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ABSTRACT 

 The past decade has seen a drastic increase in collaboration between Computer 

Science (CS) and Molecular Biology (MB). Current foci in CS such as deep learning 

require very large amounts of data, and MB research can often be rapidly advanced by 

analysis and models from CS. One of the places where CS could aid MB is during 

analysis of sequences to find binding sites, prediction of folding patterns of proteins.  

 Maintenance and replication of stem-like cells is possible for long terms as well 

as differentiation of these cells into various tissue types.  These behaviors are possible by 

controlling the expression of specific genes.  These genes then cascade into a network 

effect by either promoting or repressing downstream gene expression.  The expression 

level of all gene transcripts within a single cell can be analyzed using single cell RNA 

sequencing (scRNA-seq). A significant portion of noise in scRNA-seq data are results of 

extrinsic factors and could only be removed by customized scRNA-seq analysis pipeline. 

scRNA-seq experiments utilize next-gen sequencing to measure genome scale gene 

expression levels with single cell resolution. 

 Almost every step during analysis and quantification requires the use of an often 

empirically determined threshold, which makes quantification of noise less accurate. In 

addition, each research group often develops their own data analysis pipeline making it 

impossible to compare data from different groups. To remedy this problem a streamlined 

and standardized scRNA-seq data analysis and normalization protocol was designed and 

developed.  

 After analyzing multiple experiments we identified the possible pipeline stages, 

and tools needed. Our pipeline is capable of handling data with adapters and barcodes, 
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which was not the case with pipelines from some experiments. Our pipeline can be used 

to analyze single experiment scRNA-seq data and also to compare scRNA-seq data 

across experiments. Various processes like data gathering, file conversion, and data 

merging were automated in the pipeline.  The main focus was to standardize and 

normalize single-cell RNA-seq data to minimize technical noise introduced by disparate 

platforms. 
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CHAPTER 1 

INTRODUCTION 

 

Computer Science in Molecular Biology 

 The advancements in Computer Science have provided us better tools and 

algorithms for analyzing, interpreting and validating data. Nowadays automation and 

optimization have become a part of the programming environment. Quantum algorithms, 

deep learning, genetic algorithms are some of the areas where the future is heading.  

 Most of the analysis can also be performed using microcomputers without many 

constraints. People have developed and will develop great tools and software packages 

that serve their purpose but get shelved once the users requirements are met. The biggest 

downsides with the software available for molecular biology are reproducibility and 

portability [1]. Over the recent years software have become more language, operating 

system and hardware specific. It’s hard to overcome these in the fast paced world we are 

living. Every field is growing at a rapid pace, so it’s up to us to whether use the 

advancement in other field to our advantage or not.  

What Is Data Mining?   

 Data Mining can be considered as an interdisciplinary field, focused on extracting 

useful and meaning information from available data. The demand for the understanding 

about a disease and the biological process related with the disease in order to find a cure 

along with the advancements in the wireless communication, storage, processing power 

have lead to massive surge in the biological data being generated via sequencing, 

imaging, microarrays and more [1]. Biological data mining can be useful in Sequence 
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Analysis, Text Mining in Biomedicine and Healthcare, Network, 3D Medical Image 

analysis and in many other interesting and fascinating researches [2]. 

 Most of the scRNA-seq data are publicly available and hosted online, which 

encourages mining information from them to discover meaningful knowledge. However, 

in order to extract meaningful knowledge the data should minimize extrinsic and 

technical noise.  Technical noise is of particular concern when integrating data from 

various data sources; different sequencing platforms, different labs, and different time 

frames.   

Brief Introduction about Molecular Biology 

 Studying the function and structure of proteins and nucleic acids leads us to a 

better understanding about life. The Genome constitutes all the genetic material of an 

organism. The main components of these genetic materials are deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA). They are composed by four different monomers 

called nucleotides. Genes are sequences of nucleotides, typically DNA, that encode the 

information for the synthesis of a protein or RNA molecule. One of the important 

properties of DNA is replication, which is useful during cell division. The DNA of all 

organisms looks the same because they are mostly made up of the same nucleotides. The 

only way to differentiate the DNA of organisms is by identifying the order in which the 

nucleotides are arranged.  

 DNA is transcribed into RNA and then RNA is translated into proteins. Reverse 

transcription is possible in retrovirus and RNA Replication has also been seen in some 

viruses. This has led to the modified central dogma of molecular biology (coined by 

Francis Crick -1958), describes the flow of genetic information (Figure 1) [3] 
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Figure 1: The Modified Centre Dogma of Molecular Biology[3] 

 

What Is Sequencing? 

 The process of accurately identifying the nucleotides order: A (adenine), C 

(cytosine), G (guanine), T (thymine) or U (Uracil), in a nucleic acid molecule is known as 

sequencing. The purpose of sequencing is to unlock information, which is to find the 

order in which the nucleotides are arranged in the DNA. At present the sequencing is 

being widely used in the fields of medicine, genetics, environmental science and 

forensics. In medicinal field it can be used to provide more customized drug for patients 

or provide customized treatment/therapies based on their DNA profile. In genetics on of 

use for sequencing is to identify the genes in the sequence responsible for production of 

proteins and to facilitate the manipulation of those genes. In environmental science it’s 

useful in analyzing bacteria and virus from soil, air and water and estimate the degree of 

damage caused by pollution [4,5]. In forensics, once the suspects DNA sample is 

obtained it can be sequenced and with the information acquired a model of a suspect can 

be built with features like the eye/hair/skin color, height [4, 5, 6]. It’s also useful in trying 

to compare similarities between two samples DNA. 

 In the past decade sequencing has seen an astonishing growth from trying to 

identify the nucleotides of a single gene to whole genome sequencing. It has also evolved 

from being an expensive and time-consuming process into a rapid and broadly available 

process. In 1953, James Watson and Francis Crick were able to identify the molecular 
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structure of the DNA with help of the crystallographic data from Rosalind Franklin and 

Maurice Wilkins [6,7]. They visualized the 3-D structure of the DNA but were not able to 

read the contents of the DNA. Initial stages of sequencing were done using the single 

stranded transfer RNA. The first protein-coding sequence (coat protein of bacteriophage 

MS2) was produced in Walter Fiers’ Laboratory using 2-D fractionation [9].  

First Generation Sequencing 

 Sequencing was initially performed over microbial mRNA and tRNA because 

they were short and single stranded and they could be produced in bulk quantity. Large 

oligonucleotides were partially degraded using snake venom phosphodiesterase and 

terminal nucleosides were noted from the resulting product [8]. This was the first 

technique used in finding an order of oligonucleotides in a sequence. The era of 

sequencing started with two influential protocols in 1975, the “plus and minus” system of 

Sanger and Alan Coulson and “chemical cleavage sequencing” technique by Allen 

Maxam and Walter Gilbert. Later in 1977 Sanger developed the much-improved version 

of sequencing known as the “chain-termination” technique [9].  

 Maxam and Gilbert's chemical sequencing method [9]: Fragments are 

obtained by chemically treating radiolabelled DNA. These chemical treatments break the 

chain at specific bases. For example Hydrazine removes bases from pyrimidine but in 

presence of high salt concentration it can only remove cytosine. The Fragments are 

visualized through electrophoresis on a polyacrylamide gel. After visualizing, these 

methods need one additional step to determine the sequence due to the presence of dual 

bands in certain lanes. 4 lanes used in this method are G, A+G, C and C+T. One or two 

bands can be present for each position. 
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 Sanger’s chain-termination sequencing method [9]: Fragments are obtained by 

mixing radiolabelled Dideoxyribonucleotides (ddNTPs) into the DNA polymerization 

regular. These ddNTPs prevent further addition of deoxyribonucleotides (dNTPs) and 

cause sequence elongation to terminate. This step is carried out for each of the nucleotide 

bases. Electrophoresis was used to visualize the lanes. Unlike in the previous method 

only one band would be appear in each position. After few years the radiolabelling was 

replaced with fluorescent tags, this improvement helped in designing automated 

sequencing machines. 

 First generation sequencing machines were able to produce reads under one 

kilobase (kb) in length. Longer lengths were obtained by using shotgun sequencing and 

with the advancements in extraction methods in order to obtain high quality sequence for 

sequencing. 

Microarray Technique 

 Microarray can be used to measure the differences in mRNA expression [10,11]. 

mRNA is removed from the organism and placed in a test tube containing more mRNA. 

Fluorescent tags are added into the test tube and they get attached to the mRNA. The 

microarray contains thousands of spot with each spot representing a particular gene of the 

organism. The tagged mRNA from the test tube is then added to the microarray. Each 

tagged mRNA stick to only one complimentary DNA in the microarray. The fluorescent 

intensity is recorded across the microarray. This helps researchers in identify when genes 

expressed more and when ones expressed less. 
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Second Generation Sequencing 

 Pyrosequencing became the first commercial Next Generation Sequencing (NGS) 

technology to be successful. Pyrosequencing was about measuring pyrophosphate 

synthesis by luminescent methods and amplification was done in parallel [13]. They also 

avoided the use of modified ddNTPs and made observation possible in real time. The 

bridge amplification technique became famous as it enabled production of clusters of 

identical molecules. These clusters are visualized with help of fluorescence-based 

reversible-terminator dNTPs. The workflow of Illumina, Ion Torrent and SOLiD 

sequencing techniques are shown in Figure 2 [12]. 

 Illumina Sequencing [12]: The prepared RNA-seq library gets attached to the 

flow with the help of adapters. Adapters are added during the library preparation and its 

compliment version is found along the flow cell, which causes the sequence to attach 

along the flow cell. A complimentary version of this cDNA is created by the DNA 

polymerase, which then undergoes several rounds of PCR amplification.  Quality control 

of library is critical as it aids in optimizing the cluster density and it reduces over-

clustering. Fluorescence-based dNTPS are used during the synthesis process. Multiple 

cycles are run and only one nucleotide gets attached during each cycle (Figure 2a). This 

helps us in capturing an image of which base gets attached during each cycle and reduced 

the error rate (< .2%) 

 Ion Torrent Technique [12]: Emulsion based PCR is used during library 

preparation. Then beads with complimentary oligonucleotides are attached to each 

fragment and are then amplified. They are then placed on a semiconductor chip, which 

detects the change in pH level caused by the release of protons (H + ions) during 
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polymerization (Figure 2b). These chips use complementary metal-oxide-semiconductor 

(CMOS) technology. Since there is no need for any optical detection Ion Torrent 

sequences much faster than Illumina. Monomers are detected based on number of H + 

ions released but it gets tougher to detect homopolymers of length greater than 7.  

 Sequencing by Oligonucleotide Ligation and Detection (SOLiD) system [12]: 

Libraries are prepared in the same way as of Ion Torrent sequencing. Sequencing is done 

by ligation. 16 fluorescently labeled 8-mer oligonucleotides are used. 1-2 position in the 

8-mers is represented by all combination of 2-mer and the last 3 positions are filled with 

4 different colored fluorescent labels. The middle parts of the kmer are unknown. Since 

5mers get attached after each cycle the length of the sequence attached gets long and also 

we have fluorescent measurement for every 5th base, so a reset is done after every 5-7 

cycles.  This helps us to decode using the two base color encoding (Figure 2c). Since 

each nucleotide is read twice and this reduces the error rate much further (<0.1%) but 

produces shorter reads. 

 The biggest advantage of second generation sequencers are that these processes 

can be run in parallel, meaning that despite lower read lengths much higher throughput 

can be achieved. Micro-fabrication and high-resolution imaging also played a big part in 

the success of second-generation sequencers. 
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Figure 2: Second Generation Sequencing Techniques a. Illumina detects using 
fluorescence-based reversible terminator dNTPs. b. Ion Torrent detects by the release of 

hydrogen ions (⊕). c. SOLiD sequence detects by ligating fluorescently labeled 
oligonucleotides[12]. 

 

Third Generation Sequencing 

 The primary focus of third generation sequencing is sequencing single molecule 

and neglect the need for DNA amplification. Zero-mode waveguides (ZMW) and 

Nanopore sequencing are the two successful techniques in this generation with the later 

most attention due its portable nature [12]. Third generation sequencing techniques are 

capable of producing long reads (upwards of 880kb [13]). ZMW has a DNA polymerase 

attached at the bottom of the device. Then the target sequence is added along with the 

fluorescent nucleotides. Nucleotides are added to during the DNA polymerization at the 
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base of the ZMW, which emit a short bust of light through its narrow ZMWs providing 

real-time sequencing. Pacific Biosciences develop single molecule real time (SMRT) 

platforms.  

 Nanopore sequencing is a concept older than Sanger’s method but was not 

technologically viable until recently, and was brought back into the field of sequencing 

by Oxford Nanopore Technology (ONT). Voltage is applied to a nanopore embedded in a 

synthetic membrane through which a denatured single strand of DNA is passed. Each 

nucleotide base has its unique way of altering the ion flow, reducing the current measured 

at the nanopore for a length of the time. Advantages of Nanopore sequencing are that it 

requires very minimal amount of samples and that leads to less time being spent on 

library preparation. Once the required resources are made ready all that’s left is a 

nanopore channel, steady flow of current and way to measure the fluctuation in current. 

These requirements were built into a small device (ONT’s MinION) containing a flow 

cell, which is powered via USB 3.0 cable [14]. Multiple experiments can be run in 

sequence in a single flow cell in a single device. The Portable nature of these nanopore 

sequencers has drastically changed the way sequencers are being used, as sequencing can 

now be done in the lab or home or even in the field. This has eliminated the need for a lab 

infrastructure to sequence data and has minimized the human work involved to get the 

sample sequenced. 

Data Storage for Sequencing Data 

 The three members of the International Nucleotide Sequence Database 

Collaboration (INSDC): GenBank (Bethesda, Maryland USA), European Molecular 

Biology Laboratory's European Bioinformatics Institute (EMBL-Bank in Hinxton, UK), 
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and the DNA Data Bank of Japan (Mishima, Japan) together hold close to 2000 gigabases 

of sequence data including data from Whole Genome Sequencing (WGS)[15]. Each 

experiment measures gene activity levels or genome sequence, and could represent data 

from a single cell or a population. Unrestricted access is provided to these data, which 

helps scientists all over the globe to study and compare data. This allows collaborative 

research to flourish.  

 GenBank is maintained by the National Center for Biotechnology Information 

(NCBI), a part of the National Library of Medicine, National Institutes of Health. Figure 

3[3,15] shows the surge in the number of sequences being stored under GeneBank since 

1982. Around 3 million new sequences are being added every month to the database. It is 

amazing how the INSDC has led to the open exchange of biological information.  

 

Figure 3: Surge in the Total Number of Sequences in Genebank[15] 
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CHAPTER 2 

RNA SEQUENCING 

 

What Is a Transcriptome? 

 During the process of transcription gene readouts are transcribed into the RNA. 

These gene readouts are called transcripts and the collection of all possible gene 

transcripts are called as transcriptome. In many ways the transcriptome is a subset of the 

genome, however RNA post-processing like alternative splicing mean that the 

transcriptome contains some sequences not present in the genome [16]. 

How Important Can Analyzing Transcriptome Be?  

 Analyzing the collection of RNA sequences in a cell it is possible to determine 

when and where a gene gets turned on or off. Gene activity can be measured with the 

help of number of transcripts present. This is also called as gene expression. Analyzing 

transcriptome will help us gain insight on how a particular type of cell functions, and how 

change in normal level of gene activity can relate to disease. They also help in finding 

which genes are active in a cell at a given time [16].  One of the important things to 

consider while analyzing transcriptome is the noise present because ignoring noise can 

give raise to false positives. Some of the genes functions are still unknown. If a gene is 

expressed more in cancer cells than normal cells, then there is possibility that the gene 

can be related to cancer.  

 Human biology can be studied effectively using rat and mouse models. Apart 

from physical and environment advantage of using mice, they have long been used as an 

animal model for understanding of cancer and other disease. They are also used in 
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therapeutics experiments to check the safety of drugs [17]. NIH-supported initiative, The 

Mouse Transcriptome Project [18] generated a free, public database of gene transcripts 

for many mouse tissues.  The main goal for this project was to gather information and 

build a database of expression of every gene. This would be help is minimizing 

duplication and speed up the process of extracting meaningful genomic information from 

sequences. 

Why RNA Sequencing? 

 RNA Sequencing (RNA-seq) is considered as highly accurate and sensitive tool 

for measuring expression across the transcriptome. Expressions can even be measured for 

cells that undergo certain therapy. The beauty about RNA-seq when compared to 

previous techniques like micro-array is that it captures both known and unknown 

information. RNA-seq can be performed for organisms without reference and lower cost 

compared to other methods in measuring gene expression [19]. 

Why Now? 

 Earlier when Sanger sequencing was used for sequencing of cDNA the results had 

low throughput, high cost and was less qualitative. Serial analysis of gene expression 

(SAGE), cap analysis of gene expression (CAGE) and massively parallel signature 

sequencing (MPSS) were some of the tag-based approach used to get precise and high 

throughput gene expression levels [19]. Since all used Sanger method they were not able 

to completely analyze the transcripts and isoforms. Second and Third generation 

sequencing methods have helped overcome most of the above said limitations. These 

developments in high-throughput sequencing have lead to improve the process of 

mapping and quantifying transcriptomes. 
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What Is RNA-seq?  

 High-throughput sequencer (Illumina IG, Roche’s 454 Pyrosequencing and 

Thermo Fisher’s SOLiD and Ion Torrent) is used to obtain short sequences and then they 

are either aligned to the reference genome or assembled de novo without genomic 

sequence. Expression levels of each gene can then be approximated based on the 

sequenced population [12]. 

Advantages of Using RNA-seq 

 When comparing with other transcriptomes methods (Tiling microarray, EST 

sequencing) RNA sequencing has advantages such as single base resolution, high 

throughput, relatively low background noise, ability to distinguish different isoforms, low 

quantity of RNA required for sequencing because no cloning is needed and, it has 

relatively low cost for mapping transcriptome of large genomes. Additionally, when 

compared with microarray it allows a researcher to examine the transcripts that are 

present, rather than checking if specific transcripts are present.   

Single Cell Sequencing: 

 A single cell contains a vast amount of coding information that can be extracted 

using deep sequencing. Analyzing single cell sequences have provided us with 

information that cell populations are made up of many individual cells with 

heterogeneous cell states capable of producing system level functions [20,21]. Cell states 

help us understand about cell function and dysfunction. Degeneration of certain cell 

around normal cells and how cells respond to drugs can be studied with single cell 

analysis. 
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The standard workflow for single cell RNA sequencing (scRNA-seq), shown in 

Figure 4 [22], involves 4 major stages. First stage is to isolate the single cell for the 

tissue, then during the second stage RNA is extracted and convert that into a cDNA 

(reverse transcription), third stage would be to amplify the cDNAs and the fourth stage is 

to generate the library and sequence it. During these stages in the scRNA-seq workflow 

noises and bias get introduced.  

 
Figure 4: scRNA-seq Workflow[22] 
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CHAPTER 3 

ANALYSIS AND DESIGN 

 

Analysis 

 Design of the pipeline must be simple and similar to the standard experimental 

design of any scRNA-seq experiments. The final pipeline was prepared after studying 

multiple experiments from NCBI, and analyzing the presence of absence of various steps. 

But in order to test the functionality of this pipeline, data was necessary. All data used 

were obtained from experiments that used second-generation sequencing. The main 

reasons for going with second-generation sequencing data was because of their high 

quality and large volume. The sequencing data for each experiment considered were 

produced from Illumina sequencers. 

 Through analysis of experiments present in the publicly available NCBI GEO 

repository it can be noted that experiments were being published with single-ended 25 

base pair reads, while the most prolific sequencers can offer paired-end 100 base pair 

reads, and newer second-generation sequencers like Illumina’s MiSeq offers double-

ended 300 base pair reads [23, 24]. While this development increases data quality, it does 

mean that assumptions made by existing sequence alignment pipelines might not be valid 

for the newest sets of data or sequencers. For example, most aligners dealing with paired-

end reads include parameters for the minimum and maximum gap between paired ends. 

These parameters can increase the mapping quality by ensuring that the gap between the 

paired ends is a length reasonable for an mRNA fragment. One major problem arising 

with sequencing and alignment is that mRNA transcripts samples are preprocessed 
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(typically through sonication/shearing or a Nextera transposon library-prep), meaning 

that fragments have an average size set external to the sequencer itself, and with a 

distribution heavily dependent on the techniques used. This becomes problematic if, for 

example, one has sequence fragments for a paired-end 100 base run (~250 bp) but instead 

the data is sequenced on a machine giving 200 bp reads.  In this case the inter-read 

spacing becomes negative, and for some reads (that fall below 200bp) collected reads will 

include both the original transcript, and the adapter sequence at a high confidence score, 

such that it cannot be easily removed solely through quality trimming [23]. While there 

are efforts to counter this through selection for longer fragments, over 30% of reads 

containing a copy of the adapter sequence (GSE52583 [44]) 

Data Retrieval 

 All data used for this thesis have been retrieved from NCBI. Gene Expression 

Omnibus (GEO) is a public repository that contains genomic data submitted by 

researchers. The Entrez Programming Utilities (eUtils) is a program, which acts as an 

interface into the database available at NCBI [25]. The way eUtils works is that it uses 

fixed URL syntax to search and retrieve data from the database. Data retrieval can be 

streamlined into a pipeline with the help of eUtils components and languages that can 

send a URL to the eUtils server and interpret the XML response. Python has been used 

for the mentioned purposes.   

 Unique record identifier (UID) acts as a primary key for the database in NCBI. 

Each record is assigned with an UID. Entrez GEO DataSets (gds) are interfaced using an 

GEO accession number with a prefix GSE. GEO accession number along with the prefix 

acts as the UID while retrieving a sample or the entire study. There are many API 
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endpoints in eUtils to retrieve data from the database. All the URLs constructed for data 

retrieval need to be in the format of the endpoint used.  

 Each API endpoint retrieves different kind of information. ESummary, ESearch 

and EFetch are the most commonly used eUtils pipelines. Queries are constructed with 

fields based on the data needed. Various fields are available which helps us in narrowing 

our search. 

Sample Query: 

• Base Version: This was used in the NCBI’s gds webpage.  

"single cell"[All Fields] AND ("rna"[MeSH Terms] OR RNA[All Fields]) AND 

seq[All Fields]) AND "Mus musculus"[porgn] 

• eUtils Version: This was the URL to retrieve the data. 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gds&term=single+cell

%5BAll%20fields%5D+AND+RNA%5BAll%20Fields%5D+seq%5BAll%20Fiel

ds%5D+AND+Mus+musculus%5Borgn%5D&retmax=1000&usehistory=y 

 Once the query is run, all the experiments and their summary (Title, Organism, 

Description, ID, etc.) are returned and can be analyzed. Once the desired studies have 

been identified their ID can be obtained and the download process can be started. The 

pseudo code of the program designed and developed for this thesis is outlined below. 

1. Create an Excel document containing the Column (IDs, Size and Status: 

Finished/Null/Incorrect). 

2. Enter the IDs of the experiments whose data needs to be downloaded into the excel 

document. 

(Step 1 and Step 2 are manual process but can be automated if needed) 
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3. Start the python script 

3.1. Load the excel and check the Status of each experiment. 

3.1.1. If Status = Finished, move to next experiment. 

3.1.2. If Status = Incorrect, remove the experiment ID. 

3.1.3. If Status = Null, Check the validity of the ID. 

3.1.4. If valid proceed to Step 3.2 else change the status to Incorrect. 

3.2. Use EFetch to retrieve the NCBI internal ftp path. 

3.3. Login to the server 

3.4. Get the list of files available 

3.5. Calculate the size of the entire experiment 

3.6. If no files available down the data directly using URL obtained from EFetch 

3.7. Navigate into a sample folder and download the sequence read archive (sra) file. 

3.8. Repeat Step 3.6 till all samples are downloaded. 

3.9. Compare the total size of the downloaded file with the size from Step 3.5. If 

equal, update the status else check the size of each sample sra file downloaded 

with the same file in the server and re-download the ones that don't match. 

4. Exit 

Design 

 Any scRNA-seq data analysis pipelines consist of multiple steps, all with specific 

functions (Figure. 4). After raw reads have been received from the sequencer, there is 

usually some cleanup to be done. Specifically, the adapter sequences that allow fragments 

to be read are often included in the reads themselves, which should be trimmed to 

maximize the chance of alignment as most aligners only allow for a very small number of 
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errors. Next, sequencers cannot be certain about which bases are present in a sequence 

and instead it provides its best guess, with a Phred (probability) score.  In long sequences, 

and with older sequencers there are often many bases that have a low Phred (<99% 

confidence) and as such they are often removed.  After the quality control checks the data 

can be aligned to a reference genome or transcriptome, allowing one to get a rough idea 

of the activity levels of various genes.  Following alignment, there is a required 

quantification step to determine actual gene activity levels.  This step typically accounts 

for factors such as gene length (long genes at the same activity level will have more 

fragments sequenced), multi-matched reads (either split evenly between reads, or more 

commonly distributed according to an EM-maximization), and scaling expression levels 

out of a raw count and into a ratio measurement. Because of the large number of steps 

involved there are multiple ways to take the same input data and produce differing 

quantifications. 

The flowchart representation of the design is shown in Figure 5. Each stage is crucial and 

can introduce bias if not handled properly.  

• Sequence: The output from the sequencer. For our pipeline, this is considered as 

the raw reads. 

• QC-check: This step is used to identify low quality data and also to trim data with 

low confidence score. Some experiments might contain Spike-in (used for 

assessing the quality and success of your process) that can be removed in this 

step. Examples: FastQC [26], PRINSEQ [27]  

• Adapter Trim: This step is used to remove/trim the adapter sequence if required. 

Examples: btrim [28], Flexbar [29], Sickle [30] 
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• Reference Genome: A reference genome is a representation of the genes or 

transcripts of an organism. Aligning to different genome can affect the outcome 

of an experiment to certain extent [31]. The mm9 and mm10 are two versions of 

the mouse genome (Mus musculus) popularly used. Genome Reference 

Consortium (GRC) is constantly updating mm10 [32]. Total number of bases in 

last version of mm10 is provided in Table 1. 

Table 1: Number of Bases in Mus musculus Reference Genome 
 mm9 mm10 

Total Bases 2,745,142,291 2,807,715,301 

Total Non-N Bases 2,648,522,751 2,728,358,445 

 

• Annotation: Process of identifying coding and non-coding part of the sequence 

and further labeling the coding part with the gene it corresponds to. 

• Indexing: An index is created for the reference genome. Indexing reduces the time 

taken for searching in the reference genome. It is similar to Appendix/Index in a 

textbook. Examples: Sailfish [33], bowtie [34], STAR [35] 

• Alignment: The goal of this step is to find the position of the pattern (short-end) 

in a large text (genome). Aligning reads are equivalent to string matching. 

Examples: Tophat [36], STAR [35], HISAT [37], Sailfish [33], BWT [38] 

• Expression: Calculates the amount of gene expressed in each sample. Reads Per 

Kilobase Million (RPKM) and Transcripts Per Million (TPM) were two 

commonly used units. The main difference between these two are the way the 

values are normalized. TPM normalized for the length of the gene and then for 
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sequencing depth where as RPKM did the inverse [39]. Examples: Cufflinks [40], 

RSEM [41] 

In this thesis the following were used, mm10 [32], STAR (indexing) [35], Flexbar 

(trimming) [29], STAR (Aligning) [35], Samtools (for file conversion) [42] and Cufflinks 

(Expression) [40]. 

 

Figure 5: General Flowchart Representation of Sequencing Pipeline 
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CHAPTER 4 

RESULTS AND CONCLUSION 

 

 Figure 6 summarizes five different scRNA-seq analysis pipelines. Most labs 

follow similar pipelines, although often with different tools to accomplish the tasks 

required. The rightmost pipeline in Figure 6 is our customized pipeline. The other 

pipelines mentioned in Figure 6 are (leftmost to right) GSE59127 and GSE59129 [43], 

GSE52583 [44], GSE47835 [45] and GSE55291 [46] respectively. Table 2 was 

constructed as to infer type of tools, number of sample, experiment size and reference 

genome used across all the experiment used in this thesis.  

Table 2: Comparison of Experiments 

Experiment 
ID 

Sample Count 
(Size in GB) Cell Types Reference 

Genome 
Library 

Prep 
Aligner/ 

Quantifier 

GSE47835 103(71.1) Embryonic Stem 
cells mm10 Illumina Burrows – 

Wheeler 

GSE55291 95(69.1) 
Induced 

pluripotent stem 
cells 

mm9 NEBNext 
TopHat 
Bowtie 
cufflink 

GSE52583 201(65.8) Lung mm10 Nextera 
Bowtie2 
Tophat 

cufflinks 

GSE59127 86(12.3) Kidney mm9 Nextera 
TopHat 

GeneSpring  
12.6 

GSE59129 49(6.2) Kidney mm9 Nextera 
TopHat 

GeneSpring  
12.6 
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Figure 6: Comparison of Pipelines 
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(SD) fails to identify the variation precisely [47]. CV is calculated as the ration of SD to 

mean for the given set of data.  

 After the raw data was run through the pipeline, the estimates of gene activity 

levels are obtained in FPKM. In Figure 7 the CVs of genes from authors data was 

grouped along with the CVs from our pipeline in form of histograms. Histograms in 

Figure 7 were created with bin count as 50. The Figure 7 clearly shows that our pipeline 

yield similar results to that of the authors. The note worthy point is that we used the same 

pipeline for data from different cell types and were able to get results in agreement with 

the authors. Experiments GSE52583[44]  and GSE59127 [43] were used for the Figure 7. 

  
Figure 7: Comparison of Coefficient of Variation of Genes 
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 Aggregating the data from all the experiments mentioned in Table 2 and then 

running through our pipeline generated the Figure 8. Our pipeline performs better when 

the data obtained are from different cell types as there is clear increase in the frequency 

of genes with low CV.  

 

Figure 8 : Coefficient of Variation of Genes from All Experiments Merged 
 

 We looked at the CVs of few housekeeping genes [48] and found that we had a 
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Figure 9: Comparison of Coefficient of Variations among Housekeeping Genes 
 

 To further strengthen our validation we generated the scatterplots for all 5 
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paper, validating our modified protocol.  
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over half of the genes (F).  One probable hypothesis is that the variation removed is 

caused by differing biases imposed by distinct pipelines, and such a reduction in variance 

could provide a significant benefit to researchers hoping to focus on inherent gene 

expression noise.  

 

Figure 10: Ratio of Coefficient of Variation Visualized Using Scatterplot 
 

 To decipher how a transcriptional landscape regulates cell fate determination via 

integration of stochastic signals from various inputs, understanding the network 

architecture that makes up the transcriptional landscape and dissecting core regulatory 

networks within it is essential. Using high quality scRNA-seq data produced from our 

customized protocols, it is possible to employ newly developed noise-based methods to 
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decipher co-regulated gene modules where candidate genes show unique expression 

stochasticity during cell reprogramming will be dissected for further modeling analyses. 

 For future work two components can be added to this pipeline: parameter 

optimization and post-processing of data. Manual effort in identifying maximum and 

minimum fragment length, adapter sequence, reference genome and some cases even the 

format of the read quality score can be automated through rule-based and distribution 

based approach. Post-processing can be performed on the data to remove contextual 

noise. This can also help in classify noise sources and validate them.  

 The purpose of these type of studies is to maximize the knowledge that can be 

extracted from vast volume of scRNA-seq data to identify patterns in gene expression 

noise that can then be used to uncover GRN responsible for random cell fate 

determination. This study can be considered as a stepping stone for developing methods 

in future to reconstruct gene regulatory networks by fully utilize each cell’s gene 

expression profile and exhaustively analyze and characterize network motifs as ciphers to 

identify critical topologies to elucidate their integrative and coordinative regulation in 

transforming stochastic signals into stable decision for cell fate determination.  
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