
Consensus Algorithms and Distributed Structure Estimation in Wireless Sensor
Networks

by

Sai Zhang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2017 by the
Graduate Supervisory Committee:

Cihan Tepedelenlioglu, Co-Chair
Andreas Spanias, Co-Chair

Kostas Tsakalis
Daniel Bliss

ARIZONA STATE UNIVERSITY

May 2017

ABSTRACT

Distributed wireless sensor networks (WSNs) have attracted researchers recently

due to their advantages such as low power consumption, scalability and robustness to

link failures. In sensor networks with no fusion center, consensus is a process where

all the sensors in the network achieve global agreement using only local transmissions.

In this dissertation, several consensus and consensus-based algorithms in WSNs are

studied.

Firstly, a distributed consensus algorithm for estimating the maximum and min-

imum value of the initial measurements in a sensor network in the presence of com-

munication noise is proposed. In the proposed algorithm, a soft-max approximation

together with a non-linear average consensus algorithm is used. A design parameter

controls the trade-off between the soft-max error and convergence speed. An anal-

ysis of this trade-off gives guidelines towards how to choose the design parameter

for the max estimate. It is also shown that if some prior knowledge of the initial

measurements is available, the consensus process can be accelerated.

Secondly, a distributed system size estimation algorithm is proposed. The pro-

posed algorithm is based on distributed average consensus and L2 norm estimation.

Different sources of error are explicitly discussed, and the distribution of the final esti-

mate is derived. The CRBs for system size estimator with average and max consensus

strategies are also considered, and different consensus based system size estimation

approaches are compared.

Then, a consensus-based network center and radius estimation algorithm is de-

scribed. The center localization problem is formulated as a convex optimization

problem with a summation form by using soft-max approximation with exponential

functions. Distributed optimization methods such as stochastic gradient descent and

diffusion adaptation are used to estimate the center. Then, max consensus is used to

i

compute the radius of the network area.

Finally, two average consensus based distributed estimation algorithms are in-

troduced: distributed degree distribution estimation algorithm and algorithm for

tracking the dynamics of the desired parameter. Simulation results for all proposed

algorithms are provided.

ii

To My Family.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors, Dr. Cihan Tepedelen-

lioglu and Dr. Andreas Spanias for the continuous support of my Ph.D studies and

related research, for their motivation, encouragement and constant support. Their

guidance helped me in shaping this research work. Special thanks to their enthusiasm,

extraordinary patience and serious attitude towards research, which proved to be an

immense help to me, all the time. I could not have imagined having better advisors

and mentors for my Ph.D.

Besides my advisors, I am grateful to Dr. Konstantinos Tsakalis and Dr. Daniel

Bliss for their precious time in serving on my thesis committee member and for

their insightful comments and valuable feedback. I would like to thank Dr. Mahesh

Banavar for his advice and many discussion. Without his precious support it would

not be possible to conduct this research. I would like to extend my appreciation to the

School of Electrical, Computer and Energy Engineering at Arizona State University

for providing me this opportunity to pursue my Ph.D degree.

I would like to thank all my friends and current and former colleagues in the Sen-

SIP center, Sivaraman Dasarathan, Jongmin Lee, Xue Zhang, Xiaofeng Li, Ruochen

Zeng, Ahmed Ewaisha, Jayaraman Jayaraman Thiagarajan, Karthikeyan Natesan

Ramamurthy, Huan Song, Jie Fan, David Ramirez, Henry Braun, Abhinav Dixit,

Uday Shankar and Sunil Rao for their kindness, help and support.

Most importantly , I would like to thank my parents, for their unconditional love

and support, without whom, I could not have completed this work.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Wireless Sensor Networks . 1

1.1.1 Wireless Sensor Networks with Fusion Center 1

1.1.2 Wireless Sensor Network with no Fusion Center 2

1.1.3 Applications . 3

1.2 Consensus in Wireless Sensor Networks . 4

1.2.1 Average Consensus . 5

1.2.2 Max Consensus . 7

1.3 Contributions of the Dissertation . 8

1.4 Outline of the Dissertation . 11

2 MAX CONSENSUS USING SOFT-MAX. 13

2.1 System Model . 14

2.1.1 Graph Representation . 14

2.1.2 Assumptions on Wireless Sensor Network Model 14

2.2 Review of Average Consensus . 16

2.3 Max Consensus using the Soft-max . 18

2.3.1 Problem Statement . 18

2.3.2 Proof of Convergence . 21

2.4 Analysis of the Max Consensus Algorithm . 22

2.4.1 Sources of Error . 22

2.4.2 Bound on Convergence Time. 25

2.5 Shifted Non-linear Bounded Function Used in Max Consensus. 28

v

CHAPTER Page

2.6 Simulations . 29

2.6.1 Performance of Max Consensus . 30

2.6.2 Performance of Max Consensus with Shifted Non-linear Bounded

Function . 32

3 DISTRIBUTED NODE COUNTING IN WIRELESS SENSOR NET-

WORKS . 34

3.1 System Model . 35

3.2 Node Counting using Average Consensus . 35

3.2.1 Problem Statement . 35

3.2.2 Node Counting Algorithm . 36

3.2.3 Special Case: Equal xi . 39

3.3 Performance Analysis . 39

3.3.1 Sources of Error . 40

3.3.2 Distribution of N̂i . 44

3.3.3 Fisher Information . 48

3.4 Discussion: Fisher Information for Consensus Based Distributed

System Size Estimation . 51

3.4.1 CRB for System Size Estimation in the Absence of Noise . . . 52

3.4.2 CRB for System Size Estimation in the Presence of Noise . . . 54

3.5 Simulation Results . 56

3.5.1 Convergence of the Algorithm. 56

3.5.2 PDF of N̂ . 58

3.5.3 Special Initial Values xi as in (3.29) . 61

3.5.4 Small Network with N = 4 . 62

vi

CHAPTER Page

4 DISTRIBUTED NETWORK CENTER AND RADIUS ESTIMATION . . 64

4.1 System Model . 64

4.2 Review of Mathematical Background . 65

4.2.1 Review of Soft-max Approximation. 65

4.2.2 Review of Distributed Optimization . 66

4.2.3 Review of Max Consensus . 67

4.3 Estimation of Network Center and Radius . 67

4.3.1 Problem Statement . 67

4.3.2 Distributed Center Estimation . 69

4.3.3 Distributed Radius Estimation . 72

4.4 Discussion . 73

4.4.1 Steady State Error for Center Estimation 73

4.4.2 Convergence Speed for Center and Radius Estimation 75

4.5 Simulations . 76

5 CONSENSUS BASED DISTRIBUTED ESTIMATION ALGORITHMS . 82

5.1 Distributed Estimation of the Degree Distribution in Wireless Sen-

sor Networks . 82

5.1.1 Estimation of Degree Distribution . 83

5.1.2 Estimation of Degree Matrix . 85

5.1.3 Performance Analysis . 85

5.1.4 Discussions . 87

5.1.5 Simulations . 88

5.2 Running Consensus Over Distributed Networks: Non-Stationary

Data and Tracking Ability . 92

vii

CHAPTER Page

5.2.1 System Model . 92

5.2.2 Running Consensus with Non-Stationary Data 93

5.2.3 Simulations . 94

6 FUTURE WORK . 98

6.1 Distributed Function Computation in WSNs . 98

6.2 Distributed Network Structure Estimation . 100

7 CONCLUSIONS. 103

REFERENCES . 105

APPENDIX

A PROOF OF OPTIMAL ASYMPTOTIC COVARIANCE MATRIX FOR

MAX CONSENSUS IN CHAPTER 2 . 113

B PROOF OF THEOREM 5 . 116

C PROOF OF THEOREM 6 . 118

D PROOF OF THEOREM 8 . 120

E PROOF OF CONVEXITY FOR OBJECTIVE FUNCTION IN DIS-

TRIBUTED CENTER ESTIMATION IN CHAPTER 4 122

viii

LIST OF FIGURES

Figure Page

1.1 An Example of Wireless Sensor Network with A Fusion Center. 2

1.2 An Example of Distributed Wireless Sensor Network with No Fusion

Center. 3

2.1 Bounded Transmission Functions. 19

2.2 Graph Representation Of The Sensor Network, N = 75. 29

2.3 Entries of Traditional Max Consensus Result Versus Iterations t (Keep

the Largest Measurement at Each Iteration). 30

2.4 Entries of the Consensus Soft Max Result Versus Iterations t, β = 5,

ω = 0.015, h(x) =
√
γ tanh(ωx), α(t)= 4.4473

t+1
, a∗ ≈ 4.4473. 30

2.5 Entries of the Consensus Soft Max Result Versus Iterations t, β = 7,

ω = 0.015, h(x) =
√
γ tanh(ωx), α(t)= 61.7513

t+1
, a∗ ≈ 61.7513. 30

2.6 Entries of the Consensus Soft Max Result Versus Iterations t, β=30,

ω=10−11, h(x)=
√
γ tanh(ωx), α(t)= 5.03×1010

t+1
, a∗≈5.03× 1010. 31

2.7 Entries of the Consensus Soft Max Result Versus Iterations t, β = 7,

ω = 0.01, N = 75, h(x) =
√
γ tanh(ωx), α(t) = 12/(t+1). 33

2.8 Entries of the Consensus Soft Max Result Versus Iterations t, β = 7,

ω = 0.01, N = 75, h(x) =
√
γ tanh(ω(x − T)), T = 138.1045, α(t) =

12/(t+1). 33

3.1 Simulation Result for Uniform + Maximum + ML Algorithm in [1]:

Node Counting Result Versus Number of Iterations t. σ2
n = 0.001 and

K = 1000. 58

3.2 Simulation Result for Bernoulli Trail Algorithm in [2]: Node Counting

Result at Node 1 Versus Number of Iterations t. σ2
n = 1 and K = 1000. 58

ix

Figure Page

3.3 Entries of Node Counting Result Versus Number of Iterations t. xi(0) ∼

N (0, 25), σ2
n = 1 and r

(k)
i Bernoulli Distributed with ±1. α(t) =

0.1/(t+ 1) and K = 1000. 58

3.4 Entries of Node Counting Result Versus Number of Iterations t. xi(0) =

a = 5, σ2
n = 1 and r

(k)
i Bernoulli Distributed with±1. α(t) = 0.1/(t+1)

and K = 1000. 59

3.5 Entries of Node Counting Result Versus Number of Iterations t. xi(0) =

a = 5, σ2
n = 1 and r

(k)
i ∼ N (0, 1). α(t) = 0.1/(t+ 1) and K = 1000. 59

3.6 MSE Versus t, Noisy σ2
n = 1, K = 1000. 59

3.7 PDF for N̂ with Different K Values, SNR = 13.98dB, α(t) = 0.1/t. 60

3.8 PDF for N̂ with Different SNR Values, K = 100, α(t) = 0.1/t. 60

3.9 N̂(t) at Different Nodes, K = 1000, r
(k)
i Bernoulli Distributed. 61

3.10 N̂(t) at Different Nodes, K = 1000, r
(k)
i Gaussian Distributed. 61

3.11 MSE Versus t (4 Nodes Network with Star Topology), x1 = 5, xi 6=1 = 0,

σ2
n = 0 and K = 1000. 62

3.12 MSE versus t (4 Nodes Network with Star Topology), Noisy σ2
n =

1, K = 1000. 63

4.1 A Distributed Network (2-D) with N = 6 Nodes with Network Center

at the Origin and Radius 1. 65

4.2 Graph Representation of the Sensor Network, N = 6. 78

4.3 Estimate of the x Coordinate Value of the Center, x
(t)
i Versus Iteration

t Using Algorithm 1, η = 10−4 and Starting Point x(0) = 0.3. 78

4.4 Estimate of the y Coordinate Value of the Center, y
(t)
i Versus Iteration

t Using Algorithm 1, η = 10−4 and Starting Point y(0) = 0.8. 78

x

Figure Page

4.5 Error Versus t at Node 1 with the Algorithm 1, Where O(xO, yO) is

the True Center and xO = 0, yO = 0. 79

4.6 Estimate of the x Coordinate Value of the Center, x
(t)
i Versus Itera-

tion t Using Diffusion Adaptation, η = 10−4 and Starting Point to be

Uniformly Distributed U(−0.5, 0.5). 79

4.7 Estimate of the y Coordinate Value of the Center, y
(t)
i Versus Itera-

tion t Using Diffusion Adaptation, η = 10−4 and Starting Point to be

Uniformly Distributed U(−0.5, 0.5). 79

4.8 Average Error Versus t Using Diffusion Adaptation, Where O(xO, yO)

is the True Center and xO = 0, yO = 0. 80

4.9 Radius Estimate Versus t Using Max Consensus in Section 4.3.3. The

Initial Value at Node i is Set to be the Distance Between the Estimated

Center and Its Own Location. 80

4.10 Estimated Network Area at Node 1 at t = 5000. 81

5.1 True Degree Distribution. 89

5.2 Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the

Absence of Noise, σ2
n = 0 and α(t) = 0.1/t. 90

5.3 Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the

Presence of Noise, σ2
n = 0.1 and α(t) = 0.1/t. 90

5.4 Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the

Presence of Noise, σ2
n = 0.01 and α(t) = 0.1/t. 90

5.5 Error Versus t. 91

5.6 Simulation Results for Post Processing as in Equation (5.9): Error

Versus t. 91

xi

Figure Page

5.7 Degree Distribution Estimation at Node 1 (in the Presence of Noise

and K = 40 . 91

5.8 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = 19) . 95

5.9 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = 99) . 95

5.10 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = t) . 95

5.11 Entries of Estimation Result Versus Iteration Time t (Using Diffusion

LMS in [3] with µ = 0.01 and uk,t = 1). 96

5.12 Entries of Estimation Result Versus Iteration Time t (Using Diffusion

LMS in [3] with µ = 0.05 and uk,t = 1). 96

5.13 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = 19) . 96

5.14 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = 99) . 97

5.15 Entries of Estimation Result Versus Iteration Time t (Using Running

Consensus with k = t) . 97

xii

Chapter 1

INTRODUCTION

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a group of specialized spatially distributed

sensors used to monitor and record quantities, such as temperature, pressure, speed,

chemical concentration, pollutant levels and so on [4–6]. Sensors in the wireless

sensor networks are usually small, inexpensive, memory-limited, lightweight, power

efficient and portable devices [4]. Therefore, wireless sensor networks usually have

many advantages such as scalability and low power consumption.

The development of wireless sensor networks was motivated by military appli-

cations such as battlefield surveillance. Currently, sensor networks are used widely

in many industrial and consumer applications such as environmental and habitat

monitoring, disaster management, and emergency response applications [7].

1.1.1 Wireless Sensor Networks with Fusion Center

In a wireless sensor network with a fusion center, the spatially distributed sensor

nodes are used to monitor physical or environmental conditions and pass their data

through the network to the fusion center [5, 6, 8]. An example of the wireless sensor

network with fusion center is given in Figure 1.1.

In a centralized wireless sensor network, the fusion center has all the data from

sensor nodes. Therefore, functions of the data or measurements from the sensor nodes,

such as the average, the maximum or the minimum of the initial measurements can

be easily computed at the fusion center. However, there are also disadvantages of

1

using a centralized wireless sensor network. If a centralized architecture is used,

the entire network will collapse if the fusion center crashes. Moreover, centralized

wireless sensor networks usually require a large bandwidth since the sensor nodes in

the network need to communicate with a common fusion center [9].

Figure 1.1: An Example of Wireless Sensor Network with A Fusion Center.

1.1.2 Wireless Sensor Network with no Fusion Center

In a distributed network without the fusion center, sensor nodes communicate and

exchange data with each other. Usually it is assumed that there is a link between two

nodes if their physical distance is smaller than the communication radius and that two

nodes can communicate with each other if there is a link between them. An example

of the distributed wireless sensor network with no fusion center is given in Figure 1.2.

Wireless sensor network without a fusion center can function autonomously without

a central node controlling the entire network.

Compared to the centralized network, there are many advantages of using a dis-

tributed network without a fusion center: a distributed system is more scalable than

2

a centralized system with a fusion center and it is more robust to link failures. Since

the nodes in a decentralized network communicate only with their neighbors, the

sensors require low power [10–12].

However, there are also disadvantages. Function computation in distributed wire-

less sensor network is usually more complicated than in centralized network. For

example, system size estimation can easily be done in a centralized network by let-

ting each node transmit a fixed constant value to the fusion center, but the problem

is not straightforward in a network without a fusion center [9,13]. Moreover, conver-

gence of the states of nodes is slow in a distributed sensor network.

Figure 1.2: An Example of Distributed Wireless Sensor Network with No Fusion
Center.

1.1.3 Applications

Wireless sensor network is widely used in both military and industrial applications

[8, 14]. A comprehensive review of the wireless sensor network applications is given

in [8, 15].

3

In military applications, wireless sensor network is mainly used for tracking ene-

mies. In [16], based on collaborative signal process in WSNs, an approach for tracking

multiple targets is presented. Improved moving vehicle target classification in battle-

fields using WSNs is introduced in [17], where multimodal fusion in WSN is used.

Wireless sensor network is also widely used in industrial and commercial appli-

cations. For example, distributed sensing, detection and estimation applications can

be found in [18–22]. Sensors equipped with solar cells for environment protection are

mentioned in [8], sensor network can be used to protect the forest without human ac-

tion for months or even for years. WSN can be used in extreme environments [23–25],

for example near a volcano or a flood area, and can function autonomously without

manually control. WSNs can also be used in the area of health and medicine [8,26,27].

In a application named “Telemonitoring of Human Physiological”, WSN is used to

sense and store human physiological data, and the data is used to explore and diagnose

medical and health problems. The advantage of using a WSN in health applications

is that the sensors are usually small in size, therefore the sensor devises will not affect

the everyday lives of patients and allow doctors to identify symptoms earlier or even

in real time [28].

1.2 Consensus in Wireless Sensor Networks

The consensus problem has a long history in distributed computing and multi-

agent system [29–31]. In distributed wireless sensor networks, consensus is a process

where all the sensors in the network achieve global agreement using only local trans-

missions.

The problem of consensus in WSNs has attracted great interest among researchers

in recent years since it is useful in diverse applications, especially in computer science,

control and communication areas [32–35]. One of the most popular applications of

4

consensus is distributed sensor fusion in sensor networks [36]. Distributed average

consensus is used in [36] for distributed sensor fusion and the linear least-squares

estimator can be obtained at nodes in a distributed way by running average consensus.

Max consensus and average consensus can also be used to estimate the environmental

data, such as the average temperature or maximum pollution level, etc. In [37], max

consensus is used to compensate for clock drift and is used to time-synchronize wireless

sensor network nodes. A more comprehensive review of the consensus applications is

given in [30], where the applications, including synchronization of coupled oscillators

[38], flocking for mobile agents [39] and distributed formation control, are discussed.

In the following, two most of the widely used consensus approaches in WSNs are

introduced. A review of average consensus is given in Section 1.2.1 and max consensus

is described in Section 1.2.2.

1.2.1 Average Consensus

Average consensus is widely used and well studied in the literature [35, 40]. By

running the average consensus, the states of nodes converge to the average of the initial

values. In [35], a linear average consensus algorithm in the absence of communication

noise is introduced. At each iteration time, each node updates its state based on its

own state at a previous time and data from its neighbors. During the iterative update

step, received data is weighted with a constant weight and it is shown in [35] that the

convergence rate is related to the weight and the optimal weight matrix is calculated

by solving a convex optimization problem.

In [32], it is assumed that the topology of the network is changing over time

and an average consensus algorithm for switching topology is proposed. Delays in

the network are also considered. Convergence of algorithm is proved and it is shown

in [32] that the convergence speed is related to the algebraic connectivity of the graph.

5

Average consensus in the presence of communication noise and link failures is

considered in [34]. Two algorithms are provided: i) the first algorithm named A−ND

algorithm uses a decaying step size to control the effect of communication noise; and

ii) the second algorithm named A−NC algorithm uses the traditional constant weight

as in [35]. The iterative updating algorithm only runs for a fixed number of iterations,

and the algorithm is restarted and rerun for multiple times. Finally, the sample mean

of the results from multiple consensus runs is obtained as the final result.

A distributed nonlinear average consensus algorithm in the presence of commu-

nication noise is proposed in [41]. A nonlinear sigmoid function is used to bound

the transmit power and a decreasing step size is used to control the effect of com-

munication noise. It is shown in [41] that the nonlinear average consensus converges

slower than the linear average consensus, and there is a trade-off between the transmit

power and the convergence rate: larger transmit power results in a faster convergence.

In [42], average consensus with impulsive noise is considered and a receive nonlinear

function is used to ensure convergence of the algorithm.

The above mentioned works all assume that the sensors first sense the environment

and then average consensus is applied. In [43], it is assumed that the sensing and

averaging states are simultaneous and each node has a new measurement at each

iteration time. A time dependent step size is used and the average of all the initial

measurements can be obtained at nodes.

In [9], the problem of computing a certain function of the sensed data is considered.

The proposed algorithm is based on the average consensus algorithm and universal

approximation theorem. A pre-processing function is used to map the sensed data

at sensor nodes and a post-processing function is used to process the final average

consensus results at nodes. It is proved in [9] that any continuous function of the

initial sensed data can be approximated.

6

There are lots of works and applications using the results of average consensus

algorithms. For example, average consensus is used for system size estimation in [2].

In [44] and [45], average consensus is used to estimate the probability mass function

of the initial measurements.

1.2.2 Max Consensus

While average consensus is well studied in literature, estimating the average is

not always the goal. In various applications, estimating the maximum measured

value in the network is necessary [9], [46]. For example, spectrum sensing algorithms

that use the OR-rule for cognitive radio applications can be implemented using max

consensus [47]. Also, max consensus can be used to estimate the maximum and

minimum degrees of the network graph, which are useful in optimizing consensus

algorithms [35]. In [48], it is also mentioned that max consensus and min consensus

have a broad range of applications in distributed decision-making for multi-agent

systems. In [37], max consensus is used to compensate for clock drift and is used to

time-synchronize wireless sensor network nodes.

To deal with the problem of finding a unique leader in a group of agents in a

distributed way, a max consensus problem in a noise free environment is proposed

in [48], where each node in the network collects data from all of its neighbors and

finds the largest received data. At each iteration, after comparing its own state and

the largest received data, each node updates its state with the max of the two values.

Max consensus algorithms using a similar approach as in [48] are proposed in

[46, 49–52]. At each iteration time, every sensor in the network updates its state

with the largest measurements it has recovered so far. Reference [46] considers both

pairwise and broadcast communications, and analyzes the convergence time. A Max-

plus algebra is used in [50] to analyze the max consensus algorithm in a directed

7

graph. Time dependent graphs are considered in [51], where it is shown that strong

connectivity is required for reaching max consensus. A general class of algorithms

which can be used for both average and min consensus algorithms is also mentioned

in [49].

In [53], the authors extend the work of the weighted power mean algorithm orig-

inally proposed by [54] and show that this class of algorithms can also be used to

calculate the maximum of the initial measurements when the design parameter is

chosen to be infinity. A similar max approximation algorithm is also mentioned in [9]

to compute the maximum of the initial measurements in a centralized sensor network

with a fusion center. Reference [53] also describes another distributed coordination

algorithm for max consensus.

Rumor spreading algorithms mentioned in [55,56], while not designed specifically

for max consensus, may be helpful in max consensus problems. In this setup, one or

several nodes know that they have the maximum and can spread the rumor (max) to

all the other nodes. If nodes do not know whether they have the maximum or not,

a natural way to use rumor spreading for max consensus is to use the max operator.

Unfortunately, such an extension of rumor spreading is susceptible to noise on the

communication link.

1.3 Contributions of the Dissertation

Here we summarize the main contributions of this dissertation.

• We consider the distributed max consensus in the presence of communication

noise. The contribution is in both design and analysis of a max consensus al-

gorithm in wireless sensor networks in the presence of communication noise.

Regarding design, the soft maximum, together with non-linear bounded trans-

missions is proposed. In the proposed max consensus algorithm, every sensor

8

in the network evaluates a function of its initial observation and a non-linear

average consensus algorithm such as those in [41] can be used with a judicious

choice of a design parameter β. Regarding analysis, sources of errors in the

proposed max consensus algorithm are presented. We show that the parame-

ter of the soft-max function that makes the soft-max approximation accurate

also makes the convergence slow. The technical novelty in the analysis is the

analytical study of this trade-off. By bounding the sources of error, the needed

convergence time is calculated. We also introduce a shifted non-linear bounded

function for faster convergence. The analyses provide guidelines for nonlin-

ear transmission design, and algorithm parameter settings to trade-off between

estimation error and faster convergence.

• We design a fully distributed node counting algorithm for any connected dis-

tributed network with communication noise. The algorithm is based on L2

norm estimation and average consensus algorithm. A linear iterative average

consensus algorithm is used with pre-processed initial values. Then, by ap-

plying average consensus and post-processing, each node reaches consensus on

an estimate of number of nodes. The performance analysis in the presence of

noise is provided and shows that the choice of the initial values at nodes affects

performance. The sources of error between the states of nodes and the desired

convergence result is quantified. The Fisher information and distribution of

the estimate of N at each node is also derived. The analysis not only shows

how the performance of the algorithm is affected by the number of iterations,

noise variance, and structure of the graph, but also provides guidelines towards

choosing the design parameters. The algorithm is fully distributed and nodes

do not have to be labeled or know the structure of the graph.

9

• We consider system size estimation problem using different consensus algorithms

such as average consensus and max consensus. We derive the Fisher information

and Cramer-Rao bounds for consensus-based system size estimators consider-

ing different noise conditions. It is shown that in the absence of noise, the max

consensus approach results in a lower Cramer-Rao bound than the average con-

sensus approach. In the presence of communication noise, we demonstrate how

the signal-to-noise ratio affects the Fisher information and Cramer-Rao bounds.

The results not only present the best estimation variance the algorithms can

achieve, but also provide guidelines on how to choose consensus algorithms and

initial values for system size estimation.

• We describe the design of a fully distributed network area estimation algorithm.

In the proposed algorithm, we assume that nodes only know their own locations,

and the network center and radius are estimated. The main contribution is that

we formulate the network center estimation problem as an optimization prob-

lem. By rewriting the objective function using soft-max approximation, the

problem can be turned into a convex optimization problem with a summation

form. Therefore, distributed optimization methods such as stochastic gradient

descent and diffusion adaptation method can be used to solve the convex opti-

mization problem in a distributed manner. It can be shown that the algorithm

converges to an estimate of the center of the network. Then max consensus

is used to estimate the radius and the network area is obtained at all nodes .

The proposed algorithm is fully distributed and hence nodes do not need to be

labeled; two nodes communicate with each other only if they are neighbors.

• We describe the design of a fully distributed degree distribution estimation

algorithm in wireless sensor networks. We formulate the degree distribution

10

estimation problem as an empirical PMF estimation using consensus in the

presence of communication noise. The proposed algorithm is fully distributed:

sensor nodes do not need to be labeled and each node in the network only needs

to know its own degree. How the communication noise affects the performance

is also discussed. Finally, we show that the properties of degree distribution

can be used to improve the proposed algorithm.

• We design a running consensus algorithm for tracking the dynamic of a desired

estimator in a distributed wireless sensor network. A design parameter is used

to control the sensitivity of the algorithm, and there is a trade-off between the

sensitivity to the dynamic of the estimator and the convergence of the states

at nodes. We also compare the proposed algorithm with the existing diffusion

method.

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, a brief review

of the graph theory is provided. Later in the chapter, we describe the max consensus

using the soft-max approach. The estimation error and convergence speed of the

algorithm are also analyzed in Chapter 2. In Chapter 3, we focus on distributed

node counting to estimate the system size of the network (number of active nodes in

the network) in the presence of communication noise. Performance analysis of the

algorithm is given, and different sources of error are explicitly discussed. The overall

performance of the system size estimator is given at the end of Chapter 3, where the

distribution and the Fisher information of the estimator are calculated, and simula-

tions collaborating the analysis are given. In Chapter 4, a distributed network center

and radius estimation algorithm is introduced. Discussion on performance of the al-

11

gorithm and simulation results are given. In Chapter 5, two distributed estimation

algorithms based on consensus algorithms are presented. We first introduce a network

degree distribution estimation algorithm based on average consensus and probability

mass function estimation. Then, a running consensus algorithm for tracking the dy-

namics of a desired estimator is described. Finally, future work and conclusions are

given in Chapter 6 and 7.

12

Chapter 2

MAX CONSENSUS USING SOFT-MAX

In this chapter, a distributed consensus algorithm for estimating the maximum

value of the initial measurements in a sensor network with communication noise is

described. In the absence of communication noise, max estimation can be done by

updating the state value with the largest received measurements in every iteration at

each sensor. In the presence of communication noise, however, the maximum estimate

will incorrectly drift and the estimate at each sensor will diverge. As a result, a soft-

max approximation together with a non-linear consensus algorithm is used in our

work. Note that part of the works in this chapter can be found in our published

pepers in [57, 58].

The following of this chapter is organized as follows. First, a brief review of the

graph theory and assumptions on the system model is given in Section 2.1. A brief

review of the existing average consensus algorithms is given in Section 2.2. Then, in

Section 2.3, the proposed max consensus algorithm is described. The performance of

the algorithm is given in Section 2.4. Different sources of error are explicitly discussed

and we show that there is a trade-off between the soft-max error and convergence

speed. We also show that if some prior knowledge of the initial measurements is

available, the convergence speed can be made faster by using an optimal step size in

the iterative algorithm. In Section 2.5, a shifted non-linear bounded transmit function

is introduced for faster convergence when sensor nodes have some prior knowledge

of the initial measurements. Finally, simulation results corroborating the theory are

also provided in Section 2.6.

13

2.1 System Model

2.1.1 Graph Representation

The structure of a distributed wireless sensor network is modeled as an undirected

graph, G = (N,E) containing a set of nodes N = {1, . . . , N} and a set of edges E.

The set of neighbors of node i is denoted by Ni, i.e., Ni = {j|{i, j} ∈ E}. Two

nodes can communicate with each other only if they are neighbors. The number of

neighbors of node i is di. We use a degree matrix, D = diag[d1, d2, . . . , dN], which

is a diagonal matrix containing the degrees of each node. The connectivity structure

of the graph is characterized by the adjacency matrix A = {aij} such that aij = 1 if

{i, j} ∈ E and aij = 0 otherwise. The graph Laplacian of the network L is defined as

L = D −A. The Laplacian matrix is basically a matrix representation of a special

case of the discrete Laplacian operator, and many properties of graph can be inferred

from the Laplacian matrix, for example calculate the number of spanning trees for

a graph [59]. For a connected graph, the smallest eigenvalue of the graph Laplacian

is always zero, i.e., λ1(L) = 0 and λi(L) > 0, i = 2, · · · , N . The zero eigenvalue

λ1(L) = 0 corresponds to the eigenvector with all entries one, i.e. L1 = 0. The

performance of consensus algorithms often depends on λ2(L), which is also known as

the algebraic connectivity [32]. Algebraic connectivity of simple and weighted graphs

are discussed in [60], where several upper and lower bounds to λ2(L) are also given.

2.1.2 Assumptions on Wireless Sensor Network Model

In distributed sensor network applications and algorithms, the two most com-

monly used ways of dissemination of information are i) pairwise communications and

ii) broadcast communications. In pairwise communications, every node chooses a ran-

dom neighbor in each iteration and the two nodes exchange information [46, 55, 56].

14

Broadcast communication model is more commonly used when wireless channel is

considered [34, 35, 41]. In this dissertation, we assume broadcast communications,

where each node broadcasts its state to its neighbors at each iteration time.

Sensors may use either analog or digital methods to transmit information between

neighbors. Digital methods quantize the information, and use digital modulation

[61–64]. The bandwidth for the inter-sensor communication channel is directly related

to the number of quantization levels. The bandwidth is large when the number of

quantization levels is large. The analog transmission methods convey information

using amplitude or phase modulation. Analog modulation is also widely considered

in consensus algorithms and sensor network applications [31, 35, 65]. We assume

analog transmissions in this dissertation.

Noisy communications between nodes is considered in this manuscript. In wireless

sensor networks, noisy communication models are widely used in average consensus

problems, such as [34, 41, 66], and detection and estimation problem over multiple

access channel in the presence of communication noise is considered in [3]. Therefore

it is standard practice to adopt noisy communication models between sensor nodes.

To conclude, we have the following assumptions on the system model: i) nodes in

the distributed sensor network have their own initial measurements, and the nodes

do not know if they have the maximum; ii) the communications in the network are

synchronized, and at each iteration, nodes are broadcasting their state values to their

neighbors; iii) communications between nodes is analog following [31, 35, 65] and is

subject to additive noise; and iv) each node updates its state based on the received

data.

15

2.2 Review of Average Consensus

Distributed average consensus is well studied in literature. In [35], distributed

linear average consensus is considered. It is assumed that the communications be-

tween nodes is perfect without noise. To compute the average of initial state x(0) =

[x1(0) · · ·xN(0)]T , the iterative updating algorithm can be expressed as,

xi(t+ 1) =Wiixi(t) +
∑

j∈Ni

Wijxj(t), (2.1)

where i = 1, · · · , N is the node index and t = 0, 1, 2, · · · is the discrete time index.

W ∈ RN×N is the weight matrix andWij is its element in the ith row and jth column.

In the algorithm as in equation (2.1), node i is updating its state at time t+1 based

on its state in the previous time and data received from its neighbors, j ∈ Ni.

It is shown in [35] that convergence of the algorithm is guaranteed is the following

conditions are satisfied,

1TW = 1T, W1 = 1, (2.2)

ρ
(

W − 11T
)

< 1, (2.3)

where ρ(·) is the spectral radius of a matrix. The choice of the weight matrixW affects

the convergence speed of the algorithm and an optimalW for fastest distributed linear

averaging is calculated in [35] by solving an optimization problem.

In real world applications of wireless sensor networks, communications between

nodes is usually noisy. In [34], a linear iterative averaging algorithm in the presence

of communication noise is introduced. To compute the average of initial state x(0) =

[x1(0) · · ·xN(0)]T , the average consensus algorithm can be expressed as,

xi(t+ 1) = [1− α(t)di] xi(t) + α(t)
∑

j∈Ni

[xj(t) + nij(t)] , (2.4)

where i = 1, 2, . . . , N , and t = 0, 1, 2, . . ., is the time index. The value xi(t + 1) is

the state update of node i at time t + 1 and nij(t) is the noise associated with the

16

reception of xj(t). We assume nij(t) is Gaussian distributed, nij(t) ∼ N (0, σ2
n) and

is independent across time and space. α(t) is a positive weight factor to bound the

variance of communication noise, and is a decreasing function of t.

To ensure convergence, we make the following assumptions on the system model:

Assumptions:

A1) Connected Graph: The graph is connect, i.e. λ1(L) = 0 and λi(L) > 0, i =

2, · · · , N .

A2) Independent Noise Sequence: The reception noise is an independent se-

quence and we assume the noise is Gaussian distributed, i.e.

nij(t) ∼ N
(

0, σ2
n

)

, σ2
n ≤ ∞. (2.5)

A3) Persistence Condition: The positive weight step α(t) is a decreasing function

of t, and satisfies the conditions:

α(t) > 0,

∞
∑

t=0

α(t) = ∞,

∞
∑

t=0

α2(t) < ∞. (2.6)

The following theorem characterizes the convergence result of the average consen-

sus algorithm in the presence of ciommunciation noise:

Theorem 1. Assume assumptionsA1), A2) andA3) hold. Let x(t) = [x1(t) · · · xN (t)]T

be the vector containing the states of nodes at time t. Then by running the iterative

algorithm as in equation (2.4), there exists a real random variable θ such that,

Pr
[

lim
t→∞

x(t) = θ1
]

= 1. (2.7)

Let x̄ = 1
N

∑N
i=1 xi(0) be the average of the initial measurements. Define ξ = E[(θ −

x̄)2] be the mean square error. As t→ ∞, we have

ξ =

(

∑N
i=1 di

N2

)

σ2
n

∞
∑

t=0

α2(t). (2.8)

17

As a result, for finite t, ξ is bounded as,

ξ ≤ (N − 1)σ2
n

N

∞
∑

t=0

α2(t). (2.9)

Proof. The proof is similar to the proof of Theorem 4 and Lemma 5 in [34]. Equation

(2.8) can be obtained by assuming the initial measurements are 0 and the nodes in

the network is converging to the average of scaled noise samples received at nodes.

Equation (2.9) holds since di ≤ N − 1.

In wireless sensor networks, sensors are usually low cost and low power consump-

tion. Therefore, in [41,67,68], nonlinear distributed average consensus are considered

and a nonlinear function is used to bound the transmit power. The nonlinear average

consensus algorithm will be used in our max consensus algorithm and will be more

detailed described in the following of this chapter.

2.3 Max Consensus using the Soft-max

2.3.1 Problem Statement

Consider a wireless sensor network with N sensor nodes, each with a real-valued

initial measurement, xi, i = 1, 2, · · · , N . It is desired that the nodes reach consensus

on the maximum value of the initial measurements, xmax := maxi xi, under the as-

sumption that the sensors have a single state that they update based on local received

measurements. Max consensus in the absence of noise is straight forward: the nodes

update their states with the largest received measurement thus far in each iteration.

Consider the following algorithm at each node:

xi(t+1)=max

{

xi(t),max
j∈Ni

xj(t)

}

, x̂max,i(t+1)=xi(t+1). (2.10)

However, in the presence of noise, such algorithms will diverge due to positive noise

samples. An intuitive explanation is that any positive noise sample will always make

the maximum larger if the max operator is used in the max consensus algorithm.

18

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u
(x

)

tanh(x)

x√
1+x2

2
π
arctan(π

2 x)

Figure 2.1: Bounded Transmission Functions.

Average consensus is well studied in literature. Existing average consensus al-

gorithms converge to the sample mean of the initial measurements. As a result, the

soft-max can be used to calculate the maximum. To relate the soft-max to the sample

mean of {eβxi}, we have,

ȳ =
1

N

N
∑

i=1

eβxi =
1

N

N
∑

i=1

yi(0), (2.11)

where ȳ is the sample mean of the mapped initial measurements and yi(0) := eβxi. The

quantity ȳ is computed using an iterative distributed algorithm, in which each sensor

communicates only with its neighbors. If the states of all the sensor nodes converge

to ȳ, then the network is said to have reached consensus on the sample average of

the mapped initial measurements. The relation between ȳ and the soft-max value is

given by

smax(x) =
1

β
log

N
∑

i=1

eβxi =
1

β
(logN + log ȳ). (2.12)

The average consensus algorithms like in [34,41] can be used to achieve consensus

in the sensor network. Sensors may adopt either a digital or analog method for

transmitting their information to their neighbors. One such method is the linear

amplify-and-forward (AF) scheme in which sensors transmit scaled versions of their

19

measurements to their neighbors where the iterative algorithm may be chosen as the

linear consensus algorithm of [34]. However, using the AF technique is not a viable

option for consensus on the soft-max. The reason is that accurate approximation

of the max value using the soft-max method requires the parameter β to be large,

which can result in a large dynamic range of the mapped initial measurements and

large transmit power. Moreover, using a linear transmit amplifier is power-inefficient.

As a result, a non-linear consensus (NLC) algorithm can be implemented [41]. The

consensus on the soft maximum is achieved by letting each sensor map its state value

at time t through a bounded function h(·) before transmission to ensure bounded

transmit power. To describe the communications between nodes, we use the standard

Gaussian MAC so that each node receives a noisy version of the superposition of the

transmitted signal from its neighbors. This is because the step sizes are the same

across different network links and there is no need to recover the transmitted data

separately. Consider the following algorithm with additive noise at the receiver:

yi(t+1) = yi(t)− α(t)
[

dih(yi(t))−
∑

j∈Ni

h(yij(t)) + ni(t)
]

, (2.13)

where i = 1, 2, . . . , N , and t = 0, 1, 2, . . ., is the time index. The value yi(t + 1) is

the state update of node i at time t + 1, yij(t) is the state value of the jth neighbor

of node i at time t, and ni(t) is the additive noise at node i, which is assumed to be

independent across time and space with zero mean and variance σ2
n. α(t) is a positive

step size which satisfies
∑∞

t=0 α
2(t) < ∞ and

∑∞
t=0 α(t) = ∞. The node j transmits

its information yij(t) by mapping it through the non-linear function h(·) to constrain

the transmitted power. We assume that

h(x) =
√
γ u(ωx), (2.14)

where u(x) is a normalized non-linear bounded function as in Figure 2.1 and we make

the following assumption on u(x):

Assumptions

20

(A1): u(0) = 0. u(x) = −u(−x).

(A2): max (u(x)) = 1.

(A3): The function u(·) is differentiable and invertible, u′(0) = 1 and 0 < du(x)
dx

≤ 1.

The parameter γ controls the maximum transmit power and ω is a scale parameter

that controls how fast h(·) reaches the maximum. The values of γ and ω affect the

performance of the algorithm, for example larger γ value results in faster convergence.

Note that invertibility of h(·) is needed for convergence, however there is no need to

apply the inverse of h(·) in equation (2.13).

Node i receives a noisy version of the superposition
∑

j∈Ni
h(yij(t)). The recursion

in equation (2.13) can be expressed in vector form as,

y(t+ 1) = y(t)− α(t)[Lh(y(t)) + n(t)], (2.15)

where y(t) = [y1(t) y2(t) · · · yN(t)]T and h(y(t)) = [h(y1(t)) h(y2(t)) · · · h(yN(t))]T.
L is the Laplacian matrix of the graph and n(t) is the vector containing the additive

reception noise at nodes. Since the noise is i.i.d. with variance σ2
n, the covariance of

n(t) is σ2
nI. Since (2.13) converges to a value that approximates (2.11), the consensus

estimate of the maximum at node i can be written using (2.12) as

x̂maxi(t
∗) =

1

β
(logN + log yi(t

∗)) , (2.16)

where t∗ is the iteration at which the algorithm is stopped.

2.3.2 Proof of Convergence

Since the non-linear average consensus approach is used in the max consensus

algorithm, the convergence proof will follow the proof in [41] which uses a discrete

time Markov process approach [69] (also see Theorem 5 in [41]). Therefore, there

exists a finite real random variable θ∗ such that,

Pr
[

lim
t→∞

y (t) = θ∗1
]

= 1, (2.17)

21

where 1 is a column vector with all ones. Equation (2.17) shows that convergence is

reached when t→ ∞. The following theorem characterizes the random variable θ∗.

Theorem 2. θ∗ in (2.17) is an unbiased estimate of ȳ, E[θ∗] = ȳ. Its mean square

error ξN = E[(θ∗ − y)2], and is finite which can be expressed as,

ξN =
σ2
n

N

∞
∑

t=0

α2(t). (2.18)

Proof: The proof is a straightforward adaptation of Theorem 3 in [41].

The nodes in the sensor network reach consensus on the random variable θ∗ which

is an unbiased estimator of the average of the mapped initial measurements, E[θ∗] = ȳ.

Then the soft-max of the initial measurements can be obtained using equation (2.12).

2.4 Analysis of the Max Consensus Algorithm

2.4.1 Sources of Error

Let θ0 be a realization of θ∗. From (2.17) we have that the states of nodes in the

sensor network are converging to θ0 as t→ ∞. However, in practice, we need to stop

the algorithm at a finite iteration time t∗. There are three sources of error between the

true maximum xmax and x̂maxi(t
∗) in (2.16): i) (smax(x)− xmax) =

1
β
(logN + log ȳ)−

xmax, due to the fact that soft-max approximation will always be larger than the true

max; ii) (θ0 − ȳ) caused by communication noise and iii) (yi(t
∗)− θ0) cause by finite

number of iterations.

In the following subsection, we are going to characterize and analyze these errors.

2.4.1.1 Soft-max error

This is a deterministic error which depends on β,N , and the value of x. We have:

xmax ≤ smax(x) ≤ xmax +
1

β
logN, (2.19)

22

Both inequalities are clearly tight for large β.

2.4.1.2 MSE of the algorithm

The second term (θ0 − ȳ) is due to the presence of communication noise: the

state of the sensors does not converge to the sample mean of the mapped initial

measurements, instead it converges to a random variable θ∗ whose expectation is the

sample mean of the mapped initial measurements, ȳ from (2.11). This occurs also

in linear average consensus in the presence of noise. The mean square error of θ∗ is

defined as ξN = E[(θ∗−y)2] and is characterized as (2.18) in Theorem 2. From (2.18),

we see that the mean square error is finite and is small when
∑∞

t=0 α
2(t) or σ2

n small.

2.4.1.3 Convergence speed

The third cause of error is due to a finite number of iterations: even though

limt→∞ y(t) = θ0, y(t
∗) 6= θ0. However, with a judicious choice of non-linear function

h(·) and step size α(t), one can reduce the convergence time. In the rest of this

chapter, we will assume that α(t) = a
t+1
, a > 0, which satisfies

∑∞
t=0 α

2(t) ≤ ∞,

∑∞
t=0 α(t) = ∞. The convergence speed is analyzed by establishing

√
t(y(t) − θ01)

is asymptotically normal with zero mean and some covariance matrix C. The next

theorem further quantifies the convergence speed.

Theorem 3. Let 2aλ2(L)h
′(θ0) > 1 so that the matrix [ah′(θ0)B+ I/2] is stable

(every eigenvalue of the square matrix has strictly negative real part) and I is the

identity matrix, and B is a diagonal matrix containing all the non-zero eigenvalues

of −L. Define U = [N−1/21 Φ] which is a unitary matrix whose columns are the

eigenvectors of L. Let [ñ(t) ñ(t)] = N−1UTn(t) and Cñ = E[ññT] is a diagonal

23

matrix, Cñ ∈ R
(N−1)×(N−1). Then as t→ ∞,

√
t(y(t)− θ01) ∼ N (0,C), (2.20)

where the asymptotic covariance matrix C = N−1a2σ2
n11

T +N−1ΦSθ0ΦT,

and Sθ0 = a2
∫∞
0
e(ah

′(θ0)B+I/2)tCñe
(ah′(θ0)B+I/2)tdt.

The proof is the same as given in Theorem 5 in [41].

The convergence speed is quantified by ‖C‖, which is defined to be the largest

eigenvalue of the covariance matrix. We show in Appendix that the l2 norm of the

covariance matrix can be expressed as

‖C‖ = max
‖x‖≤1

xTCx

= max

{

a2σ2
n,

1

N

a2σ2
n

2ah′(θ0)λ2(L)− 1

}

. (2.21)

This norm, ‖C‖, can be optimized with respect to a, and the value that minimizes

‖C‖ is a∗ = (N + 1)/[2Nλ2(L)h
′

(θ0)]. The optimal value for the l2 norm of the

covariance matrix denoted as ‖C∗‖ can be represented as

‖C∗‖ =

(

N + 1

2N

)2(
σ2
n

λ2
2(L)

)(

1

h
′(θ0)

)2

=

(

N + 1

2N

)2(
σ2
n

λ2
2(L)γ

)(

1

ωu
′(ωθ0)

)2

, (2.22)

which is proved in Appendix. The interpretation is that convergence is slower when

‖C∗‖ is larger.

It is clear from equation (2.22) that convergence will be fast if λ2(L) large, which

implies faster convergence in a more connected graph. Also the value of ‖C∗‖ de-

creases as h
′

(θ0) increases, which shows that the convergence speed depends on the

non-linear function and the convergence point. We see from equation (2.22) that

larger maximum transmit power γ results in faster convergence. Also note that larger

ωu′(ωθ0) value results in faster convergence as shown in equation (2.22). Therefore, if

24

θ0 is approximately known from prior runs of the algorithm and γ is fixed, the value

of ω can be set to the solution of the optimization problem: maximizeω ωu′(ωθ0).

By observing the three sources of error mentioned above, we find there is a trade-

off between the convergence speed and the soft-max error. To see this, recall that the

convergence speed is quantified by ‖C∗‖. From the analysis of sources of error, choos-

ing a larger β would reduce the deterministic bias caused by the soft-max mapping

(2.19), but degrades the variance term in (2.22). The reason is that h(·) is chosen to

be an odd bounded transmission function as in Figure 2.1 with a zero-crossing and

steepest slope at the origin, with h′(x) decreasing for x ≥ 0. Since θ0 ≥ 0, h
′

(θ0)

will be small when θ0 gets larger which increases the value of ‖C∗‖ and makes the

convergence slower. The convergence point θ0 will be large when β is chosen large

since θ0 ≈ 1
N

∑

i e
βxi. Therefore a trade-off between the convergence speed and the

soft-max error exists: a more accurate soft-max can be obtained by choosing a large

β, but this degrades the convergence speed.

2.4.2 Bound on Convergence Time

The convergence speed of the max-consensus algorithm is quantified by the asymp-

totic covariance matrix. If some prior knowledge about the distribution of the ini-

tial measurements is known, the step size can be set based on the expression of

a∗ = (N + 1)/[2Nλ2(L)h
′

(θ0)] and α(t) = a∗/(t + 1) to make the convergence fast.

In this section, we assume that the step size is set to be a∗ as mentioned. The trade-

off controlled by β balances soft-max error and convergence speed. How much time

t∗ is needed for the nodes to reach consensus is always an important problem. In

this subsection, we will show that by upper bounding the three sources of error in

Section 2.4.1, an approximation on the iteration time for reaching consensus can be

calculated.

25

The estimate of the max at iteration time t∗ is expressed as (2.16), where yi(t
∗)

is the state at node i at time t∗. Of the three errors in Section 2.4.1, note that the

error (θ0 − ȳ) can be ignored when the noise variance σ2
n is small, or can be reduced

by running the consensus several times and taking the average of the results. In the

following, we ignore the error (θ0 − ȳ) and calculate the iteration time by bounding

the soft-max error denoted by ε2 and error caused by a finite stopping time t∗ denoted

by ε1. When a = a∗, the norm of the asymptotic covariance matrix of (y(t∗)− θ01)

can be bounded by ε1 if

‖C∗‖
t∗

≤ ε1 ⇒ t∗ ≥ ‖C∗‖
ε1

. (2.23)

The soft-max error is bounded by bounding the upper bound in equation (2.19),

which can be expressed as:

logN

β
≤ ε2 ⇒ β ≥ logN

ε2
. (2.24)

By substituting (2.24) into ‖C∗‖, a lower bound of the iteration time needed for

reaching consensus can be calculated using (2.23):

t∗ ≥ ‖C∗‖
ε1

=

(

N + 1

2N

)2(
σ2
n

λ22(L)

)

(

1
h′ (θ0)

)2

ε1

=

(

N + 1

2N

)2(
σ2
n

λ22(L)

)

(

1
h′(1

N

∑

i e
βxi)

)2

ε1

≥
(

N+1

2N

)2(
σ2
n

λ22(L)

)(

1

ε1

)





1

h′

(

1
N

∑

i e
logN
ε2

xi

)





2

. (2.25)

The last inequality holds because of (2.24) and using that h′(x) is decreasing function

when x > 0. We now study how the final lower bound depends on the convergence

error, ε1, and soft-max error, ε2. It is clear that the bound is inversely related to ε1.

How ε2 affects the bound depends on the choice of h(·).
In the following, we provide two examples of h(·) and show that how equation

(2.25) is affected by ε2. We will consider two cases. In the first case, h(x) converges to

26

its maximum value polynomially fast and in the second case it converges exponentially.

First consider the polynomial case and let h(x) ≈ √
γ
(

1− 1
xp+1

)

for large x > 0 for

p > 0. Note that p controls the value of ω in the definition of h(x) in (2.14). Then,

h′
(

1

N

∑

i

e
logN
ε2

xi

)

≈ h′
(

1

N
e

logN
ε2

xmax

)

(2.26)

= −p
√
γ (logN) xmax

ε−2
2 N

p(xmax
ε2

−1)

(

N
p(xmax

ε2
−1)

+ 1
)2 (2.27)

≈ −p
√
γ (logN) xmax

ε22N
p(xmax

ε2
−1)

. (2.28)

Equation (2.26) holds since when ε2 is small, the term xi = xmax dominates. Equation

(2.28) shows how ε2 affects the convergence time when h(x) ≈ √
γ
(

1− 1
xp+1

)

for

large x > 0 for p > 0. The asymptotically optimal p that minimizes (2.25) is p∗ =

1/
(

(logN)
(

xmax

ε2
− 1
))

, and the lower bound of the iteration time needed can be

calculated as,

t∗ ≥
(

N+1

2N

)2(
σ2
n

λ22(L)

)(

1

ε1

)







ε42e
2
(

xmax

ε2
− 1
)2

γx2max






. (2.29)

On the other hand, if h(x) converges to its final value,
√
γ, exponentially fast, we

have h(x) ≈ √
γ (1− e−qx) for large x > 0, with q > 0 which controls the value of ω

in the definition of h(x) in (2.14). Then,

h′
(

1

N

∑

i

e
logN
ε2

xi

)

≈ h′
(

1

N
e

log N
ε2

xmax

)

(2.30)

= −q
√
γ
logN

N
xmax

(

ε−2
2 N

xmax
ε2

)

(

e−qN(
xmax
ε2

−1)
)

(2.31)

= −q
√
γ (logN) xmaxN

(

xmax
ε2

−1
)

ε2eqN
(xmax

ε2
−1)

. (2.32)

The asymptotically optimal q that minimizes (2.25) is q∗ = N

(

1−xmax
ε2

)

, and the lower

bound of the iteration time needed can be calculated as,

t∗ ≥
(

N + 1

2N

)2(
σ2
n

λ22(L)

)(

1

ε1

)(

ε42e
2

γx2max (logN)2

)

. (2.33)

27

When choosing the non-linear bounded function as mentioned above, we have the

following observations based on equation (2.25), (2.28) and (2.32): (i) the required

convergence time will be longer when the error requirements ε1 and ε2 are smaller;

(ii) the soft-max error term ε2 dominates the convergence time in equation (2.25) in

both examples; (iii) the required convergence time will be longer when xmax or the

system size N is larger; (iv) by comparing equation (2.29) and (2.33), the convergence

will be faster when choosing h(·) that converges to its maximum value exponentially

fast is appropriate if
(

xmax

ε2
− 1

)2

> (logN)−2 , (2.34)

and h(·) that converges to its maximum value polynomially should be chosen other-

wise.

Finally, note that estimating the minimum value of the local measurements is also

sometimes necessary. The min-consensus can be achieved using the similar initial

mapping but choosing β < 0.

2.5 Shifted Non-linear Bounded Function Used in Max Consensus

An accurate max estimation using the soft-max approach requires the design pa-

rameter β to be large. As a result, the exponential function used for initial mea-

surements mapping expands the dynamic range of the initial measurements and the

convergence speed is slow. We now give a modified non-linear distributed average

consensus method using a shifted non-linear bounded function that can make the

convergence process faster if some prior knowledge of the initial measurements is

available.

The method is based on the fact that the convergence is faster when the value of

h
′

(θ0) is large from equation (2.22). h(·) in the iterative algorithm is replaced by a

shifted non-linear function g(·) defined as g(x) = h(x−T), where T is a shift constant.

28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Graph Representation Of The Sensor Network, N = 75.

In this case, the optimal step size a∗s =
(

N+1
2N

)

(

1
λ2(L)g′(θ0)

)

=
(

N+1
2N

)

(

1
λ2(L)h′(θ0−T)

)

.

The convergence speed is quantified by the norm of the asymptotic covariance matrix

‖C∗
s‖ and can be expressed as,

‖C∗
s‖ =

(

N + 1

2N

)2(
σ2
n

λ22(L)

)(

1

h′(θ0 − T)

)2

. (2.35)

From (2.35), convergence will be faster when h
′

(θ0−T) is larger. h′

(θ0−T) reaches its

largest value when T = θ0 if h(·) is chosen as a sigmoid function with steepest slope

at origin. Note that θ0 is unknown in practice, but one can use prior information on

the initial measurements to choose T . If the distribution of the initial measurements

is known at the sensor nodes, a reasonable choice of T is to choose it as the expected

value of the mapped initial measurements: T = E[eβxi] ≈ 1
N

∑N
i=1 e

βxi.

2.6 Simulations

In this section, simulation results for max consensus algorithms are presented.

Different β values are used to trade-off between convergence speed and error between

the proposed approach and the true max of the initial measurements.

29

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Iterations, t

St
at

e
of

Se
ns

or
N

od
es

Figure 2.3: Entries of Traditional Max Consensus Result Versus Iterations t (Keep
the Largest Measurement at Each Iteration).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations, t

1 β
(l
og

N
+

lo
g(

y i
(t

))
),

i
=

1,
2,

..
.,

N

xmax

Figure 2.4: Entries of the Consensus
Soft Max Result Versus Iterations t, β
= 5, ω = 0.015, h(x) =

√
γ tanh(ωx),

α(t)= 4.4473
t+1

, a∗ ≈ 4.4473.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iterations, t

1 β
(l
og

N
+

lo
g(

y i
(t

))
),

i
=

1,
2,

..
.,

N

xmax

Figure 2.5: Entries of the Consensus
Soft Max Result Versus Iterations t, β
= 7, ω = 0.015, h(x) =

√
γ tanh(ωx),

α(t)= 61.7513
t+1

, a∗ ≈ 61.7513.

2.6.1 Performance of Max Consensus

In the max consensus simulations, the initial measurements {xi} are chosen to be

uniformly distributed over (0, 1). Gaussian noise with zero mean and unit variance is

added to receiver nodes. The graph of the sensor network is fixed for all simulations

with N = 75 sensors. as shown in Figure 2.2. The nodes are uniformly located in the

[0, 1]×[0, 1] square. We assume that there is a link between two nodes if their distance

30

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations, t

1 β
(l
og

N
+

lo
g(

y i
(t

))
),

i
=

1,
2,

..
.,

N

xmax

Figure 2.6: Entries of the Consensus Soft Max Result Versus Iterations t, β = 30,
ω=10−11, h(x)=

√
γ tanh(ωx), α(t)= 5.03×1010

t+1
, a∗≈5.03× 1010.

is smaller than 0.4, also called communication radius . The value of communication

radius controls the topology of the distributed network [70], and affects the algebraic

connectivity of the network.

In Figure 2.3, the traditional max consensus algorithm is used and each node

always keeps the largest measurement from its neighbors. We can see from Figure 2.3

that in the presence of noise, the states of nodes will diverge.

In Figure 2.4 and 2.5, x̂maxi(t
∗) from equation (2.16) for all nodes are plotted to

illustrate the convergence of the soft-max result for different β and a values. Note

that the actual maximum value is 0.9561 in the simulations. In each of figures, h(x) =

√
γ tanh(ωx), with ω = 0.015 and γ = 7.5dB, note that γ controls the peak transmit

power and ω controls the shape of h(x); β is 5 in Figure 2.4 and 7 in Figure 2.5. a is

chosen as (N + 1)/[2Nλ2(L)h
′(ȳ)] ≈ a∗ and the following observations can be made

by comparing the two figures: (i) As β increases, the estimates of the soft-max of x

are closer to the actual value of the maximum value of x and (ii) As β increases, the

convergence is slower, which matches the result in equation (2.22). In Figure 2.6, an

accurate max estimate is obtained by setting β = 30. It is shown that by properly

choosing the non-linear function h(·) and step size a, an accurate max consensus

31

can be attained within a few iterations. From Figure 2.6, we can see that the error

between the convergence result and the true max is around 0.06, therefore, Figure 2.6

can be a recommended solution for max estimation in sensor networks.

2.6.2 Performance of Max Consensus with Shifted Non-linear Bounded Function

In the simulation of max consensus using a shifted non-linear bounded function,

the initial measurements {xi} are chosen to be uniformly distributed over (0, 1).

Gaussian noise with zero mean and unit variance is added to the receiver nodes,

γ = 7.5dB in all simulations. The graph is the same as the max consensus simulation

with N = 75 sensors. In Figure 2.7 and 2.8, x̂maxi(t
∗) for all the nodes are plotted.

In each of figures, a = 12, ω = 0.01 and β is 7. In Figure 2.8, shifted non-linear

bounded functions are used in transmission, and T is chosen to be the sample mean

of the mapped initial measurements. We see that consensus is reached in about 50

iterations in Figure 2.7. In Figure 2.8, with the shifted nonlinear bounded function

of Section 2.5, consensus is reached in about 15 iterations. By comparing Figure 2.7

and 2.8, it is shown that using the shifted non-linear bounded function can improve

the convergence speed.

Note that overshoots in the simulations may be undesirable in real-world appli-

cations. Two solutions to the problem can be to use: i) smaller β value to make

the dynamic range of the states smaller; and ii) smaller step size α(t) to make the

convergence more smooth with less oscillations. However smaller β value will make

the soft-max error larger, and smaller α(t) may results in slower convergence. These

are also trade-offs in the proposed algorithm.

32

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iterations, t

1 β
(l

og
N

+
lo

g(
y i

(t
))

),
i
=

1,
2,

..
.,

N

xmax

Figure 2.7: Entries of the Consen-
sus Soft Max Result Versus Iterations
t, β = 7, ω = 0.01, N = 75, h(x) =√
γ tanh(ωx), α(t) = 12/(t+1).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iterations, t

1 β
(l
og

N
+

lo
g(

y i
(t

))
),

i
=

1,
2,

..
.,

N

xmax

Figure 2.8: Entries of the Consen-
sus Soft Max Result Versus Iterations
t, β = 7, ω = 0.01, N = 75, h(x) =√
γ tanh(ω(x−T)), T = 138.1045, α(t)

= 12/(t+1).

33

Chapter 3

DISTRIBUTED NODE COUNTING IN WIRELESS SENSOR NETWORKS

In this chapter, a distributed consensus algorithm for estimating the number of

nodes in a wireless sensor network in the presence of communication noise is intro-

duced. Note that part of the works in this section is presented in our published papers

in [13, 71, 72].

Counting the number of nodes in a decentralized network is essential in several

applications. For example, some overlay maintenance protocols require the system

size to incorporate a newly joined node in the system [73]. In [57] the soft-max based

max consensus method requires the system size (number of nodes). In [74], the sum

of the initial values is calculated using a consensus approach by using the system size.

In a centralized network with a fusion center, counting the number of nodes in the

network is straightforward: each node transmits a fixed constant value to the fusion

center; the estimate of number of nodes can be obtained from the aggregate at the

fusion center. However, node counting is more challenging in a decentralized system

where sensors only have local information.

The idea of the proposed algorithm is based on estimation of the norm of available

samples at nodes. Each node generates its own random initial measurements and

updates its state by only communicating with its neighbors: the algorithm is a fully

distributed algorithm that nodes require no information about the structure of the

network. Average consensus algorithm is used to ensure that every node in the

network are able to converge to an estimate of the the network size. Different sources

of error are explicitly discussed, the Fisher information and the distribution of the

final estimate are derived.

34

3.1 System Model

The structure of the network is modeled as an undirected graph as in Section 2.1.

We consider a connected network with N nodes. Nodes have no knowledge about

the structure of the graph. We assume that the sensors maintain a state vector

and each node broadcasts its state to its neighbors at each iteration. Nodes update

the states based on local received states from their neighbors, which is described in

Section 2.2. We also assume analog transmissions between nodes [34, 35, 41] and the

communication between nodes is imperfect with communication noise, which is i.i.d

with 0 mean and variance σ2
n.

3.2 Node Counting using Average Consensus

3.2.1 Problem Statement

Consider a connected network with N nodes. We assume that the sensors always

keep a state vector and they update it based on local received states from their

neighbors. We also assume that the communication between nodes is imperfect with

communication noise. It is desired that the nodes reach consensus on the number of

nodes in the network.

Average consensus is well studied in literature, in which the states of the nodes

converge to the sample mean of the initial states. The key to relating the network

size N to average consensus is to observe that

N =
||x||22/N
||x||22/N2

. (3.1)

In the following of this chapter, we show that the value of the denominator and nu-

merator in (3.1) can be estimated using the average consensus algorithm. Therefore,

an estimate of the number of nodes in the network can be obtained.

35

3.2.2 Node Counting Algorithm

By running the average consensus algorithm as mentioned in Section 2.2, nodes in

the sensor network converge to the sample mean of the initial values. As a result, the

L2 estimation method can be used to relate the average of the initial states and the

number of nodes in the network. The node counting algorithm can be described in

three phases: an estimate of the value of the denominator and numerator in (3.1) can

be obtained using the average consensus algorithm in phase I and phase II respectively,

and N̂ is calculated in phase III by using the consensus results of phases I and II to

compute the ratio in (3.1). In the following, details of the three phases of the algorithm

are provided.

3.2.2.1 Phase I - L2 Norm Estimation Consensus

In Phase I of the node counting algorithm, an estimate of the denominator in

equation (3.1) is calculated based on L2 norm estimation and average consensus al-

gorithm. Assume the initial values are x = [x1 · · · xi · · ·xN], where xi is the

initial value at node i. Each node in the network generates K initial state values.

The initial state values at node i is denoted as yi(0) = [yi1(0) · · · yiK(0)], where

yik(0) = rikxi, 1 ≤ k ≤ K, and rik are i.i.d. random variables with zero mean and

variance one.

By running average consensus algorithm, each node updates the kth element in

the state vector of node i at time t+ 1 with

y
(k)
i (t + 1) = [1−α(t)di] y(k)i (t) + α(t)

∑

j∈Ni

[

y
(k)
ij (t)+n

(k)
ij (t)

]

, (3.2)

where n
(k)
ij is the noise associated with the reception of y

(k)
ij (t) and α(t) satisfies equa-

tion (2.6). When t is large, the kth element of node i is converging to a noisy version

of the average 1
N

∑N
i=1 r

(k)
i xi.

36

A post processing function f(·) is applied at each node by squaring each element

in the state vector and take the average of the result. For node i, the post processed

result can be expressed as,

f (yi(t)) =
1

K
||yi(t)||2 =

1

K

K
∑

k=1

(

y
(k)
i (t)

)2

, (3.3)

where yi(t) = [y
(1)
i (t) · · · y(K)

i (t)] is the state vector of node i at time t.

Assume the consensus stops at iteration time t∗. To relate the post processed

result f (yi(t
∗)) at time t∗ to the L2 norm of the initial values x, we have,

f (yi(t
∗)) =

1

K

K
∑

k=1

(

y
(k)
i (t∗)

)2

(3.4)

≈ 1

K

K
∑

k=1

(

1

N

N
∑

i=1

r
(k)
i xi

)2

(3.5)

=
1

N2

1

K

K
∑

k=1

(

N
∑

i=1

r
(k)
i xi

)2

(3.6)

≈ 1

N2
E





(

N
∑

i=1

r
(k)
i xi

)2


 (3.7)

=
1

N2

N
∑

i=1

N
∑

j=1

(

xixjE
[

r
(k)
i r

(k)
j

])

(3.8)

=
1

N2
||x||22, (3.9)

where (3.5) is accurate if the average consensus algorithm in the presence of noise

computes the average of the initial state values r
(k)
i xi as will be discussed in Sec-

tion 3.3. Equation (3.7) holds when K large due to law of large numbers. Equation

(3.8) holds since xi are fixed values and the expectation taken with respect to random

variables r
(k)
i , and (3.9) holds since r

(k)
i are i.i.d. random variables with zero mean

and variance 1.

Note that in Phase I, K consensus runs are required in (3.2) before the computa-

tion of (3.3).

37

3.2.2.2 Phase II - L2 Norm Consensus

In Phase II of the node counting algorithm, the numerator in equation (3.1) is

calculated based on the definition of L2 norm and average consensus algorithm. Each

node i sets its initial state value to zi(0) = x2i . Nodes in the network run:

zi(t+ 1) = [1− α(t)di] zi(t) + α(t)
∑

j∈Ni

[zij(t) + nij(t)] . (3.10)

After t∗ iterations we have,

zi(t
∗) ≈ 1

N
||x||22, (3.11)

where the error in (3.11) is discussed in Section 3.3 similar to (3.5). Note that Phase

II requires a single consensus run.

3.2.2.3 Phase III - Node Counting

By comparing the results from equations (3.9) and (3.11), the estimate of number

of nodes in the network N̂i(t
∗) at node i at time t∗ can be obtained as

N̂i(t
∗) =

zi(t
∗)

f (yi(t∗))
. (3.12)

Note that Phase I and Phase II can be done at the same time by using a K +1 state

vector containing both the K × 1 process yi(t) and the scalar zi(t).

From (3.12), the algorithm works for any x 6= 0. In the algorithm, xi can be

sensor measurements or values designed for improved performance (see Section 3.3).

Random variables r
(k)
i are i.i.d. and generated at nodes with mean 0 and variance

1. Two simple ways to choose r
(k)
i can be: i) Normally distributed, r

(k)
i ∼ N (0, 1);

ii) Bernoulli distributed with ±1, i.e. Pr[r
(k)
i = 1] = Pr[r

(k)
i = −1] = 1/2. How the

value of xi and r
(k)
i affect the performance is detailed analyzed in Section 3.3. In the

following subsection, a special case where initial values are chosen to be all equal,

xi = a is considered.

38

3.2.3 Special Case: Equal xi

Recall that the node counting algorithm is based on the estimation of ||x||22
using average consensus algorithm. The algorithm works for any x 6= 0 value.

Therefore, a special case of the node counting algorithm is to let all the initial

values to be a fixed constant value a and the initial state vector of the node i is

yi(0) = [y
(1)
i (0) · · · y(K)

i (0)] and y
(k)
i (0) = ar

(k)
i .

Then by running the average consensus algorithm as in equation (3.2) and applying

the same post processing function after consensus is reached, the final result of Phase

I at node i at time t∗ can be expressed as,

f (yi(t
∗)) =

1

K

K
∑

k=1

(

y
(k)
i (t∗)

)2

≈ 1

K

K
∑

k=1

(

1

N

N
∑

i=1

ar
(k)
i

)2

=
a2

N
. (3.13)

Since a is a constant known to all nodes, Phase II is not needed and the estimate of

N can be obtained as,

N̂i(t
∗) =

a2

f (yi(t∗))
. (3.14)

Note that the value of a controls the power of transmitted signal from each node,

which makes no difference in the absence of communication noise and is chosen in [1]

as a = 1 along with the choice r
(k)
i ∼ N (0, 1). However, in the presence of noise

considered herein, a offers a trade off between transmit power and SNR.

3.3 Performance Analysis

In this section, we analyze the performance of the proposed algorithm which starts

by identifying different sources of error of the algorithm explicitly in Section 3.3.1.

The overall performance analysis is given in Section 3.3.2: the distribution of N̂i is

derived, and how the design parameters affect the performance is given. We also

39

analyze the Fisher information in Section 3.3.3.

3.3.1 Sources of Error

In this subsection, different sources of error are explicitly discussed. The transient

analysis of the consensus result is given in Section 3.3.1.1. We show that the bias

of the convergence result is going to zero with number of iterations, and the graph

structure and initial states affect the convergence speed of the bias.

The sources of steady state error are also analyzed. The error caused by commu-

nication noise is considered in Section 3.3.1.2, where the MSE is shown to depend

on the noise variance and the step size. In Section 3.3.1.3, the error in the L2 norm

estimation is described where how the values r
(k)
i , xi and K affect the error is studied.

3.3.1.1 Transient of Bias

We now quantify the transient of the bias in the algorithm to see how it decays

with the number of iterations. The states of nodes ideally converge to the average

state vector ȳ = [ȳ(1) · · · ȳ(k) · · · ȳ(K)]T , where ȳ(k) = 1
N

∑N
i=1 r

(k)
i xi. Let y(k)(t) =

[y
(k)
1 (t) y

(k)
2 (t) · · · y(k)N (t)]T contain the kth element in the state vector from all N

nodes at time t. The convergence rate of the mean of y(k)(t) is quantified by [34, eqn

(61)] as
∣

∣

∣

∣

∣

∣

∣

∣

E
[

y(k)(t)
]

−ȳ(k)1

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
(

e−λ2(L)
∑t

τ=0 α(τ)
)

||y(k)(0)−ȳ(k)1||2. (3.15)

It is clear from equation (3.15) that the convergence is fast if the algebraic connec-

tivity λ2(L) is large, which implies a faster convergence of bias in a more connected

graph. To see this more clearly, we further simplify the dependence of (3.15) on the

iteration index t by assuming α(t) = 1
t+1

as in [34] and [41]. We have the following

40

approximation,

t
∑

τ=0

α(τ) =
t
∑

τ=0

1

τ + 1

= ln(t+ 1) + γ + εt+1 (3.16)

where γ is the Euler constant and εt+1 ∼ 1
2(t+1)

which approaches 0 as t goes to

infinity. Therefore, the convergence rate expression in (3.15) can be expressed for

large t as,
∣

∣

∣

∣

∣

∣

∣

∣

E
[

y(k)(t)
]

− ȳ(k)1

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ (t+ 1)−λ2(L)||y(k)(0)−ȳ(k)1||2. (3.17)

Equation (3.17) shows that the error ||E
[

y(k)(t)
]

− ȳ(k)1||2 is polynomial decreasing

with t with an exponent given by the algebraic connectivity of the graph.

3.3.1.2 Mean Square Error

Even though E[y(k)(t)] → ȳ(k) as t→ ∞, the elements in the state vectors do not

converge to the true average of the initial states due to the fact that communications

between nodes is noisy. Instead, the kth elements of the state vectors for all nodes

converge a.s. to a finite random variable θ(k) as in Theorem 1, which is an unbiased

estimator of the average and satisfies the following properties,

E[θ(k)] =
1

N

N
∑

i=1

r
(k)
i xi = ȳ(k), (3.18)

ζ(k) = E

[

(

θ(k) − ȳ(k)
)2
]

≤ (N − 1)σ2
nβ

N
, (3.19)

where σ2
n is the noise variance and β :=

∑∞
t=0 α

2(t) <∞.

It is seen in (3.19) that the error is proportional to σ2
n and is bounded if α(t)

satisfies equation (2.6).

41

3.3.1.3 L2 Norm Estimation Error

It is seen from (3.6) and (3.7) that the L2 estimation result in (3.9) can be obtained

due to the law of large numbers (large K). We now study the effect of K on variance

of the L2 estimation result. The analysis on how the design parameters r
(k)
i and xi

will affect the variance is also given. Let

Y =
1

K

K
∑

k=1

(

1

N

N
∑

i=1

r
(k)
i xi

)2

. (3.20)

Then it can be shown that E[Y] = ||x||22/N2 since r
(k)
i are i.i.d. random variables. In

the following, the relationship between the value of K and the variance of Y , denoted

as σ2
Y will be shown.

Let Z2 =
(

1
N

∑N
i=1 r

(k)
i xi

)2

be an unbiased estimator of ||x||22 because of (3.9).

The variance of Z2 can be calculated as,

Var[Z2] = E[Z4]−
(

E[Z2]
)2

(3.21)

=

(

E

[

(

r
(k)
i

)4
]

− 1

)

N4

∑

i

x4i +
4

N4

∑

i<j

x2ix
2
j . (3.22)

Then, the variance of Y can be expressed as,

σ2
Y = Var[Y] =

1

K
Var[Z2] (3.23)

Equation (3.22) and (3.23) shows that the variance will be small when K chosen to be

large, and it is also related to r
(k)
i and xi(0). Therefore there is a trade-off between the

accuracy of the algorithm and the storage at sensor nodes: a more accurate estimate

of number of nodes can be obtained if K large, but the nodes need to keep a larger

state vector and therefore increase the required storage at nodes.

For deterministic xi and K values, the distribution of r
(k)
i also affects variance of

the L2 norm estimation result. r
(k)
i needs to be chosen to be 0 mean and variance 1

42

as mentioned. In the following, we calculate the L2 norm estimation variance for two

common r
(k)
i distributions: (i) For r

(k)
i ∼ N (0, 1), we have,

Var[Y] =
1

KN4







2
∑

i

x4i + 4
∑

i<j

x2i x
2
j







. (3.24)

If initial values are chosen to be equal, xi = a, we have,

Var[Y] =
2a4 + 2(N − 1)a4

KN3
=

2a4

KN2
. (3.25)

(ii) If r
(k)
i is Bernoulli distributed with Pr[ri = 1] = Pr[ri = −1] = 1/2, we have,

Var[Y] =
4

KN4

∑

i<j

x2ix
2
j . (3.26)

If initial values are chosen to be equal, xi = a, we have,

Var[Y] =
2(N − 1)a4

KN3
. (3.27)

Note that (3.24) is always larger than (3.26) by 2(
∑

i x
4
i)/KN

4.

The following theorem characterizes the minimum L2 norm estimation variance.

Theorem 4. The distribution of r
(k)
i that minimizes the L2 norm estimation error

in equation (3.22) and (3.23) is Bernoulli distribution with ±1 with probability 0.5.

Proof. For fixed initial values xi and system size N , the L2 estimation variance is

related to

(

E

[

(

r
(k)
i

)4
]

− 1

)

as shown in equation (3.22). For any r
(k)
i distribution

with mean 0 and variance 1, the fourth moment satisfies,

E

[

(

r
(k)
i

)4
]

≥
(

E

[

(

r
(k)
i

)3
])2

+ 1 ≥ 1. (3.28)

Equation (3.28) can be obtained from a lower bound on Kurtosis in [75] by setting

the variance to be 1. Bernoulli distribution with ±1 achieves the lower bound 1 and

Theorem 4 is proved.

43

Based on the above analysis, we have the following observations and conclusions

on the L2 norm estimation error. The L2 norm estimation variance is inversely pro-

portional to K. By comparing equation (3.24) and (3.26), it is seen that for fixed xi

values, the L2 norm estimation variance will be smaller if rik are chosen to be Bernoulli

distributed. The difference between equation (3.24) and (3.26) will be small when N

is large; When r
(k)
i is Bernoulli distributed, the L2 norm estimation variance achieves

0 if the initial values are chosen as follows:

x1 6= 0; xi = 0, i 6= 1. (3.29)

However, this choice if not fully distributed since setting x1 6= 0 requires labeling at

least one node.

To sum up, we quantified three sources of errors: lack of convergence in finite

iterations, error caused by communication noise and L2 norm estimation error. In

the following subsections, the distribution of N̂i and Fisher information are calcu-

lated, followed by the analysis on how the design parameters will affect the overall

performance.

3.3.2 Distribution of N̂i

In this subsection, the distribution of the estimator N̂i is calculated under a frame-

work where each consensus run is assumed to converge to the sample mean of the

initial states potentially with some additive Gaussian noise. We also show how the

design parameters affect the bias and the variance of the estimator.

3.3.2.1 Steady state distribution of N̂i

According to Theorem 1, when consensus is reached, nodes in the network converge

to a noisy version of the sample mean of the initial states. If this noise is approximated

44

as Gaussian, the estimate of number of nodes can be calculated from the convergence

result. The estimate at node i can be expressed as,

N̂i =
n′ + 1

N

∑N
i=1 x

2
i

1
K

∑K
i=1

(

n
(k)
i + 1

N

∑N
i=1 r

(k)
i xi

)2 , (3.30)

where n
(k)
i is the kth accumulated noise at node i during phase I of the node counting

algorithm mentioned in Section 3.2.2.1, and n′ is the accumulated noise during phase

II of the node counting algorithm as mentioned in Section 3.2.2.2. When t→ ∞, we

have n
(k)
i ∼ N

(

0, 1
N2

(

∑N
i=1 di

)

σ2
nβ
)

and n′ ∼ N
(

0, 1
N2

(

∑N
i=1 di

)

σ2
nβ
)

.

The following theorem characterizes the distribution of N̂i when N and K are

large.

Theorem 5. For large N and K, the probability density function of N̂i, denoted as

pN̂i
(z) is,

pN̂i
(z) =

b(z)d(z)√
2πa3(z)σ1σ2

[

Φ

(

b(z)

a(z)

)

− Φ

(

− b(z)

a(z)

)]

+
1

πa2(z)σ1σ2
e−

c
2 , (3.31)

where

a(z) =

√

1

σ2
1

z2 +
1

σ2
2

b(z) =
µ1

σ2
1

z +
µ2

σ2
2

c =
µ2
1

σ2
1

+
µ2
2

σ2
2

d(z) = e
b2(z)−ca2(z)

2a2(z)

Φ(t) =

∫ t

−∞

1√
2π
e−

1
2
u2

du

45

and

µ1 =
1

N

N
∑

i=1

x2i

σ2
1 =

(

∑N
i=1 di
N2

)

σ2
nβ

µ2 =

∑N
i=1 x

2
i

N2
+

(

∑N
i=1 di
N2

)

σ2
nβ

σ2
2 =

(

2

K

)

[

∑N
i=1 x

2
i

N2
+

(

∑N
i=1 di
N2

)

σ2
nβ

]2

.

Proof. The proof relies on the ratio of two independent Gaussian random variables

and details of the proof are given in Appendix.

The distribution of N̂i is given in Theorem 5. However, how the bias and variance

of the estimator will be affected is not clear. In the following, we simplify the results

of Theorem 5 by assuming equal initial values xi = a as in Section 3.2.3. The

distribution of N̂i together with the bias and variance of the estimator is calculated.

3.3.2.2 Steady state distribution with xi = a

When xi = a, the estimate of number of nodes at node i in (3.30) becomes:

N̂i =
1
N

∑N
i=1 x

2
i

1
K

∑K
i=1

(

n
(k)
i + 1

N

∑N
i=1 r

(k)
i xi

)2

=
a2

1
K

∑K
k=1

(

n
(k)
i + 1

N

∑N
i=1 r

(k)
i a
)2 . (3.32)

When N is large, from the non-identical central limit theorem (Lyapunov central

limit theorem), we have,

1

N

N
∑

i=1

r
(k)
i a ∼ N

(

0,
a2

N

)

, (3.33)

46

and N̂i is scaled inverse-chi-square distributed, and the probability density function

can be expressed as,

pN̂i
(z) =

(

(τ 2ν/2)ν/2

Γ(ν/2)

)

(

e
−ντ2

2x

z1+ν/2

)

(3.34)

ν = K, τ 2 =
1

1
N
+

σ2
n

∑N
i=1 di

N2a2
β
. (3.35)

The mean of N̂i is,

E[N̂i] =
ντ2

ν − 2
(3.36)

= N +
2N

K − 2
−
(

K

K − 2

)

(

Nσ2
nβ
∑N

i=1 di

Na2 + σ2
nβ
∑N

i=1 di

)

(3.37)

= N +
2N

K − 2
−
(

K

K − 2

)

(

Nβ
∑N

i=1 di

N(SNR) + β
∑N

i=1 di

)

, (3.38)

where SNR :=
1
N

∑N
i=1 x

2
i

σ2
n

= a2

σ2
n
. From the steady state mean of N̂i as in equation (3.37)

and (3.38), we have the following conclusions: i) The bias will be small for large K

and SNR; ii) E[N̂i] = N when we have,

a2 =
(K − 2)σ2

nβ
∑

i di
2N

. (3.39)

However, equation (3.39) depends on N and
∑

i di which are usually unknown at

nodes in practice; and iii) When K and N are large and K ≫ N , we have the

approximation,

E[N̂i] = N − σ2
nβ (

∑

i di)

a2
= N − β

∑

i di
SNR

. (3.40)

Equation (3.40) indicates that for large K, the bias in N̂i given by E[N̂i−N] is always

negative and can be made small at large SNR.

47

The variance of N̂i is,

Var[N̂i] =
2ν2τ 4

(ν − 2)2(ν − 4)
(3.41)

=
2K2

(K − 2)2(K − 4)

(

N2a2

Na2 + σ2
nβ
∑N

i=1 di

)2

(3.42)

=
2K2

(K − 2)2(K − 4)

(

N2(SNR)

N(SNR) + β
∑N

i=1 di

)2

. (3.43)

Note that the variance is inversely proportional toK andKVar[N̂i] ∼ 2
(

N2(SNR)

N(SNR)+β
∑N

i=1 di

)2

for large K.

The probability density function of N̂i provides guideline towards how to choose

the design parameters. For example, from equation (3.37) and (3.40) we can see that

when the SNR is small, we should choose the sum of squares of the step size to be

small (β to be small) to make the bias small.

3.3.3 Fisher Information

Fisher information in the absence of communication noise is discussed in Sec-

tion 3.3.3.1 and the Fisher information in the presence of communication noise is

calculated in Section 3.3.3.2 to pinpoint the effect of noise. How the design parame-

ters affect the Fisher information and Cramer-Rao bounds is also presented. Finally,

the conditions under which N̂i is asymptotically efficient (achieves the CRB) is dis-

cussed.

3.3.3.1 Absence of communication noise

First we discuss the Fisher information in the absence of communication noise.

For nodes in the network, the kth element in the state vector converge by the central

48

limit theorem to

y
(k)
i (t) =

1

N

N
∑

i=1

rikxi ∼ N
(

0,
σ2
x

N

)

, (3.44)

where σ2
x = 1

N

∑N
i=1 x

2
i and we assume that σ2

x does not depend on N . After a

straightforward calculation, the Fisher information is given by

I(N) = E

[

(

∂

∂N
ln g(X ;N)

)2 ∣
∣

∣

∣

N

]

=
1

2N2
, (3.45)

where g(X ;N) is the probability density function of Gaussian distribution as in equa-

tion (3.44). From equation (3.45), we can conclude that when N is large, the choice

of xi will not affect the Fisher information.

Note that equation (3.45) is the Fisher information for one consensus run. For K

consensus runs, the Fisher information will be K/2N2. The Cramer-Rao bound is

the inverse of Fisher information. Therefore, for K consensus run, a lower bound on

the estimation variance for any unbiased network size estimator can be expressed as,

Var
[

N̂i

]

≥ 2N2

K
. (3.46)

3.3.3.2 Presence of communication noise

In the presence of communication noise, elements in the state vectors converge to

a noisy version of the sample mean of the initial states. We use central limit theorem

to approximate the average consensus results with Gaussian distribution. The kth

element in the state vector can be expressed as,

y
(k)
i (t) =

1

N

N
∑

i=1

rikxi + n
(k)
i ∼ N

(

0,
σ2
x

N
+ σ2

e

)

, (3.47)

where n
(k)
i is the accumulated noise at node i. We assume that n

(k)
i is Gaussian

distributed, n
(k)
i ∼ N (0, σ2

e). Note that the noise term n
(k)
i can be viewed as a more

49

general error caused by communication noise and lack of convergence due to finite

number of iterations.

Let n
(k)
i capture the error caused by communication noise and lack of convergence.

If we assume σ2
e is not a function of N , the Fisher information can be calculated as,

I(N) = E

[

(

∂

∂N
ln g(X ;N)

)2 ∣
∣

∣

∣

N

]

(3.48)

=

(

1

2N4

)







σ4
x

(

σ2
x

N
+ σ2

e

)2






(3.49)

≈
(

1

2N4

)(

σ2
x

σ2
e

)2

(3.50)

=

(

1

2N4

)

SNR2, (3.51)

where g(X ;N) is the Gaussian probability density function and the distribution is

given in equation (3.47). Equality in (3.50) holds when N is large. By comparing

Equation (3.45) and (3.51), we can observe that in the absence of noise, the Fisher in-

formation behaves like O(1/N2), while in the presence of noise it behaves like O(1/N4)

if the SNR does not depend on N . The Fisher information in equation (3.51) also

shows that the SNR affects the performance.

If we assume that the consensus is reached and the error n
(k)
i is caused by Gaussian

noise, then n
(k)
i is Gaussian distributed, n

(k)
i ∼ N

(

0,
(

∑N
i=1 di
N2

)

σ2
nβ
)

and it depends

on N . We have an interesting finding that if the nodes in the network have same

degree di = d, then σ2
e =

(

dσ2
n

N

)

β. We have y
(k)
i (t) =

(

1
N

∑N
i=1 rikxi + n

(k)
i

)

∼

N
(

0, σ
2
x+dσ2

nβ
N

)

, and the Fisher information I(N) = 1/(2N2) which is same as equa-

tion (3.45). This is because after defining σ2
y = σ2

x + dσ2
nβ, the Fisher information

calculation will be same as in equation (3.48). The above result suggests that if all

nodes have the same degree and consensus is reached, the SNR will not affect the

Fisher information.

50

Finally, we compare the estimation variance in equation (3.42) with the Cramer-

Rao bound in equation (3.46). For large SNR, the estimation bias in equation (3.40)

is negligible so that

Var[N̂i] =
2K2

(K − 2)2(K − 4)

(

N2(SNR)

N(SNR) + β
∑N

i=1 di

)2

≈ 2K2N2

(K − 2)2(K − 4)
. (3.52)

The estimation variance in equation (3.52) is always larger than the CRB result in

equation (3.46), and it achieves the CRB, in the sense that the ratio of the right hand

side of (3.46) to (3.52) converges to 1 as K → ∞. This shows that the proposed

estimator is asymptotically efficient.

3.4 Discussion: Fisher Information for Consensus Based Distributed System Size

Estimation

An average consensus based distributed system size estimation algorithm is in-

troduced above. In literature, system size estimation using consensus algorithms

with randomly generated initial values at the nodes are considered in various works

in [1, 2, 13, 76, 77]. In [1], two algorithms for system size estimation are introduced.

The first algorithm generates uniformly distributed initial measurements at nodes,

and uses max consensus with an ML estimator (uniform + max consensus + ML).

The second algorithm uses Gaussian + average consensus + ML. The consensus result

is used to infer the system size. It is shown that result is the maximum likelihood

estimator for N−1, where N is the system size. In [2], a method based on average

consensus with Bernoulli random initial values namely Bernoulli trail method is pro-

posed. It is shown in [2] that the mean square error for the proposed method goes

exponentially to zero as a design parameter increases. In [77], the nodes are assumed

to be labeled and one node in the network holds an initial value of 1 and all other

51

nodes are set to 0. The system size can be obtained from the average consensus result.

In this section, we derive the Fisher information and Cramer-Rao bounds for

consensus based (average consensus and max consensus) system size estimators con-

sidering different noise conditions. It is shown that in the absence of noise, the max

consensus approach results in a lower CRB than the average consensus approach. In

the presence of communication noise, we demonstrate how the SNR affects the Fisher

information and CRBs.

3.4.1 CRB for System Size Estimation in the Absence of Noise

In this section, we assume that the communications between nodes is perfect

without any random noise, and consensus is reached. The Fisher information and

CRBs are calculated to compare between different approaches (max consensus and

average consensus).

3.4.1.1 Max Consensus in the Absence of Noise

In this subsection, we assume that the traditional max consensus (node always

keeps the maximum value) is used and consensus is perfectly reached, i.e. nodes

converge to the maximum of the initial values. The following theorem characterizes

the Fisher information and CRB result.

Theorem 6. Assume the initial values at nodes xi are i.i.d. with PDF f(x) and CDF

F (x), and f(x) is differentiable. When max consensus is used, the Fisher information

for estimate of system size N is,

Imax =
1

N2
. (3.53)

The CRB is the inverse of the Fisher information, and a lower bound on the estima-

52

tion variance can be expressed as

Var
[

N̂
]

≥ N2. (3.54)

The distribution of the initial values at nodes does not affect the Fisher information

and CRB.

Proof. The main idea of the proof is that the CDF of the max consensus result is the

product of CDF of initial random values at nodes, and the Fisher information can be

calculated based on the definition. Details of the proof is given in the appendix.

Theorem 6 characterizes the best estimation variance that we can achieve if max

consensus is used to estimate the system size. It is also shown that if max consensus

is used and consensus is perfectly reached, the distribution of the initial values at

nodes does not affect the Fisher information about system size estimation.

Note that the result in equation (3.54) is the best estimation variance in one

consensus run. In real system size estimation applications, large sample statistics can

be used to improve the performance. A more accurate N̂ can be obtained by taking

the sample mean of multiple consensus results.

3.4.1.2 Average Consensus in the Absence of Noise

The Fisher information for average consensus based system size estimation in the

absence of communication noise is calculated in Section 3.3.3.1. For completeness,

we use the following theorem to conclude the results:

Theorem 7. Assume the initial values at nodes xi are i.i.d. with mean µ and vari-

ance σ2. Also assume that N is large. When average consensus is used, the Fisher

information for estimate of system size N is

Iavg =
1

2N2
. (3.55)

53

The CRB is the inverse of the Fisher information, and an lower bound on the esti-

mation variance can be expressed as

Var
[

N̂
]

≥ 2N2. (3.56)

Proof. The proof is based on central limit theorem with N large (also holds for small

N and xi ∼ N (µ, σ2)). Calculation details are given in Section 3.3.3.1.

From Theorem 7, we see that the distribution of the initial values does not affect

the Fisher information when N large, which matches the result in [1] that scaling and

translations of initial value distribution do not affect the performance of the optimal

estimator. By comparing equation (3.56) with equation (3.54), we can see that system

size estimation with max consensus has a lower CRB.

3.4.2 CRB for System Size Estimation in the Presence of Noise

Consensus in wireless sensor networks always suffers from different sources of error

such as imperfect communication with noise and lack of convergence in finite time.

In this section, error is considered and Fisher information and CRB for system size

estimation are derived.

3.4.2.1 Max Consensus in the Presence of Noise

We model the final error at nodes to be Gaussian distributed e ∼ N (0, σ2
e). When

max consensus is used for system size estimation, there is no closed form expression

for the Fisher information and CRB. However, if we assume the distribution of the

initial values has exponential tails and N is large, an upper bound on the Fisher

Information can be obtained, the following statement characterizes the result.

Theorem 8. Assume the initial values at nodes xi have exponential tail and its tail

PDF λe−λx. The distribution of the max of the initial values can be approximated us-

54

ing Gumbel distribution. Assume that the final error at nodes is Gaussian distributed

e ∼ N (µe, σ
2
e). The Fisher information for estimate of system size N is bounded by

Inmax ≤
(

1

N2

)(

λ−2

σ2
e + λ−2

)

. (3.57)

The CRB is the inverse of the Fisher information, and a lower bound on the estima-

tion variance can be expressed as

Var
[

N̂
]

≥ N2
(

σ2
eλ

2 + 1
)

. (3.58)

Proof. The proof is based on extreme value theorem and distribution of random

variables. Details of the proof is given in the appendix.

The SNR can be defined as SNR = λ−2

σ2
e
. From equation (3.57) and (3.58) we see

that larger SNR causes a larger Fisher information and lower CRB. From equation

(3.57), we also see that in the absence of error with σ2
e = 0, equation (3.57) is the

same as the no error case in equation (3.53).

3.4.2.2 Average Consensus in the Presence of Noise

Fisher information and CRB for average consensus based distributed system size

estimation are calculated in Section 3.3.3.2. For completeness, we use the following

theorem to conclude the calculation,

Theorem 9. Assume the initial values at nodes xi are i.i.d. with mean µ and variance

σ2, the final error at nodes is Gaussian distributed e ∼ N (0, σ2
e). Also assume that

N is large. When average consensus is used, the Fisher information for estimate of

system size N is

Iavg =
1

2N4







σ4

(

σ2

N + σ2
e

)2






. (3.59)

When N is large, equation (3.59) can be approximated as

Iavg ≈ 1

2N4

(

σ2

σ2
e

)2

=
1

2N4
(SNR)2, (3.60)

55

where SNR is defined as SNR = σ2

σ2
e
. The CRB is the inverse of the Fisher information,

and an lower bound on the estimation variance can be expressed as

Var
[

N̂
]

≥ 2N4

(

σ2

N + σ2
e

)2

σ4
. (3.61)

Proof. The proof is given in Section 3.3.3.2.

From equation (3.60) and (3.61) we see that larger SNR causes a larger Fisher

information and lower CRB. From equation (3.59), we also see that in the absence of

error with σ2
e = 0, equation (3.59) is the same as the no error case in equation (3.55).

From the calculation of Fisher information and CRBs for different consensus based

system size estimation algorithms, we have the following conclusions. If max consen-

sus is used, the distribution of the initial values does not affect the Fisher information

and CRB results, and the max consensus case has a lower CRB than the average con-

sensus case in the absence of communication noise. In the presence of error (caused

by lack of convergence and communication noise), it is shown large SNR results in

better estimation performance, which is a trade-off in the problem. Also note that

traditional max consensus algorithms diverge in the presence of communication noise

and therefore max consensus may not be a good choice for system size estimation

with noise.

3.5 Simulation Results

3.5.1 Convergence of the Algorithm

The graph of the sensor network is fixed withN = 75 as in Figure 2.2. In Figure 3.1

and 3.2, we consider noisy communications and the algorithms based on average and

max consensus mentioned in [1] and [2] are implemented for comparison. It is shown

in [1, 2] that nodes converge to the N̂ = 75 in the absence of communication noise.

56

Simulation results for the uniform + maximum + ML algorithm mentioned in [1] is

considered in Figure 3.1. We observe that the algorithm is sensitive to noise and the

states of nodes always converge to 0 due to the divergence of max consensus in the

presence of noise. In Figure 3.2, we show the simulation results for Bernoulli trail

method proposed in [2], where the estimate at node 1 is shown. We see that Bernoulli

trail method is also sensitive to communication noise and the state of node 1 is not

converging.

In Figure 3.3 - 3.5, we set K = 1000, noise variance σ2
n = 1 and α(t) = 0.1/(t+1).

In Figure 3.3, the initial values xi are fixed and generated from a Gaussian distribution

with zero mean and variance 25, and r
(k)
i are Bernoulli distributed with ±1 so that

SNR = 13.98 dB. In Figure 3.4, the initial values are set to be fixed to xi = 5 and

r
(k)
i are Bernoulli distributed with ±1, and SNR = 13.98 dB. In Figure 3.5, the

initial values are set to be fixed xi = 5 and r
(k)
i are chosen as r

(k)
i ∼ N (0, 1), and

SNR = 13.98 dB. In Figure 3.3, node counting algorithm described in Section 3.2.2

is used, and method in Section 3.2.3 is used in the simulations in Figure 3.4 and 3.5.

From Figure 3.3 - 3.5, we see that the number of nodes can be estimated using the

proposed node counting algorithm in the presence of communication noise.

In Figure 3.6, the mean square error for N̂(t), denoted as E

[

(

N̂(t)−N
)2
]

, is

plotted. xi and r
(k)
i are chosen to be different values as shown in the figure. We

assume noisy communication with σ2
n = 1 and K = 1000. From Figure 3.6, we can

see that in the presence of communication noise, larger xi values result in a better

performance since the signal to noise ratio is larger; We can also see from Figure 3.6

that for the same xi value, MSE are almost the same for different r
(k)
i distributions.

This is because that when N is large, equation (3.24) and (3.26) are almost equal.

57

0 10 20 30 40 50 60 70 80 90 100
−150

−100

−50

0

50

100

150

200

250

300

t

S
y
st

em
si

ze
es

ti
m

a
ti

o
n

a
t

d
iff

er
en

t
n
o
d
es

Figure 3.1: Simulation Result for
Uniform + Maximum + ML Algo-
rithm in [1]: Node Counting Result
Versus Number of Iterations t. σ2

n =
0.001 and K = 1000.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

t

S
y
st

em
S
iz

e
E

st
im

a
ti

o
n

a
t

N
o
d
e

1

Figure 3.2: Simulation Result for
Bernoulli Trail Algorithm in [2]: Node
Counting Result at Node 1 Versus
Number of Iterations t. σ2

n = 1 and
K = 1000.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

t

Sy
st

em
 s

iz
e

es
tim

at
io

n
at

 d
iff

er
en

t n
od

es

Figure 3.3: Entries of Node Counting Result Versus Number of Iterations t. xi(0) ∼
N (0, 25), σ2

n = 1 and r
(k)
i Bernoulli Distributed with ±1. α(t) = 0.1/(t + 1) and

K = 1000.

3.5.2 PDF of N̂

In Figure 3.7 and 3.8, the probability density function of N̂ is plotted based on

equation (3.34). The network is the same as Figure 2.2. In Figure 3.7, we fix the

SNR and the figure shows how the value of K affects the distribution of N̂ . While in

Figure 3.8 we fix K and the figure shows how the SNR affects the distribution of N̂ .

From Figure 3.7, we can conclude the bias and the variance result in Section 3.3.2.2:

58

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

t

Sy
st

em
 s

iz
e

es
tim

at
io

n
at

 d
iff

er
en

t n
od

es

Figure 3.4: Entries of Node Counting Result Versus Number of Iterations t. xi(0) =

a = 5, σ2
n = 1 and r

(k)
i Bernoulli Distributed with ±1. α(t) = 0.1/(t + 1) and

K = 1000.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

t

Sy
st

em
 s

iz
e

es
tim

at
io

n
at

 d
iff

er
en

t n
od

es

Figure 3.5: Entries of Node Counting Result Versus Number of Iterations t. xi(0) =

a = 5, σ2
n = 1 and r

(k)
i ∼ N (0, 1). α(t) = 0.1/(t+ 1) and K = 1000.

10 20 30 40 50 60 70 80 90

10
1

10
2

10
3

t

E
[(
N̂

−
N
)2
]

MSE for N̂ , N = 75 Nodes

xi = 1, r
(k)
i Gaussian

xi = 1, r
(k)
i Bernoulli

xi = 5, r
(k)
i Gaussian

xi = 5, r
(k)
i Bernoulli

Figure 3.6: MSE Versus t, Noisy σ2
n = 1, K = 1000.

59

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

z

p N̂
(z

)

Probability Density Function for N̂

K = 10

K = 20

K = 50

K = 100

Figure 3.7: PDF for N̂ with Differ-
ent K Values, SNR = 13.98dB, α(t) =
0.1/t.

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

z

p N̂
(z

)

Probability Density Function for N̂

SNR = 0 dB

SNR = 6.99 dB

SNR = 13.01 dB

SNR = 13.98 dB

Figure 3.8: PDF for N̂ with Different
SNR Values, K = 100, α(t) = 0.1/t.

When K gets larger, the bias and variance of the estimator get smaller. From Fig-

ure 3.8, we see that when the SNR is larger, the bias of the estimator gets smaller,

however the variance of the estimator gets larger. We also see from Figure 3.8 that for

fixed K value and large enough SNR, the distribution of N̂ will almost be the same

as SNR increases (by comparing the probability density function for SNR = 13.01dB

and SNR = 13.98dB).

60

0 200 400 600 800 1000

60

65

70

75

80

85

90

t

Sy
st

em
 s

iz
e

es
tim

at
io

n
at

 d
iff

er
en

t n
od

es

Figure 3.9: N̂(t) at Different Nodes, K = 1000, r
(k)
i Bernoulli Distributed.

100 200 300 400 500 600 700 800 900 1000
50

55

60

65

70

75

80

85

90

t

Sy
st

em
 s

iz
e

es
tim

at
io

n
at

 d
iff

er
en

t n
od

es

Figure 3.10: N̂(t) at Different Nodes, K = 1000, r
(k)
i Gaussian Distributed.

3.5.3 Special Initial Values xi as in (3.29)

In Figure 3.9 and 3.10, a special case mentioned in Section 3.3.1.3 is considered.

The initial values xi are chosen as equation (3.29) and we assume in the absence of

noise, σ2
n = 0. The design parameter r

(k)
i is Bernoulli distributed in Figure 3.9 and

Gaussian distributed in Figure 3.10. From the simulations we can see that when r
(k)
i

be Bernoulli distributed, the states of nodes converge almost exactly to N̂ = 75 when

t→ ∞. When choose r
(k)
i to be Gaussian distributed, the error is small.

In Figure 3.11, initial values are chosen as equation (3.29) and the MSE versus t

is plotted. From the figure we have the following observations: i) In the absence of

61

0 50 100 150 200
10

−10

10
−5

10
0

10
5

10
10

10
15

t

E
[(

N̂
−

N
)2

]

MSE for N̂ , N = 4 nodes

x1 = 5, xi 6=1 = 0, r
(k)
i Gaussian

x1 = 5, xi 6=1 = 0, r
(k)
i Bernoulli

Figure 3.11: MSE Versus t (4 Nodes Network with Star Topology), x1 = 5, xi 6=1 = 0,
σ2
n = 0 and K = 1000.

communication noise, the MSE achieves 0 as t → ∞ if r
(k)
i is Bernoulli distributed;

and ii) The MSE will be small when r
(k)
i is Gaussian distributed, but does not achieve

0.

However, choosing the initial values as in equation (3.29) is difficult in practice

since this is not a distributed way to choose the initial values, as mentioned in Sec-

tion 3.3.1.3.

3.5.4 Small Network with N = 4

In this subsection, a network of 4 nodes with star topology is considered. In Fig-

ure 3.12, we set xi = a = 5, r
(k)
i are chosen to be Gaussian and Bernoulli distributed

and σ2
n = 1. MSE versus the number of iterations is plotted.

We see from the Figure 3.12 that when N is small, choosing r
(k)
i to be Bernoulli

yields a better performance since the variance of the L2 norm estimation result will

be smaller from equation (3.25) and (3.26).

62

0 50 100 150 200
10

−2

10
−1

10
0

10
1

t

E
[(

N̂
−

N
)2

]

MSE for N̂ , N = 4 Nodes

xi = 5, r
(k)
i Gaussian

xi = 5, r
(k)
i Bernoulli

Figure 3.12: MSE versus t (4 Nodes Network with Star Topology), Noisy σ2
n =

1, K = 1000.

63

Chapter 4

DISTRIBUTED NETWORK CENTER AND RADIUS ESTIMATION

In this chapter, we have addressed the problem of locating the center and estimat-

ing the radius of a distributed wireless sensor network (WSN). The network center

and radius information can be used to infer the coverage area of the WSN. Center,

radius and coverage area of a WSN are useful in many applications. For example, the

center and area information are helpful for locating a service center in a network [78].

It is mentioned in [79] that the knowledge of the area of the wireless sensor network

and the total number of nodes in the network can be used to decide the optimal

connection between sensor nodes. The required power at sensor nodes also depends

on the area of the network. It is reported in [80] that energy-efficient scheduling in

a WSN depends on the coverage area of the network. However, it is often hard to

estimate the network center and area in a distributed WSN where sensors only have

local information. In this chapter, we foucs on the problem of estimating the smallest

circle or sphere that covers all sensor nodes; the center and radius of the network

area are estimated in a fully distributed manner. Note that part of the works in this

section will be included in our future publications.

4.1 System Model

The distributed WSN is modeled as an undirected connected graph. Two nodes

can communicate with each other only if they are neighbors. It is assumed that

each sensor knows its own location and the communications between sensor nodes

is perfect without communication noise. We use the smallest circle (2-D) or sphere

(3-D) that covers all sensor nodes to represent the network coverage area. Estimating

64

the smallest covering circle or sphere is basically estimating the center and radius.

An example of a 2-D WSN is given in Figure 4.1.

(1, 0)

(0, 1)

(0, -1)

(-1, 0)

(0.3, 0.3)

(-0.1, -0.1)

r

Nodes

Edges

Circle network area

Network center

r: Network radius

Figure 4.1: A Distributed Network (2-D) with N = 6 Nodes with Network Center
at the Origin and Radius 1.

4.2 Review of Mathematical Background

For completeness, we briefly review the mathematical background including soft-

max approximation, some basic distributed optimization methods and distributed

max consensus using max operator, which will be used in the proposed algorithm.

4.2.1 Review of Soft-max Approximation

Recall that the soft-max function can be used to approximate the maximum. The

soft maximum of a vector θ = [θ1 θ2 · · · θN] is denoted as

smax(θ) =
1

β
log

N
∑

i=1

eβθi , (4.1)

where β > 0 is a design parameter and the soft-max approximates the maximum for

large β. The soft-max in equation (4.1) is always larger than the maximum value of

65

θ. The difference is small when β is large:

max(θ) ≤ smax(θ) ≤ max(θ) +
1

β
logN (4.2)

4.2.2 Review of Distributed Optimization

In this subsection, we briefly review two distributed optimization methods: stochas-

tic gradient descent and diffusion adaptation method.

Stochastic gradient descent is an approximation of the traditional gradient descent

optimization. If the objective function can be written as a summation of differentiable

functions:

Jglobal(ω) =
N
∑

i=1

Ji(ω), (4.3)

where the parameter ω that minimizes J(ω) is to be estimated. Then the gradient in

the standard gradient descent, ∇J(ω) can be approximated by a single gradient term,

∇Ji(ω). The iterative updating rule for stochastic gradient descent can be express as

ω := ω − η∇Ji(ω), (4.4)

where η is the step size.

In [81], a distributed optimization algorithm based on diffusion adaptation is in-

troduced. The diffusion adaptation allows the nodes in the network to cooperate [82],

therefore makes the convergence speed faster than the stochastic gradient descent ap-

proach in equation (4.4). It consists of two steps: in the first step, an intermediate

result is calculated using combination of local gradient values from all neighbors; and

then in the second step, each node aggregates the intermediate results from its neigh-

bors to calculate the the optimal ω. The algorithm and the updating rule is more

detailed expressed in Section 4.3.

66

4.2.3 Review of Max Consensus

It is mentioned in the previous sections that there are different max consensus

algorithms. In this section, we briefly review the simple max consensus algorithm

with max operator. The updating rule is straightforward: the nodes update their

states with the largest received measurement they receive in each iteration. Let ri(t)

be the state of node i at time t, the updating rule can be expressed as

ri(t + 1) = max

{

ri(t),max
j∈Ni

rj(t)

}

. (4.5)

It is proved in [46] and [50] that by running the iterative algorithm, states of nodes

converge to the maximum of the initial states in finite time.

4.3 Estimation of Network Center and Radius

4.3.1 Problem Statement

Consider a connected distributed wireless sensor network with no fusion center.

Each node in the network only knows its own location. We assume that the each

sensor always keeps a single state and the sensors update their states by exchanging

their states with their neighbors. It is desired that the nodes reach consensus on the

center and radius of the network using only local communications.

The main idea of the algorithm is to use soft-max approximation to formulate the

center estimation problem as a convex optimization problem. The object function

is written as a summation of differentiable functions using soft-max function and

distributed optimization methods such as stochastic gradient descent and diffusion

methods can be used to estimate the center. After all nodes obtain the estimate of

the center, max consensus is used for distributed radius calculation and the network

area can be obtained at nodes.

67

The center O of the network is defined to be the point that minimizes the max-

imum distance between O and all nodes [78]. In 2-D case, this can be posed as the

following optimization problem:

minimizex,y max
i

{

(ai − x)2 + (bi − y)2
}

, (4.6)

where (ai, bi) is the location of node i and the location of the center O(x, y) minimizes

(4.6). In 3-D case, the optimization problem can be written as

minimizex,y,z max
i

{

(ai − x)2 + (bi − y)2 + (ci − z)2
}

, (4.7)

where (ai, bi, ci) is the location of node i and the location of the center O(x, y, z)

minimizes (4.7). Note that the formulation in equation (4.6) and (4.7) can be extended

to higher dimension cases such as 4-D. In the following of this chapter, we will focus

on calculating the network center and radius in 2-D case. The algorithms for higher

dimentional cases are similar.

The min-max formulation in equation (4.6) is neither differentiable nor convex,

but using the soft-max approximation in equation (4.1) in Section 4.2.1, equation

(4.6) can be formulated as the following optimization problem:

minimizex,y
1

β
log

[

N
∑

i=1

eβ{(ai−x)2+(bi−y)2}
]

. (4.8)

Note that equation (4.6) and (4.8) will be the same when β → ∞. Equation (4.8)

can be further simplified since log(·) is a monotonic increasing function and β is a

constant, we have

minimizex,y

N
∑

i=1

eβ{(ai−x)2+(bi−y)2}. (4.9)

The objective function in (4.9) is differentiable and convex. Moreover, by using

the soft-max approximation, the objective function is in the form of sum of local

differentiable functions. Note that the proof of convexity of (4.9) is obtained by first

68

calculating the Hessian of the objective function in (4.9). Then we can show that the

Hessian matrix is positive definite when β > 0. The details of the proof is given in

Appendix.

In a centralized network where the fusion center has all the location information

of nodes. Traditional convex optimization algorithms, for example gradient descent

method can be used for center estimation. Let (x∗, y∗) be the solution of equation

(4.9), which is the estimated center. Then, the radius of the network is obtained by

calculating the maximum distance between the estimated center (x∗, y∗) and nodes,

we have

r̂ = max
i

√

(ai − x∗)2 + (bi − y∗)2. (4.10)

Therefore, by knowing the center and radius, the network area is obtained.

In wireless sensor networks where nodes having limited power and storage, it is

always better to adopt distributed algorithms [83]. As shown above, by applying the

soft-max approximation, the center estimation problem is formulated as a sum min-

imization problem as in equation (4.9). Therefore, distributed iterative algorithms

can be used to estimate the center and radius. In the following of this section, the dis-

tributed center estimation is firstly introduced in Section 4.3.2. Then in Section 4.3.3,

the distributed radius estimation algorithm is described.

4.3.2 Distributed Center Estimation

In this section, two different distributed center estimation algorithms for solving

equation (4.9) are described. The stochastic gradient descent method is introduced

in Section 4.3.2.1, where there is only one active node at each iteration time and

communication between nodes is pairwise. In Section 4.3.2.2, diffusion adaptation

method is used for distributed optimization and all nodes are exchanging information

with their neighbors at each iteration time.

69

4.3.2.1 Center Estimation Using Stochastic Gradient Descent

Recall that by using the soft-max approximation, the network center estimation

problem is formulated as a convex optimization problem given in equation (4.9).

Since the objective function in equation (4.9) is a sum of differentiable functions,

stochastic gradient method mentioned in Section 4.2.2 can be used to solve the convex

optimization problem in a fully distributed way. At each node, the true gradient

∇Jglobal(x(t), y(t)) is approximated by the local gradient ∇Ji(x(t)i , y
(t)
i), where

Ji(x
(t)
i , y

(t)
i) = e

β
{

(ai−x
(t)
i)2+(bi−y

(t)
i)2

}

. (4.11)

Algorithm 1 presents the updating steps at nodes. Firstly, a leader is selected

as the starting node with starting value (x(0), y(0)). The leader updates its estimate

using stochastic gradient descent method and randomly choose one of its neighbors

and pass the estimate to the chosen node. The node that receives the data becomes an

active node and the original leader turns inactive. Then the active nodes repeat doing

the update: i) update the estimate of center (x(t), y(t)) by using stochastic gradient

descent and randomly choose one neighbor node to pass the estimate; and ii) after

passing the data, the original source node return inactive and the node gets the data

becomes active. Note that at each iteration time, there is only one active node in

the network doing the update, and all the inactive nodes stay idle. Finally, when t is

large, all nodes reach consensus on the estimated center.

Note that Algorithm 1 performs like a sequential stochastic gradient descent, and

it is fully distributed in the sense that the update of x
(t+1)
i and y

(t+1)
i at node i only

depends on its own location information (ai, bi) and received data (x
(t)
i , y

(t)
i). Also

note that max consensus can be used for distributed leader selection (choose the

starting node) at the beginning of Algorithm 1 [49].

In the stochastic gradient based center estimation algorithm, only one node is

70

Algorithm 1 Stochastic gradient descent for center calculation

select a leader node (active node), with starting values (x(0), y(0)).

for active node i:

repeat

x
(t+1)
i = x

(t)
i − η ∂

∂x
(t)
i

Ji(x
(t)
i , y

(t)
i).

y
(t+1)
i = y

(t)
i − η ∂

∂y
(t)
i

Ji(x
(t)
i , y

(t)
i).

select a neighbor j ∈ Ni to pass data:

x
(t+1)
j = x

(t+1)
i , y

(t+1)
j = y

(t+1)
i .

node i → inactive, node j → active

until stopping criterion is satisfied.

active at each iteration and nodes are communicating with each other pairwisely.

Therefore, the convergence speed is slow. In the following section. a faster optimiza-

tion method based on diffusion adaptation strategy is introduced.

4.3.2.2 Center Estimation Using Diffusion Adaptation

Since the global cost function in equation (4.9) is in the form of summation of

individual real-valued local functions, and the local functions are differentiable and

convex. The diffusion adaptation strategies like in [81] can be used to achieve con-

sensus on network center estimate.

Let ω
(t)
i =

[

x
(t)
i y

(t)
i

]T

, and ψ
(t)
i ∈ R2 be an intermediate value vector. Consider

the following iterative algorithm:

ψ
(t+1)
i = ω

(t)
i − µ

∑

j∈Ni

cj,i∇ωJj(ω
(t)
i), (4.12)

ω
(t+1)
i =

∑

j∈Ni

aj,iψ
(t+1)
i , (4.13)

where µ > 0 is a small constant descent step size parameter. cj,i and aj,i are non-

71

negative coefficients that satisfy

N
∑

i=1

cj,i = 1, cj,i = 0 if j 6∈ Ni, j = 1, 2, · · · , N, (4.14)

N
∑

i=1

aj,i = 1, aj,i = 0 if j 6∈ Ni, j = 1, 2, · · · , N. (4.15)

In each iteration time, the algorithm involves two steps. In the first step in equa-

tion (4.12), node i update the intermediate vector ψ
(t+1)
i based on its own estimate

ω
(t)
i and the gradient vector information from its neighbors. In the second iteration

step in equation (4.13), nodes exchange information with their neighbors and cal-

culate the network center, ω
(t+1)
i based on the received intermediate results. Note

that the first step in equation (4.12) does not require information exchange in every

iteration since Jj(ω
(t)
i) only depends on the location information of node j, (aj, bj).

Therefore, node i can save the location information of all of its neighbors at the first

iteration time and use it during update steps in equation (4.12).

The diffusion algorithm in equation (4.12) and (4.13) is usually faster than the

stochastic gradient descent approach in Section 4.3.2.1 since all nodes are active and

exchanging information with their neighbors at each iteration time.

Note that since the objective function is of a summation form, the famous al-

ternating direction method of multipliers (ADMM) can also be used [84]. How-

ever, traditional ADMM requires global average calculation in each ADMM iteration.

Therefore, it is usually slower than the diffusion adaptation method in a distributed

wireless sensor network.

4.3.3 Distributed Radius Estimation

When all nodes reach consensus on the estimated center (x∗, y∗), max consensus

can be used for radius calculation. Each node first computes its distances to the

72

estimated center,

li =
√

(ai − x∗)2 + (bi − y∗)2. (4.16)

Then by setting li as the initial states at nodes, the radius, which is the maximum

distance r̂ = maxi{li}, can be calculated using distributed max consensus as in Sec-

tion 4.2.3. As shown in equation (4.5), each node exchange information with its

neighbors and always keeps the maximum received data. In finite iteration time,

nodes converge to the maximum of the initial measurements.

Therefore, by knowing the center and radius, all nodes in the network obtain an

estimate of the network area.

4.4 Discussion

The performance of the proposed algorithm is affected by the design parameters.

The accuracy of the center estimation result is affected by β and the nodes locations

(ai, bi). The convergence speed of the distributed center estimation algorithm depends

on β, η, (x(0), y(0)), cj,i and aj,i.

4.4.1 Steady State Error for Center Estimation

By using the proposed algorithms in Section 4.3.2, when consensus is reached,

nodes in the network converge to an estimate of the location of the network cen-

ter. Regarding the soft-max approximation parameter β, we see from equation (4.2)

that larger β value results in more accurate max approximation from (4.6) to (4.9).

Therefore, more accurate network center estimates can be obtained at nodes when

β is chosen to be large. However, large β value also make the value of the objective

function in equation (4.9) very large since exponential function is used. This may

cause problems such as slow convergence rate and large transmit power.

The accuracy of the center estimation result also depends on the locations of nodes,

73

(ai, bi). In the following of this subsection, the error between the network center

and the steady state estimation result using the proposed algorithm is discussed. If

we consider the simple 1 − D case, with nodes locations at ai. The center of all

nodes depends on the maximum and minimum nodes locations, and is at location

(amax + amin)/2. By using the soft-max approximation formulation as in Section 4.3,

the steady state center location is calculated as

argminx

N
∑

i=1

eβ(ai−x)2 . (4.17)

The optimal location x∗ can be found using derivative of equation (4.17), and x∗

satisfies that

N
∑

i=1

(x∗ − ai)e
β(x∗−ai)2 = 0. (4.18)

We have the following observations based on equation (4.18): i) The estimated center

x∗ is related to the initial nodes locations ai; and ii) When the nodes locations are

symmetric around the center, the solution of equation (4.18) will be the same as

the true network center, x∗ = (amax + amin)/2. This is because when locations are

symmetric, we can assume without loss of generality that xO − ai = aN−i+1 − xO,

where xO is the network center. Assume N is even, we have

N
∑

i=1

(xO − ai)e
β(xO−ai)

2

(4.19)

=

N/2
∑

i=1

(xO − ai)e
β(xO−ai)2 +

N
∑

i=N
2
+1

(xO − ai)e
β(xO−ai)2 (4.20)

=

N/2
∑

i=1

(xO − ai)e
β(xO−ai)2 −

N/2
∑

i=1

(xO − ai)e
β(xO−ai)2 = 0. (4.21)

As shown in equation (4.19)-(4.21), xO satisfies equation (4.18). Therefore, symmetric

nodes locations leads to accurate steady state center estimation, regardless of the

74

value of β. Note that an example of symmetric nodes locations can be uniformly

distributed nodes locations.

Similar results can be obtained in 2-D network. The steady state center location

estimate, O(x∗, y∗) satisfies

N
∑

i=1

(x∗ − ai)e
β[(x∗−ai)

2+(y∗−bi)
2] = 0 (4.22)

N
∑

i=1

(y∗ − bi)e
β[(x∗−ai)2+(y∗−bi)2] = 0 (4.23)

When the locations (ai, bi) are symmetric around the center, the estimated center will

be same as the true network center.

We have the following conclusions based on the above analysis: i) More accurate

center estimation when β is large; and ii) When β is small, accurate center estimation

can also be obtained if the sensor locations are symmetric. The center estimation

accuracy depends on the locations of nodes, (ai, bi).

4.4.2 Convergence Speed for Center and Radius Estimation

The convergence speed of the proposed center estimation algorithm is affected

by the design parameters and the initial starting value at nodes. The initial values

(x(0), y(0)) or ω
(0)
i affect the convergence speed of both Algorithm 1 in Section 4.3.2.1

and diffusion adaptation strategy in Section 4.3.2.2. In wireless sensor networks, av-

erage consensus such as those in [32, 34, 35] can be used to choose the staring value.

Nodes first run average consensus as in [34, 35, 41] on their x and y coordinate val-

ues and the average consensus results can be used as the initial starting point of

the proposed network center estimation algorithm. This is because in many net-

work structures such as random graph or uniformly distributed network, the average

location is close to the center.

75

The convergence speed is also affected by the design parameters. Algorithm 1 uses

stochastic gradient descent and the step size η affect the convergence speed. In the

diffusion adaptation based center estimation algorithm in Section 4.3.2.2, the conver-

gence speed is affected by µ, cj,i and aj,i. Convergence of stochastic gradient descent

and diffusion adaptation have been studied extensively in the literature. The asymp-

totic convergence speed of stochastic gradient descent and how to choose the step

size η for faster convergence can be found in [85, Chapter 18] and [86]. Performance

analysis of diffusion adaptation strategy is given in [81] and [82].

Radius estimation algorithm in Section 4.3.3 always converge in finite iterations

since max consensus with the max operator is used. The convergence speed of max

consensus depends on the minimum number of edges needed to connect any two

nodes in the network graph. Details of the convergence speed for max consensus can

be found in [46].

4.5 Simulations

In this section, simulation results for the proposed algorithm are presented. A

2-D connected graph with N = 6 nodes is generated as shown in Figure 4.2. The

locations of the nodes are shown in the figure. The center of the network is at O(0, 0)

and the radius r = 1.

In Figure 4.3, 4.4 and 4.5, stochastic gradient descent based Algorithm 1 men-

tioned in Section 4.3.2 is performed for distributed center estimation. We set node

1 (location at (1, 0)) to be the starting node with starting values (0.3, 0.8). We

set the stochastic gradient descent step size η = 10−4 and the soft-max parameter

β = 1. In the figure, the estimated coordinates of the center O at nodes are plot-

ted. The estimate of x coordinate of O at all nodes is given in Figure 4.3 and the

y coordinate estimate is shown in Figure 4.4. From the results, we can see that the

76

estimate at nodes converge towards the center of the network when t is large. In

Figure 4.5, the error between the center O and the estimated center at node 1, de-

noted as

√

(x
(t)
1 − xO)2 + (y

(t)
1 − yO)2 is plotted, where (xO, yO) = (0, 0) is the center.

We can see from the figure that the error decreases as t increases and the estimate

converge towards the center.

In Figure 4.6, 4.7 and 4.8, diffusion adaptation in in Section 4.3.2.2 for center

estimation. We set the initial states at nodes ω
(0)
i = [x

(0)
i y

(0)
i]T to be uniformly

distributed, U(−0.5, 0.5). The descent step size µ = 10−4 and the soft-max parameter

β = 1. The coefficients cj,i and aj,i are setted based on degree of nodes:

cj,i = aj,i =















1
di+1

, if j ∈ Ni

0, otherwise.

(4.24)

In Figure 4.6 and 4.6, the x and y coordinate estimates at different iteration time

t are plotted. We can see from the figure that the estimates converge towards the

center. In Figure 4.8, the average estimation error versus iteration time t is plotted.

By comparing Figure 4.8 with Figure 4.5, we can see that the method of diffusion

adaptation converges faster than the stochastic gradient descent.

In Figure 4.9, simulations for Phase II of the proposed algorithm (max con-

sensus for radius estimation) described in Section 4.3.3 is performed. We assume

that stochastic gradient descent method is used and the iterative algorithm stops at

t∗ = 5000. Distances from nodes to the estimated centers are calculated at nodes and

set as initial values at nodes for max consensus. Figure 4.9 shows the max consensus

radius estimation process. We can see from the figure that consensus is reached in 3

iterations and the estimated radius r̂ = 1.063.

Finally based on the estimated center and radius, estimate of the network area is

obtained at nodes. The estimated network area of node 1 at time t∗ = 5000 is shown

77

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(1, 0)

(0, 1)

(0.3, 0.3)

(−0.1, −0.1)

(−1, 0)

(0, −1)

Figure 4.2: Graph Representation of the Sensor Network, N = 6.

in Figure 4.10.

0 1000 2000 3000 4000 5000

−0.1

0

0.1

0.2

0.3

0.4

iteration time, t

x
(t
)

i

Figure 4.3: Estimate of the x Coor-

dinate Value of the Center, x
(t)
i Ver-

sus Iteration t Using Algorithm 1, η =
10−4 and Starting Point x(0) = 0.3.

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iteration time, t

y(t
)

i

Figure 4.4: Estimate of the y Coor-

dinate Value of the Center, y
(t)
i Ver-

sus Iteration t Using Algorithm 1, η =
10−4 and Starting Point y(0) = 0.8.

78

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iteration time, t

√

(x
(t
)

1
−

0)
2
+

(y
(t
)

1
−

0)
2

Figure 4.5: Error Versus t at Node 1 with the Algorithm 1, Where O(xO, yO) is the
True Center and xO = 0, yO = 0.

0 100 200 300 400 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

iteration time, t

x
(t
)

i

Figure 4.6: Estimate of the x Co-

ordinate Value of the Center, x
(t)
i

Versus Iteration t Using Diffusion
Adaptation, η = 10−4 and Start-
ing Point to be Uniformly Distributed
U(−0.5, 0.5).

0 100 200 300 400 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

iteration time, t

y
(t
)

i

Figure 4.7: Estimate of the y Co-

ordinate Value of the Center, y
(t)
i

Versus Iteration t Using Diffusion
Adaptation, η = 10−4 and Start-
ing Point to be Uniformly Distributed
U(−0.5, 0.5).

79

0 100 200 300 400 500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

iteration time, tA
v
er
a
g
e
er
ro
r,

1 N

∑

N i=
1

√

(x
(t
)

i
−

0
)2
+

(y
(t
)

i
−

0
)2

Figure 4.8: Average Error Versus t Using Diffusion Adaptation, Where O(xO, yO)
is the True Center and xO = 0, yO = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

iteration time, t

ra
d
iu
s
es
ti
m
a
te

a
t
n
o
d
es
,
r̂
i(
t)

Figure 4.9: Radius Estimate Versus t Using Max Consensus in Section 4.3.3. The
Initial Value at Node i is Set to be the Distance Between the Estimated Center and
Its Own Location.

80

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

Figure 4.10: Estimated Network Area at Node 1 at t = 5000.

81

Chapter 5

CONSENSUS BASED DISTRIBUTED ESTIMATION ALGORITHMS

In this chapter, we present two average consensus based distributed estimation

algorithms in wireless sensor networks. A distributed algorithm for estimating the

degree distribution and degree matrix of network is described in Section 5.1 and

running consensus algorithm for estimating the dynamics of a desired estimator is

introduced in Section 5.2. Note that part of the degree distribution algorithm is

presented in our published work in [87]. The running consensus algorithm for tracking

the dynamics of an estimator may be included in our future publications.

5.1 Distributed Estimation of the Degree Distribution in Wireless Sensor Networks

Consider a connected wireless sensor network with no fusion center. Each node

in the network generates a real-valued initial state vector. We assume that the each

sensor always keeps a single state vector and the sensors update the state vectors

based on local received measurements from their neighbors. It is desired that the

nodes reach consensus on the degree distribution and degree matrix of the network.

The proposed algorithm is based on the fact that degrees are discrete values. The

idea of estimation of empirical mass functions with average consensus algorithm is

used. We also show that if the number of nodes in the network N is given, the degree

matrix of the network can be obtained at nodes.

In the following, details of the proposed algorithm is provided. The proposed de-

gree distribution estimation algorithm is introduced in Section 5.1.1. In Section 5.1.2,

we assume that the value of N is available and we show that the degree matrix of the

network can be calculated from the degree distribution. The analysis of the algorithm

82

is given in Section 5.1.3.

5.1.1 Estimation of Degree Distribution

The algorithm can be described as three phases: initial measurement vectors

are generated at nodes in Phase I, and average consensus algorithm is performed in

phase II to let nodes reach consensus on the same state vector. Finally the degree

distribution is calculated at phase III by post processing the convergence result. In the

following of this subsection, details of three phases of the algorithm are introduced.

5.1.1.1 Phase I - Generate Initial Values

In Phase I of the algorithm, initial measurement vectors are generated at nodes.

Each node in the network generates an initial measurement vector with length K,

and K > dmax, where dmax is the maximum degree. Assume that node i only knows

its own degree di, the initial measurement vector at node i, denoted as xi(0) ∈ RK

can be expressed as,

x
(k)
i (0) =















1, if di = k

0, otherwise,

(5.1)

where x
(k)
i (0) is the kth element of xi(0), and k = 1, 2, · · · , K. Note that max

consensus as mentioned in [46, 57] can be used to estimate dmax. The max estimate

will drift larger in the presence of noise [57]. Therefore K can be set as the max

consensus result since K > dmax is required.

5.1.1.2 Phase II - Average Consensus

In Phase II of the degree distribution estimation algorithm, average consensus

algorithm is used for each element in the state vector. Each node i set the initial state

value xi(0) as in equation (5.1). Nodes in the network run the iterative algorithm as

83

expressed in equation (2.4), and the kth element in the state of node i at time t + 1

can be expressed as,

x
(k)
i (t + 1) = [1− α(t)di]x

(k)
i (t) + α(t)

∑

j∈Ni

[

x
(k)
j (t) + v

(k)
ij (t)

]

, (5.2)

where v
(k)
ij (t) is the noise associated with the reception of x

(k)
j (t) at node i.

When t is large, the state vectors for all nodes are converging to a noisy version

of the average of the initial measurement vectors. Assume the iteration stops at time

t∗, we have,

E
[

x
(k)
i (t∗)

]

=
1

N

N
∑

j=1

x
(k)
j (0) =

(nk

N

)

, (5.3)

where nk is the number of nodes with degree k.

Equation (5.3) shows that by running the distributed averaging, the expected

value of the kth element in the state vector converges to the degree distribution p(k).

The mean square error of the algorithm is small when the noise variance σ2
n is small,

from Theorem 1.

Assuming consensus is perfectly reached and there is no communication noise,

then the convergence result will be an accurate estimate of the degree distribution.

p̂
(k)
i (t∗) =

nk

N
. (5.4)

However, consensus in wireless sensor networks always suffers from lack of convergence

and communication noise. As a result, the following post processing is needed.

5.1.1.3 Phase III - Post Processing

In this section, a threshold based on the network size is used to decide whether

the convergence result is noisy averaging of the initial measurements or purely noise.

For node i, the estimate of the degree distribution at time t∗ can be expressed as,

p̂
(k)
i (t∗) =















x
(k)
i (t∗) , if x

(k)
i (t∗) ≥ 1

2N̂

0 , otherwise,

(5.5)

84

where N̂ is an estimate of number of nodes in the network. Note that the number of

nodes in the network can be estimated in a distributed way [73] and N̂ can also be

used as K since dmax ≤ N . Also note that the thresholding post processing step is

used to set the purely noisy convergence result to 0. For example, by applying the

thresholding, the negative consensus results caused by communication noise are set

to 0. Therefore the estimate of degree distribution will be non-negative. Here, the

threshold is set to be 1

2N̂
as shown in equation (5.5).

More ways to post process the convergence result based on graph degree structure

and ways to choose state vector size, K are introduced in Section 5.1.4.

5.1.2 Estimation of Degree Matrix

In the previous subsection, it is shown that the degree distribution of the network

can be obtained in a distributed way. From the degree distribution, the degree matrix

can be calculated if the number of nodes in the network N is known. The idea is that

with p̂
(k)
i and N , the estimate of number of nodes with degree k can be calculated as,

n̂k =
⌊

Np̂
(k)
i

⌉

,

where ⌊x⌉ rounds x to the nearest integer. Therefore, we know there are n̂k nodes with

degree k, k = 1, 2, · · ·K and an estimate of the degree matrix can be obtained. Note

that since nodes are not labeled, the obtained degree matrix is actually a permutation

of the labeled degree matrix, which can be used to infer dmin, dmax and the trace of

the Laplacian matrix.

5.1.3 Performance Analysis

In this section, different sources of error are discussed: i) The error caused by

lack of convergence in finite time is analyzed in Section 5.1.3.1, and ii) The effect of

85

communication noise is considered in Section 5.1.3.2.

5.1.3.1 Transient of Bias

The convergence rate analysis for each element in the state vector will be the same

as in [34] since average consensus is used. Let x(k)(t) =
[

x
(k)
1 (t) · · · x(k)N (t)

]T

contains

all the kth element in the state vector for all nodes at time t, then the convergence

rate for x(k)(t) can be expressed as,

||E[x(k)(t)]− nk

N
1||2 ≤





∏

0<τ≤t

(1− α(τ)λ2(L))



 ||x(k)(0) − nk

N
1||2. (5.6)

Equation (5.6) shows that the convergence rate depends on λ2(L) and α(t).

5.1.3.2 Steady State Error Analysis

In this section, we assume that the convergence is reached and state vectors of

nodes converge to a noisy version of the initial state vectors as mentioned in Theo-

rem 3. It is shown in Theorem 3 that the MSE of the convergence result is bounded,

and σ2
n and α(t) affect the performance. In the following of this section, the distribu-

tion of the convergence result is calculated, and how the algorithm parameters and

noise affect the convergence result is studied.

After convergence is reached as in Section 5.1.1.2, the kth element in the state

vector of node i can be expressed as,

x
(k)
i (t) =

nk

N
+ v′, (5.7)

where v′ is a random variable caused by accumulated communication noise, v′ ∼
N
(

0,
(

∑N
i=1 di
N2

)

σ2
n

∑∞
t=0 α

2(t)
)

from Theorem 3. Therefore, the convergence result is

also Gaussian distributed, we have,

x
(k)
i (t) ∼ N

(

nk

N
,

(

∑N
i=1 di

N2

)

(

σ2
n

1

) ∞
∑

t=0

α2(t)

)

. (5.8)

86

From equation (5.8) we have the following conclusions: i) The convergence result is

an unbiased estimator of the degree distribution; ii) The variance of the estimator is

related to α(t) and 1
σ2
n
(can be viewed as SNR since initial x

(k)
1 is chosen as equation

(5.1)); and iii) The variance will be small when SNR is large and the steady state

performance will not be affect by SNR if there is no communication between nodes.

Note that if amplify and forward is used for transmission, the value of x
(k)
1 in equation

(5.1) can be chosen to be large to increase the SNR, therefore make the variance of

the estimate in equation (5.8) smaller.

5.1.4 Discussions

The degree distribution have some special properties, such as the degrees are

integers and the degree distribution usually follows power-law in real-world networks

[88]. In this section, we show that these properties can be used to obtained a more

accurate estimate of the degree distribution or reduce the required storage at nodes.

5.1.4.1 Post Processing Based on Integer Degree Structure

In this subsection, a post processing step based on the fact that the degrees are

integers is introduced. We assume that the number of nodes in the network, N is

given. Assume the algorithm stops at time t∗, the additional post processing step

after Phase III mentioned in Section 5.1.1.3 can be expressed as,

p̂
(k)
i (t∗) =

⌊

Np̂
(k)
i (t∗)

⌉

N
, (5.9)

where ⌊x⌉ rounds x to the nearest integer. We show in the simulations that by post

processing as in equation (5.9), a better estimate can be obtained when at high SNR.

87

5.1.4.2 Reducing the Size of the State Vector

In the proposed algorithm, the size of state vector is chosen based on the maximum

degree, K > dmax. If we have some prior knowledge of the degree distribution, the

size of the state vector can be reduced, therefore reduce the required storage at nodes.

A simple way to reduce the size of the state vector can be let each bin cover same

degree ranges, for example 1 to 2, 3 to 4, 5 to 6 and so on. The final estimate can be

obtained by dividing the result of each element in the state vector by the width of the

bin to normalize the measurement. In practice, some of the networks have power-law

degree distribution, therefore one way to reduce the size of the state vector is to let

bins cover an increasing range of degrees, for example 1, 2 to 3, 4 to 7, 8 to 15, and

so on [88].

5.1.5 Simulations

In this section, simulation results for the proposed algorithm are presented. A

connected graph with N = 75 nodes is generated. The true degree distribution is

given in Figure 5.1, where the x-axis values are possible values of degree and y-axis is

the probability Pr [X = k]. In Figure 5.2 - 5.4, the proposed algorithm is performed.

It is assumed that the algorithm stops at t∗ = 100, and parameters α(t) = 0.1/t,

K = 80. In Figure 5.2, we assume perfect communication with no communication

noise. From the results, we can see that an accurate estimate of the degree distribution

can be obtained. Noisy communication is considered in Figure 5.3 and 5.4, and the

noise variance are set to be different with σ2
n = 0.1 in Figure 5.3 and σ2

n = 0.01 in

Figure 5.4. By comparing Figure 5.3 and Figure 5.4, we see that the estimate of the

degree distribution has better performance when the SNR is larger.

In Figure 5.5, the error norm of the consensus result at node 1, ||x1(t) − p|| is

88

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree k

T
ru

e
de

gr
ee

di
st

ri
bu

ti
on

,p
(k

)

Figure 5.1: True Degree Distribution.

shown, where p is the true degree distribution and x1(t) =
[

x
(1)
1 (t), · · · ,x(K)

1 (t)
]

is

the degree distribution estimate at node 1 at time t. Noise variance σ2
n are chosen to

be different values as shown. From Figure 5.5 we have the following observations: i)

The error decreases as t gets larger; ii) When there is no communication noise, the

consensus result converges toward the desire true degree distribution; and iii) In the

presence of communication noise, there will always be an error, and the error will be

small when the SNR is large.

In Figure 5.6, the post processing based on equation (5.9) is applied with the

assumption that the number of nodes N = 75 is given. When the SNR is large,

we see that the circle line terminates after 6 iterations, which indicates that the

error becomes exactly 0 after 6 iterations if post process the convergence result as

in equation (5.9). However, when the SNR is small, the post processing step as in

equation (5.9) does not improve the performance.

In Figure 5.7, simulation result for size reduced state vector mentioned in Sec-

tion 5.1.4.2 is presented. We set the size of the state vector K = 40, and each

element in the state vector covers two degrees and the final estimate is obtained by

dividing the consensus result of each element by 2. Noise communications is consid-

89

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree k

E
st

im
at

ed
d
eg

re
e

d
is

tr
ib

u
ti

on
1,

p̂
(k

)
1

(t
∗)

Figure 5.2: Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the
Absence of Noise, σ2

n = 0 and α(t) = 0.1/t.

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

degree k

E
st

im
at

ed
d
eg

re
e

d
is

tr
ib

u
ti

on
,
p̂
(k

)
1

(t
∗)

Figure 5.3: Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the
Presence of Noise, σ2

n = 0.1 and α(t) = 0.1/t.

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree k

E
st

im
at

ed
d
eg

re
e

d
is

tr
ib

u
ti

on
,
p̂
(k

)
1

(t
∗)

Figure 5.4: Estimate of Degree Distribution at Time t∗ = 100 at Node 1 in the
Presence of Noise, σ2

n = 0.01 and α(t) = 0.1/t.

90

0 10 20 30 40 50 60 70 80 90 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations, t

N
or

m
of

er
ro

r
at

n
o
d
e

1,
||
x

1
(t

)
−

p
||

σ2
v = 0

σ2
v = 0.1

σ2
v = 0.01

Figure 5.5: Error Versus t.

0 10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations, t

N
or

m
of

er
ro

r
at

n
od

e
1,

||
x

1
(t

)
−

p
||

σ2
v = 0.1

σ2
v = 0.1 with post-processing as eqn(15)

σ2
v = 0.01

σ2
v = 0.01 with post-processing as eqn(15)

Figure 5.6: Simulation Results for Post Processing as in Equation (5.9): Error
Versus t.

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
st

im
at

ed
d
eg

re
e

d
is

tr
ib

u
ti

on
,
p̂
(k

)
1

(t
∗)

degree k

Figure 5.7: Degree Distribution Estimation at Node 1 (in the Presence of Noise and
K = 40

.

91

ered with σ2
v = 0.01 and α(t) = 0.1/t. By comparing Figure 5.7 with Figure 5.4 and

Figure 5.1, we see that we can reduce the size of the state vectors at nodes and a

reasonable estimate of the degree distribution can still be obtained.

5.2 Running Consensus Over Distributed Networks: Non-Stationary Data and

Tracking Ability

In traditional consensus algorithms, it is usually assumed that sensing at nodes

and communication between sensors are separate steps. Sensors first sense the en-

vironment, then the sensors run the consensus algorithms. However, sometimes in

real applications, there is no meaningful way to decide when the sensing stage should

be terminated to start consensus, for example the environment is changing rapidly

and the temperature measurements sensed at nodes is changing during the consen-

sus process. Therefore, a running consensus algorithm to track the dynamic of the

estimator is proposed herein. We assume that the sensing and consensus stages are

simultaneous and sensor nodes continuous collecting data while computing on-the-fly

the desire estimator.

5.2.1 System Model

We use a undirected graph to model the distributed network as in Section 2.1.1.

We assume that each sensor in the network is measuring some environmental pa-

rameters such as temperature and pressure independently. New measurements are

available simultaneously at nodes and the desire parameter is non-stationary and

changing over time.

92

5.2.2 Running Consensus with Non-Stationary Data

Assume that at each time t, sensors in the network collect noisy measurements

from the environment. The measurement at node i at time t is

xi,t = θt + ni,t, (5.10)

where θt is the desired parameter and it is changing over time and ni,t is the sensing

noise. Let x(t) = [x1(t) x2(t) · · · xN (t)] be the state vector at time t, where xi(t)

is the state of node i at time t, and N is the total number nodes in the network.

Let xt = [x1,t · · ·xN,t] contains the measurements available at nodes at time t. To

track the dynamic of θt, we use average consensus with a moving average method,

the iterative updating rule can be expressed as

x(t + 1) =
k

k + 1
Wx(t) +

1

k
xt+1, (5.11)

where k is a design parameter that controls the sensitivity of the algorithm to the

dynamics.

By running the iterative algorithm in equation (5.11), the average of state vector

at time t, x̄(t+ 1) = 1
N
(x1(t) + x2(t) + · · ·+ xN (t)) behaves like

x̄(t+1) =
1

k + 1

[

x̄t+1 +

(

k

k + 1

)

x̄t + · · ·+
(

k

k + 1

)t−1

x̄2

]

+

(

k

k + 1

)t

x̄1, (5.12)

where x̄t =
1
N
(x1,t + x2,t + · · ·+ xN,t) is the average of all the new sensed measure-

ments at time t. Note that if we set k = t, the algorithm will be the same as the

running consensus algorithm proposed in [43], where the states of nodes is converging

to the average of all the initial measurements, which will be shown in the simulations.

Also note that when N is large, we have θt ≈ x̄t if the sensing noise has 0 mean

and bounded variance. From equation (5.12), we see that the average of the states,

x̄(t + 1) is related to all the measurement across sensors and time. The more recent

93

measurements have a larger effect on x̄(t + 1) and the sensitivity of the algorithm

depends on the value of k: the algorithm will be more sensitive to the dynamic of the

desired estimator for smaller k.

5.2.3 Simulations

In this section, simulation results for the proposed running consensus are pre-

sented. We also compare the proposed algorithm with the diffusion strategy in the

literature [3]. The graph structure is fixed and is the same as the graph in Figure 2.2.

In Figure 5.8 - Figure 5.12, we assume that θt = 0.05t and the noise is Gaussian

distributed as, ni,t ∼ N (0, 100). In Figure 5.8 - Figure 5.10, the proposed algorithm

is used. By comparing Figure 5.8 with Figure 5.9 with see that with smaller k value,

the algorithm is more sensitive to the dynamics of the estimator and the estimate is

more accurate but the convergence of the algorithm is worse, means that the states

of nodes are more different than each other. In Figure 5.10, we set k = t as in [43]

and we see from the figure that the states of nodes are converging the global average

of all the initial measurements. In Figure 5.11 - Figure 5.12, the diffusion algorithm

in [3] is used. By comparing the proposed algorithm with the diffusion strategy, we

see that both algorithms can track the dynamic of the desired estimator.

In Figure 5.13 and Figure 5.14, we assume that the desired estimator is changing

over time like a sine wave, θt = 10 sin (0.01t). The proposed algorithm is used and

by comparing the two figures, we have the same conclusions that there is trade-off

between sensitivity to the dynamic of the desired estimator and the convergence of

the states of nodes.

In Figure 5.15, we set k = t and the states of nodes are converging to the global

average of all the initial measurements 0 since θt = 10 sin (0.01t) and the global

average is 0.

94

0 100 200 300 400 500
−30

−20

−10

0

10

20

30

t

Es
tim

at
io

n
re

su
lt

Figure 5.8: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = 19)

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

Es
tim

at
io

n
re

su
lt

Figure 5.9: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = 99)

0 100 200 300 400 500
−20

−15

−10

−5

0

5

10

15

20

25

t

Es
tim

at
io

n
re

su
lt

Figure 5.10: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = t)

95

0 100 200 300 400 500
−5

0

5

10

15

20

25

t

Es
tim

at
io

n
re

su
lt

Figure 5.11: Entries of Estimation Result Versus Iteration Time t (Using Diffusion
LMS in [3] with µ = 0.01 and uk,t = 1).

0 100 200 300 400 500
−5

0

5

10

15

20

25

t

Es
tim

at
io

n
re

su
lt

Figure 5.12: Entries of Estimation Result Versus Iteration Time t (Using Diffusion
LMS in [3] with µ = 0.05 and uk,t = 1).

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

10

15

20

25

30

t

Es
tim

at
io

n
re

su
lt

Figure 5.13: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = 19)

96

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

E
s
ti
m

a
ti
o

n
 r

e
s
u

lt

Figure 5.14: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = 99)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−30

−20

−10

0

10

20

30

40

t

E
s
ti
m

a
ti
o

n
 r

e
s
u

lt

Figure 5.15: Entries of Estimation Result Versus Iteration Time t (Using Running
Consensus with k = t)

97

Chapter 6

FUTURE WORK

The future work will mainly focus on function computation in wireless sensor net-

works and distributed network structure estimation. Function computation problem

is discussed in Section 6.1, a brief literature review is first given, then several iterative

updating rules that ensure convergence are discussed. In Section 6.2, possible future

work on distributed network structure estimation are proposed

6.1 Distributed Function Computation in WSNs

In wireless sensor networks, it is usually desired that the nodes in the network

compute some functions of the initial measurements at nodes such as the average of

the initial measurements or the maximum of the initial measurements. This motive

us to consider the problem: what kinds of iterative updating rules ensure convergence

and what kinds of functions can be computed at nodes.

In [89], the problem of function computation and approximation in wireless sensor

network is studied. It is state in [89] that average consensus algorithm can be used

to approximate any continuous function of the initial measurements. The proposed

work is based on the Kolmogorov theorem which states that any continuous function

of x = [x1, x2, · · · , xN], f(x1, · · · , xN) can be approximated as a superposition form:

f(x1, · · · , xN) =
2N+1
∑

j=1

ψj

(

N
∑

i=1

φij(x1)

)

, (6.1)

where N is the total number of elements in x, and ψj(·) and φij(·) are nonconstant,

bounded, and monotonically-increasing continuous functions. The updating rule in

equation (6.1) can be computed using average consensus. However, it is often hard

98

to choose ψj(·) and φij(·) properly since ψj(·) and φij(·) depends the desire function

f(x1, · · · , xN) and all measurements at nodes x1, x2, · · · , xN [89].

As mentioned in the previous sections, the max updating rule by using the max

operator in equation (2.10) lead lead to convergence in the presence of communication

noise. The iterative updating rule for nonlinear average consensus in equation (2.13)

enables nodes converge to the average of the initial measurements in the presence of

communication noise. We also consider an average consensus with fixed transmission

power, the iterative updating rule at node 1 at time t+ 1 can be express as

xi(t+ 1) = xi(t)− α(t)
∑

j∈Ni

{

Im
(

ejωxi(t)
)

− Im
(

ejωxj(t) + nij(t)
)}

, (6.2)

where ω < π
2maxi,t xi(t)

is a design parameter and Im(x) takes the imaginary part of

x. In each iteration in equation (6.2), node i receives noisy data from its neighbors

j ∈ Ni and the transmitted signal from node j to node i is ejωxi(t) and the transmitted

power is always 1. By running the iterative algorithm in (6.2), states of nodes in the

network converge to the sample mean of the initial measurements

All the above mentioned iterative algorithms are basically Markov processes. The

updating rule can be written in a general form:

xi(t + 1) = g
(

xi(t),x
(i)(t)

)

, (6.3)

where the vector x(i)(t) ∈ Rdi contains the measurements from all the neighbors of

node i at time t. g(·) is the updating function, for example g(·) is the max operator in

the traditional max consensus algorithms in [46]. In our future work, the theorem of

convergence of Markov process and sample functions are going to be used to analyze

what kinds of updating rule in (6.3) lead to convergence and what kinds of functions

can be computed using consensus algorithms.

99

6.2 Distributed Network Structure Estimation

In Chapter 4, we consider the network region to be a circle or sphere. Therefore,

estimating the network region is basically estimating the network center and radius.

However, in some cases, using the smallest sphere to represent the network region

may not be a good choice. In this section, we propose future work on network region

estimation with convex hull or ellipsoidal network coverage area. In the following,

the centralized formulations are presented and possible distributed algorithms are

discussed.

One reasonable way to represent the network region can be the convex hull of

the distributed sensors. Research on computing the convex hull of a finite set of

points can be found in [90, 91]. In the centralized formulation, it is assumed that

the unordered set of points is given. The smallest convex hull is a convex polygon

and the vertices are some of the points in the set. In the literature, methods such as

gift wrapping, Graham scan, Quick hull and Monotone chain are considered and the

complexity is related to the sorting problem [92].

Fully distributed algorithm for estimating the convex hull of a distributed network

has not been considered in the literature. If we consider the simple 2-D case. From

the definition, we can decide a node is a vertices of a convex hull if there exist another

node in the network, and all the other nodes are on one side of the unique line decided

by the two distinct nodes(on one side or on the line). How to formulate the problem

in a distributed manner is one of our future work.

Another way to represent the network region is to use the smallest covering el-

lipsoid. Note that sphere is a special case of ellipsoid. In the following, we discuss

two ways to estimate the smallest ellipsoid. The first method is to estimate the four

ellipsoid parameters: the center O, semi-major axis a, semi-minor axis b and rotation

100

angle θ. It is shown in [93] that if the location of the center is O(xO, yO), all other

parameters can be determined if all the nodes locations are given. The semi-major

axis can be determined as:

a = max
i

√

(xi − xO)2 + (yi − yO). (6.4)

Assume that the node (xI , yI) maximizes the above equation (6.4), then the rotation

angle can be calculated as

θ = arctan

(

yI − yO
xI − xO

)

. (6.5)

To calculate the semi-minor axis, we need to calculate the linear equation for the

minor and major axis. The linear equation for the major axis can be determined:

y =
yI − yO
xI − xO

(x− xO) + yO. (6.6)

The minor axis is perpendicular to the major axis, and its linear equation can be

determined as

y = −xI − xO
yI − yO

(x− xO) + yO. (6.7)

Then, the distances from node i to the major and minor axis can be calculated

respectively as dai and dbi. The semi-minor axis can be calculated

b = max
i

d2ai
1− (d2bi/a

2)
. (6.8)

To minimize the smallest covering ellipsoid, we need to minimize the product of a

and b, since the area of a ellipse is (πab). The above calculation requires location

information of all nodes. How to approximate and solve the problem in a distributed

manner is one of our future work.

The second method for smallest ellipsoid estimation is based on convex optimiza-

tion [90]. A ellipsoid can be defined in the matrix form [90]:

||Ax+ b||2 ≤ 1. (6.9)

101

where x ∈ R
n contains the coordinates in n dimensional space. Finding the minimum

volume covering ellipsoid can be formulated as the following optimization problem:

minimize log detA−1 (6.10)

subject to ||Axi + b||2 ≤ 1, (6.11)

where xi is the location of node i. To solve the above optimization problem, we need

to know all sensor nodes locations. How to approximate the optimization problem and

use distributed optimization methods to solve the problem is also a possible future

work.

102

Chapter 7

CONCLUSIONS

We study several consensus algorithms in distributed wireless sensor networks.

First, a practical approach for reliable computation of the maximum value of local

measurements over autonomous sensor networks with no fusion center is proposed.

The main idea of the scheme is to use the soft-max function before transmission.

The trade-off between estimation accuracy and convergence time is quantified. It

is proved that the sensor network will reach consensus. That is, the state values

converge to a random variable whose expectation is the sample mean of the mapped

function, and the soft-max can be calculated using the consensus result. The shifted

non-linear function used to adjust the transmit nonlinearity is also introduced to

make the convergence speed faster. The results provide guidelines towards nonlinear

transmission design, and algorithm parameter settings to trade-off between estimation

error and faster convergence.

Secondly, an algorithm for reliable estimation of the number of nodes over au-

tonomous distributed sensor networks in the presence of communication noise is

studied. L2 norm estimation is used, together with the average consensus algorithm.

Different sources of error are described, and we show there is a trade-off between the

estimation accuracy and the storage at sensor nodes. The Fisher information about

the estimate of number of nodes in the network is calculated. How the noise and

initial values at nodes affect the Cramer-Rao bound is shown. The distribution of

the final estimator is also calculated to show how the design parameters affect the

estimation performance.

Then, a practical approach for reliable estimation of the center and radius of a

103

distributed network is proposed. Soft-max approximation is used and center estima-

tion is formulated as a convex optimization problem. By using the soft-max function,

the objective function is written as a sum of differentiable functions and stochastic

gradient descent and diffusion adaptation are used for distributed optimization to

estimate the center. Based on the estimated center and nodes’ own location informa-

tion, distributed max consensus is used to estimate the radius of the network area.

It is shown that the proposed algorithm works in any connected network and an ac-

curate estimate of the network area can be obtained. A discussion on how the design

parameters affect the performance and how to choose the design parameters is also

given.

Finally, we propose two average consensus based distributed estimation algorithms

in wireless sensor networks. The first algorithm is for reliable estimation of the degree

distribution in a distributed network in the presence of noise. The main idea of the

scheme is that a state vector can be used to contain the degree distribution since

the degrees are discrete values. How the noise affects the performance is analyzed.

We also use the structure of the degree distribution to post process the consensus

results to get more accurate estimates. It is shown that when SNR is high, accurate

degree distribution can be obtained in the presence of noise by post processing the

convergence result based on integer degree structure. We also show that the number

of bins to represent the degree distribution can be reduced in practice, thereby saving

storage at sensor nodes. The second algorithm is for estimating the dynamic of

a desired parameter in wireless sensor network. We show that there is a trade-off

between the sensitivity to the change of the parameter and the convergence of the

states of nodes. Simulations for all proposed algorithms are provided.

104

REFERENCES

[1] D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed statistical estimation
of number of nodes in networks,” in 49th IEEE Conference on Decision and
Control, Dec. 2010, pp. 1498 – 1503.

[2] ——, “Distributed cardinality estimation in anonymous networks,” IEEE Trans-
action on Automatic Control, vol. 59, no. 3, pp. 645 – 659, March 2014.

[3] S. Dasarathan and C. Tepedelenlioglu, “Distributed estimation and detection
with bounded transmissions over gaussian multiple access channels,” IEEE
Transaction on Signal Processing, vol. 62, no. 13, pp. 3454 – 3463, May 2014.

[4] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE
Computer: Special Issue on Sensor Networks, vol. 37, no. 8, pp. 41 – 49, Aug.
2004.

[5] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communications Magazine, vol. 40, 2002.

[6] Wikipedia, “Wireless sensor network — Wikipedia, the free encyclopedia,”
2014”. [Online]. Available: https://en.wikipedia.org/wiki/Wireless sensor
network

[7] K. Martinez, J. K. Hart, and R. Ong, “Sensor network applications,” IEEE
Computer, vol. 37, 2004.

[8] J. Yick, B. Mukherjee, and G. Dipak, “Wireless sensor network survey,” Com-
puter Networks, vol. 52, p. 22922330, Aug. 2008.

[9] M. Goldenbaum, S. Stanczak, and M. Kaliszan, “On function computation via
wireless sensor multiple-access channels,” in Wireless Communications and Net-
working Conference, April 2009, pp. 1 – 6.

[10] R. W. Santucci, M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Energy-
efficient distributed estimation by utilizing a nonlinear amplifier,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 61, pp. 302 – 311, Jan.
2014.

[11] R. W. Santucci, M. K. Banavar, A. Spanias, and C. Tepedelenlioglu, “Design of
limiting amplifier models for nonlinear amplify-and-forward distributed estima-
tion,” in 18th International Conference on Digital Signal Processing (DSP), July
2013, pp. 1 – 6.

[12] ——, “Nonlinear amplify and forward distributed estimation over non-identical
channels,” IEEE Transactions on Vehicular Technologies, vol. 64, no. 11, pp.
5390–5395, Nov. 2015.

105

[13] S. Zhang, C. Tepedelenlioglu, M. Banavar, and A. Spanias, “Distributed node
counting in wireless sensor networks,” in 49th Asilomar Conference on Signals
Systems and Computers, Nov. 2015.

[14] S. H. Lee, S. Lee, H. Song, and H. S. Lee, “Wireless sensor network design for
tactical military applications : Remote large-scale environments,” in 2009 IEEE
Military Communications Conference, Oct. 2009, pp. 1 – 7.

[15] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless
sensors and wireless sensor networks,” in Proceedings of the 2005 IEEE Inter-
national Symposium on, Mediterrean Conference on Control and Automation
Intelligent Control, June 2005, pp. 719 – 724.

[16] D. Li, K. Wong, Y. Hu, and S. A. M., “Detection, classification, and tracking of
targets,” IEEE Signal Processing Magazine, vol. 19, 2002.

[17] C. Meesookho, S. Narayanan, and C. S. Raghavendra, “Collaborative classifica-
tion applications in sensor networks,” in Sensor Array and Multichannel Signal
Processing Workshop Proceedings, Aug. 2002, pp. 370 – 374.

[18] C. Tepedelenlioglu, M. K. Banavar, and A. Spanias, “On the asymptotic ef-
ficiency of distributed estimation systems with constant modulus signals over
multiple-access channels,” IEEE Transactions on Information Theory, vol. 57,
no. 10, pp. 7125–7130, Oct 2011.

[19] X. Zhang, M. K. Banavar, M. Willerton, A. Manikas, C. Tepedelenlioglu,
A. Spanias, T. Thornton, E. Yeatman, and A. G. Constantinides, “Performance
comparison of localization techniques for sequential wsn discovery,” in Sensor
Signal Processing for Defence (SSPD 2012), Sept 2012, pp. 1–5.

[20] M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Distributed snr estimation
with power constrained signaling over gaussian multiple-access channels,” IEEE
Transactions on Signal Processing, vol. 60, pp. 3289 – 3294, Feb. 2012.

[21] X. Zhang, C. Tepedelenliolu, M. K. Banavar, and A. Spanias, “Distributed lo-
cation detection in wireless sensor networks,” in 2013 Asilomar Conference on
Signals, Systems and Computers, Nov 2013, pp. 428–432.

[22] M. K. Banavar, J. J. Zhang, B. Chakraborty, H. Kwone, Y. Li, H. Jiang,
A. Spanias, C. Tepedelenlioglu, C. Chakrabartie, and A. Papandreou-
Suppappola, “An overview of recent advances on distributed and agile sensing
algorithms and implementation,” Digital Signal Processing, vol. 39, p. 114, april
2015.

[23] M. Castillo-Effer, D. H. Quintela, W. Moreno, R. Jordan, and W. Westhoff,
“Wireless sensor networks for flash-flood alerting,” in Proceedings of the Fifth
IEEE International Caracas Conference on Devices, Circuits and Systems, 2004.,
vol. 1, Nov 2004, pp. 142–146.

106

[24] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and
M. Welsh, “Deploying a wireless sensor network on an active volcano,” IEEE
Internet Computing, vol. 10, no. 2, pp. 18–25, March 2006.

[25] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-
der, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for emergency
response: challenges and opportunities,” IEEE Pervasive Computing, vol. 3,
no. 4, pp. 16–23, Oct 2004.

[26] T. Gao, D. Greenspan, M. Welsh, R. R. Juang, and A. Alm, “Vital signs moni-
toring and patient tracking over a wireless network,” in 2005 IEEE Engineering
in Medicine and Biology 27th Annual Conference, Jan 2005, pp. 102–105.

[27] C. R. Baker, K. Armijo, S. Belka, M. Benhabib, V. Bhargava, N. Burkhart,
A. D. Minassians, G. Dervisoglu, L. Gutnik, M. B. Haick, C. Ho, M. Koplow,
J. Mangold, S. Robinson, M. Rosa, M. Schwartz, C. Sims, H. Stoffregen, A. Wa-
terbury, E. S. Leland, T. Pering, and P. K. Wright, “Wireless sensor networks
for home health care,” in Advanced Information Networking and Applications
Workshops, 2007, AINAW ’07. 21st International Conference on, vol. 2, May
2007, pp. 832–837.

[28] Y. H. Nam, Z. Halm, Y. J. Chee, and K. S. Park, “Development of remote
diagnosis system integrating digital telemetry for medicine,” in Proceedings of
the 20th Annual International Conference of the IEEE, Oct. 1998, pp. 1170 –
1173.

[29] N. A. Lynch, Distributed Algorithms. CA: Morgan Kaufmann, 1997.

[30] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” IEEE Signal Processing Magazine, vol. 95,
no. 1, 2007.

[31] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[32] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520 – 1533, Sept. 2004.

[33] R. Santucci, M. Banavar, C. Tepedelenlioglu, and A. Spanias, “Energy-efficient
distributed estimation by utilizing a nonlinear amplifier,” IEEE Transactions on
Circuits and Systems I: Regular Papers, pp. 302 – 311, Jan. 2014.

[34] S. Kar and J. Moura, “Distributed consensus algorithms in sensor networks with
imperfect communication: Link failures and channel noise,” IEEE Transactions
on Signal Processing, vol. 57, no. 1, pp. 355 –369, Jan. 2009.

[35] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” in Proc.
42nd IEEE Conference on Decision and Control, vol. 5, Dec. 2003, pp. 4997 –
5002.

107

[36] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion
based on average consensus,” in Fourth International Symposium on Information
Processing in Sensor Networks, April 2005, pp. 63 – 70.

[37] D. Zhao, Z. An, and Y. Xu, “Time synchronization in wireless sensor networks
using max and average consensus protocol,” International Journal of Distributed
Sensor Networks, Feb. 2013.

[38] A. Papachristodoulou, A. Jadbabaie, and U. Munz, “Effects of delay in multi-
agent consensus and oscillator synchronization,” IEEE Transactions on Auto-
matic Control, vol. 55, no. 6, pp. 1471–1477, 2010.

[39] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and
theory,” IEEE Transaction on Automatic Control, vol. 51, no. 3, pp. 401 – 420,
March 2006.

[40] L. Xiao, S. Boyd, and S. Kim, “Distributed average consensus with least-mean-
square deviation,” Journal of Parallel and Distributed Computing, vol. 67, pp.
33 – 46, 2007.

[41] S. Dasarathan, C. Tepedelenlioglu, M. Banavar, and A. Spanias, “Non-linear
distributed average consensus using bounded transmissions,” IEEE Transactions
on Signal Processing, vol. 61, pp. 6000 – 6009, Dec. 2013.

[42] ——, “Robust consensus in the presence of impulsive channel noise,” IEEE
Transactions on Signal Processing, vol. 63, pp. 2118 – 2129, March 2015.

[43] P. Braca, S. Marano, and V. Matta, “Running consensus in wireless sensor net-
works,” in 2008 11th International Conference on Information Fusion, June 2008,
pp. 1 – 6.

[44] H. Terelius, D. Varagnolo, C. Baquero, and K. H. Johansson, “Fast distributed
estimation of empirical mass functions over anonymous networks,” in 2013 IEEE
52nd Annual Conference on Decision and Control (CDC), Dec. 2013, pp. 6771
– 6777.

[45] J. Sacha, J. Napper, C. Stratan, and G. Pierre, “Adam2: Reliable distribution
estimation in decentralised environments,” in 2010 International Conference on
Distributed Computing Systems, June. 2010, pp. 697 – 707.

[46] F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus algorithms
in wireless channels,” IEEE Transactions on Signal Processing, vol. 60, pp. 6103
– 6107, Nov. 2012.

[47] Z. Li, R. Yu, and M. Huang, “A distributed consensus-based cooperative
spectrum-sensing scheme in cognitive radios,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 1, pp. 383 – 393, Jan. 2010.

[48] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transaction on Automatic Con-
trol, vol. 49, no. 9, pp. 1520 – 1533, Sept. 2004.

108

[49] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of distributed con-
sensus algorithms with boundary: From shortest paths to mean hitting times,”
in 45th IEEE Conference on Decision and Control, Dec. 2006, pp. 4664 – 4669.

[50] B. Nejad, S. Attia, and J. Raisch, “Max-consensus in a max-plus algebraic set-
ting: The case of fixed communication topologies,” in International Symposium
on Information, Communication and Automation Technologies, Oct. 2009, pp.
1–7.

[51] G. Shi and K. H. Johansson, “Convergence of distributed averaging and maxi-
mizing algorithms part ii: State-dependent graphs,” in 2013 American Control
Conference, June 2013, pp. 6859 – 6864.

[52] S. Giannini, A. Petitti, D. D. Paola, and A. Rizzo, “Asynchronous max-consensus
protocol with time delays: Convergence results and applications,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 63, pp. 256 – 264, Jan.
2016.

[53] J. Cortes, “Distributed algorithms for reaching consensus on general functions,”
Automatica, vol. 44, no. 3, pp. 401 – 420, 2008.

[54] D. Bauso, L. Giarre, and R. Pesenti, “Nonlinear protocols for optimal distributed
consensus in networks of dynamic agents,” System and Control Letters, vol. 55,
no. 11, pp. 918 – 928, June 2006.

[55] G. Giakkoupis and T. Sauerwald, “Rumor spreading and vertex expansion,” in
SODA, 2012, pp. 1623 – 1641.

[56] U. Feige, D. Peleg, R. Raghavan, and E. Upfal, “Randomized broadcast in net-
works,” Random Structures and Algorithms, vol. 1, no. 4, pp. 447 – 460, 1990.

[57] S. Zhang, C. Tepedelenlioglu, M. Banavar, and A. Spanias, “Max-consensus
using the soft maximum,” in 2013 Asilomar Conference on Signals, Systems and
Computers, Nov. 2013, pp. 433 – 437.

[58] ——, “Max consensus in sensor networks: Non-linear bounded transmission and
additive noise,” IEEE Sensors Journal, vol. 16, pp. 9089 – 9098, 2016.

[59] Wikipedia, “Laplacian matrix.” [Online]. Available: https://en.wikipedia.org/
wiki/Laplacian matrix

[60] N. M. M. de Abreu, “Old and new results on algebraic connectivity of graphs,”
Linear Algebra and its Applications, vol. 423, pp. 53–73, May. 2007.

[61] A. Kashyap and T. B. R. Srikant, “Quantized consensus,” Automatica, vol. 43,
pp. 1192 – 1203, Jan. 2007.

[62] S. Kar and J. M. Moura, “Distributed consensus algorithms in sensor networks:
Quantized data and random link failures,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 3, pp. 1383 – 1400, March 2010.

109

[63] ——, “Distributed consensus algorithms in sensor networks: Quantized data and
random link failures,” IEEE Transactions on Signal Processing, vol. 58, pp. 1383
– 1400, Nov. 2009.

[64] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus
with dithered quantization,” IEEE Transactions on Signal Processing, vol. 56,
no. 10, pp. 4905 – 4918, Oct. 2008.

[65] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in Proceeding of
the 2005 American Control Conference, June 2005, pp. 2371 – 2378.

[66] M. Huang and J. Manton, “Stochastic consensus seeking with noisy and di-
rected inter-agent communication: Fixed and randomly varying topologies,”
IEEE Transaction on Automatic Control, vol. 55, no. 1, pp. 235 – 241, Jan.
2010.

[67] S. Dasarathan, C. Tepedelenlioglu, M. K. Banavar, and A. Spanias, “Robust
consensus in the presence of impulsive channel noise,” IEEE TRANSACTIONS
ON SIGNAL PROCESSING, vol. 63, no. 8, pp. 2118 – 2129, April 2015.

[68] J. Lee, C. Tepedelenlioglu, M. K. Banavar, and A. Spanias, “Nonlinear diffu-
sion adaptation with bounded transmission over distributed networks,” in IEEE
International Conference on Communications, June 2015, pp. 6707 – 6711.

[69] M. Nevelson and R. Khasminskil, Stochastic Approximation and Recursive Esti-
mation. Amer. Math Soc., 1973.

[70] M. Korman, “Minimizing interference in ad hoc networks with bounded commu-
nication radius,” Information Processing Letters, vol. 112, pp. 748 – 752, Oct.
2012.

[71] S. Zhang, C. Tepedelenlioglu, J. Lee, H. Braun, and A. Spanias, “Cramer-rao
bounds for distributed system size estimation using consensus algorithms,” in
Sensor Signal Processing for Defence, Sept. 2016, pp. 1 – 5.

[72] S. Zhang, C. Tepedelenlioglu, M. Banavar, and A. Spanias, “Distributed node
counting in wireless sensor networks in the presence of communication nois,”
IEEE Sensors Journal, vol. 17, pp. 1175 – 1186, Feb. 2017.

[73] A. Ganesh, A. Kermarrec, E. Merrer, and L. Massoulie, “Peer counting and
sampling in overlay networks based on random walks,” Distributed Computing,
vol. 20, pp. 267 – 278, Jan. 2007.

[74] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating aggregates
on a peer-to-peer network,” Stanford InfoLab, Technical Report 2003-24, April
2003. [Online]. Available: http://ilpubs.stanford.edu:8090/586/

[75] Wikipedia, “Kurtosis — Wikipedia, the free encyclopedia.” [Online]. Available:
https://en.wikipedia.org/wiki/Kurtosis

110

[76] S. Kamath, D. Manjunath, and R. Mazumdar, “On distributed function com-
putation in structure-free random wireless networks,” IEEE Transactions on
Information Theory, vol. 60, no. 1, pp. 432–442, Jan. 2014.

[77] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large
overlay networks,” in 2004. Proceedings. 24th International Conference on Dis-
tributed Computing Systems, 2004, pp. 102 – 109.

[78] D. W. Hearn and J. Vijay, “Efficient algorithms for the (weighted) minimum
circle problem,” Operations Research, vol. 30, pp. 777 – 795, July 1982.

[79] Z. Yu, J. Teng, X. Li, and D. Xuan, “On wireless network coverage in bounded
areas,” in INFOCOM, 2013 Proceedings IEEE, July 2013, pp. 1195 – 1203.

[80] S. Vu, Chinh T.and Gao, W. P. Deshmukh, and L. Yingshu, “Distributed energy-
efficient scheduling approach for k-coverage in wireless sensor networks,” in IEEE
Military Communications Conference, 2006, Oct. 2006, pp. 1 – 7.

[81] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed opti-
mization and learning over networks,” IEEE Transactions on Signal Processing,
vol. 60, pp. 4289 – 4305, Aug. 2012.

[82] F. Cattivelli and A. Sayed, “Diffusion lms strategies for distributed estimation,”
IEEE Transactions on Signal Processing, vol. 58, pp. 1035–1048, 2010.

[83] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, pp. 393 – 422, 2002.

[84] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1 – 122, Jan. 2011.

[85] G. Montavon, G. B. Orr, and K. R. Muller, Neural Networks: Tricks of the
Trade, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012.

[86] C. Darken and J. Moody, “Towards faster stochastic gradient search,” in NIPS’91
Proceedings of the 4th International Conference on Neural, Dec. 1991, pp. 1009
– 1016.

[87] S. Zhang, J. Lee, C. Tepedelenlioglu, and A. Spanias, “Distributed estimation
of the degree distribution in wireless sensor networks,” in 2016 IEEE Global
Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[88] M. Newman, “The structure and function of complex networks,” SIAM Review,
vol. 45, no. 2, pp. 167 – 256, Jan. 2003.

[89] M. Goldenbaum, H. Boche, and S. Stanczak, “Nomographic functions: Efficient
computation in clustered gaussian sensor networks,” IEEE Transaction on Wire-
less Communications, vol. 14, no. 4, pp. 343 – 356, April 2015.

111

[90] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2007.

[91] L. Devroye and G. Toussaint, “A note on linear expected time algorithms for
finding convex hulls,” Computing, vol. 26, pp. 361 – 366, 1981.

[92] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press and McGraw-Hill, 2001.

[93] S. Li, H. Fan, and Y. Wang, “Finding the smallest ellipse containing a point set
based on genetic algorithms,” in IEEE International Symposium on Knowledge
Acquisition and Modeling Workshop, Dec. 2008, pp. 693 – 696.

[94] G. Marsaglia, “Ratios of normal variables and ratios of sums of uniform vari-
ables,” Journal of the American Statistical Association, vol. 60, no. 309, pp. 193
– 204, March 1965.

[95] D. Hinkley, “On the ratio of two correlated normal random variables,” Oxford
University Press on behalf of Biometrika Trust, vol. 56, no. 3, pp. 635–639, Dec.
1969.

[96] H. A. David and H. N. Nagaraja, Order Statistics. WILEY, 2003.

[97] R. Zamir, “A proof of the fisher information inequality via a data processing
argument,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 1246
– 1250, May 1998.

112

APPENDIX A

PROOF OF OPTIMAL ASYMPTOTIC COVARIANCE MATRIX FOR MAX
CONSENSUS IN CHAPTER 2

113

The Convergence will be slow when ‖C‖ is large, where ‖C‖ is the max eigenvalue
of C. The problem can be formulated as,

‖C‖ = max
{x|x∈RN ‖x‖≤1}

xTCx. (A.1)

Let U = [1√
N

Φ], the columns of U are the eigenvectors of L. Since L is an

Hermitian matrix, the columns of U form an orthonormal basis of RN . Let x = Uz
with ‖z‖ ≤ 1, we have

xTCx = (Uz)TC(Uz) (A.2)

= zT
(

a2σ2
nU

T11TU

N
+

UTΦSθ0ΦTU

N

)

z (A.3)

= zT {A1 +A2} zT = zTA3z
T, (A.4)

where A1 = diag [a2σ2
n, 0, · · · , 0]N×N , A2 = diag

[

0, 1
N
S1,1, · · · , 1

N
Sn−1,n−1

]

N×N

and Si,i =
a2σ2

n

2ah′(θ0)λi+1(L)−1
, i = 1, 2, · · · , N−1. A3 = diag

[

a2σ2
v ,

1
N
S1,1, · · · , 1

N
Sn−1,n−1

]

N×N
.

Equality in (A.4) holds since the columns of Φ are orthogonal to 1 and Sθ0 is a diag-
onal matrix which can be calculated as,

Sθ0 = a2
∫ ∞

0
e[ah

′(θ0)B+I/2]tCe[ah
′(θ0)B+I/2]t dt (A.5)

= a2σ2
n

∫ ∞

0
eHtdt (A.6)

= diag

[

a2σ2
n

2ah′(θ0)λ2(L)− 1
, · · · , a2σ2

n

2ah′(θ0)λN (L)− 1

]

, (A.7)

where H is an (N−1)×(N−1) diagonal matrix and Hi,i = 2ah′(θ0)λi+1(L)−1. Note
that (A.7) holds under the assumption that 2ah′(θ0)λi(L)− 1 > 0 for all i, which is
same as the requirement in Theorem 5 in [41] that [ah′(θ0)B+ I/2] is stable.

Since λ2(L) is the smallest non-zero eigenvalue, we have

1

N

a2σ2
n

2ah′(θ0)λ2(L)− 1
≥ 1

N

a2σ2
n

2ah′(θ0)λi(L)− 1
, for i > 2. (A.8)

Therefore, from equation (A.4), (A.7) and (A.8), we get,

‖C‖ = max
{x|x∈RN ‖x‖≤1}

xTCx

= max

{

a2σ2
n,

1

N

a2σ2
n

2ah′(θ0)λ2(L)− 1

}

. (A.9)

In the following, the optimal ‖C∗‖ is calculated together with the corresponding
optimal a = a∗.

‖C∗‖ = min
{a|2ah′(θ0)λ2(L)>1}

max
{x|x∈RN ‖x‖≤1}

xTCx

= min
{a|2ah′(θ0)λ2(L)>1}

max

{

a2σ2
n,

1

N

a2σ2
n

2ah′(θ0)λ2(L)−1

}

. (A.10)

114

We noticed that the first term a2σ2
n in equation (A.10) is a monotonic increasing

function of a. The monotonicity for the second term can be check by taking the
derivative respect to a, it is easy to check that the term is decreasing if 1

2h′(θ0)λ2(L)
<

a ≤ 1
h′(θ0)λ2(L)

, and the term is increasing if a > 1
h′(θ0)λ2(L)

.

By checking the value of ‖C∗‖ for marginal a, we find that the problem in equation
(A.10) is solved by letting,

a2σ2
n =

(

1

N

)(

a2σ2
n

2ah′(θ0)λ2(L)− 1

)

. (A.11)

By solving equation (A.11), we get,

a = a∗ =
(

N + 1

2N

)(

1

λ2(L)h′(θ0)

)

. (A.12)

It is easy to check that 1
2h′(θ0)λ2(L)

< a∗ ≤ 1
h′(θ0)λ2(L)

. Plug the optimal a∗ into the

expression of ‖C‖, the corresponding optimal value, ‖C∗‖ is given by,

‖C∗‖ =

(

N + 1

2N

)2(
σ2
n

λ2
2(L)

)(

1

h
′(θ0)

)2

. (A.13)

115

APPENDIX B

PROOF OF THEOREM 5

116

In this proof, we will first use central limit theorem to approximate the distribution
of the denominator and numerator of equation (3.30) using Gaussian distribution.

Then, the distribution of N̂i is obtained by using the ratio distribution results in [94]
and [95].

First, let the numerator in equation (3.30)
(

n′ + 1
N

∑N
i=1 x

2
i

)

= A. Since xi are

constants and n′ ∼ N
(

0, 1
N2

(

∑N
i=1 di

)

σ2
nβ
)

, the numerator is Gaussian distributed,

we have,

A ∼ N
(

1

N

N
∑

i=1

x2i ,
1

N2

(

N
∑

i=1

di

)

σ2
nβ

)

. (B.1)

We use central limit theorem to calculate the distribution of the denominator of
(3.30). Since r

(k)
i are i.i.d. random variables with mean 0 and variance 1, we can use

central limit theorem to approximate the term:

1

N

N
∑

i=1

r
(k)
i xi ∼ N

(

0,
1

N2

N
∑

i=1

x2i

)

. (B.2)

Also, we know that n
(k)
i ∼ N

(

0, 1
N2

(

∑N
i=1 di

)

σ2
nβ
)

, as a result, we have,

(

n
(k)
i +

1

N

N
∑

i=1

r
(k)
i xi

)

∼ N



0,

∑N
i=1 x

2
i

N2
+

(

∑N
i=1 di

)

σ2
nβ

N2



 . (B.3)

Therefore, the denominator of (3.30) is the sample mean of the square of K i.i.d.
Gaussian random variables. Note that square of Gaussian distribution is scaled chi-
squared distribution with degrees of freedom equals to 1, and its mean equals to
(

∑N
i=1 x

2
i

N2 +
(
∑N

i=1 di)σ2
nβ

N2

)

and variance equals to 2

(

∑N
i=1 x

2
i

N2 +
(
∑N

i=1 di)σ2
nβ

N2

)2

. By using

central limit theorem, we can approximate the denominator of (3.30) with Gaussian

distribution, let 1
K

∑K
i=1

(

n
(k)
i + 1

N

∑N
i=1 r

(k)
i xi

)2

= B, we have,

B ∼ N
(

µB , σ
2
B

)

(B.4)

µB =

∑N
i=1 x

2
i

N2
+

(

∑N
i=1 di

)

σ2
nβ

N2

σ2
B =

2

K





∑N
i=1 x

2
i

N2
+

(

∑N
i=1 di

)

σ2
nβ

N2





2

.

Finally, Since both numerator and denominator are Gaussian distributed as shown
in equation (B.1) and (B.4). The results for Gaussian ratio distribution proposed

in [95, eqn(1)] can be used to calculate the distribution for N̂i in equation (3.30), and
Theorem 5 is proved. Note that the numerator and denominator are independent
since the noise are i.i.d. and xi are constants.

117

APPENDIX C

PROOF OF THEOREM 6

118

Assume max consensus is used and convergence is perfectly reached at time t. Let
yi = xi(t) = max {x1, x2, · · · , xN} be the state at node i after convergence. Since xi
are i.i.d., the distribution of yi can be calculated

CDF : {F (y)}N , (C.1)

PDF : N {F (y)}N−1 f(y). (C.2)

Therefore, the Fisher information can be calculated from the definition, we have

Imax = E

[

(

∂

∂N
ln
[

N {F (y)}N−1 f(y)
]

)2
]

(C.3)

=
1

N2
+

2

N
E [lnF (y)] + E

[

(lnF (y))2
]

. (C.4)

Note that the system size estimation problem is formulated as a conventional pa-
rameter estimation problem, and N is estimated based on random values generated
at nodes. Therefore, the estimate of the system size N̂ can be non-integers and the
differentiating respect to N in equation (C.3) make sense.

The term E [lnF (y)] in equation (C.4) can be calculated by definition,

E [lnF (y)] =

∫ ∞

−∞
{lnF (y)}N {F (y)}N−1 f(y)dx = − 1

N
. (C.5)

Similarly, term E
[

(lnF (y))2
]

= 2
N2 can be calculated Therefore, by substituting the

calculated values into equation (C.4), the result in (3.53) can be obtained.

119

APPENDIX D

PROOF OF THEOREM 8

120

With the error term, node i in the network will converge to zi = max{x1, x2, · · · , xN}+
e. Assume the initial values at nodes xi have exponential tail and its tail PDF λe−λx.
The distribution of the maximum yi = max{x1, x2, · · · , xN} can be approximated
using Gumbel distribution [96],

CDF : e−e−(y−µ)/β
, PDF :

1

β
e
−
(

y−µ
β

+e
−

y−µ
β

)

, (D.1)

where µ = (lnN) /λ and β = 1/λ. Therefore we can write zi as

zi =
lnN

λ
+ ỹi + e, (D.2)

where ỹi has PDF: λe−(λx+e−λx). Note that the closed form expression for the dis-
tribution of ỹi + e (sum of Gumbel random variable and Gaussian random variable)
cannot be obtained, therefore an upper bound on the Fisher information is derived
herein.

The upper bound calculation can be expressed as three phases: i) Fisher infor-
mation for random variable ỹ and e are calculated; ii) Fisher information inequality
is applied; and iii) parameter transformation lemma in [97] is used. Details of the
calculation are presented in the following.

Firstly, we introduce the Fisher information of a real random variable X whose
density function f(x) is independent of the estimated quantity N [97],

IX :=

∫

1

f(x)

(

∂f(x)

∂x

)2

dx. (D.3)

From the definition of Fisher information of a random variable, the Fisher information
for ỹi and e can be calculated

Iỹ = λ2, Ie =
1

σ2
e

. (D.4)

Secondly, Fisher information inequality is used to calculate the upper bound on Fisher
information of ỹi + e, we have

Iỹ+e ≤
IỹIe

Iỹ + Ie
=

λ2

σ2
eλ

2 + 1
. (D.5)

Note that equality in equation (D.5) is achieved iff ỹi and e are both Gaussian dis-
tributed. Finally, the parameter transformation lemma (Lemma 4 in [97]) is used and
the Fisher information about N can be calculated,

Inmax =

(

∂ lnN
λ

∂N

)2

Iỹ+e ≤
1

N2

(

λ−2

σ2
e + λ−2

)

. (D.6)

Therefore, equation (3.57) and (3.58) is obtained.
Note that here we assume that xi to be exponentially distributed for simplicity

purpose. Similar proof can be obtained if the distribution of the initial values has
exponential tail, for example Gaussian distribution. Also note that there is no close
form expression for the true distribution of the final error in this case. If the final
error is not Gaussian distributed, the upper bound on the Fisher information can be

expressed as: Inmax ≤
(

1
N2

)

(

λ−2

1/Ie+λ−2

)

from equation (D.5) and (D.6).

121

APPENDIX E

PROOF OF CONVEXITY FOR OBJECTIVE FUNCTION IN DISTRIBUTED
CENTER ESTIMATION IN CHAPTER 4

122

To proof the convexity of the objective function in equation (4.9), we first calculate
the Hessian of the objective function. Then we show that the Hessian matrix is
positive definite when β > 0.

For 2-D case, the Hessian matrix H is a 2× 2 matrix. Let the objective function

J(x, y) =
∑N

i=1 e
β{(ai−x)2+(bi−y)2}. The Hessian matrix can be calculated as:

H =

[

∂2J
∂x2

∂2J
∂x∂y

∂2J
∂y∂x

∂2J
∂y2

]

, (E.1)

where

∂2J

∂x2
=

N
∑

i=1

2βeβ{(ai−x)2+(bi−y)2}

+ 4β2(ai − x)2eβ{(ai−x)2+(bi−y)2}, (E.2)

∂2J

∂y2
=

N
∑

i=1

2βeβ{(ai−x)2+(bi−y)2}

+ 4β2(ai − x)2eβ{(bi−y)2+(bi−y)2}, (E.3)

∂2J

∂x∂y
=

∂2J

∂y∂x
=

N
∑

i=1

4β2(ai−x)(bi−y)eβ{(ai−x)2+(bi−y)2}. (E.4)

In the following, we show that H is positive definite when β > 0. Define z =
[p q]T ∈ R2 be any non-zero column vector. We have

zTHz = [p q]

[

∂2J
∂x2

∂2J
∂x∂y

∂2J
∂y∂x

∂2J
∂y2

]

[

p
q

]

= p2
N
∑

i=1

[

2βJi + 4β2(ai − x)2Ji
]

+ 2pq

N
∑

i=1

4β2(ai − x)(bi − y)Ji

+ q2
N
∑

i=1

[

2βJi + 4β2(bi − y)2Ji
]

(E.5)

= 2βp2
N
∑

i

Ji + 2βq2
N
∑

i=1

Ji

+

N
∑

i=1

4β2Ji {(ai − x)p + (bi − y)q}2 . (E.6)

123

where Ji = eβ{(ai−x)2+(bi−y)2}. Equation (E.6) is positive for any p, q value since Ji > 0
and β > 0. Therefore, H is positive definite and the objective function in equation
(4.9) is convex.

124

