.400 2.588 140.046 395.463 5.382 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 409.700 2.196 186.561 526.814 6.084 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 451.500 2.436 185.345 523.378 6.705 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 582.400 2.356 247.176 697.977 8.649 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 89.500 1.980 45.198 85.016 3.357 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 179.700 2.250 79.881 150.251 6.741 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 97.000 1.807 53.677 100.965 3.639 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 150.800 2.070 72.865 137.055 5.657 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 223.700 2.460 90.944 171.061 8.392 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 255.100 2.505 101.844 191.565 9.570 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 93.800 1.691 55.470 104.337 3.519 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 64.200 2.895 22.175 41.711 2.408 

 

ACM – Model condition variable outcomes 

 

Coastline position and raw material source distribution 

 

Table B229. Summary statistics and test results of ACM-R net-return rates (Rq and Rs) 

when only ts time-cost (travel and search time) is considered during all model conditions. 
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MIS4 without a Paleo-Agulhas plain silcrete source 

 

Table B230. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS4 conditions without a Paleo-

Agulhas plain silcrete source. 

Block 
Raw 

Material 

Cutting Edge 
Complete 

Blades (cm) 

Total Flaked 
Core Mass 

(kg) 

CE Blades (cm) 
/ Total Flaked 

Core Mass (kg) 

Cutting Edge 
* Durability (e 

* d) 

ts-Travel 
and search 

time 
(min)/Total 

Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 93.74 0.804 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 87.36 0.722 

D11-1-
100A Quartzite 156.000 2.149 72.592 113.425 83.76 1.354 

D11-1-
90D1 Quartzite 52.300 2.450 21.345 33.351 73.46 0.454 

D11-1-
95A Quartzite 68.900 2.031 33.917 52.995 88.61 0.598 

D11-1-
95B Quartzite 89.500 2.160 41.432 64.737 83.33 0.777 

D11-1-
97A1 Quartzite 28.300 1.925 14.701 22.971 93.51 0.246 
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D11-1-
98B1 Quartzite 87.000 1.913 45.486 71.072 94.11 0.755 

D11-1-
98C1 Quartzite 92.700 2.091 44.340 69.281 86.10 0.805 

D11-1-
98D Quartzite 77.800 1.843 42.225 65.976 97.69 0.675 

D11-1-
85C1 Quartzite 420.800 1.996 210.822 426.914 90.18 4.734 

D11-1-
91A1 Quartzite 202.400 1.962 103.146 208.870 91.73 2.277 

D11-1-
91A2 Quartzite 250.200 2.174 115.072 233.021 82.79 2.815 

D11-1-
91B3 Quartzite 322.300 1.885 171.002 346.280 95.50 3.626 

D11-1-
91B5 Quartzite 174.000 2.220 78.368 158.696 81.07 1.958 

D11-1-
91C3 Quartzite 170.300 1.962 86.790 175.750 91.73 1.916 

D11-1-
94B2 Quartzite 206.600 1.828 113.031 228.889 98.48 2.324 

D11-1-
94B3 Quartzite 240.500 1.784 134.809 272.989 100.90 2.706 

D11-1-
94D2 Quartzite 159.000 1.966 80.871 163.764 91.55 1.789 

D11-1-
97C Quartzite 386.400 1.833 210.789 426.848 98.19 4.347 

 

Table B231. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 

Core Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time 
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b 

Heat-
treated Silcrete 311.700 2.350 132.646 374.566 124.02 3.020 

D9-1-
12b 

Heat-
treated Silcrete 329.100 2.200 149.586 422.403 132.47 3.189 

D9-1-
12d 

Heat-
treated Silcrete 307.900 2.286 134.672 380.289 127.47 2.983 

E3-1-
1b 

Heat-
treated Silcrete 479.300 1.933 247.894 700.005 150.73 4.644 

E3-1-
5p 

Heat-
treated Silcrete 362.400 2.588 140.046 395.463 112.62 3.511 

E3-1-
6a 

Heat-
treated Silcrete 409.700 2.196 186.561 526.814 132.71 3.970 

E3-1-
6c 

Heat-
treated Silcrete 451.500 2.436 185.345 523.378 119.64 4.375 

I14-2-
16l 

Heat-
treated Silcrete 582.400 2.356 247.176 697.977 123.69 5.643 

D9-1-
10a 

Untreate
d Silcrete 89.500 1.980 45.198 85.016 147.18 0.578 

D9-1-
12a 

Untreate
d Silcrete 179.700 2.250 79.881 150.251 129.55 1.160 

D9-1-
12c 

Untreate
d Silcrete 97.000 1.807 53.677 100.965 161.27 0.626 

E3-1-
1A 

Untreate
d Silcrete 150.800 2.070 72.865 137.055 140.82 0.973 

E3-1-
5n 

Untreate
d Silcrete 223.700 2.460 90.944 171.061 118.48 1.444 

E3-1-
5o 

Untreate
d Silcrete 255.100 2.505 101.844 191.565 116.35 1.646 

E3-1- Untreate Silcrete 93.800 1.691 55.470 104.337 172.34 0.605 
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6b d 

I14-2-
16a 

Untreate
d Silcrete 64.200 2.895 22.175 41.711 100.66 0.414 

 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B232. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS4 conditions with a Paleo-

Agulhas plain silcrete source. 

Block 
Raw 

Material 

Cutting 
Edge 

Complet
e Blades 

(cm) 
Total Flaked 

Core Mass (kg) 

CE Blades (cm) / 
Total Flaked 

Core Mass (kg) 

Cutting Edge 
* Durability (e 

* d) 

ts-Travel and 
search time 
(min)/Total 

Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 93.738 0.804 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 87.361 0.722 

D11-
1-

100A Quartzite 156.000 2.149 72.592 113.425 83.760 1.354 

D11-
1-

90D1 Quartzite 52.300 2.450 21.345 33.351 73.462 0.454 

D11-
1-95A Quartzite 68.900 2.031 33.917 52.995 88.608 0.598 

D11-
1-95B Quartzite 89.500 2.160 41.432 64.737 83.326 0.777 

D11-
1-

97A1 Quartzite 28.300 1.925 14.701 22.971 93.506 0.246 

D11-
1-

98B1 Quartzite 87.000 1.913 45.486 71.072 94.110 0.755 

D11-
1-

98C1 Quartzite 92.700 2.091 44.340 69.281 86.097 0.805 

D11-
1-98D Quartzite 77.800 1.843 42.225 65.976 97.692 0.675 

D11-
1-

85C1 Quartzite 420.800 1.996 210.822 426.914 90.180 4.734 

D11-
1-

91A1 Quartzite 202.400 1.962 103.146 208.870 91.730 2.277 

D11-
1-

91A2 Quartzite 250.200 2.174 115.072 233.021 82.786 2.815 

D11-
1-

91B3 Quartzite 322.300 1.885 171.002 346.280 95.502 3.626 

D11-
1-

91B5 Quartzite 174.000 2.220 78.368 158.696 81.071 1.958 

D11-
1-

91C3 Quartzite 170.300 1.962 86.790 175.750 91.734 1.916 

D11-
1-

94B2 Quartzite 206.600 1.828 113.031 228.889 98.479 2.324 

D11-
1-

94B3 Quartzite 240.500 1.784 134.809 272.989 100.897 2.706 

D11- Quartzite 159.000 1.966 80.871 163.764 91.552 1.789 
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1-
94D2 

D11-
1-97C Quartzite 386.400 1.833 210.789 426.848 98.194 4.347 

 

Table B233. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 

Flaked 
Core Mass 

(kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b 

Heat-
treated Silcrete 311.700 2.350 132.646 374.566 11.923 31.416 

D9-1-
12b 

Heat-
treated Silcrete 329.100 2.200 149.586 422.403 12.734 33.170 

D9-1-
12d 

Heat-
treated Silcrete 307.900 2.286 134.672 380.289 12.254 31.033 

E3-1-
1b 

Heat-
treated Silcrete 479.300 1.933 247.894 700.005 14.490 48.309 

E3-1-
5p 

Heat-
treated Silcrete 362.400 2.588 140.046 395.463 10.827 36.526 

E3-1-
6a 

Heat-
treated Silcrete 409.700 2.196 186.561 526.814 12.758 41.294 

E3-1-
6c 

Heat-
treated Silcrete 451.500 2.436 185.345 523.378 11.501 45.507 

I14-2-
16l 

Heat-
treated Silcrete 582.400 2.356 247.176 697.977 11.891 58.700 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 14.149 6.009 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 12.454 12.065 

D9-1-
12c Untreated Silcrete 97.000 1.807 53.677 100.965 15.504 6.512 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 13.537 10.124 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 11.390 15.019 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 11.185 17.127 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 16.568 6.297 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 9.677 4.310 

MIS5 

 

Table B234. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS5 conditions. 

Block 
Raw 

Material 

Cutting Edge 
Complete 

Blades (cm) 

Total 
Flaked 

Core Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 6.61 11.393 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 6.16 10.236 

D11-1-
100A Quartzite 156.000 2.149 72.592 113.425 5.91 19.193 
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D11-1-
90D1 Quartzite 52.300 2.450 21.345 33.351 5.18 6.435 

D11-1-
95A Quartzite 68.900 2.031 33.917 52.995 6.25 8.477 

D11-1-
95B Quartzite 89.500 2.160 41.432 64.737 5.88 11.011 

D11-1-
97A1 Quartzite 28.300 1.925 14.701 22.971 6.60 3.482 

D11-1-
98B1 Quartzite 87.000 1.913 45.486 71.072 6.64 10.704 

D11-1-
98C1 Quartzite 92.700 2.091 44.340 69.281 6.07 11.405 

D11-1-
98D Quartzite 77.800 1.843 42.225 65.976 6.89 9.572 

D11-1-
85C1 Quartzite 420.800 1.996 210.822 426.914 6.36 67.096 

D11-1-
91A1 Quartzite 202.400 1.962 103.146 208.870 6.47 32.272 

D11-1-
91A2 Quartzite 250.200 2.174 115.072 233.021 5.84 39.894 

D11-1-
91B3 Quartzite 322.300 1.885 171.002 346.280 6.74 51.390 

D11-1-
91B5 Quartzite 174.000 2.220 78.368 158.696 5.72 27.744 

D11-1-
91C3 Quartzite 170.300 1.962 86.790 175.750 6.47 27.154 

D11-1-
94B2 Quartzite 206.600 1.828 113.031 228.889 6.95 32.942 

D11-1-
94B3 Quartzite 240.500 1.784 134.809 272.989 7.12 38.347 

D11-1-
94D2 Quartzite 159.000 1.966 80.871 163.764 6.46 25.352 

D11-1-
97C Quartzite 386.400 1.833 210.789 426.848 6.93 61.611 

 

Table B235. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS5 conditions. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b 

Heat-
treated Silcrete 311.700 2.350 132.646 374.566 124.02 3.020 

D9-1-
12b 

Heat-
treated Silcrete 329.100 2.200 149.586 422.403 132.47 3.189 

D9-1-
12d 

Heat-
treated Silcrete 307.900 2.286 134.672 380.289 127.47 2.983 

E3-1-
1b 

Heat-
treated Silcrete 479.300 1.933 247.894 700.005 150.73 4.644 

E3-1-
5p 

Heat-
treated Silcrete 362.400 2.588 140.046 395.463 112.62 3.511 

E3-1-
6a 

Heat-
treated Silcrete 409.700 2.196 186.561 526.814 132.71 3.970 

E3-1-
6c 

Heat-
treated Silcrete 451.500 2.436 185.345 523.378 119.64 4.375 

I14-2-
16l 

Heat-
treated Silcrete 582.400 2.356 247.176 697.977 123.69 5.643 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 147.18 0.578 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 129.55 1.160 

D9-1- Untreated Silcrete 97.000 1.807 53.677 100.965 161.27 0.626 



834 
 

12c 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 140.82 0.973 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 118.48 1.444 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 116.35 1.646 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 172.34 0.605 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 100.66 0.414 

 

MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B236. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS6 conditions without a Paleo-

Agulhas plain silcrete source. 

Block 
Raw 

Material 

Cutting Edge 
Complete 

Blades (cm) 

Total 
Flaked 

Core Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting Edge 
* Durability (e 

* d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 25.42 2.964 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 23.69 2.663 

D11-1-
100A Quartzite 156.000 2.149 72.592 113.425 22.72 4.993 

D11-1-
90D1 Quartzite 52.300 2.450 21.345 33.351 19.92 1.674 

D11-1-
95A Quartzite 68.900 2.031 33.917 52.995 24.03 2.205 

D11-1-
95B Quartzite 89.500 2.160 41.432 64.737 22.60 2.865 

D11-1-
97A1 Quartzite 28.300 1.925 14.701 22.971 25.36 0.906 

D11-1-
98B1 Quartzite 87.000 1.913 45.486 71.072 25.52 2.785 

D11-1-
98C1 Quartzite 92.700 2.091 44.340 69.281 23.35 2.967 

D11-1-
98D Quartzite 77.800 1.843 42.225 65.976 26.49 2.490 

D11-1-
85C1 Quartzite 420.800 1.996 210.822 426.914 24.46 17.456 

D11-1-
91A1 Quartzite 202.400 1.962 103.146 208.870 24.88 8.396 

D11-1-
91A2 Quartzite 250.200 2.174 115.072 233.021 22.45 10.379 

D11-1-
91B3 Quartzite 322.300 1.885 171.002 346.280 25.90 13.370 

D11-1-
91B5 Quartzite 174.000 2.220 78.368 158.696 21.99 7.218 

D11-1-
91C3 Quartzite 170.300 1.962 86.790 175.750 24.88 7.064 

D11-1-
94B2 Quartzite 206.600 1.828 113.031 228.889 26.71 8.570 

D11-1-
94B3 Quartzite 240.500 1.784 134.809 272.989 27.36 9.976 

D11-1-
94D2 Quartzite 159.000 1.966 80.871 163.764 24.83 6.596 

D11-1-
97C Quartzite 386.400 1.833 210.789 426.848 26.63 16.029 
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Table B237. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b 

Heat-
treated Silcrete 311.700 2.350 132.646 374.566 124.02 3.020 

D9-1-
12b 

Heat-
treated Silcrete 329.100 2.200 149.586 422.403 132.47 3.189 

D9-1-
12d 

Heat-
treated Silcrete 307.900 2.286 134.672 380.289 127.47 2.983 

E3-1-
1b 

Heat-
treated Silcrete 479.300 1.933 247.894 700.005 150.73 4.644 

E3-1-
5p 

Heat-
treated Silcrete 362.400 2.588 140.046 395.463 112.62 3.511 

E3-1-
6a 

Heat-
treated Silcrete 409.700 2.196 186.561 526.814 132.71 3.970 

E3-1-
6c 

Heat-
treated Silcrete 451.500 2.436 185.345 523.378 119.64 4.375 

I14-2-
16l 

Heat-
treated Silcrete 582.400 2.356 247.176 697.977 123.69 5.643 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 147.18 0.578 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 129.55 1.160 

D9-1-
12c Untreated Silcrete 97.000 1.807 53.677 100.965 161.27 0.626 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 140.82 0.973 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 118.48 1.444 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 116.35 1.646 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 172.34 0.605 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 100.66 0.414 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B238. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS6 conditions with a Paleo-

Agulhas plain silcrete source. 

Block 
Raw 

Material 

Cutting Edge 
Complete 

Blades (cm) 

Total 
Flaked 

Core Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min)/Total 

Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 25.42 2.964 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 23.69 2.663 

D11-1-
100A Quartzite 156.000 2.149 72.592 113.425 22.72 4.993 

D11-1-
90D1 Quartzite 52.300 2.450 21.345 33.351 19.92 1.674 

D11-1- Quartzite 68.900 2.031 33.917 52.995 24.03 2.205 
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95A 

D11-1-
95B Quartzite 89.500 2.160 41.432 64.737 22.60 2.865 

D11-1-
97A1 Quartzite 28.300 1.925 14.701 22.971 25.36 0.906 

D11-1-
98B1 Quartzite 87.000 1.913 45.486 71.072 25.52 2.785 

D11-1-
98C1 Quartzite 92.700 2.091 44.340 69.281 23.35 2.967 

D11-1-
98D Quartzite 77.800 1.843 42.225 65.976 26.49 2.490 

D11-1-
85C1 Quartzite 420.800 1.996 210.822 426.914 24.46 17.456 

D11-1-
91A1 Quartzite 202.400 1.962 103.146 208.870 24.88 8.396 

D11-1-
91A2 Quartzite 250.200 2.174 115.072 233.021 22.45 10.379 

D11-1-
91B3 Quartzite 322.300 1.885 171.002 346.280 25.90 13.370 

D11-1-
91B5 Quartzite 174.000 2.220 78.368 158.696 21.99 7.218 

D11-1-
91C3 Quartzite 170.300 1.962 86.790 175.750 24.88 7.064 

D11-1-
94B2 Quartzite 206.600 1.828 113.031 228.889 26.71 8.570 

D11-1-
94B3 Quartzite 240.500 1.784 134.809 272.989 27.36 9.976 

D11-1-
94D2 Quartzite 159.000 1.966 80.871 163.764 24.83 6.596 

D11-1-
97C Quartzite 386.400 1.833 210.789 426.848 26.63 16.029 

 

Table B239. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades (cm) 

Total 
Flaked 
Core 

Mass (kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 

Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

ts-Travel 
and search 

time  
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b Heat-treated Silcrete 311.700 2.350 132.646 374.566 11.92 31.416 

D9-1-
12b Heat-treated Silcrete 329.100 2.200 149.586 422.403 12.73 33.170 

D9-1-
12d Heat-treated Silcrete 307.900 2.286 134.672 380.289 12.25 31.033 

E3-1-
1b Heat-treated Silcrete 479.300 1.933 247.894 700.005 14.49 48.309 

E3-1-
5p Heat-treated Silcrete 362.400 2.588 140.046 395.463 10.83 36.526 

E3-1-
6a Heat-treated Silcrete 409.700 2.196 186.561 526.814 12.76 41.294 

E3-1-
6c Heat-treated Silcrete 451.500 2.436 185.345 523.378 11.50 45.507 

I14-2-
16l Heat-treated Silcrete 582.400 2.356 247.176 697.977 11.89 58.700 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 14.15 6.009 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 12.45 12.065 

D9-1- Untreated Silcrete 97.000 1.807 53.677 100.965 15.50 6.512 
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12c 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 13.54 10.124 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 11.39 15.019 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 11.19 17.127 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 16.57 6.297 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 9.68 4.310 

 

Table B240. Comparison between a raw material ranking based on ACM- R net-return 

rates and archaeological data from MIS4, MIS5, and MIS6. 

ACM-R Results-Ranked* Archaeological Data 

MIS4 Without a Paleo-Agulhas 
plain silcrete source     MIS4*  

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

2 (1.8) 2 (0.9) 1 (3.9) 44.6 40.0 16.9 83.1 

MIS4 With a Paleo-Agulhas 
plain silcrete source     MIS4*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

3 (1.8) 2 (9.7) 1 (40.7) 44.6 40.0 16.9 83.1 

MIS5     MIS5*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (25.3) 3 (0.9) 2 (3.9) 77.2 13.1 11.6 88.4 

MIS6 Without a Paleo-Agulhas 
plain silcrete source     MIS6*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (6.6) 2 (0.9) 1 (3.9) 94.3 1.1 NA NA 

MIS6 With a Paleo-Agulhas 
plain silcrete source     MIS6*       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzite 
(%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

2 (6.6) 2 (9.7) 1 (40.7) 92.4 2.5 NA NA 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due 
to statistically similar Rq or Rs. * MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped data 
in Figure 50 and Table 19. 
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Vegetation type variable 

 

Table B241. Summary Statistics and test results of ACM-P net-return rates (Pq and Ps) 

when only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) 

are considered during all model conditions. 
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*Samples bootstrapped 10000 times. 

 

Quartzite MIS4, MIS5, and MIS6 

 

Table B242. ACM-P net-return rates (Pq) for quartzite experimental blocks when only 

m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS4, MIS5, and MIS6 conditions. 

Block 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

m1-Wood 
Fuel travel 
and search 

time 
(min)/Total 

Flaked Core 
Mass (kg) 

m2-Heat-
treatment 

time 
(min)/Tota
l Flaked 

core 
Mass (kg) Pq 

C9-1-
1B8 Quartzite 92.6 1.920 48.223 75.349 0 0 75.349 

C9-1-
1B9 Quartzite 83.2 2.060 40.380 63.094 0 0 63.094 

D11-1-
100A Quartzite 156 2.149 72.592 113.425 0 0 113.425 

D11-1-
90D1 Quartzite 52.3 2.450 21.345 33.351 0 0 33.351 

D11-1-
95A Quartzite 68.9 2.031 33.917 52.995 0 0 52.995 

D11-1-
95B Quartzite 89.5 2.160 41.432 64.737 0 0 64.737 

D11-1-
97A1 Quartzite 28.3 1.925 14.701 22.971 0 0 22.971 

D11-1-
98B1 Quartzite 87 1.913 45.486 71.072 0 0 71.072 

D11-1-
98C1 Quartzite 92.7 2.091 44.340 69.281 0 0 69.281 

D11-1-
98D Quartzite 77.8 1.843 42.225 65.976 0 0 65.976 
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D11-1-
85C1 Quartzite 420.8 1.996 210.822 426.914 0 0 426.914 

D11-1-
91A1 Quartzite 202.4 1.962 103.146 208.870 0 0 208.870 

D11-1-
91A2 Quartzite 250.2 2.174 115.072 233.021 0 0 233.021 

D11-1-
91B3 Quartzite 322.3 1.885 171.002 346.280 0 0 346.280 

D11-1-
91B5 Quartzite 174 2.220 78.368 158.696 0 0 158.696 

D11-1-
91C3 Quartzite 170.3 1.962 86.790 175.750 0 0 175.750 

D11-1-
94B2 Quartzite 206.6 1.828 113.031 228.889 0 0 228.889 

D11-1-
94B3 Quartzite 240.5 1.784 134.809 272.989 0 0 272.989 

D11-1-
94D2 Quartzite 159 1.966 80.871 163.764 0 0 163.764 

D11-1-
97C Quartzite 386.4 1.833 210.789 426.848 0 0 426.848 

 

MIS4 Silcrete 

 

Table B243. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 conditions. 

Block 
Heating 

Scenario 
Raw 

Material 

Cutting 
Edge 

Comple
te 

Blades 
(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 

Mass (kg) 

Cutting 
Edge * 

Durabili
ty (e * d) 

m1-Wood 
Fuel 

travel and 
search 

time 
(min)/Tota
l Flaked 

Core 
Mass (kg) 

m2-
Heat-

treatme
nt time 

(min)/To
tal 

Flaked 
core 
Mass 
(kg) Ps 

D9-1-
10b Insulated Silcrete 311.700 2.350 132.646 374.566 38.300 6.383 8.383 

D9-1-
12b Insulated Silcrete 329.100 2.200 149.586 422.403 40.908 6.818 8.851 

D9-1-
12d Insulated Silcrete 307.900 2.286 134.672 380.289 39.365 6.561 8.280 

E3-1-
1b Insulated Silcrete 479.300 1.933 247.894 700.005 46.548 7.758 12.890 

E3-1-
5p Insulated Silcrete 362.400 2.588 140.046 395.463 34.780 5.797 9.746 

E3-1-
6a Insulated Silcrete 409.700 2.196 186.561 526.814 40.982 6.830 11.018 

E3-1-
6c Insulated Silcrete 451.500 2.436 185.345 523.378 36.946 6.158 12.142 

I14-2-
16l Insulated Silcrete 582.400 2.356 247.176 697.977 38.197 6.366 15.663 

D9-1-
10b Exposed Silcrete 311.700 2.350 132.646 374.566 38.300 21.278 6.287 

D9-1-
12b Exposed Silcrete 329.100 2.200 149.586 422.403 40.908 22.727 6.638 

D9-1-
12d Exposed Silcrete 307.900 2.286 134.672 380.289 39.365 21.869 6.210 

E3-1-
1b Exposed Silcrete 479.300 1.933 247.894 700.005 46.548 25.860 9.668 

E3-1-
5p Exposed Silcrete 362.400 2.588 140.046 395.463 34.780 19.322 7.310 

E3-1- Exposed Silcrete 409.700 2.196 186.561 526.814 40.982 22.768 8.264 



841 
 

6a 

E3-1-
6c Exposed Silcrete 451.500 2.436 185.345 523.378 36.946 20.525 9.107 

I14-2-
16l Exposed Silcrete 582.400 2.356 247.176 697.977 38.197 21.220 11.747 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 0.000 0.000 85.016 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 0.000 0.000 150.251 

D9-1-
12c Untreated Silcrete 97.000 1.807 53.677 100.965 0.000 0.000 100.965 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 0.000 0.000 137.055 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 0.000 0.000 171.061 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 0.000 0.000 191.565 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 0.000 0.000 104.337 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 0.000 0.000 41.711 

 

MIS5and MIS6 Silcrete 

 

Table B244. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 and MIS6 conditions. 

Block 
Heating 

Scenario 
Raw 

Material 

Cutting 
Edge 

Comple
te 

Blades 
(cm) 

Total 
Flaked Core 
Mass (kg) 

CE 
Blades 
(cm) / 
Total 

Flaked 
Core 
Mass 
(kg) 

Cutting 
Edge * 

Durabili
ty (e * d) 

m1-Wood 
Fuel 

travel and 
search 

time 
(min)/Tota
l Flaked 

Core 
Mass (kg) 

m2-
Heat-

treatme
nt time 

(min)/To
tal 

Flaked 
core 
Mass 
(kg) Ps 

D9-1-
10b Insulated Silcrete 311.700 2.350 132.646 374.566 76.600 6.383 4.514 

D9-1-
12b Insulated Silcrete 329.100 2.200 149.586 422.403 81.816 6.818 4.766 

D9-1-
12d Insulated Silcrete 307.900 2.286 134.672 380.289 78.730 6.561 4.459 

E3-1-
1b Insulated Silcrete 479.300 1.933 247.894 700.005 93.096 7.758 6.941 

E3-1-
5p Insulated Silcrete 362.400 2.588 140.046 395.463 69.559 5.797 5.248 

E3-1-
6a Insulated Silcrete 409.700 2.196 186.561 526.814 81.965 6.830 5.933 

E3-1-
6c Insulated Silcrete 451.500 2.436 185.345 523.378 73.892 6.158 6.538 

I14-2-
16l Insulated Silcrete 582.400 2.356 247.176 697.977 76.394 6.366 8.434 

D9-1-
10b Exposed Silcrete 311.700 2.350 132.646 374.566 38.300 21.278 6.287 

D9-1-
12b Exposed Silcrete 329.100 2.200 149.586 422.403 40.908 22.727 6.638 

D9-1-
12d Exposed Silcrete 307.900 2.286 134.672 380.289 39.365 21.869 6.210 

E3-1-
1b Exposed Silcrete 479.300 1.933 247.894 700.005 46.548 25.860 9.668 

E3-1-
5p Exposed Silcrete 362.400 2.588 140.046 395.463 34.780 19.322 7.310 
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E3-1-
6a Exposed Silcrete 409.700 2.196 186.561 526.814 40.982 22.768 8.264 

E3-1-
6c Exposed Silcrete 451.500 2.436 185.345 523.378 36.946 20.525 9.107 

I14-2-
16l Exposed Silcrete 582.400 2.356 247.176 697.977 38.197 21.220 

11.74
7 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 0 0 

85.01
6 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 0 0 

150.2
51 

D9-1-
12c Untreated Silcrete 97.000 1.807 53.677 100.965 0 0 

100.9
65 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 0 0 

137.0
55 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 0 0 

171.0
61 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 0 0 

191.5
65 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 0 0 

104.3
37 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 0 0 

41.71
1 

 

Table B245. Comparison between a raw material ranking based on ACM- P net-return 

rates and archaeological data from MIS4, MIS5, and MIS6. 

ACM-P Results-Ranked* Archaeological Data 

MIS4       MIS4*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (163.7) 1 (122.7) 2 (10.9) 3 (8.2) 44.6* 40* 16.9 83.1 

MIS5       MIS5*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (163.7) 1 (122.7) 3 (5.9) 2 (8.2) 77.2 13.1 11.6 88.4 

MIS6       MIS6*       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall 

(%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (163.7) 1 (122.7) 3 (5.9) 2 (8.2) 94.3 1.1 NA NA 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due 
to statistically similar Rq or Rs. *MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped data in 
Figure 50 and Table 19. 

 

Mobility rate and strategy variable 

 

Table B246. Summary Statistics and test results of ACM net-return rates (Pq and Ps or 

Rq and Rs) when only m3 time-cost (flaking manufacturing time) is considered (for all 

experimental sample types) during MIS4 conditions. 

  
Quartzite (Pq or 

Rq) 
Untreated Silcrete (Ps or 

Rs) 
Heat-treated Silcrete 

(Ps or Rs) 

n sample blocks 20 8 8 

First Quartile 9.395 12.165 63.748 

Min 3.160 8.630 62.100 

Median 20.205 16.645 77.870 
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Mean 22.939 19.375 81.539 

Max 60.870 34.270 117.470 

Third Quartile 33.563 28.573 95.278 

SD 17.005 9.373 19.419 

Bootstrapped SE* 3.675 3.212 6.618 

Margin of error (95% CI) 7.204 6.295 12.970 

Bootstrapped Upper 95% CI* 30.142 25.670 94.509 

Bootstrapped Lower 95% CI* 15.735 13.080 68.568 

*Samples bootstrapped 10000 times. 

 

MIS4 

 

Table B247. ACM-P net-return rates (Pq) for quartzite experimental blocks when only 

m3 time-cost (flake manufacturing time) is considered during MIS4 conditions. 

Block 
Raw 

Material 

Cutting Edge 
Complete 

Blades (cm) 

Total 
Flaked Core 
Mass (kg) 

CE Blades (cm) 
/ Total Flaked 

Core Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

m3-
FlakingTime 
(14min)/Total 
Flaked Core 
Mass (kg) 

Pq or 
Rq 

C9-1-
1B8 Quartzite 92.600 1.920 48.223 75.349 7.29 10.33 

C9-1-
1B9 Quartzite 83.200 2.060 40.380 63.094 6.79 9.29 

D11-1-
100A Quartzite 156.000 2.149 72.592 113.425 6.51 17.41 

D11-1-
90D1 Quartzite 52.300 2.450 21.345 33.351 5.71 5.84 

D11-1-
95A Quartzite 68.900 2.031 33.917 52.995 6.89 7.69 

D11-1-
95B Quartzite 89.500 2.160 41.432 64.737 6.48 9.99 

D11-1-
97A1 Quartzite 28.300 1.925 14.701 22.971 7.27 3.16 

D11-1-
98B1 Quartzite 87.000 1.913 45.486 71.072 7.32 9.71 

D11-1-
98C1 Quartzite 92.700 2.091 44.340 69.281 6.70 10.35 

D11-1-
98D Quartzite 77.800 1.843 42.225 65.976 7.60 8.68 

D11-1-
85C1 Quartzite 420.800 1.996 210.822 426.914 7.01 60.87 

D11-1-
91A1 Quartzite 202.400 1.962 103.146 208.870 7.13 29.28 

D11-1-
91A2 Quartzite 250.200 2.174 115.072 233.021 6.44 36.19 

D11-1-
91B3 Quartzite 322.300 1.885 171.002 346.280 7.43 46.62 

D11-1-
91B5 Quartzite 174.000 2.220 78.368 158.696 6.31 25.17 

D11-1-
91C3 Quartzite 170.300 1.962 86.790 175.750 7.13 24.63 

D11-1-
94B2 Quartzite 206.600 1.828 113.031 228.889 7.66 29.88 

D11-1-
94B3 Quartzite 240.500 1.784 134.809 272.989 7.85 34.79 

D11-1-
94D2 Quartzite 159.000 1.966 80.871 163.764 7.12 23.00 

D11-1-
97C Quartzite 386.400 1.833 210.789 426.848 7.64 55.89 
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Table B248. ACM-P net-return rates (Ps) for untreated and heat-treated silcrete 

experimental blocks when only m3 time-cost (flake manufacturing time) is considered 

during MIS4 conditions. 

Block 
Sample 

Type 
Raw 

Material 

Cutting 
Edge 

Complete 
Blades 

(cm) 

Total 
Flaked 
Core 
Mass 
(kg) 

CE Blades 
(cm) / Total 
Flaked Core 
Mass (kg) 

Cutting 
Edge * 

Durability 
(e * d) 

m3-
FlakingTime 
(14min)/Total 
Flaked Core 
Mass (kg) 

Ps or 
Rs 

D9-1-
10b 

Heat-
treated Silcrete 311.700 2.350 132.646 374.566 5.96 62.87 

D9-1-
12b 

Heat-
treated Silcrete 329.100 2.200 149.586 422.403 6.36 66.38 

D9-1-
12d 

Heat-
treated Silcrete 307.900 2.286 134.672 380.289 6.12 62.10 

E3-1-
1b 

Heat-
treated Silcrete 479.300 1.933 247.894 700.005 7.24 96.68 

E3-1-
5p 

Heat-
treated Silcrete 362.400 2.588 140.046 395.463 5.41 73.10 

E3-1-
6a 

Heat-
treated Silcrete 409.700 2.196 186.561 526.814 6.38 82.64 

E3-1-
6c 

Heat-
treated Silcrete 451.500 2.436 185.345 523.378 5.75 91.07 

I14-2-
16l 

Heat-
treated Silcrete 582.400 2.356 247.176 697.977 5.94 117.47 

D9-1-
10a Untreated Silcrete 89.500 1.980 45.198 85.016 7.07 12.02 

D9-1-
12a Untreated Silcrete 179.700 2.250 79.881 150.251 6.22 24.14 

D9-1-
12c Untreated Silcrete 97.000 1.807 53.677 100.965 7.75 13.03 

E3-1-
1A Untreated Silcrete 150.800 2.070 72.865 137.055 6.76 20.26 

E3-1-
5n Untreated Silcrete 223.700 2.460 90.944 171.061 5.69 30.05 

E3-1-
5o Untreated Silcrete 255.100 2.505 101.844 191.565 5.59 34.27 

E3-1-
6b Untreated Silcrete 93.800 1.691 55.470 104.337 8.28 12.60 

I14-2-
16a Untreated Silcrete 64.200 2.895 22.175 41.711 4.84 8.63 

 

Table B249. Comparison between a raw material ranking based on ACM net-return rates 

and archaeological data from MIS4. 

ACM Results-Ranked 

Quartzite 2 (22.9) 

Untreated Silcrete 2 (19.4) 

Heat-treated Silcrete 1 (81.6) 

Archaeological Raw Material Data – MIS4* 

Quartzite (%) 44.6* 

Silcrete Overall (%) 40* 

Untreated Silcrete (%) 16.9 

Heat-treated Silcrete (%) 83.1 

* Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due 
to statistically similar Rq or Rs. *MIS4 archaeological raw material frequencies from bootstrapped data in Figure 50 and 
Table 19. 
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Maximizing number of blades per core multiplied by duration of use (count of complete 

blade (n=) / total flaked core mass (kg) * d (minutes)) 

 

ACM-P net-return rates 

 

MIS4, MIS5, and MIS6 conditions 

 

Table B250. ACM-P net-return rates (Pq) for quartzite experimental blocks during MIS4, 

MIS5, and MIS6 conditions. 

Model 
Conditions Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count 
Complete 

Blades 
(n=)/Total 

Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Pq 

MIS4, MIS5, & 
MIS6 C9-1-1B8 Quartzite 2 1.920 1.042 1.627 0.164 

MIS4, MIS5, & 
MIS6 C9-1-1B9 Quartzite 4 2.060 1.941 3.033 0.329 

MIS4, MIS5, & 
MIS6 D11-1-100A Quartzite 1 2.149 0.465 0.727 0.081 

MIS4, MIS5, & 
MIS6 D11-1-90D1 Quartzite 1 2.450 0.408 0.638 0.081 

MIS4, MIS5, & 
MIS6 D11-1-95A Quartzite 2 2.031 0.985 1.538 0.161 

MIS4, MIS5, & 
MIS6 D11-1-95B Quartzite 2 2.160 0.926 1.447 0.161 

MIS4, MIS5, & 
MIS6 D11-1-97A1 Quartzite 0 1.925 0.000 0.000 0.000 

MIS4, MIS5, & 
MIS6 D11-1-98B1 Quartzite 3 1.913 1.568 2.451 0.242 

MIS4, MIS5, & 
MIS6 D11-1-98C1 Quartzite 3 2.091 1.435 2.242 0.242 

MIS4, MIS5, & 
MIS6 D11-1-98D Quartzite 1 1.843 0.543 0.848 0.081 

MIS4, MIS5, & 
MIS6 D11-1-85C1 Quartzite 8 1.996 4.008 8.116 0.836 

MIS4, MIS5, & 
MIS6 D11-1-91A1 Quartzite 6 1.962 3.058 6.192 0.627 

MIS4, MIS5, & 
MIS6 D11-1-91A2 Quartzite 8 2.174 3.679 7.451 0.836 

MIS4, MIS5, & 
MIS6 D11-1-91B3 Quartzite 11 1.885 5.836 11.818 1.150 

MIS4, MIS5, & 
MIS6 D11-1-91B5 Quartzite 4 2.220 1.802 3.648 0.418 

MIS4, MIS5, & 
MIS6 D11-1-91C3 Quartzite 5 1.962 2.548 5.160 0.523 

MIS4, MIS5, & 
MIS6 D11-1-94B2 Quartzite 5 1.828 2.736 5.539 0.523 

MIS4, MIS5, & 
MIS6 D11-1-94B3 Quartzite 8 1.784 4.484 9.081 0.836 

MIS4, MIS5, & 
MIS6 D11-1-94D2 Quartzite 5 1.966 2.543 5.150 0.523 

MIS4, MIS5, & 
MIS6 D11-1-97C Quartzite 7 1.833 3.819 7.733 0.732 
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MIS4 

 

Table B251. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions. 

Model 
Conditions 

Heating 
Scenario Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) Ps 

MIS4 Insulated D9-1-10b Silcrete 7 2.350 2.979 8.412 0.155 

MIS4 Insulated D9-1-12b Silcrete 3 2.200 1.364 3.851 0.067 

MIS4 Insulated D9-1-12d Silcrete 4 2.286 1.750 4.940 0.089 

MIS4 Insulated E3-1-1b Silcrete 13 1.933 6.724 18.986 0.289 

MIS4 Insulated E3-1-5p Silcrete 10 2.588 3.864 10.912 0.222 

MIS4 Insulated E3-1-6a Silcrete 16 2.196 7.286 20.574 0.355 

MIS4 Insulated E3-1-6c Silcrete 19 2.436 7.800 22.025 0.422 

MIS4 Insulated I14-2-16l Silcrete 11 2.356 4.668 13.183 0.244 

MIS4 Exposed D9-1-10b Silcrete 7 2.350 2.979 8.412 0.122 

MIS4 Exposed D9-1-12b Silcrete 3 2.200 1.364 3.851 0.052 

MIS4 Exposed D9-1-12d Silcrete 4 2.286 1.750 4.940 0.070 

MIS4 Exposed E3-1-1b Silcrete 13 1.933 6.724 18.986 0.226 

MIS4 Exposed E3-1-5p Silcrete 10 2.588 3.864 10.912 0.174 

MIS4 Exposed E3-1-6a Silcrete 16 2.196 7.286 20.574 0.279 

MIS4 Exposed E3-1-6c Silcrete 19 2.436 7.800 22.025 0.331 

MIS4 Exposed I14-2-16l Silcrete 11 2.356 4.668 13.183 0.192 

MIS4 Untreated D9-1-10a Silcrete 3 1.980 1.515 2.850 0.255 

MIS4 Untreated D9-1-12a Silcrete 7 2.250 3.112 5.853 0.595 

MIS4 Untreated D9-1-12c Silcrete 2 1.807 1.107 2.082 0.170 

MIS4 Untreated E3-1-1A Silcrete 5 2.070 2.416 4.544 0.425 

MIS4 Untreated E3-1-5n Silcrete 5 2.460 2.033 3.823 0.425 

MIS4 Untreated E3-1-5o Silcrete 6 2.505 2.395 4.506 0.510 

MIS4 Untreated E3-1-6b Silcrete 2 1.691 1.183 2.225 0.170 

MIS4 Untreated I14-2-16a Silcrete 3 2.895 1.036 1.949 0.255 
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MIS5 conditions 

 

Table B252. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 

Model 
Conditions 

Heating 
Scenario Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) Ps 

MIS5 Insulated D9-1-10b Silcrete 7 2.350 2.979 8.412 0.091 

MIS5 Insulated D9-1-12b Silcrete 3 2.200 1.364 3.851 0.039 

MIS5 Insulated D9-1-12d Silcrete 4 2.286 1.750 4.940 0.052 

MIS5 Insulated E3-1-1b Silcrete 13 1.933 6.724 18.986 0.169 

MIS5 Insulated E3-1-5p Silcrete 10 2.588 3.864 10.912 0.130 

MIS5 Insulated E3-1-6a Silcrete 16 2.196 7.286 20.574 0.208 

MIS5 Insulated E3-1-6c Silcrete 19 2.436 7.800 22.025 0.247 

MIS5 Insulated I14-2-16l Silcrete 11 2.356 4.668 13.183 0.143 

MIS5 Exposed D9-1-10b Silcrete 7 2.350 2.979 8.412 0.122 

MIS5 Exposed D9-1-12b Silcrete 3 2.200 1.364 3.851 0.052 

MIS5 Exposed D9-1-12d Silcrete 4 2.286 1.750 4.940 0.070 

MIS5 Exposed E3-1-1b Silcrete 13 1.933 6.724 18.986 0.226 

MIS5 Exposed E3-1-5p Silcrete 10 2.588 3.864 10.912 0.174 

MIS5 Exposed E3-1-6a Silcrete 16 2.196 7.286 20.574 0.279 

MIS5 Exposed E3-1-6c Silcrete 19 2.436 7.800 22.025 0.331 

MIS5 Exposed I14-2-16l Silcrete 11 2.356 4.668 13.183 0.192 

MIS5 Untreated D9-1-10a Silcrete 3 1.980 1.515 2.850 0.255 

MIS5 Untreated D9-1-12a Silcrete 7 2.250 3.112 5.853 0.595 

MIS5 Untreated D9-1-12c Silcrete 2 1.807 1.107 2.082 0.170 

MIS5 Untreated E3-1-1A Silcrete 5 2.070 2.416 4.544 0.425 

MIS5 Untreated E3-1-5n Silcrete 5 2.460 2.033 3.823 0.425 

MIS5 Untreated E3-1-5o Silcrete 6 2.505 2.395 4.506 0.510 

MIS5 Untreated E3-1-6b Silcrete 2 1.691 1.183 2.225 0.170 

MIS5 Untreated I14-2-16a Silcrete 3 2.895 1.036 1.949 0.255 
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MIS6 conditions 

 

Table B253. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions. 

Model 
Conditions 

Heating 
Scenario Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) Ps 

MIS6 Insulated D9-1-10b Silcrete 7 2.350 2.979 8.412 0.091 

MIS6 Insulated D9-1-12b Silcrete 3 2.200 1.364 3.851 0.039 

MIS6 Insulated D9-1-12d Silcrete 4 2.286 1.750 4.940 0.052 

MIS6 Insulated E3-1-1b Silcrete 13 1.933 6.724 18.986 0.169 

MIS6 Insulated E3-1-5p Silcrete 10 2.588 3.864 10.912 0.130 

MIS6 Insulated E3-1-6a Silcrete 16 2.196 7.286 20.574 0.208 

MIS6 Insulated E3-1-6c Silcrete 19 2.436 7.800 22.025 0.247 

MIS6 Insulated I14-2-16l Silcrete 11 2.356 4.668 13.183 0.143 

MIS6 Exposed D9-1-10b Silcrete 7 2.350 2.979 8.412 0.122 

MIS6 Exposed D9-1-12b Silcrete 3 2.200 1.364 3.851 0.052 

MIS6 Exposed D9-1-12d Silcrete 4 2.286 1.750 4.940 0.070 

MIS6 Exposed E3-1-1b Silcrete 13 1.933 6.724 18.986 0.226 

MIS6 Exposed E3-1-5p Silcrete 10 2.588 3.864 10.912 0.174 

MIS6 Exposed E3-1-6a Silcrete 16 2.196 7.286 20.574 0.279 

MIS6 Exposed E3-1-6c Silcrete 19 2.436 7.800 22.025 0.331 

MIS6 Exposed I14-2-16l Silcrete 11 2.356 4.668 13.183 0.192 

MIS6 Untreated D9-1-10a Silcrete 3 1.980 1.515 2.850 0.255 

MIS6 Untreated D9-1-12a Silcrete 7 2.250 3.112 5.853 0.595 

MIS6 Untreated D9-1-12c Silcrete 2 1.807 1.107 2.082 0.170 

MIS6 Untreated E3-1-1A Silcrete 5 2.070 2.416 4.544 0.425 

MIS6 Untreated E3-1-5n Silcrete 5 2.460 2.033 3.823 0.425 

MIS6 Untreated E3-1-5o Silcrete 6 2.505 2.395 4.506 0.510 

MIS6 Untreated E3-1-6b Silcrete 2 1.691 1.183 2.225 0.170 

MIS6 Untreated I14-2-16a Silcrete 3 2.895 1.036 1.949 0.255 
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ACM-R net-return rates 

 

Table B254. Summary statistics and test results of ACM-R net-return rates ((for all 

experimental sample types) during all model conditions. 

  

MIS4 without  
Paleo-Agulhas plain 

silcrete 

MIS4 with  
Paleo-Agulhas plain 

silcrete MIS5 

MIS6 without  
Paleo-Agulhas plain 

silcrete 

MIS6 with  
Paleo-Agulhas plain 

silcrete 
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MIS4 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B255. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS4 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 

Core Mass 
(kg) 

Count Complete 
Blades (n=) / 

Total Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rq 

MIS4 C9-1-1B8 Quartzite 2 1.920 1.042 1.627 0.009 

MIS4 C9-1-1B9 Quartzite 4 2.060 1.941 3.033 0.017 

MIS4 D11-1-100A Quartzite 1 2.149 0.465 0.727 0.004 

MIS4 D11-1-90D1 Quartzite 1 2.450 0.408 0.638 0.004 

MIS4 D11-1-95A Quartzite 2 2.031 0.985 1.538 0.009 

MIS4 D11-1-95B Quartzite 2 2.160 0.926 1.447 0.009 

MIS4 D11-1-97A1 Quartzite 0 1.925 0.000 0.000 0.000 

MIS4 D11-1-98B1 Quartzite 3 1.913 1.568 2.451 0.013 

MIS4 D11-1-98C1 Quartzite 3 2.091 1.435 2.242 0.013 

MIS4 D11-1-98D Quartzite 1 1.843 0.543 0.848 0.004 

MIS4 D11-1-85C1 Quartzite 8 1.996 4.008 8.116 0.043 

MIS4 D11-1-91A1 Quartzite 6 1.962 3.058 6.192 0.034 

MIS4 D11-1-91A2 Quartzite 8 2.174 3.679 7.451 0.044 

MIS4 D11-1-91B3 Quartzite 11 1.885 5.836 11.818 0.069 

MIS4 D11-1-91B5 Quartzite 4 2.220 1.802 3.648 0.021 

MIS4 D11-1-91C3 Quartzite 5 1.962 2.548 5.160 0.029 

MIS4 D11-1-94B2 Quartzite 5 1.828 2.736 5.539 0.028 

MIS4 D11-1-94B3 Quartzite 8 1.784 4.484 9.081 0.046 

MIS4 D11-1-94D2 Quartzite 5 1.966 2.543 5.150 0.029 

MIS4 D11-1-97C Quartzite 7 1.833 3.819 7.733 0.039 

 

MIS4 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B256. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions without a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rs 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.047 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.020 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.027 
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MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.088 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.067 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.108 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.128 

MIS4-Without Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.074 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.044 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.019 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.025 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.081 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.062 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.100 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.118 

MIS4-Without Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.068 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 3 1.980 1.515 2.850 0.018 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 7 2.250 3.112 5.853 0.042 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 2 1.807 1.107 2.082 0.012 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 5 2.070 2.416 4.544 0.030 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 5 2.460 2.033 3.823 0.030 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 6 2.505 2.395 4.506 0.036 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 2 1.691 1.183 2.225 0.012 

MIS4-Without Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 3 2.895 1.036 1.949 0.018 

 

MIS4 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B257. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS4 conditions with a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rs 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.127 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.055 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.073 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.237 
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MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.182 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.291 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.346 

MIS4-With Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.200 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.104 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.045 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.059 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.193 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.149 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.238 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.282 

MIS4-With Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.163 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 3 1.980 1.515 2.850 0.113 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 7 2.250 3.112 5.853 0.263 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 2 1.807 1.107 2.082 0.075 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 5 2.070 2.416 4.544 0.188 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 5 2.460 2.033 3.823 0.188 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 6 2.505 2.395 4.506 0.225 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 2 1.691 1.183 2.225 0.075 

MIS4-With Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 3 2.895 1.036 1.949 0.113 

 

MIS5 conditions 

 

Table B258. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS5 

conditions. 

Model 
Conditions Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count Complete 
Blades (n=)/Total 
Flaked Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) Rq 

MIS5 C9-1-1B8 Quartzite 2 1.920 1.042 1.627 0.110 

MIS5 C9-1-1B9 Quartzite 4 2.060 1.941 3.033 0.221 

MIS5 D11-1-100A Quartzite 1 2.149 0.465 0.727 0.054 

MIS5 D11-1-90D1 Quartzite 1 2.450 0.408 0.638 0.054 

MIS5 D11-1-95A Quartzite 2 2.031 0.985 1.538 0.109 

MIS5 D11-1-95B Quartzite 2 2.160 0.926 1.447 0.109 

MIS5 D11-1-97A1 Quartzite 0 1.925 0.000 0.000 0.000 

MIS5 D11-1-98B1 Quartzite 3 1.913 1.568 2.451 0.163 

MIS5 D11-1-98C1 Quartzite 3 2.091 1.435 2.242 0.163 
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MIS5 D11-1-98D Quartzite 1 1.843 0.543 0.848 0.054 

MIS5 D11-1-85C1 Quartzite 8 1.996 4.008 8.116 0.564 

MIS5 D11-1-91A1 Quartzite 6 1.962 3.058 6.192 0.423 

MIS5 D11-1-91A2 Quartzite 8 2.174 3.679 7.451 0.564 

MIS5 D11-1-91B3 Quartzite 11 1.885 5.836 11.818 0.776 

MIS5 D11-1-91B5 Quartzite 4 2.220 1.802 3.648 0.282 

MIS5 D11-1-91C3 Quartzite 5 1.962 2.548 5.160 0.353 

MIS5 D11-1-94B2 Quartzite 5 1.828 2.736 5.539 0.353 

MIS5 D11-1-94B3 Quartzite 8 1.784 4.484 9.081 0.564 

MIS5 D11-1-94D2 Quartzite 5 1.966 2.543 5.150 0.353 

MIS5 D11-1-97C Quartzite 7 1.833 3.819 7.733 0.494 

 

Table B259. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS5 conditions. 

Model 
Conditions 

Heating 
Scenario Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count Complete 
Blades (n=) / 

Total Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rs 

MIS5 Insulated 
D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.039 

MIS5 Insulated 
D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.017 

MIS5 Insulated 
D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.022 

MIS5 Insulated 
E3-1-

1b Silcrete 13 1.933 6.724 18.986 0.072 

MIS5 Insulated 
E3-1-

5p Silcrete 10 2.588 3.864 10.912 0.056 

MIS5 Insulated 
E3-1-

6a Silcrete 16 2.196 7.286 20.574 0.089 

MIS5 Insulated 
E3-1-

6c Silcrete 19 2.436 7.800 22.025 0.105 

MIS5 Insulated 
I14-2-

16l Silcrete 11 2.356 4.668 13.183 0.061 

MIS5 Exposed 
D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.044 

MIS5 Exposed 
D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.019 

MIS5 Exposed 
D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.025 

MIS5 Exposed 
E3-1-

1b Silcrete 13 1.933 6.724 18.986 0.081 

MIS5 Exposed 
E3-1-

5p Silcrete 10 2.588 3.864 10.912 0.062 

MIS5 Exposed 
E3-1-

6a Silcrete 16 2.196 7.286 20.574 0.100 

MIS5 Exposed 
E3-1-

6c Silcrete 19 2.436 7.800 22.025 0.118 

MIS5 Exposed 
I14-2-

16l Silcrete 11 2.356 4.668 13.183 0.068 

MIS5 Untreated 
D9-1-
10a Silcrete 3 1.980 1.515 2.850 0.018 

MIS5 Untreated 
D9-1-
12a Silcrete 7 2.250 3.112 5.853 0.042 
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MIS5 Untreated 
D9-1-
12c Silcrete 2 1.807 1.107 2.082 0.012 

MIS5 Untreated 
E3-1-

1A Silcrete 5 2.070 2.416 4.544 0.030 

MIS5 Untreated 
E3-1-

5n Silcrete 5 2.460 2.033 3.823 0.030 

MIS5 Untreated 
E3-1-

5o Silcrete 6 2.505 2.395 4.506 0.036 

MIS5 Untreated 
E3-1-

6b Silcrete 2 1.691 1.183 2.225 0.012 

MIS5 Untreated 
I14-2-
16a Silcrete 3 2.895 1.036 1.949 0.018 

 

MIS6 conditions with or without a Paleo-Agulhas plain silcrete source 

 

Table B260. ACM-R net-return rates (Rq) for quartzite experimental blocks during MIS6 

conditions with or without a Paleo-Agulhas plain silcrete source. 

Model 
Conditions Block 

Raw 
Material 

Count 
Comple

te 
Blades 

(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count Complete 
Blades (n=) / 

Total Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rq 

MIS6 C9-1-1B8 Quartzite 2 1.920 1.042 1.627 0.030 

MIS6 C9-1-1B9 Quartzite 4 2.060 1.941 3.033 0.061 

MIS6 D11-1-100A Quartzite 1 2.149 0.465 0.727 0.015 

MIS6 D11-1-90D1 Quartzite 1 2.450 0.408 0.638 0.015 

MIS6 D11-1-95A Quartzite 2 2.031 0.985 1.538 0.030 

MIS6 D11-1-95B Quartzite 2 2.160 0.926 1.447 0.030 

MIS6 D11-1-97A1 Quartzite 0 1.925 0.000 0.000 0.000 

MIS6 D11-1-98B1 Quartzite 3 1.913 1.568 2.451 0.046 

MIS6 D11-1-98C1 Quartzite 3 2.091 1.435 2.242 0.046 

MIS6 D11-1-98D Quartzite 1 1.843 0.543 0.848 0.015 

MIS6 D11-1-85C1 Quartzite 8 1.996 4.008 8.116 0.157 

MIS6 D11-1-91A1 Quartzite 6 1.962 3.058 6.192 0.118 

MIS6 D11-1-91A2 Quartzite 8 2.174 3.679 7.451 0.157 

MIS6 D11-1-91B3 Quartzite 11 1.885 5.836 11.818 0.216 

MIS6 D11-1-91B5 Quartzite 4 2.220 1.802 3.648 0.079 

MIS6 D11-1-91C3 Quartzite 5 1.962 2.548 5.160 0.098 

MIS6 D11-1-94B2 Quartzite 5 1.828 2.736 5.539 0.098 

MIS6 D11-1-94B3 Quartzite 8 1.784 4.484 9.081 0.157 

MIS6 D11-1-94D2 Quartzite 5 1.966 2.543 5.150 0.098 

MIS6 D11-1-97C Quartzite 7 1.833 3.819 7.733 0.138 
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MIS6 conditions without a Paleo-Agulhas plain silcrete source 

 

Table B261. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions without a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rs 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.039 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.017 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.022 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.072 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.056 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.089 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.105 

MIS6-Without Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.061 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.044 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.019 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.025 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.081 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.062 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.100 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.118 

MIS6-Without Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.068 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 3 1.980 1.515 2.850 0.018 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 7 2.250 3.112 5.853 0.042 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 2 1.807 1.107 2.082 0.012 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 5 2.070 2.416 4.544 0.030 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 5 2.460 2.033 3.823 0.030 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 6 2.505 2.395 4.506 0.036 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 2 1.691 1.183 2.225 0.012 

MIS6-Without Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 3 2.895 1.036 1.949 0.018 
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MIS6 conditions with a Paleo-Agulhas plain silcrete source 

 

Table B262. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks during 

MIS6 conditions with a Paleo-Agulhas plain silcrete source. 

Model Conditions 
Heating 
Scenario Block 

Raw 
Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 

Durability 
(e * d) Rs 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.081 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.035 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.046 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.150 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.115 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.184 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.219 

MIS6-With Paleo-
Agulhas Silcrete Insulated 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.127 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
10b Silcrete 7 2.350 2.979 8.412 0.104 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12b Silcrete 3 2.200 1.364 3.851 0.045 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

D9-1-
12d Silcrete 4 2.286 1.750 4.940 0.059 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
1b Silcrete 13 1.933 6.724 18.986 0.193 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
5p Silcrete 10 2.588 3.864 10.912 0.149 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6a Silcrete 16 2.196 7.286 20.574 0.238 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

E3-1-
6c Silcrete 19 2.436 7.800 22.025 0.282 

MIS6-With Paleo-
Agulhas Silcrete Exposed 

I14-2-
16l Silcrete 11 2.356 4.668 13.183 0.163 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
10a Silcrete 3 1.980 1.515 2.850 0.113 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12a Silcrete 7 2.250 3.112 5.853 0.263 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

D9-1-
12c Silcrete 2 1.807 1.107 2.082 0.075 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
1A Silcrete 5 2.070 2.416 4.544 0.188 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5n Silcrete 5 2.460 2.033 3.823 0.188 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
5o Silcrete 6 2.505 2.395 4.506 0.225 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

E3-1-
6b Silcrete 2 1.691 1.183 2.225 0.075 

MIS6-With Paleo-
Agulhas Silcrete Untreated 

I14-2-
16a Silcrete 3 2.895 1.036 1.949 0.113 
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ACM – Model condition variable outcomes 

 

Coastline position and raw material distribution variable 

 

Table B263. Summary Statistics and test results of ACM-R net-return rates (Rq and Rs) 

when only ts time-cost (travel and search time) is considered during all model conditions. 
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MIS4 with or without a Paleo-Agulhas plain silcrete source 

 

Table B264. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS4 conditions with or without a 

Paleo-Agulhas plain silcrete source. 

Block 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 

Core Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel and 
search time (min) 

/ Total Flaked 
Core Mass (kg) Rq 

C9-1-1B8 Quartzite 2 1.920 1.042 1.627 93.74 0.017 

C9-1-1B9 Quartzite 4 2.060 1.941 3.033 87.36 0.035 

D11-1-100A Quartzite 1 2.149 0.465 0.727 83.76 0.009 

D11-1-90D1 Quartzite 1 2.450 0.408 0.638 73.46 0.009 

D11-1-95A Quartzite 2 2.031 0.985 1.538 88.61 0.017 

D11-1-95B Quartzite 2 2.160 0.926 1.447 83.33 0.017 

D11-1-97A1 Quartzite 0 1.925 0.000 0.000 93.51 0.000 

D11-1-98B1 Quartzite 3 1.913 1.568 2.451 94.11 0.026 

D11-1-98C1 Quartzite 3 2.091 1.435 2.242 86.10 0.026 

D11-1-98D Quartzite 1 1.843 0.543 0.848 97.69 0.009 

D11-1-85C1 Quartzite 8 1.996 4.008 8.116 90.18 0.090 

D11-1-91A1 Quartzite 6 1.962 3.058 6.192 91.73 0.068 

D11-1-91A2 Quartzite 8 2.174 3.679 7.451 82.79 0.090 

D11-1-91B3 Quartzite 11 1.885 5.836 11.818 95.50 0.124 

D11-1-91B5 Quartzite 4 2.220 1.802 3.648 81.07 0.045 

D11-1-91C3 Quartzite 5 1.962 2.548 5.160 91.73 0.056 

D11-1-94B2 Quartzite 5 1.828 2.736 5.539 98.48 0.056 

D11-1-94B3 Quartzite 8 1.784 4.484 9.081 100.90 0.090 

D11-1-94D2 Quartzite 5 1.966 2.543 5.150 91.55 0.056 

D11-1-97C Quartzite 7 1.833 3.819 7.733 98.19 0.079 

 

 

MIS4 with or without a Paleo-Agulhas plain silcrete source 

 

Table B265. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel 
and search 
time (min) / 

Total 
Flaked Core 
Mass (kg) Rs 

D9-1-10b 
Heat-

treated Silcrete 7 2.350 2.979 8.412 124.02 0.068 

D9-1-12b 
Heat-

treated Silcrete 3 2.200 1.364 3.851 132.47 0.029 
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D9-1-12d 
Heat-

treated Silcrete 4 2.286 1.750 4.940 127.47 0.039 

E3-1-1b 
Heat-

treated Silcrete 13 1.933 6.724 18.986 150.73 0.126 

E3-1-5p 
Heat-

treated Silcrete 10 2.588 3.864 10.912 112.62 0.097 

E3-1-6a 
Heat-

treated Silcrete 16 2.196 7.286 20.574 132.71 0.155 

E3-1-6c 
Heat-

treated Silcrete 19 2.436 7.800 22.025 119.64 0.184 

I14-2-16l 
Heat-

treated Silcrete 11 2.356 4.668 13.183 123.69 0.107 

D9-1-10a Untreated Silcrete 3 1.980 1.515 2.850 147.18 0.019 

D9-1-12a Untreated Silcrete 7 2.250 3.112 5.853 129.55 0.045 

D9-1-12c Untreated Silcrete 2 1.807 1.107 2.082 161.27 0.013 

E3-1-1A Untreated Silcrete 5 2.070 2.416 4.544 140.82 0.032 

E3-1-5n Untreated Silcrete 5 2.460 2.033 3.823 118.48 0.032 

E3-1-5o Untreated Silcrete 6 2.505 2.395 4.506 116.35 0.039 

E3-1-6b Untreated Silcrete 2 1.691 1.183 2.225 172.34 0.013 

I14-2-16a Untreated Silcrete 3 2.895 1.036 1.949 100.66 0.019 

 

MIS4 with a Paleo-Agulhas plain silcrete source 

 

Table B266. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS4 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel 
and search 
time (min) / 

Total 
Flaked Core 
Mass (kg) Rs 

D9-1-10b 
Heat-

treated Silcrete 7 2.350 2.979 8.412 11.923 0.706 

D9-1-12b 
Heat-

treated Silcrete 3 2.200 1.364 3.851 12.734 0.302 

D9-1-12d 
Heat-

treated Silcrete 4 2.286 1.750 4.940 12.254 0.403 

E3-1-1b 
Heat-

treated Silcrete 13 1.933 6.724 18.986 14.490 1.310 

E3-1-5p 
Heat-

treated Silcrete 10 2.588 3.864 10.912 10.827 1.008 

E3-1-6a 
Heat-

treated Silcrete 16 2.196 7.286 20.574 12.758 1.613 

E3-1-6c 
Heat-

treated Silcrete 19 2.436 7.800 22.025 11.501 1.915 

I14-2-16l 
Heat-

treated Silcrete 11 2.356 4.668 13.183 11.891 1.109 

D9-1-10a Untreated Silcrete 3 1.980 1.515 2.850 14.149 0.201 

D9-1-12a Untreated Silcrete 7 2.250 3.112 5.853 12.454 0.470 

D9-1-12c Untreated Silcrete 2 1.807 1.107 2.082 15.504 0.134 

E3-1-1A Untreated Silcrete 5 2.070 2.416 4.544 13.537 0.336 
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E3-1-5n Untreated Silcrete 5 2.460 2.033 3.823 11.390 0.336 

E3-1-5o Untreated Silcrete 6 2.505 2.395 4.506 11.185 0.403 

E3-1-6b Untreated Silcrete 2 1.691 1.183 2.225 16.568 0.134 

I14-2-16a Untreated Silcrete 3 2.895 1.036 1.949 9.677 0.201 

 

MIS5 

 

Table B267. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS5 conditions. 

Block 
Raw 

Material 

Count 
Complete 

Blades (n=) 

Total 
Flaked Core 
Mass (kg) 

Count Complete 
Blades (n=) / 

Total Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel and 
search time 
(min) / Total 
Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 2 1.920 1.042 1.627 6.61 0.246 

C9-1-
1B9 Quartzite 4 2.060 1.941 3.033 6.16 0.492 

D11-1-
100A Quartzite 1 2.149 0.465 0.727 5.91 0.123 

D11-1-
90D1 Quartzite 1 2.450 0.408 0.638 5.18 0.123 

D11-1-
95A Quartzite 2 2.031 0.985 1.538 6.25 0.246 

D11-1-
95B Quartzite 2 2.160 0.926 1.447 5.88 0.246 

D11-1-
97A1 Quartzite 0 1.925 0.000 0.000 6.60 0.000 

D11-1-
98B1 Quartzite 3 1.913 1.568 2.451 6.64 0.369 

D11-1-
98C1 Quartzite 3 2.091 1.435 2.242 6.07 0.369 

D11-1-
98D Quartzite 1 1.843 0.543 0.848 6.89 0.123 

D11-1-
85C1 Quartzite 8 1.996 4.008 8.116 6.36 1.276 

D11-1-
91A1 Quartzite 6 1.962 3.058 6.192 6.47 0.957 

D11-1-
91A2 Quartzite 8 2.174 3.679 7.451 5.84 1.276 

D11-1-
91B3 Quartzite 11 1.885 5.836 11.818 6.74 1.754 

D11-1-
91B5 Quartzite 4 2.220 1.802 3.648 5.72 0.638 

D11-1-
91C3 Quartzite 5 1.962 2.548 5.160 6.47 0.797 

D11-1-
94B2 Quartzite 5 1.828 2.736 5.539 6.95 0.797 

D11-1-
94B3 Quartzite 8 1.784 4.484 9.081 7.12 1.276 

D11-1-
94D2 Quartzite 5 1.966 2.543 5.150 6.46 0.797 

D11-1-
97C Quartzite 7 1.833 3.819 7.733 6.93 1.116 
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Table B268. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS5 conditions. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel 
and search 
time (min) / 

Total 
Flaked Core 
Mass (kg) Rs 

D9-1-10b 
Heat-

treated Silcrete 7 2.350 2.979 8.412 124.02 0.068 

D9-1-12b 
Heat-

treated Silcrete 3 2.200 1.364 3.851 132.47 0.029 

D9-1-12d 
Heat-

treated Silcrete 4 2.286 1.750 4.940 127.47 0.039 

E3-1-1b 
Heat-

treated Silcrete 13 1.933 6.724 18.986 150.73 0.126 

E3-1-5p 
Heat-

treated Silcrete 10 2.588 3.864 10.912 112.62 0.097 

E3-1-6a 
Heat-

treated Silcrete 16 2.196 7.286 20.574 132.71 0.155 

E3-1-6c 
Heat-

treated Silcrete 19 2.436 7.800 22.025 119.64 0.184 

I14-2-16l 
Heat-

treated Silcrete 11 2.356 4.668 13.183 123.69 0.107 

D9-1-10a Untreated Silcrete 3 1.980 1.515 2.850 147.18 0.019 

D9-1-12a Untreated Silcrete 7 2.250 3.112 5.853 129.55 0.045 

D9-1-12c Untreated Silcrete 2 1.807 1.107 2.082 161.27 0.013 

E3-1-1A Untreated Silcrete 5 2.070 2.416 4.544 140.82 0.032 

E3-1-5n Untreated Silcrete 5 2.460 2.033 3.823 118.48 0.032 

E3-1-5o Untreated Silcrete 6 2.505 2.395 4.506 116.35 0.039 

E3-1-6b Untreated Silcrete 2 1.691 1.183 2.225 172.34 0.013 

I14-2-16a Untreated Silcrete 3 2.895 1.036 1.949 100.66 0.019 

 

MIS6 with or without a Paleo-Agulhas plain silcrete source 

 

Table B269. ACM-R net-return rates (Rq) for quartzite experimental blocks when only ts 

time-cost (travel and search time) is considered during MIS6 conditions without with a 

Paleo-Agulhas plain silcrete source. 

Block 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked Core 
Mass (kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 

Core Mass (kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel and 
search time  
(min) / Total 
Flaked Core 
Mass (kg) Rq 

C9-1-
1B8 Quartzite 2 1.920 1.042 1.627 25.42 0.064 

C9-1-
1B9 Quartzite 4 2.060 1.941 3.033 23.69 0.128 

D11-1-
100A Quartzite 1 2.149 0.465 0.727 22.72 0.032 

D11-1-
90D1 Quartzite 1 2.450 0.408 0.638 19.92 0.032 

D11-1-
95A Quartzite 2 2.031 0.985 1.538 24.03 0.064 

D11-1-
95B Quartzite 2 2.160 0.926 1.447 22.60 0.064 
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D11-1-
97A1 Quartzite 0 1.925 0.000 0.000 25.36 0.000 

D11-1-
98B1 Quartzite 3 1.913 1.568 2.451 25.52 0.096 

D11-1-
98C1 Quartzite 3 2.091 1.435 2.242 23.35 0.096 

D11-1-
98D Quartzite 1 1.843 0.543 0.848 26.49 0.032 

D11-1-
85C1 Quartzite 8 1.996 4.008 8.116 24.46 0.332 

D11-1-
91A1 Quartzite 6 1.962 3.058 6.192 24.88 0.249 

D11-1-
91A2 Quartzite 8 2.174 3.679 7.451 22.45 0.332 

D11-1-
91B3 Quartzite 11 1.885 5.836 11.818 25.90 0.456 

D11-1-
91B5 Quartzite 4 2.220 1.802 3.648 21.99 0.166 

D11-1-
91C3 Quartzite 5 1.962 2.548 5.160 24.88 0.207 

D11-1-
94B2 Quartzite 5 1.828 2.736 5.539 26.71 0.207 

D11-1-
94B3 Quartzite 8 1.784 4.484 9.081 27.36 0.332 

D11-1-
94D2 Quartzite 5 1.966 2.543 5.150 24.83 0.207 

D11-1-
97C Quartzite 7 1.833 3.819 7.733 26.63 0.290 

 

MIS6 without a Paleo-Agulhas plain silcrete source 

 

Table B270. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions without a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel 
and search 
time  (min) / 

Total 
Flaked Core 
Mass (kg) Rs 

D9-1-
10b Heat-treated Silcrete 7 2.350 2.979 8.412 124.02 0.068 

D9-1-
12b Heat-treated Silcrete 3 2.200 1.364 3.851 132.47 0.029 

D9-1-
12d Heat-treated Silcrete 4 2.286 1.750 4.940 127.47 0.039 

E3-1-
1b Heat-treated Silcrete 13 1.933 6.724 18.986 150.73 0.126 

E3-1-
5p Heat-treated Silcrete 10 2.588 3.864 10.912 112.62 0.097 

E3-1-
6a Heat-treated Silcrete 16 2.196 7.286 20.574 132.71 0.155 

E3-1-
6c Heat-treated Silcrete 19 2.436 7.800 22.025 119.64 0.184 

I14-2-
16l Heat-treated Silcrete 11 2.356 4.668 13.183 123.69 0.107 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 147.18 0.019 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 129.55 0.045 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 161.27 0.013 



865 
 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 140.82 0.032 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 118.48 0.032 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 116.35 0.039 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 172.34 0.013 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 100.66 0.019 

 

MIS6 with a Paleo-Agulhas plain silcrete source 

 

Table B271. ACM-R net-return rates (Rs) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only ts time-cost (travel and search time) is considered during MIS6 conditions with a 

Paleo-Agulhas plain silcrete source. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count 
Complete 

Blades 
(n=)/Total 

Flaked Core 
Mass (kg) 

Count 
Blades * 

Durability 
(e * d) 

ts-Travel 
and search 

time  
(min)/Total 

Flaked Core 
Mass (kg) Rs 

D9-1-
10b Heat-treated Silcrete 7 2.350 2.979 8.412 11.92 0.706 

D9-1-
12b Heat-treated Silcrete 3 2.200 1.364 3.851 12.73 0.302 

D9-1-
12d Heat-treated Silcrete 4 2.286 1.750 4.940 12.25 0.403 

E3-1-
1b Heat-treated Silcrete 13 1.933 6.724 18.986 14.49 1.310 

E3-1-
5p Heat-treated Silcrete 10 2.588 3.864 10.912 10.83 1.008 

E3-1-
6a Heat-treated Silcrete 16 2.196 7.286 20.574 12.76 1.613 

E3-1-
6c Heat-treated Silcrete 19 2.436 7.800 22.025 11.50 1.915 

I14-2-
16l Heat-treated Silcrete 11 2.356 4.668 13.183 11.89 1.109 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 14.15 0.201 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 12.45 0.470 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 15.50 0.134 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 13.54 0.336 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 11.39 0.336 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 11.19 0.403 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 16.57 0.134 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 9.68 0.201 
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Table B272. Comparison between a raw material ranking based on ACM- R net-return 

rates and archaeological data from MIS4, MIS5, and MIS6. 

ACM-R Results-Ranked* Archaeological Data 

MIS4 Without a Paleo-
Agulhas plain silcrete source     MIS4 

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzi
te (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

2 (0.05) 2 (0.03) 1 (0.1) 44.6 40.0 16.9 83.1 

MIS4 With a Paleo-Agulhas 
plain silcrete source     MIS4       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzi
te (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

3 (0.05) 2 (0.3) 1 (1.05) 44.6 40.0 16.9 83.1 

MIS5     MIS5       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzi
te (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.7) 3 (0.03) 2 (0.1) 77.2 13.1 11.6 88.4 

MIS6 Without a Paleo-
Agulhas plain silcrete source     MIS6       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzi
te (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

1 (0.2) 2 (0.03) 1 (0.1) 94.3 1.1 NA NA 

MIS6 With a Paleo-Agulhas 
plain silcrete source     MIS6       

Quartzite 
Untreated 
Silcrete 

Heat-
treated 
Silcrete 

Quartzi
te (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete (%) 

Heat-treated 
Silcrete (%) 

2 (0.2) 2 (0.3) 1 (1.05) 92.4 2.5 NA NA 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due to 
statistically similar Rq or Rs. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped data in 
Figure 50 and Table 19. 

 

Vegetation type variable 

 

Table B273. Summary Statistics and test results of ACM-P net-return rates (Pq and Ps) 

when only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) 

are considered during all model conditions. 
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Quartzite MIS4, MIS5, and MIS6 

 

Table B274. ACM-P net-return rates (Pq) for quartzite experimental blocks when only 

m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS4, MIS5, and MIS6 conditions. 

Block 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

m1-Wood 
Fuel 

travel and 
search 

time (min) 
/ Total 
Flaked 
Core 

Mass (kg) 

m2-Heat-
treatment 
time (min) 

/ Total 
Flaked 
core 

Mass (kg) Pq 

C9-1-
1B8 Quartzite 2 1.920 1.042 1.627 0 0 1.627 

C9-1-
1B9 Quartzite 4 2.060 1.941 3.033 0 0 3.033 

D11-1-
100A Quartzite 1 2.149 0.465 0.727 0 0 0.727 

D11-1-
90D1 Quartzite 1 2.450 0.408 0.638 0 0 0.638 

D11-1-
95A Quartzite 2 2.031 0.985 1.538 0 0 1.538 

D11-1-
95B Quartzite 2 2.160 0.926 1.447 0 0 1.447 

D11-1-
97A1 Quartzite 0 1.925 0.000 0.000 0 0 0.000 

D11-1-
98B1 Quartzite 3 1.913 1.568 2.451 0 0 2.451 

D11-1-
98C1 Quartzite 3 2.091 1.435 2.242 0 0 2.242 

D11-1-
98D Quartzite 1 1.843 0.543 0.848 0 0 0.848 

D11-1-
85C1 Quartzite 8 1.996 4.008 8.116 0 0 8.116 

D11-1-
91A1 Quartzite 6 1.962 3.058 6.192 0 0 6.192 

D11-1-
91A2 Quartzite 8 2.174 3.679 7.451 0 0 7.451 

D11-1-
91B3 Quartzite 11 1.885 5.836 11.818 0 0 11.818 

D11-1-
91B5 Quartzite 4 2.220 1.802 3.648 0 0 3.648 

D11-1-
91C3 Quartzite 5 1.962 2.548 5.160 0 0 5.160 

D11-1-
94B2 Quartzite 5 1.828 2.736 5.539 0 0 5.539 

D11-1-
94B3 Quartzite 8 1.784 4.484 9.081 0 0 9.081 

D11-1-
94D2 Quartzite 5 1.966 2.543 5.150 0 0 5.150 

D11-1-
97C Quartzite 7 1.833 3.819 7.733 0 0 7.733 
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MIS4 Silcrete 

 

Table B275. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 conditions. 

Block 
Heating 

Scenario 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 
Durabili
ty (e * d) 

m1-Wood 
Fuel 

travel and 
search 

time (min) 
/ Total 
Flaked 
Core 

Mass (kg) 

m2-
Heat-

treatm
ent 

time 
(min) / 
Total 
Flake
d core 
Mass 
(kg) Ps 

D9-1-
10b Insulated Silcrete 7 2.350 2.979 8.412 38.300 6.383 0.188 

D9-1-
12b Insulated Silcrete 3 2.200 1.364 3.851 40.908 6.818 0.081 

D9-1-
12d Insulated Silcrete 4 2.286 1.750 4.940 39.365 6.561 0.108 

E3-1-
1b Insulated Silcrete 13 1.933 6.724 18.986 46.548 7.758 0.350 

E3-1-
5p Insulated Silcrete 10 2.588 3.864 10.912 34.780 5.797 0.269 

E3-1-
6a Insulated Silcrete 16 2.196 7.286 20.574 40.982 6.830 0.430 

E3-1-
6c Insulated Silcrete 19 2.436 7.800 22.025 36.946 6.158 0.511 

I14-2-
16l Insulated Silcrete 11 2.356 4.668 13.183 38.197 6.366 0.296 

D9-1-
10b Exposed Silcrete 7 2.350 2.979 8.412 38.300 21.278 0.141 

D9-1-
12b Exposed Silcrete 3 2.200 1.364 3.851 40.908 22.727 0.061 

D9-1-
12d Exposed Silcrete 4 2.286 1.750 4.940 39.365 21.869 0.081 

E3-1-
1b Exposed Silcrete 13 1.933 6.724 18.986 46.548 25.860 0.262 

E3-1-
5p Exposed Silcrete 10 2.588 3.864 10.912 34.780 19.322 0.202 

E3-1-
6a Exposed Silcrete 16 2.196 7.286 20.574 40.982 22.768 0.323 

E3-1-
6c Exposed Silcrete 19 2.436 7.800 22.025 36.946 20.525 0.383 

I14-2-
16l Exposed Silcrete 11 2.356 4.668 13.183 38.197 21.220 0.222 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 0.000 0.000 2.850 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 0.000 0.000 5.853 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 0.000 0.000 2.082 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 0.000 0.000 4.544 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 0.000 0.000 3.823 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 0.000 0.000 4.506 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 0.000 0.000 2.225 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 0.000 0.000 1.949 
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MIS5 Silcrete 

 

Table B276. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS5 conditions. 

Block 
Heating 

Scenario 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 
Durabili
ty (e * d) 

m1-Wood 
Fuel 

travel and 
search 

time (min) 
/ Total 
Flaked 
Core 

Mass (kg) 

m2-
Heat-

treatm
ent 

time 
(min) / 
Total 
Flake
d core 
Mass 
(kg) Ps 

D9-1-
10b Insulated Silcrete 7 2.350 2.979 8.412 76.600 6.383 0.101 

D9-1-
12b Insulated Silcrete 3 2.200 1.364 3.851 81.816 6.818 0.043 

D9-1-
12d Insulated Silcrete 4 2.286 1.750 4.940 78.730 6.561 0.058 

E3-1-
1b Insulated Silcrete 13 1.933 6.724 18.986 93.096 7.758 0.188 

E3-1-
5p Insulated Silcrete 10 2.588 3.864 10.912 69.559 5.797 0.145 

E3-1-
6a Insulated Silcrete 16 2.196 7.286 20.574 81.965 6.830 0.232 

E3-1-
6c Insulated Silcrete 19 2.436 7.800 22.025 73.892 6.158 0.275 

I14-2-
16l Insulated Silcrete 11 2.356 4.668 13.183 76.394 6.366 0.159 

D9-1-
10b Exposed Silcrete 7 2.350 2.979 8.412 38.300 21.278 0.141 

D9-1-
12b Exposed Silcrete 3 2.200 1.364 3.851 40.908 22.727 0.061 

D9-1-
12d Exposed Silcrete 4 2.286 1.750 4.940 39.365 21.869 0.081 

E3-1-
1b Exposed Silcrete 13 1.933 6.724 18.986 46.548 25.860 0.262 

E3-1-
5p Exposed Silcrete 10 2.588 3.864 10.912 34.780 19.322 0.202 

E3-1-
6a Exposed Silcrete 16 2.196 7.286 20.574 40.982 22.768 0.323 

E3-1-
6c Exposed Silcrete 19 2.436 7.800 22.025 36.946 20.525 0.383 

I14-2-
16l Exposed Silcrete 11 2.356 4.668 13.183 38.197 21.220 0.222 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 0 0 2.850 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 0 0 5.853 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 0 0 2.082 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 0 0 4.544 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 0 0 3.823 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 0 0 4.506 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 0 0 2.225 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 0 0 1.949 
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MIS6 Silcrete 

 

Table B277. ACM-P net-return rates (Ps) for heat-treated silcrete assuming both the 

insulated and exposed heating scenarios and untreated silcrete experimental blocks when 

only m1 (wood fuel travel and search time) and m2 time-costs (heat-treatment time) are 

considered during MIS6 conditions. 

Block 
Heating 

Scenario 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 
Mass 
(kg) 

Count 
Complete 

Blades 
(n=) / 
Total 

Flaked 
Core 

Mass (kg) 

Count 
Blades * 
Durabili
ty (e * d) 

m1-Wood 
Fuel 

travel and 
search 

time (min) 
/ Total 
Flaked 
Core 

Mass (kg) 

m2-
Heat-

treatm
ent 

time 
(min) / 
Total 
Flake
d core 
Mass 
(kg) Ps 

D9-1-
10b Insulated Silcrete 7 2.350 2.979 8.412 76.600 6.383 0.101 

D9-1-
12b Insulated Silcrete 3 2.200 1.364 3.851 81.816 6.818 0.043 

D9-1-
12d Insulated Silcrete 4 2.286 1.750 4.940 78.730 6.561 0.058 

E3-1-
1b Insulated Silcrete 13 1.933 6.724 18.986 93.096 7.758 0.188 

E3-1-
5p Insulated Silcrete 10 2.588 3.864 10.912 69.559 5.797 0.145 

E3-1-
6a Insulated Silcrete 16 2.196 7.286 20.574 81.965 6.830 0.232 

E3-1-
6c Insulated Silcrete 19 2.436 7.800 22.025 73.892 6.158 0.275 

I14-2-
16l Insulated Silcrete 11 2.356 4.668 13.183 76.394 6.366 0.159 

D9-1-
10b Exposed Silcrete 7 2.350 2.979 8.412 38.300 21.278 0.141 

D9-1-
12b Exposed Silcrete 3 2.200 1.364 3.851 40.908 22.727 0.061 

D9-1-
12d Exposed Silcrete 4 2.286 1.750 4.940 39.365 21.869 0.081 

E3-1-
1b Exposed Silcrete 13 1.933 6.724 18.986 46.548 25.860 0.262 

E3-1-
5p Exposed Silcrete 10 2.588 3.864 10.912 34.780 19.322 0.202 

E3-1-
6a Exposed Silcrete 16 2.196 7.286 20.574 40.982 22.768 0.323 

E3-1-
6c Exposed Silcrete 19 2.436 7.800 22.025 36.946 20.525 0.383 

I14-2-
16l Exposed Silcrete 11 2.356 4.668 13.183 38.197 21.220 0.222 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 0 0 2.850 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 0 0 5.853 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 0 0 2.082 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 0 0 4.544 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 0 0 3.823 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 0 0 4.506 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 0 0 2.225 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 0 0 1.949 
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Table B278. Comparison between a raw material ranking based on ACM- P net-return 

rates and archaeological data from MIS4, MIS5, and MIS6. 

ACM-P Results-Ranked* Archaeological Data 

MIS4       MIS4       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (4.2) 1 (3.5) 2 (0.3) 3 (0.2) 44.6* 40* 16.9 83.1 

MIS5       MIS5       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (4.2) 1 (3.5) 3 (0.2) 3 (0.2) 77.2 13.1 11.6 88.4 

MIS6       MIS6       

Quartzite 
Untreated 
Silcrete 

Insulated-
Silcrete 

Exposed-
Silcrete Quartzite (%) 

Silcrete 
Overall (%) 

Untreated 
Silcrete 

(%) 

Heat-
treated 

Silcrete (%) 

1 (4.2) 1 (3.5) 3 (0.2) 3 (0.2) 94.3 1.1 NA NA 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due to 
statistically similar Rq or Rs. MIS4, MIS5, and MIS6 archaeological raw material frequencies from bootstrapped data in 
Figure 50 and Table 19. 

 

Mobility rate and strategy variable 

 

Table B279. Summary Statistics and test results of ACM net-return rates (Pq and Ps or 

Rq and Rs) when only m3 time-cost (flaking manufacturing time) is considered (for all 

experimental sample types) during MIS4 conditions. 

  Quartzite (Pq or Rq) 
Untreated Silcrete 

(Ps or Rs) 
Heat-treated 

Silcrete (Ps or Rs) 

n sample blocks 20 8 8 

First Quartile 0.220 0.303 0.960 

Min 0.000 0.270 0.610 

Median 0.515 0.535 2.120 

Mean 0.590 0.554 2.094 

Max 1.590 0.940 3.830 

Third Quartile 0.975 0.775 3.078 

SD 0.452 0.254 1.129 

Bootstrapped SE* 0.098 0.087 0.387 

Margin of error (95% CI) 0.192 0.170 0.759 

Bootstrapped Upper 95% CI* 0.781 0.724 2.853 

Bootstrapped Lower 95% CI* 0.398 0.383 1.335 

*Samples bootstrapped 10000 times. 
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MIS4 

 

Table B280. ACM-P net-return rates (Pq) for quartzite experimental blocks when only 

m3 time-cost (flake manufacturing time) is considered during MIS4 conditions. 

Block 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked Core 
Mass (kg) 

Count Complete 
Blades (n=) / Total 
Flaked Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

m3-
FlakingTime 

(14min) / 
Total Flaked 
Core Mass 

(kg) 
Pq or 

Rq 

C9-1-
1B8 Quartzite 2 1.920 1.042 1.627 7.29 0.22 

C9-1-
1B9 Quartzite 4 2.060 1.941 3.033 6.79 0.45 

D11-1-
100A Quartzite 1 2.149 0.465 0.727 6.51 0.11 

D11-1-
90D1 Quartzite 1 2.450 0.408 0.638 5.71 0.11 

D11-1-
95A Quartzite 2 2.031 0.985 1.538 6.89 0.22 

D11-1-
95B Quartzite 2 2.160 0.926 1.447 6.48 0.22 

D11-1-
97A1 Quartzite 0 1.925 0.000 0.000 7.27 0.00 

D11-1-
98B1 Quartzite 3 1.913 1.568 2.451 7.32 0.33 

D11-1-
98C1 Quartzite 3 2.091 1.435 2.242 6.70 0.33 

D11-1-
98D Quartzite 1 1.843 0.543 0.848 7.60 0.11 

D11-1-
85C1 Quartzite 8 1.996 4.008 8.116 7.01 1.16 

D11-1-
91A1 Quartzite 6 1.962 3.058 6.192 7.13 0.87 

D11-1-
91A2 Quartzite 8 2.174 3.679 7.451 6.44 1.16 

D11-1-
91B3 Quartzite 11 1.885 5.836 11.818 7.43 1.59 

D11-1-
91B5 Quartzite 4 2.220 1.802 3.648 6.31 0.58 

D11-1-
91C3 Quartzite 5 1.962 2.548 5.160 7.13 0.72 

D11-1-
94B2 Quartzite 5 1.828 2.736 5.539 7.66 0.72 

D11-1-
94B3 Quartzite 8 1.784 4.484 9.081 7.85 1.16 

D11-1-
94D2 Quartzite 5 1.966 2.543 5.150 7.12 0.72 

D11-1-
97C Quartzite 7 1.833 3.819 7.733 7.64 1.01 
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Table B281. ACM-P net-return rates (Ps) for untreated and heat-treated silcrete 

experimental blocks when only m3 time-cost (flake manufacturing time) is considered 

during MIS4 conditions. 

Block 
Sample 

Type 
Raw 

Material 

Count 
Complete 

Blades 
(n=) 

Total 
Flaked 
Core 

Mass (kg) 

Count 
Complete 

Blades (n=) / 
Total Flaked 
Core Mass 

(kg) 

Count 
Blades * 

Durability 
(e * d) 

m3-
FlakingTim
e (14min) / 

Total 
Flaked Core 
Mass (kg) 

Ps or 
Rs 

D9-1-
10b Heat-treated Silcrete 7 2.350 2.979 8.412 5.96 1.41 

D9-1-
12b Heat-treated Silcrete 3 2.200 1.364 3.851 6.36 0.61 

D9-1-
12d Heat-treated Silcrete 4 2.286 1.750 4.940 6.12 0.81 

E3-1-
1b Heat-treated Silcrete 13 1.933 6.724 18.986 7.24 2.62 

E3-1-
5p Heat-treated Silcrete 10 2.588 3.864 10.912 5.41 2.02 

E3-1-
6a Heat-treated Silcrete 16 2.196 7.286 20.574 6.38 3.23 

E3-1-
6c Heat-treated Silcrete 19 2.436 7.800 22.025 5.75 3.83 

I14-2-
16l Heat-treated Silcrete 11 2.356 4.668 13.183 5.94 2.22 

D9-1-
10a Untreated Silcrete 3 1.980 1.515 2.850 7.07 0.40 

D9-1-
12a Untreated Silcrete 7 2.250 3.112 5.853 6.22 0.94 

D9-1-
12c Untreated Silcrete 2 1.807 1.107 2.082 7.75 0.27 

E3-1-
1A Untreated Silcrete 5 2.070 2.416 4.544 6.76 0.67 

E3-1-
5n Untreated Silcrete 5 2.460 2.033 3.823 5.69 0.67 

E3-1-
5o Untreated Silcrete 6 2.505 2.395 4.506 5.59 0.81 

E3-1-
6b Untreated Silcrete 2 1.691 1.183 2.225 8.28 0.27 

I14-2-
16a Untreated Silcrete 3 2.895 1.036 1.949 4.84 0.40 

 

Table B282. Comparison between a raw material ranking based on ACM net-return rates 

and archaeological data from MIS4. 

ACM Results-
Ranked* 

Quartzite 2 (0.6) 

Untreated Silcrete 2 (0.6) 

Heat-treated Silcrete 1 (2.1) 

Archaeological 
Raw Material 
Data – MIS4 

Quartzite (%) 44.6* 

Silcrete Overall (%) 40* 

Untreated Silcrete (%) 16.9 

Heat-treated Silcrete (%) 83.1 

*Ranking based on which raw materials have the highest mean Rq or Rs (in parenthesis).Similar ranking in table is due to 
statistically similar Rq or Rs. MIS4 archaeological raw material frequency from bootstrapped data in Figure 50 and Table 
19. 
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APPENDIX C 

RANDOM WALK MODEL ODD 
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Model description 

 

This is a model description following the ODD protocol (Grimm et al. 2010) of the 

neutral model of raw material procurement by Brantingham (2003). 

 

Overview: 

 

 Purpose: 

To show that a simple model of random encounters of materials can produce 

distributions  as found in the archaeological record. 

 

 State variables and scales: 

One agent is foraging according a random walk and has a toolkit of fixed size. 

Material sources are randomly distributed on the landscape (Figure 1). The 

landscape has 250,000 cells and 5,000 material sources. The model stops if the 

agent reaches the edge of the  landscape.  

  
Figure C1. Landscape with randomly distributed material sources and one 

forager (red figure at bottom left). 

 Process overview and scheduling: 
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Figure 2 shows the main structure of the scheduling of activities in the model. 

One agent with a mobile toolkit of fixed capacity is randomly placed on the 

environment. At each  time step, the agent moves to one of the nearest eight 

neighboring cells or stays in the present cell, with equal probability (=1/9). Each 

time step a fixed amount of raw material is consumed dependent only upon its 

frequency in the mobile toolkit. If a raw material source is encountered, the 

toolkit is re-provisioned up to its maximum capacity before moving again  at 

random. If no raw material source is encountered, the forager moves immediately 

at random. Simulations are run until 200 unique raw material sources are 

encountered, or the edge of the simulation world is reached. 

  

   
Figure C2. Neutral model scheduling. Figure recreated from “Figure 5. Structural 

and dynamic components of a neutral model of stone raw material procurement.” 

In Brantingham (2003). 
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Design Concepts: 

 

 Basic principles: Which general concepts, theories, hypotheses, or modeling 

 approaches are underlying the model’s design? 

 

There is debate whether changes in stone tool raw material frequencies in an 

archaeological assemblage can be considered a reliable proxy for human forager 

adaptive variability (Brantingham 2003, Feblot-Augustins 1993, Kuhn 2005, 

Mellars 1996). Brantingham (2003) points out that a commonly made argument is 

that raw material richness, transport distances, and the character of transported 

technologies should signal four behaviors. First, it should signal raw material 

selection variation due to material quality and abundance. Then, secondly, it 

should signal time and energy cost optimization associated with raw material 

procurement from spatially dispersed sources. Thirdly, it should signal planning 

depth that combines raw material procurement with other forager  activities such 

as food procurement. Fourth and finally, it should signal risk minimization 

resulting in raw material transportation strategies focusing on quantities and forms 

that are energetically economical and least likely to fail. To test if raw material 

richness, transport distance, and the character of transported technologies is the 

result of adaptive behavior, Brantingham (2003: 487) presents a behaviorally 

neutral agent-based model that involves “…a forager engaged in a random walk 

within a uniform environment.” The  neutral model relies on the core principle 

(Brantingham, 2003: 491) “that all same-level components of a system are 

equivalent both in terms of their innate behaviors and the impact that the 

environment has on the expression of those behaviors.” Brantingham’s (2003: 

491) model provides a baseline for comparison where archaeologists can be 

certain  that “observed patterns in raw material richness, transport distance, and 

both quantity- distance and reduction intensity-distance relationships” is not the 

result of adaptation. 

 

Emergence: What key results or outputs of the model are modeled as 

emerging from the adaptive traits, or behaviors, of individuals? 

 

Distribution of frequencies of distances of material is part of the tool box 

compared to the source of the material. This is an indication how far material may 

travel. Distribution of  richness of material sources in the toolbox. 

 

 Adaptation: What adaptive traits do the individuals have? What rules do they 

 have for making decisions or changing behavior in response to changes in 

 themselves or their environment? 

 

 Agent moves randomly and do not learn, adapt or evolve. 
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Objectives: If adaptive traits explicitly act to increase some measure of the 

 individual’s success at meeting some objective, what exactly is that objective 

 and how is it measured? 

 

 There are no adaptive traits. 

 

Learning: Many individuals or agents (but also organizations and institutions) 

change their adaptive traits over time as a consequence of their experience? 

If so, how? 

 

 Agent does not learn. 

 

Prediction: Prediction is fundamental to successful decision-making; if an 

agent’s adaptive traits or learning procedures are based on estimating future 

consequences  of decisions, how do agents predict the future conditions (either 

environmental or internal) they will experience? 

 

 Agent does not predict. 

 

 Sensing: What internal and environmental state variables are individuals 

 assumed to sense and consider in their decisions? 

 

Agent can sense whether there are material source on the cell it occupies. The 

agent can sense the amount and distribution of materials in its tool box. 

 

Interaction: What kinds of interactions among agents are assumed? Are there 

direct  interactions in which individuals encounter and affect others, or are 

interactions indirect, e.g., via competition for a mediating resource? 

 

 There is only one agent. 

 

Stochasticity: What processes are modeled by assuming they are random or 

partly  random? 

 

Agents move randomly, and decisions on use of material are done randomly. 

Material is distributed randomly on the landscape. 

 

Collectives: Do the individuals form or belong to aggregations that affect, and 

are affected by, the individuals? 

 

 No 
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Observation: What data are collected from the ABM for testing, 

understanding, and analyzing it, and how and when are they collected? 

 

Distribution of distance of material traveled and richness of material sources in 

the toolbox. 

 

Details: 

 

 Initialization: What is the initial state of the model world, i.e., at time t = 0 of a 

 simulation run? 

 

 Table C1 provides the parameters as used in the model. 

 

  

Table C1.Neutral model parameters.  

Variable description Variable Units 
Baseline Parameter 

Setting/Range 

Simulated world size in X Dimension X grid cells 500 

Simulated world size in Y Dimension Y grid cells 500 

x-coordinate position of raw material/forager x grid cells 

random from uniform 

= [1,500] 

y-coordinate position of raw material/forager y grid cells 
random from uniform 

=  [1,500] 

Number of unique raw material sources n sources 5000 

Raw material type label i 
 

1, 2,.....5000 

Quantity of material from source i in mobile toolkit vi arbitrary units 
minimum = 1; 

Maximum = 100 
Total material of all types in mobile toolkit; maximum toolkit 
capacity Σvi arbitrary units 

minimum = 1; 
Maximum = 100 

Amount of material collected from source i ai arbitrary units 
minimum = 1; 

Maximum = 100 

Probability of consuming material of type i in mobile toolkit ci 
 

(0.0, 1.0) 

An observed number of simulation time steps N time steps 
 Estimated distance traveled in N time steps; effective foraging 

radius d grid cells 
minimum = 1; 

Maximum = 707 

Maximum forager move length at each time step l grid cells 1 

Raw material consumption rate r 
arbitrary units / 

time step 1 

Raw material richness in mobile toolkit k number of types 
minimum = 0; 

Maximum = 100 
Quantity of material discarded in making room for newly procured 
material qi arbitrary units 

minimum = 1; 
Maximum = 100 

Most abundant material in the mobile toolkit at a given time step max  [vi] arbitrary units 
minimum = 1; 

Maximum = 100 

*Table recreated from “Table 1. Variables and Baseline Parameter Settings.” In Brantingham (2003). 

 

Input data: Does the model use input from external sources such as data files 

or other models to represent processes that change over time? 

 

 No 
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Submodels: What, in detail, are the submodels that represent the processes 

listed in ‘Process overview and scheduling’? What are the model parameters, 

their dimensions, and reference values? How were submodels designed or 

chosen, and how were they parameterized and then tested? 

 

The mobile toolkit is simulated as a vector vi where each element represents the 

amount of stone raw material in the toolkit of unique type i. The maximum size of 

the toolkit is 100, and the sum of the elements of vi (Σi vi) has to be smaller or 

equal to 100. The amount of material added to the toolbox when a material source 

is encountered is 100 - Σi vi, meaning that the toolbox is filled up to the maximum 

capacity. Every time step one unit of material is consumed from the tool box. The 

probability that material source i is consumed is vi /Σi vi, meaning that it is 

relative to the frequency of available materials. Material sources do not deplete in 

the environment during the duration of the simulation. 

 

Model implementation 

 

The model is implemented in Netlogo 5.0.3 

 

Some results of replication 

 

Below are some typical results of the model. The first figure shows the number of 

material sources in the tool box during the simulation of 8229 time steps. The middle 

figure shows the distribution of ticks having a certain number of different material 

sources in the tool box, and the bottom figure shows the distribution of material away 

from the source while still in the toolbox. 
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Figure C3. Neutral model simulation results. 
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APPENDIX D 

SPATIAL DISTRIBUTION MODEL ODD 
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Model description 

 

This is a model description following the ODD protocol (Grimm et al. 2010) of a study 

(Oestmo et al. 2016) investigating what effect spatial clustering has on the outcome of the 

neutral model of raw material procurement by Brantingham (2003). 

 

Overview: 

 

 Purpose: 

 To examine what effect that spatial clustering have on the neutral model outcome. 

 

 State variables and scales: 

One agent is foraging according a random walk, wiggling walk, or seeking walk 

and has a toolkit of a fixed size. Materials are distributed on the landscape 

according to a probability of clustering pr (‘prandom’). If pr is set to 1 the raw 

materials are distributed in a random way across the landscape. If pr is set to 0 the 

raw material are distributed together in one central cluster on the landscape. The 

landscape has 250,000 cells and there are 5,000 material sources with either 5000 

unique raw material types or 20 unique raw material types. The model stops when 

35000 time steps have been run. 

  

 Process overview and scheduling: 

 

Figure D1 shows the main structure of the scheduling of activities in the model. 

One agent with a mobile toolkit of fixed capacity is randomly placed on the 

environment. If the threshold is set to 0, at each time step, the agent moves to one 

of the nearest eight neighboring cells or stays in the present cell, with equal 

probability (=1/9). Each time step a fixed amount of raw material is consumed 

dependent only upon its frequency in the mobile toolkit. If a raw material source 

is encountered, the toolkit is re-provisioned up to its maximum capacity before 

moving again at random. If no raw material source is encountered, the forager 

moves immediately at random. If the ‘threshold’ function is set to a value >0 and 

the forager has a quantity of raw material in the toolkit equal to that value the 

forager will seek to the closest raw material source to replenish the toolkit. When 

the quantity of raw material is above the threshold the agent moves at random, 

discarding a material every time step, and when encountering a source the toolkit 

is re-provisioned up to maximum capacity. Simulations are run until 35000 time 

steps have been simulated. 
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Figure D1. Spatial clustering model scheduling.  

 

Design Concepts: 

 

 Basic principles: Which general concepts, theories, hypotheses, or modeling 

 approaches are underlying the model’s design? 

 

Brantingham (2003) points out that a valid criticism of the neutral model 

approach is that random walk in the environment can be considered an unrealistic 

foraging behavior; that a forager would never ignore the difference between raw 

material types. Additionally, he states that future evaluations of the neutral model 

should be conducted using a real landscape with real source locations. This model 

partly addresses both by looking at the effect that spatial clustering or raw 

material sources have on the neutral model outcome. Spatial clustering of raw 
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material sources simulates a more realistic scenario because raw material sources 

are located on the landscape according to geological structures and geophysical 

processes, which often results in same type raw material sources clustering 

together on the landscape. One key measure that is collected in the model to 

evaluate the effect that spatial clustering has is time without raw material in 

toolkit. Another limitation of the original neutral model that is addressed is the 

unrealistic assumption that there are 5000 unique raw material types distributed 

across the landscape. It is more realistic that 1-25 raw material types are 

distributed among 5000 sources, which in turn are distributed across the landscape 

according to geological structures and geophysical processes. 

 

Emergence: What key results or outputs of the model are modeled as 

emerging from the adaptive traits, or behaviors, of individuals? 

 

Distribution of frequencies of distances of material as part of the toolkit compared 

to the  source of the material. This is an indication how far material may travel. 

Distribution of richness of material sources in the toolbox. Time without raw 

material in toolkit. 

 

 Adaptation: What adaptive traits do the individuals have? What rules do they 

 have for making decisions or changing behavior in response to changes in 

 themselves or their environment? 

 

Agent moves either in random, wiggle, or seeking behavior and do not learn, 

adapt or evolve. 

 

 Objectives: If adaptive traits explicitly act to increase some measure of the 

 individual’s success at meeting some objective, what exactly is that objective 

 and how is it measured? 

 

 There are no adaptive traits. 

 

Learning: Many individuals or agents (but also organizations and institutions) 

change their adaptive traits over time as a consequence of their experience? 

If so, how? 

 

 The agent does not learn. 

 

Prediction: Prediction is fundamental to successful decision-making; if an 

agent’s adaptive traits or learning procedures are based on estimating future 

consequences  of decisions, how do agents predict the future conditions (either 

environmental or internal) they will experience? 

 

 The agent does not predict. 
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 Sensing: What internal and environmental state variables are individuals 

 assumed to sense and consider in their decisions? 

 

Agent can sense whether there are material source on the cell it occupies. The 

agent can sense the amount and distribution of materials in its toolkit. If threshold 

value is set to <0 and the forager has a quantity of raw material in toolkit equal to 

that value the forager can sense which raw material source is closest and will 

directly move there. 

 

Interaction: What kinds of interactions among agents are assumed? Are there 

direct interactions in which individuals encounter and affect others, or are 

interactions indirect, e.g., via competition for a mediating resource? 

 

 There is only one agent. 

 

Stochasticity: What processes are modeled by assuming they are random or 

partly  random? 

 

When the movement is set to random the agent moves randomly. Decisions on 

use of material are done randomly. When the pr value is set to 1 raw materials are 

distributed randomly on the landscape. 

 

Collectives: Do the individuals form or belong to aggregations that affect, and 

are affected by, the individuals? 

 

 No 

 

Observation: What data are collected from the ABM for testing, 

understanding, and analyzing it, and how and when are they collected? 

 

Distribution of distance of material traveled and richness of material sources in 

the toolbox. Time without raw material in toolkit. 

 

Details: 

 

 Initialization: What is the initial state of the model world, i.e., at time t = 0 of a 

 simulation run? 

 

 Table D1 provides the parameters as used in the model. 
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Table D1: Spatial clustering model variables/parameters 

Variable description Variable Units 
Model 

Variables/Range 

Simulated world size in X dimension X grid cells 500 

Simulated world size in Y dimension Y grid cells 500 

x-coordinate position of raw material/foragers x grid cells 

Sources locations 

depending on 
prandom function; 

Forager randomly 

placed 

y-coordinate position of raw material/foragers y grid cells 

Sources locations 

depending on 

prandom function; 
Forager randomly 

placed 

Number of agents moving about the landscape fixed arbitrary units 1 

Toolkit size space 100 - sumv arbitrary units 0-100 

Type of movement strategy randomwalk arbitrary units 
equalchance; 

wiggling 

Threshold of seeking more raw materials threshold arbitrary units 0-100 

Raw material scenario nrmaterials arbitrary units 5000; 20 

Source distribution on the landscape distribution arbitrary units random; clustered 

Probability of clustering of source locations prandom arbitrary units 0-1.000 

Number of unique raw material sources materialsources arbitrary units 0-5000 

Raw material type/source label if nrmaterials=20 materialtype materialtype 0, 1, 2…20 

Raw material unit from any source i arbitrary units 1 

Quantity of material from source i in mobile toolkit vi arbitrary units 
Minimum = 0; 

maximum = 100 

Total material of all types in mobile tool kit sumv arbitrary units 
Minimum = 0; 

maximum = 100 

Probability of discarding material of source i in toolkit vi /Σi vi arbitrary units 0-100 

Probability of discarding materialtype in toolkit, min and max amount ∑materialtype / sumv arbitrary units 
Minimum = 0; 

maximum = 100 

Maximum forager move length at each time step l grid cells 1 

Distance traveled in N time steps; per maximum move length N grid cells 1 

  

Input data: Does the model use input from external sources such as data files 

or other models to represent processes that change over time? 

 

 No 
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Submodels: What, in detail, are the submodels that represent the processes 

listed  in ‘Process overview and scheduling’? What are the model 

parameters, their dimensions, and reference values? How were submodels 

designed or chosen, and how were they parameterized and then tested? 

 

The mobile toolkit is simulated as a vector vi where each element represents the 

amount of stone raw material from individual sources in the toolkit of unique type 

i and by raw material types denoted by materialtype. The maximum size of the 

toolkit is 100, and the sum of the elements of vi (Σi vi) has to be smaller or equal 

to 100. The amount of material added to the toolbox when a material source is 

encountered is 100 - Σi vi, meaning that the toolbox is filled up to the maximum 

capacity. Every time step one unit of material is consumed from the tool box. The 

probability that material source i is consumed is vi /Σi vi, meaning that it is 

relative to the frequency of available materials. Material sources do not deplete in 

the environment during the duration of the simulation. If threshold is set to <0 the 

forager will seek to closest raw material location if the quantity of raw material in 

toolkit is equal to the threshold value. 

 

Model implementation 

 

The model is implemented in Netlogo 5.3.1. 
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APPENDIX E 

 

E4 CODE – FLAKING EXPERIMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



891 
 

 

[E4] 

Filename=MeasurementData.mdb 

Delaytime=1 

Table=MeasurementData 

Re-edit=Yes 

BackColor=12038291 

  

[FlakingExperimentSample] 

Type=Menu 

Prompt=Is the sample from flaking experiment? 

Menu=True False 

Length=10 

  

[Block] 

Type=Text 

Prompt=Enter Block Name or Unknown: 

Length=10 

  

[SampleType] 

Type=Menu 

Prompt=What is sample type? 

Menu=AG WG H UT 

Length=25 

Comment=AG, Against the grain/against the banding 

Comment=WG, With the grain/Planar with banding 

Comment=H, Heat-treated 

Comment=UT, Untreated 

  

[RawMaterial] 

Type=Menu 

Prompt=Select the Raw Material: 

Menu=Quartzite Silcrete 

Length=25 

Carry=True 

  

[SampleNumber] 

Type=Text 

Prompt=Enter Sample Number: 

Length=10 

Comment=D11-1-98A-3, or Q1-WG etc 

  

[SubSampleLetter] 

Type=Text 

Prompt=Enter SubSample letter: 

Length=10 
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Comment=a,b,c and so on 

  

[UniqueID] 

Type=Numeric 

Prompt=Unique Value for each sample 

Length=10 

Unique=True 

  

[LithicArtifactClass] 

Type=Menu 

Prompt=Select the Lithic Artifact Class: 

Menu=CompFlake FlakeFrag BladeBLadeFrag Shatter Core Waste 

Length=25 

  

[UnretouchedPoint?] 

Type=Menu 

Prompt=Is this piece a Point or Point Fragment?: 

Menu=No Yes Indeterminate 

Length=15 

Condition1=LithicArtifactClass CompFlake FlakeFrag BladeBladeFrag 

  

[Completeness] 

Type=Menu 

Prompt=Enter the Portion of the Artifact that is Present. 

Menu=Complete Proximal Fragment Distal Mesial LeftLateral RightLateral ProxLeftLat 

ProxRightLat DistalLeftLat DistalRightLat MesialLeftLat MesialRightLat 

Length=25 

Condition1=LithicArtifactClass NOT CompFlake Shatter Core Waste 

  

[CortexArea] 

Type=Menu 

Prompt=Enter the Estimated Cortex Area of DORSAL surface, or the entire surface of 

Shatter or core 

Menu=0% 1-20% 21-40% 41-60% 61-80% 81-99% 100% 

Length=10 

Condition1=LithicArtifactClass NOT Waste 

  

[PlatformCortex] 

Type=Menu 

Prompt=Is there Platform Cortex?: 

Menu=No YesComplete YesPartial 

Length=20 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 
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[CortexChatterMarks] 

Type=Menu 

Prompt=Select whether there are Chatter Marks present, or not: 

Menu=No Yes Indeterminate 

Length=20 

Condition1=CortexArea NOT 0% OR 

Condition2=PlatformCortex YesComplete YesPartial 

  

[CortexRoundness] 

Type=Menu 

Prompt=Select the Roundness of the Cortex Edges: 

Menu=Angular SubangularSubrounded Rounded Indeterminate Cut 

Length=20 

Condition1=CortexArea NOT 0% OR 

Condition2=PlatformCortex YesComplete YesPartial 

  

[CortexLocation] 

Type=Menu 

Prompt=Select where the Majority of Cortex is Located: 

Menu=WholeDorsal Proximal Distal Mesial LeftLateral RightLateral ProxLeftLat 

ProxRightLat DistalLeftLat DistalRightLat MesialLeftLat MesialRightLat Indeterminate 

Length=20 

Condition1=CortexArea NOT 0% AND 

Condition2=LithicArtifactClass NOT Shatter Core Waste 

  

[VisibleLuster] 

Type=Menu 

Prompt=Is there a Visible Heat-treatment Luster?: 

Menu=Yes No Indeterminate 

Length=20 

Condition1=RawMaterial Silcrete 

  

[PreHeatArea] 

Type=Menu 

Prompt=Enter the Estimated PreHeatTreatment Area of DORSAL surface, or the entire 

surface of Shatter 

Menu=0% 1-20% 21-40% 41-60% 61-80% 81-99% 100% 

Length=10 

Condition1=RawMaterial Silcrete AND 

Condition2=VisibleLuster Yes 

  

[PlatformPreHeatSurface] 

Type=Menu 

Prompt=Is there a PreHeatTreatment Surface on the Platform?: 

Menu=No YesComplete YesPartial 

Length=20 
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Condition1=RawMaterial Silcrete AND 

Condition2=VisibleLuster Yes AND 

Condition3=LithicArtifactClass CompFlake OR 

Condition4=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[PreHeatTreatmentLocation] 

Type=Menu 

Prompt=Select where the Majority of PreHeatTreatment Surface is Located: 

Menu=WholeDorsal Proximal Distal Mesial LeftLateral RightLateral ProxLeftLat 

ProxRightLat DistalLeftLat DistalRightLat MesialLeftLat MesialRightLat Indeterminate 

Length=20 

Condition1=RawMaterial Silcrete AND 

Condition2=VisibleLuster Yes AND 

Condition3=PreHeatArea NOT 0% AND 

Condition4=LithicArtifactClass NOT Shatter Core HammerManuportGrindstone 

  

[DorsalScarCount] 

Type=Numeric 

Prompt=Enter the Number of Dorsal Scars Greater than 6mm: 

Length=5 

Condition1=LithicArtifactClass NOT Shatter Core Waste Extra AND 

Condition2=CortexArea NOT 100% 

  

[DorsalDirection] 

Type=Menu 

Prompt=Enter the Dorsal Scar Directionality: 

Menu=Radial Subradial Bidirectional Unidirectional BiOrUni Indeterminate 

Length=25 

Condition1=LithicArtifactClass NOT Shatter Core Waste Extra AND 

Condition2=CortexArea NOT 100% AND 

Condition3=DorsalScarCount NOT 0 1 

  

[ArisOrientation] 

Type=Menu 

Prompt=Enter the Aris (Scar Ridge) Orientation: 

Menu=Parallel Convergent Indeterminate 

Length=13 

Condition1=DorsalDirection Bidirectional Unidirectional BiOrUni AND 

Condition2=CortexArea NOT 100% AND 

Condition3=DorsalScarCount NOT 0 1 2 

  

[ProfileShape] 

Type=Menu 

Prompt=Enter the Profile Shape: 

Menu=Flat Curved Twisted Indeterminate 
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Length=13 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLateral 

ProxRightLat 

  

[Mass] 

Type=Numeric 

Prompt=Enter the Mass (g): 

Length=10 

  

[MaxLength] 

Type=Instrument 

Prompt=Enter the Maximum Length (mm): 

Length=10 

Condition1=LithicArtifactClass NOT Waste 

  

[MaxWidth] 

Type=Instrument 

Prompt=Enter the Maximum Width (mm): 

Length=10 

Condition1=LithicArtifactClass NOT Waste 

  

[TechLength] 

Type=Instrument 

Prompt=Enter the Technological Length (mm): 

Length=10 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete LeftLateral RightLateral 

  

[MaxTechWidth] 

Type=Instrument 

Prompt=Enter the Max Technological Width (mm): 

Length=10 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal Mesial 

  

[MaxThickness] 

Type=Instrument 

Prompt=Enter the Max Thickness (mm): 

Length=10 

Condition1=LithicArtifactClass NOT Waste 

  

[MidThickness] 

Type=Instrument 

Prompt=Enter the Thickness at the Midpoint (mm): 

Length=10 
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Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete LeftLateral RightLateral 

  

[PlatformWidth] 

Type=Instrument 

Prompt=Enter Width of the Platform (mm): 

Length=10 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal 

  

[PlatformThickness] 

Type=Instrument 

Prompt=Enter Thickness of the Platform (mm): 

Length=10 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[ExteriorPlatAngle] 

Type=Numeric 

Prompt=Enter Exterior Platform Angle (degrees): 

Length=10 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[FlakeTermination] 

Type=Menu 

Prompt=Select the Termination Type: 

Menu=Feather Hinge Step HingeOrStep PartialHingeOrStep Overshoot Indeterminate 

Length=25 

Comment=Feather,acute angle, sharp 

Comment=Hinge,curved up towards the dorsal surface 

Comment=Step,abrupt right angle break 

Comment=HingeOrStep,difficult to classify as Hinge or Step, but one of the two 

Comment=PartialHingeOrStep,in profile, termination hinged or stepped on the ventral 

side and is feathered on the dorsal side 

Comment=Overshoot,preserves core relict edge or opposite platform, plunging or not 

plunging 

Comment=Indeterminate,difficult to classify or absent 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Distal DistalLeftLat DistalRightLat 

  

[PlatformPrep] 

Type=Menu 

Prompt=Select the Platform Preparation: 
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Menu=NotPrepared FacetedWithBulb ResidualFacetWithoutBulb Indeterminate 

Length=35 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat AND 

Condition3=PlatFormCortex NOT YesComplete 

  

[NumberPlatformScars] 

Type=Text 

Prompt=Enter the Number of Platform Scars (greater than 1 mm): 

Length=4 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat AND 

Condition3=PlatformPrep NOT NotPrepared Indeterminate 

  

[DorsalPrep] 

Type=Menu 

Prompt=Select the Type of DORSAL Preparation: 

Menu=None HingedRemovals LongFeatherRemovals LateralNotching Indeterminate 

Length=25 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[PlatAbrasion] 

Type=Menu 

Prompt=Is there Platform Abrasion visible?: 

Menu=No Yes Indeterminate 

Length=15 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[FractureInitiationPoint] 

Type=Menu 

Prompt=Where is the Fracture Initiation Point Located?: 

Menu=NotExpressed Centered Lateral Indeterminate 

Length=15 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal 

  

[PlatformDelineation] 

Type=Menu 

Prompt=Select the Platform Delineation with the Ventral Surface?: 
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Menu=RegCurve OverhangCurveNoBreak OverhangCurveBreak Double Rectillinear 

Indeterminate 

Length=20 

Comment=RegCurve,platform on same plane as flake and bulb 

Comment=OverhangCurveNoBreak,platform plane is more dorsal than rest of flake, 

delineation between platform and ventral surface is smooth 

Comment=OverhangCurveBreak,delineation has a bump that sticks out where percussion 

point is 

Comment=Double,there are two obvious percussion points 

Comment=Rectillinear,delineation is not curved, but straight line 

Comment=Indeterminate,difficult to classify 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[FissuringOnPlatform] 

Type=Menu 

Prompt=Select the Type of Fissuring, if any, on the Platform at the Percussion Point: 

Menu=None CompleteFissure PartialFissure Indeterminate 

Length=20 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[MarksVentralSurface] 

Type=Menu 

Prompt=Select the Type of Marks on the Ventral Surface, if any: 

Menu=None RipplesUndulations ShatteredBulb HertzianCone Crushing Indeterminate 

Length=18 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[Lipping] 

Type=Menu 

Prompt=Select the Size of Lip, if present: 

Menu=NoLip SmallOrPartialLip LargeContinuousLip Indeterminate 

Length=18 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[Bulb] 

Type=Menu 

Prompt=Is there a Bulb Visible?: 

Menu=No Yes Indeterminate 
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Length=13 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[BulbLength] 

Type=Instrument 

Prompt=Enter the Length of the Bulb (mm): 

Length=10 

Condition1=Bulb Yes 

  

[PlatformMorphology] 

Type=Menu 

Prompt=Select Platform Morphology: 

Menu=NarrowLinear QuadrangularTrapezoid OvularOrTriangular NarrowCurved 

Punctiform ChapeauDeGendarme Indeterminate 

Length=21 

Condition1=LithicArtifactClass CompFlake OR 

Condition2=Completeness Complete Proximal LeftLateral RightLateral ProxLeftLat 

ProxRightLat 

  

[BandingOrientation] 

Type=Menu 

Prompt=How is the Axis of Percussion Oriented with respect to Visible Banding, if 

present? 

Menu=NoBandingVisible With Through Oblique Against Indeterminate 

Length=16 

Comment=NoBandingVisible,NoBandingVisible - no bands are visible 

Comment=With,With - bands will be visible on dorsal and ventral surfaces and parallel to 

flaking axis 

Comment=Through,Through - bands are mainly visible in side view and run parallel to 

the flaking axis 

Comment=Oblique,Oblique - bands are visible on the dorsal and ventral surfaces and are 

diagonal to the flaking axis 

Comment=Against,Against - bands are visible on dorsal and lateral surfaces and are 

perpendicular to flaking axis 

Comment=Indeterminate,Indeterminate - banding visible but difficult to interpret 

relationship to flaking axis 

Condition1=RawMaterial Quartzite AND 

Condition2=LithicArtifactClass CompFlake OR 

Condition3=Completeness Complete Proximal Distal LeftLateral RightLateral 

ProxLeftLat ProxRightLat DistalLeftLat DistalRightLat MesialLeftLat MesialRightLat 

  

[Comments] 

Type=Text 

Prompt=Enter Other Notes: 
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Length=50 

  

[KyleComments] 

Type=Text 

Prompt=Enter Kyle Text from artifacts 

Length=10 

  

[CuttingEdgeLength] 

Type=Numeric 

Prompt=Enter the Cutting Edge Length (mm): 

Length=10 

Condition1=LithicArtifactClass Not Core Waste 


